Endo, Daisuke; Park, Min Kyun
2003-12-01
Sex steroid hormones play a central role in the reproduction of all vertebrates. These hormones function through their specific receptors, so the expression levels of the receptors may reflect the responsibility of target organs. However, there was no effective method to quantify the expression levels of these receptors in reptilian species. In this study, we established the competitive-PCR assay systems for the quantification of the mRNA expression levels of three sex steroid hormone receptors in the leopard gecko. These assay systems were successfully able to detect the mRNA expression level of each receptor in various organs of male adult leopard geckoes. The expression levels of mRNA of these receptors were highly various depending on the organs assayed. This is the first report regarding the tissue distributions of sex steroid hormone receptor expressions in reptile. The effects of environmental conditions on these hormone receptor expressions were also examined. After the low temperature and short photoperiod treatment for 6 weeks, only the androgen receptor expression was significantly increased in the testes. The competitive-PCR assay systems established in this report should be applicable for various studies of the molecular mechanism underlying the reproductive activity of the leopard gecko.
Distribution of cellular HSV-1 receptor expression in human brain.
Lathe, Richard; Haas, Juergen G
2017-06-01
Herpes simplex virus type 1 (HSV-1) is a neurotropic virus linked to a range of acute and chronic neurological disorders affecting distinct regions of the brain. Unusually, HSV-1 entry into cells requires the interaction of viral proteins glycoprotein D (gD) and glycoprotein B (gB) with distinct cellular receptor proteins. Several different gD and gB receptors have been identified, including TNFRSF14/HVEM and PVRL1/nectin 1 as gD receptors and PILRA, MAG, and MYH9 as gB receptors. We investigated the expression of these receptor molecules in different areas of the adult and developing human brain using online transcriptome databases. Whereas all HSV-1 receptors showed distinct expression patterns in different brain areas, the Allan Brain Atlas (ABA) reported increased expression of both gD and gB receptors in the hippocampus. Specifically, for PVRL1, TNFRFS14, and MYH9, the differential z scores for hippocampal expression, a measure of relative levels of increased expression, rose to 2.9, 2.9, and 2.5, respectively, comparable to the z score for the archetypical hippocampus-enriched mineralocorticoid receptor (NR3C2, z = 3.1). These data were confirmed at the Human Brain Transcriptome (HBT) database, but HBT data indicate that MAG expression is also enriched in hippocampus. The HBT database allowed the developmental pattern of expression to be investigated; we report that all HSV1 receptors markedly increase in expression levels between gestation and the postnatal/adult periods. These results suggest that differential receptor expression levels of several HSV-1 gD and gB receptors in the adult hippocampus are likely to underlie the susceptibility of this brain region to HSV-1 infection.
Improved Dual-Luciferase Reporter Assays for Nuclear Receptors
Paguio, Aileen; Stecha, Pete; Wood, Keith V; Fan, Frank
2010-01-01
Nuclear receptors play important roles in many cellular functions through control of gene transcription. It is also a large target class for drug discovery. Luciferase reporter assays are frequently used to study nuclear receptor function because of their wide dynamic range, low endogenous activity, and ease of use. Recent improvements of luciferase genes and vectors have further enhanced their utilities. Here we applied these improvements to two reporter formats for studying nuclear receptors. The first assay contains a Murine Mammary Tumor Virus promoter upstream of a destabilized luciferase. The presence of response elements for nuclear hormone receptor in this promoter allows the studies of endogenous and/or exogenous full length receptors. The second assay contains a ligand binding domain (LBD) of a nuclear receptor fused to the GAL4 DNA binding domain (DBD) on one vector and multiple Gal4 Upstream Activator Sequences (UAS) upstream of luciferase reporter on another vector. We showed that codon optimization of luciferase reporter genes increased expression levels in conjunction with the incorporation of protein destabilizing sequences into luciferase led to a larger assay dynamic range in both formats. The optimum number of UAS to generate the best response was determined. The expression vector for nuclear receptor LBD/GAL4 DBD fusion also constitutively expresses a Renilla luciferase-neoR fusion protein, which provides selection capability (G418 resistance, neoR) as well as an internal control (Renilla luciferase). This dual-luciferase format allowed detecting compound cytotoxicity or off-target change in expression during drug screening, therefore improved data quality. These luciferase reporter assays provided better research and drug discovery tools for studying the functions of full length nuclear receptors and ligand binding domains. PMID:21687560
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nonogaki, Katsunori; Nozue, Kana; Oka, Yoshitomo
2006-12-29
Serotonin (5-hydroxytryptamine; 5-HT) 2A receptors contribute to the effects of 5-HT on platelet aggregation and vascular smooth muscle cell proliferation, and are reportedly involved in decreases in plasma levels of adiponectin, an adipokine, in diabetic subjects. Here, we report that systemic administration of sarpogrelate, a 5-HT2A receptor antagonist, suppressed appetite and increased hypothalamic pro-opiomelanocortin and cocaine- and amphetamine-regulated transcript, corticotropin releasing hormone, 5-HT2C, and 5-HT1B receptor gene expression. A{sup y} mice, which have ectopic expression of the agouti protein, significantly increased hypothalamic 5-HT2A receptor gene expression in association with obesity compared with wild-type mice matched for age. Systemic administration ofmore » sarpogrelate suppressed overfeeding, body weight gain, and hyperglycemia in obese A{sup y} mice, whereas it did not increase plasma adiponectin levels. These results suggest that obesity increases hypothalamic 5-HT2A receptor gene expression, and pharmacologic inactivation of 5-HT2A receptors inhibits overfeeding and obesity in A{sup y} mice, but did not increase plasma adiponectin levels.« less
WANG, Chenyun; WANG, Yingying; WANG, Miao; CHEN, Jiankui; YU, Nong; SONG, Shiping; KAMINSKI, Norbert E.; ZHANG, Wei
2013-01-01
Summary Many researchers employed mammalian expression system to artificially express cannabinoid receptors, but immunoblot data that directly prove efficient protein expression can hardly be seen in related research reports. In present study, we demonstrated cannabinoid receptor protein was not able to be properly expressed with routine mammalian expression system. This inefficient expression was rescued by endowing an exogenous signal peptide ahead of cannabinoid receptor peptide. In addition, the artificially synthesized cannabinoid receptor was found to aggregate under routine sample denaturing temperatures (i.e., ≥95°C), forming a large molecular weight band when analyzed by immunoblotting. Only denaturing temperatures ≤75°C yielded a clear band at the predicted molecular weight. Collectively, we showed that efficient mammalian expression of cannabinoid receptors need a signal peptide sequence, and described the requirement for a low sample denaturing temperature in immunoblot analysis. These findings provide very useful information for efficient mammalian expression and immunoblotting of membrane receptors. PMID:22528237
Embryonic expression of the transforming growth factor beta ligand and receptor genes in chicken.
Cooley, James R; Yatskievych, Tatiana A; Antin, Parker B
2014-03-01
Transforming growth factor-beta (TGFβ) signaling regulates a myriad of biological processes during embryogenesis, in the adult, and during the manifestation of disease. TGFβ signaling is propagated through one of three TGFβ ligands interacting with Type I and Type II receptors, and Type III co-receptors. Although TGFβ signaling is regulated partly by the combinatorial expression patterns of TGFβ receptors and ligands, a comprehensive gene expression analysis has not been published. Here we report the embryonic mRNA expression patterns in chicken embryos of the canonical TGFβ ligands (TGFB1, TGFB2, and TGFB3) and receptors (TGFBR1, TGFBR2, TGFBR3), plus the Activin A receptor, type 1 (ACVR1) and co receptor Endoglin (ENG) that also transduce TGFβ signaling. TGFB ligands and receptors show dynamic and frequently overlapping expression patterns in numerous embryonic cell layers and structures. Integrating expression information identifies combinations of ligands and receptors that are involved in specific developmental processes including somitogenesis, cardiogenesis and vasculogenesis. Copyright © 2013 Wiley Periodicals, Inc.
Functional roles of the sweet taste receptor in oral and extraoral tissues
Laffitte, Anni; Neiers, Fabrice; Briand, Loïc
2014-01-01
Purpose of review This review summarizes and discusses the current knowledge about the physiological roles of the sweet taste receptor in oral and extraoral tissues. Recent findings The expression of a functional sweet taste receptor has been reported in numerous extragustatory tissues, including the gut, pancreas, bladder, brain and, more recently, bone and adipose tissues. In the gut, this receptor has been suggested to be involved in luminal glucose sensing, the release of some satiety hormones, the expression of glucose transporters, and the maintenance of glucose homeostasis. More recently, the sweet taste receptor was proposed to regulate adipogenesis and bone biology. Summary The perception of sweet taste is mediated by the T1R2/T1R3 receptor, which is expressed in the oral cavity, wherein it provides input on the caloric and macronutrient contents of ingested food. This receptor recognizes all the chemically diverse compounds perceived as sweet by human beings, including natural sugars and sweeteners. Importantly, the expression of a functional sweet taste receptor has been reported in numerous extragustatory tissues, wherein it has been proposed to regulate metabolic processes. This newly recognized role of the sweet taste receptor makes this receptor a potential novel therapeutic target for the treatment of obesity and related metabolic dysfunctions, such as diabetes and hyperlipidemia. PMID:24763065
Pérez-Fernández, Juan; Megías, Manuel; Pombal, Manuel A
2014-04-01
The NPY receptors known as Y receptors are classified into three subfamilies, Y1, Y2, and Y5, and are involved in different physiological functions. The Y5 receptor is the only member of the Y5 subfamily, and it is present in all vertebrate groups, except for teleosts. Both molecular and pharmacological studies show that Y5 receptor is highly conserved during vertebrate evolution. Furthermore, this receptor is widely expressed in the mammalian brain, including the hypothalamus, where it is thought to take part in feeding and homeostasis regulation. Lampreys belong to the agnathan lineage, and they are thought to have branched out between the two whole-genome duplications that occurred in vertebrates. Therefore, they are in a key position for studies on the evolution of gene families in vertebrates. Here we report the cloning, phylogeny, and brain expression pattern of the sea lamprey Y5 receptor. In phylogenetic studies, the lamprey Y5 receptor clusters in a basal position, together with Y5 receptors of other vertebrates. The mRNA of this receptor is broadly expressed in the lamprey brain, being especially abundant in hypothalamic areas. Its expression pattern is roughly similar to that reported for other vertebrates and parallels the expression pattern of the Y1 receptor subtype previously described by our group, as it occurs in mammals. Altogether, these results confirm that a Y5 receptor is present in lampreys, thus being highly conserved during the evolution of vertebrates, and suggest that it is involved in many brain functions, the only known exception being teleosts. Copyright © 2013 Wiley Periodicals, Inc.
Functional importance of GLP-1 receptor species and expression levels in cell lines.
Knudsen, Lotte Bjerre; Hastrup, Sven; Underwood, Christina Rye; Wulff, Birgitte Schjellerup; Fleckner, Jan
2012-04-10
Of the mammalian species, only the GLP-1 receptors of rat and human origin have been described and characterized. Here, we report the cloning of the homologous GLP-1 receptors from mouse, rabbit, pig, cynomolgus monkey and chimp. The GLP-1 receptor is highly conserved across species, thus underlining the physiological importance of the peptide hormone and its receptor across a wide range of mammals. We expressed the receptors by stable transfection of BHK cells, both in cell lines with high expression levels of the cloned receptors, as well as in cell lines with lower expression levels, more comparable to endogenous expression of these receptors. High expression levels of cloned GLP-1 receptors markedly increased the potency of GLP-1 and other high affinity ligands, whereas the K(d) values were not affected. For a low affinity ligand like the ago-allosteric modulator Compound 2, expression levels of the human GLP-1 receptor were important for maximal efficacy as well as potency. The two natural metabolites of GLP-1, GLP-1(9-37) and GLP-1(9-36)amide were agonists when tested on a cell line with high expression of the recombinant human GLP-1 receptor, whereas they behaved as (low potent) antagonists on a cell line that expressed the receptor endogenously, as well as cells expressing a moderate level of the recombinant human GLP-1 receptor. The amide form was a more potent agonist than the free acid from. In conclusion, receptor expression level is an important parametre for selecting cell lines with cloned GLP-1 receptors for functional characterization of physiological and pharmaceutical ligands. Copyright © 2011 Elsevier B.V. All rights reserved.
Kang, Joo Hyun; Chung, June-Key; Lee, Yong Jin; Kim, Kwang Il; Jeong, Jae Min; Lee, Dong Soo; Lee, Myung Chul
2006-10-01
Oestrogen receptors are ligand-dependent transcription factors whose activity is modulated either by oestrogens or by an alternative signalling pathway. Oestrogen receptors interact via a specific DNA-binding domain, the oestrogen responsive element (ERE), in the promoter region of sensitive genes. This binding leads to an initiation of gene expression and hormonal effects. To determine the transcriptional activity of the oestrogen receptor, we developed a molecular imaging system using sodium iodide symporter (NIS) as a reporter gene. The NIS reporter gene was placed under the control of an artificial ERE derived from pERE-TA-SEAP and named as pERE-NIS. pERE-NIS was transferred to MCF-7, human breast cancer cells, which highly expressed oestrogen receptor-alpha with lipofectamine. Stably expressing cells were generated by selection with G418 for 14 days. After treatment of 17beta-oestradiol and tamoxifen with serial doses, the (125)I uptake was measured for the determination of NIS expression. The inhibition of NIS activity was performed with 50 micromol x l(-1) potassium perchlorate. The MCF7/pERE-NIS treated with 17beta-oestradiol accumulated (125)I up to 70-80% higher than did non-treated cells. NIS expression was increased according to increasing doses of 17beta-oestradiol. MCF7/pERE-NIS treated with tamoxifen also accumulated (125)I up to 50% higher than did non-treated cells. Potassium perchlorate completely inhibited (125)I uptake. When MDA-MB231 cells, the oestrogen receptor-negative breast cancer cells, were transfected with pERE-NIS, (125)I uptake of MDA-MB-231/pERE-NIS did not increase. This pERE-NIS reporter system is sufficiently sensitive for monitoring transcriptional activity of the oestrogen receptor. Therefore, cis-enhancer reporter systems with ERE will be applicable to the development of a novel selective oestrogen receptor modulator with low toxicity and high efficacy.
Genomic characterization and regulation of CYP3a13: role of xenobiotics and nuclear receptors.
Anakk, Sayeepriyadarshini; Kalsotra, Auinash; Shen, Qi; Vu, Mary T; Staudinger, Jeffrey L; Davies, Peter J A; Strobel, Henry W
2003-09-01
We report that CYP3a13 gene, located on mouse chromosome 5, spans 27.5 Kb and contains 13 exons. The transcription start site is 35 bp upstream of the coding region and results in a 109 bp 5' untranslated region. CYP3a13 promoter shows putative binding sites for retinoid X receptor, pregnane X receptor, and estrogen receptor. CYP3a13 shows a broad tissue distribution with predominant expression in liver. Although CYP3a13 shares 92% nucleotide identity with the female-specific rat CYP3A9, its expression does not exhibit sexual dimorphism. Ligand activation of peroxisomal proliferator-activated receptor-gamma and retinoid X receptor inhibit expression of CYP3a13 at the transcription level in a tissue-specific manner. Another novel finding is hepatic induction of CYP3a13 by dexamethasone occurring only in pregnane X receptor null mice. We also report that pregnane X receptor is essential to maintain robust in vivo basal levels of CYP3a13 in contrast to CYP3a11. CYP3a13 protein expressed in vitro can metabolize clinically active drugs ethylmorphine and erythromycin, as well as benzphetamine. We conclude that CYP3a13 is regulated differentially by various nuclear receptors. In humans this may lead to altered drug metabolism, as many of the newly synthesized ligands/drugs targeted toward these nuclear receptors could influence CYP3A gene expression.
ROLE OF NRF2 IN THE OXIDATIVE STRESS-DEPENDENT HYPERTENSION ASSOCIATED WITH THE DEPLETION OF DJ-1
Cuevas, Santiago; Yang, Yu; Konkalmatt, Prasad; Asico, Laureano; Feranil, Jun; Jones, John; Villar, Van Anthony; Armando, Ines; Jose, Pedro A.
2015-01-01
Renal dopamine 2 receptor dysfunction is associated with oxidative stress and high blood pressure. We have reported that DJ-1, an oxidative stress response protein, is positively regulated by dopamine 2 receptor in the kidney. The transcription factor Nrf2 regulates the expression of several antioxidant genes. We tested the hypothesis that Nrf2 is involved in the renal DJ-1-mediated inhibition of reactive oxygen species production. We have reported that silencing dopamine 2 receptor in mouse renal proximal tubule cells decreases the expression of DJ-1. We now report that silencing DJ-1 or dopamine 2 receptor in mouse proximal tubule cells and mouse kidneys, decreases Nrf2 expression and activity and increases reactive oxygen species production; blood pressure is also increased in mice in which renal DJ-1 or dopamine 2 receptor is silenced. DJ-1−/− mice have decreased renal Nrf2 expression and activity, and increased nitro-tyrosine levels an dopamine 2 receptor d blood pressure. Silencing Nrf2 in mouse proximal tubule cells does not alter the expression of DJ-1 or dopamine 2 receptor, indicating that Nrf2 is downstream of dopamine 2 receptor and DJ-1. A Nrf2 inducer, bardoxolone, normalizes the systolic blood pressure and renal malondialdehyde levels in DJ-1−/− mice without affecting them in their wild-type littermates. Because Nrf2 ubiquitination is increased in DJ-1−/− mice, we conclude that the protective effect of DJ-1 on renal oxidative stress is mediated, in part, by preventing Nrf2 degradation. Moreover, renal dopamine 2 receptor and DJ-1 are necessary for normal Nrf2 activity to keep a normal redox balance and blood pressure. PMID:25895590
Ylikomi, Timo; Vienonen, Annika; Ahola, Tytti M
2004-11-01
G protein-coupled receptor 30 (GPR30) has previously been described to be important in steroid-mediated growth and to inhibit cell proliferation. Here we investigated whether the effect of GPR30 on cell growth is dependent on steroid hormone receptors. We stably introduced GPR30 in immortalized normal mammary epithelial (HME) cells using retroviruses for gene delivery. GPR30 inhibited the growth and proliferation of the cells. They expressed glucocorticoid receptor, but not estrogen or progesterone receptor. GPR30 down-regulated the expression of cofactor transcription intermediary factor 2 (TIF2) analyzed using quantitative RT-PCR analysis, and also diminished the expression of TIF2 at protein level analyzed by Western blotting using nuclear extracts from mammary epithelial cells. When HME cells were transiently transfected with the glucocorticoid response element MMTV-luc reporter plasmid, stable expression of GPR30 resulted in the abolition of ligand-induced transactivation of the promoter. In COS cells, transient transfection of GPR30 with glucocorticoid receptor alpha resulted in an abrogation of the MMTV-luc and GRE-luc reporter activities induced by dexamethasone. The results suggest a novel mechanism by which membrane-initiated signaling interferes with steroid signaling.
Otake, Sho; Yoshida, Kenji; Seira, Naofumi; Sanchez, Christopher M; Regan, John W; Fujino, Hiromichi; Murayama, Toshihiko
2015-02-01
Increases in prostaglandin E2 (PGE2) and cyclooxygenase-2 (COX-2) levels are features of colon cancer. Among the different E-type prostanoid receptor subtypes, EP4 receptors are considered to play a crucial role in carcinogenesis by, for example, inducing COX-2 when stimulated with PGE2. However, EP4 receptor levels and PGE2-induced cellular responses are inconsistent among the cellular conditions. Therefore, the connections responsible for the expression of EP4 receptors were investigated in the present study by focusing on cell density-induced hypoxia-inducible factor-1α (HIF-1α). The expression of EP4 receptors was examined using immunoblot analysis, quantitative polymerase chain reaction, and reporter gene assays in HCA-7 human colon cancer cells with different cellular densities. The involvement of HIF-1α and its signaling pathways were also examined by immunoblot analysis, reporter gene assays, and with siRNA. We here demonstrated that EP4 receptors as well as EP4 receptor-mediated COX-2 expression levels decreased with an increase in cellular density. In contrast, HIF-1α levels increased in a cellular density-dependent manner. The knockdown of HIF-1α by siRNA restored the expression of EP4 receptors and EP4 receptor-mediated COX-2 in cells at a high density. Thus, the cellular density-dependent increase observed in HIF-1α expression levels reduced the expression of COX-2 by decreasing EP4 receptor levels. This novel regulation mechanism for the expression of EP4 receptors by HIF-1α may provide an explanation for the inconsistent actions of PGE2. The expression levels of EP4 receptors may vary depending on cellular density, which may lead to the differential activation of their signaling pathways by PGE2. Thus, cellular density-dependent PGE2-mediated signaling may determine the fate/stage of cancer cells, i.e., the surrounding environments could define the fate/stage of malignancies associated with colon cancer.
Otake, Sho; Yoshida, Kenji; Seira, Naofumi; Sanchez, Christopher M; Regan, John W; Fujino, Hiromichi; Murayama, Toshihiko
2015-01-01
Increases in prostaglandin E2 (PGE2) and cyclooxygenase-2 (COX-2) levels are features of colon cancer. Among the different E-type prostanoid receptor subtypes, EP4 receptors are considered to play a crucial role in carcinogenesis by, for example, inducing COX-2 when stimulated with PGE2. However, EP4 receptor levels and PGE2-induced cellular responses are inconsistent among the cellular conditions. Therefore, the connections responsible for the expression of EP4 receptors were investigated in the present study by focusing on cell density-induced hypoxia-inducible factor-1α (HIF-1α). The expression of EP4 receptors was examined using immunoblot analysis, quantitative polymerase chain reaction, and reporter gene assays in HCA-7 human colon cancer cells with different cellular densities. The involvement of HIF-1α and its signaling pathways were also examined by immunoblot analysis, reporter gene assays, and with siRNA. We here demonstrated that EP4 receptors as well as EP4 receptor-mediated COX-2 expression levels decreased with an increase in cellular density. In contrast, HIF-1α levels increased in a cellular density-dependent manner. The knockdown of HIF-1α by siRNA restored the expression of EP4 receptors and EP4 receptor-mediated COX-2 in cells at a high density. Thus, the cellular density-dependent increase observed in HIF-1α expression levels reduced the expression of COX-2 by decreasing EP4 receptor levels. This novel regulation mechanism for the expression of EP4 receptors by HIF-1α may provide an explanation for the inconsistent actions of PGE2. The expression levels of EP4 receptors may vary depending on cellular density, which may lead to the differential activation of their signaling pathways by PGE2. Thus, cellular density-dependent PGE2-mediated signaling may determine the fate/stage of cancer cells, i.e., the surrounding environments could define the fate/stage of malignancies associated with colon cancer. PMID:25692008
Constitutive Activity among Orphan Class-A G Protein Coupled Receptors.
Martin, Adam L; Steurer, Michael A; Aronstam, Robert S
2015-01-01
The purpose of this study was to evaluate the extent of constitutive activity among orphan class-A G protein coupled receptors within the cAMP signaling pathway. Constitutive signaling was revealed by changes in gene expression under control of the cAMP response element. Gene expression was measured in Chinese hamster ovary cells transiently co-transfected with plasmids containing a luciferase reporter and orphan receptor. Criteria adopted for defining constitutive activation were: 1) 200% elevation over baseline reporter gene expression; 2) 40% inhibition of baseline expression; and 3) 40% inhibition of expression stimulated by 3 μM forskolin. Five patterns of activity were noted: 1) inhibition under both baseline and forskolin stimulated expression (GPR15, GPR17, GPR18, GPR20, GPR25, GPR27, GPR31, GPR32, GPR45, GPR57, GPR68, GPR83, GPR84, GPR132, GPR150, GPR176); 2) no effect on baseline expression, but inhibition of forskolin stimulated expression (GPR4, GPR26, GPR61, GPR62, GPR78, GPR101, GPR119); 3) elevation of baseline signaling coupled with inhibition of forskolin stimulated expression (GPR6, GPR12); 4) elevation of baseline signaling without inhibition of forskolin stimulated expression (GPR3, GPR21, GPR52, GPR65); and 5) no effect on expression (GPR1, GPR19, GPR22, GPR34, GPR35, GPR39, GPR63, GPR82, GPR85, GPR87). Constitutive activity was observed in 75% of the orphan class-A receptors examined (30 of 40). This constitutive signaling cannot be explained by simple overexpression of the receptor. Inhibition of cAMP mediated expression was far more common (65%) than stimulation of expression (15%). Orphan receptors that were closely related based on amino acid homology tended to have similar effects on gene expression. These results suggest that identification of inverse agonists may be a fruitful approach for categorizing these orphan receptors and targeting them for pharmacological intervention.
Constitutive Activity among Orphan Class-A G Protein Coupled Receptors
Martin, Adam L.; Steurer, Michael A.; Aronstam, Robert S.
2015-01-01
The purpose of this study was to evaluate the extent of constitutive activity among orphan class-A G protein coupled receptors within the cAMP signaling pathway. Constitutive signaling was revealed by changes in gene expression under control of the cAMP response element. Gene expression was measured in Chinese hamster ovary cells transiently co-transfected with plasmids containing a luciferase reporter and orphan receptor. Criteria adopted for defining constitutive activation were: 1) 200% elevation over baseline reporter gene expression; 2) 40% inhibition of baseline expression; and 3) 40% inhibition of expression stimulated by 3 μM forskolin. Five patterns of activity were noted: 1) inhibition under both baseline and forskolin stimulated expression (GPR15, GPR17, GPR18, GPR20, GPR25, GPR27, GPR31, GPR32, GPR45, GPR57, GPR68, GPR83, GPR84, GPR132, GPR150, GPR176); 2) no effect on baseline expression, but inhibition of forskolin stimulated expression (GPR4, GPR26, GPR61, GPR62, GPR78, GPR101, GPR119); 3) elevation of baseline signaling coupled with inhibition of forskolin stimulated expression (GPR6, GPR12); 4) elevation of baseline signaling without inhibition of forskolin stimulated expression (GPR3, GPR21, GPR52, GPR65); and 5) no effect on expression (GPR1, GPR19, GPR22, GPR34, GPR35, GPR39, GPR63, GPR82, GPR85, GPR87). Constitutive activity was observed in 75% of the orphan class-A receptors examined (30 of 40). This constitutive signaling cannot be explained by simple overexpression of the receptor. Inhibition of cAMP mediated expression was far more common (65%) than stimulation of expression (15%). Orphan receptors that were closely related based on amino acid homology tended to have similar effects on gene expression. These results suggest that identification of inverse agonists may be a fruitful approach for categorizing these orphan receptors and targeting them for pharmacological intervention. PMID:26384023
Ionotropic crustacean olfactory receptors.
Corey, Elizabeth A; Bobkov, Yuriy; Ukhanov, Kirill; Ache, Barry W
2013-01-01
The nature of the olfactory receptor in crustaceans, a major group of arthropods, has remained elusive. We report that spiny lobsters, Panulirus argus, express ionotropic receptors (IRs), the insect chemosensory variants of ionotropic glutamate receptors. Unlike insects IRs, which are expressed in a specific subset of olfactory cells, two lobster IR subunits are expressed in most, if not all, lobster olfactory receptor neurons (ORNs), as confirmed by antibody labeling and in situ hybridization. Ligand-specific ORN responses visualized by calcium imaging are consistent with a restricted expression pattern found for other potential subunits, suggesting that cell-specific expression of uncommon IR subunits determines the ligand sensitivity of individual cells. IRs are the only type of olfactory receptor that we have detected in spiny lobster olfactory tissue, suggesting that they likely mediate olfactory signaling. Given long-standing evidence for G protein-mediated signaling in activation of lobster ORNs, this finding raises the interesting specter that IRs act in concert with second messenger-mediated signaling.
Expression of estrogen and progesterone receptors in astrocytomas: a literature review
Tavares, Cléciton Braga; Gomes-Braga, Francisca das Chagas Sheyla Almeida; Costa-Silva, Danylo Rafhael; Escórcio-Dourado, Carla Solange; Borges, Umbelina Soares; Conde, Airton Mendes; da Conceição Barros-Oliveira, Maria; Sousa, Emerson Brandão; da Rocha Barros, Lorena; Martins, Luana Mota; Facina, Gil; da-Silva, Benedito Borges
2016-01-01
Gliomas are the most common type of primary central nervous system neoplasm. Astrocytomas are the most prevalent type of glioma and these tumors may be influenced by sex steroid hormones. A literature review for the presence of estrogen and progesterone receptors in astrocytomas was conducted in the PubMed database using the following MeSH terms: “estrogen receptor beta” OR “estrogen receptor alpha” OR “estrogen receptor antagonists” OR “progesterone receptors” OR “astrocytoma” OR “glioma” OR “glioblastoma”. Among the 111 articles identified, 13 studies met our inclusion criteria. The majority of reports showed the presence of estrogen and progesterone receptors in astrocytomas. Overall, higher tumor grades were associated with decreased estrogen receptor expression and increased progesterone receptor expression. PMID:27626480
Expression of Inappropriate Cadherins in Human Breast Carcinomas
2000-10-01
fibroblast growth factor receptor ADHERINS constitute a family of transmembrane Hamaguchi et al., 1993). In addition, p120ct", originally...1994. expression is associated with poor prognosis in patients with prostate cancer. Alternative splicing in fibroblast growth factor receptor 2 is... fibroblast growth factor receptor signaling. This year we report that the extracellular domain of N-cadherin is responsible for this
Sizemore, Tyler R.; Dacks, Andrew M.
2016-01-01
Neuromodulation confers flexibility to anatomically-restricted neural networks so that animals are able to properly respond to complex internal and external demands. However, determining the mechanisms underlying neuromodulation is challenging without knowledge of the functional class and spatial organization of neurons that express individual neuromodulatory receptors. Here, we describe the number and functional identities of neurons in the antennal lobe of Drosophila melanogaster that express each of the receptors for one such neuromodulator, serotonin (5-HT). Although 5-HT enhances odor-evoked responses of antennal lobe projection neurons (PNs) and local interneurons (LNs), the receptor basis for this enhancement is unknown. We used endogenous reporters of transcription and translation for each of the five 5-HT receptors (5-HTRs) to identify neurons, based on cell class and transmitter content, that express each receptor. We find that specific receptor types are expressed by distinct combinations of functional neuronal classes. For instance, the excitatory PNs express the excitatory 5-HTRs, while distinct classes of LNs each express different 5-HTRs. This study therefore provides a detailed atlas of 5-HT receptor expression within a well-characterized neural network, and enables future dissection of the role of serotonergic modulation of olfactory processing. PMID:27845422
Hypothyroidism Affects D2 Receptor-mediated Breathing without altering D2 Receptor Expression
Schlenker, Evelyn H.; Rio, Rodrigo Del; Schultz, Harold D.
2015-01-01
Bromocriptine depressed ventilation in air and D2 receptor expression in the nucleus tractus solitaries (NTS) in male hypothyroid hamsters. Here we postulated that in age- matched hypothyroid female hamsters, the pattern of D2 receptor modulation of breathing and D2 receptor expression would differ from those reported in hypothyroid males. In females hypothyroidism did not affect D2 receptor protein levels in the NTS, carotid bodies or striatum. Bromocriptine, but not carmoxirole (a peripheral D2 receptor agonist), increased oxygen consumption and body temperature in awake air-exposed hypothyroid female hamsters and stimulated their ventilation before and following exposure to hypoxia. Carmoxirole depressed frequency of breathing in euthyroid hamsters prior to, during and following hypoxia exposures and stimulated it in the hypothyroid hamsters following hypoxia. Although hypothyroidism did not affect expression of D2 receptors, it influenced central D2 modulation of breathing in a disparate manner relative to euthyroid hamsters. PMID:24434437
Hypothyroidism affects D2 receptor-mediated breathing without altering D2 receptor expression.
Schlenker, Evelyn H; Del Rio, Rodrigo; Schultz, Harold D
2014-03-01
Bromocriptine depressed ventilation in air and D2 receptor expression in the nucleus tractus solitaries (NTS) in male hypothyroid hamsters. Here we postulated that in age-matched hypothyroid female hamsters, the pattern of D2 receptor modulation of breathing and D2 receptor expression would differ from those reported in hypothyroid males. In females hypothyroidism did not affect D2 receptor protein levels in the NTS, carotid bodies or striatum. Bromocriptine, but not carmoxirole (a peripheral D2 receptor agonist), increased oxygen consumption and body temperature in awake air-exposed hypothyroid female hamsters and stimulated their ventilation before and following exposure to hypoxia. Carmoxirole depressed frequency of breathing in euthyroid hamsters prior to, during and following hypoxia exposures and stimulated it in the hypothyroid hamsters following hypoxia. Although hypothyroidism did not affect expression of D2 receptors, it influenced central D2 modulation of breathing in a disparate manner relative to euthyroid hamsters. Copyright © 2014 Elsevier B.V. All rights reserved.
Chai, Jinghua; Zhou, Minliang; Simon, Nirvine; Huang, Liquan
2014-01-01
Although inflammatory responses are a critical component in defense against pathogens, too much inflammation is harmful. Mechanisms have evolved to regulate inflammation, including modulation by the anti-inflammatory cytokine interleukin-10 (IL-10). Previously we have shown that taste buds express various molecules involved in innate immune responses, including the proinflammatory cytokine tumor necrosis factor (TNF). Here, using a reporter mouse strain, we show that taste cells also express the anti-inflammatory cytokine IL-10. Remarkably, IL-10 is produced by only a specific subset of taste cells, which are different from the TNF-producing cells in mouse circumvallate and foliate taste buds: IL-10 expression was found exclusively in the G-protein gustducin-expressing bitter receptor cells, while TNF was found in sweet and umami receptor cells as reported previously. In contrast, IL-10R1, the ligand-binding subunit of the IL-10 receptor, is predominantly expressed by TNF-producing cells, suggesting a novel cellular hierarchy for regulating TNF production and effects in taste buds. In response to inflammatory challenges, taste cells can increase IL-10 expression both in vivo and in vitro. These findings suggest that taste buds use separate populations of taste receptor cells that coincide with sweet/umami and bitter taste reception to modulate local inflammatory responses, a phenomenon that has not been previously reported. Furthermore, IL-10 deficiency in mice leads to significant reductions in the number and size of taste buds, as well as in the number of taste receptor cells per taste bud, suggesting that IL-10 plays critical roles in maintaining structural integrity of the peripheral gustatory system. PMID:24523558
Feng, Pu; Chai, Jinghua; Zhou, Minliang; Simon, Nirvine; Huang, Liquan; Wang, Hong
2014-02-12
Although inflammatory responses are a critical component in defense against pathogens, too much inflammation is harmful. Mechanisms have evolved to regulate inflammation, including modulation by the anti-inflammatory cytokine interleukin-10 (IL-10). Previously we have shown that taste buds express various molecules involved in innate immune responses, including the proinflammatory cytokine tumor necrosis factor (TNF). Here, using a reporter mouse strain, we show that taste cells also express the anti-inflammatory cytokine IL-10. Remarkably, IL-10 is produced by only a specific subset of taste cells, which are different from the TNF-producing cells in mouse circumvallate and foliate taste buds: IL-10 expression was found exclusively in the G-protein gustducin-expressing bitter receptor cells, while TNF was found in sweet and umami receptor cells as reported previously. In contrast, IL-10R1, the ligand-binding subunit of the IL-10 receptor, is predominantly expressed by TNF-producing cells, suggesting a novel cellular hierarchy for regulating TNF production and effects in taste buds. In response to inflammatory challenges, taste cells can increase IL-10 expression both in vivo and in vitro. These findings suggest that taste buds use separate populations of taste receptor cells that coincide with sweet/umami and bitter taste reception to modulate local inflammatory responses, a phenomenon that has not been previously reported. Furthermore, IL-10 deficiency in mice leads to significant reductions in the number and size of taste buds, as well as in the number of taste receptor cells per taste bud, suggesting that IL-10 plays critical roles in maintaining structural integrity of the peripheral gustatory system.
Aβ mediates Sigma receptor degradation via CaN/NFAT pathway
Fang, Min; Zhang, Pei; Zhao, Yanxin; Jin, Aiping; Liu, Xueyuan
2016-01-01
Sigma receptor is an endoplasmic reticulum protein and belongs to non-opioid receptor. Increasing evidence shows that Sigma receptor activation can significantly attenuate AD induced neurological dysfunction and the functional deficiency of Sigma receptor plays an important role in the Aβ induced neuronal loss. This study aimed to investigate the influence of extracellular accumulation of Aβ on the Sigma receptor expression. Our results showed the increase in extracellular Aβ had little influence on the mRNA expression of Sigma receptor, but gradually reduced its protein expression. Co-immunoprecipitation was employed to evaluate the interaction of Sigma receptor with other proteins. Results showed BIP could bind to Sigma receptor to affect the ubiquitination of Sigma receptor. Further investigation showed there was a NFAT binding site at the promoter of BIP. Then, Western blot assay was performed to detect NFAT expression. Results showed extracellular Aβ affected the nuclear translocation of NFAT and the CaN activity of NFAT also increased with the accumulation of extracellular Aβ. In this study, NFAT-BIP luciferase reporter gene system was constructed. Results showed NFAT was able to regulate the transcription of BIP. Thus, we speculate that extracellular Aβ accumulation may activate CaN/NFAT signaling pathway to induce chaperone BIP expression, which results in Sigma receptor ubiquitination and its degradation. PMID:27648137
ERIC Educational Resources Information Center
Olincy, Ann; Blakeley-Smith, Audrey; Johnson, Lynn; Kem, William R.; Freedman, Robert
2016-01-01
Abnormalities in CHRNA7, the alpha7-nicotinic receptor gene, have been reported in autism spectrum disorder. These genetic abnormalities potentially decrease the receptor's expression and diminish its functional role. This double-blind, placebo-controlled crossover study in two adult patients investigated whether an investigational…
Neuronal expression of fibroblast growth factor receptors in zebrafish.
Rohs, Patricia; Ebert, Alicia M; Zuba, Ania; McFarlane, Sarah
2013-12-01
Fibroblast growth factor (FGF) signaling is important for a host of developmental processes such as proliferation, differentiation, tissue patterning, and morphogenesis. In vertebrates, FGFs signal through a family of four fibroblast growth factor receptors (FGFR 1-4), one of which is duplicated in zebrafish (FGFR1). Here we report the mRNA expression of the five known zebrafish fibroblast growth factor receptors at five developmental time points (24, 36, 48, 60, and 72h postfertilization), focusing on expression within the central nervous system. We show that the receptors have distinct and dynamic expression in the developing zebrafish brain, eye, inner ear, lateral line, and pharynx. In many cases, the expression patterns are similar to those of homologous FGFRs in mouse, chicken, amphibians, and other teleosts. Copyright © 2013 Elsevier B.V. All rights reserved.
Trošt, Nina; Hevir, Neli; Rižner, Tea Lanišnik; Debeljak, Nataša
2013-03-01
Erythropoietin (EPO) receptor (EPOR) expression in breast cancer has been shown to correlate with the expression of estrogen receptor (ESR) and progesterone receptor (PGR) and to be associated with the response to tamoxifen in ESR+/PGR+ tumors but not in ESR- tumors. In addition, the correlation between EPOR and G protein-coupled estrogen receptor 1 [GPER; also known as G protein-coupled receptor 30 (GPR30)] has been reported, suggesting the prognostic potential of EPOR expression. Moreover, the involvement of colony stimulating factor 2 receptor, β, low‑affinity (CSF2RB) and ephrin type-B receptor 4 (EPHB4) as EPOR potential receptor partners in cancer has been indicated. This study analyzed the correlation between the expression of genes for EPO, EPOR, CSF2RB, EPHB4, ESR, PGR and GPER in the MCF-7, MDA-MB-361, T-47D, MDA-MB-231, Hs578Bst, SKBR3, MCF-10A and Hs578T cell lines. The cell lines were also treated with recombinant human EPO (rHuEPO) in order to determine its ability to activate the Jak/STAT5, MAPK and PI3K signaling pathways and modify cell growth characteristics. Expression analysis stratified the cell lines in 2 main clusters, hormone-dependent cell lines expressing ESR and PGR and a hormone-independent cluster. A significant correlation was observed between the expression levels of ESR and PGR and their expression was also associated with that of GPER. Furthermore, the expression of GPER was associated with that of EPOR, suggesting the connection between this orphan G protein and EPO signaling. A negative correlation between EPOR and CSF2RB expression was observed, questioning the involvement of these two receptors in the hetero-receptor formation. rHuEPO treatment only influenced the hormone-independent cell lines, since only the MDA-MB-231, SKBR3 and Hs578T cells responded to the treatment. The correlation between the expression of the analyzed receptors suggests that the receptors may interact in order to activate signaling pathways or to evade their inhibition. Therefore, breast cancer classification upon ESR, PGR and human epidermal growth factor receptor 2 (HER2) may not be sufficient for the selection of suitable treatment protocol. The expression of EPOR, GPER and EPHB4 may be considered as additional classification factors.
The orphan receptor ERRα interferes with steroid signaling
Teyssier, Catherine; Bianco, Stéphanie; Lanvin, Olivia; Vanacker, Jean-Marc
2008-01-01
The estrogen receptor-related receptor α (ERRα) is an orphan member of the nuclear receptor superfamily that has been shown to interfere with the estrogen-signaling pathway. In this report, we demonstrate that ERRα also cross-talks with signaling driven by other steroid hormones. Treatment of human prostatic cells with a specific ERRα inverse agonist reduces the expression of several androgen-responsive genes, in a manner that does not involve perturbation of androgen receptor expression or activity. Furthermore, ERRα activates the expression of androgen response elements (ARE)-containing promoters, such as that of the prostate cancer marker PSA, in an ARE-dependent manner. In addition, promoters containing a steroid response element can be activated by all members of the ERR orphan receptor subfamily, and this, even in the presence of antisteroid compounds. PMID:18697814
Di Narzo, Antonio Fabio; Kozlenkov, Alexey; Roussos, Panos; Hao, Ke; Hurd, Yasmin; Lewis, David A.; Sibille, Etienne; Siever, Larry J.; Koonin, Eugene; Dracheva, Stella
2014-01-01
Editing of the pre-mRNA for the serotonin receptor 2C (5-HT2CR) by site-specific adenosine deamination (A-to-I pre-mRNA editing) substantially increases the functional plasticity of this key neurotransmitter receptor and is thought to contribute to homeostatic mechanisms in neurons. 5-HT2CR mRNA editing generates up to 24 different receptor isoforms. The extent of editing correlates with 5-HT2CR functional activity: more highly edited isoforms exhibit the least function. Altered 5-HT2CR editing has been reported in postmortem brains of suicide victims. We report a comparative analysis of the connections among 5-HT2CR editing, genome-wide gene expression and DNA methylation in suicide victims, individuals with major depressive disorder and non-psychiatric controls. The results confirm previous findings of an overrepresentation of highly edited mRNA variants (which encode hypoactive 5-HT2CR receptors) in the brains of suicide victims. A large set of genes for which the expression level is associated with editing was detected. This signature set of editing-associated genes is significantly enriched for genes that are involved in synaptic transmission, genes that are preferentially expressed in neurons, and genes whose expression is correlated with the level of DNA methylation. Notably, we report that the link between 5-HT2CR editing and gene expression is disrupted in suicide victims. The results suggest that the postulated homeostatic function of 5-HT2CR editing is dysregulated in individuals who committed suicide. PMID:24781207
Toriumi, Kazuya; Mouri, Akihiro; Narusawa, Shiho; Aoyama, Yuki; Ikawa, Natsumi; Lu, Lingling; Nagai, Taku; Mamiya, Takayoshi; Kim, Hyoung-Chun; Nabeshima, Toshitaka
2012-01-01
N-methyl--aspartate (NMDA) receptor is a glutamate receptor which has an important role on mammalian brain development. We have reported that prenatal treatment with phencyclidine (PCP), a NMDA receptor antagonist, induces long-lasting behavioral deficits and neurochemical changes. However, the mechanism by which the prenatal antagonism of NMDA receptor affects neurodevelopment, resulting in behavioral deficits, has remained unclear. Here, we report that prenatal NMDA receptor antagonism impaired the proliferation of neuronal progenitors, leading to a decrease in the progenitor pool in the ventricular and the subventricular zone. Furthermore, using a PCR array focused on neurogenesis and neuronal stem cells, we evaluated changes in gene expression causing the impairment of neuronal progenitor proliferation and found aberrant gene expression, such as Notch2 and Ntn1, in prenatal PCP-treated mice. Consequently, the density of glutamatergic neurons in the prefrontal cortex was decreased, probably resulting in glutamatergic hypofunction. Prenatal PCP-treated mice displayed behavioral deficits in cognitive memory and sensorimotor gating until adulthood. These findings suggest that NMDA receptors regulate the proliferation and maturation of progenitor cells for glutamatergic neuron during neurodevelopment, probably via the regulation of gene expression. PMID:22257896
Gorelick, Daniel A.; Iwanowicz, Luke R.; Hung, Alice L.; Blazer, Vicki; Halpern, Marnie E.
2014-01-01
Background: Environmental endocrine disruptors (EED) are exogenous chemicals that mimic endogenous hormones, such as estrogens. Previous studies using a zebrafish transgenic reporter demonstrated that the EEDs bisphenol A and genistein preferentially activate estrogen receptors (ER) in the larval heart compared to the liver. However, it was not known whether the transgenic zebrafish reporter was sensitive enough to detect estrogens from environmental samples, whether environmental estrogens would exhibit similar tissue-specific effects as BPA and genistein or why some compounds preferentially target receptors in the heart. Methods: We tested surface water samples using a transgenic zebrafish reporter with tandem estrogen response elements driving green fluorescent protein expression (5xERE:GFP). Reporter activation was colocalized with tissue-specific expression of estrogen receptor genes by RNA in situ hybridization. Results: Selective patterns of ER activation were observed in transgenic fish exposed to river water samples from the Mid-Atlantic United States, with several samples preferentially activating receptors in embryonic and larval heart valves. We discovered that tissue-specificity in ER activation is due to differences in the expression of estrogen receptor subtypes. ERα is expressed in developing heart valves but not in the liver, whereas ERβ2 has the opposite profile. Accordingly, subtype-specific ER agonists activate the reporter in either the heart valves or the liver. Conclusion: The use of 5xERE:GFP transgenic zebrafish has revealed an unexpected tissue-specific difference in the response to environmentally relevant estrogenic compounds. Exposure to estrogenic EEDs in utero is associated with adverse health effects, with the potentially unanticipated consequence of targeting developing heart valves.
Visualizing estrogen receptor-a-expressing neurons using a new ERa-ZsGreen reporter mouse line
USDA-ARS?s Scientific Manuscript database
A variety of biological functions of estrogens, including regulation of energy metabolism, are mediated by neurons expressingestrogen receptor-a (ERa) in the brain. However, complex intracellular processes in these ERa-expressing neurons are difficult to unravel, due to the lack of strategy to visua...
Naturally occurring glucagon-like peptide-2 (GLP-2) receptors in human intestinal cell lines.
Sams, Anette; Hastrup, Sven; Andersen, Marie; Thim, Lars
2006-02-17
Although clinical trials with GLP-2 receptor agonists are currently ongoing, the mechanisms behind GLP-2-induced intestinal epithelial growth remain to be understood. To approach the GLP-2 mechanism of action this study aimed to identify intestinal cell lines endogenously expressing the GLP-2 receptor. Here we report the first identification of a cell line endogenously expressing functional GLP-2 receptors. The human intestinal epithelial cell line, FHC, expressed GLP-2 receptor encoding mRNA (RT-PCR) and GLP-2 receptor protein (Western blot). In cultured FHC cells, GLP-2 induced concentration dependent cAMP accumulation (pEC(50)=9.7+/-0.04 (mean+/-S.E.M., n=4)). In addition, a naturally occurring human intestinal fibroblast cell line, 18Co, endogenously expressing GLP-2 receptor encoding mRNA (RT-PCR) and protein (Western blot) was identified. No receptor functionality (binding or G-protein signalling) could be demonstrated in 18Co cells. The identified gut-relevant cell lines provide tools for future clarification of the mechanisms underlying GLP-2-induced epithelial growth.
Lv, Can; Mo, Chunheng; Liu, Haikun; Wu, Chao; Li, Zhengyang; Li, Juan; Wang, Yajun
2018-04-20
Dopamine (DA) D2-like (and D1-like) receptors are suggested to mediate the dopamine actions in the anterior pituitary and/or CNS of birds. However, the information regarding the structure, functionality, and expression of avian D2-like receptors have not been fully characterized. In this study, we cloned two D2-like receptors (cDRD2, cDRD4) from chicken brain using RACE PCR. The cloned cDRD4 is a 378-amino acid receptor, which shows 57% amino acid (a.a.) identity with mouse DRD4. As in mammals, two cDRD2 isoforms, cDRD2L (long isoform, 437 a.a.) and cDRD2S (short isoform, 408 a.a.), which differ in their third intracellular loop, were identified in chickens. Using cell-based luciferase reporter assays or Western blot, we demonstrated that cDRD4, cDRD2L and cDRD2S could be activated by dopamine and quinpirole (a D2-like receptor agonist) dose-dependently, and their activation inhibits cAMP signaling pathway and stimulates MAPK/ERK signaling cascade, indicating that they are functional receptors capable of mediating dopamine actions. Quantitative real-time PCR revealed that cDRD2 and cDRD4 are widely expressed in chicken tissues with abundant expression noted in anterior pituitary, and their expressions are likely controlled by their promoters near exon 1, as demonstrated by dual-luciferase reporter assays in DF-1 cells. In accordance with cDRD2/cDRD4 expression in the pituitary, DA or quinpirole could partially inhibit vasoactive intestinal peptide-induced prolactin expression in cultured chick pituitary cells. Together, our data proves the functionality of DRD2 and DRD4 in birds and aids to uncover the conserved roles of DA/D2-like receptor system in vertebrates, such as its action on the pituitary. Copyright © 2018. Published by Elsevier B.V.
Aging alters mRNA expression of amyloid transporter genes at the blood-brain barrier.
Osgood, Doreen; Miller, Miles C; Messier, Arthur A; Gonzalez, Liliana; Silverberg, Gerald D
2017-09-01
Decreased clearance of potentially toxic metabolites, due to aging changes, likely plays a significant role in the accumulation of amyloid-beta (Aβ) peptides and other macromolecules in the brain of the elderly and in the patients with Alzheimer's disease (AD). Aging is the single most important risk factor for AD development. Aβ transport receptor proteins expressed at the blood-brain barrier are significantly altered with age: the efflux transporters lipoprotein receptor-related protein 1 and P-glycoprotein are reduced, whereas the influx transporter receptor for advanced glycation end products is increased. These receptors play an important role in maintaining brain biochemical homeostasis. We now report that, in a rat model of aging, gene transcription is altered in aging, as measured by Aβ receptor gene messenger RNA (mRNA) at 3, 6, 9, 12, 15, 20, 30, and 36 months. Gene mRNA expression from isolated cerebral microvessels was measured by quantitative polymerase chain reaction. Lipoprotein receptor-related protein 1 and P-glycoprotein mRNA were significantly reduced in aging, and receptor for advanced glycation end products was increased, in parallel with the changes seen in receptor protein expression. Transcriptional changes appear to play a role in aging alterations in blood-brain barrier receptor expression and Aβ accumulation. Copyright © 2017 Elsevier Inc. All rights reserved.
Alvarez-Maya, I.; Navarro-Quiroga, I.; Meraz-Ríos, M. A.; Aceves, J.; Martinez-Fong, D.
2001-01-01
BACKGROUND: Recently, we synthesized a nonviral gene vector capable of transfecting cell lines taking advantage of neurotensin (NT) internalization. The vector is NT cross-linked with poly-L-lysine, to which a plasmid DNA was bound to form a complex (NT-polyplex). Nigral dopamine neurons are able to internalize NT, thus representing a target for gene transfer via NT-polyplex. This hypothesis was tested here using reporter genes encoding green fluorescent protein or chloramphenicol acetyl transferase. MATERIALS AND METHODS: NT-polyplex was injected into the substantia nigra. Double immunofluorescence labeling was used to reveal the cell type involved in the propidium iodide-labeled polyplex internalization and reporter gene expression. RESULTS: Polyplex internalization was observed within dopamine neurons but not within glial cells, and was prevented by both hypertonic sucrose solution and SR-48692, a selective nonpeptide antagonist of NT receptors. Reporter gene expression was observed in dopamine neurons from 48 hr up to 15 days after NT-polyplex injection, and was prevented by SR-48692. However, no expression was seen when the NT-polyplex was injected into the ansiform lobule of the cerebellum, which contains low- but not high-affinity NT receptors. Neither internalization nor expression was observed in cultured glial cells, despite the NT-polyplex binding to those cells that was prevented by levocabastine, a low-affinity NT receptor antagonist. CONCLUSIONS: These results suggest that high-affinity NT receptors mediate the uptake of NT-polyplex with the subsequent reporter gene expression in vivo. NT polyfection may be used to transfer genes of physiologic interest to nigrostriatal dopamine neurons, and to produce transgenic animal models of dopamine-related diseases. PMID:11471555
A Subset of Mouse Colonic Goblet Cells Expresses the Bitter Taste Receptor Tas2r131
Prandi, Simone; Bromke, Marta; Hübner, Sandra; Voigt, Anja; Boehm, Ulrich; Meyerhof, Wolfgang; Behrens, Maik
2013-01-01
The concept that gut nutrient sensing involves taste receptors has been fueled by recent reports associating the expression of taste receptors and taste-associated signaling molecules in the gut and in gut-derived cell lines with physiological responses induced by known taste stimuli. However, for bitter taste receptors (Tas2rs), direct evidence for their functional role in gut physiology is scarce and their cellular expression pattern remained unknown. We therefore investigated Tas2r expression in mice. RT-PCR experiments assessed the presence of mRNA for Tas2rs and taste signaling molecules in the gut. A gene-targeted mouse strain was established to visualize and identify cell types expressing the bitter receptor Tas2r131. Messenger RNA for various Tas2rs and taste signaling molecules were detected by RT-PCR in the gut. Using our knock-in mouse strain we demonstrate that a subset of colonic goblet cells express Tas2r131. Cells that express this receptor are absent in the upper gut and do not correspond to enteroendocrine and brush cells. Expression in colonic goblet cells is consistent with a role of Tas2rs in defense mechanisms against potentially harmful xenobiotics. PMID:24367558
NASA Astrophysics Data System (ADS)
Pu, Yang; Wang, W. B.; Tang, G. C.; Liang, Kexian; Achilefu, S.; Alfano, R. R.
2013-03-01
Cybesin, a smart contrast agent to target cancer cells, was investigated using a near infrared (NIR) spectral polarization imaging technique for prostate cancer detection. The approach relies on applying a contrast agent that can target cancer cells. Cybesin, as a small ICG-derivative dye-peptide, emit fluorescence between 750 nm and 900 nm, which is in the "tissue optical window". Cybesin was reported targeting the over-expressed bombesin receptors in cancer cells in animal model and the human prostate cancers over-expressing bombesin receptors. The NIR spectral polarization imaging study reported here demonstrated that Cybesin can be used as a smart optical biomarker and as a prostate cancer receptor targeted contrast agent.
Ahuja, Gaurav; Reichel, Vera; Kowatschew, Daniel; Syed, Adnan S; Kotagiri, Aswani Kumar; Oka, Yuichiro; Weth, Franco; Korsching, Sigrun I
2018-05-23
The sense of smell is unrivaled in terms of molecular complexity of its input channels. Even zebrafish, a model vertebrate system in many research fields including olfaction, possesses several hundred different olfactory receptor genes, organized in four different gene families. For one of these families, the initially discovered odorant receptors proper, segregation of expression into distinct spatial subdomains within a common sensory surface has been observed both in teleost fish and in mammals. However, for the remaining three families, little to nothing was known about their spatial coding logic. Here we wished to investigate, whether the principle of spatial segregation observed for odorant receptors extends to another olfactory receptor family, the V2R-related OlfC genes. Furthermore we thought to examine, how expression of OlfC genes is integrated into expression zones of odorant receptor genes, which in fish share a single sensory surface with OlfC genes. To select representative genes, we performed a comprehensive phylogenetic study of the zebrafish OlfC family, which identified a novel OlfC gene, reduced the number of pseudogenes to 1, and brought the total family size to 60 intact OlfC receptors. We analyzed the spatial pattern of OlfC-expressing cells for seven representative receptors in three dimensions (height within the epithelial layer, horizontal distance from the center of the olfactory organ, and height within the olfactory organ). We report non-random distributions of labeled neurons for all OlfC genes analysed. Distributions for sparsely expressed OlfC genes are significantly different from each other in nearly all cases, broad overlap notwithstanding. For two of the three coordinates analyzed, OlfC expression zones are intercalated with those of odorant receptor zones, whereas in the third dimension some segregation is observed. Our results show that V2R-related OlfC genes follow the same spatial logic of expression as odorant receptors and their expression zones intermingle with those of odorant receptor genes. Thus, distinctly different expression zones for individual receptor genes constitute a general feature shared by teleost and tetrapod V2R/OlfC and odorant receptor families alike.
Ghotbaddini, Maryam; Powell, Joann B
2015-07-06
The reported biological effects of TCDD include induction of drug metabolizing enzymes, wasting syndrome and tumor promotion. TCDD elicits most of its effects through binding the aryl hydrocarbon receptor (AhR). TCDD induced degradation of AhR has been widely reported and requires ubiquitination of the protein. The rapid depletion of AhR following TCDD activation serves as a mechanism to modulate AhR mediated gene induction. In addition to inducing AhR degradation, TCDD has been reported to induce degradation of hormone receptors. The studies reported here, evaluate the effect of TCDD exposure on androgen receptor (AR) expression and activity in androgen-sensitive LNCaP and castration-resistant C4-2 prostate cancer cells. Our results show that TCDD exposure does not induce AhR or AR degradation in C4-2 cells. However, both AhR and AR are degraded in LNCaP cells following TCDD exposure. In addition, TCDD enhances AR phosphorylation and induces expression of AR responsive genes in LNCaP cells. Our data reveals that TCDD effect on AR expression and activity differs in androgen-sensitive and castration-resistant prostate cancer cell models.
Malki, Agne; Fiedler, Julia; Fricke, Kristina; Ballweg, Ines; Pfaffl, Michael W.; Krautwurst, Dietmar
2015-01-01
Our cellular immune system has to cope constantly with foodborne substances that enter the bloodstream postprandially. Here, they may activate leukocytes via specific but yet mostly unknown receptors. Ectopic RNA expression out of gene families of chemosensory receptors, i.e., the ∼400 ORs, ∼25 TAS2R bitter-taste receptors, and the TAS1R umami- and sweet-taste receptor dimers by which we typically detect foodborne substances, has been reported in a variety of peripheral tissues unrelated to olfaction or taste. In the present study, we have now discovered, by gene-specific RT-PCR experiments, the mRNA expression of most of the Class I ORs (TAS1R) and TAS2R in 5 different types of blood leukocytes. Surprisingly, we did not detect Class II OR mRNA. By RT-qPCR, we show the mRNA expression of human chemosensory receptors and their cow orthologs in PMN, thus suggesting an evolutionary concept. By immunocytochemistry, we demonstrate that some olfactory and taste receptors are expressed, on average, in 40–60% of PMN and T or B cells and largely coexpress in the same subpopulation of PMN. The mRNA expression and the size of subpopulations expressing certain chemosensory receptors varied largely among individual blood samples, suggesting a regulated expression of olfactory and taste receptors in these cells. Moreover, we show mRNA expression of their downstream signaling molecules and demonstrate that PTX abolishes saccharin- or 2-PEA-induced PMN chemotactic migration, indicating a role for Gi-type proteins. In summary, our data suggest "chemosensory"-type subpopulations of circulating leukocytes. PMID:25624459
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nonogaki, Katsunori, E-mail: knonogaki-tky@umin.ac.jp; Department of Lifestyle Medicine, Biomedical Engineering Center, Tohoku University; Kaji, Takao
2009-08-21
NOR1, Nur77 and Nurr1 are orphan nuclear receptors and members of the NR4A subfamily. Here, we report that the expression of hypothalamic NOR1 was remarkably decreased in mildly obese {beta}-endorphin-deficient mice and obese db/db mice with the leptin receptor mutation, compared with age-matched wild-type mice, whereas there were no genotypic differences in the expression of hypothalamic Nur77 or Nurr1 in these animals. The injection of NOR1 siRNA oligonucleotide into the third cerebral ventricle significantly suppressed food intake and body weight in mice. On the other hand, the decreases in hypothalamic NOR1 expression were not found in non-obese 5-HT2C receptor-deficient mice.more » Moreover, systemic administration of m-chlorophenylpiperazine (mCPP), a 5-HT2C/1B receptor agonist, had no effect on hypothalamic NOR1 expression, while suppressing food intake in {beta}-endorphin-deficient mice. These findings suggest that 5-HT2C receptor-independent proopiomelanocortin-derived peptides regulate the expression of hypothalamic NOR1, which is a novel modulator of feeding behavior and energy balance.« less
Ochoa-Amaya, Julieta E; Queiroz-Hazarbassanov, Nicolle; Namazu, Lilian B; Calefi, Atilio S; Tobaruela, Carla N; Margatho, Rafael; Palermo-Neto, João; Ligeiro de Oliveira, Ana P; Felicio, Luciano F
2018-06-06
We have previously shown that domperidone-induced short-term hyperprolactinemia reduces the lung's allergic inflammatory response in an ovalbumin antigenic challenge model. Since purinergic receptor P2X7R activity leads to proinflammatory cytokine release and is possibly related to the pathogenesis of allergic respiratory conditions, the present study was designed to investigate a possible involvement of purinergic and prolactin receptors in this phenomenon. To induce hyperprolactinemia, domperidone was injected intraperitoneally in rats at a dose of 5.1 mg × kg-1 per day for 5 days. P2X7 expression was evaluated by lung immunohistochemistry while prolactin receptor expression in bronchoalveolar lavage leukocytes was analyzed through flow cytometry. Previous reports demonstrated that rats subjected to short-term hyperprolactinemia exhibited a decrease in leukocyte counts in bronchoalveolar lavage, especially granulocytes. Here, it is revealed that hyperprolactinemia promotes an increased expression of prolactin receptors in granulocytes. Also, increased expression of purinergic P2X7R observed in allergic animals was significantly reduced by hyperprolactinemia. Both purinergic and prolactin receptor expression changes occur during the anti-asthmatic effect of hyperprolactinemia. © 2018 S. Karger AG, Basel.
Di Narzo, Antonio Fabio; Kozlenkov, Alexey; Roussos, Panos; Hao, Ke; Hurd, Yasmin; Lewis, David A; Sibille, Etienne; Siever, Larry J; Koonin, Eugene; Dracheva, Stella
2014-09-15
Editing of the pre-mRNA for the serotonin receptor 2C (5-HT2CR) by site-specific adenosine deamination (A-to-I pre-mRNA editing) substantially increases the functional plasticity of this key neurotransmitter receptor and is thought to contribute to homeostatic mechanisms in neurons. 5-HT2CR mRNA editing generates up to 24 different receptor isoforms. The extent of editing correlates with 5-HT2CR functional activity: more highly edited isoforms exhibit the least function. Altered 5-HT2CR editing has been reported in postmortem brains of suicide victims. We report a comparative analysis of the connections among 5-HT2CR editing, genome-wide gene expression and DNA methylation in suicide victims, individuals with major depressive disorder and non-psychiatric controls. The results confirm previous findings of an overrepresentation of highly edited mRNA variants (which encode hypoactive 5-HT2CR receptors) in the brains of suicide victims. A large set of genes for which the expression level is associated with editing was detected. This signature set of editing-associated genes is significantly enriched for genes that are involved in synaptic transmission, genes that are preferentially expressed in neurons, and genes whose expression is correlated with the level of DNA methylation. Notably, we report that the link between 5-HT2CR editing and gene expression is disrupted in suicide victims. The results suggest that the postulated homeostatic function of 5-HT2CR editing is dysregulated in individuals who committed suicide. Published by Oxford University Press 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Rodríguez, Jessica Edith; Romero-Nava, Rodrigo; Reséndiz-Albor, Aldo Arturo; Rosales-Cruz, Erika; Hong, Enrique; Huang, Fengyang; Villafaña, Santiago
2017-01-01
Hypertension and diabetes are multifactorial diseases that frequently coexist and exacerbate each another. During the development of diabetes, the impairment of noradrenergic and renin-angiotensin systems has been reported in the response mediated by α 1 -AR and AT 1 receptors. Although their participation in the development of cardiovascular complications is still controversial, some studies have found increased or diminished response to the vasoconstrictive effect of noradrenaline or angiotensin II in a time-dependent manner of diabetes. Thus, the aim of this work was to investigate the possible changes in the expression or localization of α 1 -AR (α 1A and α 1D ) and angiotensin II receptors (AT 1 and AT 2 ) in aorta of rats after 4 weeks of the onset of diabetes. In order to be able to examine the expression of these receptors, immunofluorescence procedure was performed in tunica intima and tunica media of histological sections of aorta. Fluorescence was detected by a confocal microscopy. Our results showed that the receptors are expressed in both tunics, where adrenergic receptors have a higher density in tunica intima and tunica media of SHR compared with WKY; meanwhile, the expression of angiotensin II receptors is not modified in both groups of rats. On the other hand, the results showed that diabetes produced an increase or a decrease in the expression of receptors that is not associated to a specific type of receptor, vascular region, or strain of rat. In conclusion, diabetes and hypertension modify the expression of the receptors in tunica intima and tunica media of aorta in a different way.
USDA-ARS?s Scientific Manuscript database
Vitamin D receptor (VDR) expression and action in non-human skeletal muscle have recently been reported in several studies, yet data on the activity and expression of VDR in human muscle cells are scarce. We conducted a series of studies to examine the (1) effect of 1,25-dihydroxyvitamin D3 (1,25(OH...
Expression and purification of functional PDGF receptor beta.
Shang, Qingbin; Zhao, Liang; Wang, Xiaojing; Wang, Meimei; Sui, Sen-Fang; Mi, Li-Zhi
2017-07-29
Platelet Derived Growth Factor receptors (PDGFRs), members of receptor tyrosine kinase superfamily, play essential roles in early hematopoiesis, angiogenesis and organ development. Dysregulation of PDGF receptor signaling under pathological conditions associates with cancers, vascular diseases, and fibrotic diseases. Therefore, they are attractive targets in drug development. Like any other membrane proteins with a single-pass transmembrane domain, the high-resolution structural information of the full-length PDGF receptors is still not resolved. It is caused, at least in part, by the technical challenges in the expression and purification of the functional, full-length PDGF receptors. Herein, we reported our experimental details in expression and purification of the full-length PDGFRβ from mammalian cells. We found that purified PDGFRβ remained in two different oligomeric states, presumably the monomer and the dimer, with basal kinase activity in detergent micelles. Addition of PDGF-B promoted dimerization and elevated kinase activity of the receptor, suggesting that purified receptors were functional. Copyright © 2017 Elsevier Inc. All rights reserved.
Zhang, Yaochen; Kim, Don-Kyu; Lee, Ji-Min; Park, Seung Bum; Jeong, Won-IL; Kim, Seong Heon; Lee, In-Kyu; Lee, Chul-Ho; Chiang, John Y.L.; Choi, Hueng-Sik
2017-01-01
Bile acids are primarily synthesized from cholesterol in the liver and have important roles in dietary lipid absorption and cholesterol homoeostasis. Detailed roles of the orphan nuclear receptors regulating cholesterol 7α-hydroxylase (CYP7A1), the rate-limiting enzyme in bile acid synthesis, have not yet been fully elucidated. In the present study, we report that oestrogen-related receptor γ (ERRγ) is a novel transcriptional regulator of CYP7A1 expression. Activation of cannabinoid receptor type 1 (CB1 receptor) signalling induced ERRγ-mediated transcription of the CYP7A1 gene. Overexpression of ERRγ increased CYP7A1 expression in vitro and in vivo, whereas knockdown of ERRγ attenuated CYP7A1 expression. Deletion analysis of the CYP7A1 gene promoter and a ChIP assay revealed an ERRγ -binding site on the CYP7A1 gene promoter. Small heterodimer partner (SHP) inhibited the transcriptional activity of ERRγ and thus regulated CYP7A1 expression. Overexpression of ERRγ led to increased bile acid levels, whereas an inverse agonist of ERRγ, GSK5182, reduced CYP7A1 expression and bile acid synthesis. Finally, GSK5182 significantly reduced hepatic CB1 receptor-mediated induction of CYP7A1 expression and bile acid synthesis in alcohol-treated mice. These results provide the molecular mechanism linking ERRγ and bile acid metabolism. PMID:26348907
Kofuku, Yutaka; Yokomizo, Tomoki; Imai, Shunsuke; Shiraishi, Yutaro; Natsume, Mei; Itoh, Hiroaki; Inoue, Masayuki; Nakata, Kunio; Igarashi, Shunsuke; Yamaguchi, Hideyuki; Mizukoshi, Toshimi; Suzuki, Ei-Ichiro; Ueda, Takumi; Shimada, Ichio
2018-03-08
G protein-coupled receptors (GPCRs) exist in equilibrium between multiple conformations, and their populations and exchange rates determine their functions. However, analyses of the conformational dynamics of GPCRs in lipid bilayers are still challenging, because methods for observations of NMR signals of large proteins expressed in a baculovirus-insect cell expression system (BVES) are limited. Here, we report a method to incorporate methyl- 13 C 1 H 3 -labeled alanine with > 45% efficiency in highly deuterated proteins expressed in BVES. Application of the method to the NMR observations of β 2 -adrenergic receptor in micelles and in nanodiscs revealed the ligand-induced conformational differences throughout the transmembrane region of the GPCR.
Göttlicher, M; Widmark, E; Li, Q; Gustafsson, J A
1992-01-01
Peroxisome proliferators such as clofibric acid, nafenopin, and WY-14,643 have been shown to activate PPAR (peroxisome proliferator-activated receptor), a member of the steroid nuclear receptor superfamily. We have cloned the cDNA from the rat that is homologous to that from the mouse [Issemann, I. & Green, S. (1990) Nature (London) 347, 645-650], which encodes a 97% similar protein with a particularly well-conserved putative ligand-binding domain. To search for physiologically occurring activators, we established a transcriptional transactivation assay by stably expressing in CHO cells a chimera of rat PPAR and the human glucocorticoid receptor that activates expression of the placental alkaline phosphatase reporter gene under the control of the mouse mammary tumor virus promoter. Testing of compounds related to lipid metabolism or peroxisomal proliferation revealed that 150 microM concentrations of arachidonic or linoleic acid but not of dehydroepiandrosterone, cholesterol, or 25-hydroxy-cholesterol, activate the receptor chimera. In addition, saturated fatty acids induce the reporter gene. Shortening the chain length to n = 6 or introduction of an omega-terminal carboxylic group abolished the activation potential of the fatty acid. In conclusion, the present results indicate that fatty acids can regulate gene expression mediated by a member of the steroid nuclear receptor superfamily. Images PMID:1316614
Response of Drosophila to wasabi is mediated by painless, the fly homolog of mammalian TRPA1/ANKTM1.
Al-Anzi, Bader; Tracey, W Daniel; Benzer, Seymour
2006-05-23
A number of repellent compounds produced by plants elicit a spicy or pungent sensation in mammals . In several cases, this has been found to occur through activation of ion channels in the transient receptor potential (TRP) family . We report that isothiocyanate (ITC), the pungent ingredient of wasabi, is a repellent to the insect Drosophila melanogaster, and that the painless gene, previously known to be required for larval nociception, is required for this avoidance behavior. A painless reporter gene is expressed in gustatory receptor neurons of the labial palpus, tarsus, and wing anterior margin, but not in olfactory receptor neurons, suggesting a gustatory role. Indeed, painless expression overlaps with a variety of gustatory-receptor gene reporters. Some, such as Gr66a, are known to be expressed in neurons that mediate gustatory repulsion . painless mutants are not taste blind; they show normal aversive gustatory behavior with salt and quinine and attractive responses to sugars and capsaicin. The painless gene is an evolutionary homolog of the mammalian "wasabi receptor" TRPA1/ANKTM1 , also thought to be involved in nociception. Our results suggest that the stinging sensation of isothiocyanate is caused by activation of an evolutionarily conserved molecular pathway that is also used for nociception.
Watanabe, T; Aonuma, H
2012-01-01
Biogenic amine serotonin (5-HT) modulates various aspects of behaviors such as aggressive behavior and circadian behavior in the cricket. In our previous report, in order to elucidate the molecular basis of the cricket 5-HT system, we identified three genes involved in 5-HT biosynthesis, as well as four 5-HT receptor genes (5-HT1A, 5-HT1B, 5-HT2α, and 5-HT7) expressed in the brain of the field cricket Gryllus bimaculatus DeGeer [7]. In the present study, we identified Gryllus 5-HT2β gene, an additional 5-HT receptor gene expressed in the cricket brain, and examined its tissue-specific distribution and embryonic stage-dependent expression. Gryllus 5-HT2β gene was ubiquitously expressed in the all examined adult tissues, and was expressed during early embryonic development, as well as during later stages. This study suggests functional differences between two 5-HT2 receptors in the cricket.
USDA-ARS?s Scientific Manuscript database
Blueberries have recently been reported to reduce atherosclerotic lesion progression in apoE deficient (apoE-/-) mice. However, the underlying mechanisms are not fully understood. The objective of this study was to determine whether blueberries altered scavenger receptors expression and foam cell fo...
Robb, L; Hilton, D J; Brook-Carter, P T; Begley, C G
1997-03-15
The interleukin-11 receptor alpha-chain, a member of the hematopoietin receptor superfamily, forms, together with gp130, a functional high-affinity receptor complex for interleukin 11. We, and others, reported the cloning of the murine interleukin 11 receptor alpha-chain cDNA (IL11Ra) and recently described the structure of the IL11Ra locus. We also described the presence of a second IL11Ra-like locus in some mouse strains. In this study we report that the second locus, designated IL11Ra2, encodes an mRNA species. The transcript was 99% identical to the IL11Ra transcript in the coding and 3'-untranslated region, but had a different 5'-untranslated region. The complete genomic organization of the IL11Ra2 locus is presented, and the two loci are shown to be located on a 200-kb NaeI genomic fragment. Comparison of the expression pattern of the IL11Ra and IL11Ra2 genes using an RT-PCR restriction fragment length polymorphism strategy revealed that while the expression of IL11Ra was widespread, expression of IL11Ra2 was restricted to testis, lymph node, and thymus.
Nandrolone decreases mu opioid receptor expression in SH-SY5Y human neuroblastoma cells.
Guarino, Goffredo; Spampinato, Santi
2008-07-16
Nandrolone and other anabolic androgenic steroids alter the expression and function of neurotransmitter systems and contribute to drug dependence. Nandrolone treatment (10-10 M) caused a time-dependent and concentration-dependent downregulation of mu opioid receptor (MOPr) transcripts in SH-SY5Y human neuroblastoma cells. This effect was prevented by the androgen receptor antagonist hydroxyflutamide. Receptor binding assays confirmed a decrease in MOPr of approximately 40% in nandrolone-treated cells. Treatment with actinomycin D (10 (-5)M), a transcription inhibitor, revealed that nandrolone might regulate MOPr mRNA stability. In SH-SY5Y cells transfected with a human MOPr luciferase promoter/reporter construct, nandrolone did not alter the rate of gene transcription. These results suggest that nandrolone may regulate MOPr expression through posttranscriptional mechanisms requiring the androgen receptor.
Kim, Sun-Gyun; Lee, Bora; Kim, Dae-Hwan; Kim, Juhee; Lee, Seunghee; Lee, Soo-Kyung; Lee, Jae W
2013-10-01
Nuclear receptors (NRs) regulate diverse physiological processes, including the central nervous system control of energy balance. However, the molecular mechanisms for the central actions of NRs in energy balance remain relatively poorly defined. Here we report a hypothalamic gene network involving two NRs, neuron-derived orphan receptor 1 (NOR1) and glucocorticoid receptor (GR), which directs the regulated expression of orexigenic neuropeptides agouti-related peptide (AgRP) and neuropeptide Y (NPY) in response to peripheral signals. Our results suggest that the anorexigenic signal leptin induces NOR1 expression likely via the transcription factor cyclic AMP response element-binding protein (CREB), while the orexigenic signal glucocorticoid mobilizes GR to inhibit NOR1 expression by antagonizing the action of CREB. Also, NOR1 suppresses glucocorticoid-dependent expression of AgRP and NPY. Consistently, relative to wild-type mice, NOR1-null mice showed significantly higher levels of AgRP and NPY and were less responsive to leptin in decreasing the expression of AgRP and NPY. These results identify mutual antagonism between NOR1 and GR to be a key rheostat for peripheral metabolic signals to centrally control energy balance.
Shepard, Blythe D.; Natarajan, Niranjana; Protzko, Ryan J.; Acres, Omar W.; Pluznick, Jennifer L.
2013-01-01
Olfactory receptors (ORs) are G protein-coupled receptors that detect odorants in the olfactory epithelium, and comprise the largest gene family in the genome. Identification of OR ligands typically requires OR surface expression in heterologous cells; however, ORs rarely traffic to the cell surface when exogenously expressed. Therefore, most ORs are orphan receptors with no known ligands. To date, studies have utilized non-cleavable rhodopsin (Rho) tags and/or chaperones (i.e. Receptor Transporting Protein, RTP1S, Ric8b and Gαolf) to improve surface expression. However, even with these tools, many ORs still fail to reach the cell surface. We used a test set of fifteen ORs to examine the effect of a cleavable leucine-rich signal peptide sequence (Lucy tag) on OR surface expression in HEK293T cells. We report here that the addition of the Lucy tag to the N-terminus increases the number of ORs reaching the cell surface to 7 of the 15 ORs (as compared to 3/15 without Rho or Lucy tags). Moreover, when ORs tagged with both Lucy and Rho were co-expressed with previously reported chaperones (RTP1S, Ric8b and Gαolf), we observed surface expression for all 15 receptors examined. In fact, two-thirds of Lucy-tagged ORs are able to reach the cell surface synergistically with chaperones even when the Rho tag is removed (10/15 ORs), allowing for the potential assessment of OR function with only an 8-amino acid Flag tag on the mature protein. As expected for a signal peptide, the Lucy tag was cleaved from the mature protein and did not alter OR-ligand binding and signaling. Our studies demonstrate that widespread surface expression of ORs can be achieved in HEK293T cells, providing promise for future large-scale deorphanization studies. PMID:23840901
Yoshida, Kenji; Fujino, Hiromichi; Otake, Sho; Seira, Naofumi; Regan, John W; Murayama, Toshihiko
2013-10-15
Increased expressions of cyclooxygenase-2 (COX-2) and its downstream metabolite, prostaglandin E2 (PGE2), are well documented events in the development of colorectal cancer. Interestingly, PGE2 itself can induce the expression of COX-2 thereby creating the potential for positive feedback. Although evidence for such a positive feedback has been previously described, the specific E-type prostanoid (EP) receptor subtype that mediates this response, as well as the relevant signaling pathways, remain unclear. We now report that the PGE2 stimulated induction of COX-2 expression in human colon cancer HCA-7 cells is mediated by activation of the prostanoid EP4 receptor subtype and is followed by coupling of the receptor to Gαi and the activation of phosphatidylinositol 3-kinase. Subsequent activation of metalloproteinases releases membrane bound heparin-binding epidermal growth factor-like growth factor resulting in the transactivation of epidermal growth factor receptors and the activation of the extracellular signal-regulated kinases and induction of COX-2 expression. This induction of COX-2 expression by PGE2 stimulation of the prostanoid EP4 receptor may underlie the upregulation of COX-2 during colorectal cancer and appears to be an early event in the process of tumorigenesis. © 2013 Elsevier B.V. All rights reserved.
Nagata, Keiko; Okuno, Keisuke; Ochi, Marika; Kumata, Keisuke; Sano, Hitoshi; Yoneda, Naohiro; Ueyama, Jun-Ichi; Matsushita, Michiko; Kuwamoto, Satoshi; Kato, Masako; Murakami, Ichiro; Kanzaki, Susumu; Hayashi, Kazuhiko
2015-01-01
Various autoantibodies have been reported to be detected during the progression of infectious mononucleosis. We observed a case of infectious mononucleosis due to Epstein-Barr virus primary infection for 2 months, and noticed the transiently increased titer of thyrotropin receptor autoantibodies detected at the acute phase on the 3rd day after admission. At that time, real-time quantitative PCR also revealed the mRNA expressions of an immediate early lytic gene, BZLF1, and a latent gene, EBNA2. The expression of BZLF1 mRNA means that Epstein-Barr virus infects lytically, and EBNA2 protein has an important role in antibody production as well as the establishment of Epstein-Barr virus latency. These results suggest that Epstein-Barr virus lytic infection is relevant to thyrotropin receptor autoantibody production. Thyrotropin receptor autoantibodies stimulate thyroid follicular cells to produce excessive thyroid hormones and cause Graves' disease. Recently, we reported the thyrotropin receptor autoantibody production from thyrotropin receptor autoantibody-predisposed Epstein-Barr virus-infected B cells by the induction of Epstein-Barr virus lytic infection in vitro. This case showed in vivo findings consistent with our previous reports, and is important to consider the pathophysiology of Graves' disease and one of the mechanisms of autoimmunity.
Würth, Roberto; Barbieri, Federica; Bajetto, Adriana; Pattarozzi, Alessandra; Gatti, Monica; Porcile, Carola; Zona, Gianluigi; Ravetti, Jean-Louis; Spaziante, Renato; Florio, Tullio
2011-05-01
CXCR4 and CXCR7 chemokine receptors, and their ligands CXCL11 and CXCL12, have been often involved in tumor cell proliferation and survival. We report the expression pattern of these ligand/receptor pairs in 22 human meningiomas. High CXCR7 and CXCL12 expression was associated with high-proliferative tumors. CXCR7 levels were correlated to the content of both ligands, suggesting a possible autocrine regulation. CXCR4 and CXCL12 were homogeneously expressed within tumor cells, while CXCR7 was mainly detected in tumor endothelial cells and CXCL11 in pericytes. Our results highlight the preferential CXCR7 and CXCL12 expression within more aggressive tumors and the possible role of CXCR7 in meningioma vascularization. Copyright © 2011 Elsevier B.V. All rights reserved.
Development of antibodies against the rat brain somatostatin receptor.
Theveniau, M; Rens-Domiano, S; Law, S F; Rougon, G; Reisine, T
1992-05-15
Somatostatin (SRIF) is a neurotransmitter in the brain involved in the regulation of motor activity and cognition. It induces its physiological actions by interacting with receptors. We have developed antibodies against the receptor to investigate its structural properties. Rabbit polyclonal antibodies were generated against the rat brain SRIF receptor. These antibodies (F4) were able to immunoprecipitate solubilized SRIF receptors from rat brain and the cell line AtT-20. The specificity of the interaction of these antibodies with SRIF receptors was further demonstrated by immunoblotting. F4 detected SRIF receptors of 60 kDa from rat brain and adrenal cortex and the cell lines AtT-20, GH3, and NG-108, which express high densities of SRIF receptors. They did not detect immunoreactive material from rat liver or COS-1, HEPG, or CRL cells, which do not express functional SRIF receptors. In rat brain, 60-kDa immunoreactivity was detected by F4 in the hippocampus, cerebral cortex, and striatum, which have high densities of SRIF receptors. However, F4 did not interact with proteins from cerebellum and brain stem, which express few SRIF receptors. Immunoreactive material cannot be detected in rat pancreas or pituitary, which have been reported to express a 90-kDa SRIF receptor subtype. The selective detection of 60-kDa SRIF receptors by F4 indicates that the 60- and 90-kDa SRIF receptor subtypes are immunologically distinct. The availability of antibodies that selectively detect native and denatured brain SRIF receptors provides us with a feasible approach to clone the brain SRIF receptor gene(s).
Pharmacological characterization of recombinant human and rat P2X receptor subtypes.
Bianchi, B R; Lynch, K J; Touma, E; Niforatos, W; Burgard, E C; Alexander, K M; Park, H S; Yu, H; Metzger, R; Kowaluk, E; Jarvis, M F; van Biesen, T
1999-07-02
ATP functions as a fast neurotransmitter through the specific activation of a family of ligand-gated ion channels termed P2X receptors. In this report, six distinct recombinant P2X receptor subtypes were pharmacologically characterized in a heterologous expression system devoid of endogenous P2 receptor activity. cDNAs encoding four human P2X receptor subtypes (hP2X1, hP2X3, hP2X4, and hP2X7), and two rat P2X receptor subtypes (rP2X2 and rP2X3), were stably expressed in 1321N1 human astrocytoma cells. Furthermore, the rP2X2 and rP2X3 receptor subtypes were co-expressed in these same cells to form heteromultimeric receptors. Pharmacological profiles were determined for each receptor subtype, based on the activity of putative P2 ligands to stimulate Ca2+ influx. The observed potency and kinetics of each response was receptor subtype-specific and correlated with their respective electrophysiological properties. Each receptor subtype exhibited a distinct pharmacological profile, based on its respective sensitivity to nucleotide analogs, diadenosine polyphosphates and putative P2 receptor antagonists. Alphabeta-methylene ATP (alphabeta-meATP), a putative P2X receptor-selective agonist, was found to exhibit potent agonist activity only at the hP2X1, hP2X3 and rP2X3 receptor subtypes. Benzoylbenzoic ATP (BzATP, 2' and 3' mixed isomers), which has been reported to act as a P2X7 receptor-selective agonist, was least active at the rat and human P2X7 receptors, but was a potent (nM) agonist at hP2X1, rP2X3 and hP2X3 receptors. These data comprise a systematic examination of the functional pharmacology of P2X receptor activation.
Zels, Sven; Verlinden, Heleen; Dillen, Senne; Vleugels, Rut; Nachman, Ronald J; Vanden Broeck, Jozef
2014-01-01
Sulfakinin is an insect neuropeptide that constitutes an important component of the complex network of hormonal and neural factors that regulate feeding and digestion. The key modulating functions of sulfakinin are mediated by binding and signaling via G-protein coupled receptors. Although a substantial amount of functional data have already been reported on sulfakinins in different insect species, only little information is known regarding the properties of their respective receptors. In this study, we report on the molecular cloning, functional expression and characterization of two sulfakinin receptors in the red flour beetle, Tribolium castaneum. Both receptor open reading frames show extensive sequence similarity with annotated sulfakinin receptors from other insects. Comparison of the sulfakinin receptor sequences with homologous vertebrate cholecystokinin receptors reveals crucial conserved regions for ligand binding and receptor activation. Quantitative reverse transcriptase PCR shows that transcripts of both receptors are primarily expressed in the central nervous system of the beetle. Pharmacological characterization using 29 different peptide ligands clarified the essential requirements for efficient activation of these sulfakinin receptors. Analysis of the signaling pathway in multiple cell lines disclosed that the sulfakinin receptors of T. castaneum can stimulate both the Ca²⁺ and cyclic AMP second messenger pathways. This in depth characterization of two insect sulfakinin receptors may provide useful leads for the further development of receptor ligands with a potential applicability in pest control and crop protection.
Hasegawa, Shunji; Ichiyama, Takashi; Kohno, Fumitaka; Korenaga, Yuno; Ohsaki, Ayami; Hirano, Reiji; Haneda, Yasuhiro; Fukano, Reiji; Furukawa, Susumu
2010-01-01
Beta1-integrins mediate cell attachment to different extracellular matrix proteins, intracellular proteins, and intercellular adhesions. Recently, it has been reported that prostaglandin E2 (PGE2) has anti-inflammatory properties such as inhibition of the expression of adhesion molecules or production of chemokines. However, the effect of PGE2 on the expression of beta1-integrin remains unknown. In this study, we investigated the effects of PGE2 on the expression of beta1-integrin in the human monocytic cell line THP-1 and in CD14+ monocytes/macrophages in human peripheral blood. For this, we examined the role of four subtypes of PGE2 receptors and E-prostanoid (EP) receptors on PGE2-mediated inhibition. We found that PGE2 significantly inhibited the expression of beta1-integrin, mainly through EP4 receptors in THP-1 cells and CD14+ monocytes/macrophages in human peripheral blood. We suggest that PGE2 has anti-inflammatory effects, leading to the inhibited expression of beta1-integrin in human monocytes/macrophages, and that the EP4 receptor may play an important role in PGE2-mediated inhibition. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Multiple melanocortin receptors are expressed in bone cells
NASA Technical Reports Server (NTRS)
Zhong, Qing; Sridhar, Supriya; Ruan, Ling; Ding, Ke-Hong; Xie, Ding; Insogna, Karl; Kang, Baolin; Xu, Jianrui; Bollag, Roni J.; Isales, Carlos M.
2005-01-01
Melanocortin receptors belong to the seven transmembrane domain, G-protein coupled family of receptors. There are five members of this receptor family labeled MC1R-MC5R. These receptors are activated by fragments derived from a larger molecule, proopiomelanocortin (POMC) and include ACTH, alpha beta and gamma-MSH and beta-endorphin. Because of in vitro and in vivo data suggesting direct effects of these POMC molecules on bone and bone turnover, we examined bone and bone derived cells for the presence of the various members of the melanocortin receptor family. We report that the five known melanocortin receptors are expressed to varying degrees in osteoblast-like and osteoclastic cells. POMC fragments increased proliferation and expression of a variety of genes in osteoblastic cells. Furthermore, POMC mRNA was detected in osteoclastic cells. These data demonstrate that POMC-derived peptide hormones acting through high affinity melanocortin receptors have specific effects on bone cells. Thus, in addition to the indirect effects of POMC-derived hormones on bone turnover through their modulation of steroid hormone secretion, POMC fragments may have direct and specific effects on bone cell subpopulations.
Expression of Hormone Receptors and HER-2 in Benign and Malignant Salivary Gland Tumors.
Can, Nhu Thuy; Lingen, Mark W; Mashek, Heather; McElherne, James; Briese, Renee; Fitzpatrick, Carrie; van Zante, Annemieke; Cipriani, Nicole A
2018-03-01
With the advent of targeted therapies, expression of sex hormone receptors and HER-2 in salivary gland tumors (SGTs) is of clinical interest. Previous reports of estrogen (ER) and progesterone (PR) receptor expression have varied. Androgen receptor (AR) and HER-2 overexpression are frequently reported in salivary duct carcinoma (SDC), but have not been studied systematically in other SGTs. This study examines ER, PR, AR, and HER-2 expression in SGTs. Immunohistochemistry for ER, PR, AR, and HER-2 was performed on 254 SGTs (134 malignant). ER, PR, and AR expression was scored using Allred system. HER-2 expression was scored using Dako HercepTest guidelines. FISH for HER-2 amplification was performed on select cases with HER-2 overexpression (2-3+). No SGT demonstrated strong expression of ER or PR. Combined strong AR and HER-2 expression was seen in 22 carcinomas: 14/25 SDC, 3/16 poorly differentiated, two oncocytic, and one each carcinoma ex pleomorphic adenoma, squamous cell, and intraductal carcinoma. Eighteen additional high grade carcinomas had HER-2 overexpression with absent, weak, or moderate AR expression; eight high grade carcinomas had isolated strong AR expression with 0-1+ HER-2 staining. Of 15 tested cases, six demonstrated HER-2 amplification by FISH, all of which had 3+ immunoreactivity. Neither benign nor malignant SGTs had strong expression of ER or PR. None of the benign SGTs overexpressed AR or HER-2. Coexpression of AR and HER-2 should not define SDC, but immunostaining should be considered in high grade salivary carcinomas, as some show overexpression and may benefit from targeted therapy.
Nakamura, Yasuhiro; Hattangady, Namita G; Ye, Ping; Satoh, Fumitoshi; Morimoto, Ryo; Ito-Saito, Takako; Sugawara, Akira; Ohba, Koji; Takahashi, Kazuhiro; Rainey, William E; Sasano, Hironobu
2014-03-25
Aberrant expression of gonadotropin-releasing hormone receptor (GnRHR) has been reported in human adrenal tissues including aldosterone-producing adenoma (APA). However, the details of its expression and functional role in adrenals are still not clear. In this study, quantitative RT-PCR analysis revealed the mean level of GnRHR mRNA was significantly higher in APAs than in human normal adrenal (NA) (P=0.004). GnRHR protein expression was detected in human NA and neoplastic adrenal tissues. In H295R cells transfected with GnRHR, treatment with GnRH resulted in a concentration-dependent increase in CYP11B2 reporter activity. Chronic activation of GnRHR with GnRH (100nM), in a cell line with doxycycline-inducible GnRHR (H295R-TR/GnRHR), increased CYP11B2 expression and aldosterone production. These agonistic effects were inhibited by blockers for the calcium signaling pathway, KN93 and calmidazolium. These results suggest GnRH, through heterotopic expression of its receptor, may be a potential regulator of CYP11B2 expression levels in some cases of APA. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Xiang; Li Ming; Sun Weiping
2008-04-18
It was reported that glucocorticoid production was inhibited by fenofibrate through suppression of type-1 11{beta}-hydroxysteroid dehydrogenase gene expression in liver. The inhibition might be a negative-feedback regulation of glucocorticoid receptor (GR) activity by peroxisome proliferator-activated receptor alpha (PPAR{alpha}), which is quickly induced by glucocorticoid in the liver. However, it is not clear if GR expression is changed by fenofibrate-induced PPAR{alpha} activation. In this study, we tested this possibility in the liver of Sprague-Dawley rats. GR expression was reduced by fenofibrate in a time- and does-dependent manner. The inhibition was observed in liver, but not in fat and muscle. The corticosteronemore » level in the blood was increased significantly by fenofibrate. These effects of fenofibrate were abolished by PPAR{alpha} inhibitor MK886, suggesting that fenofibrate activated through PPAR{alpha}. In conclusion, inhibition of GR expression may represent a new molecular mechanism for the negative feedback regulation of GR activity by PPAR{alpha}.« less
Marcelli, M; Zoppi, S; Wilson, C M; Griffin, J E; McPhaul, M J
1994-01-01
We have investigated the basis of androgen resistance in seven unrelated individuals with complete testicular feminization or Reifenstein syndrome caused by single amino acid substitutions in the hormone-binding domain of the androgen receptor. Monolayer-binding assays of cultured genital skin fibroblasts demonstrated absent ligand binding, qualitative abnormalities of androgen binding, or a decreased amount of qualitatively normal receptor. The consequences of these mutations were examined by introducing the mutations by site-directed mutagenesis into the androgen receptor cDNA sequence and expressing the mutant cDNAs in mammalian cells. The effects of the amino acid substitutions on the binding of different androgens and on the capacity of the ligand-bound receptors to activate a reporter gene were investigated. Substantial differences were found in the responses of the mutant androgen receptors to incubation with testosterone, 5 alpha-dihydrotestosterone, and mibolerone. In several instances, increased doses of hormone or increased frequency of hormone addition to the incubation medium resulted in normal or near normal activation of a reporter gene by cells expressing the mutant androgen receptors. These studies suggest that the stability of the hormone receptor complex is a major determinant of receptor function in vivo. Images PMID:7929841
Iwanowicz, Luke R.; Stafford, James L.; Patiño, Reynaldo; Bengten, Eva; Miller, Norman W.; Blazer, Vicki
2014-01-01
Estrogens are recognized as modulators of immune responses in mammals and teleosts. While it is known that the effects of estrogens are mediated via leukocyte-specific estrogen receptors (ERs) in humans and mice, leucocyte-specific estrogen receptor expression and the effects of estrogens on this cell population is less explored and poorly understood in teleosts. Here in, we verify that channel catfish (Ictalurus punctaus) leukocytes express ERα and ERβ2. Transcripts of these isoforms were detected in tissue-associated leukocyte populations by PCR, but ERβ2 was rarely detected in PBLs. Expression of these receptors was temporally regulated in PBLs following polyclonal activation by concanavalin A, lipopolysaccharide or alloantigen based on evaluation by quantitative and end-point PCR. Examination of long-term leukocyte cell lines demonstrated that these receptors are differentially expressed depending on leukocyte lineage and phenotype. Expression of ERs was also temporally dynamic in some leukocyte lineages and may reflect stage of cell maturity. Estrogens affect the responsiveness of channel catfish peripheral blood leukocytes (PBLs) to mitogens in vitro. Similarly, bactericidal activity and phorbol 12-myristate 13-acetate induced respiratory burst was modulated by 17β-estradiol. These actions were blocked by the pure ER antagonist ICI 182780 indicating that response is, in part, mediated via ERα. In summary, estrogen receptors are expressed in channel catfish leukocytes and participate in the regulation of the immune response. This is the first time leukocyte lineage expression has been reported in teleost cell lines.
Osinski, M A; Pampusch, M S; Murtaugh, M P; Brown, D R
1999-01-22
The heptadecapeptide nociceptin/orphanin FQ is the cognate ligand for the opioid receptor-like orphanin FQ (OFQ) receptor, a member of the G protein-coupled receptor superfamily. The gastrointestinal tract is a major site of opioid action, and preliminary evidence suggests that an OFQ receptor may be expressed in rat small intestine. We addressed the hypothesis that this receptor is expressed in the gastrointestinal tract of the pig, a model for the human digestive system. A 1205-bp cDNA was isolated from porcine forebrain which contained the 370 amino acid open reading frame encoding the OFQ receptor. The receptor mRNA is likely to arise from a single gene, as determined by Southern blotting of porcine genomic DNA restriction digests using a porcine OFQ receptor cDNA probe. A semi-nested reverse transcriptase-polymerase chain reaction survey of receptor mRNA indicates that it is expressed in the porcine cerebral cortex and kidney, and along the length of the gastrointestinal tract. OFQ decreased initial contractile responses of porcine ileal smooth muscle strips to trains of electrical field stimulation with an IC50 value of 1.3 nM; its effects were resistant to the opioid antagonist, naloxone. The peptide, at concentrations > or =3 nM, also attenuated Isc elevations evoked by electrical transmural stimulation of mucosa-submucosa sheets from porcine ileum. The actions of OFQ appeared to differ from those previously reported for opioid receptor agonists in these tissue preparations. These results indicate that an OFQ receptor is expressed in the porcine intestine which modulates the neural control of intestinal smooth muscle contractility and mucosal transport.
Hong, Feng; Tuyama, Ana; Lee, Ting Fang; Loke, Johnny; Agarwal, Ritu; Cheng, Xin; Garg, Anita; Fiel, M. Isabel; Schwartz, Myron; Walewski, Jose; Branch, Andrea; Schecter, Alison D.; Bansal, Meena B.
2010-01-01
Chemokine interactions with their receptors have been implicated in hepatic stellate cell (HSC) activation. The hepatic expression of CXCR4 messenger RNA is increased in hepatitis C cirrhotic livers and plasma levels of its endogenous ligand, stromal cell–derived factor-1α (SDF-1α), correlate with increased fibrosis in these patients. The expression of CXCR4 by HSCs has not been reported. We therefore examined whether HSCs express CXCR4 in vivo and in vitro and explored whether SDF-1α/CXCR4 receptor engagement promotes HSC activation, fibrogenesis, and proliferation. The hepatic protein expression of both CXCR4 and SDF-1α is increased in hepatitis C cirrhotic livers and immunoflourescent and immunohistochemical staining confirms that HSCs express CXCR4 in vivo. Immortalized human stellate cells as well as primary human HSCs express CXCR4, and cell surface receptor expression increases with progressive culture-induced activation. Treatment of stellate cells with recombinant SDF-1α increases expression of α-smooth muscle actin and collagen I and stimulates a dose-dependent increase in HSC proliferation. Inhibitor studies suggest that SDF-1α/CXCR4-dependent extracellular signal-regulated kinase 1/2 and Akt phosphorylation mediate effects on collagen I expression and stellate cell proliferation. Conclusion HSCs express CXCR4 receptor in vivo and in vitro. CXCR4 receptor activation by SDF-1α is profibrogenic through its effects on HSC activation, fibrogenesis, and proliferation. Extracellular signal-regulated kinase 1/2 and phosphoinositide 3-kinase pathways mediate SDF-1α–induced effects on HSC expression of collagen I and proliferation. The availability of small molecule inhibitors of CXCR4 make this receptor an appealing target for antifibrotic approaches. PMID:19434726
Microplate-compatible total internal reflection fluorescence microscopy for receptor pharmacology
NASA Astrophysics Data System (ADS)
Chen, Minghan; Zaytseva, Natalya V.; Wu, Qi; Li, Min; Fang, Ye
2013-05-01
We report the use of total internal reflection fluorescence (TIRF) microscopy for analyzing receptor pharmacology and the development of a microplate-compatible TIRF imaging system. Using stably expressed green fluorescence protein tagged β2-adrenergic receptor as the reporter, we found that the activation of different receptors results in distinct kinetic signatures of the TIRF intensity of cells. These TIRF signatures closely resemble the characteristics of their respective label-free dynamic mass redistribution signals in the same cells. This suggests that TIRF in microplate can be used for profiling and screening drugs.
Strobl-Mazzulla, P. H.; Lethimonier, C.; Gueguen, M.M.; Karube, M.; Fernandino, J.I.; Yoshizaki, G.; Patino, R.; Strussmann, C.A.; Kah, O.; Somoza, G.M.
2008-01-01
Although estrogens exert many functions on vertebrate brains, there is little information on the relationship between brain aromatase and estrogen receptors. Here, we report the cloning and characterization of two estrogen receptors, ?? and ??, in pejerrey. Both receptors' mRNAs largely overlap and were predominantly expressed in the brain, pituitary, liver, and gonads. Also brain aromatase and estrogen receptors were up-regulated in the brain of estradiol-treated males. In situ hybridization was performed to study in more detail, the distribution of the two receptors in comparison with brain aromatase mRNA in the brain of adult pejerrey. The estrogen receptors' mRNAs exhibited distinct but partially overlapping patterns of expression in the preoptic area and the mediobasal hypothalamus, as well as in the pituitary gland. Moreover, the estrogen receptor ??, but not ??, were found to be expressed in cells lining the preoptic recess, similarly as observed for brain aromatase. Finally, it was shown that the onset expression of brain aromatase and both estrogen receptors in the head of larvae preceded the morphological differentiation of the gonads. Because pejerrey sex differentiation is strongly influenced by temperature, brain aromatase expression was measured during the temperature-sensitive window and was found to be significantly higher at male-promoting temperature. Taken together these results suggest close neuroanatomical and functional relationships between brain aromatase and estrogen receptors, probably involved in the sexual differentiation of the brain and raising interesting questions on the origin (central or peripheral) of the brain aromatase substrate. ?? 2008 Elsevier Inc.
Developmental changes in NMDA receptor expression in the platyfish brain
NASA Technical Reports Server (NTRS)
Flynn, K. M.; Schreibman, M. P.; Magliulo-Cepriano, L.
1997-01-01
We have examined the distribution of the N-methyl-D-aspartate (NMDA) receptor in the brain of a freshwater teleost using an antibody against the R1 subunit of the receptor (NMDAR1). The primary site of localization was the nucleus olfactoretinalis (NOR), a significant gonadotropin releasing hormone (GnRH)-containing brain nucleus. The number of cells expressing NMDAR1 in this nucleus was dependent upon developmental stage, with pubescent and mature animals displaying significantly more stained cells than immature and senescent animals. This is the first reported observation of age- and maturity-related NMDA receptor association with GnRH-containing brain areas.
Expression of VEGFR and PDGFR-α/-β in 187 canine nasal carcinomas.
Gramer, I; Killick, D; Scase, T; Chandry, D; Marrington, M; Blackwood, L
2017-09-01
Radiotherapy represents the standard of care for intranasal carcinomas. Responses to tyrosine kinase inhibitors (TKIs) have been reported but data on expression of target receptor tyrosine kinases (rTKs) is limited. This study characterizes the expression of vascular endothelial growth factor receptor (VEGFR), platelet-derived growth factor receptor (PDGFR)-α and PDGFR-β in canine intranasal carcinomas. Histological samples from 187 dogs were retrieved. Immunohistochemistry was performed using commercially available antibodies. Expression of rTKs was classified into weak, moderate or intense and additionally recorded as cytoplasmic, membranous, cytoplasmic-membranous, nuclear or stromal. VEGFR was expressed in 158 dogs with predominantly moderate expression (36.9%) and a cytoplasmic-membranous expression pattern (70.9%). PDGFR-α was detected in 133 with predominantly weak expression (57.9%) and cytoplasmic pattern (87.9%). PDGFR-β was identified in 74 patients with a predominantly moderate expression (17.6%) and cytoplasmic expression pattern (63.5%). Co-expression of rTKs was common. These results confirm expression of VEGFR, PDGFR-α and PDGFR-β in canine intranasal carcinomas and support the utility of TKIs. © 2016 John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Akbarian, S.; Huntsman, M. M.; Kim, J. J.; Tafazzoli, A.; Potkin, S. G.; Bunney, W. E. Jr; Jones, E. G.; Bloom, F. E. (Principal Investigator)
1995-01-01
The prefrontal cortex of schizophrenics is hypoactive and displays changes related to inhibitory, GABAergic neurons, and GABAergic synapses. These changes include decreased levels of glutamic acid decarboxylase (GAD), the enzyme for GABA synthesis, upregulation of muscimol binding, and downregulation of benzodiazepine binding to GABAA receptors. Studies in the visual cortex of nonhuman primates have demonstrated that gene expression for GAD and for several GABAA receptor subunit polypeptides is under control of neuronal activity, raising the possibility that similar mechanisms in the hypoactive prefrontal cortex of schizophrenics may explain the abnormalities in GAD and in GABAA receptor regulation. In the present study, which is the first of its type on human cerebral cortex, levels of mRNAs for six GABAA receptor subunits (alpha 1, alpha 2, alpha 5, beta 1, beta 2, gamma 2) and their laminar expression patterns were analyzed in the prefrontal cortex of schizophrenics and matched controls, using in situ hybridization histochemistry and densitometry. Three types of laminar expression pattern were observed: mRNAs for the alpha 1, beta 2, and gamma 2 subunits, which are the predominant receptor subunits expressed in the mature cortex, were expressed at comparatively high levels by cells of all six cortical layers, but most intensely by cells in lower layer III and layer IV. mRNAs for the alpha 2, alpha 5, and beta 1 subunits were expressed at lower levels; alpha 2 and beta 1 were expressed predominantly by cells in layers II, III, and IV; alpha 5 was expressed predominantly in layers IV, V, and VI. There were no significant changes in overall mRNA levels for any of the receptor subunits in the prefrontal cortex of schizophrenics, and the laminar expression pattern of all six receptor subunit mRNAs did not differ between schizophrenics and controls. Because gene expression for GABAA receptor subunits is not consistently altered in the prefrontal cortex of schizophrenics, the previously reported upregulation of muscimol binding sites and downregulation of benzodiazepine binding sites in the prefrontal and adjacent cingulate cortex of schizophrenics are possibly due to posttranscriptional modifications of mRNAs and their translated polypeptides.
Westermeier, Francisco; Salomón, Carlos; González, Marcelo; Puebla, Carlos; Guzmán-Gutiérrez, Enrique; Cifuentes, Fredi; Leiva, Andrea; Casanello, Paola; Sobrevia, Luis
2011-06-01
To determine whether insulin reverses gestational diabetes mellitus (GDM)-reduced expression and activity of human equilibrative nucleoside transporters 1 (hENT1) in human umbilical vein endothelium cells (HUVECs). Primary cultured HUVECs from full-term normal (n = 44) and diet-treated GDM (n = 44) pregnancies were used. Insulin effect was assayed on hENT1 expression (protein, mRNA, SLC29A1 promoter activity) and activity (initial rates of adenosine transport) as well as endothelial nitric oxide (NO) synthase activity (serine(1177) phosphorylation, l-citrulline formation). Adenosine concentration in culture medium and umbilical vein blood (high-performance liquid chromatography) as well as insulin receptor A and B expression (quantitative PCR) were determined. Reactivity of umbilical vein rings to adenosine and insulin was assayed by wire myography. Experiments were in the absence or presence of l-N(G)-nitro-l-arginine methyl ester (l-NAME; NO synthase inhibitor) or ZM-241385 (an A(2A)-adenosine receptor antagonist). Umbilical vein blood adenosine concentration was higher, and the adenosine- and insulin-induced NO/endothelium-dependent umbilical vein relaxation was lower in GDM. Cells from GDM exhibited increased insulin receptor A isoform expression in addition to the reported NO-dependent inhibition of hENT1-adenosine transport and SLC29A1 reporter repression, and increased extracellular concentration of adenosine and NO synthase activity. Insulin reversed all these parameters to values in normal pregnancies, an effect blocked by ZM-241385 and l-NAME. GDM and normal pregnancy HUVEC phenotypes are differentially responsive to insulin, a phenomenon where insulin acts as protecting factor for endothelial dysfunction characteristic of this syndrome. Abnormal adenosine plasma levels, and potentially A(2A)-adenosine receptors and insulin receptor A, will play crucial roles in this phenomenon in GDM.
Chen, Lei; Meng, Yue; Guo, Xiaoqing; Sheng, Xiaotong; Tai, Guihua; Zhang, Fenglei; Cheng, Hairong; Zhou, Yifa
2016-11-01
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a potent cancer cell-specific apoptosis-inducing cytokine with little toxicity to most normal cells. Here, we report that gefitinib and TRAIL in combination produce a potent synergistic effect on TRAIL-sensitive human colon cancer HCT116 cells and an additive effect on TRAIL-resistant HT-29 cells. Interestingly, gefitinib increases the expression of cell surface receptors DR4 and DR5, possibly explaining the synergistic effect. Knockdown of DR4 and DR5 by siRNA significantly decreases gefitinib- and TRAIL-mediated cell apoptosis, supporting this idea. Because the inhibition of gefitinib-induced autophagy by 3-MA significantly decreases DR4 and DR5 upregulation, as well as reduces gefitinib- and TRAIL-induced apoptosis, we conclude that death receptor upregulation is autophagy mediated. Furthermore, our results indicate that death receptor expression may also be regulated by JNK activation, because pre-treatment of cells with JNK inhibitor SP600125 significantly decreases gefitinib-induced death receptor upregulation. Interestingly, SP600125 also inhibits the expression CHOP, yet CHOP has no impact on death receptor expressions. We also find here that phosphorylation of Akt and ERK might also be required for TRAIL sensitization. In summary, our results indicate that gefitinib effectively enhances TRAIL-induced apoptosis, likely via autophagy and JNK- mediated death receptor expression and phosphorylation of Akt and ERK.
GABA[subscript A] Receptor Downregulation in Brains of Subjects with Autism
ERIC Educational Resources Information Center
Fatemi, S. Hossein; Reutiman, Teri J.; Folsom, Timothy D.; Thuras, Paul D.
2009-01-01
Gamma-aminobutyric acid A (GABA[subscript A]) receptors are ligand-gated ion channels responsible for mediation of fast inhibitory action of GABA in the brain. Preliminary reports have demonstrated altered expression of GABA receptors in the brains of subjects with autism suggesting GABA/glutamate system dysregulation. We investigated the…
Maruyama, Yutaka; Yasuda, Reiko; Kuroda, Motonaka; Eto, Yuzuru
2012-01-01
Recently, we reported that calcium-sensing receptor (CaSR) is a receptor for kokumi substances, which enhance the intensities of salty, sweet and umami tastes. Furthermore, we found that several γ-glutamyl peptides, which are CaSR agonists, are kokumi substances. In this study, we elucidated the receptor cells for kokumi substances, and their physiological properties. For this purpose, we used Calcium Green-1 loaded mouse taste cells in lingual tissue slices and confocal microscopy. Kokumi substances, applied focally around taste pores, induced an increase in the intracellular Ca2+ concentration ([Ca2+]i) in a subset of taste cells. These responses were inhibited by pretreatment with the CaSR inhibitor, NPS2143. However, the kokumi substance-induced responses did not require extracellular Ca2+. CaSR-expressing taste cells are a different subset of cells from the T1R3-expressing umami or sweet taste receptor cells. These observations indicate that CaSR-expressing taste cells are the primary detectors of kokumi substances, and that they are an independent population from the influenced basic taste receptor cells, at least in the case of sweet and umami. PMID:22511946
Parmar, Vikas K; Grinde, Ellinor; Mazurkiewicz, Joseph E; Herrick-Davis, Katharine
2017-09-01
Even though there are hundreds of reports in the published literature supporting the hypothesis that G protein-coupled receptors (GPCR) form and function as dimers this remains a highly controversial area of research and mechanisms governing homodimer formation are poorly understood. Crystal structures revealing homodimers have been reported for many different GPCR. For adrenergic receptors, a potential dimer interface involving transmembrane domain 1 (TMD1) and helix 8 (H8) was identified in crystal structures of the beta 1 -adrenergic (β 1 -AR) and β 2 -AR. The purpose of this study was to investigate a potential role for TMD1 and H8 in dimerization and plasma membrane expression of functional β 2 -AR. Charged residues at the base of TMD1 and in the distal portion of H8 were replaced, singly and in combination, with non-polar residues or residues of opposite charge. Wild type and mutant β 2 -AR, tagged with YFP and expressed in HEK293 cells, were evaluated for plasma membrane expression and function. Homodimer formation was evaluated using bioluminescence resonance energy transfer, bimolecular fluorescence complementation, and fluorescence correlation spectroscopy. Amino acid substitutions at the base of TMD1 and in the distal portion of H8 disrupted homodimer formation and caused receptors to be retained in the endoplasmic reticulum. Mutations in the proximal region of H8 did not disrupt dimerization but did interfere with plasma membrane expression. This study provides biophysical evidence linking a potential TMD1/H8 interface with ER export and the expression of functional β 2 -AR on the plasma membrane. This article is part of a Special Issue entitled: Interactions between membrane receptors in cellular membranes edited by Kalina Hristova. Copyright © 2016 Elsevier B.V. All rights reserved.
Wang, ER; Jarrah, AA; Benard, L; Chen, J; Schwarzkopf, M; Hadri, L; Tarzami, ST
2014-01-01
Altered alpha- and beta-adrenergic receptor signaling is associated with cardiac hypertrophy and failure. Stromal cell-derived factor-1α (SDF-1α) and its cognate receptor CXCR4 have been reported to mediate cardioprotection after injury through the mobilization of stem cells into injured tissue. However, little is known regarding whether SDF-1/CXCR4 induces acute protection following pathological hypertrophy and if so, by what molecular mechanism. We have previously reported that CXCR4 physically interacts with the beta-2 adrenergic receptor and modulates its down stream signaling. Here we have shown that CXCR4 expression prevents beta-adrenergic receptor induced hypertrophy. Cardiac beta-adrenergic receptors were stimulated with the implantation of a subcutaneous osmotic pump administrating isoproterenol and CXCR4 expression was selectively abrogated in cardiomyocytes using Cre-loxP-mediated gene recombination. CXCR4 knockout mice showed worsened fractional shortening and ejection fraction. CXCR4 ablation increased susceptibility to isoproterenol-induced heart failure, by upregulating apoptotic markers and reducing mitochondrial function; cardiac function decreases while fibrosis increases. Additionally, CXCR4 expression was rescued with the use of cardiotropic Adeno-associated viral-9 (AAV9) vectors. CXCR4 gene transfer reduced cardiac apoptotic signaling, improved mitochondrial function and resulted in a recovered cardiac function. Our results represent the first evidence that SDF-1/CXCR4 signaling mediates acute cardioprotection through modulating beta-adrenergic receptor signaling in vivo. PMID:24646609
Iwanowicz, Luke R; Stafford, James L; Patiño, Reynaldo; Bengten, Eva; Miller, Norman W; Blazer, Vicki S
2014-09-01
Estrogens are recognized as modulators of immune responses in mammals and teleosts. While it is known that the effects of estrogens are mediated via leukocyte-specific estrogen receptors (ERs) in humans and mice, leucocyte-specific estrogen receptor expression and the effects of estrogens on this cell population is less explored and poorly understood in teleosts. Here in, we verify that channel catfish (Ictalurus punctaus) leukocytes express ERα and ERβ2. Transcripts of these isoforms were detected in tissue-associated leukocyte populations by PCR, but ERβ2 was rarely detected in PBLs. Expression of these receptors was temporally regulated in PBLs following polyclonal activation by concanavalin A, lipopolysaccharide or alloantigen based on evaluation by quantitative and end-point PCR. Examination of long-term leukocyte cell lines demonstrated that these receptors are differentially expressed depending on leukocyte lineage and phenotype. Expression of ERs was also temporally dynamic in some leukocyte lineages and may reflect stage of cell maturity. Estrogens affect the responsiveness of channel catfish peripheral blood leukocytes (PBLs) to mitogens in vitro. Similarly, bactericidal activity and phorbol 12-myristate 13-acetate induced respiratory burst was modulated by 17β-estradiol. These actions were blocked by the pure ER antagonist ICI 182780 indicating that response is, in part, mediated via ERα. In summary, estrogen receptors are expressed in channel catfish leukocytes and participate in the regulation of the immune response. This is the first time leukocyte lineage expression has been reported in teleost cell lines. Published by Elsevier Ltd.
Dolder, Patrick C.; Grünblatt, Edna; Müller, Felix; Borgwardt, Stefan J.; Liechti, Matthias E.
2017-01-01
Rationale: Renewed interest has been seen in the use of lysergic acid diethylamide (LSD) in psychiatric research and practice. The repeated use of LSD leads to tolerance that is believed to result from serotonin (5-HT) 5-HT2A receptor downregulation. In rats, daily LSD administration for 4 days decreased frontal cortex 5-HT2A receptor binding. Additionally, a single dose of LSD acutely increased expression of the early growth response genes EGR1 and EGR2 in rat and mouse brains through 5-HT2A receptor stimulation. No human data on the effects of LSD on gene expression has been reported. Therefore, we investigated the effects of single-dose LSD administration on the expression of the 5-HT2A receptor gene (HTR2A) and EGR1-3 genes. Methods: mRNA expression levels were analyzed in whole blood as a peripheral biomarker in 15 healthy subjects before and 1.5 and 24 h after the administration of LSD (100 μg) and placebo in a randomized, double-blind, placebo-controlled, cross-over study. Results: LSD did not alter the expression of the HTR2A or EGR1-3 genes 1.5 and 24 h after administration compared with placebo. Conclusion: No changes were observed in the gene expression of LSD’s primary target receptor gene or genes that are implicated in its downstream effects. Remaining unclear is whether chronic LSD administration alters gene expression in humans. PMID:28701958
Romero-Nava, R; Rodriguez, J E; Reséndiz-Albor, A A; Sánchez-Muñoz, F; Ruiz-Hernandéz, A; Huang, F; Hong, E; Villafaña, S
2016-01-01
Diabetes and hypertension have been associated with cardiovascular diseases and stroke. Some reports have related the coexistence of hypertension and diabetes with increase in the risk of developing vascular complications. Recently some studies have shown results suggesting that in the early stages of diabetes and hypertension exist a reduced functional response to vasopressor agents like angiotensin II (Ang II), which plays an important role in blood pressure regulation mechanism through the activation of its AT1 and AT2 receptors. For that reason, the aim of this work was to study the gene and protein expression of AT1 and AT2 receptors in aorta of diabetic SHR and WKY rats. Diabetes was induced by the administration of streptozotocin (60 mg/kg i.p.). After 4 weeks of the onset of diabetes, the protein expression was obtained by western blot and the mRNA expression by RT-PCR. Our results showed that the hypertensive rats have a higher mRNA and protein expression of AT1 receptors than normotensive rats while the AT2 expression remained unchanged. On the other hand, the combination of diabetes and hypertension increased the mRNA and protein expression of AT1 and AT2 receptors significantly. In conclusion, our results suggest that diabetes with hypertension modifies the mRNA and protein expression of AT1 and AT2 receptors. However, the overexpression of AT2 could be associated with the reduction in the response to Ang II in the early stage of diabetes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akter, Mst. Hasina; Yamaguchi, Tomohiro; Hirose, Fumiko
2008-04-11
Perilipin is a protein localized on lipid droplet surfaces in adipocytes and steroidogenic cells, playing a central role in regulated lipolysis. Expression of the perilipin gene is markedly induced during adipogenesis. We found that transcription from the perilipin gene promoter is activated by an orphan nuclear receptor, estrogen receptor-related receptor (ERR){alpha}. A response element to this receptor was identified in the promoter region by a gene reporter assay, the electrophoretic-gel mobility-shift assay and the chromatin immunoprecipitation assay. Peroxisome proliferator-activated receptor {gamma} coactivator (PGC)-1{alpha} enhanced, whereas small heterodimer partner (SHP) repressed, the transactivating function of ERR{alpha} on the promoter. Thus, themore » perilipin gene expression is regulated by a transcriptional network controlling energy metabolism, substantiating the functional importance of perilipin in the maintenance of body energy balance.« less
Gosemann, Jan-Hendrik; Doi, Takashi; Kutasy, Balazs; Friedmacher, Florian; Dingemann, Jens; Puri, Prem
2012-05-01
Peroxisome proliferator-activated receptor γ (PPARγ) plays a key role in normal lung development. Peroxisome proliferator-activated receptor γ messenger RNA (mRNA) is detectable at 18 days of gestation in fetal rat lungs, and levels peak just before birth. Peroxisome proliferator-activated receptor γ agonists are reported to stimulate lung development, whereas inhibition of PPARγ disrupts postnatal lung maturation. Monocyte chemoattractant protein 1 (MCP-1), which is inhibited by PPARγ, is reported to disrupt late lung morphogenesis. This study was designed to investigate the hypothesis that PPARγ expression is downregulated and that MCP-1 expression is upregulated during the late stages of lung development in nitrofen-induced hypoplastic lungs. Pregnant rats were treated with nitrofen or vehicle on D9. RNA was extracted from fetal lungs (D18 and D21), and relative mRNA expression levels of PPARγ and MCP-1 were determined by reverse transcriptase-polymerase chain reaction. Immunohistochemistry was performed to evaluate protein expression/distribution of PPARγ and MCP-1. Relative mRNA expression levels of PPARγ were significantly downregulated in the nitrofen group compared with controls on D21, whereas MCP-1 levels were upregulated. Immunohistochemical study showed markedly decreased PPARγ and increased MCP-1 immunoreactivity in the nitrofen-induced hypoplastic lungs compared with controls on gestational day 21. Altered pulmonary gene expression of PPARγ and MCP-1 during late gestation may impair lung development and maturation, contributing to pulmonary hypoplasia in the nitrofen-induced congenital diaphragmatic hernia model. Copyright © 2012 Elsevier Inc. All rights reserved.
Albanito, Lidia; Madeo, Antonio; Lappano, Rosamaria; Vivacqua, Adele; Rago, Vittoria; Carpino, Amalia; Oprea, Tudor I; Prossnitz, Eric R; Musti, Anna Maria; Andò, Sebastiano; Maggiolini, Marcello
2007-02-15
Estrogens play a crucial role in the development of ovarian tumors; however, the signal transduction pathways involved in hormone action are still poorly defined. The orphan G protein-coupled receptor 30 (GPR30) mediates the nongenomic signaling of 17beta-estradiol (E2) in a variety of estrogen-sensitive cancer cells through activation of the epidermal growth factor receptor (EGFR) pathway. Whether estrogen receptor alpha (ERalpha) also contributes to GPR30/EGFR signaling is less understood. Here, we show that, in ERalpha-positive BG-1 ovarian cancer cells, both E2 and the GPR30-selective ligand G-1 induced c-fos expression and estrogen-responsive element (ERE)-independent activity of a c-fos reporter gene, whereas only E2 stimulated an ERE-responsive reporter gene, indicating that GPR30 signaling does not activate ERalpha-mediated transcription. Similarly, both ligands up-regulated cyclin D1, cyclin E, and cyclin A, whereas only E2 enhanced progesterone receptor expression. Moreover, both GPR30 and ERalpha expression are required for c-fos stimulation and extracellular signal-regulated kinase (ERK) activation in response to either E2 or G-1. Inhibition of the EGFR transduction pathway inhibited c-fos stimulation and ERK activation by either ligand, suggesting that in ovarian cancer cells GPR30/EGFR signaling relays on ERalpha expression. Interestingly, we show that both GPR30 and ERalpha expression along with active EGFR signaling are required for E2-stimulated and G-1-stimulated proliferation of ovarian cancer cells. Because G-1 was able to induce both c-fos expression and proliferation in the ERalpha-negative/GPR30-positive SKBR3 breast cancer cells, the requirement for ERalpha expression in GPR30/EGFR signaling may depend on the specific cellular context of different tumor types.
Pregitzer, Pablo; Jiang, Xingcong; Grosse-Wilde, Ewald; Breer, Heinz; Krieger, Jürgen; Fleischer, Joerg
2017-01-01
Under given environmental conditions, the desert locust ( Schistocera gregaria ) forms destructive migratory swarms of billions of animals, leading to enormous crop losses in invaded regions. Swarm formation requires massive reproduction as well as aggregation of the animals. Pheromones that are detected via the olfactory system have been reported to control both reproductive and aggregation behavior. However, the molecular basis of pheromone detection in the antennae of Schistocerca gregaria is unknown. As an initial step to disclose pheromone receptors, we sequenced the antennal transcriptome of the desert locust. By subsequent bioinformatical approaches, 119 distinct nucleotide sequences encoding candidate odorant receptors (ORs) were identified. Phylogenetic analyses employing the identified ORs from Schistocerca gregaria (SgreORs) and OR sequences from the related species Locusta migratoria revealed a group of locust ORs positioned close to the root, i.e. at a basal site in a phylogenetic tree. Within this particular OR group (termed basal or b-OR group), the locust OR sequences were strictly orthologous, a trait reminiscent of pheromone receptors from lepidopteran species. In situ hybridization experiments with antennal tissue demonstrated expression of b-OR types from Schistocerca gregaria in olfactory sensory neurons (OSNs) of either sensilla trichodea or sensilla basiconica, both of which have been reported to respond to pheromonal substances. More importantly, two-color fluorescent in situ hybridization experiments showed that most b-OR types were expressed in cells co-expressing the "sensory neuron membrane protein 1" (SNMP1), a marker indicative of pheromone-sensitive OSNs in insects. Analyzing the expression of a larger number of SgreOR types outside the b-OR group revealed that only a few of them were co-expressed with SNMP1. In summary, we have identified several candidate pheromone receptors from Schistocerca gregaria that could mediate responses to pheromones implicated in controlling reproduction and aggregation behavior.
Altered serotonin physiology in human breast cancers favors paradoxical growth and cell survival.
Pai, Vaibhav P; Marshall, Aaron M; Hernandez, Laura L; Buckley, Arthur R; Horseman, Nelson D
2009-01-01
The breast microenvironment can either retard or accelerate the events associated with progression of latent cancers. However, the actions of local physiological mediators in the context of breast cancers are poorly understood. Serotonin (5-HT) is a critical local regulator of epithelial homeostasis in the breast and other organs. Herein, we report complex alterations in the intrinsic mammary gland serotonin system of human breast cancers. Serotonin biosynthetic capacity was analyzed in human breast tumor tissue microarrays using immunohistochemistry for tryptophan hydroxylase 1 (TPH1). Serotonin receptors (5-HT1-7) were analyzed in human breast tumors using the Oncomine database. Serotonin receptor expression, signal transduction, and 5-HT effects on breast cancer cell phenotype were compared in non-transformed and transformed human breast cells. In the context of the normal mammary gland, 5-HT acts as a physiological regulator of lactation and involution, in part by favoring growth arrest and cell death. This tightly regulated 5-HT system is subverted in multiple ways in human breast cancers. Specifically, TPH1 expression undergoes a non-linear change during progression, with increased expression during malignant progression. Correspondingly, the tightly regulated pattern of 5-HT receptors becomes dysregulated in human breast cancer cells, resulting in both ectopic expression of some isoforms and suppression of others. The receptor expression change is accompanied by altered downstream signaling of 5-HT receptors in human breast cancer cells, resulting in resistance to 5-HT-induced apoptosis, and stimulated proliferation. Our data constitutes the first report of direct involvement of 5-HT in human breast cancer. Increased 5-HT biosynthetic capacity accompanied by multiple changes in 5-HT receptor expression and signaling favor malignant progression of human breast cancer cells (for example, stimulated proliferation, inappropriate cell survival). This occurs through uncoupling of serotonin from the homeostatic regulatory mechanisms of the normal mammary epithelium. The findings open a new avenue for identification of diagnostic and prognostic markers, and valuable new therapeutic targets for managing breast cancer.
Bouchard, Caroline; Pagé, Julie; Bédard, Andréanne; Tremblay, Pierrot; Vallières, Luc
2007-06-01
G protein-coupled receptor 84 (GPR84) is a recently discovered member of the seven transmembrane receptor superfamily whose function and regulation are unknown. Here, we report that in mice suffering from endotoxemia, microglia express GPR84 in a strong and sustained manner. This property is shared by subpopulations of peripheral macrophages and, to a much lesser extent, monocytes. The induction of GPR84 expression by endotoxin is mediated, at least in part, by proinflammatory cytokines, notably tumor necrosis factor (TNF) and interleukin-1 (IL-1), because mice lacking either one or both of these molecules have fewer GPR84-expressing cells in their cerebral cortex than wild-type mice during the early phase of endotoxemia. Moreover, when injected intracerebrally or added to microglial cultures, recombinant TNF stimulates GPR84 expression through a dexamethasone-insensitive mechanism. Finally, we show that microglia produce GPR84 not only during endotoxemia, but also during experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis. In conclusion, this study reports the identification of a new sensitive marker of microglial activation, which may play an important regulatory role in neuroimmunological processes, acting downstream to the effects of proinflammatory mediators.
Aiello, Francesca; Carullo, Gabriele; Giordano, Francesca; Spina, Elena; Nigro, Alessandra; Garofalo, Antonio; Tassini, Sabrina; Costantino, Gabriele; Vincetti, Paolo; Bruno, Agostino; Radi, Marco
2017-08-22
Together with estrogen receptors ERα and ERβ, the G protein-coupled estrogen receptor (GPER) mediates important pathophysiological signaling pathways induced by estrogens and is currently regarded as a promising target for ER-negative (ER-) and triple-negative (TN) breast cancer. Only a few selective GPER modulators have been reported to date, and their use in cancer cell lines has often led to contradictory results. Herein we report the application of virtual screening and cell-based studies for the identification of new chemical scaffolds with a specific antiproliferative effect against GPER-expressing breast cancer cell lines. Out of the four different scaffolds identified, 8-chloro-4-(4-chlorophenyl)pyrrolo[1,2-a]quinoxaline 14 c was found to be the most promising compound able to induce: 1) antiproliferative activity in GPER-expressing cell lines (MCF7 and SKBR3), similarly to G15; 2) no effect on cells that do not express GPER (HEK293); 3) a decrease in cyclin D1 expression; and 4) a sustained induction of cell-cycle negative regulators p53 and p21. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Steroid hormone and epidermal growth factor receptors in meningiomas.
Horsfall, D J; Goldsmith, K G; Ricciardelli, C; Skinner, J M; Tilley, W D; Marshall, V R
1989-11-01
A prospective study of steroid hormone and epidermal growth factor receptor expression in 57 meningiomas is presented. Scatchard analysis of radioligand binding identified 20% of meningiomas as expressing classical oestrogen receptors (ER) at levels below that normally accepted for positivity, the remainder being negative. ER could not be visualized in any meningioma using immunocytochemistry. Alternatively, 74% of meningiomas demonstrated the presence of progesterone receptors (PR) by Scatchard analysis, the specificity of which could not be attributed to glucocorticoid or androgen receptors. Confirmation of classical PR presence was determined by immunocytochemical staining. The presence of epidermal growth factor receptor (EGFR) was demonstrated in 100% of meningiomas using immunocytochemical staining. These data are reviewed in the context of previously reported results and are discussed in relation to the potential for medical therapy as an adjunct to surgery.
Membrane Estrogen and HER-2 Receptors in Human Breast Cancer
2002-07-01
activation of G-proteins, adenylate cyclase, inositol phosphate, calcium homeostasis and/or MAP kinase. These interactions may promote phosphorylation of ER...of breast cancer cells and interact with transmembrane HER-2 growth factor receptors. Expression of HER-2 receptors occurs in many breast cancers...reports of significant cross-talk and interaction between erb B (HER) pathways and estrogen receptor signaling (3,24,27,34-36). It is generally held
Kargl, Julia; Balenga, Nariman; Parzmair, Gerald P; Brown, Andrew J; Heinemann, Akos; Waldhoer, Maria
2012-12-28
The G protein-coupled receptor (GPCR) 55 (GPR55) and the cannabinoid receptor 1 (CB1R) are co-expressed in many tissues, predominantly in the central nervous system. Seven transmembrane spanning (7TM) receptors/GPCRs can form homo- and heteromers and initiate distinct signaling pathways. Recently, several synthetic CB1 receptor inverse agonists/antagonists, such as SR141716A, AM251, and AM281, were reported to activate GPR55. Of these, SR141716A was marketed as a promising anti-obesity drug, but was withdrawn from the market because of severe side effects. Here, we tested whether GPR55 and CB1 receptors are capable of (i) forming heteromers and (ii) whether such heteromers could exhibit novel signaling patterns. We show that GPR55 and CB1 receptors alter each others signaling properties in human embryonic kidney (HEK293) cells. We demonstrate that the co-expression of FLAG-CB1 receptors in cells stably expressing HA-GPR55 specifically inhibits GPR55-mediated transcription factor activation, such as nuclear factor of activated T-cells and serum response element, as well as extracellular signal-regulated kinases (ERK1/2) activation. GPR55 and CB1 receptors can form heteromers, but the internalization of both receptors is not affected. In addition, we observe that the presence of GPR55 enhances CB1R-mediated ERK1/2 and nuclear factor of activated T-cell activation. Our data provide the first evidence that GPR55 can form heteromers with another 7TM/GPCR and that this interaction with the CB1 receptor has functional consequences in vitro. The GPR55-CB1R heteromer may play an important physiological and/or pathophysiological role in tissues endogenously co-expressing both receptors.
Kargl, Julia; Balenga, Nariman; Parzmair, Gerald P.; Brown, Andrew J.; Heinemann, Akos; Waldhoer, Maria
2012-01-01
The G protein-coupled receptor (GPCR) 55 (GPR55) and the cannabinoid receptor 1 (CB1R) are co-expressed in many tissues, predominantly in the central nervous system. Seven transmembrane spanning (7TM) receptors/GPCRs can form homo- and heteromers and initiate distinct signaling pathways. Recently, several synthetic CB1 receptor inverse agonists/antagonists, such as SR141716A, AM251, and AM281, were reported to activate GPR55. Of these, SR141716A was marketed as a promising anti-obesity drug, but was withdrawn from the market because of severe side effects. Here, we tested whether GPR55 and CB1 receptors are capable of (i) forming heteromers and (ii) whether such heteromers could exhibit novel signaling patterns. We show that GPR55 and CB1 receptors alter each others signaling properties in human embryonic kidney (HEK293) cells. We demonstrate that the co-expression of FLAG-CB1 receptors in cells stably expressing HA-GPR55 specifically inhibits GPR55-mediated transcription factor activation, such as nuclear factor of activated T-cells and serum response element, as well as extracellular signal-regulated kinases (ERK1/2) activation. GPR55 and CB1 receptors can form heteromers, but the internalization of both receptors is not affected. In addition, we observe that the presence of GPR55 enhances CB1R-mediated ERK1/2 and nuclear factor of activated T-cell activation. Our data provide the first evidence that GPR55 can form heteromers with another 7TM/GPCR and that this interaction with the CB1 receptor has functional consequences in vitro. The GPR55-CB1R heteromer may play an important physiological and/or pathophysiological role in tissues endogenously co-expressing both receptors. PMID:23161546
Candidate chemosensory ionotropic receptors in a Lepidoptera.
Olivier, V; Monsempes, C; François, M-C; Poivet, E; Jacquin-Joly, E
2011-04-01
A new family of candidate chemosensory ionotropic receptors (IRs) related to ionotropic glutamate receptors (iGluRs) was recently discovered in Drosophila melanogaster. Through Blast analyses of an expressed sequenced tag library prepared from male antennae of the noctuid moth Spodoptera littoralis, we identified 12 unigenes encoding proteins related to D. melanogaster and Bombyx mori IRs. Their full length sequences were obtained and the analyses of their expression patterns suggest that they were exclusively expressed or clearly enriched in chemosensory organs. The deduced protein sequences were more similar to B. mori and D. melanogaster IRs than to iGluRs and showed considerable variations in the predicted ligand-binding domains; none have the three glutamate-interacting residues found in iGluRs, suggesting different binding specificities. Our data suggest that we identified members of the insect IR chemosensory receptor family in S. littoralis and we report here the first demonstration of IR expression in Lepidoptera. © 2010 The Authors. Insect Molecular Biology © 2010 The Royal Entomological Society.
Involvement of estrogen receptor variant ER-alpha36, not GPR30, in nongenomic estrogen signaling.
Kang, Lianguo; Zhang, Xintian; Xie, Yan; Tu, Yaping; Wang, Dong; Liu, Zhenming; Wang, Zhao-Yi
2010-04-01
Accumulating evidence suggested that an orphan G protein-coupled receptor (GPR)30, mediates nongenomic responses to estrogen. The present study was performed to investigate the molecular mechanisms underlying GPR30 function. We found that knockdown of GPR30 expression in breast cancer SK-BR-3 cells down-regulated the expression levels of estrogen receptor (ER)-alpha36, a variant of ER-alpha. Introduction of a GPR30 expression vector into GPR30 nonexpressing cells induced endogenous ER-alpha36 expression, and cotransfection assay demonstrated that GPR30 activated the promoter activity of ER-alpha36 via an activator protein 1 binding site. Both 17beta-estradiol (E2) and G1, a compound reported to be a selective GPR30 agonist, increased the phosphorylation levels of the MAPK/ERK1/2 in SK-BR-3 cells, which could be blocked by an anti-ER-alpha36-specific antibody against its ligand-binding domain. G1 induced activities mediated by ER-alpha36, such as transcription activation activity of a VP16-ER-alpha36 fusion protein and activation of the MAPK/ERK1/2 in ER-alpha36-expressing cells. ER-alpha36-expressing cells, but not the nonexpressing cells, displayed high-affinity, specific E2 and G1 binding, and E2- and G1-induced intracellular Ca(2+) mobilization only in ER-alpha36 expressing cells. Taken together, our results demonstrated that previously reported activities of GPR30 in response to estrogen were through its ability to induce ER-alpha36 expression. The selective G protein-coupled receptor (GPR)30 agonist G1 actually interacts with ER-alpha36. Thus, the ER-alpha variant ER-alpha36, not GPR30, is involved in nongenomic estrogen signaling.
β1,4-galactosyltransferase 1 is a novel receptor for IgA in human mesangial cells.
Molyneux, Karen; Wimbury, David; Pawluczyk, Izabella; Muto, Masahiro; Bhachu, Jasraj; Mertens, Peter R; Feehally, John; Barratt, Jonathan
2017-12-01
IgA nephropathy is characterized by mesangial deposition of IgA, mesangial cell proliferation, and extracellular matrix production. Mesangial cells bind IgA, but the identity of all potential receptors involved remains incomplete. The transferrin receptor (CD71) acts as a mesangial cell IgA receptor and its expression is upregulated in many forms of glomerulonephritis, including IgA nephropathy. CD71 is not expressed in healthy glomeruli and blocking CD71 does not completely abrogate mesangial cell IgA binding. Previously we showed that mesangial cells express a receptor that binds the Fc portion of IgA and now report that this receptor is an isoform of β-1,4-galactosyltransferase. A human mesangial cell cDNA library was screened for IgA binding proteins and β-1,4-galactosyltransferase identified. Cell surface expression of the long isoform of β-1,4-galactosyltransferase was shown by flow cytometry and confocal microscopy and confirmed by immunoblotting. Glomerular β-1,4-galactosyltransferase expression was increased in IgA nephropathy. IgA binding and IgA-induced mesangial cell phosphorylation of spleen tyrosine kinase and IL-6 synthesis were inhibited by a panel of β-1,4-galactosyltransferase-specific antibodies, suggesting IgA binds to the catalytic domain of β-1,4-galactosyltransferase. Thus, β-1,4-galactosyltransferase is a constitutively expressed mesangial cell IgA receptor with an important role in both mesangial IgA clearance and the initial response to IgA deposition. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Smith, Stephanie MC; Mitchell, Gordon S; Friedle, Scott A; Sibigtroth, Christine M; Vinit, Stéphane; Watters, Jyoti J
2013-01-01
Hypoxia and increased extracellular nucleotides are frequently coincident in the brainstem. Extracellular nucleotides are potent modulators of microglial inflammatory gene expression via P2X purinergic receptor activation. Although hypoxia is also known to modulate inflammatory gene expression, little is known about how hypoxia or P2X receptor activation alone affects inflammatory molecule production in brainstem microglia, nor how hypoxia and P2X receptor signaling interact when they occur together. In the study reported here, we investigated the ability of a brief episode of hypoxia (2 hours) in the presence and absence of the nonselective P2X receptor agonist 2′(3′)-O-(4-benzoylbenzoyl)adenosine-5′-triphosphate (BzATP) to promote inflammatory gene expression in brainstem microglia in adult rats. We evaluated inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNFα), and interleukin (IL)-6 messenger RNA levels in immunomagnetically isolated brainstem microglia. While iNOS and IL-6 gene expression increased with hypoxia and BzATP alone, TNFα expression was unaffected. Surprisingly, BzATP-induced inflammatory effects were lost after hypoxia, suggesting that hypoxia impairs proinflammatory P2X-receptor signaling. We also evaluated the expression of key P2X receptors activated by BzATP, namely P2X1, P2X4, and P2X7. While hypoxia did not alter their expression, BzATP upregulated P2X4 and P2X7 mRNAs; these effects were ablated in hypoxia. Although both P2X4 and P2X7 receptor expression correlated with increased microglial iNOS and IL-6 levels in microglia from normoxic rats, in hypoxia, P2X7 only correlated with IL-6, and P2X4 correlated only with iNOS. In addition, correlations between P2X7 and P2X4 were lost following hypoxia, suggesting that P2X4 and P2X7 receptor signaling differs in normoxia and hypoxia. Together, these data suggest that hypoxia suppresses P2X receptor-induced inflammatory gene expression, indicating a potentially immunosuppressive role of extracellular nucleotides in brainstem microglia following exposure to hypoxia. PMID:24377098
Duan, Chao; Liu, Xubin; Liang, Shuang; Yang, Zheng; Xia, Meng; Wang, Liantang; Chen, Shangwu; Yu, Li
2014-01-01
Endometrial adenocarcinoma is the most common tumour of the female genital tract in developed countries, and oestrogen receptor (ER) signalling plays a pivotal role in its pathogenesis. When we used bioinformatics tools to search for the genes contributing to gynecological cancers, the expression of Olfactomedin 4 (OLFM4) was found by digital differential display to be associated with differentiation of endometrial adenocarcinoma. Aberrant expression of OLFM4 has been primarily reported in tumours of the digestive system. The mechanism of OLFM4 in tumuorigenesis is elusive. We investigated OLFM4 expression in endometrium, analysed the association of OLFM4 with ER signalling in endometrial adenocarcinoma, and examined the roles of OLFM4 in endometrial adenocarcinoma. Expression of OLFM4 was increased during endometrial carcinogenesis, linked to the differentiation of endometrioid adenocarcinoma, and positively related to the expression of oestrogen receptor-α (ERα) and progesterone receptor. Moreover, ERα-mediated signalling regulated expression of OLFM4, and knockdown of OLFM4 enhanced proliferation, migration and invasion of endometrial carcinoma cells. Down-regulation of OLFM4 was associated with decreased cumulative survival rate of patients with endometrioid adenocarcinoma. Our data suggested that impairment of ERα signal-mediated OLFM4 expression promoted the malignant progression of endometrioid adenocarcinoma, which may have significance for the therapy of this carcinoma. PMID:24495253
Li, Shu-Jing; Vaughan, Alexander; Sturgill, James Fitzhugh; Kepecs, Adam
2018-06-06
Retrogradely transported neurotropic viruses enable genetic access to neurons based on their long-range projections and have become indispensable tools for linking neural connectivity with function. A major limitation of viral techniques is that they rely on cell-type-specific molecules for uptake and transport. Consequently, viruses fail to infect variable subsets of neurons depending on the complement of surface receptors expressed (viral tropism). We report a receptor complementation strategy to overcome this by potentiating neurons for the infection of the virus of interest-in this case, canine adenovirus type-2 (CAV-2). We designed AAV vectors for expressing the coxsackievirus and adenovirus receptor (CAR) throughout candidate projection neurons. CAR expression greatly increased retrograde-labeling rates, which we demonstrate for several long-range projections, including some resistant to other retrograde-labeling techniques. Our results demonstrate a receptor complementation strategy to abrogate endogenous viral tropism and thereby facilitate efficient retrograde targeting for functional analysis of neural circuits. Copyright © 2018 Elsevier Inc. All rights reserved.
Hepatitis C virus utilizes VLDLR as a novel entry pathway.
Ujino, Saneyuki; Nishitsuji, Hironori; Hishiki, Takayuki; Sugiyama, Kazuo; Takaku, Hiroshi; Shimotohno, Kunitada
2016-01-05
Various host factors are involved in the cellular entry of hepatitis C virus (HCV). In addition to the factors previously reported, we discovered that the very-low-density lipoprotein receptor (VLDLR) mediates HCV entry independent of CD81. Culturing Huh7.5 cells under hypoxic conditions significantly increased HCV entry as a result of the expression of VLDLR, which was not expressed under normoxic conditions in this cell line. Ectopic VLDLR expression conferred susceptibility to HCV entry of CD81-deficient Huh7.5 cells. Additionally, VLDLR-mediated HCV entry was not affected by the knockdown of cellular factors known to act as HCV receptors or HCV entry factors. Because VLDLR is expressed in primary human hepatocytes, our results suggest that VLDLR functions in vivo as an HCV receptor independent of canonical CD81-mediated HCV entry.
Serotonin receptor 5-HT5A in rat hippocampus decrease by leptin treatment.
García-Alcocer, Guadalupe; Rodríguez, Angelina; Moreno-Layseca, Paulina; Berumen, Laura C; Escobar, Jesica; Miledi, Ricardo
2010-12-17
5-Hydroxytryptamine (5-HT) is involved in a variety of different physiological processes and behaviors through the activation of equally diverse receptors subtypes. In this work we studied the changes on the expression of 5-HT(5A) receptors in rat hippocampus induced by leptin, an adipocyte-derived hormone that has been reported to participate in the modulation of food intake and in adult hippocampal neurogenesis. To study the effect of leptin on the 5-HT(5A) receptor gene expression a qRT-PCR was used and the distribution of those receptors in the hippocampus was visualized by immunohistochemistry. Rats were separated in four groups: control (untreated rats), leptin-treated, serotonin-treated and leptin+serotonin treated. The results showed that even though the 5-HT(5A) gene expression did not change in the hippocampus of any of the treated groups, in the rats treated with leptin and serotonin, the specific immunostaining for the 5-HT(5A) serotonin receptor decreased significantly in the dentate gyrus. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Hashi, Hiroki; Nakamura, Yasuyuki; Ishii, Jun; Kondo, Akihiko
2018-04-01
Neurotensin receptor type 1 (NTSR1), a member of the G-protein-coupled receptor (GPCR) family, is naturally activated by binding of a neurotensin peptide, leading to a variety of physiological effects. The budding yeast Saccharomyces cerevisiae is a proven host organism for assaying the agonistic activation of human GPCRs. Previous studies showed that yeast cells can functionally express human NTSR1 receptor, permitting the detection of neurotensin-promoted signaling using a ZsGreen fluorescent reporter gene. However, the fluorescence intensity (sensitivity) of NTSR1-expressing yeast cells is low compared to that of yeast cells expressing other human GPCRs (e.g., human somatostatin receptors). The present study sought to increase the sensitivity of the NTSR1-expressing yeast for use as a fluorescent biosensor, including modification of the expression of human NTSR1 in yeast. Changes in the transcription, translation, and transport of the receptor are attempted by altering the promoter, consensus Kozak-like sequence, and secretion signal sequences of the NTSR1-encoding gene. The resulting yeast cells exhibited increased sensitivity to exogenously added peptide. The cells are further engineered by using cell-surface display technology to ensure that the agonistic peptides are secreted and tethered to the yeast cell wall, yielding cells with enhanced NTSR1 activation. This yeast biosensor holds promise for the identification of agonists to treat NTSR1-related diseases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
CpG-STAT3siRNA for Castration-Resistant Prostate Cancer Therapy
2015-12-01
RESULTS TLR9 promotes prostate cancer cell engraftment and progression in vivo Previous studies reported expression of the innate immune receptor...cancer cells express innate immune receptors, such as TLR9, normally restricted to the hematopoietic cell lineage [2, 5, 7]. Rather than becoming... innate immune gene family is differentially influenced by DNA stress and p53 status in cancer cells . Cancer Res. 2012; 72:3948–3957. 7. Ilvesaro JM
Ronn, Jonas; Jensen, Elisa P; Wewer Albrechtsen, Nicolai J; Holst, Jens Juul; Sorensen, Charlotte M
2017-12-01
Glucagon-like peptide-1 (GLP-1) is an incretin hormone increasing postprandial insulin release. GLP-1 also induces diuresis and natriuresis in humans and rodents. The GLP-1 receptor is extensively expressed in the renal vascular tree in normotensive rats where acute GLP-1 treatment leads to increased mean arterial pressure (MAP) and increased renal blood flow (RBF). In hypertensive animal models, GLP-1 has been reported both to increase and decrease MAP. The aim of this study was to examine expression of renal GLP-1 receptors in spontaneously hypertensive rats (SHR) and to assess the effect of acute intrarenal infusion of GLP-1. We hypothesized that GLP-1 would increase diuresis and natriuresis and reduce MAP in SHR. Immunohistochemical staining and in situ hybridization for the GLP-1 receptor were used to localize GLP-1 receptors in the kidney. Sevoflurane-anesthetized normotensive Sprague-Dawley rats and SHR received a 20 min intrarenal infusion of GLP-1 and changes in MAP, RBF, heart rate, dieresis, and natriuresis were measured. The vasodilatory effect of GLP-1 was assessed in isolated interlobar arteries from normo- and hypertensive rats. We found no expression of GLP-1 receptors in the kidney from SHR. However, acute intrarenal infusion of GLP-1 increased MAP, RBF, dieresis, and natriuresis without affecting heart rate in both rat strains. These results suggest that the acute renal effects of GLP-1 in SHR are caused either by extrarenal GLP-1 receptors activating other mechanisms (e.g., insulin) to induce the renal changes observed or possibly by an alternative renal GLP-1 receptor. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Steinberg, Anna; Frederiksen, Simona D; Blixt, Frank W; Warfvinge, Karin; Edvinsson, Lars
2016-12-01
Migraine and Cluster Headache (CH) are two primary headaches with severe disease burden. The disease expression and the mechanisms involved are poorly known. In some attacks of migraine and in most attacks of CH, there is a release of vasoactive intestinal peptide (VIP) originating from parasympathetic cranial ganglia such as the sphenopalatine ganglion (SPG). Patients suffering from these diseases are often deprived of effective drugs. The aim of the study was to examine the localization of the botulinum toxin receptor element synaptic vesicle glycoprotein 2A (SV-2A) and the vesicular docking protein synaptosomal-associated protein 25 (SNAP25) in human and rat SPG. Additionally the expression of the neurotransmitters pituitary adenylate cyclase activating polypeptide (PACAP-38), nitric oxide synthase (nNOS), VIP and 5-hydroxttryptamine subtype receptors (5-HT1B,1D,1F) were examined. SPG from adult male rats and from humans, the later removed at autopsy, were prepared for immunohistochemistry using specific antibodies against neurotransmitters, 5-HT1B,1D,1F receptors, and botulinum toxin receptor elements. We found that the selected neurotransmitters and 5-HT receptors were expressed in rat and human SPG. In addition, we found SV2-A and SNAP25 expression in both rat and human SPG. We report that all three 5-HT receptors studied occur in neurons and satellite glial cells (SGCs) of the SPG. 5-HT1B receptors were in addition found in the walls of intraganglionic blood vessels. Recent focus on the SPG has emphasized the role of parasympathetic mechanisms in the pathophysiology of mainly CH. The development of next generation's drugs and treatment of cranial parasympathetic symptoms, mediated through the SPG, can be modulated by treatment with BoNT-A and 5-HT receptor agonists.
Human gingival fibroblasts express functional chemokine receptor CXCR6.
Hosokawa, Y; Hosokawa, I; Ozaki, K; Nakae, H; Matsuo, T
2009-06-01
We have reported that CXCL16, a recently discovered transmembrane chemokine, is expressed in human gingival fibroblasts (HGF). However, it is not known whether HGF express CXCR6, the receptor for CXCL16, or CXCL16 affects HGF biology. We have shown that HGF expressed CXCR6 by reverse transcription-polymerase chain reaction and flow cytometric analysis. Moreover, we elucidated that tumour necrosis factor (TNF)-alpha and cytosine-guanine dinucleotide (CpG) DNA (Toll-like receptor-9 ligand) treatment enhanced CXCR6 expression by HGF. Interleukin (IL)-4, IL-13 and CpG DNA up-regulated CXCR6 expression by TNF-alpha-stimulated HGF. On the other hand, IL-1beta and interferon-gamma inhibited CXCR6 expression on TNF-alpha-treated HGF. CXCL16 treatment induced HGF proliferation and phosphorylation of extracellular regulated kinase (ERK) and protein kinase B (AKT) in HGF. In conclusion, HGF expressed CXCR6 functionally, because CXCL16 induced HGF proliferation and ERK and AKT phosphorylation in HGF. These results indicate that CXCL16 may play an important role in the pathogenesis and remodelling in periodontally diseased tissues.
Opiate physical dependence and N-methyl-D-aspartate receptors.
Noda, Yukihiro; Nabeshima, Toshitaka
2004-10-01
The present review focused the involvement of N-methyl-D-aspartate (NMDA) receptors in morphine physical dependence. The increased levels of extracellular glutamate, NMDA receptor zeta subunit (NR1) mRNA, NMDA receptor epsilon 1 subunit (NR2A) protein, phosphorylated Ca(2+)/calmodulin kinase II (p-CaMKII) protein, c-fos mRNA, c-Fos protein, are observed in the specific brain areas of mice and/or rats showing signs of naloxone-precipitated withdrawal. In preclinical and clinical studies, a variety of NMDA receptor antagonists and pretreatment with an antisense oligonucleotide of the NR1 have been reported to inhibit the development, expression and/or maintenance of opiate physical dependence. In contrast to data obtained in adult animals, NMDA receptor antagonists are neither effective in blocking the development of opiate dependence nor the expression of opiate withdrawal in neonatal rats. In the NMDA receptor-deficient mice, the NR2A knockout mice show the marked loss of typical withdrawal abstinence behaviors precipitated by naloxone. The rescue of NR2A protein by electroporation into the nucleus accumbens of NR2A knockout mice reverses the loss of abstinence behaviors. The activation of CaMKII and increased expression of c-Fos protein in the brain of animals with naloxone-precipitated withdrawal syndrome are prevented by NMDA receptor antagonists, whereas the increased levels of extracellular glutamate are not prevented by them. These findings indicate that glutamatergic neurotransmission at the NMDA receptor site contributes to the development, expression and maintenance of opiate dependence, and suggest that NMDA receptor antagonists may be a useful adjunct in the treatment of opiate dependence.
Okamura, Naoe; Reinscheid, Rainer K.; Ohgake, Shintaro; Iyo, Masaomi; Hashimoto, Kenji
2009-01-01
Neuropeptide S (NPS) and its cognate receptor were reported to mediate anxiolytic-like and arousal effects. NPS receptors are predominantly expressed in the brain, especially in limbic structures, including amygdala, olfactory nucleus, subiculum and retrosplenial cortex. In contrast, the NPS precursor is expressed in only a few brainstem nuclei where it is co-expressed with various excitatory transmitters, including glutamate. The current study investigates interactions of the NPS system with glutamatergic neurotransmission. It has been suggested that dysfunctions in glutamatergic neurotransmission via N-methyl-D-aspartate (NMDA) receptors might be involved in the pathophysiology of schizophrenia since NMDA receptor antagonists, such as MK-801, have been shown to induce psychotic-like behavior in humans and animal models. Also, MK-801 is known to produce histological changes such as cytoplasmic vacuoles in retrosplenial cortex neurons where NPS receptors are highly expressed. In this study we show that NPS is able to alleviate neuropathological, neurochemical and behavioral changes produced by NMDA receptor antagonists. NPS treatment attenuated MK-801-induced vacuolization in the rat retrosplenial cortex in a dose dependent manner that can be blocked by an NPS receptor-selective antagonist. NPS also suppressed MK-801-induced increases of extracellular acetylcholine levels in the retrosplenial cortex. In the prepulse inhibition (PPI) assay, animals pretreated with NPS recovered significantly from MK-801-induced disruption of PPI. Our study suggests that NPS may have protective effects against the neurotoxic and behavioral changes produced by NMDA receptor antagonists and that NPS receptor agonists may elicit antipsychotic effects. PMID:19576911
Yang, Yunlong; Bajracharya, Prati; Castillo, Paula; Nachman, Ronald J; Pietrantonio, Patricia V
2013-12-01
The cDNA of the receptor for CAP(2b)/periviscerokinin (PVK) neuropeptides, designated Rhimi-CAP(2b)-R, was cloned from synganglia of tick Rhipicephalus (Boophilus) microplus. This receptor is the ortholog of the insect CAP(2b)/PVK receptor, as concluded from analyses of the predicted protein sequence, phylogenetics and functional expression. Expression analyses of synganglion, salivary gland, Malpighian tubule, and ovary revealed Rhimi-CAP(2b)-R transcripts. The expression in mammalian cells of the open reading frame of Rhimi-CAP(2b)-R cDNA fused with a hemagglutinin tag at the receptor N-terminus was confirmed by immunocytochemistry. In a calcium bioluminescence assay the recombinant receptor was activated by the tick Ixodes scapularis CAP(2b)/PVK and a PVK analog with EC₅₀s of 64 nM and 249 nM, respectively. Tick pyrokinins were not active. This is the first report on the functional characterization of the CAP(2b)/PVK receptor from any tick species which will now permit the discovery of the physiological roles of these neuropeptides in ticks, as neurohormones, neuromodulators and/or neurotransmitters. Copyright © 2013 Elsevier Inc. All rights reserved.
Mancardi, David A; Jönsson, Friederike; Iannascoli, Bruno; Khun, Huot; Van Rooijen, Nico; Huerre, Michel; Daëron, Marc; Bruhns, Pierre
2011-02-15
K/BxN serum-induced passive arthritis was reported to depend on the activation of mast cells, triggered by the activating IgG receptor FcγRIIIA, when engaged by IgG1 autoantibodies present in K/BxN serum. This view is challenged by the fact that FcγRIIIA-deficient mice still develop K/BxN arthritis and because FcγRIIIA is the only activating IgG receptor expressed by mast cells. We investigated the contribution of IgG receptors, IgG subclasses, and cells in K/BxN arthritis. We found that the activating IgG2 receptor FcγRIV, expressed only by monocytes/macrophages and neutrophils, was sufficient to induce disease. K/BxN arthritis occurred not only in mast cell-deficient W(sh) mice, but also in mice whose mast cells express no activating IgG receptors. We propose that at least two autoantibody isotypes, IgG1 and IgG2, and two activating IgG receptors, FcγRIIIA and FcγRIV, contribute to K/BxN arthritis, which requires at least two cell types other than mast cells, monocytes/macrophages, and neutrophils.
The U.S. Environmental Protection Agency has proposed that in vitro assays for estrogen receptor (ER) and androgen receptor (AR) mediated actions be included in a Tier I screening battery to detect hormonally active chemicals. Herein we describe the development of a novel stab...
Bordji, Karim; Becerril-Ortega, Javier; Nicole, Olivier; Buisson, Alain
2010-11-24
Calcium is a key mediator controlling essential neuronal functions depending on electrical activity. Altered neuronal calcium homeostasis affects metabolism of amyloid precursor protein (APP), leading to increased production of β-amyloid (Aβ), and contributing to the initiation of Alzheimer's disease (AD). A linkage between excessive glutamate receptor activation and neuronal Aβ release was established, and recent reports suggest that synaptic and extrasynaptic NMDA receptor (NMDAR) activation may have distinct consequences in plasticity, gene regulation, and neuronal death. Here, we report for the first time that prolonged activation of extrasynaptic NMDAR, but not synaptic NMDAR, dramatically increased the neuronal production of Aβ. This effect was preceded by a shift from APP695 to Kunitz protease inhibitory domain (KPI) containing APPs (KPI-APPs), isoforms exhibiting an important amyloidogenic potential. Conversely, after synaptic NMDAR activation, we failed to detect any KPI-APP expression and neuronal Aβ production was not modified. Calcium imaging data showed that intracellular calcium concentration after extrasynaptic NMDAR stimulation was lower than after synaptic activation. This suggests distinct signaling pathways for each pool of receptors. We found that modification of neuronal APP expression pattern triggered by extrasynaptic NMDAR activation was regulated at an alternative splicing level involving calcium-/calmodulin-dependent protein kinase IV, but overall APP expression remained identical. Finally, memantine dose-dependently inhibited extrasynaptic NMDAR-induced KPI-APPs expression as well as neuronal Aβ release. Altogether, these data suggest that a chronic activation of extrasynaptic NMDAR promotes amyloidogenic KPI-APP expression leading to neuronal Aβ release, representing a causal risk factor for developing AD.
Yang, Po-Sheng; Wu, Hung-Tsung; Chung, Hsien-Hui; Chen, Chun-Ta; Chi, Chin-Wen; Yeh, Ching-Hua; Cheng, Juei-Tang
2012-01-01
The nuclear receptor farnesoid X receptor (FXR) regulates pathways in lipid, glucose, and energy metabolism. Activation of FXR in mice significantly improved high-fat diet-induced hepatic steatosis. It has been reported that activation of imidazoline I-1 receptor by rilmenidine increases the expression of FXR in human hepatoma cell line, Hep G2 cell, to regulate the target genes relating to lipid metabolism; activation of FXR by rilmenidine exerts an antihyperlipidemic action. However, signals for this action of rilmenidine are still unknown. In the present study, hepatic steatosis induced in mice by high-fat diet was improved by rilmenidine after intraperitoneal injection at 1 mg/kg daily for 12 weeks. Also, mediation of I-1 receptors was identified using the specific antagonist efaroxan. Moreover, rilmenidine decreased the oleic acid-induced lipid accumulation in Hep G2 cells. Otherwise, rilmenidine increased the phosphorylation of p38 to increase the expression of FXR. Deletion of calcium ions by BAPTA-AM reversed the rilmenidine-induced p38 phosphorylation. In conclusion, we suggest that rilmenidine activates I-1 receptor to increase intracellular calcium ions that may enhance the phosphorylation of p38 to higher the expression of FXR for improvement of hepatic steatosis in both animals and cells.
Disney, Anita A.; Aoki, Chiye
2010-01-01
Acetylcholine (ACh) is believed to underlie mechanisms of arousal and attention in mammals. ACh also has a demonstrated functional effect in visual cortex that is both diverse and profound. We have reported previously that cholinergic modulation in V1 of the macaque monkey is strongly targeted toward GABAergic interneurons. Here we examine the localization of m1 and m2 muscarinic receptor subtypes across subpopulations of GABAergic interneurons—identified by their expression of the calcium-binding proteins parvalbumin, calbindin, and calretinin—using dual-immunofluorescence confocal microscopy in V1 of the macaque monkey. In doing so, we find that the vast majority (87%) of parvalbumin-immunoreactive neurons express m1-type muscarinic ACh receptors. m1 receptors are also expressed by 60% of calbindin-immunoreactive neurons and 40% of calretinin-immunoreactive neurons. m2 AChRs, on the other hand, are expressed by only 31% of parvalbumin neurons, 23% of calbindin neurons, and 25% of calretinin neurons. Parvalbumin-immunoreactive cells comprise ≈75% of the inhibitory neuronal population in V1 and included in this large subpopulation are neurons known to veto and regulate the synchrony of principal cell spiking. Through the expression of m1 ACh receptors on nearly all of these PV cells, the cholinergic system avails itself of powerful control of information flow through and processing within the network of principal cells in the cortical circuit. PMID:18265004
Attardi, Barbara J.; Zeleznik, Anthony; Simhan, Hyagriv; Chiao, Jye Ping; Mattison, Donald R; Caritis, Steve N
2007-01-01
Condensation 17-hydroxyprogesterone caproate is not better than progesterone in binding to progesterone or glucocorticoid receptors or eliciting gene expression in progesterone responsive genes. Comparison of progesterone and glucocorticoid receptor binding and stimulation of gene expression by progesterone, 17-alpha hydroxyprogesterone caproate (17-OHPC), and related progestins. Objective To determine whether the reduction in premature birth attributable to 17-OHPC occurs because of a greater affinity for progesterone (PR) or glucocorticoid (GR) receptors or by enhanced stimulation of progestogen responsive genes when compared with progesterone. Study Design We performed competitive steroid hormone receptor binding assays using cytosols expressing either recombinant human PR-A (rhPR-A) or B (rhPR-B) or rabbit uterine or thymic cytosols. We used four different carcinoma cell lines to assess transactivation of reporter genes or induction of alkaline phosphatase. Results Relative binding affinity of 17-OHPC for rhPR-B, rhPR-A and rabbit PR was 26–30% that of progesterone. Binding of progesterone to rabbit thymic GR was weak. 17-OHPC was comparable to progesterone in eliciting gene expression in all cell lines studied. Conclusions Binding to PR, GR or expression of progesterone-responsive genes is no greater with 17-OHPC than with progesterone. Other mechanisms must account for the beneficial effect of 17-OHPC on preterm birth rates. PMID:18060946
The ly-6 protein, lynx1, is an endogenous inhibitor of nicotinic signaling in airway epithelium.
Fu, Xiao Wen; Rekow, Stephen S; Spindel, Eliot R
2012-10-15
Our laboratory has previously reported that bronchial epithelial cells (BEC) express a regulatory cascade of classic neurotransmitters and receptors that communicate in an almost neuronal-like manner to achieve physiological regulation. In this paper we show that the similarity between neurotransmitter signaling in neurons and BEC extends to the level of transmitter receptor allosteric modulators. Lynx1 is a member of the ly-6/three-finger superfamily of proteins, many of which modulate receptor signaling activity. Lynx1 specifically has been shown to modulate nicotinic acetylcholine receptor (nAChR) function in neurons by altering receptor sensitivity and desensitization. We now report that lynx1 forms a complex with α7 nAChR in BEC and serves to negatively regulate α7 downstream signaling events. Treatment of primary cultures of BEC with nicotine increased levels of nAChR subunits and that increase was potentiated by lynx1 knockdown. Lynx1 knockdown also potentiated the nicotine-induced increase in GABA(A) receptors (GABA(A)R) and MUC5AC mRNA expression, and that effect was blocked by α7 antagonists and α7 knockdown. In parallel with the increases in nAChR, GABA(A)R, and mucin mRNA levels, lynx1 knockdown also increased levels of p-Src. Consistent with this, inhibition of Src signaling blocked the ability of the lynx1 knockdown to increase basal and nicotine-stimulated GABA(A)R and mucin mRNA expression. Thus lynx1 appears to act as a negative modulator of α7 nAChR-induced events by inhibiting Src activation. This suggests that lynx1 agonists or mimetics are a potentially important therapeutic target to develop new therapies for smoking-related diseases characterized by increased mucin expression.
Expression of sulfonylurea receptors in rat taste buds.
Liu, Dian-Xin; Liu, Xiao-Min; Zhou, Li-Hong; Feng, Xiao-Hong; Zhang, Xiao-Juan
2011-07-01
To test the possibility that a fast-onset promoting agent repaglinide may initiate prandial insulin secretion through the mechanism of cephalic-phase insulin release, we explored the expression and distribution character of sulfonylurea receptors in rat taste buds. Twenty male Wistar rats aged 10 weeks old were killed after general anesthesia. The circumvallate papillae, fungiform papillae and pancreas tissues were separately collected. Immunohistochemical staining was used to detect the expression and distribution of sulfonylurea receptor 1 (SUR1) or sulfonylurea receptor 2 (SUR2) in rat taste buds. Reverse transcriptase polymerase chain reaction (RT-PCR) was used to analyze the expression of SUR1 or SUR2 mRNA. The pancreatic tissues from the same rat were used as positive control. This is the first study to report that SUR1 is uniquely expressed in the taste buds of fungiform papillae of each rat tongue, while the expression of SUR1 or SUR2 was not detected in the taste buds of circumvallate papillae. SUR1 is selectively expressed in rat taste buds, and its distribution pattern may be functionally relevant, suggesting that the rapid insulin secretion-promoting effect of repaglinide may be exerted through the cephalic-phase secretion pathway mediated by taste buds. Copyright © 2010 Elsevier GmbH. All rights reserved.
Inverse agonist and neutral antagonist actions of synthetic compounds at an insect 5-HT1 receptor.
Troppmann, B; Balfanz, S; Baumann, A; Blenau, W
2010-04-01
5-Hydroxytryptamine (5-HT) has been shown to control and modulate many physiological and behavioural functions in insects. In this study, we report the cloning and pharmacological properties of a 5-HT(1) receptor of an insect model for neurobiology, physiology and pharmacology. A cDNA encoding for the Periplaneta americana 5-HT(1) receptor was amplified from brain cDNA. The receptor was stably expressed in HEK 293 cells, and the functional and pharmacological properties were determined in cAMP assays. Receptor distribution was investigated by RT-PCR and by immunocytochemistry using an affinity-purified polyclonal antiserum. The P. americana 5-HT(1) receptor (Pea5-HT(1)) shares pronounced sequence and functional similarity with mammalian 5-HT(1) receptors. Activation with 5-HT reduced adenylyl cyclase activity in a dose-dependent manner. Pea5-HT(1) was expressed as a constitutively active receptor with methiothepin acting as a neutral antagonist, and WAY 100635 as an inverse agonist. Receptor mRNA was present in various tissues including brain, salivary glands and midgut. Receptor-specific antibodies showed that the native protein was expressed in a glycosylated form in membrane samples of brain and salivary glands. This study marks the first pharmacological identification of an inverse agonist and a neutral antagonist at an insect 5-HT(1) receptor. The results presented here should facilitate further analyses of 5-HT(1) receptors in mediating central and peripheral effects of 5-HT in insects.
Nuñez, S B; Medin, J A; Braissant, O; Kemp, L; Wahli, W; Ozato, K; Segars, J H
1997-03-14
Estrogen receptors regulate transcription of genes essential for sexual development and reproductive function. Since the retinoid X receptor (RXR) is able to modulate estrogen responsive genes and both 9-cis RA and fatty acids influenced development of estrogen responsive tumors, we hypothesized that estrogen responsive genes might be modulated by RXR and the fatty acid receptor (peroxisome proliferator-activated receptor, PPAR). To test this hypothesis, transfection assays in CV-1 cells were performed with an estrogen response element (ERE) coupled to a luciferase reporter construct. Addition of expression vectors for RXR and PPAR resulted in an 11-fold increase in luciferase activity in the presence of 9-cis RA. Furthermore, mobility shift assays demonstrated binding of RXR and PPAR to the vitellogenin A2-ERE and an ERE in the oxytocin promoter. Methylation interference assays demonstrated that specific guanine residues required for RXR/PPAR binding to the ERE were similar to residues required for ER binding. Moreover, RXR domain-deleted constructs in transfection assays showed that activation required RXR since an RXR delta AF-2 mutant completely abrogated reporter activity. Oligoprecipitation binding studies with biotinylated ERE and (35)S-labeled in vitro translated RXR constructs confirmed binding of delta AF-2 RXR mutant to the ERE in the presence of baculovirus-expressed PPAR. Finally, in situ hybridization confirmed RXR and PPAR mRNA expression in estrogen responsive tissues. Collectively, these data suggest that RXR and PPAR are present in reproductive tissues, are capable of activating estrogen responsive genes and suggest that the mechanism of activation may involve direct binding of the receptors to estrogen response elements.
Ghrelin receptor regulates adipose tissue inflammation in aging
USDA-ARS?s Scientific Manuscript database
Aging is commonly associated with low-grade adipose inflammation, which is closely linked to insulin resistance. Ghrelin is the only circulating orexigenic hormone which is known to increase obesity and insulin resistance. We previously reported that the expression of the ghrelin receptor, growth ho...
Targeting tachykinin receptors in neuroblastoma.
Henssen, Anton G; Odersky, Andrea; Szymansky, Annabell; Seiler, Marleen; Althoff, Kristina; Beckers, Anneleen; Speleman, Frank; Schäfers, Simon; De Preter, Katleen; Astrahanseff, Kathy; Struck, Joachim; Schramm, Alexander; Eggert, Angelika; Bergmann, Andreas; Schulte, Johannes H
2017-01-03
Neuroblastoma is the most common extracranial tumor in children. Despite aggressive multimodal treatment, high-risk neuroblastoma remains a clinical challenge with survival rates below 50%. Adding targeted drugs to first-line therapy regimens is a promising approach to improve survival in these patients. TACR1 activation by substance P has been reported to be mitogenic in cancer cell lines. Tachykinin receptor (TACR1) antagonists are approved for clinical use as an antiemetic remedy since 2003. Tachykinin receptor inhibition has recently been shown to effectively reduce growth of several tumor types. Here, we report that neuroblastoma cell lines express TACR1, and that targeting TACR1 activity significantly reduced cell viability and induced apoptosis in neuroblastoma cell lines. Gene expression profiling revealed that TACR1 inhibition repressed E2F2 and induced TP53 signaling. Treating mice harboring established neuroblastoma xenograft tumors with Aprepitant also significantly reduced tumor burden. Thus, we provide evidence that the targeted inhibition of tachykinin receptor signaling shows therapeutic efficacy in preclinical models for high-risk neuroblastoma.
Balfanz, Sabine; Strünker, Timo; Frings, Stephan; Baumann, Arnd
2005-04-01
In invertebrates, the biogenic-amine octopamine is an important physiological regulator. It controls and modulates neuronal development, circadian rhythm, locomotion, 'fight or flight' responses, as well as learning and memory. Octopamine mediates its effects by activation of different GTP-binding protein (G protein)-coupled receptor types, which induce either cAMP production or Ca(2+) release. Here we describe the functional characterization of two genes from Drosophila melanogaster that encode three octopamine receptors. The first gene (Dmoa1) codes for two polypeptides that are generated by alternative splicing. When heterologously expressed, both receptors cause oscillatory increases of the intracellular Ca(2+) concentration in response to applying nanomolar concentrations of octopamine. The second gene (Dmoa2) codes for a receptor that specifically activates adenylate cyclase and causes a rise of intracellular cAMP with an EC(50) of approximately 3 x 10(-8) m octopamine. Tyramine, the precursor of octopamine biosynthesis, activates all three receptors at > or = 100-fold higher concentrations, whereas dopamine and serotonin are non-effective. Developmental expression of Dmoa genes was assessed by RT-PCR. Overlapping but not identical expression patterns were observed for the individual transcripts. The genes characterized in this report encode unique receptors that display signature properties of native octopamine receptors.
Furness, John B; Cho, Hyun-Jung; Hunne, Billie; Hirayama, Haruko; Callaghan, Brid P; Lomax, Alan E; Brock, James A
2012-06-01
Functional studies have shown that subsets of autonomic preganglionic neurons respond to ghrelin and ghrelin mimetics and in situ hybridisation has revealed receptor gene expression in the cell bodies of some preganglionic neurons. Our present goal has been to determine which preganglionic neurons express ghrelin receptors by using mice expressing enhanced green fluorescent protein (EGFP) under the control of the promoter for the ghrelin receptor (also called growth hormone secretagogue receptor). The retrograde tracer Fast Blue was injected into target organs of reporter mice under anaesthesia to identify specific functional subsets of postganglionic sympathetic neurons. Cryo-sections were immunohistochemically stained by using anti-EGFP and antibodies to neuronal markers. EGFP was detected in nerve terminal varicosities in all sympathetic chain, prevertebral and pelvic ganglia and in the adrenal medulla. Non-varicose fibres associated with the ganglia were also immunoreactive. No postganglionic cell bodies contained EGFP. In sympathetic chain ganglia, most neurons were surrounded by EGFP-positive terminals. In the stellate ganglion, neurons with choline acetyltransferase immunoreactivity, some being sudomotor neurons, lacked surrounding ghrelin-receptor-expressing terminals, although these terminals were found around other neurons. In the superior cervical ganglion, the ghrelin receptor terminals innervated subgroups of neurons including neuropeptide Y (NPY)-immunoreactive neurons that projected to the anterior chamber of the eye. However, large NPY-negative neurons projecting to the acini of the submaxillary gland were not innervated by EGFP-positive varicosities. In the celiaco-superior mesenteric ganglion, almost all neurons were surrounded by positive terminals but the VIP-immunoreactive terminals of intestinofugal neurons were EGFP-negative. The pelvic ganglia contained groups of neurons without ghrelin receptor terminal innervation and other groups with positive terminals around them. Ghrelin receptors are therefore expressed by subgroups of preganglionic neurons, including those of vasoconstrictor pathways and of pathways controlling gut function, but are absent from some other neurons, including those innervating sweat glands and the secretomotor neurons that supply the submaxillary salivary glands.
Labani-Motlagh, Alireza; Israelsson, Pernilla; Ottander, Ulrika; Lundin, Eva; Nagaev, Ivan; Nagaeva, Olga; Dehlin, Eva; Baranov, Vladimir; Mincheva-Nilsson, Lucia
2016-04-01
Cancers constitutively produce and secrete into the blood and other biofluids 30-150 nm-sized endosomal vehicles called exosomes. Cancer-derived exosomes exhibit powerful influence on a variety of biological mechanisms to the benefit of the tumors that produce them. We studied the immunosuppressive ability of epithelial ovarian cancer (EOC) exosomes on two cytotoxic pathways of importance for anticancer immunity-the NKG2D receptor-ligand pathway and the DNAM-1-PVR/nectin-2 pathway. Using exosomes, isolated from EOC tumor explant and EOC cell-line culture supernatants, and ascitic fluid from EOC patients, we studied the expression of NKG2D and DNAM-1 ligands on EOC exosomes and their ability to downregulate the cognate receptors. Our results show that EOC exosomes differentially and constitutively express NKG2D ligands from both MICA/B and ULBP families on their surface, while DNAM-1 ligands are more seldom expressed and not associated with the exosomal membrane surface. Consequently, the NKG2D ligand-bearing EOC exosomes significantly downregulated the NKG2D receptor expression on peripheral blood mononuclear cells (PBMC) while the DNAM-1 receptor was unaffected. The downregulation of NKG2D receptor expression was coupled to inhibition of NKG2D receptor-ligand-mediated degranulation and cytotoxicity measured in vitro with OVCAR-3 and K562 cells as targets. The EOC exosomes acted as a decoy impairing the NKG2D mediated cytotoxicity while the DNAM-1 receptor-ligand system remained unchanged. Taken together, our results support and explain the mechanism behind the recently reported finding that in EOC, NK-cell recognition and killing of tumor cells was mainly dependent on DNAM-1 signaling while the contribution of the NKG2D receptor-ligand pathway was complementary and uncertain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang, Eun Hyang; Jang, Soon Young; Cho, In-Hye
Human estrogen receptor α (ERα) is a nuclear transcription factor that is a major therapeutic target in breast cancer. The transcriptional activity of ERα is regulated by certain estrogen-receptor modulators. Hispolon, isolated from Phellinus linteus, a traditional medicinal mushroom called Sanghwang in Korea, has been used to treat various pathologies, such as inflammation, gastroenteric disorders, lymphatic diseases, and cancers. In this latter context, Hispolon has been reported to exhibit therapeutic efficacy against various cancer cells, including melanoma, leukemia, hepatocarcinoma, bladder cancer, and gastric cancer cells. However, ERα regulation by Hispolon has not been reported. In this study, we investigated themore » effects of Hispolon on the growth of breast cancer cells. We found that Hispolon decreased expression of ERα at both mRNA and the protein levels in MCF7 and T47D human breast cancer cells. Luciferase reporter assays showed that Hispolon decreased the transcriptional activity of ERα. Hispolon treatment also inhibited expression of the ERα target gene pS2. We propose that Hispolon, an anticancer drug extracted from natural sources, inhibits cell growth through modulation of ERα in estrogen-positive breast cancer cells and is a candidate for use in human breast cancer chemotherapy. - Highlights: • Hispolon decreased ERα expression at both mRNA and protein levels. • Hispolon decreased ERα transcriptional activity. • Hispolon treatment inhibited expression of ERα target gene pS2. • Shikonin is a candidate chemotherapeutic target in the treatment of human breast cancer.« less
Westermeier, Francisco; Salomón, Carlos; González, Marcelo; Puebla, Carlos; Guzmán-Gutiérrez, Enrique; Cifuentes, Fredi; Leiva, Andrea; Casanello, Paola; Sobrevia, Luis
2011-01-01
OBJECTIVE To determine whether insulin reverses gestational diabetes mellitus (GDM)–reduced expression and activity of human equilibrative nucleoside transporters 1 (hENT1) in human umbilical vein endothelium cells (HUVECs). RESEARCH DESIGN AND METHODS Primary cultured HUVECs from full-term normal (n = 44) and diet-treated GDM (n = 44) pregnancies were used. Insulin effect was assayed on hENT1 expression (protein, mRNA, SLC29A1 promoter activity) and activity (initial rates of adenosine transport) as well as endothelial nitric oxide (NO) synthase activity (serine1177 phosphorylation, l-citrulline formation). Adenosine concentration in culture medium and umbilical vein blood (high-performance liquid chromatography) as well as insulin receptor A and B expression (quantitative PCR) were determined. Reactivity of umbilical vein rings to adenosine and insulin was assayed by wire myography. Experiments were in the absence or presence of l-NG-nitro-l-arginine methyl ester (l-NAME; NO synthase inhibitor) or ZM-241385 (an A2A-adenosine receptor antagonist). RESULTS Umbilical vein blood adenosine concentration was higher, and the adenosine- and insulin-induced NO/endothelium-dependent umbilical vein relaxation was lower in GDM. Cells from GDM exhibited increased insulin receptor A isoform expression in addition to the reported NO–dependent inhibition of hENT1-adenosine transport and SLC29A1 reporter repression, and increased extracellular concentration of adenosine and NO synthase activity. Insulin reversed all these parameters to values in normal pregnancies, an effect blocked by ZM-241385 and l-NAME. CONCLUSIONS GDM and normal pregnancy HUVEC phenotypes are differentially responsive to insulin, a phenomenon where insulin acts as protecting factor for endothelial dysfunction characteristic of this syndrome. Abnormal adenosine plasma levels, and potentially A2A-adenosine receptors and insulin receptor A, will play crucial roles in this phenomenon in GDM. PMID:21515851
Nakagawa-Toyama, Yumiko; Hirano, Ken-ichi; Tsujii, Ken-ichi; Nishida, Makoto; Miyagawa, Jun-ichiro; Sakai, Naohiko; Yamashita, Shizuya
2005-11-01
The reverse cholesterol transport (RCT) is one of the major protective systems against atherosclerosis, in which high-density lipoprotein (HDL) removes cholesterol from lipid-laden cells and delivers it to the liver. Scavenger receptor class B type I (SR-BI) is a HDL receptor in the liver and adrenal glands and is involved in the selective uptake of cholesteryl ester from HDL, which has been extensively, analyzed using rodent models. However, the expression and regulation of the human homologue of this receptor are not known yet. We previously reported that this receptor is expressed in in vitro differentiated macrophages and its expression is up-regulated by the addition of modified lipoproteins into the medium [Hirano K, Yamashita S, Nakagawa Y, et al. Expression of human scavenger receptor class B type I in cultured human monocyte-derived macrophages and atherosclerotic lesions. Circ Res 1999;85:108-16]. In order to further investigate the physiological significance of this receptor in humans, we have performed extensive immunohistochemical analyses with specimens of the liver and adrenal glands as well as arteries with different stages of atherosclerotic lesions. In human liver and adrenal glands, a positive SR-BI immunoreactivity was detected in both hepatic and adrenal parenchymal cells as well as Kupffer cells. These parenchymal cells had a strong signal on the cell surface, whereas Kupffer cells showed a heterogeneous and punctate pattern. In human aorta and coronary arteries, SR-BI was highly expressed in atherosclerotic plaques, but not in non-atherosclerotic lesions. Double immunostaining revealed that SR-BI was expressed in a subpopulation of macrophages, of which staining pattern was similar to that observed in Kupffer cells. These data clearly demonstrated that SR-BI was expressed with cell-specific fashions in both the initial and terminal step of RCT in humans. Thus, SR-BI might be physiologically relevant and have distinct tissue-specific functions.
Hill, Heather E; Pioszak, Augen A
2013-03-01
Adrenomedullin (AM) is a peptide hormone that is a potent vasodilator and is essential for vascular development. The AM receptor is a heterodimeric cell surface receptor composed of the calcitonin receptor-like receptor (CLR), a class B G protein-coupled receptor, in association with either of two receptor activity modifying protein (RAMP) coreceptors, RAMP2 or -3. The extracellular domains (ECDs) of CLR and the RAMPs form the primary AM binding site. Here, we present novel methodology for expression and purification of a heterodimeric AM receptor ECD complex as an MBP-CLR ECD fusion protein in association with the RAMP2 ECD. Co-expression of the RAMP2 ECD with the disulfide bond isomerase DsbC in the oxidizing cytoplasm of E. coli trxB gor enabled proper disulfide formation in vivo. The isolated RAMP2 ECD was purified to homogeneity. Co-expression of a soluble MBP-CLR ECD fusion protein with DsbC in E. coli trxB gor yielded a heterogeneous mixture of species with misfolded ECD. Incubation of affinity-purified MBP-CLR ECD in vitro with purified RAMP2 ECD, DsbC, and glutathione redox buffer promoted proper folding of the CLR ECD and formation of a stable MBP-CLR ECD:RAMP2 ECD complex that was purified by size-exclusion chromatography and which exhibited specific AM binding. Approximately 40mg of highly purified complex was obtained starting with 6L bacterial cultures for each protein. The methodology reported here will facilitate structure/function studies of the AM receptor. Copyright © 2012 Elsevier Inc. All rights reserved.
The candidate sour taste receptor, PKD2L1, is expressed by type III taste cells in the mouse.
Kataoka, Shinji; Yang, Ruibiao; Ishimaru, Yoshiro; Matsunami, Hiroaki; Sévigny, Jean; Kinnamon, John C; Finger, Thomas E
2008-03-01
The transient receptor potential channel, PKD2L1, is reported to be a candidate receptor for sour taste based on molecular biological and functional studies. Here, we investigated the expression pattern of PKD2L1-immunoreactivity (IR) in taste buds of the mouse. PKD2L1-IR is present in a few elongate cells in each taste bud as reported previously. The PKD2L1-expressing cells are different from those expressing PLCbeta2, a marker of Type II cells. Likewise PKD2L1-immunoreactive taste cells do not express ecto-ATPase which marks Type I cells. The PKD2L1-positive cells are immunoreactive for neural cell adhesion molecule, serotonin, PGP-9.5 (ubiquitin carboxy-terminal transferase), and chromogranin A, all of which are present in Type III taste cells. At the ultrastructural level, PKD2L1-immunoreactive cells form synapses onto afferent nerve fibers, another feature of Type III taste cells. These results are consistent with the idea that different taste cells in each taste bud perform distinct functions. We suggest that Type III cells are necessary for transduction and/or transmission of information about "sour", but have little or no role in transmission of taste information of other taste qualities.
The candidate sour taste receptor, PKD2L1, is expressed by type III taste cells in the mouse
Kataoka, Shinji; Yang, Ruibiao; Ishimaru, Yoshiro; Matsunami, Hiroaki; Kinnamon, John C.; Finger, Thomas E.
2008-01-01
The transient receptor potential (TRP) channel, PKD2L1, is reported to be a candidate receptor for sour taste based on molecular biological and functional studies. Here, we investigated the expression pattern of PKD2L1-immunoreactivity (IR) in taste buds of the mouse. PKD2L1-IR is present in a few elongate cells in each taste bud as reported previously. The PKD2L1-expressing cells are different from those expressing PLCβ2, a marker of Type II cells. Likewise PKD2L1-immunoreactive taste cells do not express ecto-ATPase which marks Type I cells. The PKD2L1 positive cells are immunoreactive for NCAM, serotonin, PGP-9.5 (ubiquitin carboxy terminal transferase) and chromogranin A, all of which are present in Type III taste cells. At the ultrastructural level, PKD2L1-immunoreactive cells form synapses onto afferent nerve fibers, another feature of Type III taste cells. These results are consistent with the idea that different taste cells in each taste bud perform distinct functions. We suggest that Type III cells are necessary for transduction and/or transmission of information about “sour”, but have little or no role in transmission of taste information of other taste qualities. PMID:18156604
Permeability and single channel conductance of human homomeric ρ1 GABAC receptors
Wotring, Virginia E; Chang, Yongchang; Weiss, David S
1999-01-01
Homomeric human ρ1 GABAC receptors were expressed in Xenopus oocytes and in human embryonic kidney cells (HEK293) in order to examine their conductance and permeability. Reversal potentials of currents elicited by γ-aminobutyric acid (GABA) were measured in extracellular solutions of various ionic composition to determine relative permeability of homomeric ρ1 receptors. The rank order of anionic permeability was: SCN− > I− > NO3− > Br− > Cl− > formate (For−) > HCO3− > acetate (Ac−) ≈ proprionate (Prop−) ≈ isethionate (Ise−) ≈ F−≈ PO4−. In the oocyte expression system, relative permeabilities to SCN−, I−, NO3−, Br− and HCO3− were higher for ρ1 GABAC receptors than α1β2γ2L GABAA receptors. Expression of ρ1 GABAC receptors in Xenopus oocytes and in HEK293 cells gave similar relative permeabilities for selected anions, suggesting that the expression system does not significantly alter permeation properties. The pore diameter of the homomeric ρ1 GABAC receptor expressed in oocytes was estimated to be 0.61 nm, which is somewhat larger than the 0.56 nm pore diameter estimated for α1β2γ2L GABAA receptors. Homomeric ρ1 GABA receptors expressed in oocytes had a single channel chord conductance of 0.65 ± 0.04 pS (mean ±s.e.m.s) when the internal chloride concentration ([Cl−]i) was 20 mm. With a [Cl−]i of 100 mm, the single channel chord conductance was 1.59 ± 0.24 pS. The mean open time directly measured from 43 GABA-induced channel openings in six patches was 3.2 ± 0.8 s. The mean open time in the presence of 100 μm picrotoxin was 0.07 ± 0.01 s (77 openings from 3 patches). The differences observed in ionic permeabilities, pore size, single channel conductance and mean open time suggest that the ρ1 homomeric receptor may not be the native retinal GABAC receptor reported previously. PMID:10581305
Analysis of PD-1 expression in the monocyte subsets from non-septic and septic preterm neonates
Lenart, Marzena; Rutkowska-Zapała, Magdalena; Stec, Małgorzata; Durlak, Wojciech; Grudzień, Andrzej; Krzeczkowska, Agnieszka; Mól, Nina; Pilch, Marta; Siedlar, Maciej; Kwinta, Przemko
2017-01-01
Programmed death-1 (PD-1) receptor system represents a part of recently reported immunoregulatory pathway. PD-1 is an immune checkpoint molecule, which plays an important role in downregulating the immune system proinflammatory activity. Until recently, PD-1 expression was not established on immune cells of the preterm infants. The study objectives were to confirm expression of the PD-1 receptors on the monocytes isolated from very low birth weight newborns (VLBW), and to analyze their expression during the first week of life and late-onset sepsis. Peripheral blood mononuclear cells were isolated from 76 VLBW patients without early-onset sepsis on their 5th day of life (DOL). PD-1 expression was determined on the monocyte subsets (classical, intermediate, non-classical) by flow cytometry. In case of late-onset sepsis (LOS), the same analysis was performed. Our results demonstrated that on the 5th DOL, PD-1 receptors were present in all the monocyte subsets. Children, whose mothers had received antenatal steroids, presented higher absolute numbers of non-classical monocytes with PD-1 expression. Infants born extremely preterm who later developed LOS, initially showed a lower percentage of PD-1 receptor-positive intermediate monocytes in comparison to neonates born very preterm. During LOS, we observed a rise in the percentage of classical monocytes with PD-1 expression. In case of septic shock or fatal outcome, there was a higher percentage and absolute count of intermediate monocytes with PD-1 expression in comparison to children without these complications. In conclusion, monocytes from VLBW children express PD-1 receptors. Antenatal steroid administration seems to induce PD-1 receptor expression in the non-classical monocytes. PD-1 might play a role in immunosuppressive phase of sepsis in the prematurely born children with septic shock and fatal outcome. PMID:29049359
Dwivedi, Shailendra Kumar Dhar; Singh, Nidhi; Kumari, Rashmi; Mishra, Jay Sharan; Tripathi, Sarita; Banerjee, Priyam; Shah, Priyanka; Kukshal, Vandana; Tyagi, Abdul Malik; Gaikwad, Anil Nilkanth; Chaturvedi, Rajnish Kumar; Mishra, Durga Prasad; Trivedi, Arun Kumar; Sanyal, Somali; Chattopadhyay, Naibedya; Ramachandran, Ravishankar; Siddiqi, Mohammad Imran; Bandyopadhyay, Arun; Arora, Ashish; Lundåsen, Thomas; Anakk, Sayee Priyadarshini; Moore, David D.
2011-01-01
Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) is induced in energy-starved conditions and is a key regulator of energy homeostasis. This makes PGC-1α an attractive therapeutic target for metabolic syndrome and diabetes. In our effort to identify new regulators of PGC-1α expression, we found that GW4064, a widely used synthetic agonist for the nuclear bile acid receptor [farnesoid X receptor (FXR)] strongly enhances PGC-1α promoter reporter activity, mRNA, and protein expression. This induction in PGC-1α concomitantly enhances mitochondrial mass and expression of several PGC-1α target genes involved in mitochondrial function. Using FXR-rich or FXR-nonexpressing cell lines and tissues, we found that this effect of GW4064 is not mediated directly by FXR but occurs via activation of estrogen receptor-related receptor α (ERRα). Cell-based, biochemical and biophysical assays indicate GW4064 as an agonist of ERR proteins. Interestingly, FXR disruption alters GW4064 induction of PGC-1α mRNA in a tissue-dependent manner. Using FXR-null [FXR knockout (FXRKO)] mice, we determined that GW4064 induction of PGC-1α expression is not affected in oxidative soleus muscles of FXRKO mice but is compromised in the FXRKO liver. Mechanistic studies to explain these differences revealed that FXR physically interacts with ERR and protects them from repression by the atypical corepressor, small heterodimer partner in liver. Together, this interplay between ERRα-FXR-PGC-1α and small heterodimer partner offers new insights into the biological functions of ERRα and FXR, thus providing a knowledge base for therapeutics in energy balance-related pathophysiology. PMID:21493670
2009-01-01
Quantization of gene expression requires that an accurate measurement of a specific transcript is made. In this paper, a quantitative reverse transcription-polymerase chain reaction (RT-PCR) by competition for tilapia growth hormone receptor type I is designed and validated. This experimental procedure was used to determine the abundance of growth hormone receptor type I transcript in different tilapia tissues. The results obtained with this developed competitive RT-PCR were similar to real-time PCR results reported recently. This protocol provides a reliable alternative, but less expensive than real-time PCR to quantify specific genes. PMID:19495916
Sane, Rucha S; Buckley, Donna J; Buckley, Arthur R; Nallani, Srikanth C; Desai, Pankaj B
2008-05-01
Previously we observed that the antiestrogens tamoxifen and 4-hydroxytamoxifen (4OHT) induce CYP3A4 in primary human hepatocytes and activate human pregnane X receptor (PXR) in cell-based reporter assays. Given the complex cross-talk between nuclear receptors, tissue-specific expression of CYP3A4, and the potential for tamoxifen and 4OHT to interact with a myriad of receptors, this study was undertaken to gain mechanistic insights into the inductive effects of tamoxifen and 4OHT. First, we observed that transfection of the primary cultures of human hepatocytes with PXR-specific small interfering RNA reduced the PXR mRNA expression and the extent of CYP3A4 induction by tamoxifen and 4OHT by 50%. Second, in LS174T colon carcinoma cells, which were observed to have significantly lower PXR expression relative to human hepatocytes, neither tamoxifen nor 4OHT induced CYP3A4. Third, N-desmethyltamoxifen, which did not induce CYP3A4 in human hepatocytes, also did not activate PXR in LS174T cells. We then used cell-based reporter assay to evaluate the effects of other receptors such as glucocorticoid receptor GR alpha and estrogen receptor ER alpha on the transcriptional activation of PXR. The cotransfection of GR alpha in LS174T cells augmented PXR activation by tamoxifen and 4OHT. On the other hand, the presence of ER alpha inhibited PXR-mediated basal activation of CYP3A4 promoter, possibly via competing for common cofactors such as steroid receptor coactivator 1 and glucocorticoid receptor interacting protein 1. Collectively, our findings suggest that the CYP3A4 induction by tamoxifen and 4OHT is primarily mediated by PXR but the overall stoichiometry of other nuclear receptors and transcription cofactors also contributes to the extent of the inductive effect.
NASA Technical Reports Server (NTRS)
Young, Ronald B.; Bridge, K. Y.; Vaughn, J. R.
2000-01-01
beta-Adrenergic receptor (bAR) agonists have been reported to modulate growth in several mammalian and avian species, and bAR agonists presumably exert their physiological action on skeletal muscle cells through this receptor. Because of the importance of bAR regulation on muscle protein metabolism in muscle cells, the objectives of this study were to determine the developmental expression pattern of the bAR population in C2C12 skeletal muscle cells, and to analyze changes in both the quantity and isoform expression of the major muscle protein, myosin. The number of bAR in mononucleated C2C12 cells was approximately 8,000 bAR per cell, which is comparable with the population reported in several other nonmuscle cell types. However, the bar population increased after myoblast fusion to greater than 50,000 bAR per muscle cell equivalent. The reasons for this apparent over-expression of bAR in C2C12 cells is not known. The quantity of myosin also increased after C2C12 myoblast fusion, but the quantity of myosin was less than that reported in primary muscle cell cultures. Finally, at least five different isoforms of myosin heavy chain could be resolved in C2C12 cells, and three of these exhibited either increased or decreased developmental regulation relative to the others. Thus, C2C12 myoblasts undergo developmental regulation of bAR population and myosin heavy chain isoform expression.
A Presynaptic Gain Control Mechanism Fine-Tunes Olfactory Behavior
Root, Cory M.; Masuyama, Kaoru; Green, David S.; Enell, Lina E.; Nässel, Dick R.; Lee, Chi-Hon; Wang, Jing W.
2008-01-01
Early sensory processing can play a critical role in sensing environmental cues. We have investigated the physiological and behavioral function of gain control at the first synapse of olfactory processing in Drosophila. We report that olfactory receptor neurons (ORNs) express the GABAB receptor (GABABR) and its expression expands the dynamic range of ORN synaptic transmission that is preserved in projection neuron responses. Strikingly, we find that different ORN channels have unique baseline levels of GABABR expression. ORNs that sense the aversive odorant CO2 do not express GABABRs nor exhibit any presynaptic inhibition. In contrast, pheromone-sensing ORNs express a high level of GABABRs and exhibit strong presynaptic inhibition. Furthermore, a behavioral significance of presynaptic inhibition was revealed by a courtship behavior in which pheromone-dependent mate localization is impaired in flies that lack GABABRs in specific ORNs. Together, these findings indicate that different olfactory receptor channels may employ heterogeneous presynaptic gain control as a mechanism to allow an animal’s innate behavioral responses to match its ecological needs. PMID:18667158
Nichols, Charles D; Garcia, Efrain E; Sanders-Bush, Elaine
2003-03-17
Lysergic acid diethylamide (LSD) is a psychoactive drug that transiently alters human perception, behavior, and mood at extremely low doses. Certain aspects of the behavior elicited by acute doses of LSD closely resemble symptoms of mental disorders such as schizophrenia. Characterizing gene expression profiles after LSD will be important for understanding how it alters behavior, and will lead to novel insights into disorders, such as schizophrenia, whose behavioral symptoms resemble the temporary effects of hallucinogenic drugs. We previously identified a small collection of genes within the rat prefrontal cortex that respond to LSD. Many of the products of these genes are involved in the process of synaptic plasticity. In the current report, we present a detailed analysis of the expression of these genes within the brain using RNase protection analysis. We find that the gene response to LSD is quite dynamic. The expression of some genes increases rapidly and decreases rapidly, while other genes change more gradually. Dose-response studies show two classes of expression; gene expression maximally stimulated at lower doses, versus gene expression that continues to rise at the higher doses. The role of the 5-HT(1A) and 5-HT(2A) receptor in mediating the increases in gene expression was examined in a series of experiments using receptor specific antagonists. Most expression increases were due to activation of the 5-HT(2A) receptor, however expression of two genes had neither a 5-HT(1A) nor a 5-HT(2A) receptor component.
Tobacco smoke induces epithelial barrier dysfunction via receptor EphA2 signaling.
Nasreen, Najmunnisa; Khodayari, Nazli; Sriram, Peruvemba S; Patel, Jawaharlal; Mohammed, Kamal A
2014-06-15
Erythropoietin-producing human hepatocellular carcinoma (Eph) receptors are the largest family of receptor tyrosine kinases (RTKs) that mediate various cellular and developmental processes. The degrees of expression of these key molecules control the cell-cell interactions. Although the role of Eph receptors and their ligand Ephrins is well studied in developmental processes, their function in tobacco smoke (TS)-induced epithelial barrier dysfunction is unknown. We hypothesized that TS may induce permeability in bronchial airway epithelial cell (BAEpC) monolayer by modulating receptor EphA2 expression, actin cytoskeleton, adherens junction, and focal adhesion proteins. Here we report that in BAEpCs, acute TS exposure significantly upregulated EphA2 and EphrinA1 expression, disrupted the actin filaments, decreased E-cadherin expression, and increased protein permeability, whereas the focal adhesion protein paxillin was unaffected. Silencing the receptor EphA2 expression with silencing interference RNA (siRNA) significantly attenuated TS-induced hyperpermeability in BAEpCs. In addition, when BAEpC monolayer was transfected with EphA2-expressing plasmid and treated with recombinant EphrinA1, the transepithelial electrical resistance decreased significantly. Furthermore, TS downregulated E-cadherin expression and induced hyperpermeability across BAEpC monolayer in a Erk1/Erk2, p38, and JNK MAPK-dependent manner. TS induced hyperpermeability in BAEpC monolayer by targeting cell-cell adhesions, and interestingly cell-matrix adhesions were unaffected. The present data suggest that TS causes significant damage to the BAEpCs via induction of EphA2 and downregulation of E-cadherin. Induction of EphA2 in the BAEpCs exposed to TS may be an important signaling event in the pathogenesis of TS-induced epithelial injury.
Qin, Li; Pei, Cheng; Kang, Qian-Yan; Liu, Zhao; Li, Li
2016-01-01
To explore the effects of the androgen dihydrotestosterone on the expression of mucin 1 (MUC1) and the activity of Wnt signaling in mouse corneal epithelial cells. Primary mouse corneal epithelial cells were isolated from the corneas of BALB/c mice. Quantitative real-time polymerase chain reaction, immunofluorescence and Western blot analysis were used to quantify the differential expression of selected genes. The androgen receptor was silenced by transfecting cells with androgen receptor shRNAs. TOP-Flash and FOP-flash reporter plasmids were used to measure β-catenin-driven transcription. Dihydrotestosterone treatment increased MUC1 expression and activated the Wnt signaling pathway and led to the translocation of β-catenin and upregulation of the Wnt downstream target gene TATA box binding protein and urokinase plasminogen activator. These effects were prevented by downregulating the androgen receptor. Androgens may protect against dry eye by regulating the expression of MUC1 which is stimulated by the activation of Wnt signaling via the androgen receptor. An understanding of the mechanisms associated with androgen-mediated protection against dry eye is an important step in developing new therapies for this disease.
Gorelick, Daniel A; Iwanowicz, Luke R; Hung, Alice L; Blazer, Vicki S; Halpern, Marnie E
2014-04-01
Environmental endocrine disruptors (EEDs) are exogenous chemicals that mimic endogenous hormones such as estrogens. Previous studies using a zebrafish transgenic reporter demonstrated that the EEDs bisphenol A and genistein preferentially activate estrogen receptors (ERs) in the larval heart compared with the liver. However, it was not known whether the transgenic zebrafish reporter was sensitive enough to detect estrogens from environmental samples, whether environmental estrogens would exhibit tissue-specific effects similar to those of BPA and genistein, or why some compounds preferentially target receptors in the heart. We tested surface water samples using a transgenic zebrafish reporter with tandem estrogen response elements driving green fluorescent protein expression (5xERE:GFP). Reporter activation was colocalized with tissue-specific expression of ER genes by RNA in situ hybridization. We observed selective patterns of ER activation in transgenic fish exposed to river water samples from the Mid-Atlantic United States, with several samples preferentially activating receptors in embryonic and larval heart valves. We discovered that tissue specificity in ER activation was due to differences in the expression of ER subtypes. ERα was expressed in developing heart valves but not in the liver, whereas ERβ2 had the opposite profile. Accordingly, subtype-specific ER agonists activated the reporter in either the heart valves or the liver. The use of 5xERE:GFP transgenic zebrafish revealed an unexpected tissue-specific difference in the response to environmentally relevant estrogenic compounds. Exposure to estrogenic EEDs in utero was associated with adverse health effects, with the potentially unanticipated consequence of targeting developing heart valves.
Hawley, Catherine A; Rojo, Rocio; Raper, Anna; Sauter, Kristin A; Lisowski, Zofia M; Grabert, Kathleen; Bain, Calum C; Davis, Gemma M; Louwe, Pieter A; Ostrowski, Michael C; Hume, David A; Pridans, Clare; Jenkins, Stephen J
2018-03-15
CSF1 is the primary growth factor controlling macrophage numbers, but whether expression of the CSF1 receptor differs between discrete populations of mononuclear phagocytes remains unclear. We have generated a Csf1r -mApple transgenic fluorescent reporter mouse that, in combination with lineage tracing, Alexa Fluor 647-labeled CSF1-Fc and CSF1, and a modified Δ Csf1- enhanced cyan fluorescent protein (ECFP) transgene that lacks a 150 bp segment of the distal promoter, we have used to dissect the differentiation and CSF1 responsiveness of mononuclear phagocyte populations in situ. Consistent with previous Csf1r- driven reporter lines, Csf1r -mApple was expressed in blood monocytes and at higher levels in tissue macrophages, and was readily detectable in whole mounts or with multiphoton microscopy. In the liver and peritoneal cavity, uptake of labeled CSF1 largely reflected transgene expression, with greater receptor activity in mature macrophages than monocytes and tissue-specific expression in conventional dendritic cells. However, CSF1 uptake also differed between subsets of monocytes and discrete populations of tissue macrophages, which in macrophages correlated with their level of dependence on CSF1 receptor signaling for survival rather than degree of transgene expression. A double Δ Csf1r -ECFP- Csf1r -mApple transgenic mouse distinguished subpopulations of microglia in the brain, and permitted imaging of interstitial macrophages distinct from alveolar macrophages, and pulmonary monocytes and conventional dendritic cells. The Csf1r- mApple mice and fluorescently labeled CSF1 will be valuable resources for the study of macrophage and CSF1 biology, which are compatible with existing EGFP-based reporter lines. Copyright © 2018 The Authors.
Altered serotonin physiology in human breast cancers favors paradoxical growth and cell survival
2009-01-01
Introduction The breast microenvironment can either retard or accelerate the events associated with progression of latent cancers. However, the actions of local physiological mediators in the context of breast cancers are poorly understood. Serotonin (5-HT) is a critical local regulator of epithelial homeostasis in the breast and other organs. Herein, we report complex alterations in the intrinsic mammary gland serotonin system of human breast cancers. Methods Serotonin biosynthetic capacity was analyzed in human breast tumor tissue microarrays using immunohistochemistry for tryptophan hydroxylase 1 (TPH1). Serotonin receptors (5-HT1-7) were analyzed in human breast tumors using the Oncomine database. Serotonin receptor expression, signal transduction, and 5-HT effects on breast cancer cell phenotype were compared in non-transformed and transformed human breast cells. Results In the context of the normal mammary gland, 5-HT acts as a physiological regulator of lactation and involution, in part by favoring growth arrest and cell death. This tightly regulated 5-HT system is subverted in multiple ways in human breast cancers. Specifically, TPH1 expression undergoes a non-linear change during progression, with increased expression during malignant progression. Correspondingly, the tightly regulated pattern of 5-HT receptors becomes dysregulated in human breast cancer cells, resulting in both ectopic expression of some isoforms and suppression of others. The receptor expression change is accompanied by altered downstream signaling of 5-HT receptors in human breast cancer cells, resulting in resistance to 5-HT-induced apoptosis, and stimulated proliferation. Conclusions Our data constitutes the first report of direct involvement of 5-HT in human breast cancer. Increased 5-HT biosynthetic capacity accompanied by multiple changes in 5-HT receptor expression and signaling favor malignant progression of human breast cancer cells (for example, stimulated proliferation, inappropriate cell survival). This occurs through uncoupling of serotonin from the homeostatic regulatory mechanisms of the normal mammary epithelium. The findings open a new avenue for identification of diagnostic and prognostic markers, and valuable new therapeutic targets for managing breast cancer. PMID:19903352
Thiruchelvam-Kyle, Lavanya; Hoelsbrekken, Sigurd E; Saether, Per C; Bjørnsen, Elisabeth Gyllensten; Pende, Daniela; Fossum, Sigbjørn; Daws, Michael R; Dissen, Erik
2017-04-01
The functions of activating members of the killer cell Ig-like receptor (KIR) family are not fully understood, as the ligands for these receptors are largely unidentified. In this study, we report that KIR2DS2 reporter cells recognize a ligand expressed by cancer cell lines. All cancer targets recognized by KIR2DS2 were also recognized by KIR2DL2 and KIR2DL3 reporters. Trogocytosis of membrane proteins from the cancer targets was observed with responding reporter cells, indicating the formation of KIR2DS2 ligand-specific immunological synapses. HLA-C typing of target cells showed that KIR2DS2 recognition was independent of the HLA C1 or C2 group, whereas targets cells that were only recognized by KIR2DL3 expressed C1 group alleles. Anti-HLA class I Abs blocked KIR2DL3 responses toward C1-expressing targets, but they did not block KIR2DS2 recognition of cancer cells. Small interfering RNA knockdown of β 2 -microglobulin reduced the expression of class I H chain on the cancer targets by >97%, but it did not reduce the KIR2DS2 reporter responses, indicating a β 2 -microglobulin-independent ligand for KIR2DS2. Importantly, KIR2DL3 responses toward some KIR2DS2 ligand-expressing cells were also undiminished after β 2 -microglobulin knockdown, and they were not blocked by anti-HLA class I Abs, suggesting that KIR2DL3, in addition to the traditional HLA-C ligands, can bind to the same β 2 -microglobulin-independent ligand as KIR2DS2. These observations indicate the existence of a novel, presently uncharacterized ligand for the activating NK cell receptor KIR2DS2. Molecular identification of this ligand may lead to improved KIR-HLA mismatching in hematopoietic stem cell transplantation therapy for leukemia and new, more specific NK cell-based cancer therapies. Copyright © 2017 by The American Association of Immunologists, Inc.
GABAB receptor attenuation of GABAA currents in neurons of the mammalian central nervous system.
Shen, Wen; Nan, Changlong; Nelson, Peter T; Ripps, Harris; Slaughter, Malcolm M
2017-03-01
Ionotropic receptors are tightly regulated by second messenger systems and are often present along with their metabotropic counterparts on a neuron's plasma membrane. This leads to the hypothesis that the two receptor subtypes can interact, and indeed this has been observed in excitatory glutamate and inhibitory GABA receptors. In both systems the metabotropic pathway augments the ionotropic receptor response. However, we have found that the metabotropic GABA B receptor can suppress the ionotropic GABA A receptor current, in both the in vitro mouse retina and in human amygdala membrane fractions. Expression of amygdala membrane microdomains in Xenopus oocytes by microtransplantation produced functional ionotropic and metabotropic GABA receptors. Most GABA A receptors had properties of α -subunit containing receptors, with ~5% having ρ -subunit properties. Only GABA A receptors with α -subunit-like properties were regulated by GABA B receptors. In mouse retinal ganglion cells, where only α -subunit-containing GABA A receptors are expressed, GABA B receptors suppressed GABA A receptor currents. This suppression was blocked by GABA B receptor antagonists, G-protein inhibitors, and GABA B receptor antibodies. Based on the kinetic differences between metabotropic and ionotropic receptors, their interaction would suppress repeated, rapid GABAergic inhibition. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Cruz, Silvia L; Balster, Robert L; Woodward, John J
2000-01-01
We have previously shown that toluene dose-dependently inhibits recombinant N-methyl-D-aspartate (NMDA) receptors at micromolar concentrations. This inhibition was rapid, almost complete and reversible. The NR1/2B combination was the most sensitive receptor subtype tested with an IC50 value for toluene of 0.17 mM. We now report on the effects of other commonly abused solvents (benzene, m-xylene, ethylbenzene, propylbenzene, 1,1,1-trichlorethane (TCE) and those of a convulsive solvent, 2,2,2-trifluoroethyl ether (flurothyl), on NMDA-induced currents measured in Xenopus oocytes expressing NR1/2A or NR1/2B receptor subtypes. All of the alkylbenzenes and TCE produced a reversible inhibition of NMDA-induced currents that was dose- and subunit-dependent. The NR1/2B receptor subtype was several times more sensitive to these compounds than the NR1/2A subtype. The convulsant solvent flurothyl had no effect on NMDA responses in oocytes but potently inhibited ion flux through recombinant GABA receptors expressed in oocytes. Overall, these results suggest that abused solvents display pharmacological selectivity and that NR1/2B NMDA receptors may be an important target for the actions of these compounds on the brain. PMID:11090101
Inverse agonist and neutral antagonist actions of synthetic compounds at an insect 5-HT1 receptor
Troppmann, B; Balfanz, S; Baumann, A; Blenau, W
2010-01-01
Background and purpose: 5-Hydroxytryptamine (5-HT) has been shown to control and modulate many physiological and behavioural functions in insects. In this study, we report the cloning and pharmacological properties of a 5-HT1 receptor of an insect model for neurobiology, physiology and pharmacology. Experimental approach: A cDNA encoding for the Periplaneta americana 5-HT1 receptor was amplified from brain cDNA. The receptor was stably expressed in HEK 293 cells, and the functional and pharmacological properties were determined in cAMP assays. Receptor distribution was investigated by RT-PCR and by immunocytochemistry using an affinity-purified polyclonal antiserum. Key results: The P. americana 5-HT1 receptor (Pea5-HT1) shares pronounced sequence and functional similarity with mammalian 5-HT1 receptors. Activation with 5-HT reduced adenylyl cyclase activity in a dose-dependent manner. Pea5-HT1 was expressed as a constitutively active receptor with methiothepin acting as a neutral antagonist, and WAY 100635 as an inverse agonist. Receptor mRNA was present in various tissues including brain, salivary glands and midgut. Receptor-specific antibodies showed that the native protein was expressed in a glycosylated form in membrane samples of brain and salivary glands. Conclusions and implications: This study marks the first pharmacological identification of an inverse agonist and a neutral antagonist at an insect 5-HT1 receptor. The results presented here should facilitate further analyses of 5-HT1 receptors in mediating central and peripheral effects of 5-HT in insects. PMID:20233210
Regulation of G-protein coupled receptor traffic by an evolutionary conserved hydrophobic signal.
Angelotti, Tim; Daunt, David; Shcherbakova, Olga G; Kobilka, Brian; Hurt, Carl M
2010-04-01
Plasma membrane (PM) expression of G-protein coupled receptors (GPCRs) is required for activation by extracellular ligands; however, mechanisms that regulate PM expression of GPCRs are poorly understood. For some GPCRs, such as alpha2c-adrenergic receptors (alpha(2c)-ARs), heterologous expression in non-native cells results in limited PM expression and extensive endoplasmic reticulum (ER) retention. Recently, ER export/retentions signals have been proposed to regulate cellular trafficking of several GPCRs. By utilizing a chimeric alpha(2a)/alpha(2c)-AR strategy, we identified an evolutionary conserved hydrophobic sequence (ALAAALAAAAA) in the extracellular amino terminal region that is responsible in part for alpha(2c)-AR subtype-specific trafficking. To our knowledge, this is the first luminal ER retention signal reported for a GPCR. Removal or disruption of the ER retention signal dramatically increased PM expression and decreased ER retention. Conversely, transplantation of this hydrophobic sequence into alpha(2a)-ARs reduced their PM expression and increased ER retention. This evolutionary conserved hydrophobic trafficking signal within alpha(2c)-ARs serves as a regulator of GPCR trafficking.
Courtot, Elise; Charvet, Claude L.; Beech, Robin N.; Harmache, Abdallah; Wolstenholme, Adrian J.; Holden-Dye, Lindy; O’Connor, Vincent; Peineau, Nicolas; Woods, Debra J.; Neveu, Cedric
2015-01-01
Acetylcholine receptors are pentameric ligand–gated channels involved in excitatory neuro-transmission in both vertebrates and invertebrates. In nematodes, they represent major targets for cholinergic agonist or antagonist anthelmintic drugs. Despite the large diversity of acetylcholine-receptor subunit genes present in nematodes, only a few receptor subtypes have been characterized so far. Interestingly, parasitic nematodes affecting human or animal health possess two closely related members of this gene family, acr-26 and acr-27 that are essentially absent in free-living or plant parasitic species. Using the pathogenic parasitic nematode of ruminants, Haemonchus contortus, as a model, we found that Hco-ACR-26 and Hco-ACR-27 are co-expressed in body muscle cells. We demonstrated that co-expression of Hco-ACR-26 and Hco-ACR-27 in Xenopus laevis oocytes led to the functional expression of an acetylcholine-receptor highly sensitive to the anthelmintics morantel and pyrantel. Importantly we also reported that ACR-26 and ACR-27, from the distantly related parasitic nematode of horses, Parascaris equorum, also formed a functional acetylcholine-receptor highly sensitive to these two drugs. In Caenorhabditis elegans, a free-living model nematode, we demonstrated that heterologous expression of the H. contortus and P. equorum receptors drastically increased its sensitivity to morantel and pyrantel, mirroring the pharmacological properties observed in Xenopus oocytes. Our results are the first to describe significant molecular determinants of a novel class of nematode body wall muscle AChR. PMID:26625142
Nakayama, Toshiyuki; Hatachi, Go; Wen, Chun-Yang; Yoshizaki, Ayumi; Yamazumi, Kazuyuki; Niino, Daisuke; Sekine, Ichiro
2005-01-01
AIM: There is strong evidence that tyrosine kinases are involved in the regulation of tumor progression, cellular growth and differentiation. Recently, many kinds of tyrosine kinase receptors have been reported, among them Tie-1 and Tie-2 receptors constitute a major class. Angiopoietin (Ang)-1 is known as a ligand of Tie-2 tyrosine kinase receptor. The objective of this study was to establish a comprehensive Tie-1 and Tie-2 and Ang-1, 2 and 4 expression profile in human colorectal adenocarcinomas. METHODS: We examined 96 cases of surgically resected human colorectal adenocarcinoma by immunohistochemistry and investigated the statistical correlation between the expressions of Ties and Angs and clinicopathological factors. RESULTS: Among the 96 cases of adenocarcinoma, 87 (90.6%), 92 (95.8%), 83 (86.5%), 89 (92.7%), and 76 cases (79.2%) showed positive staining in the cytoplasm of carcinoma cells for the Tie-1 and Tie-2 and Ang-1, 2 and 4 proteins, respectively. Histologically, the expressions of Ties and Angs were variable. The expressions of Ties and Angs were correlated with several clinicopathological factors, but did not correlate with the presence of lymph node metastasis. Ties and Angs were highly expressed in human colorectal adenocarcinoma cells. CONCLUSION: These findings suggest that the Tie-Ang receptor-ligand complex is one of the factors involved in the cellular differentiation and progression of human colorectal adenocarcinoma. PMID:15742397
Yu, Yue; Yang, Ou; Fazli, Ladan; Rennie, Paul S; Gleave, Martin E; Dong, Xuesen
2015-07-01
The progesterone receptor, like the androgen receptor, belongs to the steroid receptor superfamily. Our previous studies have reported that the PR is expressed specifically in prostate stroma. PR inhibits proliferation of, and regulates cytokine secretion by stromal cells. However, PR protein expression in cancer-associated stroma during prostate cancer progression has not been profiled. Since the phenotypes of prostate stromal cells change dynamically as tumors progress, whether the PR plays a role in regulating stromal cell differentiation needs to be investigated. Immunohistochemistry assays measured PR protein levels on human prostate tissue microarrays containing 367 tissue cores from benign prostate, prostate tumors with different Gleason scores, tumors under various durations of castration therapy, and tumors at the castration-resistant stage. Immunoblotting assays determined whether PR regulated the expression of alpha smooth muscle actin (α-SMA), vimentin, and fibroblast specific protein (FSP) in human prostate stromal cells. PR protein levels decreased in cancer-associated stroma when compared with that in benign prostate stroma. This reduction in PR expression was not correlated with Gleason scores. PR protein levels were elevated by castration therapy, but reduced to pre-castration levels when tumors progressed to the castration-resistant stage. Enhanced PR expression in human prostate stromal cells increased α-SMA, but decreased vimentin and FSP protein levels ligand-independently. These results suggest that PR plays an active role in regulating stromal cell phenotypes during prostate cancer progression. © 2015 Wiley Periodicals, Inc.
ATAR, a novel tumor necrosis factor receptor family member, signals through TRAF2 and TRAF5.
Hsu, H; Solovyev, I; Colombero, A; Elliott, R; Kelley, M; Boyle, W J
1997-05-23
Members of tumor necrosis factor receptor (TNFR) family signal largely through interactions with death domain proteins and TRAF proteins. Here we report the identification of a novel TNFR family member ATAR. Human and mouse ATAR contain 283 and 276 amino acids, respectively, making them the shortest known members of the TNFR superfamily. The receptor is expressed mainly in spleen, thymus, bone marrow, lung, and small intestine. The intracellular domains of human and mouse ATAR share only 25% identity, yet both interact with TRAF5 and TRAF2. This TRAF interaction domain resides at the C-terminal 20 amino acids. Like most other TRAF-interacting receptors, overexpression of ATAR activates the transcription factor NF-kappaB. Co-expression of ATAR with TRAF5, but not TRAF2, results in synergistic activation of NF-kappaB, suggesting potentially different roles for TRAF2 and TRAF5 in post-receptor signaling.
Fang, Xi; Fang, Li; Liu, Ao; Wang, Xiaohong; Zhao, Beilei; Wang, Nanping
2015-08-01
Increased level of very low-density lipoprotein (VLDL) is a key feature of the metabolic syndrome and is associated with cardiovascular diseases. PPAR-δ agonists play a protective role in lipid metabolism and vascular function. In this study, we aimed to investigate the role of PPAR-δ in the uptake of VLDL in endothelial cells and its underlying mechanism(s). Uptake of VLDL in HUVECs was assessed by Dil-fluorescent labelling of VLDL. Levels of VLDL receptor mRNA and microRNA (miR-100) were detected by quantitative PCR. The target genes of miR-100 were predicted using bioinformatics analysis. 3'-Untranslated region (3'-UTR) luciferase reporter and Argonaute 1 pull-down assays were used to validate the target of miR-100. PPAR-δ agonist GW501516 decreased uptake of VLDL and expression of VLDL receptor at mRNA and protein levels. GW501516 inhibited the luciferase reporter activity of the 3'-UTR of VLDL receptor. VLDL receptor was a direct target of miR-100. miR-100 was significantly increased by GW501516 in HUVECs. Transfection of a miR-100 mimic decreased the mRNA and protein levels of VLDL receptor and uptake of VLDL. Furthermore, a miR-100 inhibitor abolished the inhibitory effect of PPAR-δ on VLDL receptor expression and VLDL uptake. In endothelial cells, activation of PPAR-δ decreased VLDL receptor expression and VLDL uptake via the induction of miR-100. These results provided a novel mechanism for the vascular protective effect of PPAR-δ agonists. © 2015 The British Pharmacological Society.
Phelan, Kevin D.; Mock, Matthew M.; Kretz, Oliver; Shwe, U. Thaung; Kozhemyakin, Maxim; Greenfield, L. John; Dietrich, Alexander; Birnbaumer, Lutz; Freichel, Marc; Flockerzi, Veit
2012-01-01
Canonical transient receptor potential channels (TRPCs) are receptor-operated cation channels that are activated in response to phospholipase C signaling. Although TRPC1 is ubiquitously expressed in the brain, TRPC4 expression is the most restrictive, with the highest expression level limited to the lateral septum. The subunit composition of neuronal TRPC channels remains uncertain because of conflicting data from recombinant expression systems. Here we report that the large depolarizing plateau potential that underlies the epileptiform burst firing induced by metabotropic glutamate receptor agonists in lateral septal neurons was completely abolished in TRPC1/4 double-knockout mice, and was abolished in 74% of lateral septal neurons in TRPC1 knockout mice. Furthermore, neuronal cell death in the lateral septum and the cornu ammonis 1 region of hippocampus after pilocarpine-induced severe seizures was significantly ameliorated in TRPC1/4 double-knockout mice. Our data suggest that both TRPC1 and TRPC4 are essential for an intrinsic membrane conductance mediating the plateau potential in lateral septal neurons, possibly as heteromeric channels. Moreover, excitotoxic neuronal cell death, an underlying process for many neurological diseases, is not mediated merely by ionotropic glutamate receptors but also by heteromeric TRPC channels activated by metabotropic glutamate receptors. TRPC channels could be an unsuspected but critical molecular target for clinical intervention for excitotoxicity. PMID:22144671
Phelan, Kevin D; Mock, Matthew M; Kretz, Oliver; Shwe, U Thaung; Kozhemyakin, Maxim; Greenfield, L John; Dietrich, Alexander; Birnbaumer, Lutz; Freichel, Marc; Flockerzi, Veit; Zheng, Fang
2012-03-01
Canonical transient receptor potential channels (TRPCs) are receptor-operated cation channels that are activated in response to phospholipase C signaling. Although TRPC1 is ubiquitously expressed in the brain, TRPC4 expression is the most restrictive, with the highest expression level limited to the lateral septum. The subunit composition of neuronal TRPC channels remains uncertain because of conflicting data from recombinant expression systems. Here we report that the large depolarizing plateau potential that underlies the epileptiform burst firing induced by metabotropic glutamate receptor agonists in lateral septal neurons was completely abolished in TRPC1/4 double-knockout mice, and was abolished in 74% of lateral septal neurons in TRPC1 knockout mice. Furthermore, neuronal cell death in the lateral septum and the cornu ammonis 1 region of hippocampus after pilocarpine-induced severe seizures was significantly ameliorated in TRPC1/4 double-knockout mice. Our data suggest that both TRPC1 and TRPC4 are essential for an intrinsic membrane conductance mediating the plateau potential in lateral septal neurons, possibly as heteromeric channels. Moreover, excitotoxic neuronal cell death, an underlying process for many neurological diseases, is not mediated merely by ionotropic glutamate receptors but also by heteromeric TRPC channels activated by metabotropic glutamate receptors. TRPC channels could be an unsuspected but critical molecular target for clinical intervention for excitotoxicity.
Frojmovic, M. M.; Mooney, R. F.; Wong, T.
1994-01-01
We have previously reported that maximal platelet activation with adenosine diphosphate (100 microM ADP) causes rapid expression of all GPIIb-IIIa receptors for fibrinogen (FgR) (< 1-3 s), measured with FITC-labeled PAC1 by flow cytometry. We have extended these studies to examine the effects of ADP concentration on the graded expression and Fg occupancy of GPIIb-IIIa receptors. Human citrated platelet-rich plasma, diluted 10-fold with Walsh-albumin-Mg+2 (2 mM), was treated with ADP (0.1-100 microM). The rates of GPIIb-IIIa receptor expression or Fg binding were measured in unstirred samples by flow cytometry, using FITC-labeled monoclonal antibodies (mAb) PAC1 and 9F9, respectively, from on-rates, using increasing times between mAb and ADP additions. Fibrinogen receptors were all expressed rapidly at low (1 microM) or high (100 microM) ADP (few seconds), whereas Fg occupancy was 50% of maximal by about 2 min. The maximal extent of GPIIb-IIIa receptor expression and Fg occupancy was determined from maximal binding (Flmax) at 30 min incubation with PAC1 or 9F9. On-rates and maximal extents of binding for either PAC1 or 9F9 probes showed identical [ADP]-response profiles ("KD" approximately 1.4 +/- 0.1 microM). However, Flmax studies showed bimodal histograms consisting of "resting" (Po) and maximally "activated" (P*) platelets for both PAC1 and 9F9 binding, with the fraction of "activated" platelets increasing with ADP concentration. The data best fit a model where platelet subpopulations are "quantally" transformed from Po to P*, expressing all GPIIb-IIIa receptors, rapidly filled by Fg, but "triggered" at critical ADP concentrations. Larger, but not the largest, platelets appear to be the most sensitive subpopulation. The implications for clinical studies are discussed, and the relationship to dynamics of aggregation are described in a companion paper. PMID:7858143
Mizukami, Yoichi
2010-01-01
G protein-coupled receptor 30/G protein-coupled estrogen receptor-1 (GPR30/GPER-1) was reported as a novel membrane receptor for estrogen in 2005. However, the research on GPR30 has produced conflicting reports with regard to its intracellular localization, the tissue distribution of its expression, and some its functions. Recently, in addition to the finding of G-1, a GPR30 agonist, GPR30 KO mice have been produced in laboratories, and this has significantly increased the confidence in the data. In this review, the intrinsic appearance of GPR30 is approached based mainly on data obtained in vivo.
Pelekanou, Vasiliki; Kampa, Marilena; Kiagiadaki, Foteini; Deli, Alexandra; Theodoropoulos, Panayiotis; Agrogiannis, George; Patsouris, Efstratios; Tsapis, Andreas; Castanas, Elias; Notas, George
2016-02-01
Estrogens are known modulators of monocyte/macrophage functions; however, the underlying mechanism has not been clearly defined. Recently, a number of estrogen receptor molecules and splice variants were identified that exert different and sometimes opposing actions. We assessed the expression of estrogen receptors and explored their role in mediating estrogenic anti-inflammatory effects on human primary monocytes. We report that the only estrogen receptors expressed are estrogen receptor-α 36-kDa splice variant and G-protein coupled receptor 30/G-protein estrogen receptor 1, in a sex-independent manner. 17-β-Estradiol inhibits the LPS-induced IL-6 inflammatory response, resulting in inhibition of NF-κB transcriptional activity. This is achieved via a direct physical interaction of ligand-activated estrogen receptor-α 36-kDa splice variant with the p65 component of NF-κB in the nucleus. G-protein coupled receptor 30/G-protein estrogen receptor 1, which also physically interacts with estrogen receptor-α 36-kDa splice variant, acts a coregulator in this process, because its inhibition blocks the effect of estrogens on IL-6 expression. However, its activation does not mimic the effect of estrogens, on neither IL-6 nor NF-κB activity. Finally, we show that the estrogen receptor profile observed in monocytes is not modified during their differentiation to macrophages or dendritic cells in vitro and is shared in vivo by macrophages present in atherosclerotic plaques. These results position estrogen receptor-α 36-kDa splice variant and G-protein coupled receptor 30 as important players and potential therapeutic targets in monocyte/macrophage-dependent inflammatory processes. © Society for Leukocyte Biology.
Palma, Eleonora; Mileo, Anna M; Martinez-Torres, Ataulfo; Eusebi, Fabrizio; Miledi, Ricardo
2002-03-19
The functional properties and cellular localization of the human neuronal alpha7 nicotinic acetylcholine (AcCho) receptor (alpha7 AcChoR) and its L248T mutated (mut) form were investigated by expressing them alone or as gene fusions with the enhanced version of the green fluorescent protein (GFP). Xenopus oocytes injected with wild-type (wt), mutalpha7, or the chimeric subunit cDNAs expressed receptors that gated membrane currents when exposed to AcCho. As already known, AcCho currents generated by wtalpha7 receptors decay much faster than those elicited by the mutalpha7 receptors. Unexpectedly, the fusion of GFP to the wt and mutated alpha7 receptors led to opposite results: the AcCho-current decay of the wt receptors became slower, whereas that of the mutated receptors was accelerated. Furthermore, repetitive applications of AcCho led to a considerable "run-down" of the AcCho currents generated by mutalpha7-GFP receptors, whereas those of the wtalpha7-GFP receptors remained stable or increased in amplitude. The AcCho-current run-down of mutalpha7-GFP oocytes was accompanied by a marked decrease of alpha-bungarotoxin binding activity. Fluorescence, caused by the chimeric receptors expressed, was seen over the whole oocyte surface but was more intense and abundant in the animal hemisphere, whereas it was much weaker in the vegetal hemisphere. We conclude that fusion of GFP to wtalpha7 and mutalpha7 receptors provides powerful tools to study the distribution and function of alpha7 receptors. We also conclude that fused genes do not necessarily recapitulate all of the properties of the original receptors. This fact must be borne close in mind whenever reporter genes are attached to proteins.
Mechanism of estrogen activation of c-myc oncogene expression.
Dubik, D; Shiu, R P
1992-08-01
The estrogen receptor complex is a known trans-acting factor that regulates transcription of specific genes through an interaction with a specific estrogen-responsive cis-acting element (ERE). In previous studies we have shown that in estrogen-responsive human breast cancer cells estrogen rapidly activates c-myc expression. This activated expression occurs through enhanced transcription and does not require the synthesis of new protein intermediates; therefore, an ERE is present in the human c-myc gene regulatory region. To localize the ERE, constructs containing varying lengths of the c-myc 5'-flanking region ranging from -2327 to +25 (relative to the P1 promoter) placed adjacent to the chloramphenicol acetyl transferase reporter gene (CAT) were prepared. They were used in transient transfection studies in MCF-7 and HeLa cells co-transfected with an estrogen receptor expression vector. These studies reveal that all constructs containing the P2 promoter region exhibited estrogen-regulated CAT expression and that a 116-bp region upstream and encompassing the P2 TATA box is necessary for this activity. Analysis of this 116-bp region failed to identify a cis-acting element with sequences resembling the consensus ERE; however, co-transfection studies with mutant estrogen receptor expression vectors showed that the DNA-binding domain of the receptor is essential for estrogen-regulated CAT gene expression. We have also observed that anti-estrogen receptor complexes can weakly trans-activate from this 116-bp region but fail to do so from the ERE-containing ApoVLDLII-CAT construct. To explain these results we propose a new mechanism of estrogen trans-activation in the c-myc gene promoter.
Bridges, Robert S.; Scanlan, Victoria F.; Lee, Jong-O; Byrnes, Elizabeth M.
2011-01-01
Recent studies have reported that reproductive experience in female rats alters prolactin (PRL) receptor gene expression in the brain as well as neural sensitivity to PRL. Given PRL's actions in nonneural tissues, that is, mammary tissue and liver, it was asked whether reproductive experience may also alter prolactin receptor (Prlr) gene expression in these tissues. Groups of age-matched female rats were generated with varying reproductive histories. Separate groups of primiparous (first lactation) and multiparous (second lactation) had mammary tissue and liver samples collected on Day 3 or 10 of lactation. A fifth group raised one litter to weaning and then resumed estrous cyclicity. This group and a final group of age-matched, virgin controls were killed on diestrus. Tissue was processed by quantitative PCR for expression rates of the long and short forms of Prlr mRNA as well as casein beta mRNA (mammary tissue only). Western blots were performed to quantify receptor protein content. Multiple lactations as well as lactation itself resulted in alterations in Prlr expression. Prlr gene expression in mammary tissue was increased in primiparous mothers compared with that in multiparous dams, whereas in the liver, Prlr expression was reduced during an initial lactation. In contrast, PRLR protein levels declined during lactation in mammary, but not hepatic, tissues. Overall, the results demonstrate that the prolactin receptor system is altered in nonneural tissues as a result of the female's reproductive history. The findings are discussed in the context of milk and bile production and PRL's possible role in breast cancer. PMID:21508351
Bridges, Robert S; Scanlan, Victoria F; Lee, Jong-O; Byrnes, Elizabeth M
2011-08-01
Recent studies have reported that reproductive experience in female rats alters prolactin (PRL) receptor gene expression in the brain as well as neural sensitivity to PRL. Given PRL's actions in nonneural tissues, that is, mammary tissue and liver, it was asked whether reproductive experience may also alter prolactin receptor (Prlr) gene expression in these tissues. Groups of age-matched female rats were generated with varying reproductive histories. Separate groups of primiparous (first lactation) and multiparous (second lactation) had mammary tissue and liver samples collected on Day 3 or 10 of lactation. A fifth group raised one litter to weaning and then resumed estrous cyclicity. This group and a final group of age-matched, virgin controls were killed on diestrus. Tissue was processed by quantitative PCR for expression rates of the long and short forms of Prlr mRNA as well as casein beta mRNA (mammary tissue only). Western blots were performed to quantify receptor protein content. Multiple lactations as well as lactation itself resulted in alterations in Prlr expression. Prlr gene expression in mammary tissue was increased in primiparous mothers compared with that in multiparous dams, whereas in the liver, Prlr expression was reduced during an initial lactation. In contrast, PRLR protein levels declined during lactation in mammary, but not hepatic, tissues. Overall, the results demonstrate that the prolactin receptor system is altered in nonneural tissues as a result of the female's reproductive history. The findings are discussed in the context of milk and bile production and PRL's possible role in breast cancer.
Lindner, Mark D; Hodges, Donald B; Hogan, John B; Orie, Anitra F; Corsa, Jason A; Barten, Donna M; Polson, Craig; Robertson, Barbara J; Guss, Valerie L; Gillman, Kevin W; Starrett, John E; Gribkoff, Valentin K
2003-11-01
Antagonists of serotonin 6 (5-HT6) receptors have been reported to enhance cognition in animal models of learning, although this finding has not been universal. We have assessed the therapeutic potential of the specific 5-HT6 receptor antagonists 4-amino-N-(2,6-bis-methylamino-pyrimidin-4-yl)-benzenesulfonamide (Ro 04-6790) and 5-chloro-N-(4-methoxy-3-piperazin-1-yl-phenyl)-3-methyl-2-benzothiophenesulfonamide (SB-271046) in rodent models of cognitive function. Although mice express the 5-HT6 receptor and the function of this receptor has been investigated in mice, all reports of activity with 5-HT6 receptor antagonists have used rat models. In the present study, receptor binding revealed that the pharmacological properties of the mouse receptor are different from the rat and human receptor: Ro 04-6790 does not bind to the mouse 5-HT6 receptor, so all in vivo testing included in the present report was conducted in rats. We replicated previous reports that 5-HT6 receptor antagonists produce a stretching syndrome previously shown to be mediated through cholinergic mechanisms, but Ro 04-6790 and SB-271046 failed to attenuate scopolamine-induced deficits in a test of contextual fear conditioning. We also failed to replicate the significant effects reported previously in both an autoshaping task and in a version of the Morris water maze. The results of our experiments are not consistent with previous reports that suggested that 5-HT6 antagonists might have therapeutic potential for cognitive disorders.
Lundius, Ebba Gregorsson; Sanchez-Alavez, Manuel; Ghochani, Yasmin; Klaus, Joseph; Tabarean, Iustin V.
2010-01-01
The preoptic area/anterior hypothalamus (PO/AH), a region that contains neurons that control thermoregulation, is the main locus at which histamine affects body temperature. Here we report that histamine reduced the spontaneous firing rate of GABAergic preoptic neurons by activating H3 subtype histamine receptors. This effect involved a decrease in the level of phosphorylation of the extracellular signal-regulated kinase (ERK) and was not dependent on synaptic activity. Furthermore, a population of nonGABAergic neurons was depolarized and their firing rate was enhanced by histamine acting at H1 subtype receptors. In our experiments, activation of the H1R receptors was linked to the PLC pathway and Ca2+ release from intracellular stores. This depolarization persisted in TTX or when fast synaptic potentials were blocked indicating that it represents a postsynaptic effect. Single-cell reverse transcription –PCR analysis revealed expression of H3 receptors in a population of GABAergic neurons while H1 receptors were expressed in nonGABAergic cells. Histamine applied in the median preoptic nucleus induced a robust, long lasting hyperthermia effect that was mimicked by either H1 or H3 histamine receptor subtype specific agonists. Our data indicate that histamine modulates the core body temperature by acting at two distinct populations of preoptic neurons which express H1 and H3 receptor subtypes, respectively. PMID:20335473
Lundius, Ebba Gregorsson; Sanchez-Alavez, Manuel; Ghochani, Yasmin; Klaus, Joseph; Tabarean, Iustin V
2010-03-24
The preoptic area/anterior hypothalamus, a region that contains neurons that control thermoregulation, is the main locus at which histamine affects body temperature. Here we report that histamine reduced the spontaneous firing rate of GABAergic preoptic neurons by activating H3 subtype histamine receptors. This effect involved a decrease in the level of phosphorylation of the extracellular signal-regulated kinase and was not dependent on synaptic activity. Furthermore, a population of non-GABAergic neurons was depolarized, and their firing rate was enhanced by histamine acting at H1 subtype receptors. In our experiments, activation of the H1R receptors was linked to the PLC pathway and Ca(2+) release from intracellular stores. This depolarization persisted in TTX or when fast synaptic potentials were blocked, indicating that it represents a postsynaptic effect. Single-cell reverse transcription-PCR analysis revealed expression of H3 receptors in a population of GABAergic neurons, while H1 receptors were expressed in non-GABAergic cells. Histamine applied in the median preoptic nucleus induced a robust, long-lasting hyperthermia effect that was mimicked by either H1 or H3 histamine receptor subtype-specific agonists. Our data indicate that histamine modulates the core body temperature by acting at two distinct populations of preoptic neurons that express H1 and H3 receptor subtypes, respectively.
Loss, Georg; Bitter, Sondhja; Wohlgensinger, Johanna; Frei, Remo; Roduit, Caroline; Genuneit, Jon; Pekkanen, Juha; Roponen, Marjut; Hirvonen, Maija-Riitta; Dalphin, Jean-Charles; Dalphin, Marie-Laure; Riedler, Josef; von Mutius, Erika; Weber, Juliane; Kabesch, Michael; Michel, Sven; Braun-Fahrländer, Charlotte; Lauener, Roger
2012-08-01
There is evidence that gene expression of innate immunity receptors is upregulated by farming-related exposures. We sought to determine environmental and nutritional exposures associated with the gene expression of innate immunity receptors during pregnancy and the first year of a child's life. For the Protection Against Allergy: Study in Rural Environments (PASTURE) birth cohort study, 1133 pregnant women were recruited in rural areas of Austria, Finland, France, Germany, and Switzerland. mRNA expression of the Toll-like receptor (TLR) 1 through TLR9 and CD14 was assessed in blood samples at birth (n= 938) and year 1 (n= 752). Environmental exposures, as assessed by using questionnaires and a diary kept during year 1, and polymorphisms in innate receptor genes were related to gene expression of innate immunity receptors by using ANOVA and multivariate regression analysis. Gene expression of innate immunity receptors in cord blood was overall higher in neonates of farmers (P for multifactorial multivariate ANOVA= .041), significantly so for TLR7 (adjusted geometric means ratio [aGMR], 1.15; 95% CI, 1.02-1.30) and TLR8 (aGMR, 1.15; 95% CI, 1.04-1.26). Unboiled farm milk consumption during the first year of life showed the strongest association with mRNA expression at year 1, taking the diversity of other foods introduced during that period into account: TLR4 (aGMR, 1.22; 95% CI, 1.03-1.45), TLR5 (aGMR, 1.19; 95% CI, 1.01-1.41), and TLR6 (aGMR, 1.20; 95% CI, 1.04-1.38). A previously described modification of the association between farm milk consumption and CD14 gene expression by the single nucleotide polymorphism CD14/C-1721T was not found. Farming-related exposures, such as raw farm milk consumption, that were previously reported to decrease the risk for allergic outcomes were associated with a change in gene expression of innate immunity receptors in early life. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
Vanilloid Receptor-1 (TRPV1) Expression and Function in the Vasculature of the Rat
Czikora, Ágnes; Pásztor, Enikő T.; Dienes, Beatrix; Bai, Péter; Csernoch, László; Rutkai, Ibolya; Csató, Viktória; Mányiné, Ivetta S.; Pórszász, Róbert; Édes, István; Papp, Zoltán; Boczán, Judit
2014-01-01
Transient receptor potential (TRP) cation channels are emerging in vascular biology. In particular, the expression of the capsaicin receptor (TRPV1) was reported in vascular smooth muscle cells. This study characterized the arteriolar TRPV1 function and expression in the rat. TRPV1 mRNA was expressed in various vascular beds. Six commercially available antibodies were tested for TRPV1 specificity. Two of them were specific (immunostaining was abolished by blocking peptides) for neuronal TRPV1 and one recognized vascular TRPV1. TRPV1 was expressed in blood vessels in the skeletal muscle, mesenteric and skin tissues, as well as in the aorta and carotid arteries. TRPV1 expression was found to be regulated at the level of individual blood vessels, where some vessels expressed, while others did not express TRPV1 in the same tissue sections. Capsaicin (a TRPV1 agonist) evoked constrictions in skeletal muscle arteries and in the carotid artery, but had no effect on the femoral and mesenteric arteries or the aorta. In blood vessels, TRPV1 expression was detected in most of the large arteries, but there were striking differences at level of the small arteries. TRPV1 activity was suppressed in some isolated arteries. This tightly regulated expression and function suggests a physiological role for vascular TRPV1. PMID:24217926
Murgatroyd, C; Quinn, J P; Sharp, H M; Pickles, A; Hill, J
2015-05-05
In animal models, prenatal and postnatal stress is associated with elevated hypothalamic-pituitary axis (HPA) reactivity mediated via altered glucocorticoid receptor (GR) gene expression. Postnatal tactile stimulation is associated with reduced HPA reactivity mediated via increased GR gene expression. In this first study in humans to examine the joint effects of prenatal and postnatal environmental exposures, we report that GR gene (NR3C1) 1-F promoter methylation in infants is elevated in the presence of increased maternal postnatal depression following low prenatal depression, and that this effect is reversed by self-reported stroking of the infants by their mothers over the first weeks of life.
NASA Technical Reports Server (NTRS)
Ji, C.; Chen, Y.; McCarthy, T. L.; Centrella, M.
1999-01-01
Transforming growth factor-beta binds to three high affinity cell surface molecules that directly or indirectly regulate its biological effects. The type III receptor (TRIII) is a proteoglycan that lacks significant intracellular signaling or enzymatic motifs but may facilitate transforming growth factor-beta binding to other receptors, stabilize multimeric receptor complexes, or segregate growth factor from activating receptors. Because various agents or events that regulate osteoblast function rapidly modulate TRIII expression, we cloned the 5' region of the rat TRIII gene to assess possible control elements. DNA fragments from this region directed high reporter gene expression in osteoblasts. Sequencing showed no consensus TATA or CCAAT boxes, whereas several nuclear factors binding sequences within the 3' region of the promoter co-mapped with multiple transcription initiation sites, DNase I footprints, gel mobility shift analysis, or loss of activity by deletion or mutation. An upstream enhancer was evident 5' proximal to nucleotide -979, and a silencer region occurred between nucleotides -2014 and -2194. Glucocorticoid sensitivity mapped between nucleotides -687 and -253, whereas bone morphogenetic protein 2 sensitivity co-mapped within the silencer region. Thus, the TRIII promoter contains cooperative basal elements and dispersed growth factor- and hormone-sensitive regulatory regions that can control TRIII expression by osteoblasts.
Liu, Yipeng; Liu, Yang; Jiang, Xingchuan; Wang, Guirong
The highly specialized olfactory receptor neurons (ORNs) on the antennae of male moths can recognize blends of several pheromone components. In previous studies, a total of six candidate pheromone receptor (PR) genes were cloned and functionally characterized in the diamondback moth, Plutella xylostella. In the present work, we report on three novel candidate pheromone receptor genes: PxylOR8, PxylOR41, and PxylOR45 in the same species. Gene expression analysis revealed that PxylOR8 is specifically expressed in female adult antennae, while PxylOR41 and PxylOR45 are expressed in antennae in both sexes, but with a male bias. In situ hybridization revealed that PxylOR8, PxylOR41 and PxylOR45 are localized in long trichoid sensilla. Functional analyses on the three pheromone receptor genes were then performed using the heterologous expression system of Xenopus oocytes. PxylOR41 was tuned to two minor pheromone components Z9-14:Ac, Z9-14:OH, and their analog Z9-14:Ald. PxylOR8 and PxylOR45 did not respond to any tested pheromone components and analogs. These results may contribute to clarifying how pheromone detection works in P. xylostella. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Niederman, Thomas M. J.; Ghogawala, Zoher; Carter, Bob S.; Tompkins, Hillary S.; Russell, Margaret M.; Mulligan, Richard C.
2002-05-01
The demonstration that angiogenesis is required for the growth of solid tumors has fueled an intense interest in the development of new therapeutic strategies that target the tumor vasculature. Here we report the development of an immune-based antiangiogenic strategy that is based on the generation of T lymphocytes that possess a killing specificity for cells expressing vascular endothelial growth factor receptors (VEGFRs). To target VEGFR-expressing cells, recombinant retroviral vectors were generated that encoded a chimeric T cell receptor comprised of VEGF sequences linked to intracellular signaling sequences derived from the chain of the T cell receptor. After transduction of primary murine CD8 lymphocytes by such vectors, the transduced cells were shown to possess an efficient killing specificity for cells expressing the VEGF receptor, Flk-1, as measured by in vitro cytotoxicity assays. After adoptive transfer into tumor-bearing mice, the genetically modified cytotoxic T lymphocytes strongly inhibited the growth of a variety of syngeneic murine tumors and human tumor xenografts. An increased effect on in vivo tumor growth inhibition was seen when this therapy was combined with the systemic administration of TNP-470, a conventional angiogenesis inhibitor. The utilization of the immune system to target angiogenic markers expressed on tumor vasculature may prove to be a powerful means for controlling tumor growth.
Xu, Jin; Xu, Ming; Brown, Taylor; Rossi, Grace C; Hurd, Yasmin L; Inturrisi, Charles E; Pasternak, Gavril W; Pan, Ying-Xian
2013-07-19
The μ-opioid receptor gene, OPRM1, undergoes extensive alternative pre-mRNA splicing, as illustrated by the identification of an array of splice variants generated by both 5' and 3' alternative splicing. The current study reports the identification of another set of splice variants conserved across species that are generated through exon skipping or insertion that encodes proteins containing only a single transmembrane (TM) domain. Using a Tet-Off system, we demonstrated that the truncated single TM variants can dimerize with the full-length 7-TM μ-opioid receptor (MOR-1) in the endoplasmic reticulum, leading to increased expression of MOR-1 at the protein level by a chaperone-like function that minimizes endoplasmic reticulum-associated degradation. In vivo antisense studies suggested that the single TM variants play an important role in morphine analgesia, presumably through modulation of receptor expression levels. Our studies suggest the functional roles of truncated receptors in other G protein-coupled receptor families.
Sustained neurotensin exposure promotes cell surface recruitment of NTS2 receptors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perron, Amelie; Sharif, Nadder; Gendron, Louis
2006-05-12
In this study, we investigated whether persistent agonist stimulation of NTS2 receptors gives rise to down-regulation, in light of reports that their activation induced long-lasting effects. To address this issue, we incubated COS-7 cells expressing the rat NTS2 with neurotensin (NT) for up to 24 h and measured resultant cell surface [{sup 125}I]-NT binding. We found that NTS2-expressing cells retained the same surface receptor density despite efficient internalization mechanisms. This preservation was neither due to NTS2 neosynthesis nor recycling since it was not blocked by cycloheximide or monensin. However, it appeared to involve translocation of spare receptors from internal stores,more » as NT induced NTS2 migration from trans-Golgi network to endosome-like structures. This stimulation-induced regulation of cell surface NTS2 receptors was even more striking in rat spinal cord neurons. Taken together, these results suggest that sustained NTS2 activation promotes recruitment of intracellular receptors to the cell surface, thereby preventing functional desensitization.« less
Olincy, Ann; Blakeley-Smith, Audrey; Johnson, Lynn; Kem, William R; Freedman, Robert
2016-12-01
Abnormalities in CHRNA7, the alpha7-nicotinic receptor gene, have been reported in autism spectrum disorder. These genetic abnormalities potentially decrease the receptor's expression and diminish its functional role. This double-blind, placebo-controlled crossover study in two adult patients investigated whether an investigational receptor-specific partial agonist drug would increase the inhibitory functions of the gene and thereby increase patients' attention. An electrophysiological biomarker, P50 inhibition, verified the intended neurobiological effect of the agonist, and neuropsychological testing verified a primary cognitive effect. Both patients perceived increased attention in their self-ratings. Alpha7-nicotinic receptor agonists, currently the target of drug development in schizophrenia and Alzheimer Disease, may also have positive clinical effects in autism spectrum disorder.
Revisiting the role of hCG: new regulation of the angiogenic factor EG-VEGF and its receptors.
Brouillet, S; Hoffmann, P; Chauvet, S; Salomon, A; Chamboredon, S; Sergent, F; Benharouga, M; Feige, J J; Alfaidy, N
2012-05-01
Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an angiogenic factor reported to be specific for endocrine tissues, including the placenta. Its biological activity is mediated via two G protein-coupled receptors, prokineticin receptor 1 (PROKR1) and prokineticin receptor 2 (PROKR2). We have recently shown that (i) EG-VEGF expression peaks between the 8th and 11th weeks of gestation, (ii) its mRNA and protein levels are up-regulated by hypoxia, (iii) EG-VEGF is a negative regulator of trophoblast invasion and (iv) its circulating levels are increased in preeclampsia (PE), the most threatening pathology of pregnancy. Here, we investigated the regulation of the expression of EG-VEGF and its receptors by hCG, a key pregnancy hormone that is also deregulated in PE. During the first trimester of pregnancy, hCG and EG-VEGF exhibit the same pattern of expression, suggesting that EG-VEGF is potentially regulated by hCG. Both placental explants (PEX) and primary cultures of trophoblasts from the first trimester of pregnancy were used to investigate this hypothesis. Our results show that (i) LHCGR, the hCG receptor, is expressed both in cyto- and syncytiotrophoblasts, (ii) hCG increases EG-VEGF, PROKR1 and PROKR2 mRNA and protein expression in a dose- and time-dependent manner, (iii) hCG increases the release of EG-VEGF from PEX conditioned media, (iv) hCG effects are transcriptional and post-transcriptional and (v) the hCG effects are mediated by cAMP via cAMP response elements present in the EG-VEGF promoter region. Altogether, these results demonstrate a new role for hCG in the regulation of EG-VEGF and its receptors, an emerging regulatory system in placental development.
Belisle, Sarah E.; Tisoncik, Jennifer R.; Korth, Marcus J.; Carter, Victoria S.; Proll, Sean C.; Swayne, David E.; Pantin-Jackwood, Mary; Tumpey, Terrence M.; Katze, Michael G.
2010-01-01
The influenza pandemic of 1918 to 1919 was one of the worst global pandemics in recent history. The highly pathogenic nature of the 1918 virus is thought to be mediated in part by a dysregulation of the host response, including an exacerbated proinflammatory cytokine response. In the present study, we compared the host transcriptional response to infection with the reconstructed 1918 virus in wild-type, tumor necrosis factor (TNF) receptor-1 knockout (TNFRKO), and interleukin-1 (IL-1) receptor-1 knockout (IL1RKO) mice as a means of further understanding the role of proinflammatory cytokine signaling during the acute response to infection. Despite reported redundancy in the functions of IL-1β and TNF-α, we observed that reducing the signaling capacity of each of these molecules by genetic disruption of their key receptor genes had very different effects on the host response to infection. In TNFRKO mice, we found delayed or decreased expression of genes associated with antiviral and innate immune signaling, complement, coagulation, and negative acute-phase response. In contrast, in IL1RKO mice numerous genes were differentially expressed at 1 day postinoculation, including an increase in the expression of genes that contribute to dendritic and natural killer cell processes and cellular movement, and gene expression profiles remained relatively constant at later time points. We also observed a compensatory increase in TNF-α expression in virus-infected IL1RKO mice. Our data suggest that signaling through the IL-1 receptor is protective, whereas signaling through the TNF-α receptor increases the severity of 1918 virus infection. These findings suggest that manipulation of these pathways may have therapeutic benefit. PMID:20926563
Dimitrov, Eugene L; DeJoseph, M Regina; Brownfield, Mark S; Urban, Janice H
2007-08-01
The neuroendocrine parvocellular CRH neurons in the paraventricular nucleus (PVN) of the hypothalamus are the main integrators of neural inputs that initiate hypothalamic-pituitary-adrenal (HPA) axis activation. Neuropeptide Y (NPY) expression is prominent within the PVN, and previous reports indicated that NPY stimulates CRH mRNA levels. The purpose of these studies was to examine the participation of NPY receptors in HPA axis activation and determine whether neuroendocrine CRH neurons express NPY receptor immunoreactivity. Infusion of 0.5 nmol NPY into the third ventricle increased plasma corticosterone levels in conscious rats, with the peak of hormone levels occurring 30 min after injection. This increase was prevented by pretreatment with the Y1 receptor antagonist BIBP3226. Immunohistochemistry showed that CRH-immunoreactive neurons coexpressed Y1 receptor immunoreactivity (Y1r-ir) in the PVN, and a majority of these neurons (88.8%) were neuroendocrine as determined by ip injections of FluoroGold. Bilateral infusion of the Y1/Y5 agonist, [leu(31)pro(34)]NPY (110 pmol), into the PVN increased c-Fos and phosphorylated cAMP response element-binding protein expression and elevated plasma corticosterone levels. Increased expression of c-Fos and phosphorylated cAMP response element-binding protein was observed in populations of CRH/Y1r-ir cells. The current findings present a comprehensive study of NPY Y1 receptor distribution and activation with respect to CRH neurons in the PVN. The expression of NPY Y1r-ir by neuroendocrine CRH cells suggests that alterations in NPY release and subsequent activation of NPY Y1 receptors plays an important role in the regulation of the HPA.
Tang, Youcai; Chen, Anping
2014-05-01
Non-alcoholic steatohepatitis (NASH) is a major risk factor for hepatic fibrogenesis. NASH is often found in diabetic patients with hyperglycemia. Hyperglycemia induces non-enzymatic glycation of proteins, yielding advanced glycation end-products (AGEs). Effects of AGEs are mainly mediated by two categories of cytoplasmic membrane receptors. Receptor for AGEs (RAGE) is associated with increased oxidative stress and inflammation, whereas AGE receptor-1 (AGE-R1) is involved in detoxification and clearance of AGEs. Activation of hepatic stellate cells (HSC) is crucial to the development of hepatic fibrosis. We recently reported that AGEs stimulated HSC activation likely by inhibiting gene expression of AGE-R1 and inducing gene expression of RAGE in HSC, which were eliminated by the antioxidant curcumin. This study is to test our hypothesis that curcumin eliminates the effects of AGEs on the divergent regulation of the two receptors of AGEs in HSC by interrupting the AGE-caused activation of leptin signaling, leading to the inhibition of HSC activation. We observed herein that AGEs activated leptin signaling by inducing gene expression of leptin and its receptor in HSC. Like AGEs, leptin differentially regulated gene expression of RAGE and AGE-R1. Curcumin eliminated the effects of AGEs in HSC by interrupting leptin signaling and activating transcription factor NF-E2 p45-related factor 2 (Nrf2), leading to the elevation of cellular glutathione and the attenuation of oxidative stress. In conclusions, curcumin eliminated the effects of AGEs on the divergent regulation of gene expression of RAGE and AGE-R1 in HSC by interrupting the AGE-caused activation of leptin signaling, leading to the inhibition of HSC activation.
Tang, Youcai; Chen, Anping
2014-01-01
Nonalcoholic steatohepatitis (NASH) is a major risk factor for hepatic fibrogenesis. NASH is often found in diabetic patients with hyperglycemia. Hyperglycemia induces non-enzymatic glycation of proteins, yielding advanced glycation end-products (AGEs). Effects of AGEs are mainly mediated by two categories of cytoplasmic membrane receptors. Receptor for AGEs (RAGE) is associated with increased oxidative stress and inflammation, whereas AGE receptor-1 (AGE-R1) is involved in detoxification and clearance of AGEs. Activation of hepatic stellate cells (HSC) is crucial to the development of hepatic fibrosis. We recently reported that AGEs stimulated HSC activation likely by inhibiting gene expression of AGE-R1 and inducing gene expression of RAGE in HSC, which were eliminated by the antioxidant curcumin. This study is to test our hypothesis that curcumin eliminates the effects of AGEs on the divergent regulation of the two receptors of AGEs in HSC by interrupting the AGEs-caused activation of leptin signaling, leading to the inhibition of HSC activation. We observed herein that AGEs activated leptin signaling by inducing gene expression of leptin and its receptor in HSC. Like AGEs, leptin differentially regulated gene expression of RAGE and AGE-R1. Curcumin eliminated the effects of AGEs in HSC by interrupting leptin signaling and activating transcription factor Nrf2, leading to the elevation of cellular glutathione and the attenuation of oxidative stress. In conclusions, curcumin eliminated the effects of AGEs on the divergent regulation of gene expression of RAGE and AGE-R1 in HSC by interrupting the AGEs-caused activation of leptin signaling, leading to the inhibition of HSC activation. PMID:24614199
Li, Linhao; Stanton, Joseph D; Tolson, Antonia H; Luo, Yuan; Wang, Hongbing
2008-01-01
Purpose The objective of the current study is to investigate the hypothesis that bioactive terpenoids and flavonoids of Ginkgo biloba extract (GBE) induce human hepatic drug metabolizing enzymes (DMEs) and transporters through the selective activation of pregnane X receptor (PXR), constitutive androstane receptor (CAR), and aryl hydrocarbon receptor (AhR). Methods Human primary hepatocyte (HPH), and HepG2 cells are used as in vitro models for enzyme induction and nuclear receptor activation studies. A combination of real-time RT-PCR, transient transfection, and cell-based reporter assays were employed. Results In human primary hepatocytes, real-time PCR analysis showed induction of CYP2B6, CYP3A4, UGT1A1, MDR1, and MRP2 by EGb 761, ginkgolide A (GA) and ginkgolide B (GB), but not by bilobalide (BB) or the flavonoids (quercetin, kaempferol and tamarixetin) of GBE. Cell-based reporter assays in HepG2 revealed that GA and GB are potent activators of PXR; quercetin and kaempferol activate PXR, CAR, and AhR, whereas BB exerts no effects on these xenobiotic receptors. Notably, the flavonoids induced the expression of UGT1A1 and CYP1A2 in HepG2 cells but not in HPH. Conclusion Our results indicate that terpenoids and flavonoids of GBE exhibit differential induction of DMEs through the selective activation of PXR, CAR, and AhR. PMID:19034627
Bill, Anke; Rosethorne, Elizabeth M; Kent, Toby C; Fawcett, Lindsay; Burchell, Lynn; van Diepen, Michiel T; Marelli, Anthony; Batalov, Sergey; Miraglia, Loren; Orth, Anthony P; Renaud, Nicole A; Charlton, Steven J; Gosling, Martin; Gaither, L Alex; Groot-Kormelink, Paul J
2014-01-01
The human prostacyclin receptor (hIP receptor) is a seven-transmembrane G protein-coupled receptor (GPCR) that plays a critical role in vascular smooth muscle relaxation and platelet aggregation. hIP receptor dysfunction has been implicated in numerous cardiovascular abnormalities, including myocardial infarction, hypertension, thrombosis and atherosclerosis. Genomic sequencing has discovered several genetic variations in the PTGIR gene coding for hIP receptor, however, its structure-function relationship has not been sufficiently explored. Here we set out to investigate the applicability of high throughput random mutagenesis to study the structure-function relationship of hIP receptor. While chemical mutagenesis was not suitable to generate a mutagenesis library with sufficient coverage, our data demonstrate error-prone PCR (epPCR) mediated mutagenesis as a valuable method for the unbiased screening of residues regulating hIP receptor function and expression. Here we describe the generation and functional characterization of an epPCR derived mutagenesis library compromising >4000 mutants of the hIP receptor. We introduce next generation sequencing as a useful tool to validate the quality of mutagenesis libraries by providing information about the coverage, mutation rate and mutational bias. We identified 18 mutants of the hIP receptor that were expressed at the cell surface, but demonstrated impaired receptor function. A total of 38 non-synonymous mutations were identified within the coding region of the hIP receptor, mapping to 36 distinct residues, including several mutations previously reported to affect the signaling of the hIP receptor. Thus, our data demonstrates epPCR mediated random mutagenesis as a valuable and practical method to study the structure-function relationship of GPCRs.
Kent, Toby C.; Fawcett, Lindsay; Burchell, Lynn; van Diepen, Michiel T.; Marelli, Anthony; Batalov, Sergey; Miraglia, Loren; Orth, Anthony P.; Renaud, Nicole A.; Charlton, Steven J.; Gosling, Martin; Gaither, L. Alex; Groot-Kormelink, Paul J.
2014-01-01
The human prostacyclin receptor (hIP receptor) is a seven-transmembrane G protein-coupled receptor (GPCR) that plays a critical role in vascular smooth muscle relaxation and platelet aggregation. hIP receptor dysfunction has been implicated in numerous cardiovascular abnormalities, including myocardial infarction, hypertension, thrombosis and atherosclerosis. Genomic sequencing has discovered several genetic variations in the PTGIR gene coding for hIP receptor, however, its structure-function relationship has not been sufficiently explored. Here we set out to investigate the applicability of high throughput random mutagenesis to study the structure-function relationship of hIP receptor. While chemical mutagenesis was not suitable to generate a mutagenesis library with sufficient coverage, our data demonstrate error-prone PCR (epPCR) mediated mutagenesis as a valuable method for the unbiased screening of residues regulating hIP receptor function and expression. Here we describe the generation and functional characterization of an epPCR derived mutagenesis library compromising >4000 mutants of the hIP receptor. We introduce next generation sequencing as a useful tool to validate the quality of mutagenesis libraries by providing information about the coverage, mutation rate and mutational bias. We identified 18 mutants of the hIP receptor that were expressed at the cell surface, but demonstrated impaired receptor function. A total of 38 non-synonymous mutations were identified within the coding region of the hIP receptor, mapping to 36 distinct residues, including several mutations previously reported to affect the signaling of the hIP receptor. Thus, our data demonstrates epPCR mediated random mutagenesis as a valuable and practical method to study the structure-function relationship of GPCRs. PMID:24886841
Li, Zhigang; Dong, Lixue; Dean, Eric; Yang, Li V.
2013-01-01
Acidosis is a biochemical hallmark of the tumor microenvironment. Here, we report that acute acidosis decreases c-Myc oncogene expression in U937 human lymphoma cells. The level of c-Myc transcripts, but not mRNA or protein stability, contributes to c-Myc protein reduction under acidosis. The pH-sensing receptor TDAG8 (GPR65) is involved in acidosis-induced c-Myc downregulation. TDAG8 is expressed in U937 lymphoma cells, and the overexpression or knockdown of TDAG8 further decreases or partially rescues c-Myc expression, respectively. Acidic pH alone is insufficient to reduce c-Myc expression, as it does not decrease c-Myc in H1299 lung cancer cells expressing very low levels of pH-sensing G protein-coupled receptors (GPCRs). Instead, c-Myc is slightly increased by acidosis in H1299 cells, but this increase is completely inhibited by ectopic overexpression of TDAG8. Interestingly, TDAG8 expression is decreased by more than 50% in human lymphoma samples in comparison to non-tumorous lymph nodes and spleens, suggesting a potential tumor suppressor function of TDAG8 in lymphoma. Collectively, our results identify a novel mechanism of c-Myc regulation by acidosis in the tumor microenvironment and indicate that modulation of TDAG8 and related pH-sensing receptor pathways may be exploited as a new approach to inhibit Myc expression. PMID:24152439
Kelly, Eamonn; Mundell, Stuart J; Sava, Anna; Roth, Adelheid L; Felici, Antonio; Maltby, Kay; Nathan, Pradeep J; Bullmore, Edward T; Henderson, Graeme
2015-01-01
The novel opioid receptor antagonist, GSK1421498, has been shown to attenuate reward-driven compulsive behaviours, such as stimulant drug seeking or binge eating, in animals and humans. Here, we report new data on the receptor pharmacology of GSK121498, in comparison to naltrexone, naloxone, 6-β-naltrexol and nalmefene. To determine whether the novel opioid antagonist, GSK1521498, is an orthosteric or allosteric antagonist at the μ opioid receptor (MOPr) and whether it has neutral antagonist or inverse agonist properties. A combination of radioligand binding assays and [(35)S]GTPγS binding assays was employed. GSK1521498 completely displaced [(3)H]naloxone binding to MOPr and did not alter the rate of [(3)H]naloxone dissociation from MOPr observations compatible with it binding to the orthosteric site on MOPr. GSK1521498 exhibited inverse agonism when MOPr was overexpressed but not when the level of MOPr expression was low. In parallel studies under conditions of high receptor expression density, naloxone, naltrexone, 6-β-naltrexol and nalmefene exhibited partial agonism, not inverse agonism as has been reported previously for naloxone and naltrexone. In brain tissue from mice receiving a prolonged morphine pre-treatment, GSK1521498 exhibited slight inverse agonism. Differences between GSK1521498 and naltrexone in their effects on compulsive reward seeking are arguably linked to the more selective and complete MOPr antagonism of GSK1521498 versus the partial MOPr agonism of naltrexone. GSK1521498 is also pharmacologically differentiated by its inverse agonist efficacy at high levels of MOPr expression, but this may be less likely to contribute to behavioural differentiation at patho-physiological levels of expression.
Gulbahce, H Evin; Blair, Cindy K; Sweeney, Carol; Salama, Mohamed E
2017-09-01
Estrogen exposure is important in the pathogenesis of breast cancer and is a contributing risk factor. In this study we quantified estrogen receptor (ER) alpha expression in normal breast epithelium (NBR) in women with breast cancer and correlated it with breast cancer subtypes. Tissue microarrays were constructed from 204 breast cancer patients for whom normal breast tissue away from tumor was available. Slides stained with ER were scanned and expression in normal terminal duct lobular epithelium was quantitated using computer-assisted image analysis. ER expression in normal terminal duct lobular epithelium of postmenopausal women with breast cancer was significantly associated with estrogen and triple (estrogen, progesterone receptors, and HER2) negative phenotypes. Also increased age at diagnosis was significantly associated with ER expression in NBR. ER positivity in normal epithelium did not vary by tumor size, lymph node status, tumor grade, or stage. On the basis of quantitative image analysis, we confirm that ER expression in NBR increases with age in women with breast cancer, and report for the first time, a significant association between ER expression in NBR with ER-negative and triple-negative cancers in postmenopausal women.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanno, Yuichiro, E-mail: ykanno@phar.toho-u.ac.jp; Inajima, Jun; Kato, Sayaka
The constitutive androstane receptor (CAR) plays a key role in the expression of xenobiotic/steroid and drug metabolizing enzymes and their transporters. In this study, we demonstrated that protein arginine methyltransferase 5 (PRMT5) is a novel CAR-interacting protein. Furthermore, the PRMT-dependent induction of a CAR reporter gene, which was independent of methyltransferase activity, was enhanced in the presence of steroid receptor coactivator 1 (SRC1), peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) or DEAD box DNA/RNA helicase DP97. Using tetracycline inducible-hCAR system in HepG2 cells, we showed that knockdown of PRMT5 with small interfering RNA suppressed tetracycline -induced mRNA expression of CYP2B6more » but not of CYP2C9 or CYP3A4. PRMT5 enhanced phenobarbital-mediated transactivation of a phenobarbital-responsive enhancer module (PBREM)-driven reporter gene in co-operation with PGC-1α in rat primary hepatocytes. Based on these findings, we suggest PRMT5 to be a gene (or promoter)-selective coactivator of CAR by mediating the formation of complexes between hCAR and appropriate coactivators. - Highlights: • Nuclear receptor CAR interact with PRMT5. • PRMT5 enhances transcriptional activity of CAR. • PRMT5 synergistically enhances transactivity of CAR by the co-expression of SRC-1, DP97 or PGC1α. • PRMT5 is a gene-selective co-activator for hCAR.« less
IL-1 receptor-antagonist (IL-1Ra) knockout mice show anxiety-like behavior by aging.
Wakabayashi, Chisato; Numakawa, Tadahiro; Odaka, Haruki; Ooshima, Yoshiko; Kiyama, Yuji; Manabe, Toshiya; Kunugi, Hiroshi; Iwakura, Yoichiro
2015-07-10
Interleukin 1 (IL-1) plays a critical role in stress responses, and its mRNA is induced in the brain by restraint stress. Previously, we reported that IL-1 receptor antagonist (IL-1Ra) knockout (KO) mice, which lacked IL-1Ra molecules that antagonize the IL-1 receptor, showed anti-depression-like behavior via adrenergic modulation at the age of 8 weeks. Here, we report that IL-1Ra KO mice display an anxiety-like phenotype that is induced spontaneously by aging in the elevated plus-maze (EPM) test. This anxiety-like phenotype was improved by the administration of diazepam. The expression of the anxiety-related molecule glucocorticoid receptor (GR) was significantly reduced in 20-week-old but not in 11-week-old IL-1Ra KO mice compared to wild-type (WT) littermates. The expression of the mineralocorticoid receptor (MR) was not altered between IL-1Ra KO mice and WT littermates at either 11 or 20 weeks old. Analysis of monoamine concentration in the hippocampus revealed that tryptophan, the serotonin metabolite 5-hydroxyindole acetic acid (5-HIAA), and the dopamine metabolite homovanillic acid (HVA) were significantly increased in 20-week-old IL-1Ra KO mice compared to littermate WT mice. These findings strongly suggest that the anxiety-like behavior observed in older mice was caused by the complicated alteration of monoamine metabolism and/or GR expression in the hippocampus. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Atherosclerosis is an inflammatory process that leads to the onset of cardiovascular disease. The scavenger receptor-mediated uptake of oxLDL by macrophages leads to foam cell formation, which is an initial event in the formation of atherosclerotic fatty streak lesions. In this report, the mechanism...
Progesterone Signaling Inhibits Cervical Carcinogenesis in Mice
Yoo, Young A; Son, Jieun; Mehta, Fabiola F.; DeMayo, Francesco J.; Lydon, John P.; Chung, Sang-Hyuk
2014-01-01
Human papillomavirus is the main cause of cervical cancer, yet other nonviral cofactors are also required for the disease. The uterine cervix is a hormone-responsive tissue, and female hormones have been implicated in cervical carcinogenesis. A transgenic mouse model expressing human papillomavirus oncogenes E6 and/or E7 has proven useful to study a mechanism of hormone actions in the context of this common malignancy. Estrogen and estrogen receptor α are required for the development of cervical cancer in this mouse model. Estrogen receptor α is known to up-regulate expression of the progesterone receptor, which, on activation by its ligands, either promotes or inhibits carcinogenesis, depending on the tissue context. Here, we report that progesterone receptor inhibits cervical and vaginal epithelial cell proliferation in a ligand-dependent manner. We also report that synthetic progestin medroxyprogesterone acetate promotes regression of cancers and precancerous lesions in the female lower reproductive tracts (ie, cervix and vagina) in the human papillomavirus transgenic mouse model. Our results provide the first experimental evidence that supports the hypothesis that progesterone signaling is inhibitory for cervical carcinogenesis in vivo. PMID:24012679
Negative regulation of parathyroid hormone-related protein expression by steroid hormones
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kajitani, Takashi; Tamamori-Adachi, Mimi; Okinaga, Hiroko
Highlights: {yields} Steroid hormones repress expression of PTHrP in the cell lines where the corresponding nuclear receptors are expressed. {yields} Nuclear receptors are required for suppression of PTHrP expression by steroid hormones, except for androgen receptor. {yields} Androgen-induced suppression of PTHrP expression appears to be mediated by estrogen receptor. -- Abstract: Elevated parathyroid hormone-related protein (PTHrP) is responsible for humoral hypercalcemia of malignancy (HHM), which is of clinical significance in treatment of terminal patients with malignancies. Steroid hormones were known to cause suppression of PTHrP expression. However, detailed studies linking multiple steroid hormones to PTHrP expression are lacking. Here wemore » studied PTHrP expression in response to steroid hormones in four cell lines with excessive PTHrP production. Our study established that steroid hormones negatively regulate PTHrP expression. Vitamin D receptor, estrogen receptor {alpha}, glucocorticoid receptor, and progesterone receptor, were required for repression of PTHrP expression by the cognate ligands. A notable exception was the androgen receptor, which was dispensable for suppression of PTHrP expression in androgen-treated cells. We propose a pathway(s) involving nuclear receptors to suppress PTHrP expression.« less
Rangel-Yescas, Gisela E; Vazquez-Cuevas, Francisco G; Garay, Edith; Arellano, Rogelio O
2012-01-01
P2X receptors are trimeric, ATP-gated cation channels. In mammals seven P2X subtypes have been reported (P2X1-P2X7), as well as several variants generated by alternative splicing. Variants confer to the homomeric or heteromeric channels distinct functional and/or pharmacological properties. Molecular biology, biochemical, and functional analysis by electrophysiological methods were used to identify and study a new variant of the P2X1 receptor named P2X1b. This new variant, identified in rat optic nerve, was also expressed in other tissues. P2X1b receptors lack amino acids 182 to 208 of native P2X1, a region that includes residues that are highly conserved among distinct P2X receptors. When expressed in Xenopus oocytes, P2X1b was not functional as a homomer; however, when co-expressed with P2X1, it downregulated the electrical response generated by ATP compared with that of oocytes expressing P2X1 alone, and it seemed to form heteromeric channels with a modestly enhanced ATP potency. A decrease in responses to ATP in oocytes co-expressing different ratios of P2X1b to P2X1 was completely eliminated by overnight pretreatment with apyrase. Thus, it is suggested that P2X1b regulates, through a use-dependent mechanism, the availability, in the plasma membrane, of receptor channels that can be operated by ATP.
Wang, Yanyan; Xu, Han; Zheng, Xiaodong; Wei, Haiming; Sun, Rui; Tian, Zhigang
2007-10-01
Human umbilical cord blood (CB) has recently been used as a source of stem cells in transplantation. NK cells derived from CB are the key effector cells involved in graft-versus-host disease (GVHD) and graft-versus-leukemia (GVL). It was reported that the activity of CB NK cells was lower than that of adult peripheral blood (PB) NK cells. In this study, we analyzed the expression of some NK cell receptors and cytotoxicity-related molecules in CB and PB NK cells. The expressions of activating NK receptors, CD16, NKG2D and NKp46, did not show significant difference between CB and PB NK cells. But the expression of inhibitory receptor NKG2A/CD94 was significantly higher on CB NK cells. As to the effector function molecules, granzyme B was expressed significantly lower in CB NK cells, but the expressions of intracellular perforin, IFN-gamma, TNF-alpha and cell surface FasL and TRAIL did not show difference between CB and PB NK cells. The results indicated that the high expression of NKG2A/CD94 and low expression of granzyme B may be related with the reduced activity of CB NK cells.
Vargas-Perez, Hector; George, Susan R.; van der Kooy, Derek
2013-01-01
Although D1 receptor knockout mice demonstrate normal morphine place preferences, antagonism of basolateral amygdala (BLA) D1 receptors only during drug-naive rat conditioning has been reported to inhibit the expression of a morphine place preference. One possible explanation for this result is state-dependent learning. That is, the omission of the intra-BLA infusion cue during testing — which acts as a potent discriminative stimulus — may have prevented the recall of a morphine-environment association and therefore, the consequent expression of a morphine place preference. To examine this possibility, we tested whether intra-BLA infusion of the D1-receptor antagonist SCH23390 during both training and testing might reveal a morphine place preference. Our results suggest that in previously drug-naive animals, D1 receptor antagonism during testing restores the opiate conditioned place preference that is normally absent when D1 receptors are blocked only during training, suggesting that BLA D1 receptors can mediate state-dependent memory retrieval. PMID:23538064
Ting-A-Kee, Ryan; Mercuriano, Laura E; Vargas-Perez, Hector; George, Susan R; van der Kooy, Derek
2013-06-15
Although D1 receptor knockout mice demonstrate normal morphine place preferences, antagonism of basolateral amygdala (BLA) D1 receptors only during drug-naive rat conditioning has been reported to inhibit the expression of a morphine place preference. One possible explanation for this result is state-dependent learning. That is, the omission of the intra-BLA infusion cue during testing - which acts as a potent discriminative stimulus - may have prevented the recall of a morphine-environment association and therefore, the consequent expression of a morphine place preference. To examine this possibility, we tested whether intra-BLA infusion of the D1-receptor antagonist SCH23390 during both training and testing might reveal a morphine place preference. Our results suggest that in previously drug-naive animals, D1 receptor antagonism during testing restores the opiate conditioned place preference that is normally absent when D1 receptors are blocked only during training, suggesting that BLA D1 receptors can mediate state-dependent memory retrieval. Copyright © 2013 Elsevier B.V. All rights reserved.
Kotenko, S V; Izotova, L S; Mirochnitchenko, O V; Esterova, E; Dickensheets, H; Donnelly, R P; Pestka, S
2001-01-26
Interleukin-10 (IL-10)-related T cell-derived inducible factor (IL-TIF; provisionally designated IL-22) is a cytokine with limited homology to IL-10. We report here the identification of a functional IL-TIF receptor complex that consists of two receptor chains, the orphan CRF2-9 and IL-10R2, the second chain of the IL-10 receptor complex. Expression of the CRF2-9 chain in monkey COS cells renders them sensitive to IL-TIF. However, in hamster cells both chains, CRF2-9 and IL-10R2, must be expressed to assemble the functional IL-TIF receptor complex. The CRF2-9 chain (or the IL-TIF-R1 chain) is responsible for Stat recruitment. Substitution of the CRF2-9 intracellular domain with the IFN-gammaR1 intracellular domain changes the pattern of IL-TIF-induced Stat activation. The CRF2-9 gene is expressed in normal liver and kidney, suggesting a possible role for IL-TIF in regulating gene expression in these tissues. Each chain, CRF2-9 and IL-10R2, is capable of binding IL-TIF independently and can be cross-linked to the radiolabeled IL-TIF. However, binding of IL-TIF to the receptor complex is greater than binding to either receptor chain alone. Sharing of the common IL-10R2 chain between the IL-10 and IL-TIF receptor complexes is the first such case for receptor complexes with chains belonging to the class II cytokine receptor family, establishing a novel paradigm for IL-10-related ligands similar to the shared use of the gamma common chain (gamma(c)) by several cytokines, including IL-2, IL-4, IL-7, IL-9, and IL-15.
Gene delivery by a steroid-peptide nucleic acid conjugate.
Rebuffat, Alexandre G; Nawrocki, Andrea R; Nielsen, Peter E; Bernasconi, Alessio G; Bernal-Mendez, Eloy; Frey, Brigitte M; Frey, Felix J
2002-09-01
We previously introduced a method called steroid-mediated gene delivery (SMGD), which uses steroid receptors as shuttles to facilitate the nuclear uptake of transfected DNA. Here, we describe a SMGD strategy with peptide nucleic acids (PNAs) that allowed linkage of a steroid molecule to a defined position in a plasmid without disturbing its gene expression. We synthesized and tested several bifunctional steroid derivatives [patent in process of nationalization] and finally selected the compound named DEX-bisPNA, a molecule consisting of a dexamethasone moiety linked to a PNA clamp (bisPNA) through a 30-atom chemical spacer. Dex-bisPNA binds to the glucocorticoid receptor (GR) as well as to reporter plasmids containing the corresponding PNA binding sites, translocates the GR from the cytoplasm into the nucleus, and increases the delivery of plasmid to the nucleus, resulting in enhanced GR-dependent expression of the reporter gene. The SMGD effect was more pronounced in growth-arrested cells than in proliferating cells. The specificity for the GR was shown by the reversion of the SMGD effect in the presence of dexamethasone as well as an enhanced expression in GR-positive cells but not in GR-negative cells. Thus, SMGD with PNA is a promising strategy for nonviral gene delivery into target tissues expressing specific steroid receptors.
Hayashi, Ayako; Asanuma, Daisuke; Kamiya, Mako; Urano, Yasuteru; Okabe, Shigeo
2016-01-01
Techniques to visualize receptor trafficking in living neurons are important, but currently available methods are limited in their labeling efficiency, specificity and reliability. Here we report a method for receptor labeling with a basic leucine zipper domain peptide (ZIP) and a binding cassette specific to ZIP. Receptors are tagged with a ZIP-binding cassette at their extracellular domain. Tagged receptors expressed in cultured cells were labeled with exogenously applied fluorescently labeled ZIP with low background and high affinity. To test if ZIP labeling is useful in monitoring endocytosis and intracellular trafficking, we next conjugated ZIP with a pH-sensitive dye RhP-M (ZIP-RhP-M). ZIP binding to its binding cassette was pH-resistant and RhP-M fluorescence dramatically increased in acidic environment. Thus AMPA-type glutamate receptors (AMPARs) labeled by ZIP-RhP-M can report receptor endocytosis and subsequent intracellular trafficking. Application of ZIP-RhP-M to cultured hippocampal neurons expressing AMPARs tagged with a ZIP-binding cassette resulted in appearance of fluorescent puncta in PSD-95-positive large spines, suggesting local endocytosis and acidification of AMPARs in individual mature spines. This spine pool of AMPARs in acidic environment was distinct from the early endosomes labeled by transferrin uptake. These results suggest that receptor labeling by ZIP-RhP-M is a useful technique for monitoring endocytosis and intracellular trafficking. This article is part of the Special Issue entitled 'Synaptopathy--from Biology to Therapy'. Copyright © 2015 Elsevier Ltd. All rights reserved.
Xiong, W; Koo, B-N; Morton, R; Zhang, L
2011-06-16
Δ⁹ tetrahydrocannabinol (THC) and cannabidiol (CBD) are the principal psychoactive and nonpsychoactive components of cannabis. While most THC-induced behavioral effects are thought to depend on endogenous cannabinoid 1 (CB1) receptors, the molecular targets for CBD remain unclear. Here, we report that CBD and THC inhibited the function of human 5-HT(3A) receptors (h5-HT(3A)Rs) expressed in HEK 293 cells. The magnitude of THC and CBD inhibition was maximal 5 min after a continuous incubation with cannabinoids. The EC₅₀ values for CBD and THC-induced inhibition were 110 nM and 322 nM, respectively in HEK 293 cells expressing h5-HT(3A)Rs. In these cells, CBD and THC did not stimulate specific [³⁵S]-GTP-γs binding in membranes, suggesting that the inhibition by cannabinoids is unlikely mediated by a G-protein dependent mechanism. On the other hand, both CBD and THC accelerated receptor desensitization kinetics without significantly changing activation time. The extent of cannabinoid inhibition appeared to depend on receptor desensitization. Reducing receptor desensitization by nocodazole, 5-hydroxyindole and a point-mutation in the large cytoplasmic domain of the receptor significantly decreased CBD-induced inhibition. Similarly, the magnitude of THC and CBD-induced inhibition varied with the apparent desensitization rate of h5-HT(3A)Rs expressed in Xenopus oocytes. For instance, with increasing amount of h5-HT(3A)R cRNA injected into the oocytes, the receptor desensitization rate at steady state decreased. THC and CBD-induced inhibition was correlated with the change in the receptor desensitization rate. Thus, CBD and THC inhibit h5-HT(3A) receptors through a mechanism that is dependent on receptor desensitization. Published by Elsevier Ltd.
Xiong, Wei; Koo, Bon-Nyeo; Morton, Russell; Zhang, Li
2011-01-01
Δ9 tetrahydrocannabinol (THC) and cannabidiol (CBD) are the principal psychoactive and non-psychoactive components of cannabis. While most THC-induced behavioral effects are thought to depend on endogenous cannabinoid 1 (CB1) receptors, the molecular targets for CBD remain unclear. Here, we report that CBD and THC inhibited the function of human 5-HT3A receptors (h5-HT3ARs) expressed in HEK 293 cells. The magnitude of THC and CBD inhibition was maximal 5 min after a continuous incubation with cannabinoids. The EC50 values for CBD and THC-induced inhibition were 110 nM and 322 nM respectively in HEK 293 cells expressing h5-HT3ARs. In these cells, CBD and THC did not stimulate specific [35S]-GTP-γs binding in membranes, suggesting that the inhibition by cannabinoids is unlikely mediated by a G-protein dependent mechanism. On the other hand, both CBD and THC accelerated receptor desensitization kinetics without significantly changing activation time. The extent of cannabinoid inhibition appeared to depend on receptor desensitization. Reducing receptor desensitization by nocodazole, 5-hydroxyindole and a point-mutation in the large cytoplasmic domain of the receptor significantly decreased CBD-induced inhibition. Similarly, the magnitude of THC and CBD-induced inhibition varied with the apparent desensitization rate of h5-HT3ARs expressed in Xenopus oocytes. For instance, with increasing amount of h5-HT3AR cRNA injected into the oocytes, the receptor desensitization rate at steady state decreased. THC and CBD-induced inhibition was correlated with the change in the receptor desensitization rate. Thus, CBD and THC inhibit h5-HT3A receptors through a mechanism that is dependent on receptor desensitization. PMID:21477640
Horiuchi, Dai; Camarda, Roman; Zhou, Alicia Y; Yau, Christina; Momcilovic, Olga; Balakrishnan, Sanjeev; Corella, Alexandra N; Eyob, Henok; Kessenbrock, Kai; Lawson, Devon A; Marsh, Lindsey A; Anderton, Brittany N; Rohrberg, Julia; Kunder, Ratika; Bazarov, Alexey V; Yaswen, Paul; McManus, Michael T; Rugo, Hope S; Werb, Zena; Goga, Andrei
2016-11-01
Triple-negative breast cancer (TNBC), in which cells lack expression of the estrogen receptor (ER), the progesterone receptor (PR) and the ERBB2 (also known as HER2) receptor, is the breast cancer subtype with the poorest outcome. No targeted therapy is available against this subtype of cancer owing to a lack of validated molecular targets. We previously reported that signaling involving MYC-an essential, pleiotropic transcription factor that regulates the expression of hundreds of genes-is disproportionally higher in triple-negative (TN) tumors than in receptor-positive (RP) tumors. Direct inhibition of the oncogenic transcriptional activity of MYC has been challenging to achieve. Here, by conducting a shRNA screen targeting the kinome, we identified PIM1, a non-essential serine-threonine kinase, in a synthetic lethal interaction with MYC. PIM1 expression was higher in TN tumors than in RP tumors and was associated with poor prognosis in patients with hormone- and HER2-negative tumors. Small-molecule PIM kinase inhibitors halted the growth of human TN tumors with elevated MYC expression in patient-derived tumor xenograft (PDX) and MYC-driven transgenic mouse models of breast cancer by inhibiting the oncogenic transcriptional activity of MYC and restoring the function of the endogenous cell cycle inhibitor, p27. Our findings warrant clinical evaluation of PIM kinase inhibitors in patients with TN tumors that have elevated MYC expression.
NASA Astrophysics Data System (ADS)
Zhang, Weixing; Zhu, Ming; Zhang, Ge; Liu, Feng; Wang, Hongfang; Guo, Xingqi; Xu, Baohua
2016-04-01
Estrogen-related receptor (ERR), which belongs to the nuclear receptor superfamily, has been implicated in diverse physiological processes involving the estrogen signaling pathway. However, little information is available on ERR in Apis cerana cerana. In this report, we isolated the ERR gene and investigated its involvement in antioxidant defense. Quantitative real-time polymerase chain reaction (qPCR) revealed that the highest mRNA expression occurred in eggs during different developmental stages. The expression levels of AccERR were highest in the muscle, followed by the rectum. The predicted transcription factor binding sites in the promoter of AccERR suggested that AccERR potentially functions in early development and in environmental stress responses. The expression of AccERR was induced by cold (4 °C), heat (42 °C), ultraviolet light (UV), HgCl2, and various types of pesticides (phoxim, deltamethrin, triadimefon, and cyhalothrin). Western blot was used to measure the expression levels of AccERR protein. These data suggested that AccERR might play a vital role in abiotic stress responses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanata, Sohya; Akagi, Masao; Nishimura, Shunji
It has been reported that vascular endothelial growth factor (VEGF) and its receptors play an important role in the destruction of articular cartilage in osteoarthritis through increased production of matrix metalloproteinases. We investigated whether the oxidized low-density lipoprotein (ox-LDL) binding to lectin-like ox-LDL receptor-1 (LOX-1) upregulates VEGF expression in cultured bovine articular chondrocytes (BACs). Ox-LDL markedly increased VEGF mRNA expression and protein release in time- and dose-dependent manners, which was significantly suppressed by anti-LOX-1 antibody pretreatment. Activation of peroxisome proliferator-activated receptor (PPAR)-{gamma} was evident in BACs with ox-LDL addition and was attenuated by anti-LOX-1 antibody. The specific PPAR-{gamma} inhibitor GW9662more » suppressed ox-LDL-induced VEGF expression. These results suggest that the ox-LDL/LOX-1 system upregulates VEGF expression in articular cartilage, at least in part, through activation of PPAR-{gamma} and supports the hypothesis that ox-LDL is involved in cartilage degradation via LOX-1.« less
Identification of receptors of main sex-pheromone components of three Lepidopteran species.
Mitsuno, Hidefumi; Sakurai, Takeshi; Murai, Masatoshi; Yasuda, Tetsuya; Kugimiya, Soichi; Ozawa, Rika; Toyohara, Haruhiko; Takabayashi, Junji; Miyoshi, Hideto; Nishioka, Takaaki
2008-09-01
Male moths discriminate conspecific female-emitted sex pheromones. Although the chemical components of sex pheromones have been identified in more than 500 moth species, only three components in Bombyx mori and Heliothis virescens have had their receptors identified. Here we report the identification of receptors for the main sex-pheromone components in three moth species, Plutella xylostella, Mythimna separata and Diaphania indica. We cloned putative sex-pheromone receptor genes PxOR1, MsOR1 and DiOR1 from P. xylostella, M. separata and D. indica, respectively. Each of the three genes was exclusively expressed with an Or83b orthologous gene in male olfactory receptor neurons (ORNs) that are surrounded by supporting cells expressing pheromone-binding-protein (PBP) genes. By two-electrode voltage-clamp recording, we tested the ligand specificity of Xenopus oocytes co-expressing PxOR1, MsOR1 or DiOR1 with an OR83b family protein. Among the seven sex-pheromone components of the three moth species, the oocytes dose-dependently responded only to the main sex-pheromone component of the corresponding moth species. In our study, PBPs were not essential for ligand specificity of the receptors. On the phylogenetic tree of insect olfactory receptors, the six sex-pheromone receptors identified in the present and previous studies are grouped in the same subfamily but have no relation with the taxonomy of moths. It is most likely that sex-pheromone receptors have randomly evolved from ancestral sex-pheromone receptors before the speciation of moths and that their ligand specificity was modified by mutations of local amino acid sequences after speciation.
Yang, Jennifer A.; Yasrebi, Ali; Snyder, Marisa; Roepke, Troy A.
2016-01-01
Arcuate neurons that coexpress kisspeptin (Kiss1), neurokinin B (Tac2), and dynorphin (Pdyn) mediate negative feedback of 17β-estradiol (E2) on the HPG axis. Previous studies report that fasting and caloric restriction reduce Kiss1 expression. The objective of this study was to determine the interactions of E2 with fasting, caloric restriction, and diet-induced obesity on KNDy gene and receptor expression. Ovariectomized female mice were separated into control and estradiol benzoate (E2B)-treated groups. E2B decreased Kiss1 and the tachykinin 2 receptor, Tac3r, in ARC tissue and Tac2 in Tac2 neurons. Diet-induced obesity decreased Kiss1 in oil-treated animals and the kisspeptin receptor, Kiss1r and Tac3r in the ARC of E2B-treated animals. Chronic caloric (30%) restriction reduced all three neuropeptides in oil-treated females and Kiss1r by E2B in CR animals. Taken together, our experiments suggest that steroidal environment and energy state negatively regulate KNDy gene expression in both ARC and Tac2 neurons. PMID:27507595
Human Freud-2/CC2D1B: a novel repressor of postsynaptic serotonin-1A receptor expression.
Hadjighassem, Mahmoud R; Austin, Mark C; Szewczyk, Bernadeta; Daigle, Mireille; Stockmeier, Craig A; Albert, Paul R
2009-08-01
Altered expression of serotonin-1A (5-HT1A) receptors, both presynaptic in the raphe nuclei and post-synaptic in limbic and cortical target areas, has been implicated in mood disorders such as major depression and anxiety. Within the 5-HT1A receptor gene, a powerful dual repressor element (DRE) is regulated by two protein complexes: Freud-1/CC2D1A and a second, unknown repressor. Here we identify human Freud-2/CC2D1B, a Freud-1 homologue, as the second repressor. Freud-2 distribution was examined with Northern and Western blot, reverse transcriptase polymerase chain reaction, and immunohistochemistry/immunofluorescence; Freud-2 function was examined by electrophoretic mobility shift, reporter assay, and Western blot. Freud-2 RNA was widely distributed in brain and peripheral tissues. Freud-2 protein was enriched in the nuclear fraction of human prefrontal cortex and hippocampus but was weakly expressed in the dorsal raphe nucleus. Freud-2 immunostaining was co-localized with 5-HT1A receptors, neuronal and glial markers. In prefrontal cortex, Freud-2 was expressed at similar levels in control and depressed male subjects. Recombinant hFreud-2 protein bound specifically to 5' or 3' human DRE adjacent to the Freud-1 site. Human Freud-2 showed strong repressor activity at the human 5-HT1A or heterologous promoter in human HEK-293 5-HT1A-negative cells and neuronal SK-N-SH cells, a model of postsynaptic 5-HT1A receptor-positive cells. Furthermore, small interfering RNA knockdown of endogenous hFreud-2 expression de-repressed 5-HT1A promoter activity and increased levels of 5-HT1A receptor protein in SK-N-SH cells. Human Freud-2 binds to the 5-HT1A DRE and represses the human 5-HT1A receptor gene to regulate its expression in non-serotonergic cells and neurons.
Kasikara, Canan; Kumar, Sushil; Kimani, Stanley; Tsou, Wen-I; Geng, Ke; Davra, Viralkumar; Sriram, Ganapathy; Devoe, Connor; Nguyen, Khanh-Quynh N; Antes, Anita; Krantz, Allen; Rymarczyk, Grzegorz; Wilczynski, Andrzej; Empig, Cyril; Freimark, Bruce; Gray, Michael; Schlunegger, Kyle; Hutchins, Jeff; Kotenko, Sergei V; Birge, Raymond B
2017-06-01
Tyro3, Axl, and Mertk (collectively TAM receptors) are three homologous receptor tyrosine kinases that bind vitamin K-dependent endogenous ligands, Protein S (ProS), and growth arrest-specific factor 6 (Gas6), and act as bridging molecules to promote phosphatidylserine (PS)-mediated clearance of apoptotic cells (efferocytosis). TAM receptors are overexpressed in a vast array of tumor types, whereby the level of expression correlates with the tumor grade and the emergence of chemo- and radioresistance to targeted therapeutics, but also have been implicated as inhibitory receptors on infiltrating myeloid-derived cells in the tumor microenvironment that can suppress host antitumor immunity. In the present study, we utilized TAM-IFNγR1 reporter lines and expressed TAM receptors in a variety of epithelial cell model systems to show that each TAM receptor has a unique pattern of activation by Gas6 or ProS, as well as unique dependency for PS on apoptotic cells and PS liposomes for activity. In addition, we leveraged this system to engineer epithelial cells that express wild-type TAM receptors and show that although each receptor can promote PS-mediated efferocytosis, AKT-mediated chemoresistance, as well as upregulate the immune checkpoint molecule PD-L1 on tumor cells, Mertk is most dominant in the aforementioned pathways. Functionally, TAM receptor-mediated efferocytosis could be partially blocked by PS-targeting antibody 11.31 and Annexin V, demonstrating the existence of a PS/PS receptor (i.e., TAM receptor)/PD-L1 axis that operates in epithelial cells to foster immune escape. These data provide a rationale that PS-targeting, anti-TAM receptor, and anti-PD-L1-based therapeutics will have merit as combinatorial checkpoint inhibitors. Implications: Many tumor cells are known to upregulate the immune checkpoint inhibitor PD-L1. This study demonstrates a role for PS and TAM receptors in the regulation of PD-L1 on cancer cells. Mol Cancer Res; 15(6); 753-64. ©2017 AACR . ©2017 American Association for Cancer Research.
Tabarean, Iustin V.; Sanchez-Alavez, Manuel; Sethi, Jasmine
2012-01-01
Histamine is involved in the central control of arousal, circadian rhythms and metabolism. The preoptic area, a region that contains thermoregulatory neurons is the main locus of histamine modulation of body temperature. Here we report that in mice histamine activates H2 subtype receptors in the medial preoptic nucleus (MPON) and induces hyperthermia. We also found that a population of glutamatergic MPON neurons express H2 receptors and are excited by histamine or H2 specific agonists. The agonists decreased the input resistance of the neuron and increased the depolarizing “sag” observed during hyperpolarizing current injections. Furthermore, at −60 mV holding potential activation of H2 receptors induced an inward current that was blocked by ZD7288, a specific blocker of the hyperpolarization activated cationic current (Ih). Indeed, activation of H2 receptors resulted in increased Ih amplitude in response to hyperpolarizing voltage steps and a depolarizing shift in its voltage-dependent activation. The neurons excited by H2 specific agonism expressed the HCN1 and HCN2 channel subunits. Our data indicate that at the level of the MPON histamine influences thermoregulation by increasing the firing rate of glutamatergic neurons that express H2 receptors. PMID:22366077
Tabarean, Iustin V; Sanchez-Alavez, Manuel; Sethi, Jasmine
2012-08-01
Histamine is involved in the central control of arousal, circadian rhythms and metabolism. The preoptic area, a region that contains thermoregulatory neurons is the main locus of histamine modulation of body temperature. Here we report that in mice, histamine activates H(2) subtype receptors in the medial preoptic nucleus (MPON) and induces hyperthermia. We also found that a population of glutamatergic MPON neurons express H(2) receptors and are excited by histamine or H(2) specific agonists. The agonists decreased the input resistance of the neuron and increased the depolarizing "sag" observed during hyperpolarizing current injections. Furthermore, at -60 mV holding potential, activation of H(2) receptors induced an inward current that was blocked by ZD7288, a specific blocker of the hyperpolarization activated cationic current (I(h)). Indeed, activation of H(2) receptors resulted in increased I(h) amplitude in response to hyperpolarizing voltage steps and a depolarizing shift in its voltage-dependent activation. The neurons excited by H(2) specific agonism expressed the HCN1 and HCN2 channel subunits. Our data indicate that at the level of the MPON histamine influences thermoregulation by increasing the firing rate of glutamatergic neurons that express H(2) receptors. Copyright © 2012 Elsevier Ltd. All rights reserved.
Cholinergic chemosensory cells of the thymic medulla express the bitter receptor Tas2r131.
Soultanova, Aichurek; Voigt, Anja; Chubanov, Vladimir; Gudermann, Thomas; Meyerhof, Wolfgang; Boehm, Ulrich; Kummer, Wolfgang
2015-11-01
The thymus is the site of T cell maturation which includes positive selection in the cortex and negative selection in the medulla. Acetylcholine is locally produced in the thymus and cholinergic signaling influences the T cell development. We recently described a distinct subset of medullary epithelial cells in the murine thymus which express the acetylcholine-synthesizing enzyme choline acetyltransferase (ChAT) and components of the canonical taste transduction cascade, i.e. transient receptor potential melastatin-like subtype 5 channel (TRPM5), phospholipase Cβ(2), and Gα-gustducin. Such a chemical phenotype is characteristic for chemosensory cells of mucosal surfaces which utilize bitter receptors for detection of potentially hazardous compounds and cholinergic signaling to initiate avoidance reflexes. We here demonstrate mRNA expression of bitter receptors Tas2r105, Tas2r108, and Tas2r131 in the murine thymus. Using a Tas2r131-tauGFP reporter mouse we localized the expression of this receptor to cholinergic cells expressing the downstream elements of the taste transduction pathway. These cells are distinct from the medullary thymic epithelial cells which promiscuously express tissue-restricted self-antigens during the process of negative selection, since double-labeling immunofluorescence showed no colocalization of autoimmune regulator (AIRE), the key mediator of negative selection, and TRPM5. These data demonstrate the presence of bitter taste-sensing signaling in cholinergic epithelial cells in the thymic medulla and opens a discussion as to what is the physiological role of this pathway. Copyright © 2015 Elsevier B.V. All rights reserved.
Seo, N; Tokura, Y; Ishihara, S; Takeoka, Y; Tagawa, S; Takigawa, M
2000-01-01
Recent studies have revealed the existence of a distinct type of NK cell leukaemia of the juvenile type, which presents with hypersensitivity to mosquito bites (HMB) as an essential clinical manifestation and is infected with clonal Epstein–Barr virus (EBV). This disorder is thus called HMB-EBV-NK disease and has been reported in Orientals, mostly from Japan. We investigated the profile of cytokine production and the expression of both types of NK inhibitory receptors, i.e. CD94 lectin-like dimers and killer-cell immunoglobulin-like receptors, in NK leukaemic cells from three patients with HMB-EBV-NK disease. It was found that freshly isolated NK leukaemic cells expressed mRNA for interferon-gamma (IFN-γ) and additionally produced IL-10 upon stimulation with IL-2, indicating that the NK cells were of NK1 type. More than 98% of NK cells from the patients bore CD94 at a higher level than did normal NK cells, whereas p70 or NKAT2, belonging to immunoglobulin-like receptor, was not expressed in those NK cells. Freshly isolated leukaemic NK cells transcribed mRNA for CD94-associated molecule NKG2C at an abnormally high level, and upon stimulation with IL-2 and/or IL-12 they expressed NKG2A as well. The disordered expression of these inhibitory receptors not only provides some insights into the pathogenesis of HMB-EBV-NK disease but also can be used as phenotypic markers for the diagnosis of this type of NK cell leukaemia. PMID:10844517
Oikonomou, Eftychia; Buchfelder, Michael; Adams, Eric F
2008-06-01
Cholecystokinin (CCK) is a gut-brain peptide has been described to be able to induce mitosis according to recent studies. Additionally, conflicting data has been published on whether tumours of the central and peripheral nervous system in general, and gliomas in particular, express CCK receptors. In the present in vitro study we employed reverse transcription followed by the polymerase chain reaction (RT-PCR) to investigate whether mRNA for CCK-A and CCK-B receptors as well as CCK peptide itself is present in primary human gliomas and the U-87 MG GBM cell line. The data show that 14/14 (100%) of the primary gliomas exhibited mRNA expression for the CCK peptide gene and the B receptor including the U-87 MG cells, whereas, only 2/14 (14%) showed presence of the CCK-A receptor. The presence of CCK receptors together with CCK peptide expression itself suggests presence of an autocrine loop controlling glioma cell growth. In support of this conclusion, a neutralizing antibody against the CCK peptide exhibited a dose dependent inhibition of cell growth whereas, antagonists to CCK caused a dose depend inhibition of exogenous stimulated glioma cell growth in vitro, via the CCK-B receptor which is PKC activated. Assessment of apoptosis and proteasome activity were undertaken and we report that treatment with CCK antagonists decreased proteasome and increased caspase-3 activity. These data indicate that CCK peptide and CCK-B are abundant in human gliomas and they act to stimulate cell growth in an autocrine manner, primarily via the high affinity CCK-B receptor, which was blocked by antagonists to CCK, perhaps via apoptosis.
Ohta, Hiroto; Takebe, Youhei; Murakami, Yuka; Takahama, Yusei; Morimura, Shigeru
2017-05-01
The aromatic amines tyramine and β-phenylethylamine are abundant in fermented foods. Recently, a family of human trace amine-associated receptors (hTAARs) was discovered that responds to these compounds. This study examined the expression of hTAAR genes in five human organs. Among them, the stomach expressed hTAAR1 and hTAAR9. Interestingly, more hTAAR1 was expressed in the pylorus than in the other stomach regions. The CRE-SEAP reporter assay revealed that only hTAAR1 functioned as a G s -coupled receptor in response to tyramine and β-phenylethylamine stimulation. The β-phenylethylamine-mediated hTAAR1 activity could be potentiated using 3-isobutyl-1-methylxanthine. These data suggest that tyramine and β-phenylethylamine in fermented foods act at hTAAR1 as agonists in the pylorus of stomach.
Connelly, Timothy; Yu, Yiqun; Grosmaitre, Xavier; Wang, Jue; Santarelli, Lindsey C.; Savigner, Agnes; Qiao, Xin; Wang, Zhenshan; Storm, Daniel R.; Ma, Minghong
2015-01-01
Mechanosensitive cells are essential for organisms to sense the external and internal environments, and a variety of molecules have been implicated as mechanical sensors. Here we report that odorant receptors (ORs), a large family of G protein-coupled receptors, underlie the responses to both chemical and mechanical stimuli in mouse olfactory sensory neurons (OSNs). Genetic ablation of key signaling proteins in odor transduction or disruption of OR–G protein coupling eliminates mechanical responses. Curiously, OSNs expressing different OR types display significantly different responses to mechanical stimuli. Genetic swap of putatively mechanosensitive ORs abolishes or reduces mechanical responses of OSNs. Furthermore, ectopic expression of an OR restores mechanosensitivity in loss-of-function OSNs. Lastly, heterologous expression of an OR confers mechanosensitivity to its host cells. These results indicate that certain ORs are both necessary and sufficient to cause mechanical responses, revealing a previously unidentified mechanism for mechanotransduction. PMID:25550517
Somogyi, Virág; Horváth, Tamás L; Tóth, István; Bartha, Tibor; Frenyó, László Vilmos; Kiss, Dávid Sándor; Jócsák, Gergely; Kerti, Annamária; Naftolin, Frederick; Zsarnovszky, Attila
2016-12-01
Thyroid hormones (THs) and oestrogens are crucial in the regulation of cerebellar development. TH receptors (TRs) mediate these hormone effects and are regulated by both hormone families. We reported earlier that THs and oestradiol (E 2 ) determine TR levels in cerebellar cell culture. Here we demonstrate the effects of low concentrations (10 -10 M) of the endocrine disruptor (ED) bisphenol A (BPA) on the hormonal (THs, E 2 ) regulation of TRα,β in rat cerebellar cell culture. Primary cerebellar cell cultures, glia-containing and glia-destroyed, were treated with BPA or a combination of BPA and E 2 and/or THs. Oestrogen receptor and TH receptor mRNA and protein levels were determined by real-time qPCR and Western blot techniques. The results show that BPA alone decreases, while BPA in combination with THs and/or E 2 increases TR mRNA expression. In contrast, BPA alone increased receptor protein expressions, but did not further increase them in combination with THs and/or E 2 . The modulatory effects of BPA were mediated by the glia; however, the degree of changes also depended on the specific hormone ligand used. The results signify the importance of the regulatory mechanisms interposed between transcription and translation and raise the possibility that BPA could act to influence nuclear hormone receptor levels independently of ligand-receptor interaction.
Enhanced expression of G-protein coupled estrogen receptor (GPER/GPR30) in lung cancer
2012-01-01
Background G-protein-coupled estrogen receptor (GPER/GPR30) was reported to bind 17β-estradiol (E2), tamoxifen, and ICI 182,780 (fulvestrant) and promotes activation of epidermal growth factor receptor (EGFR)-mediated signaling in breast, endometrial and thyroid cancer cells. Although lung adenocarcinomas express estrogen receptors α and β (ERα and ERβ), the expression of GPER in lung cancer has not been investigated. The purpose of this study was to examine the expression of GPER in lung cancer. Methods The expression patterns of GPER in various lung cancer lines and lung tumors were investigated using standard quantitative real time PCR (at mRNA levels), Western blot and immunohistochemistry (IHC) methods (at protein levels). The expression of GPER was scored and the pairwise comparisons (cancer vs adjacent tissues as well as cancer vs normal lung tissues) were performed. Results Analysis by real-time PCR and Western blotting revealed a significantly higher expression of GPER at both mRNA and protein levels in human non small cell lung cancer cell (NSCLC) lines relative to immortalized normal lung bronchial epithelial cells (HBECs). The virally immortalized human small airway epithelial cell line HPL1D showed higher expression than HBECs and similar expression to NSCLC cells. Immunohistochemical analysis of tissue sections of murine lung adenomas as well as human lung adenocarcinomas, squamous cell carcinomas and non-small cell lung carcinomas showed consistently higher expression of GPER in the tumor relative to the surrounding non-tumor tissue. Conclusion The results from this study demonstrate increased GPER expression in lung cancer cells and tumors compared to normal lung. Further evaluation of the function and regulation of GPER will be necessary to determine if GPER is a marker of lung cancer progression. PMID:23273253
Enhanced expression of G-protein coupled estrogen receptor (GPER/GPR30) in lung cancer.
Jala, Venkatakrishna Rao; Radde, Brandie N; Haribabu, Bodduluri; Klinge, Carolyn M
2012-12-28
G-protein-coupled estrogen receptor (GPER/GPR30) was reported to bind 17β-estradiol (E2), tamoxifen, and ICI 182,780 (fulvestrant) and promotes activation of epidermal growth factor receptor (EGFR)-mediated signaling in breast, endometrial and thyroid cancer cells. Although lung adenocarcinomas express estrogen receptors α and β (ERα and ERβ), the expression of GPER in lung cancer has not been investigated. The purpose of this study was to examine the expression of GPER in lung cancer. The expression patterns of GPER in various lung cancer lines and lung tumors were investigated using standard quantitative real time PCR (at mRNA levels), Western blot and immunohistochemistry (IHC) methods (at protein levels). The expression of GPER was scored and the pairwise comparisons (cancer vs adjacent tissues as well as cancer vs normal lung tissues) were performed. Analysis by real-time PCR and Western blotting revealed a significantly higher expression of GPER at both mRNA and protein levels in human non small cell lung cancer cell (NSCLC) lines relative to immortalized normal lung bronchial epithelial cells (HBECs). The virally immortalized human small airway epithelial cell line HPL1D showed higher expression than HBECs and similar expression to NSCLC cells. Immunohistochemical analysis of tissue sections of murine lung adenomas as well as human lung adenocarcinomas, squamous cell carcinomas and non-small cell lung carcinomas showed consistently higher expression of GPER in the tumor relative to the surrounding non-tumor tissue. The results from this study demonstrate increased GPER expression in lung cancer cells and tumors compared to normal lung. Further evaluation of the function and regulation of GPER will be necessary to determine if GPER is a marker of lung cancer progression.
Ren, Qian; Lan, Jiang-Feng; Zhong, Xue; Song, Xiao-Jun; Ma, Fei; Hui, Kai-Min; Wang, Wen; Yu, Xiao-Qiang; Wang, Jin-Xing
2014-07-01
Animal Toll-like receptors (TLRs) are involved in innate immunity. Toll proteins are generally transmembrane proteins. In this study, an atypical Toll-like receptor (HcToll-2) was identified from the triangle-shell pearl mussel Hyriopsis cumingii, which belongs to phylum Mollusca. Unlike the typical Toll like receptors with extracellular leucine-rich repeats (LRRs), transmembrane, and intracellular Toll/interleukin-1 receptor (TIR) domains, HcToll-2 has two homologous TIR domains located at the C-terminal (designated as HcTIR1 and HcTIR2) and lacks a transmembrane domain. Phylogenetic analysis showed that HcTIR1 was clustered with TIR of sea anemone Toll, and HcTIR2 was clustered with TIR of Drosophila Toll. HcToll-2 mRNA could be detected in the hepatopancreas and was upregulated after challenge with Escherichia coli and Staphylococcus aureus. Recombinant HcLRR protein with GST tag could bind to bacteria and also to LPS and PGN. Over-expression of both HcTIR1 and HcTIR2 induced drosomycin genes in Drosophila S2 cells. RNAi analysis showed that HcToll-2 was required for the expression of theromacin, which is a cysteine-rich antimicrobial peptide (AMP) gene. This research is the first report of an atypical Toll-like receptor HcToll-2 involved in antibacterial immunity through induction of AMP expression. Copyright © 2014 Elsevier Ltd. All rights reserved.
Collins, Laura C; Cole, Kimberly S; Marotti, Jonathan D; Hu, Rong; Schnitt, Stuart J; Tamimi, Rulla M
2011-07-01
Previous studies have demonstrated that androgen receptor is expressed in many breast cancers, but its expression in relation to the various breast cancer subtypes as defined by molecular profiling has not been studied in detail. We constructed tissue microarrays from 3093 breast cancers that developed in women enrolled in the Nurses' Health Study. Tissue microarray sections were immunostained for estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), cytokeratin 5/6, epidermal growth factor receptor (EGFR) and androgen receptor (ER). Immunostain results were used to categorize each cancer as luminal A or B, HER2 and basal like. The relationships between androgen receptor expression and molecular subtype were analyzed. Overall, 77% of the invasive breast carcinomas were androgen receptor positive. Among 2171 invasive cancers, 64% were luminal A, 15% luminal B, 6% HER2 and 11% basal like. The frequency of androgen receptor expression varied significantly across the molecular phenotypes (P<0.0001). In particular, androgen receptor expression was commonly observed in luminal A (91%) and B (68%) cancers, but was less frequently seen in HER2 cancers (59%). Despite being defined by the absence of ER and PR expression and being considered hormonally unresponsive, 32% of basal-like cancers expressed androgen receptor. Among 246 cases of ductal carcinoma in situ, 86% were androgen receptor positive, but the frequency of androgen receptor expression differed significantly across the molecular phenotypes (P=0.001), and high nuclear grade lesions were less likely to be androgen receptor positive compared with lower-grade lesions. Androgen receptor expression is most commonly seen in luminal A and B invasive breast cancers. However, expression of androgen receptor is also seen in approximately one-third of basal-like cancers, providing further evidence that basal-like cancers represent a heterogeneous group. Our findings raise the possibility that targeting the androgen receptor pathway may represent a novel therapeutic approach to the management of patients with basal-like cancers.
Roth, Michael D; Whittaker, Katherine M; Choi, Ruth; Tashkin, Donald P; Baldwin, Gayle Cocita
2005-12-01
Cocaine is associated with an increased risk for, and progression of, clinical disease associated with human immunodeficiency virus (HIV) infection. A human xenograft model, in which human peripheral blood mononuclear cells were implanted into severe combined immunodeficiency mice (huPBL-SCID) and infected with a HIV reporter virus, was used to investigate the biological interactions between cocaine and HIV infection. Systemic administration of cocaine (5 mg/kg/d) significantly increased the percentage of HIV-infected PBL (two- to threefold) and viral load (100- to 300-fold) in huPBL-SCID mice. Despite the capacity for cocaine to increase corticosterone and adrenocorticotropic hormone levels in control mice, the hypothalamic-pituitary-adrenal axis was suppressed in HIV-infected animals, and corticosterone levels were further decreased when animals were exposed to HIV and cocaine. Activating huPBL in vitro in the presence of 10(-8) M cocaine increased expression of CC chemokine receptor 5 (CCR5) and CXC chemokine receptor 4 (CXCR4) coreceptors. Expression of CCR5 was also increased at early time-points in the huPBL-SCID model following systemic exposure to cocaine (54.1+/-9.4% increase over control, P<0.01). This effect preceded the boost in viral infection and waned as HIV infection progressed. Cocaine has been shown to mediate immunosuppressive effects by activating sigma-1 receptors in immune cells in vitro and in vivo. Consistent with these reports, a selective sigma-1 antagonist, BD1047, blocked the effects of cocaine on HIV replication in the huPBL-SCID mouse. Our results suggest that systemic exposure to cocaine can enhance HIV infection in vivo by activating sigma-1 receptors and by modulating the expression of HIV coreceptors.
2009-01-01
Insulin signalling pathways were investigated in a 33 year-old woman with immunologic insulin resistance. Her past medical history was remarkable for intermittent use of insulin and allergic reactions to several drugs, and measure of plasma anti-insulin antibodies level corroborated the clinical suspicion of immune mediated insulin resistance (8074 nU/ml - RIA - Ref value: <60). Treatment with several immunosuppressive regimens was tried, however the results were disappointing. Possible subcellular mechanisms of insulin resistance were investigated by performing analysis of insulin receptor and post receptor signaling in skeletal muscle biopsy. The expression of insulin receptor (IR), insulin receptor substrate 1 (IRS-1) and glucose transporter 4 (GLUT-4) was evaluated in total extract from muscle tissue by Western blotting. Basal IR, IRS-1 and GLUT-4 expression was detected, however receptor autophosphorylation was not observed. A study of translocation of GLUT-4 to plasma membrane showed that tissue presented low levels of membrane-associated GLUT-4. When in vitro stimulation was undertaken, tissue was capable to be responsive to insulin. Our results suggest that even though IR expression was normally occurring, IR β-subunit tyrosine kinase activity in muscle was down-regulated leading to alterations in insulin post receptor signaling. Consistent with normal insulin receptor and post receptor signaling, our results were compatible with decreased insulin binding to IR probably due to neutralization by anti-insulin antibodies. In conclusion, this patient has immunologic insulin resistance and treatment should be based on immunosuppressive drugs as tolerated. PMID:19941665
Hernández-Torres, Gloria; Enríquez-Palacios, Ernesto; Mecha, Miriam; Feliú, Ana; Rueda-Zubiaurre, Ainoa; Angelina, Alba; Martín-Cruz, Leticia; Martín-Fontecha, Mar; Palomares, Oscar; Guaza, Carmen; Peña-Cabrera, Eduardo; López-Rodríguez, María L; Ortega-Gutiérrez, Silvia
2018-05-14
Serotonin (5-HT) modulates key aspects of the immune system. However, its precise function and the receptors involved in the observed effects have remained elusive. Among the different serotonin receptors, 5-HT 1A plays an important role in the immune system given its presence in cells involved in both the innate and adaptive immune responses, but its actual levels of expression under different conditions have not been comprehensively studied due to the lack of suitable tools. To further clarify the role of 5-HT 1A receptor in the immune system, we have developed a fluorescent small molecule probe that enables the direct study of the receptor levels in native cells. This probe allows direct profiling of the receptor expression in immune cells using flow cytometry. Our results show that important subsets of immune cells including human monocytes and dendritic cells express functional 5-HT 1A and that its activation is associated with anti-inflammatory signaling. Furthermore, application of the probe to the experimental autoimmune encephalomyelitis model of multiple sclerosis demonstrates its potential to detect the specific overexpression of the 5-HT 1A receptor in CD4+ T cells. Accordingly, the probe reported herein represents a useful tool whose use can be extended to study the levels of 5-HT 1A receptor in ex vivo samples of different immune system conditions.
HER2 and EGFR overexpression support metastatic progression of prostate cancer to bone
Day, Kathleen C.; Hiles, Guadalupe Lorenzatti; Kozminsky, Molly; Dawsey, Scott J.; Paul, Alyssa; Broses, Luke J.; Shah, Rajal; Kunja, Lakshmi P.; Hall, Christopher; Palanisamy, Nallasivam; Daignault-Newton, Stephanie; El-Sawy, Layla; Wilson, Steven James; Chou, Andrew; Ignatoski, Kathleen Woods; Keller, Evan; Thomas, Dafydd; Nagrath, Sunitha; Morgan, Todd; Day, Mark L.
2016-01-01
Activation of the epidermal growth factor receptors EGFR (ErbB1) and HER2 (ErbB2) drive the progression of multiple cancer types through complex mechanisms that are still not fully understood. In this study, we report that HER2 expression is elevated in bone metastases of prostate cancer independently of gene amplification. An examination of HER2 and NF-κB receptor (RANK) coexpression revealed increased levels of both proteins in aggressive prostate tumors and metastatic deposits. Inhibiting HER2 expression in bone tumor xenografts reduced proliferation and RANK expression while maintaining EGFR expression. In examining the role of EGFR in tumor-initiating cells (TIC), we found that EGFR expression was required for primary and secondary sphere formation of prostate cancer cells. EGFR expression was also observed in circulating tumor cells (CTC) during prostate cancer metastasis. Dual inhibition of HER2 and EGFR resulted in significant inhibition of tumor xenograft growth, further supporting the significance of these receptors in prostate cancer progression. Overall, our results indicate that EGFR promotes survival of prostate TIC and CTC that metastasize to bone, whereas HER2 supports the growth of prostate cancer cells once they are established at metastatic sites. PMID:27793843
Noyan, Kajsa; Nguyen, Son; Betts, Michael R; Sönnerborg, Anders; Buggert, Marcus
2018-01-01
Human immunodeficiency virus type-1 (HIV-1) elite controllers (ELCs) represent a unique population that control viral replication in the absence of antiretroviral therapy (cART). It is well established that expression of multiple inhibitory receptors on CD8+ T cells is associated with HIV-1 disease progression. However, whether reduced co-expression of inhibitory receptors on CD4+ T cells is linked to natural viral control and slow HIV-1 disease progression remains undefined. Here, we report on the expression pattern of numerous measurable inhibitory receptors, associated with T cell exhaustion (programmed cell death-1, CTLA-4, and TIGIT), on different CD4+ T cell memory populations in ELCs and HIV-infected subjects with or without long-term cART. We found that the co-expression pattern of inhibitory receptors was significantly reduced in ELCs compared with HIV-1 cART-treated and viremic subjects, and similar to healthy controls. Markers associated with T cell exhaustion varied among different memory CD4+ T cell subsets and highest levels were found mainly on transitional memory T cells. CD4+ T cells co-expressing all inhibitory markers were positively correlated to T cell activation (CD38+ HLA-DR+) as well as the transcription factors Helios and FoxP3. Finally, clinical parameters such as CD4 count, HIV-1 viral load, and the CD4/CD8 ratio all showed significant associations with CD4+ T cell exhaustion. We demonstrate that ELCs are able to maintain lower levels of CD4+ T cell exhaustion despite years of ongoing viral replication compared with successfully cART-treated subjects. Our findings suggest that ELCs harbor a "healthy" state of inhibitory receptor expression on CD4+ T cells that might play part in maintenance of their control status.
Characterization of dopamine D1 and D2 receptor-expressing neurons in the mouse hippocampus.
Gangarossa, Giuseppe; Longueville, Sophie; De Bundel, Dimitri; Perroy, Julie; Hervé, Denis; Girault, Jean-Antoine; Valjent, Emmanuel
2012-12-01
The hippocampal formation is part of an anatomical system critically involved in learning and memory. Increasing evidence suggests that dopamine plays an important role in learning and memory as well as in several forms of synaptic plasticity. However, the precise identification of neuronal populations expressing D1 or D2 dopamine receptors within the hippocampus is still lacking. To clarify this issue, we used BAC transgenic mice expressing enhanced green fluorescent protein (EGFP) under the control of the promoter of dopamine D1 or D2 receptors. In Drd1a-EGFP mice, sparse GFP-expressing neurons were detected among glutamatergic projecting neurons of the granular layer of the dentate gyrus and GABAergic interneurons located in the hilus. A dense immunofluorescence was observed in the outer and medial part of the molecular layer of the dentate gyrus as well as in the inner part of the molecular layer of CA1 corresponding to the terminals of pyramidal neurons of the entorhinal cortex defining the perforant and the temporo-ammonic pathway respectively. Finally, scattered D1 receptor-expressing neurons were also identified as GABAergic interneurons in the CA3/CA1 fields of the hippocampus. In Drd2-EGFP transgenic mice, GFP was exclusively detected in the glutamatergic mossy cells located in the polymorphic layer of the dentate gyrus. This pattern was confirmed in Drd2-Cre mice crossed with NLS-LacZ-Tau(mGFP) :LoxP and RCE:LoxP reporter lines. Our results demonstrate that D1 and D2 receptor-expressing neurons are strictly segregated in the mouse hippocampus. By clarifying the identity of D1 and D2 receptor-expressing neurons in the hippocampus, this study establishes a basis for future investigations aiming at elucidating their roles in the hippocampal network. Copyright © 2012 Wiley Periodicals, Inc.
Cui, Lin; Lv, Can; Zhang, Jiannan; Mo, Chunheng; Lin, Dongliang; Li, Juan; Wang, Yajun
2017-06-05
Melanin-concentrating hormone (MCH) is a neuropeptide expressed in the brain and exerts its actions through interaction with the two known G protein-coupled receptors, namely melanin-concentrating hormone receptor 1 and 2 (MCHR1 and MCHR2) in mammals. However, the information regarding the expression and functionality of MCH and MCHR(s) remains largely unknown in birds. In this study, using RT-PCR and RACE PCR, we amplified and cloned a MCHR1-like receptor, which is named cMCHR4 according to its evolutionary origin, and a MCHR2 from chicken brain. The cloned cMCHR4 was predicted to encode a receptor of 367 amino acids, which shares high amino acid identities with MCHR4 of ducks (90%), western painted turtles (85%), and coelacanths (77%), and a comparatively low identity to human MCHR1 (58%) and MCHR2 (38%), whereas chicken MCHR2 encodes a putative C-terminally truncated receptor and is likely a pseudogene. Using cell-based luciferase reporter assays or Western blot, we further demonstrated that chicken (and duck) MCHR4 could be potently activated by chicken MCH 1-19 , and its activation can elevate calcium concentration and activate MAPK/ERK and cAMP/PKA signaling pathways, indicating an important role of MCHR4 in mediating MCH actions in birds. Quantitative real-time PCR revealed that both cMCH and cMCHR4 mRNA are expressed in various brain regions including the hypothalamus, and cMCH expression in the hypothalamus of 3-week-old chicks could be induced by 36-h fasting, indicating that cMCH expression is correlated with energy balance. Taken together, characterization of chicken MCH and MCHR4 will aid to uncover the conserved roles of MCH across vertebrates. Copyright © 2017 Elsevier B.V. All rights reserved.
Enhancement of Adipocyte Browning by Angiotensin II Type 1 Receptor Blockade.
Tsukuda, Kana; Mogi, Masaki; Iwanami, Jun; Kanno, Harumi; Nakaoka, Hirotomo; Wang, Xiao-Li; Bai, Hui-Yu; Shan, Bao-Shuai; Kukida, Masayoshi; Higaki, Akinori; Yamauchi, Toshifumi; Min, Li-Juan; Horiuchi, Masatsugu
2016-01-01
Browning of white adipose tissue (WAT) has been highlighted as a new possible therapeutic target for obesity, diabetes and lipid metabolic disorders, because WAT browning could increase energy expenditure and reduce adiposity. The new clusters of adipocytes that emerge with WAT browning have been named 'beige' or 'brite' adipocytes. Recent reports have indicated that the renin-angiotensin system (RAS) plays a role in various aspects of adipose tissue physiology and dysfunction. The biological effects of angiotensin II, a major component of RAS, are mediated by two receptor subtypes, angiotensin II type 1 receptor (AT1R) and type 2 receptor (AT2R). However, the functional roles of angiotensin II receptor subtypes in WAT browning have not been defined. Therefore, we examined whether deletion of angiotensin II receptor subtypes (AT1aR and AT2R) may affect white-to-beige fat conversion in vivo. AT1a receptor knockout (AT1aKO) mice exhibited increased appearance of multilocular lipid droplets and upregulation of thermogenic gene expression in inguinal white adipose tissue (iWAT) compared to wild-type (WT) mice. AT2 receptor-deleted mice did not show miniaturization of lipid droplets or alteration of thermogenic gene expression levels in iWAT. An in vitro experiment using adipose tissue-derived stem cells showed that deletion of the AT1a receptor resulted in suppression of adipocyte differentiation, with reduction in expression of thermogenic genes. These results indicate that deletion of the AT1a receptor might have some effects on the process of browning of WAT and that blockade of the AT1 receptor could be a therapeutic target for the treatment of metabolic disorders.
Zhao, Yuanyin; Li, Yuping; Lou, Guiyu; Zhao, Li; Xu, Zhizhen; Zhang, Yan; He, Fengtian
2012-01-01
ERRα is an orphan nuclear receptor emerging as a novel biomarker of breast cancer. Over-expression of ERRα in breast tumor is considered as a prognostic factor of poor clinical outcome. The mechanisms underlying the dysexpression of this nuclear receptor, however, are poorly understood. MicroRNAs (miRNAs) regulate gene expression at the post-transcriptional level and play important roles in tumor initiation and progression. In the present study, we have identified that the expression of ERRα is regulated by miR-137, a potential tumor suppressor microRNA. The bioinformatics search revealed two putative and highly conserved target-sites for miR-137 located within the ERRα 3′UTR at nt 480–486 and nt 596–602 respectively. Luciferase-reporter assay demonstrated that the two predicted target sites were authentically functional. They mediated the repression of reporter gene expression induced by miR-137 in an additive manner. Moreover, ectopic expression of miR-137 down-regulated ERRα expression at both protein level and mRNA level, and the miR-137 induced ERRα-knockdown contributed to the impaired proliferative and migratory capacity of breast cancer cells. Furthermore, transfection with miR-137mimics suppressed at least two downstream target genes of ERRα–CCNE1 and WNT11, which are important effectors of ERRα implicated in tumor proliferation and migration. Taken together, our results establish a role of miR-137 in negatively regulating ERRα expression and breast cancer cell proliferation and migration. They suggest that manipulating the expression level of ERRα by microRNAs has the potential to influence breast cancer progression. PMID:22723937
Zhao, Yuanyin; Li, Yuping; Lou, Guiyu; Zhao, Li; Xu, Zhizhen; Zhang, Yan; He, Fengtian
2012-01-01
ERRα is an orphan nuclear receptor emerging as a novel biomarker of breast cancer. Over-expression of ERRα in breast tumor is considered as a prognostic factor of poor clinical outcome. The mechanisms underlying the dysexpression of this nuclear receptor, however, are poorly understood. MicroRNAs (miRNAs) regulate gene expression at the post-transcriptional level and play important roles in tumor initiation and progression. In the present study, we have identified that the expression of ERRα is regulated by miR-137, a potential tumor suppressor microRNA. The bioinformatics search revealed two putative and highly conserved target-sites for miR-137 located within the ERRα 3'UTR at nt 480-486 and nt 596-602 respectively. Luciferase-reporter assay demonstrated that the two predicted target sites were authentically functional. They mediated the repression of reporter gene expression induced by miR-137 in an additive manner. Moreover, ectopic expression of miR-137 down-regulated ERRα expression at both protein level and mRNA level, and the miR-137 induced ERRα-knockdown contributed to the impaired proliferative and migratory capacity of breast cancer cells. Furthermore, transfection with miR-137 mimics suppressed at least two downstream target genes of ERRα-CCNE1 and WNT11, which are important effectors of ERRα implicated in tumor proliferation and migration. Taken together, our results establish a role of miR-137 in negatively regulating ERRα expression and breast cancer cell proliferation and migration. They suggest that manipulating the expression level of ERRα by microRNAs has the potential to influence breast cancer progression.
Investigation of pyrazolo-sulfonamides as putative small molecule oxytocin receptor agonists.
Katte, Timothy A; Reekie, Tristan A; Werry, Eryn L; Jorgensen, William T; Boyd, Rochelle; Wong, Erick C N; Gulliver, Damien W; Connor, Mark; Kassiou, Michael
2017-08-18
The neuropeptide oxytocin has been implicated in multiple central nervous system functions in mammalian species. Increased levels have been reported to improve trust, alleviate symptoms related to autism and social phobias, and reduce social anxiety. Hoffman-La Roche published a patent claiming to have found potent small molecule oxytocin receptor agonists, smaller than the first non-peptide oxytocin agonist reported, WAY 267,464. We selected two of the more potent compounds from the patent and, in addition, created WAY 267,464 hybrid structures and determined their oxytocin and vasopressin receptor activity. Human embryonic kidney and Chinese hamster ovary cells were used for the expression of oxytocin or vasopressin 1a receptors and activity assessed via IP1 accumulation assays and calcium FLIPR assays. The results concluded that the reported compounds in the patent and the hybrid structures have no activity at the oxytocin or vasopressin 1a receptors. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Salman, Fadheela; Plant, Nick, E-mail: N.Plant@Surrey.ac.uk
The polychlorinated biphenyl group possesses high environmental persistence, leading to bioaccumulation and a number of adverse effects in mammals. Whilst coplanar PCBs elicit their toxic effects through agonism of the aryl hydrocarbon receptor; however, non-coplanar PCBs are not ligands for AhR, but may be ligands for members of the nuclear receptor family of proteins. To better understand the biological actions of non-coplanar PCBs, we have undertaken a systematic analysis of their ability to activate PXR and CAR-mediated effects. Cells were exposed to a range of non-coplanar PCBs (99, 138, 153, 180 and 194), or the coplanar PCB77: Direct activation ofmore » PXR and CAR was measured using a mammalian receptor activation assay in human liver cells, with rifampicin and CITCO used as positive controls ligands for PXR and CAR, respectively; activation of target gene expression was examined using reporter gene plasmids for CYP3A4 and MDR1 transfected into liver, intestine and lung cell lines. Several of the non-coplanar PCBs directly activated PXR and CAR, whilst the coplanar PCB77 did not. Non-coplanar PCBs were also able to activate PXR/CAR target gene expression in a substitution- and tissue-specific manner. Non-coplanar PCBs act as direct activators for the nuclear receptors PXR and CAR, and are able to elicit transcriptional activation of target genes in a substitution- and tissue-dependent manner. Chronic activation of PXR/CAR is linked to adverse effects and must be included in any risk assessment of PCBs. -- Highlights: ► Several Non-coplanar PCBs are able to directly activate both PXR and CAR in vitro. ► PCB153 is the most potent direct activator of PXR and CAR nuclear receptors. ► Non-coplanar PCB activation of CYP3A4/MDR1 reporter genes is structure-dependent. ► Non-coplanar PCB activate CYP3A4/MDR1 reporter genes in a tissue-dependent. ► PCB153 is the most potent activator of PXR/CAR target gene in all tissues.« less
Ruggeri, R.M.; Ferraù, F.; Campennì, A.; Simone, A.; Barresi, V.; Giuffrè, G.; Tuccari, G.; Baldari, S.; Trimarchi, F.
2009-01-01
Somastostatin receptors are frequently expressed in phaeochromocytoma but data on somatostatin receptor subtyping are scanty and the functional response to the somatostatin analogue octretide is still debated.We report an unusual case of pheochromocytoma, causing ectopic Cushing’s syndrome due to CRH production by the tumour cells, in a 50-yr-old woman. Abdominal computed tomography revealed an inhomogeneous, 9-cm mass in the right adrenal gland, and [111In-DTPA0] octreotide scintigraphy showed an abnormal uptake of the radiotracer in the right perirenal region, corresponding to the adrenal mass. The patient underwent laparoscopic surgery and formalin-fixed and paraffin-embedded samples were studied. The tumour was extensively characterized by immunohistochemistry and somatostatin receptor (SSTRs) subtypes expression was analyzed. Histological and immunohistochemical examination of the surgical specimens displayed a typical pheochromocytoma, which was found to be immunoreative to S-100, chromogranin A and neurofilaments. Immunostaining for SSTR subtypes showed a positive reaction for SSTR1, SSTR2A, SSTR2B, antisera on tumour cells. The intense and diffuse immunostaining for corticotropin releasing hormone (CRH) antiserum indicated that Cushing’s disease was dependent on CRH overproduction by the pheochromocytoma, in which no immunostaining for adrenocorticotropic hormone was found. Our report confirms the heterogeneity of the pattern of SSTR expression in pheochromocytomas, and provide further evidence for functional SSTR subtype SSTR2a in a subgroup of pheochromocytomas, suggesting that these tumours may represent potential target for octreotide treatment.
Ruggeri, Rosaria M; Ferraù, F; Campennì, A; Simone, A; Barresi, V; Giuffrè, G; Tuccari, G; Baldari, S; Trimarchi, F
2009-01-01
Somastostatin receptors are frequently expressed in phaeochromocytoma but data on somatostatin receptor subtyping are scanty and the functional response to the somatostatin analogue octretide is still debated.We report an unusual case of pheochro-mocytoma,causing ectopic Cushing's syndrome due to CRH production by the tumour cells, in a 50-yr-old woman. Abdominal computed tomography revealed an inhomogeneous,9-cm mass in the right adrenal gland,and [111In-DTPA0] octreotide scintigraphy showed an abnormal uptake of the radiotracer in the right perirenal region,corresponding to the adrenal mass.The patient underwent laparoscopic surgery and formalin-fixed and paraffin embedded samples were studied. The tumour was extensively characterized by immunohistochemistry and somatostatin receptor (SSTRs) subtypes expression was analyzed.Histological and immunohistochemical examination of the surgical specimens displayed a typical pheochromocytoma,which was found to be immunoreative to S-100, chromogranin A and neurofilaments. Immunostaining for SSTR subtypes showed a positive reaction for SSTR1, SSTR2A, SSTR2B, antisera on tumour cells. The intense and diffuse immunostaining for corticotropin releasing hormone (CRH) antiserum indicated that Cushing's disease was dependent on CRH overproduction by the pheochromocytoma,in which no immunostaining for adrenocorticotropic hormone was found. Our report confirms the heterogeneity of the pattern of SSTR expression in pheochromocytomas,and provide further evidence for functional SSTR subtype SSTR2a in a subgroup of pheochromocytomas,suggesting that these tumours may represent potential target for octreotide treatment.
Dang, Xitong; Eliceiri, Brian P.; Baird, Andrew; Costantini, Todd W.
2015-01-01
The human genome contains a unique, distinct, and human-specific α7-nicotinic acetylcholine receptor (α7nAChR) gene [CHRNA7 (gene-encoding α7-nicotinic acetylcholine receptor)] called CHRFAM7A (gene-encoding dup-α7-nicotinic acetylcholine receptor) on a locus of chromosome 15 associated with mental illness, including schizophrenia. Located 5′ upstream from the “wild-type” CHRNA7 gene that is found in other vertebrates, we demonstrate CHRFAM7A expression in a broad range of epithelial cells and sequenced the CHRFAM7A transcript found in normal human fetal small intestine epithelial (FHs) cells to prove its identity. We then compared its expression to CHRNA7 in 11 gut epithelial cell lines, showed that there is a differential response to LPS when compared to CHRNA7, and characterized the CHRFAM7A promoter. We report that both CHRFAM7A and CHRNA7 gene expression are widely distributed in human epithelial cell lines but that the levels of CHRFAM7A gene expression vary up to 5000-fold between different gut epithelial cells. A 3-hour treatment of epithelial cells with 100 ng/ml LPS increased CHRFAM7A gene expression by almost 1000-fold but had little effect on CHRNA7 gene expression. Mapping the regulatory elements responsible for CHRFAM7A gene expression identifies a 1 kb sequence in the UTR of the CHRFAM7A gene that is modulated by LPS. Taken together, these data establish the presence, identity, and differential regulation of the human-specific CHRFAM7A gene in human gut epithelial cells. In light of the fact that CHRFAM7A expression is reported to modulate ligand binding to, and alter the activity of, the wild-type α7nAChR ligand-gated pentameric ion channel, the findings point to the existence of a species-specific α7nAChR response that might regulate gut epithelial function in a human-specific fashion.—Dang, X., Eliceiri, B. P., Baird, A., Costantini, T. W. CHRFAM7A: a human-specific α7-nicotinic acetylcholine receptor gene shows differential responsiveness of human intestinal epithelial cells to LPS. PMID:25681457
Melidoni, Anna N.; Dyson, Michael R.; Wormald, Sam; McCafferty, John
2013-01-01
Antibodies that modulate receptor function have great untapped potential in the control of stem cell differentiation. In contrast to many natural ligands, antibodies are stable, exquisitely specific, and are unaffected by the regulatory mechanisms that act on natural ligands. Here we describe an innovative system for identifying such antibodies by introducing and expressing antibody gene populations in ES cells. Following induced antibody expression and secretion, changes in differentiation outcomes of individual antibody-expressing ES clones are monitored using lineage-specific gene expression to identify clones that encode and express signal-modifying antibodies. This in-cell expression and reporting system was exemplified by generating blocking antibodies to FGF4 and its receptor FGFR1β, identified through delayed onset of ES cell differentiation. Functionality of the selected antibodies was confirmed by addition of exogenous antibodies to three different ES reporter cell lines, where retained expression of pluripotency markers Oct4, Nanog, and Rex1 was observed. This work demonstrates the potential for discovery and utility of functional antibodies in stem cell differentiation. This work is also unique in constituting an example of ES cells carrying an inducible antibody that causes a functional protein “knock-down” and allows temporal control of stable signaling components at the protein level. PMID:24082130
Li, Jia-Heng; He, Pei-Yao; Fan, Dan-Ni; Alemujiang, Dilinapa; Huo, Fu-Quan; Zhao, Yan; Cao, Dong-Yuan
2018-06-21
Previous studies have shown that peripheral ionotropic glutamate receptors are involved in the increase in sensitivity of a cutaneous branch of spinal dorsal ramus (CBDR) through antidromic electrical stimulation (ADES) of another CBDR in the adjacent segment. CBDR in the thoracic segments run parallel to each other and no synaptic contact at the periphery is reported. The present study investigated whether the increased sensitivity of peripheral sensory nerves via ADES of a CBDR induced Fos expression changes in the adjacent segments of the spinal cord. Fos expression increased in the T8 - T12 segments of the spinal cord evoked by ADES of the T10 CBDR in rats. The increased Fos expression in the T11 and T12, but not T8 - T10 spinal cord segments, was significantly blocked by local application of either N-methyl-D-aspartate (NMDA) receptor antagonist dizocilpine maleate (MK-801) or non-NMDA receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX) into the receptive field of T11 CBDR. The results suggest that endogenous glutamate released by ADES of sensory nerve may bind to peripheral ionotropic glutamate receptors and activate adjacent sensory nerve endings to increase the sensitivity of the spinal cord. These data reveal the potential mechanisms of neuron activation in the spinal cord evoked by peripheral sensitization. Copyright © 2018 Elsevier B.V. All rights reserved.
deHaro, Dawn; Kines, Kristine J.; Sokolowski, Mark; Dauchy, Robert T.; Streva, Vincent A.; Hill, Steven M.; Hanifin, John P.; Brainard, George C.; Blask, David E.; Belancio, Victoria P.
2014-01-01
Expression of long interspersed element-1 (L1) is upregulated in many human malignancies. L1 can introduce genomic instability via insertional mutagenesis and DNA double-strand breaks, both of which may promote cancer. Light exposure at night, a recently recognized carcinogen, is associated with an increased risk of cancer in shift workers. We report that melatonin receptor 1 inhibits mobilization of L1 in cultured cells through downregulation of L1 mRNA and ORF1 protein. The addition of melatonin receptor antagonists abolishes the MT1 effect on retrotransposition in a dose-dependent manner. Furthermore, melatonin-rich, but not melatonin-poor, human blood collected at different times during the circadian cycle suppresses endogenous L1 mRNA during in situ perfusion of tissue-isolated xenografts of human cancer. Supplementation of human blood with exogenous melatonin or melatonin receptor antagonist during the in situ perfusion establishes a receptor-mediated action of melatonin on L1 expression. Combined tissue culture and in vivo data support that environmental light exposure of the host regulates expression of L1 elements in tumors. Our data imply that light-induced suppression of melatonin production in shift workers may increase L1-induced genomic instability in their genomes and suggest a possible connection between L1 activity and increased incidence of cancer associated with circadian disruption. PMID:24914052
Li, Linhao; Sinz, Michael W.; Zimmermann, Kurt
2012-01-01
Inhibition of insulin-like growth factor-1 receptor (IGF-1R) signaling represents an attractive therapeutic strategy for cancer treatment. A first-generation IGF-1R inhibitor (R)-4-(3-(3-chlorophenyl)-3-hydroxypropyl)-3-(4-methyl-6-morpholino-1H-benzo[d]imidazol-2-yl)pyridin-2(1H)-one (BMS-536924), however, was associated with potent CYP3A4 induction mediated by pregnane X receptor (PXR; NR1I2) transactivation. Structural activity-based modification led to the synthesis of 4-(1-(2-(4-((2-(4-chloro-1H-pyrazol-1-yl)ethyl)amino)-2-oxo-1,2-dihydropyridin-3-yl)-4-methyl-1H-benzo[d]imidazol-6-yl)piperidin-4-yl) piperazine-1-carboxylate (BMS-665351) with no PXR activity while maintaining its ability to inhibit IGF-1R. However, BMS-665351 significantly induces CYP3A4 expression in human primary hepatocytes (HPHs). Here, we report a novel nonclassical constitutive androstane receptor (CAR; NR1I3)-related pathway of BMS-665351-mediated CYP3A4 induction. BMS-665351 treatment resulted in the significant induction of CYP3A4 in HPHs and HepG2 cells, but failed to activate either PXR or CAR in cell-based reporter assays. Moreover, BMS-665351 at concentrations that induce CYP3A4 expression was unable to translocate human CAR from the cytoplasm to the nucleus of HPHs, which represents the initial step of CAR activation. Nevertheless, quantitative polymerase chain reaction analysis demonstrated that BMS-665351 significantly enhanced the expression of CYP3A4 in CAR- but not PXR-transfected HepG2 and Huh7 cells. It is noteworthy that BMS-665351 selectively induced the expression of CAR but not PXR in all tested hepatic cell systems. Synergistic induction of CYP3A4 was observed in HPHs cotreated with BMS-665351 and prototypical activators of CAR but not PXR. In summary, our results indicate that BMS-665351-mediated induction of CYP3A4 is CAR-dependent, but BMS-665351 itself is not a typical activator of either CAR or PXR, rather it functions as a selective inducer of CAR expression and increases CYP3A4 through a noncanonical CAR-related mechanism. PMID:22171088
Avian and human influenza virus compatible sialic acid receptors in little brown bats.
Chothe, Shubhada K; Bhushan, Gitanjali; Nissly, Ruth H; Yeh, Yin-Ting; Brown, Justin; Turner, Gregory; Fisher, Jenny; Sewall, Brent J; Reeder, DeeAnn M; Terrones, Mauricio; Jayarao, Bhushan M; Kuchipudi, Suresh V
2017-04-06
Influenza A viruses (IAVs) continue to threaten animal and human health globally. Bats are asymptomatic reservoirs for many zoonotic viruses. Recent reports of two novel IAVs in fruit bats and serological evidence of avian influenza virus (AIV) H9 infection in frugivorous bats raise questions about the role of bats in IAV epidemiology. IAVs bind to sialic acid (SA) receptors on host cells, and it is widely believed that hosts expressing both SA α2,3-Gal and SA α2,6-Gal receptors could facilitate genetic reassortment of avian and human IAVs. We found abundant co-expression of both avian (SA α2,3-Gal) and human (SA α2,6-Gal) type SA receptors in little brown bats (LBBs) that were compatible with avian and human IAV binding. This first ever study of IAV receptors in a bat species suggest that LBBs, a widely-distributed bat species in North America, could potentially be co-infected with avian and human IAVs, facilitating the emergence of zoonotic strains.
ErbB2 and EGFR are downmodulated during the differentiation of 3T3-L1 preadipocytes.
Pagano, Eleonora; Calvo, Juan Carlos
2003-10-15
The expression of receptors belonging to the epidermal growth factor receptor subfamily has been largely studied these last years in epithelial cells mainly as involved in cell proliferation and malignant progression. Although much work has focused on the role of these growth factor receptors in the differentiation of a variety of tissues, there is little information in regards to normal stromal cells. We investigated erbB2 expression in the murine fibroblast cell line Swiss 3T3L1, which naturally or hormonally induced undergoes adipocyte differentiation. We found that the Swiss 3T3-L1 fibroblasts express erbB2, in addition to EGFR, and in a quantity comparable to or even greater than the breast cancer cell line T47D. Proliferating cells increased erbB2 and EGFR levels when reaching confluence up to 4- and 10-fold, respectively. This expression showed a significant decrease when growth-arrested cells were stimulated to differentiate with dexamethasone and isobutyl-methylxanthine. Differentiated cells presented a decreased expression of both erbB2 and EGFR regardless of whether the cells were hormonally or spontaneously differentiated. EGF stimulation of serum-starved cells increased erbB2 tyrosine phosphorylation and retarded erbB2 migration in SDS-PAGE, suggesting receptor association and activation. Heregulin-alpha1 and -beta1, two EGF related factors, had no effect on erbB2 or EGFR phosphorylation. Although 3T3-L1 cells expressed heregulin, its specific receptors, erbB3 and erbB4, were not found. This is the first time in which erbB2 is reported to be expressed in an adipocytic cell line which does not depend on non EGF family growth factors (thyroid hormone, growth hormone, etc.) to accomplish adipose differentiation. Since erbB2 and EGFR expression were downmodulated as differentiation progressed it is conceivable that a mechanism of switching from a mitogenic to a differentiating signaling pathway may be involved, through regulation of the expression of these growth factor receptors. Copyright 2003 Wiley-Liss, Inc.
Buckley, Jill; Willingham, Emily; Agras, Koray; Baskin, Laurence S
2006-01-01
Background Vinclozolin is a fungicide that has been reported to have anti-androgenic effects in rats. We have found that in utero exposure to natural or synthetic progesterones can induce hypospadias in mice, and that the synthetic progesterone medroxyprogesterone acetate (MPA) feminizes male and virilizes female genital tubercles. In the current work, we selected a relatively low dose of vinclozolin to examine its in utero effects on the development of the genital tubercle, both at the morphological and molecular levels. Methods We gave pregnant dams vinclozolin by oral gavage from gestational days 13 through 17. We assessed the fetal genital tubercles from exposed fetuses at E19 to determine location of the urethral opening. After determination of gonadal sex, either genital tubercles were harvested for mRNA quantitation, or urethras were injected with a plastic resin for casting. We analyzed quantified mRNA levels between treated and untreated animals for mRNA levels of estrogen receptors α and β, progesterone receptor, and androgen receptor using nonparametric tests or ANOVA. To determine effects on urethral length (males have long urethras compared to females), we measured the lengths of the casts and performed ANOVA analysis on these data. Results Our morphological results indicated that vinclozolin has morphological effects similar to those of MPA, feminizing males (hypospadias) and masculinizing females (longer urethras). Because these results reflected our MPA results, we investigated the effects of in utero vinclozolin exposure on the mRNA expression levels of androgen, estrogen α and β, and progesterone receptors. At the molecular level, vinclozolin down-regulated estrogen receptor α mRNA in females and up-regulated progesterone receptor mRNA. Vinclozolin-exposed males exhibited up-regulated estrogen receptor α and progesterone receptor mRNA, effects we have also seen with exposure to the synthetic estrogen, ethinyl estradiol. Conclusion The results suggest that vinclozolin virilizes females and directly or indirectly affects progesterone receptor expression. It also affects estrogen receptor expression in a sex-based manner. We found no in vivo effect of vinclozolin on androgen receptor expression. We propose that vinclozolin, which has been designated an anti-androgen, may also exert its effects by involving additional steroid-signaling pathways. PMID:16504050
Buckley, Jill; Willingham, Emily; Agras, Koray; Baskin, Laurence S
2006-02-21
Vinclozolin is a fungicide that has been reported to have anti-androgenic effects in rats. We have found that in utero exposure to natural or synthetic progesterones can induce hypospadias in mice, and that the synthetic progesterone medroxyprogesterone acetate (MPA) feminizes male and virilizes female genital tubercles. In the current work, we selected a relatively low dose of vinclozolin to examine its in utero effects on the development of the genital tubercle, both at the morphological and molecular levels. We gave pregnant dams vinclozolin by oral gavage from gestational days 13 through 17. We assessed the fetal genital tubercles from exposed fetuses at E19 to determine location of the urethral opening. After determination of gonadal sex, either genital tubercles were harvested for mRNA quantitation, or urethras were injected with a plastic resin for casting. We analyzed quantified mRNA levels between treated and untreated animals for mRNA levels of estrogen receptors alpha and beta, progesterone receptor, and androgen receptor using nonparametric tests or ANOVA. To determine effects on urethral length (males have long urethras compared to females), we measured the lengths of the casts and performed ANOVA analysis on these data. Our morphological results indicated that vinclozolin has morphological effects similar to those of MPA, feminizing males (hypospadias) and masculinizing females (longer urethras). Because these results reflected our MPA results, we investigated the effects of in utero vinclozolin exposure on the mRNA expression levels of androgen, estrogen alpha and beta, and progesterone receptors. At the molecular level, vinclozolin down-regulated estrogen receptor alpha mRNA in females and up-regulated progesterone receptor mRNA. Vinclozolin-exposed males exhibited up-regulated estrogen receptor alpha and progesterone receptor mRNA, effects we have also seen with exposure to the synthetic estrogen, ethinyl estradiol. The results suggest that vinclozolin virilizes females and directly or indirectly affects progesterone receptor expression. It also affects estrogen receptor expression in a sex-based manner. We found no in vivo effect of vinclozolin on androgen receptor expression. We propose that vinclozolin, which has been designated an anti-androgen, may also exert its effects by involving additional steroid-signaling pathways.
Broselid, Stefan; Berg, Kelly A; Chavera, Teresa A; Kahn, Robin; Clarke, William P; Olde, Björn; Leeb-Lundberg, L M Fredrik
2014-08-08
GPR30, or G protein-coupled estrogen receptor, is a G protein-coupled receptor reported to bind 17β-estradiol (E2), couple to the G proteins Gs and Gi/o, and mediate non-genomic estrogenic responses. However, controversies exist regarding the receptor pharmacological profile, effector coupling, and subcellular localization. We addressed the role of the type I PDZ motif at the receptor C terminus in receptor trafficking and coupling to cAMP production in HEK293 cells and CHO cells ectopically expressing the receptor and in Madin-Darby canine kidney cells expressing the native receptor. GPR30 was localized both intracellularly and in the plasma membrane and subject to limited basal endocytosis. E2 and G-1, reported GPR30 agonists, neither stimulated nor inhibited cAMP production through GPR30, nor did they influence receptor localization. Instead, GPR30 constitutively inhibited cAMP production stimulated by a heterologous agonist independently of Gi/o. Moreover, siRNA knockdown of native GPR30 increased cAMP production. Deletion of the receptor PDZ motif interfered with inhibition of cAMP production and increased basal receptor endocytosis. GPR30 interacted with membrane-associated guanylate kinases, including SAP97 and PSD-95, and protein kinase A-anchoring protein (AKAP) 5 in the plasma membrane in a PDZ-dependent manner. Knockdown of AKAP5 or St-Ht31 treatment, to disrupt AKAP interaction with the PKA RIIβ regulatory subunit, decreased inhibition of cAMP production, and St-Ht31 increased basal receptor endocytosis. Therefore, GPR30 forms a plasma membrane complex with a membrane-associated guanylate kinase and AKAP5, which constitutively attenuates cAMP production in response to heterologous agonists independently of Gi/o and retains receptors in the plasma membrane. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Development of Novel Peptide Inhibitors of the Estrogen Receptor
1997-10-01
plasmids used for the transfection experiments described below included pERE-TK- CAT , an estrogen responsive chloramphenicol acetylase reporter plasmid...The inhibitory potential of expressed fragments of ER were assessed by measuring the activity of chloramphenicol acetyltransferase ( CAT ) enzyme...with an ER expression plasmid (pCMV-ER) and an estrogen-responsive reporter plasmid (pERE-TK- CAT ) in order to look for inhibition of an ER mediated
Wang, Pei-Chen; Ho, Ing-Kang; Lee, Cynthia Wei-Sheng
2015-01-01
Buprenorphine, a maintenance drug for heroin addicts, exerts its pharmacological function via κ- (KOP), μ-opioid (MOP) and nociceptin/opioid receptor-like 1 (NOP) receptors. Previously, we investigated its effects in an in vitro model expressing human MOP and NOP receptors individually or simultaneously (MOP, NOP, and MOP+NOP) in human embryonic kidney 293 cells. Here, we expanded this cell model by expressing human KOP, MOP and NOP receptors individually or simultaneously (KOP, KOP+MOP, KOP+NOP and KOP+MOP+NOP). Radioligand binding with tritium-labelled diprenorphine confirmed the expression of KOP receptors. Immunoblotting and immunocytochemistry indicated that the expressed KOP, MOP and NOP receptors are N-linked glycoproteins and colocalized in cytoplasmic compartments. Acute application of the opioid receptor agonists— U-69593, DAMGO and nociceptin— inhibited adenylate cyclase (AC) activity in cells expressing KOP, MOP and NOP receptors respectively. Buprenorphine, when applied acutely, inhibited AC activity to ~90% in cells expressing KOP+MOP+NOP receptors. Chronic exposure to buprenorphine induced concentration-dependent AC superactivation in cells expressing KOP+NOP receptors, and the level of this superactivation was even higher in KOP+MOP+NOP-expressing cells. Our study demonstrated that MOP receptor could enhance AC regulation in the presence of coexpressed KOP and NOP receptors, and NOP receptor is essential for concentration-dependent AC superactivation elicited by chronic buprenorphine exposure. PMID:26153065
Chauvet, Sylvain; Traboulsi, Wael; Thevenon, Laura; Kouadri, Amal; Feige, Jean-Jacques; Camara, Boubou; Alfaidy, Nadia; Benharouga, Mohamed
2015-08-01
Enhanced lung angiogenesis has been reported in cystic fibrosis (CF). Recently, two highly homologous ligands, endocrine gland vascular endothelial growth factor (EG-VEGF) and mammalian Bv8, have been described as new angiogenic factors. Both ligands bind and activate two closely related G protein-coupled receptors, the prokineticin receptor (PROKR) 1 and 2. Yet, the expression, regulation, and potential role of EG-VEGF, BV8, and their receptors in normal and CF lung are still unknown. The expression of the receptors and their ligands was examined using molecular, biochemical, and immunocytochemistry analyses in lungs obtained from CF patients vs. control and in normal and CF bronchial epithelial cells. Cystic fibrosis transmembrane conductance regulator (CFTR) activity was evaluated in relation to both ligands, and concentrations of EG-VEGF were measured by ELISA. At the mRNA level, EG-VEGF, BV8, and PROKR2 gene expression was, respectively, approximately five, four, and two times higher in CF lungs compared with the controls. At the cellular level, both the ligands and their receptors showed elevated expressions in the CF condition. Similar results were observed at the protein level. The EG-VEGF secretion was apical and was approximately two times higher in CF compared with the normal epithelial cells. This secretion was increased following the inhibition of CFTR chloride channel activity. More importantly, EG-VEGF and BV8 increased the intracellular concentration of Ca(2+) and cAMP and stimulated CFTR-chloride channel activity. Altogether, these data suggest local roles for epithelial BV8 and EG-VEGF in the CF airway peribronchial vascular remodeling and highlighted the role of CFTR activity in both ligand biosynthesis and secretion. Copyright © 2015 the American Physiological Society.
Mielenz, M
2017-06-01
Data on nutrient sensing by free fatty acid receptors (FFAR1, FFAR2, FFAR3, FFAR4) and hydroxycarboxylic acid receptors (HCAR1, HCAR2) are increasing for human or rodent models. Both receptor families link intestinal fermentation by the microbiota and energy metabolism with cellular responses. Therefore, this finding provides a link that is independent of the only function of the fermentation products as energy substrates. For example, these reactions are associated with insulin secretion, regulation of lipolysis, adipose tissue differentiation and innate immune responses. In farm animals, the available data on both receptor families from the intestine and other tissues increase. However, currently, the data are primarily linked with the distribution of receptor messenger RNAs (mRNAs) and more rarely with proteins. Functional data on the importance of these receptors in farm animal species is not abundant and is often associated with the immune system. In certain farm animal species, the receptors were cloned and ligand binding was characterised. In chicken, only one FFAR2 was recently identified using genome analysis, which is contradictory to a study using an FFAR1 small interfering RNA. The chicken FFAR2 is composed of more than 20 paralogs. No data on HCAR1 or HCAR2 exist in this species. Currently, in pigs, most available data are on the mRNA distribution within intestine. However, no FFAR1 expression has been shown in this organ to date. In addition to FFAR2, an orthologue (FFAR2-like) with the highest abundance in intestine has been reported. The data on HCAR1 and HCAR2 in pigs is scarce. In ruminants, most of the currently available information on receptor distribution is linked to mRNA data and shows the expression, for example, in mammary gland and adipose tissue. However, some protein data on FFAR2 and FFAR1 protein has been reported and functional data availability is slowly increasing. The receptor mRNAs of HCAR1 and HCAR2 are expressed in bovine. The HCAR2 protein has been demonstrated in certain tissues, such as liver and fat. Because of the physiological importance of both receptor families in human life science, more studies that analyse the physiological significance of both receptor families in animal science may be performed within the next several years.
Gacerez, Albert T; Hua, Casey K; Ackerman, Margaret E; Sentman, Charles L
2018-05-01
B7H6 is emerging as a promising tumor antigen that is known to be expressed on a wide array of tumors and is reported to stimulate anti-tumor responses from the immune system. As such, B7H6 presents a good target for tumor-specific immunotherapies. B7H6-specific chimeric antigen receptors (CAR) based on a murine antibody showed successful targeting and elimination of tumors expressing B7H6. However, mouse single chain variable fragments (scFvs) have the potential to induce host anti-CAR responses that may limit efficacy, so human scFvs specific for B7H6 were selected by yeast surface display. In this study, we validate the functionality of these human scFvs when formatted into chimeric antigen receptors. The data indicate that T cells expressing these B7H6-specific human scFvs as CARs induced potent anti-tumor activity in vitro and in vivo against tumors expressing high amounts of B7H6. Importantly, these human scFv-based CARs are sensitive to changes in B7H6 expression which may potentially spare non-tumor cells that express B7H6 and provides the foundation for future clinical development.
1.8 Astroms Structure of Murine GITR Ligand Dimer Expressed in Drosophila Melanogaster S2 Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chattopadhyay, K.; Ramagopal, U; Nathenson, S
2009-01-01
Glucocorticoid-induced TNF receptor ligand (GITRL), a prominent member of the TNF superfamily, activates its receptor on both effector and regulatory T cells to generate critical costimulatory signals that have been implicated in a wide range of T-cell immune functions. The crystal structures of murine and human orthologs of GITRL recombinantly expressed in Escherichia coli have previously been determined. In contrast to all classical TNF structures, including the human GITRL structure, murine GITRL demonstrated a unique 'strand-exchanged' dimeric organization. Such a novel assembly behavior indicated a dramatic impact on receptor activation as well as on the signaling mechanism associated with themore » murine GITRL costimulatory system. In this present work, the 1.8 {angstrom} resolution crystal structure of murine GITRL expressed in Drosophila melanogaster S2 cells is reported. The eukaryotic protein-expression system allows transport of the recombinant protein into the extracellular culture medium, thus maximizing the possibility of obtaining correctly folded material devoid of any folding/assembly artifacts that are often suspected with E. coli-expressed proteins. The S2 cell-expressed murine GITRL adopts an identical 'strand-exchanged' dimeric structure to that observed for the E. coli-expressed protein, thus conclusively demonstrating the novel quaternary structure assembly behavior of murine GITRL.« less
Palma, Eleonora; Mileo, Anna M.; Martínez-Torres, Ataúlfo; Eusebi, Fabrizio; Miledi, Ricardo
2002-01-01
The functional properties and cellular localization of the human neuronal α7 nicotinic acetylcholine (AcCho) receptor (α7 AcChoR) and its L248T mutated (mut) form were investigated by expressing them alone or as gene fusions with the enhanced version of the green fluorescent protein (GFP). Xenopus oocytes injected with wild-type (wt), mutα7, or the chimeric subunit cDNAs expressed receptors that gated membrane currents when exposed to AcCho. As already known, AcCho currents generated by wtα7 receptors decay much faster than those elicited by the mutα7 receptors. Unexpectedly, the fusion of GFP to the wt and mutated α7 receptors led to opposite results: the AcCho-current decay of the wt receptors became slower, whereas that of the mutated receptors was accelerated. Furthermore, repetitive applications of AcCho led to a considerable “run-down” of the AcCho currents generated by mutα7-GFP receptors, whereas those of the wtα7-GFP receptors remained stable or increased in amplitude. The AcCho-current run-down of mutα7-GFP oocytes was accompanied by a marked decrease of α-bungarotoxin binding activity. Fluorescence, caused by the chimeric receptors expressed, was seen over the whole oocyte surface but was more intense and abundant in the animal hemisphere, whereas it was much weaker in the vegetal hemisphere. We conclude that fusion of GFP to wtα7 and mutα7 receptors provides powerful tools to study the distribution and function of α7 receptors. We also conclude that fused genes do not necessarily recapitulate all of the properties of the original receptors. This fact must be borne close in mind whenever reporter genes are attached to proteins. PMID:11891308
Qiao, Weiqiang; Liu, Heyang; Liu, Ruidong; Liu, Qipeng; Zhang, Ting; Guo, Wanying; Li, Peng; Deng, Miao
2018-05-05
There are conflicting reports about the role of histone deacetylase 1 (HDAC1) in breast cancer prognosis. Here, we conducted a meta-analysis to investigate the prognostic significance of HDAC1 in breast cancer. We searched different databases to identify studies evaluating the association between HDAC1 expression and its prognostic value in breast cancer. The pooled hazard ratios (HRs) and odds radios (ORs) with 95% confidence intervals (95% CIs) were calculated from these studies to assess specific correlation. Our meta-analysis of four databases identified 7 eligible studies with 1429 total patients. We found that HDAC1 over-expression did not correlate with disease-free survival (DFS) and overall survival (OS) in breast cancer. Subgroup analysis indicated an association between up-regulated HDAC1 expression and better OS (HR = 0.47, 95% CI: 0.23-0.97; P = 0.04) in Asian breast cancer patients. However, false-positive report probability (FPRP) analysis and trial sequential analysis (TSA) indicated that the results need further validation. Furthermore, HDAC1 over-expression was associated with positive estrogen receptor (ER) expression (OR, 3.30; 95% CI, 1.11-9.83; P = 0.03) and negative human epidermal growth factor receptor 2 (HER2) expression (OR, 1.79; 95% CI, 1.22-2.61; P = 0.003), but there were no significant differences between patients based on age, tumor size, lymph node metastasis, nuclear grade, or progesterone receptor (PR) expression. Overall, our meta-analysis demonstrated an association between increased HDAC1 expression and better OS in Asian breast cancer patients. In addition, HDAC1 over-expression correlated with positive ER and negative HER2 expression in breast cancer. However, researches in large patients' randomised controlled trials (RCTs) are needed to confirm the results. Copyright © 2018 Elsevier B.V. All rights reserved.
Kenny, Nathan J; Dearden, Peter K
2013-12-01
The C termini of N-methyl-D-aspartate (NMDA) receptor NR2 subunits are thought to play a major role in the molecular establishment of memory across the Bilateria, via the phenomenon known as long-term potentiation (LTP). Despite their long history of use as models in the study of memory, the expression and structure of the NR2 subunit in the Lophotrochozoa has remained uncategorized. Here, we report the phylogenic relationships of NR subunits across the Bilateria, and the cloning and in situ analysis of expression of NMDA NR1 and NR2 subunits in the monogont rotifer Brachionus plicatilis. RNA in situ hybridization suggests expression of NMDA receptor subunits in B. plicatilis is neural, consistent with expression observed in other species, and ours is the first report confirming NR2 expression in the lophotrochozoan clade. However, the single NR2 subunit identified in B. plicatilis was found to lack the long C terminal domain found in vertebrates, which is believed to modulate LTP. Further investigation revealed that mollusc and annelid NR2 subunits possess long intracellular C terminal domains. As data from molluscs (and particularly Aplysia californica) are the basis for much of our understanding of LTP, understanding how these diverse lophotrochozoan C termini function in vivo will have many implications for how we consider the evolution of the molecular control of learning and memory across the Metazoa as a whole and interpret the results of experiments into this vital component of cognition.
Alfaidy, Nadia
2016-06-01
Prokineticin 1 (PROK1), also called EG-VEGF, is a peptide of 86 amino acids with multiple biological functions. PROK1 acts via two G-protein coupled receptors: PROKR1 PROKR2. PROK1 is highly expressed in the placenta. This article reports the expression and the role of PROK1 during normal and pathological pregnancies: (i) during early pregnancy, PROK1 exhibits a peak of placental expression shortly before the establishment of the feto-maternal circulation; (ii) its receptors, PROKR1 PROKR2 are highly expressed in human placenta; (iii) its expression is increased by hypoxia; (iv) PROK1 inhibits extravillous trophoblasts migration and invasion and increases their proliferation and survival; (v) PROK1 is also a pro-angiogenic placental factor that increases microvascular placental endothelial cells proliferation, migration, invasion, and permeability. Circulating PROK1 levels are five times higher in pregnant women during the first trimester compared to the second and third trimesters. Also, its serum levels are higher in patients with preeclampsia (PE) and in patients with isolated intra-uterine growth restriction (IUGR). In mice, maintaining high level of PROK1 beyond its normal period of production (>10.5dpc) reproduces symptoms of PE. To date, our results demonstrated that PROK1 is a central factor of human placentation with direct roles both in the control of trophoblast invasion and villous growth. Thus, a failure in the expression of PROK1 and/or its receptor during pregnancy may contribute to the development of PE and/or IUGR. Besides theses original findings, we also report a direct role of this factor in parturition. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Blanco, Eduardo; Pavón, Francisco J.; Palomino, Ana; Luque-Rojas, María Jesús; Serrano, Antonia; Rivera, Patricia; Bilbao, Ainhoa; Alen, Francisco; Vida, Margarita; Suárez, Juan
2015-01-01
Background: Endocannabinoids modulate the glutamatergic excitatory transmission by acting as retrograde messengers. A growing body of studies has reported that both signaling systems in the mesocorticolimbic neural circuitry are involved in the neurobiological mechanisms underlying drug addiction. Methods: We investigated whether the expression of both endocannabinoid and glutamatergic systems in the prefrontal cortex (PFC) were altered by an acute and/or repeated cocaine administration schedule that resulted in behavioral sensitization. We measured the protein and mRNA expression of the main endocannabinoid metabolic enzymes and the cannabinoid receptor type 1 (CB1). We also analyzed the mRNA expression of relevant components of the glutamate-signaling system, including glutamate-synthesizing enzymes, metabotropic receptors, and ionotropic receptors. Results: Although acute cocaine (10mg/kg) produced no significant changes in the endocannabinoid-related proteins, repeated cocaine administration (20mg/kg daily) induced a pronounced increase in the CB1 receptor expression. In addition, acute cocaine administration (10mg/kg) in cocaine-sensitized mice (referred to as cocaine priming) induced a selective increase in the endocannabinoid-degrading enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL). These protein changes were accompanied by an overall decrease in the ratios of endocannabinoid synthesis/degradation, especially the N-acyl phosphatidylethanolamine phospholipase D/FAAH and diacylglycerol lipase alpha/MAGL ratios. Regarding mRNA expression, while acute cocaine administration produced a decrease in CB1 receptors and N-acyl phosphatidylethanolamine phospholipase D, repeated cocaine treatment enhanced CB1 receptor expression. Cocaine-sensitized mice that were administered priming injections of cocaine mainly displayed an increased FAAH expression. These endocannabinoid changes were associated with modifications in glutamatergic transmission-related genes. An overall decrease was observed in the mRNA expression of the glutamate-synthesizing gene kidney-type glutaminase (KGA), the metabotropic glutamate receptors (mGluR3 and GluR), and subunits of NMDA ionotropic receptors (NR1, NR2A, NR2B and NR2C) after acute cocaine administration, while mice repeatedly exposed to cocaine only displayed an increase in NR2C. However, in cocaine-sensitized mice primed with cocaine, this inhibition was reversed and a strong increase was detected in the mGluR5, NR2 subunits, and both GluR1 and GluR3. Conclusions: These findings indicate that cocaine sensitization is associated with an endocannabinoid downregulation and a hyperglutamatergic state in the PFC that, overall, contribute to an enhanced glutamatergic input into PFC-projecting areas. PMID:25539508
Forcén, R; Latorre, E; Pardo, J; Alcalde, A I; Murillo, M D; Grasa, L
2016-08-01
What is the central question of this study? The action of Toll-like receptors (TLRs) 2 and 4 on the motor response to serotonin in mouse colon has not previously been reported. What is the main finding and its importance? Toll-like receptors 2 and 4 modulate the serotonin-induced contractile response in mouse colon by modifying the expression of serotonin (5-HT) receptors. Alterations in 5-HT2A and 5-HT2C receptors explain the increase of the response to serotonin in TLR2(-/-) mice. Alterations in 5-HT2C and 5-HT4 receptors explain the suppression of the response to serotonin in TLR4(-/-) mice. The microbiota, through Toll-like receptors (TLRs), may regulate gastrointestinal motility by activating neuroendocrine mechanisms. We evaluated the influence of TLR2 and TLR4 in spontaneous contractions and in the serotonin (5-HT)-induced motor response in mouse colon, and assessed the 5-HT receptors involved. Muscle contractility studies to evaluate the intestinal spontaneous motility and the response to 5-HT were performed in the colon from wild-type (WT), TLR2(-/-) , TLR4(-/-) and TLR2/4 double knockout (DKO) mice. The 5-HT receptor mRNA expression was determined by real-time PCR. The amplitude and frequency of the spontaneous contractions of the colon were smaller in TLR4(-/-) and TLR2/4 DKO mice with respect to WT mice. In WT, TLR2(-/-) and TLR2/4 DKO mice, 100 μm 5-HT evoked a contractile response. The contractile response induced by 5-HT was significantly higher in TLR2(-/-) than in WT mice. In TLR4(-/-) mice, 5-HT did not evoke any contractile response. The mRNA expression of 5-HT2A was increased in TLR2(-/-) and TLR2/4 DKO mice. The 5-HT2C and 5-HT4 mRNA expressions were increased in TLR4(-/-) and TLR2/4 DKO mice. The 5-HT2C mRNA expression was diminished in TLR2(-/-) mice. The 5-HT3 mRNA expression was increased in TLR2(-/-) , TLR4(-/-) and TLR2/4 DKO mice. The 5-HT7 mRNA expression was diminished in TLR2/4 DKO mice. In WT, TLR2(-/-) and TLR2/4 DKO mice, 5-HT2 , 5-HT3 , 5-HT4 and 5-HT7 receptor antagonists reduced or blocked the contractile response evoked by 5-HT. We postulate that TLR2 and TLR4 modulate the serotonin contractile motor response in mouse colon in an opposing manner by modifying the expression of several serotonin receptors. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.
Watase, K; Sekiguchi, M; Matsui, T A; Tagawa, Y; Wada, K
1997-01-01
We reported that a 33-amino-acid deletion (from tyrosine-715 to glycine-747) in a putative extracellular loop of GluR3 produced a mutant that exhibited dominant negative effects upon the functional expression of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors [Sekiguchi et al. (1994) J. Biol. Chem. 269, 14559-14565]. In this study, we searched for a key residue in the dominant negative effects to explore the mechanism and examined the role of the residue in the function of the AMPA receptor. We prepared 20 GluR3 mutants with amino acid substitutions within the 33-amino-acid-region, and dominant negative effects were tested electrophysiologically in Xenopus oocytes co-expressing the mutant and normal subunits. Among the mutants, only a GluR3 mutant in which an original cysteine (Cys)-722 was replaced by alanine exhibited a dominant negative effect comparable with that of the original mutant in which the entire 33-amino-acid segment is deleted. The co-expression of the Cys-722 mutant did not inhibit the translation of normal subunits in oocytes. The Cys-722 mutant formed a functional homomeric receptor with significantly higher affinity for glutamate or kainate than a homomeric GluR3 receptor. The Cys-722 mutation greatly enhanced the sensitivity of GluR3 for aniracetam, which alters kinetic properties of AMPA receptors. The kainate-induced currents in oocytes expressing the Cys-722 mutant alone showed strong inward rectification. These results suggest that the Cys-722 in GluR3 is important for dominant negative effects and plays a crucial role in the determination of pharmacological properties in AMPA receptor function. PMID:9065754
Albanito, Lidia; Sisci, Diego; Aquila, Saveria; Brunelli, Elvira; Vivacqua, Adele; Madeo, Antonio; Lappano, Rosamaria; Pandey, Deo Prakash; Picard, Didier; Mauro, Loredana; Andò, Sebastiano; Maggiolini, Marcello
2008-08-01
Different cellular receptors mediate the biological effects induced by estrogens. In addition to the classical nuclear estrogen receptors (ERs)-alpha and -beta, estrogen also signals through the seven-transmembrane G-protein-coupled receptor (GPR)-30. Using as a model system SkBr3 and BT20 breast cancer cells lacking the classical ER, the regulation of GPR30 expression by 17beta-estradiol, the selective GPR30 ligand G-1, IGF-I, and epidermal growth factor (EGF) was evaluated. Transient transfections with an expression plasmid encoding a short 5'-flanking sequence of the GPR30 gene revealed that an activator protein-1 site located within this region is required for the activating potential exhibited only by EGF. Accordingly, EGF up-regulated GPR30 protein levels, which accumulated predominantly in the intracellular compartment. The stimulatory role elicited by EGF on GPR30 expression was triggered through rapid ERK phosphorylation and c-fos induction, which was strongly recruited to the activator protein-1 site found in the short 5'-flanking sequence of the GPR30 gene. Of note, EGF activating the EGF receptor-MAPK transduction pathway stimulated a regulatory loop that subsequently engaged estrogen through GPR30 to boost the proliferation of SkBr3 and BT20 breast tumor cells. The up-regulation of GPR30 by ligand-activated EGF receptor-MAPK signaling provides new insight into the well-known estrogen and EGF cross talk, which, as largely reported, contributes to breast cancer progression. On the basis of our results, the action of EGF may include the up-regulation of GPR30 in facilitating a stimulatory role of estrogen, even in ER-negative breast tumor cells.
Ribeiro, Carla M. S.; Bird, Steve; Raes, Geert; Ghassabeh, Gholamreza H.; Schijns, Virgil E. J. C.; Pontes, Maria J. S. L.; Savelkoul, Huub F. J.; Wiegertjes, Geert F.
2011-01-01
Background The innate immune system relies upon a wide range of germ-line encoded receptors including a large number of immunoglobulin superfamily (IgSF) receptors. Different Ig-like immune receptor families have been reported in mammals, birds, amphibians and fish. Most innate immune receptors of the IgSF are type I transmembrane proteins containing one or more extracellular Ig-like domains and their regulation of effector functions is mediated intracellularly by distinct stimulatory or inhibitory pathways. Methodology/Principal Findings Carp SITR was found in a substracted cDNA repertoire from carp macrophages, enriched for genes up-regulated in response to the protozoan parasite Trypanoplasma borreli. Carp SITR is a type I protein with two extracellular Ig domains in a unique organisation of a N-proximal V/C2 (or I-) type and a C-proximal V-type Ig domain, devoid of a transmembrane domain or any intracytoplasmic signalling motif. The carp SITR C-proximal V-type Ig domain, in particular, has a close sequence similarity and conserved structural characteristics to the mammalian CD300 molecules. By generating an anti-SITR antibody we could show that SITR protein expression was restricted to cells of the myeloid lineage. Carp SITR is abundantly expressed in macrophages and is secreted upon in vitro stimulation with the protozoan parasite T. borreli. Secretion of SITR protein during in vivo T. borreli infection suggests a role for this IgSF receptor in the host response to this protozoan parasite. Overexpression of carp SITR in mouse macrophages and knock-down of SITR protein expression in carp macrophages, using morpholino antisense technology, provided evidence for the involvement of carp SITR in the parasite-induced NO production. Conclusion/Significance We report the structural and functional characterization of a novel soluble immune-type receptor (SITR) in a teleost fish and propose a role for carp SITR in the NO-mediated response to a protozoan parasite. PMID:21305002
de Blaquière, Gail E; May, Felicity E B; Westley, Bruce R
2009-06-01
Insulin-like growth factors (IGFs) are thought to promote tumour progression and metastasis in part by stimulating cell migration. Insulin receptor substrate-1 (IRS-1) and IRS-2 are multisite docking proteins positioned immediately downstream from the type I IGF and insulin receptors. IRS-2 but not IRS-1 has been reported to be involved in the migratory response of breast cancer cells to IGFs. The purpose of this investigation was to determine if IRS-1 is involved in, and to assess the contributions of IRS-1 and IRS-2 to, the migratory response of breast cancer cells to IGFs. The expression of IRS-1 and IRS-2 varied considerably between ten breast cancer cell lines. Oestrogen increases expression of the type I IGF receptor, IRS-1 and IRS-2 in MCF-7 and ZR-75 cells. Oestrogens may control the sensitivity of breast cancer cells to IGFs by regulating the expression of components of the IGF signal transduction pathway. The migratory response to a range of IGF-1 concentrations was measured in MCF-7 and MDA-MB-231 breast cancer cells in which IRS-1 and IRS-2 levels were modulated using a doxycycline-inducible expression system. Induction of both IRS-1 and IRS-2 expression increased the sensitivity of the migratory response to IGF-1 but did not increase the magnitude of the response stimulated at higher concentrations of IGF-1. Knockdown of IRS-1, IRS-2 and the type I IGF receptor in MCF-7 and MDA-MB-2231 cells decreased sensitivity to IGF-1. We conclude that both IRS-1 and IRS-2 control the migratory response of breast cancer cells to IGF-1 and may, therefore, be key molecules in determining breast cancer spread.
Strekalova, Elena; Malin, Dmitry; Good, David M.; Cryns, Vincent L.
2015-01-01
Purpose Many neoplasms are vulnerable to methionine deficiency by mechanisms that are poorly understood. Because gene profiling studies have revealed that methionine depletion increases TNF-related apoptosis-inducing ligand receptor-2 (TRAIL-R2) mRNA, we postulated that methionine stress sensitizes breast cancer cells to proapoptotic TRAIL-R2 agonists. Experimental Design Human triple (ER/PR/HER2)-negative breast carcinoma cell lines were cultured in control or methionine-free media. The effects of methionine depletion on TRAIL receptor expression and sensitivity to chemotherapy or a humanized agonistic TRAIL-R2 monoclonal antibody (lexatumumab) were determined. The melanoma-associated antigen MAGED2 was silenced to delineate its functional role in sensitizing TNBC cells to methionine stress. An orthotopic TNBC model was utilized to evaluate the effects of dietary methionine deficiency, lexatumumab or the combination. Results Methionine depletion sensitized TNBC cells to lexatumumab-induced caspase activation and apoptosis by increasing TRAIL-R2 mRNA and cell surface expression. MCF-10A cells transformed by oncogenic H-Ras, but not untransformed cells, and matrix-detached TNBC cells were highly sensitive to the combination of lexatumumab and methionine depletion. Proteomics analyses revealed that MAGED2, which has been reported to reduce TRAIL-R2 expression, was suppressed by methionine stress. Silencing MAGED2 recapitulated features of methionine deprivation, including enhanced mRNA and cell surface expression of TRAIL receptors and increased sensitivity to TRAIL receptor agonists. Dietary methionine deprivation enhanced the antitumor effects of lexatumumab in an orthotopic metastatic TNBC model. Conclusion Methionine depletion exposes a targetable defect in TNBC cells by increasing TRAIL-R2 expression. Our findings provide the foundation for a clinical trial combining dietary methionine restriction and TRAIL-R2 agonists. PMID:25724522
Sadat-Shirazi, Mitra-Sadat; Vousooghi, Nasim; Alizadeh, Bentolhoda; Makki, Seyed Mohammad; Zarei, Seyed Zeinolabedin; Nazari, Shahrzad; Zarrindast, Mohammad Reza
2018-05-23
Background and aims Repeated performance of some behaviors such as playing computer games could result in addiction. The NMDA receptor is critically involved in the development of behavioral and drug addictions. It has been claimed that the expression level of neurotransmitter receptors in the brain may be reflected in peripheral blood lymphocytes (PBLs). Methods Here, using a real-time PCR method, we have investigated the mRNA expression of GluN2A, GluN2D, GluN3A, and GluN3B subunits of the NMDA receptor in PBLs of male online computer game addicts (n = 25) in comparison with normal subjects (n = 26). Results Expression levels of GluN2A, GluN2D, and GluN3B subunits were not statistically different between game addicts and the control group. However, the mRNA expression of the GluN3A subunit was downregulated in PBLs of game addicts. Discussion and conclusions Transcriptional levels of GluN2A and GluN2D subunits in online computer game addicts are similar to our previously reported data of opioid addiction and are not different from the control group. However, unlike our earlier finding of drug addiction, the mRNA expression levels of GluN3A and GluN3B subunits in PBLs of game addicts are reduced and unchanged, respectively, compared with control subjects. It seems that the downregulated state of the GluN3A subunit of NMDA receptor in online computer game addicts is a finding that deserves more studies in the future to see whether it can serve as a peripheral biomarker in addiction studies, where the researcher wants to rule out the confusing effects of abused drugs.
Mwakigonja, Amos Rodger; Lushina, Nyanda Elias; Mwanga, Ally
2017-01-01
Breast cancer is a leading cause of morbidity and deaths among women worldwide. In Tanzania there is no published data on human epidermal growth receptor-2 (HER2/neu) expression in breast carcinoma. Hormonal receptors and HER2/neu status reportedly influence post-mastectomy adjuvant therapy and predict treatment outcome and prognosis. Here we evaluate hormonal receptors and HER-2 status in biopsies of women with breast cancer at Muhimbili National Hospital (MNH). A cross-sectional study of female breast post-modified radical mastectomy (MRM)/incisional biopsies confirmed to be carcinoma at the Histopathology Unit (January-December 2013). Tissue blocks having poor morphology, without tumor, secondary tumors, cases outside the study period and male patients were excluded. Routine staining was done followed by immunohistochemistry for estrogen (ER), and progesterone (PgR) receptors and HER2. Data analyzed using Statistical Package for Social Sciences (SPSS). A total of 218 cases were confirmed to be carcinoma including 70 meeting inclusion criteria. Age at diagnosis ranged 18-75 years and mean age was 48.36 years. Majority (64.3%) were in the 36-55 years age-group. Histologically, most (88.6%) women had invasive ductal carcinoma including 43.1% of intermediate grade. A great majority (78%) were stage three. Due to logistical constrains, 75.7% ( n = 53/70) cases where immunostained for hormones including 43.4% (ER+), 26.4% (PgR+), and 28% (ER+/PgR+). Furthermore, 65.7% ( n = 46/70) cases were immunostained for HER-2 and 15.2% ( n = 7/46) were positive, 45.6% were triple negative (ER-,PgR-,HER2-), 23.9% (ER+,PgR+,HER2-) or luminal B, 2.2% (ER+,PgR-,HER2+),13% (ER-,PgR-,HER2+) and 15% (ER+,PgR-,HER2-) with none being triple positive. Hormonal receptors and HER2 expression at MNH appears to be comparable to previous Africans/African Americans reports but not with studies among Caucasians and the current proportion of triple negative breast carcinomas (TNBC) is higher than in a previous Tanzanian report and majority are luminal. HER2 over-expression is relatively common. It is strongly recommended that receptor status assessment be made routine for breast cancer patients at MNH.
The enteric serotonergic system is altered in patients with diverticular disease.
Böttner, Martina; Barrenschee, Martina; Hellwig, Ines; Harde, Jonas; Egberts, Jan-Hendrik; Becker, Thomas; Zorenkov, Dimitri; Wedel, Thilo
2013-12-01
Disturbances of the enteric serotonergic system have been implicated in several intestinal motility disorders. Patients with diverticular disease (DD) have been reported to exhibit abnormal intestinal motility and innervation patterns. Gene expression profiles of the serotonergic system and distribution of the serotonin type 4 receptor (5HT-4R) were thus studied in patients with DD. Colonic specimens from patients with DD and controls were subjected to quantitative PCR for serotonin receptors 2B, 3A, 4, serotonin transporter and synthesising enzyme tryptophan hydroxylase. Localisation of 5HT-4R was determined by dual-label immunocytochemistry using smooth muscle actin (α-SMA) and pan-neuronal markers (PGP 9.5) and quantitative analysis was carried out. Site-specific gene expression analysis of 5HT-4R was assessed within myenteric ganglia and muscle layers. Correlation of 5HT-4R with muscarinic receptors 2 and 3 (M2R, M3R) messenger RNA expression was determined. 5HT-4R mRNA expression was downregulated in the tunica muscularis and upregulated in the mucosa of patients with DD, whereas the other components of the serotonergic system remained unchanged. 5HT-4R was detected in ganglia and muscle layers, but was decreased in the circular muscle layer and myenteric ganglia of patients with DD. 5HT-4R mRNA expression correlated with M2R/M3R mRNA expression in controls, but not in patients with DD. The serotonergic system is compromised in DD. Altered expression of 5HT-4R at mRNA and protein levels may contribute to intestinal motor disturbances reported in patients with DD. The findings support the hypothesis that DD is associated and possibly promoted by an enteric neuromuscular pathology.
Du, Juan; Zhou, Nannan; Liu, Hongxia; Jiang, Fei; Wang, Yubang; Hu, Chunyan; Qi, Hong; Zhong, Caiyun; Wang, Xinru; Li, Zhong
2012-01-01
Estrogen receptor α (ERα) is a marker predictive for response of breast cancers to endocrine therapy. About 30% of breast cancers, however, are hormone- independent because of lack of ERα expression. New strategies are needed for re-expression of ERα and sensitization of ER-negative breast cancer cells to selective ER modulators. The present report shows that arsenic trioxide induces reactivated ERα, providing a target for therapy with ER antagonists. Exposure of ER-negative breast cancer cells to arsenic trioxide leads to re-expression of ERα mRNA and functional ERα protein in in vitro and in vivo. Luciferase reporter gene assays and 3-(4,5-dimethylthiazol-2-yl)- 5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assays show that, upon exposure to arsenic trioxide, formerly unresponsive, ER-negative MDA-MB-231 breast cancer cells become responsive to ER antagonists, 4-hydroxytamoxifen and ICI 182,780. Furthermore, methylation- specific PCR and bisulfite-sequencing PCR assays show that arsenic trioxide induces partial demethylation of the ERα promoter. A methyl donor, S-adenosylmethionine (SAM), reduces the degree of arsenic trioxide-induced re-expression of ERα and demethylation. Moreover, Western blot and ChIP assays show that arsenic trioxide represses expression of DNMT1 and DNMT3a along with partial dissociation of DNMT1 from the ERα promoter. Thus, arsenic trioxide exhibits a previously undefined function which induces re-expression ERα in ER-negative breast cancer cells through demethylation of the ERα promoter. These findings could provide important information regarding the application of therapeutic agents targeting epigenetic changes in breast cancers and potential implication of arsenic trioxide as a new drug for the treatment of ER-negative human breast cancer.
staggerer phenotype in retinoid-related orphan receptor α-deficient mice
Steinmayr, Markus; André, Elisabeth; Conquet, François; Rondi-Reig, Laure; Delhaye-Bouchaud, Nicole; Auclair, Nathalie; Daniel, Hervé; Crépel, Francis; Mariani, Jean; Sotelo, Constantino; Becker-André, Michael
1998-01-01
Retinoid-related orphan receptor α (RORα) is a member of the nuclear receptor superfamily. To study its physiological role we generated null-mutant mice by targeted insertion of a lacZ reporter gene encoding the enzyme β-galactosidase. In heterozygous RORα+/− mice we found β-galactosidase activity, indicative of RORα protein expression, confined to the central nervous system, skin and testis. In the central nervous system, the RORα gene is expressed in cerebellar Purkinje cells, the thalamus, the suprachiasmatic nuclei, and retinal ganglion cells. In skin, RORα is strongly expressed in the hair follicle, the epidermis, and the sebaceous gland. Finally, the peritubular cells of the testis and the epithelial cells of the epididymis also strongly express RORα. Recently, it was reported that the ataxic mouse mutant staggerer (sg/sg) is caused by a deletion in the RORα gene. The analysis of the cerebellar and the behavioral phenotype of homozygous RORα−/− mice proves identity to sg/sg mice. Although the absence of RORα causes dramatic developmental effects in the cerebellum, it has no apparent morphological effect on thalamus, hypothalamus, and retina. Similarly, testis and skin of RORα−/− mice display a normal phenotype. However, the pelage hair of both sg/sg and RORα−/− is significantly less dense and when shaved shows reluctance to regrow. PMID:9520475
Prognostic value of sex-hormone receptor expression in non-muscle-invasive bladder cancer.
Nam, Jong Kil; Park, Sung Woo; Lee, Sang Don; Chung, Moon Kee
2014-09-01
We investigated sex-hormone receptor expression as predicting factor of recurrence and progression in patients with non-muscle invasive bladder cancer. We retrospectively evaluated tumor specimens from patients treated for transitional cell carcinoma of the bladder at our institution between January 2006 and January 2011. Performing immunohistochemistry using a monoclonal androgen receptor antibody and monoclonal estrogen receptor-beta antibody on paraffin-embedded tissue sections, we assessed the relationship of immunohistochemistry results and prognostic factors such as recurrence and progression. A total of 169 patients with bladder cancer were evaluated in this study. Sixty-threepatients had expressed androgen receptors and 52 patients had estrogen receptor beta. On univariable analysis, androgen receptor expression was significant lower in recurrence rates (p=0.001), and estrogen receptor beta expression was significant higher in progression rates (p=0.004). On multivariable analysis, significant association was found between androgen receptor expression and lower recurrence rates (hazard ratio=0.500; 95% confidence interval, 0.294 to 0.852; p=0.011), but estrogen receptor beta expression was not significantly associated with progression rates. We concluded that the possibility of recurrence was low when the androgen receptor was expressed in the bladder cancer specimen and it could be the predicting factor of the stage, number of tumors, carcinoma in situ lesion and recurrence.
Chronic intermittent ethanol exposure produces persistent anxiety in adolescent and adult rats.
Van Skike, Candice E; Diaz-Granados, Jaime L; Matthews, Douglas B
2015-02-01
Ethanol (EtOH) dependence and tolerance in the adult are marked by increased function of NMDA receptors and decreased function of GABAA receptors, which coincide with altered receptor subunit expression in specific brain regions. Adolescents often use EtOH at levels greater than adults, yet the receptor subunit expression profiles following chronic intermittent EtOH (CIE) exposure in adolescents are not known. Persistent age-dependent changes in receptor subunit alterations coupled with withdrawal-related anxiety may help explain the increase in alcohol abuse following adolescent experimentation with the drug. Adolescent and adult rats received 10 intraperitoneal administrations of 4.0 g/kg EtOH or saline every 48 hours. At either 24 hours or 12 days after the final exposure, anxiety-like behavior was assessed on the elevated plus maze and tissue was collected. Western blotting was used to assess changes in selected NMDA and GABAA receptor subunits in whole cortex and bilateral hippocampus. CIE exposure yields a persistent increase in anxiety-like behavior in both age groups. However, selected NMDA and GABAA receptor subunits were not differentially altered by this CIE exposure paradigm in adolescents or adults. CIE exposure produced persistent anxiety-like behavior, which has important implications for alcohol cessation. Given the reported behavioral and neuropeptide expression changes in response to this dose of EtOH, it is important for future work to consider the circumstances under which these measures are altered by EtOH exposure. Copyright © 2015 by the Research Society on Alcoholism.
Ferrer, Camilo; Malagón, Gerardo; Gomez, María Del Pilar; Nasi, Enrico
2012-12-12
Melanopsin, a photopigment related to the rhodopsin of microvillar photoreceptors of invertebrates, evolved in vertebrates to subserve nonvisual light-sensing functions, such as the pupillary reflex and entrainment of circadian rhythms. However, vertebrate circadian receptors display no hint of a microvillar specialization and show an extremely low light sensitivity and sluggish kinetics. Recently in amphioxus, the most basal chordate, melanopsin-expressing photoreceptors were characterized; these cells share salient properties with both rhabdomeric photoreceptors of invertebrates and circadian receptors of vertebrates. We used electrophysiology to dissect the gain of the light-transduction process in amphioxus and examine key features that help outline the evolutionary transition toward a sensor optimized to report mean ambient illumination rather than mediating spatial vision. By comparing the size of current fluctuations attributable to single photon melanopsin isomerizations with the size of single-channels activated by light, we concluded that the gain of the transduction cascade is lower than in rhabdomeric receptors. In contrast, the expression level of melanopsin (gauged by measuring charge displacements during photo-induced melanopsin isomerization) is comparable with that of canonical visual receptors. A modest amplification in melanopsin-using receptors is therefore apparent in early chordates; the decrease in photopigment expression-and loss of the anatomical correlates-observed in vertebrates subsequently enabled them to attain the low photosensitivity tailored to the role of circadian receptors.
Novel cell-based odorant sensor elements based on insect odorant receptors.
Mitsuno, Hidefumi; Sakurai, Takeshi; Namiki, Shigehiro; Mitsuhashi, Hiroyuki; Kanzaki, Ryohei
2015-03-15
Development of cell-based odorant sensor elements combined not only high degree of sensitivity and selectivity but also long-term stability is crucial for their practical applications. Here we report the development of a novel cell-based odorant sensor element that sensitively and selectively detects odorants and displays increased fluorescent intensities over a long period of time. Our odorant sensor elements, based on Sf21 cell lines expressing insect odorant receptors, are sensitive to the level of several tens of parts per billion in solution, can selectively distinguish between different types of odorants based on the odorant selectivity intrinsic to the expressed receptors, and have response times of approximately 13s. Specifically, with the use of Sf21 cells and insect odorant receptors, we demonstrated that the established cell lines stably expressing insect odorant receptors are able to detect odorants with consistent responsiveness for at least 2 months, thus exceeding the short life-span normally associated with cell-based sensors. We also demonstrated the development of a compact odorant sensor chip by integrating the established insect cell lines into a microfluidic chip. The methodology we established in this study, in conjunction with the large repertoire of insect odorant receptors, will aid in the development of practical cell-based odorant sensors for various applications, including food administration and health management. Copyright © 2014 Elsevier B.V. All rights reserved.
Yang, Tai-Yun; Chiang, Nien-Yi; Tseng, Wen-Yi; Pan, Hsiao-Lin; Peng, Yen-Ming; Shen, Jiann-Jong; Wu, Kuo-An; Kuo, Ming-Ling; Chang, Gin-Wen; Lin, Hsi-Hsien
2015-05-01
GPR56 is a multi-functional adhesion-class G protein-coupled receptor involved in biological systems as diverse as brain development, male gonad development, myoblast fusion, hematopoietic stem cell maintenance, tumor growth and metastasis, and immune-regulation. Ectodomain shedding of human GPR56 receptor has been demonstrated previously, however the quantitative detection of GPR56 receptor shedding has not been investigated fully due to the lack of appropriate assays. Herein, an efficient system of expression and immune-affinity purification of the recombinant soluble extracellular domain of human GPR56 (sGPR56) protein from a stably transduced human melanoma cell line was established. The identity and functionality of the recombinant human sGPR56 protein were verified by Western blotting and mass spectrometry, and ligand-binding assays, respectively. Combined with the use of two recently generated anti-GPR56 monoclonal antibodies, a sensitive sandwich ELISA assay was successfully developed for the quantitative detection of human sGPR56 molecule. We found that GPR56 receptor shedding occurred constitutively and was further increased in activated human melanoma cells expressing endogenous GPR56. In conclusion, we report herein an efficient system for the production and purification of human sGPR56 protein for the establishment of a quantitative ELISA analysis of GPR56 receptor shedding. Copyright © 2014 Elsevier Inc. All rights reserved.
Wang, Zheng; Zeng, Chunyu; Villar, Van Anthony M; Chen, Shi-You; Konkalmatt, Prasad; Wang, Xiaoyan; Asico, Laureano D; Jones, John E; Yang, Yu; Sanada, Hironobu; Felder, Robin A; Eisner, Gilbert M; Weir, Matthew R; Armando, Ines; Jose, Pedro A
2016-02-01
The influence of a single gene on the pathogenesis of essential hypertension may be difficult to ascertain, unless the gene interacts with other genes that are germane to blood pressure regulation. G-protein-coupled receptor kinase type 4 (GRK4) is one such gene. We have reported that the expression of its variant hGRK4γ(142V) in mice results in hypertension because of impaired dopamine D1 receptor. Signaling through dopamine D1 receptor and angiotensin II type I receptor (AT1R) reciprocally modulates renal sodium excretion and blood pressure. Here, we demonstrate the ability of the hGRK4γ(142V) to increase the expression and activity of the AT1R. We show that hGRK4γ(142V) phosphorylates histone deacetylase type 1 and promotes its nuclear export to the cytoplasm, resulting in increased AT1R expression and greater pressor response to angiotensin II. AT1R blockade and the deletion of the Agtr1a gene normalize the hypertension in hGRK4γ(142V) mice. These findings illustrate the unique role of GRK4 by targeting receptors with opposite physiological activity for the same goal of maintaining blood pressure homeostasis, and thus making the GRK4 a relevant therapeutic target to control blood pressure. © 2015 American Heart Association, Inc.
Functional expression of 5-HT{sub 2A} receptor in osteoblastic MC3T3-E1 cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirai, Takao; Kaneshige, Kota; Kurosaki, Teruko
2010-05-28
In the previous study, we reported the gene expression for proteins related to the function of 5-hydroxytryptamine (5-HT, serotonin) and elucidated the expression patterns of 5-HT{sub 2} receptor subtypes in mouse osteoblasts. In the present study, we evaluated the possible involvement of 5-HT receptor subtypes and its inactivation system in MC3T3-E1 cells, an osteoblast cell line. DOI, a 5-HT{sub 2A} and 5-HT{sub 2C} receptor selective agonist, as well as 5-HT concentration-dependently increased proliferative activities of MC3T3-E1 cells in their premature period. This effect of 5-HT on cell proliferation were inhibited by ketanserin, a 5-HT{sub 2A} receptor specific antagonist. Moreover, bothmore » DOI-induced cell proliferation and phosphorylation of ERK1 and 2 proteins were inhibited by PD98059 and U0126, selective inhibitors of MEK in a concentration-dependent manner. Furthermore, treatment with fluoxetine, a 5-HT specific re-uptake inhibitor which inactivate the function of extracellular 5-HT, significantly increased the proliferative activities of MC3T3-E1 cells in a concentration-dependent manner. Our data indicate that 5-HT fill the role for proliferation of osteoblast cells in their premature period. Notably, 5-HT{sub 2A} receptor may be functionally expressed to regulate mechanisms underlying osteoblast cell proliferation, at least in part, through activation of ERK/MAPK pathways in MC3T3-E1 cells.« less
Condon, Logan; Raible, David W.
2017-01-01
In terrestrial vertebrates such as birds and mammals, neurotrophin receptor expression is considered fundamental for the specification of distinct somatosensory neuron types where TrkA, TrkB and TrkC specify nociceptors, mechanoceptors and proprioceptors/mechanoceptors, respectively. In turn, Runx transcription factors promote neuronal fate specification by regulating neurotrophin receptor and sensory receptor expression where Runx1 mediates TrkA+ nociceptor diversification while Runx3 promotes a TrkC+ proprioceptive/mechanoceptive fate. Here, we report in zebrafish larvae that orthologs of the neurotrophin receptors in contrast to terrestrial vertebrates mark overlapping and distinct subsets of nociceptors suggesting that TrkA, TrkB and TrkC do not intrinsically promote nociceptor, mechanoceptor and proprioceptor/mechanoceptor neuronal fates, respectively. While we find that zebrafish Runx3 regulates nociceptors in contrast to terrestrial vertebrates, it shares a conserved regulatory mechanism found in terrestrial vertebrate proprioceptors/mechanoceptors in which it promotes TrkC expression and suppresses TrkB expression. We find that Cbfβ, which enhances Runx protein stability and affinity for DNA, serves as an obligate cofactor for Runx in neuronal fate determination. High levels of Runx can compensate for the loss of Cbfβ, indicating that in this context Cbfβ serves solely as a signal amplifier of Runx activity. Our data suggests an alteration/expansion of the neurotrophin receptor code of sensory neurons between larval teleost fish and terrestrial vertebrates, while the essential roles of Runx/Cbfβ in sensory neuron cell fate determination while also expanded are conserved. PMID:28708822
Gau, Philia; Curtright, Andrew; Condon, Logan; Raible, David W; Dhaka, Ajay
2017-07-01
In terrestrial vertebrates such as birds and mammals, neurotrophin receptor expression is considered fundamental for the specification of distinct somatosensory neuron types where TrkA, TrkB and TrkC specify nociceptors, mechanoceptors and proprioceptors/mechanoceptors, respectively. In turn, Runx transcription factors promote neuronal fate specification by regulating neurotrophin receptor and sensory receptor expression where Runx1 mediates TrkA+ nociceptor diversification while Runx3 promotes a TrkC+ proprioceptive/mechanoceptive fate. Here, we report in zebrafish larvae that orthologs of the neurotrophin receptors in contrast to terrestrial vertebrates mark overlapping and distinct subsets of nociceptors suggesting that TrkA, TrkB and TrkC do not intrinsically promote nociceptor, mechanoceptor and proprioceptor/mechanoceptor neuronal fates, respectively. While we find that zebrafish Runx3 regulates nociceptors in contrast to terrestrial vertebrates, it shares a conserved regulatory mechanism found in terrestrial vertebrate proprioceptors/mechanoceptors in which it promotes TrkC expression and suppresses TrkB expression. We find that Cbfβ, which enhances Runx protein stability and affinity for DNA, serves as an obligate cofactor for Runx in neuronal fate determination. High levels of Runx can compensate for the loss of Cbfβ, indicating that in this context Cbfβ serves solely as a signal amplifier of Runx activity. Our data suggests an alteration/expansion of the neurotrophin receptor code of sensory neurons between larval teleost fish and terrestrial vertebrates, while the essential roles of Runx/Cbfβ in sensory neuron cell fate determination while also expanded are conserved.
Dwyer, Amy R; Mouchemore, Kellie A; Steer, James H; Sunderland, Andrew J; Sampaio, Natalia G; Greenland, Eloise L; Joyce, David A; Pixley, Fiona J
2016-07-01
A major role of colony-stimulating factor-1 is to stimulate the differentiation of mononuclear phagocytic lineage cells into adherent, motile, mature macrophages. The colony-stimulating factor-1 receptor transduces colony-stimulating factor-1 signaling, and we have shown previously that phosphatidylinositol 3-kinase p110δ is a critical mediator of colony-stimulating factor-1-stimulated motility through the colony-stimulating factor-1 receptor pY721 motif. Src family kinases are also implicated in the regulation of macrophage motility and in colony-stimulating factor-1 receptor signaling, although functional redundancy of the multiple SFKs expressed in macrophages makes it challenging to delineate their specific functions. We report a comprehensive analysis of individual Src family kinase expression in macrophage cell lines and primary macrophages and demonstrate colony-stimulating factor-1-induced changes in Src family kinase subcellular localization, which provides clues to their distinct and redundant functions in macrophages. Moreover, expression of individual Src family kinases is both species specific and dependent on colony-stimulating factor-1-induced macrophage differentiation. Hck associated with the activated colony-stimulating factor-1 receptor, whereas Lyn associated with the receptor in a constitutive manner. Consistent with this, inhibitor studies revealed that Src family kinases were important for both colony-stimulating factor-1 receptor activation and colony-stimulating factor-1-induced macrophage spreading, motility, and invasion. Distinct colony-stimulating factor-1-induced changes in the subcellular localization of individual SFKs suggest specific roles for these Src family kinases in the macrophage response to colony-stimulating factor-1. © Society for Leukocyte Biology.
Chen, Zhang-Hui; Yu, Yan P; Michalopoulos, George; Nelson, Joel; Luo, Jian-Hua
2015-01-16
Miniature chromosome maintenance 7 (MCM7) is an essential component of DNA replication licensing complex. Recent studies indicate that MCM7 is amplified and overexpressed in a variety of human malignancies. In this report, we show that MCM7 binds SF3B3. The binding motif is located in the N terminus (amino acids 221-248) of MCM7. Knockdown of MCM7 or SF3B3 significantly increased unspliced RNA of epidermal growth factor receptor, platelet-derived growth factor receptor, and c-Met. A dramatic drop of reporter gene expression of the oxytocin exon 1-intron-exon 2-EGFP construct was also identified in SF3B3 and MCM7 knockdown PC3 and DU145 cells. The MCM7 or SF3B3 depleted cell extract failed to splice reporter RNA in in vitro RNA splicing analyses. Knockdown of SF3B3 and MCM7 leads to an increase of cell death of both PC3 and DU145 cells. Such cell death induction is partially rescued by expressing spliced c-Met. To our knowledge, this is the first report suggesting that MCM7 is a critical RNA splicing factor, thus giving significant new insight into the oncogenic activity of this protein. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Khiroug, Serguei S; Harkness, Patricia C; Lamb, Patricia W; Sudweeks, Sterling N; Khiroug, Leonard; Millar, Neil S; Yakel, Jerrel L
2002-01-01
Rat hippocampal interneurons express diverse subtypes of functional nicotinic acetylcholine receptors (nAChRs), including α7-containing receptors that have properties unlike those expected for homomeric α7 nAChRs. We previously reported a strong correlation between expression of the α7 and of the β2 subunits in individual neurons. To explore whether co-assembly of the α7 and β2 subunits might occur, these subunits were co-expressed in Xenopus oocytes and the functional properties of heterologously expressed nAChRs were characterized by two-electrode voltage clamp. Co-expression of the β2 subunit, both wild-type and mutant forms, with the α7 subunit significantly slowed the rate of nAChR desensitization and altered the pharmacological properties. Whereas ACh, carbachol and choline were full or near-full agonists for homomeric α7 receptor channels, both carbachol and choline were only partial agonists in oocytes expressing both α7 and β2 subunits. In addition the EC50 values for all three agonists significantly increased when the β2 subunit was co-expressed with the α7 subunit. Co-expression with the β2 subunit did not result in any significant change in the current-voltage curve. Biochemical evidence for the co-assembly of the α7 and β2 subunits was obtained by co-immunoprecipitation of these subunits from transiently transfected human embryonic kidney (TSA201) cells. These data provide direct biophysical and molecular evidence that the nAChR α7 and β2 subunits co-assemble to form a functional heteromeric nAChR with functional and pharmacological properties different from those of homomeric α7 channels. This co-assembly may help to explain nAChR channel diversity in rat hippocampal interneurons, and perhaps in other areas of the nervous system. PMID:11956333
Abuohashish, Hatem M; Ahmed, Mohammed M; Sabry, Dina; Khattab, Mahmoud M; Al-Rejaie, Salim S
2017-07-15
The renin angiotensin system (RAS) regulates numerous systemic functions and is expressed locally in skeletal tissues. Angiotensin1-7 (Ang1-7) is a beneficial member of the RAS, and the therapeutic effects of a large number of angiotensin receptors blockers (ARBs) are mediated by an Ang1-7-dependent cascade. This study examines whether the reported osteo-preservative effects of losartan are mediated through the angiotensin converting enzyme2 (ACE-2)/Ang1-7/Mas pathway in ovariectomized (OVX) rats. Sham and OVX animals received losartan (10mg/kg/d p.o.) for 6 weeks. A specific Mas receptor blocker (A-779) was delivered via mini-osmotic pumps during the losartan treatment period. Serum and urine bone metabolism biomarker levels were measured. Bone trabecular and cortical morphometry were quantified in distal femurs, whereas mineral contents were estimated in ashed bones, serum and urine. Finally, the expression of RAS components, the receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG) was determined. Losartan significantly improved the elevated bone metabolism marker levels and altered trabecular and cortical structures in OVX animals, and restored normal urinary and skeletal mineral levels. Mas receptor inhibition significantly abolished all osteo-protective effects of losartan and enhanced the deleterious effects of OVX. Losartan enhanced OVX-induced up-regulation of ACE-1, AngII, angiotensin type 1 (AT 1 ) receptor and RANKL expression, and increased ACE-2, Ang1-7, Mas and OPG expression in OVX animals. However, A-779 significantly eradicated the effects of losartan on RAS components and RANKL/OPG expression. Thus, Ang1-7 are involved in the osteo-preservative effects of losartan via Mas receptor, which may add therapeutic value to this well-known antihypertensive agent. Copyright © 2017 Elsevier B.V. All rights reserved.
Targeting Death Receptor TRAIL-R2 by Chalcones for TRAIL-Induced Apoptosis in Cancer Cells
Szliszka, Ewelina; Jaworska, Dagmara; Kłósek, Małgorzata; Czuba, Zenon P.; Król, Wojciech
2012-01-01
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in cancer cells without toxicity to normal cells. TRAIL binds to death receptors, TRAIL-R1 (DR4) and TRAIL-R2 (DR5) expressed on cancer cell surface and activates apoptotic pathways. Endogenous TRAIL plays an important role in immune surveillance and defense against cancer cells. However, as more tumor cells are reported to be resistant to TRAIL mediated death, it is important to search for and develop new strategies to overcome this resistance. Chalcones can sensitize cancer cells to TRAIL-induced apoptosis. We examined the cytotoxic and apoptotic effects of TRAIL in combination with four chalcones: chalcone, isobavachalcone, licochalcone A and xanthohumol on HeLa cancer cells. The cytotoxicity was measured by MTT and LDH assays. The apoptosis was detected using annexin V-FITC staining by flow cytometry and fluorescence microscopy. Death receptor expression was analyzed using flow cytometry. The decreased expression of death receptors in cancer cells may be the cause of TRAIL-resistance. Chalcones enhance TRAIL-induced apoptosis in HeLa cells through increased expression of TRAIL-R2. Our study has indicated that chalcones augment the antitumor activity of TRAIL and confirm their cancer chemopreventive properties. PMID:23203129
Yang, Jennifer A; Yasrebi, Ali; Snyder, Marisa; Roepke, Troy A
2016-12-05
Arcuate neurons that coexpress kisspeptin (Kiss1), neurokinin B (Tac2), and dynorphin (Pdyn) mediate negative feedback of 17β-estradiol (E2) on the HPG axis. Previous studies report that fasting and caloric restriction reduce arcuate Kiss1 expression. The objective of this study was to determine the interactions of E2 with fasting, caloric restriction, and diet-induced obesity on KNDy gene and receptor expression. Ovariectomized female mice were separated into control and estradiol benzoate (E2B)-treated groups. E2B decreased Kiss1 and the tachykinin 2 receptor, Tac3r, in ARC tissue and Tac2 in Tac2 neurons. Diet-induced obesity decreased Kiss1 in oil-treated animals and the kisspeptin receptor, Kiss1r and Tac3r in the ARC of E2B-treated animals. Chronic caloric (30%) restriction reduced all three neuropeptides in oil-treated females and Kiss1r by E2B in CR animals. Taken together, our experiments suggest that steroidal environment and energy state negatively regulate KNDy gene expression in both ARC and Tac2 neurons. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Visualising Androgen Receptor Activity in Male and Female Mice
Dart, D. Alwyn; Waxman, Jonathan; Aboagye, Eric O.; Bevan, Charlotte L.
2013-01-01
Androgens, required for normal development and fertility of males and females, have vital roles in the reproductive tract, brain, cardiovascular system, smooth muscle and bone. Androgens function via the androgen receptor (AR), a ligand-dependent transcription factor. To assay and localise AR activity in vivo we generated the transgenic “ARE-Luc” mouse, expressing a luciferase reporter gene under the control of activated endogenous AR. In vivo imaging of androgen-mediated luciferase activity revealed several strongly expressing tissues in the male mouse as expected and also in certain female tissues. In males the testes, prostate, seminal vesicles and bone marrow all showed high AR activity. In females, strong activity was seen in the ovaries, uterus, omentum tissue and mammary glands. In both sexes AR expression and activity was also found in salivary glands, the eye (and associated glands), adipose tissue, spleen and, notably, regions of the brain. Luciferase protein expression was found in the same cell layers as androgen receptor expression. Additionally, mouse AR expression and activity correlated well with AR expression in human tissues. The anti-androgen bicalutamide reduced luciferase signal in all tissues. Our model demonstrates that androgens can act in these tissues directly via AR, rather than exclusively via androgen aromatisation to estrogens and activation of the estrogen receptor. Additionally, it visually demonstrates the fundamental importance of AR signalling outside the normal role in the reproductive organs. This model represents an important tool for physiological and developmental analysis of androgen signalling, and for characterization of known and novel androgenic or antiandrogenic compounds. PMID:23940781
Growth Factors and COX2 Expression in Canine Perivascular Wall Tumors.
Avallone, G; Stefanello, D; Boracchi, P; Ferrari, R; Gelain, M E; Turin, L; Tresoldi, E; Roccabianca, P
2015-11-01
Canine perivascular wall tumors (PWTs) are a group of subcutaneous soft tissue sarcomas developing from vascular mural cells. Mural cells are involved in angiogenesis through a complex crosstalk with endothelial cells mediated by several growth factors and their receptors. The evaluation of their expression may have relevance since they may represent a therapeutic target in the control of canine PWTs. The expression of vascular endothelial growth factor (VEGF) and receptors VEGFR-I/II, basic fibroblast growth factor (bFGF) and receptor Flg, platelet-derived growth factor B (PDGFB) and receptor PDGFRβ, transforming growth factor β1 (TGFβ1) and receptors TGFβR-I/II, and cyclooxygenase 2 (COX2) was evaluated on frozen sections of 40 PWTs by immunohistochemistry and semiquantitatively scored to identify their potential role in PWT development. Statistical analysis was performed to analyze possible correlations between Ki67 labeling index and the expression of each molecule. Proteins of the VEGF-, PDGFB-, and bFGF-mediated pathways were highly expressed in 27 (67.5%), 30 (75%), and 19 (47.5%) of 40 PWTs, respectively. Proteins of the TGFβ1- and COX2-mediated pathways were highly expressed in 4 (10%) and 14 (35%) of 40 cases. Statistical analysis identified an association between VEGF and VEGFR-I/II (P = .015 and .003, respectively), bFGF and Flg (P = .038), bFGF and PDGFRβ (P = .003), and between TGFβ1 and COX2 (P = .006). These findings were consistent with the mechanisms that have been reported to play a role in angiogenesis and in tumor development. No association with Ki67 labeling index was found. VEGF-, PDGFB-, and bFGF-mediated pathways seem to have a key role in PWT development and growth. Blockade of tyrosine kinase receptors after surgery could represent a promising therapy with the aim to reduce the PWT relapse rate and prolong the time to relapse. © The Author(s) 2015.
Córdoba-Rodríguez, Guadalupe; Vargas, Mario H; Ruiz, Víctor; Carbajal, Verónica; Campos-Bedolla, Patricia; Mercadillo-Herrera, Paulina; Arreola-Ramírez, José Luis; Segura-Medina, Patricia
2016-03-01
There is mounting evidence that 5-hydroxytryptamine (5-HT) plays a role in asthma. However, scarce information exists about the pulmonary expression of 5-HT receptors and its modification after allergic sensitization. In the present work, we explored the expression of 5-HT1A, 5-HT2A, 5-HT3, 5-HT4, 5-ht5a, 5-HT6, and 5-HT7 receptors in lungs from control and sensitized guinea pigs through qPCR and Western blot. In control animals, mRNA from all receptors was detectable in lung homogenates, especially from 5-HT2A and 5-HT4 receptors. Sensitized animals had decreased mRNA expression of 5-HT2A and 5-HT4 receptors and increased that of 5-HT7 receptor. In contrast, they had increased protein expression of 5-HT2A receptor in bronchial epithelium and of 5-HT4 receptor in lung parenchyma. The degree of airway response to the allergic challenge was inversely correlated with mRNA expression of the 5-HT1A receptor. In summary, our results showed that major 5-HT receptor subtypes are constitutively expressed in the guinea pig lung, and that allergic sensitization modifies the expression of 5-HT2A, 5-HT4, and 5-HT7 receptors. Copyright © 2015 Elsevier B.V. All rights reserved.
Immunoreactive GnRH Type I Receptors in the Mouse and Sheep Brain
Albertson, Asher J.; Navratil, Amy; Mignot, Mallory; Dufourny, Laurence; Cherrington, Brian; Skinner, Donal C.
2008-01-01
GnRH has been implicated in an array of functions outside the neuroendocrine reproductive axis. Previous investigations have reported extensive GnRH binding in numerous sites and this has been supported by in situ hybridization studies reporting GnRH receptor mRNA distribution. The present study on mice and sheep supports and extends these earlier investigations by revealing the distribution of cells immunoreactive for the GnRH receptor. In addition to sites previously shown to express GnRH receptors such as the hippocampus, amygdala and the arcuate nucleus, the improved resolution afforded by immunocytochemistry detected cells in the mitral cell lay of the olfactory bulb as well as the central grey of the mesencephalon. In addition, GnRH receptor immunoreactive neurons in the hippocampus and mesencephalon of the sheep were shown to colocalize with estrogen receptor β. Although GnRH may act at some of these sites to regulate reproductive processes, evidence is accumulating to support an extra-reproductive role for this hypothalamic decapeptide. PMID:18439800
Zhou, Lin; Huang, Junjing; Gao, Jun; Zhang, Guanpo; Jiang, Jinjin
2014-02-01
Several studies have shown that N-methyl-D-aspartate (NMDA)-receptor activation in anterior cingulate cortex (ACC) neurons plays critical roles in modulating visceral pain responses in visceral hypersensitivity (VH) rats. However, there are few reports about the expressions of NMDA and α-amino-3-hydroxy-5-methyl-4-isox-azolepropionic-acid (AMPA) receptor subtypes in ACC of VH model rats at different time points. The current study was undertaken to investigate NR2A, NR2B and GluR2 expressions in ACC of VH rats that were induced by administration with 5% mustard oil. Our results indicated that NR2B, but not NR2A, was highly expressed in VH model group on day 15, 22, and 36 compared with normal group (p < 0.05). GluR2 expression was also higher in VH model group on day 15, 22, and 36 than that of normal group (p < 0.05). These findings suggested increased expression of NR2B and GluR2 might be key mechanisms for long-term synaptic plastic changes in VH rats. Copyright © 2014. Published by Elsevier Inc.
Melanocortin systems on pigment dispersion in fish chromatophores.
Kobayashi, Yuki; Mizusawa, Kanta; Saito, Yumiko; Takahashi, Akiyoshi
2012-01-01
α-Melanocyte-stimulating hormone (α-MSH) is responsible for pigment dispersion in the chromatophores of fish and other tetrapods such as amphibians and reptiles. Recently, we discovered that α-MSH did not always stimulate pigment dispersion because this hormonal peptide exerted no effects on the melanophores of flounders. We assumed that the reduction of α-MSH activity was related to the co-expression of different α-MSH receptor subtypes - termed melanocortin receptors (MCR) - a member of G-protein-coupled receptors (GPCR) - based on several reports demonstrating that GPCR forms heterodimers with various properties that are distinct from those of the corresponding monomers. In this review, we summarize the relationships between the pigment-dispersing activity of α-MSH-related peptides, molecular forms of α-MSH-related peptides, and mcr subtypes expressed in fish chromatophores.
Activation of Parathyroid Hormone 2 Receptor Induces Decorin Expression and Promotes Wound Repair
Sato, Emi; Zhang, Ling-juan; Dorschner, Robert A.; Adase, Christopher A.; Choudhury, Biswa P.; Gallo, Richard L.
2018-01-01
In this study, we report that TIP39, a parathyroid hormone ligand family member that was recently identified to be expressed in the skin, can induce decorin expression and enhance wound repair. Topical treatment of mice with TIP39 accelerated wound repair, whereas TIP39-deficient mice had delayed repair that was associated with formation of abnormal collagen bundles. To study the potential mechanism responsible for the action of TIP39 in the dermis, fibroblasts were cultured in three-dimensional collagen gels, a process that results in enhanced decorin expression unless activated to differentiate to adipocytes, whereupon these cells reduce expression of several proteoglycans, including decorin. Small interfering RNA-mediated silencing of parathyroid hormone 2 receptor (PTH2R), the receptor for TIP39, suppressed the expression of extracellular matrix-related genes, including decorin, collagens, fibronectin, and matrix metalloproteases. Skin wounds in TIP39−/− mice had decreased decorin expression, and addition of TIP39 to cultured fibroblasts induced decorin and increased phosphorylation and nuclear translocation of CREB. Fibroblasts differentiated to adipocytes and treated with TIP39 also showed increased decorin and production of chondroitin sulfate. Furthermore, the skin of PTH2R−/− mice showed abnormal extracellular matrix structure, decreased decorin expression, and skin hardness. Thus, the TIP39-PTH2R system appears to be a previously unrecognized mechanism for regulation of extracellular matrix formation and wound repair. PMID:28454729
USDA-ARS?s Scientific Manuscript database
Estrogenic status is thought to influence the cancer risk in women and has been reported to affect toxicity of carcinogenic polycyclic aromatic hydrocarbons (PAHs) in animals. The objective of this study was to examine the influence of estradiol (E2) on hepatic gene expression changes mediated by 7,...
Expression profiling of G-protein-coupled receptors in human urothelium and related cell lines.
Ochodnický, Peter; Humphreys, Sian; Eccles, Rachel; Poljakovic, Mirjana; Wiklund, Peter; Michel, Martin C
2012-09-01
What's known on the subject? and What does the study add? Urothelium emerged as a crucial integrator of sensory inputs and outputs in the bladder wall, and urothelial G-protein-coupled receptors (GPCRs) may represent plausible targets for treatment of various bladder pathologies. Urothelial cell lines provide a useful tool to study urothelial receptor function, but their validity as models for native human urothelium remains unclear. We characterize the mRNA expression of genes coding for GPCRs in human freshly isolated urothelium and compare the expression pattern with those in human urothelial cell lines. To characterize the mRNA expression pattern of genes coding for G-protein-coupled receptors (GPCRs) in human freshly isolated urothelium. To compare GPCR expression in human urothelium-derived cell lines to explore the suitability of these cell lines as model systems to study urothelial function. Native human urothelium (commercially sourced) and human urothelium-derived non-cancer (UROtsa and TERT-NHUC) and cancer (J82) cell lines were used. For mRNA expression profiling we used custom-designed real-time polymerase chain reaction array for 40 receptors and several related genes. Native urothelium expressed a wide variety of GPCRs, including α(1A), α(1D) and all subtypes of α(2) and β adrenoceptors. In addition, M(2) and M(3) cholinergic muscarinic receptors, angiotensin II AT(1) receptor, serotonin 5-HT(2A) receptor and all subtypes of bradykinin, endothelin, cannabinoid, tachykinin and sphingosine-1-phosphate receptors were detected. Nerve growth factor and both its low- and high-affinity receptors were also expressed in urothelium. In all cell lines expression of most GPCRs was markedly downregulated, with few exceptions. In UROtsa cells, but much less in other cell lines, the expression of β(2) adrenoceptors, M(3) muscarinic receptors, B(1) and B(2) bradykinin receptors, ET(B) endothelin receptors and several subtypes of sphingosine-1-phosphate receptors was largely retained. Human urothelium expresses a wide range of receptors which enables sensing and integration of various extracellular signals. Human urothelium-derived cell lines, especially UROtsa cells, show comparable mRNA expression to native tissue for several physiologically relevant GPCRs, but lose expression of many other receptors. The use of cell lines as model systems of human urothelium requires careful validation of suitability for the genes of interest. © 2012 BJU INTERNATIONAL.
Lu, Lingling; Mamiya, Takayoshi; Lu, Ping; Toriumi, Kazuya; Mouri, Akihiro; Hiramatsu, Masayuki; Kim, Hyoung-Chun; Zou, Li-Bo; Nagai, Taku; Nabeshima, Toshitaka
2010-08-01
Several studies have shown the disruptive effects of non-competitive N-methyl-d-aspartate (NMDA) receptor antagonists on neurobehavioural development. Based on the neurodevelopment hypothesis of schizophrenia, there is growing interest in animal models treated with NMDA antagonists at developing stages to investigate the pathogenesis of psychological disturbances in humans. Previous studies have reported that perinatal treatment with phencyclidine (PCP) impairs the development of neuronal systems and induces schizophrenia-like behaviour. However, the adverse effects of prenatal exposure to PCP on behaviour and the function of NMDA receptors are not well understood. This study investigated the long-term effects of prenatal exposure to PCP in mice. The prenatal PCP-treated mice showed hypersensitivity to a low dose of PCP in locomotor activity and impairment of recognition memory in the novel object recognition test at age 7 wk. Meanwhile, the prenatal exposure reduced the phosphorylation of NR1, although it increased the expression of NR1 itself. Furthermore, these behavioural changes were attenuated by atypical antipsychotic treatment. Taken together, prenatal exposure to PCP produced long-lasting behavioural deficits, accompanied by the abnormal expression and dysfunction of NMDA receptors in postpubertal mice. It is worth investigating the influences of disrupted NMDA receptors during the prenatal period on behaviour in later life.
Paternain, A V; Morales, M; Lerma, J
1995-01-01
Although both protein and mRNAs for kainate receptor subunits are abundant in several brain regions, the responsiveness of AMPA receptors to kainate has made it difficult to demonstrate the presence of functional kainate-type receptors in native cells. Recently, however, we have shown that many hippocampal neurons in culture express glutamate receptors of the kainate type. The large nondesensitizing response that kainate induces at AMPA receptors precludes detection and analysis of smaller, rapidly desensitizing currents induced by kainate at kainate receptors. Consequently, the functional significance of these strongly desensitizing glutamate receptors remains enigmatic. We report here that the family of new noncompetitive antagonists of AMPA receptors (GYKI 52466 and 53655) minimally affects kainate-induced responses at kainate receptors while completely blocking AMPA receptor-mediated currents, making it possible to separate the responses mediated by each receptor. These compounds will allow determination of the role played by kainate receptors in synaptic transmission and plasticity in the mammalian brain, as well as evaluation of their involvement in neurotoxicity.
Thoh, Maikho; Babajan, Banaganapalli; Raghavendra, Pongali B; Sureshkumar, Chitta; Manna, Sunil K
2011-02-11
Considering the role of retinoids in regulation of more than 500 genes involved in cell cycle and growth arrest, a detailed understanding of the mechanism and its regulation is useful for therapy. The extract of the medicinal plant Neem (Azadirachta indica) is used against several ailments especially for anti-inflammatory, anti-itching, spermicidal, anticancer, and insecticidal activities. In this report we prove the detailed mechanism on the regulation of retinoic acid-mediated cell signaling by azadirachtin, active components of neem extract. Azadirachtin repressed all trans-retinoic acid (ATRA)-mediated nuclear transcription factor κB (NF-κB) activation, not the DNA binding but the NF-κB-dependent gene expression. It did not inhibit IκBα degradation, IκBα kinase activity, or p65 phosphorylation and its nuclear translocation but inhibited NF-κB-dependent reporter gene expression. Azadirachtin inhibited TRAF6-mediated, but not TRAF2-mediated NF-κB activation. It inhibited ATRA-induced Sp1 and CREB (cAMP-response element-binding protein) DNA binding. Azadirachtin inhibited ATRA binding with retinoid receptors, which is supported by biochemical and in silico evidences. Azadirachtin showed strong interaction with retinoid receptors. It suppressed ATRA-mediated removal of retinoid receptors, bound with DNA by inhibiting ATRA binding to its receptors. Overall, our data suggest that azadirachtin interacts with retinoic acid receptors and suppresses ATRA binding, inhibits falling off the receptors, and activates transcription factors like CREB, Sp1, NF-κB, etc. Thus, azadirachtin exerts anti-inflammatory and anti-metastatic responses by a novel pathway that would be beneficial for further anti-inflammatory and anti-cancer therapies.
Inoue, Yuuki; Morinaga, Akihiro; Takizawa, Fumio; Saito, Tsubasa; Endo, Mariko; Haruta, Chiaki; Nakai, Takeshi; Moritomo, Tadaaki; Nakanishi, Teruyuki
2008-03-01
Decoy receptor 3 (DcR3), a member of TNF receptor superfamily, is a soluble receptor without death domain and cytoplasmic domain, and secreted by cells and binds with FasL, LIGHT and TL1A. The principal function of DcR3 is the inhibition of apoptosis by the binding cytotoxic ligands. Expression of DcR3 has been reported in a wide array of normal human tissues as well as tumors and tumor cell lines. Recently, DcR3 was reported to modulate a variety of immune responses in mammals. TNFR or DcR3 has been identified in some teleost fishes. However, DcR3 is not reported in cartilaginous fish which is the lowest vertebrate possessing the adaptive immune system. Here we identified DcR3 cDNA in shark (Trsc-DcR3) from an SSH library prepared from peripheral white blood cells stimulated with PMA. Four cysteine-rich domains (CRDs) in common with TNF receptor family members are present in the Trsc-DcR3 sequence. The deduced amino acid sequence of Trsc-DcR3 showed highest identity with the chicken (50.4%), followed by human (46.8%) and rainbow trout (36.5%) DcR3. In a phylogenetic tree of known TNFRSF sequences, the Trsc-DcR3 grouped with the chicken and human DcR3. Trsc-DcR3 mRNA was detected strongly in the gill, moderately in the brain, and weakly in the kidney, thymus and leydig. These data strongly suggest that the gene encoding Trsc-DcR3 in banded dogfish is a homolog of the human gene. mRNA expression of Trsc-DcR3 in the thymus and leydig suggests that DcR3 may act as a modulator in the immune system even at the phylogenetic level of cartilaginous fish.
Hepatic circadian clock oscillators and nuclear receptors integrate microbiome-derived signals
Montagner, Alexandra; Korecka, Agata; Polizzi, Arnaud; Lippi, Yannick; Blum, Yuna; Canlet, Cécile; Tremblay-Franco, Marie; Gautier-Stein, Amandine; Burcelin, Rémy; Yen, Yi-Chun; Je, Hyunsoo Shawn; Maha, Al-Asmakh; Mithieux, Gilles; Arulampalam, Velmurugesan; Lagarrigue, Sandrine; Guillou, Hervé; Pettersson, Sven; Wahli, Walter
2016-01-01
The liver is a key organ of metabolic homeostasis with functions that oscillate in response to food intake. Although liver and gut microbiome crosstalk has been reported, microbiome-mediated effects on peripheral circadian clocks and their output genes are less well known. Here, we report that germ-free (GF) mice display altered daily oscillation of clock gene expression with a concomitant change in the expression of clock output regulators. Mice exposed to microbes typically exhibit characterized activities of nuclear receptors, some of which (PPARα, LXRβ) regulate specific liver gene expression networks, but these activities are profoundly changed in GF mice. These alterations in microbiome-sensitive gene expression patterns are associated with daily alterations in lipid, glucose, and xenobiotic metabolism, protein turnover, and redox balance, as revealed by hepatic metabolome analyses. Moreover, at the systemic level, daily changes in the abundance of biomarkers such as HDL cholesterol, free fatty acids, FGF21, bilirubin, and lactate depend on the microbiome. Altogether, our results indicate that the microbiome is required for integration of liver clock oscillations that tune output activators and their effectors, thereby regulating metabolic gene expression for optimal liver function. PMID:26879573
Liu, Ka-Cheuk; Ge, Wei
2013-01-01
Estradiol (E2) stimulates luteinizing hormone receptor (lhcgr) expression in zebrafish follicle cells via nuclear estrogen receptors (nERs) that are likely expressed on the membrane, and lhcgr responds to E2 in a biphasic manner during 24-h treatment. These observations raise an interesting question on the signaling mechanism underlying E2 regulation, in particular the biphasic response of lhcgr expression. In the present study, we demonstrated that E2 regulation of lhcgr was significantly influenced by the activity of cAMP-PKA pathway. Activation of cAMP-PKA pathway by forskolin or db-cAMP suppressed E2-stimulated lhcgr expression in short-term (3 h) but enhanced its effect in long-term (24 h), suggesting differential roles of PKA at these two phases of lhcgr response. PKA inhibitor H89 showed reversed effects. In contrast, PKC pathway had consistent permissive effect on E2-induced lhcgr expression as evidenced by strong inhibition of E2 effect by PKC inhibitors GF109203X and Ro-31-8220 at both 3 and 24 h. One of the mechanisms by which PKA and PKC gated E2 effect might be through regulating nERs, particularly esr2a. Despite the strong influence of PKA and PKC, our data did not suggest direct mediating roles for these two pathways in E2 stimulation of lhcgr expression; yet they likely play critical gating roles in E2 signal transduction. As a follow-up study to our previous report on E2 regulation of gonadotropin receptors in the zebrafish ovary, the present study provides further evidence for the involvement of classical intracellular signal transduction pathways in E2 stimulation of lhcgr expression in the follicle cells. PMID:23658740
Homeobox A7 stimulates breast cancer cell proliferation by up-regulating estrogen receptor-alpha
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yu; Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4; Cheng, Jung-Chien
2013-11-01
Highlights: •HOXA7 regulates MCF7 cell proliferation. •HOXA7 up-regulates ERα expression. •HOXA7 mediates estrogen-induced MCF7 cell proliferation. -- Abstract: Breast cancer is the most common hormone-dependent malignancy in women. Homeobox (HOX) transcription factors regulate many cellular functions, including cell migration, proliferation and differentiation. The aberrant expression of HOX genes has been reported to be associated with human reproductive cancers. Estradiol (E2) and its nuclear receptors, estrogen receptor (ER)-alpha and ER-beta, are known to play critical roles in the regulation of breast cancer cell growth. However, an understanding of the potential relationship between HOXA7 and ER in breast cancer cells is limited.more » In this study, our results demonstrate that knockdown of HOXA7 in MCF7 cells significantly decreased cell proliferation and ERα expression. In addition, HOXA7 knockdown attenuated E2-induced cell proliferation as well as progesterone receptor (PR) expression. The stimulatory effects of E2 on cell proliferation and PR expression were abolished by co-treatment with ICI 182780, a selective ERα antagonist. In contrast, overexpression of HOXA7 significantly stimulated cell proliferation and ERα expression. Moreover, E2-induced cell proliferation, as well as PR expression, was enhanced by the overexpression of HOXA7. Neither knockdown nor overexpression of HOXA7 affected the ER-beta levels. Our results demonstrate a novel mechanistic role for HOXA7 in modulating breast cancer cell proliferation via regulation of ERα expression. This finding contributes to our understanding of the role HOXA7 plays in regulating the proliferation of ER-positive cancer cells.« less
Leptin Suppresses Mouse Taste Cell Responses to Sweet Compounds
Noguchi, Kenshi; Shigemura, Noriatsu; Jyotaki, Masafumi; Takahashi, Ichiro; Margolskee, Robert F.
2015-01-01
Leptin is known to selectively suppress neural and behavioral responses to sweet-tasting compounds. However, the molecular basis for the effect of leptin on sweet taste is not known. Here, we report that leptin suppresses sweet taste via leptin receptors (Ob-Rb) and KATP channels expressed selectively in sweet-sensitive taste cells. Ob-Rb was more often expressed in taste cells that expressed T1R3 (a sweet receptor component) than in those that expressed glutamate-aspartate transporter (a marker for Type I taste cells) or GAD67 (a marker for Type III taste cells). Systemically administered leptin suppressed taste cell responses to sweet but not to bitter or sour compounds. This effect was blocked by a leptin antagonist and was absent in leptin receptor–deficient db/db mice and mice with diet-induced obesity. Blocking the KATP channel subunit sulfonylurea receptor 1, which was frequently coexpressed with Ob-Rb in T1R3-expressing taste cells, eliminated the effect of leptin on sweet taste. In contrast, activating the KATP channel with diazoxide mimicked the sweet-suppressing effect of leptin. These results indicate that leptin acts via Ob-Rb and KATP channels that are present in T1R3-expressing taste cells to selectively suppress their responses to sweet compounds. PMID:26116698
Ran, Tao; Li, Hengzhi; Liu, Yong; Zhou, Chuanshe; Tang, Shaoxun; Han, Xuefeng; Wang, Min; He, Zhixiong; Kang, Jinghe; Yan, Qiongxian; Tan, Zhiliang; Beauchemin, Karen A
2016-03-23
G-protein-coupled receptor 120 (GPR120) is reported as a long-chain fatty acid (LCFA) receptor that elicits free fatty acid (FFA) regulation on metabolism homeostasis. The study aimed to clone the gpr120 gene of goats (g-GPR120) and subsequently investigate phylogenetic analysis and tissue distribution throughout the digestive tracts of kid goats, as well as the effect of housing versus grazing (H vs G) feeding systems on GPR120 expression. Partial coding sequence (CDS) of g-GPR120 was cloned and submitted to NCBI (accession no. KU161270 ). Phylogenetic analysis revealed that g-GPR120 shared higher homology in both mRNA and amino acid sequences for ruminants than nonruminants. Immunochemistry, real-time PCR, and Western blot analysis showed that g-GPR120 was expressed throughout the digestive tracts of goats. The expression of g-GPR120 was affected by feeding system and age, with greater expression of g-GPR120 in the G group. It was concluded that the g-GPR120-mediated LCFA chemosensing mechanism is widely present in the tongue and gastrointestinal tract of goats and that its expression can be affected by feeding system and age.
Enhanced Chemokine Receptor Expression on Leukocytes of Patients with Alzheimer's Disease.
Goldeck, David; Larbi, Anis; Pellicanó, Mariavaleria; Alam, Iftikhar; Zerr, Inga; Schmidt, Christian; Fulop, Tamas; Pawelec, Graham
2013-01-01
Although primarily a neurological complaint, systemic inflammation is present in Alzheimer's Disease, with higher than normal levels of proinflammatory cytokines and chemokines in the periphery as well as the brain. A gradient of these factors may enhance recruitment of activated immune cells into the brain via chemotaxis. Here, we investigated the phenotypes of circulating immune cells in AD patients with multi-colour flow cytometry to determine whether their expression of chemokine receptors is consistent with this hypothesis. In this study, we confirmed our previously reported data on the shift of early- to late-differentiated CD4+ T-cells in AD patients. The percentage of cells expressing CD25, a marker of acute T-cell activation, was higher in patients than in age-matched controls, and percentages of CCR6+ cells were elevated. This chemokine receptor is primarily expressed on pro-inflammatory memory cells and Th17 cells. The proportion of cells expressing CCR4 (expressed on Th2 cells) and CCR5 (Th1 cells and dendritic cells) was also greater in patients, and was more pronounced on CD4+ than CD8+ T-cells. These findings allow a more detailed insight into the systemic immune status of patients with Alzheimer's disease and suggest possible novel targets for immune therapy.
Bhat, Vasudeva; Sun, Yu Jia; Weger, Steve; Raouf, Afshin
2016-04-01
The evolutionarily conserved Notch and Wnt signaling pathways have demonstrated roles in normal mammary gland development and in breast carcinogenesis. We previously reported that in human mammary gland, signaling through NOTCH3 alone regulates the commitment of the undifferentiated bipotential progenitors to the luminal cell fate, indicating that NOTCH3 may regulate the expression of unique genes apart from the other Notch receptors. In this study, we used gain of function and loss of function experiments and found that a Wnt signaling receptor, Frizzled7 (FZD7), is a unique and nonredundant target of NOTCH3 in human breast epithelial cells. Interestingly, neither the constitutively active forms of NOTCH1-2, 4 nor loss of expression of these receptors were able to alter expression of FZD7 in human breast epithelial cells. We further show that FZD7-expressing cells are found more frequently in the luminal progenitor-enriched subpopulation of cells obtained from breast reduction samples compared with the undifferentiated bipotent progenitors. Also, we show that NOTCH3-induced expression of FZD7 occurs in the absence of CSL (CBF1-Suppressor of Hairless-Lag-1). Our data suggest that noncanonical Notch signaling through NOTCH3 could modulate Wnt signaling via FZD7 and in this way, might be involved in luminal cell differentiation.
PGC-1α dictates endothelial function through regulation of eNOS expression
Craige, Siobhan M.; Kröller-Schön, Swenja; Li, Chunying; Kant, Shashi; Cai, Shenghe; Chen, Kai; Contractor, Mayur M.; Pei, Yongmei; Schulz, Eberhard; Keaney, John F.
2016-01-01
Endothelial dysfunction is a characteristic of many vascular related diseases such as hypertension. Peroxisome proliferator activated receptor gamma, coactivator 1α (PGC-1α) is a unique stress sensor that largely acts to promote adaptive responses. Therefore, we sought to define the role of endothelial PGC-1α in vascular function using mice with endothelial specific loss of function (PGC-1α EC KO) and endothelial specific gain of function (PGC-1α EC TG). Here we report that endothelial PGC-1α is suppressed in angiotensin-II (ATII)-induced hypertension. Deletion of endothelial PGC-1α sensitized mice to endothelial dysfunction and hypertension in response to ATII, whereas PGC-1α EC TG mice were protected. Mechanistically, PGC-1α promotes eNOS expression and activity, which is necessary for protection from ATII-induced dysfunction as mice either treated with an eNOS inhibitor (LNAME) or lacking eNOS were no longer responsive to transgenic endothelial PGC-1α expression. Finally, we determined that the orphan nuclear receptor, estrogen related receptor α (ERRα) is required to coordinate the PGC-1α -induced eNOS expression. In conclusion, endothelial PGC-1α expression protects from vascular dysfunction by promoting NO• bioactivity through ERRα induced expression of eNOS. PMID:27910955
Lee, Dohee; Vanden Broeck, Jozef; Lange, Angela B.
2013-01-01
Rhodnius prolixus is the vector of Chagas’ disease, by virtue of transmitting the parasite Trypanosoma cruzi. There is no cure for Chagas’ disease and therefore controlling R. prolixus is currently the only method of prevention. Understanding the physiology of the disease vector is an important step in developing control measures. Crustacean cardioactive peptide (CCAP) is an important neuropeptide in insects because it has multiple physiological roles such as controlling heart rate and modulating ecdysis behaviour. In this study, we have cloned the cDNA sequence of the CCAP receptor (RhoprCCAPR) from 5th instar R. prolixus and found it to be a G-protein coupled receptor (GPCR). The spatial expression pattern in 5th instars reveals that the RhoprCCAPR transcript levels are high in the central nervous system, hindgut and female reproductive systems, and lower in the salivary glands, male reproductive tissues and a pool of tissues including the dorsal vessel, trachea, and fat body. Interestingly, the RhoprCCAPR expression is increased prior to ecdysis and decreased post-ecdysis. A functional receptor expression assay confirms that the RhoprCCAPR is activated by CCAP (EC50 = 12 nM) but not by adipokinetic hormone, corazonin or an extended FMRFamide. The involvement of CCAP in controlling heartbeat frequency was studied in vivo and in vitro by utilizing RNA interference. In vivo, the basal heartbeat frequency is decreased by 31% in bugs treated with dsCCAPR. Knocking down the receptor in dsCCAPR-treated bugs also resulted in loss of function of applied CCAP in vitro. This is the first report of a GPCR knock-down in R. prolixus and the first report showing that a reduction in CCAPR transcript levels leads to a reduction in cardiac output in any insect. PMID:23874803
Kazi, Julhash U; Chougule, Rohit A; Li, Tianfeng; Su, Xianwei; Moharram, Sausan A; Rupar, Kaja; Marhäll, Alissa; Gazi, Mohiuddin; Sun, Jianmin; Zhao, Hui; Rönnstrand, Lars
2017-07-01
The type III receptor tyrosine kinase FLT3 is frequently mutated in acute myeloid leukemia. Oncogenic FLT3 mutants display constitutive activity leading to aberrant cell proliferation and survival. Phosphorylation on several critical tyrosine residues is known to be essential for FLT3 signaling. Among these tyrosine residues, Y842 is located in the so-called activation loop. The position of this tyrosine residue is well conserved in all receptor tyrosine kinases. It has been reported that phosphorylation of the activation loop tyrosine is critical for catalytic activity for some but not all receptor tyrosine kinases. The role of Y842 residue in FLT3 signaling has not yet been studied. In this report, we show that Y842 is not important for FLT3 activation or ubiquitination but plays a critical role in regulating signaling downstream of the receptor as well as controlling receptor stability. We found that mutation of Y842 in the FLT3-ITD oncogenic mutant background reduced cell viability and increased apoptosis. Furthermore, the introduction of the Y842 mutation in the FLT3-ITD background led to a dramatic reduction in in vitro colony forming capacity. Additionally, mice injected with cells expressing FLT3-ITD/Y842F displayed a significant delay in tumor formation, compared to FLT3-ITD expressing cells. Microarray analysis comparing gene expression regulated by FLT3-ITD versus FLT3-ITD/Y842F demonstrated that mutation of Y842 causes suppression of anti-apoptotic genes. Furthermore, we showed that cells expressing FLT3-ITD/Y842F display impaired activity of the RAS/ERK pathway due to reduced interaction between FLT3 and SHP2 leading to reduced SHP2 activation. Thus, we suggest that Y842 is critical for FLT3-mediated RAS/ERK signaling and cellular transformation.
Albanito, Lidia; Lappano, Rosamaria; Madeo, Antonio; Chimento, Adele; Prossnitz, Eric R; Cappello, Anna Rita; Dolce, Vincenza; Abonante, Sergio; Pezzi, Vincenzo; Maggiolini, Marcello
2015-05-01
The pesticide atrazine does not bind to or activate the classical estrogen receptor (ER), but it up-regulates the aromatase activity in estrogen-sensitive tumor cells. The G protein estrogen receptor (GPR30/GPER) has been reported to be involved in certain biological responses to endogenous estrogens and environmental compounds exerting estrogen-like activity. We aimed to evaluate the potential of atrazine to trigger GPER-mediated signaling in cancer cells and cancer-associated fibroblasts (CAFs). Using gene reporter assays in diverse types of cancer cells, we found that atrazine did not transactivate endogenous ERα or chimeric proteins that encode the ERα and ERβ hormone binding domains. Conversely, atrazine was able to bind to GPER to induce ERK activation and the expression of estrogen target genes, which, interestingly, appeared to rely on both GPER and ERα expression. As a biological counterpart, atrazine stimulated the proliferation of ovarian cancer cells that depend on GPER and ERα, as evidenced by gene silencing experiments and the use of specific signaling inhibitors. Of note, through GPER, atrazine elicited ERK phosphorylation, gene expression, and migration in CAFs, thus extending its stimulatory role to these main players of the tumor microenvironment. Our results suggest a novel mechanism through which atrazine may exert relevant biological effects in cancer cells and CAFs. On the basis of our data, atrazine should be included among the environmental contaminants that may elicit estrogenic activity through GPER-mediated signaling.
Gattelli, Albana; García Solá, Martín E; Roloff, Tim C; Cardiff, Robert D; Kordon, Edith C; Chodosh, Lewis A; Hynes, Nancy E
2018-04-26
The receptor tyrosine kinase Ret, a key gain-of-function mutated oncoprotein in thyroid carcinomas, has recently been implicated in other cancer types. While Ret copy number gains and mutations have been reported at low frequencies in breast tumors, we and others have reported that Ret is overexpressed in about 40% of human tumors and this correlates with poor patient prognosis. Ret activation regulates numerous intracellular pathways related to proliferation and inflammation, but it is not known whether abnormal Ret expression is sufficient to induce mammary carcinomas. Using a novel doxycycline-inducible transgenic mouse model with the MMTV promoter controlling Ret expression, we show that overexpression of wild-type Ret in the mammary epithelium produces mammary tumors, displaying a morphology that recapitulates characteristics of human luminal breast tumors. Ret-evoked tumors are estrogen receptor positive and negative for progesterone receptor. Moreover, tumors rapidly regress after doxycycline withdrawal, indicating that Ret is the driving oncoprotein. Using next-generation sequencing, we examined the levels of transcripts in these tumors, confirming a luminal signature. Ret-evoked tumors have been passaged in mice and used to test novel therapeutic approaches. Importantly, we have determined that tumors are resistant to endocrine therapy, but respond successfully to treatment with a Ret kinase inhibitor. Our data provide the first compelling evidence for an oncogenic role of non-mutated Ret in the mammary gland and are an incentive for clinical development of Ret as a cancer biomarker and therapeutic target.
Bradley, Sarah V; Holland, Eric C; Liu, Grace Y; Thomas, Dafydd; Hyun, Teresa S; Ross, Theodora S
2007-04-15
Huntingtin interacting protein 1 (HIP1) is a multidomain oncoprotein whose expression correlates with increased epidermal growth factor receptor (EGFR) levels in certain tumors. For example, HIP1-transformed fibroblasts and HIP1-positive breast cancers have elevated EGFR protein levels. The combined association of HIP1 with huntingtin, the protein that is mutated in Huntington's disease, and the known overexpression of EGFR in glial brain tumors prompted us to explore HIP1 expression in a group of patients with different types of brain cancer. We report here that HIP1 is overexpressed with high frequency in brain cancers and that this overexpression correlates with EGFR and platelet-derived growth factor beta receptor expression. Furthermore, serum samples from patients with brain cancer contained anti-HIP1 antibodies more frequently than age-matched brain cancer-free controls. Finally, we report that HIP1 physically associates with EGFR and that this association is independent of the lipid, clathrin, and actin interacting domains of HIP1. These findings suggest that HIP1 may up-regulate or maintain EGFR overexpression in primary brain tumors by directly interacting with the receptor. This novel HIP1-EGFR interaction may work with or independent of HIP1 modulation of EGFR degradation via clathrin-mediated membrane trafficking pathways. Further investigation of HIP1 function in brain cancer biology and validation of its use as a prognostic or predictive brain tumor marker are now warranted.
Ngoc, Phuong Cao Thi; Greenhalgh, Robert; Dermauw, Wannes; Rombauts, Stephane; Bajda, Sabina; Zhurov, Vladimir; Grbić, Miodrag; Van de Peer, Yves; Van Leeuwen, Thomas; Rouzé, Pierre; Clark, Richard M
2016-12-14
While mechanisms to detoxify plant produced, anti-herbivore compounds have been associated with plant host use by herbivores, less is known about the role of chemosensory perception in their life histories. This is especially true for generalists, including chelicerate herbivores that evolved herbivory independently from the more studied insect lineages. To shed light on chemosensory perception in a generalist herbivore, we characterized the chemosensory receptors (CRs) of the chelicerate two-spotted spider mite, Tetranychus urticae, an extreme generalist. Strikingly, T. urticae has more CRs than reported in any other arthropod to date. Including pseudogenes, 689 gustatory receptors were identified, as were 136 degenerin/Epithelial Na+ Channels (ENaCs) that have also been implicated as CRs in insects. The genomic distribution of T. urticae gustatory receptors indicates recurring bursts of lineage-specific proliferations, with the extent of receptor clusters reminiscent of those observed in the CR-rich genomes of vertebrates or C. elegans Although pseudogenization of many gustatory receptors within clusters suggests relaxed selection, a subset of receptors is expressed. Consistent with functions as CRs, the genomic distribution and expression of ENaCs in lineage-specific T. urticae expansions mirrors that observed for gustatory receptors. The expansion of ENaCs in T. urticae to > 3-fold that reported in other animals was unexpected, raising the possibility that ENaCs in T. urticae have been co-opted to fulfill a major role performed by unrelated CRs in other animals. More broadly, our findings suggest an elaborate role for chemosensory perception in generalist herbivores that are of key ecological and agricultural importance. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Vukoti, Krishna; Kimura, Tomohiro; Macke, Laura; Gawrisch, Klaus; Yeliseev, Alexei
2012-01-01
Elucidation of the molecular mechanisms of activation of G protein-coupled receptors (GPCRs) is among the most challenging tasks for modern membrane biology. For studies by high resolution analytical methods, these integral membrane receptors have to be expressed in large quantities, solubilized from cell membranes and purified in detergent micelles, which may result in a severe destabilization and a loss of function. Here, we report insights into differential effects of detergents, lipids and cannabinoid ligands on stability of the recombinant cannabinoid receptor CB2, and provide guidelines for preparation and handling of the fully functional receptor suitable for a wide array of downstream applications. While we previously described the expression in Escherichia coli, purification and liposome-reconstitution of multi-milligram quantities of CB2, here we report an efficient stabilization of the recombinant receptor in micelles - crucial for functional and structural characterization. The effects of detergents, lipids and specific ligands on structural stability of CB2 were assessed by studying activation of G proteins by the purified receptor reconstituted into liposomes. Functional structure of the ligand binding pocket of the receptor was confirmed by binding of 2H-labeled ligand measured by solid-state NMR. We demonstrate that a concerted action of an anionic cholesterol derivative, cholesteryl hemisuccinate (CHS) and high affinity cannabinoid ligands CP-55,940 or SR-144,528 are required for efficient stabilization of the functional fold of CB2 in dodecyl maltoside (DDM)/CHAPS detergent solutions. Similar to CHS, the negatively charged phospholipids with the serine headgroup (PS) exerted significant stabilizing effects in micelles while uncharged phospholipids were not effective. The purified CB2 reconstituted into lipid bilayers retained functionality for up to several weeks enabling high resolution structural studies of this GPCR at physiologically relevant conditions. PMID:23056277
Kurtz, Brian M.; Singletary, Lauren B.; Kelly, Sean D.; Frampton, Arthur R.
2010-01-01
In this study, Equus caballus major histocompatibility complex class I (MHC-I) was identified as a cellular entry receptor for the alphaherpesvirus equine herpesvirus type 1 (EHV-1). This novel EHV-1 receptor was discovered using a cDNA library from equine macrophages. cDNAs from this EHV-1-susceptible cell type were inserted into EHV-1-resistant B78H1 murine melanoma cells, these cells were infected with an EHV-1 lacZ reporter virus, and cells that supported virus infection were identified by X-Gal (5-bromo-4-chloro-3-indolyl-β-d-galactopyranoside) staining. Positive cells were subjected to several rounds of purification to obtain homogeneous cell populations that were shown to be uniformly infected with EHV-1. cDNAs from these cell populations were amplified by PCR and then sequenced. The sequence data revealed that the EHV-1-susceptible cells had acquired an E. caballus MHC-I cDNA. Cell surface expression of this receptor was verified by confocal immunofluorescence microscopy. The MHC-I cDNA was cloned into a mammalian expression vector, and stable B78H1 cell lines were generated that express this receptor. These cell lines were susceptible to EHV-1 infection while the parental B78H1 cells remained resistant to infection. In addition, EHV-1 infection of the B78H1 MHC-I-expressing cell lines was inhibited in a dose-dependent manner by an anti-MHC-I antibody. PMID:20610718
deHaro, Dawn; Kines, Kristine J; Sokolowski, Mark; Dauchy, Robert T; Streva, Vincent A; Hill, Steven M; Hanifin, John P; Brainard, George C; Blask, David E; Belancio, Victoria P
2014-07-01
Expression of long interspersed element-1 (L1) is upregulated in many human malignancies. L1 can introduce genomic instability via insertional mutagenesis and DNA double-strand breaks, both of which may promote cancer. Light exposure at night, a recently recognized carcinogen, is associated with an increased risk of cancer in shift workers. We report that melatonin receptor 1 inhibits mobilization of L1 in cultured cells through downregulation of L1 mRNA and ORF1 protein. The addition of melatonin receptor antagonists abolishes the MT1 effect on retrotransposition in a dose-dependent manner. Furthermore, melatonin-rich, but not melatonin-poor, human blood collected at different times during the circadian cycle suppresses endogenous L1 mRNA during in situ perfusion of tissue-isolated xenografts of human cancer. Supplementation of human blood with exogenous melatonin or melatonin receptor antagonist during the in situ perfusion establishes a receptor-mediated action of melatonin on L1 expression. Combined tissue culture and in vivo data support that environmental light exposure of the host regulates expression of L1 elements in tumors. Our data imply that light-induced suppression of melatonin production in shift workers may increase L1-induced genomic instability in their genomes and suggest a possible connection between L1 activity and increased incidence of cancer associated with circadian disruption. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Aberrant expression and function of death receptor-3 and death decoy receptor-3 in human cancer.
Ge, Zhicheng; Sanders, Andrew J; Ye, Lin; Jiang, Wen G
2011-03-01
Death receptor-3 (DR3) and death decoy receptor-3 (DcR3) are both members of the tumour necrosis factor receptor (TNFR) superfamily. The TNFR superfamily contains eight death domain-containing receptors, including TNFR1 (also called DR1), Fas (also called DR2), DR3, DR4, DR5, DR6, NGFR and EDAR. Upon the binding of these receptors with their corresponding ligands, the death domain recruits various proteins that mediate both the death and proliferation of cells. Receptor function is negatively regulated by decoy receptors (DcR1, DcR2, DcR3 and OPG). DR3/DcR3 are a pair of positive and negative players with which vascular endothelial growth inhibitor (VEGI) interacts. VEGI has been suggested to be a potential tumour suppressor. The inhibitory effects of VEGI on cancer are manifested in three main areas: a direct effect on cancer cells, an anti-angiogenic effect on endothelial cells, and the stimulation of dendritic cell maturation. A recent study indicated that DR3 may be a new receptor for E-selectin, which has been reported to be associated with cancer metastasis. DcR3 is a soluble receptor, highly expressed in various tumours, which lacks an apparent transmembrane segment, prevents cytokine response through ligand binding and neutralization, and is an inhibitor of apoptosis. DcR3 serves as a decoy receptor for FasL, LIGHT and VEGI. The cytokine LIGHT activates various anti-tumour functions and is expected to be a promising candidate for cancer therapy. Certain tumours may escape FasL-dependent immune-cytotoxic attack by expressing DcR3, which blocks FasL function. DR3/DcR3 play profound roles in regulating cell death and proliferation in cancer. The present review briefly discusses DR3/DcR3 and attempts to elucidate the role of these negative and positive players in cancer.
Tamoxifen induces the expression of maspin through estrogen receptor-alpha.
Liu, Zesheng; Shi, Heidi Y; Nawaz, Zafar; Zhang, Ming
2004-06-08
Maspin (mammary serine protease inhibitor) is a tumor suppressor gene that plays an important role in inhibiting tumor growth, invasion and metastasis. Maspin expression is down regulated at transcription level in primary and metastatic breast tumor cells. Previous studies on hormonal regulation of maspin prompt us to test whether an estrogen antagonist tamoxifen (TAM) can exert its anti-tumor function by up regulating maspin gene expression. For this purpose, we first tested whether maspin promoter could be activated in normal and several breast tumor cells. We then carried out a series of promoter analysis in which estrogen receptors and TAM were reconstituted in an in vitro cell culture system. Here we report our new finding that tumor suppresser gene maspin is one of the TAM target genes. TAM induces a maspin/luciferase reporter in cell culture and this induction requires the presence of (estrogen receptor alpha) ERalpha but not estrogen receptor-beta (ERbeta). Maspin promoter deletion and mutation analysis showed that the cis element(s) within a region between -90and+87 bp but not the HRE site (-272 bp) was involved in TAM induction of maspin expression. TAM bound ERalpha may directly control maspin gene expression through the interaction with cofactor (s). Analysis using several ERalpha mutants showed that the N-terminal A/B motif (AF-1) was critical for maspin basal level transcription activation. An ERalpha mutant with point mutations at DNA binding domain abolished estrogen induction of an ERE-luciferase reporter but was still active in activating maspin promoter by TAM. LBD-AF2 domain was required for ERalpha-dependent TAM induction. Deletion of LBD-AF2 or a point mutation in the ERalpha LBD-AF2 region (LBDmtL539A) completely abolished the activation of maspin promoter, suggesting that TAM induction of maspin involves the recruitment of cofactor(s) by ERalpha to the maspin promoter region. This finding indicates that one of the pathways for cancer prevention and tumor inhibition by TAM is mediated through the activation of tumor suppressor gene maspin in breast cancer.
Solís, Karina H; Méndez, Laura I; García-López, Guadalupe; Díaz, Néstor F; Portillo, Wendy; De Nova-Ocampo, Mónica; Molina-Hernández, Anayansi
2017-01-01
Increased neuron telencephalic differentiation during deep cortical layer formation has been reported in embryos from diabetic mice. Transitory histaminergic neurons within the mesencephalon/rhombencephalon are responsible for fetal histamine synthesis during development, fibers from this system arrives to the frontal and parietal cortex at embryo day (E) 15. Histamine is a neurogenic factor for cortical neural stem cells in vitro through H 1 receptor (H 1 R) which is highly expressed during corticogenesis in rats and mice. Furthermore, in utero administration of an H 1 R antagonist, chlorpheniramine, decreases the neuron markers microtubuline associated protein 2 (MAP2) and forkhead box protein 2. Interestingly, in the diabetic mouse model of diabetes induced with streptozotocin, an increase in fetal neurogenesis in terms of MAP2 expression in the telencephalon is reported at E11.5. Because of the reported effects on cortical neuron differentiation of maternal diabetes in one hand and of histamine in the other, here the participation of histamine and H 1 R on the increased dorsal telencephalic neurogenesis was explored. First, the increased neurogenesis in the dorsal telencephalon at E14 in diabetic rats was corroborated by immunohistochemistry and Western blot. Then, changes during corticogenesis in the level of histamine was analyzed by ELISA and in H 1 R expression by qRT-PCR and Western blot and, finally, we tested H 1 R participation in the increased dorsal telencephalic neurogenesis by the systemic administration of chlorpheniramine. Our results showed a significant increase of histamine at E14 and in the expression of the receptor at E12. The administration of chlorpheniramine to diabetic rats at E12 prevented the increased expression of βIII-tubulin and MAP2 mRNAs (neuron markers) and partially reverted the increased level of MAP2 protein at E14, concluding that H 1 R have an important role in the increased neurogenesis within the dorsal telencephalon of embryos from diabetic rats. This study opens new perspective on the participation of HA and H 1 R receptor in early corticogenesis in health and disease.
Solís, Karina H.; Méndez, Laura I.; García-López, Guadalupe; Díaz, Néstor F.; Portillo, Wendy; De Nova-Ocampo, Mónica; Molina-Hernández, Anayansi
2017-01-01
Increased neuron telencephalic differentiation during deep cortical layer formation has been reported in embryos from diabetic mice. Transitory histaminergic neurons within the mesencephalon/rhombencephalon are responsible for fetal histamine synthesis during development, fibers from this system arrives to the frontal and parietal cortex at embryo day (E) 15. Histamine is a neurogenic factor for cortical neural stem cells in vitro through H1 receptor (H1R) which is highly expressed during corticogenesis in rats and mice. Furthermore, in utero administration of an H1R antagonist, chlorpheniramine, decreases the neuron markers microtubuline associated protein 2 (MAP2) and forkhead box protein 2. Interestingly, in the diabetic mouse model of diabetes induced with streptozotocin, an increase in fetal neurogenesis in terms of MAP2 expression in the telencephalon is reported at E11.5. Because of the reported effects on cortical neuron differentiation of maternal diabetes in one hand and of histamine in the other, here the participation of histamine and H1R on the increased dorsal telencephalic neurogenesis was explored. First, the increased neurogenesis in the dorsal telencephalon at E14 in diabetic rats was corroborated by immunohistochemistry and Western blot. Then, changes during corticogenesis in the level of histamine was analyzed by ELISA and in H1R expression by qRT-PCR and Western blot and, finally, we tested H1R participation in the increased dorsal telencephalic neurogenesis by the systemic administration of chlorpheniramine. Our results showed a significant increase of histamine at E14 and in the expression of the receptor at E12. The administration of chlorpheniramine to diabetic rats at E12 prevented the increased expression of βIII-tubulin and MAP2 mRNAs (neuron markers) and partially reverted the increased level of MAP2 protein at E14, concluding that H1R have an important role in the increased neurogenesis within the dorsal telencephalon of embryos from diabetic rats. This study opens new perspective on the participation of HA and H1R receptor in early corticogenesis in health and disease. PMID:29311766
Galson, D L; Tsuchiya, T; Tendler, D S; Huang, L E; Ren, Y; Ogura, T; Bunn, H F
1995-04-01
The erythropoietin (Epo) gene is regulated by hypoxia-inducible cis-acting elements in the promoter and in a 3' enhancer, both of which contain consensus hexanucleotide hormone receptor response elements which are important for function. A group of 11 orphan nuclear receptors, transcribed and translated in vitro, were screened by the electrophoretic mobility shift assay. Of these, hepatic nuclear factor 4 (HNF-4), TR2-11, ROR alpha 1, and EAR3/COUP-TF1 bound specifically to the response elements in the Epo promoter and enhancer and, except for ROR alpha 1, formed DNA-protein complexes that had mobilities similar to those observed in nuclear extracts of the Epo-producing cell line Hep3B. Moreover, both anti-HNF-4 and anti-COUP antibodies were able to supershift complexes in Hep3B nuclear extracts. Like Epo, HNF-4 is expressed in kidney, liver, and Hep3B cells but not in HeLa cells. Transfection of a plasmid expressing HNF-4 into HeLa cells enabled an eightfold increase in the hypoxic induction of a luciferase reporter construct which contains the minimal Epo enhancer and Epo promoter, provided that the nuclear hormone receptor consensus DNA elements in both the promoter and the enhancer were intact. The augmentation by HNF-4 in HeLa cells could be abrogated by cotransfection with HNF-4 delta C, which retains the DNA binding domain of HNF-4 but lacks the C-terminal activation domain. Moreover, the hypoxia-induced expression of the endogenous Epo gene was significantly inhibited in Hep3B cells stably transfected with HNF-4 delta C. On the other hand, cotransfection of EAR3/COUP-TF1 and the Epo reporter either with HNF-4 into HeLa cells or alone into Hep3B cells suppressed the hypoxia induction of the Epo reporter. These electrophoretic mobility shift assay and functional experiments indicate that HNF-4 plays a critical positive role in the tissue-specific and hypoxia-inducible expression of the Epo gene, whereas the COUP family has a negative modulatory role.
Saurin, Jean-Christophe; Fallavier, Marjorie; Sordat, Bernard; Gevrey, Jean-Claude; Chayvialle, Jean-Alain; Abello, Jacques
2002-08-15
The membrane receptor for the neuropeptide bombesin/gastrin-releasing peptide (GRP) is expressed by a large fraction of human colorectal carcinoma cells. We reported previously a stimulation of cell adhesion and lamellipodia formation by the neuropeptide bombesin in the human, bombesin/GRP receptor-expressing, Isreco1 colorectal cancer cell line (J. C. Saurin et al., Cancer Res., 59: 962-967, 1999). Using invasion and motility assays, we demonstrate in this report that bombesin can both enhance the invasive capacity of Isreco1 cells in a dose-dependent manner (maximal effect at 1 nM) and stimulate the closure of wounds performed on confluent Isreco1 cells. These effects were reversed fully by the specific bombesin/GRP receptor antagonist D-Phe(6)-Bn(6-13)OMe used at 1 micro M. MMP-9 and urokinase-type plasminogen activator were expressed by Isreco1 cells, and bombesin did not significantly alter their level of secretion. Interestingly, exoenzyme C3 (10 micro g/ml) decreased cell invasiveness induced by bombesin by 70% and completely inhibited the migration of Isreco1 cells. Similarly, the Rho-kinase inhibitor Y-27632 dose-dependently reduced the effect of bombesin on cell invasion. Moreover, pull-down assays for GTP-bound RhoA demonstrated that bombesin was able to activate the small G-protein in Isreco1 cells. These results show that the neuropeptide bombesin is able to modulate invasiveness of Isreco1 colorectal carcinoma cells in vitro through a Rho-dependent pathway, leading to an increase in cell locomotion without a significant effect on tumor-cell associated proteolytic activity. These findings indicate that bombesin/GRP receptor expression may contribute to the cellular events that are critical for invasion/migration of colorectal carcinoma cells.
Dunn, Sara L; Wilkinson, Jeremy Mark; Crawford, Aileen; Bunning, Rowena A D; Le Maitre, Christine L
2016-01-01
Introduction: Cannabinoids have shown to reduce joint damage in animal models of arthritis and reduce matrix metalloproteinase expression in primary human osteoarthritic (OA) chondrocytes. The actions of cannabinoids are mediated by a number of receptors, including cannabinoid receptors 1 and 2 (CB1 and CB2), G-protein-coupled receptors 55 and 18 (GPR55 and GPR18), transient receptor potential vanilloid-1 (TRPV1), and peroxisome proliferator-activated receptors alpha and gamma (PPARα and PPARγ). However, to date very few studies have investigated the expression and localization of these receptors in human chondrocytes, and expression during degeneration, and thus their potential in clinical applications is unknown. Methods: Human articular cartilage from patients with symptomatic OA was graded histologically and the expression and localization of cannabinoid receptors within OA cartilage and underlying bone were determined immunohistochemically. Expression levels across regions of cartilage and changes with degeneration were investigated. Results: Expression of all the cannabinoid receptors investigated was observed with no change with grade of degeneration seen in the expression of CB1, CB2, GPR55, PPARα, and PPARγ. Conversely, the number of chondrocytes within the deep zone of cartilage displaying immunopositivity for GPR18 and TRPV1 was significantly decreased in degenerate cartilage. Receptor expression was higher in chondrocytes than in osteocytes in the underlying bone. Conclusions: Chondrocytes from OA joints were shown to express a wide range of cannabinoid receptors even in degenerate tissues, demonstrating that these cells could respond to cannabinoids. Cannabinoids designed to bind to receptors inhibiting the catabolic and pain pathways within the arthritic joint, while avoiding psychoactive effects, could provide potential arthritis therapies.
Tomlinson, Elizabeth; Fu, Ling; John, Linu; Hultgren, Bruce; Huang, Xiaojian; Renz, Mark; Stephan, Jean Philippe; Tsai, Saio Ping; Powell-Braxton, Lyn; French, Dorothy; Stewart, Timothy A
2002-05-01
The fibroblast growth factors (FGFs), and the corresponding receptors, are implicated in more than just the regulation of epithelial cell proliferation and differentiation. Specifically, FGF23 is a regulator of serum inorganic phosphate levels, and mice deficient in FGF receptor-4 have altered cholesterol metabolism. The recently described FGF19 is unusual in that it is nonmitogenic and appears to interact only with FGF receptor-4. Here, we report that FGF19 transgenic mice had a significant and specific reduction in fat mass that resulted from an increase in energy expenditure. Further, the FGF19 transgenic mice did not become obese or diabetic on a high fat diet. The FGF19 transgenic mice had increased brown adipose tissue mass and decreased liver expression of acetyl coenzyme A carboxylase 2, providing two mechanisms by which FGF19 may increase energy expenditure. Consistent with the reduction in expression of acetyl CoA carboxylase 2, liver triglyceride levels were reduced.
Target-specific expression of presynaptic NMDA receptors in neocortical microcircuits.
Buchanan, Katherine A; Blackman, Arne V; Moreau, Alexandre W; Elgar, Dale; Costa, Rui P; Lalanne, Txomin; Tudor Jones, Adam A; Oyrer, Julia; Sjöström, P Jesper
2012-08-09
Traditionally, NMDA receptors are located postsynaptically; yet, putatively presynaptic NMDA receptors (preNMDARs) have been reported. Although implicated in controlling synaptic plasticity, their function is not well understood and their expression patterns are debated. We demonstrate that, in layer 5 of developing mouse visual cortex, preNMDARs specifically control synaptic transmission at pyramidal cell inputs to other pyramidal cells and to Martinotti cells, while leaving those to basket cells unaffected. We also reveal a type of interneuron that mediates ascending inhibition. In agreement with synapse-specific expression, we find preNMDAR-mediated calcium signals in a subset of pyramidal cell terminals. A tuned network model predicts that preNMDARs specifically reroute information flow in local circuits during high-frequency firing, in particular by impacting frequency-dependent disynaptic inhibition mediated by Martinotti cells, a finding that we experimentally verify. We conclude that postsynaptic cell type determines presynaptic terminal molecular identity and that preNMDARs govern information processing in neocortical columns. Copyright © 2012 Elsevier Inc. All rights reserved.
Molecular basis of fatty acid taste in Drosophila
Ahn, Ji-Eun; Chen, Yan
2017-01-01
Behavioral studies have established that Drosophila appetitive taste responses towards fatty acids are mediated by sweet sensing Gustatory Receptor Neurons (GRNs). Here we show that sweet GRN activation requires the function of the Ionotropic Receptor genes IR25a, IR76b and IR56d. The former two IR genes are expressed in several neurons per sensillum, while IR56d expression is restricted to sweet GRNs. Importantly, loss of appetitive behavioral responses to fatty acids in IR25a and IR76b mutant flies can be completely rescued by expression of respective transgenes in sweet GRNs. Interestingly, appetitive behavioral responses of wild type flies to hexanoic acid reach a plateau at ~1%, but decrease with higher concentration, a property mediated through IR25a/IR76b independent activation of bitter GRNs. With our previous report on sour taste, our studies suggest that IR-based receptors mediate different taste qualities through cell-type specific IR subunits. PMID:29231818
The use of in vitro assays to screen chemicals for estrogen receptor (ER) and AR mediated actions is being evaluated by the USEPA for use in a Tier I screening battery to detect endocrine active chemicals. We have developed a stable cell line, MDA-MB-453-KB2, for screening of and...
The use of in vitro assays to screen chemicals for estrogen receptor (ER) and AR mediated actions is being evaluated by the USEPA for use in a Tier I screening battery to detect endocrine active chemicals. We have developed a stable cell line, MDA-MB-453-KB2, for screening of and...
Systematic Identification of Genes Required for Expression of Androgen Receptor Splice Variants
2016-08-01
engineering tool has been developed from bacterial Clustered Regularly Interspaced Short Palindromic Repeats ( CRISPR )/ CRISPR ‐Associated System (Cas...regulation of AR splice variant through CRISPR /Cas screening system. 15. SUBJECT TERMS CRISPR /Cas, Androgen receptor, castration resistance, biomarker 16...control (non-targeting) gRNAs available from Addgene (http://www.addgene.org/ CRISPR /libraries/). Generation of AR3 reporter: We used molecular cloning
Time-course of 5-HT(6) receptor mRNA expression during memory consolidation and amnesia.
Huerta-Rivas, A; Pérez-García, G; González-Espinosa, C; Meneses, A
2010-01-01
Growing evidence indicates that antagonists of the 5-hydroxytryptamine (serotonin) receptor(6) (5-HT(6)) improve memory and reverse amnesia although the mechanisms involved are poorly understood. Hence, in this paper RT-PCR was used to evaluate changes in mRNA expression of 5-HT(6) receptor in trained and untrained rats treated with the 5-HT(6) receptor antagonist SB-399885 and amnesic drugs scopolamine or dizocilpine. Changes in mRNA expression of 5-HT(6) receptor were investigated at different times in prefrontal cortex, hippocampus and striatum. Data indicated that memory in the Pavlovian/instrumental autoshaping task was a progressive process associated to reduced mRNA expression of 5-HT(6) receptor in the three structures examined. SB-399885 improved long-term memory at 48h, while the muscarinic receptor antagonist scopolamine or the non-competitive NMDA receptor antagonist dizocilpine impaired it at 24h. Autoshaping training and treatment with SB-399885 increased 5-HT(6) receptor mRNA expression in (maximum increase) prefrontal cortex and striatum, 24 or 48h. The scopolamine-induced amnesia suppressed 5-HT(6) receptor mRNA expression while the dizocilpine-induced amnesia did not modify 5-HT(6) receptor mRNA expression. SB-399885 and scopolamine or dizocilpine were able to reestablish memory and 5-HT(6) receptor mRNA expression. These data confirmed previous memory evidence and of more interest is the observation that training, SB-399885 and amnesic drugs modulated 5-HT(6) receptor mRNA expression in prefrontal cortex, hippocampus and striatum. Further investigation in different memory tasks, times and amnesia models together with more complex control groups might provide further clues. Copyright 2009 Elsevier Inc. All rights reserved.
Molecular analysis of nicotinic receptor expression in autism.
Martin-Ruiz, C M; Lee, M; Perry, R H; Baumann, M; Court, J A; Perry, E K
2004-04-07
Autism is a developmental disorder of unknown aetiopathology and lacking any specific pharmacological therapeutic intervention. Neurotransmitters such as serotonin, gamma-aminobutyric acid (GABA) and acetylcholine have been implicated. Abnormalities in nicotinic acetylcholine receptors have been identified including cortical loss of binding to the alpha4/beta2 subtype and increase in cerebellar alpha7 binding. Receptor expression (mRNA) has not so far been systematically examined. This study aims to further explore the role of nicotinic receptors in autism by analysing nicotinic receptor subunit mRNA in conjunction with protein levels and receptor binding in different brain areas. Quantitative RT-PCR for alpha4, alpha7 and beta2 subunit mRNA expression levels; alpha3, alpha4, alpha7 and beta2 subunit protein expression immunochemistry and specific radioligand receptor binding were performed in adult autism and control brain samples from cerebral cortex and cerebellum. Alpha4 and beta2 protein expression and receptor binding density as well as alpha4 mRNA levels were lower in parietal cortex in autism, while alpha7 did not change for any of these parameters. In cerebellum, alpha4 mRNA expression was increased, whereas subunit protein and receptor levels were decreased. Alpha7 receptor binding in cerebellum was increased alongside non-significant elevations in mRNA and protein expression levels. No significant changes were found for beta2 in cerebellum. The data obtained, using complementary measures of receptor expression, indicate that reduced gene expression of the alpha4beta2 nicotinic receptor in the cerebral cortex is a major feature of the neurochemical pathology of autism, whilst post-transcriptional abnormalities of both this and the alpha7 subtype are apparent in the cerebellum. The findings point to dendritic and/or synaptic nicotinic receptor abnormalities that may relate to disruptions in cerebral circuitry development.
C-type lectin Mincle is an activating receptor for pathogenic fungus, Malassezia
Yamasaki, Sho; Matsumoto, Makoto; Takeuchi, Osamu; Matsuzawa, Tetsuhiro; Ishikawa, Eri; Sakuma, Machie; Tateno, Hiroaki; Uno, Jun; Hirabayashi, Jun; Mikami, Yuzuru; Takeda, Kiyoshi; Akira, Shizuo; Saito, Takashi
2009-01-01
Mincle (also called as Clec4e and Clecsf9) is a C-type lectin receptor expressed in activated phagocytes. Recently, we have demonstrated that Mincle is an FcRγ-associated activating receptor that senses damaged cells. To search an exogenous ligand(s), we screened pathogenic fungi using cell line expressing Mincle, FcRγ, and NFAT-GFP reporter. We found that Mincle specifically recognizes the Malassezia species among 50 different fungal species tested. Malassezia is a pathogenic fungus that causes skin diseases, such as tinea versicolor and atopic dermatitis, and fatal sepsis. However, the specific receptor on host cells has not been identified. Mutation of the putative mannose-binding motif within C-type lectin domain of Mincle abrogated Malassezia recognition. Analyses of glycoconjugate microarray revealed that Mincle selectively binds to α-mannose but not mannan. Thus, Mincle may recognize specific geometry of α-mannosyl residues on Malassezia species and use this to distinguish them from other fungi. Malassezia activated macrophages to produce inflammatory cytokines/chemokines. To elucidate the physiological function of Mincle, Mincle-deficient mice were established. Malassezia-induced cytokine/chemokine production by macrophages from Mincle−/− mice was significantly impaired. In vivo inflammatory responses against Malassezia was also impaired in Mincle−/− mice. These results indicate that Mincle is the first specific receptor for Malassezia species to be reported and plays a crucial role in immune responses to this fungus. PMID:19171887
Mannan Baig, Abdul; Khan, Naveed A; Effendi, Vardah; Rana, Zohaib; Ahmad, H R; Abbas, Farhat
2017-01-01
Recent reports on acetylcholine muscarinic receptor subtype 3 (CHRM3) have shown its growth-promoting role in prostate cancer. Additional studies report the proliferative effect of the cholinergic agonist carbachol on prostate cancer by its agonistic action on CHRM3. This study shows that the type 1 acetylcholine muscarinic receptor (CHRM1) contributes toward the proliferation and growth of prostate cancer. We used growth and cytotoxic assays, the prostate cancer microarray database and CHRM downstream pathways' homology of CHRM subtypes to uncover multiple signals leading to the growth of prostate cancer. Growth assays showed that pilocarpine stimulates the proliferation of prostate cancer. Moreover, it shows that carbachol exerts an additional agonistic action on nicotinic cholinergic receptor of prostate cancer cells that can be blocked by tubocurarine. With the use of selective CHRM1 antagonists such as pirenzepine and dicyclomine, a considerable inhibition of proliferation of prostate cancer cell lines was observed in dose ranging from 15-60 µg/ml of dicyclomine. The microarray database of prostate cancer shows a dominant expression of CHRM1 in prostate cancer compared with other cholinergic subtypes. The bioinformatics of prostate cancer and CHRM pathways show that the downstream signalling include PIP3-AKT-CaM-mediated growth in LNCaP and PC3 cells. Our study suggests that antagonism of CHRM1 may be a potential therapeutic target against prostate cancer.
Iwanowicz, Luke R.; Hung, Alice L.; Blazer, Vicki S.; Halpern, Marnie E.
2014-01-01
Background: Environmental endocrine disruptors (EEDs) are exogenous chemicals that mimic endogenous hormones such as estrogens. Previous studies using a zebrafish transgenic reporter demonstrated that the EEDs bisphenol A and genistein preferentially activate estrogen receptors (ERs) in the larval heart compared with the liver. However, it was not known whether the transgenic zebrafish reporter was sensitive enough to detect estrogens from environmental samples, whether environmental estrogens would exhibit tissue-specific effects similar to those of BPA and genistein, or why some compounds preferentially target receptors in the heart. Methods: We tested surface water samples using a transgenic zebrafish reporter with tandem estrogen response elements driving green fluorescent protein expression (5xERE:GFP). Reporter activation was colocalized with tissue-specific expression of ER genes by RNA in situ hybridization. Results: We observed selective patterns of ER activation in transgenic fish exposed to river water samples from the Mid-Atlantic United States, with several samples preferentially activating receptors in embryonic and larval heart valves. We discovered that tissue specificity in ER activation was due to differences in the expression of ER subtypes. ERα was expressed in developing heart valves but not in the liver, whereas ERβ2 had the opposite profile. Accordingly, subtype-specific ER agonists activated the reporter in either the heart valves or the liver. Conclusion: The use of 5xERE:GFP transgenic zebrafish revealed an unexpected tissue-specific difference in the response to environmentally relevant estrogenic compounds. Exposure to estrogenic EEDs in utero was associated with adverse health effects, with the potentially unanticipated consequence of targeting developing heart valves. Citation: Gorelick DA, Iwanowicz LR, Hung AL, Blazer VS, Halpern ME. 2014. Transgenic zebrafish reveal tissue-specific differences in estrogen signaling in response to environmental water samples. Environ Health Perspect 122:356–362; http://dx.doi.org/10.1289/ehp.1307329 PMID:24425189
Jiménez-Garduño, Aura M; Mendoza-Rodríguez, Mónica G; Urrutia-Cabrera, Daniel; Domínguez-Robles, María C; Pérez-Yépez, Eloy A; Ayala-Sumuano, Jorge Tonatiuh; Meza, Isaura
2017-08-26
Inflammation has been recently acknowledged as a key participant in the physiopathology of oncogenesis and tumor progression. The inflammatory cytokine IL-1β has been reported to induce the expression of markers associated with malignancy in breast cancerous cells through Epithelial-Mesenchymal Transition (EMT). Aggressive breast cancer tumors classified as Triple Negative do not respond to hormonal treatment because they lack three crucial receptors, one of which is the estrogen receptor alpha (ERα). Expression of ERα is then considered a good prognostic marker for tamoxifen treatment of this type of cancer, as the binding of this drug to the receptor blocks the transcriptional activity of the latter. Although it has been suggested that inflammatory cytokines in the tumor microenvironment could regulate ERα expression, the mechanism(s) involved in this process have not yet been established. We show here that, in a cell model of breast cancer cells (6D cells), in which the inflammatory cytokine IL-1β induces EMT by activation of the IL-1β/IL-1RI/β-catenin pathway, the up regulation of TWIST1 leads to methylation of the ESR1 gene promoter. This epigenetic modification produced significant decrease of the ERα receptor levels and increased resistance to tamoxifen. The direct participation of IL-1β in these processes was validated by blockage of the cytokine-induced signaling pathway by wortmannin inactivation of the effectors PI3K/AKT. These results support our previous reports that have suggested direct participation of the inflammatory cytokine IL-1β in the transition to malignancy of breast cancer cells. Copyright © 2017 Elsevier Inc. All rights reserved.
Kinet, Sandrina; Swainson, Louise; Lavanya, Madakasira; Mongellaz, Cedric; Montel-Hagen, Amélie; Craveiro, Marco; Manel, Nicolas; Battini, Jean-Luc; Sitbon, Marc; Taylor, Naomi
2007-01-01
Background We previously identified the glucose transporter Glut-1, a member of the multimembrane-spanning facilitative nutrient transporter family, as a receptor for both HTLV-1 and HTLV-2. However, a recent report concluded that Glut-1 cannot serve as a receptor for HTLV-1 on CD4 T cells: This was based mainly on their inability to detect Glut-1 on this lymphocyte subset using the commercial antibody mAb1418. It was therefore of significant interest to thoroughly assess Glut-1 expression on CD4 and CD8 T cells, and its association with HTLV-1 and -2 envelope binding. Results As previously reported, ectopic expression of Glut-1 but not Glut-3 resulted in significantly augmented binding of tagged proteins harboring the receptor binding domains of either HTLV-1 or HTLV-2 envelope glycoproteins (H1RBD or H2RBD). Using antibodies raised against the carboxy-terminal peptide of Glut-1, we found that Glut-1 expression was significantly increased in both CD4 and CD8 cells following TCR stimulation. Corresponding increases in the binding of H1RBD as well as H2RBD, not detected on quiescent T cells, were observed following TCR engagement. Furthermore, increased Glut-1 expression was accompanied by a massive augmentation in glucose uptake in TCR-stimulated CD4 and CD8 lymphocytes. Finally, we determined that the apparent contradictory results obtained by Takenouchi et al were due to their monitoring of Glut-1 with a mAb that does not bind cells expressing endogenous Glut-1, including human erythrocytes that harbor 300,000 copies per cell. Conclusion Transfection of Glut-1 directly correlates with the capacities of HTLV-1 and HTLV-2 envelope-derived ligands to bind cells. Moreover, Glut-1 is induced by TCR engagement, resulting in massive increases in glucose uptake and binding of HTLV-1 and -2 envelopes to both CD4 and CD8 T lymphocytes. Therefore, Glut-1 is a primary binding receptor for HTLV-1 and HTLV-2 envelopes on activated CD4 as well as CD8 lymphocytes. PMID:17504522
An in vitro investigation of endocrine disrupting effects of the mycotoxin alternariol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frizzell, Caroline; Ndossi, Doreen; Sokoine University of Agriculture, Morogoro
2013-08-15
Alternariol (AOH) is a mycotoxin commonly produced by Alternaria alternata on a wide range of foods. Few studies to date have been performed to evaluate the effects of AOH on endocrine activity. The present study makes use of in vitro mammalian cellular based assays and gene expression to investigate the ability of AOH to act as an endocrine disruptor by various modes of action. Reporter gene assays (RGAs), incorporating natural steroid hormone receptors for oestrogens, androgens, progestagens and glucocorticoids were used to identify endocrine disruption at the level of nuclear receptor transcriptional activity, and the H295R steroidogenesis assay was usedmore » to assess endocrine disruption at the level of gene expression and steroid hormone production. AOH exhibited a weak oestrogenic response when tested in the oestrogen responsive RGA and binding of progesterone to the progestagen receptor was shown to be synergistically increased in the presence of AOH. H295R cells when exposed to 0.1–1000 ng/ml AOH, did not cause a significant change in testosterone and cortisol hormones but exposure to 1000 ng/ml (3.87 μM) AOH resulted in a significant increase in estradiol and progesterone production. In the gene expression study following exposure to 1000 ng/ml (3.87 μM) AOH, only one gene NR0B1 was down-regulated, whereas expression of mRNA for CYP1A1, MC2R, HSD3B2, CYP17, CYP21, CYP11B2 and CYP19 was up-regulated. Expression of the other genes investigated did not change significantly. In conclusion AOH is a weak oestrogenic mycotoxin that also has the ability to interfere with the steroidogenesis pathway. - Highlights: • Alternariol was investigated for endocrine disrupting activity. • Reporter gene assays and the H295R steroidogenesis assay have been used. • An oestrogenic effect of alternariol was observed. • This can lead to an increase in expression of the progesterone receptor. • Alternariol is capable of modulating hormone production and gene expression.« less
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Yang, Jing; Wu, Ning-Ni; Huang, De-Jia; Luo, Yao-Chang; Huang, Jun-Zhen; He, Hai-Yuan; Lu, Hai-Lin; Song, Wen-Ling
2017-07-01
Although the oncogenic role of PPFIA1 (liprin-α1) in breast cancer has been reported, whether its dysregulation is associated with metastasis risk or survival outcomes in breast cancer patients is not clear. Our primary data showed that PPFIA1 expression was significantly higher in liver metastatic breast tumors than in the primary tumors. Then, we tried to pool previous annotated genomic data to assess the prognostic value of PPFIA1 in distant metastasis-free survival, the risk of metastatic relapse, and metastatic relapse-free survival in breast cancer patients by data mining in two large databases, Kaplan-Meier plotter and bc-GenExMiner 4.0. Results from Kaplan-Meier plotter showed that although high PPFIA1 expression was generally associated with decreased distant metastasis-free survival in estrogen receptor+ patients, subgroup analysis only confirmed significant association in estrogen receptor+/N- (nodal negative) group (median survival, high PPFIA1 group vs low PPFIA1 cohort: 191.21 vs 236.22 months; hazard ratio: 2.23, 95% confidence interval: 1.42-3.5, p < 0.001), but not in estrogen receptor+/N+ (nodal positive) group (hazard ratio: 1.63, 95% confidence interval: 0.88-3.03, p = 0.12). In estrogen receptor- patients, there was no association between PPFIA1 expression and distant metastasis-free survival, no matter in Nm (nodal status mixed), N-, or N+ subgroups. In bc-GenExMiner 4.0, Nottingham Prognostic Index- and Adjuvant! Online-adjusted analysis validated the independent prognostic value of PPFIA1 in metastatic risks in estrogen receptor+/N- patients. Based on these findings, we infer that high PPFIA1 expression might be an independent prognostic indicator of increased metastatic relapse risk in patients with estrogen receptor+/N- breast cancer, but not in estrogen receptor+/N+ or estrogen receptor- patients.
Wang, Jin-Wei; Li, Ai-Ying; Guo, Qiu-Hong; Guo, Ya-Jing; Weiss, James W; Ji, En-Sheng
2017-01-01
Obstructive sleep apnea (OSA) results in cardiac dysfunction and vascular endothelium injury. Chronic intermittent hypoxia (CIH), the main characteristic of OSAS, is considered to be mainly responsible for cardiovascular system impairment. This study is aimed to evaluate the role of endothelin-1(ET-1) system in coronary injury and cardiac dysfunction in CIH rats. In our study, Sprague-Dawley rats were exposed to CIH (FiO 2 9% for 1.5 min, repeated every 3 min for 8 h/d, 7 days/week for 3 weeks). After 3 weeks, the left ventricular developed pressure (LVDP) and coronary resistance (CR) were measured with the langendorff mode in isolated hearts. Meanwhile, expressions of ET-1 and ET receptors were detected by immunohistochemical and western blot, histological changes were also observed to determine effects of CIH on coronary endothelial cells. Results suggested that decreased LVDP level combined with augmented coronary resistance was exist in CIH rats. CIH could induce endothelial injury and endothelium-dependent vasodilatation dysfunction in the coronary arteries. Furthermore, ET-1 and ET A receptor expressions in coronary vessels were increased after CIH exposure, whereas ET B receptors expression was decreased. Coronary contractile response to ET-1 in both normoxia and CIH rats was inhibited by ET A receptor antagonist BQ123. However, ET B receptor antagonist BQ788 enhanced ET-1-induced contractile in normoxia group, but had no significant effects on CIH group. These results indicate that CIH-induced cardiac dysfunction may be associated with coronary injury. ET-1 plays an important role in coronary pathogenesis of CIH through ET A receptor by mediating a potent vasoconstrictor response. Moreover, decreased ET B receptor expression that leads to endothelium-dependent vasodilatation decline, might be also participated in coronary and cardiac dysfunction. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Otake, Kaori; Omoto, Shinya; Yamamoto, Takuya; Okuyama, Harumi; Okada, Hidechika; Okada, Noriko; Kawai, Masahiro; Saksena, Nitin K; Fujii, Yoichi R
2004-01-23
Although the HIV-1 Nef protein (27 kDa) localizes primarily in cytoplasm, there is considerable evidence suggesting its occasional localization in the nucleus. Nef is known to play an important role in transcriptional events and viral replication, but the actual target of Nef in the nucleus remains to be identified. To examine the functional roles of Nef in the nucleus and its possible interactions with other unknown factors in the nucleus. High-density microarray analysis was used to screen directly the unique functions of Nef on host gene transcription. The nuclear localization of Nef and its effects on the expression of peroxisome proliferator-activated receptors (PPAR) was examined using PPAR promoter/reporter assay and immunoblotting. A long terminal repeat/reporter assay was used to investigated the effects of Nef and PPAR on viral transcription. Nef in the nucleus suppressed PPAR gamma expression and reduced fatty acid levels in human T and macrophage cell lines. Expression of Nef or PPAR suppressed viral replication; the effect of PPAR gamma or retinoid X receptor-alpha on viral replication were reduced by coexpression of Nef in MT(-)4 T cells. Nef may be involved in both viral replication and the wasting syndrome associated with AIDS.
Prostaglandin F2α receptor silencing attenuates vascular remodeling in rats with type 2 diabetes.
Li, Ya; Han, Lu; Ding, Wen-Yuan; Ti, Yun; Li, Yi-Hui; Tang, Meng-Xiong; Wang, Zhi-Hao; Zhang, Yun; Zhang, Wei; Zhong, Ming
2015-12-01
Vascular remodeling is an important feature of diabetic macrovascular complications. The prostaglandin F2α receptor (FP), the expression of which is upregulated by insulin resistance and diabetes, is reportedly involved in myocardial remodeling. In this study, we aimed to investigate whether the FP receptor is implicated in diabetes-induced vascular remodeling. A type 2 diabetic rat model was induced through a high-fat diet and low-dose streptozotocin (STZ). Thirty-two rats were randomized into four groups: control, diabetes, diabetes treated with empty virus and diabetes treated with FP receptor-shRNA. Then, we evaluated the metabolic index, FP receptor expression and vascular remodeling. We used FP receptor gene silencing in vivo to investigate the role that the FP receptor plays in the pathophysiologic features of vascular remodeling. Diabetic rats displayed increased levels of blood glucose, cholesterol, and triglycerides, as well as severe insulin resistance and FP receptor overexpression. In addition, increased medial thickness, excessive collagen deposition and diminished elastic fibers were observed in the diabetic rats, resulting in vascular remodeling. In the FP receptor-shRNA group, the medial thickness, collagen content, elastin/collagen ratio, and collagen I/collagen III content ratio were markedly decreased. Additionally, with FP receptor gene silencing, the JNK phosphorylation level was markedly decreased. Silencing of the FP receptor exerts a protective effect on diabetes-induced vascular remodeling, thereby suggesting a new therapeutic target for vascular remodeling in diabetes. Copyright © 2015 Elsevier Inc. All rights reserved.
Christie, R. H.; Freeman, M.; Hyman, B. T.
1996-01-01
The macrophage scavenger receptor is a multifunctional receptor whose ligands include oxidized low density lipoprotein (LDL), as well as several other polyanionic macromolecules. Although the capacity of the receptor to bind modified LDL has implicated it in the process of atherosclerosis, its physiological role remains uncertain. We have examined human brain for expression of macrophage scavenger receptor as part of ongoing studies of lipoprotein receptors in the central nervous system. The receptor is expressed on microglia, but not on astrocytes, neurons, or vessel-associated structures. In Alzheimer disease, there is strong expression of the scavenger receptor in association with senile plaques. Images Figure 2 Figure 3 Figure 4 PMID:8579103
Early-life seizures alter synaptic calcium-permeable AMPA receptor function and plasticity
Lippman-Bell, Jocelyn J.; Zhou, Chengwen; Sun, Hongyu; Feske, Joel S.; Jensen, Frances E.
2016-01-01
Calcium (Ca2+)-mediated1 signaling pathways are critical to synaptic plasticity. In adults, the NMDA glutamate receptor (NMDAR) represents a major route for activity-dependent synaptic Ca2+ entry. However, during neonatal development, when synaptic plasticity is high, many AMPA glutamate receptors (AMPARs) are also permeable to Ca2+ (CP-AMPAR) due to low GluA2 subunit expression, providing an additional route for activity- and glutamate-dependent Ca2+ influx and subsequent signaling. Therefore, altered hippocampal Ca2+ signaling may represent an age-specific pathogenic mechanism. We thus aimed to assess Ca2+ responses 48 hours after hypoxia-induced neonatal seizures (HS) in postnatal day (P)10 rats, a post-seizure time point at which we previously reported LTP attenuation. We found that Ca2+ responses were higher in brain slices from post-HS rats than in controls and this increase was CP-AMPAR-dependent. To determine whether synaptic CP-AMPAR expression was also altered post-HS, we assessed the expression of GluA2 at hippocampal synapses and the expression of long-term depression (LTD), which has been linked to the presence of synaptic GluA2. Here we report a decrease 48 hours after HS in synaptic GluA2 expression at synapses and LTD in hippocampal CA1. Given the potentially critical role of AMPAR trafficking in disease progression, we aimed to establish whether post-seizure in vivo AMPAR antagonist treatment prevented the enhanced Ca2+ responses, changes in GluA2 synaptic expression, and diminished LTD. We found that NBQX treatment prevents all three of these post-seizure consequences, further supporting a critical role for AMPARs as an age-specific therapeutic target. PMID:27521497
Cell Surface Trafficking of TLR1 Is Differentially Regulated by the Chaperones PRAT4A and PRAT4B*
Hart, Bryan E.; Tapping, Richard I.
2012-01-01
The subcellular localization of Toll-like receptors (TLRs) is critical to their ability to function as innate immune sensors of microbial infection. We previously reported that an I602S polymorphism of human TLR1 is associated with aberrant trafficking of the receptor to the cell surface, loss of responses to TLR1 agonists, and differential susceptibility to diseases caused by pathogenic mycobacteria. Through an extensive analysis of receptor deletion and point mutants we have discovered that position 602 resides within a short 6 amino acid cytoplasmic region that is required for TLR1 surface expression. This short trafficking motif, in conjunction with the adjacent transmembrane domain, is sufficient to direct TLR1 to the cell surface. A serine at position 602 interrupts this trafficking motif and prevents cell surface expression of TLR1. Additionally, we have found that ER-resident TLR chaperones, PRAT4A and PRAT4B, act as positive and negative regulators of TLR1 surface trafficking, respectively. Importantly, either over-expression of PRAT4A or knock-down of PRAT4B rescues cell surface expression of the TLR1 602S variant. We also report that IFN-γ treatment of primary human monocytes derived from homozygous 602S individuals rescues TLR1 cell surface trafficking and cellular responses to soluble agonists. This event appears to be mediated by PRAT4A whose expression is strongly induced in human monocytes by IFN-γ. Collectively, these results provide a mechanism for the differential trafficking of TLR1 I602S variants, and highlight the distinct roles for PRAT4A and PRAT4B in the regulation of TLR1 surface expression. PMID:22447933
Transcriptional activation of melanocortin 2 receptor accessory protein by PPARγ in adipocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Nam Soo; Kim, Yoon-Jin; Cho, Si Young
2013-09-27
Highlights: •MRAP enhanced HSL expression. •ACTH-mediated MRAP reduced glycerol release. •PPARγ induced MRAP expression. •PPARγ bound to the MRAP promoter. -- Abstract: Adrenocorticotropic hormone (ACTH) in rodents decreases lipid accumulation and body weight. Melanocortin receptor 2 (MC2R) and MC2R accessory protein (MRAP) are specific receptors for ACTH in adipocytes. Peroxisome proliferator-activated receptor γ (PPARγ) plays a role in the transcriptional regulation of metabolic pathways such as adipogenesis and β-oxidation of fatty acids. In this study we investigated the transcriptional regulation of MRAP expression during differentiation of 3T3-L1 cells. Stimulation with ACTH affected lipolysis in murine mature adipocytes via MRAP. Putativemore » peroxisome proliferator response element (PPRE) was identified in the MRAP promoter region. In chromatin immunoprecipitation and reporter assays, we observed binding of PPARγ to the MRAP promoter. The mutagenesis experiments showed that the −1209/−1198 region of the MRAP promoter could function as a PPRE site. These results suggest that PPARγ is required for transcriptional activation of the MRAP gene during adipogenesis, which contributes to understanding of the molecular mechanism of lipolysis in adipocytes.« less
Subunit profiling and functional characteristics of acetylcholine receptors in GT1-7 cells.
Arai, Yuki; Ishii, Hirotaka; Kobayashi, Makito; Ozawa, Hitoshi
2017-03-01
GnRH neurons form a final common pathway for the central regulation of reproduction. Although the involvement of acetylcholine in GnRH secretion has been reported, direct effects of acetylcholine and expression profiles of acetylcholine receptors (AChRs) still remain to be studied. Using immortalized GnRH neurons (GT1-7 cells), we analyzed molecular expression and functionality of AChRs. Expression of the mRNAs were identified in the order α7 > β2 = β1 ≧ α4 ≧ α5 = β4 = δ > α3 for nicotinic acetylcholine receptor (nAChR) subunits and m4 > m2 for muscarinic acetylcholine receptor (mAChR) subtypes. Furthermore, this study revealed that α7 nAChRs contributed to Ca 2+ influx and GnRH release and that m2 and m4 mAChRs inhibited forskolin-induced cAMP production and isobutylmethylxanthine-induced GnRH secretion. These findings demonstrate the molecular profiles of AChRs, which directly contribute to GnRH secretion in GT1-7 cells, and provide one possible regulatory action of acetylcholine in GnRH neurons.
Involvement of chemokine receptors in breast cancer metastasis
NASA Astrophysics Data System (ADS)
Müller, Anja; Homey, Bernhard; Soto, Hortensia; Ge, Nianfeng; Catron, Daniel; Buchanan, Matthew E.; McClanahan, Terri; Murphy, Erin; Yuan, Wei; Wagner, Stephan N.; Barrera, Jose Luis; Mohar, Alejandro; Verástegui, Emma; Zlotnik, Albert
2001-03-01
Breast cancer is characterized by a distinct metastatic pattern involving the regional lymph nodes, bone marrow, lung and liver. Tumour cell migration and metastasis share many similarities with leukocyte trafficking, which is critically regulated by chemokines and their receptors. Here we report that the chemokine receptors CXCR4 and CCR7 are highly expressed in human breast cancer cells, malignant breast tumours and metastases. Their respective ligands CXCL12/SDF-1α and CCL21/6Ckine exhibit peak levels of expression in organs representing the first destinations of breast cancer metastasis. In breast cancer cells, signalling through CXCR4 or CCR7 mediates actin polymerization and pseudopodia formation, and subsequently induces chemotactic and invasive responses. In vivo, neutralizing the interactions of CXCL12/CXCR4 significantly impairs metastasis of breast cancer cells to regional lymph nodes and lung. Malignant melanoma, which has a similar metastatic pattern as breast cancer but also a high incidence of skin metastases, shows high expression levels of CCR10 in addition to CXCR4 and CCR7. Our findings indicate that chemokines and their receptors have a critical role in determining the metastatic destination of tumour cells.
Gabrielson, Marike; Chiesa, Flaminia; Behmer, Catharina; Rönnow, Katarina; Czene, Kamila; Hall, Per
2018-03-30
Reproductive history has been associated with breast cancer risk, but more knowledge of the underlying biological mechanisms is needed. Because of limited data on normal breast tissue from healthy women, we examined associations of reproductive history and established breast cancer risk factors with breast tissue composition and markers of hormone receptors and proliferation in a nested study within the Karolinska Mammography project for risk prediction for breast cancer (Karma). Tissues from 153 women were obtained by ultrasound-guided core needle biopsy as part of the Karma project. Immunohistochemical staining was used to assessed histological composition of epithelial, stromal and adipose tissue, epithelial and stromal oestrogen receptor (ER) and progesterone receptor (PR) status, and Ki-67 proliferation status. An individualised reproductive score including parity, number of pregnancies without birth, number of births, age at first birth, and duration of breastfeeding, was calculated based on self-reported reproductive history at the time of the Karma study entry. All analyses were adjusted for age and BMI. Cumulated reproductive score was associated with increased total epithelial content and greater expression of epithelial ER. Parity was associated with greater epithelial area, increased epithelial-stromal ratio, greater epithelial ER expression and a lower extent of stromal proliferation. Increasing numbers of pregnancies and births were associated with a greater epithelial area in the entire study set, which remained significant among postmenopausal women. Increasing numbers of pregnancies and births were also associated with a greater expression of epithelial ER among postmenopausal women. Longer duration of breastfeeding was associated with greater epithelial area and greater expression of epithelial PR both in the entire study set and among postmenopausal women. Breastfeeding was also positively associated with greater epithelial ER expression among postmenopausal women. Prior use of oral contraceptives was associated with lower epithelial-stromal ratio amongst all participants and among pre- and postmenopausal women separately. Reproductive risk factors significantly influence the epithelial tissue compartment and expression of hormone receptors in later life. These changes remain after menopause. This study provides deeper insights of the biological mechanisms by which reproductive history influences epithelial area and expression of hormone receptors, and as a consequence the risk of breast cancer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kojima, Hiroyuki, E-mail: kojima@iph.pref.hokkaido.jp; Muromoto, Ryuta; Takahashi, Miki
2012-03-15
The retinoic acid receptor-related orphan receptors α and γ (RORα and RORγ), are key regulators of helper T (Th)17 cell differentiation, which is involved in the innate immune system and autoimmune disorders. However, it remains unclear whether environmental chemicals, including pesticides, have agonistic and/or antagonistic activity against RORα/γ. In this study, we investigated the RORα/γ activity of several azole-type fungicides, and the effects of these fungicides on the gene expression of interleukin (IL)-17, which mediates the function of Th17 cells. In the ROR-reporter gene assays, five azole-type fungicides (imibenconazole, triflumizole, hexaconazole, tetraconazole and imazalil) suppressed RORα- and/or RORγ-mediated transcriptional activitymore » as did benzenesulphonamide T0901317, a ROR inverse agonist and a liver X receptor (LXR) agonist. In particular, imibenconazole, triflumizole and hexaconazole showed RORγ inverse agonistic activity at concentrations of 10{sup −6} M. However, unlike T0901317, these fungicides failed to show any LXRα/β agonistic activity. Next, five azole-type fungicides, showing ROR inverse agonist activity, were tested on IL-17 mRNA expression in mouse T lymphoma EL4 cells treated with phorbol myristate acetate and ionomycin. The quantitative RT-PCR analysis revealed that these fungicides suppressed the expression of IL-17 mRNA without effecting RORα and RORγ mRNA levels. In addition, the inhibitory effect of imibenconazole as well as that of T0901317 was absorbed in RORα/γ-knocked down EL4 cells. Taken together, these results suggest that some azole-type fungicides inhibit IL-17 production via RORα/γ. This also provides the first evidence that environmental chemicals can act as modulators of IL-17 expression in immune cells. -- Highlights: ► Nuclear receptors, RORα and RORγ, are key regulators of Th17 cell differentiation. ► Five azole-type fungicides act as RORα/γ inverse agonists. ► These fungicides suppress the expression of IL-17 mRNA in mouse EL4 cells. ► Environmental chemicals can act as modulators of IL-17 expression via RORα/γ.« less
Maeda, Tetsuyo; Nakanishi, Yoko; Hirotani, Yukari; Fuchinoue, Fumi; Enomoto, Katsuhisa; Sakurai, Kenichi; Amano, Sadao; Nemoto, Norimichi
2016-03-01
Triple negative breast cancer (TNBC) is immunohistochemically characterised by the lack of expression of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor type 2 (HER2). TNBC is known for its poor prognosis and high recurrence probability. There is no effective targeted treatment for TNBC, but only adjuvant chemotherapies. There are two TNBC subtypes, basal-like and non-basal-like, which are defined based on positive cytokeratin (CK) 5/6 and/or epidermal growth factor receptor (EGFR) expression. In particular, CK5/6 expression is reported to correlate with TNBC recurrence. TNBC lacks ER-α expression, but some TNBCs are known to express the androgen receptor (AR). Moreover, although p53 accumulation is detected in various malignant tumors, its influence on adjuvant chemotherapy for patients with TNBC remains unclear. The aim of this study was to assess the combined immunohistochemical expression of CK 5/6, AR, and p53 as a potential prognostic marker of adjuvant chemotherapy for patients with TNBC. The expression of CK5/6, AR, and p53 in formalin-fixed and paraffin-embedded (FFPE) surgical sections from 52 patients with TNBC was analysed by immunohistochemistry (IHC) and the co-expression patterns in individual cells were investigated by immunofluorescent (IF) staining. Low AR expression was correlated with high clinical stage (P < 0.05) and low nuclear grade (P < 0.05). The expression of CK5/6 and p53 did not correlate with clinicopathological features. Patients who needed adjuvant chemotherapy presented the worst prognosis. In particular, when the IHC expression pattern was CK5/6 (-), AR (-), and p53 (+), the disease free survival (DFS) and overall survival (OS) were the worst. On the other hand, patients with AR (+) and p53 (-) TNBC presented a good prognosis. The analysis of the co-expression status of these three markers showed that no cells presented both AR and CK5/6 expression. Furthermore, TP53 mRNA expression was higher in patients with AR-negative TNBC (P < 0.05) and in patients with the worst prognosis (P < 0.05) than in the other patients. These results suggested that, in patients with CK5/6-negative TNBC, AR expression correlated with good prognosis, but p53 accumulation correlated with poor prognosis. The present IHC markers allowed us to predict the post-surgery prognosis of patients with TNBC. In conclusion, TNBCs are heterogeneous. Patients with the CK5/6 (-), AR (-), and p53 (+) TNBC subtype, evaluated by IHC, presented the worst prognosis. These IHC markers will be helpful to follow patients with TNBC.
Maillet, Emeline L
2011-02-01
Recent studies have demonstrated that the sweet-sensing receptors T1R2/3, thought to be "taste receptors" specifically expressed in lingual system, are also expressed and involved in the chemo-detection of sweetening molecules circulating in other organs. Researches that focus on their roles in intestinal absorption, metabolic regulation and glucose homeostasis, in particular, are increasing. Indeed, the sweet-sensing receptor could provide a new therapeutic target for certain metabolic disorders and diseases like obesity and diabetes. If the natural and artificial sweeteners agonists are diverse and well known, the "anti-sweeteners" antagonistic molecules are a class of compounds that received very little attention until now. Their potential roles and pharmacological relevance outside the taste system are discussed. Moreover, the recent finding that 2 major classes of compounds belonging respectively to the fields of medicine (fibrates) and agriculture (phenoxy-herbicides) are potent inhibitors of human T1R3 receptor is reported, raising new questions about their potential impact on human metabolism. © 2011 médecine/sciences - Inserm / SRMS.
Androgen responsiveness of the new human endometrial cancer cell line MFE-296.
Hackenberg, R; Beck, S; Filmer, A; Hushmand Nia, A; Kunzmann, R; Koch, M; Slater, E P; Schulz, K D
1994-04-01
MFE-296 endometrial cancer cells express androgen receptors in vitro. These cells, which are tumorigenic in nude mice, are derived from a moderately differentiated human endometrial adenocarcinoma. They express vimentin and the cytokeratins 7, 8, 18, and 19. Karyotyping revealed near-tetraploidy for most of the cells. No marker chromosomes were observed. DNA analyses confirmed the genetic identity of the cell line and the patient from whom the cell line was derived. Proliferation of MFE-296 cells was inhibited by the progestin R5020 and the androgen dihydrotestosterone (DHT). The inhibition of proliferation by DHT was antagonized by the antiandrogen Casodex, demonstrating the involvement of the androgen receptor. Androgen binding was determined at 22,000 binding sites per cell using a whole-cell assay (KD = 0.05 nM) and 30 fmol/mg protein with the dextran charcoal method; 7 fmol/mg protein of progesterone receptors were found, whereas estrogen receptors were below 5 fmol/mg protein. The androgen receptor was functionally intact, as demonstrated by transfection experiments with a reporter-gene construct, containing an androgen-responsive element. In MFE-296 cells the content of the androgen receptor was up-regulated by its own ligand.
Aberrant expression of decoy receptor 3 in human breast cancer: relevance to lymphangiogenesis.
Wu, Qiuwan; Zheng, Yahong; Chen, Donghan; Li, Xiaohong; Lu, Chuanhui; Zhang, Zhiming
2014-05-15
Decoy receptor 3 (DcR3), a decoy receptor against Fas ligand belonging to the tumor necrosis factor receptor superfamily, is overexpressed in some forms of cancer. It was recently reported that DcR3 could protect endothelial cells from apoptosis, implying a potential role in the development of vessels, whereas its role in the lymphangiogenesis remains unclear. In the present study, we studied the DcR3 expression and its relationship with the lymphatic microvessel density (LMVD) to investigate if it played a role in the lymph metastasis of human breast cancer. Real-time polymerase chain reaction and immunohistochemistry were performed to measure the messenger RNA and protein expression of DcR3 in the breast cancer tissues, noncancerous counterparts, and axillary lymph node from 63 patients. LMVD in these specimens was assessed by counting the D2-40 labeled-microvessels. Furthermore, the correlations between DcR3 expression and LMVD and other clinicopathologic parameters were analyzed. DcR3 was overexpressed in the breast cancer tissue of 58 patients (92.1%) and was also expressed in vascular endothelial cells and tumor cells in the lymph nodes. LMVD in cancer tissue and lymph nodes were both positively correlated to the aberrant expression of DcR3. The relevance between DcR3 overexpression and LMVD revealed the existence of possible links between DcR3 and lymphangiogenesis. Based on these findings, it is important to further explore the regulation of lymphangiogenesis operated by the reverse tumor necrosis factor signaling of DcR3. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Ghatge, Radhika P; Jacobsen, Britta M; Schittone, Stephanie A; Horwitz, Kathryn B
2005-01-01
Introduction Medroxyprogesterone acetate (MPA), the major progestin used for oral contraception and hormone replacement therapy, has been implicated in increased breast cancer risk. Is this risk due to its progestational or androgenic properties? To address this, we assessed the transcriptional effects of MPA as compared with those of progesterone and dihydrotestosterone (DHT) in human breast cancer cells. Method A new progesterone receptor-negative, androgen receptor-positive human breast cancer cell line, designated Y-AR, was engineered and characterized. Transcription assays using a synthetic promoter/reporter construct, as well as endogenous gene expression profiling comparing progesterone, MPA and DHT, were performed in cells either lacking or containing progesterone receptor and/or androgen receptor. Results In progesterone receptor-positive cells, MPA was found to be an effective progestin through both progesterone receptor isoforms in transient transcription assays. Interestingly, DHT signaled through progesterone receptor type B. Expression profiling of endogenous progesterone receptor-regulated genes comparing progesterone and MPA suggested that although MPA may be a somewhat more potent progestin than progesterone, it is qualitatively similar to progesterone. To address effects of MPA through androgen receptor, expression profiling was performed comparing progesterone, MPA and DHT using Y-AR cells. These studies showed extensive gene regulatory overlap between DHT and MPA through androgen receptor and none with progesterone. Interestingly, there was no difference between pharmacological MPA and physiological MPA, suggesting that high-dose therapeutic MPA may be superfluous. Conclusion Our comparison of the gene regulatory profiles of MPA and progesterone suggests that, for physiologic hormone replacement therapy, the actions of MPA do not mimic those of endogenous progesterone alone. Clinically, the complex pharmacology of MPA not only influences its side-effect profile; but it is also possible that the increased breast cancer risk and/or the therapeutic efficacy of MPA in cancer treatment is in part mediated by androgen receptor. PMID:16457685
Screening for endocrine disrupting chemicals (EDCs) that act as estrogens or antiestrogens relies on the use of in vitro binding and gene expression assays coupled with short-term diagnostic in vivo assays. Although binding assays are useful to identify chemicals that are competi...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Sangkyu, E-mail: 49park@cku.ac.kr; Lee, Yoo Jeong; Ko, Eun Hee
Glucose metabolism is balanced by glycolysis and gluconeogenesis with precise control in the liver. The expression of genes related to glucose metabolism is regulated primarily by glucose and insulin at transcriptional level. Nuclear receptors play important roles in regulating the gene expression of glucose metabolism at transcriptional level. Some of these nuclear receptors form heterodimers with RXRs to bind to their specific regulatory elements on the target promoters. To date, three isotypes of RXRs have been identified; RXRα, RXRβ and RXRγ. However, their involvement in the interactions with other nuclear receptors in the liver remains unclear. In this study, wemore » found RXRγ is rapidly induced after feeding in the mouse liver, indicating a potential role of RXRγ in controlling glucose or lipid metabolism in the fasting–feeding cycle. In addition, RXRγ expression was upregulated by glucose in primary hepatocytes. This implies that glucose metabolism governed by RXRγ in conjunction with other nuclear receptors. The luciferase reporter assay showed that RXRγ as well as RXRα increased SREBP-1c promoter activity in hepatocytes. These results suggest that RXRγ may play an important role in tight control of glucose metabolism in the fasting–feeding cycle. - Highlights: • Refeeding increases the RXRγ expression level in mouse liver. • RXRγ expression is induced by high glucose condition in primary hepatocytes. • RXRγ and LXRα have synergistic effect on SREBP-1c promoter activity. • RXRγ binds to LXRE(-299/-280) located within SREBP-1c promoter region and interacts with LXRα.« less
Platelet dysfunction associated with the novel Trp29Cys thromboxane A₂ receptor variant.
Mumford, A D; Nisar, S; Darnige, L; Jones, M L; Bachelot-Loza, C; Gandrille, S; Zinzindohoue, F; Fischer, A-M; Mundell, S J; Gaussem, P
2013-03-01
Genetic variations that affect the structure of the thromboxane A2 receptor (TP receptor) provide insights into the function of this key platelet and vascular receptor, but are very rare in unselected populations. To determine the functional consequences of the TP receptor Trp29Cys (W29C) substitution. We performed a detailed phenotypic analysis of an index case (P1) with reduced platelet aggregation and secretion responses to TP receptor pathway activators, and a heterozygous TP receptor W29C substitution. An analysis of the variant W29C TP receptor expressed in heterologous cells was performed. Total TP receptor expression in platelets from P1 was similar to that of controls, but there was reduced maximum binding and reduced affinity of binding to the TP receptor antagonist [(3) H]SQ29548. HEK293 cells transfected with W29C TP receptor cDNA showed similar total TP receptor expression to wild-type (WT) controls. However, the TP receptor agonist U46619 was less potent at inducing rises in cytosolic free Ca(2+) in HEK293 cells expressing the W29C TP receptor than in WT controls, indicating reduced receptor function. Immunofluorescence microscopy and cell surface ELISA showed intracellular retention and reduced cell surface expression of the W29C TP receptor in HEK293 cells. Consistent with the platelet phenotype, both maximum binding and the affinity of binding of [(3) H]SQ29548 to the W29C TP receptor were reduced compared to WT controls. These findings extend the phenotypic description of the very rare disorder TP receptor deficiency, and show that the W29C substitution reduces TP receptor function by reducing surface receptor expression and by disrupting ligand binding. © 2012 International Society on Thrombosis and Haemostasis.
C-Type Lectin Receptor Dectin-2 Binds to an Endogenous Protein β-Glucuronidase on Dendritic Cells
Mori, Daiki; Shibata, Kensuke; Yamasaki, Sho
2017-01-01
C-type lectin receptors (CLRs) recognize pathogen-derived ligands and abnormal self that trigger protective immune responses. However, the precise nature of self ligands recognized by CLRs remains to be determined. Here, we found that Dectin-2 recognizes bone marrow-derived dendritic cells (BMDCs) using Dectin-2-expressing reporter cells. This activity was inhibited by an excessive amount of mannose, and by the mutation of mannose-binding motif in Dectin-2. β-glucuronidase (Gusb) was identified as a protein bound to Dectin-2 and mutations of N-glycosylation sites in Gusb impaired the binding of Gusb to Dectin-2. Overexpression of Gusb in a macrophage cell line conferred an ability to stimulate Dectin-2-expressing reporter cells. Our study suggests that a glycosylated protein with mannose-related structure is recognized by Dectin-2. PMID:28046067
C-Type Lectin Receptor Dectin-2 Binds to an Endogenous Protein β-Glucuronidase on Dendritic Cells.
Mori, Daiki; Shibata, Kensuke; Yamasaki, Sho
2017-01-01
C-type lectin receptors (CLRs) recognize pathogen-derived ligands and abnormal self that trigger protective immune responses. However, the precise nature of self ligands recognized by CLRs remains to be determined. Here, we found that Dectin-2 recognizes bone marrow-derived dendritic cells (BMDCs) using Dectin-2-expressing reporter cells. This activity was inhibited by an excessive amount of mannose, and by the mutation of mannose-binding motif in Dectin-2. β-glucuronidase (Gusb) was identified as a protein bound to Dectin-2 and mutations of N-glycosylation sites in Gusb impaired the binding of Gusb to Dectin-2. Overexpression of Gusb in a macrophage cell line conferred an ability to stimulate Dectin-2-expressing reporter cells. Our study suggests that a glycosylated protein with mannose-related structure is recognized by Dectin-2.
Fuentes, Lida Q.; Reyes, Carlos E.; Sarmiento, José M.; Villanueva, Carolina I.; Figueroa, Carlos D.; Navarro, Javier; González, Carlos B.
2008-01-01
Activation of V1a receptor triggers the expression of growth-related immediate-early genes (IEGs), including c-Fos and Egr-1. Here we found that pre-treatment of rat vascular smooth muscle A-10 cell line with the EGF receptor inhibitor AG1478 or the over-expression of an EGFR dominant negative mutant (HEBCD533) blocked the vasopressin-induced expression of IEGs, suggesting that activation of these early genes mediated by V1a receptor is via transactivation of the EGF receptor. Importantly, the inhibition of the metalloproteinases, which catalyzed the shedding of the EGF receptor agonist HB-EGF, selectively blocked the vasopressin-induced expression c-Fos. On the other hand, the inhibition of c-Src selectively blocked the vasopressin-induced expression of Egr-1. Interestingly, in contrast to the expression of c-Fos, the expression of Egr-1 was mediated via the Ras/MEK/MAPK-dependent signalling pathway. Vasopressin-triggered expression of both genes required the release of intracellular calcium, activation of PKC and β-arrestin 2. These findings demonstrated that vasopressin up-regulated the expression of c-Fos and Erg-1 via transactivation of two distinct EGF receptor-dependent signalling pathways. PMID:18571897
Regulation of expression of hyperalgesic priming by estrogen receptor alpha in the rat
Ferrari, Luiz F.; Araldi, Dionéia; Levine, Jon D.
2017-01-01
Hyperalgesic priming, a sexually dimorphic model of transition to chronic pain, is expressed as prolongation of prostaglandin E2 (PGE2)-induced hyperalgesia by the activation of an additional pathway including an autocrine mechanism at the plasma membrane. The autocrine mechanism involves the transport of cAMP to the extracellular space, and its conversion to AMP and adenosine, by ecto-5′phosphodiesterase and ecto-5′nucleotidase, respectively. The end product, adenosine, activates A1 receptors, producing delayed onset prolongation of PGE2 hyperalgesia. We tested the hypothesis that the previously reported, estrogen-dependent, sexual dimorphism observed in the induction of priming is present in the mechanisms involved in its expression, as a regulatory effect on ecto-5′nucleotidase by estrogen receptor alpha (EsRα), in female rats. In the primed paw AMP hyperalgesia was dependent on conversion to adenosine, being prevented by ecto-5′nucleotidase inhibitor AMPCP and A1 receptor antagonist DPCPX. To investigate an interaction between EsRα and ecto-5′nucleotidase, we treated primed female rats with ODN antisense or mismatch against EsRα mRNA. While in rats treated with antisense AMP-induced hyperalgesia was abolished, the A1 receptor agonist N6-cyclopentiladenosine (CPA) still produced hyperalgesia. Thus, EsRα interacts with this autocrine pathway at the level of ecto-5′nucleotidase. These results demonstrate a sexually dimorphic mechanism for the expression of priming. Perspective This study presents evidence of an estrogen-dependent mechanism of expression of chronic pain in females, supporting the suggestion that differential targets must be considered when establishing protocols for the treatment of painful conditions in males and females. PMID:28089711
Cornide-Petronio, María Eugenia; Fernández-López, Blanca; Barreiro-Iglesias, Antón; Rodicio, María Celina
2014-02-01
After spinal cord injury (SCI) in mammals, the loss of serotonin coming from the brainstem reduces the excitability of motor neurons and leads to a compensatory overexpression of serotonin receptors. Despite the key role of the serotonin receptor 1a in the control of locomotion, little attention has been put in the study of this receptor after SCI. In contrast to mammals, lampreys recover locomotion after a complete SCI, so, studies in this specie could help to understand events that lead to recovery of function. Here, we showed that in lampreys there is an acute increase in the expression of the serotonin 1A receptor transcript (5-ht1a) after SCI and a few weeks later expression levels go back to normal rostrally and caudally to the lesion. Overexpression of the 5-ht1a in rostral levels after SCI has not been reported in mammals, suggesting that this could be part of the plastic events that lead to the recovery of function in lampreys. The analysis of changes in 5-ht1a expression by zones (periventricular region and horizontally extended grey matter) showed that they followed the same pattern of changes detected in the spinal cord as a whole, with the exception of the caudal periventricular layer, where no significant differences were observed between control and experimental animals at any time post lesion. This suggests that different molecular signals act on the periventricular cells of the rostral and caudal regions to injury site and thus affecting their response to the injury in terms of expression of the 5-ht1a.
Kojima, Hiroyuki; Muromoto, Ryuta; Takahashi, Miki; Takeuchi, Shinji; Takeda, Yukimasa; Jetten, Anton M.; Matsuda, Tadashi
2013-01-01
The retinoic acid receptor-related orphan receptors α and γ (RORα and RORγ), are key regulators of helper T (Th)17 cell differentiation, which is involved in the innate immune system and autoimmune disorders. However, it remains unclear whether environmental chemicals, including pesticides, have agonistic and/or antagonistic activity against RORα/γ. In this study, we investigated the RORα/γ activity of several azole-type fungicides, and the effects of these fungicides on the gene expression of interleukin (IL)-17, which mediates the function of Th17 cells. In the ROR-reporter gene assays, five azole-type fungicides (imibenconazole, triflumizole, hexaconazole, tetraconazole and imazalil) suppressed RORα- and/or RORγ-mediated transcriptional activity as did benzenesulphonamide T0901317, a ROR inverse agonist and a liver X receptor (LXR) agonist. In particular, imibenconazole, triflumizole and hexaconazole showed RORγ inverse agonistic activity at concentrations of 10−6 M. However, unlike T0901317, these fungicides failed to show any LXRα/β agonistic activity. Next, five azole-type fungicides, showing ROR inverse agonist activity, were tested on IL-17 mRNA expression in mouse T lymphoma EL4 cells treated with phorbol myristate acetate and ionomycin. The quantitative RT-PCR analysis revealed that these fungicides suppressed the expression of IL-17 mRNA without effecting RORα and RORγ mRNA levels. In addition, the inhibitory effect of imibenconazole as well as that of T0901317 was absorbed in RORα/γ-knocked down EL4 cells. Taken together, these results suggest that some azole-type fungicides inhibit IL-17 production via RORα/γ. This also provides the first evidence that environmental chemicals can act as modulators of IL-17 expression in immune cells. PMID:22289359
Lu, Van B.; Puhl, Henry L.
2013-01-01
Recent studies propose that N-arachidonyl glycine (NAGly), a carboxylic analogue of anandamide, is an endogenous ligand of the Gαi/o protein–coupled receptor 18 (GPR18). However, a high-throughput β-arrestin–based screen failed to detect activation of GPR18 by NAGly (Yin et al., 2009; JBC, 18:12328). To address this inconsistency, this study investigated GPR18 coupling in a native neuronal system with endogenous signaling pathways and effectors. GPR18 was heterologously expressed in rat sympathetic neurons, and the modulation of N-type (Cav2.2) calcium channels was examined. Proper expression and trafficking of receptor were confirmed by the “rim-like” fluorescence of fluorescently tagged receptor and the positive staining of external hemagglutinin-tagged GPR18-expressing cells. Application of NAGly on GPR18-expressing neurons did not inhibit calcium currents but instead potentiated currents in a voltage-dependent manner, similar to what has previously been reported (Guo et al., 2008; J Neurophysiol, 100:1147). Other proposed agonists of GPR18, including anandamide and abnormal cannabidiol, also failed to induce inhibition of calcium currents. Mutants of GPR18, designed to constitutively activate receptors, did not tonically inhibit calcium currents, indicating a lack of GPR18 activation or coupling to endogenous G proteins. Other downstream effectors of Gαi/o-coupled receptors, G protein–coupled inwardly rectifying potassium channels and adenylate cyclase, were not modulated by GPR18 signaling. Furthermore, GPR18 did not couple to other G proteins tested: Gαs, Gαz, and Gα15. These results suggest NAGly is not an agonist for GPR18 or that GPR18 signaling involves noncanonical pathways not examined in these studies. PMID:23104136
Kullmann, A; Weber, P S; Bishop, J B; Roux, T M; Norby, B; Burns, T A; McCutcheon, L J; Belknap, J K; Geor, R J
2016-09-01
Hyperinsulinaemia is implicated in the pathogenesis of endocrinopathic laminitis. Insulin can bind to different receptors: two insulin receptor isoforms (InsR-A and InsR-B), insulin-like growth factor-1 receptor (IGF-1R) and InsR/IGF-1R hybrid receptor (Hybrid). Currently, mRNA expression of these receptors in equine tissues and the influence of body type and dietary carbohydrate intake on expression of these receptors is not known. The study objectives were to characterise InsR-A, InsR-B, IGF-1R and Hybrid expression in lamellar tissue (LT) and insulin responsive tissues from horses and examine the effect of dietary nonstructural carbohydrate (NSC) on mRNA expression of these receptors in LT, skeletal muscle, liver and two adipose tissue (AT) depots of lean and obese ponies. In vivo experiment. Lamellar tissue samples were evaluated by quantitative reverse transcription polymerase chain reaction (RT-qPCR) for receptor mRNA expression (n = 8) and immunoblotting for protein expression (n = 3). Archived LT, skeletal muscle, liver and AT from lean and obese mixed-breed ponies fed either a low (~7% NSC as dry matter; 5 lean, 5 obese) or high NSC diet (~42% NSC as dry matter; 6 lean, 6 obese) for 7 days were evaluated by RT-qPCR to determine the effect of body condition and diet on expression of the receptors in different tissues. Significance was set at P≤0.05. Lamellar tissue expresses both InsR isoforms, IGF-1R and Hybrid. LT IGF-1R gene expression was greater than either InsR isoform and InsR-A expression was greater than InsR-B (P≤0.05). Obesity significantly lowered IGF-1R, InsR-A and InsR-B mRNA expression in LT and InsR-A in tailhead AT. High NSC diet lowered expression of all three receptor types in liver; IGF-1R and InsR-A in LT and InsR-A in tailhead AT. Lamellar tissue expresses IGF-1R, InsR isoforms and Hybrids. The functional characteristics of these receptors and their role in endocrinopathic laminitis warrants further investigation. © 2015 EVJ Ltd.
Melanocortin 1 receptor and skin pathophysiology: beyond colour, much more than meets the eye.
García-Borrón, José Carlos; Olivares, Concepción
2014-06-01
The melanocortin 1 receptor (MC1R), a G protein-coupled receptor preferentially expressed in melanocytes, mediates the pigmentary effects of α melanocyte-stimulating hormone (αMSH). MC1R is also expressed in other cutaneous cell types, particularly keratinocytes and dermal fibroblasts, suggesting non-pigmentary actions of the αMSH/MC1R system. Böhm and Stegemann now report a dramatic effect of mouse Mc1r functional status on susceptibility to skin fibrosis and collagen types I and III metabolism, in a study combining the powerful mouse model provided by the natural Mc1r(e/e) knockout and an established model of skin fibrosis. The study underscores the antifibrotic role for the skin αMSH/MC1R system. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Regulation of cytokine receptors by Golgi N-glycan processing and endocytosis.
Partridge, Emily A; Le Roy, Christine; Di Guglielmo, Gianni M; Pawling, Judy; Cheung, Pam; Granovsky, Maria; Nabi, Ivan R; Wrana, Jeffrey L; Dennis, James W
2004-10-01
The Golgi enzyme beta1,6 N-acetylglucosaminyltransferase V (Mgat5) is up-regulated in carcinomas and promotes the substitution of N-glycan with poly N-acetyllactosamine, the preferred ligand for galectin-3 (Gal-3). Here, we report that expression of Mgat5 sensitized mouse cells to multiple cytokines. Gal-3 cross-linked Mgat5-modified N-glycans on epidermal growth factor and transforming growth factor-beta receptors at the cell surface and delayed their removal by constitutive endocytosis. Mgat5 expression in mammary carcinoma was rate limiting for cytokine signaling and consequently for epithelial-mesenchymal transition, cell motility, and tumor metastasis. Mgat5 also promoted cytokine-mediated leukocyte signaling, phagocytosis, and extravasation in vivo. Thus, conditional regulation of N-glycan processing drives synchronous modification of cytokine receptors, which balances their surface retention against loss via endocytosis.
Taki, Kenji; Fukushima, Tamio; Ise, Ryota; Horii, Ikuo; Yoshida, Takemi
2013-02-01
MicroRNAs (miRNAs) are small single-stranded RNAs of 19-25 nucleotides and are important in posttranscriptional regulation of genes. Recently, the role of miRNAs in toxicity incidence is reported to be a regulator of key-stopper of gene expression, however the detailed mechanism of miRNAs is not well known yet. 6-Mercaptopurine (6-MP), the anti-leukemic and immunosuppressive drug, produced teratogenicity and pregnancy loss. We focused on the placenta to evaluate toxicity in embryo/fetal development produced by 6-MP treatment. MiRNA expression in the placenta was analyzed by miRNA microarray. Fifteen miRNAs were upregulated on GD13 and 5 miRNAs were downregulated on GD15 in 6-MP treatment rat placentas. Some miRNAs may have functions in apoptosis (miR-195, miR-21, miR-29c and miR-34a), inflammation (miR-146b), and ischemia (miR-144 and miR-451). In the maternal plasma, expression of miR-144 was significantly reduced by 6-MP treatment when examined by real-time RT-PCR. We determined toxicity-related gene expression in the rat placenta. Gene expression analysis was carried out by DNA oligo microarray using rat placenta total RNAs. Compared between predicted targets of miRNAs and microarray data in 6-MP-treated rat placenta, expressions of hormone receptor genes (estrogen receptor 1; Esr1, progesterone receptor; Pgr, and prolactin receptor; Prlr), xanthine oxidase (Xdh), Slc38a5 and Phlda2 genes were changed. The histopathologically found increase in trophoblastic giant cells and reduced placental growth by 6-MP treatment were well correlated to these gene expressions. These data suggest that some miRNAs may link to toxicological reactions in 6-MP-induced placental toxicity.
Variation of M3 muscarinic receptor expression in different prostate tissues and its significance.
Song, Wei; Yuan, Mingzhen; Zhao, Shengtian
2009-08-01
To detect the expression of the muscarinic receptor (M receptor) in different prostate tissues and analyze the role of its subtype in prostatic oncogenesis. Thirty-six cases of normal prostate and benign prostatic hyperplasia, and 8 cases of prostatic tumor, were used in this study from the Shandong University, Shandong, China, between 2003-2006. The protein expressions of M1, M2, and M3 receptors in each group were determined by Western-blotting. The gene expressions of the M3 receptor and vascular endothelial growth factors (VEGF) in each group were determined by reverse transcriptase-polymerase chain reaction. The protein and gene expressions of the M3 receptor in the prostatic carcinoma group were higher than that of benign prostatic hyperplasia group (p=0.0001) and normal prostate group (p=0.0001). The M3 receptor and VEGF showed positive straight-line correlations of gene expressions with the 3 groups (r=0.4999, p=0.0001). The M3 receptor may have a close relationship with prostatic oncogenesis.
Zheng, Shizhong; Chen, Anping
2007-01-01
Activation of hepatic stellate cells (HSC), the major effectors of hepatic fibrogenesis, is coupled with sequential alterations in gene expression, including an increase in receptors for transforming growth factor-beta (TGF-beta) and a dramatic reduction in the peroxisome proliferator-activated receptor-gamma (PPAR-gamma). The relationship between them remains obscure. We previously demonstrated that curcumin induced gene expression of PPAR-gamma in activated HSC, leading to reducing cell proliferation, inducing apoptosis and suppressing expression of extracellular matrix genes. The underlying molecular mechanisms are largely unknown. We recently observed that stimulation of PPAR-gamma activation suppressed gene expression of TGF-beta receptors in activated HSC, leading to the interruption of TGF-beta signaling. This observation supported our assumption of an antagonistic relationship between PPAR-gamma activation and TGF-beta signaling in HSC. In this study, we further hypothesize that TGF-beta signaling might negatively regulate gene expression of PPAR-gamma in activated HSC. The present report demonstrates that exogenous TGF-beta1 inhibits gene expression of PPAR-gamma in activated HSC, which is eliminated by the pretreatment with curcumin likely by interrupting TGF-beta signaling. Transfection assays further indicate that blocking TGF-beta signaling by dominant negative type II TGF-beta receptor increases the promoter activity of PPAR-gamma gene. Promoter deletion assays, site-directed mutageneses, and gel shift assays localize two Smad binding elements (SBEs) in the PPAR-gamma gene promoter, acting as curcumin response elements and negatively regulating the promoter activity in passaged HSC. The Smad3/4 protein complex specifically binds to the SBEs. Overexpression of Smad4 dose dependently eliminates the inhibitory effects of curcumin on the PPAR-gamma gene promoter and TGF-beta signaling. Taken together, these results demonstrate that the interruption of TGF-beta signaling by curcumin induces gene expression of PPAR-gamma in activated HSC in vitro. Our studies provide novel insights into the molecular mechanisms of curcumin in the induction of PPAR-gamma gene expression and in the inhibition of HSC activation.
Hu, Ying; Weymer, Jon F.; Rizig, Mie; McQuillin, Andrew; Hunt, Stephen P.; Gurling, Hugh M.D.
2013-01-01
Objectives Clathrin-mediated endocytosis (CME) is an intracellular trafficking mechanism for packaging cargo, including G protein-coupled receptors (GPCRs), into clathrin-coated vesicles (CCVs). The antipsychotic chlorpromazine inhibits CCV assembly of adaptor protein AP2 whereas clozapine increases serotonin2A receptor internalization. We hypothesized that clozapine alters the expression of CME genes modulating vesicle turnover and GPCR internalization. Materials and methods SH-SY5Y human neuroblastoma cells were incubated with clozapine (1–20 µmol/l) for 24–72 h. GPCR and CME-related gene mRNA expression was measured using RT-PCR. We quantified changes in the same genes using expression data from a microarray study of mice brains after 12 weeks of treatment with 12 mg/kg/day clozapine. Results The expression of genes encoding adaptor and clathrin assembly proteins, AP2A2, AP2B1, AP180, CLINT1, HIP1, ITSN2, and PICALM, increased relative to the control in SH-SY5Y cells incubated with 5–10 µmol/l clozapine for 24–72 h. The microarray study showed significantly altered expression of the above CME-related genes, with a marked 641-fold and 17-fold increase in AP180 and the serotonin1A GPCR, respectively. The expression of three serotonergic receptor and lysophosphatidic acid receptor 2 (EDG4) GPCR genes was upregulated in SH-SY5Y cells incubated with 5 µmol/l clozapine for 24 h. EDG4 expression was also increased with 10–20 µmol/l clozapine treatment at 48–72 h. Clozapine significantly decreased the expression of β-arrestin, involved in GPCR desensitization, both in vitro and vivo. Conclusion The changes we report in CME and GPCR mRNAs implicate CCV-mediated internalization of GPCRs and the serotonergic system in clozapine’s mechanism of action, which may be useful in the design of more effective and less toxic antipsychotic therapies. PMID:23811784
Expression of NK cell receptors on decidual T cells in human pregnancy.
Tilburgs, Tamara; van der Mast, Barbara J; Nagtzaam, Nicole M A; Roelen, Dave L; Scherjon, Sicco A; Claas, Frans H J
2009-06-01
Specific receptors enable NK cells to discriminate between cells with normal expression of MHC class I and cells that have low or absent expression of MHC class I molecules. In addition to NK cells, these receptors can be expressed on T cell subsets, mainly on CD8+ T cells but also on gammadeltaTCR+ T cells and CD4+ T cells. Although the function of NK cell receptor expression on T cells is not completely understood, various studies have shown that they are involved in down regulation of T cell receptor (TCR)-mediated activation and influence effector functions, like cytotoxicity and cytokine production. The aim of this study was to analyze expression of NK cell receptors on peripheral blood and decidual T cells during human pregnancy using flow cytometry. We demonstrate that a proportion of decidual T cells express HLA-C specific killer immunoglobulin-like receptors (KIRs). Furthermore, a small proportion of decidual T cells express the HLA-E specific CD94-NKG2A inhibitory and CD94-NKG2C activating receptors. Decidual KIR+ and CD94-NKG2+ T cells mainly display a CD3+CD4-CD8- phenotype. However, decidual tissue also contains higher percentages of KIR and CD94-NKG2 expressing CD4+ and CD8+ T cells compared to peripheral blood. So far, the functional capacities of decidual T cells expressing the NK cell receptors are unknown but NK cell receptor expression on decidual T cells may provide an alternative means by which decidual T cells distinguish self (maternal) cells from allogeneic fetal cells, and act to modulate the decidual immune response.
2013-01-01
Background Accumulating evidence has suggested the importance of glutamate signaling in cancer growth, yet the signaling pathway has not been fully elucidated. N-methyl-D-aspartic acid (NMDA) receptor activates intracellular signaling pathways such as the extracellular-signal-regulated kinase (ERK) and forkhead box, class O (FOXO). Suppression of lung carcinoma growth by NMDA receptor antagonists via the ERK pathway has been reported. However, series of evidences suggested the importance of FOXO pathways for the regulation of normal and cancer cell growth. In the liver, FOXO1 play important roles for the cell proliferation such as hepatic stellate cells as well as liver metabolism. Our aim was to investigate the involvement of the FOXO pathway and the target genes in the growth inhibitory effects of NMDA receptor antagonist MK-801 in human hepatocellular carcinoma. Methods Expression of NMDAR1 in cancer cell lines from different tissues was examined by Western blot. NMDA receptor subunits in HepG2, HuH-7, and HLF were examined by reverse transcriptase polymerase chain reaction (RT-PCR), and growth inhibition by MK-801 and NBQX was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The effects of MK-801 on the cell cycle were examined by flow cytometry and Western blot analysis. Expression of thioredoxin-interacting protein (TXNIP) and p27 was determined by real-time PCR and Western blotting. Activation of the FOXO pathway and TXNIP induction were examined by Western blotting, fluorescence microscopy, Chromatin immunoprecipitation (ChIP) assay, and reporter gene assay. The effects of TXNIP on growth inhibition were examined using the gene silencing technique. Results NMDA receptor subunits were expressed in all cell lines examined, and MK-801, but not NBQX, inhibited cell growth of hepatocellular carcinomas. Cell cycle analysis showed that MK-801 induced G1 cell cycle arrest by down-regulating cyclin D1 and up-regulating p27. MK-801 dephosphorylated Thr24 in FOXO1 and induced its nuclear translocation, thus increasing transcription of TXNIP, a tumor suppressor gene. Knock-down of TXNIP ameliorated the growth inhibitory effects of MK-801. Conclusions Our results indicate that functional NMDA receptors are expressed in hepatocellular carcinomas and that the FOXO pathway is involved in the growth inhibitory effects of MK-801. This mechanism could be common in hepatocellular carcinomas examined, but other mechanisms such as ERK pathway could exist in other cancer cells as reported in lung carcinoma cells. Altered expression levels of FOXO target genes including cyclin D1 and p27 may contribute to the inhibition of G1/S cell cycle transition. Induction of the tumor suppressor gene TXNIP plays an important role in the growth inhibition by MK-801. Our report provides new evidence that FOXO-TXNIP pathway play a role in the inhibition of the hepatocellular carcinoma growth by MK-801. PMID:24112473
Identification of a Drosophila glucose receptor using Ca2+ imaging of single chemosensory neurons.
Miyamoto, Tetsuya; Chen, Yan; Slone, Jesse; Amrein, Hubert
2013-01-01
Evaluation of food compounds by chemosensory cells is essential for animals to make appropriate feeding decisions. In the fruit fly Drosophila melanogaster, structurally diverse chemicals are detected by multimeric receptors composed of members of a large family of Gustatory receptor (Gr) proteins. Putative sugar and bitter receptors are expressed in distinct subsets of Gustatory Receptor Neurons (GRN) of taste sensilla, thereby assigning distinct taste qualities to sugars and bitter tasting compounds, respectively. Here we report a Ca(2+) imaging method that allows association of ligand-mediated responses to a single GRN. We find that different sweet neurons exhibit distinct response profiles when stimulated with various sugars, and likewise, different bitter neurons exhibit distinct response profiles when stimulated with a set of bitter chemicals. These observations suggest that individual neurons within a taste modality are represented by distinct repertoires of sweet and bitter taste receptors, respectively. Furthermore, we employed this novel method to identify glucose as the primary ligand for the sugar receptor Gr61a, which is not only expressed in sweet sensing neurons of classical chemosensory sensilla, but also in two supersensitive neurons of atypical taste sensilla. Thus, single cell Ca(2+) imaging can be employed as a powerful tool to identify ligands for orphan Gr proteins.
Bombesin-like peptide receptors in human bronchial epithelial cells.
Kane, M A; Toi-Scott, M; Johnson, G L; Kelley, K K; Boose, D; Escobedo-Morse, A
1996-01-01
Northern blot and RNAse protection assays previously failed to detect bombesin-like peptide (BLP) receptors in normal human lung tissue, but by RT/PCR cultured human bronchial epithelial (HBE) cells expressed all three BLP receptor subtypes, predominantly neuromedin B (NMB) receptor. By RT/PCR, we found expression of all three BLP receptor subtypes by human lung tissue and confirmed NMB receptor expression in six out of six HBE samples. However, transformed HBE BEAS B2B cells expressed only gastrin-releasing peptide (GRP) receptors; saturable, high-affinity (Kd = 3.5 nM) specific [125I]GRP binding confirmed functional GRP receptor, with M(r) = 75 kDa and immunologic cross-reactivity with GRP receptor from human small-cell lung carcinoma (SCLC) NCI-H345 cells. Altered regulation of BLP receptors may accompany transformation of normal lung cells to cancer.
Joseph, Christine G; Wang, Xiang S; Scott, Joseph W; Bauzo, Rayna M; Xiang, Zhimin; Richards, Nigel G; Haskell-Luevano, Carrie
2004-12-30
The agouti-related protein (AGRP) is an endogenous antagonist of the centrally expressed melanocortin receptors. The melanocortin-4 receptor (MC4R) is involved in energy homeostasis, food intake, sexual function, and obesity. The endogenous hAGRP protein is 132 amino acids in length, possesses five disulfide bridges at the C-terminus of the molecule, and is expressed in the hypothalamus of the brain. We have previously reported that a monocyclic hAGRP(103-122) peptide is an antagonist at the melanocortin receptors expressed in the brain. Stereochemical inversion from the endogenous l- to d-isomers of single or multiple amino acid modifications in this monocyclic truncated hAGRP sequence resulted in molecules that are converted from melanocortin receptor antagonists into melanocortin receptor agonists. The Asp-Pro-Ala-Ala-Thr-Ala-Tyr-cyclo[Cys-Arg-DPhe-DPhe-Asn-Ala-Phe-Cys]-Tyr-Ala-Arg-Lys-Leu peptide resulted in a 60 nM melanocortin-1 receptor agonist that is 100-fold selective versus the mMC4R, 1000-fold selective versus the mMC3R, and ca. 180-fold selective versus the mMC5R. In attempts to identify putative ligand-receptor interactions that may be participating in the agonist induced stimulation of the MC4R, selected ligands were docked into a homology molecular model of the mMC4R. These modeling studies have putatively identified hAGRP ligand DArg111-mMC4RAsn115 (TM3) and the hAGRP DPhe113-mMC4RPhe176 (TM4) interactions as important for agonist activity.
Mazot, Pierre; Cazes, Alex; Dingli, Florent; Degoutin, Joffrey; Irinopoulou, Théano; Boutterin, Marie-Claude; Lombard, Bérangère; Loew, Damarys; Hallberg, Bengt; Palmer, Ruth Helen; Delattre, Olivier
2012-01-01
Recently, activating mutations of the full length ALK receptor, with two hot spots at positions F1174 and R1275, have been characterized in sporadic cases of neuroblastoma. Here, we report similar basal patterns of ALK phosphorylation between the neuroblastoma IMR-32 cell line, which expresses only the wild-type receptor (ALKWT), and the SH-SY5Y cell line, which exhibits a heterozygous ALK F1174L mutation and expresses both ALKWT and ALKF1174L receptors. We demonstrate that this lack of detectable increased phosphorylation in SH-SY5Y cells is a result of intracellular retention and proteasomal degradation of the mutated receptor. As a consequence, in SH-SY5Y cells, plasma membrane appears strongly enriched for ALKWT whereas both ALKWT and ALKF1174L were present in intracellular compartments. We further explored ALK receptor trafficking by investigating the effect of agonist and antagonist mAb (monoclonal antibodies) on ALK internalization and down-regulation, either in SH-SY5Y cells or in cells expressing only ALKWT. We observe that treatment with agonist mAbs resulted in ALK internalization and lysosomal targeting for receptor degradation. In contrast, antagonist mAb induced ALK internalization and recycling to the plasma membrane. Importantly, we correlate this differential trafficking of ALK in response to mAb with the recruitment of the ubiquitin ligase Cbl and ALK ubiquitylation only after agonist stimulation. This study provides novel insights into the mechanisms regulating ALK trafficking and degradation, showing that various ALK receptor pools are regulated by proteasome or lysosome pathways according to their intracellular localization. PMID:22479414
Herrold, Amy A; Voigt, Robin M; Napier, T Celeste
2011-12-01
Alterations in receptor expression and distribution between cell surface and cytoplasm are means by which psychostimulants regulate neurotransmission. Metabotropic glutamate receptor group I, subtype 5 (mGluR5) and GABA(B) receptors (GABA(B) R) are critically involved in the development and expression of stimulant-induced behaviors, including conditioned place preference (CPP), an index of drug-seeking. However, it is not known if psychostimulant-induced CPP alters the trafficking of these receptors. To fill this gap, this study used methamphetamine (Meth)-induced CPP in rats to ascertain if receptor changes occur in limbic brain regions that regulate drug-seeking, the medial prefrontal cortex (mPFC), nucleus accumbens (NAc), and ventral pallidum (VP). To do so, ex vivo tissue was assessed for changes in expression and surface vs. intracellular distribution of mGluR5 and GABA(B) Rs. There was a decrease in the surface to intracellular ratio of mGluR5 in the mPFC in Meth-conditioned rats, commensurate with an increase in intracellular levels. mGluR5 levels in the NAc or the VP were unaltered. There were no changes for GABA(B) R in any brain region assayed. This ex vivo snapshot of metabotropic glutamate and GABA receptor cellular distribution following induction of Meth-induced CPP is the first report to determine if these receptors are differentially altered after Meth-induced CPP. The results suggest that this Meth treatment paradigm likely induced a compensatory change in mGluR5 surface to intracellular ratio such that the surface remains unaltered while an increase in intracellular protein occurred. Copyright © 2011 Wiley-Liss, Inc.
Teng, Yun; Radde, Brandie N.; Litchfield, Lacey M.; Ivanova, Margarita M.; Prough, Russell A.; Clark, Barbara J.; Doll, Mark A.; Hein, David W.; Klinge, Carolyn M.
2015-01-01
Little is known about the regulation of the oncomiR miR-21 in liver. Dehydroepiandrosterone (DHEA) regulates gene expression as a ligand for a G-protein-coupled receptor and as a precursor for steroids that activate nuclear receptor signaling. We report that 10 nm DHEA increases primary miR-21 (pri-miR-21) transcription and mature miR-21 expression in HepG2 cells in a biphasic manner with an initial peak at 1 h followed by a second, sustained response from 3–12 h. DHEA also increased miR-21 in primary human hepatocytes and Hep3B cells. siRNA, antibody, and inhibitor studies suggest that the rapid DHEA-mediated increase in miR-21 involves a G-protein-coupled estrogen receptor (GPER/GPR30), estrogen receptor α-36 (ERα36), epidermal growth factor receptor-dependent, pertussis toxin-sensitive pathway requiring activation of c-Src, ERK1/2, and PI3K. GPER antagonist G-15 attenuated DHEA- and BSA-conjugated DHEA-stimulated pri-miR-21 transcription. Like DHEA, GPER agonists G-1 and fulvestrant increased pri-miR-21 in a GPER- and ERα36-dependent manner. DHEA, like G-1, increased GPER and ERα36 mRNA and protein levels. DHEA increased ERK1/2 and c-Src phosphorylation in a GPER-responsive manner. DHEA increased c-Jun, but not c-Fos, protein expression after 2 h. DHEA increased androgen receptor, c-Fos, and c-Jun recruitment to the miR-21 promoter. These results suggest that physiological concentrations of DHEA activate a GPER intracellular signaling cascade that increases pri-miR-21 transcription mediated at least in part by AP-1 and androgen receptor miR-21 promoter interaction. PMID:25969534
Expression Analysis of CB2-GFP BAC Transgenic Mice.
Schmöle, Anne-Caroline; Lundt, Ramona; Gennequin, Benjamin; Schrage, Hanna; Beins, Eva; Krämer, Alexandra; Zimmer, Till; Limmer, Andreas; Zimmer, Andreas; Otte, David-Marian
2015-01-01
The endocannabinoid system (ECS) is a retrograde messenger system, consisting of lipid signaling molecules that bind to at least two G-protein-coupled receptors, Cannabinoid receptor 1 and 2 (CB1 and 2). As CB2 is primarily expressed on immune cells such as B cells, T cells, macrophages, dendritic cells, and microglia, it is of great interest how CB2 contributes to immune cell development and function in health and disease. Here, understanding the mechanisms of CB2 involvement in immune-cell function as well as the trafficking and regulation of CB2 expressing cells are crucial issues. Up to now, CB2 antibodies produce unclear results, especially those targeting the murine protein. Therefore, we have generated BAC transgenic GFP reporter mice (CB2-GFPTg) to trace CB2 expression in vitro and in situ. Those mice express GFP under the CB2 promoter and display GFP expression paralleling CB2 expression on the transcript level in spleen, thymus and brain tissue. Furthermore, by using fluorescence techniques we show that the major sources for GFP-CB2 expression are B cells in spleen and blood and microglia in the brain. This novel CB2-GFP transgenic reporter mouse line represents a powerful resource to study CB2 expression in different cell types. Furthermore, it could be used for analyzing CB2-mediated mobilization and trafficking of immune cells as well as studying the fate of recruited immune cells in models of acute and chronic inflammation.
Guo, Xiaochuan; Hamilton, Peter J; Reish, Nicholas J; Sweatt, J David; Miller, Courtney A; Rumbaugh, Gavin
2009-06-01
Abnormal function of NMDA receptors is believed to be a contributing factor to the pathophysiology of schizophrenia. NMDAR subunits and postsynaptic-interacting proteins of these channels are abnormally expressed in some patients with this illness. In mice, reduced NMDAR expression leads to behaviors analogous to symptoms of schizophrenia, but reports of animals with mutations in core postsynaptic density proteins having similar a phenotype have yet to be reported. Here we show that reduced expression of the neuronal RasGAP and NMDAR-associated protein, SynGAP, results in abnormal behaviors strikingly similar to that reported in mice with reduced NMDAR function. SynGAP mutant mice exhibited nonhabituating and persistent hyperactivity that was ameliorated by the antipsychotic clozapine. An NMDAR antagonist, MK-801, induced hyperactivity in normal mice but SynGAP mutants were less responsive, suggesting that NMDAR hypofunction contributes to this behavioral abnormality. SynGAP mutants exhibited enhanced startle reactivity and impaired sensory-motor gating. These mice also displayed a complete lack of social memory and a propensity toward social isolation. Finally, SynGAP mutants had deficits in cued fear conditioning and working memory, indicating abnormal function of circuits that control emotion and choice. Our results demonstrate that SynGAP mutant mice have gross neurological deficits similar to other mouse models of schizophrenia. Because SynGAP interacts with NMDARs, and the signaling activity of this protein is regulated by these channels, our data in dicate that SynGAP lies downstream of NMDARs and is a required intermediate for normal neural circuit function and behavior. Taken together, these data support the idea that schizophrenia may arise from abnormal signaling pathways that are mediated by NMDA receptors.
Ichikawa, N; Kitano, K; Ito, T; Nakazawa, T; Shimodaira, S; Ishida, F; Kiyosawa, K
1999-04-01
We report a case of granular lymphocyte proliferative disorder accompanied with hemolytic anemia and neutropenia. Phenotypes of the cells were T cell receptor gammadelta+ CD3+ CD4- CD8+ CD16+ CD56- CD57-. Southern blot analysis of T cell receptor beta and gamma chains demonstrated rearranged bands in both. Chromosomal analysis after IL-2 stimulation showed deletion of chromosome 6. Sorted gammadelta+ T cells showed an increase in Fas ligand expression compared with the levels in sorted alphabeta+ T cells. The expression of Fas ligand on these gammadelta+ T cells increased after IL-2 stimulation. The patient's anemia improved along with a decrease in granular lymphocyte count and disappearance of the abnormal karyotype without treatment. The expression of Fas ligand may be involved in spontaneous regression of granular lymphocyte proliferation with hemolytic anemia.
Rodríguez-Ruiz, Mar; Moreno, Estefanía; Moreno-Delgado, David; Navarro, Gemma; Mallol, Josefa; Cortés, Antonio; Lluís, Carme; Canela, Enric I; Casadó, Vicent; McCormick, Peter J; Franco, Rafael
2017-08-01
Alzheimer's disease (AD) is a neurodegenerative disorder causing progressive memory loss and cognitive dysfunction. Anti-AD strategies targeting cell receptors consider them as isolated units. However, many cell surface receptors cooperate and physically contact each other forming complexes having different biochemical properties than individual receptors. We here report the discovery of dopamine D 1 , histamine H 3 , and N-methyl-D-aspartate (NMDA) glutamate receptor heteromers in heterologous systems and in rodent brain cortex. Heteromers were detected by co-immunoprecipitation and in situ proximity ligation assays (PLA) in the rat cortex where H 3 receptor agonists, via negative cross-talk, and H 3 receptor antagonists, via cross-antagonism, decreased D 1 receptor agonist signaling determined by ERK1/2 or Akt phosphorylation, and counteracted D 1 receptor-mediated excitotoxic cell death. Both D 1 and H 3 receptor antagonists also counteracted NMDA toxicity suggesting a complex interaction between NMDA receptors and D 1 -H 3 receptor heteromer function. Likely due to heteromerization, H 3 receptors act as allosteric regulator for D 1 and NMDA receptors. By bioluminescence resonance energy transfer (BRET), we demonstrated that D 1 or H 3 receptors form heteromers with NR1A/NR2B NMDA receptor subunits. D 1 -H 3 -NMDA receptor complexes were confirmed by BRET combined with fluorescence complementation. The endogenous expression of complexes in mouse cortex was determined by PLA and similar expression was observed in wild-type and APP/PS1 mice. Consistent with allosteric receptor-receptor interactions within the complex, H 3 receptor antagonists reduced NMDA or D 1 receptor-mediated excitotoxic cell death in cortical organotypic cultures. Moreover, H 3 receptor antagonists reverted the toxicity induced by ß 1-42 -amyloid peptide. Thus, histamine H 3 receptors in D 1 -H 3 -NMDA heteroreceptor complexes arise as promising targets to prevent neurodegeneration.
2011-07-01
Betty Diamond – DOD FINAL REPORT 9 Figure 3: (A) expression of estrogen receptors ERalpha( Esr1 ) and ERbeta (Esr2) in splenic B cells and (B...Urinary 16 OH-Estradiol metabolite in BALB/c and C57BL6 mice. Esr1 0 0.05 0.1 0.15 0.2 Transit. Mature Transit. Mature Transit. Mature Transit. mature P E2
USDA-ARS?s Scientific Manuscript database
The actions of prolactin (PRL) are mediated by both long (LF) and short isoforms (SF) of the PRL receptor (PRLR). Here, we report on a genetic and functional analysis of the porcine PRLR (pPRLR) SF. Three single nucleotide polymorphisms (SNPs) within exon 11 of the pPRLR-SF give rise to four amino a...
Jongen, Lynn; Paridaens, Robert; Floris, Giuseppe; Wildiers, Hans; Neven, Patrick
2016-02-01
We report on a postmenopausal patient with a secondary metastatic apocrine breast cancer successfully treated with low-dose hydrocortisone only following several lines of chemotherapy. The tumor cells in the primary and metastatic lesion exhibited a 'triple-negative' status (estrogen receptor (ER)-, progesterone receptor (PR)-, and human epidermal growth factor receptor 2 (HER2)-negative); the androgen receptor (AR) was strongly expressed. Twenty milligrams of hydrocortisone, a low substitution dose known to suppress adrenal steroid production, twice daily led to a clinical benefit lasting for one year, with symptom control, radiologically stable disease, and steady decrease in CA15.3. Our observation demonstrates that an AR-expressing apocrine breast cancer may respond to androgen deprivation, as an ER-positive breast cancer may benefit from estrogen deprivation. It highlights the importance of further research targeting the AR pathway in apocrine carcinoma, for which androgens represent the sole (known) steroid hormone stimulating tumor growth. Future clinical trials should not only focus on AR inhibitors like enzalutamide, but also on ablative modalities like low-dose hydrocortisone aiming at medical adrenalectomy. This method of androgen deprivation is largely available, cheap, and nearly devoid of toxicity.
Vallejo, Abbe N.; Mueller, Robert G.; Hamel, David L.; Way, Amanda; Dvergsten, Jeffrey A.; Griffin, Patricia; Newman, Anne B.
2010-01-01
As the repertoire of αβT cell receptors (TCR) contracts with advancing age, there is an associated age-dependent accumulation of oligoclonal T cells expressing of a variety of receptors (NKR), normally expressed on natural killer (NK) cells. Evidences for differential regulation of expression of particular NKRs between T cells and NK cells suggest that NKR expression on T cells is physiologically programmed rather than a random event of the aging process. Experimental studies show NKRs on aged αβT cells may function either as independent receptors, and/or as costimulatory receptors to the TCR. Considering the reported deficits of conventional αβTCR-driven activation and also functional deficits of classical NK cells, NKR+ αβT cells likely represent novel immune effectors that are capable of combining innate and adaptive functions. Inasmuch as immunity is a determinant of individual fitness, the type and density of NKRs could be important contributing factors to the wide heterogeneity of health characteristics of older adults, ranging from institutionalized frail elders who are unable to mount immune responses to functionally independent community-dwelling elders who exhibit protective immunity. Understanding the biology of NKR+ αβT cells could lead to new avenues for age-specific intervention to improve protective immunity. PMID:20932941
Villar, Van Anthony M.; Jones, John Edward; Armando, Ines; Asico, Laureano D.; Escano, Crisanto S.; Lee, Hewang; Wang, Xiaoyan; Yang, Yu; Pascua-Crusan, Annabelle M.; Palmes-Saloma, Cynthia P.; Felder, Robin A.; Jose, Pedro A.
2013-01-01
The peripheral dopaminergic system plays a crucial role in blood pressure regulation through its actions on renal hemodynamics and epithelial ion transport. The dopamine D5 receptor (D5R) interacts with sorting nexin 1 (SNX1), a protein involved in receptor retrieval from the trans-Golgi network. In this report, we elucidated the spatial, temporal, and functional significance of this interaction in human renal proximal tubule cells and HEK293 cells stably expressing human D5R and in mice. Silencing of SNX1 expression via RNAi resulted in the failure of D5R to internalize and bind GTP, blunting of the agonist-induced increase in cAMP production and decrease in sodium transport, and up-regulation of angiotensin II receptor expression, of which expression was previously shown to be negatively regulated by D5R. Moreover, siRNA-mediated depletion of renal SNX1 in C57BL/6J and BALB/cJ mice resulted in increased blood pressure and blunted natriuretic response to agonist in salt-loaded BALB/cJ mice. These data demonstrate a crucial role for SNX1 in D5R trafficking and that SNX1 depletion results in D5R dysfunction and thus may represent a novel mechanism for the pathogenesis of essential hypertension. PMID:23152498
Ohtsuki, Sumio; Ikeda, Chiemi; Uchida, Yasuo; Sakamoto, Yumi; Miller, Florence; Glacial, Fabienne; Decleves, Xavier; Scherrmann, Jean-Michel; Couraud, Pierre-Olivier; Kubo, Yoshiyuki; Tachikawa, Masanori; Terasaki, Tetsuya
2013-01-07
Human cerebral microvascular endothelial cell line hCMEC/D3 is an established model of the human blood-brain barrier (BBB). The purpose of the present study was to determine, by means of quantitative targeted absolute proteomics, the protein expression levels in hCMEC/D3 cells of multiple transporters, receptors and junction proteins for comparison with our previously reported findings in isolated human brain microvessels. Among 91 target molecules, 12 transporters, 2 receptors, 1 junction protein and 1 membrane marker were present at quantifiable levels in plasma membrane fraction of hCMEC/D3 cells. ABCA2, MDR1, MRP4, BCRP, GLUT1, 4F2hc, MCT1, ENT1, transferrin and insulin receptors and claudin-5 were detected in both hCMEC/D3 cells and human brain microvessels. After normalization based on Na(+)/K(+) ATPase expression, the differences in protein expression levels between hCMEC/D3 cells and human brain microvessels were within 4-fold for these proteins, with the exceptions of ENT1, transferrin receptor and claudin-5. ABCA8, LAT1, LRP1 and γ-GTP were below the limit of quantification in the cells, but were found in human brain microvessels. ABCA3, ABCA6, MRP1 and ATA1 were found only in hCMEC/D3 cells. Furthermore, compared with human umbilical vein endothelial cells (HUVECs) as reference nonbrain endothelial cells, MDR1 was found only in hCMEC/D3 cells, and GLUT1 expression was 15-fold higher in hCMEC/D3 cells than in HUVECs. In conclusion, this is the first study to examine the suitability and limitations of the hCMEC/D3 cell line as a BBB functional model in terms of quantitative expression levels of transporters, receptors and tight junction proteins.
Hertz, Daniel L; Henry, N Lynn; Kidwell, Kelley M; Thomas, Dafydd; Goddard, Audrey; Azzouz, Faouzi; Speth, Kelly; Li, Lang; Banerjee, Mousumi; Thibert, Jacklyn N; Kleer, Celina G; Stearns, Vered; Hayes, Daniel F; Skaar, Todd C; Rae, James M
2016-09-01
Hormone receptor-positive (HR+) breast cancers express the estrogen (ERα) and/or progesterone (PgR) receptors. Inherited single nucleotide polymorphisms (SNPs) in ESR1, the gene encoding ERα, have been reported to predict tamoxifen effectiveness. We hypothesized that these associations could be attributed to altered tumor gene/protein expression of ESR1/ERα and that SNPs in the PGR gene predict tumor PGR/PgR expression. Formalin-fixed paraffin-embedded breast cancer tumor specimens were analyzed for ESR1 and PGR gene transcript expression by the reverse transcription polymerase chain reaction based Oncotype DX assay and for ERα and PgR protein expression by immunohistochemistry (IHC) and an automated quantitative immunofluorescence assay (AQUA). Germline genotypes for SNPs in ESR1 (n = 41) and PGR (n = 8) were determined by allele-specific TaqMan assays. One SNP in ESR1 (rs9322336) was significantly associated with ESR1 gene transcript expression (P = 0.006) but not ERα protein expression (P > 0.05). A PGR SNP (rs518162) was associated with decreased PGR gene transcript expression (P = 0.003) and PgR protein expression measured by IHC (P = 0.016), but not AQUA (P = 0.054). There were modest, but statistically significant correlations between gene and protein expression for ESR1/ERα and PGR/PgR and for protein expression measured by IHC and AQUA (Pearson correlation = 0.32-0.64, all P < 0.001). Inherited ESR1 and PGR genotypes may affect tumor ESR1/ERα and PGR/PgR expression, respectively, which are moderately correlated. This work supports further research into germline predictors of tumor characteristics and treatment effectiveness, which may someday inform selection of hormonal treatments for patients with HR+ breast cancer. Copyright © 2016 the American Physiological Society.
Altered receptor trafficking in Huntingtin Interacting Protein 1-transformed cells.
Rao, Dinesh S; Bradley, Sarah V; Kumar, Priti D; Hyun, Teresa S; Saint-Dic, Djenann; Oravecz-Wilson, Katherine; Kleer, Celina G; Ross, Theodora S
2003-05-01
The clathrin-associated protein, Huntingtin Interacting Protein 1 (HIP1), is overexpressed in multiple human epithelial tumors. Here, we report that HIP1 is a novel oncoprotein that transforms cells. HIP1-transformed cells, in contrast to RasV12-transformed cells, have dysregulation of multiple receptors involved in clathrin trafficking. Examples include upregulation of the epidermal growth factor receptor (EGFR) and the transferrin receptor. Furthermore, accumulation of transferrin and EGF in the HIP1-transformed cells was increased, and breast tumors that had EGFR expressed also had HIP1 upregulated. Thus, HIP1 overexpression promotes tumor formation and is associated with a general alteration in receptor trafficking. HIP1 is the first endocytic protein to be directly implicated in tumor formation.
Renilla luciferase reporter assay to study 3'UTR-driven posttranscriptional regulations of OPRM1.
Vincelli, Gabriele; Bedini, Andrea
2015-01-01
The regulation of MOR expression at the level of mRNA is relevant for its role in pain transmission and in other functions involving opioid receptors. Recently, the role of the 3'UTR in the posttranscriptional regulation of MOR expression has been highlighted. Here we describe a Renilla luciferase reporter assay for the study of the effect of any selective treatment on the 3'UTR-dependent regulation of OPRM1 in a model of glial cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kampa, Marilena; Nifli, Artemissia-Phoebe; Charalampopoulos, Ioannis
Classical steroid mode of action involves binding to intracellular receptors, the later acting as ligand-activated nuclear transcription factors. Recently, membrane sites for different steroids have been also identified, mediating rapid, non-genomic, steroid actions. Membrane sites for estrogen and androgen have been found in a number of different cell types, bearing or not classical intracellular receptors. In the present study, with the use of radioligand binding, flow cytometry and confocal laser microscopy, we report that T47D human breast cancer cells express specific and saturable membrane receptors for both estrogen (K {sub D} 4.06 {+-} 3.31 nM) and androgen (K {sub D}more » 7.64 {+-} 3.15 nM). Upon activation with BSA-conjugated, non-permeable ligands (E{sub 2}-BSA and testosterone-BSA), membrane estrogen receptors protect cells from serum-deprivation-induced apoptosis, while androgen receptors induce apoptosis in serum-supplemented T47D cells. In addition, co-incubation of cells with a fixed concentration of one steroid and varying concentrations of the other reversed the abovementioned effect (apoptosis for androgen, and anti-apoptosis for E{sub 2}), suggesting that the fate of the cell depends on the relative concentration of either steroid in the culture medium. We also report the identification of membrane receptors for E{sub 2} and androgen in biopsy slides from breast cancer patients. Both sites are expressed, with the staining for membrane E{sub 2} being strongly present in ER-negative, less differentiated, more aggressive tumors. These findings suggest that aromatase inhibitors may exert their beneficial effects on breast cancer by also propagating the metabolism of local steroids towards androgen, inducing thus cell apoptosis through membrane androgen receptor activation.« less
Thoh, Maikho; Babajan, Banaganapalli; Raghavendra, Pongali B.; Sureshkumar, Chitta; Manna, Sunil K.
2011-01-01
Considering the role of retinoids in regulation of more than 500 genes involved in cell cycle and growth arrest, a detailed understanding of the mechanism and its regulation is useful for therapy. The extract of the medicinal plant Neem (Azadirachta indica) is used against several ailments especially for anti-inflammatory, anti-itching, spermicidal, anticancer, and insecticidal activities. In this report we prove the detailed mechanism on the regulation of retinoic acid-mediated cell signaling by azadirachtin, active components of neem extract. Azadirachtin repressed all trans-retinoic acid (ATRA)-mediated nuclear transcription factor κB (NF-κB) activation, not the DNA binding but the NF-κB-dependent gene expression. It did not inhibit IκBα degradation, IκBα kinase activity, or p65 phosphorylation and its nuclear translocation but inhibited NF-κB-dependent reporter gene expression. Azadirachtin inhibited TRAF6-mediated, but not TRAF2-mediated NF-κB activation. It inhibited ATRA-induced Sp1 and CREB (cAMP-response element-binding protein) DNA binding. Azadirachtin inhibited ATRA binding with retinoid receptors, which is supported by biochemical and in silico evidences. Azadirachtin showed strong interaction with retinoid receptors. It suppressed ATRA-mediated removal of retinoid receptors, bound with DNA by inhibiting ATRA binding to its receptors. Overall, our data suggest that azadirachtin interacts with retinoic acid receptors and suppresses ATRA binding, inhibits falling off the receptors, and activates transcription factors like CREB, Sp1, NF-κB, etc. Thus, azadirachtin exerts anti-inflammatory and anti-metastatic responses by a novel pathway that would be beneficial for further anti-inflammatory and anti-cancer therapies. PMID:21127062
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jong-Kook; Henry, Jon C.; Jiang, Jinmai
2011-03-25
Research highlights: {yields} The expression of miR-132 and miR-212 are significantly increased in pancreatic cancer. {yields} miR-132 and miR-212 target the tumor suppressor pRb, resulting in enhanced proliferation. {yields} miR-132 and miR-212 expression is increased by a {beta}2 adrenergic receptor agonist, suggesting a novel mechanism for pancreatic cancer progression. -- Abstract: Numerous microRNAs (miRNAs) are reported as differentially expressed in cancer, however the consequence of miRNA deregulation in cancer is unknown for many miRNAs. We report that two miRNAs located on chromosome 17p13, miR-132 and miR-212, are over-expressed in pancreatic adenocarcinoma (PDAC) tissues. Both miRNAs are predicted to target themore » retinoblastoma tumor suppressor, Rb1. Validation of this interaction was confirmed by luciferase reporter assay and western blot in a pancreatic cancer cell line transfected with pre-miR-212 and pre-miR-132 oligos. Cell proliferation was enhanced in Panc-1 cells transfected with pre-miR-132/-212 oligos. Conversely, antisense oligos to miR-132/-212 reduced cell proliferation and caused a G{sub 2}/M cell cycle arrest. The mRNA of a number of E2F transcriptional targets were increased in cells over expressing miR-132/-212. Exposing Panc-1 cells to the {beta}2 adrenergic receptor agonist, terbutaline, increased the miR-132 and miR-212 expression by 2- to 4-fold. We report that over-expression of miR-132 and miR-212 result in reduced pRb protein in pancreatic cancer cells and that the increase in cell proliferation from over-expression of these miRNAs is likely due to increased expression of several E2F target genes. The {beta}2 adrenergic pathway may play an important role in this novel mechanism.« less
Nakazato, K; Ishibashi, T; Nagata, K; Seino, Y; Wada, Y; Sakamoto, T; Matsuoka, R; Teramoto, T; Sekimata, M; Homma, Y; Maruyama, Y
2001-04-01
Although very low density lipoprotein (VLDL) receptor expression by macrophages has been shown in the vascular wall, it is not clear whether or not circulating monocytes express the VLDL receptor. We investigated the expression of VLDL receptor mRNA in human peripheral blood monocytes and monocyte-derived macrophages by reverse transcriptase polymerase chain reaction (RT-PCR) and nucleotide sequencing after subcloning of PCR product. VLDL receptor mRNA was detected both in peripheral blood monocytes and monocyte-derived macrophages. Expression of VLDL receptor mRNA was upregulated by hypoxia in monocytes, whereas treatment with oxidized LDL, interleukin-1beta or monocyte chemoattractant protein-1 did not affect the levels of VLDL receptor mRNA in monocytes and macrophages. The present study shows a novel response of VLDL receptor mRNA to hypoxia, suggesting a role for VLDL receptor in the metabolism of lipoproteins in the vascular wall and the development of atherosclerosis.
Mohr, Annika; Lüder Ripoli, Florenza; Hammer, Susanne Conradine; Willenbrock, Saskia; Hewicker-Trautwein, Marion; Kiełbowicz, Zdzisław; Murua Escobar, Hugo; Nolte, Ingo
2016-01-01
Immunohistochemistry (IHC) is currently considered the method of choice for steroid hormone receptor status evaluation in human breast cancer and, therefore, it is commonly utilized for assessing canine mammary tumors. In case of low hormone receptor expression, IHC is limited and thus is complemented by molecular analyses. In the present study, a multiplex bDNA assay was evaluated as a method for hormone receptor gene expression detection in canine mammary tissues. Estrogen receptor (ESR1), progesterone receptor (PGR), prolactin receptor (PRLR) and growth hormone receptor (GHR) gene expressions were evaluated in neoplastic and non-neoplastic canine mammary tissues. A set of 119 fresh frozen and 180 formalin-fixed, paraffin-embedded (FFPE) was comparatively analyzed and used for assay evaluation. Furthermore, a possible association between the hormone receptor expression in different histological subtypes of canine malignant mammary tumors and the castration status, breed and invasive growth of the tumor were analyzed. The multiplex bDNA assay proved to be more sensitive for fresh frozen specimens. Hormone receptor expression found was significantly decreased in malignant mammary tumors in comparison to non-neoplastic tissue and benign mammary tumors. Among the histological subtypes the lowest gene expression levels of ESR1, PGR and PRLR were found in solid, anaplastic and ductal carcinomas. In summary, the evaluation showed that the measurement of hormone receptors with the multiplex bDNA assay represents a practicable method for obtaining detailed quantitative information about gene expression in canine mammary tissue for future studies. Still, comparison with IHC or quantitative real-time PCR is needed for further validation of the present method.
Martínez-Martínez, Esther; Gómez, Irene; Martín, Paloma; Sánchez, Antonio; Román, Laura; Tejerina, Eva; Bonilla, Félix; Merino, Antonio García; de Herreros, Antonio García; Provencio, Mariano; García, Jose M
2015-01-01
Many studies have demonstrated that the endocannabinoid system (ECS) is altered in different tumor types, including colon cancer. However, little is known about the role of the ECS in tumor progression. Here we report the correlation between CB 2 expression and pathological data in a series of 175 colorectal cancer patients, as well as the response of the HT29 colon cancer-derived cell line upon CB 2 activation. CB 2 mRNA was detected in 28.6% of samples tested. It was more frequent in N+ patients and predicts disease free survival and overall survival in colon cancer. In positive samples, CB 2 was expressed with great intensity in tumor epithelial cells and correlated with tumor growth. Treatment of HT29 with CB 2 agonist revealed membrane loss of E-cadherin and SNAIL1 overexpression. A direct correlation between CB 2 and SNAIL1 expression was also found in human tumors. CB 2 receptor expression is a poor prognostic marker for colon cancer and the activation of this receptor, with non-apoptotic doses of agonists, could be collaborating with disease progression. These results raise the question whether the activation of CB 2 should be considered as anti-tumoral therapy.
Diévart, Anne; Dalal, Monica; Tax, Frans E.; Lacey, Alexzandria D.; Huttly, Alison; Li, Jianming; Clark, Steven E.
2003-01-01
The CLAVATA1 (CLV1) receptor kinase controls stem cell number and differentiation at the Arabidopsis shoot and flower meristems. Other components of the CLV1 signaling pathway include the secreted putative ligand CLV3 and the receptor-like protein CLV2. We report evidence indicating that all intermediate and strong clv1 alleles are dominant negative and likely interfere with the activity of unknown receptor kinase(s) that have functional overlap with CLV1. clv1 dominant-negative alleles show major differences from dominant-negative alleles characterized to date in animal receptor kinase signaling systems, including the lack of a dominant-negative effect of kinase domain truncation and the ability of missense mutations in the extracellular domain to act in a dominant-negative manner. We analyzed chimeric receptor kinases by fusing CLV1 and BRASSINOSTEROID INSENSITIVE1 (BRI1) coding sequences and expressing these in clv1 null backgrounds. Constructs containing the CLV1 extracellular domain and the BRI1 kinase domain were strongly dominant negative in the regulation of meristem development. Furthermore, we show that CLV1 expressed within the pedicel can partially replace the function of the ERECTA receptor kinase. We propose the presence of multiple receptors that regulate meristem development in a functionally related manner whose interactions are driven by the extracellular domains and whose activation requires the kinase domain. PMID:12724544
Balfanz, Sabine
2017-01-01
The catecholamines norepinephrine and epinephrine regulate important physiological functions in vertebrates. In insects; these neuroactive substances are functionally replaced by the phenolamines octopamine and tyramine. Phenolamines activate specific guanine nucleotide-binding (G) protein-coupled receptors (GPCRs). Type 1 tyramine receptors are better activated by tyramine than by octopamine. In contrast; type 2 tyramine receptors are almost exclusively activated by tyramine. Functionally; activation of type 1 tyramine receptors leads to a decrease in the intracellular concentration of cAMP ([cAMP]i) whereas type 2 tyramine receptors can mediate Ca2+ signals or both Ca2+ signals and effects on [cAMP]i. Here; we report that the American cockroach (Periplaneta americana) expresses a second type 1 tyramine receptor (PeaTAR1B) in addition to PeaTAR1A (previously called PeaTYR1). When heterologously expressed in flpTM cells; activation of PeaTAR1B by tyramine leads to a concentration-dependent decrease in [cAMP]i. Its activity can be blocked by a series of established antagonists. The functional characterization of two type 1 tyramine receptors from P. americana; PeaTAR1A and PeaTAR1B; which respond to tyramine by changing cAMP levels; is a major step towards understanding the actions of tyramine in cockroach physiology and behavior; particularly in comparison to the effects of octopamine. PMID:29084141
Blenau, Wolfgang; Balfanz, Sabine; Baumann, Arnd
2017-10-30
The catecholamines norepinephrine and epinephrine regulate important physiological functions in vertebrates. In insects; these neuroactive substances are functionally replaced by the phenolamines octopamine and tyramine. Phenolamines activate specific guanine nucleotide-binding (G) protein-coupled receptors (GPCRs). Type 1 tyramine receptors are better activated by tyramine than by octopamine. In contrast; type 2 tyramine receptors are almost exclusively activated by tyramine. Functionally; activation of type 1 tyramine receptors leads to a decrease in the intracellular concentration of cAMP ([cAMP] i ) whereas type 2 tyramine receptors can mediate Ca 2+ signals or both Ca 2+ signals and effects on [cAMP] i . Here; we report that the American cockroach ( Periplaneta americana ) expresses a second type 1 tyramine receptor (PeaTAR1B) in addition to PeaTAR1A (previously called PeaTYR1). When heterologously expressed in flpTM cells; activation of PeaTAR1B by tyramine leads to a concentration-dependent decrease in [cAMP] i . Its activity can be blocked by a series of established antagonists. The functional characterization of two type 1 tyramine receptors from P. americana ; PeaTAR1A and PeaTAR1B; which respond to tyramine by changing cAMP levels; is a major step towards understanding the actions of tyramine in cockroach physiology and behavior; particularly in comparison to the effects of octopamine.
Characterization of B61, the ligand for the Eck receptor protein-tyrosine kinase.
Shao, H; Pandey, A; O'Shea, K S; Seldin, M; Dixit, V M
1995-03-10
B61 was originally described as a novel secreted tumor necrosis factor-alpha-inducible gene product in endothelial cells (Holzman, L. B., Marks, R. M., and Dixit, V. M. (1990) Mol. Cell. Biol. 10, 5830-5838). It was recently discovered that soluble recombinant B61 could serve as a ligand for the Eck receptor protein-tyrosine kinase, a member of the Eph/Eck subfamily of receptor protein-tyrosine kinases (Bartley, T.D., Hunt, R. W., Welcher, A. A., Boyle, W. J., Parker, V. P., Lindberg, R. A., Lu, H. S., Colombero, A. M., Elliott, R. L., Guthrie, R. A., Holst, P. L., Skrine, J. D., Toso, R. J., Zhang, M., Fernandez, E., Trail, G., Yarnum, B., Yarden, Y., Hunter, T., and Fox, G. M. (1994) Nature 368, 558-560). We now show that B61 can also exist as a cell surface glycosylphosphatidyl-inositol-linked protein that is capable of activating the Eck receptor protein-tyrosine kinase, the first such report of a receptor protein-tyrosine kinase ligand that is glycosylphosphatidylinositol-linked. In addition, the expression patterns of B61 and Eck during mouse ontogeny were determined by in situ hybridization. Both were found to be highly expressed in the developing lung and gut, while Eck was preferentially expressed in the thymus. Finally, the gene for B61 was localized to a specific position on mouse chromosome 3 by interspecific back-cross analysis.
Lipchock, Sarah V.; Spielman, Andrew I.; Mennella, Julie A.; Mansfield, Corrine J.; Hwang, Liang-Dar; Douglas, Jennifer E.; Reed, Danielle R.
2018-01-01
We investigated whether the abundance of bitter receptor mRNA expression from human taste papillae is related to an individual’s perceptual ratings of bitter intensity and habitual intake of bitter drinks. Ratings of the bitterness of caffeine and quinine and three other bitter stimuli (urea, propylthiouracil, and denatonium benzoate) were compared with relative taste papilla mRNA abundance of bitter receptors that respond to the corresponding bitter stimuli in cell-based assays (TAS2R4, TAS2R10, TAS2R38, TAS2R43, and TAS2R46). We calculated caffeine and quinine intake from a food frequency questionnaire. The bitterness of caffeine was related to the abundance of the combined mRNA expression of these known receptors, r = 0.47, p = .05, and self-reported daily caffeine intake, t(18) = 2.78, p = .012. The results of linear modeling indicated that 47% of the variance among subjects in the rating of caffeine bitterness was accounted for by these two factors (habitual caffeine intake and taste receptor mRNA abundance). We observed no such relationships for quinine but consumption of its primary dietary form (tonic water) was uncommon. Overall, diet and TAS2R gene expression in taste papillae are related to individual differences in caffeine perception. PMID:28118781
Mild Hyperthermia Downregulates Receptor-dependent Neutrophil Function
Fröhlich, Dieter; Wittmann, Sigrid; Rothe, Gregor; Sessler, Daniel I.; Vogel, Peter; Taeger, Kai
2005-01-01
Mild hypothermia impairs resistance to infection and, reportedly, impairs phagocytosis and oxidative killing of un-opsonized bacteria. We evaluated various functions at 33 to 41°C in neutrophils taken from volunteers. Adhesion on endothelial cells was determined using light microscopy. Adhesion molecules expression and receptors, phagocytosis, and release of reactive oxidants were assessed using flow cytometric assays. Adhesion protein CD11b expression on resting neutrophils was temperature independent. However, upregulation of CD11b with TNF-α was increased by hypothermia and decreased with hyperthermia. Neutrophil adhesion to either resting or activated endothelial cells was not temperature dependent. Bacterial uptake was inversely related to temperature, more so with E. coli than S. aureus. Temperature dependence of phagocytosis occurred only with opsonized bacteria. Hypothermia slightly increased N-Formyl-L-methionyl-L-leucyl-phenylalanine (FMLP) receptors on neutrophils: hyperthermia decreased expression, especially with TNF-α. FMLP-induced H2O2 production was inversely related to temperature, especially in the presence of TNF-α. Conversely, phorbol-13-myristate-12-acetate, an activator of protein kinase C, induced an extreme and homogenous release of reactive oxidants that increased with temperature. In contrast to non-receptor dependent phagocytosis and oxidative killing, several crucial receptor-dependent neutrophil activities show temperature-dependent regulation, with hypothermia increasing function. The temperature dependence of neutrophil function is thus more complicated than previously appreciated. PMID:15281545
Le Dréan, Y; Lazennec, G; Kern, L; Saligaut, D; Pakdel, F; Valotaire, Y
1995-08-01
We previously reported that the expression of the rainbow trout estrogen receptor (rtER) gene is markedly increased by estradiol (E2). In this paper, we have used transient transfection assays with reporter plasmids expressing chloramphenicol acetyl transferase (CAT), linked to 5' flanking regions of the rtER gene promoter, to identify cis-elements responsible for E2 inducibility. Deletion analysis localized an estrogen-responsive element (ERE), at position +242, with one mutation on the first base compared with the consensus sequence. This element confers estrogen responsiveness to CAT reporter linked to both the herpes simplex virus thymidine kinase promoter and the homologous rtER promoter. Moreover, using a 0.2 kb fragment of the rtER promoter encompassing the ERE and the rtER DNA binding domain obtained from a bacterial expression system, DNase I footprinting experiments demonstrated a specific protection covering 20 bp (+240/+260) containing the ERE sequence. Based on these studies, we believe that this ERE sequence, identified in the rtER gene promoter, may be a major cis-acting element involved in the regulation of the gene by estrogen.
Arnaldo, Francis B.; Villar, Van Anthony M.; Konkalmatt, Prasad R.; Owens, Shaun A.; Asico, Laureano D.; Jones, John E.; Yang, Jian; Lovett, Donald L.; Armando, Ines; Concepcion, Gisela P.
2014-01-01
Dopamine-mediated regulation of Na+-K+-ATPase activity in the posterior gills of some crustaceans has been reported to be involved in osmoregulation. The dopamine receptors of invertebrates are classified into three groups based on their structure and pharmacology: D1- and D2-like receptors and a distinct invertebrate receptor subtype (INDR). We tested the hypothesis that a D1-like receptor is expressed in the blue crab Callinectes sapidus and regulates Na+-K+-ATPase activity. RT-PCR, using degenerate primers, showed the presence of D1βR mRNA in the posterior gill. The blue crab posterior gills showed positive immunostaining for a dopamine D5 receptor (D5R or D1βR) antibody in the basolateral membrane and cytoplasm. Confocal microscopy showed colocalization of Na+-K+-ATPase and D1βR in the basolateral membrane. To determine the effect of D1-like receptor stimulation on Na+-K+-ATPase activity, intact crabs acclimated to low salinity for 6 days were given an intracardiac infusion of the D1-like receptor agonist fenoldopam, with or without the D1-like receptor antagonist SCH23390. Fenoldopam increased cAMP production twofold and decreased Na+-K+-ATPase activity by 50% in the posterior gills. This effect was blocked by coinfusion with SCH23390, which had no effect on Na+-K+-ATPase activity by itself. Fenoldopam minimally decreased D1βR protein expression (10%) but did not affect Na+-K+-ATPase α-subunit protein expression. This study shows the presence of functional D1βR in the posterior gills of euryhaline crabs chronically exposed to low salinity and highlights the evolutionarily conserved function of the dopamine receptors on sodium homeostasis. PMID:25080496
Arnaldo, Francis B; Villar, Van Anthony M; Konkalmatt, Prasad R; Owens, Shaun A; Asico, Laureano D; Jones, John E; Yang, Jian; Lovett, Donald L; Armando, Ines; Jose, Pedro A; Concepcion, Gisela P
2014-09-15
Dopamine-mediated regulation of Na(+)-K(+)-ATPase activity in the posterior gills of some crustaceans has been reported to be involved in osmoregulation. The dopamine receptors of invertebrates are classified into three groups based on their structure and pharmacology: D1- and D2-like receptors and a distinct invertebrate receptor subtype (INDR). We tested the hypothesis that a D1-like receptor is expressed in the blue crab Callinectes sapidus and regulates Na(+)-K(+)-ATPase activity. RT-PCR, using degenerate primers, showed the presence of D1βR mRNA in the posterior gill. The blue crab posterior gills showed positive immunostaining for a dopamine D5 receptor (D5R or D1βR) antibody in the basolateral membrane and cytoplasm. Confocal microscopy showed colocalization of Na(+)-K(+)-ATPase and D1βR in the basolateral membrane. To determine the effect of D1-like receptor stimulation on Na(+)-K(+)-ATPase activity, intact crabs acclimated to low salinity for 6 days were given an intracardiac infusion of the D1-like receptor agonist fenoldopam, with or without the D1-like receptor antagonist SCH23390. Fenoldopam increased cAMP production twofold and decreased Na(+)-K(+)-ATPase activity by 50% in the posterior gills. This effect was blocked by coinfusion with SCH23390, which had no effect on Na(+)-K(+)-ATPase activity by itself. Fenoldopam minimally decreased D1βR protein expression (10%) but did not affect Na(+)-K(+)-ATPase α-subunit protein expression. This study shows the presence of functional D1βR in the posterior gills of euryhaline crabs chronically exposed to low salinity and highlights the evolutionarily conserved function of the dopamine receptors on sodium homeostasis. Copyright © 2014 the American Physiological Society.
Sánchez-Lemus, Enrique; Honda, Masaru; Saavedra, Juan M.
2012-01-01
Centrally acting Angiotensin II AT1 receptor blockers (ARBs) protect from stress-induced disorders and decrease anxiety in a model of inflammatory stress, the systemic injection of bacterial endotoxin lipopolysaccharide (LPS). In order to better understand the anxiolytic effect of ARBs, we treated rats with LPS (50 µg/kg) with or without three days of pretreatment with the ARB candesartan (1 mg/kg/day), and studied cortical benzodiazepine (BZ) and corticotrophin-releasing factor (CRF) receptors. We compared the cortical BZ and CRF receptors expression pattern induced by LPS with that produced in restraint stress. Inflammation stress produced a generalized increase in cortical BZ1 receptors and reduced mRNA expression of the GABAA receptor γ2 subunit in cingulate cortex; changes were prevented by candesartan pretreatment. Moreover, restraint stress produced similar increases in cortical BZ1 receptor binding, and candesartan prevented these changes. Treatment with candesartan alone increased cortical BZ1 binding, and decreased γ2 subunit mRNA expression in the cingulate cortex. Conversely, we did not find changes in CRF1 receptor expression in any of the cortical areas studied, either after inflammation or restraint stress. Cortical CRF2 receptor binding was undetectable, but CRF2 mRNA expression was decreased by inflammation stress, a change prevented by candesartan. We conclude that stress promotes rapid and widespread changes in cortical BZ1 receptor expression; and that the stress-induced BZ1 receptor expression is under the control of AT1 receptor activity. The results suggest that the anti-anxiety effect of ARBs may be associated with their capacity to regulate stress-induced alterations in cortical BZ1 receptors. PMID:22503782
Wang, Duan; Li, Linhao; Fuhrman, Jennifer; Ferguson, Stephen; Wang, Hongbing
2013-01-01
Purpose The objective of this study was to investigate the roles of the constitutive androstane receptor (CAR) in cyclophosphamide (CPA)- and ifosfamide (IFO)-mediated induction of hepatic drug-metabolizing enzymes (DME). Methods Induction of DMEs was evaluated using real-time RT-PCR and Western blotting analysis in human primary hepatocyte (HPH) cultures. Activation of CAR, pregnane X receptor (PXR), and aryl hydrocarbon receptor by CPA and IFO was assessed in cell-based reporter assays in HepG2 cells and/or nuclear translocation assays in HPHs. Results CYP2B6 reporter activity was significantly enhanced by CPA and IFO in HepG2 cells co-transfected with CYP2B6 reporter plasmid and a chemical-responsive human CAR variant (CAR1+A) construct. Real-time RT-PCR and Western blotting analysis in HPHs showed that both CPA and IFO induced the expressions of CYP2B6 and CYP3A4. Notably, treatment of HPHs with CPA but not IFO resulted in significant nuclear accumulation of CAR, which represents the initial step of CAR activation. Further studies in HPHs demonstrated that selective inhibition of PXR by sulforaphane preferentially repressed IFO- over CPA-mediated induction of CYP2B6. Conclusion These results provide novel insights into the differential roles of CAR in the regulation of CPA- and IFO-induced DME expression and potential drug-drug interactions. PMID:21487929
Szewczyk, Bernadeta; Albert, Paul R; Rogaeva, Anastasia; Fitzgibbon, Heidi; May, Warren L; Rajkowska, Grazyna; Miguel-Hidalgo, Jose J; Stockmeier, Craig A; Woolverton, William L; Kyle, Patrick B; Wang, Zhixia; Austin, Mark C
2010-09-01
Serotonin1A (5-HT(1A)) receptors are reported altered in the brain of subjects with major depressive disorder (MDD). Recent studies have identified transcriptional regulators of the 5-HT(1A) receptor and have documented gender-specific alterations in 5-HT(1A) transcription factor and 5-HT(1A) receptors in female MDD subjects. The 5' repressor element under dual repression binding protein-1 (Freud-1) is a calcium-regulated repressor that negatively regulates the 5-HT(1A) receptor gene. This study documented the cellular expression of Freud-1 in the human prefrontal cortex (PFC) and quantified Freud-1 protein in the PFC of MDD and control subjects as well as in the PFC of rhesus monkeys chronically treated with fluoxetine. Freud-1 immunoreactivity was present in neurons and glia and was co-localized with 5-HT(1A) receptors. Freud-1 protein level was significantly decreased in the PFC of male MDD subjects (37%, p=0.02) relative to gender-matched control subjects. Freud-1 protein was also reduced in the PFC of female MDD subjects (36%, p=0.18) but was not statistically significant. When the data was combined across genders and analysed by age, the decrease in Freud-1 protein level was greater in the younger MDD subjects (48%, p=0.01) relative to age-matched controls as opposed to older depressed subjects. Similarly, 5-HT(1A) receptor protein was significantly reduced in the PFC of the younger MDD subjects (48%, p=0.01) relative to age-matched controls. Adult male rhesus monkeys administered fluoxetine daily for 39 wk revealed no significant change in cortical Freud-1 or 5-HT(1A) receptor proteins compared to vehicle-treated control monkeys. Reduced protein expression of Freud-1 in MDD subjects may reflect dysregulation of this transcription factor, which may contribute to the altered regulation of 5-HT(1A) receptors observed in subjects with MDD. These data may also suggest that reductions in Freud-1 protein expression in the PFC may be associated with early onset of MDD.
Kaur, Sukhbir; Kuznetsova, Svetlana A.; Pendrak, Michael L.; Sipes, John M.; Romeo, Martin J.; Li, Zhuqing; Zhang, Lijuan; Roberts, David D.
2011-01-01
Cell surface proteoglycans on T cells contribute to retroviral infection, binding of chemokines and other proteins, and are necessary for some T cell responses to the matricellular glycoprotein thrombospondin-1. The major cell surface proteoglycans expressed by primary T cells and Jurkat T cells have an apparent Mr > 200,000 and are modified with chondroitin sulfate and heparan sulfate chains. Thrombospondin-1 bound in a heparin-inhibitable manner to this proteoglycan and to a soluble form released into the medium. Based on mass spectrometry, knockdown, and immunochemical analyses, the proteoglycan contains two major core proteins as follows: amyloid precursor-like protein-2 (APLP2, apparent Mr 230,000) and CD47 (apparent Mr > 250,000). CD47 is a known thrombospondin-1 receptor but was not previously reported to be a proteoglycan. This proteoglycan isoform of CD47 is widely expressed on vascular cells. Mutagenesis identified glycosaminoglycan modification of CD47 at Ser64 and Ser79. Inhibition of T cell receptor signaling by thrombospondin-1 was lost in CD47-deficient T cells that express the proteoglycan isoform of APLP2, indicating that binding to APLP2 is not sufficient. Inhibition of CD69 induction was restored in CD47-deficient cells by re-expressing CD47 or an S79A mutant but not by the S64A mutant. Therefore, inhibition of T cell receptor signaling by thrombospondin-1 is mediated by CD47 and requires its modification at Ser64. PMID:21343308
Grigsby, Peta L; Sooranna, Suren R; Adu-Amankwa, Bernice; Pitzer, Brad; Brockman, Diane E; Johnson, Mark R; Myatt, Leslie
2006-08-01
The change from uterine quiescence to enhanced contractile activity may be due to the differential expression of prostaglandin receptors within the myometrium and fetal membranes, in a temporal and topographically distinct manner. To address this question, we determined the localization and expression of the PGE2 receptor subtypes (PTGER1-4) and the PGF2alpha receptor (PTGFR) in paired upper and lower segment myometrium, amnion, and choriodecidual samples throughout human pregnancy, with and without labor. All receptor subtypes were found throughout the muscle layers in both the upper and lower uterine segments, colocalizing with alpha smooth muscle actin. A change in intracellular localization was observed at term labor, where PTGER1 and PTGER4 were predominately associated with the nucleus. Minimal changes in the expression of the PGE2 and PGF2alpha receptor subtypes were observed with gestational age, labor, or between the upper and lower myometrial segments. Receptor expression in maternal and fetal tissues differed between the receptor subtypes; PTGER1 and PTGER4 were predominately expressed in the fetal membranes, PTGER2 was greatest in the myometrium, whereas PTGER3 and PTGFR were similarly expressed in the myometrium and fetal membranes. Myometrial activation through the prostaglandin receptors is perhaps more subtle and may be mediated by a balance between one or several of the prostaglandin receptor subtypes together with other known contraction associated proteins. Lack of coordination in receptor expression between the myometrium and fetal membranes may indicate different regulatory mechanisms between these tissues, or it may suggest a function for these receptors in the amnion and choriodecidua that is independent of that seen in the myometrium.
Reinick, Christina L; Liang, Liang; Angleson, Josepha K; Dores, Robert M
2012-04-05
The melanocortin-5 receptor (MC(5)) of the dogfish Squalus acanthias (SacMC(5) receptor) can be functionally expressed in CHO cells in the absence of the co-expression of an exogenous MRAP cDNA. Both human ACTH(1-24) and dogfish ACTH(1-25) were much better stimulators of the SacMC(5) receptor than any of the mammalian or dogfish MSH ligands that were tested. The order of ligand selectivity for the dogfish melanocortins was ACTH(1-25)>αMSH>γ-MSH=δ-MSH>β-MSH. Unlike mammalian MC(5) receptors, the functional expression of the SacMC(5) receptor was not negatively impacted when the receptor was co-expressed with a cartilaginous fish (Callorhinchus milii) MRAP2 cDNA. However, co-expression with either mouse mMRAP1 or zebrafish zfMRAP1 increased the sensitivity of SacMC(5) receptor for hACTH(1-24) by at least one order of magnitude. Hence, SacMC(5) receptor has the potential to interact with MRAP1 orthologs and in this regard behaved more like a melanocortin MC(2) receptor ortholog than a melanocortin MC(5) receptor ortholog. These observations are discussed in light of the evolution of the melanocortin receptor gene family in cartilaginous fish, and the physiological implications of these observations are considered. Copyright © 2012 Elsevier B.V. All rights reserved.
Haemangiopericytoma of the thyroid gland in combination with Hashimoto's disease.
Hansen, T; Gaumann, A; Ghalibafian, M; Höferlin, A; Heintz, A; Kirkpatrick, C J
2004-09-01
We present a hitherto unique case of haemangiopericytoma (HP) of the thyroid gland in a 15-year-old female patient suffering from Hashimoto's disease for several months. Since angiogenesis has been discussed to play a major role in both diseases, we examined the expression of vascular endothelial growth factor (VEGF), VEGF receptors (VEGFRs) and platelet-derived growth factor receptors (PDGFRs). Most interestingly, strong expression of PDGFR alpha and beta was found in spindle-shaped tumour cells and tumour vessels in HP, while VEGF and VEGFR type I and -II were negative in these regions. In contrast, VEGF was expressed in the lymphoid infiltrate of Hashimoto's disease. Since PDGFR-beta is commonly expressed in pericytes, we suggest that the strong expression discovered in this study further supports the view that HP is derived from pericytes. The combination of HP and Hashimoto's disease is most probably a coincidental event. However, this case confirms previous reports demonstrating that in patients with Hashimoto's disease different neoplasias can occur.
Prenatal Exposure to Tributyltin Decreases GluR2 Expression in the Mouse Brain.
Ishida, Keishi; Saiki, Takashi; Umeda, Kanae; Miyara, Masatsugu; Sanoh, Seigo; Ohta, Shigeru; Kotake, Yaichiro
2017-01-01
Tributyltin (TBT), a common environmental contaminant, is widely used as an antifouling agent in paint. We previously reported that exposure of primary cortical neurons to TBT in vitro decreased the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit glutamate receptor 2 (GluR2) expression and subsequently increased neuronal vulnerability to glutamate. Therefore, to identify whether GluR2 expression also decreases after TBT exposure in vivo, we evaluated the changes in GluR2 expression in the mouse brain after prenatal or postnatal exposure to 10 and 25 ppm TBT through pellet diets. Although the mean feed intake and body weight did not decrease in TBT-exposed mice compared with that in control mice, GluR2 expression in the cerebral cortex and hippocampus decreased after TBT exposure during the prenatal period. These results indicate that a decrease in neuronal GluR2 may be involved in TBT-induced neurotoxicity, especially during the fetal period.
Scott, Glynis; Leopardi, Sonya; Printup, Stacey; Malhi, Namrita; Seiberg, Miri; Lapoint, Randi
2004-05-01
Prostaglandins (PG) are key mediators of diverse functions in the skin and several reports suggest that PG mediate post-inflammatory pigmentary changes through modulation of melanocyte dendricity and melanin synthesis. The proteinase-activated receptor 2 (PAR-2) is important for skin pigmentation because activation of keratinocyte PAR-2 stimulates uptake of melanosomes through phagocytosis in a Rho-dependent manner. In this report, we show that activation of keratinocyte PAR-2 stimulates release of PGE(2) and PGF(2alpha) and that PGE(2) and PGF(2alpha) act as paracrine factors that stimulate melanocyte dendricity. We characterized the expression of the EP and FP receptors in human melanocytes and show that human melanocytes express EP1 and EP3, and the FP receptor, but not EP2 and EP4. Treatment of melanocytes with EP1 and EP3 receptor agonists resulted in increased melanocyte dendricity, indicating that both EP1 and EP3 receptor signaling contribute to PGE(2)-mediated melanocyte dendricity. Certain EP3 receptor subtypes have been shown to increase adenosine 3',5'-cyclic monophosphate (cAMP) through coupling to Gs, whereas EP1 is known to couple to Gq to activate phospholipase C with elevation in Ca(2+). The cAMP/protein kinase A system is known to modulate melanocyte dendrite formation through modulation of Rac and Rho activity. Neither PGF(2alpha) or PGE(2) elevated cAMP in human melanocytes showing that dendricity observed in response to PGE(2) and PGF(2alpha) is cAMP-independent. Our data suggest that PAR-2 mediates cutaneous pigmentation both through increased uptake of melanosomes by keratinocytes, as well as by release of PGE(2) and PGF(2alpha) that stimulate melanocyte dendricity through EP1, EP3, and FP receptors.
Chen, Ken; Deng, Kun; Wang, Xiaoyan; Wang, Zhen; Zheng, Shuo; Ren, Hongmei; He, Duofen; Han, Yu; Asico, Laureano D.; Jose, Pedro A.; Zeng, Chunyu
2014-01-01
The dopaminergic and renin angiotensin systems interact to regulate blood pressure. Disruption of the D4 dopamine receptor gene in mice produces hypertension that is associated with increased renal AT1 receptor expression. We hypothesize that the D4 receptor can inhibit AT1 receptor expression and function in renal proximal tubules (RPTs) cells from Wistar-Kyoto (WKY) rats but the D4 receptor regulation of AT1 receptor is aberrant in RPT cells from spontaneously hypertensive rats (SHRs). The D4 receptor agonist, PD168077, decreased AT1 receptor protein expression in a time and concentration-dependent manner in WKY cells. By contrast, in SHR cells, PD168077 increased AT1 receptor protein expression. The inhibitory effect of D4 receptor on AT1 receptor expression in WKY cells was blocked by a calcium channel blocker, nicardipine, or calcium-free medium, indicating that calcium is involved in the D4 receptor-mediated signaling pathway. Angiotensin II increased Na+-K+ ATPase activity in WKY cells. Pretreatment with PD168077 decreased the stimulatory effect of angiotensin II on Na+-K+ ATPase activity in WKY cells. In SHR cells, the inhibitory effect of D4 receptor on angiotensin II-mediated stimulation of Na+-K+ ATPase activity was aberrant; pretreatment with PD168077 augmented the stimulatory effect of AT1 receptor on Na+-K+ ATPase activity in SHR cells. This was confirmed in vivo; pre-treatment with PD128077 for one week augmented the anti-hypertensive and natriuretic effect of losartan in SHRs but not in WKY rats. We suggest that an aberrant interaction between D4 and AT1 receptors may play a role in the abnormal regulation of sodium excretion in hypertension. PMID:25368031
Deussing, Jan M; Breu, Johannes; Kühne, Claudia; Kallnik, Magdalena; Bunck, Mirjam; Glasl, Lisa; Yen, Yi-Chun; Schmidt, Mathias V; Zurmühlen, Regine; Vogl, Annette M; Gailus-Durner, Valérie; Fuchs, Helmut; Hölter, Sabine M; Wotjak, Carsten T; Landgraf, Rainer; de Angelis, Martin Hrabé; Holsboer, Florian; Wurst, Wolfgang
2010-07-07
Urocortin 3 (UCN3) is strongly expressed in specific nuclei of the rodent brain, at sites distinct from those expressing urocortin 1 and urocortin 2, the other endogenous ligands of corticotropin-releasing hormone receptor type 2 (CRH-R2). To determine the physiological role of UCN3, we generated UCN3-deficient mice, in which the UCN3 open reading frame was replaced by a tau-lacZ reporter gene. By means of this reporter gene, the nucleus parabrachialis and the premammillary nucleus were identified as previously unknown sites of UCN3 expression. Additionally, the introduced reporter gene enabled the visualization of axonal projections of UCN3-expressing neurons from the superior paraolivary nucleus to the inferior colliculus and from the posterodorsal part of the medial amygdala to the principal nucleus of the bed nucleus of the stria terminalis, respectively. The examination of tau-lacZ reporter gene activity throughout the brain underscored a predominant expression of UCN3 in nuclei functionally connected to the accessory olfactory system. Male and female mice were comprehensively phenotyped but none of the applied tests provided indications for a role of UCN3 in the context of hypothalamic-pituitary-adrenocortical axis regulation, anxiety- or depression-related behavior. However, inspired by the prevalent expression throughout the accessory olfactory system, we identified alterations in social discrimination abilities of male and female UCN3 knock-out mice that were also present in male CRH-R2 knock-out mice. In conclusion, our results suggest a novel role for UCN3 and CRH-R2 related to the processing of social cues and to the establishment of social memories.
Smothers, C. Thetford; Jin, Chun; Woodward, John J.
2013-01-01
Background Ethanol inhibition of NMDA receptors is poorly understood due in part to the organizational complexity of the receptor that provides ample locations for sites of action. Among these the N-terminal domain of NMDA receptor subunits contains binding sites for a variety of modulatory agents including zinc, protons and GluN2B selective antagonists such as ifenprodil or Ro-25–6981. Ethanol inhibition of neuronal NMDA receptors expressed in some brain areas has been reported to be occluded by the presence of ifenprodil or similar compounds suggesting that the N-terminal domain may be important in regulating the ethanol sensitivity of NMDA receptors. Methods Wild-type GluN1 and GluN2 subunits and those in which the coding sequence for the N-terminal domain was deleted were expressed in HEK293 cells. Whole-cell voltage-clamp recording was used to assess ethanol inhibition of wild-type and mutant receptors lacking the N-terminal domain. Results As compared to wild-type GluN1/GluN2A receptors, ethanol inhibition was slightly greater in cells expressing GluN2A subunits lacking the N-terminal domain. In contrast, GluN2B N-terminal deletion mutants showed normal ethanol inhibition while those lacking the N-terminal domain in both GluN1 and GluN2B subunits had decreased ethanol inhibition as compared to wild-type receptors. N-terminal domain lacking GluN2B receptors were insensitive to ifenprodil but retained normal sensitivity to ethanol. Conclusions These findings indicate that the N-terminal domain modestly influences the ethanol sensitivity of NMDA receptors in a subunit-dependent manner. They also show that ifenprodil’s actions on GluN2B containing receptors can be dissociated from those of ethanol. These results suggest that while the N-terminal domain is not a primary site of action for ethanol on NMDA receptors, it likely affects sensitivity via actions on intrinsic channel properties. PMID:23905549
Van Waes, Vincent; Beverley, Joel A.; Siman, Homayoun; Tseng, Kuei Y.; Steiner, Heinz
2012-01-01
Corticostriatal circuits mediate various aspects of goal-directed behavior and are critically important for basal ganglia-related disorders. Activity in these circuits is regulated by the endocannabinoid system via stimulation of CB1 cannabinoid receptors. CB1 receptors are highly expressed in projection neurons and select interneurons of the striatum, but expression levels vary considerably between different striatal regions (functional domains). We investigated CB1 receptor expression within specific corticostriatal circuits by mapping CB1 mRNA levels in striatal sectors defined by their cortical inputs in rats. We also assessed changes in CB1 expression in the striatum during development. Our results show that CB1 expression is highest in juveniles (P25) and then progressively decreases toward adolescent (P40) and adult (P70) levels. At every age, CB1 receptors are predominantly expressed in sensorimotor striatal sectors, with considerably lower expression in associative and limbic sectors. Moreover, for most corticostriatal circuits there is an inverse relationship between cortical and striatal expression levels. Thus, striatal sectors with high CB1 expression (sensorimotor sectors) tend to receive inputs from cortical areas with low expression, while striatal sectors with low expression (associative/limbic sectors) receive inputs from cortical regions with higher expression (medial prefrontal cortex). In so far as CB1 mRNA levels reflect receptor function, our findings suggest differential CB1 signaling between different developmental stages and between sensorimotor and associative/limbic circuits. The regional distribution of CB1 receptor expression in the striatum further suggests that, in sensorimotor sectors, CB1 receptors mostly regulate GABA inputs from local axon collaterals of projection neurons, whereas in associative/limbic sectors, CB1 regulation of GABA inputs from interneurons and glutamate inputs may be more important. PMID:22416230
Chlon, Timothy M.; Taffany, David A.; Welsh, JoEllen; Rowling, Matthew J.
2008-01-01
The major circulating form of vitamin D, 25-hydroxycholecalciferol (25D3), circulates bound to vitamin D-binding protein (DBP). Prior to activation to 1,25-dihydroxycholecalciferol in the kidney, the 25D3-DBP complex is internalized via receptor-mediated endocytosis, which is absolutely dependent on the membrane receptors megalin and cubilin and the adaptor protein disabled-2 (Dab2). We recently reported that mammary epithelial cells (T-47D) expressing megalin, cubilin, and Dab2 rapidly internalize DBP via endocytosis, whereas cells that do not express all 3 proteins (MCF-7) do not. The objectives of this study were to characterize megalin, cubilin, and Dab2 expression and transport of DBP in human mammary epithelial cells. Using immunoblotting and real-time PCR, we found that megalin, cubilin, and Dab2 were expressed and dose dependently induced by all-trans-retinoic acid (RA) in T-47D human breast cancer cells and that RA-treated T-47D cells exhibited enhanced DBP internalization. These are the first studies to our knowledge to demonstrate that mammary epithelial cells express megalin, cubilin, and Dab2, which are enhanced during differentiation and may explain, at least in part, our finding that receptor-mediated endocytosis of DBP is upregulated in differentiated mammary epithelial cells. PMID:18567755
Horiuchi, Dai; Camarda, Roman; Zhou, Alicia Y.; Yau, Christina; Momcilovic, Olga; Balakrishnan, Sanjeev; Corella, Alexandra N.; Eyob, Henok; Kessenbrock, Kai; Lawson, Devon A.; Marsh, Lindsey A.; Anderton, Brittany N.; Rohrberg, Julia; Kunder, Ratika; Bazarov, Alexey V.; Yaswen, Paul; McManus, Michael T.; Rugo, Hope S.; Werb, Zena; Goga, Andrei
2017-01-01
Triple-negative breast cancer (TNBC), which lacks the expression of the estrogen, progesterone, and HER2 receptors, represents the breast cancer subtype with the poorest outcome1. No targeted therapy is available against this subtype due to lack of validated molecular targets. We previously reported that MYC signaling is disproportionally elevated in triple-negative (TN) tumors compared to receptor-positive (RP) tumors2. MYC is an essential, pleiotropic transcription factor that regulates the expression of hundreds of genes3. Direct inhibition of oncogenic MYC transcriptional activity has remained challenging4,5. The present study conducted an shRNA screen against all kinases to uncover novel MYC-dependent synthetic lethal combinations, and identified PIM1, a non-essential kinase. Here we demonstrate that PIM1 expression was elevated in TN tumors and was associated with poor prognosis in patients with hormone and HER2 receptor-negative tumors. Small molecule PIM kinase inhibitors halted the growth of human TN tumors with elevated MYC expression in patient-derived tumor xenograft (PDX) and MYC-driven transgenic breast cancer models by inhibiting oncogenic transcriptional activity of MYC while simultaneously restoring the function of the endogenous cell cycle inhibitor, p27. Our findings warrant clinical evaluation of PIM kinase inhibitors in patients with TN tumors that exhibit elevated MYC expression. PMID:27775705
Murugananthkumar, R; Akhila, M V; Rajakumar, A; Mamta, S K; Sudhakumari, C C; Senthilkumaran, B
2016-12-01
Testicular receptor 2 (TR2; also known as Nr2c1) is one of the first orphan nuclear receptors identified and known to regulate various physiological process with or without any ligand. In this study, we report the cloning of full length nr2c1 and its expression analysis during gonadal development, seasonal testicular cycle and after human chorionic gonadotropin (hCG) induction. In addition, in situ hybridization (ISH) was performed to localize nr2c1 transcripts in adult testis and whole catfish (1day post hatch). Tissue distribution and gonadal ontogeny studies revealed high expression of nr2c1 in developing and adult testis. Early embryonic stage-wise expression of nr2c1 seems to emphasize its importance in cellular differentiation and development. Substantial expression of nr2c1 during pre-spawning phase and localization of nr2c1 transcripts in sperm/spermatids were observed. Significant upregulation after hCG induction indicate that nr2c1 is under the regulation of gonadotropins. Whole mount ISH analysis displayed nr2c1 expression in notochord indicating its role in normal vertebrate development. Taken together, our findings suggest that nr2c1 may have a plausible role in the testicular and embryonic development of catfish. Copyright © 2015. Published by Elsevier Inc.
Ortego, J; Coca-Prados, M
1997-11-01
The ocular ciliary epithelium is a bilayer of neuroepithelial cells specialized in the secretion of aqueous humor fluid and the regulation of intraocular pressure. In this study, we report on the expression of the regulatory peptide neurotensin (NT) and a set of differentiated neuroendocrine markers including neurotensin receptors (NTrs), the prohormone convertases furin, PC1, and PC2, and the neuroendocrine polypeptide 7B2 in the ciliary epithelium. Using a human cell line, ODM-2, derived from the nonpigmented ciliary epithelium, we demonstrate that (1) NT expression is highly activated by nerve growth factor, glucocorticoid, and activators of adenylate cyclase; (2) NTr expression is up-regulated by selective ligand-activated beta2-adrenergic receptor; and (3) PC1 and PC2 expression are up-regulated via distinct signaling transduction pathways. PC1 gene expression is activated by phorbol ester, and PC2 by the same inducers as those of NT expression. A radioimmunoassay for NT detected an NT-like immunoreactivity in human ciliary epithelium and ODM-2 cell extracts, in aqueous humor, and in conditioned culture medium. The results support the view that the entire ciliary epithelium functions as a neuroendocrine tissue, synthesizing, processing, and releasing NT into the aqueous humor where it may exert important physiological functions through autocrine and/or paracrine mechanisms.
Okamoto, Mariko; Mizukami, Yoichi
2016-05-31
Estrogen is known to have anti-inflammatory effects, that are thought to be mediated by the classical estrogen receptors (ERs), ERα and ERβ. G protein coupled estrogen receptor1 (GPER) is a novel membrane-type estrogen receptor that can mediate non-genomic estrogenic responses. Although there have been several reports asserting that the participation of GPER in anti-inflammatory effects is induced by estrogen, the role of GPER remains poorly understood. In this study, we investigated the involvement of GPER in the regulation of a representative inflammatory cytokine, IL-6. We first examined the expression of IL-6 mRNA by TNFα stimulation in the transfection of GPER-expression plasmid into HeLa cells. Exogenous GPER significantly inhibited TNFα-induced IL-6 expression, and blocked NF-κB promoter activity inducing the expression of IL-6 in a dose-dependent manner. The promoter activity was restored almost to control level by transfection with the C-terminal deletion mutant of GPER. Similar results have been observed in endogenous GPER using SKBR3 cells which do not express the classical ERs. The data have been validated by treatment of GPER with siRNA. These findings indicate that GPER negatively regulates TNFα-induced IL-6 expression, probably through inhibition of NF-κB promoter activity by a signal(s) derived from the C-terminal region of GPER.
Kalantari, Nasim; Abroun, Saeid; Soleimani, Masoud; Kaviani, Saeid; Azad, Mehdi; Eskandari, Fatemeh; Habibi, Hossein
2016-01-01
Receptor activator of nuclear factor-kappa B ligand (RANKL) appears to be an osteoclast-activating factor, bearing an important role in the pathogenesis of multiple myeloma. Some studies demonstrated that U-266 myeloma cell line and primary myeloma cells expressed RANK and RANKL. It had been reported that the expression of myeloid and monocytoid markers was increased by co-culturing myeloma cells with hematopoietic stem cells (HSCs). This study also attempted to show the molecular mechanism of RANK and RANKL on differentiation capability of human cord blood HSC to osteoclast, as well as expression of calcitonin receptor (CTR) on cord blood HSC surface. In this experimental study, CD133(+) hematopoietic stem cells were isolated from umbilical cord blood and cultured in the presence of macrophage colony-stimulating factor (M-CSF) and RANKL. Osteoclast differentiation was characterized by using tartrate-resistant acid phosphatase (TRAP) staining, giemsa staining, immunophenotyping, and reverse transcription-polymerase chain reaction (RT-PCR) assay for specific genes. Hematopoietic stem cells expressed RANK before and after differentiation into osteoclast. Compared to control group, flow cytometric results showed an increased expression of RANK after differentiation. Expression of CTR mRNA showed TRAP reaction was positive in some differentiated cells, including osteoclast cells. Presence of RANKL and M-CSF in bone marrow could induce HSCs differentiation into osteoclast.
Functional expression of cysteinyl leukotriene receptors on human platelets.
Hasegawa, Shunji; Ichiyama, Takashi; Hashimoto, Kunio; Suzuki, Yasuo; Hirano, Reiji; Fukano, Reiji; Furukawa, Susumu
2010-01-01
Normal peripheral blood leukocytes, such as basophils, eosinophils, B lymphocytes and monocytes/macrophages, have a cysteinyl leukotriene 1 (CysLT1) receptor, while the cysteinyl leukotriene 2 (CysLT2) receptor is expressed in cardiac Purkinje cells, endothelium, brain and leukocytes. However, it is unknown whether or not platelets express the CysLT1 or CysLT2 receptor. In this study we identify and characterize the biological function of the CysLT receptor of human platelets. We determined the CysLT1 or CysLT2 receptor mRNA expression in normal human platelets by RT-PCR and determined protein expression by Western blotting and flow cytometry. Moreover, we examined the effect of cysteinyl leukotrienes (CysLTs) in platelets on the induction of RANTES (Regulated on Activation, Normal T Expressed, and presumably Secreted). We also investigated whether the CysLT1 receptor antagonist pranlukast inhibits CysLT-induced RANTES release. In conclusion, we showed the functional expression of CysLT receptors on human platelets and demonstrated that CysLTs induced the release of significant amounts of RANTES, which suggests a novel role for human platelets in CysLT-mediated allergic inflammation.
Rolin, Johannes; Vego, Heidi; Maghazachi, Azzam A.
2014-01-01
Lipids through regulation of chronic inflammation play key roles in the development of various diseases. Here, we report that a mixed population of human primary monocytes migrated towards LPC, as well as oxidized linoleic acid isoforms 9-S-HODE, 9-R-HODE and 13-R-HODE. Incubation with 9-R-HODE, 13-R-HODE and LPC resulted in increased expression of CXCR4, the receptor for SDF-1α/CXCL12, correlated with increased monocyte migration towards SDF-1α/CXCL12. Further, we report increased expression of CCR9, the receptor for TECK/CCL25, after stimulation with these lipids. Upon examining the migratory response towards TECK/CCL25, it was observed that an increase in CCR9 expression upon pre-treatment with 9-S-HODE, 9-R-HODE, 13-R-HODE and LPC resulted in increased migration of monocytes expressing CCR9. Only LPC but not any other lipid examined increased the influx of intracellular Ca2+ in monocytes. Finally, 9-S-HODE, 9-R-HODE, 13-R-HODE, or LPC inhibited the release of IL-6 from monocytes suggesting that these lipids may play important role in controlling inflammatory responses. PMID:25251539
Guran, Tulay; Tolhurst, Gwen; Bereket, Abdullah; Rocha, Nuno; Porter, Keith; Turan, Serap; Gribble, Fiona M; Kotan, L Damla; Akcay, Teoman; Atay, Zeynep; Canan, Husniye; Serin, Ayse; O'Rahilly, Stephen; Reimann, Frank; Semple, Robert K; Topaloglu, A Kemal
2009-10-01
The neurokinin B (NKB) receptor, encoded by TACR3, is widely expressed within the central nervous system, including hypothalamic nuclei involved in regulating GnRH release. We have recently reported two mutations in transmembrane segments of the receptor and a missense mutation in NKB in patients with normosmic isolated hypogonadotropic hypogonadism (nIHH). We sequenced the TACR3 gene in a family in which three siblings had nIHH. The novel mutant receptor thus identified was studied in a heterologous expression system using calcium flux as the functional readout. All affected siblings were homozygous for the His148Leu mutation, in the first extracellular loop of the NKB receptor. The His148Leu mutant receptor exhibited profoundly impaired signaling in response to NKB (EC(50) = 3 +/- 0.1 nm and >5 microm for wild-type and His148Leu, respectively). The location of the mutation in an extracellular part of the receptor led us also to test whether senktide, a synthetic NKB analog, may retain ability to stimulate the mutant receptor. However, the signaling activity of the His148Leu receptor in response to senktide was also severely impaired (EC(50) = 1 +/- 1 nm for wild-type and no significant response of His148Leu to 10 microm). Homozygosity for the TACR3 His148Leu mutation leads to failure of sexual maturation in humans, whereas signaling by the mutant receptor in vitro in response to either NKB or senktide is severely impaired. These observations further strengthen the link between NKB, the NKB receptor, and regulation of human reproductive function.
Strekalova, Elena; Malin, Dmitry; Good, David M; Cryns, Vincent L
2015-06-15
Many neoplasms are vulnerable to methionine deficiency by mechanisms that are poorly understood. Because gene profiling studies have revealed that methionine depletion increases TNF-related apoptosis-inducing ligand receptor-2 (TRAIL-R2) mRNA, we postulated that methionine stress sensitizes breast cancer cells to proapoptotic TRAIL-R2 agonists. Human triple (ER/PR/HER2)-negative breast carcinoma cell lines were cultured in control or methionine-free media. The effects of methionine depletion on TRAIL receptor expression and sensitivity to chemotherapy or a humanized agonistic TRAIL-R2 monoclonal antibody (lexatumumab) were determined. The melanoma-associated antigen MAGED2 was silenced to delineate its functional role in sensitizing TNBC cells to methionine stress. An orthotopic TNBC model was utilized to evaluate the effects of dietary methionine deficiency, lexatumumab, or the combination. Methionine depletion sensitized TNBC cells to lexatumumab-induced caspase activation and apoptosis by increasing TRAIL-R2 mRNA and cell surface expression. MCF-10A cells transformed by oncogenic H-Ras, but not untransformed cells, and matrix-detached TNBC cells were highly sensitive to the combination of lexatumumab and methionine depletion. Proteomics analyses revealed that MAGED2, which has been reported to reduce TRAIL-R2 expression, was suppressed by methionine stress. Silencing MAGED2 recapitulated features of methionine deprivation, including enhanced mRNA and cell surface expression of TRAIL receptors and increased sensitivity to TRAIL receptor agonists. Dietary methionine deprivation enhanced the antitumor effects of lexatumumab in an orthotopic metastatic TNBC model. Methionine depletion exposes a targetable defect in TNBC cells by increasing TRAIL-R2 expression. Our findings provide the foundation for a clinical trial combining dietary methionine restriction and TRAIL-R2 agonists. Clin Cancer Res; 21(12); 2780-91. ©2015 AACR. ©2015 American Association for Cancer Research.
Ritter, K. Elaine; Southard-Smith, E. Michelle
2017-01-01
Sensory afferent signaling is required for normal function of the lower urinary tract (LUT). Despite the wide prevalence of bladder dysfunction and pelvic pain syndromes, few effective treatment options are available. Serotonin receptor 5-HT3A is a known mediator of visceral afferent signaling and has been implicated in bladder function. However, basic expression patterns for this gene and others among developing bladder sensory afferents that could be used to inform regenerative efforts aimed at treating deficiencies in pelvic innervation are lacking. To gain greater insight into the molecular characteristics of bladder sensory innervation, we conducted a thorough characterization of Htr3a expression in developing and adult bladder-projecting lumbosacral dorsal root ganglia (DRG) neurons. Using a transgenic Htr3a-EGFP reporter mouse line, we identified 5-HT3A expression at 10 days post coitus (dpc) in neural crest derivatives and in 12 dpc lumbosacral DRG. Using immunohistochemical co-localization we observed Htr3a-EGFP expression in developing lumbosacral DRG that partially coincides with neuropeptides CGRP and Substance P and capsaicin receptor TRPV1. A majority of Htr3a-EGFP+ DRG neurons also express a marker of myelinated Aδ neurons, NF200. There was no co-localization of 5-HT3A with the TRPV4 receptor. We employed retrograde tracing in adult Htr3a-EGFP mice to quantify the contribution of 5-HT3A+ DRG neurons to bladder afferent innervation. We found that 5-HT3A is expressed in a substantial proportion of retrograde traced DRG neurons in both rostral (L1, L2) and caudal (L6, S1) axial levels that supply bladder innervation. Most bladder-projecting Htr3a-EGFP+ neurons that co-express CGRP, Substance P, or TRPV1 are found in L1, L2 DRG, whereas Htr3a-EGFP+, NF200+ bladder-projecting neurons are from the L6, S1 axial levels. Our findings contribute much needed information regarding the development of LUT innervation and highlight the 5-HT3A serotonin receptor as a candidate for future studies of neurally mediated bladder control. PMID:28111539
Li, Zhiqiang; Shu, Qingming; Li, Lingzhi; Ge, Maolin; Zhang, Yongliang
2014-01-01
Traumatic brain injury causes gene expression changes in different brain regions. Occurrence and development of traumatic brain injury are closely related, involving expression of three factors, namely cyclooxygenase-2, glutamate receptor-2, and platelet activating factor receptor. However, little is known about the correlation of these three factors and brain neuronal injury. In this study, primary cultured rat hippocampal neurons were subjected to fluid percussion injury according to Scott's method, with some modifications. RT-PCR and semi-quantitative immunocytochemical staining was used to measure the expression levels of cyclooxygenase-2, glutamate receptor-2, and platelet activating factor receptor. Our results found that cyclooxygenase-2 expression were firstly increased post-injury, and then decreased. Both mRNA and protein expression levels reached peaks at 8 and 12 hours post-injury, respectively. Similar sequential changes in glutamate receptor 2 were observed, with highest levels mRNA and protein expression at 8 and 12 hours post-injury respectively. On the contrary, the expressions of platelet activating factor receptor were firstly decreased post-injury, and then increased. Both mRNA and protein expression levels reached the lowest levels at 8 and 12 hours post-injury, respectively. Totally, our findings suggest that these three factors are involved in occurrence and development of hippocampal neuronal injury. PMID:25206921
M1 muscarinic receptor activation mediates cell death in M1-HEK293 cells.
Graham, E Scott; Woo, Kerhan K; Aalderink, Miranda; Fry, Sandie; Greenwood, Jeffrey M; Glass, Michelle; Dragunow, Mike
2013-01-01
HEK293 cells have been used extensively to generate stable cell lines to study G protein-coupled receptors, such as muscarinic acetylcholine receptors (mAChRs). The activation of M1 mAChRs in various cell types in vitro has been shown to be protective. To further investigate M1 mAChR-mediated cell survival, we generated stable HEK293 cell-lines expressing the human M1 mAChR. M1 mAChRs were efficiently expressed at the cell surface and efficiently internalised within 1 h by carbachol. Carbachol also induced early signalling cascades similar to previous reports. Thus, ectopically expressed M1 receptors behaved in a similar fashion to the native receptor over short time periods of analysis. However, substantial cell death was observed in HEK293-M1 cells within 24 h after carbachol application. Death was only observed in HEK cells expressing M1 receptors and fully blocked by M1 antagonists. M1 mAChR-stimulation mediated prolonged activation of the MEK-ERK pathway and resulted in prolonged induction of the transcription factor EGR-1 (>24 h). Blockade of ERK signalling with U0126 did not reduce M1 mAChR-mediated cell-death significantly but inhibited the acute induction of EGR-1. We investigated the time-course of cell death using time-lapse microscopy and xCELLigence technology. Both revealed the M1 mAChR cytotoxicity occurs within several hours of M1 activation. The xCELLigence assay also confirmed that the ERK pathway was not involved in cell-death. Interestingly, the MEK blocker did reduce carbachol-mediated cleaved caspase 3 expression in HEK293-M1 cells. The HEK293 cell line is a widely used pharmacological tool for studying G-protein coupled receptors, including mAChRs. Our results highlight the importance of investigating the longer term fate of these cells in short term signalling studies. Identifying how and why activation of the M1 mAChR signals apoptosis in these cells may lead to a better understanding of how mAChRs regulate cell-fate decisions.
Expression of adiponectin and its receptors in the porcine hypothalamus during the oestrous cycle.
Kaminski, T; Smolinska, N; Maleszka, A; Kiezun, M; Dobrzyn, K; Czerwinska, J; Szeszko, K; Nitkiewicz, A
2014-06-01
Adiponectin is a hormonal link between obesity and reproduction, and its actions are mediated by two types of receptors: adiponectin receptor 1 (AdipoR1) and adiponectin receptor 2 (AdipoR2). This study compares the expression levels of adiponectin and adiponectin receptor mRNAs and proteins in selected areas of the porcine hypothalamus responsible for GnRH production and secretion: the mediobasal hypothalamus (MBH), pre-optic area (POA) and stalk median eminence (SME). The tissue samples were harvested on days 2-3, 10-12, 14-16 and 17-19 of the oestrous cycle. Adiponectin mRNA expression in MBH was significantly lower on days 14-16, whereas in SME, the most pronounced gene expression was found on days 2-3 of the cycle (p < 0.05). Adiponectin protein in MBH was most abundant on days 17-19 and in POA on days 2-3 (p < 0.05). Adiponectin protein expression in SME was at similar level throughout the most of the cycle with a statistically significant drop (p < 0.05) on days 14-16. AdipoR1 gene expression in POA was potentiated on days 2-3 and 10-12 of the oestrous cycle (p < 0.05). In SME, the highest AdipoR1 mRNA expression was noted on days 2-3 (p < 0.05). The concentrations of the AdipoR1 protein in POA were similar throughout the luteal phase (days 2-14 of the cycle), and they decreased on days 17-19 (p < 0.05). In SME, AdipoR1 protein expression peak occurred on days 2-3 (p < 0.05). The expression patterns of the AdipoR2 gene in MBH, POA and SME revealed the highest mRNA levels on days 2-3 of the cycle (p < 0.05). The highest content of AdipoR2 protein in MBH was reported on days 2-3 (p < 0.05), while in POA on days 17-19 and in SME on days 10-12 and 14-16 (p < 0.05). This study demonstrated that adiponectin and adiponectin receptor mRNAs and proteins are present in the porcine hypothalamus and that their expression levels are determined by the pig's endocrine status related to the oestrous cycle. © 2014 Blackwell Verlag GmbH.
Shariati, Gholam Reza; Ahangari, Ghasem; Hossein-nezhad, Arash; Asadi, Seyed Mohammad; Pooyafard, Farzaneh; Ahmadkhaniha, Hamid Reza
2009-09-01
Serotonin receptors are involved in pathophysiology of schizophrenia and may mediate other neurotransmitter effects. We investigated serotonin receptors gene expression in peripheral blood mononuclear cells (PBMC) of naïve schizophrenic patients, before and after treatment. Also serotonin receptor gene expression was compared in two treatment groups including Haloperidol and Olanzapine. The PBMC was separated from whole blood by Ficoll-hypaque. The total cellular RNA was extracted and the cDNA was synthesized. This process was followed by real-time PCR using primer pairs specific for 5HT(3a) serotonin receptor mRNA and beta-actin as internal control. The results showed the presence of subtype of serotonin receptor in lymphocytes. Serotonin gene expression showed significant changes in Olanzapine treatment group which correlated with Clinical Global Impression (CGI) score improvement. In conclusion, the present study has shown that human PBMC express serotonin receptors 5HT(3a). Moreover, clinical symptom improvement of Olanzapin may be demonstrated by a change in serotonin receptor gene expression.
Placental expression of D6 decoy receptor in preeclampsia
Cho, Geum Joon; Lee, Eun Sung; Jin, Hye Mi; Lee, Ji Hye; Kim, Yeun Sun; Seol, Hyun-Joo; Hong, Soon-Cheol; Kim, Hai-Joong
2015-01-01
Objective The purpose of this study was to investigate the expression of the D6 decoy receptor that can bind chemokines and target them for degradation, resulting in inhibition of inflammation in placentas from preeclamptic and normal pregnancies. Methods The current study was carried out in 35 pregnant women (23 patients with preeclampsia and 12 healthy, normotensive pregnant women) during the third trimester of pregnancy. The expressions of D6 decoy receptor in the placenta were determined with real time reverse transcriptase polymerase chain reaction and western blotting. Results The mRNA and protein of D6 decoy receptor were detected in all of placentas from preeclamptic and normal pregnancies. Placental D6 decoy receptor mRNA expression was significantly lower in patients with preeclampsia than in patients with normal pregnancies. Western blot analyses revealed decreased protein expression in cases of preeclampsia. Conclusion The expression of the D6 decoy receptor in preeclamptic placentas was significantly lower than in normal placentas. Further studies are needed to clarify the underlying mechanisms that link decreased expression of placental D6 decoy receptor and preeclampsia. PMID:26430656
Behavioral meaningful opioidergic stimulation activates kappa receptor gene expression
Teodorov, E.; Ferrari, M.F.R.; Fior-Chadi, D.R.; Camarini, R.; Felício, L.F.
2012-01-01
The periaqueductal gray (PAG) has been reported to be a location for opioid regulation of pain and a potential site for behavioral selection in females. Opioid-mediated behavioral and physiological responses differ according to the activity of opioid receptor subtypes. The present study investigated the effects of the peripheral injection of the kappa-opioid receptor agonist U69593 into the dorsal subcutaneous region of animals on maternal behavior and on Oprk1 gene activity in the PAG of female rats. Female Wistar rats weighing 200-250 g at the beginning of the study were randomly divided into 2 groups for maternal behavior and gene expression experiments. On day 5, pups were removed at 7:00 am and placed in another home cage that was distant from their mother. Thirty minutes after removing the pups, the dams were treated with U69593 (0.15 mg/kg, sc) or 0.9% saline (up to 1 mL/kg) and after 30 min were evaluated in the maternal behavior test. Latencies in seconds for pup retrieval, grouping, crouching, and full maternal behavior were scored. The results showed that U69593 administration inhibited maternal behavior (P < 0.05) because a lower percentage of U69593 group dams showed retrieval of first pup, retrieving all pups, grouping, crouching and displaying full maternal behavior compared to the saline group. Opioid gene expression was evaluated using real-time reverse-transcription polymerase chain reaction (RT-PCR). A single injection of U69593 increased Oprk1 PAG expression in both virgin (P < 0.05) and lactating female rats (P < 0.01), with no significant effect on Oprm1 or Oprd1 gene activity. Thus, the expression of kappa-opioid receptors in the PAG may be modulated by single opioid receptor stimulation and behavioral meaningful opioidergic transmission in the adult female might occur simultaneously to specific changes in gene expression of kappa-opioid receptor subtype. This is yet another alert for the complex role of the opioid system in female reproduction. PMID:22641418
Adrenocorticotropin receptors: Functional expression from rat adrenal mRNA in Xenopus laevis oocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mertz, L.M.; Catt, K.J.
1991-10-01
The adrenocorticotropin (ACTH) receptor, which binds corticotropin and stimulates adenylate cyclase and steroidogenesis in adrenocortical cells, was expressed in Xenopus laevis oocytes microinjected with rat adrenal poly(A){sup +} RNA. Expression of the ACTH receptor in individual stage 5 and 6 oocytes was monitored by radioimmunoassay of ligand-stimulated cAMP production. Injection of 5-40 ng of adrenal mRNA caused dose-dependent increases in ACTH-responsive cAMP production. Size fractionation of rat adrenal poly(A){sup +}RNA by sucrose density-gradient centrifugation revealed that mRNA encoding the ACTH receptor was present in the 1.1-to 2.0-kilobase fraction. These data indicate that ACTH receptors can be expressed from adrenal mRNAmore » in Xenopus oocytes and are fully functional in terms of ligand specificity and signal generation. The extracellular cAMP response to ACTH is a sensitive and convenient index of receptor expression. This system should permit more complete characterization and expression cloning of the ACTH receptor.« less
Kato, Keisuke; Oka, Yoshitaka; Park, Min Kyun
2008-05-01
Despite the physiological and evolutionary significance of lipid metabolism in amniotes, the molecular mechanisms involved have been unclear in reptiles. To elucidate this, we investigated peroxisome proliferators-activated receptors (PPARs) in the leopard gecko (Eublepharis macularius). PPARs belong to a nuclear hormone-receptor family mainly involved in lipid metabolism. Although PPARs have been widely studied in mammals, little information about them is yet available from reptiles. We identified in the leopard gecko partial cDNA sequences of PPARalpha and beta, and full sequences of two isoforms of PPARgamma. This is the first report of reptilian PPARgamma mRNA isoforms. We also evaluated the organ distribution of expression of these genes by using RT-PCR and competitive PCR. The expression level of PPARalpha mRNA was highest in the large intestine, and moderate in the liver and kidney. The expression level of PPARbeta mRNA was highest in the kidney and large intestine, and moderate in the liver. Similarly to the expression of human PPARgamma isoforms, PPARgammaa was expressed ubiquitously, whereas the expression of PPARgammab was restricted. The highest levels of their expression, however, were observed in the large intestine, rather than in the adipose tissue as in mammals. Taken together, these results showed that the profile of PPARbeta mRNA expression in the leopard gecko is similar to that in mammals, and that those of PPAR alpha and gamma are species specific. This may reflect adaptation to annual changes in lipid storage due to seasonal food availability.
1.8 Å structure of murine GITR ligand dimer expressed in Drosophila melanogaster S2 cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chattopadhyay, Kausik; Ramagopal, Udupi A.; Nathenson, Stanley G., E-mail: nathenso@aecom.yu.edu
2009-05-01
1.8 Å X-ray crystal structure of mouse GITRL expressed in D. melanogaster S2 cells shows an identical ‘strand-exchanged’ dimeric assembly similar to that observed previously for the E. coli-expressed protein. Glucocorticoid-induced TNF receptor ligand (GITRL), a prominent member of the TNF superfamily, activates its receptor on both effector and regulatory T cells to generate critical costimulatory signals that have been implicated in a wide range of T-cell immune functions. The crystal structures of murine and human orthologs of GITRL recombinantly expressed in Escherichia coli have previously been determined. In contrast to all classical TNF structures, including the human GITRL structure,more » murine GITRL demonstrated a unique ‘strand-exchanged’ dimeric organization. Such a novel assembly behavior indicated a dramatic impact on receptor activation as well as on the signaling mechanism associated with the murine GITRL costimulatory system. In this present work, the 1.8 Å resolution crystal structure of murine GITRL expressed in Drosophila melanogaster S2 cells is reported. The eukaryotic protein-expression system allows transport of the recombinant protein into the extracellular culture medium, thus maximizing the possibility of obtaining correctly folded material devoid of any folding/assembly artifacts that are often suspected with E. coli-expressed proteins. The S2 cell-expressed murine GITRL adopts an identical ‘strand-exchanged’ dimeric structure to that observed for the E. coli-expressed protein, thus conclusively demonstrating the novel quaternary structure assembly behavior of murine GITRL.« less
Ueda, Hirotaka; Mitoh, Yoshihiro; Fujita, Masako; Kobashi, Motoi; Yamashiro, Takashi; Sugimoto, Tomosada; Ichikawa, Hiroyuki; Matsuo, Ryuji
2011-07-15
The superior salivatory nucleus (SSN) contains preganglionic parasympathetic neurons to the submandibular and sublingual salivary glands. Cevimeline, a muscarinic acetylcholine receptor agonist, stimulates the salivary glands and is presently used as sialogogue in the treatment of dry mouth. Since cevimeline passes through the blood-brain barrier, it is also able to act on muscarinic acetylcholine receptors in the central nervous system. Our preliminary experiment using the whole-cell patch-clamp technique has shown that cevimeline excites SSN neurons in rat brain slices, suggesting that SSN neurons have muscarinic acetylcholine receptors; however, it is unclear which subtypes of muscarinic acetylcholine receptors exist in SSN neurons. In the present study, we investigated immunohistochemically muscarinic acetylcholine receptor subtypes, M1 receptor (M1R), M2R, M3R, M4R, and M5R in SSN neurons. SSN neurons innervating the salivary glands, retrogradely labeled with a fluorescent tracer from the chorda-lingual nerve, mostly expressed M3R immunoreactivity (-ir) (92.3%) but not M1R-ir. About half of such SSN neurons also showed M2R- (40.1%), M4R- (54.0%) and M5R-ir (46.0%); therefore, it is probable that SSN neurons co-express M3R-ir with at least two of the other muscarinic receptor subtypes. This is the first report to show that SSN neurons contain muscarinic acetylcholine receptors. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Effect of P2X7 Receptor Knockout on AQP-5 Expression of Type I Alveolar Epithelial Cells
Ebeling, Georg; Bläsche, Robert; Hofmann, Falk; Augstein, Antje; Kasper, Michael; Barth, Kathrin
2014-01-01
P2X7 receptors, ATP-gated cation channels, are specifically expressed in alveolar epithelial cells. The pathophysiological function of this lung cell type, except a recently reported putative involvement in surfactant secretion, is unknown. In addition, P2X7 receptor-deficient mice show reduced inflammation and lung fibrosis after exposure with bleomycin. To elucidate the role of the P2X7 receptor in alveolar epithelial type I cells we characterized the pulmonary phenotype of P2X7 receptor knockout mice by using immunohistochemistry, western blot analysis and real-time RT PCR. No pathomorphological signs of fibrosis were found. Results revealed, however, a remarkable loss of aquaporin-5 protein and mRNA in young knockout animals. Additional in vitro experiments with bleomycin treated precision cut lung slices showed a greater sensitivity of the P2X7 receptor knockout mice in terms of aquaporin-5 reduction as wild type animals. Finally, P2X7 receptor function was examined by using the alveolar epithelial cell lines E10 and MLE-12 for stimulation experiments with bleomycin. The in vitro activation of P2X7 receptor was connected with an increase of aquaporin-5, whereas the inhibition of the receptor with oxidized ATP resulted in down regulation of aquaporin-5. The early loss of aquaporin-5 which can be found in different pulmonary fibrosis models does not implicate a specific pathogenetic role during fibrogenesis. PMID:24941004
Souazé, Frédérique; Viardot-Foucault, Véronique; Roullet, Nicolas; Toy-Miou-Leong, Mireille; Gompel, Anne; Bruyneel, Erik; Comperat, Eva; Faux, Maree C; Mareel, Marc; Rostène, William; Fléjou, Jean-François; Gespach, Christian; Forgez, Patricia
2006-04-01
Alterations in the Wnt/APC (adenomatous polyposis coli) signalling pathway, resulting in beta-catenin/T cell factor (Tcf)-dependent transcriptional gene activation, are frequently detected in familial and sporadic colon cancers. The neuropeptide neurotensin (NT) is widely distributed in the gastrointestinal tract. Its proliferative and survival effects are mediated by a G-protein coupled receptor, the NT1 receptor. NT1 receptor is not expressed in normal colon epithelial cells, but is over expressed in a number of cancer cells and tissues suggesting a link to the outgrowth of human colon cancer. Our results demonstrate that the upregulation of NT1 receptor occurring in colon cancer is the result of Wnt/APC signalling pathway activation. We first established the functionality of the Tcf response element within the NT1 receptor promoter. Consequently, we observed the activation of NT1 receptor gene by agents causing beta-catenin cytosolic accumulation, as well as a strong decline of endogenous receptor when wt-APC was restored. At the cellular level, the re-establishment of wt-APC phenotype resulted in the impaired functionality of NT1 receptor, like the breakdown in NT-induced intracellular calcium mobilization and the loss of NT pro-invasive effect. We corroborated the Wnt/APC signalling pathway on the NT1 receptor promoter activation with human colon carcinogenesis, and showed that NT1 receptor gene activation was perfectly correlated with nuclear or cytoplasmic beta-catenin localization while NT1 receptor was absent when beta-catenin was localized at the cell-cell junction in early adenomas of patients with familial adenomatous polyposis, hereditary non-polyposis colorectal cancer and loss of heterozygosity tumours. In this report we establish a novel link in vitro between the Tcf/beta-catenin pathway and NT1 receptor promoter activation.
The neuropeptides CCK and NPY and the changing view of cell-to-cell communication in the taste bud.
Herness, Scott; Zhao, Fang-Li
2009-07-14
The evolving view of the taste bud increasingly suggests that it operates as a complex signal processing unit. A number of neurotransmitters and neuropeptides and their corresponding receptors are now known to be expressed in subsets of taste receptor cells in the mammalian bud. These expression patterns set up hard-wired cell-to-cell communication pathways whose exact physiological roles still remain obscure. As occurs in other cellular systems, it is likely that neuropeptides are co-expressed with neurotransmitters and function as neuromodulators. Several neuropeptides have been identified in taste receptor cells including cholecystokinin (CCK), neuropeptide Y (NPY), vasoactive intestinal peptide (VIP), and glucagon-like peptide 1 (GLP-1). Of these, CCK and NPY are the best studied. These two peptides are co-expressed in the same presynaptic cells; however, their postsynaptic actions are both divergent and antagonistic. CCK and its receptor, the CCK-1 subtype, are expressed in the same subset of taste receptor cells and the autocrine activation of these cells produces a number of excitatory physiological actions. Further, most of these cells are responsive to bitter stimuli. On the other hand, NPY and its receptor, the NPY-1 subtype, are expressed in different cells. NPY, acting in a paracrine fashion on NPY-1 receptors, results in inhibitory actions on the cell. Preliminary evidence suggests the NPY-1 receptor expressing cell co-expresses T1R3, a member of the T1R family of G-protein coupled receptors thought to be important in detection of sweet and umami stimuli. Thus the neuropeptide expressing cells co-express CCK, NPY, and CCK-1 receptor. Neuropeptides released from these cells during bitter stimulation may work in concert to both modulate the excitation of bitter-sensitive taste receptor cells while concurrently inhibiting sweet-sensitive cells. This modulatory process is similar to the phenomenon of lateral inhibition that occurs in other sensory systems.
Cocaine Modulates the Expression of Opioid Receptors and miR-let-7d in Zebrafish Embryos
López-Bellido, Roger; Barreto-Valer, Katherine; Sánchez-Simón, Fátima Macho; Rodríguez, Raquel E.
2012-01-01
Prenatal exposure to cocaine, in mammals, has been shown to interfere with the expression of opioid receptors, which can have repercussions in its activity. Likewise, microRNAs, such as let-7, have been shown to regulate the expression of opioid receptors and hence their functions in mammals and in vitro experiments. In light of this, using the zebrafish embryos as a model our aim here was to evaluate the actions of cocaine in the expression of opioid receptors and let-7d miRNA during embryogenesis. In order to determine the effects produced by cocaine on the opioid receptors (zfmor, zfdor1 and zfdor2) and let-7d miRNA (dre-let-7d) and its precursors (dre-let-7d-1 and dre-let-7d-2), embryos were exposed to 1.5 µM cocaine hydrochloride (HCl). Our results revealed that cocaine upregulated dre-let-7d and its precursors, and also increased the expression of zfmor, zfdor1 and zfdor2 during early developmental stages and decreased them in late embryonic stages. The changes observed in the expression of opioid receptors might occur through dre-let-7d, since DNA sequences and the morpholinos of opioid receptors microinjections altered the expression of dre-let-7d and its precursors. Likewise, opioid receptors and dre-let-7d showed similar distributions in the central nervous system (CNS) and at the periphery, pointing to a possible interrelationship between them. In conclusion, the silencing and overexpression of opioid receptors altered the expression of dre-let-7d, which points to the notion that cocaine via dre-let-7 can modulate the expression of opioid receptors. Our study provides new insights into the actions of cocaine during zebrafish embryogenesis, indicating a role of miRNAs, let-7d, in development and its relationship with gene expression of opioid receptors, related to pain and addiction process. PMID:23226419
Effect of raclopride on dopamine D2 receptor mRNA expression in rat brain.
Kopp, J; Lindefors, N; Brené, S; Hall, H; Persson, H; Sedvall, G
1992-01-01
Prolonged treatment with dopamine D2 receptor antagonists is known to elevate the density of dopamine D2 receptor binding sites in caudate-putamen and nucleus accumbens in rat and human brain. In this study we used the dopamine D2 receptor antagonist raclopride (3 mumol/kg, s.c.) to determine if a single injection or daily administration of this drug for up to 18 days changed the expression of dopamine D2 receptor mRNA in rat caudate-putamen and accumbens as measured by in situ hybridization. A single injection of raclopride did not significantly change the numerical density of dopamine D2 receptor mRNA-expressing neurons in any of the regions examined. A daily administration of raclopride for 18 days resulted in a 31% increase in the number of cells expressing detectable amounts of dopamine D2 receptor mRNA in dorsolateral caudate-putamen and in a 20% increase in the area of silver grains over individual hybridization-positive neurons in this brain region measured on emulsion-dipped slides. The region-specific increase in the D2 receptor mRNA level in dorsolateral caudate-putamen was confirmed by measurement of the hybridization signal on X-ray film autoradiograms. The levels of D2 receptor mRNA remained unchanged in medial caudate-putamen and accumbens after 18 days' treatment. The region-selective increase in dopamine D2 receptor mRNA expression in dorsolateral caudate-putamen indicates a differential regulation of dopamine D2 receptor mRNA expression in a subpopulation of caudate-putamen neurons by this neuroleptic. We suggest that the increase in dopamine D2 receptor density in caudate-putamen known to follow prolonged dopamine D2 receptor blockade to some extent is regulated at the level of gene expression.
Alenghat, Theresa; Yu, Jiujiu; Lazar, Mitchell A
2006-01-01
Unliganded thyroid hormone receptor (TR) actively represses transcription via the nuclear receptor corepressor (N-CoR)/histone deacetylase 3 (HDAC3) complex. Although transcriptional activation by liganded receptors involves chromatin remodeling, the role of ATP-dependent remodeling in receptor-mediated repression is unknown. Here we report that SNF2H, the mammalian ISWI chromatin remodeling ATPase, is critical for repression of a genomically integrated, TR-regulated reporter gene. N-CoR and HDAC3 are both required for recruitment of SNF2H to the repressed gene. SNF2H does not interact directly with the N-CoR/HDAC3 complex, but binds to unacetylated histone H4 tails, suggesting that deacetylase activity of the corepressor complex is critical to SNF2H function. Indeed, HDAC3 as well as SNF2H are required for nucleosomal organization on the TR target gene. Consistent with these findings, reduction of SNF2H induces expression of an endogenous TR-regulated gene, dio1, in liver cells. Thus, although not apparent from studies of transiently transfected reporter genes, gene repression by TR involves the targeting of chromatin remodeling factors to repressed genes by the HDAC activity of nuclear receptor corepressors. PMID:16917504
2012-07-01
Betty Diamond – DOD FINAL REPORT 9 Figure 3: (A) expression of estrogen receptors ERalpha( Esr1 ) and ERbeta (Esr2) in splenic B cells and (B)Urinary...16 OH-Estradiol metabolite in BALB/c and C57BL6 mice. Esr1 0 0.05 0.1 0.15 0.2 Transit. Mature Transit. Mature Transit. Mature Transit. mature P E2 P
Zhang, Jie; Deng, Yifeng; Ma, Huijie; Hou, Jiafa; Zhou, ZhenLei
2015-03-01
Ca2+ plays a major role in the regulation of signal transduction. Transient receptor potential vanilloid 6 is a Ca2+-selective channel that serves as an important rate-limiting step in the facilitation of Ca2+ entry into cells, but little is known about the regulation of transient receptor potential vanilloid 6 in chickens. In this study, we evaluated the effects of transient receptor potential vanilloid 6 gene interference on the expression of calbindin-D28K, Na+/Ca2+ exchangers, and plasma membrane Ca2+ ATPase 1b to investigate the mechanism underlying the regulation of transient receptor potential vanilloid 6. Three hairpin siRNA expression vectors targeting transient receptor potential vanilloid 6 (pSIREN- transient receptor potential vanilloid 6) and a negative control (pSIREN-control) were constructed and transfected into chicken osteoblasts. The mRNA and protein expression levels were evaluated by quantitative reverse transcription polymerase chain reaction and Western blot, respectively. The mRNA expression levels of transient receptor potential vanilloid 6 and calbindin-D28K were reduced by 45.7% (P<0.01) and 27.9% (P<0.01), respectively, 48 h after transfection with one of the three constructs (pSIREN- transient receptor potential vanilloid 6-3) compared with the level obtained in the untreated group. There was no significant difference in the mRNA expression levels of Na+/Ca2+ exchangers and plasma membrane Ca2+ ATPase 1b. The protein expression levels of transient receptor potential vanilloid 6 and calbindin-D28K were reduced by 40.2% (P<0.01) and 29.8% (P<0.01), respectively, 48 h after transfection with pSIREN-transient receptor potential vanilloid 6-3 compared with the level obtained in the untreated group. In conclusion, the vector-based transient receptor potential vanilloid 6-shRNA can efficiently suppress the mRNA and protein expression of transient receptor potential vanilloid 6 in chicken osteoblasts, and transient receptor potential vanilloid 6 regulates the expression of calbindin-D28K during Ca2+ transport. © 2015 Poultry Science Association Inc.
Pridans, Clare; Lillico, Simon; Whitelaw, Bruce; Hume, David A
2014-01-01
The development of macrophages requires signaling through the lineage-restricted receptor Csf1r. Macrophage-restricted expression of transgenic reporters based upon Csf1r requires the highly conserved Fms-intronic regulatory element (FIRE). We have created a lentiviral construct containing mouse FIRE and promoter. The lentivirus is capable of directing macrophage-restricted reporter gene expression in mouse, rat, human, pig, cow, sheep, and even chicken. Rat bone marrow cells transduced with the lentivirus were capable of differentiating into macrophages expressing the reporter gene in vitro. Macrophage-restricted expression may be desirable for immunization or immune response modulation, and for gene therapy for lysosomal storage diseases and some immunodeficiencies. The small size of the Csf1r transcription control elements will allow the insertion of large “cargo” for applications in gene therapy and vaccine delivery. PMID:26015955
Balic, Adam; Garcia-Morales, Carla; Vervelde, Lonneke; Gilhooley, Hazel; Sherman, Adrian; Garceau, Valerie; Gutowska, Maria W; Burt, David W; Kaiser, Pete; Hume, David A; Sang, Helen M
2014-08-01
We have generated the first transgenic chickens in which reporter genes are expressed in a specific immune cell lineage, based upon control elements of the colony stimulating factor 1 receptor (CSF1R) locus. The Fms intronic regulatory element (FIRE) within CSF1R is shown to be highly conserved in amniotes and absolutely required for myeloid-restricted expression of fluorescent reporter genes. As in mammals, CSF1R-reporter genes were specifically expressed at high levels in cells of the macrophage lineage and at a much lower level in granulocytes. The cell lineage specificity of reporter gene expression was confirmed by demonstration of coincident expression with the endogenous CSF1R protein. In transgenic birds, expression of the reporter gene provided a defined marker for macrophage-lineage cells, identifying the earliest stages in the yolk sac, throughout embryonic development and in all adult tissues. The reporter genes permit detailed and dynamic visualisation of embryonic chicken macrophages. Chicken embryonic macrophages are not recruited to incisional wounds, but are able to recognise and phagocytose microbial antigens. © 2014. Published by The Company of Biologists Ltd.
Cassard, Lydie; Cohen-Solal, Joel F G; Fournier, Emilie M; Camilleri-Broët, Sophie; Spatz, Alain; Chouaïb, Salem; Badoual, Cécile; Varin, Audrey; Fisson, Sylvain; Duvillard, Pierre; Boix, Charlotte; Loncar, Shannon M; Sastre-Garau, Xavier; Houghton, Alan N; Avril, Marie-Françoise; Gresser, Ion; Fridman, Wolf H; Sautès-Fridman, Catherine
2008-12-15
During melanoma progression, patients develop anti-tumor immunity including the production of anti-tumor antibodies. Although the strategies developed by malignant cells to escape anti-tumor cellular immunity have been extensively investigated, little is known about tumor resistance to humoral immunity. The main effect of IgG antibodies is to activate the immune response by binding to host Fc gamma receptors (FcgammaR) expressed by immune cells. We previously reported in a limited study that some human metastatic melanoma cells ectopically express the FcgammaRIIB1, an inhibitory isoform of FcgammaR. By analyzing a large panel of different types of human primary and metastatic solid tumors, we report herein that expression of FcgammaRIIB is restricted to melanoma and is acquired during tumor progression. We show that FcgammaRIIB expression prevents the lysis of human metastatic melanoma cells by NK cell-mediated antibody-dependent cellular cytotoxicity (ADCC) in vitro, independently of the intracytoplasmic region of FcgammaRIIB. Using experimental mouse models, we demonstrate that expression of FcgammaRIIB protects B16F0 melanoma tumors from the ADCC induced by monoclonal and polyclonal anti-tumor IgG in vivo. Thus, our results identify FcgammaRIIB as a marker of human metastatic melanoma that impairs the tumor susceptibility to FcgammaR-dependent innate effector responses. (c) 2008 Wiley-Liss, Inc.
Kasahara, Yoshiyuki; Tateishi, Yuko; Hiraoka, Yuichi; Otsuka, Ayano; Mizukami, Hiroaki; Ozawa, Keiya; Sato, Keisuke; Hidema, Shizu; Nishimori, Katsuhiko
2015-01-01
Recent papers have reported that oxytocin (Oxt) and the oxytocin receptor (Oxtr) may be involved in the regulation of food intake in mammals. We therefore suspected the Oxt/Oxtr system to be involved in energy homeostasis. In previous studies, we found a tendency toward obesity in Oxtr-deficient (Oxtr−/−) mice, as well as impaired thermoregulation when these mice were exposed to cold conditions. In the present study, we observed the expression of Oxtr in the rostral medullary raphe (RMR), the brain region known to control thermogenesis in brown adipose tissue (BAT). Through immunohistochemistry, we detected neurons expressing Oxtr and c-Fos in the RMR of mice exposed to cold conditions. Up to 40% of Oxtr-positive neurons in RMR were classified as glutamatergic neurons, as shown by immunostaining using anti-VGLUT3 antibody. In addition, mice with exclusive expression of Oxtr in the RMR were generated by injecting an AAV-Oxtr vector into the RMR region of Oxtr−/− mice. We confirmed the recovery of thermoregulatory ability in the manipulated mice during exposure to cold conditions. Moreover, mice with RMR-specific expression of Oxtr lost the typical morphological change in BAT observed in Oxtr−/− mice. Additionally, increased expression of the β3-adrenergic receptor gene, Adrb3, was observed in BAT. These results are the first to show the critical role of RMR Oxtr expression in thermoregulation during cold conditions. PMID:26635729
Tang-Christensen, M; Larsen, P J; Thulesen, J; Nielsen, J R; Vrang, N
2001-01-15
We report here that glucagon-like peptide 2(GLP-2) and its receptor constitute a distinct projection system connecting the nucleus of the solitary tract with the dorsomedial hypothalamic nucleus (DMH). The DMH contains a dense plexus of GLP-2 immunoreactive fibres and is the only hypothalamic nucleus expressing GLP-2 receptor mRNA. Consistent with this, central application of GLP-2 activates the expression of neurones solely in the DMH. Furthermore, central administration of GLP-2 causes a dose-related, a pharmacologically and behaviourally specific inhibition of food intake in rats. Surprisingly, the alleged GLP-1 receptor antagonist, Exending (9-39), proved a functional antagonist of centrally applied GLP-2. These data implicate GLP-2 as an important neurotransmitter in the regulation of food intake and likely bodyweight. Our data therefore point to the DMH as a crossroad for endocrine and visceral information affecting feeding behaviour.
Khansari, Ali Reza; Parra, David; Reyes-López, Felipe E; Tort, Lluís
2017-11-01
In fish, the stress response and their consequences in the immune system have been widely described. Recently, a differential cytokine regulation between rainbow trout (Oncorhynchus mykiss) and gilthead sea bream (Sparus aurata) was reported after treatment with stress hormones together with their receptor antagonists. Nevertheless, there is no evidence of whether antagonists for stress hormone receptors may influence the interaction between hormones and cytokines after bacterial administration. Thus, the aim of our study was to evaluate the cytokine expression in the presence of stress hormones (cortisol, ACTH, adrenaline), hormone receptor antagonists and inactivated Vibrio anguillarum bacterin in rainbow trout and gilthead sea bream head kidney primary cell culture (HKPCC). Mifepristone, spironolactone, propranolol and phentolamine were used to block GR, MR, MC2R, and β-/α-adrenoreceptors. Our results showed an expected increase of the pro-inflammatory and anti-inflammatory response after inactivated V. anguillarum bacterin treatment in both species. Cortisol, ACTH and adrenaline did not modulate the expression of immune-related genes in rainbow trout, while in sea bream cortisol was able to reduce the stimulated gene expression of all cytokines. This effect was only restored to basal expression level in IL-1β and TNF-α by mifepristone. ACTH reduced both pro-inflammatory and anti-inflammatory cytokine expression, excluding IL-1β, only in sea bream. Adrenaline enhanced the expression of IL-1β and TGF-β1 stimulated by inactivated V. anguillarum in sea bream, and the effect was diminished by propranolol. In sum, our results confirm that the immunoendocrine differences reported at gene expression profile between two teleost species are also observed after exposure to inactivated V. anguillarum bacterin, suggesting that stress hormones would differentially modulate the immune response against pathogens in teleost species. Copyright © 2017 Elsevier Ltd. All rights reserved.
He, Wei; Racine, Jeremy J; Johnston, Heather F; Li, Xiaofan; Li, Nainong; Cassady, Kaniel; Liu, Can; Deng, Ruishu; Martin, Paul; Forman, Stephen; Zeng, Defu
2014-07-01
We reported previously that anti-CD3 mAb treatment before hematopoietic cell transplantation (HCT) prevented graft-versus-host disease (GVHD) and preserved graft-versus-leukemia (GVL) effects in mice. These effects were associated with downregulated donor T cell expression of tissue-specific homing and chemokine receptors, marked reduction of donor T cell migration into GVHD target tissues, and deletion of CD103(+) dendritic cells (DCs) in mesenteric lymph nodes (MLN). MLN CD103(+) DCs and peripheral lymph node (PLN) DCs include CCR7(+) and CCR7(-) subsets, but the role of these DC subsets in regulating donor T cell expression of homing and chemokine receptors remain unclear. Here, we show that recipient CCR7(+), but not CCR7(-), DCs in MLN induced donor T cell expression of gut-specific homing and chemokine receptors in a retinoid acid-dependent manner. CCR7 regulated activated DC migration from tissue to draining lymph node, but it was not required for the ability of DCs to induce donor T cell expression of tissue-specific homing and chemokine receptors. Finally, anti-CD3 treatment depleted CCR7(+) but not CCR7(-) DCs by inducing sequential expansion and apoptosis of CCR7(+) DCs in MLN and PLN. Apoptosis of CCR7(+) DCs was associated with DC upregulation of Fas expression and natural killer cell but not T, B, or dendritic cell upregulation of FasL expression in the lymph nodes. These results suggest that depletion of CCR7(+) host-type DCs, with subsequent inhibition of donor T cell migration into GVHD target tissues, can be an effective approach in prevention of acute GVHD and preservation of GVL effects. Copyright © 2014 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
Mitra, Mayurranjan S.; Schilling, Joel D.; Wang, Xiaowei; Jay, Patrick Y.; Huss, Janice M.; Su, Xiong; Finck, Brian N.
2011-01-01
Lipin family proteins (lipin 1, 2, and 3) are bifunctional intracellular proteins that regulate metabolism by acting as coregulators of DNA-bound transcription factors and also dephosphorylate phosphatidate to form diacylglycerol [phosphatidate phosphohydrolase activity] in the triglyceride synthesis pathway. Herein, we report that lipin 1 is enriched in heart and that hearts of mice lacking lipin 1 (fld mice) exhibit accumulation of phosphatidate. We also demonstrate that the expression of the gene encoding lipin 1 (Lpin1) is under the control of the estrogen-related receptors (ERRs) and their coactivator the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α). PGC-1α, ERRα, or ERRγ overexpression increased Lpin1 transcription in cultured ventricular myocytes and the ERRs were associated with response elements in the first intron of the Lpin1 gene. Concomitant RNAi-mediated knockdown of ERRα and ERRγ abrogated the induction of lipin 1 expression by PGC-1α overexpression. Consistent with these data, 3-fold overexpression of PGC-1α in intact myocardium of transgenic mice increased cardiac lipin 1 and ERRα/γ expression. Similarly, injection of the β2-adrenergic agonist clenbuterol induced PGC-1α and lipin 1 expression, and the induction in lipin 1 after clenbuterol occurred in a PGC-1α-dependent manner. In contrast, expression of PGC-1α, ERRα, ERRγ, and lipin 1 was down-regulated in failing heart. Cardiac phosphatidic acid phosphohydrolase activity was also diminished, while cardiac phosphatidate content was increased, in failing heart. Collectively, these data suggest that lipin 1 is the principal lipin protein in the myocardium and is regulated in response to physiologic and pathologic stimuli that impact cardiac metabolism. PMID:21549711
Toll-like receptor 9 mediates oral bacteria-induced IL-8 expression in gingival epithelial cells.
Kim, Youngsook; Jo, Ah-ram; Jang, Da Hyun; Cho, Yong-Joon; Chun, Jongsik; Min, Byung-Moo; Choi, Youngnim
2012-07-01
Previously, we reported that various oral bacteria regulate interleukin (IL)-8 production differently in gingival epithelial cells. The aim of this study was to characterize the pattern recognition receptor(s) that mediate bacteria-induced IL-8 expression. Among ligands that mimic bacterial components, only a Toll-like receptor (TLR) 9 ligand enhanced IL-8 expression as determined by ELISA. Both normal and immortalized human gingival epithelial (HOK-16B) cells expressed TLR9 intracellularly and showed enhanced IL-8 expression in response to CpG-oligonucleotide. The ability of eight strains of four oral bacterial species to induce IL-8 expression in HOK-16B cells, and their invasion capacity were examined in the absence or presence of 2% human serum. The ability of purified bacterial DNA (bDNA) to induce IL-8 was also examined. Six out of eight strains increased IL-8 production in the absence of serum. Usage of an endosomal acidification blocker or a TLR9 antagonist inhibited the IL-8 induction by two potent strains. In the presence of serum, many strains lost the ability to induce IL-8 and presented substantially reduced invasion capacity. The IL-8-inducing ability of bacteria in the absence or presence of serum showed a strong positive correlation with their invasion index. The IL-8-inducing ability of bacteria in the absence of human serum was also correlated with the immunostimulatory activity of its bDNA. The observed immunostimulatory activity of the bDNA could not be linked to its CpG motif content. In conclusion, oral bacteria induce IL-8 in gingival epithelial cells through TLR9 and the IL-8-inducing ability depends on the invasive capacity and immunostimulating DNA.
The generation of knock-in mice expressing fluorescently tagged galanin receptors 1 and 2
Kerr, Niall; Holmes, Fiona E.; Hobson, Sally-Ann; Vanderplank, Penny; Leard, Alan; Balthasar, Nina; Wynick, David
2015-01-01
The neuropeptide galanin has diverse roles in the central and peripheral nervous systems, by activating the G protein-coupled receptors Gal1, Gal2 and the less studied Gal3 (GalR1–3 gene products). There is a wealth of data on expression of Gal1–3 at the mRNA level, but not at the protein level due to the lack of specificity of currently available antibodies. Here we report the generation of knock-in mice expressing Gal1 or Gal2 receptor fluorescently tagged at the C-terminus with, respectively, mCherry or hrGFP (humanized Renilla green fluorescent protein). In dorsal root ganglia (DRG) neurons expressing the highest levels of Gal1-mCherry, localization to the somatic cell membrane was detected by live-cell fluorescence and immunohistochemistry, and that fluorescence decreased upon addition of galanin. In spinal cord, abundant Gal1-mCherry immunoreactive processes were detected in the superficial layers of the dorsal horn, and highly expressing intrinsic neurons of the lamina III/IV border showed both somatic cell membrane localization and outward transport of receptor from the cell body, detected as puncta within cell processes. In brain, high levels of Gal1-mCherry immunofluorescence were detected within thalamus, hypothalamus and amygdala, with a high density of nerve endings in the external zone of the median eminence, and regions with lesser immunoreactivity included the dorsal raphe nucleus. Gal2-hrGFP mRNA was detected in DRG, but live-cell fluorescence was at the limits of detection, drawing attention to both the much lower mRNA expression than to Gal1 in mice and the previously unrecognized potential for translational control by upstream open reading frames (uORFs). PMID:26292267
Roduit, Caroline; Wohlgensinger, Johanna; Frei, Remo; Bitter, Sondhja; Bieli, Christian; Loeliger, Susanne; Büchele, Gisela; Riedler, Josef; Dalphin, Jean-Charles; Remes, Sami; Roponen, Marjut; Pekkanen, Juha; Kabesch, Michael; Schaub, Bianca; von Mutius, Erika; Braun-Fahrländer, Charlotte; Lauener, Roger
2011-01-01
Cross-sectional studies have suggested that prenatal farm exposures might protect against allergic disease and increase the expression of receptors of the innate immune system. However, epidemiologic evidence supporting the association with atopic dermatitis remains inconsistent. To study the association between prenatal farm-related exposures and atopic dermatitis in a prospective study. We further analyzed the association between the expression of innate immune genes at birth and atopic dermatitis. A total of 1063 children who participated in a birth cohort study, Protection against Allergy-Study in Rural Environments, were included in this study. Doctor diagnosis of atopic dermatitis was reported by the parents from 1 to 2 years of age by questionnaire. Gene expression of Toll-like receptors (TLRs) and CD14 was assessed in cord blood leukocytes by quantitative PCR. Maternal contact with farm animals and cats during pregnancy had a significantly protective effect on atopic dermatitis in the first 2 years of life. The risk of atopic dermatitis was reduced by more than half among children with mothers having contact with 3 or more farm animal species during pregnancy compared with children with mothers without contact (adjusted odds ratio, 0.43; 95% CI, 0.19-0.97). Elevated expression of TLR5 and TLR9 in cord blood was associated with decreased doctor diagnosis of atopic dermatitis. A significant interaction between polymorphism in TLR2 and prenatal cat exposure was observed in atopic dermatitis. Maternal contact with farm animals and cats during pregnancy has a protective effect on the development of atopic dermatitis in early life, which is associated with a lower expression of innate immune receptors at birth. Copyright © 2010 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
Zhu, Jie; Bandi, Venkata; Qiu, Shengyang; Figueroa, David J.; Evans, Jilly F.; Barnes, Neil; Guntupalli, Kay K.
2012-01-01
Background: Cysteinyl leukotriene 1 (CysLT1) receptor expression is known to be increased in the airway mucosa of patients with asthma, especially during exacerbations; however, nothing is known of its expression in COPD. Methods: We applied immunohistochemistry and in situ hybridization to endobronchial biopsies to determine inflammatory cell CysLT1 receptor protein and mRNA expression in the following: (1) 15 nonsmoker control subjects (NSC), (2) 16 smokers with moderate to severe COPD in its stable phase (S-COPD), and (3) 15 smokers with COPD hospitalized for a severe exacerbation (SE-COPD). Results: The total number of bronchial mucosal inflammatory cells (CD45+) and those expressing CysLT1 receptor protein were significantly greater in SE-COPD (CysLT1 receptor protein: median [range] = 139 [31-634]) as compared with S-COPD (32 [6-114]) or NSC (16 [4-66]) (P < .001 for both). CysLT1 receptor gene expression showed similar differences. A greater proportion of CD451 cells expressed CysLT1 receptor protein in SE-COPD (median [range] = 22% [8-81]) compared with S-COPD (10% [4-32]) (P < .03) or NSC (7% [1-19]) (P < .002). In SE-COPD, the relative frequencies of CysLT1 receptor-expressing cells were as follows: tryptase1 mast cells > CD681 monocytes/macrophage > neutrophils > CD201 B lymphocytes = EG21 eosinophils. Moreover, there were positive correlations between the numbers of cells expressing CysLT1 receptor protein and the numbers of CD451 cells (r = 0.78; P < .003) and tryptase1 mast cells (r = 0.62; P < .02). Conclusions: Bronchial mucosal CysLT1 receptor-positive inflammatory cells are present in the bronchial mucosa in COPD in greatest number in those experiencing a severe exacerbation. PMID:22871757
Surface localization of the nuclear receptor CAR in influenza A virus-infected cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Tadanobu; Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, CREST, JST, and COE Program in the 21st Century, Shizuoka 422-8526; Moriyama, Yusuke
Constitutive active/androstane receptor CAR is a member of the nuclear receptors which regulate transcription of xenobiotic metabolism enzymes. CAR is usually localized in the cytosol and nucleus. Here, we found that CAR was localized at the cell surface of influenza A virus (IAV)-infected cells. Additionally, we demonstrated that expression of a viral envelope glycoprotein, either hemagglutinin (HA) or neuraminidase (NA), but not viral nucleoprotein (NP), was responsible for this localization. This report is the first demonstration of CAR at the surface of tissue culture cells, and suggests that CAR may exert the IAV infection mechanism.
Hernández-Rabaza, Vicente; Cabrera-Pastor, Andrea; Taoro-González, Lucas; Malaguarnera, Michele; Agustí, Ana; Llansola, Marta; Felipo, Vicente
2016-02-16
Patients with liver cirrhosis and minimal hepatic encephalopathy (MHE) show mild cognitive impairment and spatial learning dysfunction. Hyperammonemia acts synergistically with inflammation to induce cognitive impairment in MHE. Hyperammonemia-induced neuroinflammation in hippocampus could contribute to spatial learning impairment in MHE. Two main aims of this work were: (1) to assess whether chronic hyperammonemia increases inflammatory factors in the hippocampus and if this is associated with microglia and/or astrocytes activation and (2) to assess whether hyperammonemia-induced neuroinflammation in the hippocampus is associated with altered membrane expression of glutamate and GABA receptors and spatial learning impairment. There are no specific treatments for cognitive alterations in patients with MHE. A third aim was to assess whether treatment with sulforaphane enhances endogenous the anti-inflammatory system, reduces neuroinflammation in the hippocampus of hyperammonemic rats, and restores spatial learning and if normalization of receptor membrane expression is associated with learning improvement. We analyzed the following in control and hyperammonemic rats, treated or not with sulforaphane: (1) microglia and astrocytes activation by immunohistochemistry, (2) markers of pro-inflammatory (M1) (IL-1β, IL-6) and anti-inflammatory (M2) microglia (Arg1, YM-1) by Western blot, (3) membrane expression of GABA, AMPA, and NMDA receptors using the BS3 cross-linker, and (4) spatial learning using the radial maze. The results reported show that hyperammonemia induces astrocytes and microglia activation in the hippocampus, increasing pro-inflammatory cytokines IL-1β and IL-6. This is associated with altered membrane expression of AMPA, NMDA, and GABA receptors which would be responsible for altered neurotransmission and impairment of spatial learning in the radial maze. Treatment with sulforaphane promotes microglia differentiation from pro-inflammatory M1 to anti-inflammatory M2 phenotype and reduces activation of astrocytes in hyperammonemic rats. This reduces neuroinflammation, normalizes membrane expression of glutamate and GABA receptors, and restores spatial learning in hyperammonemic rats. Hyperammonemia-induced neuroinflammation impairs glutamatergic and GABAergic neurotransmission by altering membrane expression of glutamate and GABA receptors, resulting in impaired spatial learning. Sulforaphane reverses all these effects. Treatment with sulforaphane could be useful to improve cognitive function in cirrhotic patients with minimal or clinical hepatic encephalopathy.
Armour, Kathryn L; Smith, Cheryl S; Clark, Michael R
2010-03-31
The efficacy of a therapeutic IgG molecule may be as dependent on the optimisation of the constant region to suit its intended indication as on the selection of its variable regions. A crucial effector function to be maximised or minimised is antibody-dependent cell-mediated cytotoxicity by natural killer cells. Traditional assays of ADCC activity suffer from considerable inter-donor and intra-donor variability, which makes the measurement of antibody binding to human FcgammaRIIIa, the key receptor for ADCC, an attractive alternative method of assessment. Here, we describe the development of cell lines and assays for this purpose. The transmembrane receptor, FcgammaRIIIa, requires co-expression with signal transducing subunits to prevent its degradation, unlike the homologous receptor FcgammaRIIIb that is expressed as a GPI-anchored molecule. Therefore, to simplify the production of cell lines as reliable assay components, we expressed FcgammaRIIIa as a GPI-anchored molecule. Separate, stable CHO cell lines that express either the 158F or the higher-affinity 158V allotype of FcgammaRIIIa were isolated using fluorescence-activated cell sorting. The identities of the expressed receptors were confirmed using a panel of monoclonal antibodies that distinguish between subclasses and allotypes of FcgammaRIII and the cell lines were shown to have slightly higher levels of receptor than FcgammaRIII-positive peripheral blood mononuclear cells. Because the affinity of FcgammaRIIIa for IgG is intermediate amongst the receptors that bind IgG, we were able to use these cell lines to develop flow cytometric assays to measure the binding of both complexed and monomeric immunoglobulin. Thus, by choosing the appropriate method, weakly- or strongly-binding IgG can be efficiently compared. We have quantified the difference in the binding of wildtype IgG1 and IgG3 molecules to the two functional allotypes of the receptor and report that the FcgammaRIIIa-158V-antibody interaction is 3- to 4-fold stronger that the interaction with FcgammaRIIIa-158F. Overall, these robust assays should be valuable for batch-testing clinical material as well as providing tools for improving the design of therapeutic IgG. 2010 Elsevier B.V. All rights reserved.
CJ-1639: A Potent and Highly Selective Dopamine D3 Receptor Full Agonist.
Chen, Jianyong; Collins, Gregory T; Levant, Beth; Woods, James; Deschamps, Jeffrey R; Wang, Shaomeng
2011-08-11
We have identified several ligands with high binding affinities to the dopamine D3 receptor and excellent selectivity over the D2 and D1 receptors. CJ-1639 (17) binds to the D3 receptor with a K(i) value of 0.50 nM and displays a selectivity of >5,000 times over D2 and D1 receptors in binding assays using dopamine receptors expressed in the native rat brain tissues. CJ-1639 binds to human D3 receptor with a K(i) value of 3.61 nM and displays over >1000-fold selectivity over human D1 and D2 receptors. CJ-1639 is active at 0.01 mg/kg at the dopamine D3 receptor in the rat and only starts to show a modest D2 activity at doses as high as 10 mg/kg. CJ-1639 is the most potent and selective D3 full agonist reported to date.
MmTX1 and MmTX2 from coral snake venom potently modulate GABAA receptor activity.
Rosso, Jean-Pierre; Schwarz, Jürgen R; Diaz-Bustamante, Marcelo; Céard, Brigitte; Gutiérrez, José M; Kneussel, Matthias; Pongs, Olaf; Bosmans, Frank; Bougis, Pierre E
2015-02-24
GABAA receptors shape synaptic transmission by modulating Cl(-) conductance across the cell membrane. Remarkably, animal toxins that specifically target GABAA receptors have not been identified. Here, we report the discovery of micrurotoxin1 (MmTX1) and MmTX2, two toxins present in Costa Rican coral snake venom that tightly bind to GABAA receptors at subnanomolar concentrations. Studies with recombinant and synthetic toxin variants on hippocampal neurons and cells expressing common receptor compositions suggest that MmTX1 and MmTX2 allosterically increase GABAA receptor susceptibility to agonist, thereby potentiating receptor opening as well as desensitization, possibly by interacting with the α(+)/β(-) interface. Moreover, hippocampal neuron excitability measurements reveal toxin-induced transitory network inhibition, followed by an increase in spontaneous activity. In concert, toxin injections into mouse brain result in reduced basal activity between intense seizures. Altogether, we characterized two animal toxins that enhance GABAA receptor sensitivity to agonist, thereby establishing a previously unidentified class of tools to study this receptor family.
Berger, Frank; Sam Gambhir, Sanjiv
2001-01-01
A variety of imaging technologies is being investigated as tools for studying gene expression in living subjects. Two technologies that use radiolabeled isotopes are single photon emission computed tomography (SPECT) and positron emission tomography (PET). A relatively high sensitivity, a full quantitative tomographic capability, and the ability to extend small animal imaging assays directly into human applications characterize radionuclide approaches. Various radiolabeled probes (tracers) can be synthesized to target specific molecules present in breast cancer cells. These include antibodies or ligands to target cell surface receptors, substrates for intracellular enzymes, antisense oligodeoxynucleotide probes for targeting mRNA, probes for targeting intracellular receptors, and probes for genes transferred into the cell. We briefly discuss each of these imaging approaches and focus in detail on imaging reporter genes. In a PET reporter gene system for in vivo reporter gene imaging, the protein products of the reporter genes sequester positron emitting reporter probes. PET subsequently measures the PET reporter gene dependent sequestration of the PET reporter probe in living animals. We describe and review reporter gene approaches using the herpes simplex type 1 virus thymidine kinase and the dopamine type 2 receptor genes. Application of the reporter gene approach to animal models for breast cancer is discussed. Prospects for future applications of the transgene imaging technology in human gene therapy are also discussed. Both SPECT and PET provide unique opportunities to study animal models of breast cancer with direct application to human imaging. Continued development of new technology, probes and assays should help in the better understanding of basic breast cancer biology and in the improved management of breast cancer patients. PMID:11250742
Matsushita, Yuichi; Ogawa, Daisuke; Wada, Jun; Yamamoto, Noriko; Shikata, Kenichi; Sato, Chikage; Tachibana, Hiromi; Toyota, Noriko; Makino, Hirofumi
2011-01-01
OBJECTIVE Activation of the nuclear hormone receptor peroxisome proliferator–activated receptor (PPAR)-δ has been shown to improve insulin resistance, adiposity, and plasma HDL levels. Several studies have reported that activation of PPARδ is atheroprotective; however, the role of PPARδ in renal function remains unclear. Here, we report the renoprotective effects of PPARδ activation in a model of streptozotocin-induced diabetic nephropathy. RESEARCH DESIGN AND METHODS Eight-week-old male C57BL/6 mice were divided into three groups: 1) nondiabetic control mice, 2) diabetic mice, and 3) diabetic mice treated with the PPARδ agonist GW0742 (1 mg/kg/day). GW0742 was administered by gavage for 8 weeks after inducing diabetes. RESULTS GW0742 decreased urinary albumin excretion without altering blood glucose levels. Macrophage infiltration, mesangial matrix accumulation, and type IV collagen deposition were substantially attenuated by GW0742. The gene expression of inflammatory mediators in the kidney cortex, such as monocyte chemoattractant protein-1 (MCP-1) and osteopontin (OPN), was also suppressed. In vitro studies demonstrated that PPARδ activation increased the expression of anti-inflammatory corepressor B-cell lymphoma-6, which subsequently suppressed MCP-1 and OPN expression. CONCLUSIONS These findings uncover a previously unrecognized mechanism for the renoprotective effects of PPARδ agonists and support the concept that PPARδ agonists may offer a novel therapeutic approach for the treatment of diabetic nephropathy. PMID:21270242
Neuhaus, Jochen; Schulte-Baukloh, Heinrich; Stolzenburg, Jens-Uwe; Speroni di Fenizio, Pietro; Horn, Lars-Christian; Rüffert, Henrik; Hartenstein, Siegurd; Burger, Maximilian; Schulze, Matthias; Schwalenberg, Thilo
2012-10-01
Dysregulation of neurotransmitter receptors may contribute to bladder overactivity (OAB) symptoms. To address the question whether specific receptor expression patterns are associated with bladder pain syndrome/interstitial cystitis (BPS/IC), we examined the expression of muscarinic, purinergic and histamine receptors in the detrusor. Detrusor receptor expression was investigated in bladder biopsies of female BPS/IC patients (n = 44; age 60.64 ± 13.78, mean ± SD) and carcinoma patients (n = 11; age 58.91 ± 12.72) undergoing cystectomy. Protein expression of muscarinic (M2, M3), purinergic (P2X1-3) and histamine receptors (H1, H2) was analysed by confocal immunofluorescence, and gene expression was quantified by real-time polymerase chain reaction (qPCR). M2, P2X1, P2X2 and H1 receptor immunoreactivity (-IR) was significantly enhanced in BPS/IC compared to the control group, while there was no difference for M3-, P2X3- and H2-IR. We calculated a score, which separated BPS/IC from control patients with an AUC of 89.46%, showing 84.09% sensitivity and 90.91% specificity. Patients had a 9.25 times enhanced calculated risk for BPS/IC. In addition, two patient subgroups (M2 > M3 and M3 > M2) were observed, which differed in associated purinergic and histamine receptor expression. M2, P2X1, P2X2 and H1 were significantly upregulated in BPS/IC patients, and H2 was occasionally highly overexpressed. There was no significant correlation between receptor protein and gene expression, implying posttranslational mechanisms being responsible for the altered receptor expressions. On the basis of individual receptor profiles, upregulated receptors could be targeted by monotherapy or combination therapy with already approved receptor inhibitors, thereby promoting tailored therapy for patients suffering from BPS/IC-like symptoms.
Expression of Plant Receptor Kinases in Tobacco BY-2 Cells.
Shinohara, Hidefumi; Matsubayashi, Yoshikatsu
2017-01-01
Although more than 600 single-transmembrane receptor kinase genes have been found in the Arabidopsis genome, only a few of them have known physiological functions, and even fewer plant receptor kinases have known specific ligands. Ligand-binding analysis must be operated using the functionally expressed receptor form. However, the relative abundance of native receptor kinase molecules in the plasma membrane is often quite low. Here, we present a method for stable and functional expression of plant receptor kinases in tobacco BY-2 cells that allows preparation of microsomal fractions containing the receptor. This procedure provides a sufficient amount of receptor proteins while maintaining its ligand-binding activities.
Nakahara, Thiago S; Cardozo, Leonardo M; Ibarra-Soria, Ximena; Bard, Andrew D; Carvalho, Vinicius M A; Trintinalia, Guilherme Z; Logan, Darren W; Papes, Fabio
2016-02-15
Olfaction is a fundamental sense through which most animals perceive the external world. The olfactory system detects odors via specialized sensory organs such as the main olfactory epithelium and the vomeronasal organ. Sensory neurons in these organs use G-protein coupled receptors to detect chemosensory stimuli. The odorant receptor (OR) family is expressed in sensory neurons of the main olfactory epithelium, while the adult vomeronasal organ is thought to express other types of receptors. Here, we describe Olfr692, a member of the OR gene family identified by next-generation RNA sequencing, which is highly upregulated and non-canonically expressed in the vomeronasal organ. We show that neurons expressing this gene are activated by odors emanating from pups. Surprisingly, activity in Olfr692-positive cells is sexually dimorphic, being very low in females. Our results also show that juvenile odors activate a large number of Olfr692 vomeronasal neurons in virgin males, which is correlated with the display of infanticide behavior. . In contrast, activity substantially decreases in parenting males (fathers), where infanticidal aggressive behavior is not frequently observed. Our results describe, for the first time, a sensory neural population with a specific molecular identity involved in the detection of pup odors. Moreover, it is one of the first reports of a group of sensory neurons the activity of which is sexually dimorphic and depends on social status. Our data suggest that the Olfr692 population is involved in mediating pup-oriented behaviors in mice.
Lee, Jae Min; Hull, J. Joe; Kawai, Takeshi; Tsuneizumi, Kazuhide; Kurihara, Masaaki; Tanokura, Masaru; Nagata, Koji; Nagasawa, Hiromichi; Matsumoto, Shogo
2012-01-01
To facilitate further evaluation of pheromone biosynthesis activating neuropeptide receptor (PBANR) functionality and regulation, we generated cultured insect cell lines constitutively expressing green fluorescent protein chimeras of the recently identified Bombyx mori PBANR (BommoPBANR) and Pseudaletia separata PBANR (PsesePBANR) variants. Fluorescent chimeras included the BommoPBANR-A, -B, and -C variants and the PsesePBANR-B and -C variants. Cell lines expressing non-chimeric BommoPBANR-B and -C variants were also generated. Functional evaluation of these transformed cell lines using confocal laser microscopy revealed that a Rhodamine Red-labeled PBAN derivative (RR-C10PBANR2K) specifically co-localized with all of the respective PBANR variants at the plasma membrane. Near complete internalization of the fluorescent RR-C10PBANR2K ligand 30 min after binding was observed in all cell lines except those expressing the BommoPBANR-A variant, in which the ligand/receptor complex remained at the plasma membrane. Fluorescent Ca2+ imaging further showed that the BommoPBANR-A cell line exhibited drastically different Ca2+ mobilization kinetics at a number of RR-C10PBANR2K concentrations including 10 μM. These observations demonstrate a clear functional difference between the BommoPBANR-A variant and the BommoPBANR-B and -C variants in terms of receptor regulation and activation of downstream effector molecules. We also found that, contrary to previous reports, ligand-induced internalization of BommoPBANR-B and BommoPBANR-C in cell lines stably expressing these variants occurred in the absence of extracellular Ca2+. PMID:22654874
Cognitive impairment and gene expression alterations in a rodent model of binge eating disorder.
Chawla, Anjali; Cordner, Zachary A; Boersma, Gretha; Moran, Timothy H
2017-10-15
Binge eating disorder (BED) is defined as recurrent, distressing over-consumption of palatable food (PF) in a short time period. Clinical studies suggest that individuals with BED may have impairments in cognitive processes, executive functioning, impulse control, and decision-making, which may play a role in sustaining binge eating behavior. These clinical reports, however, are limited and often conflicting. In this study, we used a limited access rat model of binge-like behavior in order to further explore the effects of binge eating on cognition. In binge eating prone (BEP) rats, we found novel object recognition (NOR) as well as Barnes maze reversal learning (BM-RL) deficits. Aberrant gene expression of brain derived neurotrophic factor (Bdnf) and tropomyosin receptor kinase B (TrkB) in the hippocampus (HPC)-prefrontal cortex (PFC) network was observed in BEP rats. Additionally, the NOR deficits were correlated with reductions in the expression of TrkB and insulin receptor (Ir) in the CA3 region of the hippocampus. Furthermore, up-regulation of serotonin-2C (5-HT 2C ) receptors in the orbitoprefrontal cortex (OFC) was associated with BM-RL deficit. Finally, in the nucleus accumbens (NAc), we found decreased dopamine receptor 2 (Drd2) expression among BEP rats. Taken together, these data suggest that binge eating vegetable shortening may induce contextual and reversal learning deficits which may be mediated, at least in part, by the altered expression of genes in the CA3-OFC-NAc neural network. Copyright © 2017 Elsevier Inc. All rights reserved.
Chemokine receptor binding and signal transduction in native cells of the central nervous system.
Davis, Christopher N; Chen, Shuzhen; Boehme, Stefen A; Bacon, Kevin B; Harrison, Jeffrey K
2003-04-01
Chemokine receptors belong to the superfamily of seven-transmembrane-spanning, G-protein-coupled receptors, and their expression by central nervous system cells is clearly documented. As this gene family has become the target of novel therapeutic development, the analysis of these receptors requires radioligand binding techniques as well as methods that entail assessing receptor stimulation of signal transduction pathways. Herein, we describe specific protocols for measuring radiolabeled chemokine binding to their cognate receptors on cultured glial cells as well as to receptors expressed in heterologous cell systems. Multiple downstream signaling pathways, including intracellular calcium influx and receptor-dependent kinase activation, are associated with chemokine receptor stimulation. Protocols for measuring these signaling events in chemokine-receptor-expressing cells are also presented.
Molecular characterization of human thyroid hormone receptor β isoform 4.
Moriyama, Kenji; Yamamoto, Hiroyuki; Futawaka, Kumi; Atake, Asami; Kasahara, Masato; Tagami, Tetsuya
2016-01-01
Thyroid hormone exerts a pleiotropic effect on development, differentiation, and metabolism through thyroid hormone receptor (TR). A novel thyroid hormone receptor β isoform (TRβ4) was cloned using PCR from a human pituitary cDNA library as a template. We report here the characterization of TRβ4 from a molecular basis. Temporal expression of TRβ4 during the fetal period is abundant in the brain and kidney, comparable with the adult pattern. Western blot analysis revealed that TRs are ubiquitination labile proteins, while TRβ1 is potentially stable. TRβ1, peroxisome proliferator-activated receptors (PPAR), and vitamin D receptor (VDR), which belong to class II transcription factors that function via the formation of heterodimeric complexes with retinoid X receptor (RXR), were suppressed by TRβ4 in a dose-dependent manner. Thus, TRβ4 exhibits ligand-independent transcriptional silencing, possibly as a substitute for dimerized RXR. In this study, TRβ1 and TRβ4 transcripts were detected in several cell lines. Quantitative RT-PCR assay showed that the expression of TRβ4 in human embryonic carcinoma cells of the testis was suppressed by sex hormone in a reciprocal manner to TRβ1. In contrast, TRβ4 was expressed under a high dose of triiodothyronine (T3) in a reciprocal manner to TRβ1. Finally, in transiently transfected NIH-3T3 cells, green fluorescence protein (GFP)-tagged TRβ4 was mostly nuclear in both the absence and the presence of T3. By mutating defined regions of both TRβs, we found that both TRβ1 and TRβ4 had altered nuclear/cytoplasmic distribution as compared with wild-type, and different to T3 and the nuclear receptor corepressor (NCoR). Thus, site-specific DNA binding is not essential for maintaining TRβs within the nucleus.
CD147/EMMPRIN acts as a functional entry receptor for measles virus on epithelial cells.
Watanabe, Akira; Yoneda, Misako; Ikeda, Fusako; Terao-Muto, Yuri; Sato, Hiroki; Kai, Chieko
2010-05-01
Measles is a highly contagious human disease caused by measles virus (MeV) and remains the leading cause of death in children, particularly in developing countries. Wild-type MeV preferentially infects lymphocytes by using signaling lymphocytic activation molecule (SLAM), whose expression is restricted to hematopoietic cells, as a receptor. MeV also infects other epithelial and neuronal cells that do not express SLAM and causes pneumonia and diarrhea and, sometimes, serious symptoms such as measles encephalitis and subacute sclerosing panencephalitis. The discrepancy between the tissue tropism of MeV and the distribution of SLAM-positive cells suggests that there are unknown receptors other than SLAM for MeV. Here we identified CD147/EMMPRIN (extracellular matrix metalloproteinase inducer), a transmembrane glycoprotein, which acts as a receptor for MeV on epithelial cells. Furthermore, we found the incorporation of cyclophilin B (CypB), a cellular ligand for CD147, in MeV virions, and showed that inhibition of CypB incorporation significantly attenuated SLAM-independent infection on epithelial cells, while it had no effect on SLAM-dependent infection. To date, MeV infection was considered to be triggered by binding of its hemagglutinin (H) protein and cellular receptors. Our present study, however, indicates that MeV infection also occurs via CD147 and virion-associated CypB, independently of MeV H. Since CD147 is expressed in a variety of cells, including epithelial and neuronal cells, this molecule possibly functions as an entry receptor for MeV in SLAM-negative cells. This is the first report among members of the Mononegavirales that CD147 is used as a virus entry receptor via incorporated CypB in the virions.
CD147/EMMPRIN Acts as a Functional Entry Receptor for Measles Virus on Epithelial Cells▿
Watanabe, Akira; Yoneda, Misako; Ikeda, Fusako; Terao-Muto, Yuri; Sato, Hiroki; Kai, Chieko
2010-01-01
Measles is a highly contagious human disease caused by measles virus (MeV) and remains the leading cause of death in children, particularly in developing countries. Wild-type MeV preferentially infects lymphocytes by using signaling lymphocytic activation molecule (SLAM), whose expression is restricted to hematopoietic cells, as a receptor. MeV also infects other epithelial and neuronal cells that do not express SLAM and causes pneumonia and diarrhea and, sometimes, serious symptoms such as measles encephalitis and subacute sclerosing panencephalitis. The discrepancy between the tissue tropism of MeV and the distribution of SLAM-positive cells suggests that there are unknown receptors other than SLAM for MeV. Here we identified CD147/EMMPRIN (extracellular matrix metalloproteinase inducer), a transmembrane glycoprotein, which acts as a receptor for MeV on epithelial cells. Furthermore, we found the incorporation of cyclophilin B (CypB), a cellular ligand for CD147, in MeV virions, and showed that inhibition of CypB incorporation significantly attenuated SLAM-independent infection on epithelial cells, while it had no effect on SLAM-dependent infection. To date, MeV infection was considered to be triggered by binding of its hemagglutinin (H) protein and cellular receptors. Our present study, however, indicates that MeV infection also occurs via CD147 and virion-associated CypB, independently of MeV H. Since CD147 is expressed in a variety of cells, including epithelial and neuronal cells, this molecule possibly functions as an entry receptor for MeV in SLAM-negative cells. This is the first report among members of the Mononegavirales that CD147 is used as a virus entry receptor via incorporated CypB in the virions. PMID:20147391
Stringer, Randa L; Laufer, Benjamin I; Kleiber, Morgan L; Singh, Shiva M
2013-08-02
Prenatal alcohol exposure is known to result in fetal alcohol spectrum disorders, a continuum of physiological, behavioural, and cognitive phenotypes that include increased risk for anxiety and learning-associated disorders. Prenatal alcohol exposure results in life-long disorders that may manifest in part through the induction of long-term gene expression changes, potentially maintained through epigenetic mechanisms. Here we report a decrease in the expression of Canabinoid receptor 1 (Cnr1) and an increase in the expression of the regulatory microRNA miR-26b in the brains of adult mice exposed to ethanol during neurodevelopment. Furthermore, we show that miR-26b has significant complementarity to the 3'-UTR of the Cnr1 transcript, giving it the potential to bind and reduce the level of Cnr1 expression. These findings elucidate a mechanism through which some genes show long-term altered expression following prenatal alcohol exposure, leading to persistent alterations to cognitive function and behavioural phenotypes observed in fetal alcohol spectrum disorders.
C/EBPβ LIP and c-Jun synergize to regulate expression of the murine progesterone receptor.
Wang, Weizhong; Do, Han Ngoc; Aupperlee, Mark D; Durairaj, Srinivasan; Flynn, Emily E; Miksicek, Richard J; Haslam, Sandra Z; Schwartz, Richard C
2018-06-02
CCAAT/enhancer binding protein β (C/EBPβ) is required for murine mammary ductal morphogenesis and alveologenesis. Progesterone is critical for proliferation and alveologenesis in adult mammary glands, and there is a similar requirement for progesterone receptor isoform B (PRB) in alveologenesis. We examined C/EBPβ regulation of PR expression. All three C/EBPβ isoforms, including typically inhibitory LIP, transactivated the PR promoter. LIP, particularly, strongly synergized with c-Jun to drive PR transcription. Endogenous C/EBPβ and c-Jun stimulated a PR promoter-reporter and these two factors showed promoter occupancy on the endogenous PR gene. Additionally, LIP overexpression elevated endogenous PR protein expression. In pregnancy, both PRB and the relative abundance of LIP among C/EBPβ isoforms increase. Consistent with a role in PRB expression, in vivo C/EBPβ and PR isoform A expression showed mutually exclusive localization in mammary epithelium, while C/EBPβ and PRB largely co-localized. We suggest a critical role for C/EBPβ, particularly LIP, in PRB expression. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Adachi, Ryota; Sasaki, Yuko; Morita, Hiromi; Komai, Michio; Shirakawa, Hitoshi; Goto, Tomoko; Furuyama, Akira; Isono, Kunio
2012-06-01
Transgenic Drosophila expressing human T2R4 and T2R38 bitter-taste receptors or PKD2L1 sour-taste receptor in the fly gustatory receptor neurons and other tissues were prepared using conventional Gal4/UAS binary system. Molecular analysis showed that the transgene mRNAs are expressed according to the tissue specificity of the Gal4 drivers. Transformants expressing the transgene taste receptors in the fly taste neurons were then studied by a behavioral assay to analyze whether transgene chemoreceptors are functional and coupled to the cell response. Since wild-type flies show strong aversion against the T2R ligands as in mammals, the authors analyzed the transformants where the transgenes are expressed in the fly sugar receptor neurons so that they promote feeding ligand-dependently if they are functional and activate the neurons. Although the feeding preference varied considerably among different strains and individuals, statistical analysis using large numbers of transformants indicated that transformants expressing T2R4 showed a small but significant increase in the preference for denatonium and quinine, the T2R4 ligands, as compared to the control flies, whereas transformants expressing T2R38 did not. Similarly, transformants expressing T2R38 and PKD2L1 also showed a similar preference increase for T2R38-specific ligand phenylthiocarbamide (PTC) and a sour-taste ligand, citric acid, respectively. Taken together, the transformants expressing mammalian taste receptors showed a small but significant increase in the feeding preference that is taste receptor and also ligand dependent. Although future improvements are required to attain performance comparable to the endogenous robust response, Drosophila taste neurons may serve as a potential in vivo heterologous expression system for analyzing chemoreceptor function.
Michaille, J J; Blanchet, S; Kanzler, B; Garnier, J M; Dhouailly, D
1994-12-01
Retinoic acid receptors alpha, beta and gamma (RAR alpha, beta and gamma) are ligand-inductible transcriptional activators which belong to the steroid/thyroid hormone receptor superfamily. At least two major isoforms (1 and 2) of each RAR arise by differential use of two promoters and alternative splicing. In mouse, the three RAR genes are expressed in stage- and tissue-specific patterns during embryonic development. In order to understand the role of the different RARs in chick, RAR gamma 2 cDNAs were isolated from an 8.5-day (stage 35 of Hamburger and Hamilton) chick embryo skin library. The deduced chick RAR gamma 2 amino acid sequence displays uncommon features such as 21 specific amino acid replacements, 12 of them being clustered in the amino-terminal region (domains A2 and B), and a truncated acidic carboxy-terminal region (F domain). However, the pattern of RAR gamma expression in chick embryo resembles that reported in mouse, particularly in skin where RAR gamma expression occurs in both the dermal and epidermal layers at the beginning of feather formation, and is subsequently restricted to the differentiating epidermal cells. Northern blot analysis suggests that different RAR gamma isoforms could be successively required during chick development.
Kanatli, Irem; Akkaya, Bahar; Uysal, Hilmi; Kahraman, Sevim; Sanlioglu, Ahter Dilsad
2017-02-01
Myasthenia Gravis is an autoantibody-mediated, neuromuscular junction disease, and is usually associated with thymic abnormalities presented as thymic tumors (~10%) or hyperplastic thymus (~65%). The exact role of thymus in Myasthenia Gravis development is not clear, yet many patients benefit from thymectomy. The apoptotic ligand TNF-Related Apoptosis-Inducing Ligand is thought to be involved in the regulation of thymocyte counts, although conflicting results are reported. We investigated differential expression profiles of TNF-Related Apoptosis-Inducing Ligand and its transmembrane receptors, Nuclear Factor-kB activation status, and apoptotic cell counts in healthy thymic tissue and pathological thymus from Myasthenia Gravis patients. All tissues expressed TNF-Related Apoptosis-Inducing Ligand and its receptors, with hyperplastic tissue having the highest expression levels of death receptors DR4 and DR5. No detectable Nuclear Factor-kB activation, at least via the canonical Protein Kinase A-mediated p65 Ser276 phosphorylation, was evident in any of the tissues studied. Apoptotic cell counts were higher in MG-associated tissue compared to the normal thymus. Possible use of the TNF-Related Apoptosis-Inducing Ligand within the concept of an apoptotic ligand-mediated medical thymectomy in thymoma- or thymic hyperplasia-associated Myasthenia Gravis is also discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
Neurotrophins play differential roles in short and long-term recognition memory.
Callaghan, Charlotte K; Kelly, Aine M
2013-09-01
The neurotrophin family of proteins are believed to mediate various forms of synaptic plasticity in the adult brain. Here we have assessed the roles of these proteins in object recognition memory in the rat, using icv infusions of function-blocking antibodies or the tyrosine kinase antagonist, tyrphostin AG879, to block Trk receptors. We report that tyrphostin AG879 impairs both short-term and long-term recognition memory, indicating a requirement for Trk receptor activation in both processes. The effect of inhibition of each of the neurotrophins with activity-blocking neutralising antibodies was also tested. Treatment with anti-BDNF, anti-NGF or anti-NT4 had no effect on short-term memory, but blocked long-term recognition memory. Treatment with anti-NT3 had no effect on either process. We also assessed changes in expression of neurotrophins and their respective receptors in the hippocampus, dentate gyrus and perirhinal cortex over a 24 h period following training in the object recognition task. We observed time-dependent changes in expression of the Trk receptors and their ligands in the dentate gyrus and perirhinal cortex. The data are consistent with a pivotal role for neurotrophic factors in the expression of recognition memory. Copyright © 2013 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugawara, Taishi; Ito, Keisuke; Shiroishi, Mitsunori
2009-05-15
Human TAS2 receptors (hTAS2Rs) perceive bitter tastants, but few studies have explored the structure-function relationships of these receptors. In this paper, we report our trials on the large-scale preparations of hTAS2Rs for structural analysis. Twenty-five hTAS2Rs were expressed using a GFP-fusion yeast system in which the constructs and the culture conditions (e.g., the signal sequence, incubation time and temperature after induction) were optimized by measuring GFP fluorescence. After optimization, five hTAS2Rs (hTAS2R7, hTAS2R8, hTAS2R16, hTAS2R41, and hTAS2R48) were expressed at levels greater than 1 mg protein/L of culture, which is a preferable level for purification and crystallization. Among these fivemore » bitter taste receptors, hTAS2R41 exhibited the highest detergent solubilization efficiency of 87.1% in n-dodecyl-{beta}-D-maltopyranoside (DDM)/cholesteryl hemisuccinate (CHS). Fluorescence size-exclusion chromatography showed that hTAS2R41 exhibited monodispersity in DDM/CHS without aggregates, suggesting that hTAS2R41 is a good target for future crystallization trials.« less
Cecon, Erika; Chen, Min; Marçola, Marina; Fernandes, Pedro A C; Jockers, Ralf; Markus, Regina P
2015-06-01
Melatonin is the hormone produced by the pineal gland known to regulate physiologic rhythms and to display immunomodulatory and neuroprotective properties. It has been reported that Alzheimer disease patients show impaired melatonin production and altered expression of the 2 G protein-coupled melatonin receptors (MTRs), MT₁ and MT₂, but the underlying mechanisms are not known. Here we evaluated whether this dysfunction of the melatonergic system is directly caused by amyloid β peptides (Aβ(1-40) and Aβ(1-42)). Aβ treatment of rat pineal glands elicited an inflammatory response within the gland, evidenced by the up-regulation of 52 inflammatory genes, and decreased the production of melatonin up to 75% compared to vehicle-treated glands. Blocking NF-κB activity prevented this effect. Exposure of HEK293 cells stably expressing recombinant MT₁ or MT₂ receptors to Aβ lead to a 40% reduction in [(125)I]iodomelatonin binding to MT₁. ERK1/2 activation triggered by MTRs, but not by the β₂-adrenergic receptor, was markedly impaired by Aβ in HEK293 transfected cells, as well as in primary rat endothelial cells expressing endogenous MTRs. Our data reveal the melatonergic system as a new target of Aβ, opening new perspectives to Alzheimer disease diagnosis and therapeutic intervention. © FASEB.
Mathivet, Thomas; Mazot, Pierre; Vigny, Marc
2007-12-01
Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase essentially and transiently expressed during development in specific regions of the central and peripheral nervous system. ALK expression persists at a lower level in the adult brain. Thus, it might play an important role in both the normal development and function of the nervous system. The nature of the cognate ligand of this receptor in vertebrates is still a matter of debate. Pleiotrophin and midkine have been proposed as ligands of ALK but several independent studies do not confirm this hypothesis. Interestingly, a recent study proposed that a C-terminal truncated form of Pleiotrophin (Pleiotrophin.15) and not the full length form (Pleiotrophin.18) promotes glioblastoma proliferation in an ALK-dependent fashion. These data were obviously a strong basis to conciliate the conflicting results so far reported in the literature. In the present study, we first purified to homogeneity the two forms of Pleiotrophin secreted by HEK 293 cells. In contrast to agonist monoclonal antibodies, both Pleiotrophin.15 and Pleiotrophin.18 failed to activate ALK in neuroblastoma and glioblastoma cells expressing this receptor. Thus, for our point of view, ALK is still an orphan receptor in vertebrates.
Bruna-Larenas, Tamara; Gómez-Jeria, Juan S
2012-01-01
We report the results of a search for model-based relationships between mu, delta, and kappa opioid receptor binding affinity and molecular structure for a group of molecules having in common a morphine structural core. The wave functions and local reactivity indices were obtained at the ZINDO/1 and B3LYP/6-31G(∗∗) levels of theory for comparison. New developments in the expression for the drug-receptor interaction energy expression allowed several local atomic reactivity indices to be included, such as local electronic chemical potential, local hardness, and local electrophilicity. These indices, together with a new proposal for the ordering of the independent variables, were incorporated in the statistical study. We found and discussed several statistically significant relationships for mu, delta, and kappa opioid receptor binding affinity at both levels of theory. Some of the new local reactivity indices incorporated in the theory appear in several equations for the first time in the history of model-based equations. Interaction pharmacophores were generated for mu, delta, and kappa receptors. We discuss possible differences regulating binding and selectivity in opioid receptor subtypes. This study, contrarily to the statistically backed ones, is able to provide a microscopic insight of the mechanisms involved in the binding process.
2012-01-01
Background The receptor tyrosine kinase family includes many transmembrane proteins with diverse physiological and pathophysiological functions. The involvement of tyrosine kinase signaling in promoting a more aggressive tumor phenotype within the context of chemotherapeutic evasion is gaining recognition. The Ron receptor is a tyrosine kinase receptor that has been implicated in the progression of breast cancer and evasion of tamoxifen therapy. Results Here, we report that Ron expression is correlated with in situ, estrogen receptor alpha (ERα)-positive tumors, and is higher in breast tumors following neoadjuvant tamoxifen therapy. We also demonstrate that the majority of mammary tumors isolated from transgenic mice with mammary specific-Ron overexpression (MMTV-Ron mice), exhibit appreciable ER expression. Moreover, genetic-ablation of ERα, in the context of Ron overexpression, leads to delayed mammary tumor initiation and growth, but also results in an increased metastasis. Conclusions Ron receptor overexpression is associated with ERα-positive human and murine breast tumors. In addition, loss of ERα on a Ron overexpressing background in mice leads to the development of breast tumors which grow slower but which exhibit more metastasis and suggests that targeting of ERα, as in the case of tamoxifen therapy, may reduce the growth of Ron overexpressing breast cancers but may cause these tumors to be more metastatic. PMID:22226043
Leptin interferes with the effects of the antiestrogen ICI 182,780 in MCF-7 breast cancer cells.
Garofalo, Cecilia; Sisci, Diego; Surmacz, Eva
2004-10-01
Obesity is a risk factor for breast cancer development in postmenopausal women and correlates with shorter disease-free and overall survival in breast cancer patients, regardless of menopausal status. Adipose tissue is a major source of leptin, a cytokine regulating energy balance and controlling different processes in peripheral tissues, including breast cancer cell growth. Here, we investigated whether leptin can counteract antitumorigenic activities of the antiestrogen ICI 182,780 in breast cancer cells. Mitogenic response to leptin and the effects of leptin on ICI 182,780-dependent growth inhibition were studied in MCF-7 estrogen receptor alpha-positive breast cancer cells. The expression of leptin receptor and the activation of signaling pathways were studied by Western immunoblotting. The interference of leptin with ICI 182,780-induced estrogen receptor alpha degradation was probed by Western immunoblotting, fluorescence microscopy, and pulse-chase experiments. Leptin effects on estrogen receptor alpha-dependent transcription in the presence and absence of ICI 182,780 were studied by luciferase reporter assays and chromatin immunoprecipitation. MCF-7 cells were found to express the leptin receptor and respond to leptin with cell growth and activation the signal transducers and activators of transcription 3, extracellular signal-regulated kinase-1/2, and Akt/GSK3/pRb pathways. The exposure of cells to 10 nmol/L ICI 182,780 blocked cell proliferation, induced rapid estrogen receptor alpha degradation, inhibited nuclear estrogen receptor alpha expression, and reduced estrogen receptor alpha-dependent transcription from estrogen response element-containing promoters. All of these effects of ICI 182,780 were significantly attenuated by simultaneous treatment of cells with 100 ng/mL leptin. Leptin interferes with the effects of ICI 182,780 on estrogen receptor alpha in breast cancer cells. Thus, high leptin levels in obese breast cancer patients might contribute to the development of antiestrogen resistance.
Zink, M; Schmitt, A; Henn, F A; Gass, P
2004-12-01
Pituitary adenylate cyclase-activating polypeptide (PACAP) modulates glutamatergic neurotransmission and induces the expression of glutamate transporters EAAT1 and EAAT2 in newborn mouse astroglial cell cultures. Since nanomolar concentrations of PACAP exert this effect, signal transduction via the high affinity PACAP-type I-receptor PAC1 was assumed. To test this hypothesis and to assess the importance of PAC1-signalling in vivo, we analyzed glutamate transporter expression in mice with a PAC1 knockout. EAAT1 and EAAT2 expression was investigated in the hippocampus and the cerebral cortex of PAC1 mutant mice and wildtype littermates by semiquantitative in-situ-hybridization. PAC1-knockout mice show a subtle but significant reduction of EAAT1 expression in the dentate gyrus. In contrast, reduced expression levels of EAAT1 in the cerebral cortex did not reach statistical significance and EAAT2 expression was unchanged in CA3 and cerebral cortex of PAC1 mutant mice. Our data confirm the previously reported in-vitro-regulation of EAAT1 in the adult nervous system in vivo. EAAT2 expression, however, is unchanged in PAC1 knockout mice, most likely due to counterbalancing factors.
Pleiotrophin is downregulated in human keloids.
Lee, Dong Hun; Jin, Cheng Long; Kim, Yeji; Shin, Mi Hee; Kim, Ji Eun; Kim, Minji; Lee, Min Jung; Cho, Soyun
2016-10-01
Keloid is an abnormal hyperproliferative scarring process with involvement of complex genetic and triggering environmental factors. Previously published dysregulated gene expression profile of keloids includes genes involved in tumor formation. Pleiotrophin (PTN) is a secreted, heparin-binding growth factor which is involved in various biological functions such as cell growth, differentiation, and tumor progression. Although PTN expression was reported to be increased in hypertrophic scars, there is no study on PTN expression in keloids, and previous microarray results are controversial. To clarify differential expression of PTN in keloids, we investigated the expression of PTN and its interacting molecules in keloid and control fibroblasts, and performed immunohistochemical staining of PTN using tissue arrays. The expressions of PTN, its upstream regulator platelet-derived growth factor subunit B (PDGF-B) and corresponding PDGF receptors were significantly downregulated in keloid fibroblasts compared to normal human fibroblasts, and the decreased PTN protein expression was confirmed by immunohistochemistry as well as Western blot. Moreover, functional downstream receptor protein tyrosine phosphatase β/ζ was significantly upregulated in keloid fibroblasts, supporting overall downregulation of PTN signaling pathway. The lowered PTN expression in keloids suggests a different pathomechanism from that of hypertrophic scars.
Sales, Kurt J; Boddy, Sheila C; Williams, Alistair R W; Anderson, Richard A; Jabbour, Henry N
2007-08-01
Prostaglandin (PG) F(2alpha) is a potent bioactive lipid in the female reproductive tract, and exerts its function after coupling with its heptahelical G-protein-coupled receptor [F-series-prostanoid (FP) receptor] to initiate cell signaling and target gene transcription. In the present study, we found elevated expression of fibroblast growth factor (FGF) 2, FGF receptor 1 (FGFR1), and FP receptor, colocalized within the neoplastic epithelial cells of endometrial adenocarcinomas. We investigated a role for PGF(2alpha)-FP receptor interaction in modulating FGF2 expression and signaling using an endometrial adenocarcinoma cell line stably expressing the FP receptor to the levels detected in endometrial adenocarcinomas (FPS cells) and endometrial adenocarcinoma tissue explants. PGF(2alpha)-FP receptor activation rapidly induced FGF2 mRNA expression, and elevated FGF2 protein expression and secretion into the culture medium in FPS cells and endometrial adenocarcinoma explants. The effect of PGF(2alpha) on the expression and secretion of FGF2 could be abolished by treatment of FPS cells and endometrial tissues with an FP receptor antagonist (AL8810) and inhibitor of ERK (PD98059). Furthermore, we have shown that FGF2 can promote the expression of FGF2 and cyclooxygenase-2, and enhance proliferation of endometrial adenocarcinoma cells via the FGFR1 and ERK pathways, thereby establishing a positive feedback loop to regulate neoplastic epithelial cell function in endometrial adenocarcinomas.
Dopamine D2 receptor expression in the corticotroph cells of the human normal pituitary gland.
Pivonello, Rosario; Waaijers, Marlijn; Kros, Johan M; Pivonello, Claudia; de Angelis, Cristina; Cozzolino, Alessia; Colao, Annamaria; Lamberts, Steven W J; Hofland, Leo J
2017-08-01
The dopamine D 2 receptor is the main dopamine receptor expressed in the human normal pituitary gland. The aim of the current study was to evaluate dopamine D 2 receptor expression in the corticotroph cell populations of the anterior lobe and pars intermedia, as well as posterior lobe of the human normal pituitary gland by immunohistochemistry. Human normal pituitary gland samples obtained from routine autopsies were used for the study. In all cases, histology together with immunostaining for adrenocorticotropic hormone, melanocyte-stimulating hormone, prolactin, and neurofilaments were performed and compared to the immunostaining for D 2 receptor. D 2 receptor was heterogeneously expressed in the majority of the cell populations of the anterior and posterior lobe as well as in the area localized between the anterior and posterior lobe, and arbitrary defined as "intermediate zone". This zone, characterized by the presence of nerve fibers included the residual pars intermedia represented by the colloid-filled cysts lined by the remnant melanotroph cells strongly expressing D 2 receptors, and clusters of corticotroph cells, belonging to the anterior lobe but localized within the cysts and adjacent to the posterior lobe, variably expressing D 2 receptors. D 2 dopamine receptor is expressed in the majority of the cell populations of the human normal pituitary gland, and particularly, in the different corticotroph cell populations localized in the anterior lobe and the intermediate zone of the pituitary gland.
A second trigeminal CGRP receptor: function and expression of the AMY1 receptor
Walker, Christopher S; Eftekhari, Sajedeh; Bower, Rebekah L; Wilderman, Andrea; Insel, Paul A; Edvinsson, Lars; Waldvogel, Henry J; Jamaluddin, Muhammad A; Russo, Andrew F; Hay, Debbie L
2015-01-01
Objective The trigeminovascular system plays a central role in migraine, a condition in need of new treatments. The neuropeptide, calcitonin gene-related peptide (CGRP), is proposed as causative in migraine and is the subject of intensive drug discovery efforts. This study explores the expression and functionality of two CGRP receptor candidates in the sensory trigeminal system. Methods Receptor expression was determined using Taqman G protein-coupled receptor arrays and immunohistochemistry in trigeminal ganglia (TG) and the spinal trigeminal complex of the brainstem in rat and human. Receptor pharmacology was quantified using sensitive signaling assays in primary rat TG neurons. Results mRNA and histological expression analysis in rat and human samples revealed the presence of two CGRP-responsive receptors (AMY1: calcitonin receptor/receptor activity-modifying protein 1 [RAMP1]) and the CGRP receptor (calcitonin receptor-like receptor/RAMP1). In support of this finding, quantification of agonist and antagonist potencies revealed a dual population of functional CGRP-responsive receptors in primary rat TG neurons. Interpretation The unexpected presence of a functional non-canonical CGRP receptor (AMY1) at neural sites important for craniofacial pain has important implications for targeting the CGRP axis in migraine. PMID:26125036
Chimeric switch receptor: switching for improved adoptive T-cell therapy against cancers.
Tay, Johan Ck; Zha, Shijun; Wang, Shu
2017-12-01
Adoptive T-lymphocyte transfer-based immunotherapy for cancers has seen huge leaps with both CARs and engineered TCRs. Despite this, issues relating to safety and efficacy persist. To address this, chimeric switch receptors have been created to reverse the outcomes of their original signaling pathways in order to confer immune cells with the ability to overcome the immunosuppressive tumor microenvironment and to allow them to have greater in vivo persistence. Activating switch receptors exploit the inhibitory molecules expressed by cancer cells to further stimulate the tumor antigen-specific T lymphocytes. On the other hand, inhibitory switch receptors inhibit the effects of tumor-reactive T lymphocytes on unintended targets. This paper reviews the switch receptors reported thus far, and lists out potential improvements and future works.
Singh, Manvender; Brahma, Biswajit; Maharana, Jitendra; Patra, Mahesh Chandra; Kumar, Sushil; Mishra, Purusottam; Saini, Megha; De, Bidhan Chandra; Mahanty, Sourav; Datta, Tirtha Kumar; De, Sachinandan
2014-01-01
RIG1 and MDA5 have emerged as important intracellular innate pattern recognition receptors that recognize viral RNA and mediate cellular signals controlling Type I interferon (IFN-I) response. Buffalo RIG1 and MDA5 genes were investigated to understand the mechanism of receptor induced antiviral response. Sequence analysis revealed that RIG1 and MDA5 maintain a domain arrangement that is common in mammals. Critical binding site residues of the receptors are evolutionary conserved among mammals. Molecular dynamics simulations suggested that RIG1 and MDA5 follow a similar, if not identical, dsRNA binding pattern that has been previously reported in human. Moreover, binding free energy calculation revealed that MDA5 had a greater affinity towards dsRNA compared to RIG1. Constitutive expressions of RLR genes were ubiquitous in different tissues without being specific to immune organs. Poly I:C stimulation induced elevated expressions of IFN-β and IFN-stimulated genes (ISGs) through interferon regulatory factors (IRFs) mediated pathway in buffalo foetal fibroblast cells. The present study provides crucial insights into the structure and function of RIG1 and MDA5 receptors in buffalo. PMID:24587036
Cherian, Milu T; Lin, Wenwei; Wu, Jing
2015-01-01
Constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are xenobiotic sensors that enhance the detoxification and elimination of xenobiotics and endobiotics by modulating the expression of genes encoding drug-metabolizing enzymes and transporters. Elevated levels of drug-metabolizing enzymes and efflux transporters, resulting from CAR activation in various cancers, promote the elimination of chemotherapeutic agents, leading to reduced therapeutic effectiveness and acquired drug resistance. CAR inhibitors, in combination with existing chemotherapeutics, could therefore be used to attenuate multidrug resistance in cancers. Interestingly, all previously reported CAR inverse-agonists are also activators of PXR, rendering them mechanistically counterproductive in tissues where both these xenobiotic receptors are present and active. We used a directed high-throughput screening approach, followed by subsequent mechanistic studies, to identify novel, potent, and specific small-molecule CAR inhibitors that do not activate PXR. We describe here one such inhibitor, CINPA1 (CAR inhibitor not PXR activator 1), capable of reducing CAR-mediated transcription with an IC50 of ∼70 nM. CINPA1 1) is a specific xenobiotic receptor inhibitor and has no cytotoxic effects up to 30 µM; 2) inhibits CAR-mediated gene expression in primary human hepatocytes, where CAR is endogenously expressed; 3) does not alter the protein levels or subcellular localization of CAR; 4) increases corepressor and reduces coactivator interaction with the CAR ligand-binding domain in mammalian two-hybrid assays; and 5) disrupts CAR binding to the promoter regions of target genes in chromatin immunoprecipitation assays. CINPA1 could be used as a novel molecular tool for understanding CAR function. PMID:25762023
Franks, Lirit N.; Ford, Benjamin M.; Madadi, Nikhil R.; Penthala, Narsimha R.; Crooks, Peter A.; Prather, Paul L.
2014-01-01
Our laboratory recently reported that a group of novel indole quinuclidine analogues bind with nanomolar affinity to cannabinoid type-1 and type-2 receptors. This study characterized the intrinsic activity of these compounds by determining whether they exhibit agonist, antagonist, or inverse agonist activity at cannabinoid type-1 and/or type-2 receptors. Cannabinoid receptors activate Gi/Go-proteins that then proceed to inhibit activity of the downstream intracellular effector adenylyl cyclase. Therefore, intrinsic activity was quantified by measuring the ability of compounds to modulate levels of intracellular cAMP in intact cells. Concerning cannabinoid type-1 receptors endogenously expressed in Neuro2A cells, a single analogue exhibited agonist activity, while eight acted as neutral antagonists and two possessed inverse agonist activity. For cannabinoid type-2 receptors stably expressed in CHO cells, all but two analogues acted as agonists; these two exceptions exhibited inverse agonist activity. Confirming specificity at cannabinoid type-1 receptors, modulation of adenylyl cyclase activity by all proposed agonists and inverse agonists was blocked by co-incubation with the neutral cannabinoid type-1 antagonist O-2050. All proposed cannabinoid type-1 receptor antagonists attenuated adenylyl cyclase modulation by cannabinoid agonist CP-55,940. Specificity at cannabinoid type-2 receptors was confirmed by failure of all compounds to modulate adenylyl cyclase activity in CHO cells devoid of cannabinoid type-2 receptors. Further characterization of select analogues demonstrated concentration-dependent modulation of adenylyl cyclase activity with potencies similar to their respective affinities for cannabinoid receptors. Therefore, indole quinuclidines are a novel structural class of compounds exhibiting high affinity and a range of intrinsic activity at cannabinoid type-1 and type-2 receptors. PMID:24858620
Liu, Mengyang; Chen, Yuanli; Zhang, Ling; Wang, Qixue; Ma, Xingzhe; Li, Xiaoju; Xiang, Rong; Zhu, Yan; Qin, Shucun; Yu, Yang; Jiang, Xian-cheng; Duan, Yajun; Han, Jihong
2015-06-05
Cholesteryl ester transfer protein (CETP) transfers cholesteryl esters from high density lipoprotein to triglyceride-rich lipoproteins. CETP expression can be transcriptionally activated by liver X receptor (LXR). Etoposide and teniposide are DNA topoisomerase II (Topo II) inhibitors. Etoposide has been reported to inhibit atherosclerosis in rabbits with un-fully elucidated mechanisms. In this study we determined if Topo II activity can influence cholesterol metabolism by regulating hepatic CETP expression. Inhibition of Topo II by etoposide, teniposide, or Topo II siRNA increased CETP expression in human hepatic cell line, HepG2 cells, which was associated with increased CETP secretion and mRNA expression. Meanwhile, inhibition of LXR expression by LXR siRNA attenuated induction of CETP expression by etoposide and teniposide. Etoposide and teniposide induced LXRα expression and LXRα/β nuclear translocation while inhibiting expression of receptor interacting protein 140 (RIP140), an LXR co-repressor. In vivo, administration of teniposide moderately reduced serum lipid profiles, induced CETP expression in the liver, and activated reverse cholesterol transport in CETP transgenic mice. Our study demonstrates a novel function of Topo II inhibitors in cholesterol metabolism by activating hepatic CETP expression and reverse cholesterol transport. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Rangel-Barajas, Claudia; Malik, Maninder; Taylor, Michelle; Neve, Kim A.; Mach, Robert H.; Luedtke, Robert R.
2014-01-01
LS-3-134 is a substituted N-phenylpiperazine derivative that has been reported to exhibit a) high-affinity binding (Ki value 0.2 nM) at human D3 dopamine receptors, b) >100-fold D3 vs. D2 dopamine receptor subtype binding selectivity and c) low-affinity binding (Ki values >5,000 nM) at sigma 1 and sigma 2 receptors. Based upon a forskolin-dependent activation of the adenylyl cyclase inhibition assay, LS-3-134 is a weak partial agonist at both D2 and D3 dopamine receptor subtypes (29% and 35% of full agonist activity, respectively). In this study, [3H]-labeled LS-3-134 was prepared and evaluated to further characterize its use as a D3 dopamine receptor selective radioligand. Kinetic and equilibrium radioligand binding studies were performed. This radioligand rapidly reaches equilibrium (10-15 min at 37°C) and binds with high affinity to both human (Kd = 0.06 ± 0.01 nM) and rat (Kd = 0.2 ± 0.02 nM) D3 receptors expressed in HEK-293 cells. Direct and competitive radioligand binding studies using rat caudate and nucleus accumbens tissue indicate that [3H]LS-3-134 selectively binds a homogeneous population of binding sites with a dopamine D3 receptor pharmacological profile. Based upon these studies we propose that [3H]LS-3-134 represents a novel D3 dopamine receptor selective radioligand that can be used for studying the expression and regulation of the D3 dopamine receptor subtype. PMID:25041389