Science.gov

Sample records for receptor expression reported

  1. Monoallelic Expression of Olfactory Receptors

    PubMed Central

    Monahan, Kevin; Lomvardas, Stavros

    2016-01-01

    The sense of smell collects vital information about the environment by detecting a multitude of chemical odorants. Breadth and sensitivity are provided by a huge number of chemosensory receptor proteins, including more than 1,400 olfactory receptors (ORs). Organizing the sensory information generated by these receptors so that it can be processed and evaluated by the central nervous system is a major challenge. This challenge is overcome by monogenic and monoallelic expression of OR genes. The single OR expressed by each olfactory sensory neuron determines the neuron’s odor sensitivity and the axonal connections it will make to downstream neurons in the olfactory bulb. The expression of a single OR per neuron is accomplished by coupling a slow chromatin-mediated activation process to a fast negative-feedback signal that prevents activation of additional ORs. Singular OR activation is likely orchestrated by a network of interchromosomal enhancer interactions and large-scale changes in nuclear architecture. PMID:26359778

  2. Visualizing estrogen receptor-a-expressing neurons using a new ERa-ZsGreen reporter mouse line

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A variety of biological functions of estrogens, including regulation of energy metabolism, are mediated by neurons expressingestrogen receptor-a (ERa) in the brain. However, complex intracellular processes in these ERa-expressing neurons are difficult to unravel, due to the lack of strategy to visua...

  3. The expression of leptin receptor in the ovary of the queen: leptin receptor expression in queen ovary.

    PubMed

    Albrizio, M; Roscino, M T; Trisolini, C; Binetti, F; Rizzo, A; Sciorsci, R L

    2013-10-01

    Leptin is a Ob gene product secreted mainly by adipose tissue. Several reports showed leptin production by other tissue including the ovary. The action of leptin is mediated upon binding to its receptor widely expressed in reproductive tissues in different species. In fact, there are growing evidences that leptin plays an important role in the modulation of reproductive functions. Therefore, the aim of this study was to evaluate in the queen, the expression of leptin receptor during the functional ovarian cycle and pregnancy. We found that the ovaries of the queen express leptin receptor in all the examined phases. The highest leptin receptor expression was found in the luteal phase (pseudopregnancy, pregnancy) compared to other phases of the cycle (anestrus, proestrus, estrus). The variations in the expression of leptin receptor suggest a likely implication of leptin in the modulation of ovarian activity, in the examined species.

  4. Adenosine Receptors: Expression, Function and Regulation

    PubMed Central

    Sheth, Sandeep; Brito, Rafael; Mukherjea, Debashree; Rybak, Leonard P.; Ramkumar, Vickram

    2014-01-01

    Adenosine receptors (ARs) comprise a group of G protein-coupled receptors (GPCR) which mediate the physiological actions of adenosine. To date, four AR subtypes have been cloned and identified in different tissues. These receptors have distinct localization, signal transduction pathways and different means of regulation upon exposure to agonists. This review will describe the biochemical characteristics and signaling cascade associated with each receptor and provide insight into how these receptors are regulated in response to agonists. A key property of some of these receptors is their ability to serve as sensors of cellular oxidative stress, which is transmitted by transcription factors, such as nuclear factor (NF)-κB, to regulate the expression of ARs. Recent observations of oligomerization of these receptors into homo- and heterodimers will be discussed. In addition, the importance of these receptors in the regulation of normal and pathological processes such as sleep, the development of cancers and in protection against hearing loss will be examined. PMID:24477263

  5. Androgen receptor expression in gastrointestinal stromal tumor.

    PubMed

    Lopes, Lisandro F; Bacchi, Carlos E

    2009-03-01

    The aim of this study was to evaluate the expression of estrogen, progesterone, and androgen receptors in a large series of gastrointestinal stromal tumors. Clinical and pathologic data were reviewed in 427 cases of gastrointestinal stromal tumor and the expression of such hormone receptors was investigated by immunohistochemistry using tissue microarray technique. All tumors were negative for estrogen receptor expression. Progesterone and androgen receptors expression was observed in 5.4% and 17.6% of tumors, respectively. We found the higher average age at diagnosis, the lower frequency of tumors located in the small intestine, and the higher frequency of extragastrointestinal tumors to be statistically significant in the group of tumors with androgen receptor expression in contrast to the group showing no androgen receptor expression. There was no statistic difference between such groups regarding sex, tumor size, mitotic count, cell morphology, and risk of aggressive behavior. Considering that the expression of androgen receptors in gastrointestinal stromal tumors is not negligible, further studies are encouraged to establish the role of androgen deprivation therapy for gastrointestinal stromal tumors.

  6. Correlation between erythropoietin receptor(s) and estrogen and progesterone receptor expression in different breast cancer cell lines.

    PubMed

    Trošt, Nina; Hevir, Neli; Rižner, Tea Lanišnik; Debeljak, Nataša

    2013-03-01

    Erythropoietin (EPO) receptor (EPOR) expression in breast cancer has been shown to correlate with the expression of estrogen receptor (ESR) and progesterone receptor (PGR) and to be associated with the response to tamoxifen in ESR+/PGR+ tumors but not in ESR- tumors. In addition, the correlation between EPOR and G protein-coupled estrogen receptor 1 [GPER; also known as G protein-coupled receptor 30 (GPR30)] has been reported, suggesting the prognostic potential of EPOR expression. Moreover, the involvement of colony stimulating factor 2 receptor, β, low‑affinity (CSF2RB) and ephrin type-B receptor 4 (EPHB4) as EPOR potential receptor partners in cancer has been indicated. This study analyzed the correlation between the expression of genes for EPO, EPOR, CSF2RB, EPHB4, ESR, PGR and GPER in the MCF-7, MDA-MB-361, T-47D, MDA-MB-231, Hs578Bst, SKBR3, MCF-10A and Hs578T cell lines. The cell lines were also treated with recombinant human EPO (rHuEPO) in order to determine its ability to activate the Jak/STAT5, MAPK and PI3K signaling pathways and modify cell growth characteristics. Expression analysis stratified the cell lines in 2 main clusters, hormone-dependent cell lines expressing ESR and PGR and a hormone-independent cluster. A significant correlation was observed between the expression levels of ESR and PGR and their expression was also associated with that of GPER. Furthermore, the expression of GPER was associated with that of EPOR, suggesting the connection between this orphan G protein and EPO signaling. A negative correlation between EPOR and CSF2RB expression was observed, questioning the involvement of these two receptors in the hetero-receptor formation. rHuEPO treatment only influenced the hormone-independent cell lines, since only the MDA-MB-231, SKBR3 and Hs578T cells responded to the treatment. The correlation between the expression of the analyzed receptors suggests that the receptors may interact in order to activate signaling pathways

  7. Developmental changes in NMDA receptor expression in the platyfish brain

    NASA Technical Reports Server (NTRS)

    Flynn, K. M.; Schreibman, M. P.; Magliulo-Cepriano, L.

    1997-01-01

    We have examined the distribution of the N-methyl-D-aspartate (NMDA) receptor in the brain of a freshwater teleost using an antibody against the R1 subunit of the receptor (NMDAR1). The primary site of localization was the nucleus olfactoretinalis (NOR), a significant gonadotropin releasing hormone (GnRH)-containing brain nucleus. The number of cells expressing NMDAR1 in this nucleus was dependent upon developmental stage, with pubescent and mature animals displaying significantly more stained cells than immature and senescent animals. This is the first reported observation of age- and maturity-related NMDA receptor association with GnRH-containing brain areas.

  8. Expression of adiponectin receptors in pancreatic beta cells.

    PubMed

    Kharroubi, Ilham; Rasschaert, Joanne; Eizirik, Décio L; Cnop, Miriam

    2003-12-26

    Pancreatic beta cell dysfunction is an early and crucial pathogenic factor in the development of type 2 diabetes. Free fatty acids (FFA) and adipokines released from adipose tissues lead to both the development of insulin resistance and beta cell dysfunction. Adiponectin is a novel adipokine with antidiabetic properties. Its circulating concentrations are reduced in subjects with increased visceral adiposity, insulin resistance, or type 2 diabetes. Very recently, the cloning of two adiponectin receptors AdipoR1 and AdipoR2 was reported. AdipoR1 is abundantly expressed in muscle, while AdipoR2 is predominantly expressed in liver. Here we report the marked expression of mRNAs for the adiponectin receptors AdipoR1 and AdipoR2 in human and rat pancreatic beta cells, at levels similar to liver and greater than muscle. Adiponectin receptor expression is increased by beta cell exposure to the unsaturated FFA oleate, and treatment of insulin-producing cells with globular adiponectin induces lipoprotein lipase expression. Regulated adiponectin receptor expression on pancreatic beta cells might be a novel mechanism modulating the effects of circulating adiponectin. PMID:14651988

  9. Vocal area-related expression of the androgen receptor in the budgerigar (Melopsittacus undulatus) brain.

    PubMed

    Matsunaga, Eiji; Okanoya, Kazuo

    2008-05-01

    The androgen receptor is a steroid hormone receptor widely expressed in the vocal control nuclei in songbirds. Here, we analysed androgen receptor expression in the brains of juvenile and adult budgerigars. With a species-specific probe for budgerigar androgen receptor mRNA, we found that the androgen receptor was expressed in the vocal areas, such as the central nucleus of the lateral nidopallium, the anterior arcopallium, the oval nucleus of the mesopallium, the oval nucleus of the anterior nidopallium and the tracheosyringeal hypoglossal nucleus. With the present data, together with previous reports, it turned out that the androgen receptor expression in telencephalic vocal control areas is similar amongst three groups of vocal learners--songbirds, hummingbirds and parrots, suggesting the possibility that the androgen receptor might play a role in vocal development and that the molecular mechanism regulating the androgen receptor expression in the vocal areas might be important in the evolution of vocal learning.

  10. Multiple melanocortin receptors are expressed in bone cells

    NASA Technical Reports Server (NTRS)

    Zhong, Qing; Sridhar, Supriya; Ruan, Ling; Ding, Ke-Hong; Xie, Ding; Insogna, Karl; Kang, Baolin; Xu, Jianrui; Bollag, Roni J.; Isales, Carlos M.

    2005-01-01

    Melanocortin receptors belong to the seven transmembrane domain, G-protein coupled family of receptors. There are five members of this receptor family labeled MC1R-MC5R. These receptors are activated by fragments derived from a larger molecule, proopiomelanocortin (POMC) and include ACTH, alpha beta and gamma-MSH and beta-endorphin. Because of in vitro and in vivo data suggesting direct effects of these POMC molecules on bone and bone turnover, we examined bone and bone derived cells for the presence of the various members of the melanocortin receptor family. We report that the five known melanocortin receptors are expressed to varying degrees in osteoblast-like and osteoclastic cells. POMC fragments increased proliferation and expression of a variety of genes in osteoblastic cells. Furthermore, POMC mRNA was detected in osteoclastic cells. These data demonstrate that POMC-derived peptide hormones acting through high affinity melanocortin receptors have specific effects on bone cells. Thus, in addition to the indirect effects of POMC-derived hormones on bone turnover through their modulation of steroid hormone secretion, POMC fragments may have direct and specific effects on bone cell subpopulations.

  11. Social regulation of cortisol receptor gene expression

    PubMed Central

    Korzan, Wayne J.; Grone, Brian P.; Fernald, Russell D.

    2014-01-01

    In many social species, individuals influence the reproductive capacity of conspecifics. In a well-studied African cichlid fish species, Astatotilapia burtoni, males are either dominant (D) and reproductively competent or non-dominant (ND) and reproductively suppressed as evidenced by reduced gonadotropin releasing hormone (GnRH1) release, regressed gonads, lower levels of androgens and elevated levels of cortisol. Here, we asked whether androgen and cortisol levels might regulate this reproductive suppression. Astatotilapia burtoni has four glucocorticoid receptors (GR1a, GR1b, GR2 and MR), encoded by three genes, and two androgen receptors (ARα and ARβ), encoded by two genes. We previously showed that ARα and ARβ are expressed in GnRH1 neurons in the preoptic area (POA), which regulates reproduction, and that the mRNA levels of these receptors are regulated by social status. Here, we show that GR1, GR2 and MR mRNAs are also expressed in GnRH1 neurons in the POA, revealing potential mechanisms for both androgens and cortisol to influence reproductive capacity. We measured AR, MR and GR mRNA expression levels in a microdissected region of the POA containing GnRH1 neurons, comparing D and ND males. Using quantitative PCR (qPCR), we found D males had higher mRNA levels of ARα, MR, total GR1a and GR2 in the POA compared with ND males. In contrast, ND males had significantly higher levels of GR1b mRNA, a receptor subtype with a reduced transcriptional response to cortisol. Through this novel regulation of receptor type, neurons in the POA of an ND male will be less affected by the higher levels of cortisol typical of low status, suggesting GR receptor type change as a potential adaptive mechanism to mediate high cortisol levels during social suppression. PMID:25013108

  12. Expression of somatostatin receptor genes and acetylcholine receptor development in rat skeletal muscle during postnatal development.

    PubMed

    Peng, M; Conforti, L; Millhorn, D E

    1998-05-01

    Our laboratory reported previously that somatostatin (SST) is transiently expressed in rat motoneurons during the first 14 days after birth. We investigated the possibility that the SST receptor (SSTR) is expressed in skeletal muscle. We found that two of the five subtypes of SSTR (SSTR3 and SSTR4) are expressed in skeletal muscle with a time course that correlates with the transient expression of SST in motoneurons. In addition, SSTR2A is expressed from birth to adulthood in skeletal muscle. Both SSTR2A and SSTR4 are also expressed in L6 cells, a skeletal muscle cell line. Somatostatin acting through its receptors has been shown to stimulate tyrosine phosphatase activity in a number of different tissues. We found that several proteins (50, 65, 90, 140, 180 and 200 kDa) exhibited a reduced degree of tyrosine phosphorylation following SST treatment. Inhibition of tyrosine phosphatase activity with sodium orthovanadate increased expression of the nicotinic acetyl-choline receptor (nAChR) epsilon subunit mRNA by three fold. Somatostatin reversed the elevated epsilon mRNA following orthovanadate treatment. These findings show that SSTR is expressed in skeletal muscle and that SST acting via the SSTR regulates tyrosine phosphorylation and expression of the epsilon subunit of the AChR in the rat skeletal muscle. PMID:9852305

  13. Nicotinic receptor Alpha7 expression during mouse adrenal gland development.

    PubMed

    Gahring, Lorise C; Myers, Elizabeth; Palumbos, Sierra; Rogers, Scott W

    2014-01-01

    The nicotinic acetylcholine receptor alpha 7 (α7) is a ligand-activated ion channel that contributes to a diversity of cellular processes involved in development, neurotransmission and inflammation. In this report the expression of α7 was examined in the mouse developing and adult adrenal gland that expresses a green fluorescent protein (GFP) reporter as a bi-cistronic extension of the endogenous α7 transcript (α7(G)). At embryonic day 12.5 (E12.5) α7(G) expression was associated with the suprarenal ganglion and precursor cells of the adrenal gland. The α7(G) cells are catecholaminergic chromaffin cells as reflected by their progressive increase in the co-expression of tyrosine hydroxylase (TH) and dopamine-beta-hydroxylase (DBH) that is complete by E18.5. In the adult, α7(G) expression is limited to a subset of chromaffin cells in the adrenal medulla that cluster near the border with the adrenal cortex. These chromaffin cells co-express α7(G), TH and DBH, but they lack phenylethanolamine N-methyltransferase (PNMT) consistent with only norepinephrine (NE) synthesis. These cell groups appear to be preferentially innervated by pre-ganglionic afferents identified by the neurotrophin receptor p75. No afferents identified by beta-III tubulin, neurofilament proteins or p75 co-expressed α7(G). Occasional α7(G) cells in the pre-E14.5 embryos express neuronal markers consistent with intrinsic ganglion cells and in the adult some α7(G) cells co-express glutamic acid decarboxylase. The transient expression of α7 during adrenal gland development and its prominent co-expression by a subset of NE chromaffin cells in the adult suggests that the α7 receptor contributes to multiple aspects of adrenal gland development and function that persist into adulthood. PMID:25093893

  14. Nicotinic receptor Alpha7 expression during mouse adrenal gland development.

    PubMed

    Gahring, Lorise C; Myers, Elizabeth; Palumbos, Sierra; Rogers, Scott W

    2014-01-01

    The nicotinic acetylcholine receptor alpha 7 (α7) is a ligand-activated ion channel that contributes to a diversity of cellular processes involved in development, neurotransmission and inflammation. In this report the expression of α7 was examined in the mouse developing and adult adrenal gland that expresses a green fluorescent protein (GFP) reporter as a bi-cistronic extension of the endogenous α7 transcript (α7(G)). At embryonic day 12.5 (E12.5) α7(G) expression was associated with the suprarenal ganglion and precursor cells of the adrenal gland. The α7(G) cells are catecholaminergic chromaffin cells as reflected by their progressive increase in the co-expression of tyrosine hydroxylase (TH) and dopamine-beta-hydroxylase (DBH) that is complete by E18.5. In the adult, α7(G) expression is limited to a subset of chromaffin cells in the adrenal medulla that cluster near the border with the adrenal cortex. These chromaffin cells co-express α7(G), TH and DBH, but they lack phenylethanolamine N-methyltransferase (PNMT) consistent with only norepinephrine (NE) synthesis. These cell groups appear to be preferentially innervated by pre-ganglionic afferents identified by the neurotrophin receptor p75. No afferents identified by beta-III tubulin, neurofilament proteins or p75 co-expressed α7(G). Occasional α7(G) cells in the pre-E14.5 embryos express neuronal markers consistent with intrinsic ganglion cells and in the adult some α7(G) cells co-express glutamic acid decarboxylase. The transient expression of α7 during adrenal gland development and its prominent co-expression by a subset of NE chromaffin cells in the adult suggests that the α7 receptor contributes to multiple aspects of adrenal gland development and function that persist into adulthood.

  15. Nicotinic Receptor Alpha7 Expression during Mouse Adrenal Gland Development

    PubMed Central

    Gahring, Lorise C.; Myers, Elizabeth; Palumbos, Sierra; Rogers, Scott W.

    2014-01-01

    The nicotinic acetylcholine receptor alpha 7 (α7) is a ligand-activated ion channel that contributes to a diversity of cellular processes involved in development, neurotransmission and inflammation. In this report the expression of α7 was examined in the mouse developing and adult adrenal gland that expresses a green fluorescent protein (GFP) reporter as a bi-cistronic extension of the endogenous α7 transcript (α7G). At embryonic day 12.5 (E12.5) α7G expression was associated with the suprarenal ganglion and precursor cells of the adrenal gland. The α7G cells are catecholaminergic chromaffin cells as reflected by their progressive increase in the co-expression of tyrosine hydroxylase (TH) and dopamine-beta-hydroxylase (DBH) that is complete by E18.5. In the adult, α7G expression is limited to a subset of chromaffin cells in the adrenal medulla that cluster near the border with the adrenal cortex. These chromaffin cells co-express α7G, TH and DBH, but they lack phenylethanolamine N-methyltransferase (PNMT) consistent with only norepinephrine (NE) synthesis. These cell groups appear to be preferentially innervated by pre-ganglionic afferents identified by the neurotrophin receptor p75. No afferents identified by beta-III tubulin, neurofilament proteins or p75 co-expressed α7G. Occasional α7G cells in the pre-E14.5 embryos express neuronal markers consistent with intrinsic ganglion cells and in the adult some α7G cells co-express glutamic acid decarboxylase. The transient expression of α7 during adrenal gland development and its prominent co-expression by a subset of NE chromaffin cells in the adult suggests that the α7 receptor contributes to multiple aspects of adrenal gland development and function that persist into adulthood. PMID:25093893

  16. Expression of chemokine receptors in vernal keratoconjunctivitis

    PubMed Central

    El-Asrar, A.; Struyf, S.; Al-Mosallam, A.; Missotten, L.; Van Damme, J.; Geboes, K.

    2001-01-01

    BACKGROUND/AIMS—Chemokines are small peptides which are potent activators and chemoattractants for leucocyte subpopulations. Their action is mediated by a family of seven transmembrane spanning G-protein coupled receptors. The aims of this study were to examine the expression of the chemokine receptors CCR1, CCR3, CCR5, CXCR3, and CXCR4 in the conjunctiva of patients with vernal keratoconjunctivitis (VKC) and to investigate the phenotype of inflammatory cells expressing these chemokine receptors.
METHODS—Conjunctival biopsy specimens from 16 patients with active VKC, and eight control subjects were studied by immunohistochemical techniques using a panel of monoclonal antibodies directed against human CCR1, CCR3, CCR5, CXCR3, and CXCR4. The phenotype of inflammatory cells expressing chemokine receptors was examined by double immunohistochemistry.
RESULTS—In the normal conjunctiva, few inflammatory cells expressed CXCR3 in five of eight specimens. There was no immunoreactivity for CCR1, CCR3, CCR5, and CXCR4. In VKC specimens, membranous immunoreactivity for CXCR3 was noted on inflammatory cells in all specimens. Compared with control specimens, VKC specimens showed significantly more inflammatory cells expressing CXCR3 (54.3 (SD 34.3) v 3.3 (5.0); p<0.001). Few CCR1+, CCR3+, CCR5+, and CXCR4+ inflammatory cells were observed in only three of 16 specimens. Double immunohistochemistry revealed that all CXCR3 positive inflammatory cells were CD3 positive T lymphocytes and that 61.7% (3.7%) of the infiltrating T lymphocytes were reactive for CXCR3.
CONCLUSIONS—CXCR3 is the predominant chemokine receptor and is expressed abundantly on T lymphocytes in the conjunctiva of patients with active VKC. These data suggest a potential role for CXCR3 receptors in the regulation of lymphocyte recruitment within conjunctiva of VKC patients. New therapeutic strategies that block CXCR3 may inhibit T lymphocyte recruitment and suppress adverse inflammatory reactions

  17. Aberrant expression and function of death receptor-3 and death decoy receptor-3 in human cancer

    PubMed Central

    GE, ZHICHENG; SANDERS, ANDREW J.; YE, LIN; JIANG, WEN G.

    2011-01-01

    Death receptor-3 (DR3) and death decoy receptor-3 (DcR3) are both members of the tumour necrosis factor receptor (TNFR) superfamily. The TNFR superfamily contains eight death domain-containing receptors, including TNFR1 (also called DR1), Fas (also called DR2), DR3, DR4, DR5, DR6, NGFR and EDAR. Upon the binding of these receptors with their corresponding ligands, the death domain recruits various proteins that mediate both the death and proliferation of cells. Receptor function is negatively regulated by decoy receptors (DcR1, DcR2, DcR3 and OPG). DR3/DcR3 are a pair of positive and negative players with which vascular endothelial growth inhibitor (VEGI) interacts. VEGI has been suggested to be a potential tumour suppressor. The inhibitory effects of VEGI on cancer are manifested in three main areas: a direct effect on cancer cells, an anti-angiogenic effect on endothelial cells, and the stimulation of dendritic cell maturation. A recent study indicated that DR3 may be a new receptor for E-selectin, which has been reported to be associated with cancer metastasis. DcR3 is a soluble receptor, highly expressed in various tumours, which lacks an apparent transmembrane segment, prevents cytokine response through ligand binding and neutralization, and is an inhibitor of apoptosis. DcR3 serves as a decoy receptor for FasL, LIGHT and VEGI. The cytokine LIGHT activates various anti-tumour functions and is expected to be a promising candidate for cancer therapy. Certain tumours may escape FasL-dependent immune-cytotoxic attack by expressing DcR3, which blocks FasL function. DR3/DcR3 play profound roles in regulating cell death and proliferation in cancer. The present review briefly discusses DR3/DcR3 and attempts to elucidate the role of these negative and positive players in cancer. PMID:22977485

  18. Evaluation of leptin receptor expression on buffalo leukocytes.

    PubMed

    De Matteis, Giovanna; Grandoni, Francesco; Scatà, Maria Carmela; Catizone, Angela; Reale, Anna; Crisà, Alessandra; Moioli, Bianca

    2016-09-01

    Experimental evidences support a direct role for leptin in immunity. Besides controlling food intake and energy expenditure, leptin was reported to be involved in the regulation of the immune system in ruminants. The aim of this work was to highlight the expression of leptin receptor (LEPR) on Bubalus bubalis immune cells using a multi-approach assessment: flow cytometry, confocal microscopy and gene expression analysis. Flow cytometric analysis of LEPR expression showed that peripheral blood monocytes were the predominant cells expressing LEPR. This result was corroborated by confocal microscopy and RT-PCR analysis. Moreover, among lymphocytes, LEPR was mainly expressed by B lymphocytes and Natural Killer cells. Evidence of LEPR expression on buffalo blood leukocytes showed to be a good indicator of the responsivity of these cells to leptin, so confirming the involvement of leptin in buffalo immune response. PMID:27436440

  19. Somatostatin receptors over-expression in castration resistant prostate cancer detected by PET/CT: preliminary report of in six patients

    PubMed Central

    Muni, Alfredo; Falchi, Roberta; Zaniboni, Alberto; Barbieri, Roberto; Valmadre, Giuseppe; Minari, Chiara; Casi, Camilla; Rossini, Pierluigi

    2015-01-01

    Prostate cancer (PC) is usually characterized by an excellent prognosis, largely due to little biological aggressiveness and the power of hormonal deprivation therapy. In spite of these favorable characteristics, however, a significant quota of patients does not respond to androgen deprivation therapy (ADT) and develop a progressive disease. Castration-resistant prostate cancer (CRPC) is defined by disease progression in spite of ADT. This progression may show any combination of a rise in serum prostate-specific antigen (PSA), clinical and radiological progression of pre-existing disease, and appearance of new metastases. This event is a striking change in the clinical scenario, since the power of treatment for CRPC patients with distant metastases is very limited. Somatostatin is a hormone produced by neuroendocrine cells. Its distant effects are mediated by the binding to five specific receptors, which are the most striking parameter for neuroendocrine. Various synthetic somatostatin agonists able to bind to the receptors have been synthesized during the past two decades for diagnostic and therapeutic purposes. Octreotide, the most popular of these, is widely used to treat patients affected by neuroendocrine tumors. A number of researches carried out in the past evaluated the possible neuroendocrine differentiation (NED) of PC cells in the castration resistant phase. If proved, the presence of a specific class of receptor on cell’s surfaces should give a potentially biological target to be used for therapy. However, these studies led to contradictory results. Aim of our phase III diagnostic trial was to study “in vivo” the over-expression of somatostatin receptors (SSTRs) in CRPC patients by PET/CT after the administration of the somatostatin analog [68Ga-DOTANOC,1-Nal(3)]-octreotide labeled with 68Ga. Every area of increased uptake corresponding to a metastasis detected with other methods was considered as SSTRs expressing. False positivity to SSTRs

  20. Expression of pattern recognition receptors in cholesteatoma.

    PubMed

    Lee, Ho Yun; Park, Moon Suh; Byun, Jae Yong; Kim, Young Il; Yeo, Seung Geun

    2014-02-01

    Although many immunologic mechanisms have been investigated in studies of the pathogenesis of cholesteatoma, the role of pattern recognition receptors (PRRs) has not been fully determined. Therefore, we assessed innate immune responses in patients with cholesteatoma. We prospectively evaluated 21 patients with acquired cholesteatoma between August 2010 and July 2012. Cholesteatoma specimens were obtained during surgery, and skin from the external meatus of each patient was used as a control. RNA was extracted from these tissue samples, followed by real-time PCR to quantitatively assess the relative expression of toll-like receptors (TLRs), NOD-like receptors (NLRs), retinoic acid-inducible gene (RIG)-I, NO synthase (NOS) and cytokines. The levels of TLR-2, -3, -4, -6, -7, and -10, NOD-2, and IL-1 and -8 mRNAs were significantly higher in the cholesteatoma than in the skin specimens (p < .05). The expression levels of TLR-2 and -3, RIG-I, IL-6, and TNF-α mRNAs were significantly higher in cholesteatomas from women than from men. The levels of TLR-8, NOD-2, IL-12, and TNF-α mRNAs were significantly higher in recurrent than in initial cholesteatoma specimens (p < .05). Hearing level did not correlate with the levels of expression of mRNAs encoding TLRs, NLRs, NOS, RIG-I and related cytokines (p > .05). In conclusion, alterations in innate immunity triggered by PRRs are important in the pathophysiology of cholesteatoma. Gender differences and frequency of surgery may affect the expression of PRRs in cholesteatomas.

  1. Dopamine Receptors in Human Adipocytes: Expression and Functions

    PubMed Central

    Borcherding, Dana C.; Hugo, Eric R.; Idelman, Gila; De Silva, Anuradha; Richtand, Nathan W.; Loftus, Jean; Ben-Jonathan, Nira

    2011-01-01

    Introduction Dopamine (DA) binds to five receptors (DAR), classified by their ability to increase (D1R-like) or decrease (D2R-like) cAMP. In humans, most DA circulates as dopamine sulfate (DA-S), which can be de-conjugated to bioactive DA by arylsulfatase A (ARSA). The objective was to examine expression of DAR and ARSA in human adipose tissue and determine whether DA regulates prolactin (PRL) and adipokine expression and release. Methods DAR were analyzed by RT-PCR and Western blotting in explants, primary adipocytes and two human adipocyte cell lines, LS14 and SW872. ARSA expression and activity were determined by qPCR and enzymatic assay. PRL expression and release were determined by luciferase reporter and Nb2 bioassay. Analysis of cAMP, cGMP, leptin, adiponectin and interleukin 6 (IL-6) was done by ELISA. Activation of MAPK and PI3 kinase/Akt was determined by Western blotting. Results DAR are variably expressed at the mRNA and protein levels in adipose tissue and adipocytes during adipogenesis. ARSA activity in adipocyte increases after differentiation. DA at nM concentrations suppresses cAMP, stimulates cGMP, and activates MAPK in adipocytes. Acting via D2R-like receptors, DA and DA-S inhibit PRL gene expression and release. Acting via D1R/D5R receptors, DA suppresses leptin and stimulates adiponectin and IL-6 release. Conclusions This is the first report that human adipocytes express functional DAR and ARSA, suggesting a regulatory role for peripheral DA in adipose functions. We speculate that the propensity of some DAR-activating antipsychotics to increase weight and alter metabolic homeostasis is due, in part, to their direct action on adipose tissue. PMID:21966540

  2. Molecular cloning and expression of the human interleukin 5 receptor

    PubMed Central

    1992-01-01

    Human interleukin 5 (IL-5) plays an important role in proliferation and differentiation of human eosinophils. We report the isolation of cDNA clones from cDNA libraries of human eosinophils by using murine IL-5 receptor alpha chain cDNA as a probe. Analysis of the predicted amino acid sequence indicated that the human IL-5 receptor has approximately 70% amino acid sequence homology with the murine IL-5 receptor and retains features common to the cytokine receptor superfamily. One cDNA clone encodes a glycoprotein of 420 amino acids (Mr 47,670) with an NH2- terminal hydrophobic region (20 amino acids), a glycosylated extracellular domain (324 amino acids), a transmembrane domain (21 amino acids), and a cytoplasmic domain (55 amino acids). Another cDNA encodes only the extracellular domain of this receptor molecule. Other cDNA clones encode molecules having diversified cytoplasmic domains. COS7 cells transfected with the cDNA expressed a approximately 60-kD protein and bound IL-5 with a single class of affinity (Kd = 250-590 pM). The Kd values were similar to that observed in normal human eosinophils. In contrast to the murine 60-kD alpha chain, which binds IL-5 with low affinity (Kd = approximately 10 nM), the human alpha chain homologue can bind IL-5 with much higher affinity by itself. RNA blot analysis of human cells demonstrated two transcripts (approximately 5.3 and 1.4 kb). Both of them were expressed in normal human eosinophils and in erythroleukemic cell line TF-1, which responds to IL-5. The human IL-5 receptor characterized in this paper is essential for signal transduction, because expression of this molecule in murine IL-3-dependent cell line FDC-P1 allowed these cells to proliferate in response to IL-5. PMID:1732409

  3. Local receptors as novel regulators for peripheral clock expression

    PubMed Central

    Wu, Changhao; Sui, Guiping; Archer, Simon N.; Sassone-Corsi, Paolo; Aitken, Karen; Bagli, Darius; Chen, Ying

    2014-01-01

    Mammalian circadian control is determined by a central clock in the brain suprachiasmatic nucleus (SCN) and synchronized peripheral clocks in other tissues. Increasing evidence suggests that SCN-independent regulation of peripheral clocks also occurs. We examined how activation of excitatory receptors influences the clock protein PERIOD 2 (PER2) in a contractile organ, the urinary bladder. PERIOD2::LUCIFERASE-knock-in mice were used to report real-time PER2 circadian dynamics in the bladder tissue. Rhythmic PER2 activities occurred in the bladder wall with a cycle of ∼24 h and peak at ∼12 h. Activation of the muscarinic and purinergic receptors by agonists shifted the peak to an earlier time (7.2±2.0 and 7.2±0.9 h, respectively). PER2 expression was also sensitive to mechanical stimulation. Aging significantly dampened PER2 expression and its response to the agonists. Finally, muscarinic agonist-induced smooth muscle contraction also exhibited circadian rhythm. These data identified novel regulators, endogenous receptors, in determining local clock activity, in addition to mediating the central control. Furthermore, the local clock appears to reciprocally align receptor activity to circadian rhythm for muscle contraction. The interaction between receptors and peripheral clock represents an important mechanism for maintaining physiological functions and its dysregulation may contribute to age-related organ disorders.—Wu, C., Sui, G., Archer, S. N., Sassone-Corsi, P., Aitken, K., Bagli, D., Chen, Y. Local receptors as novel regulators for peripheral clock expression. PMID:25145629

  4. Expression of androgen and progesterone receptors in primary human meningiomas.

    PubMed

    Maxwell, M; Galanopoulos, T; Neville-Golden, J; Antoniades, H N

    1993-03-01

    Meningiomas are common brain tumors that show a predilection for females and become more aggressive during pregnancy and menses. The existence of gender-specific hormone receptors in meningiomas has long been a matter of controversy; the recent cloning of androgen, estrogen, and progesterone receptors has facilitated their direct evaluation. The authors have demonstrated the expression of androgen and progesterone receptor messenger ribonucleic acid and protein product in nine primary human meningiomas by Northern blot analysis. Cellular localization was achieved by in situ hybridization analysis. Estrogen receptor expression was not detected. Normal adult meninges were shown to express very low levels of both androgen and progesterone receptors.

  5. Expression of estrogen and progesterone receptors in astrocytomas: a literature review.

    PubMed

    Tavares, Cléciton Braga; Gomes-Braga, Francisca das Chagas Sheyla Almeida; Costa-Silva, Danylo Rafhael; Escórcio-Dourado, Carla Solange; Borges, Umbelina Soares; Conde-Junior, Airton Mendes; Barros-Oliveira, Maria da Conceição; Sousa, Emerson Brandão; Barros, Lorena da Rocha; Martins, Luana Mota; Facina, Gil; da-Silva, Benedito Borges

    2016-08-01

    Gliomas are the most common type of primary central nervous system neoplasm. Astrocytomas are the most prevalent type of glioma and these tumors may be influenced by sex steroid hormones. A literature review for the presence of estrogen and progesterone receptors in astrocytomas was conducted in the PubMed database using the following MeSH terms: "estrogen receptor beta" OR "estrogen receptor alpha" OR "estrogen receptor antagonists" OR "progesterone receptors" OR "astrocytoma" OR "glioma" OR "glioblastoma". Among the 111 articles identified, 13 studies met our inclusion criteria. The majority of reports showed the presence of estrogen and progesterone receptors in astrocytomas. Overall, higher tumor grades were associated with decreased estrogen receptor expression and increased progesterone receptor expression. PMID:27626480

  6. Expression of a Novel D4 Dopamine Receptor in the Lamprey Brain. Evolutionary Considerations about Dopamine Receptors

    PubMed Central

    Pérez-Fernández, Juan; Megías, Manuel; Pombal, Manuel A.

    2016-01-01

    Numerous data reported in lampreys, which belong to the phylogenetically oldest branch of vertebrates, show that the dopaminergic system was already well developed at the dawn of vertebrate evolution. The expression of dopamine in the lamprey brain is well conserved when compared to other vertebrates, and this is also true for the D2 receptor. Additionally, the key role of dopamine in the striatum, modulating the excitability in the direct and indirect pathways through the D1 and D2 receptors, has also been recently reported in these animals. The moment of divergence regarding the two whole genome duplications occurred in vertebrates suggests that additional receptors, apart from the D1 and D2 previously reported, could be present in lampreys. We used in situ hybridization to characterize the expression of a novel dopamine receptor, which we have identified as a D4 receptor according to the phylogenetic analysis. The D4 receptor shows in the sea lamprey a more restricted expression pattern than the D2 subtype, as reported in mammals. Its main expression areas are the striatum, lateral and ventral pallial sectors, several hypothalamic regions, habenula, and mesencephalic and rhombencephalic motoneurons. Some expression areas are well conserved through vertebrate evolution, as is the case of the striatum or the habenula, but the controversies regarding the D4 receptor expression in other vertebrates hampers for a complete comparison, especially in rhombencephalic regions. Our results further support that the dopaminergic system in vertebrates is well conserved and suggest that at least some functions of the D4 receptor were already present before the divergence of lampreys. PMID:26778974

  7. Bile acid receptor agonist GW4064 regulates PPARγ coactivator-1α expression through estrogen receptor-related receptor α.

    PubMed

    Dwivedi, Shailendra Kumar Dhar; Singh, Nidhi; Kumari, Rashmi; Mishra, Jay Sharan; Tripathi, Sarita; Banerjee, Priyam; Shah, Priyanka; Kukshal, Vandana; Tyagi, Abdul Malik; Gaikwad, Anil Nilkanth; Chaturvedi, Rajnish Kumar; Mishra, Durga Prasad; Trivedi, Arun Kumar; Sanyal, Somali; Chattopadhyay, Naibedya; Ramachandran, Ravishankar; Siddiqi, Mohammad Imran; Bandyopadhyay, Arun; Arora, Ashish; Lundåsen, Thomas; Anakk, Sayee Priyadarshini; Moore, David D; Sanyal, Sabyasachi

    2011-06-01

    Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) is induced in energy-starved conditions and is a key regulator of energy homeostasis. This makes PGC-1α an attractive therapeutic target for metabolic syndrome and diabetes. In our effort to identify new regulators of PGC-1α expression, we found that GW4064, a widely used synthetic agonist for the nuclear bile acid receptor [farnesoid X receptor (FXR)] strongly enhances PGC-1α promoter reporter activity, mRNA, and protein expression. This induction in PGC-1α concomitantly enhances mitochondrial mass and expression of several PGC-1α target genes involved in mitochondrial function. Using FXR-rich or FXR-nonexpressing cell lines and tissues, we found that this effect of GW4064 is not mediated directly by FXR but occurs via activation of estrogen receptor-related receptor α (ERRα). Cell-based, biochemical and biophysical assays indicate GW4064 as an agonist of ERR proteins. Interestingly, FXR disruption alters GW4064 induction of PGC-1α mRNA in a tissue-dependent manner. Using FXR-null [FXR knockout (FXRKO)] mice, we determined that GW4064 induction of PGC-1α expression is not affected in oxidative soleus muscles of FXRKO mice but is compromised in the FXRKO liver. Mechanistic studies to explain these differences revealed that FXR physically interacts with ERR and protects them from repression by the atypical corepressor, small heterodimer partner in liver. Together, this interplay between ERRα-FXR-PGC-1α and small heterodimer partner offers new insights into the biological functions of ERRα and FXR, thus providing a knowledge base for therapeutics in energy balance-related pathophysiology.

  8. Superinduction of estrogen receptor mediated gene expression in luciferase based reporter gene assays is mediated by a post-transcriptional mechanism.

    PubMed

    Sotoca, A M; Bovee, T F H; Brand, W; Velikova, N; Boeren, S; Murk, A J; Vervoort, J; Rietjens, I M C M

    2010-10-01

    Several estrogenic compounds including the isoflavonoid genistein have been reported to induce a higher maximal response than the natural estrogen 17β-estradiol in in vitro luciferase based reporter gene bioassays for testing estrogenicity. The phenomenon has been referred to as superinduction. The mechanism underlying this effect and thus also its biological relevance remain to be elucidated. In the present study several hypotheses for the possible mechanisms underlying this superinduction were investigated using genistein as the model compound. These hypotheses included (i) a non-estrogen receptor (ER)-mediated mechanism, (ii) a role for an ER activating genistein metabolite with higher ER inducing activity than genistein itself, and (iii) a post-transcriptional mechanism that is not biologically relevant but specific for the luciferase based reporter gene assays. The data presented in this study indicate that induction and also superinduction of the reporter gene is ER-mediated, and that superinduction by genistein could be ascribed to stabilization of the firefly luciferase reporter enzyme increasing the bioluminescent signal during the cell-based assay. This indicates that the phenomenon of superinduction may not be biologically relevant but may rather represent a post-transcriptional effect on enzyme stability.

  9. Chemokine receptor expression by inflammatory T cells in EAE.

    PubMed

    Mony, Jyothi Thyagabhavan; Khorooshi, Reza; Owens, Trevor

    2014-01-01

    Chemokines direct cellular infiltration to tissues, and their receptors and signaling pathways represent targets for therapy in diseases such as multiple sclerosis (MS). The chemokine CCL20 is expressed in choroid plexus, a site of entry of T cells to the central nervous system (CNS). The CCL20 receptor CCR6 has been reported to be selectively expressed by CD4(+) T cells that produce the cytokine IL-17 (Th17 cells). Th17 cells and interferon-gamma (IFNγ)-producing Th1 cells are implicated in induction of MS and its animal model experimental autoimmune encephalomyelitis (EAE). We have assessed whether CCR6 identifies specific inflammatory T cell subsets in EAE. Our approach was to induce EAE, and then examine chemokine receptor expression by cytokine-producing T cells sorted from CNS at peak disease. About 7% of CNS-infiltrating CD4(+) T cells produced IFNγ in flow cytometric cytokine assays, whereas less than 1% produced IL-17. About 1% of CD4(+) T cells produced both cytokines. CCR6 was expressed by Th1, Th1+17 and by Th17 cells, but not by CD8(+) T cells. CD8(+) T cells expressed CXCR3, which was also expressed by CD4(+) T cells, with no correlation to cytokine profile. Messenger RNA for IFNγ, IL-17A, and the Th1 and Th17-associated transcription factors T-bet and RORγt was detected in both CCR6(+) and CXCR3(+) CD4(+) T cells. IFNγ, but not IL-17A mRNA expression was detected in CD8(+) T cells in CNS. CCR6 and CD4 were co-localized in spinal cord infiltrates by double immunofluorescence. Consistent with flow cytometry data some but not all CD4(+) T cells expressed CCR6 within infiltrates. CD4-negative CCR6(+) cells included macrophage/microglial cells. Thus we have for the first time directly studied CD4(+) and CD8(+) T cells in the CNS of mice with peak EAE, and determined IFNγ and IL17 expression by cells expressing CCR6 and CXCR3. We show that neither CCR6 or CXCR3 align with CD4 T cell subsets, and Th1 or mixed Th1+17 predominate in EAE.

  10. Expression of estrogen and progesterone receptors in astrocytomas: a literature review

    PubMed Central

    Tavares, Cléciton Braga; Gomes-Braga, Francisca das Chagas Sheyla Almeida; Costa-Silva, Danylo Rafhael; Escórcio-Dourado, Carla Solange; Borges, Umbelina Soares; Conde, Airton Mendes; da Conceição Barros-Oliveira, Maria; Sousa, Emerson Brandão; da Rocha Barros, Lorena; Martins, Luana Mota; Facina, Gil; da-Silva, Benedito Borges

    2016-01-01

    Gliomas are the most common type of primary central nervous system neoplasm. Astrocytomas are the most prevalent type of glioma and these tumors may be influenced by sex steroid hormones. A literature review for the presence of estrogen and progesterone receptors in astrocytomas was conducted in the PubMed database using the following MeSH terms: “estrogen receptor beta” OR “estrogen receptor alpha” OR “estrogen receptor antagonists” OR “progesterone receptors” OR “astrocytoma” OR “glioma” OR “glioblastoma”. Among the 111 articles identified, 13 studies met our inclusion criteria. The majority of reports showed the presence of estrogen and progesterone receptors in astrocytomas. Overall, higher tumor grades were associated with decreased estrogen receptor expression and increased progesterone receptor expression. PMID:27626480

  11. Expression of estrogen and progesterone receptors in astrocytomas: a literature review

    PubMed Central

    Tavares, Cléciton Braga; Gomes-Braga, Francisca das Chagas Sheyla Almeida; Costa-Silva, Danylo Rafhael; Escórcio-Dourado, Carla Solange; Borges, Umbelina Soares; Conde, Airton Mendes; da Conceição Barros-Oliveira, Maria; Sousa, Emerson Brandão; da Rocha Barros, Lorena; Martins, Luana Mota; Facina, Gil; da-Silva, Benedito Borges

    2016-01-01

    Gliomas are the most common type of primary central nervous system neoplasm. Astrocytomas are the most prevalent type of glioma and these tumors may be influenced by sex steroid hormones. A literature review for the presence of estrogen and progesterone receptors in astrocytomas was conducted in the PubMed database using the following MeSH terms: “estrogen receptor beta” OR “estrogen receptor alpha” OR “estrogen receptor antagonists” OR “progesterone receptors” OR “astrocytoma” OR “glioma” OR “glioblastoma”. Among the 111 articles identified, 13 studies met our inclusion criteria. The majority of reports showed the presence of estrogen and progesterone receptors in astrocytomas. Overall, higher tumor grades were associated with decreased estrogen receptor expression and increased progesterone receptor expression.

  12. Androgen receptor transcriptionally regulates μ-opioid receptor expression in rat trigeminal ganglia.

    PubMed

    Lee, Ki Seok; Zhang, Youping; Asgar, Jamila; Auh, Q-Schick; Chung, Man-Kyo; Ro, Jin Y

    2016-09-01

    The involvement of testosterone in pain, inflammation, and analgesia has been reported, but the role of androgen receptor (AR), a steroid receptor for testosterone, is not well understood. We have previously shown that peripheral inflammation upregulates μ-opioid receptor (MOR) in rat trigeminal ganglia (TG) in a testosterone-dependent manner. In this study, we hypothesized that testosterone regulates MOR expression via transcriptional activities of AR in TG. We first examined whether AR is co-expressed with MOR in TG neurons. Our immunohistochemical experiment revealed that AR staining is detected in neurons of all sizes in TG and that a subset of AR is expressed in MOR as well as in TRPV1-positive neurons. We identified the promoter region of the rat MOR gene contains putative AR binding sites. Using chromatin immunoprecipitation assay, we demonstrated that AR directly binds to these sites in TG extracts. We confirmed with luciferase reporter assay that AR activated the MOR promoter in response to androgens in a human neuroblastoma cell line (5H-5YSY). These data demonstrated that AR functions as a transcriptional regulator of the MOR gene activity. Finally, we showed that flutamide, a specific AR antagonist, prevents complete Freund's adjuvant (CFA)-induced upregulation of MOR mRNA in TG, and that flutamide dose-dependently blocks the efficacy of DAMGO, a specific MOR agonist, on CFA-induced mechanical hypersensitivity. Our results expand the knowledge regarding the role of androgens and their receptor in pain and analgesia and have important clinical implications, particularly for inflammatory pain patients with low or compromised plasma testosterone levels. PMID:27320211

  13. Expression and reconstitution of the bioluminescent Ca(2+) reporter aequorin in human embryonic stem cells, and exploration of the presence of functional IP3 and ryanodine receptors during the early stages of their differentiation into cardiomyocytes.

    PubMed

    Chan, Harvey Y S; Cheung, Man Chun; Gao, Yi; Miller, Andrew L; Webb, Sarah E

    2016-08-01

    In order to develop a novel method of visualizing possible Ca(2+) signaling during the early differentiation of hESCs into cardiomyocytes and avoid some of the inherent problems associated with using fluorescent reporters, we expressed the bioluminescent Ca(2+) reporter, apo-aequorin, in HES2 cells and then reconstituted active holo-aequorin by incubation with f-coelenterazine. The temporal nature of the Ca(2+) signals generated by the holo-f-aequorin-expressing HES2 cells during the earliest stages of differentiation into cardiomyocytes was then investigated. Our data show that no endogenous Ca(2+) transients (generated by release from intracellular stores) were detected in 1-12-day-old cardiospheres but transients were generated in cardiospheres following stimulation with KCl or CaCl2, indicating that holo-f-aequorin was functional in these cells. Furthermore, following the addition of exogenous ATP, an inositol trisphosphate receptor (IP3R) agonist, small Ca(2+) transients were generated from day 1 onward. That ATP was inducing Ca(2+) release from functional IP3Rs was demonstrated by treatment with 2-APB, a known IP3R antagonist. In contrast, following treatment with caffeine, a ryanodine receptor (RyR) agonist, a minimal Ca(2+) response was observed at day 8 of differentiation only. Thus, our data indicate that unlike RyRs, IP3Rs are present and continually functional at these early stages of cardiomyocyte differentiation. PMID:27430888

  14. Expression of the Endocannabinoid Receptors in Human Fascial Tissue

    PubMed Central

    Fede, C.; Albertin, G.; Petrelli, L.; Sfriso, M.M.; Biz, C.; Caro, R. De; Stecco, C.

    2016-01-01

    Cannabinoid receptors have been localized in the central and peripheral nervous system as well as on cells of the immune system, but recent studies on animal tissue gave evidence for the presence of cannabinoid receptors in different types of tissues. Their presence was supposed also in myofascial tissue, suggesting that the endocannabinoid system may help resolve myofascial trigger points and relieve symptoms of fibromyalgia. However, until now the expression of CB1 (cannabinoid receptor 1) and CB2 (cannabinoid receptor 2) in fasciae has not yet been established. Small samples of fascia were collected from volunteers patients during orthopedic surgery. For each sample were done a cell isolation, immunohistochemical investigation (CB1 and CB2 antibodies) and real time RT-PCR to detect the expression of CB1 and CB2. Both cannabinoid receptors are expressed in human fascia and in human fascial fibroblasts culture cells, although to a lesser extent than the control gene. We can assume that the expression of mRNA and protein of CB1 and CB2 receptors in fascial tissue are concentrated into the fibroblasts. This is the first demonstration that the fibroblasts of the muscular fasciae express CB1 and CB2. The presence of these receptors could help to provide a description of cannabinoid receptors distribution and to better explain the role of fasciae as pain generator and the efficacy of some fascial treatments. Indeed the endocannabinoid receptors of fascial fibroblasts can contribute to modulate the fascial fibrosis and inflammation. PMID:27349320

  15. Simvastatin enhances bone morphogenetic protein receptor type II expression

    SciTech Connect

    Hu Hong; Sung, Arthur; Zhao, Guohua; Shi, Lingfang; Qiu Daoming; Nishimura, Toshihiko; Kao, Peter N. . E-mail: peterkao@stanford.edu

    2006-01-06

    Statins confer therapeutic benefits in systemic and pulmonary vascular diseases. Bone morphogenetic protein (BMP) receptors serve essential signaling functions in cardiovascular development and skeletal morphogenesis. Mutations in BMP receptor type II (BMPR2) are associated with human familial and idiopathic pulmonary arterial hypertension, and pathologic neointimal proliferation of vascular endothelial and smooth muscle cells within small pulmonary arteries. In severe experimental pulmonary hypertension, simvastatin reversed disease and conferred a 100% survival advantage. Here, modulation of BMPR2 gene expression by simvastatin is characterized in human embryonic kidney (HEK) 293T, pulmonary artery smooth muscle, and lung microvascular endothelial cells (HLMVECs). A 1.4 kb BMPR2 promoter containing Egr-1 binding sites confers reporter gene activation in 293T cells which is partially inhibited by simvastatin. Simvastatin enhances steady-state BMPR2 mRNA and protein expression in HLMVEC, through posttranscriptional mRNA stabilization. Simvastatin induction of BMPR2 expression may improve BMP-BMPR2 signaling thereby enhancing endothelial differentiation and function.

  16. Glutamate receptor subunit expression in primary neuronal and secondary glial cultures.

    PubMed

    Janssens, N; Lesage, A S

    2001-06-01

    We report on the expression of ionotropic glutamate receptor subunits in primary neuronal cultures from rat cortex, hippocampus and cerebellum and of metabotropic glutamate (mGlu) receptor subtypes in these neuronal cultures as well as in cortical astroglial cultures. We found that the NMDA receptor (NR) subunits NR1, NR2A and NR2B were expressed in all three cultures. Each of the three cultures showed also expression of the four AMPA receptor subunits. Although RT-PCR detected mRNA of all kainate (KA) subunits in the three cultures, western blot showed only expression of Glu6 and KA2 receptor subunits. The expression analysis of mGlu receptors indicated the presence of all mGlu receptor subtype mRNAs in the three neuronal cultures, except for mGlu2 receptor mRNA, which was not detected in the cortical and cerebellar culture. mGlu1a/alpha, -2/3 and -5 receptor proteins were present in all three cultures, whereas mGlu4a and mGlu8a receptor proteins were not detected. Astroglial cultures were grown in either serum-containing or chemically defined medium. Only mGlu5 receptor protein was found in astroglial cultures grown in serum-containing medium. When astrocytes were cultured in chemically defined medium, mGlu3, -5 and -8 receptor mRNAs were detected, but at the protein level, still only mGlu5 receptor was found. PMID:11413230

  17. 5-HT7 receptor activation promotes an increase in TrkB receptor expression and phosphorylation

    PubMed Central

    Samarajeewa, Anshula; Goldemann, Lolita; Vasefi, Maryam S.; Ahmed, Nawaz; Gondora, Nyasha; Khanderia, Chandni; Mielke, John G.; Beazely, Michael A.

    2014-01-01

    The serotonin (5-HT) type 7 receptor is expressed throughout the CNS including the cortex and hippocampus. We have previously demonstrated that the application of 5-HT7 receptor agonists to primary hippocampal neurons and SH-SY5Y cells increases platelet-derived growth factor (PDGF) receptor expression and promotes neuroprotection against N-methyl-D-aspartate-(NMDA)-induced toxicity. The tropomyosin-related kinase B (TrkB) receptor is one of the receptors for brain-derived neurotrophic factor (BDNF) and is associated with neurodevelopmental and neuroprotective effects. Application of LP 12 to primary cerebral cortical cultures, SH-SY5Y cells, as well as the retinal ganglion cell line, RGC-5, increased both the expression of full length TrkB as well as its basal phosphorylation state at tyrosine 816. The increase in TrkB expression and phosphorylation was observed as early as 30 min after 5-HT7 receptor activation. In addition to full-length TrkB, kinase domain-deficient forms may be expressed and act as dominant-negative proteins toward the full length receptor. We have identified distinct patterns of TrkB isoform expression across our cell lines and cortical cultures. Although TrkB receptor expression is regulated by cyclic AMP and Gαs-coupled GPCRs in several systems, we demonstrate that, depending on the model system, pathways downstream of both Gαs and Gα12 are involved in the regulation of TrkB expression by 5-HT7 receptors. Given the number of psychiatric and degenerative diseases associated with TrkB/BDNF deficiency and the current interest in developing 5-HT7 receptor ligands as pharmaceuticals, identifying signaling relationships between these two receptors will aid in our understanding of the potential therapeutic effects of 5-HT7 receptor ligands. PMID:25426041

  18. A NOVEL CELL LINE, MDA-KB2, THAT STABLY EXPRESSES AN ANDROGEN AND GLUCOCORTICOID RESPONSIVE REPORTER FOR THE DETECTION OF HORMONE RECEPTOR AGONISTS AND ANTAGONISTS

    EPA Science Inventory

    The U.S. Environmental Protection Agency has proposed that in vitro assays for estrogen receptor (ER) and androgen receptor (AR) mediated actions be included in a Tier I screening battery to detect hormonally active chemicals. Herein we describe the development of a novel stab...

  19. A second trigeminal CGRP receptor: function and expression of the AMY1 receptor

    PubMed Central

    Walker, Christopher S; Eftekhari, Sajedeh; Bower, Rebekah L; Wilderman, Andrea; Insel, Paul A; Edvinsson, Lars; Waldvogel, Henry J; Jamaluddin, Muhammad A; Russo, Andrew F; Hay, Debbie L

    2015-01-01

    Objective The trigeminovascular system plays a central role in migraine, a condition in need of new treatments. The neuropeptide, calcitonin gene-related peptide (CGRP), is proposed as causative in migraine and is the subject of intensive drug discovery efforts. This study explores the expression and functionality of two CGRP receptor candidates in the sensory trigeminal system. Methods Receptor expression was determined using Taqman G protein-coupled receptor arrays and immunohistochemistry in trigeminal ganglia (TG) and the spinal trigeminal complex of the brainstem in rat and human. Receptor pharmacology was quantified using sensitive signaling assays in primary rat TG neurons. Results mRNA and histological expression analysis in rat and human samples revealed the presence of two CGRP-responsive receptors (AMY1: calcitonin receptor/receptor activity-modifying protein 1 [RAMP1]) and the CGRP receptor (calcitonin receptor-like receptor/RAMP1). In support of this finding, quantification of agonist and antagonist potencies revealed a dual population of functional CGRP-responsive receptors in primary rat TG neurons. Interpretation The unexpected presence of a functional non-canonical CGRP receptor (AMY1) at neural sites important for craniofacial pain has important implications for targeting the CGRP axis in migraine. PMID:26125036

  20. The Relevance of Group II Glutamate Receptors Expression to Anxiety.

    PubMed

    Ravid, Jonathan D; Mostofsky, David I

    2016-01-01

    The interface of receptor-mediated regulation of cellular signaling and neurological outputs remains an active field of investigation. The metabotropic G protein-coupled glutamate receptors, and in particular, the group II cyclic adenosine mono-phosphate (cAMP)-lowering metabotropic glutamate receptors 2 and 3 (mGlu2/3 glutamate receptors), have gained interest as therapeutic targets in different forms of neurological disorders. This review explores mGlu2/3 glutamate receptors expression, pharmacological activation, and signaling links to anxiety, as assessed in animal models and in clinical trials. PMID:27650988

  1. Flumazenil decreases surface expression of α4β2δ GABAA receptors by increasing the rate of receptor internalization.

    PubMed

    Kuver, Aarti; Smith, Sheryl S

    2016-01-01

    Increases in expression of α4βδ GABAA receptors (GABARs), triggered by fluctuations in the neurosteroid THP (3α-OH-5α[β]-pregnan-20-one), are associated with changes in mood and cognition. We tested whether α4βδ trafficking and surface expression would be altered by in vitro exposure to flumazenil, a benzodiazepine ligand which reduces α4βδ expression in vivo. We first determined that flumazenil (100 nM-100 μM, IC50=∼1 μM) acted as a negative modulator, reducing GABA (10 μM)-gated current in the presence of 100 nM THP (to increase receptor efficacy), assessed with whole cell patch clamp recordings of recombinant α4β2δ expressed in HEK-293 cells. Surface expression of recombinant α4β2δ receptors was detected using a 3XFLAG reporter at the C-terminus of α4 (α4F) using confocal immunocytochemical techniques following 48 h exposure of cells to GABA (10 μM)+THP (100 nM). Flumazenil (10 μM) decreased surface expression of α4F by ∼60%, while increasing its intracellular accumulation, after 48 h. Reduced surface expression of α4β2δ after flumazenil treatment was confirmed by decreases in the current responses to 100 nM of the GABA agonist gaboxadol. Flumazenil-induced decreases in surface expression of α4β2δ were prevented by the dynamin blocker, dynasore, and by leupeptin, which blocks lysosomal enzymes, suggesting that flumazenil is acting to increase endocytosis and lysosomal degradation of the receptor. Flumazenil increased the rate of receptor removal from the cell surface by 2-fold, assessed using botulinum toxin B to block insertion of new receptors. These findings may suggest new therapeutic strategies for regulation of α4β2δ expression using flumazenil.

  2. Actions of picrotoxinin analogues on an expressed, homo-oligomeric GABA receptor of Drosophila melanogaster.

    PubMed

    Shirai, Y; Hosie, A M; Buckingham, S D; Holyoke, C W; Baylis, H A; Sattelle, D B

    1995-04-01

    The actions of picrotoxinin and four of its analogues were tested on a Drosophila melanogaster homo-oligomeric GABA (gamma-aminobutyric acid) receptor formed when RDL (resistance to dieldrin) subunits were expressed in Xenopus oocytes. In agreement with previously reported studies on native insect GABA receptors and native expressed vertebrate GABA receptors, acetylation of the bridgehead hydroxyl group (picrotoxinin acetate) greatly reduced the activity of the molecule, but surprisingly, substitution with flourine at the same position also reduced the activity. Conversion of the terminal isopropenyl group to an acetyl (alpha-picrotoxinone) or hydration of the double bond (picrotin) also reduced activity, in agreement with findings for native insect and mammalian receptors. The present results suggest that interactions of convulsants with homo-oligomeric and multimeric GABA receptors are qualitatively similar. Thus, the RDL homo-oligomer exhibits a pharmacological profile for picrotoxinin analogues resembling that of native GABA receptors. PMID:7603613

  3. Melanocortin 4 Receptor and Dopamine D2 Receptor Expression in Brain Areas Involved in Food Intake

    PubMed Central

    Yoon, Ye Ran

    2015-01-01

    Background The melanocortin 4 receptor (MC4R) is involved in the regulation of homeostatic energy balance by the hypothalamus. Recent reports showed that MC4R can also control the motivation for food in association with a brain reward system, such as dopamine. We investigated the expression levels of MC4R and the dopamine D2 receptor (D2R), which is known to be related to food rewards, in both the hypothalamus and brain regions involved in food rewards. Methods We examined the expression levels of D2R and MC4R by dual immunofluorescence histochemistry in hypothalamic regions and in the bed nucleus of the stria terminalis (BNST), the central amygdala, and the ventral tegmental area of transgenic mice expressing enhanced green fluorescent protein under the control of the D2R gene. Results In the hypothalamic area, significant coexpression of MC4R and D2R was observed in the arcuate nucleus. We observed a significant coexpression of D2R and MC4R in the BNST, which has been suggested to be an important site for food reward. Conclusion We suggest that MC4R and D2R function in the hypothalamus for control of energy homeostasis and that within the brain regions related with rewards, such as the BNST, the melanocortin system works synergistically with dopamine for the integration of food motivation in the control of feeding behaviors. PMID:26790386

  4. Heterologous expression of G-protein-coupled receptors in yeast.

    PubMed

    Bertheleme, Nicolas; Singh, Shweta; Dowell, Simon; Byrne, Bernadette

    2015-01-01

    Heterologous yeast expression systems have been successfully used for the production of G-protein-coupled receptors (GPCRs) for both structural and functional studies. Yeast combine comparatively low cost and short culture times with straightforward generation of expression clones. They also perform some key posttranslational modifications not possible in bacterial systems. There are two major yeast expression systems, Pichia pastoris and Saccharomyces cerevisiae, both of which have been used for the production of GPCRs. P. pastoris has a proven track record for the production of large amounts of GPCR for structural studies. High-resolution crystal structures of both the adenosine A2A and the histamine H1 receptors have been obtained using protein expressed in this system. S. cerevisiae is relatively easy to engineer and this has resulted in the development of sophisticated tools for the functional characterization of GPCRs. In this chapter, we provide protocols for both large-scale receptor expression in P. pastoris for structural studies and small-scale receptor expression in S. cerevisiae for functional characterization. In both cases, the receptor used is the human adenosine A2A receptor. The results that both we and others have obtained using these protocols show the wide utility of the yeast expression systems for the production of GPCRs.

  5. Peripheral benzodiazepine receptor (PBR) ligand cytotoxicity unrelated to PBR expression.

    PubMed

    Hans, Gregory; Wislet-Gendebien, Sabine; Lallemend, François; Robe, Pierre; Rogister, Bernard; Belachew, Shibeshih; Nguyen, Laurent; Malgrange, Brigitte; Moonen, Gustave; Rigo, Jean-Michel

    2005-03-01

    Some synthetic ligands of the peripheral-type benzodiazepine receptor (PBR), an 18 kDa protein of the outer mitochondrial membrane, are cytotoxic for several tumor cell lines and arise as promising chemotherapeutic candidates. However, conflicting results were reported regarding the actual effect of these drugs on cellular survival ranging from protection to toxicity. Moreover, the concentrations needed to observe such a toxicity were usually high, far above the affinity range for their receptor, hence questioning its specificity. In the present study, we have shown that micromolar concentrations of FGIN-1-27 and Ro 5-4864, two chemically unrelated PBR ligands are toxic for both PBR-expressing SK-N-BE neuroblastoma cells and PBR-deficient Jurkat lymphoma cells. We have thereby demonstrated that the cytotoxicity of these drugs is unrelated to their PBR-binding activity. Moreover, Ro 5-4864-induced cell death differed strikingly between both cell types, being apoptotic in Jurkat cells while necrotic in SK-N-BE cells. Again, this did not seem to be related to PBR expression since Ro 5-4864-induced death of PBR-transfected Jurkat cells remained apoptotic. Taken together, our results show that PBR is unlikely to mediate all the effects of these PBR ligands. They however confirm that some of these ligands are very effective cytotoxic drugs towards various cancer cells, even for reputed chemoresistant tumors such as neuroblastoma, and, surprisingly, also for PBR-lacking tumor cells.

  6. Farnesoid X receptor represses hepatic lipase gene expression.

    PubMed

    Sirvent, Audrey; Verhoeven, Adrie J M; Jansen, Hans; Kosykh, Vladimir; Darteil, Raphaël J; Hum, Dean W; Fruchart, Jean-Charles; Staels, Bart

    2004-11-01

    The farnesoid X receptor (FXR) is a nuclear receptor that regulates gene expression in response to bile acids (BAs). FXR plays a central role in BA, cholesterol, and lipoprotein metabolism. Here, we identify HL, an enzyme involved in the metabolism of remnant and high density lipoproteins, as a novel FXR-regulated gene. The natural FXR ligand, chenodeoxycholic acid (CDCA), downregulates HL gene expression in a dose- and time-dependent manner in human hepatoma HepG2 cells. The nonsteroidal synthetic FXR agonist GW4064 also decreases HL mRNA levels in HepG2 cells and in primary human hepatocytes. Moreover, the decrease of HL mRNA levels after treatment with FXR agonists was associated with a significant decrease in secreted enzymatic activity. In addition, FXR-specific gene silencing using small interfering RNAs demonstrated that CDCA- and GW4064-mediated downregulation of HL transcript levels occurs via an FXR-dependent mechanism. Finally, using transient transfection experiments, it is shown that FXR represses transcriptional activity of a reporter driven by the -698/+13 bp human HL promoter. Taken together, these results identify HL as a new FXR-regulated gene in human liver cells. In view of the role of HL in plasma lipoprotein metabolism, our results further emphasize the central role of FXR in lipid homeostasis.

  7. High expression of NPY receptors in the human testis.

    PubMed

    Körner, Meike; Waser, Beatriche; Thalmann, George N; Reubii, Jean Claude

    2011-04-30

    NPY receptors represent novel molecular therapeutic targets in cancer and obesity. However, the extent of NPY receptor expression in normal human tissues is poorly investigated. Based on the role of NPY in reproductive functions, the NPY receptor expression was studied in 25 normal human testes and, additionally, 24 testicular tumors using NPY receptor autoradiography. In the normal testis, Leydig cells strongly expressed NPY receptor subtype Y2, and small arterial blood vessels Y1. Y2 receptors were found to be functional with agonist-stimulated [(35)S]GTPγS binding autoradiography. Full functional integrity of the NPY system was further suggested by the immunohistochemical detection of NPY peptide in nerve fibers directly adjacent to Leydig cells and arteries. Germ cell tumors expressed Y1 and Y2 on tumor cells in 33% and Y1 on intratumoral blood vessels in 50%. Based on its strong NPY receptor expression in Leydig cells and blood vessels, the normal human testis represents a potentially important physiological and pharmalogical NPY target.

  8. The Estrogen ReceptorExpression in De Quervain's Disease.

    PubMed

    Shen, Po-Chuan; Wang, Ping-Hui; Wu, Po-Ting; Wu, Kuo-Chen; Hsieh, Jeng-Long; Jou, I-Ming

    2015-01-01

    Stenosing tenosynovitis of the first dorsal compartment of the wrist (a.k.a. de Quervain's disease) is common but how estrogen is involved is still unknown. We previously reported that inflammation was involved in the pathogenesis of this ailment. In the present study, we extended our investigation of estrogen receptor (ER)-β expression to determine whether estrogen is involved in the pathogenesis of de Quervain's. Intraoperative retinaculum samples were collected from 16 patients with the ailment. Specimens were histologically graded by collagen structure and immunohistochemically evaluated by quantifying the expression of ER-β, interleukin (IL)-1β and IL-6 (inflammatory cytokines), cyclooxygenase (COX)-2 (an inflammatory enzyme), and vascular endothelial growth factor (VEGF), and Von Willebrand's factor (vWF). De Quervain's occurs primarily in women. The female:male ratio in our study was 7:1. We found that ER-β expression in the retinaculum was positively correlated with disease grade and patient age. Additionally, disease severity was associated with inflammatory factors--IL-1β and IL-6, COX-2, and VEGF and vWF in tenosynovial tissue. The greater the levels of ER-β expression, tissue inflammation, and angiogenesis are, the more severe de Quervain's disease is. ER-β might be a useful target for novel de Quervain's disease therapy. PMID:26556342

  9. Expression of bone morphogenetic protein receptors in the developing mouse metanephros.

    PubMed

    Martinez, G; Loveland, K L; Clark, A T; Dziadek, M; Bertram, J F

    2001-01-01

    While bone morphogenetic proteins (BMPs) 2, 4 and 7 have recently been implicated in aspects of metanephric development, and expression patterns of these ligands have been described in the developing metanephros, the distribution of BMP receptors in developing metanephroi remains unknown. In the present study, in situ hybridisation histochemistry was used to localise mRNAs for BMP type-I receptors (BMPR-IA and BMPR-IB) and the BMP type-II receptor (BMPR-II) in developing mouse metanephroi. At embryonic day 12.5 (E12.5) and E14.5 transcripts for BMP type-I receptors were localised to the tips and body of the branching ureter as well as mesenchymal condensates, developing vesicles and comma-shaped bodies. Localisation of BMPR-II transcripts was similar although expression was not observed in the body of the ureter. At E17.5, transcripts for all three receptors were localised in the nephrogenic zone including ureteric tips, vesicles, comma- and S-shaped bodies as well the body of the ureter and in tubules. BMP type-I and type-II receptor transcripts co-localised with each other, in agreement with the well-documented evidence that BMPs signal via heterotetrameric complexes of type-I and type-II receptors and with the previously reported metanephric expression pattern of BMPs. These patterns of receptor expression suggest that these molecules are important regulators of epithelial-mesenchymal interactions, nephron development and ureteric branching morphogenesis.

  10. Oleocanthal Modulates Estradiol-Induced Gene Expression Involving Estrogen Receptor α.

    PubMed

    Keiler, Annekathrin Martina; Djiogue, Sefirin; Ehrhardt, Tino; Zierau, Oliver; Skaltsounis, Leandros; Halabalaki, Maria; Vollmer, Günter

    2015-09-01

    Oleocanthal is a bioactive compound from olive oil. It has attracted considerable attention as it is anti-inflammatory, antiproliferative, and has been shown to possess neuroprotective properties in vitro and in vivo. Delineated from its polyphenolic structure, the aim of this study was to characterize oleocanthal towards estrogenic properties. This might contribute to partly explain the beneficial effects described for the Mediterranean diet. Estrogenic properties of oleocanthal were assessed by different methods: a) stimulation of reporter gene activity in MVLN or RNDA cells either expressing estrogen receptor α or β, b) stimulation of luciferase reporter gene activity in U2OS osteosarcoma cells expressing estrogen receptor α or β, and c) elucidation of the impact on estradiol-induced gene expression in U2OS cells transduced with both estrogen receptors. Depending on the cell line origin, oleocanthal inhibited luciferase activity (MVLN, U2OS-estrogen receptor β) or weakly induced reporter gene activity at 10 µM in U2OS-estrogen receptor α cells. However, oleocanthal inhibited stimulation of luciferase activity by estradiol from both estrogen receptors. Oleocanthal, if given alone, did not stimulate gene expression in U2OS cells, but it significantly modulated the response of estradiol. Oleocanthal enhanced the effect of estradiol on the regulation of those genes, which are believed to be regulated through heterodimeric estrogen receptors. As the estrogenic response pattern of oleocanthal is rather unique, we compared the results obtained with oleacein. Oleocanthal binds to both estrogen receptors inducing estradiol-agonistic or antiagonistic effects depending on the cell line. Regarding regulation of gene expression in U2OS-estrogen receptor α/β cells, oleocanthal and oleacein enhanced estradiol-mediated regulation of heterodimer-regulated genes. PMID:26166135

  11. Mistargeting hippocampal axons by expression of a truncated Eph receptor

    PubMed Central

    Yue, Yong; Chen, Zhi-Yong; Gale, Nick W.; Blair-Flynn, Jan; Hu, Tian-Jing; Yue, Xin; Cooper, Margaret; Crockett, David P.; Yancopoulos, George D.; Tessarollo, Lino; Zhou, Renping

    2002-01-01

    Topographic mapping of axon terminals is a general principle of neural architecture that underlies the interconnections among many neural structures. The Eph family tyrosine kinase receptors and their ligands, the ephrins, have been implicated in the formation of topographic projection maps. We show that multiple Eph receptors and ligands are expressed in the hippocampus and its major subcortical projection target, the lateral septum, and that expression of a truncated Eph receptor in the mouse brain results in a pronounced alteration of the hippocamposeptal topographic map. Our observations provide strong support for a critical role of Eph family guidance factors in regulating ontogeny of hippocampal projections. PMID:12124402

  12. Expression of notch receptors and ligands in the adult gut.

    PubMed

    Sander, Guy R; Powell, Barry C

    2004-04-01

    The Notch signaling pathway has become recognized as a vitally important pathway in regulating proliferative/differentiative decisions and cell fate. To explore the involvement of the Notch pathway in adult gut, we investigated the expression of Notch receptors and their ligands by Northern blotting and in situ hybridization. Notch receptors and ligands were expressed in both proliferative and post-mitotic cells throughout adult rat gut, variously in epithelial, immune, and endothelial cells. Expression of Notch1, Jagged1, and Jagged2 frequently overlapped, whereas Notch2 expression was restricted to specific crypt cells, the lamina propria of the large intestine, and Peyer's patch lymphocytes. We propose that the expression of multiple Notch receptors and ligands in a range of different intestinal cell types indicates that this signaling pathway underpins many of the processes involved in the maintenance and function of the adult gut.

  13. A NOVEL CELL LINE THAT STABLY EXPRESSES AN ANDROGEN RESPONSIVE LUCIFERASE REPORTER FOR THE DETECTION OF ANDROGEN RECEPTOR (AR) AGONISTS AND ANTAGONISTS

    EPA Science Inventory

    The use of in vitro assays to screen chemicals for estrogen receptor (ER) and AR mediated actions is being evaluated by the USEPA for use in a Tier I screening battery to detect endocrine active chemicals. We have developed a stable cell line, MDA-MB-453-KB2, for screening of and...

  14. A NOVEL CELL LINE THAT STABLY EXPRESSES AN ANDROGEN RESPONSIVE LUCIFERASE REPORTER FOR THE DETECTION OF ANDROGEN RECEPTOR (AR) AGONIST AND ANTAGONISTS

    EPA Science Inventory

    The use of in vitro assays to screen chemicals for estrogen receptor (ER) and AR mediated actions is being evaluated by the USEPA for use in a Tier I screening battery to detect endocrine active chemicals. We have developed a stable cell line, MDA-MB-453-KB2, for screening of and...

  15. Estrogen receptor alpha and androgen receptor are commonly expressed in well-differentiated liposarcoma

    PubMed Central

    2014-01-01

    Background Liposarcoma (LS) is the second-most common type of soft-tissue sarcoma. Despite advances in knowledge and treatment of this disease, there remains a need for more effective LS therapy. Steroid hormone receptors regulate metabolism in adipocytes. Estrogen receptor alpha (ER), progesterone receptor (PR), and androgen receptor (AR) have been implicated in the pathophysiology of other cancer types. We sought to comprehensively determine temporal expression patterns of these receptors in LS. Methods We analyzed 561 histologically subtyped LS specimens from 354 patients for expression of ER, PR, and AR by immunohistochemistry (IHC) using diagnostic-grade reagents and protocols. The fractions of positively stained tumor cells were scored within each specimen. IHC scores were compared across LS subtypes using the Kruskal-Wallis test, and subtypes were compared using Dunn’s post-hoc test. Ages of patients with receptor-positive vs. -negative LS were compared by t-test. Genders and races were compared for hormone receptor positivity using Fisher’s exact test and Chi-square analysis, respectively. Recurrence-free survival was compared between receptor-positive and negative patients by log-rank test. p< 0.05 was considered significant. Results ER and AR were frequently expressed in LS, while few tumors expressed PR. Most of the ER + and AR + samples were of the well-differentiated LS subtype. A smaller fraction of de-differentiated LS expressed ER or AR, but expression was common within well-differentiated regions of tumors histologically classified as de-differentiated LS. In LS specimens from patients who underwent multiple surgeries over time, receptor expression frequently changed over time, which may be attributable in part to intratumor heterogeneity, varying degrees of de-differentiation, and biopsy bias. ER and AR were frequently co-expressed. Receptor status was not significantly associated with gender or race, but AR and PR expression were

  16. Expression of retinoic acid receptors in human endometrial carcinoma.

    PubMed

    Tanabe, Kojiro; Utsunomiya, Hiroki; Tamura, Mitsutoshi; Niikura, Hitoshi; Takano, Tadao; Yoshinaga, Kohsuke; Nagase, Satoru; Suzuki, Takashi; Ito, Kiyoshi; Matsumoto, Mitsuyo; Hayashi, Shin-ichi; Yaegashi, Nobuo

    2008-02-01

    The retinoids (vitamin A and its biologically active derivatives) are essential for the health and survival of the individual. Several studies have reported a strong rationale for the use of retinoids in cancer treatment and chemoprevention. It has been discovered that expression of retinoic acid receptor (RAR) beta is frequently silenced in epithelial carcinogenesis, which has led to the hypothesis that RAR beta could act as a tumor suppressor. However, the status of RAR beta in human endometrial carcinoma has not been examined. In the present study, we initially studied the effects of retinoic acid on cell proliferation and the expression of RAR alpha, RAR beta, and RAR gamma using AM580 (a RAR-specific agonist) in the Ishikawa endometrial cancer cell line. We also examined the expression of RAR in human eutopic endometrium (30 cases), endometrial hyperplasia (28 cases), and endometrial carcinoma (103 cases) using immunohistochemistry. Finally, we correlated these findings with the clinicopathological parameters. In vitro, cell growth was inhibited and RAR beta and RAR gamma mRNA was significantly induced by AM580, compared with vehicle controls, whereas RAR alpha mRNA was significantly attenuated by AM580, compared with vehicle. RAR beta was detected predominantly in endometrial hyperplasia, compared with endometrial carcinoma. No statistically significant correlation was obtained between the expression of any other RAR subtypes and clinicopathological parameters in human endometrial carcinoma. The results of our study demonstrate that AM580 inhibits cell growth and induces RAR beta mRNA expression in the Ishikawa cell line, and the expression level of RAR beta in endometrial carcinoma is significantly lower than that in endometrial hyperplasia. AM580 might therefore be considered as a potential treatment for endometrial carcinoma.

  17. Control of TGF-beta receptor expression in bone.

    PubMed

    Centrella, M; Ji, C; McCarthy, T L

    1998-01-15

    Bone growth and remodeling are controlled by local and systemic growth factors. The first local bone growth factor purified to homogeneity was transforming growth factor type beta (TGF-beta). On skeletal cells, TGF-beta has multiple effects mediated through at least three distinct cell surface receptors. More recent evidence demonstrated hormone and growth factor dependent alterations in TGF-beta receptor expression on osteoblasts in vitro. Indeed, certain biological responses appear to depend on the proportional expression of the type I TGF-beta receptor. Studies defining the type I TGF-beta receptor gene promoter then revealed that it contained several binding sequences for a nuclear factor that varies in parallel with expression of the osteoblast phenotype. New observations linking these events appear to enhance our understanding of this pivotal growth factor during osteogenesis and systemic bone disease.

  18. Prostaglandin F receptor expression in intrauterine tissues of pregnant rats

    PubMed Central

    Kanca, Halit; Yar, Atiye Seda; Helvacioğlu, Fatma; Menevşe, Sevda; Çalgüner, Engin; Erdoğan, Deniz

    2014-01-01

    In this investigation, we studied the expression and localization of rat prostaglandin F (FP) receptor in uterine tissues of rats on gestational Days 10, 15, 18, 20, 21, 21.5 and postpartal Days 1 and 3 using Western blotting analysis, real-time PCR, and immunohistochemistry. A high level of immunoreactivity was observed on gestational Days 20, 21, and 21.5 with the most significant signals found on Day 20. FP receptor protein was expressed starting on gestational Day 15, and a fluctuating unsteady increase was observed until delivery. Uterine FP receptor mRNA levels were low between Days 10 and 18 of gestation (p < 0.05). The transcript level increased significantly on Day 20 and peaked on Day 21.5 just before labor (p < 0.05). There was a positive correlation between FP receptor mRNA expression and serum estradiol levels (rs = 0.78; p < 0.01) along with serum estradiol/progesterone ratios (rs = 0.79; p < 0.01). In summary, we observed an increase FP receptor expression in rat uterus with advancing gestation, a marked elevation of expression at term, and a concominant decrease during the postpartum period. These findings indicate a role for uterine FP receptors in the mediation of uterine contractility at term. PMID:24136214

  19. Expression of androgen, estrogen, and progesterone receptors in salivary gland tumors. Frequent expression of androgen receptor in a subset of malignant salivary gland tumors.

    PubMed

    Nasser, Selim M; Faquin, William C; Dayal, Yogeshwar

    2003-06-01

    The expression of sex hormone receptors in some tumors suggests a role for these receptors in tumor pathogenesis and therapy. Previous studies of the expression of estrogen and progesterone receptors in salivary gland tumors have reported conflicting results. We evaluated the immunohistochemical expression of androgen, estrogen, and progesterone receptors (AR, ER, and PR) in a series of 78 formalin-fixed, paraffin-embedded salivary gland tumors. Immunoreactivity for AR was seen in 14 of 14 carcinoma ex pleomorphic adenomas, 6 of 6 salivary duct carcinomas, and 2 of 2 basal cell adenocarcinomas but in only 2 of 10 acinic cell carcinomas, mucoepidermoid carcinomas, and adenoid cystic carcinomas each. AR expression was distributed evenly between the sexes. ER and PR were expressed in only a few cases of salivary gland tumors. All 26 benign salivary gland tumors were negative for AR, ER, and PR. The uniform expression of AR exclusively in a subset of malignant salivary gland tumors suggests a possible role for AR in the histogenesis and possibly in the clinical management of these malignant salivary gland tumors.

  20. Autocrine and paracrine regulation of lymphocyte CB2 receptor expression by TGF-beta.

    PubMed

    Gardner, Brian; Zu, Li X; Sharma, Sherven; Liu, Qian; Makriyannis, Alexandros; Tashkin, Donald P; Dubinett, Steven M

    2002-01-11

    The marijuana-derived cannabinoid Delta(9)-tetrahydrocannabinol (THC) has been shown to be immunosuppressive. We report that THC induces the immunosuppressive cytokine TGF-beta by human peripheral blood lymphocytes (PBL). The ability of THC to stimulate TGF-beta production was blocked by the CB2 receptor specific antagonist SR144528 but not by the CB1 specific antagonist AM251. Furthermore, our data suggest that TGF-beta actively regulates lymphocyte CB2 receptor expression in an autocrine and paracrine manner. Whereas the addition of recombinant TGF-beta to PBL cultures downregulated CB2 receptor expression, anti-TGF-beta antibody treatment increased CB2 receptor expression. We conclude that one mechanism by which THC contributes to immune suppression is by stimulating an enhanced production of lymphocyte TGF-beta.

  1. Profiling neurotransmitter receptor expression in the Ambystoma mexicanum brain.

    PubMed

    Reyes-Ruiz, Jorge Mauricio; Limon, Agenor; Korn, Matthew J; Nakamura, Paul A; Shirkey, Nicole J; Wong, Jamie K; Miledi, Ricardo

    2013-03-22

    Ability to regenerate limbs and central nervous system (CNS) is unique to few vertebrates, most notably the axolotl (Ambystoma sp.). However, despite the fact the neurotransmitter receptors are involved in axonal regeneration, little is known regarding its expression profile. In this project, RT-PCR and qPCR were performed to gain insight into the neurotransmitter receptors present in Ambystoma. Its functional ability was studied by expressing axolotl receptors in Xenopus laevis oocytes by either injection of mRNA or by direct microtransplantation of brain membranes. Oocytes injected with axolotl mRNA expressed ionotropic receptors activated by GABA, aspartate+glycine and kainate, as well as metabotropic receptors activated by acetylcholine and glutamate. Interestingly, we did not see responses following the application of serotonin. Membranes from the axolotl brain were efficiently microtransplanted into Xenopus oocytes and two types of native GABA receptors that differed in the temporal course of their responses and affinities to GABA were observed. Results of this study are necessary for further characterization of axolotl neurotransmitter receptors and may be useful for guiding experiments aimed at understanding activity-dependant limb and CNS regeneration.

  2. Comparison of albumin receptors expressed on bovine and human group G streptococci.

    PubMed Central

    Raeder, R; Otten, R A; Boyle, M D

    1991-01-01

    The albumin receptor expressed by bovine group G streptococci was extracted and affinity purified. The protein was characterized for species reactivity, and monospecific antibodies were prepared to the purified receptor. The bovine group G albumin receptor was compared functionally, antigenically, and for DNA homology with the albumin-binding protein expressed by human group G streptococci. In agreement with previous reports, the albumin-binding activity of human strains was mediated by a unique domain of the type III immunoglobulin G-Fc-binding molecule, protein G. The albumin receptor expressed by bovine group G strains was found to lack any immunoglobulin G-binding potential but displayed a wider profile of species albumin reactivity than protein G. Both albumin receptors could inhibit the binding of the other to immobilized human serum albumin, and each displayed similar binding properties. Antigenic comparison of the two albumin receptors demonstrated a low level of cross-reactivity; however comparison at the DNA level, using an oligonucleotide probe specific for the albumin-binding region of protein G, demonstrated that the two albumin receptors expressed by human and bovine group G streptococcal strains do not display significant homology. Images PMID:1846128

  3. A Subset of Mouse Colonic Goblet Cells Expresses the Bitter Taste Receptor Tas2r131

    PubMed Central

    Prandi, Simone; Bromke, Marta; Hübner, Sandra; Voigt, Anja; Boehm, Ulrich; Meyerhof, Wolfgang; Behrens, Maik

    2013-01-01

    The concept that gut nutrient sensing involves taste receptors has been fueled by recent reports associating the expression of taste receptors and taste-associated signaling molecules in the gut and in gut-derived cell lines with physiological responses induced by known taste stimuli. However, for bitter taste receptors (Tas2rs), direct evidence for their functional role in gut physiology is scarce and their cellular expression pattern remained unknown. We therefore investigated Tas2r expression in mice. RT-PCR experiments assessed the presence of mRNA for Tas2rs and taste signaling molecules in the gut. A gene-targeted mouse strain was established to visualize and identify cell types expressing the bitter receptor Tas2r131. Messenger RNA for various Tas2rs and taste signaling molecules were detected by RT-PCR in the gut. Using our knock-in mouse strain we demonstrate that a subset of colonic goblet cells express Tas2r131. Cells that express this receptor are absent in the upper gut and do not correspond to enteroendocrine and brush cells. Expression in colonic goblet cells is consistent with a role of Tas2rs in defense mechanisms against potentially harmful xenobiotics. PMID:24367558

  4. Repertoire of Chemokine Receptor Expression in the Female Genital Tract

    PubMed Central

    Patterson, Bruce K.; Landay, Alan; Andersson, Jan; Brown, Clark; Behbahani, Homira; Jiyamapa, Dan; Burki, Zareefa; Stanislawski, Donna; Czerniewski, Mary Ann; Garcia, Patricia

    1998-01-01

    Sexually transmitted diseases, genital ulcer disease, and progesterone therapy increase susceptibility to lentivirus transmission. Infection of cells by human immunodeficiency virus (HIV) is dependent on expression of specific chemokine receptors known to function as HIV co-receptors. Quantitative kinetic reverse transcription-polymerase chain reaction was developed to determine the in vivo expression levels of CCR5, CXCR4, CCR3, CCR2b, and the cytomegalovirus-encoded US28 in peripheral blood mononuclear cells and cervical biopsies from 12 women with and without sexually transmitted diseases, genital ulcer disease, and progesterone-predominant conditions. Our data indicate that CCR5 is the major HIV co-receptor expressed in the female genital tract, and CXCR4 is the predominantly expressed HIV co-receptor in peripheral blood. CCR5 mRNA expression in the ectocervix was 10-fold greater than CXCR4, 20-fold greater than CCR2b, and 100-fold greater than CCR3. In peripheral blood, CXCR4 expression was 1.5-fold greater than CCR5, 10-fold greater than CCR2b, and 15-fold greater than CCR3. US28 was not expressed in cervical tissue despite expression in peripheral blood mononuclear cells from five individuals. CCR5 was significantly increased (p < 0.02) in biopsies from women with sexually transmitted diseases and others who were progesterone predominant. In vitro studies demonstrate that progesterone increases CCR5, CXCR4, and CCR3 expression and decreases CCR2b expression in lymphocytes and monocytes/macrophages. Characterization of chemokine receptors at the tissue level provides important information in identifying host determinants of HIV-1 transmission. PMID:9708808

  5. Functional expression of purinergic P2 receptors and transient receptor potential channels by the human urothelium

    PubMed Central

    Shabir, Saqib; Cross, William; Kirkwood, Lisa A.; Pearson, Joanna F.; Appleby, Peter A.; Walker, Dawn; Eardley, Ian

    2013-01-01

    In addition to its role as a physical barrier, the urothelium is considered to play an active role in mechanosensation. A key mechanism is the release of transient mediators that activate purinergic P2 receptors and transient receptor potential (TRP) channels to effect changes in intracellular Ca2+. Despite the implied importance of these receptors and channels in urothelial tissue homeostasis and dysfunctional bladder disease, little is known about their functional expression by the human urothelium. To evaluate the expression and function of P2X and P2Y receptors and TRP channels, the human ureter and bladder were used to separate urothelial and stromal tissues for RNA isolation and cell culture. RT-PCR using stringently designed primer sets was used to establish which P2 and TRP species were expressed at the transcript level, and selective agonists/antagonists were used to confirm functional expression by monitoring changes in intracellular Ca2+ and in a scratch repair assay. The results confirmed the functional expression of P2Y4 receptors and excluded nonexpressed receptors/channels (P2X1, P2X3, P2X6, P2Y6, P2Y11, TRPV5, and TRPM8), while a dearth of specific agonists confounded the functional validation of expressed P2X2, P2X4, P2Y1, P2Y2, TRPV2, TRPV3, TRPV6 and TRPM7 receptors/channels. Although a conventional response was elicited in control stromal-derived cells, the urothelial cell response to well-characterized TRPV1 and TRPV4 agonists/antagonists revealed unexpected anomalies. In addition, agonists that invoked an increase in intracellular Ca2+ promoted urothelial scratch repair, presumably through the release of ATP. The study raises important questions about the ligand selectivity of receptor/channel targets expressed by the urothelium. These pathways are important in urothelial tissue homeostasis, and this opens the possibility of selective drug targeting. PMID:23720349

  6. The expression of tachykinin receptors in the human lower esophageal sphincter.

    PubMed

    Zhang, Ke; Chen, Que T; Li, Jing H; Geng, Xian; Liu, Jun F; Li, He F; Feng, Yong; Li, Jia L; Drew, Paul A

    2016-03-01

    Mammalian tachykinins are a family of neuropeptides which are potent modulators of smooth muscle function with a significant contractile effect on human smooth muscle preparations. Tachykinins act via three distinct G protein-coupled neurokinin (NK) receptors, NK1, NK2 and NK3, coded by the genes TACR1, TACR2 and TACR3 respectively. The purpose of this paper was to measure the mRNA and protein expression of these receptors and their isoforms in the clasp and sling fibers of the human lower esophageal sphincter complex and circular muscle from the adjacent distal esophagus and proximal stomach. We found differences in expression between the different receptors within these muscle types, but the rank order of the receptor expression did not differ between the different muscle types. The rank order of the mRNA expression was TACR2 (α isoform)>TACR2 (β isoform)>TACR1 (short isoform)>TACR1 (long isoform)>TACR3. The rank order of the protein expression was NK2>NK1>NK3. This is the first report of the measurement of the transcript and protein expression of the tachykinin receptors and their isoforms in the muscles of the human lower esophageal sphincter complex. The results provide evidence that the tachykinin receptors could contribute to the regulation of the human lower esophageal sphincter, particularly the TACR2 α isoform which encodes the functional isoform of the tachykinin NK2 receptor was the most highly expressed of the tachykinin receptors in the muscles associated with the lower esophageal sphincter. PMID:26852958

  7. Regulation of fibrinogen receptor expression on human platelets

    SciTech Connect

    Shattil, S.J.; Motulsky, H.J.; Insel, P.A.; Brass, L.F.

    1986-03-01

    Platelet aggregation requires the binding of fibrinogen to specific receptors on the plasma membrane glycoprotein IIb-IIIa complex. Although the IIb-IIIa complex is identifiable on the surface of resting platelets, the fibrinogen receptor is expressed only after platelet activation. The authors have developed a monoclonal anti-IIb-IIIa antibody (PAC-1) that binds only to stimulated platelets and only in the presence of Ca. In order to better understand the steps leading to platelet aggregation, the authors used radiolabeled PAC-1 and fibrinogen to examine the effect of the ..cap alpha../sub 2/-adrenergic agonist, epinephrine, on the expression and function of the fibrinogen receptor. The addition of epinephrine to unstirred platelets caused and immediate increase in PAC-1 and fibrinogen binding that was associated with platelet aggregation once the platelets were stirred. Even after prolonged incubation of the platelets with epinephrine, fibrinogen receptor expression could be reversed by adding EGTA, PGl/sub 2/, or the ..cap alpha../sub 2/-adrenergic antagonist, phentolamine. When unstirred platelets were exposed to epinephrine for more than 10 min, the extent of aggregation caused by subsequent stirring was decreased by 70%. Surprisingly, these desensitized platelets bound PAC-1 and fibrinogen normally, indicating that the loss of aggregation was not due to a decrease in fibrinogen receptor expression or function. These studies demonstrate that: (1) fibrinogen receptor expression is dependent on extracellular CA; (2) induction of the fibrinogen receptor by epinephrine requires the continued presence of the agonist; and (3) prolonged stimulation of the platelet by epinephrine can lead to a reduced aggregation response by a mechanism that does not involve a loss of either fibrinogen recepor expression or fibrinogen binding.

  8. Expression patterns of FGF receptors in the developing mammalian cochlea

    PubMed Central

    Hayashi, Toshinori; Ray, Catherine A.; Younkins, Christa; Bermingham-McDonogh, Olivia

    2010-01-01

    Many studies have shown the importance of the fibroblast growth factor (FGF) family of factors in the development of the mammalian cochlea. There are four fibroblast growth factor receptors (FGFR1-4) and all four are expressed in the cochlea during development. While there are examples in the literature of expression patterns of some of the receptors at specific stages of cochlear development there has been no systematic study. We have assembled a full analysis of the patterns of receptor expression during cochlear development for all four Fgfrs using in situ hybridization. We have analyzed the expression patterns from E13.5 through post-natal ages. We find that Fgfr1, 2 and 3 are expressed in the epithelium of the cochlear duct and Fgfr4 is limited in its expression to the mesenchyme surrounding the duct. We compare the receptor expression pattern to markers of the sensory domain (p27kip1) and the early hair cells (math1). PMID:20131355

  9. Estrogen and Progesterone hormone receptor expression in oral cavity cancer

    PubMed Central

    Biegner, Thorsten; Teriete, Peter; Hoefert, Sebastian; Krimmel, Michael; Munz, Adelheid; Reinert, Siegmar

    2016-01-01

    Background Recent studies have shown an increase in the incidence of oral squamous cell carcinoma (OSCC) in younger patients. The hypothesis that tumors could be hormonally induced during pregnancy or in young female patients without the well-known risk factors alcohol or tobacco abuse seems to be plausible. Material and Methods Estrogen Receptor alpha (ERα) and Progesterone Receptor (PR) expression were analyzed in normal oral mucosa (n=5), oral precursor lesions (simple hyperplasia, n=11; squamous intraepithelial neoplasia, SIN I-III, n=35), and OSCC specimen. OSCCs were stratified in a young female (n=7) study cohort and older patients (n=46). In the young female study cohort three patients (n=3/7) developed OSCC during or shortly after pregnancy. Breast cancer tissues were used as positive control for ERα and PR expression. Results ERα expression was found in four oral precursor lesions (squamous intraepithelial neoplasia, SIN I-III, n=4/35, 11%) and in five OSCC specimen (n=5/46, 11%). The five ERα positive OSCC samples were older male patients. All patients within the young female study cohort were negatively stained for both ERα and PR. Conclusions ER expression could be regarded as a seldom risk factor for OSCC. PR expression seems to be not relevant for the development of OSCC. Key words:Oral squamous cell carcinoma, estrogen receptor, progesterone receptor, hormone receptor. PMID:27475696

  10. Cognitive performance and peripheral endocannabinoid system receptor expression in schizophrenia.

    PubMed

    Ferretjans, Rodrigo; de Campos, Salvina Maria; Ribeiro-Santos, Rafael; Guimarães, Fernanda Carneiro; de Oliveira, Keliane; Cardoso, Ana Cecília Alves; Araújo, Marcio Sobreira; Teixeira-Carvalho, Andrea; Martins-Filho, Olindo Assis; Teixeira, Antonio L; Salgado, João V

    2014-07-01

    Schizophrenia is a chronic psychiatric syndrome characterized by generalized cognitive deficits that are associated with functional impairment. The endocannabinoid system (ECS) modulates neurotransmission and neuronal plasticity and is important for cognitive functioning. Evidence points to the involvement of this neuromodulatory system in the pathophysiology of schizophrenia and that alteration of the ECS on peripheral lymphocytes could reflect central changes. The objective of this study was to compare levels of peripheral endocannabinoid receptor expression in patients with schizophrenia and healthy subjects and find evidence of association between peripheral expression of those receptors and cognitive performance. Patients with stabilized schizophrenia (N=53) and controls (N=22) underwent clinical and cognitive evaluation, and assessment of cannabinoid receptor expression on the surface of peripheral immune cells (lymphocytes, natural killer cells and monocytes) by flow cytometry. Patients with schizophrenia had lower levels of cannabinoid receptor expression on total T lymphocytes, but after controlling for possible confounders this difference did not remain significant. In patients, increased cannabinoid receptor expression on lymphocytes and monocytes was significantly correlated with worst cognitive performance. These data provide additional evidence of the involvement of the ECS in the pathophysiology of cognitive deficits in schizophrenia.

  11. Expression patterns of chemokine receptors on circulating T cells from myelodysplastic syndrome patients.

    PubMed

    Sand, Kristoffer Evebø; Rye, Kristin Paulsen; Mannsåker, Bård; Bruserud, Oystein; Kittang, Astrid Olsnes

    2013-02-01

    Chemokines and their receptors are involved in the recruitment of leukocytes to sites of inflammation. Recently, chemokine expression signatures have been reported to convey a prognostic value in myelodysplastic syndrome (MDS) patients. In the present study, we investigated the chemokine receptor repertoire on fresh peripheral blood lymphocytes from 31 (22 low-risk and 9 high-risk) patients affected by MDS. Chemokine receptor expression was studied in defined T-cell subsets using eight-color flow cytometry. MDS patients exhibited quantitative differences in peripheral lymphocyte subpopulations. In addition, T cells obtained from MDS patients expressed a chemokine receptor pattern suggesting a dominance of mature and activated T cells. This is illustrated by increased levels of CCR3, CCR5, CX3CR1 and/or by a decreased abundance of CCR7 in defined T-cell subsets. The T-cell subset distribution appears to differ between the peripheral blood and the bone marrow of MDS patients, suggesting a preferential recruitment of specific T-cell subsets to the latter compartment. Alteration in chemokine receptor expression can develop over time even in patients that are considered clinically stable. Elevated expression levels of CXCR4 by CD8(+) cells were associated with prolonged patient survival and reduced numbers of bone marrow blasts. We conclude that immunological abnormalities in MDS also involve chemokine receptors on different subsets of T cells, and that these changes may have a prognostic value.

  12. Expression of Angiotensin II Receptor-1 in Human Articular Chondrocytes

    PubMed Central

    Kawakami, Yuki; Matsuo, Kosuke; Murata, Minako; Yudoh, Kazuo; Nakamura, Hiroshi; Shimizu, Hiroyuki; Beppu, Moroe; Inaba, Yutaka; Saito, Tomoyuki; Kato, Tomohiro; Masuko, Kayo

    2012-01-01

    Background. Besides its involvement in the cardiovascular system, the renin-angiotensin-aldosterone (RAS) system has also been suggested to play an important role in inflammation. To explore the role of this system in cartilage damage in arthritis, we investigated the expression of angiotensin II receptors in chondrocytes. Methods. Articular cartilage was obtained from patients with osteoarthritis, rheumatoid arthritis, and traumatic fractures who were undergoing arthroplasty. Chondrocytes were isolated and cultured in vitro with or without interleukin (IL-1). The expression of angiotensin II receptor types 1 (AT1R) and 2 (AT2R) mRNA by the chondrocytes was analyzed using reverse transcription-polymerase chain reaction (RT-PCR). AT1R expression in cartilage tissue was analyzed using immunohistochemistry. The effect of IL-1 on AT1R/AT2R expression in the chondrocytes was analyzed by quantitative PCR and flow cytometry. Results. Chondrocytes from all patient types expressed AT1R/AT2R mRNA, though considerable variation was found between samples. Immunohistochemical analysis confirmed AT1R expression at the protein level. Stimulation with IL-1 enhanced the expression of AT1R/AT2R mRNA in OA and RA chondrocytes. Conclusions. Human articular chondrocytes, at least partially, express angiotensin II receptors, and IL-1 stimulation induced AT1R/AT2R mRNA expression significantly. PMID:23346400

  13. Expression of plasma membrane receptor genes during megakaryocyte development

    PubMed Central

    Sun, Sijie; Wang, Wenjing; Latchman, Yvette; Gao, Dayong; Aronow, Bruce

    2013-01-01

    Megakaryocyte (MK) development is critically informed by plasma membrane-localized receptors that integrate a multiplicity of environmental cues. Given that the current understanding about receptors and ligands involved in megakaryocytopoiesis is based on single targets, we performed a genome-wide search to identify a plasma membrane receptome for developing MKs. We identified 40 transmembrane receptor genes as being upregulated during MK development. Seven of the 40 receptor-associated genes were selected to validate the dataset. These genes included: interleukin-9 receptor (IL9R), transforming growth factor, β receptor II (TGFBR2), interleukin-4 receptor (IL4R), colony stimulating factor-2 receptor-beta (CSFR2B), adiponectin receptor (ADIPOR2), thrombin receptor (F2R), and interleukin-21 receptor (IL21R). RNA and protein analyses confirmed their expression in primary human MKs. Matched ligands to IL9R, TGFBR2, IL4R, CSFR2B, and ADIPOR2 affected megakaryocytopoiesis. IL9 was unique in its ability to increase the number of MKs formed. In contrast, MK colony formation was inhibited by adiponectin, TGF-β, IL4, and GM-CSF. The thrombin-F2R axis affected platelet function, but not MK development, while IL21 had no apparent detectable effects. ADP-induced platelet aggregation was suppressed by IL9, TGF-β, IL4, and adiponectin. Overall, six of seven of the plasma membrane receptors were confirmed to have functional roles in MK and platelet biology. Also, results show for the first time that adiponectin plays a regulatory role in MK development. Together these data support a strong likelihood that the 40 transmembrane genes identified as being upregulated during MK development will be an important resource to the research community for deciphering the complex repertoire of environmental cues regulating megakaryocytopoiesis and/or platelet function. PMID:23321270

  14. Oncogenic tyrosine kinase NPM-ALK induces expression of the growth-promoting receptor ICOS.

    PubMed

    Zhang, Qian; Wang, Hongyi; Kantekure, Kanchan; Paterson, Jennifer C; Liu, Xiaobin; Schaffer, Andras; Paulos, Chrystal; Milone, Michael C; Odum, Niels; Turner, Suzanne; Marafioti, Teresa; Wasik, Mariusz A

    2011-09-15

    Here we report that T-cell lymphoma cells carrying the NPM-ALK fusion protein (ALK(+) TCL) frequently express the cell-stimulatory receptor ICOS. ICOS expression in ALK(+) TCL is moderate and strictly dependent on the expression and enzymatic activity of NPM-ALK. NPM-ALK induces ICOS expression via STAT3, which triggers the transcriptional activity of the ICOS gene promoter. In addition, STAT3 suppresses the expression of miR-219 that, in turn, selectively inhibits ICOS expression. ALK(+) TCL cell lines display extensive DNA methylation of the CpG island located within intron 1, the putative enhancer region, of the ICOS gene, whereas cutaneous T-cell lymphoma cell lines, which strongly express ICOS, show no methylation of the island. Treatment of the ALK(+) TCL cell lines with DNA methyltransferase inhibitor reversed the CpG island methylation and augmented the expression of ICOS mRNA and protein. Stimulation of the ICOS receptor with anti-ICOS antibody or ICOS ligand-expressing B cells markedly enhanced proliferation of the ALK(+) TCL cells. These results demonstrate that NPM-ALK, acting through STAT3 as the gene transcriptional activator, induces the expression of ICOS, a cell growth promoting receptor. These data also show that the DNA methylation status of the intronic CpG island affects transcriptional activity of the ICOS gene and, consequently, modulates the concentration of the expressed ICOS protein.

  15. Development of neural crest cells expressing nerve growth factor receptors

    SciTech Connect

    Greiner, C.A.

    1987-01-01

    The present study examines the ontogeny of the nerve growth factor receptor of neural crest cells in vitro and the phenotypic nature of the neural crest cells expressing this receptor. /sup 125/I-NGF binding assays and autoradiographic and immunofluorescence techniques have demonstrated the presence of a subpopulation of quail neural crest cells that express specific NGF receptors after 3-4 days in vitro. This subpopulations represents approximately 28% of the cells in 5-day primary cultures and 30-35% of the cells in secondary cultures; these cells generally exhibited a flattened, phase-dark morphology. Approximately one-third of these cells also labeled with a 2 hr pulse of /sup 3/H thymidine. Catecholamine-containing neural crest cells generally lacked NGF receptors. NGF receptor-positive cells also failed to demonstrate somatostatin-, neuron-specific enolase-, or S-100-like immunoreactivity. Melanocytes do not appear to express NGF receptors. Exogenous nerve growth factor did not influence the morphology or mitotic status of the cells in culture.

  16. Dopamine receptor gene expression by enkephalin neurons in rat forebrain

    SciTech Connect

    Le Moine, C.; Normand, E.; Guitteny, A.F.; Fouque, B.; Teoule, R.; Bloch, B. )

    1990-01-01

    In situ hybridization experiments were performed with brain sections from normal, control and haloperidol-treated rats to identify and map the cells expressing the D2 dopamine receptor gene. D2 receptor mRNA was detected with radioactive or biotinylated oligonucleotide probes. D2 receptor mRNA was present in glandular cells of the pituitary intermediate lobe and in neurons of the substantia nigra, ventral tegmental area, and forebrain, especially in caudate putamen, nucleus accumbens, olfactory tubercle, and piriform cortex. Hybridization with D2 and preproenkephalin A probes in adjacent sections, as well as combined hybridization with the two probes in the same sections, demonstrated that all detectable enkephalin neurons in the striatum contained the D2 receptor mRNA. Large neurons in caudate putamen, which were unlabeled with the preproenkephalin A probe and which may have been cholinergic, also expressed the D2 receptor gene. Haloperidol treatment (14 or 21 days) provoked an increase in mRNA content for D2 receptor and preproenkephalin A in the striatum. This suggests that the increase in D2 receptor number observed after haloperidol treatment is due to increased activity of the D2 gene. These results indicate that in the striatum, the enkephalin neurons are direct targets for dopamine liberated from mesostriatal neurons.

  17. Concerted Gene Expression of Hippocampal Steroid Receptors during Spatial Learning in Male Wistar Rats: A Correlation Analysis

    PubMed Central

    Lubec, Gert; Korz, Volker

    2016-01-01

    Adrenal and gonadal steroid receptor activities are significantly involved and interact in the regulation of learning, memory and stress. Thus, a coordinated expression of steroid receptor genes during a learning task can be expected. Although coexpression of steroid receptors in response to behavioral tasks has been reported the correlative connection is unclear. According to the inverted U-shape model of the impact of stress upon learning and memory we hypothesized that glucocorticoid (GR) receptor expression should be correlated to corticosterone levels in a linear or higher order manner. Other cognition modulating steroid receptors like estrogen receptors (ER) should be correlated to GR receptors in a quadratic manner, which describes a parabola and thus a U-shaped connection. Therefore, we performed a correlational meta-analyis of data of a previous study (Meyer and Korz, 2013a) of steroid receptor gene expressions during spatial learning, which provides a sufficient data basis in order to perform such correlational connections. In that study male rats of different ages were trained in a spatial holeboard or remained untrained and the hippocampal gene expression of different steroid receptors as well as serum corticosterone levels were measured. Expressions of mineralocorticoid (MR) and GR receptors were positively and linearly correlated with blood serum corticosterone levels in spatially trained but not in untrained animals. Training induced a cubic (best fit) relationship between mRNA levels of estrogen receptor α (ERα) and androgen receptor (AR) with MR mRNA. GR gene expression was linearly correlated with MR expression under both conditions. ERα m RNA levels were negatively and linearily and MR and GR gene expressions were cubicely correlated with reference memory errors (RME). Due to only three age classes correlations with age could not be performed. The findings support the U-shape theory of steroid receptor interaction, however the cubic fit

  18. Post-transcriptional regulation of dopamine D1 receptor expression in caudate-putamen of cocaine-sensitized mice.

    PubMed

    Tobón, Krishna E; Catuzzi, Jennifer E; Cote, Samantha R; Sonaike, Adenike; Kuzhikandathil, Eldo V

    2015-07-01

    The dopamine D1 receptor is centrally involved in mediating the effects of cocaine and is essential for cocaine-induced locomotor sensitization. Changes in D1 receptor expression have been reported in various models of cocaine addiction; however, the mechanisms that mediate these changes in D1 receptor expression are not well understood. Using preadolescent drd1a-EGFP mice and a binge cocaine treatment protocol we demonstrate that the D1 receptor is post-transcriptionally regulated in the caudate-putamen of cocaine-sensitized animal. While cocaine-sensitized mice express high levels of steady-state D1 receptor mRNA, the expression of D1 receptor protein is not elevated. We determined that the post-transcriptional regulation of D1 receptor mRNA is rapidly attenuated and D1 receptor protein levels increase within 30 min when the sensitized mice are challenged with cocaine. The rapid increase in D1 receptor protein levels requires de novo protein synthesis and correlates with the cocaine-induced hyperlocomotor activity in the cocaine-sensitized mice. The increase in D1 receptor protein levels in the caudate-putamen inversely correlated with the levels of microRNA 142-3p and 382, both of which regulate D1 receptor protein expression. The levels of these two microRNAs decreased significantly within 5 min of cocaine challenge in sensitized mice. The results provide novel insights into the previously unknown rapid kinetics of D1 receptor protein expression which occurs in a time scale that is comparable to the expression of immediate early genes. Furthermore, the results suggest a potential novel role for inherently labile microRNAs in regulating the rapid expression of D1 receptor protein in cocaine-sensitized animals. PMID:25900179

  19. Post-transcriptional regulation of dopamine D1 receptor expression in caudate-putamen of cocaine-sensitized mice

    PubMed Central

    Tobón, Krishna E.; Catuzzi, Jennifer E.; Cote, Samantha R.; Sonaike, Adenike; Kuzhikandathil, Eldo V.

    2015-01-01

    The dopamine D1 receptor is centrally involved in mediating the effects of cocaine and is essential for cocaine-induced locomotor sensitization. Changes in D1 receptor expression has been reported in various models of cocaine addiction; however, the mechanisms that mediate these changes in D1 receptor expression are not well understood. Using preadolescent drd1a-EGFP mice and a binge cocaine treatment protocol we demonstrate that the D1 receptor is post-transcriptionally regulated in the caudate-putamen of cocaine-sensitized animal. While cocaine-sensitized mice express high levels of steady state D1 receptor mRNA, the expression of D1 receptor protein is not elevated. We determined that the post-transcriptional regulation of D1 receptor mRNA is rapidly attenuated and D1 receptor protein levels increase within thirty minutes when the sensitized mice are challenged with cocaine. The rapid increase in D1 receptor protein levels requires de novo protein synthesis and correlates with the cocaine-induced hyperlocomotor activity in the cocaine-sensitized mice. The increase in D1 receptor protein levels in the caudate-putamen inversely correlated to the levels of microRNA 142-3p and 382, both of which regulate D1 receptor protein expression. The levels of these two microRNAs decreased significantly within five minutes of cocaine challenge in sensitized mice. The results provide novel insights into the previously unknown rapid kinetics of D1 receptor protein expression which occurs in a time scale that is comparable to the expression of immediate early genes. Furthermore, the results suggests a potential novel role for inherently labile microRNAs in regulating the rapid expression of D1 receptor protein in cocaine-sensitized animals. PMID:25900179

  20. Identification of neurons that express ghrelin receptors in autonomic pathways originating from the spinal cord.

    PubMed

    Furness, John B; Cho, Hyun-Jung; Hunne, Billie; Hirayama, Haruko; Callaghan, Brid P; Lomax, Alan E; Brock, James A

    2012-06-01

    Functional studies have shown that subsets of autonomic preganglionic neurons respond to ghrelin and ghrelin mimetics and in situ hybridisation has revealed receptor gene expression in the cell bodies of some preganglionic neurons. Our present goal has been to determine which preganglionic neurons express ghrelin receptors by using mice expressing enhanced green fluorescent protein (EGFP) under the control of the promoter for the ghrelin receptor (also called growth hormone secretagogue receptor). The retrograde tracer Fast Blue was injected into target organs of reporter mice under anaesthesia to identify specific functional subsets of postganglionic sympathetic neurons. Cryo-sections were immunohistochemically stained by using anti-EGFP and antibodies to neuronal markers. EGFP was detected in nerve terminal varicosities in all sympathetic chain, prevertebral and pelvic ganglia and in the adrenal medulla. Non-varicose fibres associated with the ganglia were also immunoreactive. No postganglionic cell bodies contained EGFP. In sympathetic chain ganglia, most neurons were surrounded by EGFP-positive terminals. In the stellate ganglion, neurons with choline acetyltransferase immunoreactivity, some being sudomotor neurons, lacked surrounding ghrelin-receptor-expressing terminals, although these terminals were found around other neurons. In the superior cervical ganglion, the ghrelin receptor terminals innervated subgroups of neurons including neuropeptide Y (NPY)-immunoreactive neurons that projected to the anterior chamber of the eye. However, large NPY-negative neurons projecting to the acini of the submaxillary gland were not innervated by EGFP-positive varicosities. In the celiaco-superior mesenteric ganglion, almost all neurons were surrounded by positive terminals but the VIP-immunoreactive terminals of intestinofugal neurons were EGFP-negative. The pelvic ganglia contained groups of neurons without ghrelin receptor terminal innervation and other groups with

  1. Early Expression of Odorant Receptors Distorts the Olfactory Circuitry

    PubMed Central

    Nguyen, Minh Q.; Marks, Carolyn A.; Belluscio, Leonardo; Ryba, Nicholas J. P.

    2010-01-01

    The odor response properties of a mammalian olfactory sensory neuron (OSN) are determined by the tightly regulated expression of a single member of a very large family of odorant receptors (ORs). The OR also plays an important role in focusing the central projections of all OSNs expressing that particular receptor to a pair of stereotypic locations (glomeruli) in each olfactory bulb (OB), thus creating a spatial map of odor responses in the brain. Here we show that when initiated late in neural development, transgenic expression of one OR in almost all OSNs has little influence on the architecture of the OB. In contrast, early OR-transgene expression (mediated by the Gγ8-promoter) in 50–70% of OSNs grossly distorts the morphology of glomeruli and alters the projection patterns of many residual OSNs not expressing the transgene. Interestingly, this disruption of targeting persists in adult animals despite down-regulation of Gγ8 and transgenic OR expression that occurs as olfactory neurogenesis declines. Indeed, functional imaging studies reveal a dramatic decrease in the complexity of responses to odorants in adult Gγ8-transgenic OR mice. Thus, we show that initiation of transgenic OR-expression early in the development of OSNs, rather than just the extent of transgene expression, determines its effectiveness at modifying OB anatomy and function. Taken together these data imply that OR-expression timing needs to be very tightly controlled to achieve the precise wiring and function of the mammalian olfactory system. PMID:20610762

  2. Genes involved in Drosophila glutamate receptor expression and localization

    PubMed Central

    Liebl, Faith LW; Featherstone, David E

    2005-01-01

    Background A clear picture of the mechanisms controlling glutamate receptor expression, localization, and stability remains elusive, possibly due to an incomplete understanding of the proteins involved. We screened transposon mutants generated by the ongoing Drosophila Gene Disruption Project in an effort to identify the different types of genes required for glutamate receptor cluster development. Results To enrich for non-silent insertions with severe disruptions in glutamate receptor clustering, we identified and focused on homozygous lethal mutants in a collection of 2185 BG and KG transposon mutants generated by the BDGP Gene Disruption Project. 202 lethal mutant lines were individually dissected to expose glutamatergic neuromuscular junctions, stained using antibodies that recognize neuronal membrane and the glutamate receptor subunit GluRIIA, and viewed using laser-scanning confocal microscopy. We identified 57 mutants with qualitative differences in GluRIIA expression and/or localization. 84% of mutants showed loss of receptors and/or clusters; 16% of mutants showed an increase in receptors. Insertion loci encode a variety of protein types, including cytoskeleton proteins and regulators, kinases, phosphatases, ubiquitin ligases, mucins, cell adhesion proteins, transporters, proteins controlling gene expression and protein translation, and proteins of unknown/novel function. Expression pattern analyses and complementation tests, however, suggest that any single mutant – even if a mutant gene is uniquely tagged – must be interpreted with caution until the mutation is validated genetically and phenotypically. Conclusion Our study identified 57 transposon mutants with qualitative differences in glutamate receptor expression and localization. Despite transposon tagging of every insertion locus, extensive validation is needed before one can have confidence in the role of any individual gene. Alternatively, one can focus on the types of genes identified, rather

  3. Detection of CXCR2 cytokine receptor surface expression using immunofluorescence.

    PubMed

    Lam, Clarissa; Pavel, Mahmud Arif; Kashyap, Parul; Salehi-Najafabadi, Zahra; Valentino, Victoria; Yu, Yong

    2014-01-01

    The interleukin-8 (IL-8, CXCL8) chemokine, also known as the neutrophil chemotactic factor, is a cytokine that plays a key role in inflammatory response, cell proliferation, migration, and survival. IL-8 expression is increased not only in inflammatory disorders, but also in many types of cancer, including prostate cancer. IL-8 acts as a ligand for the C-X-C chemokine receptor 2 (CXCR2) protein present on the cell plasma membrane. Binding of the IL-8 ligand to the CXCR2 receptor results in an intracellular signaling pathway mediated by GTP binding proteins coupled to the receptor itself. Knowledge of the CXCR2 expression levels facilitates the understanding of the role and function of IL-8. In this chapter, we describe a protocol that uses the immunofluorescence method and confocal microscopy to analyze the CXCR2 surface expression in human prostate cancer cells. However, this protocol is easily adaptable to analyze the surface expression of other cytokine receptors in different cell types. PMID:24908306

  4. Problem-Solving Test: Expression Cloning of the Erythropoietin Receptor

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2008-01-01

    Terms to be familiar with before you start to solve the test: cytokines, cytokine receptors, cDNA library, cDNA synthesis, poly(A)[superscript +] RNA, primer, template, reverse transcriptase, restriction endonucleases, cohesive ends, expression vector, promoter, Shine-Dalgarno sequence, poly(A) signal, DNA helicase, DNA ligase, topoisomerases,…

  5. Gene Expression Control by Glucocorticoid Receptors during Innate Immune Responses

    PubMed Central

    Xavier, Andre Machado; Anunciato, Aparecida Kataryna Olimpio; Rosenstock, Tatiana Rosado; Glezer, Isaias

    2016-01-01

    Glucocorticoids (GCs) are potent anti-inflammatory compounds that have been extensively used in clinical practice for several decades. GC’s effects on inflammation are generally mediated through GC receptors (GRs). Signal transduction through these nuclear receptors leads to dramatic changes in gene expression programs in different cell types, typically due to GR binding to DNA or to transcription modulators. During the last decade, the view of GCs as exclusive anti-inflammatory molecules has been challenged. GR negative interference in pro-inflammatory gene expression was a landmark in terms of molecular mechanisms that suppress immune activity. In fact, GR can induce varied inhibitory molecules, including a negative regulator of Toll-like receptors pathway, or subject key transcription factors, such as NF-κB and AP-1, to a repressor mechanism. In contrast, the expression of some acute-phase proteins and other players of innate immunity generally requires GR signaling. Consequently, GRs must operate context-dependent inhibitory, permissive, or stimulatory effects on host defense signaling triggered by pathogens or tissue damage. This review aims to disclose how contradictory or comparable effects on inflammatory gene expression can depend on pharmacological approach (including selective GC receptor modulators; SEGRMs), cell culture, animal treatment, or transgenic strategies used as models. Although the current view of GR-signaling integrated many advances in the field, some answers to important questions remain elusive. PMID:27148162

  6. Detection of CXCR2 cytokine receptor surface expression using immunofluorescence.

    PubMed

    Lam, Clarissa; Pavel, Mahmud Arif; Kashyap, Parul; Salehi-Najafabadi, Zahra; Valentino, Victoria; Yu, Yong

    2014-01-01

    The interleukin-8 (IL-8, CXCL8) chemokine, also known as the neutrophil chemotactic factor, is a cytokine that plays a key role in inflammatory response, cell proliferation, migration, and survival. IL-8 expression is increased not only in inflammatory disorders, but also in many types of cancer, including prostate cancer. IL-8 acts as a ligand for the C-X-C chemokine receptor 2 (CXCR2) protein present on the cell plasma membrane. Binding of the IL-8 ligand to the CXCR2 receptor results in an intracellular signaling pathway mediated by GTP binding proteins coupled to the receptor itself. Knowledge of the CXCR2 expression levels facilitates the understanding of the role and function of IL-8. In this chapter, we describe a protocol that uses the immunofluorescence method and confocal microscopy to analyze the CXCR2 surface expression in human prostate cancer cells. However, this protocol is easily adaptable to analyze the surface expression of other cytokine receptors in different cell types.

  7. Cloning and expression of the rabbit prostaglandin EP2 receptor

    PubMed Central

    Guan, Youfei; Stillman, Brett A; Zhang, Yahua; Schneider, André; Saito, Osamu; Davis, Linda S; Redha, Reyadh; Breyer, Richard M; Breyer, Matthew D

    2002-01-01

    Background Prostaglandin E2 (PGE2) has multiple physiologic roles mediated by G protein coupled receptors designated E-prostanoid, or "EP" receptors. Evidence supports an important role for the EP2 receptor in regulating fertility, vascular tone and renal function. Results The full-length rabbit EP2 receptor cDNA was cloned. The encoded polypeptide contains 361 amino acid residues with seven hydrophobic domains. COS-1 cells expressing the cloned rabbit EP2 exhibited specific [3H]PGE2 binding with a Kd of 19.1± 1.7 nM. [3H]PGE2 was displaced by unlabeled ligands in the following order: PGE2>>PGD2=PGF2α=iloprost. Binding of [3H]PGE2 was also displaced by EP receptor subtype selective agonists with a rank order of affinity consistent with the EP2 receptor (butaprost>AH13205>misoprostol>sulprostone). Butaprost free acid produced a concentration-dependent increase in cAMP accumulation in rabbit EP2 transfected COS-1 cells with a half-maximal effective concentration of 480 nM. RNase protection assay revealed high expression in the ileum, spleen, and liver with lower expression in the kidney, lung, heart, uterus, adrenal gland and skeletal muscle. In situ hybridization localized EP2 mRNA to the uterine endometrium, but showed no distinct localization in the kidney. EP2 mRNA expression along the nephron was determined by RT-PCR and its expression was present in glomeruli, MCD, tDL and CCD. In cultured cells EP2 receptor was not detected in collecting ducts but was detected in renal interstitial cells and vascular smooth muscle cells. EP2 mRNA was also detected in arteries, veins, and preglomerular vessels of the kidney. Conclusion EP2 expression pattern is consistent with the known functional roles for cAMP coupled PGE2 effects in reproductive and vascular tissues and renal interstitial cells. It remains uncertain whether it is also expressed in renal tubules. PMID:12097143

  8. Expression of estrogen and progesterone receptors in papillary thyroid carcinoma

    PubMed Central

    Jalali-Nadoushan, Mohammad-Reza; Amirtouri, Reza; Davati, Ali; Askari, Samaneh; Siadati, Sepideh

    2016-01-01

    Background: Papillary thyroid carcinoma (PTC), occurs mostly in women and sex hormones may play a role in the pathogenesis and clinical course. The objective of this study was to determine the status and prevalence of estrogen and progesterone receptors in PTC with regard to age, gender, tumor size and lymph node involvement. Methods: Immunohistochemical stains were performed on 92 tissue blocks of PTC for estrogen receptor (ER) and progesterone receptor (PR) expression in tumor cells. Chi-square test and Mann-Whitney U test were used to determine statistical difference using statistical software SPSS. Results: The mean age of patients was 39.32±1.7 years (range 13-80) with 79(85.9%) women and 13 (14.1%) men. Lymph node involvement was seen in 76.1% of patients. The average tumor size was 3.6±2.21 cm. The rate of ER and PR expression were 46.75% and 5.6%, respectively. ER expression for females was higher than males (P=0.014), but no relation was found between males and females in PR expression (P=0.7). Also there was no statistical difference between ER and PR expression with respect to age, lymph node involvement and tumor size. Conclusion: Our study showed higher ER expression in females than males with PTC. No relation was found between the expression of these receptors and age of presentation, lymph node involvement and tumor size. Further investigation is required to determine the prognostic importance of ER and PR in PTC.

  9. Insulin receptor gene expression in normal and diseased bovine liver.

    PubMed

    Liu, G W; Zhang, Z G; Wang, J G; Wang, Z; Xu, C; Zhu, X L

    2010-11-01

    The aim of the present study was to compare insulin receptor (IR) gene expression in normal bovine liver (n=7) with samples of liver from cows in the perinatal period with ketosis (n=7) and cows with fatty liver (n=7). Gene expression was determined by internally controlled reverse transcriptase polymerase chain reaction (RT-PCR). The expression of IR mRNA in the liver of ketotic dairy cows was higher than in cows with fatty liver, but in both disease groups the expression was substantially lower than that in normal liver. Reduced expression of IR mRNA in fatty liver indicates that responses to insulin are markedly decreased, which might be due to insulin resistance. The relatively lower IR mRNA expression in the liver tissue of dairy cows with ketosis might enhance gluconeogenesis and lipid mobilization to relieve energy negative balance.

  10. Expression cloning of the murine interferon gamma receptor cDNA.

    PubMed Central

    Munro, S; Maniatis, T

    1989-01-01

    A cDNA encoding a receptor for murine interferon gamma (IFN-gamma) was isolated from an expression library made from murine thymocytes. The clone was identified by transfecting the library into monkey COS cells and probing the transfected monolayer with radiolabeled murine IFN-gamma. Cells expressing the receptor were identified by autoradiography and plasmids encoding the receptor were directly rescued from those cells producing a positive signal. A partial cDNA so obtained was used to isolate a full-length cDNA from mouse L929 cells by conventional means. When this cDNA was expressed in COS cells it produced a specific binding site for murine IFN-gamma with an affinity constant similar to that of the receptor found on L929 cells. The predicted amino acid sequence of the murine IFN-gamma receptor shows homology to that previously reported for the human IFN-gamma receptor. However, although the two proteins are clearly related, they show less than 60% identity in both the putative extracellular domain and the intracellular domain. Images PMID:2531896

  11. Neuropeptide substance P upregulates chemokine and chemokine receptor expression in primary mouse neutrophils.

    PubMed

    Sun, Jia; Ramnath, Raina Devi; Bhatia, Madhav

    2007-08-01

    Neuropeptides play an important role in the active communication between the nervous and immune systems. Substance P (SP) is a prominent neuropeptide involved in neurogenic inflammation and has been reported to exert various proinflammatory actions on inflammatory leukocytes including neutrophils. The present study further investigated the modulatory effect of SP (1 muM) on chemokine production and chemokine receptor expression in primary mouse neutrophils. Our results showed that SP primed neutrophils for chemotactic responses not only to the CXC chemokine macrophage inflammatory protein (MIP)-2/CXCL2 but also to the CC chemokine MIP-1alpha/CCL3. The activating effect of SP on neutrophils was further evidenced by upregulation of the CD11b integrin, the activation marker of neutrophils. SP induced both the mRNA and protein expression of the chemokines MIP-1alpha/CCL3 and MIP-2/CXCL2 in neutrophils and upregulated the chemokine receptors CC chemokine receptor (CCR)-1 and CXC chemokine receptor (CXCR)-2. This stimulatory effect on chemokine and chemokine receptor expression in neutrophils was further found to be neurokinin-1 receptor (NK-1R) specific. Pretreatment with selective NK-1R antagonists inhibited SP-triggered activation of neutrophils and chemokine and chemokine receptor upregulation. Moreover, SP-induced chemokine upregulation was NF-kappaB dependent. SP time dependently induced NF-kappaB p65 binding activity, IkappaBalpha degradation, and NF-kappaB p65 nuclear translocation in neutrophils. Inhibition of NF-kappaB activation with its inhibitor Bay11-7082 (10 muM) abolished SP-induced NF-kappaB binding activity and upregulation of MIP-1alpha/CCL3 and MIP-2/CXCL2 in neutrophils. Together, these results suggest that SP exerts a direct stimulatory effect on the expression of chemokines and chemokine receptors in mouse neutrophils. The effect is NK-1R mediated, involving NF-kappaB activation.

  12. Glycine receptors are functionally expressed on bullfrog retinal cone photoreceptors.

    PubMed

    Ge, L-H; Lee, S-C; Liu, J; Yang, X-L

    2007-04-25

    Using immunocytochemical and whole cell recording techniques, we examined expression of glycine receptors on bullfrog retinal cone photoreceptors. Immunofluorescence double labeling experiments conducted on retinal sections and isolated cell preparations showed that terminals and inner segments of cones were immunoreactive to both alpha1 and beta subunits of glycine receptors. Moreover, application of glycine induced a sustained inward current from isolated cones, which increased in amplitude in a dose-dependent manner, with an EC50 (concentration of glycine producing half-maximal response) of 67.3+/-4.9 microM, and the current was blocked by the glycine receptor antagonist strychnine, but not 5,7-dichlorokynurenic acid (DCKA) of 200 microM, a blocker of the glycine recognition site at the N-methyl-D-aspartate (NMDA) receptor. The glycine-induced current reversed in polarity at a potential close to the calculated chloride equilibrium potential, and the reversal potential was changed as a function of the extracellular chloride concentration. These results suggest that strychnine-sensitive glycine receptors are functionally expressed in bullfrog cones, which may mediate signal feedback from glycinergic interplexiform cells to cones in the outer retina. PMID:17346892

  13. Expression of serotonin receptor genes in cranial ganglia.

    PubMed

    Maeda, Naohiro; Ohmoto, Makoto; Yamamoto, Kurumi; Kurokawa, Azusa; Narukawa, Masataka; Ishimaru, Yoshiro; Misaka, Takumi; Matsumoto, Ichiro; Abe, Keiko

    2016-03-23

    Taste cells release neurotransmitters to gustatory neurons to transmit chemical information they received. Sweet, umami, and bitter taste cells use ATP as a neurotransmitter. However, ATP release from sour taste cells has not been observed so far. Instead, they release serotonin when they are activated by sour/acid stimuli. Thus it is still controversial whether sour taste cells use ATP, serotonin, or both. By reverse transcription-polymerase chain reaction and subsequent in situ hybridization (ISH) analyses, we revealed that of 14 serotonin receptor genes only 5-HT3A and 5-HT3B showed significant/clear signals in a subset of neurons of cranial sensory ganglia in which gustatory neurons reside. Double-fluorescent labeling analyses of ISH for serotonin receptor genes with wheat germ agglutinin (WGA) in cranial sensory ganglia of pkd1l3-WGA mice whose sour neural pathway is visualized by the distribution of WGA originating from sour taste cells in the posterior region of the tongue revealed that WGA-positive cranial sensory neurons rarely express either of serotonin receptor gene. These results suggest that serotonin receptors expressed in cranial sensory neurons do not play any role as neurotransmitter receptor from sour taste cells. PMID:26854841

  14. GABAA receptor subunit gene expression in human prefrontal cortex: comparison of schizophrenics and controls

    NASA Technical Reports Server (NTRS)

    Akbarian, S.; Huntsman, M. M.; Kim, J. J.; Tafazzoli, A.; Potkin, S. G.; Bunney, W. E. Jr; Jones, E. G.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    The prefrontal cortex of schizophrenics is hypoactive and displays changes related to inhibitory, GABAergic neurons, and GABAergic synapses. These changes include decreased levels of glutamic acid decarboxylase (GAD), the enzyme for GABA synthesis, upregulation of muscimol binding, and downregulation of benzodiazepine binding to GABAA receptors. Studies in the visual cortex of nonhuman primates have demonstrated that gene expression for GAD and for several GABAA receptor subunit polypeptides is under control of neuronal activity, raising the possibility that similar mechanisms in the hypoactive prefrontal cortex of schizophrenics may explain the abnormalities in GAD and in GABAA receptor regulation. In the present study, which is the first of its type on human cerebral cortex, levels of mRNAs for six GABAA receptor subunits (alpha 1, alpha 2, alpha 5, beta 1, beta 2, gamma 2) and their laminar expression patterns were analyzed in the prefrontal cortex of schizophrenics and matched controls, using in situ hybridization histochemistry and densitometry. Three types of laminar expression pattern were observed: mRNAs for the alpha 1, beta 2, and gamma 2 subunits, which are the predominant receptor subunits expressed in the mature cortex, were expressed at comparatively high levels by cells of all six cortical layers, but most intensely by cells in lower layer III and layer IV. mRNAs for the alpha 2, alpha 5, and beta 1 subunits were expressed at lower levels; alpha 2 and beta 1 were expressed predominantly by cells in layers II, III, and IV; alpha 5 was expressed predominantly in layers IV, V, and VI. There were no significant changes in overall mRNA levels for any of the receptor subunits in the prefrontal cortex of schizophrenics, and the laminar expression pattern of all six receptor subunit mRNAs did not differ between schizophrenics and controls. Because gene expression for GABAA receptor subunits is not consistently altered in the prefrontal cortex of

  15. Estrogen receptor and progesterone receptor genes are expressed differentially in mouse embryos during preimplantation development.

    PubMed Central

    Hou, Q; Gorski, J

    1993-01-01

    Estrogen and progesterone play an important role in the development and implantation of preimplantation embryos. However, it is controversial whether these hormones act directly on the embryos. The effects of these hormones depend on the existence of their specific receptors. To determine whether estrogen receptor (ER) and progesterone receptor genes are expressed in mouse preimplantation embryos, we examined RNA from embryos at different stages of preimplantation development by reverse transcription-polymerase chain reaction techniques. ER mRNA was found in oocytes and fertilized eggs. The message level began to decline at the two-cell stage and reached its lowest level at the five- to eight-cell stage. ER mRNA was not detectable at the morula stage but reappeared at the blastocyst stage. Progesterone receptor mRNA was not detectable until the blastocyst stage. The embryonic expression of ER and progesterone receptor genes in the blastocyst suggests a possible functional requirement for ER and progesterone receptor at this stage of development. These results provide a basis for determining the direct role of estrogen and progesterone in preimplantation embryos. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8415723

  16. Expression and retinoic acid regulation of the zebrafish nr2f orphan nuclear receptor genes

    PubMed Central

    Love, Crystal E.; Prince, Victoria E.

    2012-01-01

    Background The vertebrate nuclear receptor subfamily 2, group f (nr2f) genes encode orphan receptors that have the capacity to act as negative regulators of retinoic acid (RA) signaling. Results We describe embryonic and larval expression of four of the six zebrafish nr2f genes, nr2f1a, nr2f1b, nr2f2 and nr2f5. These genes show highly regulated patterns of expression within the CNS, including in the developing hindbrain, as well as in the mesoderm and endoderm. We also investigated the role of RA and Fgf signaling in regulating early nr2f gene expression. RA is not required for nr2f expression in the hindbrain; however, exogenous RA can repress this expression. Conversely, we find that RA positively regulates nr2f1a expression in trunk endoderm and mesoderm. Fgf signaling is not required for nr2f expression onset in the hindbrain; however, it may play a role in maintaining rhombomere-specific expression. Conclusions We report detailed expression analysis of four nr2f genes in all three germ layers. The onset of nr2f expression in the hindbrain does not require RA or Fgf signals. Our finding that RA positively regulates nr2f1a expression in the trunk supports the possibility that Nr2fs function in a negative feedback loop to modulate RA signaling in this region. PMID:22836912

  17. Nuclear Receptor Expression and Function in Human Lung Cancer Pathogenesis

    PubMed Central

    Kim, Jihye; Sato, Mitsuo; Choi, Jong-Whan; Kim, Hyun-Won; Yeh, Byung-Il; Larsen, Jill E.; Minna, John D.; Cha, Jeong-Heon; Jeong, Yangsik

    2015-01-01

    Lung cancer is caused by combinations of diverse genetic mutations. Here, to understand the relevance of nuclear receptors (NRs) in the oncogene-associated lung cancer pathogenesis, we investigated the expression profile of the entire 48 NR members by using QPCR analysis in a panel of human bronchial epithelial cells (HBECs) that included precancerous and tumorigenic HBECs harboring oncogenic K-rasV12 and/or p53 alterations. The analysis of the profile revealed that oncogenic alterations accompanied transcriptional changes in the expression of 19 NRs in precancerous HBECs and 15 NRs according to the malignant progression of HBECs. Amongst these, peroxisome proliferator-activated receptor gamma (PPARγ), a NR chosen as a proof-of-principle study, showed increased expression in precancerous HBECs, which was surprisingly reversed when these HBECs acquired full in vivo tumorigenicity. Notably, PPARγ activation by thiazolidinedione (TZD) treatment reversed the increased expression of pro-inflammatory cyclooxygenase 2 (COX2) in precancerous HBECs. In fully tumorigenic HBECs with inducible expression of PPARγ, TZD treatments inhibited tumor cell growth, clonogenecity, and cell migration in a PPARγ-sumoylation dependent manner. Mechanistically, the sumoylation of liganded-PPARγ decreased COX2 expression and increased 15-hydroxyprostaglandin dehydrogenase expression. This suggests that ligand-mediated sumoylation of PPARγ plays an important role in lung cancer pathogenesis by modulating prostaglandin metabolism. PMID:26244663

  18. The putative signal peptide of glucagon-like peptide-1 receptor is not required for receptor synthesis but promotes receptor expression

    PubMed Central

    Ge, Yunjun; Yang, Dehua; Dai, Antao; Zhou, Caihong; Zhu, Yue; Wang, Ming-Wei

    2014-01-01

    GLP-1R (glucagon-like peptide-1 receptor) mediates the ‘incretin effect’ and many other anti-diabetic actions of its cognate ligand, GLP-1 (glucagon-like peptide-1). It belongs to the class B family of GPCRs (G protein-coupled receptors) and possesses an N-terminal putative SP (signal peptide). It has been reported that this sequence is required for the synthesis of GLP-1R and is cleaved after receptor synthesis. In the present study, we conducted an in-depth exploration towards the role of the putative SP in GLP-1R synthesis. A mutant GLP-1R without this sequence was expressed in HEK293 cells (human embryonic kidney 293 cells) and displayed normal functionality with respect to ligand binding and activation of adenylate cyclase. Thus the putative SP does not seem to be required for receptor synthesis. Immunoblotting analysis shows that the amount of GLP-1R synthesized in HEK293 cells is low when the putative SP is absent. This indicates that the role of the sequence is to promote the expression of GLP-1R. Furthermore, epitopes tagged at the N-terminal of GLP-1R are detectable by immunofluorescence and immunoblotting in our experiments. In conclusion, the present study points to different roles of SP in GLP-1R expression which broadens our understanding of the functionality of this putative SP of GLP-1R and possibly other Class B GPCRs. PMID:25330813

  19. Steroid Receptor Coactivator-2 Expression in Brain and Physical Associations with Steroid Receptors

    PubMed Central

    Yore, Mackensie A.; Im, DaEun; Webb, Lena K.; Zhao, Yingxin; Chadwick, Joseph G.; Molenda-Figueira, Heather A.; Haidacher, Sigmund J.; Denner, Larry; Tetel, Marc J.

    2010-01-01

    Estradiol and progesterone bind to their respective receptors in the hypothalamus and hippocampus to influence a variety of behavioral and physiological functions, including reproduction and cognition. Work from our lab and others has shown that the nuclear receptor coactivators, steroid receptor coactivator-1 (SRC-1) and SRC-2, are essential for efficient estrogen receptor (ER) and progestin receptor (PR) transcriptional activity in brain and for hormone-dependent behaviors. While the expression of SRC-1 in brain has been studied extensively, little is known about the expression of SRC-2 in brain. In the present studies, we found that SRC-2 was highly expressed throughout the hippocampus, amygdala and hypothalamus, including the medial preoptic area (MPOA), ventral medial nucleus (VMN), arcuate nucleus (ARC), bed nucleus of the stria terminalis, supraoptic nucleus and suprachiasmatic nucleus. In order for coactivators to function with steroid receptors, they must be expressed in the same cells. Indeed, SRC-2 and ERα were coexpressed in many cells in the MPOA, VMN and ARC, all brain regions known to be involved in female reproductive behavior and physiology. While in vitro studies indicate that SRC-2 physically associates with ER and PR, very little is known about receptor-coactivator interactions in brain. Therefore, we used pull-down assays to test the hypotheses that SRC-2 from hypothalamic and hippocampal tissue physically associate with ER and PR subtypes in a ligand-dependent manner. SRC-2 from both brain regions interacted with ERα bound to agonist, but not in the absence of ligand or in the presence of the selective ER modulator, tamoxifen. Analysis by mass spectrometry confirmed these ligand-dependent interactions between ERα and SRC-2 from brain. In dramatic contrast, SRC-2 from brain showed little to no interaction with ERβ. Interestingly, SRC-2 from both brain regions interacted with PR-B, but not PR-A, in a ligand-dependent manner. Taken together

  20. Urokinase receptor is a multifunctional protein: influence of receptor occupancy on macrophage gene expression.

    PubMed Central

    Rao, N K; Shi, G P; Chapman, H A

    1995-01-01

    Binding of urokinase to the glycolipid-anchored urokinase receptor (uPAR) has been implicated in macrophage differentiation. However, no biochemical markers of differentiation have yet been directly linked to uPAR occupancy. As extensive changes in proteolytic profile characterize monocytic differentiation, we have examined the role of uPAR occupancy on protease expression by differentiating phagocytes. Antibodies to either urokinase or to uPAR that prevent receptor binding inhibited induction of cathepsin B in cultured monocytes and both cathepsin B and 92-kD gelatinase mRNA and protein in phorbol diester-stimulated myeloid cells. Mannosamine, an inhibitor of glycolipid anchor assembly, also blocked protease expression. Anti-catalytic urokinase antibodies, excess inactive urokinase, or aprotinin had no effect, indicating that receptor occupancy per se regulated protease expression. Antibodies to the integrins CD11a and CD29 or to the glycolipid-anchored proteins CD14 and CD55 also had no effect. Protease induction was independent of matrix attachment. Antibodies to urokinase or uPAR affected neither the decrease in cathepsin G nor the increase in tumor necrosis factor-alpha in phorbol ester-stimulated cells. These data establish that uPAR is a multifunctional receptor, not only promoting pericellular proteolysis and matrix attachment, but also effecting cysteine- and metallo-protease expression during macrophage differentiation. Images PMID:7615819

  1. Receptor-targeted metalloradiopharmaceuticals. Final technical report

    SciTech Connect

    Green, Mark A.

    2000-03-22

    Copper (II) and platinum (II) coordination complexes were prepared and characterized. These complexes were designed to afford structural homology with steroidal and non-steroidal estrogens for possible use as receptor-targeted radiopharmaceuticals. While weak affinity for the estrogen receptor was detectable, none would appear to have sufficient receptor-affinity for estrogen-receptor-targeted imaging or therapy.

  2. Lipoproteins modulate expression of the macrophage scavenger receptor.

    PubMed Central

    Han, J.; Nicholson, A. C.

    1998-01-01

    Macrophage scavenger receptors (MSR) bind and internalize oxidized low density lipoprotein (OxLDL), a modified lipoprotein that is thought to be the proximal source of lipids that accumulate within cells of atherosclerotic lesions. The role of lipoproteins in modulating MSR expression are undetermined. We studied the effect of lipoproteins, native and modified LDL (acetylated LDL (AcLDL) and OxLDL) on the expression of the MSR in RAW cells, a murine macrophage cell line. Exposure to lipoproteins resulted in a marked induction of MSR mRNA expression (12- to 17-fold) with OxLDL and AcLDL having the greatest effects. Maximum induction occurred 1 hour after treatment with OxLDL and LDL. AcLDL induced a fourfold increase at 1 hour followed by a return to baseline and peak expression (sixfold) at 14 hours. Scavenger receptor function, as measured by 125I-AcLDL binding, was only modestly increased in response to lipoproteins. Incubation of macrophages with a cholesterol acceptor particle resulted in a dose-dependent decrease in MSR mRNA expression, which paralleled cholesterol loss from the cells. OxLDL did not affect MSR mRNA stability, implying that MSR mRNA was transcriptionally regulated by lipoproteins. Finally, peritoneal macrophages were isolated from mice following intraperitoneal injection of lipoproteins. Macrophage expression of MSR mRNA was significantly (16-fold) increased by LDL, AcLDL, or OxLDL relative to mice infused with phosphate-buffered saline. This demonstration that exposure to lipoproteins increases expression of the macrophage scavenger receptor implies that lipoproteins can further contribute to foam cell development in atherosclerosis. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:9626069

  3. Engineering Receptor Expression on Natural Killer Cells Through Trogocytosis.

    PubMed

    Somanchi, Anitha; Lee, Dean A; Somanchi, Srinivas S

    2016-01-01

    Trogocytosis is a rapid contact-dependent process by which lymphocytes acquire membrane patches from the target cells ('donor' cells) with which they interact and this phenomenon has been shown to occur in various immune cells. The surface molecules acquired through trogocytosis are functionally incorporated in the 'acceptor' cells transiently. We had previously demonstrated that trogocytosis can be utilized in place of gene transfer to engineer surface receptor expression on NK cells for adoptive immunotherapy applications. In this chapter, we describe detailed protocol for trogocytosis-co-culture of NK cell with the donor cell line, phenotypic assessment of receptor uptake and persistence, and assessment of NK cell function (migration) following receptor acquisition. PMID:27177672

  4. Inhibitory receptor expression on memory CD8 T cells following Ad vector immunization.

    PubMed

    Penaloza-MacMaster, Pablo; Alayo, Quazim A; Ra, Joshua; Provine, Nicholas M; Larocca, Rafael; Lee, Benjamin; Barouch, Dan H

    2016-09-22

    T cells are an important component of immune responses, and their function is influenced by their expression of inhibitory receptors. Immunization with alternative serotype adenovirus (Ad) vectors induces highly functional T cell responses with lower programmed cell death 1 (PD-1) expression and increased boostability relative to Ad5 vectors. However, a detailed phenotypic characterization of other inhibitory receptors is lacking, and it is unknown whether Ad5-induced CD8 T cells eventually recover function with time. In this report, we measure the expression of various inhibitory receptors and memory markers during early and late time points following vaccination with Ad5 and alternative serotype Ad vectors. CD8 T cells induced by Ad5 exhibited increased expression of the inhibitory receptor Tim-3 and showed decreased central memory differentiation as compared with alternative serotype Ad vectors, even a year following immunization. Moreover, relative to Ad5-primed mice, Ad26-primed mice exhibited substantially improved recall of SIV Gag-specific CD8 T cell responses following heterologous boosting with MVA or Ad35 vectors. We also demonstrate that low doses of Ad5 priming resulted in more boostable immune responses with lower PD-1 expression as compared to high Ad5 doses, suggesting a role for vector dose in influencing immune dysfunction following Ad5 vaccination. These data suggest that Ad5 vectors induce a long-term pattern of immune exhaustion that can be partly overcome by lowering vector dose and modulating inhibitory signals. PMID:27566899

  5. Regulation of retinoid X receptor gamma expression by fed state in mouse liver

    SciTech Connect

    Park, Sangkyu; Lee, Yoo Jeong; Ko, Eun Hee; Kim, Jae-woo

    2015-02-27

    Glucose metabolism is balanced by glycolysis and gluconeogenesis with precise control in the liver. The expression of genes related to glucose metabolism is regulated primarily by glucose and insulin at transcriptional level. Nuclear receptors play important roles in regulating the gene expression of glucose metabolism at transcriptional level. Some of these nuclear receptors form heterodimers with RXRs to bind to their specific regulatory elements on the target promoters. To date, three isotypes of RXRs have been identified; RXRα, RXRβ and RXRγ. However, their involvement in the interactions with other nuclear receptors in the liver remains unclear. In this study, we found RXRγ is rapidly induced after feeding in the mouse liver, indicating a potential role of RXRγ in controlling glucose or lipid metabolism in the fasting–feeding cycle. In addition, RXRγ expression was upregulated by glucose in primary hepatocytes. This implies that glucose metabolism governed by RXRγ in conjunction with other nuclear receptors. The luciferase reporter assay showed that RXRγ as well as RXRα increased SREBP-1c promoter activity in hepatocytes. These results suggest that RXRγ may play an important role in tight control of glucose metabolism in the fasting–feeding cycle. - Highlights: • Refeeding increases the RXRγ expression level in mouse liver. • RXRγ expression is induced by high glucose condition in primary hepatocytes. • RXRγ and LXRα have synergistic effect on SREBP-1c promoter activity. • RXRγ binds to LXRE(-299/-280) located within SREBP-1c promoter region and interacts with LXRα.

  6. Expression and distribution of sialic acid influenza virus receptors in wild birds

    PubMed Central

    França, M.; Stallknecht, D. E.; Howerth, E. W.

    2013-01-01

    Avian influenza (AI) viruses have been detected in more than 105 wild bird species from 12 different orders but species-related differences in susceptibility to AI viruses exist. Expression of α2,3-linked (avian-type) and α2,6linked (human type) sialic acid (SA) influenza virus receptors in tissues is considered to be one of the determinants of the host range and tissue tropism of influenza viruses. We investigated the expression of these SA receptors in 37 wild bird species from 11 different orders by lectin histochemistry. Two isoforms of Maackia amurensis (MAA) lectin, MAA1 and MAA2, were used to detect α2,3-linked SA and Sambucus nigra (SNA) lectin was used to detect α2,6-linked SA. All species evaluated expressed α2,3-linked and α2,6-linked SA receptors in endothelial cells and renal tubular epithelial cells. Both α2,3-linked and α-2,6-linked SA receptors were expressed in respiratory and intestinal tract tissues of aquatic and terrestrial wild bird species from different taxa, but differences in SA expression and in the predominant isoform of MAA lectin bound were observed. With a few possible exceptions, these observed differences were not generally predictive of reported species susceptibility to AI viruses based on published experimental and field data. PMID:23391183

  7. Regulation of Expression of Citrate Synthase by the Retinoic Acid Receptor-Related Orphan Receptor α (RORα)

    PubMed Central

    Crumbley, Christine; Wang, Yongjun; Banerjee, Subhashis; Burris, Thomas P.

    2012-01-01

    The retinoic acid receptor-related orphan receptor α (RORα) is a member of the nuclear receptor superfamily of transcription factors that plays an important role in regulation of the circadian rhythm and metabolism. Mice lacking a functional RORα display a range of metabolic abnormalities including decreased serum cholesterol and plasma triglycerides. Citrate synthase (CS) is a key enzyme of the citric acid cycle that provides energy for cellular function. Additionally, CS plays a critical role in providing citrate derived acetyl-CoA for lipogenesis and cholesterologenesis. Here, we identified a functional RORα response element (RORE) in the promoter of the CS gene. ChIP analysis demonstrates RORα occupancy of the CS promoter and a putative RORE binds to RORα effectively in an electrophoretic mobility shift assay and confers RORα responsiveness to a reporter gene in a cotransfection assay. We also observed a decrease in CS gene expression and CS enzymatic activity in the staggerer mouse, which has a mutation of in the Rora gene resulting in nonfunctional RORα protein. Furthermore, we found that SR1001 a RORα inverse agonist eliminated the circadian pattern of expression of CS mRNA in mice. These data suggest that CS is a direct RORα target gene and one mechanism by which RORα regulates lipid metabolism is via regulation of CS expression. PMID:22485150

  8. Prostate-specific antigen and hormone receptor expression in male and female breast carcinoma

    PubMed Central

    2010-01-01

    Background Prostate carcinoma is among the most common solid tumors to secondarily involve the male breast. Prostate specific antigen (PSA) and prostate-specific acid phosphatase (PSAP) are expressed in benign and malignant prostatic tissue, and immunohistochemical staining for these markers is often used to confirm the prostatic origin of metastatic carcinoma. PSA expression has been reported in male and female breast carcinoma and in gynecomastia, raising concerns about the utility of PSA for differentiating prostate carcinoma metastasis to the male breast from primary breast carcinoma. This study examined the frequency of PSA, PSAP, and hormone receptor expression in male breast carcinoma (MBC), female breast carcinoma (FBC), and gynecomastia. Methods Immunohistochemical staining for PSA, PSAP, AR, ER, and PR was performed on tissue microarrays representing six cases of gynecomastia, thirty MBC, and fifty-six FBC. Results PSA was positive in two of fifty-six FBC (3.7%), focally positive in one of thirty MBC (3.3%), and negative in the five examined cases of gynecomastia. PSAP expression was absent in MBC, FBC, and gynecomastia. Hormone receptor expression was similar in males and females (AR 74.1% in MBC vs. 67.9% in FBC, p = 0.62; ER 85.2% vs. 68.5%, p = 0.18; and PR 51.9% vs. 48.2%, p = 0.82). Conclusions PSA and PSAP are useful markers to distinguish primary breast carcinoma from prostate carcinoma metastatic to the male breast. Although PSA expression appeared to correlate with hormone receptor expression, the incidence of PSA expression in our population was too low to draw significant conclusions about an association between PSA expression and hormone receptor status in breast lesions. PMID:20863373

  9. Cholangiocarcinomas express Fas ligand and disable the Fas receptor.

    PubMed

    Que, F G; Phan, V A; Phan, V H; Celli, A; Batts, K; LaRusso, N F; Gores, G J

    1999-12-01

    Cholangiocarcinoma is a highly-malignant adenocarcinoma originating from cholangiocytes. Current concepts support escape from immune surveillance using aberrant expression of Fas ligand (FasL) and dysregulation of receptor (FasR) signaling as a potential mechanism for tumor progression. Our aims were to determine if altered expression of FasR and FasL or changes in expression of FLICE inhibitor (I-FLICE) allow cholangiocarcinoma cells to escape immune surveillance. Human cholangiocarcinoma cell lines were evaluated for the functional expression of FasR and FasL by (1) quantitating apoptosis after incubation of cells with agonistic antibodies and (2) an in vitro cell death assay involving coculture of cholangiocarcinoma cells with Fas-sensitive thymocytes. I-FLICE antisense treatment was performed by stable transfection with complementary DNA (cDNA) for I-FLICE in the reverse orientation. We found that normal cholangiocytes in vivo express FasL. Human cholangiocarcinoma cell lines express both FasL and FasR and I-FLICE. FasL expressed by cholangiocarcinomas in vitro induced lymphocyte cell death (70% after 24 hours). Despite the expression of FasR, exposure of the cells to agonistic antibodies (500 ng/mL) induced only minimal apoptosis in the Jurkat cells. Antisense treatment of cholangiocarcinomas in vitro with I-FLICE reduced protein expression of I-FLICE by 90% to 95% and increased Fas-mediated apoptosis 2-fold. We concluded that cholangiocarcinomas escape immune surveillance either by disabling FasR signaling through the expression of I-FLICE and/or increased FasL expression to induce apoptosis of invading T cells. Reduction of I-FLICE expression in cholangiocarcinoma cells restored Fas-mediated apoptosis. Therapeutic maneuvers to inhibit expression of I-FLICE may aid in the treatment of cholangiocarcinoma.

  10. Molecular cloning, functional expression and pharmacological characterization of a mouse melanocortin receptor gene.

    PubMed Central

    Desarnaud, F; Labbe, O; Eggerickx, D; Vassart, G; Parmentier, M

    1994-01-01

    We describe the cloning of the mouse HGMP01A gene that encodes a melanocortin receptor functionally distinct from the adrenal cortex corticotropin (adrenocorticotrophic hormone; ACTH) receptor and the melanocyte-stimulating hormone (MSH) receptor expressed in melanoma. The gene encodes a protein of 323 amino acids with a calculated molecular mass of 35,800 Da, displaying potential sites for N-linked glycosylation and phosphorylation by protein kinase C. An RNAase protection assay detected weak expression in the brain, but not in adrenal gland, skin, or any of the other tissues tested. Stable CHO cell lines expressing over 100,000 receptors per cell were generated. The recombinant receptor binds iodinated [Nle4,D-Phe7]alpha-MSH (NDP-MSH) with an apparent Kd of 700 pM. Displacement of the ligand by a variety of pro-opiomelanocortin-derived peptides revealed a pharmacological profile distinct from that of the classical ACTH and MSH receptors. NDP-MSH was the most powerful competitor (IC50 1.4 nM), followed by gamma-MSH (IC50 7 nM). alpha-MSH, beta-MSH and ACTH-(1-39) were significantly less potent, with IC50 values of 30, 19 and 21 nM respectively. ACTH-(4-10) was poorly active (IC50 2.4 microM), while corticotropin-like intermediate lobe peptide (CLIP) and beta-endorphin were totally ineffective. The recombinant receptor was found to stimulate adenylate cyclase. The potency order of the agonists in this assay was consistent with that of the binding displacement assays. This receptor represents the orthologue of the human melanocortin 3 receptor reported recently. The growing family of melanocortin receptors constitute the molecular basis for the variety of actions of melanocortins that have been described over the years. The availability of functionally expressed receptors from the melanocortin family will allow the development of a specific pharmacology, and a better understanding of the function of the pro-opiomelanocortin-derived peptides. Images Figure 6 PMID

  11. Cognitive deficits and changes in gene expression of NMDA receptors after prenatal methylmercury exposure.

    PubMed Central

    Baraldi, Mario; Zanoli, Paola; Tascedda, Fabio; Blom, Joan M C; Brunello, Nicoletta

    2002-01-01

    Previous studies showed learning and memory deficit in adult rats that were prenatally exposed to methylmercury chloride (MMC) in an advanced stage of pregnancy (15 days). Under these conditions, the cognitive deficits found at 60 days of age paralleled particularly changes in the N-methyl-D-aspartate (NMDA) receptor characteristics. In the present study, we report the behavioral effects of a single oral dose of MMC (8 mg/kg) administered earlier at gestational day 8. The use of different learning and memory tests (passive avoidance, object recognition, water maze) showed a general cognitive impairment in the in utero-exposed rats tested at 60 days of age compared with matched controls. Considering the importance of the glutamatergic receptor system and its endogenous ligands in learning and memory process regulation, we surmised that MMC could affect the gene expression of NMDA receptor subtypes. The use of a sensitive RNase protection assay allowed the evaluation of gene expression of two families of NMDA receptors (NR-1 and NR-2 subtypes). The result obtained in 60-day-old rats prenatally exposed to MMC, showed increased mRNA levels of the NR-2B subunit in the hippocampus but not in the frontal cortex. The data suggest that the behavioral abnormalities of MMC-exposed rats might be ascribed to a neurotoxic effect of the metal that alters the gene expression of a specific NMDA receptor subunit in the hippocampus. PMID:12426146

  12. Vascular endothelial cells express a functional fas-receptor due to lack of hemodynamic forces.

    PubMed

    Freyberg, M A; Kaiser, D; Graf, R; Friedl, P

    2001-10-01

    The fas system is present in atherosclerotic lesions. However, its role in the initiation and progression is still unclear. Here we show that in endothelial cells (EC) the expression of the fas receptor is regulated by flow conditions. The EC of the vascular system are regularly exposed to a range of hemodynamic forces with great impact on cellular structures and functions. Recently it was reported that in endothelial cells the lack of hemodynamic forces as well as irregular flow conditions trigger apoptosis by induction of a mechanosensitive autocrine loop of thrombospondin-1 and the alpha(V)beta(3) integrin/integrin-associated protein complex. Here we show that EC cultivated under regular laminar flow conditions are devoid of the fas-receptor whereas cultivation under static conditions as well as under turbulence leads to its expression. Stimulation of the fas-receptor by its ligand increases the amount of apoptotic cells by twofold; the increase can be prevented by blocking the fas-receptor. The availability of the expressed fas receptor for stimulation by its ligand hints at a role as a tool for progression of atherosclerosis. PMID:11483857

  13. Distribution of angiotensin type-1 receptor messenger RNA expression in the adult rat brain.

    PubMed

    Lenkei, Z; Palkovits, M; Corvol, P; Llorens-Cortes, C

    1998-02-01

    Angiotensin II and angiotensin III in the brain exert their various effects by acting on two pharmacologically well-defined receptors, the type-1 (AT1) and the type-2 (AT2) receptors. Receptor binding autoradiography has revealed the dominant presence of AT1 in brain nuclei involved in cardiovascular, body fluid and neuroendocrine control. The cloning of the AT1 complementary DNA has revealed the existence of two receptor subtypes in rodents, AT1A and AT1B. Using specific riboprobes for in situ hybridization, we have previously shown that the AT1A messenger RNA is predominantly expressed in the rat forebrain; in contrast the AT1B subtype predominates in the anterior pituitary. Using a similar technical approach, the aim of the present study was to establish the precise anatomical localization of cells synthetising the AT1A receptor in the adult rat brain. High AT1A messenger RNA expression was found in the vascular organ of the lamina terminalis, the median preoptic nucleus, the subfornical organ, the hypothalamic periventricular nucleus, the parvocellular parts of the paraventricular nucleus, the nucleus of the solitary tract and the area postrema, in agreement with previous autoradiographic studies, describing a high density of AT1 binding sites in these nuclei. In addition, AT1A messenger RNA expression was detected in several brain areas, where no AT1 binding was reported previously. Thus, we identify strong expression of AT1A messenger RNA expression in scattered cells of the lateral parts of the preoptic region, the lateral hypothalamus and several brainstem nuclei. In none of these structures was the AT1B messenger RNA detectable at the microscopic level. In conclusion, it is suggested that angiotensins may exert their central effects on body fluid and cardiovascular homeostasis mainly via the AT1A receptor subtype. PMID:9483539

  14. Cell-Free Expression of G Protein-Coupled Receptors.

    PubMed

    Segers, Kenneth; Masure, Stefan

    2015-01-01

    The large-scale production of recombinant G protein-coupled receptors (GPCRs) is one of the major bottlenecks that hamper functional and structural studies of this important class of integral membrane proteins. Heterologous overexpression of GPCRs often results in low yields of active protein, usually due to a combination of several factors, such as low expression levels, protein insolubility, host cell toxicity, and the need to use harsh and often denaturing detergents (e.g., SDS, LDAO, OG, and DDM, among others) to extract the recombinant receptor from the host cell membrane. Many of these problematic issues are inherently linked to cell-based expression systems and can therefore be circumvented by the use of cell-free systems. In this unit, we provide a range of protocols for the production of GPCRs in a cell-free expression system. Using this system, we typically obtain GPCR expression levels of ∼1 mg per ml of reaction mixture in the continuous-exchange configuration. Although the protocols in this unit have been optimized for the cell-free expression of GPCRs, they should provide a good starting point for the production of other classes of membrane proteins, such as ion channels, aquaporins, carrier proteins, membrane-bound enzymes, and even large molecular complexes.

  15. Assays of polychlorinated biphenyl congeners and co-contaminated heavy metals in the transgenic Arabidopsis plants carrying the recombinant guinea pig aryl hydrocarbon receptor-mediated β-glucuronidase reporter gene expression system.

    PubMed

    Shimazu, Sayuri; Ohta, Masaya; Ohkawa, Hideo; Ashida, Hitoshi

    2012-01-01

    The transgenic Arabidopsis plant XgD2V11-6 carrying the recombinant guinea pig (g) aryl hydrocarbon receptor (AhR)-mediated β-glucuronidase (GUS) reporter gene expression system was examined for assay of polychlorinated biphenyl (PCB) congeners and co-contaminated heavy metals. When the transgenic Arabidopsis plants were treated with PCB126 (toxic equivalency factor; TEF: 0.1) and PCB169 (TEF: 0.03), the GUS activity of the whole plants was increased significantly. After treatment with PCB80 (TEF: 0), the GUS activity was nearly the same level as that treated with 0.1% dimethylsulfoxide (DMSO) as a vehicle control. After exposure to a 1:1 mixture of PCB126 and PCB169, the GUS activity was increased additively. However, after exposure to a mixture of PCB126 and PCB80, the GUS activity was lower than that of the treatment with PCB126 alone. Thus, PCB80 seemed to be an antagonist towards AhR. When the transgenic plants were treated with each of the heavy metals Fe, Cu, Zn, Cd and Pb together with PCB126, Cd and Pb increased the PCB126-induced GUS activity. On the other hand, Fe, Cu and Zn did not affect the PCB126-induced GUS activity. In the presence of the biosurfactant mannosylerythritol lipid-B (MEL-B) and the carrier protein bovine serum albumin (BSA), the PCB126-induced GUS activity was increased, but the Cd-assisted PCB126-induced GUS activity was not affected. Thus, MEL-B and BSA seemed to increase uptake and transport of PCB126, respectively. PMID:22938576

  16. Increased hypothalamic 5-HT2A receptor gene expression and effects of pharmacologic 5-HT2A receptor inactivation in obese A{sup y} mice

    SciTech Connect

    Nonogaki, Katsunori . E-mail: knonogaki-tky@umin.ac.jp; Nozue, Kana; Oka, Yoshitomo

    2006-12-29

    Serotonin (5-hydroxytryptamine; 5-HT) 2A receptors contribute to the effects of 5-HT on platelet aggregation and vascular smooth muscle cell proliferation, and are reportedly involved in decreases in plasma levels of adiponectin, an adipokine, in diabetic subjects. Here, we report that systemic administration of sarpogrelate, a 5-HT2A receptor antagonist, suppressed appetite and increased hypothalamic pro-opiomelanocortin and cocaine- and amphetamine-regulated transcript, corticotropin releasing hormone, 5-HT2C, and 5-HT1B receptor gene expression. A{sup y} mice, which have ectopic expression of the agouti protein, significantly increased hypothalamic 5-HT2A receptor gene expression in association with obesity compared with wild-type mice matched for age. Systemic administration of sarpogrelate suppressed overfeeding, body weight gain, and hyperglycemia in obese A{sup y} mice, whereas it did not increase plasma adiponectin levels. These results suggest that obesity increases hypothalamic 5-HT2A receptor gene expression, and pharmacologic inactivation of 5-HT2A receptors inhibits overfeeding and obesity in A{sup y} mice, but did not increase plasma adiponectin levels.

  17. Histamine 3 receptor activation reduces the expression of neuronal angiotensin II type 1 receptors in the heart.

    PubMed

    Hashikawa-Hobara, Narumi; Chan, Noel Yan-Ki; Levi, Roberto

    2012-01-01

    In severe myocardial ischemia, histamine 3 (H₃) receptor activation affords cardioprotection by preventing excessive norepinephrine release and arrhythmias; pivotal to this action is the inhibition of neuronal Na⁺/H⁺ exchanger (NHE). Conversely, angiotensin II, formed locally by mast cell-derived renin, stimulates NHE via angiotensin II type 1 (AT₁) receptors, facilitating norepinephrine release and arrhythmias. Thus, ischemic dysfunction may depend on a balance between the NHE-modulating effects of H₃ receptors and AT₁ receptors. The purpose of this investigation was therefore to elucidate the H₃/AT₁ receptor interaction in myocardial ischemia/reperfusion. We found that H₃ receptor blockade with clobenpropit increased norepinephrine overflow and arrhythmias in Langendorff-perfused guinea pig hearts subjected to ischemia/reperfusion. This coincided with increased neuronal AT₁ receptor expression. NHE inhibition with cariporide prevented both increases in norepinephrine release and AT₁ receptor expression. Moreover, norepinephrine release and AT₁ receptor expression were increased by the nitric oxide (NO) synthase inhibitor N(G)-methyl-L-arginine and the protein kinase C activator phorbol myristate acetate. H₃ receptor activation in differentiated sympathetic neuron-like PC12 cells permanently transfected with H₃ receptor cDNA caused a decrease in protein kinase C activity and AT₁ receptor protein abundance. Collectively, our findings suggest that neuronal H₃ receptor activation inhibits NHE by diminishing protein kinase C activity. Reduced NHE activity sequentially causes intracellular acidification, increased NO synthesis, and diminished AT₁ receptor expression. Thus, H₃ receptor-mediated NHE inhibition in ischemia/reperfusion not only opposes the angiotensin II-induced stimulation of NHE in cardiac sympathetic neurons, but also down-regulates AT₁ receptor expression. Cardioprotection ultimately results from the combined

  18. Histamine 3 Receptor Activation Reduces the Expression of Neuronal Angiotensin II Type 1 Receptors in the Heart

    PubMed Central

    Hashikawa-Hobara, Narumi; Chan, Noel Yan-Ki

    2012-01-01

    In severe myocardial ischemia, histamine 3 (H3) receptor activation affords cardioprotection by preventing excessive norepinephrine release and arrhythmias; pivotal to this action is the inhibition of neuronal Na+/H+ exchanger (NHE). Conversely, angiotensin II, formed locally by mast cell-derived renin, stimulates NHE via angiotensin II type 1 (AT1) receptors, facilitating norepinephrine release and arrhythmias. Thus, ischemic dysfunction may depend on a balance between the NHE-modulating effects of H3 receptors and AT1 receptors. The purpose of this investigation was therefore to elucidate the H3/AT1 receptor interaction in myocardial ischemia/reperfusion. We found that H3 receptor blockade with clobenpropit increased norepinephrine overflow and arrhythmias in Langendorff-perfused guinea pig hearts subjected to ischemia/reperfusion. This coincided with increased neuronal AT1 receptor expression. NHE inhibition with cariporide prevented both increases in norepinephrine release and AT1 receptor expression. Moreover, norepinephrine release and AT1 receptor expression were increased by the nitric oxide (NO) synthase inhibitor NG-methyl-l-arginine and the protein kinase C activator phorbol myristate acetate. H3 receptor activation in differentiated sympathetic neuron-like PC12 cells permanently transfected with H3 receptor cDNA caused a decrease in protein kinase C activity and AT1 receptor protein abundance. Collectively, our findings suggest that neuronal H3 receptor activation inhibits NHE by diminishing protein kinase C activity. Reduced NHE activity sequentially causes intracellular acidification, increased NO synthesis, and diminished AT1 receptor expression. Thus, H3 receptor-mediated NHE inhibition in ischemia/reperfusion not only opposes the angiotensin II-induced stimulation of NHE in cardiac sympathetic neurons, but also down-regulates AT1 receptor expression. Cardioprotection ultimately results from the combined attenuation of angiotensin II and

  19. Spatiotemporal expression of Nogo-66 receptor after focal cerebral ischemia

    PubMed Central

    Cao, Yue; Dong, Ya-xian; Xu, Jie; Chu, Guo-liang; Yang, Zhi-hua; Liu, Yan-ming

    2016-01-01

    NgR, the receptor for the neurite outgrowth inhibitor Nogo-66, plays a critical role in the plasticity and regeneration of the nervous system after injury such as ischemic stroke. In the present study, we used immunohistochemistry to investigate the regional expression of NgR in rat brain following middle cerebral artery occlusion (MCAO). NgR protein expression was not observed in the center of the lesion, but was elevated in the marginal zone compared with control and sham-operated rats. The cerebral cortex and hippocampus (CA1, CA2, and CA3) showed the greatest expression of NgR. Furthermore, NgR expression was higher in the ipsilesional hemisphere than on the control side in the same coronal section. Although time-dependent changes in NgR expression across brain regions had their own characteristics, the overall trend complied with the following rules: NgR expression changes with time showed two peaks and one trough; the first peak in expression appeared between 1 and 3 days after MCAO; expression declined at 5 days; and the second peak occurred at 28 days. PMID:26981102

  20. The p75 neurotrophin receptor localization in blood-CSF barrier: expression in choroid plexus epithelium

    PubMed Central

    2011-01-01

    Background The presence of neurotrophins and their receptors Trk family has been reported in the choroid plexus. High levels of Nerve Growth Factor (NGF), Neurotrophin-4 (NT-4) and TrkB receptor were detected, while nothing was know about p75 neurotrophin receptor (p75NTR) in the choroid plexus epithelial cells. In neurons, p75NTR receptor has a dual function: promoting survival together with TrkA in response to NGF, and inducing apoptotic signaling through p75NTR. We postulated that p75NTR may also affect the survival pathways in the choroid plexus and also undergoes regulated proteolysis with metalloproteases. Results Here, we demonstrated the presence of p75NTR receptor in the choroid plexus epithelial cells. The p75NTR receptor would be involved in cell death mechanisms and in the damaged induced by amyloid beta (Aβ) in the choroid plexus and finally, we propose an essential role of p75NTR in the Aβ transcytosis through out choroid plexus barrier. Conclusions The presence analysis reveals the new localization of p75NTR in the choroid plexus and, the distribution mainly in the cytoplasm and cerebrospinal fluid (CSF) side of the epithelial cells. We propose that p75NTR receptor plays a role in the survival pathways and Aβ-induced cell death. These data suggest that p75NTR dysfunction play an important role in the pathogenesis of brain diseases. The importance and novelty of this expression expands a new role of p75NTR. PMID:21569322

  1. Heterologous expression of functional G-protein-coupled receptors in Caenorhabditis elegans

    PubMed Central

    Salom, David; Cao, Pengxiu; Sun, Wenyu; Kramp, Kristopher; Jastrzebska, Beata; Jin, Hui; Feng, Zhaoyang; Palczewski, Krzysztof

    2012-01-01

    New strategies for expression, purification, functional characterization, and structural determination of membrane-spanning G-protein-coupled receptors (GPCRs) are constantly being developed because of their importance to human health. Here, we report a Caenorhabditis elegans heterologous expression system able to produce milligram amounts of functional native and engineered GPCRs. Both bovine opsin [(b)opsin] and human adenosine A2A subtype receptor [(h)A2AR] expressed in neurons or muscles of C. elegans were localized to cell membranes. Worms expressing these GPCRs manifested changes in motor behavior in response to light and ligands, respectively. With a newly devised protocol, 0.6–1 mg of purified homogenous 9-cis-retinal-bound bovine isorhodopsin [(b)isoRho] and ligand-bound (h)A2AR were obtained from C. elegans from one 10-L fermentation at low cost. Purified recombinant (b)isoRho exhibited its signature absorbance spectrum and activated its cognate G-protein transducin in vitro at a rate similar to native rhodopsin (Rho) obtained from bovine retina. Generally high expression levels of 11 native and mutant GPCRs demonstrated the potential of this C. elegans system to produce milligram quantities of high-quality GPCRs and possibly other membrane proteins suitable for detailed characterization.—Salom, D., Cao, P., Sun, W., Kramp, K., Jastrzebska, B., Jin, H., Feng, Z., Palczewski, K. Heterologous expression of functional G-protein-coupled receptors in Caenorhabditis elegans. PMID:22090314

  2. Efficient silkworm expression of human GPCR (nociceptin receptor) by a Bombyx mori bacmid DNA system

    SciTech Connect

    Kajikawa, Mizuho; Sasaki, Kaori; Wakimoto, Yoshitaro; Toyooka, Masaru; Motohashi, Tomoko; Shimojima, Tsukasa; Takeda, Shigeki; Park, Enoch Y.; Maenaka, Katsumi

    2009-07-31

    Guanine nucleotide-binding protein (G protein) coupled receptors (GPCRs) are frequently expressed by a baculovirus expression vector system (BEVS). We recently established a novel BEVS using the bacmid system of Bombyx mori nucleopolyhedrovirus (BmNPV), which is directly applicable for protein expression in silkworms. Here, we report the first example of GPCR expression in silkworms by the simple injection of BmNPV bacmid DNA. Human nociceptin receptor, an inhibitory GPCR, and its fusion protein with inhibitory G protein alpha subunit (G{sub i}{alpha}) were both successfully expressed in the fat bodies of silkworm larvae as well as in the BmNPV viral fraction. Its yield was much higher than that from Sf9 cells. The microsomal fractions including the nociceptin receptor fusion, which are easily prepared by only centrifugation steps, exhibited [{sup 35}S]GTP{gamma}S-binding activity upon specific stimulation by nociceptin. Therefore, this rapid method is easy-to-use and has a high expression level, and thus will be an important tool for human GPCR production.

  3. Toll-Like Receptor Gene Expression during Trichinella spiralis Infection

    PubMed Central

    Kim, Sin; Park, Mi Kyung; Yu, Hak Sun

    2015-01-01

    In Trichinella spiralis infection, type 2 helper T (Th2) cell-related and regulatory T (Treg) cell-related immune responses are the most important immune events. In order to clarify which Toll-like receptors (TLRs) are closely associated with these responses, we analyzed the expression of mouse TLR genes in the small intestine and muscle tissue during T. spiralis infection. In addition, the expression of several chemokine- and cytokine-encoding genes, which are related to Th2 and Treg cell mediated immune responses, were analyzed in mouse embryonic fibroblasts (MEFs) isolated from myeloid differentiation factor 88 (MyD88)/TIR-associated proteins (TIRAP) and Toll receptor-associated activator of interferons (TRIF) adapter protein deficient and wild type (WT) mice. The results showed significantly increased TLR4 and TLR9 gene expression in the small intestine after 2 weeks of T. spiralis infection. In the muscle, TLR1, TLR2, TLR5, and TLR9 gene expression significantly increased after 4 weeks of infection. Only the expression of the TLR4 and TLR9 genes was significantly elevated in WT MEF cells after treatment with excretory-secretory (ES) proteins. Gene expression for Th2 chemokine genes were highly enhanced by ES proteins in WT MEF cells, while this elevation was slightly reduced in MyD88/TIRAP-/- MEF cells, and quite substantially decreased in TRIF-/- MEF cells. In contrast, IL-10 and TGF-β expression levels were not elevated in MyD88/TIRAP-/- MEF cells. In conclusion, we suggest that TLR4 and TLR9 might be closely linked to Th2 cell and Treg cell mediated immune responses, although additional data are needed to convincingly prove this observation. PMID:26323841

  4. Hepatic Aryl Hydrocarbon Receptor Attenuates Fibroblast Growth Factor 21 Expression.

    PubMed

    Girer, Nathaniel G; Murray, Iain A; Omiecinski, Curtis J; Perdew, Gary H

    2016-07-15

    The Aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor involved in many physiological processes. Several studies indicate that AHR is also involved in energy homeostasis. Fibroblast growth factor 21 (FGF21) is an important regulator of the fasting and feeding responses. When administered to various genetic and diet-induced mouse models of obesity, FGF21 can attenuate obesity-associated morbidities. Here, we explore the role of AHR in hepatic Fgf21 expression through the use of a conditional, hepatocyte-targeted AHR knock-out mouse model (Cre(Alb)Ahr(Fx/Fx)). Compared with the congenic parental strain (Ahr(Fx/Fx)), non-fasted Cre(Alb)Ahr(Fx/Fx) mice exhibit a 4-fold increase in hepatic Fgf21 expression, as well as elevated expression of the FGF21-target gene Igfbp1 Furthermore, in vivo agonist activation of AHR reduces hepatic Fgf21 expression during a fast. The Fgf21 promoter contains several putative dioxin response elements (DREs). Using EMSA, we demonstrate that the AHR-ARNT heterodimer binds to a specific DRE that overlaps binding sequences for peroxisome proliferator-activated receptor α (PPARα), carbohydrate response element-binding protein (ChREBP), and cAMP response element-binding protein, hepatocyte specific (CREBH). In addition, we reveal that agonist-activated AHR impairs PPARα-, ChREBP-, and CREBH-mediated promoter activity in Hepa-1 cells. Accordingly, agonist treatment in Hepa-1 cells ablates potent ER stress-driven Fgf21 expression, and pre-treatment with AHR antagonist blocks this effect. Finally, we show that pre-treatment of primary human hepatocytes with AHR agonist diminishes PPARα-, glucose-, and ER stress-driven induction of FGF21 expression, indicating the effect is not mouse-specific. Together, our data show that AHR contributes to hepatic energy homeostasis, partly through the regulation of FGF21 expression and signaling. PMID:27226639

  5. An Expression Refinement Process Ensures Singular Odorant Receptor Gene Choice.

    PubMed

    Abdus-Saboor, Ishmail; Al Nufal, Mohammed J; Agha, Maha V; Ruinart de Brimont, Marion; Fleischmann, Alexander; Shykind, Benjamin M

    2016-04-25

    Odorant receptor (OR) gene choice in mammals is a paradigmatic example of monogenic and monoallelic transcriptional selection, in which each olfactory sensory neuron (OSN) chooses to express one OR allele from over 1,000 encoded in the genome [1-3]. This process, critical for generation of the circuit from nose to brain [4-6], is thought to occur in two steps: a slow initial phase that randomly activates a single OR allele, followed by a rapid feedback that halts subsequent expression [7-14]. Inherent in this model is a finite failure rate wherein multiple OR alleles may be activated prior to feedback suppression [15, 16]. Confronted with more than one receptor, the neuron would need to activate a refinement mechanism to eliminate multigenic OR expression and resolve unique neuronal identity [16], critical to the generation of the circuit from nose to olfactory bulb. Here we used a genetic approach in mice to reveal a new facet of OR regulation that corrects adventitious activation of multiple OR alleles, restoring monogenic OR expression and unique neuronal identity. Using the tetM71tg model system, in which the M71 OR is expressed in >95% of mature OSNs and potently suppresses the expression of the endogenous OR repertoire [10], we provide clear evidence of a post-selection refinement (PSR) process that winnows down the number of ORs. We further demonstrate that PSR efficiency is linked to OR expression level, suggesting an underlying competitive process and shedding light on OR gene switching and the fundamental mechanism of singular OR choice. PMID:27040780

  6. Expression of cloned α6* nicotinic acetylcholine receptors.

    PubMed

    Wang, Jingyi; Kuryatov, Alexander; Lindstrom, Jon

    2015-09-01

    Nicotinic acetylcholine receptors (AChRs) are ACh-gated ion channels formed from five homologous subunits in subtypes defined by their subunit composition and stoichiometry. Some subtypes readily produce functional AChRs in Xenopus oocytes and transfected cell lines. α6β2β3* AChRs (subtypes formed from these subunits and perhaps others) are not easily expressed. This may be because the types of neurons in which they are expressed (typically dopaminergic neurons) have unique chaperones for assembling α6β2β3* AChRs, especially in the presence of the other AChR subtypes. Because these relatively minor brain AChR subtypes are of major importance in addiction to nicotine, it is important for drug development as well as investigation of their functional properties to be able to efficiently express human α6β2β3* AChRs. We review the issues and progress in expressing α6* AChRs. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'.

  7. Insulin decreases atherosclerosis by inducing endothelin receptor B expression

    PubMed Central

    Park, Kyoungmin; Mima, Akira; Li, Qian; Rask-Madsen, Christian; He, Pingnian; Mizutani, Koji; Katagiri, Sayaka; Maeda, Yasutaka; Wu, I-Hsien; Khamaisi, Mogher; Preil, Simone Rordam; Sørensen, Ditte; Huang, Paul L.; King, George L.

    2016-01-01

    Endothelial cell (EC) insulin resistance and dysfunction, caused by diabetes, accelerates atherosclerosis. It is unknown whether specifically enhancing EC-targeted insulin action can decrease atherosclerosis in diabetes. Accordingly, overexpressing insulin receptor substrate-1 (IRS1) in the endothelia of Apoe–/– mice (Irs1/Apoe–/–) increased insulin signaling and function in the aorta. Atherosclerosis was significantly reduced in Irs1/ApoE–/– mice on diet-induced hyperinsulinemia and hyperglycemia. The mechanism of insulin’s enhanced antiatherogenic actions in EC was related to remarkable induction of NO action, which increases endothelin receptor B (EDNRB) expression and intracellular [Ca2+]. Using the mice with knockin mutation of eNOS, which had Ser1176 mutated to alanine (AKI), deleting the only known mechanism for insulin to activate eNOS/NO pathway, we observed that IRS1 overexpression in the endothelia of Aki/ApoE–/– mice significantly decreased atherosclerosis. Interestingly, endothelial EDNRB expression was selectively reduced in intima of arteries from diabetic patients and rodents. However, endothelial EDNRB expression was upregulated by insulin via P13K/Akt pathway. Finally EDNRB deletion in EC of Ldlr–/– and Irs1/Ldlr–/– mice decreased NO production and accelerated atherosclerosis, compared with Ldlr–/– mice. Accelerated atherosclerosis in diabetes may be reduced by improving insulin signaling selectively via IRS1/Akt in the EC by inducing EDNRB expression and NO production. PMID:27200419

  8. Insulin decreases atherosclerosis by inducing endothelin receptor B expression

    PubMed Central

    Park, Kyoungmin; Mima, Akira; Li, Qian; Rask-Madsen, Christian; He, Pingnian; Mizutani, Koji; Katagiri, Sayaka; Maeda, Yasutaka; Wu, I-Hsien; Khamaisi, Mogher; Preil, Simone Rordam; Maddaloni, Ernesto; Sørensen, Ditte; Rasmussen, Lars Melholt; Huang, Paul L.; King, George L.

    2016-01-01

    Endothelial cell (EC) insulin resistance and dysfunction, caused by diabetes, accelerates atherosclerosis. It is unknown whether specifically enhancing EC-targeted insulin action can decrease atherosclerosis in diabetes. Accordingly, overexpressing insulin receptor substrate-1 (IRS1) in the endothelia of Apoe−/− mice (Irs1/Apoe−/−) increased insulin signaling and function in the aorta. Atherosclerosis was significantly reduced in Irs1/ApoE−/− mice on diet-induced hyperinsulinemia and hyperglycemia. The mechanism of insulin’s enhanced antiatherogenic actions in EC was related to remarkable induction of NO action, which increases endothelin receptor B (EDNRB) expression and intracellular [Ca2+]. Using the mice with knockin mutation of eNOS, which had Ser1176 mutated to alanine (AKI), deleting the only known mechanism for insulin to activate eNOS/NO pathway, we observed that IRS1 overexpression in the endothelia of Aki/ApoE−/− mice significantly decreased atherosclerosis. Interestingly, endothelial EDNRB expression was selectively reduced in intima of arteries from diabetic patients and rodents. However, endothelial EDNRB expression was upregulated by insulin via P13K/Akt pathway. Finally EDNRB deletion in EC of Ldlr−/− and Irs1/Ldlr−/− mice decreased NO production and accelerated atherosclerosis, compared with Ldlr−/− mice. Accelerated atherosclerosis in diabetes may be reduced by improving insulin signaling selectively via IRS1/Akt in the EC by inducing EDNRB expression and NO production. PMID:27200419

  9. Peroxisome proliferator-activated receptor {alpha} agonist-induced down-regulation of hepatic glucocorticoid receptor expression in SD rats

    SciTech Connect

    Chen Xiang; Li Ming; Sun Weiping; Bi Yan; Cai Mengyin; Liang Hua; Yu Qiuqiong; He Xiaoying; Weng Jianping

    2008-04-18

    It was reported that glucocorticoid production was inhibited by fenofibrate through suppression of type-1 11{beta}-hydroxysteroid dehydrogenase gene expression in liver. The inhibition might be a negative-feedback regulation of glucocorticoid receptor (GR) activity by peroxisome proliferator-activated receptor alpha (PPAR{alpha}), which is quickly induced by glucocorticoid in the liver. However, it is not clear if GR expression is changed by fenofibrate-induced PPAR{alpha} activation. In this study, we tested this possibility in the liver of Sprague-Dawley rats. GR expression was reduced by fenofibrate in a time- and does-dependent manner. The inhibition was observed in liver, but not in fat and muscle. The corticosterone level in the blood was increased significantly by fenofibrate. These effects of fenofibrate were abolished by PPAR{alpha} inhibitor MK886, suggesting that fenofibrate activated through PPAR{alpha}. In conclusion, inhibition of GR expression may represent a new molecular mechanism for the negative feedback regulation of GR activity by PPAR{alpha}.

  10. Targeting the expression of integrin receptors in tumors

    NASA Astrophysics Data System (ADS)

    Bloch, Sharon; Liang, Kexian; Dorshow, Richard B.; Ye, Yunpeng; Achilefu, Samuel I.

    2004-06-01

    Expression of integrin αvβ3 is upregulated in a number of cancers including colon, pancreas, lung and breast. Additionally, αvβ3 integrin expression has been linked to tumor metastasis and targeting this cell surface protein could provide a viable approach to image and evaluate the metastatic potential of tumors. Accordingly, we evaluated the selective retention of some near infrared (NIR) fluorescent probes in nude mice bearing A549 lung cancer xenograft that express αvβ3 integrin. Our preliminary results indicate that a novel NIR probe designed to target this integrin selectively accumulated in A549 tumor while other non-integrin specific probes were not retained in the tumor. Blocking studies show that tumor uptake of the probe is mediated by αvβ3 integrin receptor.

  11. Prognostic values of four Notch receptor mRNA expression in gastric cancer

    PubMed Central

    Wu, Xiaoyu; Liu, Wentao; Tang, Ding; Xiao, Haijuan; Wu, Zhenfeng; Chen, Che; Yao, Xuequan; Liu, Fukun; Li, Gang

    2016-01-01

    Notch ligands and receptors are frequently deregulated in several human malignancies including gastric cancer. The activation of Notch signaling has been reported to contribute to gastric carcinogenesis and progression. However, the prognostic roles of individual Notch receptors in gastric cancer patients remain elusive. In the current study, we accessed the prognostic roles of four Notch receptors, Notch 1–4, in gastric cancer patients through “The Kaplan-Meier plotter” (KM plotter) database, in which updated gene expression data and survival information include a total of 876 gastric cancer patients. All four Notch receptors’ high mRNA expression was found to be correlated to worsen overall survival (OS) for all gastric cancer patients followed for 20 years. We further accessed the prognostic roles of individual Notch receptors in different clinicopathological features using Lauren classification, pathological grades, clinical grades, HER2 status and different choices of treatments of gastric cancer patients. These results indicate that there are critical prognostic values of the four Notch receptors in gastric cancer. This information will be useful for better understanding of the heterogeneity and complexity in the molecular biology of gastric cancer and to develop tools to more accurately predict their prognosis. PMID:27363496

  12. Downregulation of transferrin receptor surface expression by intracellular antibody

    SciTech Connect

    Peng Jilin; Wu Sha; Zhao Xiaoping; Wang Min; Li Wenhan; Shen Xin; Liu Jing; Lei Ping; Zhu Huifen; Shen Guanxin . E-mail: guanxin_shen@yahoo.com.cn

    2007-03-23

    To deplete cellular iron uptake, and consequently inhibit the proliferation of tumor cells, we attempt to block surface expression of transferrin receptor (TfR) by intracellular antibody technology. We constructed two expression plasmids (scFv-HAK and scFv-HA) coding for intracellular single-chain antibody against TfR with or without endoplasmic reticulum (ER) retention signal, respectively. Then they were transfected tumor cells MCF-7 by liposome. Applying RT-PCR, Western blotting, immunofluorescence microscopy and immunoelectron microscope experiments, we insure that scFv-HAK intrabody was successfully expressed and retained in ER contrasted to the secreted expression of scFv-HA. Flow cytometric analysis confirmed that the TfR surface expression was markedly decreased approximately 83.4 {+-} 2.5% in scFv-HAK transfected cells, while there was not significantly decrease in scFv-HA transfected cells. Further cell growth and apoptosis characteristics were evaluated by cell cycle analysis, nuclei staining and MTT assay. Results indicated that expression of scFv-HAK can dramatically induce cell cycle G1 phase arrest and apoptosis of tumor cells, and consequently significantly suppress proliferation of tumor cells compared with other control groups. For First time this study demonstrates the potential usage of anti-TfR scFv-intrabody as a growth inhibitor of TfR overexpressing tumors.

  13. Molecular Cooperativity Governs Diverse and Monoallelic Olfactory Receptor Expression

    NASA Astrophysics Data System (ADS)

    Xing, Jianhua; Tian, Xiaojun; Zhang, Hang; Sannerud, Jens

    Multiple-objective optimization is common in biological systems. In the mammalian olfactory system, each sensory neuron stochastically expresses only one out of up to thousands of olfactory receptor (OR) gene alleles; at organism level the types of expressed ORs need to be maximized. The molecular mechanism of this Nobel-Prize winning puzzle remains unresolved after decades of extensive studies. Existing models focus only on monoallele activation, and cannot explain recent observations in mutants, especially the reduced global diversity of expressed ORs in G9a/GLP knockouts. In this work we integrated existing information on OR expression, and proposed an evolutionarily optimized three-layer regulation mechanism, which includes zonal segregation, epigenetic and enhancer competition coupled to a negative feedback loop. This model not only recapitulates monoallelic OR expression, but also elucidates how the olfactory system maximizes and maintains the diversity of OR expression. The model is validated by several experimental results, and particularly underscores cooperativity and synergy as a general design principle of multi-objective optimization in biology. The work is supported by the NIGMS/DMS Mathematical Biology program.

  14. G-protein coupled receptor expression patterns delineate medulloblastoma subgroups

    PubMed Central

    2013-01-01

    Background Medulloblastoma is the most common malignant brain tumor in children. Genetic profiling has identified four principle tumor subgroups; each subgroup is characterized by different initiating mutations, genetic and clinical profiles, and prognoses. The two most well-defined subgroups are caused by overactive signaling in the WNT and SHH mitogenic pathways; less is understood about Groups 3 and 4 medulloblastoma. Identification of tumor subgroup using molecular classification is set to become an important component of medulloblastoma diagnosis and staging, and will likely guide therapeutic options. However, thus far, few druggable targets have emerged. G-protein coupled receptors (GPCRs) possess characteristics that make them ideal targets for molecular imaging and therapeutics; drugs targeting GPCRs account for 30-40% of all current pharmaceuticals. While expression patterns of many proteins in human medulloblastoma subgroups have been discerned, the expression pattern of GPCRs in medulloblastoma has not been investigated. We hypothesized that analysis of GPCR expression would identify clear subsets of medulloblastoma and suggest distinct GPCRs that might serve as molecular targets for both imaging and therapy. Results Our study found that medulloblastoma tumors fall into distinct clusters based solely on GPCR expression patterns. Normal cerebellum clustered separately from the tumor samples. Further, two of the tumor clusters correspond with high fidelity to the WNT and SHH subgroups of medulloblastoma. Distinct over-expressed GPCRs emerge; for example, LGR5 and GPR64 are significantly and uniquely over-expressed in the WNT subgroup of tumors, while PTGER4 is over-expressed in the SHH subgroup. Uniquely under-expressed GPCRs were also observed. Our key findings were independently validated using a large international dataset. Conclusions Our results identify GPCRs with potential to act as imaging and therapeutic targets. Elucidating tumorigenic pathways

  15. CD46 measles virus receptor polymorphisms influence receptor protein expression and primary measles vaccine responses in naive Australian children.

    PubMed

    Clifford, Holly D; Hayden, Catherine M; Khoo, Siew-Kim; Zhang, Guicheng; Le Souëf, Peter N; Richmond, Peter

    2012-05-01

    Despite the availability of measles vaccines, infants continue to die from measles. Measles vaccine responses vary between individuals, and poor immunogenicity is likely to preclude protection against measles. CD46 is a ubiquitously expressed specific receptor for vaccine strains of measles virus. CD46 polymorphisms have not been functionally investigated but may affect CD46 protein expression, which in turn may mediate primary measles antibody responses in infants. In a cohort of children aged 12 to 14 months from Perth, Australia (n = 137), after their first dose of measles-mumps-rubella (MMR) vaccine, CD46 polymorphisms were genotyped, and postvaccination measles IgG and CD46 protein expression before and after measles lysate stimulation of cells were measured. Three CD46 variants (rs7144, rs11118580, and rs2724384) were significantly associated with measles virus-specific IgG levels (P = 0.008, P = 0.026, and P = 0.018, respectively). There were significant differences between CD46 rs7144 genotypes and CD46 protein expression on T cells, as well as the downregulation of CD46 and T-cell frequency after measles lysate stimulation. We show that CD46 polymorphisms were associated with primary measles antibody responses in naive infants. We also report the first association of a measles virus receptor polymorphism with functional effects on the receptor, suggesting a possible mechanism through which antibody responses are altered. Elucidating all of the interconnecting genetic factors that alter primary measles vaccine responses may be important for identifying children at risk of poor immunogenicity or vaccine failure and for the future design of vaccine strategies to help these children.

  16. In vitro expression and analysis of the 826 human G protein-coupled receptors.

    PubMed

    Lv, Xuechen; Liu, Junlin; Shi, Qiaoyun; Tan, Qiwen; Wu, Dong; Skinner, John J; Walker, Angela L; Zhao, Lixia; Gu, Xiangxiang; Chen, Na; Xue, Lu; Si, Pei; Zhang, Lu; Wang, Zeshi; Katritch, Vsevolod; Liu, Zhi-Jie; Stevens, Raymond C

    2016-05-01

    G protein-coupled receptors (GPCRs) are involved in all human physiological systems where they are responsible for transducing extracellular signals into cells. GPCRs signal in response to a diverse array of stimuli including light, hormones, and lipids, where these signals affect downstream cascades to impact both health and disease states. Yet, despite their importance as therapeutic targets, detailed molecular structures of only 30 GPCRs have been determined to date. A key challenge to their structure determination is adequate protein expression. Here we report the quantification of protein expression in an insect cell expression system for all 826 human GPCRs using two different fusion constructs. Expression characteristics are analyzed in aggregate and among each of the five distinct subfamilies. These data can be used to identify trends related to GPCR expression between different fusion constructs and between different GPCR families, and to prioritize lead candidates for future structure determination feasibility. PMID:27085723

  17. Expression of α(1)-adrenergic receptors in rat prefrontal cortex: cellular co-localization with 5-HT(2A) receptors.

    PubMed

    Santana, Noemí; Mengod, Guadalupe; Artigas, Francesc

    2013-06-01

    The prefrontal cortex (PFC) is involved in behavioural control and cognitive processes that are altered in schizophrenia. The brainstem monoaminergic systems control PFC function, yet the cells/networks involved are not fully known. Serotonin (5-HT) and norepinephrine (NE) increase PFC neuronal activity through the activation of α(1)-adrenergic receptors (α(1)ARs) and 5-HT(2A) receptors (5-HT(2A)Rs), respectively. Neurochemical and behavioural interactions between these receptors have been reported. Further, classical and atypical antipsychotic drugs share nm in vitro affinity for α(1)ARs while having preferential affinity for D(2) and 5-HT(2A)Rs, respectively. Using double in situ hybridization we examined the cellular expression of α(1)ARs in pyramidal (vGluT1-positive) and GABAergic (GAD(65/67)-positive) neurons in rat PFC and their co-localization with 5-HT(2A)Rs. α(1)ARs are expressed by a high proportion of pyramidal (59-85%) and GABAergic (52-79%) neurons. The expression in pyramidal neurons exhibited a dorsoventral gradient, with a lower percentage of α(1)AR-positive neurons in infralimbic cortex compared to anterior cingulate and prelimbic cortex. The expression of α(1A), α(1B) and α(1D) adrenergic receptors was segregated in different layers and subdivisions. In all them there is a high co-expression with 5-HT(2A)Rs (∼80%). These observations indicate that NE controls the activity of most PFC pyramidal neurons via α(1)ARs, either directly or indirectly, via GABAergic interneurons. Antipsychotic drugs can thus modulate the activity of PFC via α(1)AR blockade. The high co-expression with 5-HT(2A)Rs indicates a convergence of excitatory serotonergic and noradrenergic inputs onto the same neuronal populations. Moreover, atypical antipsychotics may exert a more powerful control of PFC function through the simultaneous blockade of α(1)ARs and 5-HT(2A)Rs.

  18. Altered sensitivity to excitotoxic cell death and glutamate receptor expression between two commonly studied mouse strains

    PubMed Central

    Finn, Rozzy; Kovács, Attila D.; Pearce, David A.

    2011-01-01

    Alterations in glutamatergic synapse function have been implicated in the pathogenesis of many different neurological disorders including ischemia, epilepsy, Parkinson’s disease, Alzheimer’s disease, and Huntington’s disease. While studying glutamate receptor function in juvenile Batten disease on the C57BL/6J and 129S6/SvEv mouse backgrounds, we noticed differences unlikely to be due to mutation difference alone. We report here that primary cerebellar granule cell cultures from C57BL/6J mice are more sensitive to NMDA-mediated cell death. Moreover, sensitivity to AMPA-mediated excitotoxicity is more variable and is dependent upon the treatment conditions and age of the cultures. Glutamate receptor surface expression levels examined in vitro by in situ ELISA and in vivo by Western blot in surface cross-linked cerebellar samples indicated that these differences in sensitivity are likely due to strain-dependent differences in cell surface receptor expression levels. We propose that differences in glutamate receptor expression and in excitotoxic vulnerability should be taken into consideration in the context of characterizing disease models on the C57BL/6J and 129S6/SvEv mouse backgrounds. PMID:20544821

  19. Molecular cloning and expression of an additional epidermal growth factor receptor-related gene.

    PubMed Central

    Plowman, G D; Whitney, G S; Neubauer, M G; Green, J M; McDonald, V L; Todaro, G J; Shoyab, M

    1990-01-01

    Epidermal growth factor (EGF), transforming growth factor alpha (TGF-alpha), and amphiregulin are structurally and functionally related growth regulatory proteins. These secreted polypeptides all bind to the 170-kDa cell-surface EGF receptor, activating its intrinsic kinase activity. However, amphiregulin exhibits different activities than EGF and TGF-alpha in a number of biological assays. Amphiregulin only partially competes with EGF for binding EGF receptor, and amphiregulin does not induce anchorage-independent growth of normal rat kidney cells (NRK) in the presence of TGF-beta. Amphiregulin also appears to abrogate the stimulatory effect of TGF-alpha on the growth of several aggressive epithelial carcinomas that overexpress EGF receptor. These findings suggest that amphiregulin may interact with a separate receptor in certain cell types. Here we report the cloning of another member of the human EGF receptor (HER) family of receptor tyrosine kinases, which we have named "HER3/ERRB3." The cDNA was isolated from a human carcinoma cell line, and its 6-kilobase transcript was identified in various human tissues. We have generated peptide-specific antisera that recognizes the 160-kDa HER3 protein when transiently expressed in COS cells. These reagents will allow us to determine whether HER3 binds amphiregulin or other growth regulatory proteins and what role HER3 protein plays in the regulation of cell growth. Images PMID:2164210

  20. ESR1 and PGR polymorphisms are associated with estrogen and progesterone receptor expression in breast tumors.

    PubMed

    Hertz, Daniel L; Henry, N Lynn; Kidwell, Kelley M; Thomas, Dafydd; Goddard, Audrey; Azzouz, Faouzi; Speth, Kelly; Li, Lang; Banerjee, Mousumi; Thibert, Jacklyn N; Kleer, Celina G; Stearns, Vered; Hayes, Daniel F; Skaar, Todd C; Rae, James M

    2016-09-01

    Hormone receptor-positive (HR+) breast cancers express the estrogen (ERα) and/or progesterone (PgR) receptors. Inherited single nucleotide polymorphisms (SNPs) in ESR1, the gene encoding ERα, have been reported to predict tamoxifen effectiveness. We hypothesized that these associations could be attributed to altered tumor gene/protein expression of ESR1/ERα and that SNPs in the PGR gene predict tumor PGR/PgR expression. Formalin-fixed paraffin-embedded breast cancer tumor specimens were analyzed for ESR1 and PGR gene transcript expression by the reverse transcription polymerase chain reaction based Oncotype DX assay and for ERα and PgR protein expression by immunohistochemistry (IHC) and an automated quantitative immunofluorescence assay (AQUA). Germline genotypes for SNPs in ESR1 (n = 41) and PGR (n = 8) were determined by allele-specific TaqMan assays. One SNP in ESR1 (rs9322336) was significantly associated with ESR1 gene transcript expression (P = 0.006) but not ERα protein expression (P > 0.05). A PGR SNP (rs518162) was associated with decreased PGR gene transcript expression (P = 0.003) and PgR protein expression measured by IHC (P = 0.016), but not AQUA (P = 0.054). There were modest, but statistically significant correlations between gene and protein expression for ESR1/ERα and PGR/PgR and for protein expression measured by IHC and AQUA (Pearson correlation = 0.32-0.64, all P < 0.001). Inherited ESR1 and PGR genotypes may affect tumor ESR1/ERα and PGR/PgR expression, respectively, which are moderately correlated. This work supports further research into germline predictors of tumor characteristics and treatment effectiveness, which may someday inform selection of hormonal treatments for patients with HR+ breast cancer.

  1. ESR1 and PGR polymorphisms are associated with estrogen and progesterone receptor expression in breast tumors.

    PubMed

    Hertz, Daniel L; Henry, N Lynn; Kidwell, Kelley M; Thomas, Dafydd; Goddard, Audrey; Azzouz, Faouzi; Speth, Kelly; Li, Lang; Banerjee, Mousumi; Thibert, Jacklyn N; Kleer, Celina G; Stearns, Vered; Hayes, Daniel F; Skaar, Todd C; Rae, James M

    2016-09-01

    Hormone receptor-positive (HR+) breast cancers express the estrogen (ERα) and/or progesterone (PgR) receptors. Inherited single nucleotide polymorphisms (SNPs) in ESR1, the gene encoding ERα, have been reported to predict tamoxifen effectiveness. We hypothesized that these associations could be attributed to altered tumor gene/protein expression of ESR1/ERα and that SNPs in the PGR gene predict tumor PGR/PgR expression. Formalin-fixed paraffin-embedded breast cancer tumor specimens were analyzed for ESR1 and PGR gene transcript expression by the reverse transcription polymerase chain reaction based Oncotype DX assay and for ERα and PgR protein expression by immunohistochemistry (IHC) and an automated quantitative immunofluorescence assay (AQUA). Germline genotypes for SNPs in ESR1 (n = 41) and PGR (n = 8) were determined by allele-specific TaqMan assays. One SNP in ESR1 (rs9322336) was significantly associated with ESR1 gene transcript expression (P = 0.006) but not ERα protein expression (P > 0.05). A PGR SNP (rs518162) was associated with decreased PGR gene transcript expression (P = 0.003) and PgR protein expression measured by IHC (P = 0.016), but not AQUA (P = 0.054). There were modest, but statistically significant correlations between gene and protein expression for ESR1/ERα and PGR/PgR and for protein expression measured by IHC and AQUA (Pearson correlation = 0.32-0.64, all P < 0.001). Inherited ESR1 and PGR genotypes may affect tumor ESR1/ERα and PGR/PgR expression, respectively, which are moderately correlated. This work supports further research into germline predictors of tumor characteristics and treatment effectiveness, which may someday inform selection of hormonal treatments for patients with HR+ breast cancer. PMID:27542969

  2. Gene Expression Switching of Receptor Subunits in Human Brain Development

    PubMed Central

    Bar-Shira, Ossnat; Maor, Ronnie; Chechik, Gal

    2015-01-01

    Synaptic receptors in the human brain consist of multiple protein subunits, many of which have multiple variants, coded by different genes, and are differentially expressed across brain regions and developmental stages. The brain can tune the electrophysiological properties of synapses to regulate plasticity and information processing by switching from one protein variant to another. Such condition-dependent variant switch during development has been demonstrated in several neurotransmitter systems including NMDA and GABA. Here we systematically detect pairs of receptor-subunit variants that switch during the lifetime of the human brain by analyzing postmortem expression data collected in a population of donors at various ages and brain regions measured using microarray and RNA-seq. To further detect variant pairs that co-vary across subjects, we present a method to quantify age-corrected expression correlation in face of strong temporal trends. This is achieved by computing the correlations in the residual expression beyond a cubic-spline model of the population temporal trend, and can be seen as a nonlinear version of partial correlations. Using these methods, we detect multiple new pairs of context dependent variants. For instance, we find a switch from GLRA2 to GLRA3 that differs from the known switch in the rat. We also detect an early switch from HTR1A to HTR5A whose trends are negatively correlated and find that their age-corrected expression is strongly positively correlated. Finally, we observe that GRIN2B switch to GRIN2A occurs mostly during embryonic development, presumably earlier than observed in rodents. These results provide a systematic map of developmental switching in the neurotransmitter systems of the human brain. PMID:26636753

  3. Gene Expression Switching of Receptor Subunits in Human Brain Development.

    PubMed

    Bar-Shira, Ossnat; Maor, Ronnie; Chechik, Gal

    2015-12-01

    Synaptic receptors in the human brain consist of multiple protein subunits, many of which have multiple variants, coded by different genes, and are differentially expressed across brain regions and developmental stages. The brain can tune the electrophysiological properties of synapses to regulate plasticity and information processing by switching from one protein variant to another. Such condition-dependent variant switch during development has been demonstrated in several neurotransmitter systems including NMDA and GABA. Here we systematically detect pairs of receptor-subunit variants that switch during the lifetime of the human brain by analyzing postmortem expression data collected in a population of donors at various ages and brain regions measured using microarray and RNA-seq. To further detect variant pairs that co-vary across subjects, we present a method to quantify age-corrected expression correlation in face of strong temporal trends. This is achieved by computing the correlations in the residual expression beyond a cubic-spline model of the population temporal trend, and can be seen as a nonlinear version of partial correlations. Using these methods, we detect multiple new pairs of context dependent variants. For instance, we find a switch from GLRA2 to GLRA3 that differs from the known switch in the rat. We also detect an early switch from HTR1A to HTR5A whose trends are negatively correlated and find that their age-corrected expression is strongly positively correlated. Finally, we observe that GRIN2B switch to GRIN2A occurs mostly during embryonic development, presumably earlier than observed in rodents. These results provide a systematic map of developmental switching in the neurotransmitter systems of the human brain.

  4. Exchange factors directly activated by cAMP mediate melanocortin 4 receptor-induced gene expression

    PubMed Central

    Glas, Evi; Mückter, Harald; Gudermann, Thomas; Breit, Andreas

    2016-01-01

    Gs protein-coupled receptors regulate many vital body functions by activation of cAMP response elements (CRE) via cAMP-dependent kinase A (PKA)-mediated phosphorylation of the CRE binding protein (CREB). Melanocortin 4 receptors (MC4R) are prototypical Gs-coupled receptors that orchestrate the hypothalamic control of food-intake and metabolism. Remarkably, the significance of PKA for MC4R-induced CRE-dependent transcription in hypothalamic cells has not been rigorously interrogated yet. In two hypothalamic cell lines, we observed that blocking PKA activity had only weak or no effects on reporter gene expression. In contrast, inhibitors of exchange factors directly activated by cAMP-1/2 (EPAC-1/2) mitigated MC4R-induced CRE reporter activation and mRNA induction of the CREB-dependent genes c-fos and thyrotropin-releasing hormone. Furthermore, we provide first evidence that extracellular-regulated kinases-1/2 (ERK-1/2) activated by EPACs and not PKA are the elusive CREB kinases responsible for MC4R-induced CREB/CRE activation in hypothalamic cells. Overall, these data emphasize the pivotal role of EPACs rather than PKA in hypothalamic gene expression elicited by a prototypical Gs-coupled receptor. PMID:27612207

  5. Exchange factors directly activated by cAMP mediate melanocortin 4 receptor-induced gene expression.

    PubMed

    Glas, Evi; Mückter, Harald; Gudermann, Thomas; Breit, Andreas

    2016-01-01

    Gs protein-coupled receptors regulate many vital body functions by activation of cAMP response elements (CRE) via cAMP-dependent kinase A (PKA)-mediated phosphorylation of the CRE binding protein (CREB). Melanocortin 4 receptors (MC4R) are prototypical Gs-coupled receptors that orchestrate the hypothalamic control of food-intake and metabolism. Remarkably, the significance of PKA for MC4R-induced CRE-dependent transcription in hypothalamic cells has not been rigorously interrogated yet. In two hypothalamic cell lines, we observed that blocking PKA activity had only weak or no effects on reporter gene expression. In contrast, inhibitors of exchange factors directly activated by cAMP-1/2 (EPAC-1/2) mitigated MC4R-induced CRE reporter activation and mRNA induction of the CREB-dependent genes c-fos and thyrotropin-releasing hormone. Furthermore, we provide first evidence that extracellular-regulated kinases-1/2 (ERK-1/2) activated by EPACs and not PKA are the elusive CREB kinases responsible for MC4R-induced CREB/CRE activation in hypothalamic cells. Overall, these data emphasize the pivotal role of EPACs rather than PKA in hypothalamic gene expression elicited by a prototypical Gs-coupled receptor. PMID:27612207

  6. Tumor expression of adiponectin receptor 2 and lethal prostate cancer

    PubMed Central

    Fiorentino, Michelangelo; Kelly, Rachel; Gerke, Travis; Jordahl, Kristina; Sinnott, Jennifer A.; Giovannucci, Edward L.; Loda, Massimo; Mucci, Lorelei A.; Finn, Stephen

    2015-01-01

    To investigate the role of adiponectin receptor 2 (AdipoR2) in aggressive prostate cancer we used immunohistochemistry to characterize AdipoR2 protein expression in tumor tissue for 866 men with prostate cancer from the Physicians’ Health Study and the Health Professionals Follow-up Study. AdipoR2 tumor expression was not associated with measures of obesity, pathological tumor stage or prostate-specific antigen (PSA) at diagnosis. However, AdipoR2 expression was positively associated with proliferation as measured by Ki-67 expression quartiles (P-trend < 0.0001), with expression of fatty acid synthase (P-trend = 0.001), and with two measures of angiogenesis (P-trend < 0.1). An inverse association was observed with apoptosis as assessed by the TUNEL assay (P-trend = 0.006). Using Cox proportional hazards regression and controlling for age at diagnosis, Gleason score, year of diagnosis category, cohort and baseline BMI, we identified a statistically significant trend for the association between quartile of AdipoR2 expression and lethal prostate cancer (P-trend = 0.02). The hazard ratio for lethal prostate cancer for the two highest quartiles, as compared to the two lowest quartiles, of AdipoR2 expression was 1.9 (95% confidence interval [CI]: 1.2–3.0). Results were similar when additionally controlling for categories of PSA at diagnosis and Ki-67 expression quartiles. These results strengthen the evidence for the role of AdipoR2 in prostate cancer progression. PMID:25863129

  7. Interferon enhances the expression of Fc gamma receptors.

    PubMed

    Fridman, W H; Gresser, I; Bandu, M T; Aguet, M; Neauport-Sautes, C

    1980-05-01

    Murine T2D4 cells derived from a T cell hybrid line were incubated with partially purified or electrophoretically pure mouse interferon and tested for the expression of Fc gamma R as assessed by a) counting the number of cells forming rosettes with IgG-sensitized sheep erythrocytes, and b) incubating the cells with heat-aggregated rabbit IgG and then determining either the number of cells stained with fluorescein conjugated goat anti-rabbit IgG or the extent of labeling by using radioactive iodinated staphylococcus protein A. Although interferon induced a rapid increase in Fc gamma R expression on the Fc gamma R-positive T2D4 cells, it did not induce either Fc gamma R on the Fc gamma R negative BW5147 cells or Fc gamma R on either cell line. Human leukocyte interferon enhanced the expression of Fc gamma R on human Burkitt cells (Daudi) but did not affect the expression of Fc gamma R on mouse cells. We suggest that interferon may influence several effector functions of the immune system by modulating Fc receptor expression. PMID:6154103

  8. Estrogen, SNP-Dependent Chemokine Expression and Selective Estrogen Receptor Modulator Regulation.

    PubMed

    Ho, Ming-Fen; Bongartz, Tim; Liu, Mohan; Kalari, Krishna R; Goss, Paul E; Shepherd, Lois E; Goetz, Matthew P; Kubo, Michiaki; Ingle, James N; Wang, Liewei; Weinshilboum, Richard M

    2016-03-01

    We previously reported, on the basis of a genome-wide association study for aromatase inhibitor-induced musculoskeletal symptoms, that single-nucleotide polymorphisms (SNPs) near the T-cell leukemia/lymphoma 1A (TCL1A) gene were associated with aromatase inhibitor-induced musculoskeletal pain and with estradiol (E2)-induced TCL1A expression. Furthermore, variation in TCL1A expression influenced the downstream expression of proinflammatory cytokines and cytokine receptors. Specifically, the top hit genome-wide association study SNP, rs11849538, created a functional estrogen response element (ERE) that displayed estrogen receptor (ER) binding and increased E2 induction of TCL1A expression only for the variant SNP genotype. In the present study, we pursued mechanisms underlying the E2-SNP-dependent regulation of TCL1A expression and, in parallel, our subsequent observations that SNPs at a distance from EREs can regulate ERα binding and that ER antagonists can reverse phenotypes associated with those SNPs. Specifically, we performed a series of functional genomic studies using a large panel of lymphoblastoid cell lines with dense genomic data that demonstrated that TCL1A SNPs at a distance from EREs can modulate ERα binding and expression of TCL1A as well as the expression of downstream immune mediators. Furthermore, 4-hydroxytamoxifen or fulvestrant could reverse these SNP-genotype effects. Similar results were found for SNPs in the IL17A cytokine and CCR6 chemokine receptor genes. These observations greatly expand our previous results and support the existence of a novel molecular mechanism that contributes to the complex interplay between estrogens and immune systems. They also raise the possibility of the pharmacological manipulation of the expression of proinflammatory cytokines and chemokines in a SNP genotype-dependent fashion. PMID:26866883

  9. Bacterial expression of functional, biotinylated peripheral cannabinoid receptor CB2.

    PubMed

    Krepkiy, Dmitriy; Wong, Karen; Gawrisch, Klaus; Yeliseev, Alexei

    2006-09-01

    A biotin-protein ligase recognition site (BRS) was inserted into a polypeptide comprised of the maltose-binding protein, the peripheral cannabinoid receptor (CB2), thioredoxin A, and a polyhistidine tag at the carboxy terminus. Expression levels of the recombinant receptor in Escherichia coli BL21(DE3) cells were approximately 1mg per liter of bacterial culture. The biotinylated CB2-fusion fully retained its ligand-binding capacity. Introduction of the BRS at the C-terminus of the CB2 fusion protein (construct CB2-109) resulted in its complete in vivo biotinylation; the biotinylated protein was streptavidin-binding competent. Positioning of the BRS near the N-terminus of CB2 (CB2-112) resulted in a very low level of biotinylation in vivo. However, the detergent solubilized and purified CB2-112 fusion protein were successfully biotinylated in vitro by action of a BirA biotin-protein ligase. The biotinylated CB2-112 fusion protein was cleaved by the tobacco etch virus protease at specifically inserted sites, and deposited onto monomeric avidin agarose beads. Biotinylation of the recombinant CB2 receptor enabled not only purification but also immobilization of the GPCR on a solid support in homogeneous orientation which is beneficial for subsequent structural characterization.

  10. Ionotropic glutamate receptor expression in human white matter.

    PubMed

    Christensen, Pia Crone; Samadi-Bahrami, Zahra; Pavlov, Vlady; Stys, Peter K; Moore, G R Wayne

    2016-09-01

    Glutamate is the key excitatory neurotransmitter of the central nervous system (CNS). Its role in human grey matter transmission is well understood, but this is less clear in white matter (WM). Ionotropic glutamate receptors (iGluR) are found on both neuronal cell bodies and glia as well as on myelinated axons in rodents, and rodent WM tissue is capable of glutamate release. Thus, rodent WM expresses many of the components of the traditional grey matter neuron-to-neuron synapse, but to date this has not been shown for human WM. We demonstrate the presence of iGluRs in human WM by immunofluorescence employing high-resolution spectral confocal imaging. We found that the obligatory N-methyl-d-aspartic acid (NMDA) receptor subunit GluN1 and the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluA4 co-localized with myelin, oligodendroglial cell bodies and processes. Additionally, GluA4 colocalized with axons, often in distinct clusters. These findings may explain why human WM is vulnerable to excitotoxic events following acute insults such as stroke and traumatic brain injury and in more chronic inflammatory conditions such as multiple sclerosis (MS). Further exploration of human WM glutamate signalling could pave the way for developing future therapies modulating the glutamate-mediated damage in these and other CNS disorders. PMID:27443784

  11. Transferrin receptor expression by stimulated cells in mixed lymphocyte culture.

    PubMed Central

    Salmon, M; Bacon, P A; Symmons, D P; Walton, K W

    1985-01-01

    Transferrin receptor (TRFr) expression by cells in mixed lymphocyte culture increases steadily for the first 5 days, but then reaches a plateau. By the sixth day in culture, about 20% of viable cells express TRFr in two-way mixed lymphocyte reactions. This subpopulation of TRFr-positive cells represents the proliferating population; it is heterogeneous, containing T-cell blasts and smaller cells which are a mixture of T and non-T cells. A small group of non-T cells have phenotypic similarity to natural killer (NK) cells. T cells appear to divide earlier in the course of the response than non-T cells. The biphasic nature of this response and the slower non-T reactivity may be due to a secondary stimulation of non-T cells by factors released from activated T cells (such as interleukin-2). PMID:2982734

  12. Molecular cloning and expression of a GABA receptor subunit from the crayfish Procambarus clarkii.

    PubMed

    Jiménez-Vázquez, Eric N; Díaz-Velásquez, Clara E; Uribe, R M; Arias, Juan M; García, Ubaldo

    2016-02-01

    Molecular cloning has introduced an unexpected, large diversity of neurotransmitter hetero- oligomeric receptors. Extensive research on the molecular structure of the γ-aminobutyric acid receptor (GABAR) has been of great significance for understanding how the nervous system works in both vertebrates and invertebrates. However, only two examples of functional homo-oligomeric GABA-activated Cl(-) channels have been reported. In the vertebrate retina, the GABAρ1 subunit of various species forms homo-oligomeric receptors; in invertebrates, a cDNA encoding a functional GABA-activated Cl(-) channel has been isolated from a Drosophila melanogaster head cDNA library. When expressed in Xenopus laevis oocytes, these subunits function efficiently as a homo-oligomeric complex. To investigate the structure-function of GABA channels from the crayfish Procambarus clarkii, we cloned a subunit and expressed it in human embryonic kidney cells. Electrophysiological recordings show that this subunit forms a homo-oligomeric ionotropic GABAR that gates a bicuculline-insensitive Cl(-) current. The order of potency of the agonists was GABA > trans-4-amino-crotonic acid = cis-4-aminocrotonic acid > muscimol. These data support the notion that X-organ sinus gland neurons express at least two GABA subunits responsible for the formation of hetero-oligomeric and homo-oligomeric receptors. In addition, by in situ hybridization studies we demonstrate that most X-organ neurons from crayfish eyestalk express the isolated pcGABAA β subunit. This study increases the knowledge of the genetics of the crayfish, furthers the understanding of this important neurotransmitter receptor family, and provides insight into the evolution of these genes among vertebrates and invertebrates.

  13. Cloning, pharmacological characterization and expression analysis of Atlantic cod (Gadus morhua, L.) nuclear progesterone receptor.

    PubMed

    Chen, Shi X; Almeida, Fernanda F L; Andersson, Eva; Taranger, Geir Lasse; Schmidt, Ruben; Schulz, Rüdiger W; Bogerd, Jan

    2012-10-01

    To better understand the role(s) of progesterone in fish spermatogenesis, we cloned the nuclear progesterone receptor (Pgr) of Atlantic cod. The open-reading frame of the cod pgr consists of 2076 bp, coding for a 691-amino acids-long protein that shows the highest similarity with other piscine Pgr proteins. Functional characterization of the receptor expressed in mammalian cells revealed that the cod Pgr exhibited progesterone-specific, dose-dependent induction of reporter gene expression, with 17α,20β-dihydroxy-4-pregnen-3-one (DHP), a typical piscine progesterone, showing the highest potency in activating the receptor. During ontogenesis, the pgr mRNA was undetectable in embryo's 24 h after fertilization, but became detectable 4 days after fertilization. During the larval stage, the expression levels increased steadily with the development of the larvae. In adult fish, pgr was predominantly expressed in gonads of both sexes. During the onset of puberty, testicular pgr transcript levels started to increase during rapid spermatogonial proliferation, and peaked when spermiation started. In situ hybridization studies using testis tissue during the rapid growth phase containing all germ cell stages indicated that in cod, pgr mRNA is predominantly located in Sertoli cells that are in contact with proliferating spermatogonia. Taken together, our data suggests that the Pgr is involved in mediating progestagen stimulation of the mitotic expansion of spermatogonia, and in processes associated with the spermiation/spawning period in Atlantic cod. PMID:22885560

  14. Liver X Receptor (LXR) activation negatively regulates visfatin expression in macrophages

    SciTech Connect

    Mayi, Therese Hervee; Rigamonti, Elena; Pattou, Francois; Staels, Bart; Chinetti-Gbaguidi, Giulia

    2011-01-07

    Research highlights: {yields} Synthetic LXR ligands decreased visfatin expression in human macrophages. {yields} LXR activation leads to a modest and transient decrease of NAD{sup +} concentration. {yields} LXR activation decreased PPAR{gamma}-induced visfatin in human macrophages. -- Abstract: Adipose tissue macrophages (ATM) are the major source of visfatin, a visceral fat adipokine upregulated during obesity. Also known to play a role in B cell differentiation (pre-B cell colony-enhancing factor (PBEF)) and NAD biosynthesis (nicotinamide phosphoribosyl transferase (NAMPT)), visfatin has been suggested to play a role in inflammation. Liver X Receptor (LXR) and Peroxisome Proliferator-Activated Receptor (PPAR){gamma} are nuclear receptors expressed in macrophages controlling the inflammatory response. Recently, we reported visfatin as a PPAR{gamma} target gene in human macrophages. In this study, we examined whether LXR regulates macrophage visfatin expression. Synthetic LXR ligands decreased visfatin gene expression in a LXR-dependent manner in human and murine macrophages. The decrease of visfatin mRNA was paralleled by a decrease of protein secretion. Consequently, a modest and transient decrease of NAD{sup +} concentration was observed. Interestingly, LXR activation decreased the PPAR{gamma}-induced visfatin gene and protein secretion in human macrophages. Our results identify visfatin as a gene oppositely regulated by the LXR and PPAR{gamma} pathways in human macrophages.

  15. Clinical Relevance of VPAC1 Receptor Expression in Early Arthritis: Association with IL-6 and Disease Activity

    PubMed Central

    Seoane, Iria V.; Ortiz, Ana M.; Piris, Lorena; Lamana, Amalia; Juarranz, Yasmina; García-Vicuña, Rosario; González-Álvaro, Isidoro; Gomariz, Rosa P.; Martínez, Carmen

    2016-01-01

    Background The vasoactive intestinal peptide (VIP) receptors VPAC1 and VPAC2 mediate anti-inflammatory and immunoregulatory responses in rheumatoid arthritis (RA). Data on the expression of these receptors could complement clinical assessment in the management of RA. Our goal was to investigate the correlation between expression of both receptors and the 28-Joint Disease Activity Score (DAS28) in peripheral blood mononuclear cells (PBMCs) from patients with early arthritis (EA). We also measured expression of IL-6 to evaluate the association between VIP receptors and systemic inflammation. Methods We analyzed 250 blood samples collected at any of the 5 scheduled follow-up visits from 125 patients enrolled in the Princesa Early Arthritis Register Longitudinal study. Samples from 22 healthy donors were also analyzed. Sociodemographic, clinical, and therapeutic data were systematically recorded. mRNA expression levels were determined using real-time PCR. Then, longitudinal multivariate analyses were performed. Results PBMCs from EA patients showed significantly higher expression of VPAC2 receptors at baseline compared to healthy donors (p<0.001). With time, however, VPAC2 expression tended to be significantly lower while VPAC1 receptor expression increased in correlation with a reduction in DAS28 index. Our results reveal that more severe inflammation, based on high levels of IL-6, is associated with lower expression of VPAC1 (p<0.001) and conversely with increased expression of VPAC2 (p<0.001). A major finding of this study is that expression of VPAC1 is lower in patients with increased disease activity (p = 0.001), thus making it possible to differentiate between patients with various degrees of clinical disease activity. Conclusion Patients with more severe inflammation and higher disease activity show lower levels of VPAC1 expression, which is associated with patient-reported impairment. Therefore, VPAC1 is a biological marker in EA. PMID:26881970

  16. A generic selection system for improved expression and thermostability of G protein-coupled receptors by directed evolution

    PubMed Central

    Klenk, Christoph; Ehrenmann, Janosch; Schütz, Marco; Plückthun, Andreas

    2016-01-01

    Structural and biophysical studies as well as drug screening approaches on G protein-coupled receptors (GPCRs) have been largely hampered by the poor biophysical properties and low expression yields of this largest class of integral membrane proteins. Thermostabilisation of GPCRs by introduction of stabilising mutations has been a key factor to overcome these limitations. However, labelled ligands with sufficient affinity, which are required for selective binding to the correctly folded receptor, are often not available. Here we describe a novel procedure to improve receptor expression and stability in a generic way, independent of specific ligands, by means of directed evolution in E. coli. We have engineered a homogenous fluorescent reporter assay that only detects receptors which are correctly integrated into the inner cell membrane and, thus, discriminates functional from non-functional receptor species. When we combined this method with a directed evolution procedure we obtained highly expressing mutants of the neurotensin receptor 1 with greatly improved thermostability. By this procedure receptors with poor expression and/or low stability, for which no ligands or only ones with poor binding properties are available, can now be generated in quantities allowing detailed structural and biophysical analysis. PMID:26887595

  17. Channel catfish (Ictalurus punctatus) leukocytes express estrogen receptor isoforms ERα and ERβ2 and are functionally modulated by estrogens.

    PubMed

    Iwanowicz, Luke R; Stafford, James L; Patiño, Reynaldo; Bengten, Eva; Miller, Norman W; Blazer, Vicki S

    2014-09-01

    Estrogens are recognized as modulators of immune responses in mammals and teleosts. While it is known that the effects of estrogens are mediated via leukocyte-specific estrogen receptors (ERs) in humans and mice, leucocyte-specific estrogen receptor expression and the effects of estrogens on this cell population is less explored and poorly understood in teleosts. Here in, we verify that channel catfish (Ictalurus punctaus) leukocytes express ERα and ERβ2. Transcripts of these isoforms were detected in tissue-associated leukocyte populations by PCR, but ERβ2 was rarely detected in PBLs. Expression of these receptors was temporally regulated in PBLs following polyclonal activation by concanavalin A, lipopolysaccharide or alloantigen based on evaluation by quantitative and end-point PCR. Examination of long-term leukocyte cell lines demonstrated that these receptors are differentially expressed depending on leukocyte lineage and phenotype. Expression of ERs was also temporally dynamic in some leukocyte lineages and may reflect stage of cell maturity. Estrogens affect the responsiveness of channel catfish peripheral blood leukocytes (PBLs) to mitogens in vitro. Similarly, bactericidal activity and phorbol 12-myristate 13-acetate induced respiratory burst was modulated by 17β-estradiol. These actions were blocked by the pure ER antagonist ICI 182780 indicating that response is, in part, mediated via ERα. In summary, estrogen receptors are expressed in channel catfish leukocytes and participate in the regulation of the immune response. This is the first time leukocyte lineage expression has been reported in teleost cell lines.

  18. Channel catfish (Ictalurus punctatus) leukocytes express estrogen receptor isoforms ERα and ERβ2 and are functionally modulated by estrogens

    USGS Publications Warehouse

    Iwanowicz, Luke R.; Stafford, James L.; Patiño, Reynaldo; Bengten, Eva; Miller, Norman W.; Blazer, Vicki

    2014-01-01

    Estrogens are recognized as modulators of immune responses in mammals and teleosts. While it is known that the effects of estrogens are mediated via leukocyte-specific estrogen receptors (ERs) in humans and mice, leucocyte-specific estrogen receptor expression and the effects of estrogens on this cell population is less explored and poorly understood in teleosts. Here in, we verify that channel catfish (Ictalurus punctaus) leukocytes express ERα and ERβ2. Transcripts of these isoforms were detected in tissue-associated leukocyte populations by PCR, but ERβ2 was rarely detected in PBLs. Expression of these receptors was temporally regulated in PBLs following polyclonal activation by concanavalin A, lipopolysaccharide or alloantigen based on evaluation by quantitative and end-point PCR. Examination of long-term leukocyte cell lines demonstrated that these receptors are differentially expressed depending on leukocyte lineage and phenotype. Expression of ERs was also temporally dynamic in some leukocyte lineages and may reflect stage of cell maturity. Estrogens affect the responsiveness of channel catfish peripheral blood leukocytes (PBLs) to mitogens in vitro. Similarly, bactericidal activity and phorbol 12-myristate 13-acetate induced respiratory burst was modulated by 17β-estradiol. These actions were blocked by the pure ER antagonist ICI 182780 indicating that response is, in part, mediated via ERα. In summary, estrogen receptors are expressed in channel catfish leukocytes and participate in the regulation of the immune response. This is the first time leukocyte lineage expression has been reported in teleost cell lines.

  19. Heterogeneous expression of Drosophila gustatory receptors in enteroendocrine cells.

    PubMed

    Park, Jeong-Ho; Kwon, Jae Young

    2011-01-01

    The gastrointestinal tract is emerging as a major site of chemosensation in mammalian studies. Enteroendocrine cells are chemosensory cells in the gut which produce regulatory peptides in response to luminal contents to regulate gut physiology, food intake, and glucose homeostasis, among other possible functions. Increasing evidence shows that mammalian taste receptors and taste signaling molecules are expressed in enteroendocrine cells in the gut. Invertebrate models such as Drosophila can provide a simple and genetically tractable system to study the chemosensory functions of enteroendocrine cells in vivo. To establish Drosophila enteroendocrine cells as a model for studying gut chemosensation, we used the GAL4/UAS system to examine the expression of all 68 Gustatory receptors (Grs) in the intestine. We find that 12 Gr-GAL4 drivers label subsets of enteroendocrine cells in the midgut, and examine colocalization of these drivers with the regulatory peptides neuropeptide F (NPF), locustatachykinin (LTK), and diuretic hormone 31 (DH31). RT-PCR analysis provides additional evidence for the presence of Gr transcripts in the gut. Our results suggest that the Drosophila Grs have chemosensory roles in the intestine to regulate physiological functions such as food uptake, nutrient absorption, or sugar homeostasis. PMID:22194978

  20. Cardiac microvascular endothelial cells express a functional Ca+ -sensing receptor.

    PubMed

    Berra Romani, Roberto; Raqeeb, Abdul; Laforenza, Umberto; Scaffino, Manuela Federica; Moccia, Francesco; Avelino-Cruz, Josè Everardo; Oldani, Amanda; Coltrini, Daniela; Milesi, Veronica; Taglietti, Vanni; Tanzi, Franco

    2009-01-01

    The mechanism whereby extracellular Ca(2+) exerts the endothelium-dependent control of vascular tone is still unclear. In this study, we assessed whether cardiac microvascular endothelial cells (CMEC) express a functional extracellular Ca(2+)-sensing receptor (CaSR) using a variety of techniques. CaSR mRNA was detected using RT-PCR, and CaSR protein was identified by immunocytochemical analysis. In order to assess the functionality of the receptor, CMEC were loaded with the Ca(2+)-sensitive fluorochrome, Fura-2/AM. A number of CaSR agonists, such as spermine, Gd(3+), La(3+) and neomycin, elicited a heterogeneous intracellular Ca(2+) signal, which was abolished by disruption of inositol 1,4,5-trisphosphate (InsP(3)) signaling and by depletion of intracellular stores with cyclopiazonic acid. The inhibition of the Na(+)/Ca(2+) exchanger upon substitution of extracellular Na(+) unmasked the Ca(2+) signal triggered by an increase in extracellular Ca(2+) levels. Finally, aromatic amino acids, which function as allosteric activators of CaSR, potentiated the Ca(2+) response to the CaSR agonist La(3+). These data provide evidence that CMEC express CaSR, which is able to respond to physiological agonists by mobilizing Ca(2+) from intracellular InsP(3)-sensitive stores.

  1. High-level expression, purification and characterization of a constitutively active thromboxane A2 receptor polymorphic variant.

    PubMed

    Xu, Bing; Chakraborty, Raja; Eilers, Markus; Dakshinamurti, Shyamala; O'Neil, Joe D; Smith, Steven O; Bhullar, Rajinder P; Chelikani, Prashen

    2013-01-01

    G protein-coupled receptors (GPCRs) exhibit some level of basal signaling even in the absence of a bound agonist. This basal or constitutive signaling can have important pathophysiological roles. In the past few years, a number of high resolution crystal structures of GPCRs have been reported, including two crystal structures of constitutively active mutants (CAM) of the dim-light receptor, rhodopsin. The structural characterizations of CAMs are impeded by the lack of proper expression systems. The thromboxane A2 receptor (TP) is a GPCR that mediates vasoconstriction and promotes thrombosis in response to the binding of thromboxane. Here, we report on the expression and purification of a genetic variant and CAM in TP, namely A160T, using tetracycline-inducible HEK293S-TetR and HEK293S (GnTI¯)-TetR cell lines. Expression of the TP and the A160T genes in these mammalian cell lines resulted in a 4-fold increase in expression to a level of 15.8 ±0.3 pmol of receptor/mg of membrane protein. The receptors expressed in the HEK293S (GnTI(-))-TetR cell line showed homogeneous glycosylation. The functional yield of the receptors using a single step affinity purification was 45 µg/10⁶ cells. Temperature- dependent secondary structure changes of the purified TP and A160T receptors were characterized using circular dichroism (CD) spectropolarimetry. The CD spectra shows that the loss of activity or thermal sensitivity that was previously observed for the A160T mutant, is not owing to large unfolding of the protein but rather to a more subtle effect. This is the first study to report on the successful high-level expression, purification, and biophysical characterization of a naturally occurring, diffusible ligand activated GPCR CAM. PMID:24086743

  2. Obtaining anti-type 1 melatonin receptor antibodies by immunization with melatonin receptor-expressing cells.

    PubMed

    Cordeiro, Nelia; Wijkhuisen, Anne; Savatier, Alexandra; Moulharat, Natacha; Ferry, Gilles; Léonetti, Michel

    2016-01-01

    Antibodies (Abs) specific to cell-surface receptors are attractive tools for studying the physiological role of such receptors or for controlling their activity. We sought to obtain such antibodies against the type 1 receptor for melatonin (MT1). For this, we injected mice with CHO cells transfected with a plasmid encoding human MT1 (CHO-MT1-h), in the presence or absence of an adjuvant mixture containing Alum and CpG1018. As we previously observed that the immune response to a protein antigen is increased when it is coupled to a fusion protein, called ZZTat101, we also investigated if the association of ZZTat101 with CHO-MT1-h cells provides an immunogenic advantage. We measured similar levels of anti-CHO and anti-MT1-h Ab responses in animals injected with either CHO-MT1-h cells or ZZTat101/CHO-MT1-h cells, with or without adjuvant, indicating that neither the adjuvant mixture nor ZZTat101 increased the anti-cell immune response. Then, we investigated whether the antisera also recognized murine MT1 (MT1-m). Using cloned CHO cells transfected with a plasmid encoding MT1-m, we found that antisera raised against CHO-MT1-h cells also bound the mouse receptor. Altogether our studies indicate that immunizing approaches based on MT1-h-expressing CHO cells allow the production of polyclonal antibodies against MT1 receptors of different origins. This paves the way to preparation of MT1-specific monoclonal antibodies.

  3. Tumor necrosis factor: receptor binding and expression of receptors in cultured mouse hepatocytes.

    PubMed

    Adamson, G M; Billings, R E

    1994-04-01

    Recombinant murine tumor necrosis factor (TNF-alpha) was labeled with 125I and used to determine the binding characteristics, internalization and intracellular degradation in cultured mouse hepatocytes. [125I]TNF-alpha bound specifically to hepatocytes and Scatchard analysis of the data indicated binding to both a low-affinity (Kd = 20 nM) high capacity (51225 sites/cell) component and high-affinity component (Kd = 4 pM), with low capacity (290 sites/cell). The extent of TNF-alpha binding to hepatocytes correlated closely with its biological activity in hepatocytes, as indexed by depletion of intracellular ATP. At concentrations lower than 0.06 nM there was minimal binding and no effect on cellular ATP, whereas maximal binding at concentrations greater than 45 nM caused 80% depletion (in comparison to controls) of hepatocyte ATP. Incubation at 37 degrees C resulted in rapid uptake, internalization and degradation of [125I]TNF-alpha. This was followed by release of degraded material from hepatocytes. Examination, by reverse transcriptase/polymerase chain reaction technology, of hepatocyte RNA extracted after the 4-hr adherence period revealed that mouse hepatocytes expressed mRNA for both TNF-alpha receptor 1 and TNF-alpha receptor 2, and that the relative abundance of TNF-alpha receptor 1 was approximately 7-fold greater than that for TNF-alpha receptor 2. Because it has been shown that these receptors have different affinities for TNF-alpha, this may explain the high- and low-affinity binding sites present on cultured mouse hepatocytes.

  4. Reduced Glucocorticoid Receptor Expression Predicts Bladder Tumor Recurrence and Progression

    PubMed Central

    Ishiguro, Hitoshi; Kawahara, Takashi; Zheng, Yichun; Netto, George J.; Miyamoto, Hiroshi

    2015-01-01

    Objectives To assess the levels of glucocorticoid receptor (GR) expression in bladder tumors because the status and its prognostic value remain largely unknown. Methods We immunohistochemically stained for GR in bladder tumor and matched non-neoplastic bladder tissue specimens. Results Overall, GR was positive in 129 (87%) of 149 urothelial tumors, which was significantly (P = .026) lower than in non-neoplastic urothelium (90 [96%] of 94). Forty-two (79%) of 53 low-grade tumors vs 45 (47%) of 96 high-grade carcinomas (P < .001) and 61 (73%) of 84 non–muscle-invasive (NMI) tumors vs 26 (40%) of 65 muscle-invasive (MI) carcinomas (P < .001) were moderately to strongly immunoreactive for GR. Kaplan-Meier and log-rank tests revealed that loss or weak positivity of GR significantly or marginally correlated with recurrence of NMI tumors (P = .025), progression of MI tumors (P = .082), and cancer-specific survival of MI tumors (P = .067). Multivariate analysis identified low GR expression as a strong predictor for recurrence of NMI tumors (P = .034). Conclusions GR expression was downregulated in bladder tumors compared with nonneoplastic bladder tumors and in high-grade/MI tumors compared with low-grade/NMI tumors. Decreased expression of GR, as an independent prognosticator, predicted recurrence of NMI tumors. These results support experimental evidence suggesting an inhibitory role of GR signals in bladder cancer outgrowth. PMID:25015855

  5. Cocaine decreases expression of neurogranin via alterations in thyroid receptor/retinoid X receptor signaling

    PubMed Central

    Kovalevich, Jane; Corley, Gladys; Yen, William; Kim, Jae; Rawls, Scott M.; Langford, Dianne

    2013-01-01

    Mounting evidence suggests a potential link between cocaine abuse, disruptions in hypothalamic-pituitary-thyroid axis signaling, and neuroplasticity, but molecular mechanisms remain unknown. Neurogranin (Ng) is a gene containing a thyroid hormone-responsive element within its first intron that is involved in synaptic plasticity. Transcriptional activation requires heterodimerization of thyroid hormone receptor (TR) and retinoid X receptor (RXR) bound by their respective ligands, tri-iodothryonine and 9-cis-retinoic acid (9-cis-RA), and subsequent binding of this complex to the thyroid hormone-responsive element of the Ng gene. In this study, the effects of chronic cocaine abuse on Ng expression in euthyroid and hypothyroid mice were assessed. In cocaine-treated mice, decreased Ng expression was observed in the absence of changes in levels of thyroid hormones or other hypothalamic-pituitary-thyroid signaling factors. Therefore, we hypothesized that cocaine decreases Ng expression via alterations in 9-cis-RA availability and TR/RXR signaling. In support of this hypothesis, RXR-γ was significantly decreased in brains of cocaine-treated mice while CYP26A1, the main enzyme responsible for neuronal RA degradation, was significantly increased. Results from this study provide the first evidence for a direct effect of cocaine abuse on TR/RXR signaling, RA metabolism, and transcriptional regulation of Ng, a gene essential for adult neuroplasticity. PMID:22300446

  6. Expression of functional leptin receptors in rodent Leydig cells.

    PubMed

    Caprio, M; Isidori, A M; Carta, A R; Moretti, C; Dufau, M L; Fabbri, A

    1999-11-01

    Several studies indicate that the size of body fat stores and the circulating levels of the adipocyte-derived hormone leptin are able to influence the activity of the hypothalamic-pituitary-gonadal axis. The leptin-hypothalamic-pituitary-gonadal interactions have been mainly studied at the level of the central nervous system. In this study, we investigated the possibility that leptin may have direct effects on the rodent Leydig cell function. To probe this hypothesis, we first analyzed the expression of leptin receptors (OB-R) in rodent Leydig cells in culture. RT-PCR studies showed that rat Leydig cells express both the long (OB-Rb) and short isoform (OB-Ra) of leptin receptor, whereas MLTC-1 cells (a murine Leydig tumor cell line) express only the long isoform. Short-term (30-90 min) incubation of rat Leydig cells with increasing concentrations ofleptin (2-500 ng/ml) led to a significant and dose-dependent inhibition of human (h)CG-stimulated testosterone (T) production (approximately 60% reduction, IC50 = 20 ng/ml) but no change in basal androgen release. Also, leptin (150 ng/ml) amplified hCG-induced intracellular cAMP formation (1- to 2-fold) without modifying basal cAMP levels. Subsequent experiments showed that leptin inhibited 8Br-cAMP-stimulated T production, indicating that leptin's effect is exerted beyond cAMP. The inhibitory effect of leptin on hCG-induced T secretion was accompanied by a significant reduction of androstenedione and a concomitant rise of the precursor metabolites pregnenolone, progesterone, and 17-OH-progesterone, conceivable with a leptin-induced lesion of 17,20 lyase activity. Separate experiments performed with the MLTC-1 cells (not expressing cytochrome P450-17alpha) showed that leptin, though amplifying hCG-stimulated cAMP production, did not modify hCG-stimulated pregnenolone and progesterone release. These results further indicate that leptin action on steroidogenesis occurs downstream of progesterone synthesis. Northern Blot

  7. Cholinergic chemosensory cells of the thymic medulla express the bitter receptor Tas2r131.

    PubMed

    Soultanova, Aichurek; Voigt, Anja; Chubanov, Vladimir; Gudermann, Thomas; Meyerhof, Wolfgang; Boehm, Ulrich; Kummer, Wolfgang

    2015-11-01

    The thymus is the site of T cell maturation which includes positive selection in the cortex and negative selection in the medulla. Acetylcholine is locally produced in the thymus and cholinergic signaling influences the T cell development. We recently described a distinct subset of medullary epithelial cells in the murine thymus which express the acetylcholine-synthesizing enzyme choline acetyltransferase (ChAT) and components of the canonical taste transduction cascade, i.e. transient receptor potential melastatin-like subtype 5 channel (TRPM5), phospholipase Cβ(2), and Gα-gustducin. Such a chemical phenotype is characteristic for chemosensory cells of mucosal surfaces which utilize bitter receptors for detection of potentially hazardous compounds and cholinergic signaling to initiate avoidance reflexes. We here demonstrate mRNA expression of bitter receptors Tas2r105, Tas2r108, and Tas2r131 in the murine thymus. Using a Tas2r131-tauGFP reporter mouse we localized the expression of this receptor to cholinergic cells expressing the downstream elements of the taste transduction pathway. These cells are distinct from the medullary thymic epithelial cells which promiscuously express tissue-restricted self-antigens during the process of negative selection, since double-labeling immunofluorescence showed no colocalization of autoimmune regulator (AIRE), the key mediator of negative selection, and TRPM5. These data demonstrate the presence of bitter taste-sensing signaling in cholinergic epithelial cells in the thymic medulla and opens a discussion as to what is the physiological role of this pathway.

  8. Neurotrophin Receptor Activation and Expression in Human Postmortem Brain: Effect of Suicide

    PubMed Central

    Dwivedi, Yogesh; Rizavi, Hooriyah S.; Zhang, Hui; Mondal, Amal C.; Roberts, Rosalinda C.; Conley, Robert R.; Pandey, Ghanshyam N.

    2009-01-01

    Background The physiological functions of neurotrophins occur through binding to two different receptors: pan75 neurotrophin receptor (p75NTR) and a family of tropomysin receptor kinases (Trks A, B, and C). Recently, we reported that expression of neurotrophins and TrkB were reduced in brains of suicide subjects. Present study examines whether expression and activation of Trk receptors and expression of p75NTR are altered in brain of these subjects. Methods Expression levels of TrkA, B, C, and of p75NTR were measured by quantitative RT-PCR and Western blot in prefrontal cortex (PFC) and hippocampus of suicide and normal control subjects. The activation of Trks was determined by immunoprecipitation followed by Western blotting using phosphotyrosine antibody. Results In hippocampus, lower mRNA levels of TrkA and TrkC were observed in suicide subjects. In the PFC, the mRNA level of TrkA was decreased, without any change in TrkC. On the other hand, the mRNA level of p75NTR was increased in both PFC and hippocampus. Immunolabeling studies showed similar results as observed for the mRNAs. In addition, phosphorylation of all Trks was decreased in hippocampus, but in PFC, decreased phosphorylation was noted only for TrkA and B. Increased expression ratios of p75NTR to Trks were also observed in PFC and hippocampus of suicide subjects. Conclusions Our results suggest not only reduced functioning of Trks in brains of suicide subjects but that increased ratios of p75NTR to Trks indicate possible activation of pathways that are apoptotic in nature. These findings may be crucial in the pathophysiology of suicide. PMID:18930453

  9. Cholinergic chemosensory cells of the thymic medulla express the bitter receptor Tas2r131.

    PubMed

    Soultanova, Aichurek; Voigt, Anja; Chubanov, Vladimir; Gudermann, Thomas; Meyerhof, Wolfgang; Boehm, Ulrich; Kummer, Wolfgang

    2015-11-01

    The thymus is the site of T cell maturation which includes positive selection in the cortex and negative selection in the medulla. Acetylcholine is locally produced in the thymus and cholinergic signaling influences the T cell development. We recently described a distinct subset of medullary epithelial cells in the murine thymus which express the acetylcholine-synthesizing enzyme choline acetyltransferase (ChAT) and components of the canonical taste transduction cascade, i.e. transient receptor potential melastatin-like subtype 5 channel (TRPM5), phospholipase Cβ(2), and Gα-gustducin. Such a chemical phenotype is characteristic for chemosensory cells of mucosal surfaces which utilize bitter receptors for detection of potentially hazardous compounds and cholinergic signaling to initiate avoidance reflexes. We here demonstrate mRNA expression of bitter receptors Tas2r105, Tas2r108, and Tas2r131 in the murine thymus. Using a Tas2r131-tauGFP reporter mouse we localized the expression of this receptor to cholinergic cells expressing the downstream elements of the taste transduction pathway. These cells are distinct from the medullary thymic epithelial cells which promiscuously express tissue-restricted self-antigens during the process of negative selection, since double-labeling immunofluorescence showed no colocalization of autoimmune regulator (AIRE), the key mediator of negative selection, and TRPM5. These data demonstrate the presence of bitter taste-sensing signaling in cholinergic epithelial cells in the thymic medulla and opens a discussion as to what is the physiological role of this pathway. PMID:26102274

  10. Endothelial glucocorticoid receptor suppresses atherogenesis- Brief Report

    PubMed Central

    Zhang, Xinbo; Rotllan, Noemi; Feng, Yan; Zhou, Han; Fernández-Hernando, Carlos; Yu, Jun; Sessa, William C.

    2015-01-01

    Objective The purpose of this study was to determine the role of the endothelial glucocorticoid receptor in the pathogenesis of atherosclerosis. Approach and Results Control mice and mice lacking the endothelial glucocorticoid receptor were bred onto an Apoe knockout background and subjected to high-fat diet feeding for 12 weeks. Assessment of body weight and total cholesterol and triglycerides before and after the diet revealed no differences between the two groups of mice. However, mice lacking the endothelial glucocorticoid receptor developed more severe atherosclerotic lesions in the aorta, brachiocephalic artery and aortic sinus as well as a heightened inflammatory milieu as evidence by increased macrophage recruitment in the lesions. Conclusions These data suggest the endothelial glucocorticoid receptor is important for tonic inhibition of inflammation and limitation of atherosclerosis progression in this model. PMID:25810297

  11. Deregulated Fcγ receptor expression in patients with CIDP

    PubMed Central

    Quast, Isaak; Cueni, Flavio; Nimmerjahn, Falk; Tackenberg, Björn

    2015-01-01

    Objective: To evaluate the expression of activating and inhibitory Fc-gamma receptors (FcγRs) before and during clinically effective therapy with IV immunoglobulin (IVIg) in patients with chronic inflammatory demyelinating polyneuropathy (CIDP). Methods: Peripheral blood leukocyte subsets, including classical CD14highCD16− and nonclassical inflammatory CD14lowCD16+ monocytes as well as naive CD19+CD27− and memory CD19+CD27+ B cells, were obtained at baseline and monitored at 2 and 4–8 weeks after initiation of IVIg therapy. Results: Compared with healthy donors matched by age and sex, patients with CIDP showed increased expression levels of the activating high-affinity FcγR1 on CD14highCD16− (p < 0.001) and CD14lowCD16+ monocytes (p < 0.001). Expression of the activating low-affinity FcγRIIA was increased on CD14lowCD16+ monocytes (p = 0.023). Conversely, expression of the inhibitory FcγRIIB was reduced on naive (p = 0.009) and memory (p = 0.002) B cells as well as on CD14highCD16− monocytes (p = 0.046). Clinically effective IVIg therapy partially restored deregulated FcγR expression on B cell subsets and monocytes. Conclusions: The FcγR regulatory system is disturbed in patients with CIDP. Balancing activating vs inhibitory FcγR expression might provide a clinical benefit for patients with CIDP. PMID:26380354

  12. Cannabinoid receptor 1-expressing neurons in the nucleus accumbens.

    PubMed

    Winters, Bradley D; Krüger, Juliane M; Huang, Xiaojie; Gallaher, Zachary R; Ishikawa, Masago; Czaja, Krzysztof; Krueger, James M; Huang, Yanhua H; Schlüter, Oliver M; Dong, Yan

    2012-10-01

    Endocannabinoid signaling critically regulates emotional and motivational states via activation of cannabinoid receptor 1 (CB1) in the brain. The nucleus accumbens (NAc) functions to gate emotional and motivational responses. Although expression of CB1 in the NAc is low, manipulation of CB1 signaling within the NAc triggers robust emotional/motivational alterations related to drug addiction and other psychiatric disorders, and these effects cannot be exclusively attributed to CB1 located at afferents to the NAc. Rather, CB1-expressing neurons in the NAc, although sparse, appear to be critical for emotional and motivational responses. However, the cellular properties of these neurons remain largely unknown. Here, we generated a knock-in mouse line in which CB1-expressing neurons expressed the fluorescent protein td-Tomato (tdT). Using these mice, we demonstrated that tdT-positive neurons within the NAc were exclusively fast-spiking interneurons (FSIs). These FSIs were electrically coupled with each other, and thus may help synchronize populations/ensembles of NAc neurons. CB1-expressing FSIs also form GABAergic synapses on adjacent medium spiny neurons (MSNs), providing feed-forward inhibition of NAc output. Furthermore, the membrane excitability of tdT-positive FSIs in the NAc was up-regulated after withdrawal from cocaine exposure, an effect that might increase FSI-to-MSN inhibition. Taken together with our previous findings that the membrane excitability of NAc MSNs is decreased during cocaine withdrawal, the present findings suggest that the basal functional output of the NAc is inhibited during cocaine withdrawal by multiple mechanisms. As such, CB1-expressing FSIs are targeted by cocaine exposure to influence the overall functional output of the NAc. PMID:23012412

  13. Human immunodeficiency virus receptor and coreceptor expression on human uterine epithelial cells: regulation of expression during the menstrual cycle and implications for human immunodeficiency virus infection.

    PubMed

    Yeaman, Grant R; Howell, Alexandra L; Weldon, Sally; Demian, Douglas J; Collins, Jane E; O'Connell, Denise M; Asin, Susana N; Wira, Charles R; Fanger, Michael W

    2003-05-01

    Human immunodeficiency virus-1 (HIV-1) is primarily a sexually transmitted disease. Identification of cell populations within the female reproductive tract that are initially infected, and the events involved in transmission of infection to other cells, remain to be established. In this report, we evaluated expression of HIV receptors and coreceptors on epithelial cells in the uterus and found they express several receptors critical for HIV infection including CD4, CXCR4, CCR5 and galactosylceramide (GalC). Moreover, expression of these receptors varied during the menstrual cycle. Expression of CD4 and CCR5 on uterine epithelial cells is high throughout the proliferative phase of the menstrual cycle when blood levels of oestradiol are high. In contrast, CXCR4 expression increased gradually throughout the proliferative phase. During the secretory phase of the cycle when both oestradiol and progesterone are elevated, CD4 and CCR5 expression decreased whereas CXCR4 expression remained elevated. Expression of GalC on endometrial glands is higher during the secretory phase than during the proliferative phase of the menstrual cycle. Because epithelial cells line the female reproductive tract and express HIV receptors and coreceptors, it is likely that they are one of the first cell types to become infected. The hormonal regulation of HIV receptor expression may affect a woman's susceptibility to HIV infection during her menstrual cycle. Moreover, selective coreceptor expression could account for the preferential transmission of R5-HIV-1 strains to women. In addition, these studies provide evidence that the uterus, and potentially the entire upper reproductive tract, are important sites for the initial events involved in HIV infection.

  14. Human immunodeficiency virus receptor and coreceptor expression on human uterine epithelial cells: regulation of expression during the menstrual cycle and implications for human immunodeficiency virus infection.

    PubMed

    Yeaman, Grant R; Howell, Alexandra L; Weldon, Sally; Demian, Douglas J; Collins, Jane E; O'Connell, Denise M; Asin, Susana N; Wira, Charles R; Fanger, Michael W

    2003-05-01

    Human immunodeficiency virus-1 (HIV-1) is primarily a sexually transmitted disease. Identification of cell populations within the female reproductive tract that are initially infected, and the events involved in transmission of infection to other cells, remain to be established. In this report, we evaluated expression of HIV receptors and coreceptors on epithelial cells in the uterus and found they express several receptors critical for HIV infection including CD4, CXCR4, CCR5 and galactosylceramide (GalC). Moreover, expression of these receptors varied during the menstrual cycle. Expression of CD4 and CCR5 on uterine epithelial cells is high throughout the proliferative phase of the menstrual cycle when blood levels of oestradiol are high. In contrast, CXCR4 expression increased gradually throughout the proliferative phase. During the secretory phase of the cycle when both oestradiol and progesterone are elevated, CD4 and CCR5 expression decreased whereas CXCR4 expression remained elevated. Expression of GalC on endometrial glands is higher during the secretory phase than during the proliferative phase of the menstrual cycle. Because epithelial cells line the female reproductive tract and express HIV receptors and coreceptors, it is likely that they are one of the first cell types to become infected. The hormonal regulation of HIV receptor expression may affect a woman's susceptibility to HIV infection during her menstrual cycle. Moreover, selective coreceptor expression could account for the preferential transmission of R5-HIV-1 strains to women. In addition, these studies provide evidence that the uterus, and potentially the entire upper reproductive tract, are important sites for the initial events involved in HIV infection. PMID:12709027

  15. Expression of the human muscarinic receptor gene m2 in Dictyostelium discoideum

    SciTech Connect

    Voith, G.; Dingermann, T.

    1995-11-01

    We have expressed a functional human muscarinic M2 receptor, under the control of the homologous discoidin I{gamma} promoter, in the cellular slime mold Dictyostelium discoideum. The use of a contact site A leader peptide ensured insertion of the newly synthesized receptor protein into the plasma membrane. Due to the characteristics of the discoidin I{gamma} promoter, the M2 receptor is expressed during late growth and early development. The heterologously expressed M2 receptors show binding characteristics similar to authentic receptors. Membranes as well as whole cells can be used in ligand binding assays. 36 refs., 4 figs.

  16. Expression of the human muscarinic receptor gene m2 in Dictyostelium discoideum.

    PubMed

    Voith, G; Dingermann, T

    1995-11-01

    We have expressed a functional human muscarinic M2 receptor, under the control of the homologous discoidin I gamma promoter, in the cellular slime mold Dictyostelium discoideum. The use of a contact site A leader peptide ensured insertion of the newly synthesized receptor protein into the plasma membrane. Due to the characteristics of the discoidin I gamma promoter, the M2 receptor is expressed during late growth and early development. The heterologously expressed M2 receptors show binding characteristics similar to authentic receptors. Membranes as well as whole cells can be used in ligand binding assays. PMID:9636297

  17. Expression of groups I and II metabotropic glutamate receptors in the rat brain during aging.

    PubMed

    Simonyi, Agnes; Ngomba, Richard T; Storto, Marianna; Catania, Maria V; Miller, Laura A; Youngs, Brian; DiGiorgi-Gerevini, Valeria; Nicoletti, Ferdinando; Sun, Grace Y

    2005-05-10

    Age-dependent changes in the expression of group I and II metabotropic glutamate (mGlu) receptors were studied by in situ hybridization, Western blot analysis and immunohistochemistry. Male Fisher 344 rats of three ages (3, 12 and 25 months) were tested. Age-related increases in mGlu1 receptor mRNA levels were found in several areas (thalamic nuclei, hippocampal CA3) with parallel increases in mGlu1a receptor protein expression. However, a slight decrease in mGlu1a receptor mRNA expression in individual Purkinje neurons and a decline in cerebellar mGlu1a receptor protein levels were detected in aged animals. In contrast, mGlu1b receptor mRNA levels increased in the cerebellar granule cell layer. Although mGlu5 receptor mRNA expression decreased in many regions, its protein expression remained unchanged during aging. Compared to the small changes in mGlu2 receptor mRNA levels, mGlu3 receptor mRNA levels showed substantial age differences. An increased mGlu2/3 receptor protein expression was found in the frontal cortex, thalamus, hippocampus and corpus callosum in aged animals. These results demonstrate region- and subtype-specific, including splice variant specific changes in the expression of mGlu receptors in the brain with increasing age. PMID:15862522

  18. Prenatal exposure to phencyclidine produces abnormal behaviour and NMDA receptor expression in postpubertal mice.

    PubMed

    Lu, Lingling; Mamiya, Takayoshi; Lu, Ping; Toriumi, Kazuya; Mouri, Akihiro; Hiramatsu, Masayuki; Kim, Hyoung-Chun; Zou, Li-Bo; Nagai, Taku; Nabeshima, Toshitaka

    2010-08-01

    Several studies have shown the disruptive effects of non-competitive N-methyl-d-aspartate (NMDA) receptor antagonists on neurobehavioural development. Based on the neurodevelopment hypothesis of schizophrenia, there is growing interest in animal models treated with NMDA antagonists at developing stages to investigate the pathogenesis of psychological disturbances in humans. Previous studies have reported that perinatal treatment with phencyclidine (PCP) impairs the development of neuronal systems and induces schizophrenia-like behaviour. However, the adverse effects of prenatal exposure to PCP on behaviour and the function of NMDA receptors are not well understood. This study investigated the long-term effects of prenatal exposure to PCP in mice. The prenatal PCP-treated mice showed hypersensitivity to a low dose of PCP in locomotor activity and impairment of recognition memory in the novel object recognition test at age 7 wk. Meanwhile, the prenatal exposure reduced the phosphorylation of NR1, although it increased the expression of NR1 itself. Furthermore, these behavioural changes were attenuated by atypical antipsychotic treatment. Taken together, prenatal exposure to PCP produced long-lasting behavioural deficits, accompanied by the abnormal expression and dysfunction of NMDA receptors in postpubertal mice. It is worth investigating the influences of disrupted NMDA receptors during the prenatal period on behaviour in later life.

  19. LY354740 is a potent and highly selective group II metabotropic glutamate receptor agonist in cells expressing human glutamate receptors.

    PubMed

    Schoepp, D D; Johnson, B G; Wright, R A; Salhoff, C R; Mayne, N G; Wu, S; Cockerman, S L; Burnett, J P; Belegaje, R; Bleakman, D; Monn, J A

    1997-01-01

    The novel compound LY354740 is a conformationally constrained analog of glutamate, which was designed for interaction at metabotropic glutamate (mGlu) receptors. In this paper the selectivity of LY354740 for recombinant human mGlu receptor subtypes expressed in non-neuronal (RGT) cells is described. At human mGlu2 receptors, LY354740 produced > 90% suppression of forskolin-stimulated cAMP formation with an EC50 of 5.1 +/- 0.3 nM. LY354740 was six-fold less potent in activating human mGlu3 receptors (EC50 = 24.3 +/- 0.5 nM). LY354740 inhibition of forskolin-stimulated cAMP formation in human mGlu2 receptor-expressing cells was blocked by competitive mGlu receptor antagonists, including (+)-alpha-methyl-4-carboxyphenylglycine (MCPG) and LY307452 ((2S,4S)-2-amino-4-(4,4-diphenylbut-1-yl)-pentane-1,5-dioic acid). LY354740 had no agonist or antagonist activities at cells expressing human mGlu4 or mGlu7 (group III mGlu receptors) (EC50 > 100,000 nM). When tested at group I phosphoinositide-coupled human mGlu receptors (mGlu1a and mGlu5a), LY354740 did not activate or inhibit mGlu receptor agonist-evoked phosphoinositide hydrolysis at up to 100,000 nM. Electrophysiological experiments also demonstrated that LY354740 also had no appreciable activity in cells expressing human recombinant AMPA (GluR4) and kainate (GluR6) receptors. Thus, LY354740 is a highly potent, efficacious and selective group II (mGlu2/3) receptor agonist, useful to explore the functions of these receptors in situ. PMID:9144636

  20. Rabbit aortic smooth muscle cells express inducible macrophage scavenger receptor messenger RNA that is absent from endothelial cells.

    PubMed Central

    Bickel, P E; Freeman, M W

    1992-01-01

    Scavenger receptors mediate uptake of modified low density lipoproteins by macrophages. The accumulation of lipids via this process is thought to lead to foam cell formation in developing atherosclerotic plaques. Smooth muscle cells, which can also be converted to foam cells in vivo, have not been shown to express the same scavenger receptor previously cloned in macrophages. We report the cloning of two cDNAs that encode type I and type II scavenger receptors isolated from rabbit smooth muscle cells. The deduced protein sequences of these isolates are highly homologous to the scavenger receptors previously isolated from macrophages. Treatment of smooth muscle cells with phorbol esters induced a marked increase in scavenger receptor mRNA and a fivefold increase in receptor degradation activity. Rabbit venous endothelial cells in primary culture and a bovine aortic endothelial cell line had no detectable scavenger receptor mRNA, despite having scavenger receptor degradation activity. The latter finding suggests that endothelial cells may possess a scavenger receptor which is structurally distinct from that found in macrophages and smooth muscle cells. The isolation of cDNAs encoding the rabbit scavenger receptor should prove useful for in vitro and in vivo studies that employ the rabbit as a model of human atherosclerosis. Images PMID:1401078

  1. Perfluorooctane sulfonate (PFOS) affects hormone receptor activity, steroidogenesis, and expression of endocrine-related genes in vitro and in vivo.

    PubMed

    Du, Guizhen; Hu, Jialei; Huang, Hongyu; Qin, Yufeng; Han, Xiumei; Wu, Di; Song, Ling; Xia, Yankai; Wang, Xinru

    2013-02-01

    Perfluorooctane sulfonate (PFOS) is a widespread and persistent chemical in the environment. We investigated the endocrine-disrupting effects of PFOS using a combination of in vitro and in vivo assays. Reporter gene assays were used to detect receptor-mediated (anti-)estrogenic, (anti-)androgenic, and (anti-)thyroid hormone activities. The effect of PFOS on steroidogenesis was assessed both at hormone levels in the supernatant and at expression levels of hormone-induced genes in the H295R cell. A zebrafish-based short-term screening method was developed to detect the effect of PFOS on endocrine function in vivo. The results indicate that PFOS can act as an estrogen receptor agonist and thyroid hormone receptor antagonist. Exposure to PFOS decreased supernatant testosterone (T), increased estradiol (E2) concentrations in H295R cell medium and altered the expression of several genes involved in steroidogenesis. In addition, PFOS increased early thyroid development gene (hhex and pax8) expression in a concentration-dependent manner, decreased steroidogenic enzyme gene (CYP17, CYP19a, CYP19b) expression, and changed the expression pattern of estrogen receptor production genes (esr1, esr2b) after 500 µg/L PFOS treatment in zebrafish embryos. These results indicate that PFOS has the ability to act as an endocrine disruptor both in vitro and in vivo by disrupting the function of nuclear hormone receptors, interfering with steroidogenesis, and altering the expression of endocrine-related genes in zebrafish embryo.

  2. Perfluorooctane sulfonate (PFOS) affects hormone receptor activity, steroidogenesis, and expression of endocrine-related genes in vitro and in vivo.

    PubMed

    Du, Guizhen; Hu, Jialei; Huang, Hongyu; Qin, Yufeng; Han, Xiumei; Wu, Di; Song, Ling; Xia, Yankai; Wang, Xinru

    2013-02-01

    Perfluorooctane sulfonate (PFOS) is a widespread and persistent chemical in the environment. We investigated the endocrine-disrupting effects of PFOS using a combination of in vitro and in vivo assays. Reporter gene assays were used to detect receptor-mediated (anti-)estrogenic, (anti-)androgenic, and (anti-)thyroid hormone activities. The effect of PFOS on steroidogenesis was assessed both at hormone levels in the supernatant and at expression levels of hormone-induced genes in the H295R cell. A zebrafish-based short-term screening method was developed to detect the effect of PFOS on endocrine function in vivo. The results indicate that PFOS can act as an estrogen receptor agonist and thyroid hormone receptor antagonist. Exposure to PFOS decreased supernatant testosterone (T), increased estradiol (E2) concentrations in H295R cell medium and altered the expression of several genes involved in steroidogenesis. In addition, PFOS increased early thyroid development gene (hhex and pax8) expression in a concentration-dependent manner, decreased steroidogenic enzyme gene (CYP17, CYP19a, CYP19b) expression, and changed the expression pattern of estrogen receptor production genes (esr1, esr2b) after 500 µg/L PFOS treatment in zebrafish embryos. These results indicate that PFOS has the ability to act as an endocrine disruptor both in vitro and in vivo by disrupting the function of nuclear hormone receptors, interfering with steroidogenesis, and altering the expression of endocrine-related genes in zebrafish embryo. PMID:23074026

  3. Scavenger receptor A gene regulatory elements target gene expression to macrophages and to foam cells of atherosclerotic lesions.

    PubMed Central

    Horvai, A; Palinski, W; Wu, H; Moulton, K S; Kalla, K; Glass, C K

    1995-01-01

    Transcription of the macrophage scavenger receptor A gene is markedly upregulated during monocyte to macrophage differentiation. In these studies, we demonstrate that 291 bp of the proximal scavenger receptor promoter, in concert with a 400-bp upstream enhancer element, is sufficient to direct macrophage-specific expression of a human growth hormone reporter in transgenic mice. These regulatory elements, which contain binding sites for PU.1, AP-1, and cooperating ets-domain transcription factors, are also sufficient to mediate regulation of transgene expression during the in vitro differentiation of bone marrow progenitor cells in response to macrophage colony-stimulating factor. Mutation of the PU.1 binding site within the scavenger receptor promoter severely impairs transgene expression, consistent with a crucial role of PU.1 in regulating the expression of the scavenger receptor gene. The ability of the scavenger receptor promoter and enhancer to target gene expression to macrophages in vivo, including foam cells of atherosclerotic lesions, suggests that these regulatory elements will be of general utility in the study of macrophage differentiation and function by permitting specific modifications of macrophage gene expression. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:7777517

  4. Glucocorticoid receptor exhibits sexually dimorphic expression in the medaka brain.

    PubMed

    Kikuchi, Yukiko; Hosono, Kohei; Yamashita, Junpei; Kawabata, Yukika; Okubo, Kataaki

    2015-11-01

    The differential impact of stress on brain functions of males and females has been widely observed in vertebrates. Recent evidence suggests that stress-induced glucocorticoid signaling affects sexual differentiation and sex changes in teleost fish. These facts led us to postulate that there were sex differences in glucocorticoid signaling in the teleost brain that underlie some sex differences in their physiological and behavioral traits. Here we found sexually dimorphic expression of a glucocorticoid receptor gene (gr1) in the brain of medaka fish (Oryzias latipes), with females having greater expression in several preoptic and thalamic nuclei. Further, gr1 exhibits female-biased expression in neurons of the anterior parvocellular preoptic nucleus that produce the neuropeptides vasotocin and gonadotropin-releasing hormone 1 (these neuropeptides have been implicated in the regulation of neuroendocrine and behavioral functions). These findings suggest that glucocorticoids have a greater influence on physiology and behavior mediated by these neuropeptides in females than in males, which may contribute to sex differences in the brain's response to stress. PMID:26433060

  5. Characterization of the Olfactory Receptors Expressed in Human Spermatozoa

    PubMed Central

    Flegel, Caroline; Vogel, Felix; Hofreuter, Adrian; Schreiner, Benjamin S. P.; Osthold, Sandra; Veitinger, Sophie; Becker, Christian; Brockmeyer, Norbert H.; Muschol, Michael; Wennemuth, Gunther; Altmüller, Janine; Hatt, Hanns; Gisselmann, Günter

    2016-01-01

    The detection of external cues is fundamental for human spermatozoa to locate the oocyte in the female reproductive tract. This task requires a specific chemoreceptor repertoire that is expressed on the surface of human spermatozoa, which is not fully identified to date. Olfactory receptors (ORs) are candidate molecules and have been attributed to be involved in sperm chemotaxis and chemokinesis, indicating an important role in mammalian spermatozoa. An increasing importance has been suggested for spermatozoal RNA, which led us to investigate the expression of all 387 OR genes. This study provides the first comprehensive analysis of OR transcripts in human spermatozoa of several individuals by RNA-Seq. We detected 91 different transcripts in the spermatozoa samples that could be aligned to annotated OR genes. Using stranded mRNA-Seq, we detected a class of these putative OR transcripts in an antisense orientation, indicating a different function, rather than coding for a functional OR protein. Nevertheless, we were able to detect OR proteins in various compartments of human spermatozoa, indicating distinct functions in human sperm. A panel of various OR ligands induced Ca2+ signals in human spermatozoa, which could be inhibited by mibefradil. This study indicates that a variety of ORs are expressed at the mRNA and protein level in human spermatozoa. PMID:26779489

  6. Expression of high-affinity IL-4 receptors on human melanoma, ovarian and breast carcinoma cells.

    PubMed Central

    Obiri, N I; Siegel, J P; Varricchio, F; Puri, R K

    1994-01-01

    It has previously been shown that murine sarcoma cells express high-affinity IL-4 receptors (IL-4R) which are internalized after binding to the ligand (Puri et al., Cancer Res 1991; 51:3011-7). We have also reported that human renal cell carcinoma cells express high-affinity IL-4R, and IL-4 inhibits tumour growth in vitro (Obiri et al., J Clin Invest 1993; 91:88). In this study we investigated the expression and function of IL-4R on other human solid tumours. Human melanoma, ovarian carcinoma and breast carcinoma cell lines were assessed for the cell surface expression of IL-4R by radio-ligand receptor binding and for IL-4R gene expression by Northern blot analysis. Primary cultures of mesothelioma and neurofibrosarcoma cells were similarly investigated. Human melanoma, ovarian carcinoma and breast carcinoma cell lines expressed IL-4R on their cell surface with a dissociation constant (Kd) of 140-549 pM. These tumour lines expressed a single 4 kb species of mRNA for IL-4R. Similarly, primary cultures of mesothelioma and neurofibrosarcoma cells were positive for the IL-4R mRNA by Northern blot analysis. Fresh, non-cultured mesothelioma and neurofibrosarcoma tumour sections were also positive for the presence of IL-4R as determined by immunohistochemistry of frozen sections using anti-IL-4R antibody. In order to study possible functions of IL-4R, we evaluated the effects of IL-4 on cell growth and its effect on MHC antigen expression in the presence or absence of interferon-gamma (IFN-gamma). In tissue culture, IL-4 reduced the growth of tumour cell lines and primary cell cultures studied. IL-4 had very little effect on MHC class I antigen expression on ovarian, breast and melanoma cell lines; however, MHC class II (HLA-DR) expression was enhanced on melanoma and breast carcinoma cells. IL-4 also enhanced the IFN-gamma-induced class II expression on melanoma and breast carcinoma cells. Taken together, our observations indicate that IL-4R are expressed on a variety of

  7. Functional expression of bradykinin B1 and B2 receptors in neonatal rat trigeminal ganglion neurons.

    PubMed

    Kawaguchi, Aya; Sato, Masaki; Kimura, Maki; Yamazaki, Takaki; Yamamoto, Hitoshi; Tazaki, Masakazu; Ichinohe, Tatsuya; Shibukawa, Yoshiyuki

    2015-01-01

    Bradykinin (BK) and its receptors (B1 and B2 receptors) play important roles in inflammatory nociception. However, the patterns of expression and physiological/pathological functions of B1 and B2 receptors in trigeminal ganglion (TG) neurons remain to be fully elucidated. We investigated the functional expression of BK receptors in rat TG neurons. We observed intense immunoreactivity of B2 receptors in TG neurons, while B1 receptors showed weak immunoreactivity. Expression of the B2 receptor colocalized with immunoreactivities against the pan-neuronal marker, neurofilament H, substance P, isolectin B4, and tropomyosin receptor kinase A antibodies. Both in the presence and absence of extracellular Ca(2+) ([Ca(2+)]o), BK application increased the concentration of intracellular free Ca(2+) ([Ca(2+)]i). The amplitudes of BK-induced [Ca(2+)]i increase in the absence of [Ca(2+)]o were significantly smaller than those in the presence of Ca(2+). In the absence of [Ca(2+)]o, BK-induced [Ca(2+)]i increases were sensitive to B2 receptor antagonists, but not to a B1 receptor antagonist. However, B1 receptor agonist, Lys-[Des-Arg(9)]BK, transiently increased [Ca(2+)]i in primary cultured TG neurons, and these increases were sensitive to a B1 receptor antagonist in the presence of [Ca(2+)]o. These results indicated that B2 receptors were constitutively expressed and their activation induced the mobilization of [Ca(2+)]i from intracellular stores with partial Ca(2+) influx by BK. Although constitutive B1 receptor expression could not be clearly observed immunohistochemically in the TG cryosection, cultured TG neurons functionally expressed B1 receptors, suggesting that both B1 and B2 receptors involve pathological and physiological nociceptive functions.

  8. Myoglobin expression in prostate cancer is correlated to androgen receptor expression and markers of tumor hypoxia.

    PubMed

    Meller, Sebastian; Bicker, Anne; Montani, Matteo; Ikenberg, Kristian; Rostamzadeh, Babak; Sailer, Verena; Wild, Peter; Dietrich, Dimo; Uhl, Barbara; Sulser, Tullio; Moch, Holger; Gorr, Thomas A; Stephan, Carsten; Jung, Klaus; Hankeln, Thomas; Kristiansen, Glen

    2014-10-01

    Recent studies identified unexpected expression and transcriptional complexity of the hemoprotein myoglobin (MB) in human breast cancer but its role in prostate cancer is still unclear. Expression of MB was immunohistochemically analyzed in three independent cohorts of radical prostatectomy specimens (n = 409, n = 625, and n = 237). MB expression data were correlated with clinicopathological parameters and molecular parameters of androgen and hypoxia signaling. Expression levels of novel tumor-associated MB transcript variants and the VEGF gene as a hypoxia marker were analyzed using qRT-PCR. Fifty-three percent of the prostate cancer cases were MB positive and significantly correlated with androgen receptor (AR) expression (p < 0.001). The positive correlation with CAIX (p < 0.001) and FASN (p = 0.008) as well as the paralleled increased expression of the tumor-associated MB transcript variants and VEGF suggest that hypoxia participates in MB expression regulation. Analogous to breast cancer, MB expression in prostate cancer is associated with steroid hormone signaling and markers of hypoxia. Further studies must elucidate the novel functional roles of MB in human carcinomas, which probably extend beyond its classic intramuscular function in oxygen storage. PMID:25172328

  9. RANTES expression induced by Toll-like receptor 4 ligand in rat airway smooth muscle cells.

    PubMed

    Okayasu, Kaori; Tamaoka, Meiyo; Takayama, Satoshi; Miyazaki, Yasunari; Sumi, Yuki; Inase, Naohiko; Yoshizawa, Yasuyuki

    2010-01-01

    Airway smooth muscle cells (ASMCs) have been reported to express Toll-like receptors (TLRs) and take part in the pathogenesis of asthma exacerbation. Though TLRs were found to activate epidermal growth factor receptor (EGFR) in airway epithelial cells, little is known about the association of TLR ligands with EGFR signaling pathways in ASMCs. Using primary cultured ASMCs from Brown Norway rats, TLR4, eotaxin, and RANTES mRNA were examined by real-time quantitative RT-PCR after stimulation with the TLR4 ligand, lipopolysaccharides (LPS). The concentration of RANTES protein in culture supernatant was measured by ELISA. The effect of EGFR signaling inhibitors on RANTES expression was examined as well. Phosphorylation of EGFR after stimulation was examined by Western Blotting. Rat ASMCs expressed TLR4 and eotaxin, and LPS upregulated RANTES production. The EGFR tyrosine kinase inhibitor AG1478, the phosphoinositide 3-kinase (PI3K) inhibitor LY294002, and the matrix metalloproteinase (MMP) inhibitor GM6001 inhibited RANTES expression induced by LPS. LPS phosphorylated EGFR. TLR4 activation can induce RANTES expression via EGFR transactivation and PI3K/Akt pathway in rat ASMCs. MMP-induced EGFR proligand cleavage and ligand binding to EGFR seem to be involved in this pathway. These findings may be critical in the pathogenesis of asthma exacerbation by airway infection. PMID:23896774

  10. Prognostic Value of Sex-Hormone Receptor Expression in Non-Muscle-Invasive Bladder Cancer

    PubMed Central

    Park, Sung Woo; Lee, Sang Don; Chung, Moon Kee

    2014-01-01

    Purpose We investigated sex-hormone receptor expression as predicting factor of recurrence and progression in patients with non-muscle invasive bladder cancer. Materials and Methods We retrospectively evaluated tumor specimens from patients treated for transitional cell carcinoma of the bladder at our institution between January 2006 and January 2011. Performing immunohistochemistry using a monoclonal androgen receptor antibody and monoclonal estrogen receptor-beta antibody on paraffin-embedded tissue sections, we assessed the relationship of immunohistochemistry results and prognostic factors such as recurrence and progression. Results A total of 169 patients with bladder cancer were evaluated in this study. Sixty-threepatients had expressed androgen receptors and 52 patients had estrogen receptor beta. On univariable analysis, androgen receptor expression was significant lower in recurrence rates (p=0.001), and estrogen receptor beta expression was significant higher in progression rates (p=0.004). On multivariable analysis, significant association was found between androgen receptor expression and lower recurrence rates (hazard ratio=0.500; 95% confidence interval, 0.294 to 0.852; p=0.011), but estrogen receptor beta expression was not significantly associated with progression rates. Conclusion We concluded that the possibility of recurrence was low when the androgen receptor was expressed in the bladder cancer specimen and it could be the predicting factor of the stage, number of tumors, carcinoma in situ lesion and recurrence. PMID:25048477

  11. Expression of melatonin receptors in arteries involved in thermoregulation

    SciTech Connect

    Viswanathan, M.; Laitinen, J.T.; Saavedra, J.M. )

    1990-08-01

    Melatonin binding sites were localized and characterized in the vasculature of the rat by using the melatonin analogue 2-(125I)iodomelatonin (125I-melatonin) and quantitative in vitro autoradiography. The expression of these sites was restricted to the caudal artery and to the arteries that form the circle of Willis at the base of the brain. The arterial 125I-melatonin binding was stable, saturable, and reversible. Saturation studies revealed that the binding represented a single class of high-affinity binding sites with a dissociation constant (Kd) of 3.4 x 10(-11) M in the anterior cerebral artery and 1.05 x 10(-10) M in the caudal artery. The binding capacities (Bmax) in these arteries were 19 and 15 fmol/mg of protein, respectively. The relative order of potency of indoles for inhibition of 125I-melatonin binding at these sites was typical of a melatonin receptor: 2-iodomelatonin greater than melatonin greater than N-acetylserotonin much much greater than 5-hydroxytryptamine. Norepinephrine-induced contraction of the caudal artery in vitro was significantly prolonged and potentiated by melatonin in a concentration-dependent manner, suggesting that these arterial binding sites are functional melatonin receptors. Neither primary steps in smooth muscle contraction (inositol phospholipid hydrolysis) nor relaxation (adenylate cyclase activation) were affected by melatonin. Melatonin, through its action on the tone of these arteries, may cause circulatory adjustments in these arteries, which are believed to be involved in thermoregulation.

  12. Genetic modification of cytotoxic T lymphocytes to express cytokine receptors.

    PubMed

    Perna, Serena K; Savoldo, Barbara; Dotti, Gianpietro

    2014-01-01

    Adoptive transfer of tumor-infiltrating lymphocytes (TIL) or antigen-specific cytotoxic T lymphocytes (CTL) is safe and can be effective in cancer patients. Achievement of clinical responses in these patients is associated with the in vivo expansion and persistence of the transferred T lymphocytes. For this reason, recombinant human interleukin-2 (IL-2) is frequently used to support the in vivo survival of T lymphocytes infused into patients. However, IL-2 also causes important side effects. Thus, alternative strategies are highly demanded to limit cytokine-related off-target effects and to redirect the responsiveness of specific T-cell subsets to selected cytokines. Interleukin-7 (IL-7) is a promising alternative cytokine as it possesses the above mentioned properties. However, because its receptor is downregulated in ex vivo-expanded T cells, methods are required to restore their responsiveness to this homeostatic cytokine. In this chapter, we describe the methodology to obtain the ectopic expression of IL-7 receptor alpha (IL-7Rα) in antigen-specific CTL, using Epstein-Barr virus-specific CTL (EBV-CTL), as a model.

  13. Female Behaviour Drives Expression and Evolution of Gustatory Receptors in Butterflies

    PubMed Central

    Briscoe, Adriana D.; Macias-Muñoz, Aide; Kozak, Krzysztof M.; Walters, James R.; Yuan, Furong; Jamie, Gabriel A.; Martin, Simon H.; Dasmahapatra, Kanchon K.; Ferguson, Laura C.; Mallet, James; Jacquin-Joly, Emmanuelle; Jiggins, Chris D.

    2013-01-01

    Secondary plant compounds are strong deterrents of insect oviposition and feeding, but may also be attractants for specialist herbivores. These insect-plant interactions are mediated by insect gustatory receptors (Grs) and olfactory receptors (Ors). An analysis of the reference genome of the butterfly Heliconius melpomene, which feeds on passion-flower vines (Passiflora spp.), together with whole-genome sequencing within the species and across the Heliconius phylogeny has permitted an unprecedented opportunity to study the patterns of gene duplication and copy-number variation (CNV) among these key sensory genes. We report in silico gene predictions of 73 Gr genes in the H. melpomene reference genome, including putative CO2, sugar, sugar alcohol, fructose, and bitter receptors. The majority of these Grs are the result of gene duplications since Heliconius shared a common ancestor with the monarch butterfly or the silkmoth. Among Grs but not Ors, CNVs are more common within species in those gene lineages that have also duplicated over this evolutionary time-scale, suggesting ongoing rapid gene family evolution. Deep sequencing (∼1 billion reads) of transcriptomes from proboscis and labial palps, antennae, and legs of adult H. melpomene males and females indicates that 67 of the predicted 73 Gr genes and 67 of the 70 predicted Or genes are expressed in these three tissues. Intriguingly, we find that one-third of all Grs show female-biased gene expression (n = 26) and nearly all of these (n = 21) are Heliconius-specific Grs. In fact, a significant excess of Grs that are expressed in female legs but not male legs are the result of recent gene duplication. This difference in Gr gene expression diversity between the sexes is accompanied by a striking sexual dimorphism in the abundance of gustatory sensilla on the forelegs of H. melpomene, suggesting that female oviposition behaviour drives the evolution of new gustatory receptors in butterfly genomes. PMID

  14. The Orphan Nuclear Receptor ERRγ Regulates Hepatic CB1 Receptor-Mediated Fibroblast Growth Factor 21 Gene Expression

    PubMed Central

    Jung, Yoon Seok; Lee, Ji-Min; Kim, Don-Kyu; Lee, Yong-Soo; Kim, Ki-Sun; Kim, Yong-Hoon; Kim, Jina; Lee, Myung-Shik; Lee, In-Kyu; Kim, Seong Heon; Cho, Sung Jin; Jeong, Won-Il; Lee, Chul-Ho; Harris, Robert A.; Choi, Hueng-Sik

    2016-01-01

    Background Fibroblast growth factor 21 (FGF21), a stress inducible hepatokine, is synthesized in the liver and plays important roles in glucose and lipid metabolism. However, the mechanism of hepatic cannabinoid type 1 (CB1) receptor-mediated induction of FGF21 gene expression is largely unknown. Results Activation of the hepatic CB1 receptor by arachidonyl-2’-chloroethylamide (ACEA), a CB1 receptor selective agonist, significantly increased FGF21 gene expression. Overexpression of estrogen-related receptor (ERR) γ increased FGF21 gene expression and secretion both in hepatocytes and mice, whereas knockdown of ERRγ decreased ACEA-mediated FGF21 gene expression and secretion. Moreover, ERRγ, but not ERRα and ERRβ, induced FGF21 gene promoter activity. In addition, deletion and mutation analysis of the FGF21 promoter identified a putative ERRγ-binding motif (AGGTGC, a near-consensus response element). A chromatin immunoprecipitation assay revealed direct binding of ERRγ to the FGF21 gene promoter. Finally, GSK5182, an ERRγ inverse agonist, significantly inhibited hepatic CB1 receptor-mediated FGF21 gene expression and secretion. Conclusion Based on our data, we conclude that ERRγ plays a key role in hepatic CB1 receptor-mediated induction of FGF21 gene expression and secretion. PMID:27455076

  15. Cranial irradiation modulates hypothalamic-pituitary-adrenal axis activity and corticosteroid receptor expression in the hippocampus of juvenile rat.

    PubMed

    Velickovic, Natasa; Djordjevic, Ana; Drakulic, Dunja; Stanojevic, Ivana; Secerov, Bojana; Horvat, Anica

    2009-01-01

    Glucocorticoids, essential for normal hypothalamic-pituitary-adrenal (HPA) axis activity, exert their action on the hippocampus through two types of corticosteroid receptors: the glucocorticoid receptor (GR) and the mineralocorticoid receptor (MR). Recent studies report that exposure of juvenile rats to cranial irradiation adversely affects HPA axis stability leading to its activation along with radiation- induced inflammation. This study was aimed to examine the acute effects of radiation on HPA axis activity and hippocampal corticosteroid receptor expression in 18-day-old rats. Since immobilization was part of irradiation procedure, both irradiated and sham-irradiated animals were exposed to this unavoidable stress. Our results demonstrate that the irradiated rats exhibited different pattern of corticosteroid receptor expression and hormone levels compared to respective controls. These differences included upregulation of GR protein in the hippocampus with a concomitant elevation of GR mRNA and an increase in circulating level of corticosterone. In addition, the expression of MR, both at the level of protein and gene expression, was not altered. Taken together, this study demonstrates that cranial irradiation in juvenile rats leads to enhanced HPA axis activity and increased relative GR/MR ratio in hippocampus. The present paper intends to show that neuroendocrine response of normal brain tissue to localized irradiation comprise both activation of HPA axis and altered corticosteroid receptor balance, probably as consequence of innate immune activation.

  16. Somatostatin receptor 1–5; expression profiles during rat development

    PubMed Central

    Carlsson, Carina; Sandler, Stellan; Stridsberg, Mats

    2015-01-01

    Background Somatostatin acts through five receptor subtypes (SSTRs 1–5). We aimed to investigate SSTRs mRNA expression and protein distribution in whole rat embryos, with special emphasis on the pancreas. Material and methods Rat embryos were collected on embryonal days 10, 11, 12, 14, 15, 17, 19, 21, and at birth. Presence of SSTRs was investigated with RT-PCR techniques and immunohistochemistry. Results There was no SSTR5 mRNA expression in the whole rat embryos. All SSTR1–5 proteins were observed at embryonal day 10, but the localization varied between the different subtypes. From day 11 to birth SSTRs protein presence increased with time in major structures such as skin and cartilage. It remained similar over time in the heart and liver. In the fetal pancreas mRNA expression of SSTR2 and 4 was detected at day 14, and there was an increase up to birth. Only SSTR1 protein co-localized to a higher extent with the islet hormones studied. SSTR2 was present in all islet endocrine cells except for β-cells. In contrast, the immunostaining for SSTR3–4 was co-localized with insulin and PP, and, finally, SSTR5 with glucagon and pancreatic polypeptide. In mRNA isolated from whole rat embryos SSTR1-2 and SSTR4 expression showed a peak at day 14, while SSTR3 mRNA was not present until day 15. Conclusion The present data suggest a role for SSTRs during the development of the rat embryo. Subsequent functional studies may elucidate regulatory roles of specific SSTRs for the growth and differentiation of the pancreas as well as other organs. PMID:25926390

  17. The farnesoid X receptor is expressed in breast cancer and regulates apoptosis and aromatase expression.

    PubMed

    Swales, Karen E; Korbonits, Márta; Carpenter, Robert; Walsh, Desmond T; Warner, Timothy D; Bishop-Bailey, David

    2006-10-15

    Bile acids are present at high concentrations in breast cysts and in the plasma of postmenopausal women with breast cancer. The farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily that regulates bile acid homeostasis. FXR was detected in normal and tumor breast tissue, with a high level of expression in ductal epithelial cells of normal breast and infiltrating ductal carcinoma cells. FXR was also present in the human breast carcinoma cells, MCF-7 and MDA-MB-468. Activation of FXR by high concentrations of ligands induced MCF-7 and MDA-MB-468 apoptosis. At lower concentrations that had no direct effect on viability, the FXR agonist GW4064 induced expression of mRNA for the FXR target genes, small heterodimer partner (SHP), intestinal bile acid binding protein, and multidrug resistance-associated protein 2 (MRP-2), and repressed the expression of the SHP target gene aromatase. In contrast to MRP-2, mRNA for the breast cancer target genes MDR-3, MRP-1, and solute carrier transporter 7A5 were decreased. Although multidrug resistance transporters were regulated and are known FXR target genes, GW4064 had no effect on the cell death induced by the anticancer drug paclitaxel. Our findings show for the first time that FXR is expressed in breast cancer tissue and has multiple properties that could be used for the treatment of breast cancer.

  18. Differential expression of estrogen receptor α and progesterone receptor in the normal and cryptorchid testis of a dog

    PubMed Central

    Jung, Hyo Young; Yoo, Dae Young; Jo, Young Kwang; Kim, Geon A; Chung, Jin Young; Choi, Jung Hoon

    2016-01-01

    Descending of the testes is an important process for spermatogenesis and cryptorchidism is one of the most relevant genital defects in dogs. In a previous study, we observed abnormal morphology and proliferation of Sertoli cells in a cryptorchid testis. In the present study, we investigated the expression of estrogen and progesterone receptors in the normal and cryptorchid testis of a dog. Elective orchidectomy was performed on the dog's abdominal right testis (undescended, cryptorchid) and scrotal left testis (descended, normal). In the normal testis, estrogen receptor α immunoreactivity was detected in Leydig cells alone, while estrogen receptor α immunoreactivity in the cryptorchid testis was significantly prominent in the Sertoli cells as well. In addition, progesterone receptor immunoreactivity in the control testis was detected in the spermatids, but was not detected in the cryptorchid testis. This result suggests that unilateral cryptorchidism causes increases of estrogen receptor α expression in Sertoli cells. PMID:27382382

  19. Differential expression of estrogen receptor α and progesterone receptor in the normal and cryptorchid testis of a dog.

    PubMed

    Jung, Hyo Young; Yoo, Dae Young; Jo, Young Kwang; Kim, Geon A; Chung, Jin Young; Choi, Jung Hoon; Jang, Goo; Hwang, In Koo

    2016-06-01

    Descending of the testes is an important process for spermatogenesis and cryptorchidism is one of the most relevant genital defects in dogs. In a previous study, we observed abnormal morphology and proliferation of Sertoli cells in a cryptorchid testis. In the present study, we investigated the expression of estrogen and progesterone receptors in the normal and cryptorchid testis of a dog. Elective orchidectomy was performed on the dog's abdominal right testis (undescended, cryptorchid) and scrotal left testis (descended, normal). In the normal testis, estrogen receptor α immunoreactivity was detected in Leydig cells alone, while estrogen receptor α immunoreactivity in the cryptorchid testis was significantly prominent in the Sertoli cells as well. In addition, progesterone receptor immunoreactivity in the control testis was detected in the spermatids, but was not detected in the cryptorchid testis. This result suggests that unilateral cryptorchidism causes increases of estrogen receptor α expression in Sertoli cells. PMID:27382382

  20. Receptor Expression in Rat Skeletal Muscle Cell Cultures

    NASA Technical Reports Server (NTRS)

    Young, Ronald B.

    1996-01-01

    One on the most persistent problems with long-term space flight is atrophy of skeletal muscles. Skeletal muscle is unique as a tissue in the body in that its ability to undergo atrophy or hypertrophy is controlled exclusively by cues from the extracellular environment. The mechanism of communication between muscle cells and their environment is through a group of membrane-bound and soluble receptors, each of which carries out unique, but often interrelated, functions. The primary receptors include acetyl choline receptors, beta-adrenergic receptors, glucocorticoid receptors, insulin receptors, growth hormone (i.e., somatotropin) receptors, insulin-like growth factor receptors, and steroid receptors. This project has been initiated to develop an integrated approach toward muscle atrophy and hypertrophy that takes into account information on the populations of the entire group of receptors (and their respective hormone concentrations), and it is hypothesized that this information can form the basis for a predictive computer model for muscle atrophy and hypertrophy. The conceptual basis for this project is illustrated in the figure below. The individual receptors are shown as membrane-bound, with the exception of the glucocorticoid receptor which is a soluble intracellular receptor. Each of these receptors has an extracellular signalling component (e.g., innervation, glucocorticoids, epinephrine, etc.), and following the interaction of the extracellular component with the receptor itself, an intracellular signal is generated. Each of these intracellular signals is unique in its own way; however, they are often interrelated.

  1. Expression of leptin and leptin receptor isoforms in the human stomach

    PubMed Central

    Mix, H; Widjaja, A; Jandl, O; Cornberg, M; Kaul, A; Goke, M; Beil, W; Kuske, M; Brabant, G; Manns, M; Wagner, S

    2000-01-01

    BACKGROUND—Leptin is an important regulator of food intake and energy expenditure. Initially it was thought to be expressed exclusively in and secreted by adipocytes. Recently, leptin expression was also noted in other tissues, including rat gastric mucosa. Information on leptin and leptin receptor expression in the human stomach is lacking.
AIM—To investigate expression of leptin and its corresponding receptors in human gastric epithelial cells.
METHODS—Fundic and antral gastric mucosal biopsies, primary cultures of human gastric epithelial cells, and the human gastric cancer cell line AGS were screened for expression of leptin and different leptin receptor isoform mRNA by reverse transcriptase-polymerase chain reaction. Immunohistochemistry was performed for localisation of leptin and leptin receptor proteins in gastric mucosa.
RESULTS—mRNA of leptin and its four receptor isoforms (huOB-R, long receptor isoform; huB219.1-3, short receptor isoforms) was detected in gastric mucosal biopsies, cultured human gastric epithelial cells, and gastric cancer cells. Immunohistochemistry demonstrated that chief as well as parietal cells were reactive to leptin and leptin receptors.
CONCLUSIONS—Leptin and leptin receptors are expressed in human gastric mucosa. These findings suggest a paracrine and/or autocrine effect of leptin on gastric epithelial cell function.


Keywords: leptin; leptin receptor isoforms; immunohistochemistry; gastric mucosa PMID:10986207

  2. Evidence for beta1-adrenergic receptor involvement in amygdalar corticotropin-releasing factor gene expression: implications for cocaine withdrawal.

    PubMed

    Rudoy, Carla A; Reyes, Arith-Ruth S; Van Bockstaele, Elisabeth J

    2009-04-01

    We previously showed that betaxolol, a selective beta(1)-adrenergic receptor antagonist, administered during early phases of cocaine abstinence, ameliorated withdrawal-induced anxiety and blocked increases in amygdalar beta(1)-adrenergic receptor expression in rats. Here, we report the efficacy of betaxolol in reducing increases in gene expression of amygdalar corticotropin-releasing factor (CRF), a peptide known to be involved in mediating 'anxiety-like' behaviors during initial phases of cocaine abstinence. We also demonstrate attenuation of an amygdalar beta(1)-adrenergic receptor-mediated cell-signaling pathway following this treatment. Male rats were administered betaxolol at 24 and 44 h following chronic cocaine administration. Animals were euthanized at the 48-h time point and the amygdala was microdissected and processed for quantitative reverse transcriptase-polymerase chain reaction and/or western blot analysis. Results showed that betaxolol treatment during early cocaine withdrawal attenuated increases in amygdalar CRF gene expression and cyclic adenosine monophosphate-dependent protein kinase regulatory and catalytic subunit (nuclear fraction) protein expression. Our data also reveal that beta(1)-adrenergic receptors are on amygdalar neurons, which are immunoreactive for CRF. The present findings suggest that the efficacy of betaxolol treatment on cocaine withdrawal-induced anxiety may be related, in part, to its effect on amygdalar beta(1)-adrenergic receptor, modulation of its downstream cell-signaling elements and CRF gene expression.

  3. TR4 orphan nuclear receptor functions as an apoptosis modulator via regulation of Bcl-2 gene expression

    SciTech Connect

    Kim, Eungseok; Ma, Wen-Lung; Lin, Din-Lii; Inui, Shigeki; Chen, Yuh-Ling; Chang, Chawnshang . E-mail: chang@urmc.rochester.edu

    2007-09-21

    While Bcl-2 plays an important role in cell apoptosis, its relationship to the orphan nuclear receptors remains unclear. Here we report that mouse embryonic fibroblast (MEF) cells prepared from TR4-deficient (TR4{sup -} {sup /-}) mice are more susceptible to UV-irradiation mediated apoptosis compared to TR4-Wildtype (TR4 {sup +/+}) littermates. Substantial increasing TR4{sup -} {sup /-} MEF apoptosis to UV-irradiation was correlated to the down-regulation of Bcl-2 RNA and protein expression and collaterally increased caspase-3 activity. Furthermore, this TR4-induced Bcl-2 gene expression can be suppressed by co-transfection with TR4 coregulators, such as androgen receptor (AR) and receptor-interacting protein 140 (RIP140) in a dose-dependent manner. Together, our results demonstrate that TR4 might function as an apoptosis modulator through induction of Bcl-2 gene expression.

  4. Cloning and retinal expression of melatonin receptors in the European sea bass, Dicentrarchus labrax.

    PubMed

    Sauzet, Sandrine; Besseau, Laurence; Herrera Perez, Patricia; Covès, Denis; Chatain, Béatrice; Peyric, Elodie; Boeuf, Gilles; Muñoz-Cueto, José Antonio; Falcón, Jack

    2008-06-01

    Melatonin contributes to synchronizing behaviors and physiological functions to daily and seasonal rhythm in fish. However, no coherent vision emerges because the effects vary with the species, sex, age, moment of the year or sexual cycle. And, scarce information is available concerning the melatonin receptors, which is crucial to our understanding of the role melatonin plays. We report here the full length cloning of three different melatonin receptor subtypes in the sea bass Dicentrarchus labrax, belonging, respectively, to the MT1, MT2 and Mel1c subtypes. MT1, the most abundantly expressed, was detected in the central nervous system, retina, and gills. MT2 was detected in the pituitary gland, blood cells and, to a lesser extend, in the optic tectum, diencephalon, liver and retina. Mel1c was mainly expressed in the skin; traces were found in the retina. The cellular sites of MT1 and MT2 expressions were investigated by in situ hybridization in the retina of pigmented and albino fish. The strongest signals were obtained with the MT1 riboprobes. Expression was seen in cells also known to express the enzymes of the melatonin biosynthesis, i.e., in the photoreceptor, inner nuclear and ganglion cell layers. MT1 receptor mRNAs were also abundant in the retinal pigment epithelium. The results are consistent with the idea that melatonin is an autocrine (neural retina) and paracrine (retinal pigment epithelium) regulator of retinal function. The molecular tools provided here will be of valuable interest to further investigate the targets and role of melatonin in nervous and peripheral tissues of fish.

  5. Association of mu-opioid receptor expression with lymph node metastasis in esophageal squamous cell carcinoma.

    PubMed

    Zhang, Y-F; Xu, Q-X; Liao, L-D; Xu, X-E; Wu, J-Y; Wu, Z-Y; Shen, J-H; Li, E-M; Xu, L-Y

    2015-01-01

    The mu-opioid receptor (MOR), a membrane-bound G protein-coupled receptor, is the main target for opioids in the nervous system. MOR1 has been found in several types of cancer cells and reported to be involved in tumor progression and metastasis. However, the expression and clinical significance of MOR1 in esophageal squamous cell carcinoma (ESCC) remain unclear. In our study, the expression of MOR1 was confirmed in ESCC cell lines (KYSE180, KYSE150, and EC109) by Western blot. MOR1 was also detected on tissue microarrays of ESCC samples in 239 cases using immunohistochemical staining. We found that MOR1 was mainly located in the cytoplasm and occasionally occurred in the membrane or nucleus of ESCC cells. Moreover, results indicated that MOR1 expression in the cytoplasm was associated with lymph node metastasis (R = 0.164, P = 0.008, Kendall's tau-b-test). No more associations were found between MOR1 expression status and other clinical parameters. However, no statistical significant differences were found between MOR1 expression in the cytoplasm, nucleus/membrane, and the overall survival of ESCC patients (P = 0.848; P = 0.167; P = 0.428, respectively, log-rank test). Our results suggest that the cytoplasmic MOR1 may be a high-risk factor for lymph node metastasis of ESCC patients. We also hypothesize that MOR1 agonists used in ESCC patients should be prudent, and opioid receptor antagonists may be novel therapeutic drugs for ESCC patients.

  6. Expression and regulation of progestin membrane receptors in the rat corpus luteum.

    PubMed

    Cai, Zailong; Stocco, Carlos

    2005-12-01

    Despite evidence strongly supporting progesterone's autocrine actions in the rat corpus luteum (CL), classical progesterone receptors (PR) have not been detected in this gland. Alternatively, in several other systems, progestins have been reported to activate nongenomic pathways via putative progestin membrane receptors (PMRs). The aim of this investigation was to determine whether rat CL membranes bind progestins and contain PMR homologs and whether these proteins are expressed during CL development in a manner that parallels luteal function. We found that luteal cell membranes specifically bind progesterone. Low levels of progesterone and 20alpha-dihydroprogesterone decreased binding of [(3)H]progesterone, whereas androstenedione, 17alpha-hydroxyprogesterone, and pregnenolone were less potent. Other steroids, including corticosterone, mifepristone, and estradiol, were ineffective. We found that the rat CL expresses five genes previously postulated to encode for putative PMRs: PMRalpha, PMRbeta, PMRgamma, PR membrane component 1 (PRMC1), and Rda288. Pmralpha, Pmrgamma, and Prmc1 transcripts rose steadily during pregnancy whereas Pmrbeta and Rda288 remained constant. Just before parturition, concomitant with falling progesterone levels, Pmralpha, Pmrbeta, and Prmc1 decreased. Luteal PMRalpha and PRMC1 protein levels were lower in samples taken at the end of pregnancy compared with midpregnancy samples. Ergocriptine, which inhibits the secretion of prolactin, the primary luteotrophic hormone in the rat CL, reduced Pmralpha, Pmrbeta, and Prmc1 expression significantly. Ergocriptine effects were prevented by coadministration of prolactin. These findings provide evidence for the expression and regulation of putative membrane-bound progestin-binding proteins in the rat CL, a tissue that does not express detectable levels of nuclear progesterone receptors. PMID:16123161

  7. Estrogen-related receptors stimulate pyruvate dehydrogenase kinase isoform 4 gene expression.

    PubMed

    Zhang, Yi; Ma, Ke; Sadana, Prabodh; Chowdhury, Farhana; Gaillard, Stephanie; Wang, Fang; McDonnell, Donald P; Unterman, Terry G; Elam, Marshall B; Park, Edwards A

    2006-12-29

    The pyruvate dehydrogenase complex (PDC) catalyzes the conversion of pyruvate to acetyl-CoA in mitochondria and is a key regulatory enzyme in the oxidation of glucose to acetyl-CoA. Phosphorylation of PDC by the pyruvate dehydrogenase kinases (PDK2 and PDK4) inhibits PDC activity. Expression of the PDK genes is elevated in diabetes, leading to the decreased oxidation of pyruvate to acetyl-CoA. In these studies we have investigated the transcriptional regulation of the PDK4 gene by the estrogen-related receptors (ERRalpha and ERRgamma). The ERRs are orphan nuclear receptors whose physiological roles include the induction of fatty acid oxidation in heart and muscle. Previously, we found that the peroxisome proliferator-activated receptor gamma coactivator (PGC-1alpha) stimulates the expression of PDK4. Here we report that ERRalpha and ERRgamma stimulate the PDK4 gene in hepatoma cells, suggesting a novel role for ERRs in controlling pyruvate metabolism. In addition, both ERR isoforms recruit PGC-1alpha to the PDK4 promoter. Insulin, which decreases the expression of the PDK4 gene, inhibits the induction of PDK4 by ERRalpha and ERRgamma. The forkhead transcription factor (FoxO1) binds the PDK4 gene and contributes to the induction of PDK4 by ERRs and PGC-1alpha. Insulin suppresses PDK4 expression in part through the dissociation of FoxO1 and PGC-1alpha from the PDK4 promoter. Our data demonstrate a key role for the ERRs in the induction of hepatic PDK4 gene expression. PMID:17079227

  8. The generation of knock-in mice expressing fluorescently tagged galanin receptors 1 and 2

    PubMed Central

    Kerr, Niall; Holmes, Fiona E.; Hobson, Sally-Ann; Vanderplank, Penny; Leard, Alan; Balthasar, Nina; Wynick, David

    2015-01-01

    The neuropeptide galanin has diverse roles in the central and peripheral nervous systems, by activating the G protein-coupled receptors Gal1, Gal2 and the less studied Gal3 (GalR1–3 gene products). There is a wealth of data on expression of Gal1–3 at the mRNA level, but not at the protein level due to the lack of specificity of currently available antibodies. Here we report the generation of knock-in mice expressing Gal1 or Gal2 receptor fluorescently tagged at the C-terminus with, respectively, mCherry or hrGFP (humanized Renilla green fluorescent protein). In dorsal root ganglia (DRG) neurons expressing the highest levels of Gal1-mCherry, localization to the somatic cell membrane was detected by live-cell fluorescence and immunohistochemistry, and that fluorescence decreased upon addition of galanin. In spinal cord, abundant Gal1-mCherry immunoreactive processes were detected in the superficial layers of the dorsal horn, and highly expressing intrinsic neurons of the lamina III/IV border showed both somatic cell membrane localization and outward transport of receptor from the cell body, detected as puncta within cell processes. In brain, high levels of Gal1-mCherry immunofluorescence were detected within thalamus, hypothalamus and amygdala, with a high density of nerve endings in the external zone of the median eminence, and regions with lesser immunoreactivity included the dorsal raphe nucleus. Gal2-hrGFP mRNA was detected in DRG, but live-cell fluorescence was at the limits of detection, drawing attention to both the much lower mRNA expression than to Gal1 in mice and the previously unrecognized potential for translational control by upstream open reading frames (uORFs). PMID:26292267

  9. Differential Expression of the Middle East Respiratory Syndrome Coronavirus Receptor in the Upper Respiratory Tracts of Humans and Dromedary Camels.

    PubMed

    Widagdo, W; Raj, V Stalin; Schipper, Debby; Kolijn, Kimberley; van Leenders, Geert J L H; Bosch, Berend J; Bensaid, Albert; Segalés, Joaquim; Baumgärtner, Wolfgang; Osterhaus, Albert D M E; Koopmans, Marion P; van den Brand, Judith M A; Haagmans, Bart L

    2016-05-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) is not efficiently transmitted between humans, but it is highly prevalent in dromedary camels. Here we report that the MERS-CoV receptor--dipeptidyl peptidase 4 (DPP4)--is expressed in the upper respiratory tract epithelium of camels but not in that of humans. Lack of DPP4 expression may be the primary cause of limited MERS-CoV replication in the human upper respiratory tract and hence restrict transmission.

  10. Involvement of aberrant DNA methylation on reduced expression of lysophosphatidic acid receptor-1 gene in rat tumor cell lines

    SciTech Connect

    Tsujiuchi, Toshifumi . E-mail: ttujiuch@life.kindai.ac.jp; Shimizu, Kyoko; Onishi, Mariko; Sugata, Eriko; Fujii, Hiromasa; Mori, Toshio; Honoki, Kanya; Fukushima, Nobuyuki

    2006-10-27

    Lysophosphatidic acid (LPA) is a bioactive phospholipid that stimulates cell proliferation, migration, and protects cells from apoptosis. It interacts with specific G protein-coupled transmembrane receptors. Recently, it has been reported that alterations of LPA receptor expression might be important in the malignant transformation of tumor cells. Therefore, to assess an involvement of DNA methylation in reduced expression of the LPA receptor-1 (lpa1) gene, we investigated the expression of the lpa1 gene and its DNA methylation patterns in rat tumor cell lines. Both rat brain-derived neuroblastoma B103 and liver-derived hepatoma RH7777 cells used in this study indicated no expression of lpa1. For the analysis of methylation status, bisulfite sequencing was performed with B103 and RH7777 cells, comparing with other lpa1 expressed cells and normal tissues of brain and liver. The lpa1 expressed cells and tissues were all unmethylated in this region of lpa1. In contrast, both B103 and RH7777 cells were highly methylated, correlating with reduced expression of the lpa1. Treatment with 5-aza 2'-deoxycytidine induced expression of lpa1 gene in B103 and RH7777 cells after 24 h. In RH7777 cells treated with 5-aza 2'-deoxycytidine, stress fiber formation was also observed in response to LPA in RH7777 cells, but not in untreated RH7777 cells. These results suggest that aberrant DNA methylation of the lpa1 gene may be involved in its reduced expression in rat tumor cells.

  11. Orphan nuclear receptor Nur77 participates in human apolipoprotein A5 gene expression

    SciTech Connect

    Song, Kwang-Hoon

    2010-01-29

    The orphan nuclear receptor Nur77 (NR4A1) has been reported to play a crucial role in the modulation of diverse metabolic processes in liver. Here, we reported the identification of human apolipoprotein A5 (ApoA5), which implicated in lowering plasma triglyceride levels, as a novel target gene of Nur77. Nur77 induced the human ApoA5 promoter activity. Using 5'-deletion and mutagenesis of human ApoA5 promoter analysis and chromatin immunoprecipitation assays, it was shown that Nur77 directly regulated human ApoA5 gene expression by binding to a Nur77 response element (AAAGGTCA) located in the proximal human ApoA5 promoter region. In addition, we demonstrated that blocking of Nur77 transcriptional activity via overexpression of dominant negative Nur77 suppressed human ApoA5 promoter activity and mRNA expression in human hepatoma cells, HepG2. Taken together, our results demonstrated that Nur77 is a novel regulator of human ApoA5 gene expression and provide a new insight into the role of this orphan nuclear receptor in lipoprotein metabolism and triglyceride homeostasis.

  12. Leptin receptor expression and Gln223Arg polymorphism as prognostic markers in oral and oropharyngeal cancer.

    PubMed

    Rodrigues, P R S; Maia, L L; Santos, M; Peterle, G T; Alves, L U; Takamori, J T; Souza, R P; Barbosa, W M; Mercante, A M C; Nunes, F D; Carvalho, M B; Tajara, E H; Louro, I D; Silva-Conforti, A M A

    2015-11-25

    The leptin gene product is released into the blood stream, passes through the blood-brain barrier, and finds the leptin receptor (LEPR) in the central nervous system. This hormone regulates food intake, hematopoiesis, inflammation, immunity, differentiation, and cell proliferation. The LEPR Gln223Arg polymorphism has been reported to alter receptor function and expression, both of which have been related with prognostics in several tumor types. Furthermore, several studies have shown a relationship between the Gln223Arg polymorphism and tumor development, and its role in oral and oropharyngeal squamous cell carcinoma is now well understood. In this study, 315 DNA samples were used for LEPR Gln223Arg genotyping and 87 primary oral and oropharyngeal squamous cell carcinomas were used for immunohistochemical expression analysis, such that a relationship between these and tumor development and prognosis could be established. Homozygous LEPR Arg223 was found to be associated with a 2-fold reduction in oral and oropharyngeal cancer risk. In contrast, the presence of the Arg223 allele in tumors was associated with worse disease-free and disease-specific survival. Low LEPR expression was found to be an independent risk factor, increasing the risk for lymph node metastasis 4-fold. In conclusion, the Gln223Arg polymorphism and LEPR expression might be valuable markers for oral and oropharyngeal cancer, suggesting that LEPR might serve as a potential target for future therapies.

  13. Ligand-selective activation of heterologously-expressed mammalian olfactory receptor.

    PubMed

    Ukhanov, K; Bobkov, Y; Corey, E A; Ache, B W

    2014-10-01

    Mammalian olfactory receptors (ORs) appear to have the capacity to couple to multiple G protein-coupled signaling pathways in a ligand-dependent selective manner. To better understand the mechanisms and molecular range of such ligand selectivity, we expressed the mouse eugenol OR (mOR-EG) in HEK293T cells together with Gα15 to monitor activation of the phospholipase-C (PLC) signaling pathway and/or Gαolf to monitor activation of the adenylate cyclase (AC) signaling pathway, resulting in intracellular Ca(2+) release and/or Ca(2+) influx through a cyclic nucleotide-gated channel, respectively. PLC-dependent responses differed dynamically from AC-dependent responses, allowing them to be distinguished when Gα15 and Gαolf were co-expressed. The dynamic difference in readout was independent of the receptor, the heterologous expression system, and the ligand concentration. Of 17 reported mOR-EG ligands tested, including eugenol, its analogs, and structurally dissimilar compounds (mousse cristal, nootkatone, orivone), some equally activated both signaling pathways, some differentially activated both signaling pathways, and some had no noticeable effect even at 1-5mM. Our findings argue that mOR-EG, when heterologously expressed, can couple to two different signaling pathways in a ligand selective manner. The challenge now is to determine the potential of mOR-EG, and perhaps other ORs, to activate multiple signaling pathways in a ligand selective manner in native ORNs. PMID:25149566

  14. Ligand-selective activation of heterologously-expressed mammalian olfactory receptor

    PubMed Central

    Ukhanov, K.; Bobkov, Y.; Corey, E.A.; Ache, B.W.

    2014-01-01

    Mammalian olfactory receptors (ORs) appear to have the capacity to couple to multiple G protein-coupled signaling pathways in a ligand-dependent selective manner. To better understand the mechanisms and molecular range of such ligand selectivity, we expressed the mouse eugenol OR (mOR-EG) in HEK293T cells together with Gα15 to monitor activation of the phospholipase-C (PLC) signaling pathway and/or Gαolf to monitor activation of the adenylate cyclase (AC) signaling pathway, resulting in intracellular Ca2+ release and/or Ca2+ influx through a cyclic nucleotide-gated channel, respectively. PLC-dependent responses differed dynamically from AC-dependent responses, allowing them to be distinguished when Gα15 and Gαolf were co-expressed. The dynamic difference in readout was independent of the receptor, the heterologous expression system, and the ligand concentration. Of 17 reported mOR-EG ligands tested, including eugenol, its analogs, and structurally dissimilar compounds (mousse cristal, nootkatone, orivone), some equally activated both signaling pathways, some differentially activated both signaling pathways, and some had no noticeable effect even at 1-5 mM. Our findings argue that mOR-EG, when heterologously expressed, can couple to two different signaling pathways in a ligand selective manner. The challenge now is to determine the potential of mOR-EG, and perhaps other ORs, to activate multiple signaling pathways in a ligand selective manner in native ORNs. PMID:25149566

  15. Deciphering activation of olfactory receptors using heterologous expression in Saccharomyces cerevisiae and bioluminescence resonance energy transfer.

    PubMed

    Sanz, Guenhaël; Pajot-Augy, Edith

    2013-01-01

    Hetero- and homo-oligomerization of G protein-coupled receptors (GPCRs) has been addressed in the past years using various approaches such as co-immunoprecipitation, fluorescence resonance energy transfer and bioluminescence resonance energy transfer (BRET). Here, we report the methodological details from a previously published study to investigate the relationships between oligomerization and activation states of olfactory receptors (ORs). This methodology combines heterologous expression of ORs in Saccharomyces cerevisiae and BRET assays on membrane fractions, in particular, upon odorant stimulation. We have demonstrated that ORs constitutively homodimerize at the plasma membrane and that high odorant concentrations promote a conformational change of the dimer, which becomes inactive. We proposed a model in which one odorant molecule binding the dimer would induce activation, while two odorant molecules, each binding one protomer of the dimer, would blunt signaling.

  16. Differential expression of Toll-like receptor 4 (TLR4) in healthy and infected canine endometrium.

    PubMed

    Chotimanukul, S; Sirivaidyapong, S

    2011-10-01

    This study provides the first report into immunohistochemical localization of Toll-like receptor (TLR) in the canine reproductive tract. TLR4 was investigated in endometrium during the estrous cycle and in pyometra. Pyometra is the most important pathological condition of the uterus due to bacterial infection in dogs. To protect against invading pathogens, the female reproductive tract has evolved immune mechanisms. TLRs are the cellular components of the afferent arm of the innate immune system. The expression of TLR4 was significantly higher in the endometrial stroma compared to the endometrial surface epithelium and glandular epithelium in proestrus. The glandular epithelium and stroma at the diestrous stage expressed TLR4 significantly higher than surface epithelium. Furthermore, when compared to other healthy groups, the glandular epithelium at diestrus also higher expressed TLR4 than other stages. The expression of TLR4 in the surface epithelium was higher in dogs with pyometra compared with all other groups. And, the surface epithelium of dogs suffering from pyometra also expressed TLR4 more intensely than the glandular epithelium. The innate immunity of infected canine endometrium response to bacterial infection is intensely extremely increased by the expression of TLR4. Furthermore, the different levels of TLR4 expression seems related to physiological changes in distinct cell types of endometrium, leukocytes populations, cytokines and sex hormones. PMID:21752456

  17. Expression and hormonal regulation of membrane progesterone receptors in human astrocytoma cells.

    PubMed

    Valadez-Cosmes, Paulina; Germán-Castelán, Liliana; González-Arenas, Aliesha; Velasco-Velázquez, Marco A; Hansberg-Pastor, Valeria; Camacho-Arroyo, Ignacio

    2015-11-01

    Progesterone (P) participates in the regulation of the growth of several tumors, including astrocytomas, the most common and malignant human brain tumors. It has been reported that P induces astrocytomas growth in part by its interaction with its intracellular receptors (PR). Recently, it has been reported that membrane progesterone receptors (mPRs) are expressed in ovarian and breast cancer cells, and that P could exert some actions through these receptors, however, it is unknown whether mPRs are expressed in astrocytomas. In this work, U251 and U87 cell lines derived from human astrocytomas grade IV were used to study the expression, localization and hormonal regulation of three mPRs subtypes. Using RT-qPCR and Western blot techniques, we found that mPRα and mPRβ are clearly expressed at mRNA and protein levels in astrocytoma cells whereas mPRγ was barely expressed in these cells. Immunofluorescence staining showed that mPRα and mPRβ were mainly located in the cell surface. Flow cytometry assays demonstrated that in U251 and U87 cells, mPRβ is expressed by a higher percentage of both permeabilized and non-permeabilized cells as compared with mPRα. The percentage of cells expressing mPRγ was very low. P and estradiol (E) (10, 100 nM and 1 μM) decreased mPRα protein content at 12 h. In contrast, both P (100 nM and 1 μM) and E (10 and 100 nM) increased mPRβ content. Finally, by in silico analysis, we identified that mPRα, mPRβ and mPRγ promoters contain several progesterone and estrogen response elements. Our results indicate that mPRs are expressed in human astrocytoma cells, exhibiting a differential regulation by E and P. These data suggest that some P actions in astrocytoma cells may be mediated by mPRs. PMID:26275946

  18. Calcium-Sensing Receptor Gene: Regulation of Expression.

    PubMed

    Hendy, Geoffrey N; Canaff, Lucie

    2016-01-01

    The human calcium-sensing receptor gene (CASR) has 8 exons, and localizes to chromosome 3q. Exons 1A and 1B encode alternative 5'-untranslated regions (UTRs) that splice to exon 2 encoding the AUG initiation codon. Exons 2-7 encode the CaSR protein of 1078 amino acids. Promoter P1 has TATA and CCAAT boxes upstream of exon 1A, and promoter P2 has Sp1/3 motifs at the start site of exon 1B. Exon 1A transcripts from the P1 promoter are reduced in parathyroid tumors and colon carcinomas. Studies of colon carcinomas and neuroblastomas have emphasized the importance of epigenetic changes-promoter methylation of the GC-rich P2 promoter, histone acetylation-as well as involvement of microRNAs in bringing about CASR gene silencing and reduced CaSR expression. Functional cis-elements in the CASR promoters responsive to 1,25-dihydroxyvitamin D [1,25(OH)2D], proinflammatory cytokines, and the transcription factor glial cells missing-2 (GCM2) have been characterized. Reduced levels of CaSR and reduced responsiveness to active vitamin D in parathyroid neoplasia and colon carcinoma may blunt the "tumor suppressor" activity of the CaSR. The hypocalcemia of critically ill patients with burn injury or sepsis is associated with CASR gene upregulation by TNF-alpha and IL-1beta via kappaB elements, and by IL-6 via Stat1/3 and Sp1/3 elements in the CASR gene promoters, respectively. The CASR is transactivated by GCM2-the expression of which is essential for parathyroid gland development. Hyperactive forms of GCM2 may contribute to later parathyroid hyperactivity or tumorigenesis. The expression of the CaSR-the calciostat-is regulated physiologically and pathophysiologically at the gene level. PMID:27679579

  19. Calcium-Sensing Receptor Gene: Regulation of Expression

    PubMed Central

    Hendy, Geoffrey N.; Canaff, Lucie

    2016-01-01

    The human calcium-sensing receptor gene (CASR) has 8 exons, and localizes to chromosome 3q. Exons 1A and 1B encode alternative 5′-untranslated regions (UTRs) that splice to exon 2 encoding the AUG initiation codon. Exons 2–7 encode the CaSR protein of 1078 amino acids. Promoter P1 has TATA and CCAAT boxes upstream of exon 1A, and promoter P2 has Sp1/3 motifs at the start site of exon 1B. Exon 1A transcripts from the P1 promoter are reduced in parathyroid tumors and colon carcinomas. Studies of colon carcinomas and neuroblastomas have emphasized the importance of epigenetic changes—promoter methylation of the GC-rich P2 promoter, histone acetylation—as well as involvement of microRNAs in bringing about CASR gene silencing and reduced CaSR expression. Functional cis-elements in the CASR promoters responsive to 1,25-dihydroxyvitamin D [1,25(OH)2D], proinflammatory cytokines, and the transcription factor glial cells missing-2 (GCM2) have been characterized. Reduced levels of CaSR and reduced responsiveness to active vitamin D in parathyroid neoplasia and colon carcinoma may blunt the “tumor suppressor” activity of the CaSR. The hypocalcemia of critically ill patients with burn injury or sepsis is associated with CASR gene upregulation by TNF-alpha and IL-1beta via kappaB elements, and by IL-6 via Stat1/3 and Sp1/3 elements in the CASR gene promoters, respectively. The CASR is transactivated by GCM2—the expression of which is essential for parathyroid gland development. Hyperactive forms of GCM2 may contribute to later parathyroid hyperactivity or tumorigenesis. The expression of the CaSR—the calciostat—is regulated physiologically and pathophysiologically at the gene level. PMID:27679579

  20. Calcium-Sensing Receptor Gene: Regulation of Expression

    PubMed Central

    Hendy, Geoffrey N.; Canaff, Lucie

    2016-01-01

    The human calcium-sensing receptor gene (CASR) has 8 exons, and localizes to chromosome 3q. Exons 1A and 1B encode alternative 5′-untranslated regions (UTRs) that splice to exon 2 encoding the AUG initiation codon. Exons 2–7 encode the CaSR protein of 1078 amino acids. Promoter P1 has TATA and CCAAT boxes upstream of exon 1A, and promoter P2 has Sp1/3 motifs at the start site of exon 1B. Exon 1A transcripts from the P1 promoter are reduced in parathyroid tumors and colon carcinomas. Studies of colon carcinomas and neuroblastomas have emphasized the importance of epigenetic changes—promoter methylation of the GC-rich P2 promoter, histone acetylation—as well as involvement of microRNAs in bringing about CASR gene silencing and reduced CaSR expression. Functional cis-elements in the CASR promoters responsive to 1,25-dihydroxyvitamin D [1,25(OH)2D], proinflammatory cytokines, and the transcription factor glial cells missing-2 (GCM2) have been characterized. Reduced levels of CaSR and reduced responsiveness to active vitamin D in parathyroid neoplasia and colon carcinoma may blunt the “tumor suppressor” activity of the CaSR. The hypocalcemia of critically ill patients with burn injury or sepsis is associated with CASR gene upregulation by TNF-alpha and IL-1beta via kappaB elements, and by IL-6 via Stat1/3 and Sp1/3 elements in the CASR gene promoters, respectively. The CASR is transactivated by GCM2—the expression of which is essential for parathyroid gland development. Hyperactive forms of GCM2 may contribute to later parathyroid hyperactivity or tumorigenesis. The expression of the CaSR—the calciostat—is regulated physiologically and pathophysiologically at the gene level.

  1. Developmental expression analysis and immunolocalization of a biogenic amine receptor in Schistosoma mansoni.

    PubMed

    El-Shehabi, Fouad; Vermeire, Jon J; Yoshino, Timothy P; Ribeiro, Paula

    2009-05-01

    A Schistosoma mansoni G-protein coupled receptor (SmGPCR) was previously cloned and shown to be activated by the biogenic amine, histamine. Here we report a first investigation of the receptor's subunit organization, tissue distribution and expression levels in different stages of the parasite. A polyclonal antibody was produced in rabbits against the recombinant third intracellular loop (il3) of SmGPCR. Western blot studies of the native receptor and recombinant protein expressed in HEK293 cells showed that SmGPCR exists both as a monomer (65 kDa) and an apparent dimer of approximately 130 kDa These species were verified by immunoprecipitation of SmGPCR from S. mansoni extracts, using antibody that was covalently attached to agarose beads. Further investigation determined that the SmGPCR dimer was resistant to treatment with various detergents, 4 M urea and 0.1 M DTT but could be made to dissociate at acidic pH, suggesting the dimer is non-covalent in nature. Confocal immunofluorescence studies revealed significant SmGPCR immunoreactivity in sporocysts, schistosomula and adult worms but not miracidia. SmGPCR was found to be most widely expressed in the schistosomula, particularly the tegument, the subtegumental musculature and the acetabulum. In the adult stage we detected SmGPCR immunofluorescence mainly in the tubercles of male worms and, to a lesser extent, the body wall musculature. Localization in sporocysts was mainly confined to the tegument and cells within parenchymal matrices. A real-time quantitative reverse-transcription PCR analysis revealed that SmGPCR is upregulated at the mRNA level in the parasitic stages compared to the free-living miracidium and cercariae, and it is particularly elevated during early sporocyst and schistosomula development. The results identify SmGPCR as an important parasite receptor with potential functions in muscle and the tegument of S. mansoni. PMID:19545530

  2. Phenotypical characterization of the rat striatal neurons expressing the D1 dopamine receptor gene.

    PubMed Central

    Le Moine, C; Normand, E; Bloch, B

    1991-01-01

    In situ hybridization experiments were performed in rat brain sections from normal and 6-hydroxydopamine-treated rats in order to map and identify the neurons expressing the D1 receptor gene in the striatum and the substantia nigra. Procedures of combined in situ hybridization, allowing the simultaneous detection of two mRNAs in the same section or in adjacent sections, were used to characterize the phenotypes of the neurons expressing the D1 receptor gene. D1 receptor mRNA was found in neurons all over the caudate-putamen, the accumbens nucleus, and the olfactory tubercle but not in the substantia nigra. In the caudate-putamen and accumbens nucleus, most of the neurons containing D1 receptor mRNA were characterized as medium-sized substance P neurons and distinct from those containing D2 receptor mRNA. Nevertheless, 15-20% of the substance P neurons did not contain D1 receptor mRNA. The neurons containing preproenkephalin A mRNA did not contain D1 receptor mRNA but contained D2 receptor mRNA. A small number of cholinergic and somatostatinergic neurons exhibited a weak reaction for D1 receptor mRNA. These results demonstrate that dopamine acts on efferent striatal neurons through expression of distinct receptors--namely, D1 and D2 in separate cell populations (substance P and preproenkephalin A neurons, respectively)--and can also act on nonprojecting neurons through D1 receptor expression. Images PMID:1827915

  3. Expression of extracellular calcium-sensing receptor in human osteoblastic MG-63 cell line

    NASA Technical Reports Server (NTRS)

    Yamaguchi, T.; Chattopadhyay, N.; Kifor, O.; Ye, C.; Vassilev, P. M.; Sanders, J. L.; Brown, E. M.

    2001-01-01

    We have previously shown the expression of the extracellular calcium (Ca2+o)-sensing receptor (CaR) in osteoblast-like cell lines, and others have documented its expression in sections of murine, bovine, and rat bone. The existence of the CaR in osteoblasts remains controversial, however, since some studies have failed to document its expression in the same osteoblast-like cell lines. The goals of the present study were twofold. 1) We sought to determine whether the CaR is expressed in the human osteoblast-like cell line, MG-63, which has recently been reported by others not to express this receptor. 2) We investigated whether the CaR, if present in MG-63 cells, is functionally active, since most previous studies have not proven the role of the CaR in mediating known actions of Ca2+o on osteoblast-like cells. We used immunocytochemistry and Western blotting with the specific, affinity-purified anti-CaR antiserum 4637 as well as Northern blot analysis and RT-PCR using a riboprobe and PCR primers specific for the human CaR, respectively, to show readily detectable CaR protein and mRNA expression in MG-63 cells. Finally, we employed the patch-clamp technique to show that an elevation in Ca2+o as well as the specific, allosteric CaR activator NPS R-467 (0.5 microM), but not its less active stereoisomer NPS S-467 (0.5 microM), activate an outward K+ channel in MG-63 cells, strongly suggesting that the CaR in MG-63 cells is not only expressed but is functionally active.

  4. Colony-stimulating Factor-1 Receptor Utilizes Multiple Signaling Pathways to Induce Cyclin D2 Expression

    PubMed Central

    Dey, Arunangsu; She, Hongyun; Kim, Leopold; Boruch, Allan; Guris, Deborah L.; Carlberg, Kristen; Sebti, Saïd M.; Woodley, David T.; Imamoto, Akira; Li, Wei

    2000-01-01

    Colony-stimulating factor-1 (CSF-1) induces expression of immediate early gene, such as c-myc and c-fos and delayed early genes such as D-type cyclins (D1 and D2), whose products play essential roles in the G1 to S phase transition of the cell cycle. Little is known, however, about the cytoplasmic signal transduction pathways that connect the surface CSF-1 receptor to these genes in the nucleus. We have investigated the signaling mechanism of CSF-1-induced D2 expression. Analyses of CSF-1 receptor autophosphorylation mutants show that, although certain individual mutation has a partial inhibitory effect, only multiple combined mutations completely block induction of D2 in response to CSF-1. We report that at least three parallel pathways, the Src pathway, the MAPK/ERK kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway, and the c-myc pathway, are involved. Induction of D2 is partially inhibited in Src−/− bone marrow-derived macrophages and by Src inhibitor PP1 and is enhanced in v-Src-overexpressing cells. Activation of myc's transactivating activity selectively induces D2 but not D1. Blockade of c-myc expression partially blocks CSF-1-induced D2 expression. Complete inhibition of the MEK/ERK pathway causes 50% decrease of D2 expression. Finally, simultaneous inhibition of Src, MEK activation, and c-myc expression additively blocks CSF-1-induced D2 expression. This study indicates that multiple signaling pathways are involved in full induction of a single gene, and this finding may also apply broadly to other growth factor-inducible genes. PMID:11071910

  5. Pteromalus puparum venom impairs host cellular immune responses by decreasing expression of its scavenger receptor gene.

    PubMed

    Fang, Qi; Wang, Lei; Zhu, Yangkeng; Stanley, David W; Chen, Xuexin; Hu, Cui; Ye, Gongyin

    2011-11-01

    Insect host/parasitoid interactions are co-evolved systems in which host defenses are balanced by parasitoid mechanisms to disable or hide from host immune effectors. Although there is a rich literature on these systems, parasitoid immune-disabling mechanisms have not been fully elucidated. Here we report on a newly discovered immune-disabling mechanism in the Pieris rapae/Pteromalus puparum host/parasitoid system. Because venom injections and parasitization suppresses host phagocytosis, we turned attention to the P. rapae scavenger receptor (Pr-SR), posing the hypothesis that P. puparum venom suppresses expression of the host Pr-SR gene. To test our hypothesis, we cloned a full-length cDNA of the Pr-SR. Multiple sequences alignment showed the deduced amino acid sequence of Pr-SR is similar to scavenger receptors of other lepidopterans. Bacterial and bead injections induced Pr-SR mRNA and protein expression, which peaked at 4h post-bead injection. Venom injection inhibited Pr-SR expression. Pr-SR was specifically expressed in granulocytes compared to plasmatocytes. We localized the Pr-SR protein in cytoplasm and cellular membrane, with no evidence of secretion into host plasma. Double-strand RNA designed to Pr-SR mRNA silenced expression of Pr-SR and significantly impaired host phagocytosis and encapsulation reactions. Venom injections similarly silenced Pr-SR expression during the first 8h post-treatment, after which the silencing effects gradually abated. We infer from these findings that one mechanism of impairing P. rapae hemocytic immune reactions is by silencing expression of Pr-SR.

  6. Impact of chronic morphine on delta opioid receptor-expressing neurons in the mouse hippocampus.

    PubMed

    Erbs, E; Faget, L; Ceredig, R A; Matifas, A; Vonesch, J-L; Kieffer, B L; Massotte, D

    2016-01-28

    Delta opioid (DOP) receptors participate to the control of chronic pain and emotional responses. Recent data also identified their implication in spatial memory and drug-context associations pointing to a critical role of hippocampal delta receptors. To better appreciate the impact of repeated drug exposure on their modulatory activity, we used fluorescent knock-in mice that express a functional delta receptor fused at its carboxy-terminus with the green fluorescent protein in place of the native receptor. We then tested the impact of chronic morphine treatment on the density and distribution of delta receptor-expressing cells in the hippocampus. A decrease in delta receptor-positive cell density was observed in the CA1, CA3 and dentate gyrus without alteration of the distribution across the different GABAergic populations that mainly express delta receptors. This effect partly persisted after four weeks of morphine abstinence. In addition, we observed increased DOP receptor expression at the cell surface compared to saline-treated animals. In the hippocampus, chronic morphine administration thus induces DOP receptor cellular redistribution and durably decreases delta receptor-expressing cell density. Such modifications are likely to alter hippocampal physiology, and to contribute to long-term cognitive deficits.

  7. Substance P receptor binding sites are expressed by glia in vivo after neuronal injury

    SciTech Connect

    Mantyh, P.W.; Johnson, D.J.; Boehmer, C.G.; Catton, M.D.; Vinters, H.V.; Maggio, J.E.; Too, Hengphon; Vigna, S.R. )

    1989-07-01

    In vitro studies have demonstrated that glia can express functional receptors for a variety of neurotransmitters. To determine whether similar neurotransmitter receptors are also expressed by glia in vivo, the authors examined the glial scar in the transected optic nerve of the albino rabbit by quantitative receptor autoradiography. Receptor binding sites for radiolabeled calcitonin gene-related peptide, cholecystokinin, galanin, glutamate, somatostatin, substance P, and vasoactive intestinal peptide were examined. Specific receptor binding sites for each of these neurotransmitters were identified in the rabbit forebrain but were not detected in the normal optic nerve or tract. In the transected optic nerve and tract, only receptor binding sites for substance P were expressed at detectable levels. The density of substance P receptor binding sites observed in this glial scar is among the highest observed in the rabbit forebrain. Ligand displacement and saturation experiments indicate that the substance P receptor binding site expressed by the glial scar has pharmacological characteristics similar to those of substance P receptors in the rabbit striatum, rat brain, and rat and canine gut. The present study demonstrates that glial cells in vivo express high concentrations of substance P receptor binding sites after transection of retinal ganglion cell axons. Because substance P has been shown to regulate inflammatory and immune responses in peripheral tissues, substance P may also, by analogy, be involved in regulating the glial response to injury in the central nervous system.

  8. Organization, structure, chromosomal assignment, and expression of the gene encoding the human endothelin-A receptor.

    PubMed

    Hosoda, K; Nakao, K; Tamura, N; Arai, H; Ogawa, Y; Suga, S; Nakanishi, S; Imura, H

    1992-09-15

    We have isolated and characterized the gene for the human endothelin-A receptor. Southern blot analyses demonstrated a single copy gene for the receptor. The gene spans more than 40 kilobases and contains eight exons and seven introns. Intron 1 exists in the 5'-noncoding region, and introns 2-7 occur in the coding region. The locations of introns 2-7 exist before or after the regions encoding the membrane-spanning domains. The transcription start site, determined by primer extension experiments, is 502 base pairs upstream of the methionine initiation codon. The 5'-flanking region lacks a typical TATA box but contains a potential SP-1-binding site 27 base pairs upstream of the transcription start site. Using human-rodent somatic hybrid cell DNA, the gene was assigned to human chromosome 4. Northern blot analyses revealed a 4.3-kilobase mRNA in a wide variety of human tissues, at the highest level in the aorta and at a substantial level in the cultured human mesangial cells. This is the first report of cloning of a gene for a member of the endothelin receptor family. The present study should give a clue to the discovery of possible disorders of the endothelin-A receptor, as well as facilitate the elucidation of the mechanisms by which the gene expression is regulated.

  9. Regulation of vitamin D receptor expression by retinoic acid receptor alpha in acute myeloid leukemia cells.

    PubMed

    Marchwicka, Aleksandra; Cebrat, Małgorzata; Łaszkiewicz, Agnieszka; Śnieżewski, Łukasz; Brown, Geoffrey; Marcinkowska, Ewa

    2016-05-01

    Acute myeloid leukemia (AML) is the predominant acute leukemia among adults, characterized by an accumulation of malignant immature myeloid precursors. A very promising way to treat AML is differentiation therapy using either all-trans-retinoic acid (ATRA) or 1,25-dihydroxyvitamin D3 (1,25D), or the use of both these differentiation-inducing agents. However, the effect of combination treatment varies in different AML cell lines, and this is due to ATRA either down- or up-regulating transcription of vitamin D receptor (VDR) in the cells examined. The mechanism of transcriptional regulation of VDR in response to ATRA has not been fully elucidated. Here, we show that the retinoic acid receptor α (RARα) is responsible for regulating VDR transcription in AML cells. We have shown that a VDR transcriptional variant, originating in exon 1a, is regulated by RARα agonists in AML cells. Moreover, in cells with a high basal level of RARα protein, the VDR gene is transcriptionally repressed as long as RARα agonist is absent. In these cells down-regulation of the level of RARα leads to increased expression of VDR. We consider that our findings provide a mechanistic background to explain the different outcomes from treating AML cell lines with a combination of ATRA and 1,25D. PMID:26969398

  10. Differential Expression of Functional Fc-Receptors and Additional Immune Complex Receptors on Mouse Kidney Cells

    PubMed Central

    Suwanichkul, Adisak; Wenderfer, Scott E.

    2013-01-01

    The precise mechanisms by which circulating immune complexes accumulate in the kidney to form deposits in glomerulonephritis are not well understood. In particular, the role of resident cells within glomeruli of the kidney has been widely debated. Immune complexes have been shown to bind one glomerular cell type (mesangial cells) leading to functional responses such as pro-inflammatory cytokine production. To further assess the presence of functional immunoreceptors on resident glomerular cells, cultured mouse renal epithelial, endothelial, and mesangial cells were treated with heat-aggregated mouse IgG or preformed murine immune complexes. Mesangial and renal endothelial cells were found to bind IgG complexes, whereas glomerular epithelial cell binding was minimal. A blocking antibody for Fc-gamma receptors reduced binding to mesangial cells but not renal endothelial cells, suggesting differential immunoreceptor utilization. RT-PCR and immunostaining based screening of cultured renal endothelial cells showed limited low-level expression of known Fc-receptors and Igbinding proteins. The interaction between mesangial cells and renal endothelial cells and immune complexes resulted in distinct, cell-specific patterns of chemokine and cytokine production. This novel pathway involving renal endothelial cells likely contributes to the predilection of circulating immune complex accumulation within the kidney and to the inflammatory responses that drive kidney injury. PMID:23911392

  11. Crystallization scale purification of α7 nicotinic acetylcholine receptor from mammalian cells using a BacMam expression system

    PubMed Central

    Cheng, Hao; Fan, Chen; Zhang, Si-wei; Wu, Zhong-shan; Cui, Zhi-cheng; Melcher, Karsten; Zhang, Cheng-hai; Jiang, Yi; Cong, Yao; Xu, H Eric

    2015-01-01

    Aim: To report our methods for expression and purification of α7 nicotinic acetylcholine receptor (α7-nAChR), a ligand-gated pentameric ion channel and an important drug target. Methods: α7-nAChRs of 10 different species were cloned into an inducible BacMam vector with an N-terminal tag of a tandem maltose-binding protein (MBP) and a TEV cleavage site. This α7-nAChR fusion receptor was expressed in mammalian HEK293F cells and detected by Western blot. The expression was scaled up to liters. The receptor was purified using amylose resin and size-exclusion chromatography. The quality of the purified receptor was assessed using SDS-PAGE gels, thermal stability analysis, and negative stain electron microscopy (EM). The expression construct was optimized through terminal truncations and site-directed mutagenesis. Results: Expression screening revealed that α7-nAChR from Taeniopygia guttata had the highest expression levels. The fusion receptor was expressed mostly on the cell surface, and it could be efficiently purified using one-step amylose affinity chromatography. One to two milligrams of the optimized α7-nAChR expression construct were purified from one liter of cell culture. The purified α7-nAChR samples displayed high thermal stability with a Tm of 60 °C, which was further enhanced by antagonist binding but decreased in the presence of agonist. EM analysis revealed ring-like structures with a central hydrophilic hole, which was consistent with the pentameric assembly of the α7-nAChR channel. Conclusion: We have established methods for crystallization scale expression and purification of α7-nAChR, which lays a foundation for high-resolution structural studies using X-ray crystallography or single particle cryo-EM analysis. PMID:26073323

  12. Expression of CYP3A4 and CYP3A7 in Human Foetal Tissues and its Correlation with Nuclear Receptors.

    PubMed

    Betts, Stina; Björkhem-Bergman, Linda; Rane, Anders; Ekström, Lena

    2015-10-01

    Previous reports have suggested that the nuclear receptors vitamin D receptor (VDR), peroxisome proliferator-activated receptor α (PPARα), pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are involved in the regulation of the drug-metabolizing enzyme cytochrome P450 (CYP) 3A4 expression in adults. The aim of this study was to investigate the gene expression of CYP3A4 and the foetal CYP3A7 in human foetal tissues and their relation to gene expression and genetic variations in the nuclear receptors VDR, PPARα, PXR and CAR. We determined the relative expression of CYP3A4 and CYP3A7 and these nuclear receptors in foetal livers, intestines and adrenals, using quantitative PCR. In addition, the expression of these enzymes was also analysed in adult liver. There was a high interindividual variability in CYP3A4 and CYP3A7, 49 times and 326 times, respectively. Both CYP3A4 and CYP3A7 had the highest expression in the liver. There were significant correlations (p < 0.001) between the nuclear receptors studied and the expression of CYP3A4 and CYP3A7 in foetal liver, as well as the expression of CYP3A4 in foetal intestine. Polymorphisms in the VDR gene, rs1544410 and rs1523130 (TaqI), in the PXR gene, rs1523130, and in the PPARα gene, rs4253728, were not correlated with CYP3A4 or CYP3A7 expression. However, C-homozygous individuals of the TaqI VDR polymorphism had 60% lower VDR gene expression (p < 0.05), than individuals carrying one or two T alleles. In conclusion, differences in the expression of nuclear receptors might determine the variability in CYP3A4 and CYP3A7 expression observed in foetal liver.

  13. Fluorescence-based optimization of human bitter taste receptor expression in Saccharomyces cerevisiae

    SciTech Connect

    Sugawara, Taishi; Ito, Keisuke; Shiroishi, Mitsunori; Tokuda, Natsuko; Asada, Hidetsugu; Yurugi-Kobayashi, Takami; Shimamura, Tatsuro; Misaka, Takumi; Nomura, Norimichi; Murata, Takeshi; Abe, Keiko; Iwata, So; and others

    2009-05-15

    Human TAS2 receptors (hTAS2Rs) perceive bitter tastants, but few studies have explored the structure-function relationships of these receptors. In this paper, we report our trials on the large-scale preparations of hTAS2Rs for structural analysis. Twenty-five hTAS2Rs were expressed using a GFP-fusion yeast system in which the constructs and the culture conditions (e.g., the signal sequence, incubation time and temperature after induction) were optimized by measuring GFP fluorescence. After optimization, five hTAS2Rs (hTAS2R7, hTAS2R8, hTAS2R16, hTAS2R41, and hTAS2R48) were expressed at levels greater than 1 mg protein/L of culture, which is a preferable level for purification and crystallization. Among these five bitter taste receptors, hTAS2R41 exhibited the highest detergent solubilization efficiency of 87.1% in n-dodecyl-{beta}-D-maltopyranoside (DDM)/cholesteryl hemisuccinate (CHS). Fluorescence size-exclusion chromatography showed that hTAS2R41 exhibited monodispersity in DDM/CHS without aggregates, suggesting that hTAS2R41 is a good target for future crystallization trials.

  14. LPS-induced dental pulp inflammation increases expression of ionotropic purinergic receptors in rat trigeminal ganglion.

    PubMed

    Chen, Yangxi; Zhang, Li; Yang, Jingwen; Zhang, Lu; Chen, Zhi

    2014-09-10

    Severe toothache can be caused by dental pulp inflammation. The ionotropic purinergic receptor family (P2X) is reported to mediate nociception in primary afferent neurons. This study aims to investigate the involvement of P2X receptors in the sensitization of the trigeminal ganglion (TG) caused by dental pulp inflammation. Lipopolysaccharides were unilaterally applied to the pulp of the upper molar of the rat to induce dental pulp inflammation. Increased expression of c-fos, a marker of neuronal activity, was induced in V1-V2 division, indicating the activation of TG neurons. The expressions of P2X2, P2X3, and P2X5 were also increased in the V1-V2 division of TG, primarily in small-sized and medium-sized neurons. Markers of glutamatergic afferents, VGluT1, and GABAergic afferents, GAD67, were induced by lipopolysaccharides and coexpressed with P2X in small-sized TG neurons. The present findings suggest that the P2X2, P2X3, and P2X5 receptors are upregulated as part of the sensitization produced by dental pulp inflammation. PMID:25055139

  15. Differential Expression of Two Novel Members of the Tomato Ethylene-Receptor Family

    PubMed Central

    Tieman, Denise M.; Klee, Harry J.

    1999-01-01

    The phytohormone ethylene regulates many aspects of plant growth, development, and environmental responses. Much of the developmental regulation of ethylene responses in tomato (Lycopersicon esculentum) occurs at the level of hormone sensitivity. In an effort to understand the regulation of ethylene responses, we isolated and characterized tomato genes with sequence similarity to the Arabidopsis ETR1 (ethylene response 1) ethylene receptor. Previously, we isolated three genes that exhibit high similarity to ETR1 and to each other. Here we report the isolation of two additional genes, LeETR4 and LeETR5, that are only 42% and 40% identical to ETR1, respectively. Although the amino acids known to be involved in ethylene binding are conserved, LeETR5 lacks the histidine within the kinase domain that is predicted to be phosphorylated. This suggests that histidine kinase activity is not necessary for an ethylene response, because mutated forms of both LeETR4 and LeETR5 confer dominant ethylene insensitivity in transgenic Arabidopsis plants. Expression analysis indicates that LeETR4 accounts for most of the putative ethylene-receptor mRNA present in reproductive tissues, but, like LeETR5, it is less abundant in vegetative tissues. Taken together, ethylene perception in tomato is potentially quite complex, with at least five structurally divergent, putative receptor family members exhibiting significant variation in expression levels throughout development. PMID:10318694

  16. Sphingosine-1-phosphate receptor 1 reporter mice reveal receptor activation sites in vivo

    PubMed Central

    Kono, Mari; Tucker, Ana E.; Tran, Jennifer; Bergner, Jennifer B.; Turner, Ewa M.; Proia, Richard L.

    2014-01-01

    Activation of the GPCR sphingosine-1-phosphate receptor 1 (S1P1) by sphingosine-1-phosphate (S1P) regulates key physiological processes. S1P1 activation also has been implicated in pathologic processes, including autoimmunity and inflammation; however, the in vivo sites of S1P1 activation under normal and disease conditions are unclear. Here, we describe the development of a mouse model that allows in vivo evaluation of S1P1 activation. These mice, known as S1P1 GFP signaling mice, produce a S1P1 fusion protein containing a transcription factor linked by a protease cleavage site at the C terminus as well as a β-arrestin/protease fusion protein. Activated S1P1 recruits the β-arrestin/protease, resulting in the release of the transcription factor, which stimulates the expression of a GFP reporter gene. Under normal conditions, S1P1 was activated in endothelial cells of lymphoid tissues and in cells in the marginal zone of the spleen, while administration of an S1P1 agonist promoted S1P1 activation in endothelial cells and hepatocytes. In S1P1 GFP signaling mice, LPS-mediated systemic inflammation activated S1P1 in endothelial cells and hepatocytes via hematopoietically derived S1P. These data demonstrate that S1P1 GFP signaling mice can be used to evaluate S1P1 activation and S1P1-active compounds in vivo. Furthermore, this strategy could be potentially applied to any GPCR to identify sites of receptor activation during normal physiology and disease. PMID:24667638

  17. Enhanced muscarinic M1 receptor gene expression in the corpus striatum of streptozotocin-induced diabetic rats

    PubMed Central

    Gireesh, G; Kumar, T Peeyush; Mathew, Jobin; Paulose, CS

    2009-01-01

    Acetylcholine (ACh), the first neurotransmitter to be identified, regulate the activities of central and peripheral functions through interactions with muscarinic receptors. Changes in muscarinic acetylcholine receptor (mAChR) have been implicated in the pathophysiology of many major diseases of the central nervous system (CNS). Previous reports from our laboratory on streptozotocin (STZ) induced diabetic rats showed down regulation of muscarinic M1 receptors in the brainstem, hypothalamus, cerebral cortex and pancreatic islets. In this study, we have investigated the changes of acetylcholine esterase (AChE) enzyme activity, total muscarinic and muscarinic M1 receptor binding and gene expression in the corpus striatum of STZ – diabetic rats and the insulin treated diabetic rats. The striatum, a neuronal nucleus intimately involved in motor behaviour, is one of the brain regions with the highest acetylcholine content. ACh has complex and clinically important actions in the striatum that are mediated predominantly by muscarinic receptors. We observed that insulin treatment brought back the decreased maximal velocity (Vmax) of acetylcholine esterase in the corpus striatum during diabetes to near control state. In diabetic rats there was a decrease in maximal number (Bmax) and affinity (Kd) of total muscarinic receptors whereas muscarinic M1 receptors were increased with decrease in affinity in diabetic rats. We observed that, in all cases, the binding parameters were reversed to near control by the treatment of diabetic rats with insulin. Real-time PCR experiment confirmed the increase in muscarinic M1 receptor gene expression and a similar reversal with insulin treatment. These results suggest the diabetes-induced changes of the cholinergic activity in the corpus striatum and the regulatory role of insulin on binding parameters and gene expression of total and muscarinic M1 receptors. PMID:19344500

  18. Expression and prognostic significance of the polymeric immunoglobulin receptor in epithelial ovarian cancer

    PubMed Central

    2014-01-01

    Background High expression of the polymeric immunoglobulin receptor (PIGR) has previously been associated with a favourable prognosis in a few cancer forms, but its expression and relationship with clinical outcome in epithelial ovarian cancer (EOC) has not yet been reported. The aim of this study was therefore to examine the clinicopathological correlates and prognostic significance of PIGR expression in EOC. Methods After an initial screening in the Human Protein Atlas portal, a validated antibody was selected for extended analysis of immunohistochemical PIGR expression in tissue microarrays with tumours from 154 incident cases of EOC from two pooled prospective population-based cohorts. Subsets of corresponding benign-appearing fallopian tubes (n = 38) and omental metastases (n = 33) were also analysed. Kaplan-Meier analysis and Cox regression analysis were applied to examine the impact of PIGR expression on overall survival (OS) and ovarian cancer-specific survival (OCSS). Results PIGR expression was significantly higher in fallopian tubes compared to primary tumours and metastases (p < 0.001) and lower in carcinoma of the serous subtype compared to other carcinomas (p < 0.001). PIGR expression was significantly associated with lower grade (p = 0.001), mucinous histological subtype (p = 0.002), positive progesterone receptor expression (p = 0.009) and negative or low Ki-67 expression (p = 0.003). Kaplan-Meier analysis revealed a significantly improved OS (p = 0.013) and OCSS (p = 0.009) for patients with tumours displaying high expression of PIGR. These associations were confirmed in unadjusted Cox regression analysis (HR = 0.48; 95% CI 0.26-0.87; p = 0.015 for OS and HR = 0.43, 95% CI 0.22-0.82; p = 0.011 for OCSS) but did not remain significant after adjustment for age, grade and clinical stage. Conclusions This study provides a first demonstration of PIGR expression in human fallopian tubes, primary EOC

  19. Different characteristics of AMPA receptor agonists acting at AMPA receptors expressed in Xenopus oocytes.

    PubMed

    Wahl, P; Madsen, U; Banke, T; Krogsgaard-Larsen, P; Schousboe, A

    1996-07-18

    A series of (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) analogues were evaluated for activity at homo-oligomeric glutamate1-flop (Glu1-flop) receptors expressed in Xenopus oocytes, using the two-electrode voltage clamp technique. (RS)-2-Amino-3-(3-carboxy-5-methyl-4-isoxazolyl)propionic acid (ACPA) (EC50, 2.4 microM), a homologue of AMPA having a carboxyl group as the terminal acidic functionality, was five times more potent than AMPA (EC50, 12 microM) and 20 times more potent than kainate (EC50, 46 microM). (RS)-2-Amino-3(3-hydroxy-5-trifluoromethyl-4-isoxazolyl)propionic acid (Tri-F-AMPA), in which an electronegative trifluoromethyl group is substituted for the methyl group on the isoxazole ring in the AMPA structure, was three times more potent than AMPA, whereas (RS)-3-hydroxy-4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridine-5-carboxylic acid (5-HPCA), a bicyclic analogue of AMPA with highly restricted conformational flexibility was 10 times less potent than AMPA. The limiting slope of log-log plots of Glu1-flop receptor currents versus low agonist concentrations had a value of 1.7 for ACPA and kainate compared to 1.5 for Tri-F-AMPA and 1.3 for 5-HPCA and AMPA. The amplitude of responses evoked by near saturating concentrations of the agonists varied more than 7-fold. The sequence of efficacy was ACPA = kainate > Tri-F-AMPA > AMPA > 5-HPCA. Moreover, when saturating concentrations of Tri-F-AMPA and kainate were co-applied, the response was significantly greater than when each of the agonists was applied separately. The potency of the antagonist 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(f)quinoxaline (NBQX) (estimated KB, approximately 200 nM), to block currents mediated by Glu1-flop receptors was similar for all of the agonists tested in this study. These results indicate that relatively minor changes in the molecular structure of AMPA are associated with marked effects on potency and efficacy. In particular, it is suggested that the acidity of

  20. Expression of interleukin 6 receptors and interleukin 6 mRNA by bovine leukaemia virus-induced tumour cells.

    PubMed

    Droogmans, L; Cludts, I; Cleuter, Y; Kerkhofs, P; Adam, E; Willems, L; Kettmann, R; Burny, A

    1994-11-01

    Bovine leukaemia virus (BLV) is the aetiologic agent of bovine leucosis. The virus induces malignancies of the B-cell lineage (leukaemia/lymphoma). The role played by interleukin 6 (IL-6) in the BLV-induced leukemogenesis process was evaluated. Six cell lines derived from BLV-induced tumours were tested for the expression of IL-6 receptors. Two cell lines (LB155 and YR2) display 250-300 receptor per cell (kd = 1.7 10(-10) M and 1.4 10(-10) M, respectively) whereas the other four (LB159, LB167, YR1 and M51) do not display detectable amounts of receptors. Very low (if any) expression of IL-6 receptors has been found in the case of the B lymphocytes of animals in persistent lymphocytosis (PL). Despite the presence of IL-6 receptors on the surface of LB155 and YR2 cells, no influence of exogenous IL-6 on their growth has been observed. Northern analyses indicated the presence of IL-6 transcripts only in the case of mRNA isolated from LB155 cells. Since this cell line also expresses receptors for the cytokine, an autocrine loop may exist in these cells. Experiments in which bovine and bovine epithelial cell lines were transfected with a plasmid containing the bovine IL-6 promoter controlling the expression of the reporter cat gene failed to indicate any influence of the viral transactivator p34tax on the activity of this promoter. We conclude that IL-6 receptors and IL-6 mRNA can be found in some BLV-induced tumours, but this does not correlate with viral expression in BLV-induced leukaemia/lymphoma. PMID:7893972

  1. Novel galanin receptors in teleost fish: identification, expression and regulation by sex steroids.

    PubMed

    Martins, Rute S T; Pinto, Patrícia I S; Guerreiro, Pedro M; Zanuy, Silvia; Carrillo, Manuel; Canário, Adelino V M

    2014-09-01

    In fish, the onset of puberty, the transition from juvenile to sexually reproductive adult animals, is triggered by the activation of pituitary gonadotropin secretion and its timing is influenced by external and internal factors that include the growth/adiposity status of the animal. Kisspeptins have been implicated in the activation of puberty but peripheral signals coming from the immature gonad or associated to the metabolic/nutritional status are also thought to be involved. Therefore we hypothesize the importance of the galinergic system in the brain and testis of pre-pubertal male sea bass as a candidate to translate the signals leading to activation of testicular maturation. Here, the transcripts for four galanin receptors (GALR), named GALR1a, 1b, 2a and 2b, were isolated from European sea bass, Dicentrarchus labrax. Phylogenetic analysis confirmed the previously reported duplication of GALR1 in teleost fish, and unravelled the duplication of GALR2 in teleost fish and in some tetrapod species. Comparison with human showed that the key amino acids involved in ligand binding are present in the corresponding GALR1 and GALR2 orthologs. Transcripts for all four receptors are expressed in brain and testes of adult fish with GALR1a and GALR1b abundant in testes and hardly detected in ovaries. In order to investigate whether GALR1 dimorphic expression was dependent on steroid context we evaluated the effect of 11-ketotestosterone and 17β-estradiol treatments on the receptor expression in brain and testes of pre-pubertal males. Interestingly, steroid treatments had no effect on the expression of GALRs in the brain while in the testes, GALR1a and GALR1b were significantly up regulated by 11KT. Altogether, these results support a role for the galaninergic system, in particular the GALR1 paralog, in fish reproductive function.

  2. Ephrin/Eph receptor expression in brain of adult nonhuman primates: implications for neuroadaptation.

    PubMed

    Xiao, Danqing; Miller, Gregory M; Jassen, Amy; Westmoreland, Susan V; Pauley, Douglas; Madras, Bertha K

    2006-01-01

    In developing brain, Eph receptors and their ephrin ligands (Ephs/ephrins) are implicated in facilitating topographic guidance of a number of pathways, including the nigrostriatal and mesolimbic dopamine (DA) pathways. In adult rodent brain, these molecules are implicated in neuronal plasticity associated with learning and memory. Cocaine significantly alters the expression of select members of this family of axonal guidance molecules, implicating Ephs, ephrins in drug-induced neuroadaptation. The potential contribution of Ephs, ephrins to cocaine-induced reorganization of striatal circuitry brain in primates [Saka, E., Goodrich, C., Harlan, P., Madras, B.K., Graybiel, A.M., 2004. Repetitive behaviors in monkeys are linked to specific striatal activation patterns. J. Neurosci. 24, 7557-7565] is unknown because there are no documented reports of Eph/ephrin expression or function in adult primate brain. We now report that brains of adult old and new world monkeys express mRNA encoding EphA4 receptor and ephrin-B2 ligand, implicated in topographic guidance of dopamine and striatal neurons during development. Their encoded proteins distributed highly selectively in regions of adult monkey brain. EphA4 mRNA levels were prominent in the DA-rich caudate/putamen, nucleus accumbens and globus pallidus, as well as the medial and orbitofrontal cortices, hippocampus, amygdala, thalamus and cerebellum. Immunocytochemical localization of EphA4 protein revealed discrete expression in caudate/putamen, globus pallidus, substantia nigra, cerebellar Purkinje cells, pyramidal cells of frontal cortices (layers II, III and V) and the subgranular zone of the hippocampus. Evidence for EphA4 expression in dopamine neurons emerged from colocalization with tyrosine-hydroxylase-positive terminals in striatum and substantia nigra and ventral tegmental area cell bodies. The association of axonal guidance molecules with drug-induced reorganization of adult primate brain circuitry warrants

  3. Structure of the mouse leukaemia inhibitory factor receptor gene: regulated expression of mRNA encoding a soluble receptor isoform from an alternative 5' untranslated region.

    PubMed Central

    Chambers, I; Cozens, A; Broadbent, J; Robertson, M; Lee, M; Li, M; Smith, A

    1997-01-01

    The low-affinity leukaemia inhibitory factor receptor (LIF-R) is a component of cell-surface receptor complexes for the multifunctional cytokines leukaemia inhibitory factor, ciliary neurotrophic factor, oncostatin M and cardiotrophin-1. Both soluble and transmembrane forms of the protein have been described and several LIF-R mRNAs have been reported previously. In order to determine the coding potential of LIF-R mRNAs we have isolated and characterized the mouse LIF-R gene. mRNA encoding soluble LIF-R (sLIF-R) is formed by inclusion of an exon in which polyadenylation signals are provided by a B2 repeat. This exon is located centrally within the LIF-R gene but is excluded from the transmembrane LIF-R mRNA by alternative splicing. The transmembrane receptor is encoded by 19 exons distributed over 38 kb. Two distinct 5' non-coding exons have been identified, indicating the existence of alternative promoters. One of these is G/C rich and possesses a consensus initiator sequence as well as potential Sp1 binding sites. Expression of exon 1 from this promoter occurs in a wide variety of tissues, whereas expression of the alternative 5' untranslated region (exon 1a) is normally restricted to liver, the principal source of sLIF-R. During pregnancy expression of exon 1a becomes detectable also in the uterus. Expression of exon 1a increases dramatically during gestation and is accompanied by a similar quantitative rise in expression of sLIF-R mRNA. These findings establish that expression of LIF-R is under complex transcriptional control and indicate that regulated expression of the soluble cytokine receptor isoform may be due principally to an increase in the activity of a dedicated promoter. PMID:9396734

  4. Gene expression of NMDA receptor subunits in the cerebellum of elderly patients with schizophrenia.

    PubMed

    Schmitt, Andrea; Koschel, Jiri; Zink, Mathias; Bauer, Manfred; Sommer, Clemens; Frank, Josef; Treutlein, Jens; Schulze, Thomas; Schneider-Axmann, Thomas; Parlapani, Eleni; Rietschel, Marcella; Falkai, Peter; Henn, Fritz A

    2010-03-01

    To determine if NMDA receptor alterations are present in the cerebellum in schizophrenia, we measured NMDA receptor binding and gene expression of the NMDA receptor subunits in a post-mortem study of elderly patients with schizophrenia and non-affected subjects. Furthermore, we assessed influence of genetic variation in the candidate gene neuregulin-1 (NRG1) on the expression of the NMDA receptor in an exploratory study. Post-mortem samples from the cerebellar cortex of ten schizophrenic patients were compared with nine normal subjects. We investigated NMDA receptor binding by receptor autoradiography and gene expression of the NMDA receptor subunits NR1, NR2A, NR2B, NR2C and NR2D by in situ hybridization. For the genetic study, we genotyped the NRG1 polymorphism rs35753505 (SNP8NRG221533). Additionally, we treated rats with the antipsychotics haloperidol or clozapine and assessed cerebellar NMDA receptor binding and gene expression of subunits to examine the effects of antipsychotic treatment. Gene expression of the NR2D subunit was increased in the right cerebellum of schizophrenic patients compared to controls. Individuals carrying at least one C allele of rs35753505 (SNP8NRG221533) showed decreased expression of the NR2C subunit in the right cerebellum, compared to individuals homozygous for the T allele. Correlation with medication parameters and the animal model revealed no treatment effects. In conclusion, increased NR2D expression results in a hyperexcitable NMDA receptor suggesting an adaptive effect due to receptor hypofunction. The decreased NR2C expression in NRG1 risk variant may cause a deficit in NMDA receptor function. This supports the hypothesis of an abnormal glutamatergic neurotransmission in the right cerebellum in the pathophysiology of schizophrenia.

  5. Knockin mice expressing fluorescent delta-opioid receptors uncover G protein-coupled receptor dynamics in vivo.

    PubMed

    Scherrer, Grégory; Tryoen-Tóth, Petra; Filliol, Dominique; Matifas, Audrey; Laustriat, Delphine; Cao, Yu Q; Basbaum, Allan I; Dierich, Andrée; Vonesh, Jean-Luc; Gavériaux-Ruff, Claire; Kieffer, Brigitte L

    2006-06-20

    The combination of fluorescent genetically encoded proteins with mouse engineering provides a fascinating means to study dynamic biological processes in mammals. At present, green fluorescent protein (GFP) mice were mainly developed to study gene expression patterns or cell morphology and migration. Here we used enhanced GFP (EGFP) to achieve functional imaging of a G protein-coupled receptor (GPCR) in vivo. We created mice where the delta-opioid receptor (DOR) is replaced by an active DOR-EGFP fusion. Confocal imaging revealed detailed receptor neuroanatomy throughout the nervous system of knock-in mice. Real-time imaging in primary neurons allowed dynamic visualization of drug-induced receptor trafficking. In DOR-EGFP animals, drug treatment triggered receptor endocytosis that correlated with the behavioral response. Mice with internalized receptors were insensitive to subsequent agonist administration, providing evidence that receptor sequestration limits drug efficacy in vivo. Direct receptor visualization in mice is a unique approach to receptor biology and drug design. PMID:16766653

  6. Effect of P2X7 Receptor Knockout on AQP-5 Expression of Type I Alveolar Epithelial Cells

    PubMed Central

    Ebeling, Georg; Bläsche, Robert; Hofmann, Falk; Augstein, Antje; Kasper, Michael; Barth, Kathrin

    2014-01-01

    P2X7 receptors, ATP-gated cation channels, are specifically expressed in alveolar epithelial cells. The pathophysiological function of this lung cell type, except a recently reported putative involvement in surfactant secretion, is unknown. In addition, P2X7 receptor-deficient mice show reduced inflammation and lung fibrosis after exposure with bleomycin. To elucidate the role of the P2X7 receptor in alveolar epithelial type I cells we characterized the pulmonary phenotype of P2X7 receptor knockout mice by using immunohistochemistry, western blot analysis and real-time RT PCR. No pathomorphological signs of fibrosis were found. Results revealed, however, a remarkable loss of aquaporin-5 protein and mRNA in young knockout animals. Additional in vitro experiments with bleomycin treated precision cut lung slices showed a greater sensitivity of the P2X7 receptor knockout mice in terms of aquaporin-5 reduction as wild type animals. Finally, P2X7 receptor function was examined by using the alveolar epithelial cell lines E10 and MLE-12 for stimulation experiments with bleomycin. The in vitro activation of P2X7 receptor was connected with an increase of aquaporin-5, whereas the inhibition of the receptor with oxidized ATP resulted in down regulation of aquaporin-5. The early loss of aquaporin-5 which can be found in different pulmonary fibrosis models does not implicate a specific pathogenetic role during fibrogenesis. PMID:24941004

  7. Corticosteroid receptor gene expression is related to sex and social behaviour in a social fish.

    PubMed

    O'Connor, Constance M; Rodela, Tammy M; Mileva, Viktoria R; Balshine, Sigal; Gilmour, Kathleen M

    2013-03-01

    Circulating corticosteroids have been related to social status in a variety of species. However, our understanding of corticosteroid receptor expression and its relationship with sociality is still in its infancy. Knowledge of variation in receptor expression is critical to understand the physiological relevance of differences in circulating corticosteroid concentrations. In this study, we examined corticosteroid receptor gene expression in relation to dominance rank, sex, and social behaviour in the highly social cichlid fish, Neolamprologus pulcher. We examined the relative gene expression of the three known teleost corticosteroid receptors: glucocorticoid receptor 1 (GR1), glucocorticoid receptor 2 (GR2), and the mineralocorticoid receptor (MR) in liver and brain tissue of dominant and subordinate N. pulcher males and females. Phylogenetic analysis revealed the N. pulcher gene originally described as GR2, clustered with other teleost GR1 genes, while the originally-described N. pulcher GR1 gene clustered with the GR2 genes of other teleosts. Therefore we propose a change in the original nomenclature of the N. pulcher GRs: GR1 (formerly GR2) and GR2 (formerly GR1) and adopt this new nomenclature throughout this manuscript. Liver MR transcript levels were higher in males than females, and positively related to submissive behaviour. Liver GR2 (formerly GR1) transcript levels were also higher in males than females. Collectively, the results demonstrate sex differences in corticosteroid receptor abundance, and suggest tissue- and receptor-specific roles for corticosteroid receptors in mediating aspects of social behaviour.

  8. Human Epidermal Growth Factor Receptor Expression in Colorectal Cancer and Its Relationship with Clinicopathological Characteristics

    PubMed Central

    Torabizadeh, Zhila; Nosrati, Anahita; Tahvildari, Shadi

    2016-01-01

    BACKGROUND Some recent studies reported human epidermal growth factor receptor (HER-2/neu) as a marker that can be used in immunological studies of colorectal carcinoma for predicting the prognosis and the treatment. Therefore, we aimed to investigate the frequency of HER-2 expression in patients with colorectal cancer, and explore the relationship between clinicopathological prognostic factors and its expression based on immunohistochemical analysis. METHODS This study included 50 patients with a histologically proven diagnosis of colorectal carcinoma who received surgery at Imam Khomeini Hospital affiliated to Mazandaran University of Medical Sciences. First, HER-2/neu protein expressions were detected by immunohistochemistry and then the data extracted from recorded files. RESULTS The median age of the patients was 60.2±13.9 years (range: 25-93 years). There was no significant relationship between size of tumor, age, sex, lymph node metastases, distant metastasis, differentiation, and stage of the disease with positive expression of HER-2 in this study. CONCLUSION No significant relationship between expression of HER-2 and clinicopathological prognostic factors was found in our study. Further comprehensive and prospective trial with standard method to evaluate the role of HER-2 expression among patients with colorectal cancer is needed. PMID:26933478

  9. Human Epidermal Growth Factor Receptor Expression in Colorectal Cancer and Its Relationship with Clinicopathological Characteristics.

    PubMed

    Torabizadeh, Zhila; Nosrati, Anahita; Tahvildari, Shadi

    2016-01-01

    BACKGROUND Some recent studies reported human epidermal growth factor receptor (HER-2/neu) as a marker that can be used in immunological studies of colorectal carcinoma for predicting the prognosis and the treatment. Therefore, we aimed to investigate the frequency of HER-2 expression in patients with colorectal cancer, and explore the relationship between clinicopathological prognostic factors and its expression based on immunohistochemical analysis. METHODS This study included 50 patients with a histologically proven diagnosis of colorectal carcinoma who received surgery at Imam Khomeini Hospital affiliated to Mazandaran University of Medical Sciences. First, HER-2/neu protein expressions were detected by immunohistochemistry and then the data extracted from recorded files. RESULTS The median age of the patients was 60.2±13.9 years (range: 25-93 years). There was no significant relationship between size of tumor, age, sex, lymph node metastases, distant metastasis, differentiation, and stage of the disease with positive expression of HER-2 in this study. CONCLUSION No significant relationship between expression of HER-2 and clinicopathological prognostic factors was found in our study. Further comprehensive and prospective trial with standard method to evaluate the role of HER-2 expression among patients with colorectal cancer is needed. PMID:26933478

  10. Retinoic acid-mediated gene expression in transgenic reporter zebrafish.

    PubMed

    Perz-Edwards, A; Hardison, N L; Linney, E

    2001-01-01

    Retinoic acid-mediated gene activation is important for normal vertebrate development. The size and nature of retinoic acid make it difficult to identify the precise cellular location of this signaling molecule throughout an embryo. Additionally, retinoic acid (RA) signaling is regulated by a complex combination of receptors, coactivators, and antagonizing proteins. Thus, in order to integrate these signals and identify regions within a whole developing embryo where cells can respond transcriptionally to retinoic acid, we have used a reporter transgenic approach. We have generated several stable lines of transgenic zebrafish which use retinoic acid response elements to drive fluorescent protein expression. In these zebrafish lines, transgene expression is localized to regions of the neural tube, retina, notochord, somites, heart, pronephric ducts, branchial arches, and jaw muscles in embryos and larvae. Transgene expression can be induced in additional regions of the neural tube and retina as well as the immature notochord, hatching gland, enveloping cell layer, and fin by exposing embryos to retinoic acid. Treatment with retinoic acid synthase inhibitors, citral and diethylaminobenzaldehyde (DEAB), during neurulation, greatly reduces transgene expression. DEAB treatment of embryos at gastrulation phenocopies the embryonic effects of vitamin A deprivation or targeted disruption of the RA synthase retinaldehyde dehydrogenase-2 in other vertebrates. Together these data suggest that the reporter expression we see in zebrafish is dependent upon conserved vertebrate pathways of RA synthesis.

  11. Modulation of Macrophage Gene Expression via Liver X Receptor α Serine 198 Phosphorylation

    PubMed Central

    Wu, Chaowei; Hussein, Maryem A.; Shrestha, Elina; Leone, Sarah; Aiyegbo, Mohammed S.; Lambert, W. Marcus; Pourcet, Benoit; Cardozo, Timothy; Gustafson, Jan-Ake; Fisher, Edward A.

    2015-01-01

    In mouse models of atherosclerosis, normalization of hyperlipidemia promotes macrophage emigration and regression of atherosclerotic plaques in part by liver X receptor (LXR)-mediated induction of the chemokine receptor CCR7. Here we report that LXRα serine 198 (S198) phosphorylation modulates CCR7 expression. Low levels of S198 phosphorylation are observed in plaque macrophages in the regression environment where high levels of CCR7 expression are observed. Consistent with these findings, CCR7 gene expression in human and mouse macrophages cell lines is induced when LXRα at S198 is nonphosphorylated. In bone marrow-derived macrophages (BMDMs), we also observed induction of CCR7 by ligands that promote nonphosphorylated LXRα S198, and this was lost in LXR-deficient BMDMs. LXRα occupancy at the CCR7 promoter is enhanced and histone modifications associated with gene repression are reduced in RAW264.7 cells expressing nonphosphorylated LXRα (RAW-LXRα S198A) compared to RAW264.7 cells expressing wild-type (WT) phosphorylated LXRα (RAW-LXRα WT). Expression profiling of ligand-treated RAW-LXRα S198A cells compared to RAW-LXRα WT cells revealed induction of cell migratory and anti-inflammatory genes and repression of proinflammatory genes. Modeling of LXRα S198 in the nonphosphorylated and phosphorylated states identified phosphorylation-dependent conformational changes in the hinge region commensurate with the presence of sites for protein interaction. Therefore, gene transcription is regulated by LXRα S198 phosphorylation, including that of antiatherogenic genes such as CCR7. PMID:25825525

  12. X inactivation in human testicular tumors. XIST expression and androgen receptor methylation status.

    PubMed Central

    Looijenga, L. H.; Gillis, A. J.; van Gurp, R. J.; Verkerk, A. J.; Oosterhuis, J. W.

    1997-01-01

    In female mammalian cells, inactivation of one of the X chromosomes compensates the increased dosage of X-linked genes as compared with their male counterparts. This process is initiated by the X-inactive specific transcripts of the xist/XIST gene in cis, resulting in methylation of specific sites of genes to be silenced. However, in male germ cells, X inactivation is established by xist/XIST expression only. We investigated the X inactivation pattern in human testicular tumors of different histogenesis by analysis of XIST expression and methylation of the androgen receptor gene. XIST was expressed only in tumors derived from the germ cell lineage with supernumerical X chromosomes: seminomas, nonseminomas, and spermatocytic seminomas. Although low expression was present in testicular parenchyma with spermatogenesis, XIST was expressed at a higher level in parenchyma with carcinoma in situ, the precursor lesion of seminomas and nonseminomas. Despite the consistent expression of XIST in germ-cell-derived tumors with gain of X chromosomes, methylation of the androgen receptor gene was present in all differentiated but only in a proportion of the undifferentiated nonseminomas. This differential pattern of methylation was also found in a number of representative cell lines. Our data indicate that the counting mechanism resulting in X inactivation is functional in testicular cancers of different histogenesis. Moreover, the differentiation-dependent pattern of X inactivation as reported during normal development in the case of multiple X chromosomes by methylation is retained in these tumors. We conclude therefore that X inactivation allows the excessive gain of X chromosomes found in germ-cell-derived tumors of the adult testis. In addition, this offers an interesting model to study the fundamental mechanisms of these processes. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9250171

  13. Sequence, genomic organization and expression of ghrelin receptor in grass carp, Ctenopharyngodon idellus.

    PubMed

    Cai, Wen-jing; Yuan, Xiao-chen; Yuan, Yong-chao; Xie, Shou-qi; Gong, Yuan; Su, Hang; Qiao, Yang

    2015-01-01

    The growth hormone secretagogue-receptor (GHS-R) is an endogenous receptor for the gut hormone ghrelin. Here we report the identification and characterization of GHS-R1a in grass carp, Ctenopharyngodon idellus. The full-length GHS-R1a cDNA contained a 1803-bp coding domain sequence which encoded a peptide of 360 amino acid residues. Comparison analysis revealed that the amino acid sequences of GHS-R1a were highly conserved in vertebrates and shared 97% amino acid identity with zebrafish (Danio rerio), 96% with jian carp (Cyprinus carpio var. Jian) and 93% with goldfish (Carassius auratus). The GHS-R1a showed the highest level of mRNA expression in the pituitary, followed by the brain and liver, and the lowest expression was observed in the hindgut. Intraperitoneally injected with grass carp ghrelin (50, 100 and 150ng/g body weight (BW)), grass carp showed greater mRNA expression of GHS-R1a in the pituitary compared with saline injected at 0.5h postinjection. It was observed that food deprivation could promote the expression of ghrelin and GHS-R1a in the pituitary, demonstrating that nutritional status can influence the expression of both ghrelin and GHS-R1a in the pituitary. After a 2- or 4-week fast, plasma growth hormone (GH) increased, was positively correlated with ghrelin and GHS-R1a mRNA expression levels in the pituitary. These results suggested that the involvement of ghrelin/GHS-R1a systems in mediating the effects of nutritional status and ghrelin on growth processes in grass carp.

  14. Comprehensive gene expression analysis of rice aleurone cells: probing the existence of an alternative gibberellin receptor.

    PubMed

    Yano, Kenji; Aya, Koichiro; Hirano, Ko; Ordonio, Reynante Lacsamana; Ueguchi-Tanaka, Miyako; Matsuoka, Makoto

    2015-02-01

    Current gibberellin (GA) research indicates that GA must be perceived in plant nuclei by its cognate receptor, GIBBERELLIN INSENSITIVE DWARF1 (GID1). Recognition of GA by GID1 relieves the repression mediated by the DELLA protein, a model known as the GID1-DELLA GA perception system. There have been reports of potential GA-binding proteins in the plasma membrane that perceive GA and induce α-amylase expression in cereal aleurone cells, which is mechanistically different from the GID1-DELLA system. Therefore, we examined the expression of the rice (Oryza sativa) α-amylase genes in rice mutants impaired in the GA receptor (gid1) and the DELLA repressor (slender rice1; slr1) and confirmed their lack of response to GA in gid1 mutants and constitutive expression in slr1 mutants. We also examined the expression of GA-regulated genes by genome-wide microarray and quantitative reverse transcription-polymerase chain reaction analyses and confirmed that all GA-regulated genes are modulated by the GID1-DELLA system. Furthermore, we studied the regulatory network involved in GA signaling by using a set of mutants defective in genes involved in GA perception and gene expression, namely gid1, slr1, gid2 (a GA-related F-box protein mutant), and gamyb (a GA-related trans-acting factor mutant). Almost all GA up-regulated genes were regulated by the four named GA-signaling components. On the other hand, GA down-regulated genes showed different expression patterns with respect to GID2 and GAMYB (e.g. a considerable number of genes are not controlled by GAMYB or GID2 and GAMYB). Based on these observations, we present a comprehensive discussion of the intricate network of GA-regulated genes in rice aleurone cells.

  15. Expression and Functional Role of Orphan Receptor GPR158 in Prostate Cancer Growth and Progression

    PubMed Central

    Patel, Nitin; Itakura, Tatsuo; Jeong, Shinwu; Liao, Chun-Peng; Roy-Burman, Pradip; Zandi, Ebrahim; Groshen, Susan; Pinski, Jacek; Coetzee, Gerhard A.; Gross, Mitchell E.; Fini, M. Elizabeth

    2015-01-01

    Prostate cancer (PCa) is the second-leading cause of cancer-related mortality, after lung cancer, in men from developed countries. In its early stages, primary tumor growth is dependent on androgens, thus generally can be controlled by androgen deprivation therapy (ADT). Eventually however, the disease progresses to castration-resistant prostate cancer (CRPC), a lethal form in need of more effective treatments. G-protein coupled receptors (GPCRs) comprise a large clan of cell surface proteins that have been implicated as therapeutic targets in PCa growth and progression. The findings reported here provide intriguing evidence of a role for the newly characterized glutamate family member GPR158 in PCa growth and progression. We found that GPR158 promotes PCa cell proliferation independent of androgen receptor (AR) functionality and that this requires its localization in the nucleus of the cell. This suggests that GPR158 acts by mechanisms different from other GPCRs. GPR158 expression is stimulated by androgens and GPR158 stimulates AR expression, implying a potential to sensitize tumors to low androgen conditions during ADT via a positive feedback loop. Further, we found GPR158 expression correlates with a neuroendocrine (NE) differentiation phenotype and promotes anchorage-independent colony formation implying a role for GPR158 in therapeutic progression and tumor formation. GPR158 expression was increased at the invading front of prostate tumors that formed in the genetically defined conditional Pten knockout mouse model, and co-localized with elevated AR expression in the cell nucleus. Kaplan-Meier analysis on a dataset from the Memorial Sloan Kettering cancer genome portal showed that increased GPR158 expression in tumors is associated with lower disease-free survival. Our findings strongly suggest that pharmaceuticals targeting GPR158 activities could represent a novel and innovative approach to the prevention and management of CRPC. PMID:25693195

  16. Expression and functional role of orphan receptor GPR158 in prostate cancer growth and progression.

    PubMed

    Patel, Nitin; Itakura, Tatsuo; Jeong, Shinwu; Liao, Chun-Peng; Roy-Burman, Pradip; Zandi, Ebrahim; Groshen, Susan; Pinski, Jacek; Coetzee, Gerhard A; Gross, Mitchell E; Fini, M Elizabeth

    2015-01-01

    Prostate cancer (PCa) is the second-leading cause of cancer-related mortality, after lung cancer, in men from developed countries. In its early stages, primary tumor growth is dependent on androgens, thus generally can be controlled by androgen deprivation therapy (ADT). Eventually however, the disease progresses to castration-resistant prostate cancer (CRPC), a lethal form in need of more effective treatments. G-protein coupled receptors (GPCRs) comprise a large clan of cell surface proteins that have been implicated as therapeutic targets in PCa growth and progression. The findings reported here provide intriguing evidence of a role for the newly characterized glutamate family member GPR158 in PCa growth and progression. We found that GPR158 promotes PCa cell proliferation independent of androgen receptor (AR) functionality and that this requires its localization in the nucleus of the cell. This suggests that GPR158 acts by mechanisms different from other GPCRs. GPR158 expression is stimulated by androgens and GPR158 stimulates AR expression, implying a potential to sensitize tumors to low androgen conditions during ADT via a positive feedback loop. Further, we found GPR158 expression correlates with a neuroendocrine (NE) differentiation phenotype and promotes anchorage-independent colony formation implying a role for GPR158 in therapeutic progression and tumor formation. GPR158 expression was increased at the invading front of prostate tumors that formed in the genetically defined conditional Pten knockout mouse model, and co-localized with elevated AR expression in the cell nucleus. Kaplan-Meier analysis on a dataset from the Memorial Sloan Kettering cancer genome portal showed that increased GPR158 expression in tumors is associated with lower disease-free survival. Our findings strongly suggest that pharmaceuticals targeting GPR158 activities could represent a novel and innovative approach to the prevention and management of CRPC. PMID:25693195

  17. Heterologously expressed serotonin 1A receptors couple to muscarinic K+ channels in heart.

    PubMed Central

    Karschin, A; Ho, B Y; Labarca, C; Elroy-Stein, O; Moss, B; Davidson, N; Lester, H A

    1991-01-01

    In cardiac atrial cells, muscarinic acetylcholine receptors activate a K+ current directly via a guanine nucleotide-binding protein (G protein). Serotonin type 1A receptors may activate a similar pathway in hippocampal neurons. To develop a system in which receptor/G protein/K+ channel coupling can be experimentally manipulated, we have used a highly efficient recombinant vaccinia virus vector system to express human serotonin 1A receptors in primary cultures of rat atrial myocytes. The expressed 1A receptors activated the inwardly rectifying K+ conductance that is normally activated by the endogenous muscarinic acetylcholine receptors. Maximal responses to either agonist occluded further activation by the other agonist. The average activation time constants for serotonin were about 5 times slower than for acetylcholine. The data support suggestions that the intracellular signaling pathway from seven-helix receptors to G proteins and directly to ion channels is widespread in excitable cells. After a fraction of the G proteins are activated irreversibly by guanosine 5'-[gamma-thio]triphosphate, subsequent transduction proceeds more efficiently. One possible interpretation is that multiple G-protein molecules are required to activate each channel. Vaccinia virus expression vectors are thus useful for expressing seven-helix receptors in primary cultures of postmitotic cells and have provided a heterologous expression system for the signaling pathway from seven-helix receptors to G proteins and directly to ion channels. Images PMID:1905814

  18. BDNF and NT-3 Modulate Neurotransmitter Receptor Expressions on Developing Spiral Ganglion Neurons

    PubMed Central

    Sun, Wei; Salvi, Richard J.

    2009-01-01

    Cochlear spiral ganglion neurons (SGN) provide the only pathway for transmitting sound evoked activity from the hair cells to the central auditory system. Neurotrophic factor-3 (NT-3) and brain derived neurotrophic factor (BDNF) released from hair cells and supporting cells exert a profound effect on SGN survival and neural firing patterns; however, it is unclear what the effects NT-3 and BDNF have on the type of neurotransmitter receptors expressed on SGN. To address this question, the whole-cell patch clamp recording technique was used to determine what effect NT-3 and BDNF had on the function and expression of glutamate, GABA and glycine receptors on postnatal SGN. Receptor currents induced by the agonist of each receptor were recorded from SGN cultured with or without BDNF or NT-3. NT-3 and BDNF exerted different effects. NT-3, and to a lesser extent BDNF, enhanced the expression of GABA receptors and had comparatively little effect on glutamate receptors. Absence of BDNF and NT-3 resulted in the emergence of glycine-induced currents; however, glycine receptor currents were absent from the short term cultured SGN. In contrast, NT-3 and BDNF suppressed glycine receptor expression on SGN. These results indicate that NT-3 and BDNF exert a profound effect on the types of neurotransmitter receptors expressed on postnatal SGN, results that may have important implications for neural development and plasticity. PMID:19778585

  19. The prognostic value of epidermal growth factor receptor mRNA expression in primary ovarian cancer.

    PubMed Central

    Bartlett, J. M.; Langdon, S. P.; Simpson, B. J.; Stewart, M.; Katsaros, D.; Sismondi, P.; Love, S.; Scott, W. N.; Williams, A. R.; Lessells, A. M.; Macleod, K. G.; Smyth, J. F.; Miller, W. R.

    1996-01-01

    The expression of mRNA for the epidermal growth factor (EGF) receptor, EGF and transforming growth factor alpha (TGF-alpha) was determined in 76 malignant, six borderline and 15 benign primary ovarian tumours using the reverse transcriptase-polymerase chain reaction and related to clinical and pathological parameters. Of the malignant tumours, 70% (53/76) expressed EGF receptor mRNA, 31% (23/75) expressed EGF mRNA and 35% (26/75) expressed TGF-alpha mRNA. For the borderline tumours, four of six (67%) expressed EGF receptor mRNA, 1/6 (17%) expressed TGF-alpha mRNA and none expressed EGF mRNA. Finally, 33% (5/15) of the benign tumours expressed EGF receptor mRNA, whereas 40% (6/15) expressed EGF mRNA and 7% (1/15) expressed TGF-alpha mRNA. The presence of the EGF receptor in malignant tumours was associated with that of TGF-alpha (P = 0.0015) but not with EGF (P = 1.00), whereas there was no relationship between the presence of EGF and TGF-alpha (P = 1.00). EGF receptor mRNA expression was significantly and positively associated with serous histology (P = 0.006) but not with stage or grade. Neither EGF nor TGF-alpha showed any link with histological subtype or stage. The survival of patients with malignant tumours possessing EGF receptor mRNA was significantly reduced compared with that of patients whose tumours were negative (P = 0.030 for all malignant tumours; P = 0.007 for malignant epithelial tumours only). In contrast, neither the expression of TGF-alpha nor EGF was related to survival. These data suggest that the presence of EGF receptor mRNA is associated with poor prognosis in primary ovarian cancer. Images Figure 1 PMID:8562334

  20. Ubiquitination of the common cytokine receptor {gamma}{sub c} and regulation of expression by an ubiquitination/deubiquitination machinery

    SciTech Connect

    Gesbert, Franck; Malarde, Valerie; Dautry-Varsat, Alice . E-mail: adautry@pasteur.fr

    2005-08-26

    The common cytokine receptor {gamma}{sub c} is shared by the interleukin-2, -4, -7, -9, -15, and -21 receptors, and is essential for lymphocyte proliferation and survival. The regulation of {gamma}{sub c} receptor expression level is therefore critical for the ability of cells to respond to these cytokines. We previously reported that {gamma}{sub c} is efficiently constitutively internalized and addressed towards a degradation endocytic compartment. We show that {gamma}{sub c} is ubiquitinated and also associated to ubiquitinated proteins. We report that the ubiquitin-ligase c-Cbl induces {gamma}{sub c} down-regulation. In addition, the ubiquitin-hydrolase, DUB-2, counteracts the effect of c-Cbl on {gamma}{sub c} expression. We show that an increase in DUB-2 expression correlates with an increased {gamma}{sub c} half-life, resulting in the up-regulation of the receptor. Altogether, we show that {gamma}{sub c} is the target of an ubiquitination mechanism and its expression level can be regulated through the activities of a couple of ubiquitin-ligase/ubiquitin-hydrolase enzymes, namely c-Cbl/DUB-2.

  1. Expression of Serotonin Receptors in the Colonic Tissue of Chronic Diarrhea Rats

    PubMed Central

    Zhu, Tong; Qiu, Juanjuan; Wan, Jiajia; Wang, Fengyun; Tang, Xudong; Guo, Huishu

    2016-01-01

    Background/Aims: This study aimed to investigate the difference among the expression of serotonin receptors (5-HT3, 5-HT4, and 5-HT7 receptors) in colonic tissue of chronic diarrhea rats. Materials and Methods: A rat model of chronic diarrhea was established by lactose diet. The expression of 5-HT3, 5-HT4, and 5-HT7 receptors in the colonic tissue was detected using immunohistochemistry, real-time PCR and Western blotting techniques. Results: There is no significant difference on the protein expression of 5-HT3 receptor between the normal group and the chronic diarrhea model group. The mRNA expression of 5-HT3 receptor in the chronic diarrhea model group was significantly lower than that in the normal group (n = 10; P < 0.01). The protein and mRNA expression of 5-HT4 receptor in the chronic diarrhea model group were significantly higher than those in the normal group (n = 10; P < 0.05, P < 0.01). On the contrary, the protein and mRNA expressions of 5-HT7 receptor in the chronic diarrhea model group were significantly decreased compared with the normal group (n = 10; P < 0.01, P < 0.01). Conclusions: The results suggested the receptors of 5-HT4 and 5-HT7 may be involved in inducing diarrhea by lactose diet. PMID:27184643

  2. Feasibility Study of Odor Biosensor Using Dissociate Neuronal Culture with Gene Expression of Ionotropic Odorant Receptors

    NASA Astrophysics Data System (ADS)

    Tanada, Norio; Sakurai, Takeshi; Mitsuno, Hidefumi; Bakkum, Douglas; Kanzaki, Ryohei; Takahashi, Hirokazu

    We propose a highly sensitive and real-time odor biosensor by expressing ionotropic odorant receptors of insects into dissociated cultures of neurons of rats. The odorant-gated ion channel structure of insect odorant receptor is expected to allow easy functional expression into cells. The neuronal dissociated cultures of rats have two significant advantages: a long lifetime comparable to rats, i.e., a few years; and amplification ability from weak ionic currents of odorant receptors into easily detectable action potentials of neurons. In the present work, in order to show the feasibility of the proposed sensor, we attempt to express the pheromone receptors of silkmoth, Bombyx mori, into cultured neurons of rats. We demonstrate that 10% of neuronal cells transfected using Lipofectamine successfully expressed pheromone receptors, and that these cells showed significant increase of calcium signals by 50% at the presentation of pheromone.

  3. Enhanced Tumor Trafficking of GD2 Chimeric Antigen Receptor T Cells by Expression of the Chemokine Receptor CCR2b

    PubMed Central

    Craddock, John A; Lu, An; Bear, Adham; Pule, Martin; Brenner, Malcolm K; Rooney, Cliona M; Foster, Aaron E

    2010-01-01

    For adoptive T cell therapy to be effective against solid tumors, tumor-specific T cells must be able to migrate to the tumor site. One requirement for efficient migration is that the effector cells express chemokine receptors that match the chemokines produced either by tumor or tumor-associated cells. In this study, we investigated whether the tumor trafficking of activated T cells (ATCs) bearing a chimeric antigen receptor specific for the tumor antigen GD2 (GD2-CAR) could be enhanced by forced co-expression of the chemokine receptor CCR2b, since this receptor directs migration towards CCL2, a chemokine produced by many tumors, including neuroblastoma. Neuroblastoma cell lines (SK-N-SH and SK-N-AS) and primary tumor cells isolated from six patients all secreted high levels of CCL2, but GD2-CAR transduced ATCs lacked expression of CCR2 (<5%) and migrated poorly to recombinant CCL2 or tumor supernatants. Following retroviral transduction, however, ATCs expressed high levels of CCR2b (>60%) and migrated well in vitro. We expressed firefly luciferase in CCR2b-expressing ATCs and observed improved homing (>10-fold) to CCL2-secreting neuroblastoma compared to CCR2 negative ATCs. As a result, ATCs co-modified with both CCR2b and GD2-CAR had greater anti-tumor activity in vivo. PMID:20842059

  4. Expression of receptors for luteinizing hormone, gastric-inhibitory polypeptide, and vasopressin in normal adrenal glands and cortisol-secreting adrenocortical tumors in dogs.

    PubMed

    Galac, S; Kars, V J; Klarenbeek, S; Teerds, K J; Mol, J A; Kooistra, H S

    2010-07-01

    Hypercortisolism caused by an adrenocortical tumor (AT) results from adrenocorticotropic hormone (ACTH)-independent hypersecretion of glucocorticoids. Studies in humans demonstrate that steroidogenesis in ATs may be stimulated by ectopic or overexpressed eutopic G protein-coupled receptors. We report on a screening of 23 surgically removed, cortisol-secreting ATs for the expression of receptors for luteinizing hormone (LH), gastric-inhibitory polypeptide (GIP), and vasopressin (V(1a), V(1b), and V(2)). Normal adrenal glands served as control tissues. Abundance of mRNA for these receptors was quantified using quantitative polymerase chain reaction (QPCR), and the presence and localization of these receptors were determined by immunohistochemistry. In both normal adrenal glands and ATs, mRNA encoding for all receptors was present, although the expression abundance of the V(1b) receptor was very low. The mRNA expression abundance for GIP and V(2) receptors in ATs were significantly lower (0.03 and 0.01, respectively) than in normal adrenal glands. The zona fasciculata of normal adrenal glands stained immunonegative for the GIP receptor. In contrast, islands of GIP receptor-immunopositive cells were detected in about half of the ATs. The zona fasciculata of both normal adrenal glands and AT tissue were immunopositive for LH receptor; in ATs in a homogenous or heterogenous pattern. In normal adrenal glands, no immunolabeling for V(1b)R and V(2) receptor was present, but in ATs, V(2) receptor-immunopositive cells were detected. In conclusion, QPCR analysis did not reveal overexpression of LH, GIP, V(1a), V(1b), or V(2) receptors in the ATs. However, the ectopic expression of GIP and V(2) receptor proteins in tumorous zona fasciculata tissue may play a role in the pathogenesis of canine cortisol-secreting ATs.

  5. Beta-Adrenergic Receptor Expression in Muscle Cells

    NASA Technical Reports Server (NTRS)

    Young, Ronald B.; Bridge, K.; Vaughn, J. R.

    1999-01-01

    beta-adrenergic receptor (bAR) agonists presumably exert their physiological action on skeletal muscle cells through the bAR. Since the signal generated by the bAR is cyclic AMP (cAMP), experiments were initiated in primary chicken muscle cell cultures to determine if artificial elevation of intracellular cAMP by treatment with forskolin would alter the population of bAR expressed on the surface of muscle cells. Chicken skeletal muscle cells after 7 days in culture were employed for the experiments because muscle cells have attained a steady state with respect to muscle protein metabolism at this stage. Cells were treated with 0-10 uM forskolin for a total of three days. At the end of the 1, 2, and 3 day treatment intervals, the concentration of cAMP and the bAR population were measured. Receptor population was measured in intact muscle cell cultures as the difference between total binding of [H-3]CGP-12177 and non-specific binding of [H-3]CGP-12177 in the presence of 1 uM propranolol. Intracellular cAMP concentration was measured by radioimmunoassay. The concentration of cAMP in forskolin-treated cells increased up to 10-fold in a dose dependent manner. Increasing concentrations of forskolin also led to an increase in (beta)AR population, with a maximum increase of approximately 50% at 10 uM. This increase in (beta)AR population was apparent after only 1 day of treatment, and the pattern of increase was maintained for all 3 days of the treatment period. Thus, increasing the intracellular concentration of cAMP leads to up-regulation of (beta)AR population. Clenbuterol and isoproterenol gave similar effects on bAR population. The effect of forskolin on the quantity and apparent synthesis rate of the heavy chain of myosin (mhc) were also investigated. A maximum increase of 50% in the quantity of mhc was observed at 0.2 UM forskolin, but higher concentrations of forskolin reduced the quantity of mhc back to control levels.

  6. Cannabinoid, melanocortin and opioid receptor expression on DRD1 and DRD2 subpopulations in rat striatum

    PubMed Central

    Oude Ophuis, Ralph J. A.; Boender, Arjen J.; van Rozen, Andrea J.; Adan, Roger A. H.

    2014-01-01

    The striatum harbors two neuronal populations that enable action selection. One population represents the striatonigral pathway, expresses the dopamine receptor D1 (DRD1) and promotes the execution of motor programs, while the other population represents the striatopallidal pathway, expresses the dopamine receptor D2 (DRD2) and suppresses voluntary activity. The two populations integrate distinct sensorimotor, cognitive, and emotional information streams and their combined activity enables the selection of adaptive behaviors. Characterization of these populations is critical to the understanding of their role in action selection, because it aids the identification of the molecular mechanisms that separate them. To that end, we used fluorescent in situ hybridization to quantify the percentage of striatal cells that (co)express dopaminergic receptors and receptors of the cannabinoid, melanocortin or opioid neurotransmitters systems. Our main findings are that the cannabinoid 1 receptor is equally expressed on both populations with a gradient from dorsal to ventral striatum, that the opioid receptors have a preference for expression with either the DRD1 or DRD2 and that the melanocortin 4 receptor (MC4R) is predominantly expressed in ventral parts of the striatum. In addition, we find that the level of MC4R expression determines its localization to either the DRD1 or the DRD2 population. Thereby, we provide insight into the sensitivity of the two dopaminoceptive populations to these neurotransmitters and progress the understanding of the mechanisms that enable action selection. PMID:24723856

  7. Parathyroid receptor gene expression by epiphyseal growth plates in rickets and tibial dyschondroplasia.

    PubMed

    Ben-Bassat, S; Genina, O; Lavelin, I; Leach, R M; Pines, M

    1999-03-25

    PTH/PTHrP receptor gene expression was evaluated in situ in avian epiphyseal growth plates taken from normal, rachitic and tibial dyschondroplasia (TD) afflicted chicks induced by thiram or by genetic selection. In the normal growth plates, PTH/PTHrP receptor gene expression was localized to the maturation zone as demonstrated by the expression of collagen type II (col II), osteopontin (OPN) genes and alkaline phosphatase activity (AP). In TD, either induced by thiram or by genetic selection, normal levels of PTH/PTHrP receptor gene expression were observed up to 21 days post-hatch. In rickets, on the other hand, no PTH/PTHrP receptor gene expression was observed in the growth plate from day 8 of a vitamin D-deficient diet. In cultured chondrocytes, PTH caused time-dependent down-regulation of its own receptor. These results suggest that alterations in the PTH/PTHrP receptor gene expression are associated with rickets but not with TD. The reduction in the PTH/PTHrP receptor gene expression in rickets may be due to the high plasma levels of PTH.

  8. The β3 subunit of the nicotinic acetylcholine receptor: Modulation of gene expression and nicotine consumption.

    PubMed

    Kamens, Helen M; Miyamoto, Jill; Powers, Matthew S; Ro, Kasey; Soto, Marissa; Cox, Ryan; Stitzel, Jerry A; Ehringer, Marissa A

    2015-12-01

    Genetic factors explain approximately half of the variance in smoking behaviors, but the molecular mechanism by which genetic variation influences behavior is poorly understood. SNPs in the putative promoter region of CHRNB3, the gene that encodes the β3 subunit of the nicotinic acetylcholine receptor (nAChR), have been repeatedly associated with nicotine behaviors. In this work we sought to identify putative function of three SNPs in the promoter region of CHRNB3 on in vitro gene expression. Additionally, we used β3 null mutant mice as a model of reduced gene expression to assess the effects on nicotine behaviors. The effect of rs13277254, rs6474413, and rs4950 on reporter gene expression was examined using a luciferase reporter assay. A major and minor parent haplotype served as the background on which alleles at the three SNPs were flipped onto different backgrounds (e.g. minor allele on major haplotype background). Constructs were tested in three human cell lines: BE(2)-C, SH-SY5Y and HEK293T. In all cell types the major haplotype led to greater reporter gene expression compared to the minor haplotype, and results indicate that this effect is driven by rs6474413. Moreover, mice lacking the β3 subunit showed reduced voluntary nicotine consumption compared that of wildtype animals. These data provide evidence that the protective genetic variant at rs6474413 identified in human genetic studies reduces gene expression and that decreased β3 gene expression in mice reduces nicotine intake. This work contributes to our understanding of the molecular mechanisms that contribute to the human genetic associations of tobacco behaviors.

  9. Epigenetic regulation of olfactory receptor gene expression by the Myb-MuvB/dREAM complex.

    PubMed

    Sim, Choon Kiat; Perry, Sarah; Tharadra, Sana Khalid; Lipsick, Joseph S; Ray, Anandasankar

    2012-11-15

    In both mammals and insects, an olfactory neuron will usually select a single olfactory receptor and repress remaining members of large receptor families. Here we show that a conserved multiprotein complex, Myb-MuvB (MMB)/dREAM, plays an important role in mediating neuron-specific expression of the carbon dioxide (CO(2)) receptor genes (Gr63a/Gr21a) in Drosophila. Activity of Myb in the complex is required for expression of Gr63a/Gr21a and acts in opposition to the histone methyltransferase Su(var)3-9. Consistent with this, we observed repressive dimethylated H3K9 modifications at the receptor gene loci, suggesting a mechanism for silencing receptor gene expression. Conversely, other complex members, Mip120 (Myb-interacting protein 120) and E2F2, are required for repression of Gr63a in inappropriate neurons. Misexpression in mutants is accompanied by an increase in the H3K4me3 mark of active chromatin at the receptor gene locus. Nuclei of CO(2) receptor-expressing neurons contain reduced levels of the repressive subunit Mip120 compared with surrounding neurons and increased levels of Myb, suggesting that activity of the complex can be regulated in a cell-specific manner. Our evidence suggests a model in which olfactory receptors are regulated epigenetically and the MMB/dREAM complex plays a critical role in specifying, maintaining, and modulating the receptor-to-neuron map.

  10. Gene expression and function of adenosine A(2A) receptor in the rat carotid body.

    PubMed

    Kobayashi, S; Conforti, L; Millhorn, D E

    2000-08-01

    The present study was undertaken to determine whether rat carotid bodies express adenosine (Ado) A(2A) receptors and whether this receptor is involved in the cellular response to hypoxia. Our results demonstrate that rat carotid bodies express the A(2A) and A(2B) Ado receptor mRNAs but not the A(1) or A(3) receptor mRNAs as determined by reverse transcriptase-polymerase chain reaction. In situ hybridization confirmed the expression of the A(2A) receptor mRNA. Immunohistochemical studies further showed that the A(2A) receptor is expressed in the carotid body and that it is colocalized with tyrosine hydroxylase in type I cells. Whole cell voltage-clamp studies using isolated type I cells showed that Ado inhibited the voltage-dependent Ca(2+) currents and that this inhibition was abolished by the selective A(2A) receptor antagonist ZM-241385. Ca(2+) imaging studies using fura 2 revealed that exposure to severe hypoxia induced elevation of intracellular Ca(2+) concentration ([Ca(2+)](i)) in type I cells and that extracellularly applied Ado significantly attenuated the hypoxia-induced elevation of [Ca(2+)](i). Taken together, our findings indicate that A(2A) receptors are present in type I cells and that activation of A(2A) receptors modulates Ca(2+) accumulation during hypoxia. This mechanism may play a role in regulating intracellular Ca(2+) homeostasis and cellular excitability during hypoxia. PMID:10926550

  11. Identification of Neuropeptide Receptors Expressed by Melanin-Concentrating Hormone Neurons

    PubMed Central

    Parks, Gregory S.; Wang, Lien; Wang, Zhiwei; Civelli, Olivier

    2014-01-01

    Melanin-concentrating Hormone (MCH) is a 19 amino acid cyclic neuropeptide that acts in rodents via the MCH receptor 1 (MCHR1) to regulate a wide variety of physiological functions. MCH is produced by a distinct population of neurons located in the lateral hypothalamus (LH) and zona incerta (ZI) but MCHR1 mRNA is widely expressed throughout the brain. The physiological responses and behaviors regulated by the MCH system have been investigated, but less is known about how MCH neurons are regulated. The effects of most classical neurotransmitters on MCH neurons have been studied, but those of neuropeptides are poorly understood. In order to gain insight into how neuropeptides regulate the MCH system, we investigated which neuropeptide receptors are expressed by MCH neurons using double in situ hybridization. In all, twenty receptors, selected based upon either a suspected interaction with the MCH system or demonstrated high expression levels in the LH and ZI, were tested to determine whether they are expressed by MCH neurons. Overall, eleven neuropeptide receptors were found to exhibit significant colocalization with MCH neurons: Nociceptin / Orphanin FQ Opioid receptor (NOP), MCHR1, both Orexin receptors (ORX), Somatostatin receptor 1 and 2 (SSTR1, SSTR2), the Kisspeptin receotor (KissR1), Neurotensin receptor 1 (NTSR1), Neuropeptide S receptor (NPSR), Cholecystokinin receptor A (CCKAR) and the κ-opioid receptor (KOR). Of these receptors, six have never before been linked to the MCH system. Surprisingly, several receptors thought to regulate MCH neurons displayed minimal colocalization with MCH, suggesting that they may not directly regulate the MCH system. PMID:24978951

  12. Expression of Coxsackievirus and Adenovirus Receptor Separates Hematopoietic and Cardiac Progenitor Cells in Fetal Liver Kinase 1-Expressing Mesoderm

    PubMed Central

    Tashiro, Katsuhisa; Hirata, Nobue; Okada, Atsumasa; Yamaguchi, Tomoko; Takayama, Kazuo; Mizuguchi, Hiroyuki

    2015-01-01

    In developing embryos or in vitro differentiation cultures using pluripotent stem cells (PSCs), such as embryonic stem cells and induced pluripotent stem cells, fetal liver kinase 1 (Flk1)-expressing mesodermal cells are thought to be a heterogeneous population that includes hematopoietic progenitors, endothelial progenitors, and cardiac progenitors. However, information on cell surface markers for separating these progenitors in Flk1+ cells is currently limited. In the present study, we show that distinct types of progenitor cells in Flk1+ cells could be separated according to the expression of coxsackievirus and adenovirus receptor (CAR, also known as CXADR), a tight junction component molecule. We found that mouse and human PSC- and mouse embryo-derived Flk1+ cells could be subdivided into Flk1+CAR+ cells and Flk1+CAR− cells. The progenitor cells with cardiac potential were almost entirely restricted to Flk1+CAR+ cells, and Flk1+CAR− cells efficiently differentiated into hematopoietic cells. Endothelial differentiation potential was observed in both populations. Furthermore, from the expression of CAR, Flk1, and platelet-derived growth factor receptor-α (PDGFRα), Flk1+ cells could be separated into three populations (Flk1+PDGFRα−CAR− cells, Flk1+PDGFRα−CAR+ cells, and Flk1+PDGFRα+CAR+ cells). Flk1+PDGFRα+ cells and Flk1+PDGFRα− cells have been reported as cardiac and hematopoietic progenitor cells, respectively. We identified a novel population (Flk1+PDGFRα−CAR+ cells) with the potential to differentiate into not only hematopoietic cells and endothelial cells but also cardiomyocytes. Our findings indicate that CAR would be a novel and prominent marker for separating PSC- and embryo-derived Flk1+ mesodermal cells with distinct differentiation potentials. PMID:25762001

  13. Expression, binding, and signaling properties of CRF2(a) receptors endogenously expressed in human retinoblastoma Y79 cells: passage-dependent regulation of functional receptors.

    PubMed

    Gutknecht, Eric; Hauger, Richard L; Van der Linden, Ilse; Vauquelin, Georges; Dautzenberg, Frank M

    2008-02-01

    Endogenous expression of the corticotropin-releasing factor type 2a receptor [CRF2(a)] but not CRF2(b) and CRF2(c) was observed in higher passage cultures of human Y79 retinoblastoma cells. Functional studies further demonstrated an increase in CRF2(a) mRNA and protein levels with higher passage numbers (> 20 passages). Although the CRF1 receptor was expressed at higher levels than the CRF2(a) receptor, both receptors were easily distinguishable from one another by selective receptor ligands. CRF(1)-preferring or non-selective agonists such as CRF, urocortin 1 (UCN1), and sauvagine stimulated cAMP production in Y79 to maximal responses of approximately 100 pmoles/10(5) cells, whereas the exclusive CRF2 receptor-selective agonists UCN2 and 3 stimulated cAMP production to maximal responses of approximately 25-30 pmoles/10(5) cells. UCN2 and 3-mediated cAMP stimulation was potently blocked by the approximately 300-fold selective CRF2 antagonist antisauvagine (IC50 = 6.5 +/- 1.6 nmol/L), whereas the CRF(1)-selective antagonist NBI27914 only blocked cAMP responses at concentrations > 10 microL. When the CRF(1)-preferring agonist ovine CRF was used to activate cAMP signaling, NBI27914 (IC50 = 38.4 +/- 3.6 nmol/L) was a more potent inhibitor than antisauvagine (IC50 = 2.04 +/- 0.2 microL). Finally, UCN2 and 3 treatment potently and rapidly desensitized the CRF2 receptor responses in Y79 cells. These data demonstrate that Y79 cells express functional CRF1 and CRF2a receptors and that the CRF2(a) receptor protein is up-regulated during prolonged culture. PMID:17976162

  14. Mincle, an Innate Immune Receptor, Is Expressed in Urothelial Cancer Cells of Papillomavirus-Associated Urothelial Tumors of Cattle

    PubMed Central

    Roperto, Sante; Russo, Valeria; Esposito, Iolanda; Ceccarelli, Dora Maria; Paciello, Orlando; Avallone, Luigi; Capparelli, Rosanna; Roperto, Franco

    2015-01-01

    Background Mincle, macrophage-inducible C-type lectin, is a member of C-type lectin receptors. It plays an important role in anti-mycobacterial and anti-fungal immunity. Furthermore it senses dead cells through its primary ligand SAP130. Materials and Findings We examined ten urothelial tumors of the urinary bladder of cattle. Eight of them expressed E5 cDNA of bovine papillomaviruses type 2 (BPV-2) and type 13 (BPV-13) that belong to Deltapapillomavirus genus. Two of them were not examined for detection of E5 cDNA. Mincle expression appeared to occur in urothelial neoplastic cells only. No mincle expression was detected in urothelial cells from healthy cattle. Mincle expression was characterized by a membranous pattern in papillary urothelial cancers; isolated and/or clustered urothelial cells showing a strong cytoplasmic immunoreactivity were primarily seen in invasive urothelial cancers. Conclusion This is the first study about the expression of mincle in veterinary oncology and the first report which describes the expression of functional mincle receptor in neoplastic cells in medical literature. As it has been shown that urothelial cancer cells have the ability to function as antigen-presenting cells (APCs), it is conceivable that mincle expression is involved in the presentation of cancer cell antigens to cells of the immune system. Furthermore, since expression of mincle contributes to the control of Mycobacterium bovis BCG infection, this study has exciting clinical implications in comparative medicine keeping in mind that Bacillus Calmette-Guérin (BCG) immunotherapy is currently the most effective treatment of non-muscle invasive bladder cancer in man. Mincle expression in urothelial tumor cells warrants further study to better understand the role, if any, of this receptor in bladder cancer. Future studies will provide insights in the role of mincle receptor of urothelial cancer cells in antitumor immunotherapy. PMID:26513724

  15. P2Y2 receptor activation regulates the expression of acetylcholinesterase and acetylcholine receptor genes at vertebrate neuromuscular junctions.

    PubMed

    Tung, Edmund K K; Choi, Roy C Y; Siow, Nina L; Jiang, Joy X S; Ling, Karen K Y; Simon, Joseph; Barnard, Eric A; Tsim, Karl W K

    2004-10-01

    At the vertebrate neuromuscular junction (nmj), ATP is known to be coreleased with acetylcholine from the synaptic vesicles. We have previously shown that the P2Y1 receptor is localized at the nmj. Here, we extend the findings to show that another nucleotide receptor, P2Y2, is also localized there and with P2Y1 jointly mediates trophic responses to ATP. The P2Y2 receptor mRNA in rat muscle increased during development and peaked in adulthood. The P2Y2 receptor protein was shown to become restricted to the nmjs during embryonic development, in chick and in rat. In both rat and chick myotubes, P2Y1 and P2Y2 are expressed, increasing with differentiation, but P2Y4 is absent. The P2Y2 agonist UTP stimulated there inositol trisphosphate production and phosphorylation of extracellular signal-regulated kinases, in a dose-dependent manner. These UTP-induced responses were insensitive to the P2Y1-specific antagonist MRS 2179 (2'-deoxy-N6-methyl adenosine 3',5'-diphosphate diammonium salt). In differentiated myotubes, P2Y2 activation induced expression of acetylcholinesterase (AChE) protein (but not control alpha-tubulin). This was shown to arise from AChE promoter activation, mediated by activation of the transcription factor Elk-1. Two Elk-1-responsive elements, located in intron-1 of the AChE promoter, were found by mutation to act in this gene activation initiated at the P2Y2 receptor and also in that initiated at the P2Y1 receptor. Furthermore, the promoters of different acetylcholine receptor subunits were also stimulated by application of UTP to myotubes. These results indicate that ATP regulates postsynaptic gene expressions via a common pathway triggered by the activation of P2Y1 and P2Y2 receptors at the nmjs. PMID:15258260

  16. Distinct expression and activity profiles of largemouth bass (Micropterus salmoides) estrogen receptors in response to estradiol and nonylphenol.

    PubMed

    Sabo-Attwood, Tara; Blum, Jason L; Kroll, Kevin J; Patel, Vishal; Birkholz, Detlef; Szabo, Nancy J; Fisher, Suzanne Z; McKenna, Robert; Campbell-Thompson, Martha; Denslow, Nancy D

    2007-10-01

    The estrogen receptor (ER) signaling cascade is a vulnerable target of exposure to environmental xenoestrogens, like nonylphenol (NP), which are causally associated with impaired health status. However, the impact of xenoestrogens on the individual receptor isotypes (alpha, beta a, and beta b) is not well understood. The goal of these studies was to determine the impact of NP on largemouth bass (Micropterus salmoides) ER isotype expression and activity. Here, we show that hepatic expression levels of three receptors are not equivalent in male largemouth bass exposed to NP by injection. Transcript levels of the ER alpha subtype were predominantly induced in concert with vitellogenin similarly to fish exposed to 17beta-estradiol (E(2)) as measured by quantitative real-time PCR. NP also induced circulating plasma levels of estrogen, which may contribute to overall activation of the ERs. To measure the activation of each receptor isotype by E(2) and NP, we employed reporter assays using an estrogen response element (ERE)-luciferase construct. Results from these studies show that ER alpha had the greatest activity following exposure to E(2) and NP. This activity was inhibited by the antagonists ICI 182 780 and ZM 189 154. Furthermore, both beta b and beta a subtypes depressed ER alpha activation, suggesting that the cellular composition of receptor isotypes may contribute to the overall actions of estrogen and estrogenic contaminants via the receptors. Results from these studies collectively reveal the differential response of fish ER isotypes in response to xenoestrogens.

  17. Developmental expression analysis and immunolocalization of a biogenic amine receptor in Schistosoma mansoni

    PubMed Central

    El-Shehabi, Fouad; Vermeire, Jon J.; Yoshino, Timothy P.; Ribeiro, Paula

    2013-01-01

    A Schistosoma mansoni G-protein coupled receptor (SmGPCR) was previously cloned and shown to be activated by the biogenic amine, histamine. Here we report a first investigation of the receptor’s subunit organization, tissue distribution and expression levels in different stages of the parasite. A polyclonal antibody was produced in rabbits against the recombinant third intracellular loop (il3) of SmGPCR. Western blot studies of the native receptor and recombinant protein expressed in HEK293 cells showed that SmGPCR exists both as a monomer (65 kDa) and an apparent dimer of ≈130 kDa These species were verified by immunoprecipitation of SmGPCR from S. mansoni extracts, using antibody that was covalently attached to agarose beads. Further investigation determined that the SmGPCR dimer was resistant to treatment with various detergents, 4 M urea and 0.1 M DTT but could be made to dissociate at acidic pH, suggesting the dimer is non-covalent in nature. Confocal immunofluorescence studies revealed significant SmGPCR immunoreactivity in sporocysts, schistosomula and adult worms but not miracidia. SmGPCR was found to be most widely expressed in the schistosomula, particularly the tegument, the subtegumental musculature and the acetabulum. In the adult stage we detected SmGPCR immunofluorescence mainly in the tubercles of male worms and, to a lesser extent, the body wall musculature. Localization in sporocysts was mainly confined to the tegument and cells within parenchymal matrices. A realtime quantitative reverse-transcription PCR analysis revealed that SmGPCR is upregulated at the mRNA level in the parasitic stages compared to the free-living miracidium and cercariae, and it is particularly elevated during early sporocyst and schistosomula development. The results identify SmGPCR as an important parasite receptor with potential functions in muscle and the tegument of S. mansoni. PMID:19545530

  18. Differential expression of adenosine A3 receptors controls adenosine A2A receptor-mediated inhibition of TLR responses in microglia.

    PubMed

    van der Putten, Céline; Zuiderwijk-Sick, Ella A; van Straalen, Linda; de Geus, Eveline D; Boven, Leonie A; Kondova, Ivanela; IJzerman, Ad P; Bajramovic, Jeffrey J

    2009-06-15

    Microglia activation is a prominent feature in many neuroinflammatory disorders. Unrestrained activation can generate a chronic inflammatory environment that might lead to neurodegeneration and autoimmunity. Extracellular adenosine modulates cellular activation through adenosine receptor (ADORA)-mediated signaling. There are four ADORA subtypes that can either increase (A(2A) and A(2B) receptors) or decrease (A(1) and A(3) receptors) intracellular cyclic AMP levels. The expression pattern of the subtypes thus orchestrates the cellular response to extracellular adenosine. We have investigated the expression of ADORA subtypes in unstimulated and TLR-activated primary rhesus monkey microglia. Activation induced an up-regulation of A(2A) and a down-regulation of A(3) receptor (A(3)R) levels. The altered ADORA-expression pattern sensitized microglia to A(2A) receptor (A(2A)R)-mediated inhibition of subsequent TLR-induced cytokine responses. By using combinations of subtype-specific agonists and antagonists, we revealed that in unstimulated microglia, A(2A)R-mediated inhibitory signaling was effectively counteracted by A(3)R-mediated signaling. In activated microglia, the decrease in A(3)R-mediated signaling sensitized them to A(2A)R-mediated inhibitory signaling. We report a differential, activation state-specific expression of ADORA in microglia and uncover a role for A(3)R as dynamically regulated suppressors of A(2A)R-mediated inhibition of TLR-induced responses. This would suggest exploration of combinations of A(2A)R agonists and A(3)R antagonists to dampen microglial activation during chronic neuroinflammatory conditions.

  19. Kisspeptin induces expression of gonadotropin-releasing hormone receptor in GnRH-producing GT1-7 cells overexpressing G protein-coupled receptor 54.

    PubMed

    Sukhbaatar, Unurjargal; Kanasaki, Haruhiko; Mijiddorj, Tselmeg; Oride, Aki; Miyazaki, Kohji

    2013-12-01

    Kisspeptin signaling through its receptor is crucial for many reproductive functions. However, the molecular mechanisms and biomedical significance of the regulation of GnRH neurons by kisspeptin have not been adequately elucidated. In the present study, we found that kisspeptin increases GnRH receptor (GnRHR) expression in a GnRH-producing cell line (GT1-7). Because cellular activity of G protein-coupled receptor 54 (GPR54) and GnRHR was limited in GT1-7 cells, we overexpressed these receptors to clarify receptor function. Using luciferase reporter constructs, the activity of both the serum response element (Sre) promoter, a target for extracellular signal-regulated kinase (ERK), and the cyclic AMP (cAMP) response element (Cre) promoter were increased by kisspeptin. Although GnRH increased Sre promoter activity, the Cre promoter was not significantly activated by GnRH. Kisspeptin, but not GnRH, increased cAMP accumulation in these cells. Kisspeptin also increased the transcriptional activity of GnRHR; however, the effect of GnRH on the GnRHR promoter was limited and not significant. Transfection of GT1-7 cells with constitutively active MEK kinase (MEKK) and protein kinase A (PKA) increased GnRHR expression. In addition, GnRHR expression was further increased by co-overexpression of MEKK and PKA. The Cre promoter, but not the Sre promoter, was also further activated by co-overexpression of MEKK and PKA. GnRH significantly increased the activity of the GnRHR promoter in the presence of cAMP. The present findings suggest that kisspeptin is a potent stimulator of GnRHR expression in GnRH-producing neurons in association with ERK and the cAMP/PKA pathways. PMID:24055558

  20. Expression Profiles of Neuropeptides, Neurotransmitters, and Their Receptors in Human Keratocytes In Vitro and In Situ.

    PubMed

    Słoniecka, Marta; Le Roux, Sandrine; Boman, Peter; Byström, Berit; Zhou, Qingjun; Danielson, Patrik

    2015-01-01

    Keratocytes, the quiescent cells of the corneal stroma, play a crucial role in corneal wound healing. Neuropeptides and neurotransmitters are usually associated with neuronal signaling, but have recently been shown to be produced also by non-neuronal cells and to be involved in many cellular processes. The aim of this study was to assess the endogenous intracellular and secreted levels of the neuropeptides substance P (SP) and neurokinin A (NKA), and of the neurotransmitters acetylcholine (ACh), catecholamines (adrenaline, noradrenaline and dopamine), and glutamate, as well as the expression profiles of their receptors, in human primary keratocytes in vitro and in keratocytes of human corneal tissue sections in situ. Cultured keratocytes expressed genes encoding for SP and NKA, and for catecholamine and glutamate synthesizing enzymes, as well as genes for neuropeptide, adrenergic and ACh (muscarinic) receptors. Keratocytes in culture produced SP, NKA, catecholamines, ACh, and glutamate, and expressed neurokinin-1 and -2 receptors (NK-1R and NK-2R), dopamine receptor D2, muscarinic ACh receptors, and NDMAR1 glutamate receptor. Human corneal sections expressed SP, NKA, NK-1R, NK-2R, receptor D2, choline acetyl transferase (ChAT), M3, M4 and M5 muscarinic ACh receptors, glutamate, and NMDAR1, but not catecholamine synthesizing enzyme or the α1 and β2 adrenoreceptors, nor M1 receptor. In addition, expression profiles assumed significant differences between keratocytes from the peripheral cornea as compared to those from the central cornea, as well as differences between keratocytes cultured under various serum concentrations. In conclusion, human keratocytes express an array of neuropeptides and neurotransmitters. The cells furthermore express receptors for neuropeptides/neurotransmitters, which suggests that they are susceptible to stimulation by these substances in the cornea, whether of neuronal or non-neuronal origin. As it has been shown that neuropeptides

  1. Enhanced tumor trafficking of GD2 chimeric antigen receptor T cells by expression of the chemokine receptor CCR2b.

    PubMed

    Craddock, John A; Lu, An; Bear, Adham; Pule, Martin; Brenner, Malcolm K; Rooney, Cliona M; Foster, Aaron E

    2010-10-01

    For adoptive T-cell therapy to be effective against solid tumors, tumor-specific T cells must be able to migrate to the tumor site. One requirement for efficient migration is that the effector cells express chemokine receptors that match the chemokines produced either by tumor or tumor-associated cells. In this study, we investigated whether the tumor trafficking of activated T cells (ATCs) bearing a chimeric antigen receptor specific for the tumor antigen GD2 (GD2-CAR) could be enhanced by forced coexpression of the chemokine receptor CCR2b, as this receptor directs migration toward CCL2, a chemokine produced by many tumors, including neuroblastoma. Neuroblastoma cell lines (SK-N-SH and SK-N-AS) and primary tumor cells isolated from 6 patients all secreted high levels of CCL2, but GD2-CAR transduced ATCs lacked expression of CCR2 (<5%) and migrated poorly to recombinant CCL2 or tumor supernatants. After retroviral transduction, however, ATCs expressed high levels of CCR2b (>60%) and migrated well in vitro. We expressed firefly luciferase in CCR2b-expressing ATCs and observed improved homing (>10-fold) to CCL2-secreting neuroblastoma compared with CCR2-negative ATCs. As a result, ATCs co-modified with both CCR2b and GD2-CAR had greater antitumor activity in vivo.

  2. Differential expression of the fractalkine chemokine receptor (CX3CR1) in human monocytes during differentiation

    PubMed Central

    Panek, Cecilia Analia; Ramos, Maria Victoria; Mejias, Maria Pilar; Abrey-Recalde, Maria Jimena; Fernandez-Brando, Romina Jimena; Gori, Maria Soledad; Salamone, Gabriela Verónica; Palermo, Marina Sandra

    2015-01-01

    Circulating monocytes (Mos) may continuously repopulate macrophage (MAC) or dendritic cell (DC) populations to maintain homeostasis. MACs and DCs are specialized cells that play different and complementary immunological functions. Accordingly, they present distinct migratory properties. Specifically, whereas MACs largely remain in tissues, DCs are capable of migrating from peripheral tissues to lymphoid organs. The aim of this work was to analyze the expression of the fractalkine receptor (CX3CR1) during the monocytic differentiation process. Freshly isolated Mos express high levels of both CX3CR1 mRNA and protein. During the Mo differentiation process, CX3CR1 is downregulated in both DCs and MACs. However, MACs showed significantly higher CX3CR1 expression levels than did DC. We also observed an antagonistic CX3CR1 regulation by interferon (IFN)-γ and interleukin (IL)-4 during MAC activation through the classical and alternative MAC pathways, respectively. IFN-γ inhibited the loss of CX3CR1, but IL-4 induced it. Additionally, we demonstrated an association between CX3CR1 expression and apoptosis prevention by soluble fractalkine (sCX3CL1) in Mos, DCs and MACs. This is the first report demonstrating sequential and differential CX3CR1 modulation during Mo differentiation. Most importantly, we demonstrated a functional link between CX3CR1 expression and cell survival in the presence of sCX3CL1. PMID:25502213

  3. Expression profiling of nuclear receptors in human and mouse embryonic stem cells.

    PubMed

    Xie, Chang-Qing; Jeong, Yangsik; Fu, Mingui; Bookout, Angie L; Garcia-Barrio, Minerva T; Sun, Tingwan; Kim, Bong-Hyun; Xie, Yang; Root, Sierra; Zhang, Jifeng; Xu, Ren-He; Chen, Y Eugene; Mangelsdorf, David J

    2009-05-01

    Nuclear receptors (NRs) regulate gene expression in essential biological processes including differentiation and development. Here we report the systematic profiling of NRs in human and mouse embryonic stem cell (ESC) lines and during their early differentiation into embryoid bodies. Expression of the 48 human and mouse NRs was assessed by quantitative real-time PCR. In general, expression of NRs between the two human cell lines was highly concordant, whereas in contrast, expression of NRs between human and mouse ESCs differed significantly. In particular, a number of NRs that have been implicated previously as crucial regulators of mouse ESC biology, including ERRbeta, DAX-1, and LRH-1, exhibited diametric patterns of expression, suggesting they may have distinct species-specific functions. Taken together, these results highlight the complexity of the transcriptional hierarchy that exists between species and governs early development. These data should provide a unique resource for further exploration of the species-specific roles of NRs in ESC self-renewal and differentiation. PMID:19196830

  4. Chronic intermittent ethanol treatment selectively alters N-methyl-D-aspartate receptor subunit surface expression in cultured cortical neurons.

    PubMed

    Qiang, Mei; Denny, Ashley D; Ticku, Maharaj K

    2007-07-01

    A chronic intermittent ethanol (CIE) exposure regimen consists of repeated episodes of ethanol intoxication and withdrawal. CIE treatment has been reported to result in a significant enhancement of N-methyl-D-aspartate (NMDA) receptor-mediated synaptic responses in vivo, and trafficking of NMDA receptors is emerging a key regulatory mechanism that underlies the channel function. Therefore, in the present study, we examined the effects of CIE on NMDA receptor subunit surface expression. Cultured cortical neurons were exposed to 75 mM ethanol for 14 h followed by 10 h of withdrawal, repeated this cycle five times, and followed by 2 or 5 days of withdrawal. Surface-expressed NMDA receptor subunits and their endocytosis were measured by biotinylation and Western blots. CIE significantly increased NMDA receptor (NR) 1 and NR2B but not NR2A subunit surface expression after 5 days of treatment. However, CIE treatment did not reduce the NMDA receptor endocytosis. Quantification of immunocytochemistry confirmed CIE-induced increase in both the total number of NR1 and NR2B subunit clusters and their targeting to synaptic sites. It is noteworthy that this effect persisted even after ethanol withdrawal with a peak expression occurring between 0 and 2 days after withdrawal, and the expression on the plasma membrane was still at high levels after 5 days of withdrawal. In addition, this was accompanied by significant increases in postsynaptic density protein 95 clusters. Protein kinase A inhibitor completely reversed CIE-induced increase in NR1 and partially in NR2B surface level and a long-lasting effect. These changes may contribute to the development of ethanol-induced neurotoxicity and ethanol dependence.

  5. Sex-Specific Alterations in Hippocampal Cannabinoid 1 Receptor Expression Following Adolescent Delta-9-Tetrahydrocannabinol Treatment in the Rat

    PubMed Central

    Silva, Lindsay; Harte-Hargrove, Lauren; Izenwasser, Sari; Frank, Ashley; Wade, Dean; Dow-Edwards, Diana

    2015-01-01

    Marijuana use by adolescents has been on the rise since the early 1990’s. With recent legalization and decriminalization acts passed, cannabinoid exposure in adolescents will undoubtedly increase. Human studies are limited in their ability to examine underlying changes in brain biochemistry making rodent models valuable. Studies in adult and adolescent animals show region and sex specific downregulation of the cannabinoid 1 (CB1) receptor following chronic cannabinoid treatment. However, although sex-dependent changes in behavior have been observed during the drug abstinence period following adolescent cannabinoid exposure, little is known about CB1 receptor expression during this critical time. In order to characterize CB1 receptor expression following chronic adolescent Δ-9-tetrahydrocannabinol (THC) exposure, we used [3H]CP55,940 binding to assess CB1 receptor expression in the dentate gyrus and areas CA1, CA2, and CA3 of the hippocampus in both male and female adolescent rats at both 24 hours and 2 weeks post chronic THC treatment. Consistent with other reported findings, we found downregulation of the CB1 receptor in the hippocampal formation at 24 hours post treatment. While this downregulation persisted in both sexes following two weeks of abstinence in the CA2 region, in females, this downregulation also persisted in areas CA1 and CA3. Expression in the dentate gyrus returned to the normal range by two weeks. These data suggest that selective regions of the hippocampus show persistent reductions in CB1 receptor expression and that these reductions are more widespread in female compared to male adolescents. PMID:26118897

  6. The role of cannabinoid 1 receptor expressing interneurons in behavior.

    PubMed

    Brown, Jacquelyn A; Horváth, Szatmár; Garbett, Krassimira A; Schmidt, Martin J; Everheart, Monika; Gellért, Levente; Ebert, Philip; Mirnics, Károly

    2014-03-01

    Schizophrenia is a devastating neurodevelopmental disorder that affects approximately 1% of the population. Reduced expression of the 67-kDa protein isoform of glutamic acid decarboxylase (GAD67) is a hallmark of the disease and is encoded by the GAD1 gene. In schizophrenia, GAD67 downregulation occurs in multiple interneuronal subpopulations, including the cannabinoid receptor type 1 positive (CNR1+) cells, but the functional consequences of these disturbances are not well understood. To investigate the role of the CNR1-positive GABA-ergic interneurons in behavioral and molecular processes, we employed a novel, miRNA-mediated transgenic mouse approach. We silenced the Gad1 transcript using a miRNA engineered to specifically target Gad1 mRNA under the control of Cnr1 bacterial artificial chromosome. Behavioral characterization of our transgenic mice showed elevated and persistent conditioned fear associated with an auditory cue and a significantly altered response to an amphetamine challenge. These deficits could not be attributed to sensory deficits or changes in baseline learning and memory. Furthermore, HPLC analyses revealed that Cnr1/Gad1 mice have enhanced serotonin levels, but not dopamine levels in response to amphetamine. Our findings demonstrate that dysfunction of a small subset of interneurons can have a profound effect on behavior and that the GABA-ergic, monoamine, and cannabinoid systems are functionally interconnected. The results also suggest that understanding the function of various interneuronal subclasses might be essential to develop knowledge-based treatment strategies for various mental disorders including schizophrenia and substance abuse.

  7. The role of cannabinoid 1 receptor expressing interneurons in behavior

    PubMed Central

    Brown, Jacquelyn A.; Horváth, Szatmár; Garbett, Krassimira; Schmidt, Martin J.; Everheart, Monika; Gellért, Levente; Ebert, Philip; Mirnics, Károly

    2013-01-01

    Schizophrenia is a devastating neurodevelopmental disorder that affects approximately 1% of the population. Reduced expression of the 67-kD a protein isoform of glutamic acid decarboxylase (GAD67), is a hallmark of the disease, and is encoded by the GAD1 gene. In schizophrenia, GAD67 downregulation occurs in multiple interneuronal subpopulations, including the cannabinoid receptor type 1 positive (CNR1+) cells, but the functional consequences of these disturbances are not well understood. To investigate the role of the CNR1-positive GABA-ergic interneurons in behavioral and molecular processes, we employed a novel, miRNA-mediated transgenic mouse approach. We silenced the Gad1 transcript using a miRNA engineered to specifically target Gad1 mRNA under the control of Cnr1 bacterial artificial chromosome. Behavioral characterization of our transgenic mice showed elevated and persistent conditioned fear associated with an auditory cue and a significantly altered response to an amphetamine challenge. These deficits could not be attributed to sensory deficits or changes in baseline learning and memory. Furthermore, HPLC analyses revealed that Cnr1/Gad1 mice have enhanced serotonin levels, but not dopamine levels in response to amphetamine. Our findings demonstrate that dysfunction of a small subset of interneurons can have a profound effect on behavior and that the GABA-ergic, monoamine, and cannabinoid systems are functionally interconnected. The results also suggest that understanding the function of various interneuronal subclasses might be essential to develop knowledge-based treatment strategies for various mental disorders including schizophrenia and substance abuse. PMID:24239560

  8. Cloning, phylogeny, and regional expression of a Y5 receptor mRNA in the brain of the sea lamprey (Petromyzon marinus).

    PubMed

    Pérez-Fernández, Juan; Megías, Manuel; Pombal, Manuel A

    2014-04-01

    The NPY receptors known as Y receptors are classified into three subfamilies, Y1, Y2, and Y5, and are involved in different physiological functions. The Y5 receptor is the only member of the Y5 subfamily, and it is present in all vertebrate groups, except for teleosts. Both molecular and pharmacological studies show that Y5 receptor is highly conserved during vertebrate evolution. Furthermore, this receptor is widely expressed in the mammalian brain, including the hypothalamus, where it is thought to take part in feeding and homeostasis regulation. Lampreys belong to the agnathan lineage, and they are thought to have branched out between the two whole-genome duplications that occurred in vertebrates. Therefore, they are in a key position for studies on the evolution of gene families in vertebrates. Here we report the cloning, phylogeny, and brain expression pattern of the sea lamprey Y5 receptor. In phylogenetic studies, the lamprey Y5 receptor clusters in a basal position, together with Y5 receptors of other vertebrates. The mRNA of this receptor is broadly expressed in the lamprey brain, being especially abundant in hypothalamic areas. Its expression pattern is roughly similar to that reported for other vertebrates and parallels the expression pattern of the Y1 receptor subtype previously described by our group, as it occurs in mammals. Altogether, these results confirm that a Y5 receptor is present in lampreys, thus being highly conserved during the evolution of vertebrates, and suggest that it is involved in many brain functions, the only known exception being teleosts.

  9. Expression and characterization of a truncated murine Fc gamma receptor

    PubMed Central

    1988-01-01

    We have isolated a recombinant secreted Fc gamma R beta molecule by deletion of the transmembrane and cytoplasmic domains encoding sequence from a Fc gamma R beta 1 cDNA clone, and insertion of the truncated cDNA into a eukaryotic expression vector, pcEXV-3. To express and amplify the production of the truncated Fc gamma R beta molecule, we transfected the truncated cDNA plasmid into a dihydrofolate reductase- minus CHO cell line along with a dhfr minigene, and amplified the gene products with methotrexate. The resulting cell line secretes 2-3 micrograms/ml/24 h of truncated Fc gamma R beta, which can be readily purified by affinity chromatography on IgG-Sepharose. The truncated Fc gamma R beta has a Mr of 31-33,000 on SDS-PAGE and is glycosylated. N- glycosidase F cleavage reduces the Mr to 19,000, consistent with the size of the truncated product, 176 amino acid residues. There are two disulfide bonds in the protein. Binding of immune complexes formed between DNP20BSA and anti-DNP mAbs reveals better binding of IgG1 aggregates than that of IgG2b and IgG2a aggregates. The binding of the immune complexes was somewhat better at more acidic pH, in contrast to previous experiments with binding of purified Fc gamma R to immune complex-coated beads. We were surprised to observe that the truncated Fc gamma R beta did not react with the anti-Fc gamma R mAb 6B7C. Previous work had shown that 6B7C reacts with Fc gamma R on immunoblots, fails to bind to the surface of resting B cells and peritoneal macrophages, but does bind to macrophage cell lines and LPS- stimulated B cells. We show, by binding of mAb 6B7C to a peptide conjugate, that the 6B7C epitope lies within residues 169-183 of the intact Fc gamma R beta, which is just outside the plasma membrane. The availability of the truncated Fc gamma R beta in microgram quantities should facilitate further analysis of structure and function of these receptors. PMID:2450951

  10. Expression of adrenergic receptors in bovine and rabbit oocytes and preimplantation embryos.

    PubMed

    Čikoš, Š; Czikková, S; Chrenek, P; Makarevich, A V; Burkuš, J; Janštová, Ž; Fabian, D; Koppel, J

    2014-02-01

    Catecholamines play an important role in embryogenesis, and data obtained in the rodent model indicate that they can act even during the preimplantation period of development. Using RT-PCR with specific oligonucleotide primers distinguishing among all members of the adrenergic receptor family, we examined expression of adrenergic receptors in bovine and rabbit oocytes, morulas and blastocysts. We found several profiles of adrenoceptor mRNA expression. Transcripts for some receptor subtypes (bovine alpha 2 receptors, rabbit α2A, α2C, β1 and β2 receptors) were detected at all examined stages, which suggests receptor expression throughout (or at most stages) the preimplantation developmental period. Expression in oocytes but not at later stages was found in only one adrenoceptor subtype (rabbit α1B). In contrast, mRNA for several adrenoceptors was found in embryos but not in oocytes (bovine beta adrenoceptors and rabbit α1A). Nucleotide sequences of our PCR products amplified in rabbit oocytes, and preimplantation embryos represent the first published mRNA sequences (partial sequences coding at least one transmembrane region) of rabbit α2C, β1 and β2 adrenoceptors. Our results suggest that the expression of adrenergic receptors can be a general feature of mammalian oocytes and preimplantation embryos. On the other hand, comparison of three mammalian species (cattle, rabbit and mouse) revealed possible interspecies differences in the expression of particular adrenoceptor subtypes. Our results support the opinion that stress mediators can act directly in cells of preimplantation embryos.

  11. Widespread Expression of Erythropoietin Receptor in Brain and Its Induction by Injury

    PubMed Central

    Ott, Christoph; Martens, Henrik; Hassouna, Imam; Oliveira, Bárbara; Erck, Christian; Zafeiriou, Maria-Patapia; Peteri, Ulla-Kaisa; Hesse, Dörte; Gerhart, Simone; Altas, Bekir; Kolbow, Tekla; Stadler, Herbert; Kawabe, Hiroshi; Zimmermann, Wolfram-Hubertus; Nave, Klaus-Armin; Schulz-Schaeffer, Walter; Jahn, Olaf; Ehrenreich, Hannelore

    2015-01-01

    Erythropoietin (EPO) exerts potent neuroprotective, neuroregenerative and procognitive functions. However, unequivocal demonstration of erythropoietin receptor (EPOR) expression in brain cells has remained difficult since previously available anti-EPOR antibodies (EPOR-AB) were unspecific. We report here a new, highly specific, polyclonal rabbit EPOR-AB directed against different epitopes in the cytoplasmic tail of human and murine EPOR and its characterization by mass spectrometric analysis of immuno-precipitated endogenous EPOR, Western blotting, immunostaining and flow cytometry. Among others, we applied genetic strategies including overexpression, Lentivirus-mediated conditional knockout of EpoR and tagged proteins, both on cultured cells and tissue sections, as well as intracortical implantation of EPOR-transduced cells to verify specificity. We show examples of EPOR expression in neurons, oligodendroglia, astrocytes and microglia. Employing this new EPOR-AB with double-labeling strategies, we demonstrate membrane expression of EPOR as well as its localization in intracellular compartments such as the Golgi apparatus. Moreover, we show injury-induced expression of EPOR. In mice, a stereotactically applied stab wound to the motor cortex leads to distinct EpoR expression by reactive GFAP-expressing cells in the lesion vicinity. In a patient suffering from epilepsy, neurons and oligodendrocytes of the hippocampus strongly express EPOR. To conclude, this new analytical tool will allow neuroscientists to pinpoint EPOR expression in cells of the nervous system and to better understand its role in healthy conditions, including brain development, as well as under pathological circumstances, such as upregulation upon distress and injury. PMID:26349059

  12. High-level expression of a full-length Eph receptor.

    PubMed

    Paavilainen, Sari; Grandy, David; Karelehto, Eveliina; Chang, Elizabeth; Susi, Petri; Erdjument-Bromage, Hediye; Nikolov, Dimitar; Himanen, Juha

    2013-11-01

    Eph receptors are the largest family of Receptor Tyrosine Kinases containing a single membrane-spanning segment. They are involved in a various developmental and cell-cell communication events. Although there is extensive structural information available on both the extra- and intracellular regions of Eph's in isolation, no structures are available for the entire receptor. To facilitate structural studies on functionally relevant Eph/ephrin complexes, we have developed an expression system for producing the full-length human EphA2 receptor. We successfully expressed milligram amounts of the receptor using baculovirus-based vector and insect cells. We were also able to extract the protein from the cell membranes and purify it to near homogeneity in two simple steps. The purified receptor was shown to retain its biological activity in terms of both binding to its functional ligands and being able to auto-phosphorylate the key tyrosine residues of the cytoplasmic kinase domain.

  13. Expression of the human interleukin-2 receptor gamma chain in insect cells using a baculovirus expression vector.

    PubMed

    Raivio, E; Oetken, C; Oker-Blom, C; Engberg, C; Akerman, K; Lindqvist, C

    1995-04-01

    The gene encoding the gamma-chain of the human Interleukin-2 receptor was expressed in lepidopteran insect cells using the baculovirus expression vector system. The corresponding gene was inserted under the polyhedrin promoter of the Autographa californica nuclear polyhedrosis virus and expressed in the Spodoptera frugiperda insect cell line Sf9 during viral infection. The recombinant receptor protein was identified by immunoblotting in cell lysates, prepared from insect cells infected with the recombinant virus. At 40 h post infection the corresponding protein was detected as two major bands with apparent molecular weights of 50-60 kDa using a rabbit anti-human IL-2R gamma-receptor specific antiserum. Metabolic labelling with [35S]-methionine and SDS-PAGE analysis of the recombinant baculovirus infected insect cells verified the immunoblotting data. The expressed IL-2R gamma- protein could also be determined on the surface of infected insect cells by flow cytometer analysis. PMID:7899821

  14. In adult female hamsters hypothyroidism stimulates D1 receptor-mediated breathing without altering D1 receptor expression.

    PubMed

    Schlenker, Evelyn H; Del Rio, Rodrigo; Schultz, Harold D

    2015-11-01

    Hypothyroidism affects cardiopulmonary regulation and function of dopaminergic receptors. Here we evaluated effects of 5 months of hypothyroidism on dopamine D1 receptor modulation of breathing in female hamsters using a D1 receptor antagonist SCH 23390. Euthyroid hamsters (EH) served as controls. Results indicated that hypothyroid female hamsters (HH) exhibited decreased body weights and minute ventilation (VE) following hypoxia due to decreased frequency of breathing (F). Moreover, SCH 23390 administration in HH increased VE by increasing tidal volume during exposure to air, hypoxia and following hypoxia. Relative to vehicle, SCH 23390 treatment decreased body temperature and hypoxic VE responsiveness in both groups. In EH, SCH 23390 decreased F in air, hypoxia and post hypoxia, and VE during hypoxia trended to decrease (P=0.053). Finally, expression of D1 receptor protein was not different between the two groups in any region evaluated. Thus, hypothyroidism in older female hamsters affected D1 receptor modulation of ventilation differently relative to euthyroid animals, but not expression of D1 receptors.

  15. Expression of D2 dopamine receptor mRNA in the arterial chemoreceptor afferent pathway.

    PubMed

    Czyzyk-Krzeska, M F; Lawson, E E; Millhorn, D E

    1992-11-01

    Dopamine is a major neurotransmitter in the arterial chemoreceptor pathway. In the present study we wished to determine if messenger RNAs for dopamine D1 and D2 receptor are expressed in carotid body (type I cells), in sensory neurons of the petrosal ganglion which innervate the carotid body and in sympathetic neurons of the superior cervical ganglion. We failed to detect D1 receptor mRNA in any of these tissues. However, we found that D2 receptor mRNA was expressed by dopaminergic carotid body type I cells. D2 receptor mRNA was also found in petrosal ganglion neurons that innervated the carotid sinus and carotid body. In addition, a large number of sympathetic postganglionic neurons in the superior cervical ganglion expressed D2 receptor mRNA. PMID:1362730

  16. ERK/MAPK regulates ERRγ expression, transcriptional activity and receptor-mediated tamoxifen resistance in ER+ breast cancer.

    PubMed

    Heckler, Mary M; Thakor, Hemang; Schafer, Cara C; Riggins, Rebecca B

    2014-05-01

    Selective estrogen receptor modulators such as tamoxifen (TAM) significantly improve breast cancer-specific survival for women with estrogen receptor-positive (ER+) disease. However, resistance to TAM remains a major clinical problem. The resistant phenotype is usually not driven by loss or mutation of the estrogen receptor; instead, changes in multiple proliferative and/or survival pathways over-ride the inhibitory effects of TAM. Estrogen-related receptor γ (ERRγ) is an orphan member of the nuclear receptor superfamily that promotes TAM resistance in ER+ breast cancer cells. This study sought to clarify the mechanism(s) by which this orphan nuclear receptor is regulated, and hence affects TAM resistance. mRNA and protein expression/phosphorylation were monitored by RT-PCR and western blotting, respectively. Site-directed mutagenesis was used to disrupt consensus extracellular signal-regulated kinase (ERK) target sites. Cell proliferation and cell-cycle progression were measured by flow cytometric methods. ERRγ transcriptional activity was assessed by dual-luciferase promoter-reporter assays. We show that ERRγ protein levels are affected by the activation state of ERK/mitogen-activated protein kinase, and mutation of consensus ERK target sites impairs ERRγ-driven transcriptional activity and TAM resistance. These findings shed new light on the functional significance of ERRγ in ER+ breast cancer, and are the first to demonstrate a role for kinase regulation of this orphan nuclear receptor.

  17. Asperosaponin VI promotes progesterone receptor expression in decidual cells via the notch signaling pathway.

    PubMed

    Gao, Jie; Zhou, Chun; Li, Yadi; Gao, Feixia; Wu, Haiwang; Yang, Lilin; Qiu, Weiyu; Zhu, Lin; Du, Xin; Lin, Weixian; Huang, Dandan; Liu, Haibin; Liang, Chun; Luo, Songping

    2016-09-01

    Recurrent spontaneous abortion (RSA) is a common clinical condition, but its reasons remain unknown in 37-79% of the affected women. The steroid hormone progesterone (P4) is an integral mediator of early pregnancy events, exerting its effects via the progesterone receptor (PR). Dipsaci Radix (DR) has long been used for treating gynecological diseases in Chinese medicine, while its molecular mechanisms and active ingredients are still unclear. We report here the progesterone-like effects of the alcohol extraction and Asperosaponin VI from DR in primary decidual cells and HeLa cell line. We first determined the safe concentration of Asperosaponin VI in the cells with MTT assay and then found by using dual luciferase reporter and Western blotting that Asperosaponin VI significantly increased PR expression. Moreover, we explored the mechanisms of action of the DR extracts and Asperosaponin VI, and the results showed that they could activate Notch signaling, suggesting that they may function by promoting decidualization. PMID:27370099

  18. P2 receptor expression profiles in human vascular smooth muscle and endothelial cells.

    PubMed

    Wang, Lingwei; Karlsson, Lena; Moses, Sara; Hultgårdh-Nilsson, Anna; Andersson, Maria; Borna, Catharina; Gudbjartsson, Tomas; Jern, Sverker; Erlinge, David

    2002-12-01

    P2 receptors mediate the actions of the extracellular nucleotides ATP, ADP, UTP, and UDP, regulating several physiologic responses including cardiac function, vascular tone, smooth muscle cell (SMC) proliferation, platelet aggregation, and the release of endothelial factors. P2 receptor characterization has been hampered by the lack of selective antagonists. The aim of the current study was to investigate the mRNA and protein expression of P2X and P2Y receptors in human SMC and in endothelial cells (EC). Smooth muscle cells were obtained from human mammary artery and EC from human umbilical vein. Using real-time PCR, the authors established quantitative mRNA assays. Protein expression was studied using Western blotting with recently developed antibodies. The P2X1 receptor was highly specific for human SMC, while the P2X4 was the highest expressed receptor in EC. The P2Y2 receptor was present in both SMC and EC. UTP-mediated effects in these cells are likely to be mediated by P2Y2 and not P2Y4 receptors since the latter had considerably lower expression. The P2Y6 receptor was expressed in both SMC and EC. The P2Y1 and surprisingly the P2Y11 receptors were the most abundantly expressed P2Y receptors in the endothelium. Overall, Western blotting confirmed the mRNA findings in most aspects, and most interestingly, indicated oligomerization of the P2Y1 receptor that may be important for its function. In conclusion, P2X1, P2Y2, and P2Y6 are the most expressed P2 receptors in SMC and are thus probably mediating the contractile and mitogenic actions of extracellular nucleotides. The P2X4, P2Y11, P2Y1, and P2Y2 are the most expressed P2 receptors in EC, and are most likely mediating release of nitric oxide, endothelium-dependent hyperpolarizing factor (EDHF), and t-PA induced by extracellular nucleotides. These findings will help to direct future cardiovascular drug development against the large P2 receptor family.

  19. Cannabinoid receptors are widely expressed in goldfish: molecular cloning of a CB2-like receptor and evaluation of CB1 and CB2 mRNA expression profiles in different organs

    PubMed Central

    Cottone, Erika; Pomatto, Valentina; Cerri, Fulvio; Campantico, Ezio; Mackie, Ken; Delpero, Massimiliano; Guastalla, Alda; Dati, Claudio; Bovolin, Patrizia; Franzoni, Maria Fosca

    2013-01-01

    Cannabinoids, the bioactive constituents of Cannabis sativa, and endocannabinoids, among which the most important are anandamide and 2-arachidonoylglycerol, control various biological processes by binding to specific G protein-coupled receptors, namely CB1 and CB2 cannabinoid receptors. While a vast amount of information on the mammalian endocannabinoid system does exist, few data have been reported on bony fish. In the goldfish, Carassius auratus, the CB1 receptor has been cloned and its distribution has been analyzed in the retina, brain and gonads, while CB2 had not yet been isolated. In the present paper we cloned the goldfish CB2 receptor and show that it presents a quite high degree of amino acid identity with zebrafish Danio rerio CB2A and CB2B receptors, while the percentage of identity is lower with the pufferfish Fugu rubripes CB2, as also confirmed by the phylogenetic analysis. The sequence identity becomes much lower when comparing the goldfish and the mammalian CB2 sequences; as for other species, goldfish CB2 and CB1 amino acid sequences share moderate levels of identity. Western-blotting analysis shows the CB2 receptor as two major bands of about 53 kDa and 40 kDa, and other faint bands with apparent molecular masses around 70 kDa, 57 kDa and 55 kDa. Since the distribution of a receptor could give information on its physiological role, we evaluated and compared CB1 and CB2 mRNA expression in different goldfish organs by means of quantitative Real-Time PCR. Our results show that both CB1 and CB2 receptors are widely expressed in the goldfish, displaying some tissue specificities, thus opening the way for further functional studies on bony fish and other non-mammalian vertebrates. PMID:23504102

  20. Cannabinoid receptors are widely expressed in goldfish: molecular cloning of a CB2-like receptor and evaluation of CB1 and CB2 mRNA expression profiles in different organs.

    PubMed

    Cottone, Erika; Pomatto, Valentina; Cerri, Fulvio; Campantico, Ezio; Mackie, Ken; Delpero, Massimiliano; Guastalla, Alda; Dati, Claudio; Bovolin, Patrizia; Franzoni, Maria Fosca

    2013-10-01

    Cannabinoids, the bioactive constituents of Cannabis sativa, and endocannabinoids, among which the most important are anandamide and 2-arachidonoylglycerol, control various biological processes by binding to specific G protein-coupled receptors, namely CB1 and CB2 cannabinoid receptors. While a vast amount of information on the mammalian endocannabinoid system does exist, few data have been reported on bony fish. In the goldfish, Carassius auratus, the CB1 receptor has been cloned and its distribution has been analyzed in the retina, brain and gonads, while CB2 had not yet been isolated. In the present paper, we cloned the goldfish CB2 receptor and show that it presents a quite high degree of amino acid identity with zebrafish Danio rerio CB2A and CB2B receptors, while the percentage of identity is lower with the puffer fish Fugu rubripes CB2, as also confirmed by the phylogenetic analysis. The sequence identity becomes much lower when comparing the goldfish and the mammalian CB2 sequences; as for other species, goldfish CB2 and CB1 amino acid sequences share moderate levels of identity. Western-blotting analysis shows the CB2 receptor as two major bands of about 53 and 40 kDa and other faint bands with apparent molecular masses around 70, 57 and 55 kDa. Since the distribution of a receptor could give information on its physiological role, we evaluated and compared CB1 and CB2 mRNA expression in different goldfish organs by means of qReal-Time PCR. Our results show that both CB1 and CB2 receptors are widely expressed in the goldfish, displaying some tissue specificities, thus opening the way for further functional studies on bony fish and other nonmammalian vertebrates.

  1. Spatio-Temporal Expression Pattern of Frizzled Receptors after Contusive Spinal Cord Injury in Adult Rats

    PubMed Central

    Arenas, Ernest; Rodriguez, Francisco Javier

    2012-01-01

    Background Wnt proteins are a large family of molecules that are critically involved in multiple central nervous system (CNS) developmental processes. Experimental evidences suggest a role for this family of proteins in many CNS disorders, including spinal cord injury (SCI), which is a major neuropathology owing to its high prevalence and chronic sensorimotor functional sequelae. Interestingly, most Wnt proteins and their inhibitors are expressed in the uninjured spinal cord, and their temporal expression patterns are dramatically altered after injury. However, little is known regarding the expression of their better-known receptors, the Frizzled family, after SCI. Thus, the aim of the present study was to evaluate the expression of Frizzled receptors in the damaged spinal cord. Findings Based on the evidence that Wnts are expressed in the spinal cord and are transcriptionally regulated by SCI in adulthood, we analysed the spatio-temporal mRNA and protein expression patterns of Frizzled receptors after contusive SCI using quantitative RT-PCR and single and double immunohistochemistry, respectively. Our results show that almost all of the 10 known Frizzled receptors were expressed in specific spatial patterns in the uninjured spinal cords. Moreover, the Frizzled mRNAs and proteins were expressed after SCI, although their expression patterns were altered during the temporal progression of SCI. Finally, analysis of cellular Frizzled 5 expression pattern by double immunohistochemistry showed that, in the uninjured spinal cord, this receptor was expressed in neurons, oligodendrocytes, astrocytes, microglia and NG2+ glial precursors. After injury, Frizzled 5 was not only still expressed in oligodendrocytes, astrocytes and NG2+ glial precursors but also in axons at all evaluated time points. Moreover, Frizzled 5 was expressed in reactive microglia/macrophages from 3 to 14 days post-injury. Conclusions Our data suggest the involvement of Frizzled receptors in physiological

  2. The histaminergic system in human thalamus: correlation of innervation to receptor expression.

    PubMed

    Jin, C Y; Kalimo, H; Panula, Pertti

    2002-04-01

    The mRNA expression of three histamine receptors (H1, H2 and H3) and H1 and H3 receptor binding were mapped and quantified in normal human thalamus by in situ hybridization and receptor binding autoradiography, respectively. Immunohistochemistry was applied to study the distribution of histaminergic fibres and terminals in the normal human thalamus. mRNAs for all three histamine receptors were detected mainly in the dorsal thalamus, but the expression intensities were different. Briefly, H1 and H3 receptor mRNAs were relatively enriched in the anterior, medial, and part of the lateral nuclei regions; whereas the expression level was much lower in the ventral and posterior parts of the thalamus, and the reticular nucleus. H2 receptor mRNA displayed in general very low expression intensity with slightly higher expression level in the anterior and lateropolar regions. H1 receptor binding was mainly detected in the mediodorsal, ventroposterolateral nuclei, and the pulvinar. H3 receptor binding was detected mainly in the dorsal thalamus, predominantly the periventricular, mediodorsal, and posterior regions. Very high or high histaminergic fibre densities were observed in the midline nuclear region and other nuclei next to the third ventricle, ventroposterior lateral nucleus and medial geniculate nucleus. In most of the core structures of the thalamus, the fibre density was very low or absent. The results suggest that histamine in human brain regulates tactile and proprioceptory thalamocortical functions through multiple receptors. Also, other, e.g. visual areas and those not making cortical connections expressed histamine receptors and contained histaminergic nerve fibres.

  3. Interleukin-1 receptors are differentially expressed in normal and psoriatic T cells.

    PubMed

    Bebes, Attila; Kovács-Sólyom, Ferenc; Prihoda, Judit; Kui, Róbert; Kemény, Lajos; Gyulai, Rolland

    2014-01-01

    This study was carried out to examine the possible role of interleukin-1 (IL-1) in the functional insufficiency of regulatory T cells in psoriasis, by comparing the expression of IL-1 receptors on healthy control and psoriatic T cells. Patients with moderate-to-severe chronic plaque psoriasis and healthy volunteers, matched in age and sex, were selected for all experiments. CD4(+)CD25(-) effector and CD4(+)CD25(+)CD127(low) regulatory T cells were separated and used for the experiments. Expression of the mRNA of IL-1 receptors (IL-1R1, IL-1R2, and sIL-1R2) was determined by quantitative real-time RT-PCR. Cell surface IL-1 receptor expression was assessed by flow cytometry. Relative expression of the signal transmitting IL-1 receptor type 1 (IL-1R1) mRNA is higher in resting psoriatic effector and regulatory T cells, and activation induces higher IL-1R1 protein expression in psoriatic T cells than in healthy cells. Psoriatic regulatory and effector T cells express increased mRNA levels of the decoy IL-1 receptors (IL-1R2 and sIL-1R2) upon activation compared to healthy counterparts. Psoriatic T cells release slightly more sIL-1R2 into their surrounding than healthy T cells. In conclusion, changes in the expression of IL-1 receptors in psoriatic regulatory and effector T cells could contribute to the pathogenesis of psoriasis.

  4. Serotonin regulates β-casein expression via 5-HT7 receptors in human mammary epithelial MCF-12A cells.

    PubMed

    Chiba, Takeshi; Kimura, Soichiro; Takahashi, Katsuo; Morimoto, Yasunori; Maeda, Tomoji; Sanbe, Atsushi; Ueda, Hideo; Kudo, Kenzo

    2015-01-01

    We previously reported that serotonin (5-hydroxytryptamine; 5-HT) suppresses β-casein expression, a differentiation marker in mammary epithelial cells, via inhibition of the signal transducer and activator of transcription 5 (STAT5) phosphorylation in the human mammary epithelial cell line, MCF-12A. In this study, we investigated the expression pattern of the different 5-HT receptor subtypes in MCF-12A cells, and identified the receptors involved in 5-HT-mediated suppression of β-casein protein expression. β-Casein mRNA expression was inhibited by 30 µM 5-HT in a time-dependent manner. Treatment with 30 µM 5-HT for 72 h decreased β-casein protein levels and STAT5 phosphorylation (pSTAT5). The cells expressed four 5-HT receptors subtypes (5-HTR1D, 2B, 3A, and 7) at the mRNA and protein level, and their expression was elevated by prolactin (PRL) treatment. Additionally, the mRNA levels of 5-HTR1D and 5-HTR7 were significantly higher than the other 5-HT receptors in the cells. Tryptophan hydroxylase 1 mRNA was detectable in the cells in the absence of PRL, and PRL treatment significantly increased its expression. β-Casein and pSTAT5/STAT5 levels in the cells co-treated with 5-HT and a selective 5-HTR1D inhibitor, BRL15572, were equal to those observed in cells treated with 5-HT alone. However, in the cells co-treated with 5-HT and a selective 5-HTR7 inhibitor, SB269970, β-casein and pSTAT5/STAT5 levels increased in a SB269970 concentration-dependent manner. In conclusion, we showed that 5-HT regulates β-casein expression via 5-HTR7 in MCF-12A human mammary epithelial cells.

  5. Regulation of bradykinin receptor gene expression in human lung fibroblasts.

    PubMed

    Phagoo, S B; Yaqoob, M; Herrera-Martinez, E; McIntyre, P; Jones, C; Burgess, G M

    2000-06-01

    In WI-38 human fibroblasts, interleukin-1 beta and tumour necrosis factor-alpha (TNF-alpha) increased bradykinin B(1) receptor mRNA, which peaked between 2 and 4 h, remaining elevated for 20 h. Binding of the bradykinin B(1) receptor selective ligand [3H]des-Arg(10)-kallidin, also increased, peaking at 4 h and remaining elevated for 20 h. The B(max) value for [3H]des-Arg(10)-kallidin rose from 280+/-102 fmol/mg (n=3) to 701+/-147 fmol/mg (n=3), but the K(D) value remained unaltered (control, 1.04+/-0.33 nM (n=3); interleukin-1 beta, 0.88+/-0.41 nM (n=3)). The interleukin-1 beta-induced [3H]des-Arg(10)-kallidin binding sites were functional receptors, as bradykinin B(1) receptor agonist-induced responses increased in treated cells. Bradykinin B(2) receptor mRNA and [3H]bradykinin binding were upregulated by interleukin-1 beta, but not TNF-alpha. The effect of interleukin-1 beta on bradykinin B(2) receptors was smaller than for bradykinin B(1) receptors. Cycloheximide prevented interleukin-1 beta-mediated increases in B(1) and B(2) binding, but not mRNA suggesting that de novo synthesis of a transcriptional activator was unnecessary.

  6. Cloning and expression pattern of the ecdysone receptor and retinoid X receptor from the centipede Lithobius peregrinus (Chilopoda, Lithobiomorpha).

    PubMed

    Bortolin, Francesca; Piulachs, Maria-Dolors; Congiu, Leonardo; Fusco, Giuseppe

    2011-10-01

    In arthropods, molting events are mediated by the binding of the ecdysone hormone to a heterodimer of two nuclear receptors: the ecdysone receptor (EcR) and the retinoid X receptor (RXR), a homolog of ultraspiracle (USP). We have cloned partial sequences of several isoforms for EcR and RXR genes from the centipede Lithobius peregrinus, and studied their expression profile during the second post-embryonic stage. LpEcR and LpRXR inferred amino acid sequences are very similar to other arthropod orthologs, especially to those of chelicerates and hemimetabolous insects, and their expression levels are significantly higher during the 48 h that precede the molt. Results obtained in this study represent the first data on the genetic basis of the ecdysone signal pathway for a myriapod, and in particular for an animal that, through a stereotyped developmental schedule paced by the molt cycle, completes trunk segmentation during post-embryonic life.

  7. α(1D)-Adrenergic receptors constitutive activity and reduced expression at the plasma membrane.

    PubMed

    García-Sáinz, J Adolfo; Romero-Ávila, M Teresa; Medina, Luz Del Carmen

    2010-01-01

    Adrenergic receptors are a heterogeneous family of the G protein-coupled receptors that mediate the actions of adrenaline and noradrenaline. Adrenergic receptors comprise three subfamilies (α(1), α(2), and β, with three members each) and the α(1D)-adrenergic receptor is one of the members of the α(1) subfamily with some interesting traits. The α(1D)-adrenergic receptor is difficult to express, seems predominantly located intracellularly, and exhibits constitutive activity. In this chapter, we will describe in detail the conditions and procedures used to determine changes in intracellular free calcium concentration which has been instrumental to define the constitutive activity of these receptors. Taking advantage of the fact that truncation of the first 79 amino acids of α(1D)-adrenergic receptors markedly increased their membrane expression, we were able to show that constitutive activity is present in receptors truncated at the amino and carboxyl termini, which indicates that such domains are dispensable for this action. Constitutive activity could be observed in cells expressing either the rat or human α(1D)-adrenergic receptor orthologs. Such constitutive activity has been observed in native rat arteries and we will discuss the possible functional implications that it might have in the regulation of blood pressure.

  8. Expression of muscarinic acetylcholine and dopamine receptor mRNAs in rat basal ganglia

    SciTech Connect

    Weiner, D.M. Howard Hughes Medical Inst., Bethesda, MD ); Levey, A.I. Johns Hopkins Univ., Baltimore, MD ); Brann, M.R. )

    1990-09-01

    Within the basal ganglia, acetylcholine and dopamine play a central role in the extrapyramidal control of motor function. The physiologic effects of these neurotransmitters are mediated by a diversity of receptor subtypes, several of which have now been cloned. Muscarinic acetylcholine receptors are encoded by five genes (m1-m5), and of the two known dopamine receptor subtypes (D1 and D2) the D2 receptor gene has been characterized. To gain insight into the physiological roles of each of these receptor subtypes, the authors prepared oligodeoxynucleotide probes to localize receptor subtype mRNAs within the rat striatum and substantia nigra by in situ hybridization histochemistry. Within the striatum, three muscarinic (m1, m2, m4) receptor mRNAs and the D2 receptor mRNA were detected. The m1 mRNA was expressed in most neurons; the m2 mRNA, in neurons which were both very large and rare; and the m4 and D2 mRNAs, in 40-50% of the neurons, one-third of which express both mRNAs. Within the substantia nigra, pars compacta, only the m5 and D2 mRNAs were detected, and most neurons expressed both mRNAs. These data provide anatomical evidence for the identity of the receptor subtypes which mediate the diverse effects of muscarinic and dopaminergic drugs on basal ganglia function.

  9. Larvae of small white butterfly, Pieris rapae, express a novel serotonin receptor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The biogenic amine serotonin (5-hydroxytryptamine, 5-HT) is a neurotransmitter in vertebrates and invertebrates. It acts in regulation and modulation of many physiological and behavioral processes through G protein-coupled receptors. Insects express five 5-HT receptor subtypes that share high simila...

  10. Viral Engineering of Chimeric Antigen Receptor Expression on Murine and Human T Lymphocytes.

    PubMed

    Hammill, Joanne A; Afsahi, Arya; Bramson, Jonathan L; Helsen, Christopher W

    2016-01-01

    The adoptive transfer of a bolus of tumor-specific T lymphocytes into cancer patients is a promising therapeutic strategy. In one approach, tumor specificity is conferred upon T cells via engineering expression of exogenous receptors, such as chimeric antigen receptors (CARs). Here, we describe the generation and production of both murine and human CAR-engineered T lymphocytes using retroviruses. PMID:27581020

  11. Comparative genomics reveals tissue-specific regulation of prolactin receptor gene expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prolactin (PRL), acting via the prolactin receptor, fulfills a diversity of biological functions including the maintenance of solute balance and mineral homeostasis via tissues such as the heart, kidneys and intestine. Expression and activity of the prolactin receptor (PRLR) is regulated by various ...

  12. Class A scavenger receptor promotes osteoclast differentiation via the enhanced expression of receptor activator of NF-{kappa}B (RANK)

    SciTech Connect

    Takemura, Kenichi; Sakashita, Naomi; Fujiwara, Yukio; Komohara, Yoshihiro; Lei, XiaoFeng; Ohnishi, Koji; Suzuki, Hiroshi; Kodama, Tatsuhiko; Mizuta, Hiroshi; Takeya, Motohiro

    2010-01-22

    Osteoclasts originate from bone marrow monocyte/macrophage lineage cells, and their differentiation depends on macrophage colony-stimulating factor (M-CSF) and receptor activator nuclear factor kappa B (RANK) ligand. Class A scavenger receptor (SR-A) is one of the principal functional molecules of macrophages, and its level of expression declines during osteoclast differentiation. To investigate the role of SR-A in osteoclastogenesis, we examined pathological changes in femoral bone and the expression levels of osteoclastogenesis-related molecules in SR-A{sup -/-} mice. The femoral osseous density of SR-A{sup -/-} mice was higher than that of SR-A{sup +/+} mice, and the number of multinucleated osteoclasts was significantly decreased. An in vitro differentiation assay revealed that the differentiation of multinucleated osteoclasts from bone marrow-derived progenitor cells is impaired in SR-A{sup -/-} mice. Elimination of SR-A did not alter the expression level of the M-CSF receptor, c-fms; however, the expression levels of RANK and RANK-related osteoclast-differentiation molecules such as nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1) and microphthalmia-associated transcription factor (MITF) significantly decreased. Furthermore, acetylated low-density lipoprotein (AcLDL), an SR-A ligand, significantly increased the expression level of RANK and MITF during osteoclast differentiation. These data indicate that SR-A promotes osteoclastogenesis via augmentation of the expression level of RANK and its related molecules.

  13. Autonomous bacterial localization and gene expression based on nearby cell receptor density

    PubMed Central

    Wu, Hsuan-Chen; Tsao, Chen-Yu; Quan, David N; Cheng, Yi; Servinsky, Matthew D; Carter, Karen K; Jee, Kathleen J; Terrell, Jessica L; Zargar, Amin; Rubloff, Gary W; Payne, Gregory F; Valdes, James J; Bentley, William E

    2013-01-01

    Escherichia coli were genetically modified to enable programmed motility, sensing, and actuation based on the density of features on nearby surfaces. Then, based on calculated feature density, these cells expressed marker proteins to indicate phenotypic response. Specifically, site-specific synthesis of bacterial quorum sensing autoinducer-2 (AI-2) is used to initiate and recruit motile cells. In our model system, we rewired E. coli's AI-2 signaling pathway to direct bacteria to a squamous cancer cell line of head and neck (SCCHN), where they initiate synthesis of a reporter (drug surrogate) based on a threshold density of epidermal growth factor receptor (EGFR). This represents a new type of controller for targeted drug delivery as actuation (synthesis and delivery) depends on a receptor density marking the diseased cell. The ability to survey local surfaces and initiate gene expression based on feature density represents a new area-based switch in synthetic biology that will find use beyond the proposed cancer model here. PMID:23340842

  14. Target-Specific Expression of Presynaptic NMDA Receptors in Neocortical Microcircuits

    PubMed Central

    Buchanan, Katherine A.; Blackman, Arne V.; Moreau, Alexandre W.; Elgar, Dale; Costa, Rui P.; Lalanne, Txomin; Tudor Jones, Adam A.; Oyrer, Julia; Sjöström, P. Jesper

    2012-01-01

    Summary Traditionally, NMDA receptors are located postsynaptically; yet, putatively presynaptic NMDA receptors (preNMDARs) have been reported. Although implicated in controlling synaptic plasticity, their function is not well understood and their expression patterns are debated. We demonstrate that, in layer 5 of developing mouse visual cortex, preNMDARs specifically control synaptic transmission at pyramidal cell inputs to other pyramidal cells and to Martinotti cells, while leaving those to basket cells unaffected. We also reveal a type of interneuron that mediates ascending inhibition. In agreement with synapse-specific expression, we find preNMDAR-mediated calcium signals in a subset of pyramidal cell terminals. A tuned network model predicts that preNMDARs specifically reroute information flow in local circuits during high-frequency firing, in particular by impacting frequency-dependent disynaptic inhibition mediated by Martinotti cells, a finding that we experimentally verify. We conclude that postsynaptic cell type determines presynaptic terminal molecular identity and that preNMDARs govern information processing in neocortical columns. PMID:22884329

  15. Computational design of a Zn2+ receptor that controls bacterial gene expression

    NASA Astrophysics Data System (ADS)

    Dwyer, M. A.; Looger, L. L.; Hellinga, H. W.

    2003-09-01

    The control of cellular physiology and gene expression in response to extracellular signals is a basic property of living systems. We have constructed a synthetic bacterial signal transduction pathway in which gene expression is controlled by extracellular Zn2+. In this system a computationally designed Zn2+-binding periplasmic receptor senses the extracellular solute and triggers a two-component signal transduction pathway via a chimeric transmembrane protein, resulting in transcriptional up-regulation of a -galactosidase reporter gene. The Zn2+-binding site in the designed receptor is based on a four-coordinate, tetrahedral primary coordination sphere consisting of histidines and glutamates. In addition, mutations were introduced in a secondary coordination sphere to satisfy the residual hydrogen-bonding potential of the histidines coordinated to the metal. The importance of the secondary shell interactions is demonstrated by their effect on metal affinity and selectivity, as well as protein stability. Three designed protein sequences, comprising two distinct metal-binding positions, were all shown to bind Zn2+ and to function in the cell-based assay, indicating the generality of the design methodology. These experiments demonstrate that biological systems can be manipulated with computationally designed proteins that have drastically altered ligand-binding specificities, thereby extending the repertoire of genetic control by extracellular signals.

  16. Cyclooxygenase-2 expression is associated with initiation of hepatocellular carcinoma, while prostaglandin receptor-1 expression predicts survival

    PubMed Central

    Yang, Hao-Jie; Jiang, Jing-Hang; Yang, Yu-Ting; Yang, Xiang-Di; Guo, Zhe; Qi, Ya-Peng; Zeng, Feng-Hua; Zhang, Ke-Lan; Chen, Neng-Zhi; Xiang, Bang-De; Li, Le-Qun

    2016-01-01

    AIM To determine whether cyclooxygenase-2 (COX-2) and prostaglandin E1 receptor (EP1) contribute to disease and whether they help predict prognosis. METHODS We retrospectively reviewed the records of 116 patients with hepatocellular carcinoma (HCC) who underwent surgery between 2008 and 2011 at our hospital. Expression of COX-2 and EP1 receptor was examined by immunohistochemistry of formalin-fixed, paraffin-embedded tissues using polyclonal antibodies. Possible associations between immunohistochemical scores and survival were determined. RESULTS Factors associated with poor overall survival (OS) were alpha-fetoprotein > 400 ng/mL, tumor size ≥ 5 cm, and high EP1 receptor expression, but not high COX-2 expression. Disease-free survival was not significantly different between patients with low or high levels of COX-2 or EP1. COX-2 immunoreactivity was significantly higher in well-differentiated HCC tissues (Edmondson grade I-II) than in poorly differentiated tissues (Edmondson grade III-IV) (P = 0.003). EP1 receptor immunoreactivity was significantly higher in poorly differentiated tissue than in well-differentiated tissue (P = 0.001). CONCLUSION COX-2 expression appears to be linked to early HCC events (initiation), while EP1 receptor expression may participate in tumor progression and predict survival.

  17. Flow cytometric monitoring of hormone receptor expression in human solid tumors

    NASA Astrophysics Data System (ADS)

    Krishan, Awtar

    2002-05-01

    Hormone receptor expression in human breast and prostate tumors is of diagnostic and therapeutic importance. With the availability of anti-estrogen, androgen and progesterone antibodies, immunohistochemistry has become a standard tool for determination of receptor expression in human tumor biopsies. However, this method is dependent on examination of a small number of cells under a microscope and the data obtained in most cases is not quantitative. As most of the commercially used anti-hormone antibodies have nuclear specificity, we have developed methods for isolation and antigen unmasking of nuclei from formalin fixed/paraffin embedded archival human tumors. After immunostaining with the antibodies and propidium iodide (for DNA content and cell cycle analysis), nuclei are analyzed by multiparametric laser flow cytometry for hormone receptor expression, DNA content, aneuploidy and cell cycle determination. These multiparametric methods are especially important for retrospective studies seeking to correlate hormone receptor expression with clinical response to anti-hormonal therapy of human breast and prostate tumors.

  18. Expression of the human ABCC6 gene is induced by retinoids through the retinoid X receptor

    SciTech Connect

    Ratajewski, Marcin; Bartosz, Grzegorz; Pulaski, Lukasz . E-mail: lpulaski@cbm.pan.pl

    2006-12-01

    Mutations in the human ABCC6 gene are responsible for the disease pseudoxanthoma elasticum, although Physiological function or substrate of the gene product (an ABC transporter known also as MRP6) is not known. We found that the expression of this gene in cells of hepatic origin (where this gene is predominantly expressed in the body) is significantly upregulated by retinoids, acting as agonists of the retinoid X receptor (RXR) rather than the retinoid A receptor (RAR). The direct involvement of this nuclear receptor in the transcriptional regulation of ABCC6 gene expression was confirmed by transient transfection and chromatin immunoprecipitation assays. This constitutes the first direct proof of previously suggested involvement of nuclear hormone receptors in ABCC6 gene expression and the first identification of a transcription factor which may be relevant to regulation of ABCC6 level in tissues and in some PXE patients.

  19. Identification and Expression Analysis of Putative Chemosensory Receptor Genes in Microplitis mediator by Antennal Transcriptome Screening

    PubMed Central

    Wang, Shan-Ning; Peng, Yong; Lu, Zi-Yun; Dhiloo, Khalid Hussain; Gu, Shao-Hua; Li, Rui-Jun; Zhou, Jing-Jiang; Zhang, Yong-Jun; Guo, Yu-Yuan

    2015-01-01

    Host-seeking, ovipositional behavior and mating of insects are controlled mainly by odor perception through sensory organs such as antennae. Antennal chemoreception is extremely important for insect survival. Several antennal chemosensory receptors are involved in mediating the odor detection in insects, especially the odorant receptors (ORs) and ionotropic receptors (IRs), to ensure the specificity of the olfactory sensory neuron responses. In the present study, we identified the chemosensory receptor gene repertoire of the parasitoid wasp Microplitis mediator, a generalist endoparasitoid that infests more than 40 types of Lepidopterous larvae and is widely distributed in the Palaearctic region. By transcriptome sequencing of male and female antennae we identified 60 candidate odorant receptors, six candidate ionotropic receptors and two gustatory receptors in M. mediator. The full-length sequences of these putative chemosensory receptor genes were obtained by using the rapid amplification of cDNA ends PCR (RACE-PCR) method. We also conducted reverse transcription PCR (RT-PCR) combined with real-time quantitative PCR (qPCR) for investigating the expression profiles of these chemosensory receptor genes in olfactory and non-olfactory tissues. The tissue- and sex-biased expression patterns may provide insights into the roles of the chemosensory receptor in M. mediator. Our findings support possible future study of the chemosensory behavior of M. mediator at the molecular level. PMID:26078716

  20. Developmental-stage-specific expression and regulation of an amphotropic retroviral receptor in hematopoietic cells.

    PubMed Central

    Richardson, C; Bank, A

    1996-01-01

    Expression of the transmembrane receptor protein Ram-1 may be critical to optimizing retroviral gene transfer. Ram-1 acts as both a sodium-dependent phosphate transporter and a receptor for amphotropic retroviruses. We previously reported detectable Ram-1 in murine hematopoietic fetal liver cells (FLC) despite resistance of these cells to amphotropic retroviral transduction (infection). We document here that Ram-1 expression is completely absent in murine yolk sac cells from days 9.5 through 13.5 of ontogeny and first appears at low levels in midgestational FLC between days 13.5 and 14.5. In addition, Ram-1 expression is detected only in more differentiated populations within FLC, day 14.5, and not in those highly enriched for stem cells, indicating developmental regulation of Ram-1 during murine hematopoiesis. Others have reported the in vitro use of phosphate-free medium as a stimulus to increase levels of Ram-1 mRNA in nonhematopoietic cells. We now demonstrate that Ram-1 poly(A)+ mRNA increases significantly following culture of FLC in phosphate-free medium. Further, transduction of FLC in phosphate-free medium with an amphotropic retrovirus containing the multiple drug resistance gene leads to gene transfer not observed previously. These data demonstrate that (i) the normal resistance of FLC to amphotropic transduction is most likely due to an insufficient number of Ram-1 molecules for efficient retroviral recognition and binding, and (ii) Ram-1 can be upregulated by increasing the need for phosphate transport across the cell membrane. PMID:8754824

  1. Elevated Resistin Gene Expression in African American Estrogen and Progesterone Receptor Negative Breast Cancer

    PubMed Central

    Vallega, Karin A.; Liu, NingNing; Myers, Jennifer S.; Yu, Kaixian; Sang, Qing-Xiang Amy

    2016-01-01

    Introduction African American (AA) women diagnosed with breast cancer are more likely to have aggressive subtypes. Investigating differentially expressed genes between patient populations may help explain racial health disparities. Resistin, one such gene, is linked to inflammation, obesity, and breast cancer risk. Previous studies indicated that resistin expression is higher in serum and tissue of AA breast cancer patients compared to Caucasian American (CA) patients. However, resistin expression levels have not been compared between AA and CA patients in a stage- and subtype-specific context. Breast cancer prognosis and treatments vary by subtype. This work investigates differential resistin gene expression in human breast cancer tissues of specific stages, receptor subtypes, and menopause statuses in AA and CA women. Methods Differential gene expression analysis was performed using human breast cancer gene expression data from The Cancer Genome Atlas. We performed inter-race resistin gene expression level comparisons looking at receptor status and stage-specific data between AA and CA samples. DESeq was run to test for differentially expressed resistin values. Results Resistin RNA was higher in AA women overall, with highest values in receptor negative subtypes. Estrogen-, progesterone-, and human epidermal growth factor receptor 2- negative groups showed statistically significant elevated resistin levels in Stage I and II AA women compared to CA women. In inter-racial comparisons, AA women had significantly higher levels of resistin regardless of menopause status. In whole population comparisons, resistin expression was higher among Stage I and III estrogen receptor negative cases. In comparisons of molecular subtypes, resistin levels were significant higher in triple negative than in luminal A breast cancer. Conclusion Resistin gene expression levels were significantly higher in receptor negative subtypes, especially estrogen receptor negative cases in AA

  2. Corticosteroids Mediate Heart Failure-Induced Depression through Reduced σ1-Receptor Expression

    PubMed Central

    Bhuiyan, Md. Shenuarin; Hasegawa, Hideyuki; Kanai, Hiroshi; Zhang, Chen; Han, Feng; Fukunaga, Kohji

    2016-01-01

    Cardiovascular diseases are risk factors for depression in humans. We recently proposed that σ1 receptor (σ1R) stimulation rescued cardiac hypertrophy and heart failure induced by transverse aortic constriction (TAC) in mice. Importantly, σ1R stimulation reportedly ameliorates depression-like behaviors in rodents. Thus, we hypothesized that impaired σ1R activity in brain triggers depression-like behaviors in animals with cardiovascular disease. Indeed, here we found that cardiac hypertrophy and heart failure induced by TAC were associated with depression-like behaviors concomitant with downregulation of σ1R expression in brain 6 weeks after surgery. σ1R levels significantly decreased in astrocytes in both the hippocampal CA1 region and dentate gyrus. Oral administration of the specific σ1R agonist SA4503 (0.3–1.0mg/kg) significantly improved TAC-induced depression-like behaviors concomitant with rescued astrocytic σ1R expression in CA1 and the dentate gyrus. Plasma corticosterone levels significantly increased 6 weeks after TAC, and chronic treatment of mice with corticosterone for 3 weeks elicited depression-like behaviors concomitant with reduced astrocytic σ1R expression in hippocampus. Furthermore, the glucocorticoid receptor antagonist mifepristone antagonized depressive-like behaviors and ameliorated decreased hippocampal σ1R expression in TAC mice. We conclude that elevated corticosterone levels trigger hippocampal σ1R downregulation and that σ1R stimulation with SA4503 is an attractive therapy to improve not only cardiac dysfunction but depression-like behaviors associated with heart failure. PMID:27741227

  3. Lithocholic acid decreases expression of bile salt export pump through farnesoid X receptor antagonist activity.

    PubMed

    Yu, Jinghua; Lo, Jane-L; Huang, Li; Zhao, Annie; Metzger, Edward; Adams, Alan; Meinke, Peter T; Wright, Samuel D; Cui, Jisong

    2002-08-30

    Bile salt export pump (BSEP) is a major bile acid transporter in the liver. Mutations in BSEP result in progressive intrahepatic cholestasis, a severe liver disease that impairs bile flow and causes irreversible liver damage. BSEP is a target for inhibition and down-regulation by drugs and abnormal bile salt metabolites, and such inhibition and down-regulation may result in bile acid retention and intrahepatic cholestasis. In this study, we quantitatively analyzed the regulation of BSEP expression by FXR ligands in primary human hepatocytes and HepG2 cells. We demonstrate that BSEP expression is dramatically regulated by ligands of the nuclear receptor farnesoid X receptor (FXR). Both the endogenous FXR agonist chenodeoxycholate (CDCA) and synthetic FXR ligand GW4064 effectively increased BSEP mRNA in both cell types. This up-regulation was readily detectable at as early as 3 h, and the ligand potency for BSEP regulation correlates with the intrinsic activity on FXR. These results suggest BSEP as a direct target of FXR and support the recent report that the BSEP promoter is transactivated by FXR. In contrast to CDCA and GW4064, lithocholate (LCA), a hydrophobic bile acid and a potent inducer of cholestasis, strongly decreased BSEP expression. Previous studies did not identify LCA as an FXR antagonist ligand in cells, but we show here that LCA is an FXR antagonist with partial agonist activity in cells. In an in vitro co-activator association assay, LCA decreased CDCA- and GW4064-induced FXR activation with an IC(50) of 1 microm. In HepG2 cells, LCA also effectively antagonized GW4064-enhanced FXR transactivation. These data suggest that the toxic and cholestatic effect of LCA in animals may result from its down-regulation of BSEP through FXR. Taken together, these observations indicate that FXR plays an important role in BSEP gene expression and that FXR ligands may be potential therapeutic drugs for intrahepatic cholestasis.

  4. Retinoic acid receptor agonists regulate expression of ATP-binding cassette transporter G1 in macrophages.

    PubMed

    Ayaori, Makoto; Yakushiji, Emi; Ogura, Masatsune; Nakaya, Kazuhiro; Hisada, Tetsuya; Uto-Kondo, Harumi; Takiguchi, Shunichi; Terao, Yoshio; Sasaki, Makoto; Komatsu, Tomohiro; Iizuka, Maki; Yogo, Makiko; Uehara, Yoshinari; Kagechika, Hiroyuki; Nakanishi, Tsuyoshi; Ikewaki, Katsunori

    2012-04-01

    ABC transporter G1 (ABCG1) plays a pivotal role in HDL-mediated cholesterol efflux and atherogenesis. We investigated whether, and how, retinoic acid receptors (RARs) regulate ABCG1 expression in macrophages. All-trans retinoic acid (ATRA), an RAR ligand, increased ABCG1 protein levels and apoA-I/HDL-mediated cholesterol efflux from the macrophages. Both ATRA and other RAR agonists, TTNPB and Am580, increased major transcripts driven by promoter B upstream of exon 5, though minor transcripts driven by promoter A upstream of exon 1 were only increased by ATRA. The stimulatory effects of ATRA on ABCG1 expression were completely abolished in the presence of RAR/RXR antagonists but were only partially canceled in the presence of an LXR antagonist. Adenovirus with overexpressed oxysterol sulfotransferase abolished the LXR pathway, as previously reported, and ATRA-responsiveness in ABCA1/ABCG1 expressions were respectively attenuated by 38 and 22% compared to the control virus. Promoter assays revealed that ABCG1 levels were regulated more by promoter B than promoter A, and ATRA activated promoter B in a liver X receptor-responsive element (LXRE)-dependent manner. Further, LXRE-B in intron 7, but not LXRE-A in intron 5, enhanced ATRA responsiveness under overexpression of all RAR isoforms-RARα/β/γ. In contrast, the activation of promoter B by TTNPB depended on LXRE-B and RARα, but not on RARβ/γ. Finally, chromatin immunoprecipitation and gel-shift assays revealed a specific and direct repeat 4-dependent binding of RARα to LXRE-B. In conclusion, RAR ligands increase ABCA1/G1 expression and apoA-I/HDL-mediated cholesterol efflux from macrophages, and modulate ABCG1 promoter activity via LXRE-dependent mechanisms.

  5. Heterogeneous estrogen receptor expression in circulating tumor cells suggests diverse mechanisms of fulvestrant resistance.

    PubMed

    Paoletti, Costanza; Larios, Jose M; Muñiz, Maria C; Aung, Kimberly; Cannell, Emily M; Darga, Elizabeth P; Kidwell, Kelley M; Thomas, Dafydd G; Tokudome, Nahomi; Brown, Martha E; Connelly, Mark C; Chianese, David A; Schott, Anne F; Henry, N Lynn; Rae, James M; Hayes, Daniel F

    2016-08-01

    Fulvestrant is a dose dependent selective estrogen receptor (ER) down-regulator (SERD) used in ER-positive metastatic breast cancer (MBC). Nearly all patients develop resistance. We performed molecular analysis of circulating tumor cells (CTC) to gain insight into fulvestrant resistance. Preclinical studies were performed with cultured breast cancer cells spiked into human blood and analyzed on the CellSearch(®) system. Clinical data are limited to a subset of patients with ER-positive MBC from a previously reported pilot trial whose disease was progressing on fulvestrant (N = 7) or aromatase inhibitors (AIs) (N = 10). CTCs were enumerated and phenotyped for ER and B-cell lymphoma (BCL2) using the CellSearch(®) CXC kit. In preclinical modeling, tamoxifen and AIs resulted in stabilized ER expression, whereas fulvestrant eliminated it. Five of seven patients progressing on fulvestrant had ≥5CTC/7.5 ml WB. Two of these five, treated with 500 mg/month fulvestrant, had no detectable CTC-expression of ER and BCL2 (an ER regulated gene). Three patients had heterogeneous CTC-ER and BCL2 expression indicating incomplete degradation of the ER target by fulvestrant. Two of these patients received 250 mg/month whereas the third patient received 500 mg/month fulvestrant. Her cancer harbored a mutation (Y537S) in the estrogen receptor alpha gene (ESR1). All seven ER positive patients progressing on AIs had heterogeneous CTC-ER expression. These results suggest heterogeneous mechanisms of resistance to fulvestrant, including insufficient dosage, ESR1 mutation, or conversion to dependence on non-ER pathways. CTC enumeration, phenotyping, and genotyping might identify patients who would benefit from fulvestrant dose escalation versus switching to alternative therapies. PMID:27178224

  6. Progesterone and estrogen receptor expression and activity in human non-small cell lung cancer

    PubMed Central

    Marquez-Garban, Diana C.; Mah, Vei; Alavi, Mohammad; Maresh, Erin L.; Chen, Hsiao-Wang; Bagryanova, Lora; Horvath, Steve; Chia, David; Garon, Edward; Goodglick, Lee; Pietras, Richard J.

    2011-01-01

    Lung cancer is the most common cause of cancer mortality in male and female patients in the US. Although it is clear that tobacco smoking is a major cause of lung cancer, about half of all women with lung cancer worldwide are never-smokers. Despite a declining smoking population, the incidence of non-small cell lung cancer (NSCLC), the predominant form of lung cancer, has reached epidemic proportions particularly in women. Emerging data suggest that factors other than tobacco, namely endogenous and exogenous female sex hormones, have a role in stimulating NSCLC progression. Aromatase, a key enzyme for estrogen biosynthesis, is expressed in NSCLC. Clinical data show that women with high levels of tumor aromatase (and high intratumoral estrogen) have worse survival than those with low aromatase. The present and previous studies also reveal significant expression and activity of estrogen receptors (ERα, ERβ) in both extranuclear and nuclear sites in most NSCLC. We now report further on the expression of progesterone receptor (PR) transcripts and protein in NSCLC. PR transcripts were significantly lower in cancerous as compared to non-malignant tissue. Using immunohistochemistry, expression of PR was observed in the nucleus and/or extranuclear compartments in the majority of human tumor specimens examined. Combinations of estrogen and progestins administered in vitro cooperate in promoting tumor secretion of vascular endothelial growth factor and, consequently, support tumor-associated angiogenesis. Further, dual treatment with estradiol and progestin increased the numbers of putative tumor stem/progenitor cells. Thus, ER- and/or PR-targeted therapies may offer new approaches to manage NSCLC. PMID:21600232

  7. Decrease of gene expression of astrocytic 5-HT2B receptors parallels development of depressive phenotype in a mouse model of Parkinson's disease.

    PubMed

    Zhang, Xique; Song, Dan; Gu, Li; Ren, Yan; Verkhratsky, Alexei; Peng, Liang

    2015-01-01

    Astrocytes contribute to pathogenesis of neuropsychiatric disorders, including major depression. Stimulation of astroglial 5-HT2B receptors transactivates epidermal growth factor receptors (EGFRs) and regulates gene expression. Previously we reported that expression of 5-HT2B receptors in cortical astrocytes is down-regulated in animals, which developed anhedonia in response to chronic stress; moreover this down-regulation as well as anhedonia, are reversed by chronic treatment with fluoxetine. In this study we have investigated whether astrocytic 5-HT2B receptor is involved in anhedonia in C57BL/6 mice model of Parkinson' disease (PD) induced by intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) for 7 days. The MPTP treatment induced anhendonia in 66.7% of animals. The appearance of depressive behavior was accompanied with motor deficiency and decrease of tyrosine hydroxylase (TH) expression. Expression of mRNA and protein of 5-HT2B receptor in animals that became anhedonic decreased to 77.3 and 79.3% of control groups, respectively; in animals that received MPTP but did not develop anhedonia the expression of 5-HT2B receptor did not change. Experiments with FACS-sorted isolated cells demonstrated that decrease in 5-HT2B receptor expression was confined to astrocytes, and did not occur in neurons. Fluoxetine corrected MPTP-induced decrease of 5-HT2B receptor expression and depressive behavior. Our findings indicate that regulation of gene expression of 5-HT2B receptors in astroglia may be associated with pathophysiological evolution of PD-induced depression.

  8. Decrease of gene expression of astrocytic 5-HT2B receptors parallels development of depressive phenotype in a mouse model of Parkinson’s disease

    PubMed Central

    Zhang, Xique; Song, Dan; Gu, Li; Ren, Yan; Verkhratsky, Alexei; Peng, Liang

    2015-01-01

    Astrocytes contribute to pathogenesis of neuropsychiatric disorders, including major depression. Stimulation of astroglial 5-HT2B receptors transactivates epidermal growth factor receptors (EGFRs) and regulates gene expression. Previously we reported that expression of 5-HT2B receptors in cortical astrocytes is down-regulated in animals, which developed anhedonia in response to chronic stress; moreover this down-regulation as well as anhedonia, are reversed by chronic treatment with fluoxetine. In this study we have investigated whether astrocytic 5-HT2B receptor is involved in anhedonia in C57BL/6 mice model of Parkinson’ disease (PD) induced by intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) for 7 days. The MPTP treatment induced anhendonia in 66.7% of animals. The appearance of depressive behavior was accompanied with motor deficiency and decrease of tyrosine hydroxylase (TH) expression. Expression of mRNA and protein of 5-HT2B receptor in animals that became anhedonic decreased to 77.3 and 79.3% of control groups, respectively; in animals that received MPTP but did not develop anhedonia the expression of 5-HT2B receptor did not change. Experiments with FACS-sorted isolated cells demonstrated that decrease in 5-HT2B receptor expression was confined to astrocytes, and did not occur in neurons. Fluoxetine corrected MPTP-induced decrease of 5-HT2B receptor expression and depressive behavior. Our findings indicate that regulation of gene expression of 5-HT2B receptors in astroglia may be associated with pathophysiological evolution of PD-induced depression. PMID:26500493

  9. Decrease of gene expression of astrocytic 5-HT2B receptors parallels development of depressive phenotype in a mouse model of Parkinson's disease.

    PubMed

    Zhang, Xique; Song, Dan; Gu, Li; Ren, Yan; Verkhratsky, Alexei; Peng, Liang

    2015-01-01

    Astrocytes contribute to pathogenesis of neuropsychiatric disorders, including major depression. Stimulation of astroglial 5-HT2B receptors transactivates epidermal growth factor receptors (EGFRs) and regulates gene expression. Previously we reported that expression of 5-HT2B receptors in cortical astrocytes is down-regulated in animals, which developed anhedonia in response to chronic stress; moreover this down-regulation as well as anhedonia, are reversed by chronic treatment with fluoxetine. In this study we have investigated whether astrocytic 5-HT2B receptor is involved in anhedonia in C57BL/6 mice model of Parkinson' disease (PD) induced by intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) for 7 days. The MPTP treatment induced anhendonia in 66.7% of animals. The appearance of depressive behavior was accompanied with motor deficiency and decrease of tyrosine hydroxylase (TH) expression. Expression of mRNA and protein of 5-HT2B receptor in animals that became anhedonic decreased to 77.3 and 79.3% of control groups, respectively; in animals that received MPTP but did not develop anhedonia the expression of 5-HT2B receptor did not change. Experiments with FACS-sorted isolated cells demonstrated that decrease in 5-HT2B receptor expression was confined to astrocytes, and did not occur in neurons. Fluoxetine corrected MPTP-induced decrease of 5-HT2B receptor expression and depressive behavior. Our findings indicate that regulation of gene expression of 5-HT2B receptors in astroglia may be associated with pathophysiological evolution of PD-induced depression. PMID:26500493

  10. Clinical significance of erythropoietin receptor expression in oral squamous cell carcinoma

    PubMed Central

    2012-01-01

    Background Hypoxic tumors are refractory to radiation and chemotherapy. High expression of biomarkers related to hypoxia in head and neck cancer is associated with a poorer prognosis. The present study aimed to evaluate the clinicopathological significance of erythropoietin receptor (EPOR) expression in oral squamous cell carcinoma (OSCC). Methods The study included 256 patients who underwent primary surgical resection between October 1996 and August 2005 for treatment of OSCC without previous radiotherapy and/or chemotherapy. Clinicopathological information including gender, age, T classification, N classification, and TNM stage was obtained from clinical records and pathology reports. The mRNA and protein expression levels of EPOR in OSCC specimens were evaluated by Q-RT-PCR, Western blotting and immunohistochemistry assays. Results We found that EPOR were overexpressed in OSCC tissues. The study included 17 women and 239 men with an average age of 50.9 years (range, 26–87 years). The mean follow-up period was 67 months (range, 2–171 months). High EPOR expression was significantly correlated with advanced T classification (p < 0.001), advanced TNM stage (p < 0.001), and positive N classification (p = 0.001). Furthermore, the univariate analysis revealed that patients with high tumor EPOR expression had a lower 5-year overall survival rate (p = 0.0011) and 5-year disease-specific survival rate (p = 0.0017) than patients who had low tumor levels of EPOR. However, the multivariate analysis using Cox’s regression model revealed that only the T and N classifications were independent prognostic factors for the 5-year overall survival and 5-year disease-specific survival rates. Conclusions High EPOR expression in OSCC is associated with an aggressive tumor behavior and poorer prognosis in the univariate analysis among patients with OSCC. Thus, EPOR expression may serve as a treatment target for OSCC in the future. PMID:22639817

  11. Decreased Pregnane X Receptor Expression in Children with Active Crohn’s Disease

    PubMed Central

    Vyhlidal, Carrie; Friesen, Craig; Hildreth, Amber; Singh, Vivekanand; Daniel, James; Kearns, Gregory L.; Leeder, J. Steven

    2016-01-01

    Expression of the pregnane X receptor (PXR) has been reported to be decreased in animal models of inflammatory bowel disease (IBD). To investigate the differential expression of PXR in children with Crohn’s disease, a type of IBD, RNA was extracted from archived intestinal biopsies from 18 children with Crohn’s disease (CD) and 12 age- and sex-matched controls (aged 7–17yrs). The aim of this investigation was to compare the relative mRNA expression of PXR, cytochrome p450 3A4 (CYP3A4), and villin 1 (VIL1) (a marker of epithelial cell integrity) in the inflamed terminal ileum (TI) versus noninflamed duodenum of children with CD. Relative expression was determined via reverse transcription real-time quantitative polymerase chain reaction, data normalized to glyceraldehyde 3-phosphate dehydrogenase, and differences in gene expression explored via paired t tests. PXR expression was decreased in the inflamed TI versus noninflamed duodenum (TI = 1.88 ± 0.89 versus duodenum = 2.5 ± 0.67; P < 0.001) in CD, but not controls (TI = 2.11 ± 0.41 versus duodenum = 2.26 ± 0.61; P = 0.52). CYP3A4 expression was decreased in CD (TI = –0.89 ± 3.11 versus duodenum = 1.90 ± 2.29; P < 0.05), but not controls (TI = 2.46 ± 0.51 versus duodenum = 2.60 ± 0.60; P = 0.61), as was VIL1 (CD TI = 3.80 ± 0.94 versus duodenum = 4.61 ± 0.52; P < 0.001; controls TI = 4.30 ± 0.35 versus duodenum = 4.47 ± 0.40; P = 0.29). PXR expression correlated with VIL1 (r = 0.78, P = 0.01) and CYP3A4 (r = 0.52, P = 0.01) expression. In conclusion, PXR, CYP3A4, and VIL1 expression was decreased only in the actively inflamed small intestinal tissue in children with CD. Our findings suggest that inflammation has the potential to influence expression of genes, and potentially intestinal proteins, important to drug disposition and response. The observed differential patterns of gene expression support further investigation of the role of PXR in the pathogenesis and/or treatment of pediatric Crohn

  12. Regulation of leptin expression by 17beta-estradiol in human placental cells involves membrane associated estrogen receptor alpha.

    PubMed

    Gambino, Yésica P; Pérez Pérez, Antonio; Dueñas, José L; Calvo, Juan Carlos; Sánchez-Margalet, Víctor; Varone, Cecilia L

    2012-04-01

    The placenta produces a wide number of molecules that play essential roles in the establishment and maintenance of pregnancy. In this context, leptin has emerged as an important player in reproduction. The synthesis of leptin in normal trophoblastic cells is regulated by different endogenous biochemical agents, but the regulation of placental leptin expression is still poorly understood. We have previously reported that 17β-estradiol (E(2)) up-regulates placental leptin expression. To improve the understanding of estrogen receptor mechanisms in regulating leptin gene expression, in the current study we examined the effect of membrane-constrained E(2) conjugate, E-BSA, on leptin expression in human placental cells. We have found that leptin expression was induced by E-BSA both in BeWo cells and human placental explants, suggesting that E(2) also exerts its effects through membrane receptors. Moreover E-BSA rapidly activated different MAPKs and AKT pathways, and these pathways were involved in E(2) induced placental leptin expression. On the other hand we demonstrated the presence of ERα associated to the plasma membrane of BeWo cells. We showed that E(2) genomic and nongenomic actions could be mediated by ERα. Supporting this idea, the downregulation of ERα level through a specific siRNA, decreased E-BSA effects on leptin expression. Taken together, these results provide new evidence of the mechanisms whereby E(2) regulates leptin expression in placenta and support the importance of leptin in placental physiology.

  13. G Protein-Coupled Estrogen Receptor (GPER) Expression in Normal and Abnormal Endometrium

    PubMed Central

    Lessey, Bruce A.; Taylor, Robert N.; Wang, Wei; Bagchi, Milan K.; Yuan, Lingwen; Scotchie, Jessica; Fritz, Marc A.; Young, Steven L.

    2012-01-01

    Rapid estrogen effects are mediated by membrane receptors, and evidence suggests a role for both a membrane-associated form of estrogen receptor alpha (ESR1; ERα) and G-protein coupled receptor 30 (GPER; GPR30). Considering estrogen’s importance in endometrial physiology and endometriosis pathophysiology, we hypothesized that GPER could be involved in both cyclic changes in endometrial estrogen action and that aberrant expression might be seen in the eutopic endometrium of women with endometriosis. Using real-time reverse transcriptase–polymerase chain reaction (RT-PCR) and immunohistochemical analysis of normal endometrium, endometrial samples demonstrated cycle-regulated expression of GPER, with maximal expression in the proliferative phase. Eutopic and ectopic endometrium from women with endometriosis overexpressed GPER as compared to eutopic endometrium of normal participants. Ishikawa cells, an adenocarcinoma cell line, expressed GPER, with increased expression upon treatment with estrogen or an ESR1 agonist, but not with a GPER-specific agonist. Decreased expression was seen in Ishikawa cells stably transfected with progesterone receptor A. Together, these data suggest that normal endometrial GPER expression is cyclic and regulated by nuclear estrogen and progesterone receptors, while expression is dysregulated in endometriosis. PMID:22378861

  14. Expression and function of the AMF receptor by human melanoma in experimental and clinical systems.

    PubMed

    Tímár, J; Rásó, E; Döme, B; Ladányi, A; Bánfalvi, T; Gilde, K; Raz, A

    2002-01-01

    Motility of tumor cells is the rate limiting potential of metastatic cells and is regulated by autocrine and paracrine factors. Autocrine motility factor/neuroleukin/phosphohexose isomerase (AMF) is one of the best characterized autocrine motogenic cytokines. Here we have studied its in vitro effects on several human melanoma cell lines and found that neither cell line exhibited mitogenic response to AMF at a concentration where motogenic response could be initiated. Similar to previous studies on murine melanoma, activation of the AMF receptor upregulated beta3 while it downregulated beta1 integrins at the cell surface, inducing an integrin phenotype characteristic for invasive/metastatic melanoma. The gp78/AMF receptor protein expression in human melanoma cell lines correlated to their in vivo spontaneous metastatic potential. Furthermore, in two out of three human melanoma lines the expression significantly increased in the primary tumor when spontaneous metastases developed (immunosuppressed newborn rat model versus SCID mice). In a prospective study we have also analyzed AMF receptor protein expression in primary tumors of 54 skin melanoma patients using IHC. These studies revealed three types of AMF receptor phenotype: weak, heterogenous and strong expression profile. While in thin tumors weak/heterogenous AMFR expression predominated, in thick tumors the strong expression profile was predominant. The connection between AMFR expression and the invasive/metastatic potential of melanoma was further supported by our observation that SSM melanoma in the vertical growth phase expressed this motility receptor more strongly than tumors in the radial growth phase.

  15. 5-Hydroxytryptamine 2A receptor signaling cascade modulates adiponectin and plasminogen activator inhibitor 1 expression in adipose tissue.

    PubMed

    Uchida-Kitajima, Shoko; Yamauchi, Toshimasa; Takashina, Youko; Okada-Iwabu, Miki; Iwabu, Masato; Ueki, Kohjiro; Kadowaki, Takashi

    2008-09-01

    Knowledge of the regulatory factors associated with down-regulation of adiponectin gene expression and up-regulation of PAI-1 gene expression is crucial to understand the pathophysiological basis of obesity and metabolic diseases, and could establish new treatment strategies for these conditions. We showed that expression of 5-HT(2A) receptors was up-regulated in hypertrophic 3T3-L1 adipocytes, which exhibited decreased expression of adiponectin and increased expression of PAI-1. 5-HT(2A) receptor antagonists and suppression of 5-HT(2A) receptor gene expression enhanced adiponectin expression. Activation of Gq negatively regulated adiponectin expression, and inhibition of mitogen-activated protein kinase reversed the Gq-induced effect. Moreover, the 5-HT(2A) receptor blockade reduced PAI-1 expression. These findings indicate that antagonism of 5-HT(2A) receptors in adipocytes could improve the obesity-linked decreases in adiponectin expression and increases in PAI-1 expression.

  16. The Estrogen ReceptorExpression in De Quervain’s Disease

    PubMed Central

    Shen, Po-Chuan; Wang, Ping-Hui; Wu, Po-Ting; Wu, Kuo-Chen; Hsieh, Jeng-Long; Jou, I-Ming

    2015-01-01

    Stenosing tenosynovitis of the first dorsal compartment of the wrist (a.k.a. de Quervain’s disease) is common but how estrogen is involved is still unknown. We previously reported that inflammation was involved in the pathogenesis of this ailment. In the present study, we extended our investigation of estrogen receptor (ER)-β expression to determine whether estrogen is involved in the pathogenesis of de Quervain’s. Intraoperative retinaculum samples were collected from 16 patients with the ailment. Specimens were histologically graded by collagen structure and immunohistochemically evaluated by quantifying the expression of ER-β, interleukin (IL)-1β and IL-6 (inflammatory cytokines), cyclooxygenase (COX)-2 (an inflammatory enzyme), and vascular endothelial growth factor (VEGF), and Von Willebrand’s factor (vWF). De Quervain’s occurs primarily in women. The female:male ratio in our study was 7:1. We found that ER-β expression in the retinaculum was positively correlated with disease grade and patient age. Additionally, disease severity was associated with inflammatory factors—IL-1β and IL-6, COX-2, and VEGF and vWF in tenosynovial tissue. The greater the levels of ER-β expression, tissue inflammation, and angiogenesis are, the more severe de Quervain’s disease is. ER-β might be a useful target for novel de Quervain’s disease therapy. PMID:26556342

  17. Neuronal merlin influences ERBB2 receptor expression on Schwann cells through neuregulin 1 type III signalling

    PubMed Central

    Schulz, Alexander; Kyselyova, Anna; Baader, Stephan L.; Jung, Marie Juliane; Zoch, Ansgar; Mautner, Victor-Felix

    2014-01-01

    Axonal surface proteins encompass a group of heterogeneous molecules, which exert a variety of different functions in the highly interdependent relationship between axons and Schwann cells. We recently revealed that the tumour suppressor protein merlin, mutated in the hereditary tumour syndrome neurofibromatosis type 2, impacts significantly on axon structure maintenance in the peripheral nervous system. We now report on a role of neuronal merlin in the regulation of the axonal surface protein neuregulin 1 important for modulating Schwann cell differentiation and myelination. Specifically, neuregulin 1 type III expression is reduced in sciatic nerve tissue of neuron-specific knockout animals as well as in biopsies from seven patients with neurofibromatosis type 2. In vitro experiments performed on both the P19 neuronal cell line and primary dorsal root ganglion cells demonstrate the influence of merlin on neuregulin 1 type III expression. Moreover, expression of ERBB2, a Schwann cell receptor for neuregulin 1 ligands is increased in nerve tissue of both neuron-specific merlin knockout animals and patients with neurofibromatosis type 2, demonstrating for the first time that axonal merlin indirectly regulates Schwann cell behaviour. Collectively, we have identified that neuronally expressed merlin can influence Schwann cell activity in a cell-extrinsic manner. PMID:24309211

  18. kappa opioid receptors in human microglia downregulate human immunodeficiency virus 1 expression.

    PubMed Central

    Chao, C C; Gekker, G; Hu, S; Sheng, W S; Shark, K B; Bu, D F; Archer, S; Bidlack, J M; Peterson, P K

    1996-01-01

    Microglial cells, the resident macrophages of the brain, play an important role in the neuropathogenesis of human immunodeficiency virus type 1 (HIV-1), and recent studies suggest that opioid peptides regulate the function of macrophages from somatic tissues. We report herein the presence of kappa opioid receptors (KORs) in human fetal microglia and inhibition of HIV-1 expression in acutely infected microglial cell cultures treated with KOR ligands. Using reverse transcriptase-polymerase chain reaction and sequencing analyses, we found that mRNA for the KOR was constitutively expressed in microglia and determined that the nucleotide sequence of the open reading frame was identical to that of the human brain KOR gene. The expression of KOR in microglial cells was confirmed by membrane binding of [3H]U69,593, a kappa-selective ligand, and by indirect immunofluorescence. Treatment of microglial cell cultures with U50,488 or U69,593 resulted in a dose-dependent inhibition of expression of the monocytotropic HIV-1 SF162 strain. This antiviral effect of the kappa ligands was blocked by the specific KOR antagonist, nor-binaltrophimine. These findings suggest that kappa opioid agonists have immunomodulatory activity in the brain, and that these compounds could have potential in the treatment of HIV-1-associated encephalopathy. Images Fig. 2 Fig. 4 PMID:8755601

  19. Human serotonin1B receptor expression in Sf9 cells: phosphorylation, palmitoylation, and adenylyl cyclase inhibition.

    PubMed

    Ng, G Y; George, S R; Zastawny, R L; Caron, M; Bouvier, M; Dennis, M; O'Dowd, B F

    1993-11-01

    Analysis of the primary protein structure of the human serotonin1B (5-HT1B) receptor reveals consensus sites for phosphorylation and a putative site for palmitoylation. To investigate these posttranslational modifications, we have expressed a c-myc epitope-tagged 5-HT1B (m5-HT1B) receptor in Sf9 cells. This strategy enabled receptors to be detected by immunoblot analysis and purified by immunoprecipitation using a monoclonal antibody, 9E10, specific for the c-myc epitope. Agonist radioligand [3H]5-HT binding studies showed that the expressed 5-HT1B and m5-HT1B receptors displayed the characteristic pharmacological profile of the neuronal 5-HT1B receptor. The expressed receptors displayed both high- and low-affinity states for [3H]5-HT, suggesting that the receptors were coupled to endogenous G-proteins. Indeed, agonist binding to the high-affinity receptor state was regulated in the presence of GTP gamma S, Gpp(NH)p, and pertussis toxin. [32P]ADP-ribosylation experiments identified a major approximately 41-kDa ADP-ribosylated protein present in Sf9 membranes that comigrated with partially purified bovine brain Gi alpha/G(o) alpha subunits. Measurements of adenylyl cyclase activity in membranes from cells expressing m5-HT1B receptors showed that serotonergic agonists mediated the inhibition of adenylyl cyclase activity with a rank order of potency comparable to their affinity constants. Immunoblot analysis of membranes prepared from cells expressing m5-HT1B receptors and photoaffinity labeling of the immunoprecipitated material revealed photolabeled species at approximately 95 and at approximately 42 kDa.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Expression of mannose receptors for pinocytosis and phagocytosis on rat retinal pigment epithelium

    SciTech Connect

    Tarnowski, B.I.; Shepherd, V.L.; McLaughlin, B.J.

    1988-05-01

    We report here the presence of a mannose-specific receptor on apical membranes of rat retinal pigment epithelial (RPE) cells. For pinocytic studies, 125I-Mannose-BSA (125I-Man-BSA) was incubated with RPE explants from normal (Long Evans) and dystrophic (pigmented RCS) rat retinas. Normal RPE bound 36.1 ng of ligand and, in the presence of mannan competitor, the amount bound was 18.3 ng. In a similar assay, total ligand uptake by dystrophic RPE was 25.9 ng with 9.8 ng specific for mannose recognition. Comparing the amounts of ligand bound, dystrophic RPE recognized 55% of the amount recognized by normal RPE. The presence of the mannose receptor was localized on both normal and dystrophic RPE apical plasma membranes by autoradiographic techniques using 125I-Man-BSA. Normal RPE showed a greater number of silver grains present at the apical cell membrane as compared to dystrophic RPE. Silver grains were significantly reduced when incubation with the ligand was carried out in the presence of a mannan competitor. Further, in phagocytic studies, latex beads coated with mannan were used as phagocytic particles. Normal RPE phagocytized 4.52 mannan-beads per cell profile by a mannose-specific mechanism, whereas dystrophic RPE did not recognize mannan-beads. Our data suggest that RPE cells express surface receptors which recognize both soluble and particulate mannose ligands. The pinocytic and autoradiographic studies suggest that normal RPE binds more soluble ligand than does dystrophic RPE. If the mannose receptors mediate both pinocytosis and phagocytosis, a possible reduction in number of soluble mannose binding sites on the dystrophic RPE may be related to the diminished phagocytic recognition of particulate ligand by the dystrophic RPE.

  1. 68Ga-Pentixafor-PET/CT for Imaging of Chemokine Receptor 4 Expression in Glioblastoma

    PubMed Central

    Lapa, Constantin; Lückerath, Katharina; Kleinlein, Irene; Monoranu, Camelia Maria; Linsenmann, Thomas; Kessler, Almuth F.; Rudelius, Martina; Kropf, Saskia; Buck, Andreas K.; Ernestus, Ralf-Ingo; Wester, Hans-Jürgen; Löhr, Mario; Herrmann, Ken

    2016-01-01

    Chemokine receptor-4 (CXCR4) has been reported to be overexpressed in glioblastoma (GBM) and to be associated with poor survival. This study investigated the feasibility of non-invasive CXCR4-directed imaging with positron emission tomography/computed tomography (PET/CT) using the radiolabelled chemokine receptor ligand 68Ga-Pentixafor. 15 patients with clinical suspicion on primary or recurrent glioblastoma (13 primary, 2 recurrent tumors) underwent 68Ga-Pentixafor-PET/CT for assessment of CXCR4 expression prior to surgery. O-(2-18F-fluoroethyl)-L-tyrosine (18F-FET) PET/CT images were available in 11/15 cases and were compared visually and semi-quantitatively (SUVmax, SUVmean). Tumor-to-background ratios (TBR) were calculated for both PET probes. 68Ga-Pentixafor-PET/CT results were also compared to histological CXCR4 expression on neuronavigated surgical samples. 68Ga-Pentixafor-PET/CT was visually positive in 13/15 cases with SUVmean and SUVmax of 3.0±1.5 and 3.9±2.0 respectively. Respective values for 18F-FET were 4.4±2.0 (SUVmean) and 5.3±2.3 (SUVmax). TBR for SUVmean and SUVmax were higher for 68Ga-Pentixafor than for 18F-FET (SUVmean 154.0±90.7 vs. 4.1±1.3; SUVmax 70.3±44.0 and 3.8±1.2, p<0.01), respectively. Histological analysis confirmed CXCR4 expression in tumor areas with high 68Ga-Pentixafor uptake; regions of the same tumor without apparent 68Ga-Pentixafor uptake showed no or low receptor expression. In this pilot study, 68Ga-Pentixafor retention has been observed in the vast majority of glioblastoma lesions and served as readout for non-invasive determination of CXCR4 expression. Given the paramount importance of the CXCR4/SDF-1 axis in tumor biology, 68Ga-Pentixafor-PET/CT might prove a useful tool for sensitive, non-invasive in-vivo quantification of CXCR4 as well as selection of patients who might benefit from CXCR4-directed therapy. PMID:26909116

  2. Development of glutamatergic synapses in the rat retina: the postnatal expression of ionotropic glutamate receptor subunits.

    PubMed

    Hack, Iris; Koulen, Peter; Peichl, Leo; Brandstätter, Johann Helmut

    2002-01-01

    We examined the distribution of the AMPA glutamate receptor subunits GluR1 to GluR4, of the kainate receptor subunits GluR6/7 and KA2, and of the glutamate receptor subunits delta1/2, during postnatal development of the rat retina by immunocytochemistry and light microscopy using receptor subunit specific antisera. The various ionotropic glutamate receptor subunits were expressed early in postnatal rat retina, and most of the subunits, with the exception of delta1/2. were found in both synaptic layers of rat retina. The glutamate receptor subunits studied showed differences in their time of appearance, their spatial distribution patterns, and in their expression levels in the developing rat retina. Interestingly, most of the AMPA receptor subunits were expressed earlier than the kainate receptor subunits in the two synaptic layers of the retina, indicating that AMPA glutamate receptors play an important role in early postnatal glutamatergic synaptic transmission. We also studied the ultrastructural localization of the AMPA glutamate receptor subunits GluR1 to GluR4 by immunocytochemistry and electron microscopy in the inner plexiform layer of the mature rat retina. Most of the subunits were found postsynaptic to the ribbon synapses of OFF-cone, ON-cone, and rod bipolar cells. The results of this study suggest an involvement of ionotropic glutamate receptors in processes of synaptic maturation and the formation of synaptic circuitries in the developing plexiform layers of the retina. Furthermore, AMPA and kainate receptors play a role in synaptic processing and in the development of both the scotopic and photopic pathways in the rat retina.

  3. The farnesoid X receptor induces fetuin-B gene expression in human hepatocytes

    PubMed Central

    Murakami, Takeshi; Walczak, Robert; Caron, Sandrine; Duhem, Christian; Vidal, Vincent; Darteil, Raphaël; Staels, Bart

    2007-01-01

    FXR (farnesoid X receptor), a nuclear receptor activated by BAs (bile acids), is a key factor in the regulation of BA, lipid and carbohydrate metabolism. The recent development of synthetic FXR agonists and knockout mouse models has accelerated the discovery of FXR target genes. In the present study, we identify human fetuin-B as a novel FXR target gene. Treatment with FXR agonists increased fetuin-B expression in human primary hepatocytes and in the human hepatoma HepG2 cell line. In contrast, fetuin-B expression was not responsive to FXR agonist treatment in murine primary hepatocytes. Fetuin-B induction by FXR agonist was abolished upon FXR knockdown by siRNA (small interfering RNA). In addition to the previously described P1 promoter, we show that the human fetuin-B gene is also transcribed from an alternative promoter, termed P2. Transcription via the P2 promoter was induced by FXR agonist treatment, whereas P1 promoter activity was not sensitive to FXR agonist treatment. Two putative FXR-response elements [IR-1 (inverted repeat-1)] were identified in the region –1.6 kb upstream of the predicted P2 transcriptional start site. Both motifs bound FXR–RXR (retinoid X receptor) complexes in vitro and were activated by FXR in transient transfection reporter assays. Mutations in the IR-1 sites abolished FXR–RXR binding and activation. Taken together, these results identify human fetuin-B as a new FXR target gene in human hepatocytes. PMID:17655523

  4. Analysis of the cell surface expression of cytokine receptors using the surface protein biotinylation method.

    PubMed

    Pavel, Mahmud Arif; Lam, Clarissa; Kashyap, Parul; Salehi-Najafabadi, Zahra; Singh, Gurpreet; Yu, Yong

    2014-01-01

    Cytokines are pleiotropic, low-molecular-weight proteins that regulate the immune responses to infection and inflammation. They stimulate the immune responses by binding to cytokine receptors on the cell plasma membrane. Thus, knowledge of the expression level of particular cytokine receptors on cell surface is crucial for understanding the cytokine function and regulation. One of the techniques to explore the membrane embedded cytokine receptors is cell surface biotinylation. Biotinylated surface proteins can be rapidly purified through the strong interaction between biotin and streptavidin. Here, we describe the procedure for surface biotinylation and purification of biotinylated cytokine receptors for further downstream analysis. PMID:24908305

  5. Analysis of the cell surface expression of cytokine receptors using the surface protein biotinylation method.

    PubMed

    Pavel, Mahmud Arif; Lam, Clarissa; Kashyap, Parul; Salehi-Najafabadi, Zahra; Singh, Gurpreet; Yu, Yong

    2014-01-01

    Cytokines are pleiotropic, low-molecular-weight proteins that regulate the immune responses to infection and inflammation. They stimulate the immune responses by binding to cytokine receptors on the cell plasma membrane. Thus, knowledge of the expression level of particular cytokine receptors on cell surface is crucial for understanding the cytokine function and regulation. One of the techniques to explore the membrane embedded cytokine receptors is cell surface biotinylation. Biotinylated surface proteins can be rapidly purified through the strong interaction between biotin and streptavidin. Here, we describe the procedure for surface biotinylation and purification of biotinylated cytokine receptors for further downstream analysis.

  6. Spontaneous Cannabinoid Receptor 2 (CB2) Expression in the Cochlea of Adult Albino Rat and Its Up-Regulation after Cisplatin Treatment

    PubMed Central

    Trinidad, Almudena; Ramil, Elvira; Sánchez-López, Antonio J.; Coronado, Maria José; Martínez-Martínez, Esther; García, José Miguel; García-Berrocal, José Ramón; Ramírez-Camacho, Rafael

    2016-01-01

    We provide evidence for the presence of cannabinoid CB2 receptors in some cellular types of the cochlea of the adult albino rat. Cannabinoids and their receptors are increasingly being studied because of their high potential for clinical use. As a hyperspecialized portion of the peripheral nervous system, study of the expression and function of cannabinoid receptors in the hearing organ is of high interest. Stria vascularis and inner hair cells express CB2 receptor, as well as neurites and cell bodies of the spiral ganglion. Cellular types such as supporting cells and outer hair cells, in which the expression of other types of functional receptors has been reported, do not significantly express CB2 receptors in this study. An up-regulation of CB2 gene expression was detected after an ototoxic event such as cisplatin treatment, probably due to pro-inflammatory events triggered by the drug. That fact suggests promising potential of CB2 receptor as a therapeutic target for new treatments to palliate cisplatin-induced hearing loss and other ototoxic events which triggers inflammatory pathways. PMID:27564061

  7. Spontaneous Cannabinoid Receptor 2 (CB2) Expression in the Cochlea of Adult Albino Rat and Its Up-Regulation after Cisplatin Treatment.

    PubMed

    Martín-Saldaña, Sergio; Trinidad, Almudena; Ramil, Elvira; Sánchez-López, Antonio J; Coronado, Maria José; Martínez-Martínez, Esther; García, José Miguel; García-Berrocal, José Ramón; Ramírez-Camacho, Rafael

    2016-01-01

    We provide evidence for the presence of cannabinoid CB2 receptors in some cellular types of the cochlea of the adult albino rat. Cannabinoids and their receptors are increasingly being studied because of their high potential for clinical use. As a hyperspecialized portion of the peripheral nervous system, study of the expression and function of cannabinoid receptors in the hearing organ is of high interest. Stria vascularis and inner hair cells express CB2 receptor, as well as neurites and cell bodies of the spiral ganglion. Cellular types such as supporting cells and outer hair cells, in which the expression of other types of functional receptors has been reported, do not significantly express CB2 receptors in this study. An up-regulation of CB2 gene expression was detected after an ototoxic event such as cisplatin treatment, probably due to pro-inflammatory events triggered by the drug. That fact suggests promising potential of CB2 receptor as a therapeutic target for new treatments to palliate cisplatin-induced hearing loss and other ototoxic events which triggers inflammatory pathways. PMID:27564061

  8. Expression and Purification of Functional Ligand-binding Domains of T1R3 Taste Receptors

    SciTech Connect

    Nie,Y.; Hobbs, J.; Vigues, S.; Olson, W.; Conn, G.; Munger, S.

    2006-01-01

    Chemosensory receptors, including odor, taste, and vomeronasal receptors, comprise the largest group of G protein-coupled receptors (GPCRs) in the mammalian genome. However, little is known about the molecular determinants that are critical for the detection and discrimination of ligands by most of these receptors. This dearth of understanding is due in part to difficulties in preparing functional receptors suitable for biochemical and biophysical analyses. Here we describe in detail two strategies for the expression and purification of the ligand-binding domain of T1R taste receptors, which are constituents of the sweet and umami taste receptors. These class C GPCRs contain a large extracellular N-terminal domain (NTD) that is the site of interaction with most ligands and that is amenable to expression as a separate polypeptide in heterologous cells. The NTD of mouse T1R3 was expressed as two distinct fusion proteins in Escherichia coli and purified by column chromatography. Spectroscopic analysis of the purified NTD proteins shows them to be properly folded and capable of binding ligands. This methodology should not only facilitate the characterization of T1R ligand interactions but may also be useful for dissecting the function of other class C GPCRs such as the large family of orphan V2R vomeronasal receptors.

  9. Primary structure and functional expression of a guinea pig kappa opioid (dynorphin) receptor.

    PubMed Central

    Xie, G X; Meng, F; Mansour, A; Thompson, R C; Hoversten, M T; Goldstein, A; Watson, S J; Akil, H

    1994-01-01

    A full-length cDNA encoding the guinea pig kappa opioid (dynorphin) receptor has been isolated. The deduced protein contains 380 aa and seven hydrophobic alpha-helices characteristic of the G protein-coupled receptors. This receptor is 90% identical to the mouse and rat kappa receptors, with the greatest level of divergence in the N-terminal region. When expressed in COS-7 cells, the receptor displays high affinity and stereospecificity toward dynorphin peptides and other kappa-selective opioid ligands such as U50, 488. It does not bind the mu- and delta-selective opioid ligands. The expressed receptor is functionally coupled to G protein(s) to inhibit adenylyl cyclase and Ca2+ channels. The guinea pig kappa receptor mRNA is expressed in many brain areas, including the cerebellum, a pattern that agrees well with autoradiographic maps of classical guinea pig kappa binding sites. Species differences in the pharmacology and mRNA distribution between the cloned guinea pig and rat kappa receptors may be worthy of further examination. Images PMID:8170987

  10. Ewing's sarcoma family tumors are sensitive to tumor necrosis factor-related apoptosis-inducing ligand and express death receptor 4 and death receptor 5.

    PubMed

    Mitsiades, N; Poulaki, V; Mitsiades, C; Tsokos, M

    2001-03-15

    In this study, we investigated the sensitivity of Ewing's sarcoma family tumors (ESFTs) of children and adolescents to the tumor necrosis factor-related apoptosis-inducing Ligand (TRAIL). TRAIL binds to death receptors (DRs) DR4, DR5, DcR1, and DcR2. Either DR4 or DR5 can induce apoptosis, whereas DcR1 and DcR2 are considered inhibitory receptors. Nine of 10 ESFT cell lines, including several that were Fas resistant, underwent apoptosis with TRAIL through activation of caspase-10, capase-8 (FLICE), caspase-3, and caspase-9. In contrast to the Fas signaling pathway, caspase-10, but not caspase-8 or the Fas-associated death domain-containing molecule, was recruited to the TRAIL receptor-associated signaling complex. We found that 9 of 10 ESFT cell lines expressed both DR4 and DR5 by Western blotting, whereas the TRAIL-resistant line expressed only DR4. However, DR4 was absent from the cell surface in the resistant and two additional lines (three of five tested lines), suggesting that it may have been nonfunctional. On the contrary, DR5 was located on the cell surface in all four sensitive lines tested, being absent only from the cell surface of the resistant line that was also DR5-negative by Western blotting. In agreement with these findings, the resistance of the line was overcome by restoration of DR5 levels by transfection. Levels of DcR1 and DcR2 or levels of the FLICE-inhibitory protein (FLIP) did not correlate with TRAIL resistance, and protein synthesis inhibition did not sensitize the TRAIL-resistant line to TRAIL. Because these data suggested that sensitivity of ESFTs to TRAIL was mainly based on the presence of DR4/DR5, we investigated the presence of these receptors in 32 ESFT tissue sections by immunohistochemistry. We found that 23 of 32 tumor tissues (72%) expressed both receptors, 8 of 32 (25%) expressed one receptor only, and 1 was negative for both. Our finding of wide expression of DR4/DR5 in ESFT in vivo, in combination with their high sensitivity

  11. A constitutive promoter directs expression of the nerve growth factor receptor gene

    SciTech Connect

    Sehgal, A.; Patil, N.; Chao, M.

    1988-08-01

    Expression of nerve growth factor receptor is normally restricted to cells derived from the neural crest in a developmentally regulated manner. The authors analyzed promoter sequences for the human nerve growth factor receptor gene and found that the receptor promoter resembles others which are associated with constitutively expressed genes that have housekeeping and growth-related functions. Unlike these other genes, the initiation of transcription occurred at one major site rather than at multiple sites. The constitutive nature of the nerve growth factor receptor promoter may account for the ability of this gene to be transcribed in a diverse number of heterologous cells after gene transfer. The intron-exon structure of the receptor gene indicated that structural features are precisely divided into discrete domains.

  12. Age and stage dependency of estrogen receptor expression by lymphocyte precursors

    PubMed Central

    Igarashi, Hideya; Kouro, Taku; Yokota, Takafumi; Comp, Phillip C.; Kincade, Paul W.

    2001-01-01

    Sex steroids negatively regulate B lymphopoiesis in adult mice. Paradoxically, lymphocytes arise during fetal life, when estrogen levels are high and maternal lymphopoiesis is suppressed. Here we demonstrate that embryonic B lymphopoiesis was unaffected by estrogen, but sensitive to glucocorticoids. Both fetal and adult precursors contained glucocorticoid receptor transcripts, but only adult precursors expressed estrogen receptor α and β together with the androgen receptor. Fetal hematopoietic cells did not efficiently acquire functional estrogen receptors after transplantation to irradiated adult mice. Sex steroid receptors were also expressed in a stage- and developmental age-dependent fashion in human precursors. A developmental switch in responsiveness of hematopoietic cells to sex steroids may be essential for formation of the immune system. PMID:11752459

  13. Chromatin Modulatory Proteins and Olfactory Receptor Signaling in the Refinement and Maintenance of Fruitless Expression in Olfactory Receptor Neurons

    PubMed Central

    Li, Qingyun; Okuwa, Sumie; Peng, Bo; Wu, Jianni; Volkan, Pelin Cayirlioglu

    2016-01-01

    During development, sensory neurons must choose identities that allow them to detect specific signals and connect with appropriate target neurons. Ultimately, these sensory neurons will successfully integrate into appropriate neural circuits to generate defined motor outputs, or behavior. This integration requires a developmental coordination between the identity of the neuron and the identity of the circuit. The mechanisms that underlie this coordination are currently unknown. Here, we describe two modes of regulation that coordinate the sensory identities of Drosophila melanogaster olfactory receptor neurons (ORNs) involved in sex-specific behaviors with the sex-specific behavioral circuit identity marker fruitless (fru). The first mode involves a developmental program that coordinately restricts to appropriate ORNs the expression of fru and two olfactory receptors (Or47b and Ir84a) involved in sex-specific behaviors. This regulation requires the chromatin modulatory protein Alhambra (Alh). The second mode relies on the signaling from the olfactory receptors through CamK and histone acetyl transferase p300/CBP to maintain ORN-specific fru expression. Our results highlight two feed-forward regulatory mechanisms with both developmentally hardwired and olfactory receptor activity-dependent components that establish and maintain fru expression in ORNs. Such a dual mechanism of fru regulation in ORNs might be a trait of neurons driving plastic aspects of sex-specific behaviors. PMID:27093619

  14. Increased G Protein-Coupled Receptor Kinase (GRK) Expression in the Anterior Cingulate Cortex in Schizophrenia

    PubMed Central

    Funk, Adam J.; Haroutunian, Vahram; Meador-Woodruff, James H.; McCullumsmith, Robert E.

    2014-01-01

    Background Current pharmacological treatments for schizophrenia target G protein-coupled receptors (GPCRs), including dopamine receptors. Ligand bound GPCRs are regulated by a family of G protein-coupled receptor kinases (GRKs), members of which uncouple the receptor from heterotrimeric G proteins, desensitize the receptor, and induce receptor internalization via the arrestin family of scaffolding and signaling molecules. GRKs initiate the activation of downstream signaling pathways, can regulate receptors and signaling molecules independent of GPCR phosphorylation, and modulate epigenetic regulators like histone deacetylases (HDACs). We hypothesize that expression of GRK proteins are altered in schizophrenia, consistent with previous findings of alterations up and downstream from this family of molecules that facilitate intracellular signaling processes. Methods In this study we measured protein expression via Western blot analysis for GRKs 2, 3, 5, and 6 in the anterior cingulate cortex of patients with schizophrenia (N = 36) and a comparison group (N = 33). To control for antipsychotic treatment we measured these same targets in haloperidol treated vs. untreated rats (N = 10 for both). Results We found increased levels of GRK5 in schizophrenia. No changes were detected in GRK protein expression in rats treated with haloperidol decanoate for 9 months. Conclusion These data suggest that increased GRK5 expression may contribute the the pathophysiology of schizophrenia via abnormal regulation of the cytoskeleton, endocytosis, signaling, GPCRs, and histone modification. PMID:25153362

  15. mRNA expression of dopamine receptors in peripheral blood lymphocytes of computer game addicts.

    PubMed

    Vousooghi, Nasim; Zarei, Seyed Zeinolabedin; Sadat-Shirazi, Mitra-Sadat; Eghbali, Fatemeh; Zarrindast, Mohammad Reza

    2015-10-01

    Excessive playing of computer games like some other behaviors could lead to addiction. Addictive behaviors may induce their reinforcing effects through stimulation of the brain dopaminergic mesolimbic pathway. The status of dopamine receptors in the brain may be parallel to their homologous receptors in peripheral blood lymphocytes (PBLs). Here, we have investigated the mRNA expression of dopamine D3, D4 and D5 receptors in PBLs of computer game addicts (n = 20) in comparison to normal subjects (n = 20), using a real-time PCR method. The results showed that the expression level of D3 and D4 dopamine receptors in computer game addicts were not statistically different from the control group. However, the expression of the mRNA of D5 dopamine receptor was significantly down-regulated in PBLs of computer game addicts and reached 0.42 the amount of the control group. It is concluded that unlike with drug addiction, the expression levels of the D3 and D4 dopamine receptors in computer game addicts are not altered compared to the control group. However, reduced level of the D5 dopamine receptor in computer game addicts may serve as a peripheral marker in studies where the confounding effects of abused drugs are unwanted.

  16. Ionotropic glutamate receptors. Their possible role in the expression of hippocampal synaptic plasticity.

    PubMed

    Asztély, F; Gustafsson, B

    1996-02-01

    In the brain, most fast excitatory synaptic transmission is mediated through L-glutamate acting on postsynaptic ionotropic glutamate receptors. These receptors are of two kinds--the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)/kainate (non-NMDA) and the N-methyl-D-aspartate (NMDA) receptors, which are thought to be colocalized onto the same postsynaptic elements. This excitatory transmission can be modulated both upward and downward, long-term potentiation (LTP) and long-term depression (LTD), respectively. Whether the expression of LTP/LTD is pre-or postsynaptically located (or both) remains an enigma. This article will focus on what postsynaptic modifications of the ionotropic glutamate receptors may possibly underly long-term potentiation/depression. It will discuss the character of LTP/ LTD with respect to the temporal characteristics and to the type of changes that appears in the non-NMDA and NMDA receptor-mediated synaptic currents, and what constraints these findings put on the possible expression mechanism(s) for LTP/LTD. It will be submitted that if a modification of the glutamate receptors does underly LTP/LTD, an increase/ decrease in the number of functional receptors is the most plausible alternative. This change in receptor number will have to include a coordinated change of both the non-NMDA and the NMDA receptors.

  17. Dilated cardiomyopathy alters the expression patterns of CAR and other adenoviral receptors in human heart.

    PubMed

    Toivonen, Raine; Mäyränpää, Mikko I; Kovanen, Petri T; Savontaus, Mikko

    2010-03-01

    Gene therapy trials for heart failure have demonstrated the key role of efficient gene transfer in achieving therapeutic efficacy. An attractive approach to improve adenoviral gene transfer is to use alternative virus serotypes with modified tropism. We performed a detailed analysis of cardiac expression of receptors for several adenovirus serotypes with a focus on differential expression of CAR and CD46, as adenoviruses targeting these receptors have been used in various applications. Explanted hearts from patients with DCM and healthy donors were analyzed using Q-RT-PCR, western blot and immunohistochemistry. Q-RT-PCR and Western analyses revealed robust expression of all receptors except CD80 in normal hearts with lower expression levels in DCM. Immunohistochemical analyses demonstrated that CD46 expression was somewhat higher than CAR both in normal and DCM hearts with highest levels of expression in intramyocardial coronary vessels. Total CAR expression was upregulated in DCM. Triple staining on these vessels demonstrated that both CAR and CD46 were confined to the subendothelial layer in normal hearts. The situation was clearly different in DCM, where both CAR and CD46 were expressed by endothelial cells. The induction of expression of CAR and CD46 by endothelial cells in DCM suggests that viruses targeting these receptors could more easily gain entry to heart cells after intravascular administration. This finding thus has potential implications for the development of targeted gene therapy for heart failure.

  18. Chronic exposure to morphine decreases the expression of EAAT3 via opioid receptors in hippocampal neurons.

    PubMed

    Guo, Mingyan; Cao, Dexiong; Zhu, Siyu; Fu, Ganglan; Wu, Qiang; Liang, Jianjun; Cao, Minghui

    2015-12-01

    Alterations in glutamate transporter expression are closely related to opiate addition behavior, but the role of opioid receptors is unclear. In this study, we used primary cultures of hippocampal neurons from neonatal rats to study the effects of chronic exposure to morphine on excitatory amino acid transporter 3 (EAAT3) expression and the roles of µ opioid receptor (MOR), δ opioid receptor (DOR), and κ opioid receptor (KOR) in the morphine-dependent alterations in EAAT3 expression. The results showed that the EAAT3 protein and mRNA expression levels decreased significantly after chronic exposure to morphine (10μmol/L) for 48h, whereas the concentration of extracellular glutamate increased. In addition, we found that both the MOR inhibitor CTOP and the DOR inhibitor naltrindole could reverse the decreased expression of EAAT3 after exposure to morphine, whereas the MOR activator DAMGO and the DOR activator DPDPE significantly decreased EAAT3 expression. The KOR inhibitor had no effect on the expression of EAAT3, whereas its activator increased EAAT3 expression. These results suggest that the down-regulation of morphine-dependent EAAT3 expression in primary rat hippocampal cultures may be mediated by MOR and DOR and that KOR may not contribute significantly to this effect.

  19. Substantial expression of luteinizing hormone-releasing hormone (LHRH) receptor type I in human uveal melanoma

    PubMed Central

    Schally, Andrew V.; Block, Norman L; Dezso, Balazs; Olah, Gabor; Rozsa, Bernadett; Fodor, Klara; Buglyo, Armin; Gardi, Janos; Berta, Andras; Halmos, Gabor

    2013-01-01

    Uveal melanoma is the most common primary intraocular malignancy in adults, with a very high mortality rate due to frequent liver metastases. Consequently, the therapy of uveal melanoma remains a major clinical challenge and new treatment approaches are needed. For improving diagnosis and designing a rational and effective therapy, it is essential to elucidate molecular characteristics of this malignancy. The aim of this study therefore was to evaluate as a potential therapeutic target the expression of luteinizing hormone-releasing hormone (LHRH) receptor in human uveal melanoma. The expression of LHRH ligand and LHRH receptor transcript forms was studied in 39 human uveal melanoma specimens by RT-PCR using gene specific primers. The binding charachteristics of receptors for LHRH on 10 samples were determined by ligand competition assays. The presence of LHRH receptor protein was further evaluated by immunohistochemistry. The expression of mRNA for type I LHRH receptor was detected in 18 of 39 (46%) of tissue specimens. mRNA for LHRH-I ligand could be detected in 27 of 39 (69%) of the samples. Seven of 10 samples investigated showed high affinity LHRH-I receptors. The specific presence of full length LHRH receptor protein was further confirmed by immunohistochemistry. A high percentage of uveal melanomas express mRNA and protein for type-I LHRH receptors. Our results support the merit of further investigation of LHRH receptors in human ophthalmological tumors. Since diverse analogs of LHRH are in clinical trials or are already used for the treatment of various cancers, these analogs could be considered for the LHRH receptor-based treatment of uveal melanoma. PMID:24077773

  20. Cloning the promoter for transforming growth factor-beta type III receptor. Basal and conditional expression in fetal rat osteoblasts

    NASA Technical Reports Server (NTRS)

    Ji, C.; Chen, Y.; McCarthy, T. L.; Centrella, M.

    1999-01-01

    Transforming growth factor-beta binds to three high affinity cell surface molecules that directly or indirectly regulate its biological effects. The type III receptor (TRIII) is a proteoglycan that lacks significant intracellular signaling or enzymatic motifs but may facilitate transforming growth factor-beta binding to other receptors, stabilize multimeric receptor complexes, or segregate growth factor from activating receptors. Because various agents or events that regulate osteoblast function rapidly modulate TRIII expression, we cloned the 5' region of the rat TRIII gene to assess possible control elements. DNA fragments from this region directed high reporter gene expression in osteoblasts. Sequencing showed no consensus TATA or CCAAT boxes, whereas several nuclear factors binding sequences within the 3' region of the promoter co-mapped with multiple transcription initiation sites, DNase I footprints, gel mobility shift analysis, or loss of activity by deletion or mutation. An upstream enhancer was evident 5' proximal to nucleotide -979, and a silencer region occurred between nucleotides -2014 and -2194. Glucocorticoid sensitivity mapped between nucleotides -687 and -253, whereas bone morphogenetic protein 2 sensitivity co-mapped within the silencer region. Thus, the TRIII promoter contains cooperative basal elements and dispersed growth factor- and hormone-sensitive regulatory regions that can control TRIII expression by osteoblasts.

  1. Clinical review: Role of triggering receptor expressed on myeloid cells-1 during sepsis

    PubMed Central

    Gibot, Sébastien

    2005-01-01

    Triggering receptor expressed on myeloid cells (TREM)-1 is a recently identified molecule that is involved in monocytic activation and in the inflammatory response. It belongs to a family related to the natural killer cell receptors and is expressed on neutrophils, mature monocytes and macrophages. The inflammatory response mediated by Toll-like receptor-2 and -4 stimulation is amplified by the engagement of TREM-1. The expression of membrane-bound TREM-1 is greatly increased on monocytes during sepsis. Moreover, infection induces the release of a soluble form of this receptor, which can be measured in biological fluid and may be useful as a diagnostic tool. Modulation of the TREM-1 signalling pathway by the use of small synthetic peptides confers interesting survival advantages during experimental septic shock in mice, even when this teatment is administered late after the onset of sepsis. PMID:16277737

  2. Expression and localization of the omega-3 fatty acid receptor GPR120 in human term placenta.

    PubMed

    Lager, S; Ramirez, V I; Gaccioli, F; Jansson, T; Powell, T L

    2014-07-01

    Fatty acids can function as signaling molecules, acting through receptors in the cytosol or on the cell surface. G-Protein Receptor (GPR)120 is a membrane-bound receptor mediating anti-inflammatory and insulin-sensitizing effects of the omega-3 fatty acid docohexaenoic acid (DHA). GPR120 dysfunction is associated with obesity in humans. Cellular localization of GPR120 and the influence of maternal obesity on GPR120 protein expression in the placenta are unknown. Herein we demonstrate that GPR120 is predominantly expressed in the microvillous membrane (MVM) of human placenta and that the expression level of this receptor in MVM is not altered by maternal body mass index (BMI).

  3. Regulation of interferon receptor expression in human blood lymphocytes in vitro and during interferon therapy

    SciTech Connect

    Lau, A.S.; Hannigan, G.E.; Freedman, M.H.; Williams, B.R.

    1986-05-01

    Interferons (IFN) elicit antiviral and antineoplastic activities by binding to specific receptors on the cell surface. The binding characteristics of IFN to human lymphocytes were studied using IFN alpha 2 labeled with /sup 125/I to high specific activity. The specific binding curves generated were analyzed by the LIGAND program of Munson and Rodbard to determine receptor numbers. The number of receptors in peripheral blood lymphocytes (PBL) and tonsillar B-lymphocytes (TBL) from normal individuals were 505 +/- 293 (n = 10) and 393 +/- 147 (n = 3) respectively. When these cells were preincubated in vitro with unlabeled IFN alpha 2, the receptor number decreased to 82 +/- 45 and 61 +/- 16 respectively. Receptor binding activities recovered gradually over a period of 72 h when the cells were incubated in IFN-free medium. This recovery of receptors could be blocked by the addition of actinomycin D to the incubation medium. A similar decrease in receptor expression was observed in vivo in PBL from patients being treated daily with 5 X 10(6) units/m2 per d of IFN alpha 2 by subcutaneous injection, for acute lymphoblastic leukemia or papilloma virus infections. Receptor numbers in PBL in vivo were further reduced concurrent with the progression of IFN therapy. Thus, the reduction in IFN receptor expression observed in vitro can be demonstrated in vivo. These studies indicate that monitoring IFN receptor expression in vivo can provide information regarding the availability of IFN receptors at the cell surface for the mediation of IFN actions during the course of IFN therapy.

  4. Expression of neuropeptide receptor mRNA during osteoblastic differentiation of mouse iPS cells.

    PubMed

    Nagao, Satomi; Goto, Tetsuya; Kataoka, Shinji; Toyono, Takashi; Joujima, Takaaki; Egusa, Hiroshi; Yatani, Hirofumi; Kobayashi, Shigeru; Maki, Kenshi

    2014-12-01

    Various studies have shown a relationship between nerves and bones. Recent evidence suggests that both sensory and sympathetic nerves affect bone metabolism; however, little is known about how neuropeptides are involved in the differentiation of pluripotent stem cells into osteoblastic (OB) cells. To evaluate the putative effects of neuropeptides during the differentiation of mouse induced pluripotent stem (iPS) cells into calcified tissue-forming OB cells, we investigated the expression patterns of neuropeptide receptors at each differentiation stage. Mouse iPS cells were seeded onto feeder cells and then transferred to low-attachment culture dishes to form embryoid bodies (EBs). EBs were cultured for 4 weeks in osteoblastic differentiation medium. The expression of α1-adrenergic receptor (AR), α2-AR, β2-AR, neuropeptide Y1 receptor (NPY1-R), neuropeptide Y2 receptor (NPY2-R), calcitonin gene-related protein receptor (CGRP-R), and neurokinin 1-R (NK1-R) was assessed by reverse transcription-polymerase chain reaction (RT-PCR) and real-time PCR. Among these neuropeptide receptors, CGRP-R and β2-AR were expressed at all stages of cell differentiation, including the iPS cell stage, with peak expression occurring at the early osteoblastic differentiation stage. Another sensory nervous system receptor, NK1-R, was expressed mainly in the late osteoblastic differentiation stage. Furthermore, CGRP-R mRNA showed an additional small peak corresponding to EBs cultured for 3 days, suggesting that EBs may be affected by serum CGRP. These data suggest that the sensory nervous system receptor CGRP-R and the sympathetic nervous system receptor β2-AR may be involved in the differentiation of iPS cells into the osteoblastic lineage. It follows from these findings that CGRP and β2-AR may regulate cell differentiation in the iPS and EB stages, and that each neuropeptide has an optimal period of influence during the differentiation process. PMID:25464890

  5. Adrenocorticotropin receptors: Functional expression from rat adrenal mRNA in Xenopus laevis oocytes

    SciTech Connect

    Mertz, L.M.; Catt, K.J. )

    1991-10-01

    The adrenocorticotropin (ACTH) receptor, which binds corticotropin and stimulates adenylate cyclase and steroidogenesis in adrenocortical cells, was expressed in Xenopus laevis oocytes microinjected with rat adrenal poly(A){sup +} RNA. Expression of the ACTH receptor in individual stage 5 and 6 oocytes was monitored by radioimmunoassay of ligand-stimulated cAMP production. Injection of 5-40 ng of adrenal mRNA caused dose-dependent increases in ACTH-responsive cAMP production. Size fractionation of rat adrenal poly(A){sup +}RNA by sucrose density-gradient centrifugation revealed that mRNA encoding the ACTH receptor was present in the 1.1-to 2.0-kilobase fraction. These data indicate that ACTH receptors can be expressed from adrenal mRNA in Xenopus oocytes and are fully functional in terms of ligand specificity and signal generation. The extracellular cAMP response to ACTH is a sensitive and convenient index of receptor expression. This system should permit more complete characterization and expression cloning of the ACTH receptor.

  6. Potentiation of GABAA receptors expressed in Xenopus oocytes by perfume and phytoncid.

    PubMed

    Aoshima, H; Hamamoto, K

    1999-04-01

    To study the effects of perfume and phytoncid on GABAA receptors, ionotropic GABAA receptors were expressed in Xenopus oocytes by injecting mRNAs that had been prepared from rat whole brain. Essential oil, perfume and such phytoncid as leaf alcohol, hinokitiol, pinene, eugenol, citronellol and citronellal potentiated the response in the presence of GABA at low concentrations (10 and 30 microM), possibly because they bound to the potentiation-site in GABAA receptors and increased the affinity of GABA to the receptors. Since it is known that the potentiation of GABAA receptors by benzodiazepine, barbiturate, steroids and anesthetics induces the anxiolytic, anticonvulsant and sedative activity or anesthetic effect, these results suggest the possibility that the intake of perfume or phytoncid through the lungs, the skin or the intestines modulates the neural transmission in the brain through ionotropic GABAA receptors and changes the frame of the human mind, as alcohol or tobacco does.

  7. B cell receptor induced Fc receptor-like 5 expression is mediated by multiple signaling pathways converging on NF-κB and NFAT.

    PubMed

    Damdinsuren, Bazarragchaa; Dement-Brown, Jessica; Li, Huifang; Tolnay, Mate

    2016-05-01

    Fc receptor-like (FCRL) proteins are novel regulators of the B cell response to antigen. Human FCRL5 binds intact IgG and modifies the strength of antigen receptor (BCR) signaling. Altering FCRL5 expression could therefore regulate the B cell response to antigen. In this study, we found that FCRL5 expression is induced specifically upon BCR stimulation and dissected the molecular mechanism. FCRL5 mRNA and cell surface protein expression required prolonged BCR stimulation and de novo protein synthesis. Using chemical inhibitors and activators, we identified roles for several signaling pathways, indicating a complex mechanism. Specifically, the PI3K/AKT, JNK, PKC and IKK2-dependent classical NF-κB pathways were involved in induced FCRL5 expression. Furthermore, induced FCRL5 expression required elevation of intracellular Ca(++) and was partially blocked by cyclosporine A, a calcineurin inhibitor. The importance of the transcription factors NF-κB, NFAT and CREB-binding protein was revealed based on sensitivity to inhibitors. Using reporter gene assays, we showed that the core FCRL5 promoter was sufficient to drive induced gene expression. Mutations of two predicted NF-κB sites or an NFAT site in the core promoter abrogated induced gene expression, suggesting direct regulation of the FCRL5 gene by NF-κB and NFAT. In support, we detected binding of NF-κB and NFAT family proteins to oligonucleotides corresponding to the predicted sites. We propose that the identified intricate mechanism serves to ensure that FCRL5 is expressed on B cells at a precise time following antigen encounter, with potential implications regarding regulation of the B cell response.

  8. Estrogen Receptor 1 Gene Expression and Its Combination with Estrogen Receptor 2 or Aromatase Expression Predicts Survival in Non-Small Cell Lung Cancer

    PubMed Central

    Aresti, Unai; Carrera, Sergio; Iruarrizaga, Eluska; Fuente, Natalia; Marrodan, Ines; de Lobera, Abigail Ruiz; Muñoz, Alberto; Buque, Aitziber; Condori, Elizabeth; Ugalde, Irene; Calvo, Begoña; Vivanco, Guillermo López

    2014-01-01

    The biological roles of estrogen receptor 1 (ERS1), estrogen receptor 2 (ERS2), and aromatase (CYP19A1) genes in the development of non-small cell lung cancer (NSCLC) is unclear, as is the use of their expression as a prognostic factor. The aim of this study was to investigate the prognostic value of estrogen receptors and aromatase mRNA expression, along with aromatase protein concentration, in resected NSCLC patients. Tumor and non-tumor lung tissue samples were analyzed for the mRNA expression of ERS1, ERS2 and CYP19A1 by RT-PCR. Aromatase concentration was measured with an ELISA. A total of 96 patients were included. ERS1 expression was significantly higher in non-tumor tissue than in tumor samples. Two gene expression categories were created for each gene (and protein): high and low. ERS1 high category showed increased overall survival (OS) when compared to the low expression category. Aromatase protein concentration was significantly higher in tumor samples. Higher ERS1 expression in tumor tissues was related to longer overall survival. The analysis of gene expression combinations provides evidence for longer OS when both ERS1 and ERS2 are highly expressed. ESR1, alone or in combination with ERS2 or CYP19A1, is the most determining prognostic factor within the analyzed 3 genes. It seems that ERS1 can play a role in NSCLC prognosis, alone or in combination with other genes such as ERS2 or Cyp19a1. ERS2 in combination with aromatase concentration could have a similar function. PMID:25310221

  9. Uterine and placental expression of canine oxytocin receptor during pregnancy and normal and induced parturition.

    PubMed

    Gram, A; Boos, A; Kowalewski, M P

    2014-06-01

    Oxytocin (OT) plays an important role as an inducer of uterine contractility, acting together with its receptor (OTR) to increase synthesis of prostaglandins. Although OT is commonly used in the treatment for dystocia and uterine inertia in the bitch, little attention has been paid to the role of OT in mechanisms regulating parturition in the dog, so that knowledge about the expression of OTR in the canine uterus and placenta is sparse. Consequently, the expression and cellular localization of OTR were investigated in canine utero/placental compartments and interplacental sites throughout pregnancy and at normal and antigestagen-induced parturition, by real-time PCR, immunohistochemistry, western blot and in situ hybridization. The utero/placental and interplacental expression of OTR was constant from pre-implantation until mid-gestation, with a significant increase observed at prepartum luteolysis. In antigestagen-treated mid-pregnant dogs, OTR was upregulated in both interplacental and utero/placental samples. Besides clear myometrial signals, cellular localization of OTR was evident in the endometrial surface epithelial, stromal and vascular endothelial cells. Weaker signals were observed in superficial and deep uterine glandular epithelial cells. Placental OTR was localized in maternal decidual cells and capillary pericytes. Finally, OTR was colocalized with the progesterone receptor (PGR) in maternal decidual cells, coinciding with previously reported increased availability of prostaglandins in the foetal part of the placenta during normal and induced parturition. These findings suggest involvement of OTR in the signalling cascade leading to the prepartum release of prostaglandins from the pregnant canine uterus.

  10. Thyroid hormone exerts negative feedback on hypothalamic type 4 melanocortin receptor expression.

    PubMed

    Decherf, Stéphanie; Seugnet, Isabelle; Kouidhi, Soumaya; Lopez-Juarez, Alejandra; Clerget-Froidevaux, Marie-Stéphanie; Demeneix, Barbara A

    2010-03-01

    The type 4 melanocortin receptor MC4R, a key relay in leptin signaling, links central energy control to peripheral reserve status. MC4R activation in different brain areas reduces food intake and increases energy expenditure. Mice lacking Mc4r are obese. Mc4r is expressed by hypothalamic paraventricular Thyrotropin-releasing hormone (TRH) neurons and increases energy usage through activation of Trh and production of the thyroid hormone tri-iodothyronine (T(3)). These facts led us to test the hypothesis that energy homeostasis should require negative feedback by T(3) on Mc4r expression. Quantitative PCR and in situ hybridization showed hyperthyroidism reduces Mc4r mRNA levels in the paraventricular nucleus. Comparative in silico analysis of Mc4r regulatory regions revealed two evolutionarily conserved potential negative thyroid hormone-response elements (nTREs). In vivo ChIP assays on mouse hypothalamus demonstrated association of thyroid hormone receptors (TRs) with a region spanning one nTRE. Further, in vivo gene reporter assays revealed dose-dependent T(3) repression of transcription from the Mc4r promoter in mouse hypothalamus, in parallel with T(3)-dependent Trh repression. Mutagenesis of the nTREs in the Mc4r promoter demonstrated direct regulation by T(3), consolidating the ChIP results. In vivo shRNA knockdown, TR over-expression approaches and use of mutant mice lacking specific TRs showed that both TRalpha and TRbeta contribute to Mc4r regulation. T(3) repression of Mc4r transcription ensures that the energy-saving effects of T(3) feedback on Trh are not overridden by MC4R activation of Trh. Thus parallel repression by T(3) on hypothalamic Mc4r and Trh contributes to energy homeostasis.

  11. Thyroid hormone exerts negative feedback on hypothalamic type 4 melanocortin receptor expression

    PubMed Central

    Decherf, Stéphanie; Seugnet, Isabelle; Kouidhi, Soumaya; Lopez-Juarez, Alejandra; Clerget-Froidevaux, Marie-Stéphanie; Demeneix, Barbara A.

    2010-01-01

    The type 4 melanocortin receptor MC4R, a key relay in leptin signaling, links central energy control to peripheral reserve status. MC4R activation in different brain areas reduces food intake and increases energy expenditure. Mice lacking Mc4r are obese. Mc4r is expressed by hypothalamic paraventricular Thyrotropin-releasing hormone (TRH) neurons and increases energy usage through activation of Trh and production of the thyroid hormone tri-iodothyronine (T3). These facts led us to test the hypothesis that energy homeostasis should require negative feedback by T3 on Mc4r expression. Quantitative PCR and in situ hybridization showed hyperthyroidism reduces Mc4r mRNA levels in the paraventricular nucleus. Comparative in silico analysis of Mc4r regulatory regions revealed two evolutionarily conserved potential negative thyroid hormone-response elements (nTREs). In vivo ChIP assays on mouse hypothalamus demonstrated association of thyroid hormone receptors (TRs) with a region spanning one nTRE. Further, in vivo gene reporter assays revealed dose-dependent T3 repression of transcription from the Mc4r promoter in mouse hypothalamus, in parallel with T3-dependent Trh repression. Mutagenesis of the nTREs in the Mc4r promoter demonstrated direct regulation by T3, consolidating the ChIP results. In vivo shRNA knockdown, TR over-expression approaches and use of mutant mice lacking specific TRs showed that both TRα and TRβ contribute to Mc4r regulation. T3 repression of Mc4r transcription ensures that the energy-saving effects of T3 feedback on Trh are not overridden by MC4R activation of Trh. Thus parallel repression by T3 on hypothalamic Mc4r and Trh contributes to energy homeostasis. PMID:20160073

  12. Molecular cloning and tissue-specific expression of a gonadotropin-releasing hormone receptor in the Japanese eel.

    PubMed

    Okubo, K; Suetake, H; Usami, T; Aida, K

    2000-08-01

    Gonadotropin-releasing hormone (GnRH) is a key regulatory neuropeptide involved in the control of reproduction in vertebrates. In the Japanese eel, one of the most primitive teleost species, two molecular forms of GnRH, mammalian-type GnRH and chicken-II-type GnRH (cGnRH-II), have been identified. This study has isolated a full-length cDNA for a GnRH receptor from the pituitary of the eel. The 3233-bp cDNA encodes a 380-amino acid protein which contains seven hydrophobic transmembrane domains and N- and C-terminal regions. The exon/intron organization of the open reading frame of the eel GnRH receptor gene was also determined. The open reading frame consists of three exons and two introns. The exon-intron splice site is similar to that of the GnRH receptor genes of mammals reported so far. Expression of the eel GnRH receptor was detected in various parts of the brain, pituitary, eye, olfactory epithelium, and testis. This result suggests that GnRH has local functions in these tissues in addition to its actions on gonadotropin synthesis and release in the pituitary. This tissue-specific expression pattern is similar to that of the eel cGnRH-II. Furthermore, the present eel receptor shows very high amino acid identity with the catfish and goldfish GnRH receptors, which are highly selective for the cGnRH-II. These results suggest that the cGnRH-II acts through binding to the present receptor in the eel.

  13. Pattern of oestrogen, progesterone and Her2neu receptors expression in a heterogeneous carcinoma of the breast in a lactating woman.

    PubMed

    Naim, Mohammed; Kumar, Amit; Gaur, Kavita; John, Vanesa T

    2010-11-23

    Oestrogen-progestrone-Her2neu receptor status was studied in various loci/foci of heterogeneous carcinoma of the breast and its metastatic secretory component in the lymph node in a lactating woman. All the carcinoma variants were negative for the trio markers except tumour components evolved to secretory or lactating carcinoma, which showed focal positivity. Findings showed that oestrogenic receptors, progesterone receptors and Her2neu negative primitive carcinoma in a heterogenous breast cancer may evolve into oestrogen receptor, progesterone receptor and Her2neu positive secretory/lactating carcinoma alongside other receptor negative carcinoma variants. Focal marker positivity/negativity underlined the fact that a diagnostic/prognostic marker status report may account for the tumour area included in the section/sample only. Study of the immune marker expression/status in various loci may help identification of the components, morphogenesis and dynamics of heterogeneous carcinoma of the breast.

  14. Enhancing the expressiveness of structured reporting systems.

    PubMed

    Langlotz, C P

    2000-05-01

    The overall goal of this research is to build a structured reporting system that reduces the cost, delays, and inconvenience associated with conventional dictation and speech recognition systems. We have implemented such a structured reporting system for radiology that replaces current dictation and transcription processes by allowing radiologists and other imaging professionals to select imaging findings from a medical lexicon. The system uses an imaging-specific information model, called a "description set,' to organize selected terms in a relational database. Unique features of the knowledge representation that enhance its expressiveness include its ability to codify uncertainty about an imaging observation and to represent explicitly the logical relationships among imaging findings. In addition, the system does not require the user to fill in "blanks' in a static text template. Instead, it allows entry of terms in arbitrary order and uses automated text-generation techniques to create a text report that referring physicians are accustomed to receiving. In parallel, the system also produces a multimedia report that the referring physician can use as a quick reference. Unlike the results of conventional dictation or speech recognition, each finding is coded in a relational database for later information processing. Thus, the structured report database can be used to index images by content, to provide real-time decision support, to enhance radiologists' performance, to conduct exploratory clinical research, and to transmit imaging report data to computer-based patient record systems. PMID:10847362

  15. Expression of transcripts for two interleukin 8 receptors in human phagocytes, lymphocytes and melanoma cells.

    PubMed Central

    Moser, B; Barella, L; Mattei, S; Schumacher, C; Boulay, F; Colombo, M P; Baggiolini, M

    1993-01-01

    Two cDNAs coding for distinct interleukin 8 (IL-8) receptors, IL-8R1 [Murphy and Tiffany (1991) Science 253, 1280-1283] and IL-8R2 [Holmes, Lee, Kuang, Rice and Wood (1991) Science 253, 1278-1280] have been reported, and biochemical studies on human neutrophils have revealed two proteins (p70 and p44) that bind IL-8 with high affinity [Moser, Schumacher, von Tscharner, Clark-Lewis and Baggiolini (1991), J. Biol. Chem. 266, 10666-10671]. We have cloned the cDNA coding for IL-8R1 from a library of differentiated HL-60 cells. Transfection of this cDNA into Jurkat cells resulted in the expression of high-affinity binding for IL-8 and two related cytokines, GRO alpha and neutrophil-activating peptide 2 (Kd 0.5-1.0 nM). Northern-blot analysis with the IL-8R1 cDNA as probe revealed abundant expression of transcripts of different size in human neutrophils and low-level expression of a single RNA species in HL-60 cells differentiated with dimethyl sulphoxide and retinoic acid. Because of the extensive nucleotide sequence similarity of the cDNAs for IL-8R1 and IL-8R2, the reverse-transcription PCR method was used for analysis of RNA expression in myeloid and lymphoid cells, 19 cell lines established from human primary melanomas or metastases, two melanocyte and one fibroblast cell lines. IL-8R1 mRNA transcripts were expressed at high levels in neutrophils, and to a lesser extent in blood monocytes and the myeloid cell lines, HL-60 and AML 193, but were not found in THP-1 cells, lymphocytes and Jurkat cells. IL-8R2 mRNA transcripts, by contrast, were found in all blood cells and related cell lines, as well as in all melanoma, melanocyte and fibroblast cell lines tested. As for IL-8R1, IL-8R2 mRNA expression was highest in neutrophils. These results suggest that IL-8R1 and IL-8R2 may both be involved in neutrophil activation by IL-8 and related cytokines, and presumably correspond to p70 and p44, the receptors that were identified biochemically. Possible IL-8 functions on

  16. Platelets deficient in glycoprotein I have normal Fc receptor expression.

    PubMed

    Pfueller, S L; de Rosbo, N K; Bilston, R A

    1984-04-01

    Platelet glycoprotein I (GPI) is known to be required for the interaction of platelets with ristocetin and factor VIII:von Willebrand factor (VIII:vWf). However, its role as Fc receptor is not clear. Some studies have shown that enzymatic removal of GPI destroys the ability of platelets to react with VIII:vWf but not their ability to bind Ig G (IgG). Others have shown that IgG immune complexes which block the Fc receptor also inhibit VIII:vWf interaction with platelets. This subject has been re-examined by testing the ability of platelets with reduced amounts of GPI to aggregate and undergo the release reaction in response to stimuli which act at the platelet Fc receptor. Platelets from two patients with Bernard-Soulier syndrome, congenitally deficient in GPI, both aggregated and released 14C-serotonin normally when exposed to latex particles coated with IgG. Levels of GPI were decreased experimentally in normal platelets by treating them with chymotrypsin. Platelets treated in this manner did not aggregate or release [14C]serotonin in response to ristocetin-VIII:vWf. They did, however, both aggregate and release when incubated with heat-aggregated IgG, antigen-antibody complexes or latex particles coated with IgG. Thus the presence of GPI is not a prerequisite for platelet stimulation via the Fc receptor. PMID:6231945

  17. Receptor-binding cancer antigen expressed on SiSo cells induces apoptosis via ectodomain shedding.

    PubMed

    Sonoda, Kenzo; Miyamoto, Shingo; Nakashima, Manabu; Wake, Norio

    2010-07-01

    Receptor-binding cancer antigen expressed on SiSo cells (RCAS1) is a secreted antigen that induces apoptosis in putative receptor-expressing cells, including peripheral lymphocytes and natural killer (NK) cells. RCAS1 expression is associated with aggressive characteristics and poor overall survival for 15 different human malignancies. The putative RCAS1 receptor has not been isolated and the mechanism of RCAS1 apoptosis induction remains unclear. This study explores how RCAS1 is involved in apoptosis initiation. The cell lines SiSo and MCF-7, human uterine carcinoma and breast adenocarcinoma, respectively, both express RCAS1, but RCAS1 secretion is undetectable in MCF-7 cells. SiSo and MCF-7 cells were stimulated to induce RCAS1 ectodomain shedding followed by assessment of RCAS1 expression and secretion. Additionally, the RCAS1 putative receptor-expressing human chronic myelogenous leukemia cell line K562 was co-cultured with SiSo, MCF-7, or soluble RCAS1 to follow RCAS1 secretion in apoptosis initiation. RCAS1 secretion was strongly suppressed by inhibitors of metalloproteases, protein kinase C (PKC)-delta, mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase kinase (MEK), epidermal growth factor (EGF), and G-protein-coupled receptor (GPCR). K562 apoptosis could be induced only by co-culturing with SiSo or soluble RCAS1. RCAS1 is thus secreted by ectodomain shedding, which may represent a pivotal step in RCAS1-induced apoptosis initiation.

  18. Analysis of CC chemokine and chemokine receptor expression in solid ovarian tumours

    PubMed Central

    Scotton, C; Milliken, D; Wilson, J; Raju, S; Balkwill, F

    2001-01-01

    To understand the chemokine network in a tissue, both chemokine and chemokine receptor expression should be studied. Human epithelial ovarian tumours express a range of chemokines but little is known about the expression and localisation of chemokine receptors. With the aim of understanding chemokine action in this cancer, we investigated receptors for CC–chemokines and their ligands in 25 biopsies of human ovarian cancer. CC–chemokine receptor mRNA was generally absent from solid tumours, the exception being CCR1 which was detected in samples from 75% of patients. CCR1 mRNA localised to macrophages and lymphocytes and there was a correlation between numbers of CD8+ and CCR1 expressing cells (P = 0.031). mRNA for 6 CC-chemokines was expressed in a majority of tumour samples. In a monocytic cell line in vitro, we found that CCR1 mRNA expression was increased 5-fold by hypoxia. We suggest that the CC-chemokine network in ovarian cancer is controlled at the level of CC-chemokine receptors and this may account for the phenotypes of infiltrating cells found in these tumours. The leukocyte infiltrate may contribute to tumour growth and spread by providing growth survival factors and matrix metalloproteases. Thus, CCR1 may be a novel therapeutic target in ovarian cancer. http://www.bjcancer.com © 2001 Cancer Research Campaignhttp://www.bjcancer.com PMID:11556842

  19. Expression of NMDA receptor-dependent LTP in the hippocampus: bridging the divide

    PubMed Central

    2013-01-01

    A consensus has famously yet to emerge on the locus and mechanisms underlying the expression of the canonical NMDA receptor-dependent form of LTP. An objective assessment of the evidence leads us to conclude that both presynaptic and postsynaptic expression mechanisms contribute to this type of synaptic plasticity. PMID:23339575

  20. Differential expression of androgen, estrogen, and progesterone receptors in benign prostatic hyperplasia

    PubMed Central

    Song, Lingmin; Shen, Wenhao; Zhang, Heng; Wang, Qiwu; Wang, Yongquan; Zhou, Zhansong

    2016-01-01

    This study aimed to identify the differential expression levels of androgen receptor (AR), estrogen receptors (ERα, ERβ), and progesterone receptor (PGR) between normal prostate and benign prostatic hyperplasia (BPH). The combination of immunohistochemistry, quantitative real-time reverse transcription polymerase chain reaction, and Western blotting assay was used to identify the distribution and differential expression of these receptors at the immunoactive biomarker, transcriptional, and protein levels between 5 normal human prostate tissues and 40 BPH tissues. The results were then validated in a rat model of BPH induced by testosterone propionate and estradiol benzoate. In both human and rat prostate tissues, AR was localized mainly to epithelial and stromal cell nuclei; ERα was distributed mainly to stromal cells, but not exclusively; ERβ was interspersed in the basal layer of epithelium, but sporadically in epithelial and stromal cells; PGR was expressed abundantly in cytoplasm of epithelial and stromal cells. There were decreased expression of ERα and increased expression of PGR, but no difference in the expression of ERβ in the BPH compared to the normal prostate of both human and rat. Increased expression of AR in the BPH compared to the normal prostate of human was observed, however, the expression of AR in the rat prostate tissue was decreased. This study identified the activation of AR and PGR and repression of ERα in BPH, which indicate a promoting role of AR and PGR and an inhibitory role of ERα in the pathogenesis of BPH.

  1. Differential expression of androgen, estrogen, and progesterone receptors in benign prostatic hyperplasia.

    PubMed

    Song, Lingmin; Shen, Wenhao; Zhang, Heng; Wang, Qiwu; Wang, Yongquan; Zhou, Zhansong

    2016-07-01

    This study aimed to identify the differential expression levels of androgen receptor (AR), estrogen receptors (ERα, ERβ), and progesterone receptor (PGR) between normal prostate and benign prostatic hyperplasia (BPH). The combination of immunohistochemistry, quantitative real-time reverse transcription polymerase chain reaction, and Western blotting assay was used to identify the distribution and differential expression of these receptors at the immunoactive biomarker, transcriptional, and protein levels between 5 normal human prostate tissues and 40 BPH tissues. The results were then validated in a rat model of BPH induced by testosterone propionate and estradiol benzoate. In both human and rat prostate tissues, AR was localized mainly to epithelial and stromal cell nuclei; ERα was distributed mainly to stromal cells, but not exclusively; ERβ was interspersed in the basal layer of epithelium, but sporadically in epithelial and stromal cells; PGR was expressed abundantly in cytoplasm of epithelial and stromal cells. There were decreased expression of ERα and increased expression of PGR, but no difference in the expression of ERβ in the BPH compared to the normal prostate of both human and rat. Increased expression of AR in the BPH compared to the normal prostate of human was observed, however, the expression of AR in the rat prostate tissue was decreased. This study identified the activation of AR and PGR and repression of ERα in BPH, which indicate a promoting role of AR and PGR and an inhibitory role of ERα in the pathogenesis of BPH. PMID:27483178

  2. In Vivo Quantification of Tumor Receptor Binding Potential with Dual-Reporter Molecular Imaging

    PubMed Central

    Tichauer, Kenneth M.; Samkoe, Kimberley S.; Sexton, Kristian J.; Hextrum, Shannon K.; Yang, Harold H.; Klubben, W. Spencer; Gunn, Jason R.; Hasan, Tayyaba; Pogue, Brian W.

    2012-01-01

    Purpose Receptor availability represents a key component of current cancer management. However, no approaches have been adopted to do this clinically, and the current standard of care is invasive tissue biopsy. A dual-reporter methodology capable of quantifying available receptor binding potential of tumors in vivo within a clinically relevant time scale is presented. Procedures To test the methodology, a fluorescence imaging-based adaptation was validated against ex vivo and in vitro measures of epidermal growth factor receptor (EGFR) binding potential in four tumor lines in mice, each line expected to express a different level of EGFR. Results A strong correlation was observed between in vivo and ex vivo measures of binding potential for all tumor lines (r=0.99, p<0.01, slope=1.80±0.48, and intercept=−0.58±0.84) and between in vivo and in vitro for the three lines expressing the least amount of EGFR (r=0.99, p<0.01, slope=0.64±0.32, and intercept=0.47±0.51). Conclusions By providing a fast and robust measure of receptor density in tumors, the presented methodology has powerful implications for improving choices in cancer intervention, evaluation, and monitoring, and can be scaled to the clinic with an imaging modality like SPECT. PMID:22203241

  3. Ultraviolet B irradiation increases endothelin-1 and endothelin receptor expression in cultured human keratinocytes.

    PubMed

    Tsuboi, R; Sato, C; Oshita, Y; Hama, H; Sakurai, T; Goto, K; Ogawa, H

    1995-09-01

    The effect of ultraviolet B (UVB) irradiation on endothelin-1 (ET-1) and ET receptor expression was examined using cultured normal human keratinocytes. Keratinocytes secreted ET-1 in the medium at a level of 2.1 pg/day/10(5) cells. UVB irradiation up to 10 mJ/cm2 increased ET-1 secretion 3-fold, and potentiated expression of mRNA for ET-1. Both ETA and ETB receptor mRNAs were detected in keratinocytes, and their expression was up-regulated by 5 mJ/cm2 UVB irradiation.

  4. GRPR-targeted Protein Contrast Agents for Molecular Imaging of Receptor Expression in Cancers by MRI

    PubMed Central

    Pu, Fan; Qiao, Jingjuan; Xue, Shenghui; Yang, Hua; Patel, Anvi; Wei, Lixia; Hekmatyar, Khan; Salarian, Mani; Grossniklaus, Hans E.; Liu, Zhi-Ren; Yang, Jenny J.

    2015-01-01

    Gastrin-releasing peptide receptor (GRPR) is differentially expressed on the surfaces of various diseased cells, including prostate and lung cancer. However, monitoring temporal and spatial expression of GRPR in vivo by clinical MRI is severely hampered by the lack of contrast agents with high relaxivity, targeting capability and tumor penetration. Here, we report the development of a GRPR-targeted MRI contrast agent by grafting the GRPR targeting moiety into a scaffold protein with a designed Gd3+ binding site (ProCA1.GRPR). In addition to its strong binding affinity for GRPR (Kd = 2.7 nM), ProCA1.GRPR has high relaxivity (r1 = 42.0 mM−1s−1 at 1.5 T and 25 °C) and strong Gd3+ selectivity over physiological metal ions. ProCA1.GRPR enables in vivo detection of GRPR expression and spatial distribution in both PC3 and H441 tumors in mice using MRI. ProCA1.GRPR is expected to have important preclinical and clinical implications for the early detection of cancer and for monitoring treatment effects. PMID:26577829

  5. Linking ligand-induced alterations in androgen receptor structure to differential gene expression: a first step in the rational design of selective androgen receptor modulators.

    PubMed

    Kazmin, Dmitri; Prytkova, Tatiana; Cook, C Edgar; Wolfinger, Russell; Chu, Tzu-Ming; Beratan, David; Norris, J D; Chang, Ching-yi; McDonnell, Donald P

    2006-06-01

    We have previously identified a family of novel androgen receptor (AR) ligands that, upon binding, enable AR to adopt structures distinct from that observed in the presence of canonical agonists. In this report, we describe the use of these compounds to establish a relationship between AR structure and biological activity with a view to defining a rational approach with which to identify useful selective AR modulators. To this end, we used combinatorial peptide phage display coupled with molecular dynamic structure analysis to identify the surfaces on AR that are exposed specifically in the presence of selected AR ligands. Subsequently, we used a DNA microarray analysis to demonstrate that differently conformed receptors facilitate distinct patterns of gene expression in LNCaP cells. Interestingly, we observed a complete overlap in the identity of genes expressed after treatment with mechanistically distinct AR ligands. However, it was differences in the kinetics of gene regulation that distinguished these compounds. Follow-up studies, in cell-based assays of AR action, confirmed the importance of these alterations in gene expression. Together, these studies demonstrate an important link between AR structure, gene expression, and biological outcome. This relationship provides a firm underpinning for mechanism-based screens aimed at identifying SARMs with useful clinical profiles.

  6. Regulation of estrogen sulfotransferase expression by confluence of MCF10A breast epithelial cells: role of the aryl hydrocarbon receptor.

    PubMed

    Fu, Jiaqi; Fang, Hailin; Paulsen, Michelle; Ljungman, Mats; Kocarek, Thomas A; Runge-Morris, Melissa

    2011-11-01

    Estrogen sulfotransferase (SULT1E1) catalyzes the sulfonation of estrogens, which limits estrogen mitogenicity. We recently reported that SULT1E1 expression is low in preconfluent MCF10A human breast epithelial cells but increases when the cells become confluent. Pulse-chase labeling experiments with 5-bromouridine demonstrated that the confluence-mediated increase in SULT1E1 expression was due to increased mRNA synthesis. Because aryl hydrocarbon receptor (AhR) activation has been shown to suppress SULT1E1 expression and loss of cell-cell contact has been shown to activate the AhR in other cell types, we tested whether the confluence-associated changes in SULT1E1 expression were mediated by the AhR. Relative to confluent MCF10A cells, preconfluent cells had higher levels of CYP1A1 mRNA and greater activation of an AhR-responsive luciferase reporter, demonstrating that the AhR was active in the preconfluent cells. AhR and aryl hydrocarbon receptor nuclear translocator mRNA and protein levels were also higher in preconfluent than in confluent cultures. Treatment of preconfluent cells with the AhR antagonist, 3'-methoxy-4'-nitroflavone (MNF), or AhR knockdown significantly increased SULT1E1 expression. MCF10A cells stably transfected with a luciferase reporter containing ∼7 kilobases of the SULT1E1 5'-flanking region showed both MNF- and confluence-inducible luciferase expression. Preconfluent cells transiently transfected with the reporter showed both MNF treatment- and AhR knockdown-mediated luciferase induction, but mutation of a computationally predicted dioxin response element (DRE) at nucleotide (nt) -3476 did not attenuate these effects. These results demonstrate that SULT1E1 expression in MCF10A cells is transcriptionally regulated by confluence through a suppressive action of the AhR, which is not mediated through a DRE at nt -3476.

  7. Activation and modulation of recombinantly expressed serotonin receptor type 3A by terpenes and pungent substances.

    PubMed

    Ziemba, Paul M; Schreiner, Benjamin S P; Flegel, Caroline; Herbrechter, Robin; Stark, Timo D; Hofmann, Thomas; Hatt, Hanns; Werner, Markus; Gisselmann, Günter

    2015-11-27

    Serotonin receptor type 3 (5-HT3 receptor) is a ligand-gated ion channel that is expressed in the central nervous system (CNS) as well as in the peripheral nervous system (PNS). The receptor plays an important role in regulating peristalsis of the gastrointestinal tract and in functions such as emesis, cognition and anxiety. Therefore, a variety of pharmacologically active substances target the 5-HT3 receptor to treat chemotherapy-induced nausea and vomiting. The 5-HT3 receptors are activated, antagonized, or modulated by a wide range of chemically different substances, such as 2-methyl-serotonin, phenylbiguanide, setrones, or cannabinoids. Whereas the action of all of these substances is well described, less is known about the effect of terpenoids or fragrances on 5-HT3A receptors. In this study, we screened a large number of natural odorous and pungent substances for their pharmacological action on recombinantly expressed human 5-HT3A receptors. The receptors were functionally expressed in Xenopus oocytes and characterized by electrophysiological recordings using the two-electrode voltage-clamp technique. A screening of two odorous mixes containing a total of 200 substances revealed that the monoterpenes, thymol and carvacrol, act as both weak partial agonists and positive modulators on the 5-HT3A receptor. In contrast, the most effective blockers were the terpenes, citronellol and geraniol, as well as the pungent substances gingerol, capsaicin and polygodial. In our study, we identified new modulators of 5-HT3A receptors out of the classes of monoterpenes and vanilloid substances that frequently occur in various plants. PMID:26456648

  8. Antibodies to probe endogenous G protein-coupled receptor heteromer expression, regulation, and function

    PubMed Central

    Gomes, Ivone; Gupta, Achla; Bushlin, Ittai; Devi, Lakshmi A.

    2014-01-01

    Over the last decade an increasing number of studies have focused on the ability of G protein-coupled receptors to form heteromers and explored how receptor heteromerization modulates the binding, signaling and trafficking properties of individual receptors. Most of these studies were carried out in heterologous cells expressing epitope tagged receptors. Very little information is available about the in vivo physiological role of G protein-coupled receptor heteromers due to a lack of tools to detect their presence in endogenous tissue. Recent advances such as the generation of mouse models expressing fluorescently labeled receptors, of TAT based peptides that can disrupt a given heteromer pair, or of heteromer-selective antibodies that recognize the heteromer in endogenous tissue have begun to elucidate the physiological and pathological roles of receptor heteromers. In this review we have focused on heteromer-selective antibodies and describe how a subtractive immunization strategy can be successfully used to generate antibodies that selectively recognize a desired heteromer pair. We also describe the uses of these antibodies to detect the presence of heteromers, to study their properties in endogenous tissues, and to monitor changes in heteromer levels under pathological conditions. Together, these findings suggest that G protein-coupled receptor heteromers represent unique targets for the development of drugs with reduced side-effects. PMID:25520661

  9. Functional expression of the high affinity receptor for IgE (FcepsilonRI) in human platelets and its' intracellular expression in human megakaryocytes.

    PubMed

    Hasegawa, S; Pawankar, R; Suzuki, K; Nakahata, T; Furukawa, S; Okumura, K; Ra, C

    1999-04-15

    The high affinity IgE receptor (FcepsilonRI) expressed on the cell surface of mast cells and basophils is the key molecule in triggering the IgE-mediated allergic reaction. Recently, it was elucidated that the FcepsilonRI is expressed on a variety of other cells like Langerhans cells, monocytes, and eosinophils, and the functional importance of the FcepsilonRI expression in Langerhans cells was also shown. Some studies suggest that human platelets may play important roles in allergic inflammation through the cell-surface expression of the FcepsilonRII and FcgammaRII. Here, we report that human platelets and megakaryocytes constitutively express the messenger RNA and protein for the FcepsilonRI. Although the FcepsilonRI is expressed on the cell surface of human platelets, it is only detected in the cytoplasm of human megakaryocytes. We also confirmed that human platelets express the genes for the alpha, beta, and gamma chains of the FcepsilonRI without any defined mutations. Furthermore, stimulation of human platelets via the FcepsilonRI induced the release of serotonin and RANTES (Regulated on Activation, Normal T Expressed, and presumably Secreted). Taken together, these results suggest a novel and important role for human platelets in perpetuating allergic inflammation through the expression of and activation via the FcepsilonRI.

  10. Epidermal growth factor receptor-dependent stimulation of amphiregulin expression in androgen-stimulated human prostate cancer cells.

    PubMed Central

    Sehgal, I; Bailey, J; Hitzemann, K; Pittelkow, M R; Maihle, N J

    1994-01-01

    Amphiregulin is a heparin-binding epidermal growth factor (EGF)-related peptide that binds to the EGF receptor (EGF-R) with high affinity. In this study, we report a role for amphiregulin in androgen-stimulated regulation of prostate cancer cell growth. Androgen is known to enhance EGF-R expression in the androgen-sensitive LNCaP human prostate carcinoma cell line, and it has been suggested that androgenic stimuli may regulate proliferation, in part, through autocrine mechanisms involving the EGF-R. In this study, we demonstrate that LNCaP cells express amphiregulin mRNA and peptide and that this expression is elevated by androgenic stimulation. We also show that ligand-dependent EGF-R stimulation induces amphiregulin expression and that androgenic effects on amphiregulin synthesis are mediated through this EGF-R pathway. Parallel studies using the estrogen-responsive breast carcinoma cell line, MCF-7, suggest that regulation of amphiregulin by estrogen may also be mediated via an EGF-R pathway. In addition, heparin treatment of LNCaP cells inhibits androgen-stimulated cell growth further suggesting that amphiregulin can mediate androgen-stimulated LNCaP proliferation. Together, these results implicate an androgen-regulated autocrine loop composed of amphiregulin and its receptor in prostate cancer cell growth and suggest that the mechanism of steroid hormone regulation of amphiregulin synthesis may occur through androgen upregulation of the EGF-R and subsequent receptor-dependent pathways. Images PMID:8049525

  11. Mineralocorticoid receptor interaction with SP1 generates a new response element for pathophysiologically relevant gene expression

    PubMed Central

    Meinel, Sandra; Ruhs, Stefanie; Schumann, Katja; Strätz, Nicole; Trenkmann, Kay; Schreier, Barbara; Grosse, Ivo; Keilwagen, Jens; Gekle, Michael; Grossmann, Claudia

    2013-01-01

    The mineralocorticoid receptor (MR) is a ligand-induced transcription factor belonging to the steroid receptor family and involved in water-electrolyte homeostasis, blood pressure regulation, inflammation and fibrosis in the renocardiovascular system. The MR shares a common hormone-response-element with the glucocorticoid receptor but nevertheless elicits MR-specific effects including enhanced epidermal growth factor receptor (EGFR) expression via unknown mechanisms. The EGFR is a receptor tyrosine kinase that leads to activation of MAP kinases, but that can also function as a signal transducer for other signaling pathways. In the present study, we mechanistically investigate the interaction between a newly discovered MR- but not glucocorticoid receptor- responsive-element (=MRE1) of the EGFR promoter, specificity protein 1 (SP1) and MR to gain general insights into MR-specificity. Biological relevance of the interaction for EGFR expression and consequently for different signaling pathways in general is demonstrated in human, rat and murine vascular smooth muscle cells and cells of EGFR knockout mice. A genome-wide promoter search for identical binding regions followed by quantitative PCR validation suggests that the identified MR-SP1–MRE1 interaction might be applicable to other genes. Overall, a novel principle of MR-specific gene expression is explored that applies to the pathophysiologically relevant expression of the EGFR and potentially also to other genes. PMID:23821666

  12. Molecular cloning and characterization of a human eotaxin receptor expressed selectively on eosinophils

    PubMed Central

    1996-01-01

    The chemokine eotaxin is unusual in that it appears to be a highly specific chemoattractant for eosinophils. Ligand-binding studies with radiolabeled eotaxin demonstrated a receptor on eosinophils distinct from the known chemokine receptors CKR-1 and -2. The distinct eotaxin binding site on human eosinophils also bound RANTES (regulated on activation T expressed and secreted) and monocyte chemotactic protein (MCP)3. We have now isolated a cDNA from eosinophils, termed CKR-3, with significant sequence similarity to other well characterized chemokine receptors. Cells transfected with CKR-3 cDNA bound radiolabeled eotaxin specifically and with high affinity, comparable to the binding affinity observed with eosinophils. This receptor also bound RANTES and MCP-3 with high affinity, but not other CC or CXC chemokines. Furthermore, receptor transfectants generated in a murine B cell lymphoma cell line migrated in transwell chemotaxis assays to eotaxin, RANTES, and MCP-3, but not to any other chemokines. A monoclonal antibody recognizing CKR-3 was used to show that eosinophils, but not other leukocyte types, expressed this receptor. This pattern of expression was confirmed by Northern blot with RNA from highly purified leukocyte subsets. The restricted expression of CKR-3 on eosinophils and the fidelity of eotaxin binding to CKR-3, provides a potential mechanism for the selective recruitment and migration of eosinophils within tissues. PMID:8676064

  13. A membrane-bound Fas decoy receptor expressed by human thymocytes.

    PubMed

    Jenkins, M; Keir, M; McCune, J M

    2000-03-17

    Human thymocytes at several stages of maturation express Fas, yet resist apoptosis induction through its ligation. A proximal step in apoptotic signaling through Fas is implicated in this resistance, as these cells undergo normal levels of apoptosis induction after exposure to tumor necrosis factor-alpha. We studied the Fas receptors expressed in human thymocytes to search for mechanisms of receptor-mediated inhibition of Fas signaling in these cells. We describe here a unique, membrane-bound form of Fas receptor that contained a complete extracellular domain of Fas but that lacked a death domain due to alternative splicing of exon 7. This Fas decoy receptor (FDR) was shown to have nearly wild-type ability to bind native human Fas ligand and was expressed predominantly at the plasma membrane. Unlike soluble forms of Fas receptor, FDR dominantly inhibited apoptosis induction by Fas ligand in transfected human embryonic kidney cells. Titration of FDR in Fas-expressing cells suggests that FDR may operate through the formation of mixed receptor complexes. FDR also dominantly inhibited Fas-induced apoptosis in Jurkat T cells. In mixing experiments with wild-type Fas, FDR was capable of inhibiting death signaling at molar ratios less than 0.5, and this relative level of FDR:wild type message was observed in at least some thymocytes tested. The data suggest that Fas signal pathways in primary human cells may be regulated by expression of a membrane-bound decoy receptor, analogous to the regulation of tumor necrosis factor-related apoptosis inducing ligand (TRAIL)-induced apoptosis by decoy receptors.

  14. Testosterone-Dependent Interaction between Androgen Receptor and Aryl Hydrocarbon Receptor Induces Liver Receptor Homolog 1 Expression in Rat Granulosa Cells

    PubMed Central

    Wu, Yanguang; Baumgarten, Sarah C.; Zhou, Ping

    2013-01-01

    Androgens play a major role in the regulation of normal ovarian function; however, they are also involved in the development of ovarian pathologies. These contrasting effects may involve a differential response of granulosa cells to the androgens testosterone (T) and dihydrotestosterone (DHT). To determine the molecular pathways that mediate the distinct effects of T and DHT, we studied the expression of the liver receptor homolog 1 (LRH-1) gene, which is differentially regulated by these steroids. We found that although both T and DHT stimulate androgen receptor (AR) binding to the LRH-1 promoter, DHT prevents T-mediated stimulation of LRH-1 expression. T stimulated the expression of aryl hydrocarbon receptor (AHR) and its interaction with the AR. T also promoted the recruitment of the AR/AHR complex to the LRH-1 promoter. These effects were not mimicked by DHT. We also observed that the activation of extracellular regulated kinases by T is required for AR and AHR interaction. In summary, T, but not DHT, stimulates AHR expression and the interaction between AHR and AR, leading to the stimulation of LRH-1 expression. These findings could explain the distinct response of granulosa cells to T and DHT and provide a molecular mechanism by which DHT negatively affects ovarian function. PMID:23689136

  15. CREB activity in dopamine D1 receptor expressing neurons regulates cocaine-induced behavioral effects

    PubMed Central

    Bilbao, Ainhoa; Rieker, Claus; Cannella, Nazzareno; Parlato, Rosanna; Golda, Slawomir; Piechota, Marcin; Korostynski, Michal; Engblom, David; Przewlocki, Ryszard; Schütz, Günther; Spanagel, Rainer; Parkitna, Jan R.

    2014-01-01

    It is suggested that striatal cAMP responsive element binding protein (CREB) regulates sensitivity to psychostimulants. To test the cell-specificity of this hypothesis we examined the effects of a dominant-negative CREB protein variant expressed in dopamine receptor D1 (D1R) neurons on cocaine-induced behaviors. A transgenic mouse strain was generated by pronuclear injection of a BAC-derived transgene harboring the A-CREB sequence under the control of the D1R gene promoter. Compared to wild-type, drug-naïve mutants showed moderate alterations in gene expression, especially a reduction in basal levels of activity-regulated transcripts such as Arc and Egr2. The behavioral responses to cocaine were elevated in mutant mice. Locomotor activity after acute treatment, psychomotor sensitization after intermittent drug injections and the conditioned locomotion after saline treatment were increased compared to wild-type littermates. Transgenic mice had significantly higher cocaine conditioned place preference, displayed normal extinction of the conditioned preference, but showed an augmented cocaine-seeking response following priming-induced reinstatement. This enhanced cocaine-seeking response was associated with increased levels of activity-regulated transcripts and prodynorphin. The primary reinforcing effects of cocaine were not altered in the mutant mice as they did not differ from wild-type in cocaine self-administration under a fixed ratio schedule at the training dose. Collectively, our data indicate that expression of a dominant-negative CREB variant exclusively in neurons expressing D1R is sufficient to recapitulate the previously reported behavioral phenotypes associated with virally expressed dominant-negative CREB. PMID:24966820

  16. CREB activity in dopamine D1 receptor expressing neurons regulates cocaine-induced behavioral effects.

    PubMed

    Bilbao, Ainhoa; Rieker, Claus; Cannella, Nazzareno; Parlato, Rosanna; Golda, Slawomir; Piechota, Marcin; Korostynski, Michal; Engblom, David; Przewlocki, Ryszard; Schütz, Günther; Spanagel, Rainer; Parkitna, Jan R

    2014-01-01

    It is suggested that striatal cAMP responsive element binding protein (CREB) regulates sensitivity to psychostimulants. To test the cell-specificity of this hypothesis we examined the effects of a dominant-negative CREB protein variant expressed in dopamine receptor D1 (D1R) neurons on cocaine-induced behaviors. A transgenic mouse strain was generated by pronuclear injection of a BAC-derived transgene harboring the A-CREB sequence under the control of the D1R gene promoter. Compared to wild-type, drug-naïve mutants showed moderate alterations in gene expression, especially a reduction in basal levels of activity-regulated transcripts such as Arc and Egr2. The behavioral responses to cocaine were elevated in mutant mice. Locomotor activity after acute treatment, psychomotor sensitization after intermittent drug injections and the conditioned locomotion after saline treatment were increased compared to wild-type littermates. Transgenic mice had significantly higher cocaine conditioned place preference, displayed normal extinction of the conditioned preference, but showed an augmented cocaine-seeking response following priming-induced reinstatement. This enhanced cocaine-seeking response was associated with increased levels of activity-regulated transcripts and prodynorphin. The primary reinforcing effects of cocaine were not altered in the mutant mice as they did not differ from wild-type in cocaine self-administration under a fixed ratio schedule at the training dose. Collectively, our data indicate that expression of a dominant-negative CREB variant exclusively in neurons expressing D1R is sufficient to recapitulate the previously reported behavioral phenotypes associated with virally expressed dominant-negative CREB. PMID:24966820

  17. Developmental Changes is Expression of Beta-Adrenergic Receptors in Cultures of C2C12 Skeletal Muscle Cells

    NASA Technical Reports Server (NTRS)

    Young, Ronald B.; Bridge, K. Y.; Vaughn, J. R.

    2000-01-01

    beta-Adrenergic receptor (bAR) agonists have been reported to modulate growth in several mammalian and avian species, and bAR agonists presumably exert their physiological action on skeletal muscle cells through this receptor. Because of the importance of bAR regulation on muscle protein metabolism in muscle cells, the objectives of this study were to determine the developmental expression pattern of the bAR population in C2C12 skeletal muscle cells, and to analyze changes in both the quantity and isoform expression of the major muscle protein, myosin. The number of bAR in mononucleated C2C12 cells was approximately 8,000 bAR per cell, which is comparable with the population reported in several other nonmuscle cell types. However, the bar population increased after myoblast fusion to greater than 50,000 bAR per muscle cell equivalent. The reasons for this apparent over-expression of bAR in C2C12 cells is not known. The quantity of myosin also increased after C2C12 myoblast fusion, but the quantity of myosin was less than that reported in primary muscle cell cultures. Finally, at least five different isoforms of myosin heavy chain could be resolved in C2C12 cells, and three of these exhibited either increased or decreased developmental regulation relative to the others. Thus, C2C12 myoblasts undergo developmental regulation of bAR population and myosin heavy chain isoform expression.

  18. Chemokine receptor expression on the surface of peripheral blood mononuclear cells in Chagas disease.

    PubMed

    Talvani, Andre; Rocha, Manoel O C; Ribeiro, Antonio L; Correa-Oliveira, Rodrigo; Teixeira, Mauro M

    2004-01-15

    We evaluated the expression of chemokine receptors (CCR1, CCR2, CCR5, and CXCR4) on the surface of peripheral blood mononuclear cells obtained from patients with chronic chagasic cardiomyopathy (CCC) and noninfected individuals. Only CCR5 and CXCR4 expression was different on the surface of the subsets (CD4, CD8, and CD14) evaluated. Patients with mild CCC had elevated leukocyte expression of CCR5, compared with noninfected individuals or those with severe disease. CXCR4 expression was lower on leukocytes from patients with severe CCC. The differential expression of both receptors on leukocytes of patients with CCC was consistent and clearly correlated with the degree of heart function such that the lower the heart function, the lower the expression of either CCR5 or CXCR4. These results highlight the possible participation of the chemokine system in early forms of chagasic cardiomyopathy and the relevance of heart failure-induced remodeling in modifying immune parameters in infected individuals.

  19. Identification of four novel phosphorylation sites in estrogen receptor α: impact on receptor-dependent gene expression and phosphorylation by protein kinase CK2

    PubMed Central

    2009-01-01

    Background Estrogen receptor α (ERα) phosphorylation is important for estrogen-dependent transcription of ER-dependent genes, ligand-independent receptor activation and endocrine therapy response in breast cancer. However ERα phosphorylation at the previously identified sites does not fully account for these receptor functions. To determine if additional ERα phosphorylation sites exist, COS-1 cells expressing human ERα were labeled with [32P]H3PO4 in vivo and ERα tryptic phosphopeptides were isolated to identify phosphorylation sites. Results Previously uncharacterized phosphorylation sites at serines 46/47, 282, 294, and 559 were identified by manual Edman degradation and phosphoamino acid analysis and confirmed by mutagenesis and phospho-specific antibodies. Antibodies detected phosphorylation of endogenous ERα in MCF-7, MCF-7-LCC2, and Ishikawa cancer cell lines by immunoblot. Mutation of Ser-282 and Ser-559 to alanine (S282A, S559A) resulted in ligand independent activation of ERα as determined by both ERE-driven reporter gene assays and endogenous pS2 gene expression in transiently transfected HeLa cells. Mutation of Ser-46/47 or Ser-294 to alanine markedly reduced estradiol dependent reporter activation. Additionally protein kinase CK2 was identified as a kinase that phosphorylated ERα at S282 and S559 using motif analysis, in vitro kinase assays, and incubation of cells with CK2 kinase inhibitor. Conclusion These novel ERα phosphorylation sites represent new means for modulation of ERα activity. S559 represents the first phosphorylation site identified in the extreme C-terminus (F domain) of a steroid receptor. PMID:20043841

  20. Claudin 4 expression in triple-negative breast cancer: correlation with androgen receptors and Ki-67 expression.

    PubMed

    Abd-Elazeem, Mona A; Abd-Elazeem, Marwa A

    2015-02-01

    Breast cancer is the most common malignancy in women and the leading cause of cancer mortality worldwide. Triple-negative breast cancer (TNBC) is an important phenotype of breast cancer that accounts for a relatively small number of breast cancer cases but still represent a focus of increasing interest at the clinical, biological, and epidemiological level. Claudins are the major component of the tight junction, and only a few studies have addressed the role of claudins in breast cancer, especially TNBC. Androgen receptors (ARs), as members of the nuclear receptor superfamily, are known to be involved in a complex network of signaling pathways that collectively regulate cell proliferation. However, roles of AR in breast cancer development and progression have not been very clearly understood. The proliferation marker Ki-67 has been confirmed as an independent predictive and prognostic factor in early breast cancer. The aims of this study are to identify the clinicopathologic associations and prognostic value of claudin 4 expression in TNBC and to correlate claudin 4 expression with AR status and Ki-67 expression. Paraffin blocks obtained from 56 female patients with triple-negative primary invasive ductal breast carcinomas were analyzed for claudin 4, AR, and Ki-67 immunohistochemical expression. High levels of claudin 4 expression were detected in 66.1% of TNBC cases. There was a significant positive correlation with age, tumor size, grade, nodal status, metastasis, and Ki-67 expression (all P < .05) and negative correlation with AR status (P < .001). Androgen receptor showed positivity in 29 cases (51.78%). There was a statistical negative correlation with the all the studied clinicopathologic parameters, claudin 4 and Ki-67 expression. High claudin 4 expression, negative AR expression, and high Ki-67 index would provide a strong prognostic power to differentiate the patients with worse outcome among TNBC patients. Moreover, target treatment for TNBC cells

  1. Somatostatin receptor expression in small cell lung cancer as a prognostic marker and a target for peptide receptor radionuclide therapy

    PubMed Central

    Lapa, Constantin; Hänscheid, Heribert; Wild, Vanessa; Pelzer, Theo; Schirbel, Andreas; Werner, Rudolf A.; Droll, Sabine; Herrmann, Ken; Buck, Andreas K.; Lückerath, Katharina

    2016-01-01

    Despite initial responsiveness to both chemotherapy and radiotherapy, small cell lung cancer (SCLC) commonly relapses within months. Although neuroendocrine characteristics may be difficult to demonstrate in individual cases, a relevant expression of somatostatin receptors (SSTR) on the cell surface has been described. We aimed to evaluate the prognostic value of SSTR-expression in advanced SCLC. We further examined pre-requisites for successful peptide receptor radionuclide therapy (PRRT). 21 patients with extensive stage SCLC were enrolled. All patients underwent positron emission tomography/computed tomography (PET/CT) with 68Ga-DOTATATE to select patients for SSTR-directed therapy. PET scans were visually and semi-quantitatively assessed and compared to SSTR2a and SSTR5 expression in biopsy samples. Peak standardized uptake values (SUVpeak) of tumors as well as tumor-to-liver ratios were correlated to progression-free (PFS) and overall survival (OS). In 4/21 patients all SCLC lesions were PET-positive. 6/21 subjects were rated “intermediate” with the majority of lesions positive, the remaining 11/21 patients were PET-negative. PET-positivity correlated well with histologic SSTR2a, but not with SSTR5 expression. Neither PET-positivity nor SUVpeak were predictors of PFS or OS. In 4 patients with intensive SSTR2a-receptor expression, PRRT was performed with one partial response and one stable disease, respectively. SSTR-expression as detected by 68Ga-DOTATATE-PET and/or histology is not predictive of PFS or OS in patients with advanced SCLC. However, in patients exhibiting sufficient tracer uptake, PRRT might be a treatment option given its low toxicity and the absence of effective alternatives. PMID:26936994

  2. Low Density Lipoprotein-Receptor Related Protein 1 Is Differentially Expressed by Neuronal and Glial Populations in the Developing and Mature Mouse Central Nervous System

    PubMed Central

    Auderset, Loic; Cullen, Carlie L.; Young, Kaylene M.

    2016-01-01

    The low density lipoprotein-receptor related protein 1 (LRP1) is a large endocytic cell surface receptor that is known to interact with a variety of ligands, intracellular adaptor proteins and other cell surface receptors to regulate cellular behaviours ranging from proliferation to cell fate specification, migration, axon guidance, and lipid metabolism. A number of studies have demonstrated that LRP1 is expressed in the brain, yet it is unclear which central nervous system cell types express LRP1 during development and in adulthood. Herein we undertake a detailed study of LRP1 expression within the mouse brain and spinal cord, examining a number of developmental stages ranging from embryonic day 13.5 to postnatal day 60. We report that LRP1 expression in the brain peaks during postnatal development. On a cellular level, LRP1 is expressed by radial glia, neuroblasts, microglia, oligodendrocyte progenitor cells (OPCs), astrocytes and neurons, with the exception of parvalbumin+ interneurons in the cortex. Most cell populations exhibit stable expression of LRP1 throughout development; however, the proportion of OPCs that express LRP1 increases significantly from ~69% at E15.5 to ~99% in adulthood. We also report that LRP1 expression is rapidly lost as OPCs differentiate, and is absent from all oligodendrocytes, including newborn oligodendrocytes. While LRP1 function has been primarily examined in mature neurons, these expression data suggest it plays a more critical role in glial cell regulation–where expression levels are much higher. PMID:27280679

  3. Fc gamma receptor type III (CD16) is included in the zeta NK receptor complex expressed by human natural killer cells.

    PubMed Central

    Anderson, P; Caligiuri, M; O'Brien, C; Manley, T; Ritz, J; Schlossman, S F

    1990-01-01

    We recently reported that CD3- natural killer (NK) cells express the zeta chain of the T-cell receptor complex (zeta NK) in association with higher molecular weight structures whose expression differs between individual NK cell clones. Because NK cell cytolytic activity is known to be triggered by perturbation of the type III Fc gamma receptor (CD16), we sought to determine whether this activating molecule is included in the zeta NK molecular complex. Biochemical evidence for a physical association between CD16 and zeta NK was obtained by comparing immunoprecipitates formed using monoclonal antibodies reactive with each of these molecules by SDS/polyacrylamide gel electrophoresis, immunoblotting, and peptide mapping. In both clonal and polyclonal populations of CD3- NK cells, CD16 and zeta NK specifically associated with one another. Functional evidence for a specific association between CD16 and zeta NK in intact cells was obtained by demonstrating a coordinate down-modulation of both of these molecules induced by either phorbol 12-myristate 13-acetate or monoclonal antibodies reactive with CD16. Our results suggest that Fc gamma receptor type III (CD16) is included in the zeta NK complex and that this complex is likely to play an important role in NK cell activation. Images PMID:2138330

  4. Cloning and olfactory expression of progestin receptors in the Chinese black sleeper Bostrichthys sinensis.

    PubMed

    Zhang, Yu Ting; Liu, Dong Teng; Zhu, Yong; Chen, Shi Xi; Hong, Wan Shu

    2016-05-01

    Our previous studies suggested that 17α,20β-dihydroxy-4-pregnen-3-one (DHP), an oocyte maturation inducing progestin, also acts as a sex pheromone in Chinese black sleeper Bostrichthys sinensis, a fish species that inhabits intertidal zones and mates and spawns inside a muddy burrow. The electro-olfactogram response to DHP increased during the breeding season. In the present study, we cloned the cDNAs of the nine progestin receptors (pgr, paqr5, 6, 7(a, b), 8, 9, pgrmc1, 2) from B. sinensis, analyzed their tissue distribution, and determined the expression in the olfactory rosette during the reproductive cycle in female and male fish. The deduced amino acid sequences of the nine progestin receptors share high sequence identities with those of other fish species and relatively lower homology with their mammalian counterparts, and phylogenetic analyses classified the nine B. sinensis progestin receptors into their respective progestin receptor groups. Tissue distribution of B. sinensis progestin receptors showed differential expression patterns, but all these nine genes were expressed in the olfactory rosette. Interestingly, paqr5 mRNA was found in the intermediate and basal parts of the olfactory epithelium but not in the central core using in situ hybridization, and its expression level was the highest in the olfactory rosette among the tissues examined. These results suggested Paqr5 may have an important role for transmitting progestin signaling in the olfactory system. The expression levels of paqr7a and paqr7b, pgr and pgrmc2 mRNA peaked around the mid meiotic stage, and that of paqr8 peaked at late meiotic stage in the olfactory rosette in males, while the olfactory expression of paqr5 decreased gradually as spermatogenesis progressed. In contrast, the expression of the progestin receptors did not change significantly during the development of the ovary in the olfactory rosette in females, except that of pgr. Interestingly, the changes of paqr8 expression in

  5. Vitamin D receptor expression in human bone tissue and dose-dependent activation in resorbing osteoclasts

    PubMed Central

    Zarei, Allahdad; Morovat, Alireza; Javaid, Kassim; Brown, Cameron P

    2016-01-01

    The effects of vitamin D on osteoblast mineralization are well documented. Reports of the effects of vitamin D on osteoclasts, however, are conflicting, showing both inhibition and stimulation. Finding that resorbing osteoclasts in human bone express vitamin D receptor (VDR), we examined their response to different concentrations of 25-hydroxy vitamin D3 [25(OH)D3] (100 or 500 nmol·L−1) and 1,25-dihydroxy vitamin D3 [1,25(OH)2D3] (0.1 or 0.5 nmol·L−1) metabolites in cell cultures. Specifically, CD14+ monocytes were cultured in charcoal-stripped serum in the presence of receptor activator of nuclear factor kappa-B ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). Tartrate-resistant acid phosphatase (TRAP) histochemical staining assays and dentine resorption analysis were used to identify the size and number of osteoclast cells, number of nuclei per cell and resorption activity. The expression of VDR was detected in human bone tissue (ex vivo) by immunohistochemistry and in vitro cell cultures by western blotting. Quantitative reverse transcription-PCR (qRT-PCR) was used to determine the level of expression of vitamin D-related genes in response to vitamin D metabolites. VDR-related genes during osteoclastogenesis, shown by qRT-PCR, was stimulated in response to 500 nmol·L−1 of 25(OH)D3 and 0.1–0.5 nmol·L−1 of 1,25(OH)2D3, upregulating cytochrome P450 family 27 subfamily B member 1 (CYP27B1) and cytochrome P450 family 24 subfamily A member 1 (CYP24A1). Osteoclast fusion transcripts transmembrane 7 subfamily member 4 (tm7sf4) and nuclear factor of activated T-cell cytoplasmic 1 (nfatc1) where downregulated in response to vitamin D metabolites. Osteoclast number and resorption activity were also increased. Both 25(OH)D3 and 1,25(OH)2D3 reduced osteoclast size and number when co-treated with RANKL and M-CSF. The evidence for VDR expression in resorbing osteoclasts in vivo and low-dose effects of 1,25(OH)2D3 on osteoclasts in vitro

  6. Tryptophan hydroxylase and serotonin receptor 1A expression in the retina of the sea lamprey.

    PubMed

    Cornide-Petronio, María Eugenia; Anadón, Ramón; Barreiro-Iglesias, Antón; Rodicio, María Celina

    2015-06-01

    The dual development of the retina of lampreys is exceptional among vertebrates and offers an interesting EvoDevo (evolutionary developmental biology) model for understanding the origin and evolution of the vertebrate retina. Only a single type of photoreceptor, ganglion cell and bipolar cell are present in the early-differentiated central retina of lamprey prolarvae. A lateral retina appears later in medium-sized larvae (about 3 years after hatching in the sea lamprey), growing and remaining largely neuroblastic until metamorphosis. In this lateral retina, only ganglion cells and optic fibers differentiate in larvae, whereas differentiation of amacrine, horizontal, photoreceptor and bipolar cells mainly takes place during metamorphosis, which gives rise to the adult retina. Serotonin (5-hydroxytryptamine, 5-HT) is a neurotransmitter found in the retina of vertebrates whose synthesis is mediated by the rate-limiting enzyme tryptophan hydroxylase (TPH). TPH is also the first enzyme in the biosynthetic pathways of melatonin in photoreceptor cells. The serotonin 1A receptor (5-HT1A) is a major determinant of the activity of both serotonergic cells and their targets due to its pre- and post-synaptic location. Here, we report the developmental pattern of expression of tph and 5-ht1a transcripts in the sea lamprey retina by means of in situ hybridization. In larvae, strong tph mRNA signal was observed in photoreceptors and putative ganglion cells of the central retina, and in some neuroblasts of the lateral retina. In adults, strong tph expression was observed in bipolar, amacrine and ganglion cells and in photoreceptors. In the prolarval (central) retina, all the differentiated retinal cells expressed 5-ht1a transcripts, which were not observed in undifferentiated cells. In larvae, photoreceptors, bipolar cells and ganglion cells in the central retina, and neuroblasts in the lateral retina, showed 5-ht1a expression. In the adult retina, expression of 5-ht1a transcript

  7. Ecdysone Receptor-based Singular Gene Switches for Regulated Transgene Expression in Cells and Adult Rodent Tissues.

    PubMed

    Lee, Seoghyun; Sohn, Kyung-Cheol; Choi, Dae-Kyoung; Won, Minho; Park, Kyeong Ah; Ju, Sung-Kyu; Kang, Kidong; Bae, Young-Ki; Hur, Gang Min; Ro, Hyunju

    2016-01-01

    Controlled gene expression is an indispensable technique in biomedical research. Here, we report a convenient, straightforward, and reliable way to induce expression of a gene of interest with negligible background expression compared to the most widely used tetracycline (Tet)-regulated system. Exploiting a Drosophila ecdysone receptor (EcR)-based gene regulatory system, we generated nonviral and adenoviral singular vectors designated as pEUI(+) and pENTR-EUI, respectively, which contain all the required elements to guarantee regulated transgene expression (GAL4-miniVP16-EcR, termed GvEcR hereafter, and 10 tandem repeats of an upstream activation sequence promoter followed by a multiple cloning site). Through the transient and stable transfection of mammalian cell lines with reporter genes, we validated that tebufenozide, an ecdysone agonist, reversibly induced gene expression, in a dose- and time-dependent manner, with negligible background expression. In addition, we created an adenovirus derived from the pENTR-EUI vector that readily infected not only cultured cells but also rodent tissues and was sensitive to tebufenozide treatment for regulated transgene expression. These results suggest that EcR-based singular gene regulatory switches would be convenient tools for the induction of gene expression in cells and tissues in a tightly controlled fashion. PMID:27673563

  8. Ecdysone Receptor-based Singular Gene Switches for Regulated Transgene Expression in Cells and Adult Rodent Tissues

    PubMed Central

    Lee, Seoghyun; Sohn, Kyung-Cheol; Choi, Dae-Kyoung; Won, Minho; Park, Kyeong Ah; Ju, Sung-Kyu; Kang, Kidong; Bae, Young-Ki; Hur, Gang Min; Ro, Hyunju

    2016-01-01

    Controlled gene expression is an indispensable technique in biomedical research. Here, we report a convenient, straightforward, and reliable way to induce expression of a gene of interest with negligible background expression compared to the most widely used tetracycline (Tet)-regulated system. Exploiting a Drosophila ecdysone receptor (EcR)-based gene regulatory system, we generated nonviral and adenoviral singular vectors designated as pEUI(+) and pENTR-EUI, respectively, which contain all the required elements to guarantee regulated transgene expression (GAL4-miniVP16-EcR, termed GvEcR hereafter, and 10 tandem repeats of an upstream activation sequence promoter followed by a multiple cloning site). Through the transient and stable transfection of mammalian cell lines with reporter genes, we validated that tebufenozide, an ecdysone agonist, reversibly induced gene expression, in a dose- and time-dependent manner, with negligible background expression. In addition, we created an adenovirus derived from the pENTR-EUI vector that readily infected not only cultured cells but also rodent tissues and was sensitive to tebufenozide treatment for regulated transgene expression. These results suggest that EcR-based singular gene regulatory switches would be convenient tools for the induction of gene expression in cells and tissues in a tightly controlled fashion. PMID:27673563

  9. Characterization and Expression of the Nuclear Progestin Receptor in Zebrafish Gonads and Brain1

    PubMed Central

    Hanna, Richard N.; Daly, Sean C.J.; Pang, Yefei; Anglade, Isabelle; Kah, Olivier; Thomas, Peter; Zhu, Yong

    2009-01-01

    The zebrafish nuclear progestin receptor (nPR; official symbol PGR) was identified and characterized to better understand its role in regulating reproduction in this well-established teleost model. A full-length cDNA was identified that encoded a 617-amino acid residue protein with high homology to PGRs in other vertebrates, and contained five domains characteristic of nuclear steroid receptors. In contrast to the multiplicity of steroid receptors often found in euteleosts and attributed to probable genome duplication, only a single locus encoding the full-length zebrafish pgr was identified. Cytosolic proteins from pgr-transfected cells showed a high affinity (Kd = 2 nM), saturable, single-binding site specific for a native progestin in euteleosts, 4-pregnen-17,20beta-diol-3-one (17,20beta-DHP). Both 17,20beta-DHP and progesterone were potent inducers of transcriptional activity in cells transiently transfected with pgr in a dual luciferase reporter assay, whereas androgens and estrogens had little potency. The pgr transcript and protein were abundant in the ovaries, testis, and brain and were scarce or undetectable in the intestine, muscle, and gills. Further analyses indicate that Pgr was expressed robustly in the preoptic region of the hypothalamus in the brain; proliferating spermatogonia and early spermatocytes in the testis; and in follicular cells and early-stage oocytes (stages I and II), with very low levels within maturationally competent late-stage oocytes (IV) in the ovary. The localization of Pgr suggests that it mediates progestin regulation of reproductive signaling in the brain, early germ cell proliferation in testis, and ovarian follicular functions, but not final oocyte or sperm maturation. PMID:19741205

  10. Effect of Hyperoxia on Retinoid Metabolism and Retinoid Receptor Expression in the Lungs of Newborn Mice

    PubMed Central

    Chen, Hsing-Jin; Chiang, Bor-Luen

    2015-01-01

    Background Preterm newborns that receive oxygen therapy often develop bronchopulmonary dysplasia (BPD), which is abnormal lung development characterized by impaired alveologenesis. Oxygen-mediated injury is thought to disrupt normal lung growth and development. However, the mechanism of hyperoxia-induced BPD has not been extensively investigated. We established a neonatal mouse model to investigate the effects of normobaric hyperoxia on retinoid metabolism and retinoid receptor expression. Methods Newborn mice were exposed to hyperoxic or normoxic conditions for 15 days. The concentration of retinol and retinyl palmitate in the lung was measured by HPLC to gauge retinoid metabolism. Retinoid receptor mRNA levels were assessed by real-time PCR. Proliferation and retinoid receptor expression in A549 cells were assessed in the presence and absence of exogenous vitamin A. Results Hyperoxia significantly reduced the body and lung weight of neonatal mice. Hyperoxia also downregulated expression of RARα, RARγ, and RXRγ in the lungs of neonatal mice. In vitro, hyperoxia inhibited proliferation and expression of retinoid receptors in A549 cells. Conclusion Hyperoxia disrupted retinoid receptor expression in neonatal mice. PMID:26509921

  11. Coordinated expression of tyro3, axl, and mer receptors in macrophage ontogeny

    PubMed Central

    Malawista, Anna; Wang, Xiaomei; Trentalange, Mark; Allore, Heather G.; Montgomery, Ruth R.

    2016-01-01

    The TAM receptors (Tyro3, Axl, and Mer) are a family of homologous receptor-tyrosine kinases that inhibit Toll-like receptor signaling to regulate downstream pathways and restore homeostasis. TAM triple mutant mice (Tyro3−/−, Axl−/−, Mer−/−) have elevated levels of pro-inflammatory cytokines and are prone to developing lymphoproliferative disorders and autoimmunity. Understanding differential expression of TAM receptors among human subjects is critical to harnessing this pathway for therapeutic interventions. We have quantified changes in TAM expression during the ontogeny of human macrophages using paired samples of monocytes and macrophages to take advantage of characteristic expression within an individual. No significant differences in levels of Tyro3 were found between monocytes and macrophages (flow cytometry: p=0.652, immunoblot: p=0.231, qPCR: p=0.389). Protein levels of Axl were reduced (flow cytometry: p=0.049, immunoblot: p<0.001) when monocytes matured to macrophages. No significant differences in the levels of Axl mRNA transcripts were found (qPCR: p=0.082), however, Tyro3 and Axl were proportionate. The most striking difference was upregulation of expression of Mer with both protein and mRNA being significantly increased when monocytes developed into macrophages (flow cytometry: p<0.001, immunoblot: p<0.001, qPCR: p=0.004). A fuller characterization of TAM receptor expression in macrophage ontogeny informs our understanding of their function and potential therapeutic interventions.

  12. Altered expression of neuropeptide Y receptors caused by focal cortical dysplasia in human intractable epilepsy

    PubMed Central

    Luo, Hanjiang; Guan, Yuguang; Zhou, Jian; Qi, Xueling; Li, Tianfu; Xu, Zhiqing David; Luan, Guo-Ming

    2016-01-01

    Focal cortical dysplasia (FCD) is a common cause of pharmacologically-intractable epilepsy, however, the precise mechanisms underlying the epileptogenicity of FCD remains to be determined. Neuropeptide Y (NPY), an endogenous anticonvulsant in the central nervous system, plays an important role in the regulation of neuronal excitability. Increased expression of NPY and its receptors has been identified in the hippocampus of patients with mesial temporal lobe epilepsy, presumed to act as an endogenous anticonvulsant mechanism. Therefore, we investigated whether expression changes in NPY receptors occurs in patients with FCD. We specifically investigated the expression of seizure-related NPY receptor subtypes Y1, Y2, and Y5 in patients with FCD versus autopsy controls. We found that Y1R and Y2R were up-regulated at the mRNA and protein levels in the temporal and frontal lobes in FCD lesions. By contrast, there was no significant change in either receptor detected in parietal lesions. Notably, overexpression of Y5R was consistently observed in all FCD lesions. Our results demonstrate the altered expression of Y1R, Y2R and Y5R occurs in FCD lesions within the temporal, frontal and parietal lobe. Abnormal NPY receptor subtype expression may be associated with the onset and progression of epileptic activity and may act as a therapeutic candidate for the treatment of refractory epilepsy caused by FCD. PMID:26943580

  13. Chronic stress alters glucocorticoid receptor and mineralocorticoid receptor mRNA expression in the European starling (Sturnus vulgaris) brain.

    PubMed

    Dickens, M; Romero, L M; Cyr, N E; Dunn, I C; Meddle, S L

    2009-10-01

    Although the glucocorticoid response to acute short-term stress is an adaptive physiological mechanism that aids in the response to and survival of noxious stimuli, chronic stress is associated with a negative impact on health. In wild-caught European starlings (Sturnus vulgaris), chronic stress alters the responsiveness of hypothalamic-pituitary-adrenal (HPA) axis as measured by the acute corticosterone response. In the present study, we investigated potential underlying neuroendocrine mechanisms by comparing glucocorticoid receptor and mineralocorticoid receptor mRNA expression in the brains of chronically and nonchronically-stressed starlings. Hypothalamic paraventricular nucleus, but not hippocampal, glucocorticoid receptor mRNA expression in chronically-stressed birds was significantly lower compared to controls, suggesting changes in the efficacy of corticosterone negative feedback. In addition, chronically-stressed birds showed a significant decrease in hippocampal MR mRNA expression. Together, these results suggest that chronic stress changes the brain physiology of wild birds and provides important information for the understanding of the underlying mechanisms that result in dysregulation of the HPA axis in wild animals by chronic stress. PMID:19686439

  14. RIC-3 differentially modulates α4β2 and α7 nicotinic receptor assembly, expression, and nicotine-induced receptor upregulation

    PubMed Central

    2013-01-01

    Background Recent work has shown that the chaperone resistant to inhibitors of acetylcholinesterase (RIC-3) is critical for the folding, maturation and functional expression of a variety of neuronal nicotinic acetylcholine receptors. α7 nicotinic receptors can only assemble and functionally express in select lines of cells, provided that RIC-3 is present. In contrast, α4β2 nicotinic receptors can functionally express in many cell lines even without the presence of RIC-3. Depending on the cell line, RIC-3 has differential effects on α4β2 receptor function – enhancement in mammalian cells but inhibition in Xenopus oocytes. Other differences between the two receptor types include nicotine-induced upregulation. When expressed in cell lines, α4β2 receptors readily and robustly upregulate with chronic nicotine exposure. However, α7 nicotinic receptors appear more resistant and require higher concentrations of nicotine to induce upregulation. Could the coexpression of RIC-3 modulate the extent of nicotine-induced upregulation not only for α7 receptors but also α4β2 receptors? We compared and contrasted the effects of RIC-3 on assembly, trafficking, protein expression and nicotine-induced upregulation on both α7 and α4β2 receptors using fluorescent protein tagged nicotinic receptors and Förster resonance energy transfer (FRET) microscopy imaging. Results RIC-3 increases assembly and cell surface trafficking of α7 receptors but does not alter α7 protein expression in transfected HEK293T cells. In contrast, RIC-3 does not affect assembly of α4β2 receptors but increases α4 and β2 subunit protein expression. Acute nicotine (30 min exposure) was sufficient to upregulate FRET between α4 and β2 subunits. Surprisingly, when RIC-3 was coexpressed with α4β2 receptors nicotine-induced upregulation was prevented. α7 receptors did not upregulate with acute nicotine in the presence or absence of RIC-3. Conclusions These results provide interesting novel data

  15. Direct reduction of antigen receptor expression in polyclonal B cell populations developing in vivo results in light chain receptor editing.

    PubMed

    Shen, Shixue; Manser, Tim

    2012-01-01

    Secondary Ab V region gene segment rearrangement, termed receptor editing, is a major mechanism contributing to B lymphocyte self-tolerance. However, the parameters that determine whether a B cell undergoes editing are a current subject of debate. We tested the role that the level of BCR expression plays in the regulation of receptor editing in a polyclonal population of B cells differentiating in vivo. Expression of a short hairpin RNA for κ L chain RNA in B cells resulted in reduction in levels of this RNA and surface BCRs. Strikingly, fully mature and functional B cells that developed in vivo and efficiently expressed the short hairpin RNA predominantly expressed BCRs containing λ light chains. This shift in L chain repertoire was accompanied by inhibition of development, increased Rag gene expression, and increased λ V gene segment-cleavage events at the immature B cell stage. These data demonstrated that reducing the translation of BCRs that are members of the natural repertoire at the immature B cell stage is sufficient to promote editing.

  16. Differential brain angiotensin-II type I receptor expression in hypertensive rats.

    PubMed

    Braga, Valdir A

    2011-09-01

    Blood-borne angiotensin-II (Ang-II) has profound effects in the brain. We tested the hypothesis that Ang-II-dependent hypertension involves differential Ang-II type I (AT(1)) receptors expression in the subfornical organ (SFO) and the rostral ventrolateral medulla (RVLM). Male Wistar rats were implanted with 14-day osmotic minipump filled with Ang-II (150 ng/kg/min) or saline. AT(1) receptor mRNA levels were detected in the SFO and RVLM by reverse transcription-polymerase chain reaction (RT-PCR). Ang-II caused hypertension (134 ± 10 mmHg vs. 98 ± 9 mmHg, n = 9, p < 0.05). RT-PCR revealed that Ang-II infusion induced increased AT(1) receptor mRNA levels in RVLM and decreased in SFO. Our data suggest that Ang-II-induced hypertension involves differential expression of brain AT(1) receptors. PMID:21897104

  17. Age-dependent changes in expression of alpha/sub 1/-adrenergic receptors in rat myocardium

    SciTech Connect

    Schaffer, W.; Williams, R.S.

    1986-07-16

    The expression of alpha/sub 1/-adrenergic receptors within ventricular myocardium of rats ranging in age from 21 days of fetal life to 24 months after birth was measured from (/sup 125/I) 2-(..beta.. hydroxy phenyl) ethylaminomethyl tetralone binding isotherms. No difference was observed in binding affinity between any of the age groups studied. The number of alpha/sub 1/-adrenergic receptors was found to be 60-120% higher in membranes from fetal or immature rats up to 25 days of age when compared with adult animals. The increased expression of alpha/sub 1/-adrenergic receptors in the developing heart relative to that observed in adult heart is consistent with the hypothesis that alpha/sub 1/-adrenergic receptor stimulation may modulate protein synthesis and growth in mammalian myocardium.

  18. Triggering receptor expressed on myeloid cells-1 as a new therapeutic target during inflammatory diseases

    PubMed Central

    Derive, Marc; Massin, Frédéric

    2010-01-01

    The Triggering Receptor Expressed on Myeloid cells (TREM)-1 is a recently identified molecule involved in monocytic activation and inflammatory response. It belongs to a family related to Natural Killer cell-receptors and is expressed on neutrophils, mature monocytes and macrophages. The engagement of TREM-1 synergizes with several Toll Like Receptors (TLR) and/or NOD Like Receptors (NLR) activation in amplifying the inflammatory response mediated by microbial components or danger signals. The implication of TREM-1 during experimental models of acute or chronic inflammatory conditions, as well as during cancer, begins to understand. Furthermore, the modulation of the TREM-1 signaling pathway by the use of small synthetic peptides derived from its extracellular moiety confers interesting survival advantages during experimental murine septic shock and protects from organ damage during other inflammatory diseases. This review summarizes the recent advances on TREM-1 biology and highlights the promises of its therapeutic modulation. PMID:21487478

  19. Presynaptic Excitation via GABAB Receptors in Habenula Cholinergic Neurons Regulates Fear Memory Expression.

    PubMed

    Zhang, Juen; Tan, Lubin; Ren, Yuqi; Liang, Jingwen; Lin, Rui; Feng, Qiru; Zhou, Jingfeng; Hu, Fei; Ren, Jing; Wei, Chao; Yu, Tao; Zhuang, Yinghua; Bettler, Bernhard; Wang, Fengchao; Luo, Minmin

    2016-07-28

    Fear behaviors are regulated by adaptive mechanisms that dampen their expression in the absence of danger. By studying circuits and the molecular mechanisms underlying this adaptive response, we show that cholinergic neurons of the medial habenula reduce fear memory expression through GABAB presynaptic excitation. Ablating these neurons or inactivating their GABAB receptors impairs fear extinction in mice, whereas activating the neurons or their axonal GABAB receptors reduces conditioned fear. Although considered exclusively inhibitory, here, GABAB mediates excitation by amplifying presynaptic Ca(2+) entry through Cav2.3 channels and potentiating co-release of glutamate, acetylcholine, and neurokinin B to excite interpeduncular neurons. Activating the receptors for these neurotransmitters or enhancing neurotransmission with a phosphodiesterase inhibitor reduces fear responses of both wild-type and GABAB mutant mice. We identify the role of an extra-amygdalar circuit and presynaptic GABAB receptors in fear control, suggesting that boosting neurotransmission in this pathway might ameliorate some fear disorders. PMID:27426949

  20. The farnesoid X receptor induces very low density lipoprotein receptor gene expression.

    PubMed

    Sirvent, Audrey; Claudel, Thierry; Martin, Geneviève; Brozek, John; Kosykh, Vladimir; Darteil, Raphaël; Hum, Dean W; Fruchart, Jean-Charles; Staels, Bart

    2004-05-21

    The farnesoid X receptor (FXR) is a nuclear receptor activated by bile acids (BAs). In response to ligand-binding, FXR regulates many genes involved in BA, lipid, and lipoprotein metabolism. To identify new FXR target genes, microarray technology was used to profile total RNA extracted from HepG2 cells treated with the natural FXR agonist chenodeoxycholic acid (CDCA). Interestingly, a significant increase of transcript level of the very low density lipoprotein receptor (VLDLR) was observed. Our data, resulting from selective FXR activation, FXR RNA silencing and FXR-deficient mice, clearly demonstrate that BAs up-regulate VLDLR transcript levels via a FXR-dependent mechanism in vitro in human and in vivo in mouse liver cells.

  1. Expression and function of a novel variant of estrogen receptor-α36 in murine airways.

    PubMed

    Jia, Shuping; Zhang, Xintian; He, David Z Z; Segal, Manav; Berro, Abdo; Gerson, Trevor; Wang, Zhaoyi; Casale, Thomas B

    2011-11-01

    Evidence suggests that estrogen signaling is involved in sex differences in the prevalence rates and control of asthma, but the expression patterns of estrogen receptor variants and estrogen function in the lung are not well established. We investigated the expression of major estrogen receptor variants occurring naturally and after the development of allergen-induced airway hyperreactivity in a murine model of allergic asthma, along with the role of estrogen signaling in small-airway ciliary motion and smooth muscle contraction. Female BALB/c mice were sensitized with ovalbumin, and estrogen receptor expression patterns were examined by immunofluorescence and Western blot analysis. Time-lapse video and photodiode-based displacement measurement systems were used to assess the effects of estrogen signaling on airway ciliary beat frequency and smooth muscle contraction. We found that a novel variant of estrogen receptor (ER)-α, ER-α36, is expressed in airway epithelial and smooth muscle cells. ER-α36 was predominately localized on the plasma membranes of airway cells. After sensitization to allergen, the expression levels of ER-α36 increased significantly (P < 0.01), whereas the expression of ER-β and ER-α66 did not significantly change. Estrogen treatment in vitro resulted in a rapid increase in airway cilia motion in a dose-dependent fashion, but did not exert any effect on airway smooth muscle contraction. We speculate that the up-regulation of estrogen receptor expression associated with allergen-induced airway hyperresponsiveness may constitute a protective mechanism to facilitate the clearance of mucus. The identification and localization of specific estrogen receptor subtypes in the lung could lead to newer therapeutic avenues aimed at addressing sex differences of asthma susceptibility. PMID:21642591

  2. Interleukin-1 Receptors Are Differentially Expressed in Normal and Psoriatic T Cells

    PubMed Central

    Kovács-Sólyom, Ferenc; Prihoda, Judit; Kui, Róbert; Kemény, Lajos; Gyulai, Rolland

    2014-01-01

    This study was carried out to examine the possible role of interleukin-1 (IL-1) in the functional insufficiency of regulatory T cells in psoriasis, by comparing the expression of IL-1 receptors on healthy control and psoriatic T cells. Patients with moderate-to-severe chronic plaque psoriasis and healthy volunteers, matched in age and sex, were selected for all experiments. CD4+CD25− effector and CD4+CD25+CD127low regulatory T cells were separated and used for the experiments. Expression of the mRNA of IL-1 receptors (IL-1R1, IL-1R2, and sIL-1R2) was determined by quantitative real-time RT-PCR. Cell surface IL-