Science.gov

Sample records for receptor expression reported

  1. P2X4 Receptor Reporter Mice: Sparse Brain Expression and Feeding-Related Presynaptic Facilitation in the Arcuate Nucleus

    PubMed Central

    Xu, Ji; Bernstein, Alexander M.; Wong, Angela; Lu, Xiao-Hong; Khoja, Sheraz; Yang, X. William; Davies, Daryl L.; Micevych, Paul; Sofroniew, Michael V.

    2016-01-01

    P2X4 receptors are ATP-gated cation channels that are widely expressed in the nervous system. To identify P2X4 receptor-expressing cells, we generated BAC transgenic mice expressing tdTomato under the control of the P2X4 receptor gene (P2rx4). We found sparse populations of tdTomato-positive neurons in most brain areas with patterns that matched P2X4 mRNA distribution. tdTomato expression within microglia was low but was increased by an experimental manipulation that triggered microglial activation. We found surprisingly high tdTomato expression in the hypothalamic arcuate nucleus (Arc) (i.e., within parts of the neural circuitry controlling feeding). Immunohistochemistry and genetic crosses of P2rx4 tdTomato mice with cell-specific GFP reporter lines showed that the tdTomato-expressing cells were mainly AgRP-NPY neurons and tanycytes. There was no electrophysiological evidence for functional expression of P2X4 receptors on AgRP-NPY neuron somata, but instead, we found clear evidence for functional presynaptic P2X4 receptor-mediated responses in terminals of AgRP-NPY neurons onto two of their postsynaptic targets (Arc POMC and paraventricular nucleus neurons), where ATP dramatically facilitated GABA release. The presynaptic responses onto POMC neurons, and the expression of tdTomato in AgRP-NPY neurons and tanycytes, were significantly decreased by food deprivation in male mice in a manner that was partially reversed by the satiety-related peptide leptin. Overall, we provide well-characterized tdTomato reporter mice to study P2X4-expressing cells in the brain, new insights on feeding-related regulation of presynaptic P2X4 receptor responses, and the rationale to explore extracellular ATP signaling in the control of feeding behaviors. SIGNIFICANCE STATEMENT Cells expressing ATP-gated P2X4 receptors have proven problematic to identify and study in brain slice preparations because P2X4 expression is sparse. To address this limitation, we generated and characterized

  2. Visualizing estrogen receptor-a-expressing neurons using a new ERa-ZsGreen reporter mouse line

    USDA-ARS?s Scientific Manuscript database

    A variety of biological functions of estrogens, including regulation of energy metabolism, are mediated by neurons expressingestrogen receptor-a (ERa) in the brain. However, complex intracellular processes in these ERa-expressing neurons are difficult to unravel, due to the lack of strategy to visua...

  3. Expression Analysis of the Yersiniabactin Receptor Gene fyuA and the Heme Receptor hemR of Yersinia enterocolitica In Vitro and In Vivo Using the Reporter Genes for Green Fluorescent Protein and Luciferase

    PubMed Central

    Jacobi, Christoph A.; Gregor, Sebastian; Rakin, Alexander; Heesemann, Jürgen

    2001-01-01

    The enteropathogenic Yersinia enterocolitica strains have several systems for scavenging iron from their environment. We have studied the expression of the fyuA gene, which encodes the outer membrane receptor for the siderophore yersiniabactin (Ybt), and the hemR gene, which encodes the receptor for heme, using the reporter genes gfp (encoding green fluorescent protein) and luc (encoding firefly luciferase). To study gene expression in vitro as well as in vivo, we have constructed several translational reporter gene fusions to monitor simultaneously expression of fyuA and hemR or expression of one gene by a gfp-luc tandem reporter. Results of the in vitro expression analysis (liquid media) indicated that fyuA and hemR are strongly derepressed under iron starvation conditions, resulting in strong fluorescence and/or luminescence at 27°C. In the in vivo BALB/C mouse infection model, tissue-specific expression of fyuA and hemR reporter fusions was observed. Surprisingly, fyuA and hemR reporter constructs were weakly expressed by yersiniae located in the liver and intestinal lumen, whereas strong expression was found for yersiniae in the peritoneal cavity and moderate expression was found in the spleen. Strikingly, yersiniae carrying fyuA or hemR reporter fusions exhibited threefold-stronger signals when grown in the peritoneal cavity of mice than those growing under iron derepression in vitro. This hyperexpression suggests that besides Fur derepression, additional activators may be involved in the enhanced expression of fyuA and hemR under peritoneal growth conditions. Differential expression of the fyuA and hemR reporter fusions could not be observed, suggesting similar regulation of fyuA and hemR in the mouse infection model. PMID:11705959

  4. Androgen Receptor Expression and its Correlation with Other Risk Factors in Triple Negative Breast Cancers: a Report from Western Iran.

    PubMed

    Payandeh, Mehrdad; Shazad, Babak; Madani, SeyedHamid; Ramezani, Mazaher; Sadeghi, Masoud

    2016-01-01

    Androgen receptors (ARs) are expressed in more than 70% of breast cancers (BCs) and have been implicated in BC pathogenesis. Some triple negative (TN)BC tumors express AR and may benefit from ARtargeted therapies. The aim of this study was to evaluate survival and the prevalence of AR expression and its correlation with other risk factors in triple negative BCs in women from Western Iran. In a retrospective study between 20092015, 41 patients with TNBC were referred to the Private Clinic of Oncology, Kermanshah city, Iran. ER, PR and ARpositive expression was defined as ≥10% nuclear staining and also HER2 (2+), FISH was performed. Nuclear staining was considered representative for Ki67 and P53. The mean followup for the patients was 25 months. In this time, 5 patients died and 4 lost to followup were censored from survival analysis. The mean age at diagnosis was 46.9 years (range, 2471 years) and all patients were female. The OS rates for ARpositive and ARnegative patients were 90% and 85.1%, respectively, and the mean OS was 26.3 and 23.2 months. Therefore, there was no significant difference between the two groups (Hazard ratio: 0.580, 95% CI: 0.0863.893, P=0.575). In TNBC patients, evaluation of AR status may provide additional information on prognosis and treatment. The results of studies showed that the prevalence AR expression may differ in the world and probably ethnicity can be an influencing factor.

  5. Widespread ectopic expression of olfactory receptor genes

    PubMed Central

    Feldmesser, Ester; Olender, Tsviya; Khen, Miriam; Yanai, Itai; Ophir, Ron; Lancet, Doron

    2006-01-01

    Background Olfactory receptors (ORs) are the largest gene family in the human genome. Although they are expected to be expressed specifically in olfactory tissues, some ectopic expression has been reported, with special emphasis on sperm and testis. The present study systematically explores the expression patterns of OR genes in a large number of tissues and assesses the potential functional implication of such ectopic expression. Results We analyzed the expression of hundreds of human and mouse OR transcripts, via EST and microarray data, in several dozens of human and mouse tissues. Different tissues had specific, relatively small OR gene subsets which had particularly high expression levels. In testis, average expression was not particularly high, and very few highly expressed genes were found, none corresponding to ORs previously implicated in sperm chemotaxis. Higher expression levels were more common for genes with a non-OR genomic neighbor. Importantly, no correlation in expression levels was detected for human-mouse orthologous pairs. Also, no significant difference in expression levels was seen between intact and pseudogenized ORs, except for the pseudogenes of subfamily 7E which has undergone a human-specific expansion. Conclusion The OR superfamily as a whole, show widespread, locus-dependent and heterogeneous expression, in agreement with a neutral or near neutral evolutionary model for transcription control. These results cannot reject the possibility that small OR subsets might play functional roles in different tissues, however considerable care should be exerted when offering a functional interpretation for ectopic OR expression based only on transcription information. PMID:16716209

  6. Distribution of cellular HSV-1 receptor expression in human brain.

    PubMed

    Lathe, Richard; Haas, Juergen G

    2016-12-15

    Herpes simplex virus type 1 (HSV-1) is a neurotropic virus linked to a range of acute and chronic neurological disorders affecting distinct regions of the brain. Unusually, HSV-1 entry into cells requires the interaction of viral proteins glycoprotein D (gD) and glycoprotein B (gB) with distinct cellular receptor proteins. Several different gD and gB receptors have been identified, including TNFRSF14/HVEM and PVRL1/nectin 1 as gD receptors and PILRA, MAG, and MYH9 as gB receptors. We investigated the expression of these receptor molecules in different areas of the adult and developing human brain using online transcriptome databases. Whereas all HSV-1 receptors showed distinct expression patterns in different brain areas, the Allan Brain Atlas (ABA) reported increased expression of both gD and gB receptors in the hippocampus. Specifically, for PVRL1, TNFRFS14, and MYH9, the differential z scores for hippocampal expression, a measure of relative levels of increased expression, rose to 2.9, 2.9, and 2.5, respectively, comparable to the z score for the archetypical hippocampus-enriched mineralocorticoid receptor (NR3C2, z = 3.1). These data were confirmed at the Human Brain Transcriptome (HBT) database, but HBT data indicate that MAG expression is also enriched in hippocampus. The HBT database allowed the developmental pattern of expression to be investigated; we report that all HSV1 receptors markedly increase in expression levels between gestation and the postnatal/adult periods. These results suggest that differential receptor expression levels of several HSV-1 gD and gB receptors in the adult hippocampus are likely to underlie the susceptibility of this brain region to HSV-1 infection.

  7. Expression of Plant Receptor Kinases in Yeast.

    PubMed

    Barberini, María Laura; Muschietti, Jorge P

    2017-01-01

    The budding yeast Saccharomyces cerevisiae is a useful system to express recombinant proteins and analyze protein-protein interaction. Membrane-spanning proteins like plant receptor kinases find their way to the plasma membrane when expressed in yeast and seem to retain their structure and function. Here, we describe a general yeast DNA transformation procedure based on lithium acetate, salmon sperm DNA, and polyethylene glycol used to express recombinant proteins. Yeast cells expressing plant receptor kinases can be used for in vivo and in vitro studies of receptor function.

  8. Hypothyroidism affects D2 receptor-mediated breathing without altering D2 receptor expression.

    PubMed

    Schlenker, Evelyn H; Del Rio, Rodrigo; Schultz, Harold D

    2014-03-01

    Bromocriptine depressed ventilation in air and D2 receptor expression in the nucleus tractus solitaries (NTS) in male hypothyroid hamsters. Here we postulated that in age-matched hypothyroid female hamsters, the pattern of D2 receptor modulation of breathing and D2 receptor expression would differ from those reported in hypothyroid males. In females hypothyroidism did not affect D2 receptor protein levels in the NTS, carotid bodies or striatum. Bromocriptine, but not carmoxirole (a peripheral D2 receptor agonist), increased oxygen consumption and body temperature in awake air-exposed hypothyroid female hamsters and stimulated their ventilation before and following exposure to hypoxia. Carmoxirole depressed frequency of breathing in euthyroid hamsters prior to, during and following hypoxia exposures and stimulated it in the hypothyroid hamsters following hypoxia. Although hypothyroidism did not affect expression of D2 receptors, it influenced central D2 modulation of breathing in a disparate manner relative to euthyroid hamsters.

  9. Hypothyroidism Affects D2 Receptor-mediated Breathing without altering D2 Receptor Expression

    PubMed Central

    Schlenker, Evelyn H.; Rio, Rodrigo Del; Schultz, Harold D.

    2015-01-01

    Bromocriptine depressed ventilation in air and D2 receptor expression in the nucleus tractus solitaries (NTS) in male hypothyroid hamsters. Here we postulated that in age- matched hypothyroid female hamsters, the pattern of D2 receptor modulation of breathing and D2 receptor expression would differ from those reported in hypothyroid males. In females hypothyroidism did not affect D2 receptor protein levels in the NTS, carotid bodies or striatum. Bromocriptine, but not carmoxirole (a peripheral D2 receptor agonist), increased oxygen consumption and body temperature in awake air-exposed hypothyroid female hamsters and stimulated their ventilation before and following exposure to hypoxia. Carmoxirole depressed frequency of breathing in euthyroid hamsters prior to, during and following hypoxia exposures and stimulated it in the hypothyroid hamsters following hypoxia. Although hypothyroidism did not affect expression of D2 receptors, it influenced central D2 modulation of breathing in a disparate manner relative to euthyroid hamsters. PMID:24434437

  10. [Olfactory esthesioneuroblastoma: scintigraphic expression of somatostatin receptors].

    PubMed

    García Vicente, A; García Del Castillo, E; Soriano Castrejón, A; Alonso Farto, J

    1999-10-01

    Esthesioneuroblastoma is an uncommon tumor originating in the upper nasal cavity and constitutes 3% of all intranasal neoplasms. Few references exist about the expression of somatostatin receptors in these tumors. Our case demonstrates a good correlation between the somatostatin receptor scintigraphy and magnetic resonance imaging.

  11. An evolutionary conserved region (ECR) in the human dopamine receptor D4 gene supports reporter gene expression in primary cultures derived from the rat cortex

    PubMed Central

    2011-01-01

    Background Detecting functional variants contributing to diversity of behaviour is crucial for dissecting genetics of complex behaviours. At a molecular level, characterisation of variation in exons has been studied as they are easily identified in the current genome annotation although the functional consequences are less well understood; however, it has been difficult to prioritise regions of non-coding DNA in which genetic variation could also have significant functional consequences. Comparison of multiple vertebrate genomes has allowed the identification of non-coding evolutionary conserved regions (ECRs), in which the degree of conservation can be comparable with exonic regions suggesting functional significance. Results We identified ECRs at the dopamine receptor D4 gene locus, an important gene for human behaviours. The most conserved non-coding ECR (D4ECR1) supported high reporter gene expression in primary cultures derived from neonate rat frontal cortex. Computer aided analysis of the sequence of the D4ECR1 indicated the potential transcription factors that could modulate its function. D4ECR1 contained multiple consensus sequences for binding the transcription factor Sp1, a factor previously implicated in DRD4 expression. Co-transfection experiments demonstrated that overexpression of Sp1 significantly decreased the activity of the D4ECR1 in vitro. Conclusion Bioinformatic analysis complemented by functional analysis of the DRD4 gene locus has identified a) a strong enhancer that functions in neurons and b) a transcription factor that may modulate the function of that enhancer. PMID:21599953

  12. Diabetes modulates the expression of glomerular kinin receptors.

    PubMed

    Christopher, Julie; Jaffa, Ayad A

    2002-12-01

    The localization of kinin receptors within the kidney implicates this system in the regulation of glomerular hemodynamics. We reported that diabetes alters the activity of the renal kallikrein-kinin system, and that these alterations contribute to the development of microvascular complications of diabetes. The present study examined the influence of diabetes on the expression of glomerular B1 and B2-kinin receptors, and assessed the cellular signaling of kinin receptor activation. Rats made diabetic with streptozocin (85 mg/kg), displayed plasma glucose levels in the range of 350-500 mg/dl. At 3, 7, and 21 days, B1 and B2-kinin receptor mRNA levels were measured in isolated glomeruli from control and diabetic rats by RT-PCR. Glomeruli revealed a differential pattern of expression between the two kinin receptors. The constitutively expressed B2-receptor was increased three-fold at day 3, but returned to normal levels at day 7; whereas, the inducible B1-receptor was maximally expressed (20-fold) at day 7 and remained elevated (10-fold) at day 21. To test whether the induction of kinin receptors by diabetes translates into increased responsiveness, we measured mitogen-activated protein kinase (MAPK) phosphorylation (p42, p44) in glomeruli isolated from control and diabetic rats stimulated with B1-receptor agonist (des-Arg9-bradykinin, 10(-8) M). A three-fold increase in phosphorylation of MAPK was observed in response to B1-receptor agonist challenge in glomeruli isolated form diabetic rats compared to controls. These findings demonstrate for the first time that glomerular kinin receptors are induced by diabetes, and provide a rationale to study the contribution of these receptors to the development of glomerular injury in diabetes.

  13. Estrogen increases renal oxytocin receptor gene expression.

    PubMed

    Ostrowski, N L; Young, W S; Lolait, S J

    1995-04-01

    Estrogens have been implicated in the sodium and fluid imbalances associated with the menstrual cycle and late pregnancy. An estrogen-dependent role for renal oxytocin receptors in fluid homeostasis is suggested by the present findings which demonstrate that estradiol benzoate treatment increases the expression of the oxytocin receptor messenger ribonucleic acid and 125I-OTA binding to oxytocin receptors in the renal cortex and medullary collecting ducts of ovariectomized female rats. Moreover, estradiol induced high levels of oxytocin receptor expression in outer stripe proximal tubules of ovariectomized female and adrenalectomized male rats. Proximal tubule induction was inhibited in a dose-dependent manner by the antiestrogen tamoxifen, but cortical expression of oxytocin receptors in macula densa cells was unaffected by tamoxifen. These data demonstrate cell-specific regulation of oxytocin receptor expression in macula densa and proximal tubule cells, and suggest a important role for these receptors in mediating estrogen-induced alterations in renal fluid dynamics by possibly affecting glomerular filtration and water and solute reabsorption during high estrogen states.

  14. Somatostatin receptor expression in thyroid disease.

    PubMed

    Atkinson, Helen; England, James A; Rafferty, Amy; Jesudason, Vim; Bedford, Karen; Karsai, Laszlo; Atkin, Stephen L

    2013-06-01

    Somatostatin analogues are commercially available and used for the management of acromegaly and neuroendocrine tumours, but the expression of the receptors as a target in thyroid disease has not been explored. To assess somatostatin (SST) and somatostatin receptor (SSTR1-5) expression in both normal and thyroid disorders, as a potential target for somatostatin analogue therapy, 67 thyroid tissue specimens were reviewed: 12 differentiated thyroid carcinomas, 14 follicular adenomas, 17 multinodular goitres, 14 Graves disease, 10 Hashimotos thyroiditis specimens and five normal thyroids. Tissue was immunostained for SST and SSTR1-5. Positivity and the degree of positivity were recorded by double-blinded observers. Somatostatin receptor expression was highly expressed in normal tissue for SSTR1, 3, 4 and 5 (5 of 5, 4 of 5, 4 of 5 and 5 of 5 respectively) whilst SST and SSTR 2a and b were not expressed at all. The commonest receptor expressed for all pathological subtypes grouped together was SSTR2b (63 specimens). The commonest receptors expressed in differentiated thyroid cancer were SSTR5 (11 of 12 specimens) and SSTR2b (10 of 12 specimens). The commonest receptor expressed in benign disease was SSTR2b (53 of 55 specimens). SSTR5 was significantly under-expressed in Graves disease (P < 0.05). This study illustrates that SSTR 1, 3, 4 and 5 are highly expressed in normal, benign and malignant thyroid tissue. SSTR 2a and 2b appear absent in normal tissue and present in benign and malignant thyroid tissue (P < 0.02). This suggests that focussed SSTR2 treatment may be a potential therapeutic target. © 2013 The Authors. International Journal of Experimental Pathology © 2013 International Journal of Experimental Pathology.

  15. Differential expression of somatostatin receptors in medulloblastoma.

    PubMed

    Guyotat, J; Champier, J; Pierre, G S; Jouvet, A; Bret, P; Brisson, C; Belin, M F; Signorelli, F; Montange, M F

    2001-01-01

    Somatostatin receptors have been found on a variety of tumours like neuroendocrine breast or brain tumours. Their detection opens new diagnostic and therapeutic paths. The aim of this work was to investigate their expression in medulloblastomas. Using both techniques, reverse transcriptase-polymerase chain reaction and immunohistochemistry, we analysed mRNA of different subtypes of somatostatin receptors in 15 medulloblastomas and the localisation of the subtype SSTR2 receptor at the cellular level in 13 medulloblastomas. All five subtypes mRNA were variably expressed in each medulloblastoma. The signal obtained after Southern blotting for SSTR2 receptor amplification was the highest as compared to the signal obtained for the other receptor subtypes. Immunostaining for SSTR2A receptor was present in every tumour specimen and was specifically located to the cellular membrane of neoplastic cells. No staining was identified at the level of peritumoral veins. The evidence of predominant expression of SSTR2 receptors in medulloblastomas opens interesting prospects for their diagnosis and therapy.

  16. Stable Expression and Characterization of an Optimized Mannose Receptor.

    PubMed

    Vigerust, David J; Vick, Sherell; Shepherd, Virginia L

    2015-06-01

    The mannose receptor (MR) is a macrophage surface receptor that recognizes pathogen associated molecular patterns (PAMPs) from a diverse array of bacterial, fungal and viral pathogens. Functional studies of the MR are hampered by the scarcity of human cell lines that express the receptor. Current model systems available for the study of MR biology often demonstrate low levels of expression and do not retain many of the classical MR properties. Although several laboratories have reported transient and stable expression of MR from plasmids, preliminary data from our laboratory suggests that these plasmids produce a protein that lacks critical domains and is often not stable over time. In this current report we describe the generation and characterization of a novel human codon-optimized system for transient and stable MR expression. Rare codons and sequences that contribute to mRNA instability were modified to produce mRNA that is qualitatively and quantitatively improved. Confocal imaging of the transient and stably expressed optimized receptor demonstrates a distribution consistent with previous reports. To demonstrate the functional characteristics of the optimized receptor, we further show that the introduction of codon-optimized MR plasmid can confer MR-associated phagocytosis of S. aureus to non-phagocytic HeLa cells. We show that three molecules participate in the engagement and internalization of S. aureus. MR was found to colocalize with Toll-like receptor 2 (TLR2) and Rab5 following exposure to pHrodo-stained S. aureus, suggesting cooperation among the three molecules to engage and internalize the bacterial particle. This study describes a transfection capable, optimized MR receptor with functional characteristics similar to the wild type receptor and further demonstrates a new system for the continued study of MR biology and function.

  17. Stable Expression and Characterization of an Optimized Mannose Receptor

    PubMed Central

    Vigerust, David J; Vick, Sherell; Shepherd, Virginia L

    2015-01-01

    The mannose receptor (MR) is a macrophage surface receptor that recognizes pathogen associated molecular patterns (PAMPs) from a diverse array of bacterial, fungal and viral pathogens. Functional studies of the MR are hampered by the scarcity of human cell lines that express the receptor. Current model systems available for the study of MR biology often demonstrate low levels of expression and do not retain many of the classical MR properties. Although several laboratories have reported transient and stable expression of MR from plasmids, preliminary data from our laboratory suggests that these plasmids produce a protein that lacks critical domains and is often not stable over time. In this current report we describe the generation and characterization of a novel human codon-optimized system for transient and stable MR expression. Rare codons and sequences that contribute to mRNA instability were modified to produce mRNA that is qualitatively and quantitatively improved. Confocal imaging of the transient and stably expressed optimized receptor demonstrates a distribution consistent with previous reports. To demonstrate the functional characteristics of the optimized receptor, we further show that the introduction of codon-optimized MR plasmid can confer MR-associated phagocytosis of S. aureus to non-phagocytic HeLa cells. We show that three molecules participate in the engagement and internalization of S. aureus. MR was found to colocalize with Toll-like receptor 2 (TLR2) and Rab5 following exposure to pHrodo-stained S. aureus, suggesting cooperation among the three molecules to engage and internalize the bacterial particle. This study describes a transfection capable, optimized MR receptor with functional characteristics similar to the wild type receptor and further demonstrates a new system for the continued study of MR biology and function. PMID:26581716

  18. Redox regulation of chemokine receptor expression

    PubMed Central

    Saccani, Alessandra; Saccani, Simona; Orlando, Simone; Sironi, Marina; Bernasconi, Sergio; Ghezzi, Pietro; Mantovani, Alberto; Sica, Antonio

    2000-01-01

    Cytokines and reactive oxygen intermediates (ROI) are frequent companions at sites of acute inflammation. We have shown previously that in human monocytes, bacterial lipopolysaccharide, IL-1, and tumor necrosis factor-α induce a rapid down-regulation of the monocyte chemotactic protein-1 receptor CCR2 (CC chemokine receptor-2). These stimuli also induce production of ROI. In this paper, we investigate the influence of antioxidants and/or ROI on chemokine-receptor expression. In human monocytes, the antioxidant pyrrolidine dithiocarbamate (PDTC) rapidly inhibited CCR2 (95–100% of inhibition) and CCR5 (77–100% of inhibition) mRNA expression by strongly decreasing transcript stability. CCR2 half-life was decreased from 1.5 h to 45 min; CCR5 half-life was decreased from 2 h to 70 min. This inhibitory activity also included CXCR4 (CXC chemokine receptor-4) but not CXCR2 receptor and, although to a lesser extent, was shared by the antioxidants N-acetyl-l-cysteine and 2-mercaptoethanol. In contrast, the ROI-generating system xanthine/xanthine oxidase increased CCR5 and CXCR4 mRNA expression and counteracted the inhibitory effect of PDTC. Accordingly, H2O2 and the glutathione-depleting drug buthionine sulfoximine increased to different extents CCR2, CCR5, and CXCR4 mRNA expression. The PDTC-mediated inhibition of CCR5 and CXCR4 mRNA expression was associated with decreased chemotactic responsiveness (>90% inhibition) and with a marked inhibition of surface-receptor expression. In contrast, xanthine/xanthine oxidase opposed the bacterial lipopolysaccharide- and tumor necrosis factor-α-mediated inhibition of CCR5 and CXCR4 mRNA expression and increased both the CCR5 surface expression and the cell migration (3-fold) in response to macrophage inflammatory protein-1β. These results suggest that the redox status of cells is a crucial determinant in the regulation of the chemokine system. PMID:10716998

  19. Developmental changes in NMDA receptor expression in the platyfish brain

    NASA Technical Reports Server (NTRS)

    Flynn, K. M.; Schreibman, M. P.; Magliulo-Cepriano, L.

    1997-01-01

    We have examined the distribution of the N-methyl-D-aspartate (NMDA) receptor in the brain of a freshwater teleost using an antibody against the R1 subunit of the receptor (NMDAR1). The primary site of localization was the nucleus olfactoretinalis (NOR), a significant gonadotropin releasing hormone (GnRH)-containing brain nucleus. The number of cells expressing NMDAR1 in this nucleus was dependent upon developmental stage, with pubescent and mature animals displaying significantly more stained cells than immature and senescent animals. This is the first reported observation of age- and maturity-related NMDA receptor association with GnRH-containing brain areas.

  20. Kaitocephalin Antagonism of Glutamate Receptors Expressed in Xenopus Oocytes

    PubMed Central

    2009-01-01

    Kaitocephalin is the first discovered natural toxin with protective properties against excitotoxic death of cultured neurons induced by N-methyl-d-aspartate (NMDA) or α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)/kainic acid (kainate, KA) receptors. Nevertheless, the effects of kaitocephalin on the function of these receptors were unknown. In this work, we report some pharmacological properties of synthetic (−)-kaitocephalin on rat brain glutamate receptors expressed in Xenopus laevis oocytes and on the homomeric AMPA-type GluR3 and KA-type GluR6 receptors. Kaitocephalin was found to be a more potent antagonist of NMDA receptors (IC50 = 75 ± 9 nM) than of AMPA receptors from cerebral cortex (IC50 = 242 ± 37 nM) and from homomeric GluR3 subunits (IC50 = 502 ± 55 nM). Moreover, kaitocephalin is a weak antagonist of the KA-type receptor GluR6 (IC50 ∼ 100 μM) and of metabotropic (IC50 > 100 μM) glutamate receptors expressed by rat brain mRNA. PMID:20436943

  1. Mechanism of GABAB receptor-induced BDNF secretion and promotion of GABAA receptor membrane expression.

    PubMed

    Kuczewski, Nicola; Fuchs, Celine; Ferrand, Nadine; Jovanovic, Jasmina N; Gaiarsa, Jean-Luc; Porcher, Christophe

    2011-08-01

    Recent studies have shown that GABA(B) receptors play more than a classical inhibitory role and can function as an important synaptic maturation signal early in life. In a previous study, we reported that GABA(B) receptor activation triggers secretion of brain-derived neurotrophic factor (BDNF) and promotes the functional maturation of GABAergic synapses in the developing rat hippocampus. To identify the signalling pathway linking GABA(B) receptor activation to BDNF secretion in these cells, we have now used the phosphorylated form of the cAMP response element-binding protein as a biological sensor for endogenous BDNF release. In the present study, we show that GABA(B) receptor-induced secretion of BDNF relies on the activation of phospholipase C, followed by the formation of diacylglycerol, activation of protein kinase C, and the opening of L-type voltage-dependent Ca(2+) channels. We further show that once released by GABA(B) receptor activation, BDNF increases the membrane expression of β(2/3) -containing GABA(A) receptors in neuronal cultures. These results reveal a novel function of GABA(B) receptors in regulating the expression of GABA(A) receptor through BDNF-tropomyosin-related kinase B receptor dependent signalling pathway.

  2. Tyrosine Kinase Receptor Expression in Canine Liposarcoma.

    PubMed

    Avallone, G; Pellegrino, V; Roccabianca, P; Lepri, E; Crippa, L; Beha, G; De Tolla, L; Sarli, G

    2017-03-01

    The expression of tyrosine kinase receptors is attracting major interest in human and veterinary oncological pathology because of their role as targets for adjuvant therapies. Little is known about tyrosine kinase receptor (TKR) expression in canine liposarcoma (LP), a soft tissue sarcoma. The aim of this study was to evaluate the immunohistochemical expression of the TKRs fibroblast growth factor receptor 1 (FGFR1) and platelet-derived growth factor receptor-β (PDGFRβ); their ligands, fibroblast growth factor 2 (FGF2) and platelet-derived growth factor B (PDGFB); and c-kit in canine LP. Immunohistochemical labeling was categorized as high or low expression and compared with the mitotic count and MIB-1-based proliferation index. Fifty canine LPs were examined, classified, and graded. Fourteen cases were classified as well differentiated, 7 as myxoid, 25 as pleomorphic, and 4 as dedifferentiated. Seventeen cases were grade 1, 26 were grade 2, and 7 were grade 3. A high expression of FGF2, FGFR1, PDGFB, and PDGFRβ was identified in 62% (31/50), 68% (34/50), 81.6% (40/49), and 70.8% (34/48) of the cases, respectively. c-kit was expressed in 12.5% (6/48) of the cases. Mitotic count negatively correlated with FGF2 ( R = -0.41; P < .01), being lower in cases with high FGF2 expression, and positively correlated with PDGFRβ ( R = 0.33; P < .01), being higher in cases with high PDGFRβ expression. No other statistically significant correlations were identified. These results suggest that the PDGFRβ-mediated pathway may have a role in the progression of canine LP and may thus represent a promising target for adjuvant cancer therapies.

  3. Multiple melanocortin receptors are expressed in bone cells

    NASA Technical Reports Server (NTRS)

    Zhong, Qing; Sridhar, Supriya; Ruan, Ling; Ding, Ke-Hong; Xie, Ding; Insogna, Karl; Kang, Baolin; Xu, Jianrui; Bollag, Roni J.; Isales, Carlos M.

    2005-01-01

    Melanocortin receptors belong to the seven transmembrane domain, G-protein coupled family of receptors. There are five members of this receptor family labeled MC1R-MC5R. These receptors are activated by fragments derived from a larger molecule, proopiomelanocortin (POMC) and include ACTH, alpha beta and gamma-MSH and beta-endorphin. Because of in vitro and in vivo data suggesting direct effects of these POMC molecules on bone and bone turnover, we examined bone and bone derived cells for the presence of the various members of the melanocortin receptor family. We report that the five known melanocortin receptors are expressed to varying degrees in osteoblast-like and osteoclastic cells. POMC fragments increased proliferation and expression of a variety of genes in osteoblastic cells. Furthermore, POMC mRNA was detected in osteoclastic cells. These data demonstrate that POMC-derived peptide hormones acting through high affinity melanocortin receptors have specific effects on bone cells. Thus, in addition to the indirect effects of POMC-derived hormones on bone turnover through their modulation of steroid hormone secretion, POMC fragments may have direct and specific effects on bone cell subpopulations.

  4. Multiple melanocortin receptors are expressed in bone cells

    NASA Technical Reports Server (NTRS)

    Zhong, Qing; Sridhar, Supriya; Ruan, Ling; Ding, Ke-Hong; Xie, Ding; Insogna, Karl; Kang, Baolin; Xu, Jianrui; Bollag, Roni J.; Isales, Carlos M.

    2005-01-01

    Melanocortin receptors belong to the seven transmembrane domain, G-protein coupled family of receptors. There are five members of this receptor family labeled MC1R-MC5R. These receptors are activated by fragments derived from a larger molecule, proopiomelanocortin (POMC) and include ACTH, alpha beta and gamma-MSH and beta-endorphin. Because of in vitro and in vivo data suggesting direct effects of these POMC molecules on bone and bone turnover, we examined bone and bone derived cells for the presence of the various members of the melanocortin receptor family. We report that the five known melanocortin receptors are expressed to varying degrees in osteoblast-like and osteoclastic cells. POMC fragments increased proliferation and expression of a variety of genes in osteoblastic cells. Furthermore, POMC mRNA was detected in osteoclastic cells. These data demonstrate that POMC-derived peptide hormones acting through high affinity melanocortin receptors have specific effects on bone cells. Thus, in addition to the indirect effects of POMC-derived hormones on bone turnover through their modulation of steroid hormone secretion, POMC fragments may have direct and specific effects on bone cell subpopulations.

  5. Social regulation of cortisol receptor gene expression

    PubMed Central

    Korzan, Wayne J.; Grone, Brian P.; Fernald, Russell D.

    2014-01-01

    In many social species, individuals influence the reproductive capacity of conspecifics. In a well-studied African cichlid fish species, Astatotilapia burtoni, males are either dominant (D) and reproductively competent or non-dominant (ND) and reproductively suppressed as evidenced by reduced gonadotropin releasing hormone (GnRH1) release, regressed gonads, lower levels of androgens and elevated levels of cortisol. Here, we asked whether androgen and cortisol levels might regulate this reproductive suppression. Astatotilapia burtoni has four glucocorticoid receptors (GR1a, GR1b, GR2 and MR), encoded by three genes, and two androgen receptors (ARα and ARβ), encoded by two genes. We previously showed that ARα and ARβ are expressed in GnRH1 neurons in the preoptic area (POA), which regulates reproduction, and that the mRNA levels of these receptors are regulated by social status. Here, we show that GR1, GR2 and MR mRNAs are also expressed in GnRH1 neurons in the POA, revealing potential mechanisms for both androgens and cortisol to influence reproductive capacity. We measured AR, MR and GR mRNA expression levels in a microdissected region of the POA containing GnRH1 neurons, comparing D and ND males. Using quantitative PCR (qPCR), we found D males had higher mRNA levels of ARα, MR, total GR1a and GR2 in the POA compared with ND males. In contrast, ND males had significantly higher levels of GR1b mRNA, a receptor subtype with a reduced transcriptional response to cortisol. Through this novel regulation of receptor type, neurons in the POA of an ND male will be less affected by the higher levels of cortisol typical of low status, suggesting GR receptor type change as a potential adaptive mechanism to mediate high cortisol levels during social suppression. PMID:25013108

  6. Hormone Receptor Expression in Human Fascial Tissue

    PubMed Central

    Fede, C.; Albertin, G.; Petrelli, L.; Sfriso, M.M.; Biz, C.; De Caro, R.

    2016-01-01

    Many epidemiologic, clinical, and experimental findings point to sex differences in myofascial pain in view of the fact that adult women tend to have more myofascial problems with respect to men. It is possible that one of the stimuli to sensitization of fascial nociceptors could come from hormonal factors such as estrogen and relaxin, that are involved in extracellular matrix and collagen remodeling and thus contribute to functions of myofascial tissue. Immunohistochemical and molecular investigations (real-time PCR analysis) of relaxin receptor 1 (RXFP1) and estrogen receptor-alpha (ERα) localization were carried out on samples of human fascia collected from 8 volunteers patients during orthopedic surgery (all females, between 42 and 70 yrs, divided into pre- and post-menopausal groups), and in fibroblasts isolated from deep fascia, to examine both protein and RNA expression levels. We can assume that the two sex hormone receptors analyzed are expressed in all the human fascial districts examined and in fascial fibroblasts culture cells, to a lesser degree in the post-menopausal with respect to the pre-menopausal women. Hormone receptor expression was concentrated in the fibroblasts, and RXFP1 was also evident in blood vessels and nerves. Our results are the first demonstrating that the fibroblasts located within different districts of the muscular fasciae express sex hormone receptors and can help to explain the link between hormonal factors and myofascial pain. It is known, in fact, that estrogen and relaxin play a key role in extracellular matrix remodeling by inhibiting fibrosis and inflammatory activities, both important factors affecting fascial stiffness and sensitization of fascial nociceptors. PMID:28076930

  7. Nicotinic Receptor Alpha7 Expression during Mouse Adrenal Gland Development

    PubMed Central

    Gahring, Lorise C.; Myers, Elizabeth; Palumbos, Sierra; Rogers, Scott W.

    2014-01-01

    The nicotinic acetylcholine receptor alpha 7 (α7) is a ligand-activated ion channel that contributes to a diversity of cellular processes involved in development, neurotransmission and inflammation. In this report the expression of α7 was examined in the mouse developing and adult adrenal gland that expresses a green fluorescent protein (GFP) reporter as a bi-cistronic extension of the endogenous α7 transcript (α7G). At embryonic day 12.5 (E12.5) α7G expression was associated with the suprarenal ganglion and precursor cells of the adrenal gland. The α7G cells are catecholaminergic chromaffin cells as reflected by their progressive increase in the co-expression of tyrosine hydroxylase (TH) and dopamine-beta-hydroxylase (DBH) that is complete by E18.5. In the adult, α7G expression is limited to a subset of chromaffin cells in the adrenal medulla that cluster near the border with the adrenal cortex. These chromaffin cells co-express α7G, TH and DBH, but they lack phenylethanolamine N-methyltransferase (PNMT) consistent with only norepinephrine (NE) synthesis. These cell groups appear to be preferentially innervated by pre-ganglionic afferents identified by the neurotrophin receptor p75. No afferents identified by beta-III tubulin, neurofilament proteins or p75 co-expressed α7G. Occasional α7G cells in the pre-E14.5 embryos express neuronal markers consistent with intrinsic ganglion cells and in the adult some α7G cells co-express glutamic acid decarboxylase. The transient expression of α7 during adrenal gland development and its prominent co-expression by a subset of NE chromaffin cells in the adult suggests that the α7 receptor contributes to multiple aspects of adrenal gland development and function that persist into adulthood. PMID:25093893

  8. Expression of orexin receptors in the pituitary.

    PubMed

    Kaminski, Tadeusz; Smolinska, Nina

    2012-01-01

    Orexin receptors type 1 (OX1R) and type 2 (OX2R) are G protein-coupled receptors whose structure is highly conserved in mammals. OX1R is selective for orexin A, and OX2R binds orexin A and orexin B with similar affinity. Orexin receptor expression was observed in human, rat, porcine, sheep as well as Xenopus laevis pituitaries, both in the adenohypophysis and in the neurohypophysis. The expression level is regulated by gonadal steroid hormones and GnRH. The majority of orexins reaching the pituitary originate from the lateral hypothalamus, but due to the presence of the receptors and the local production of orexins in the pituitary, orexins could deliver an auto/paracrine effect within the gland. Cumulative data indicate that orexins are involved in the regulation of LH, GH, PRL, ACTH, and TSH secretion by pituitary cells, pointing to orexins' effect on the functioning of the endocrine axes. Those hormones may also serve as a signal linking metabolic status with endocrine control of sleep, arousal, and reproduction processes.

  9. Myometrial oxytocin receptor expression and intracellular pathways.

    PubMed

    Yulia, A; Johnson, M R

    2014-06-01

    Oxytocin (OT) signalling plays a fundamental role in the mechanisms of parturition. OT is one of the most frequently used drugs in obstetrics, promoting uterine contractions for labor induction and augmentation and to prevent postpartum hemorrhage (PPH). Expression of the oxytocin receptor (OTR) in the human myometrium is tightly regulated during pregnancy and its levels have been shown to peak upon labour onset and to fall sharply in advanced labour and the postpartum period, when the uterus become refractive to OT. However, uterine sensitivity to OT varies between pregnant women, probably reflecting differences in their myometrial OTR expression. Control of OTR expression is mediated by a combination of steroid hormone stimulation, stretch, and inflammation. This review summarises current knowledge regarding the complex regulation of myometrial OTR expression and its associated intracellular signaling pathways.

  10. IL-21 Receptor Expression in Human Tendinopathy

    PubMed Central

    Campbell, Abigail L.; Smith, Nicola C.; Reilly, James H.; Kerr, Shauna C.; Leach, William J.; Fazzi, Umberto G.; Rooney, Brian P.; Murrell, George A. C.; Millar, Neal L.

    2014-01-01

    The pathogenetic mechanisms underlying tendinopathy remain unclear, with much debate as to whether inflammation or degradation has the prominent role. Increasing evidence points toward an early inflammatory infiltrate and associated inflammatory cytokine production in human and animal models of tendon disease. The IL-21/IL-21R axis is a proinflammatory cytokine complex that has been associated with chronic inflammatory diseases including rheumatoid arthritis and inflammatory bowel disease. This project aimed to investigate the role and expression of the cytokine/receptor pair IL-21/IL-21R in human tendinopathy. We found significantly elevated expression of IL-21 receptor message and protein in human tendon samples but found no convincing evidence of the presence of IL-21 at message or protein level. The level of expression of IL-21R message/protein in human tenocytes was significantly upregulated by proinflammatory cytokines (TNFα/IL-1β) in vitro. These findings demonstrate that IL-21R is present in early human tendinopathy mainly expressed by tenocytes and macrophages. Despite a lack of IL-21 expression, these data again suggest that early tendinopathy has an inflammatory/cytokine phenotype, which may provide novel translational targets in the treatment of tendinopathy. PMID:24757284

  11. Expression of prostacyclin receptor in human megakaryocytes.

    PubMed

    Sasaki, Y; Takahashi, T; Tanaka, I; Nakamura, K; Okuno, Y; Nakagawa, O; Narumiya, S; Nakao, K

    1997-08-01

    Prostacyclin (prostaglandin I2, PGI2) is a potent vasodilator and inhibitor of platelet aggregation. Although it is well known that the specific receptor for prostacyclin (PGI2-R) is abundantly expressed on platelets, PGI2-R expression in megakaryocytes is poorly understood. In this study, we examined its expression in leukemic or normal megakaryocytes. PGI2-R mRNA was expressed in human leukemic cell lines of megakaryocytic nature as evaluated by Northern blot analysis. Phorbol 12-myristate 13-acetate (PMA), interleukin-1 (IL-1), IL-3, IL-6, granulocyte-macrophage colony-stimulating factor (GM-CSF), thrombopoietin (TPO), and tumor necrosis factor-alpha (TNF-alpha) enhanced PGI2-R mRNA expression. The enhancement of PGI2-R expression by PMA and TPO was associated with the upregulation of platelet factor 4 or glycoprotein IIb mRNA expression. Iloprost, an agonist of prostacyclin, induced significant cyclic (c)AMP synthesis in these leukemic cells indicating that interaction of PGI2-R and its ligand can induce postreceptor signal transduction. Furthermore, iloprost-induced cAMP synthesis was enhanced by the pretreatment with PMA or the cytokines that promoted PGI2-R expression. PMA and TPO also increased the specific binding of [3H]iloprost to these cells. Pooled normal megakaryocytic colonies from TPO-containing semisolid culture of purified human CD34+ cells expressed PGI2-R, which were increased as the megakaryocytes matured with the peak expression before proplatelet formation, as evaluated by semiquantitative reverse transcription-polymerase chain reaction (RT-PCR). These results indicate that PGI2-R is expressed in human megakaryocytes and is upregulated by cytokines involved in thrombopoiesis or inflammation. Also, it was indicated that megakaryocytic maturation accompanies enhancement of PGI2-R expression.

  12. Glycine receptor subunits expression in the developing rat retina.

    PubMed

    Sánchez-Chávez, Gustavo; Velázquez-Flores, Miguel Ángel; Ruiz Esparza-Garrido, Ruth; Salceda, Rocío

    2017-09-01

    Glycine receptor (GlyR) consists of two α (1-4) and three β subunits. Considerable evidence indicates that the adult retina expresses the four types of α subunits; however, the proportion of these subunits in adult and immature retina is almost unknown. In this report we have studied mRNA and the protein expression of GlyR subunits in the retina during postnatal rat development by Real-Time qRT-PCR and western blot. mRNA and protein expression indicated a gradual increase of the α1, α3, α4 and β GlyR subunits during postnatal ages tested. The mRNA β subunit showed higher expression levels (∼3 fold) than those observed for the α1 and α3 subunits. Very interestingly, the α2 GlyR subunit had the highest expression in the retina, even in the adult. These results revealed the expression of GlyR at early postnatal ages, supporting its role in retina development. In addition, our results indicated that the adult retina expressed a high proportion of the α2 subunit, suggesting the expression of monomeric and/or heteromeric receptors. A variety of studies are needed to further characterize the role of the specific subunits in both adult and immature retina. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Male genital leiomyomas showing androgen receptor expression.

    PubMed

    Suárez-Peñaranda, José Manuel; Vieites, Begoña; Evgenyeva, Elena; Vázquez-Veiga, Hugo; Forteza, Jeronimo

    2007-12-01

    Genital leiomyoma in men include those superficial leiomyomas arising in the scrotum and the areola. They are unusual neoplasms: few cases have been reported in the literature and they usually escape clinical diagnosis. Three cases of male genital leiomyomas are reported: two in the scrotum and one in the areola. They were all conservatively excised and the behaviour was completely benign in all cases. Histopathological examination showed the typical findings of superficial leiomyomas, with some minor differences between cases arising in the scrotum and those from the areola. Immunohistochemical findings not only confirmed the smooth muscle nature of all cases but also showed unequivocal immunostaining for androgen receptors in the leiomyomas from the scrotum. Immunostaining for androgen receptors in scrotal leiomyomas is, as far as we are aware, a previously unknown characteristic of male genital leiomyomas. This finding supports the role of steroid hormones in the growth of genital leiomyomas, similar to leiomyomas found in other locations.

  14. A complex pattern of chemokine receptor expression is seen in osteosarcoma

    PubMed Central

    von Luettichau, Irene; Segerer, Stephan; Wechselberger, Alexandra; Notohamiprodjo, Mike; Nathrath, Michaela; Kremer, Markus; Henger, Anna; Djafarzadeh, Roghieh; Burdach, Stefan; Huss, Ralf; Nelson, Peter J

    2008-01-01

    Background Osteosarcoma is the most frequent bone tumor in childhood and adolescence. Patients with primary metastatic disease have a poor prognosis. It is therefore important to better characterize the biology of this tumor to define new prognostic markers or therapeutic targets for tailored therapy. Chemokines and their receptors have been shown to be involved in the development and progression of malignant tumors. They are thought to be active participants in the biology of osteosarcoma. The function of specific chemokines and their receptors is strongly associated with the biological context and microenvironment of their expression. In this report we characterized the expression of a series of chemokine receptors in the complex environment that defines osteosarcoma. Methods The overall level of chemokine receptor mRNA expression was determined using TaqMan RT-PCR of microdissected archival patient biopsy samples. Expression was then verified at the protein level by immunohistochemistry using a series of receptor specific antibody reagents to elucidate the cellular association of expression. Results Expression at the RNA level was found for most of the tested receptors. CCR1 expression was found on infiltrating mononuclear and polynuclear giant cells in the tumor. Cells associated with the lining of intratumoral vessels were shown to express CCR4. Infiltrating mononuclear cells and tumor cells both showed expression of the receptor CCR5, while CCR7 was predominantly expressed by the mononuclear infiltrate. CCR10 was only very rarely detected in few scattered infiltrating cells. Conclusion Our data elucidate for the first time the cellular context of chemokine receptor expression in osteosarcoma. This is an important issue for better understanding potential chemokine/chemokine receptor function in the complex biologic processes that underlie the development and progression of osteosarcoma. Our data support the suggested involvement of chemokines and their

  15. A novel IL-1 receptor, cloned from B cells by mammalian expression, is expressed in many cell types.

    PubMed Central

    McMahan, C J; Slack, J L; Mosley, B; Cosman, D; Lupton, S D; Brunton, L L; Grubin, C E; Wignall, J M; Jenkins, N A; Brannan, C I

    1991-01-01

    cDNA clones corresponding to an Mr approximately 80,000 receptor (type I receptor) for interleukin-1 (IL-1) have been isolated previously by mammalian expression. Here, we report the use of an improved expression cloning method to isolate human and murine cDNA clones encoding a second type (Mr approximately 60,000) of IL-1 receptor (type II receptor). The mature type II IL-1 receptor consists of (i) a ligand binding portion comprised of three immunoglobulin-like domains; (ii) a single transmembrane region; and (iii) a short cytoplasmic domain of 29 amino acids. This last contrasts with the approximately 215 amino acid cytoplasmic domain of the type I receptor, and suggests that the two IL-1 receptors may interact with different signal transduction pathways. The type II receptor is expressed in a number of different tissues, including both B and T lymphocytes, and can be induced in several cell types by treatment with phorbol ester. Both IL-1 receptors appear to be well conserved in evolution, and map to the same chromosomal location. Like the type I receptor, the human type II IL-1 receptor can bind all three forms of IL-1 (IL-1 alpha, IL-1 beta and IL-1ra). Vaccinia virus contains an open reading frame bearing strong resemblance to the type II IL-1 receptor. Images PMID:1833184

  16. Estrogen receptor-related receptors in the killifish Fundulus heteroclitus: diversity, expression, and estrogen responsiveness.

    PubMed

    Tarrant, A M; Greytak, S R; Callard, G V; Hahn, M E

    2006-08-01

    The estrogen receptor-related receptors (ERRs) are a group of nuclear receptors that were originally identified on the basis of sequence similarity to the estrogen receptors. The three mammalian ERR genes have been implicated in diverse physiological processes ranging from placental development to maintenance of bone density, but the diversity, function, and regulation of ERRs in non-mammalian species are not well understood. In this study, we report the cloning of four ERR cDNAs from the Atlantic killifish, Fundulus heteroclitus, along with adult tissue expression and estrogen responsiveness. Phylogenetic analysis indicates that F. heteroclitus (Fh)ERRalpha is an ortholog of the single ERRalpha identified in mammals, pufferfish, and zebrafish. FhERRbetaa and FhERRbetab are co-orthologs of the mammalian ERRbeta. Phylogenetic placement of the fourth killifish ERR gene, tentatively identified as FhERRgammab, is less clear. The four ERRs showed distinct, partially overlapping mRNA expression patterns in adult tissues. FhERRalpha was broadly expressed. FhERRbetaa was expressed at apparently low levels in eye, brain, and ovary. FhERRbetab was expressed more broadly in liver, gonad, eye, brain, and kidney. FhERRgammab was expressed in multiple tissues including gill, heart, kidney, and eye. Distinct expression patterns of FhERRbetaa and FhERRbetab are consistent with subfunctionalization of the ERRbeta paralogs. Induction of ERRalpha mRNA by exogenous estrogen exposure has been reported in some mammalian tissues. In adult male killifish, ERR expression did not significantly change following estradiol injection, but showed a trend toward a slight induction (three- to five-fold) of ERRalpha expression in heart. In a second, more targeted experiment, expression of ERRalpha in adult female killifish was downregulated 2.5-fold in the heart following estradiol injection. In summary, our results indicate that killifish contain additional ERR genes relative to mammals, including

  17. Heterologous expression of the adenosine A1 receptor in transgenic mouse retina.

    PubMed

    Li, Ning; Salom, David; Zhang, Li; Harris, Tim; Ballesteros, Juan A; Golczak, Marcin; Jastrzebska, Beata; Palczewski, Krzysztof; Kurahara, Carole; Juan, Todd; Jordan, Steven; Salon, John A

    2007-07-17

    Traditional cell-based systems used to express integral membrane receptors have yet to produce protein samples of sufficient quality for structural study. Herein we report an in vivo method that harnesses the photoreceptor system of the retina to heterologously express G protein-coupled receptors in a biochemically homogeneous and pharmacologically functional conformation. As an example we show that the adenosine A1 receptor, when placed under the influence of the mouse opsin promoter and rhodopsin rod outer segment targeting sequence, localized to the photoreceptor cells of transgenic retina. The resulting receptor protein was uniformly glycosylated and pharmacologically well behaved. By comparison, we demonstrated in a control experiment that opsin, when expressed in the liver, had a complex pattern of glycosylation. Upon solubilization, the retinal adenosine A1 receptor retained binding characteristics similar to its starting material. This expression method may prove generally useful for generating high-quality G protein-coupled receptors for structural studies.

  18. Melanocortin MC₄ receptor expression sites and local function.

    PubMed

    Siljee-Wong, Jacqueline E

    2011-06-11

    The melanocortin MC(4) receptor plays an important role in energy metabolism, but also affects blood pressure, heart rate and erectile function. Localization of the receptors that fulfill these distinct roles is only partially known. Mapping of the melanocortin MC(4) receptor has been stymied by the absence of a functional antibody. Several groups have examined mRNA expression of the melanocortin MC(4) receptor in the rodent brain and transgenic approaches have also been utilized to visualize melanocortin MC(4) receptor expression sites within the brain. Ligand expression and binding studies have provided additional information on the areas of the brain where this elusive receptor is functionally expressed. Finally, microinjection of melanocortin MC(4) receptor ligands in specific nuclei has further served to elucidate the function of melanocortin MC(4) receptors in these nuclei. These combined approaches have helped link the anatomy and function of this receptor, such as the role of paraventricular hypothalamic nucleus melanocortin MC(4) receptor in the regulation of food intake. Intriguingly, however, numerous expression-sites have been identified that have not been linked to a specific receptor function such as those along the optic tract and olfactory tubercle. Further research is needed to clarify the function of the melanocortin MC(4) receptor at these sites.

  19. Expression of a Novel D4 Dopamine Receptor in the Lamprey Brain. Evolutionary Considerations about Dopamine Receptors

    PubMed Central

    Pérez-Fernández, Juan; Megías, Manuel; Pombal, Manuel A.

    2016-01-01

    Numerous data reported in lampreys, which belong to the phylogenetically oldest branch of vertebrates, show that the dopaminergic system was already well developed at the dawn of vertebrate evolution. The expression of dopamine in the lamprey brain is well conserved when compared to other vertebrates, and this is also true for the D2 receptor. Additionally, the key role of dopamine in the striatum, modulating the excitability in the direct and indirect pathways through the D1 and D2 receptors, has also been recently reported in these animals. The moment of divergence regarding the two whole genome duplications occurred in vertebrates suggests that additional receptors, apart from the D1 and D2 previously reported, could be present in lampreys. We used in situ hybridization to characterize the expression of a novel dopamine receptor, which we have identified as a D4 receptor according to the phylogenetic analysis. The D4 receptor shows in the sea lamprey a more restricted expression pattern than the D2 subtype, as reported in mammals. Its main expression areas are the striatum, lateral and ventral pallial sectors, several hypothalamic regions, habenula, and mesencephalic and rhombencephalic motoneurons. Some expression areas are well conserved through vertebrate evolution, as is the case of the striatum or the habenula, but the controversies regarding the D4 receptor expression in other vertebrates hampers for a complete comparison, especially in rhombencephalic regions. Our results further support that the dopaminergic system in vertebrates is well conserved and suggest that at least some functions of the D4 receptor were already present before the divergence of lampreys. PMID:26778974

  20. Dynamics of nuclear receptor gene expression during Pacific oyster development.

    PubMed

    Vogeler, Susanne; Bean, Tim P; Lyons, Brett P; Galloway, Tamara S

    2016-09-29

    Nuclear receptors are a highly conserved set of ligand binding transcription factors, with essential roles regulating aspects of vertebrate and invertebrate biology alike. Current understanding of nuclear receptor regulated gene expression in invertebrates remains sparse, limiting our ability to elucidate gene function and the conservation of developmental processes across phyla. Here, we studied nuclear receptor expression in the early life stages of the Pacific oyster, Crassostrea gigas, to identify at which specific key stages nuclear receptors are expressed RESULTS: We used quantitative RT-PCR to determine the expression profiles of 34 nuclear receptors, revealing three developmental key stages, during which nuclear receptor expression is dynamically regulated: embryogenesis, mid development from gastrulation to trochophore larva, and late larval development prior to metamorphosis. Clustering of nuclear receptor expression patterns demonstrated that transcriptional regulation was not directly related to gene phylogeny, suggesting closely related genes may have distinct functions. Expression of gene homologs of vertebrate retinoid receptors suggests participation in organogenesis and shell-formation, as they are highly expressed at the gastrulation and trochophore larval initial shell formation stages. The ecdysone receptor homolog showed high expression just before larval settlement, suggesting a potential role in metamorphosis. Throughout early oyster development nuclear receptors exhibited highly dynamic expression profiles, which were not confined by gene phylogeny. These results provide fundamental information on the presence of nuclear receptors during key developmental stages, which aids elucidation of their function in the developmental process. This understanding is essential as ligand sensing nuclear receptors can be disrupted by xenobiotics, a mode of action through which anthropogenic environmental pollutants have been found to mediate effects.

  1. Abnormal melatonin receptor 1B expression in osteoblasts from girls with adolescent idiopathic scoliosis.

    PubMed

    Man, Gene Chi-Wai; Wong, Jack Ho; Wang, William Wei-Jun; Sun, Guang-Quan; Yeung, Benson Hiu-Yan; Ng, Tzi-Bun; Lee, Simon Kwong-Man; Ng, Bobby Kin-Wah; Qiu, Yong; Cheng, Jack Chun-Yiu

    2011-05-01

    Melatonin signaling dysfunction has been associated with the etiology of adolescent idiopathic scoliosis (AIS). Genetic analysis has also associated the occurrence of AIS with the MT2 gene. Thus, we determined whether there is abnormality in the protein expression of melatonin receptors (MT) in AIS osteoblasts. In this study, we recruited 11 girls with severe AIS and eight normal subjects for intraoperative bone biopsies. MT1 and MT2 receptor protein expressions in the isolated osteoblasts were detected. Also, cell proliferation assay using different melatonin concentrations (0, 10(-9), 10(-5), 10(-4) m) was carried out. The results showed that both MT1 and MT2 receptors are expressed in osteoblasts of the controls. While MT1 receptors were expressed in osteoblasts of all AIS subjects, osteoblasts of only 7 of 11 AIS showed expression of MT2 receptors. Melatonin stimulated control osteoblasts to proliferate. However, proliferation of AIS osteoblasts without expression of MT2 receptor, after treatment with melatonin, was minimal when compared with control and AIS osteoblasts with MT2 receptor expression. The proliferation of AIS osteoblasts with MT2 receptor was greater than those without. This is the first report demonstrating a difference between AIS and normal osteoblasts in the protein expression of MT2 receptor. The results suggest that there is a possible functional effect of MT2 receptor on osteoblast proliferation. AIS osteoblasts without expression of MT2 receptor showed the lowest percentage of viable cells after melatonin treatment. This possibly indicates the modulating role of melatonin through MT2 receptor on the proliferation of osteoblasts.

  2. A NOVEL CELL LINE, MDA-KB2, THAT STABLY EXPRESSES AN ANDROGEN AND GLUCOCORTICOID RESPONSIVE REPORTER FOR THE DETECTION OF HORMONE RECEPTOR AGONISTS AND ANTAGONISTS

    EPA Science Inventory

    The U.S. Environmental Protection Agency has proposed that in vitro assays for estrogen receptor (ER) and androgen receptor (AR) mediated actions be included in a Tier I screening battery to detect hormonally active chemicals. Herein we describe the development of a novel stab...

  3. A NOVEL CELL LINE, MDA-KB2, THAT STABLY EXPRESSES AN ANDROGEN AND GLUCOCORTICOID RESPONSIVE REPORTER FOR THE DETECTION OF HORMONE RECEPTOR AGONISTS AND ANTAGONISTS

    EPA Science Inventory

    The U.S. Environmental Protection Agency has proposed that in vitro assays for estrogen receptor (ER) and androgen receptor (AR) mediated actions be included in a Tier I screening battery to detect hormonally active chemicals. Herein we describe the development of a novel stab...

  4. The ABA receptors -- we report you decide.

    PubMed

    McCourt, Peter; Creelman, Robert

    2008-10-01

    The plant hormone abscisic acid (ABA) has been implicated in a variety of physiological responses ranging from seed dormancy to stomatal conductance. Recently, three groups have reported the molecular identification of three disparate ABA receptors. Unlike the identification of other hormone receptors, in these three cases high affinity binding to ABA rather than the isolation of ABA insensitive mutants led to these receptor genes. Interestingly, two of the receptors encode genes involved in floral timing and chlorophyll biosynthesis, which are not considered traditional ABA responses. And the third receptor has been clouded in issues of its molecular identity. To clearly determine the roles of these genes in ABA perception it will require placing of these ABA-binding proteins into the rich ABA physiological context that has built up over the years.

  5. Small expression tags enhance bacterial expression of the first three transmembrane segments of the apelin receptor

    PubMed Central

    Pandey, Aditya; Sarker, Muzaddid; Liu, Xiang-Qin; Rainey, Jan K.

    2014-01-01

    G-protein coupled receptors (GPCRs) are inherently dynamic membrane protein modulators of various important cellular signaling cascades. The apelin receptor (AR or APJ) is a class A GPCR involved in numerous physiological processes, implicated in angiogenesis during tumour formation and as a CD4 co-receptor for entry of human immunodeficiency virus type 1 (HIV-1) to cells. Due to the lack of efficient methods to produce full-length GPCRs enriched with nuclear magnetic resonance (NMR) active 15N, 13C and/or 2H isotopes, small GPCR fragments typically comprising 1-2 transmembrane segments are frequently studied using NMR spectroscopy. Here, we report successful overexpression of transmembrane segments 1-3 of AR (AR_TM1-3) in the C41(DE3) strain of Escherichia coli using an AT-rich gene tag previously reported to enhance cell-free expression yields. The resulting protein, with 6 additional N-terminal residues due to the expression tag, was purified using high performance liquid chromatography (HPLC). Far-ultraviolet circular dichroism spectropolarimetry demonstrates that AR_TM1-3 has the predicted ~40% α-helical character in membrane-mimetic environments. 1H-15N HSQC NMR experiments imply amenability to high-resolution NMR structural characterization and stability in solution for weeks. Notably, this small expression tag approach may also be generally applicable to other membrane proteins that are difficult to express in E. coli. PMID:24943103

  6. Small expression tags enhance bacterial expression of the first three transmembrane segments of the apelin receptor.

    PubMed

    Pandey, Aditya; Sarker, Muzaddid; Liu, Xiang-Qin; Rainey, Jan K

    2014-08-01

    G-protein coupled receptors (GPCRs) are inherently dynamic membrane protein modulators of various important cellular signaling cascades. The apelin receptor (AR or APJ) is a class A GPCR involved in numerous physiological processes, implicated in angiogenesis during tumour formation and as a CD4 co-receptor for entry of human immunodeficiency virus type 1 (HIV-1) to cells. Due to the lack of efficient methods to produce full-length GPCRs enriched with nuclear magnetic resonance (NMR) active (15)N, (13)C, and (or) (2)H isotopes, small GPCR fragments typically comprising 1-2 transmembrane segments are frequently studied using NMR spectroscopy. Here, we report successful overexpression of transmembrane segments 1-3 of AR (AR_TM1-3) in the C41(DE3) strain of Escherichia coli using an AT-rich gene tag previously reported to enhance cell-free expression yields. The resulting protein, with 6 additional N-terminal residues due to the expression tag, was purified using high-performance liquid chromatography (HPLC). Far UV circular dichroism spectropolarimetry demonstrates that AR_TM1-3 has the predicted ~40% α-helical character in membrane-mimetic environments. (1)H-(15)N HSQC NMR experiments imply amenability to high-resolution NMR structural characterization and stability in solution for weeks. Notably, this small expression tag approach may also be generally applicable to other membrane proteins that are difficult to express in E. coli.

  7. Cloning and expression of the mouse histamine H3 receptor: evidence for multiple isoforms.

    PubMed

    Rouleau, Agnès; Héron, Anne; Cochois, Véronique; Pillot, Catherine; Schwartz, Jean-Charles; Arrang, Jean-Michel

    2004-09-01

    The existence of mouse H3-receptor isoforms was investigated by PCR analysis and cDNA cloning. Splicing mechanisms previously reported in various species are conserved in the mouse. The retention/deletion of a fragment in the third intracellular loop of the mouse receptor leads to the existence of three isoforms designated mH(3(445)), mH(3(413)) and mH(3(397)) according to the length of their deduced amino acid sequence. PCR analysis showed that mouse H3-receptor isoforms display different expression patterns in the brain. Following expression in Cos-1 cells, [125I]iodoproxyfan binding indicated similar pharmacological profiles of the mH(3(445)), mH(3(413)) and mH(3(397)) isoforms. The pharmacological profile of the mouse H3 receptor is more similar to the rat receptor than to the human receptor, although some differences were also observed between the mouse and rat receptors. For example, the potency of thioperamide and ciproxifan is slightly higher at the mouse receptor than at the rat receptor but 40-100-fold higher than at the human receptor. In situ hybridization histochemistry showed that the distribution of H3-receptor mRNAs in the mouse brain is rather similar to that previously reported in the rat brain. However, the autoradiographic and cellular expression patterns observed in several brain areas such as the thalamus or hippocampus reveal important differences between the two species.

  8. Expression profiles of prostaglandin E2 receptor subtypes in aspirin tolerant adult Chinese with chronic rhinosinusitis.

    PubMed

    Xie, Li; Liu, Ai-Guo; Cui, Yong-Hua; Zhang, Yin-Ping; Liao, Bo; Li, Ni-Ni; Wang, Xian-Song

    2015-01-01

    Several studies have indicated that prostaglandin E2 and E-prostanoid (EP) receptors play a role in the pathogenesis of chronic rhinosinusitis (CRS) in white populations. However, until now there was no report about EP receptor expression and its role in the pathophysiology of CRS in Chinese patients. To investigate the expression profiles of EP receptors, including EP1, EP2, EP3, and EP4 receptors in different Chinese patients with CRS with aspirin tolerance. Nasal biopsy specimens were obtained from 12 controls, 12 patients with CRS without nasal polyps (CRSsNP), 12 with eosinophilic CRS with nasal polyps (CRSwNP), and 16 with noneosinophilic CRSwNP. Histopathologic characteristics were observed under a light microscope. Immunostaining was used to examine tissue localization of EP receptors. Messenger RNA and protein expression of EP receptors were examined by means of quantitative RT-polymerase chain reaction and Western blot, respectively. Different types of CRS presented different histopathologic hallmarks. EP receptors were expressed mainly on epithelium, glands, and infiltrating inflammatory cells in nasal tissue. In controls, patients with CRSsNP, and those with noneosinophilic CRSwNP, EP4 mRNA levels were higher than EP1, EP2, and EP3 receptors. EP2 was downexpressed, and EP1 was upexpressed in patients with eosinophilic CRSwNP. When comparing EP receptor expression among different groups, Messenger RNA and protein of EP1 receptor were significantly enhanced in eosinophilic CRSwNP, but EP2, EP3, and EP4 receptors did not show significant differences. EP receptor expressions present different features in healthy subjects and patients with CRS. The upregulated EP1 receptor in eosinophilic CRSwNP might be associated with excessive infiltrations of eosinophils and other inflammatory cells. The accurate role of the four EP receptors in the pathogenesis of different CRS remains to be further explored.

  9. Brain cannabinoid receptor 2: expression, function and modulation.

    PubMed

    Chen, De-Jie; Gao, Ming; Gao, Fen-Fei; Su, Quan-Xi; Wu, Jie

    2017-03-01

    Cannabis sativa (marijuana) is a fibrous flowering plant that produces an abundant variety of molecules, some with psychoactive effects. At least 4% of the world's adult population uses cannabis annually, making it one of the most frequently used illicit drugs in the world. The psychoactive effects of cannabis are mediated primarily through cannabinoid receptor (CBR) subtypes. The prevailing view is that CB1Rs are mainly expressed in the central neurons, whereas CB2Rs are predominantly expressed in peripheral immune cells. However, this traditional view has been challenged by emerging strong evidence that shows CB2Rs are moderately expressed and function in specific brain areas. New evidence has demonstrated that brain CB2Rs modulate animal drug-seeking behaviors, suggesting that these receptors may exist in brain regions that regulate drug addiction. Recently, we further confirmed that functional CB2Rs are expressed in mouse ventral tegmental area (VTA) dopamine (DA) neurons and that the activation of VTA CB2Rs reduces neuronal excitability and cocaine-seeking behavior. In addition, CB2R-mediated modulation of hippocampal CA3 neuronal excitability and network synchronization has been reported. Here, we briefly summarize recent lines of evidence showing how CB2Rs modulate function and pathophysiology in the CNS.

  10. Brain cannabinoid receptor 2: expression, function and modulation

    PubMed Central

    Chen, De-jie; Gao, Ming; Gao, Fen-fei; Su, Quan-xi; Wu, Jie

    2017-01-01

    Cannabis sativa (marijuana) is a fibrous flowering plant that produces an abundant variety of molecules, some with psychoactive effects. At least 4% of the world's adult population uses cannabis annually, making it one of the most frequently used illicit drugs in the world. The psychoactive effects of cannabis are mediated primarily through cannabinoid receptor (CBR) subtypes. The prevailing view is that CB1Rs are mainly expressed in the central neurons, whereas CB2Rs are predominantly expressed in peripheral immune cells. However, this traditional view has been challenged by emerging strong evidence that shows CB2Rs are moderately expressed and function in specific brain areas. New evidence has demonstrated that brain CB2Rs modulate animal drug-seeking behaviors, suggesting that these receptors may exist in brain regions that regulate drug addiction. Recently, we further confirmed that functional CB2Rs are expressed in mouse ventral tegmental area (VTA) dopamine (DA) neurons and that the activation of VTA CB2Rs reduces neuronal excitability and cocaine-seeking behavior. In addition, CB2R-mediated modulation of hippocampal CA3 neuronal excitability and network synchronization has been reported. Here, we briefly summarize recent lines of evidence showing how CB2Rs modulate function and pathophysiology in the CNS. PMID:28065934

  11. The regulation of oxytocin receptor gene expression during adipogenesis.

    PubMed

    Yi, K J; So, K H; Hata, Y; Suzuki, Y; Kato, D; Watanabe, K; Aso, H; Kasahara, Y; Nishimori, K; Chen, C; Katoh, K; Roh, S G

    2015-05-01

    Although it has been reported that oxytocin stimulates lipolysis in adipocytes, changes in the expression of oxytocin receptor (OTR) mRNA in adipogenesis are still unknown. The present study aimed to investigate the expression of OTR mRNA during adipocyte differentiation and fat accumulation in adipocytes. OTR mRNA was highly expressed in adipocytes prepared from mouse adipose tissues compared to stromal-vascular cells. OTR mRNA expression was increased during the adipocyte differentiation of 3T3-L1 cells. OTR expression levels were higher in subcutaneous and epididymal adipose tissues of 14-week-old male mice compared to 7-week-old male mice. Levels of OTR mRNA expression were higher in adipose tissues at four different sites of mice fed a high-fat diet than in those of mice fed a normal diet. The OTR expression level was also increased by refeeding for 4 h after fasting for 16 h. Oxytocin significantly induced lipolysis in 3T3-L1 adipocytes. In conclusion, a new regulatory mechanism is demonstrated for oxytocin to control the differentiation and fat accumulation in adipocytes via activation of OTR as a part of the hypothalamic-pituitary-adipose axis.

  12. Spatial pattern of receptor expression in the olfactory epithelium.

    PubMed Central

    Nef, P; Hermans-Borgmeyer, I; Artières-Pin, H; Beasley, L; Dionne, V E; Heinemann, S F

    1992-01-01

    A PCR-based strategy for amplifying putative receptors involved in murine olfaction was employed to isolate a member (OR3) of the seven-transmembrane-domain receptor superfamily. During development, the first cells that express OR3 appear adjacent to the wall of the telencephalic vesicle at embryonic day 10. The OR3 receptor is uniquely expressed in a subset of olfactory cells that have a characteristic bilateral symmetry in the adult olfactory epithelium. This receptor and its specific pattern of expression may serve a functional role in odor coding or, alternatively, may play a role in the development of the olfactory system. Images PMID:1384038

  13. Expression of gonadotropin-releasing hormone receptor in cerebral cortical neurons of embryos and adult rats.

    PubMed

    Quintanar, J Luis; Salinas, Eva; González, Rodolfo

    2007-01-03

    Mammalian gonadotropin-releasing hormone (GnRH) was initially isolated from hypothalamus and its receptor from anterior pituitary, although extrapituitary GnRH receptors have been reported. The aim of the present study was to investigate whether GnRH receptor and its mRNA are expressed in cerebral cortical neurons of rat embryos and adult rats using immunohistochemical and reverse transcriptase polymerase chain reaction (RT-PCR) techniques. The immunohistochemistry and RT-PCR analysis showed expression of GnRH receptor and presence of its mRNA, in both cerebral cortical neurons of rat embryos and cerebral cortical tissues of adult rats. Additional experiments showed a decrease in the receptor mRNA expression when cultured neurons of rat embryos were treated with GnRH. It is possible that the presence of GnRH receptors in cortical neurons of rat may be involved in other physiological roles such as neurohormone or neuromodulator.

  14. Glucocorticoid Receptor Expression in Peripheral WBCs of Critically Ill Children.

    PubMed

    Shibata, Audrey R Ogawa; Troster, Eduardo J; Wong, Hector R

    2015-06-01

    To characterize glucocorticoid receptor expression in peripheral WBCs of critically ill children using flow cytometry. Prospective observational cohort. A university-affiliated, tertiary PICU. Fifty-two critically ill children. Samples collected for measurement of glucocorticoid receptor expression and parallel cortisol levels. Subjects with cardiovascular failure had significantly lower glucocorticoid receptor expression both in CD4 lymphocytes (mean fluorescence intensity, 522 [354-787] vs 830 [511-1,219]; p = 0.036) and CD8 lymphocytes (mean fluorescence intensity, 686 [350-835] vs 946 [558-1,511]; p = 0.019) compared with subjects without cardiovascular failure. Subjects in the upper 50th percentile of Pediatric Risk of Mortality III scores and organ failure also had significantly lower glucocorticoid receptor expression in CD4 and CD8 lymphocytes. There was no linear correlation between cortisol concentrations and glucocorticoid receptor expression. Our study suggests that patients with shock and increased severity of illness have lower glucocorticoid receptor expression in CD4 and CD8 lymphocytes. Glucocorticoid receptor expression does not correlate well with cortisol levels. Future studies could focus on studying glucocorticoid receptor expression variability and isoform distribution in the pediatric critically ill population as well as on different strategies to optimize glucocorticoid response.

  15. Expression of estrogen and progesterone receptors in astrocytomas: a literature review

    PubMed Central

    Tavares, Cléciton Braga; Gomes-Braga, Francisca das Chagas Sheyla Almeida; Costa-Silva, Danylo Rafhael; Escórcio-Dourado, Carla Solange; Borges, Umbelina Soares; Conde, Airton Mendes; da Conceição Barros-Oliveira, Maria; Sousa, Emerson Brandão; da Rocha Barros, Lorena; Martins, Luana Mota; Facina, Gil; da-Silva, Benedito Borges

    2016-01-01

    Gliomas are the most common type of primary central nervous system neoplasm. Astrocytomas are the most prevalent type of glioma and these tumors may be influenced by sex steroid hormones. A literature review for the presence of estrogen and progesterone receptors in astrocytomas was conducted in the PubMed database using the following MeSH terms: “estrogen receptor beta” OR “estrogen receptor alpha” OR “estrogen receptor antagonists” OR “progesterone receptors” OR “astrocytoma” OR “glioma” OR “glioblastoma”. Among the 111 articles identified, 13 studies met our inclusion criteria. The majority of reports showed the presence of estrogen and progesterone receptors in astrocytomas. Overall, higher tumor grades were associated with decreased estrogen receptor expression and increased progesterone receptor expression. PMID:27626480

  16. Behavioral meaningful opioidergic stimulation activates kappa receptor gene expression

    PubMed Central

    Teodorov, E.; Ferrari, M.F.R.; Fior-Chadi, D.R.; Camarini, R.; Felício, L.F.

    2012-01-01

    The periaqueductal gray (PAG) has been reported to be a location for opioid regulation of pain and a potential site for behavioral selection in females. Opioid-mediated behavioral and physiological responses differ according to the activity of opioid receptor subtypes. The present study investigated the effects of the peripheral injection of the kappa-opioid receptor agonist U69593 into the dorsal subcutaneous region of animals on maternal behavior and on Oprk1 gene activity in the PAG of female rats. Female Wistar rats weighing 200-250 g at the beginning of the study were randomly divided into 2 groups for maternal behavior and gene expression experiments. On day 5, pups were removed at 7:00 am and placed in another home cage that was distant from their mother. Thirty minutes after removing the pups, the dams were treated with U69593 (0.15 mg/kg, sc) or 0.9% saline (up to 1 mL/kg) and after 30 min were evaluated in the maternal behavior test. Latencies in seconds for pup retrieval, grouping, crouching, and full maternal behavior were scored. The results showed that U69593 administration inhibited maternal behavior (P < 0.05) because a lower percentage of U69593 group dams showed retrieval of first pup, retrieving all pups, grouping, crouching and displaying full maternal behavior compared to the saline group. Opioid gene expression was evaluated using real-time reverse-transcription polymerase chain reaction (RT-PCR). A single injection of U69593 increased Oprk1 PAG expression in both virgin (P < 0.05) and lactating female rats (P < 0.01), with no significant effect on Oprm1 or Oprd1 gene activity. Thus, the expression of kappa-opioid receptors in the PAG may be modulated by single opioid receptor stimulation and behavioral meaningful opioidergic transmission in the adult female might occur simultaneously to specific changes in gene expression of kappa-opioid receptor subtype. This is yet another alert for the complex role of the opioid system in female

  17. Yeast-based reporter assays for the functional characterization of cochaperone interactions with steroid hormone receptors.

    PubMed

    Balsiger, Heather A; Cox, Marc B

    2009-01-01

    Steroid hormone receptor-mediated reporter assays in the budding yeast Saccharomyces cerevisiae have been an invaluable tool for the identification and functional characterization of steroid hormone receptor-associated chaperones and cochaperones. This chapter describes a hormone-inducible androgen receptor-mediated beta-galactosidase reporter assay in yeast. In addition, the immunophilin FKBP52 is used as a specific example of a receptor-associated cochaperone that acts as a positive regulator of receptor function. With the right combination of receptor and cochaperone expression plasmids, reporter plasmid, and ligand, the assay protocol described here could be used to functionally characterize a wide variety of nuclear receptor-cochaperone interactions. In addition to the functional characterization of receptor regulatory proteins, a modified version of this assay is currently being used to screen compound libraries for selective FKBP52 inhibitors that represent attractive therapeutic candidates for the treatment of steroid hormone receptor-associated diseases.

  18. Androgen receptor expression predicts different clinical outcomes for breast cancer patients stratified by hormone receptor status

    PubMed Central

    Xu, Yan; Zheng, Yi-Zi; Liu, Yi-Rong; Lang, Guan-Tian; Qiao, Feng; Hu, Xin; Shao, Zhi-Ming

    2016-01-01

    In this study we sought to correlate androgen receptor (AR) expression with tumor progression and disease-free survival (DFS) in breast cancer patients. We investigated AR expression in 450 breast cancer patients. We found that breast cancers expressing the estrogen receptor (ER) are more likely to co-express AR compared to ER-negative cancers (56.0% versus 28.1%, P < 0.001). In addition, we found that AR expression is correlated with increased DFS in patients with luminal breast cancer (P < 0.001), and decreased DFS in TNBC (triple negative breast cancer, P = 0.014). In addition, patients with HR+ tumors (Hormone receptor positive tumors) expressing low levels of AR have the lowest DFS among all receptor combinations. We also propose a novel prognostic model using AR receptor status, BRCA1, and present data showing that our model is more predictive of disease free survival compared to the traditional TMN staging system. PMID:27285752

  19. Expression of the Endocannabinoid Receptors in Human Fascial Tissue

    PubMed Central

    Fede, C.; Albertin, G.; Petrelli, L.; Sfriso, M.M.; Biz, C.; Caro, R. De; Stecco, C.

    2016-01-01

    Cannabinoid receptors have been localized in the central and peripheral nervous system as well as on cells of the immune system, but recent studies on animal tissue gave evidence for the presence of cannabinoid receptors in different types of tissues. Their presence was supposed also in myofascial tissue, suggesting that the endocannabinoid system may help resolve myofascial trigger points and relieve symptoms of fibromyalgia. However, until now the expression of CB1 (cannabinoid receptor 1) and CB2 (cannabinoid receptor 2) in fasciae has not yet been established. Small samples of fascia were collected from volunteers patients during orthopedic surgery. For each sample were done a cell isolation, immunohistochemical investigation (CB1 and CB2 antibodies) and real time RT-PCR to detect the expression of CB1 and CB2. Both cannabinoid receptors are expressed in human fascia and in human fascial fibroblasts culture cells, although to a lesser extent than the control gene. We can assume that the expression of mRNA and protein of CB1 and CB2 receptors in fascial tissue are concentrated into the fibroblasts. This is the first demonstration that the fibroblasts of the muscular fasciae express CB1 and CB2. The presence of these receptors could help to provide a description of cannabinoid receptors distribution and to better explain the role of fasciae as pain generator and the efficacy of some fascial treatments. Indeed the endocannabinoid receptors of fascial fibroblasts can contribute to modulate the fascial fibrosis and inflammation. PMID:27349320

  20. Simvastatin enhances bone morphogenetic protein receptor type II expression

    SciTech Connect

    Hu Hong; Sung, Arthur; Zhao, Guohua; Shi, Lingfang; Qiu Daoming; Nishimura, Toshihiko; Kao, Peter N. . E-mail: peterkao@stanford.edu

    2006-01-06

    Statins confer therapeutic benefits in systemic and pulmonary vascular diseases. Bone morphogenetic protein (BMP) receptors serve essential signaling functions in cardiovascular development and skeletal morphogenesis. Mutations in BMP receptor type II (BMPR2) are associated with human familial and idiopathic pulmonary arterial hypertension, and pathologic neointimal proliferation of vascular endothelial and smooth muscle cells within small pulmonary arteries. In severe experimental pulmonary hypertension, simvastatin reversed disease and conferred a 100% survival advantage. Here, modulation of BMPR2 gene expression by simvastatin is characterized in human embryonic kidney (HEK) 293T, pulmonary artery smooth muscle, and lung microvascular endothelial cells (HLMVECs). A 1.4 kb BMPR2 promoter containing Egr-1 binding sites confers reporter gene activation in 293T cells which is partially inhibited by simvastatin. Simvastatin enhances steady-state BMPR2 mRNA and protein expression in HLMVEC, through posttranscriptional mRNA stabilization. Simvastatin induction of BMPR2 expression may improve BMP-BMPR2 signaling thereby enhancing endothelial differentiation and function.

  1. A NOVEL CELL LINE THAT STABLY EXPRESSES AN ANDROGEN RESPONSIVE LUCIFERASE REPORTER FOR THE DETECTION OF ANDROGEN RECEPTOR (AR) AGONIST AND ANTAGONISTS

    EPA Science Inventory

    The use of in vitro assays to screen chemicals for estrogen receptor (ER) and AR mediated actions is being evaluated by the USEPA for use in a Tier I screening battery to detect endocrine active chemicals. We have developed a stable cell line, MDA-MB-453-KB2, for screening of and...

  2. A NOVEL CELL LINE THAT STABLY EXPRESSES AN ANDROGEN RESPONSIVE LUCIFERASE REPORTER FOR THE DETECTION OF ANDROGEN RECEPTOR (AR) AGONISTS AND ANTAGONISTS

    EPA Science Inventory

    The use of in vitro assays to screen chemicals for estrogen receptor (ER) and AR mediated actions is being evaluated by the USEPA for use in a Tier I screening battery to detect endocrine active chemicals. We have developed a stable cell line, MDA-MB-453-KB2, for screening of and...

  3. A NOVEL CELL LINE THAT STABLY EXPRESSES AN ANDROGEN RESPONSIVE LUCIFERASE REPORTER FOR THE DETECTION OF ANDROGEN RECEPTOR (AR) AGONIST AND ANTAGONISTS

    EPA Science Inventory

    The use of in vitro assays to screen chemicals for estrogen receptor (ER) and AR mediated actions is being evaluated by the USEPA for use in a Tier I screening battery to detect endocrine active chemicals. We have developed a stable cell line, MDA-MB-453-KB2, for screening of and...

  4. A NOVEL CELL LINE THAT STABLY EXPRESSES AN ANDROGEN RESPONSIVE LUCIFERASE REPORTER FOR THE DETECTION OF ANDROGEN RECEPTOR (AR) AGONISTS AND ANTAGONISTS

    EPA Science Inventory

    The use of in vitro assays to screen chemicals for estrogen receptor (ER) and AR mediated actions is being evaluated by the USEPA for use in a Tier I screening battery to detect endocrine active chemicals. We have developed a stable cell line, MDA-MB-453-KB2, for screening of and...

  5. 5-HT7 receptor activation promotes an increase in TrkB receptor expression and phosphorylation

    PubMed Central

    Samarajeewa, Anshula; Goldemann, Lolita; Vasefi, Maryam S.; Ahmed, Nawaz; Gondora, Nyasha; Khanderia, Chandni; Mielke, John G.; Beazely, Michael A.

    2014-01-01

    The serotonin (5-HT) type 7 receptor is expressed throughout the CNS including the cortex and hippocampus. We have previously demonstrated that the application of 5-HT7 receptor agonists to primary hippocampal neurons and SH-SY5Y cells increases platelet-derived growth factor (PDGF) receptor expression and promotes neuroprotection against N-methyl-D-aspartate-(NMDA)-induced toxicity. The tropomyosin-related kinase B (TrkB) receptor is one of the receptors for brain-derived neurotrophic factor (BDNF) and is associated with neurodevelopmental and neuroprotective effects. Application of LP 12 to primary cerebral cortical cultures, SH-SY5Y cells, as well as the retinal ganglion cell line, RGC-5, increased both the expression of full length TrkB as well as its basal phosphorylation state at tyrosine 816. The increase in TrkB expression and phosphorylation was observed as early as 30 min after 5-HT7 receptor activation. In addition to full-length TrkB, kinase domain-deficient forms may be expressed and act as dominant-negative proteins toward the full length receptor. We have identified distinct patterns of TrkB isoform expression across our cell lines and cortical cultures. Although TrkB receptor expression is regulated by cyclic AMP and Gαs-coupled GPCRs in several systems, we demonstrate that, depending on the model system, pathways downstream of both Gαs and Gα12 are involved in the regulation of TrkB expression by 5-HT7 receptors. Given the number of psychiatric and degenerative diseases associated with TrkB/BDNF deficiency and the current interest in developing 5-HT7 receptor ligands as pharmaceuticals, identifying signaling relationships between these two receptors will aid in our understanding of the potential therapeutic effects of 5-HT7 receptor ligands. PMID:25426041

  6. 5-HT7 receptor activation promotes an increase in TrkB receptor expression and phosphorylation.

    PubMed

    Samarajeewa, Anshula; Goldemann, Lolita; Vasefi, Maryam S; Ahmed, Nawaz; Gondora, Nyasha; Khanderia, Chandni; Mielke, John G; Beazely, Michael A

    2014-01-01

    The serotonin (5-HT) type 7 receptor is expressed throughout the CNS including the cortex and hippocampus. We have previously demonstrated that the application of 5-HT7 receptor agonists to primary hippocampal neurons and SH-SY5Y cells increases platelet-derived growth factor (PDGF) receptor expression and promotes neuroprotection against N-methyl-D-aspartate-(NMDA)-induced toxicity. The tropomyosin-related kinase B (TrkB) receptor is one of the receptors for brain-derived neurotrophic factor (BDNF) and is associated with neurodevelopmental and neuroprotective effects. Application of LP 12 to primary cerebral cortical cultures, SH-SY5Y cells, as well as the retinal ganglion cell line, RGC-5, increased both the expression of full length TrkB as well as its basal phosphorylation state at tyrosine 816. The increase in TrkB expression and phosphorylation was observed as early as 30 min after 5-HT7 receptor activation. In addition to full-length TrkB, kinase domain-deficient forms may be expressed and act as dominant-negative proteins toward the full length receptor. We have identified distinct patterns of TrkB isoform expression across our cell lines and cortical cultures. Although TrkB receptor expression is regulated by cyclic AMP and Gαs-coupled GPCRs in several systems, we demonstrate that, depending on the model system, pathways downstream of both Gαs and Gα12 are involved in the regulation of TrkB expression by 5-HT7 receptors. Given the number of psychiatric and degenerative diseases associated with TrkB/BDNF deficiency and the current interest in developing 5-HT7 receptor ligands as pharmaceuticals, identifying signaling relationships between these two receptors will aid in our understanding of the potential therapeutic effects of 5-HT7 receptor ligands.

  7. A second trigeminal CGRP receptor: function and expression of the AMY1 receptor

    PubMed Central

    Walker, Christopher S; Eftekhari, Sajedeh; Bower, Rebekah L; Wilderman, Andrea; Insel, Paul A; Edvinsson, Lars; Waldvogel, Henry J; Jamaluddin, Muhammad A; Russo, Andrew F; Hay, Debbie L

    2015-01-01

    Objective The trigeminovascular system plays a central role in migraine, a condition in need of new treatments. The neuropeptide, calcitonin gene-related peptide (CGRP), is proposed as causative in migraine and is the subject of intensive drug discovery efforts. This study explores the expression and functionality of two CGRP receptor candidates in the sensory trigeminal system. Methods Receptor expression was determined using Taqman G protein-coupled receptor arrays and immunohistochemistry in trigeminal ganglia (TG) and the spinal trigeminal complex of the brainstem in rat and human. Receptor pharmacology was quantified using sensitive signaling assays in primary rat TG neurons. Results mRNA and histological expression analysis in rat and human samples revealed the presence of two CGRP-responsive receptors (AMY1: calcitonin receptor/receptor activity-modifying protein 1 [RAMP1]) and the CGRP receptor (calcitonin receptor-like receptor/RAMP1). In support of this finding, quantification of agonist and antagonist potencies revealed a dual population of functional CGRP-responsive receptors in primary rat TG neurons. Interpretation The unexpected presence of a functional non-canonical CGRP receptor (AMY1) at neural sites important for craniofacial pain has important implications for targeting the CGRP axis in migraine. PMID:26125036

  8. Expression of prostanoid receptors in human ductus arteriosus

    PubMed Central

    Leonhardt, Andreas; Glaser, Alexander; Wegmann, Markus; Schranz, Dietmar; Seyberth, Hannsjörg; Nüsing, Rolf

    2003-01-01

    Prostaglandins play a major role in maintaining ductal patency in utero. Ductal tone is regulated by both locally released and circulating vasodilatory prostaglandins. In infants with ductus arteriosus-dependent congenital heart disease, ductal patency is maintained by intravenous administration of prostaglandin (PG) E1. Little information is available regarding the expression of prostaglandin receptors in man. By means of RT–PCR and immunohistochemistry we studied the expression of the PGI2 receptor (IP), the four different PGE2 receptors (EP1, EP2, EP3 and EP4), and the receptors for thromboxane (Tx) A2 (TP), PGD2 (DP) and PGF2α (FP) in the ductus arteriosus of three newborn infants with ductus arteriosus-dependent congenital heart disease and intravenous infusion of PGE1 and of one 8 month old child with a patent ductus arteriosus. The EP3, EP4, FP, IP and TP receptor were markedly expressed at the mRNA and protein level, whereas the EP2 receptor was weakly expressed and the EP1 receptor was detected in two out of four tissue specimens only. The DP receptor was not detected in any of the samples. The most pronounced expression, which was located in the media of the ductus arteriosus, was observed for the EP4 and TP receptors followed by IP and FP receptor protein. These data indicate that ductal patency during the infusion of PGE1 in infants with ductus arteriosus-dependent congenital heart disease might be mediated by the EP4 and IP receptor. The data further suggest that a heterogeneous population of prostanoid receptors may contribute to the regulation of ductus arteriosus tone in humans. PMID:12598419

  9. Flumazenil decreases surface expression of α4β2δ GABAA receptors by increasing the rate of receptor internalization

    PubMed Central

    Kuver, Aarti; Smith, Sheryl S.

    2015-01-01

    Increases in expression of α4βδ GABAA receptors (GABARs), triggered by fluctuations in the neurosteroid THP (3α-OH-5α[β]-pregnan-20-one), are associated with changes in mood and cognition. We tested whether α4βδ trafficking and surface expression would be altered by in vitro exposure to flumazenil, a benzodiazepine ligand which reduces α4βδ expression in vivo. We first determined that flumazenil (100 nM – 100 μM, IC50=~1 μM) acted as a negative modulator, reducing GABA (10 μM)-gated current in the presence of 100 nM THP (to increase receptor efficacy), assessed with whole cell patch clamp recordings of recombinant α4β2δ expressed in HEK-293 cells. Surface expression of recombinant α4β2δ receptors was detected using a 3XFLAG reporter at the C-terminus of α4 (α4F) using confocal immunocytochemical techniques following 48 h exposure of cells to GABA (10 μM) + THP (100 nM). Flumazenil (10 μM) decreased surface expression of α4F by ~60%, while increasing its intracellular accumulation, after 48 h. Reduced surface expression of α4β2δ after flumazenil treatment was confirmed by decreases in the current responses to 100 nM of the GABA agonist gaboxadol. Flumazenil-induced decreases in surface expression of α4β2δ were prevented by the dynamin blocker, dynasore, and by leupeptin, which blocks lysosomal enzymes, suggesting that flumazenil is acting to increase endocytosis and lysosomal degradation of the receptor. Flumazenil increased the rate of receptor removal from the cell surface by 2-fold, assessed using botulinum toxin B to block insertion of new receptors. These findings may suggest new therapeutic strategies for regulation of α4β2δ expression using flumazenil. PMID:26592470

  10. The atypical dopamine D1 receptor agonist SKF 83959 induces striatal Fos expression in rats.

    PubMed

    Wirtshafter, David; Osborn, Catherine V

    2005-12-28

    The effects of dopamine D1 receptor agonists are often presumed to result from an activation of adenylyl cyclase, but dopamine D1 receptors may also be linked to other signal transduction cascades and the relative importance of these various pathways is currently unclear. SKF 83959 is an agonist at dopamine D1 receptors linked to phospholipase C, but has been reported to be an antagonist at receptors linked to adenylyl cyclase. The current report demonstrates that SKF 83959 induces pronounced, nonpatchy, expression of the immediate-early gene product Fos in the striatum of intact rats which can be converted to a patchy pattern by pretreatment with the dopamine D2-like receptor agonist quinpirole. In rats with unilateral 6-hydroxydopamine lesions SKF 83959 induces strong behavioral rotation and a greatly potentiated Fos response. All of the responses to SKF 83959, in both intact and dopamine-depleted animals, can be blocked by pretreatment with the dopamine D1 receptor antagonist SCH-23390. In intact subjects, SKF 83959 induced Fos expression less potently than the standard dopamine D1 receptor agonist SKF 82958, but the two drugs were approximately equipotent in deinnervated animals. These results demonstrate for the first time that possession of full efficacy at dopamine D1 receptors linked to adenylyl cyclase is not a necessary requirement for the induction of striatal Fos expression in intact animals and suggest that alternative signal transduction pathways may play a role in dopamine agonist induced Fos expression, especially in dopamine-depleted subjects.

  11. Expression of glutamate receptor subunits in human cancers.

    PubMed

    Stepulak, Andrzej; Luksch, Hella; Gebhardt, Christine; Uckermann, Ortrud; Marzahn, Jenny; Sifringer, Marco; Rzeski, Wojciech; Staufner, Christian; Brocke, Katja S; Turski, Lechoslaw; Ikonomidou, Chrysanthy

    2009-10-01

    Emerging evidence suggests a role for glutamate and its receptors in the biology of cancer. This study was designed to systematically analyze the expression of ionotropic and metabotropic glutamate receptor subunits in various human cancer cell lines, compare expression levels to those in human brain tissue and, using electrophysiological techniques, explore whether cancer cells respond to glutamate receptor agonists and antagonists. Expression analysis of glutamate receptor subunits NR1-NR3B, GluR1-GluR7, KA1, KA2 and mGluR1-mGluR8 was performed by means of RT-PCR in human rhabdomyosarcoma/medulloblastoma (TE671), neuroblastoma (SK-NA-S), thyroid carcinoma (FTC 238), lung carcinoma (SK-LU-1), astrocytoma (MOGGCCM), multiple myeloma (RPMI 8226), glioma (U87-MG and U343), lung carcinoma (A549), colon adenocarcinoma (HT 29), T cell leukemia cells (Jurkat E6.1), breast carcinoma (T47D) and colon adenocarcinoma (LS180). Analysis revealed that all glutamate receptor subunits were differentially expressed in the tumor cell lines. For the majority of tumors, expression levels of NR2B, GluR4, GluR6 and KA2 were lower compared to human brain tissue. Confocal imaging revealed that selected glutamate receptor subunit proteins were expressed in tumor cells. By means of patch-clamp analysis, it was shown that A549 and TE671 cells depolarized in response to application of glutamate agonists and that this effect was reversed by glutamate receptor antagonists. This study reveals that glutamate receptor subunits are differentially expressed in human tumor cell lines at the mRNA and the protein level, and that their expression is associated with the formation of functional channels. The potential role of glutamate receptor antagonists in cancer therapy is a feasible goal to be explored in clinical trials.

  12. Dcc haploinsufficiency regulates dopamine receptor expression across postnatal lifespan.

    PubMed

    Pokinko, Matthew; Grant, Alanna; Shahabi, Florence; Dumont, Yvan; Manitt, Colleen; Flores, Cecilia

    2017-03-27

    Adolescence is a period during which the medial prefrontal cortex (mPFC) undergoes significant remodeling. The netrin-1 receptor, deleted in colorectal cancer (DCC), controls the extent and organization of mPFC dopamine connectivity during adolescence and in turn directs mPFC functional and structural maturation. Dcc haploinsufficiency leads to increased mPFC dopamine input, which causes improved cognitive processing and resilience to behavioral effects of stimulant drugs of abuse. Here we examine the effects of Dcc haploinsufficiency on the dynamic expression of dopamine receptors in forebrain targets of C57BL6 mice. We conducted quantitative receptor autoradiography experiments with [(3)H]SCH-23390 or [(3)H]raclopride to characterize D1 and D2 receptor expression in mPFC and striatal regions in male Dcc haploinsufficient and wild-type mice. We generated autoradiograms at early adolescence (PND21±1), mid-adolescence (PND35±2), and adulthood (PND75±15). C57BL6 mice exhibit overexpression and pruning of D1, but not D2, receptors in striatal regions, and a lack of dopamine receptor pruning in the mPFC. We observed age- and region-specific differences in D1 and D2 receptor density between Dcc haploinsufficient and wild-type mice. Notably, neither group shows the typical pattern of mPFC dopamine receptor pruning in adolescence, but adult haploinsufficient mice show increased D2 receptor density in the mPFC. These results show that DCC receptors contribute to the dynamic refinement of D1 and D2 receptor expression in striatal regions across adolescence. The age-dependent expression of dopamine receptor in C57BL6 mice shows marked differences from previous characterizations in rats.

  13. Human articular chondrocytes express functional leukotriene B4 receptors

    PubMed Central

    Hansen, Ann Kristin; Indrevik, Jill-Tove; Figenschau, Yngve; Martinez-Zubiaurre, Inigo; Sveinbjörnsson, Baldur

    2015-01-01

    Leukotriene B4 (LTB4) is a potent chemoattractant associated with the development of osteoarthritis (OA), while its receptors BLT1 and BLT2 have been found in synovium and subchondral bone. In this study, we have investigated whether these receptors are also expressed by human cartilage cells and their potential effects on cartilage cells. The expression of LTB4 receptors in native tissue and cultured cells was assessed by immunohistochemistry, immunocytochemistry, polymerase chain reaction (PCR) and electron microscopy. The functional significance of the LTB4 receptor expression was studied by Western blotting, using phospho-specific antibodies in the presence or absence of receptor antagonists. In further studies, the secretion of pro-inflammatory cytokines, growth factors and metalloproteinases by LTB4-stimulated chondrocytes was measured by multiplex protein assays. The effects of LTB4 in cartilage signature gene expression in cultured cells were assessed by quantitative PCR, whereas the LTB4-promoted matrix synthesis was determined using 3D pellet cultures. Both receptors were present in cultured chondrocytes, as was confirmed by immunolabelling and PCR. The relative quantification by PCR demonstrated a higher expression of the receptors in cells from healthy joints compared with OA cases. The stimulation of cultured chondrocytes with LTB4 resulted in a phosphorylation of downstream transcription factor Erk 1/2, which was reduced after blocking BLT1 signalling. No alteration in the secretion of cytokine and metalloproteinases was recorded after challenging cultured cells with LTB4; likewise, cartilage matrix gene expression and 3D tissue synthesis were unaffected. Chondrocytes express BLT1 and BLT2 receptors, and LTB4 activates the downstream Erk 1/2 pathway by engaging the high-affinity receptor BLT1. However, any putative role in cartilage biology could not be revealed, and remains to be clarified. PMID:25677035

  14. Enteroendocrine cells express functional Toll-like receptors.

    PubMed

    Bogunovic, Milena; Davé, Shaival H; Tilstra, Jeremy S; Chang, Diane T W; Harpaz, Noam; Xiong, Huabao; Mayer, Lloyd F; Plevy, Scott E

    2007-06-01

    Intestinal epithelial cells (IECs) provide a physical and immunological barrier against enteric microbial flora. Toll-like receptors (TLRs), through interactions with conserved microbial patterns, activate inflammatory gene expression in cells of the innate immune system. Previous studies of the expression and function of TLRs in IECs have reported varying results. Therefore, TLR expression was characterized in human and murine intestinal sections, and TLR function was tested in an IEC line. TLR1, TLR2, and TLR4 are coexpressed on a subpopulation of human and murine IECs that reside predominantly in the intestinal crypt and belong to the enteroendocrine lineage. An enteroendocrine cell (EEC) line demonstrated a similar expression pattern of TLRs as primary cells. The murine EEC line STC-1 was activated with specific TLR ligands: LPS or synthetic bacterial lipoprotein. In STC-1 cells stimulated with bacterial ligands, NF-kappaB and MAPK activation was demonstrated. Furthermore, the expression of TNF and macrophage inhibitory protein-2 were induced. Additionally, bacterial ligands induced the expression of the anti-inflammatory gene transforming growth factor-beta. LPS triggered a calcium flux in STC-1 cells, resulting in a rapid increase in CCK secretion. Finally, conditioned media from STC-1 cells inhibited the production of nitric oxide and IL-12 p40 by activated macrophages. In conclusion, human and murine IECs that express TLRs belong to the enteroendocrine lineage. Using a murine EEC model, a broad range of functional effects of TLR activation was demonstrated. This study suggests a potential role for EECs in innate immune responses.

  15. Enteroendocrine cells express functional Toll-like receptors

    PubMed Central

    Bogunovic, Milena; Davé, Shaival H.; Tilstra, Jeremy S.; Chang, Diane T. W.; Harpaz, Noam; Xiong, Huabao; Mayer, Lloyd F.; Plevy, Scott E.

    2011-01-01

    Intestinal epithelial cells (IECs) provide a physical and immunological barrier against enteric microbial flora. Toll-like receptors (TLRs), through interactions with conserved microbial patterns, activate inflammatory gene expression in cells of the innate immune system. Previous studies of the expression and function of TLRs in IECs have reported varying results. Therefore, TLR expression was characterized in human and murine intestinal sections, and TLR function was tested in an IEC line. TLR1, TLR2, and TLR4 are coexpressed on a subpopulation of human and murine IECs that reside predominantly in the intestinal crypt and belong to the enteroendocrine lineage. An enteroendocrine cell (EEC) line demonstrated a similar expression pattern of TLRs as primary cells. The murine EEC line STC-1 was activated with specific TLR ligands: LPS or synthetic bacterial lipoprotein. In STC-1 cells stimulated with bacterial ligands, NF-κB and MAPK activation was demonstrated. Furthermore, the expression of TNF and macrophage inhibitory protein-2 were induced. Additionally, bacterial ligands induced the expression of the anti-inflammatory gene transforming growth factor-β. LPS triggered a calcium flux in STC-1 cells, resulting in a rapid increase in CCK secretion. Finally, conditioned media from STC-1 cells inhibited the production of nitric oxide and IL-12 p40 by activated macrophages. In conclusion, human and murine IECs that express TLRs belong to the enteroendocrine lineage. Using a murine EEC model, a broad range of functional effects of TLR activation was demonstrated. This study suggests a potential role for EECs in innate immune responses. PMID:17395901

  16. Expression of luteinizing hormone receptors in the mouse penis.

    PubMed

    Kokk, Kersti; Kuuslahti, Marianne; Keisala, Tiina; Purmonen, Sami; Kaipia, Antti; Tammela, Teuvo; Orro, Helen; Simovart, Helle-Evi; Pöllänen, Pasi

    2011-01-01

    The role of luteinizing hormone (LH) in the regulation of normal reproductive functions in males and females is quite well established. Besides the expression of LH receptors in the target cells in gonads, it has been found in several extragonadal organs. There is no information about the expression of LH receptors in the penis up to now. The aim of the present study is to investigate the expression of the LH receptor in the mouse penis to see if LH effects are possible in the penis. BALB/c mice were used as donors of normal penis and testis tissue. Immunocytochemistry, Western blotting, and quantitative reverse transcriptase polymerase chain reactions (RT-PCRs) were used for the detection of the LH receptor. Positive immunoreaction for LH receptors was present in the nuclei of urethral epithelium and endothelial cells of cavernous spaces in the corpus cavernosum and corpus spongiosum penis. Western blotting experiments demonstrated the presence of LH antigen at M(r) = 97.4 and 78 kd. Quantitative RT-PCRs confirmed the expression of LH receptor in the penis. Our results show that LH receptor is expressed in the body of the mouse penis; thus, it may directly regulate functions of penile tissue.

  17. The Estrogen ReceptorExpression in De Quervain's Disease.

    PubMed

    Shen, Po-Chuan; Wang, Ping-Hui; Wu, Po-Ting; Wu, Kuo-Chen; Hsieh, Jeng-Long; Jou, I-Ming

    2015-11-04

    Stenosing tenosynovitis of the first dorsal compartment of the wrist (a.k.a. de Quervain's disease) is common but how estrogen is involved is still unknown. We previously reported that inflammation was involved in the pathogenesis of this ailment. In the present study, we extended our investigation of estrogen receptor (ER)-β expression to determine whether estrogen is involved in the pathogenesis of de Quervain's. Intraoperative retinaculum samples were collected from 16 patients with the ailment. Specimens were histologically graded by collagen structure and immunohistochemically evaluated by quantifying the expression of ER-β, interleukin (IL)-1β and IL-6 (inflammatory cytokines), cyclooxygenase (COX)-2 (an inflammatory enzyme), and vascular endothelial growth factor (VEGF), and Von Willebrand's factor (vWF). De Quervain's occurs primarily in women. The female:male ratio in our study was 7:1. We found that ER-β expression in the retinaculum was positively correlated with disease grade and patient age. Additionally, disease severity was associated with inflammatory factors--IL-1β and IL-6, COX-2, and VEGF and vWF in tenosynovial tissue. The greater the levels of ER-β expression, tissue inflammation, and angiogenesis are, the more severe de Quervain's disease is. ER-β might be a useful target for novel de Quervain's disease therapy.

  18. Orphan nuclear receptor oestrogen-related receptor γ (ERRγ) plays a key role in hepatic cannabinoid receptor type 1-mediated induction of CYP7A1 gene expression

    PubMed Central

    Zhang, Yaochen; Kim, Don-Kyu; Lee, Ji-Min; Park, Seung Bum; Jeong, Won-IL; Kim, Seong Heon; Lee, In-Kyu; Lee, Chul-Ho; Chiang, John Y.L.; Choi, Hueng-Sik

    2017-01-01

    Bile acids are primarily synthesized from cholesterol in the liver and have important roles in dietary lipid absorption and cholesterol homoeostasis. Detailed roles of the orphan nuclear receptors regulating cholesterol 7α-hydroxylase (CYP7A1), the rate-limiting enzyme in bile acid synthesis, have not yet been fully elucidated. In the present study, we report that oestrogen-related receptor γ (ERRγ) is a novel transcriptional regulator of CYP7A1 expression. Activation of cannabinoid receptor type 1 (CB1 receptor) signalling induced ERRγ-mediated transcription of the CYP7A1 gene. Overexpression of ERRγ increased CYP7A1 expression in vitro and in vivo, whereas knockdown of ERRγ attenuated CYP7A1 expression. Deletion analysis of the CYP7A1 gene promoter and a ChIP assay revealed an ERRγ -binding site on the CYP7A1 gene promoter. Small heterodimer partner (SHP) inhibited the transcriptional activity of ERRγ and thus regulated CYP7A1 expression. Overexpression of ERRγ led to increased bile acid levels, whereas an inverse agonist of ERRγ, GSK5182, reduced CYP7A1 expression and bile acid synthesis. Finally, GSK5182 significantly reduced hepatic CB1 receptor-mediated induction of CYP7A1 expression and bile acid synthesis in alcohol-treated mice. These results provide the molecular mechanism linking ERRγ and bile acid metabolism. PMID:26348907

  19. Orphan nuclear receptor oestrogen-related receptor γ (ERRγ) plays a key role in hepatic cannabinoid receptor type 1-mediated induction of CYP7A1 gene expression.

    PubMed

    Zhang, Yaochen; Kim, Don-Kyu; Lee, Ji-Min; Park, Seung Bum; Jeong, Won-Il; Kim, Seong Heon; Lee, In-Kyu; Lee, Chul-Ho; Chiang, John Y L; Choi, Hueng-Sik

    2015-09-01

    Bile acids are primarily synthesized from cholesterol in the liver and have important roles in dietary lipid absorption and cholesterol homoeostasis. Detailed roles of the orphan nuclear receptors regulating cholesterol 7α-hydroxylase (CYP7A1), the rate-limiting enzyme in bile acid synthesis, have not yet been fully elucidated. In the present study, we report that oestrogen-related receptor γ (ERRγ) is a novel transcriptional regulator of CYP7A1 expression. Activation of cannabinoid receptor type 1 (CB1 receptor) signalling induced ERRγ-mediated transcription of the CYP7A1 gene. Overexpression of ERRγ increased CYP7A1 expression in vitro and in vivo, whereas knockdown of ERRγ attenuated CYP7A1 expression. Deletion analysis of the CYP7A1 gene promoter and a ChIP assay revealed an ERRγ-binding site on the CYP7A1 gene promoter. Small heterodimer partner (SHP) inhibited the transcriptional activity of ERRγ and thus regulated CYP7A1 expression. Overexpression of ERRγ led to increased bile acid levels, whereas an inverse agonist of ERRγ, GSK5182, reduced CYP7A1 expression and bile acid synthesis. Finally, GSK5182 significantly reduced hepatic CB1 receptor-mediated induction of CYP7A1 expression and bile acid synthesis in alcohol-treated mice. These results provide the molecular mechanism linking ERRγ and bile acid metabolism. © 2015 Authors; published by Portland Press Limited.

  20. Prostaglandin e and f receptor expression and myometrial sensitivity at labor onset in the sheep.

    PubMed

    Palliser, Hannah K; Hirst, Jonathan J; Ooi, Guck T; Rice, Gregory E; Dellios, Nicole L; Escalona, Ruth M; Parkington, Helena C; Young, I Ross

    2005-04-01

    Prostaglandins (PGs) play a pivotal role in the initiation and progression of term and preterm labor. Uterine activity is stimulated primarily by PGE(2) and PGF(2alpha) acting on prostaglandin E (EP) and prostaglandin F (FP) receptors, respectively. Activation of FP receptors strongly stimulates the myometrium, whereas stimulation of EP receptors may lead to contraction or relaxation, depending on the EP subtype (EP1-4) expression. Thus, the relative expression of FP and EP1-4 may determine the responsiveness to PGE(2) and PGF(2alpha). The aims of this study were to characterize the expression of EP1-4 and FP in intrauterine tissues and placentome, together with myometrial responsiveness to PG, following the onset of dexamethasone-induced preterm and spontaneous term labor. Receptor mRNA expression was measured using quantitative real-time polymerase chain reaction using species-specific primers. There was no increase in myometrial contractile receptor expression at labor onset, nor was there a change in sensitivity to PGE(2) and PGF(2alpha). This suggests expression of these receptors reaches maximal levels by late gestation in sheep. Placental tissue showed a marked increase in EP2 and EP3 receptor expression, the functions of which are unknown at this time. Consistent with previous reports, these results suggest that PG synthesis is the main factor in the regulation of uterine contractility at labor. This is the first study to simultaneously report PG E and F receptor expression in the key gestational tissues of the sheep using species-specific primers at induced-preterm and spontaneous labor onset.

  1. Hormone receptors expression in phyllodes tumors of the breast.

    PubMed

    Kim, Yeong-Hui; Kim, Ga-Eon; Lee, Ji Shin; Lee, Jae Hyuk; Nam, Jong Hee; Choi, Chan; Park, Min Ho; Yoon, Jung Han

    2012-02-01

    To ascertain the hormonal receptor profiles of the epithelial and stromal components of phyllodes tumors (PTs) and determine their relationship with stromal proliferation. Eighty-two PTs (50 benign, 22 borderline, and 10 malignant) were studied. Automated immunohistochemical staining for estrogen receptor (ER)-alpha and -beta, progesterone receptor (PR), androgen receptor (AR), and Ki-67 was performed using tissue microarray blocks, and their expression was assessed in both the stromal and epithelial components. The epithelial component demonstrated the expression for ER-alpha (45.6%, 36 of 79), ER-beta (37.2%, 29 of 78), PR (91.1%, 72 of 79), and AR (10.1%, 8 of 79). The stromal component was positive for ER-beta (29.3%, 24 of 82) only. The epithelial expression of ER-beta was found to be significantly correlated with the epithelial expression of AR (r = 0.352, p = 0.002). No association was found between hormone receptor expression and PT tumor grade. Stromal Ki-67 expression was statistically correlated with epithelial ER-beta, epithelial AR, and stromal ER-beta expression. Epithelial and stromal ER-beta and epithelial AR expression in PTs was correlated with the proliferative rate in the stromal component. Immunohistochemical examination of ER-beta and AR may have some impact on the postoperative management of patients with PTs.

  2. DEVELOPMENT AND CHARACTERIZATION OF A CELL LINE THAT STABLY EXPRESSES AN ESTROGEN-RESPONSIVE LUCIFERASE REPORTER FOR THE DETECTION OF ESTROGEN RECEPTOR AGONIST AND ANTAGONISTS

    EPA Science Inventory

    Screening for endocrine disrupting chemicals (EDCs) that act as estrogens or antiestrogens relies on the use of in vitro binding and gene expression assays coupled with short-term diagnostic in vivo assays. Although binding assays are useful to identify chemicals that are competi...

  3. DEVELOPMENT AND CHARACTERIZATION OF A CELL LINE THAT STABLY EXPRESSES AN ESTROGEN-RESPONSIVE LUCIFERASE REPORTER FOR THE DETECTION OF ESTROGEN RECEPTOR AGONIST AND ANTAGONISTS

    EPA Science Inventory

    Screening for endocrine disrupting chemicals (EDCs) that act as estrogens or antiestrogens relies on the use of in vitro binding and gene expression assays coupled with short-term diagnostic in vivo assays. Although binding assays are useful to identify chemicals that are competi...

  4. Expression of the estrogen receptor α, progesterone receptor and epidermal growth factor receptor in papillary thyroid carcinoma tissues

    PubMed Central

    CHEN, DAN; QI, WENJING; ZHANG, PENGXIN; GUAN, HONGWEI; WANG, LIFEN

    2015-01-01

    The present study aimed to determine the protein expression, in addition to the clinical value of the expression, of estrogen receptor α (ERα), progesterone receptor (PR) and epidermal growth factor receptor (EGFR) in papillary thyroid carcinoma (PTC). The expression of ERα, PR and EGFR was examined immunohistochemically on paraffin-embedded thyroid tissues obtained from 64 patients with PTC and 14 patients with nodular thyroid goiter (NTG). The expression level of ERα, PR and EGFR was found to be significantly elevated in the PTC tissues compared with the NTG tissues. In addition, the expression of ERα was found to be correlated with the size of PTC tumors. However, there was no significant difference between the expression levels of ERα, PR and EGFR in males and females with PTC. Thus, immunohistochemical evaluation of ERα, PR and EGFR expression in patients with PTC may aid in the prediction of the prognosis of patients with PTC. PMID:26171022

  5. Mistargeting hippocampal axons by expression of a truncated Eph receptor

    PubMed Central

    Yue, Yong; Chen, Zhi-Yong; Gale, Nick W.; Blair-Flynn, Jan; Hu, Tian-Jing; Yue, Xin; Cooper, Margaret; Crockett, David P.; Yancopoulos, George D.; Tessarollo, Lino; Zhou, Renping

    2002-01-01

    Topographic mapping of axon terminals is a general principle of neural architecture that underlies the interconnections among many neural structures. The Eph family tyrosine kinase receptors and their ligands, the ephrins, have been implicated in the formation of topographic projection maps. We show that multiple Eph receptors and ligands are expressed in the hippocampus and its major subcortical projection target, the lateral septum, and that expression of a truncated Eph receptor in the mouse brain results in a pronounced alteration of the hippocamposeptal topographic map. Our observations provide strong support for a critical role of Eph family guidance factors in regulating ontogeny of hippocampal projections. PMID:12124402

  6. Expression of human peripheral cannabinoid receptor for structural studies

    PubMed Central

    Yeliseev, Alexei A.; Wong, Karen K.; Soubias, Olivier; Gawrisch, Klaus

    2005-01-01

    Human peripheral-type cannabinoid receptor (CB2) was expressed in Escherichia coli as a fusion with the maltose-binding protein, thioredoxin, and a deca-histidine tag. Functional activity and structural integrity of the receptor in bacterial protoplast membranes was confirmed by extensive binding studies with a variety of natural and synthetic cannabinoid ligands. E. coli membranes expressing CB2 also activated cognate G-proteins in an in vitro coupled assay. Detergent-solubilized receptor was purified to 80%–90% homogeneity by affinity chromatography followed by ion-exchange chromatography. By high-resolution NMR on the receptor in DPC micelles, it was determined that purified CB2 forms 1:1 complexes with the ligands CP-55,940 and anandamide. The receptor was successfully reconstituted into phosphatidylcholine bilayers and the membranes were deposited into a porous substrate as tubular lipid bilayers for structural studies by NMR and scattering techniques. PMID:16195551

  7. Cloning and expression of a novel neuropeptide Y receptor.

    PubMed

    Weinberg, D H; Sirinathsinghji, D J; Tan, C P; Shiao, L L; Morin, N; Rigby, M R; Heavens, R H; Rapoport, D R; Bayne, M L; Cascieri, M A; Strader, C D; Linemeyer, D L; MacNeil, D J

    1996-07-12

    The neuropeptide Y family of peptides, which includes neuropeptide Y (NPY), peptide YY (PYY), and pancreatic polypeptide (PP), are found in the central and peripheral nervous system and display a wide array of biological activities. These actions are believed to be mediated through pharmacologically distinct G protein-coupled receptors, and, to date, three members of the NPY receptor family have been cloned. In this study we describe the cloning and expression of a novel NPY receptor from mouse genomic DNA. This receptor, designated NPY Y5, shares 60% amino acid identity to the murine NPY Y1 receptor. The pharmacology of this novel receptor resembles that of the NPY Y1 receptor and is distinct from that described for the NPY Y2, Y3, and Y4 receptors. In situ hybridization of mouse brain sections reveals expression of this receptor within discrete regions of the hypothalamus including the suprachiasmatic nucleus, anterior hypothalamus, bed nucleus stria terminalis, and the ventromedial nucleus with no localization apparent elsewhere in the brain.

  8. Increased Expression of Cannabinoid CB1 Receptors in Achilles Tendinosis

    PubMed Central

    Björklund, Emmelie; Forsgren, Sture; Alfredson, Håkan; Fowler, Christopher J.

    2011-01-01

    Background The endogenous cannabinoid system is involved in the control of pain. However, little is known as to the integrity of the cannabinoid system in human pain syndromes. Here we investigate the expression of the cannabinoid receptor 1 (CB1) in human Achilles tendons from healthy volunteers and from patients with Achilles tendinosis. Methodology Cannabinoid CB1 receptor immunoreactivity (CB1IR) was evaluated in formalin-fixed biopsies from individuals suffering from painful Achilles tendinosis in comparison with healthy human Achilles tendons. Principal Findings CB1IR was seen as a granular pattern in the tenocytes. CB1IR was also observed in the blood vessel wall and in the perineurium of the nerve. Quantification of the immunoreactivity in tenocytes showed an increase of CB1 receptor expression in tendinosis tissue compared to control tissue. Conclusion Expression of cannabinoid receptor 1 is increased in human Achilles tendinosis suggesting that the cannabinoid system may be dysregulated in this disorder. PMID:21931835

  9. Expression of GABA receptor rho subunits in rat brain.

    PubMed

    Boue-Grabot, E; Roudbaraki, M; Bascles, L; Tramu, G; Bloch, B; Garret, M

    1998-03-01

    The GABA receptor rho1, rho2, and rho3 subunits are expressed in the retina where they form bicuculline-insensitive GABA(C) receptors. We used northern blot, in situ hybridization, and RT-PCR analysis to study the expression of rho subunits in rat brains. In situ hybridization allowed us to detect rho-subunit expression in the superficial gray layer of the superior colliculus and in the cerebellar Purkinje cells. RT-PCR experiments indicated that (a) in retina and in domains that may contain functional GABA(C) receptors, rho2 and rho1 subunits are expressed at similar levels; and (b) in domains and in tissues that are unlikely to contain GABA(C) receptors, rho2 mRNA is enriched relative to rho1 mRNA. These results suggest that both rho1 and rho2 subunits are necessary to form a functional GABA(C) receptor. The use of RT-PCR also showed that, except in the superior colliculus, rho3 is expressed along with rho1 and rho2 subunits. We also raised an antibody against a peptide sequence unique to the rho1 subunit. The use of this antibody on cerebellum revealed the rat rho1 subunit in the soma and dendrites of Purkinje neurons. The allocation of GABA(C) receptor subunits to identified neurons paves the way for future electrophysiological studies.

  10. Hormone-binding assay using living bacteria expressing eukaryotic receptors.

    PubMed

    Romanov, Georgy A; Lomin, Sergey N

    2009-01-01

    Studies on hormone-receptor interaction include, as a rule, isolation and extensive purification of the receptor protein or a particular receptor-containing fraction. To bypass these time- and resource-consuming procedures, we proposed a live cell-based assay using transgenic bacteria expressing single eukaryotic receptors. We describe here 3H-cytokinin binding to corresponding plant receptors as an example. The method includes procedures of bacteria growing, incubation with labeled hormone, separation of bound from unbound ligand, determination of radioactivity in bacterial precipitates, and mathematical analysis of primary data. The established simple protocol for specific labeling hormone-binding sites in intact bacteria allows determination of the main parameters of the ligand-receptor interaction.

  11. P2X7 Receptor Expression in Peripheral Blood Monocytes Is Correlated With Plasma C-Reactive Protein and Cytokine Levels in Patients With Type 2 Diabetes Mellitus: a Preliminary Report.

    PubMed

    Wu, Hong; Nie, Yijun; Xiong, Huangui; Liu, Shuangmei; Li, Guilin; Huang, An; Guo, Lili; Wang, Shouyu; Xue, Yun; Wu, Bing; Peng, Lichao; Song, Miaomiao; Li, Guodong; Liang, Shangdong

    2015-12-01

    Chronic inflammation plays a major role in development of type 2 diabetes mellitus (T2DM). C-reactive protein (CRP) and inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin 1β (IL-1β) are directly involved in the occurrence of insulin resistance. Increased extracellular ATP levels can amplify the inflammatory response in vivo via the P2X7 receptor. The present study aimed to assess the relationship between P2X7 receptor expression in human peripheral blood monocytes and plasma levels of TNF-α, IL-1β, and CRP in T2DM patients. The results showed the association of increased P2X7 receptor expression of monocytes with high serum CRP, TNF-α, and IL-1β levels. TNF-α and IL-1β levels were lowest in healthy subjects; in T2DM patients, these inflammatory markers were less abundant in individuals with normal CRP levels compared to those with high CRP contents. In contrast, IL-10 levels in T2DM patients with high CRP levels were dramatically decreased. P2X7 receptor expression in monocytes from T2DM patients with high CRP levels was significantly increased in comparison with healthy individuals and T2DM patients with normal CRP levels. These findings indicated that P2X7 receptor in peripheral blood monocytes may be involved in the pathological changes of T2DM, particularly affecting patients with high CRP levels.

  12. Exposure to anthrax toxin alters human leucocyte expression of anthrax toxin receptor 1.

    PubMed

    Ingram, R J; Harris, A; Ascough, S; Metan, G; Doganay, M; Ballie, L; Williamson, E D; Dyson, H; Robinson, J H; Sriskandan, S; Altmann, D M

    2013-07-01

    Anthrax is a toxin-mediated disease, the lethal effects of which are initiated by the binding of protective antigen (PA) with one of three reported cell surface toxin receptors (ANTXR). Receptor binding has been shown to influence host susceptibility to the toxins. Despite this crucial role for ANTXR in the outcome of disease, and the reported immunomodulatory consequence of the anthrax toxins during infection, little is known about ANTXR expression on human leucocytes. We characterized the expression levels of ANTXR1 (TEM8) on human leucocytes using flow cytometry. In order to assess the effect of prior toxin exposure on ANTXR1 expression levels, leucocytes from individuals with no known exposure, those exposed to toxin through vaccination and convalescent individuals were analysed. Donors could be defined as either 'low' or 'high' expressers based on the percentage of ANTXR1-positive monocytes detected. Previous exposure to toxins appears to modulate ANTXR1 expression, exposure through active infection being associated with lower receptor expression. A significant correlation between low receptor expression and high anthrax toxin-specific interferon (IFN)-γ responses was observed in previously infected individuals. We propose that there is an attenuation of ANTXR1 expression post-infection which may be a protective mechanism that has evolved to prevent reinfection.

  13. Motoneuron glutamatergic receptor expression following recovery from cervical spinal hemisection.

    PubMed

    Gransee, Heather M; Gonzalez Porras, Maria A; Zhan, Wen-Zhi; Sieck, Gary C; Mantilla, Carlos B

    2017-04-01

    Cervical spinal hemisection at C2 (SH) removes premotor drive to phrenic motoneurons located in segments C3-C5 in rats. Spontaneous recovery of ipsilateral diaphragm muscle activity is associated with increased phrenic motoneuron expression of glutamatergic N-methyl-D-aspartate (NMDA) receptors and decreased expression of α-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid (AMPA) receptors. Glutamatergic receptor expression is regulated by tropomyosin-related kinase receptor subtype B (TrkB) signaling in various neuronal systems, and increased TrkB receptor expression in phrenic motoneurons enhances recovery post-SH. Accordingly, we hypothesize that recovery of ipsilateral diaphragm muscle activity post-SH, whether spontaneous or enhanced by adenoassociated virus (AAV)-mediated upregulation of TrkB receptor expression, is associated with increased expression of glutamatergic NMDA receptors in phrenic motoneurons. Adult male Sprague-Dawley rats underwent diaphragm electromyography electrode implantation and SH surgery. Rats were injected intrapleurally with AAV expressing TrkB or GFP 3 weeks before SH. At 14 days post-SH, the proportion of animals displaying recovery of ipsilateral diaphragm activity increased in AAV-TrkB-treated (9/9) compared with untreated (3/5) or AAV-GFP-treated (4/10; P < 0.027) animals. Phrenic motoneuron NMDA NR1 subunit mRNA expression was approximately fourfold greater in AAV-TrkB- vs. AAV-GFP-treated SH animals (P < 0.004) and in animals displaying recovery vs. those not recovering (P < 0.005). Phrenic motoneuron AMPA glutamate receptor 2 (GluR2) subunit mRNA expression decreased after SH, and, albeit increased in animals displaying recovery vs. those not recovering, levels remained lower than control. We conclude that increased phrenic motoneuron expression of glutamatergic NMDA receptors is associated with spontaneous recovery after SH and enhanced recovery after AAV-TrkB treatment. J. Comp. Neurol. 525:1192-1205, 2017.

  14. Profiling neurotransmitter receptor expression in the Ambystoma mexicanum brain.

    PubMed

    Reyes-Ruiz, Jorge Mauricio; Limon, Agenor; Korn, Matthew J; Nakamura, Paul A; Shirkey, Nicole J; Wong, Jamie K; Miledi, Ricardo

    2013-03-22

    Ability to regenerate limbs and central nervous system (CNS) is unique to few vertebrates, most notably the axolotl (Ambystoma sp.). However, despite the fact the neurotransmitter receptors are involved in axonal regeneration, little is known regarding its expression profile. In this project, RT-PCR and qPCR were performed to gain insight into the neurotransmitter receptors present in Ambystoma. Its functional ability was studied by expressing axolotl receptors in Xenopus laevis oocytes by either injection of mRNA or by direct microtransplantation of brain membranes. Oocytes injected with axolotl mRNA expressed ionotropic receptors activated by GABA, aspartate+glycine and kainate, as well as metabotropic receptors activated by acetylcholine and glutamate. Interestingly, we did not see responses following the application of serotonin. Membranes from the axolotl brain were efficiently microtransplanted into Xenopus oocytes and two types of native GABA receptors that differed in the temporal course of their responses and affinities to GABA were observed. Results of this study are necessary for further characterization of axolotl neurotransmitter receptors and may be useful for guiding experiments aimed at understanding activity-dependant limb and CNS regeneration. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Human rhabdomyosarcoma cells express functional erythropoietin receptor: Potential therapeutic implications

    PubMed Central

    PONIEWIERSKA-BARAN, AGATA; SUSZYNSKA, MALWINA; SUN, WENYUE; ABDELBASET-ISMAIL, AHMED; SCHNEIDER, GABRIELA; BARR, FREDERIC G.; RATAJCZAK, MARIUSZ Z.

    2015-01-01

    The erythropoietin receptor (EpoR) is expressed by cells from the erythroid lineage; however, evidence has accumulated that it is also expressed by some solid tumors. This is an important observation, because recombinant erythropoietin (EPO) is employed in cancer patients to treat anemia related to chemo/radiotherapy. In our studies we employed eight rhabdomyosarcoma (RMS) cell lines (three alveolar-type RMS cell lines and five embrional-type RMS cell lines), and mRNA samples obtained from positive, PAX7-FOXO1-positive, and fusion-negative RMS patient samples. Expression of EpoR was evaluated by RT-PCR, gene array and FACS. The functionality of EpoR in RMS cell lines was evaluated by chemotaxis, adhesion, and direct cell proliferation assays. In some of the experiments, RMS cells were exposed to vincristine (VCR) in the presence or absence of EPO to test whether EPO may impair the therapeutic effect of VCR. We report for a first time that functional EpoR is expressed in human RMS cell lines as well as by primary tumors from RMS patients. Furthermore, EpoR is detectably expressed in both embryonal and alveolar RMS subtypes. At the functional level, several human RMS cell lines responded to EPO stimulation by enhanced proliferation, chemotaxis, cell adhesion, and phosphorylation of MAPKp42/44 and AKT. Moreover, RMS cells became more resistant to VCR treatment in the presence of EPO. Our findings have important potential clinical implications, indicating that EPO supplementation in RMS patients may have the unwanted side effect of tumor progression. PMID:26412593

  16. α-Synuclein Alters Toll-Like Receptor Expression

    PubMed Central

    Béraud, Dawn; Twomey, Margaret; Bloom, Benjamin; Mittereder, Andrew; Ton, Vy; Neitzke, Katherine; Chasovskikh, Sergey; Mhyre, Timothy R.; Maguire-Zeiss, Kathleen A.

    2011-01-01

    Parkinson's disease, an age-related neurodegenerative disorder, is characterized by the loss of dopamine neurons in the substantia nigra, the accumulation of α-synuclein in Lewy bodies and neurites, and neuroinflammation. While the exact etiology of sporadic Parkinson's disease remains elusive, a growing body of evidence suggests that misfolded α-synuclein promotes inflammation and oxidative stress resulting in neurodegeneration. α-Synuclein has been directly linked to microglial activation in vitro and increased numbers of activated microglia have been reported in an α-synuclein overexpressing mouse model prior to neuronal loss. However, the mechanism by which α-synuclein incites microglial activation has not been fully described. Microglial activation is governed in part, by pattern recognition receptors that detect foreign material and additionally recognize changes in homeostatic cellular conditions. Upon proinflammatory pathway initiation, activated microglia contribute to oxidative stress through release of cytokines, nitric oxide, and other reactive oxygen species, which may adversely impact adjacent neurons. Here we show that microglia are directly activated by α-synuclein in a classical activation pathway that includes alterations in the expression of toll-like receptors. These data suggest that α-synuclein can act as a danger-associated molecular pattern. PMID:21747756

  17. Expression pattern of protease activated receptors in lymphoid cells.

    PubMed

    López, Mercedes L; Soriano-Sarabia, Natalia; Bruges, Gustavo; Marquez, María Elena; Preissner, Klaus T; Schmitz, M Lienhard; Hackstein, Holger

    2014-01-01

    Protease-activated receptors (PARs) are a subfamily of four G-protein-coupled receptors mediating multiple functions. PARs expression was studied in subpopulations of human lymphocytes. Our results indicate that natural killer cells expressed mRNA for PAR₁, PAR₂ and PAR₃, CD4+ T cells expressed PAR₁ and PAR₂, while γδ and CD8+ T cells only expressed PAR₁. PAR₄ was absent at mRNA level and B cells did not express any PAR. Analyses of the cell surface PARs expression by flow cytometry were consistent with the mRNA data and also between different donors. PAR₁ is the most abundant member of the PAR family present in lymphocytes. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Prolactin receptor antagonism in mouse anterior pituitary: effects on cell turnover and prolactin receptor expression.

    PubMed

    Ferraris, Jimena; Boutillon, Florence; Bernadet, Marie; Seilicovich, Adriana; Goffin, Vincent; Pisera, Daniel

    2012-02-01

    Since anterior pituitary expresses prolactin receptors, prolactin secreted by lactotropes could exert autocrine or paracrine actions on anterior pituitary cells. In fact, it has been observed that prolactin inhibits its own expression by lactotropes. Our hypothesis is that prolactin participates in the control of anterior pituitary cell turnover. In the present study, we explored the action of prolactin on proliferation and apoptosis of anterior pituitary cells and its effect on the expression of the prolactin receptor. To determine the activity of endogenous prolactin, we evaluated the effect of the competitive prolactin receptor antagonist Δ1-9-G129R-hPRL in vivo, using transgenic mice that constitutively and systemically express this antagonist. The weight of the pituitary gland and the anterior pituitary proliferation index, determined by BrdU incorporation, were higher in transgenic mice expressing the antagonist than in wild-type littermates. In addition, blockade of prolactin receptor in vitro by Δ1-9-G129R-hPRL increased proliferation and inhibited apoptosis of somatolactotrope GH3 cells and of primary cultures of male rat anterior pituitary cells, including lactotropes. These results suggest that prolactin acts as an autocrine/paracrine antiproliferative and proapoptotic factor in the anterior pituitary gland. In addition, anterior pituitary expression of the long isoform of the prolactin receptor, measured by real-time PCR, increased about 10-fold in transgenic mice expressing the prolactin receptor antagonist, whereas only a modest increase in the S3 short-isoform expression was observed. These results suggest that endogenous prolactin may regulate its own biological actions in the anterior pituitary by inhibiting the expression of the long isoform of the prolactin receptor. In conclusion, our observations suggest that prolactin is involved in the maintenance of physiological cell renewal in the anterior pituitary. Alterations in this physiological

  19. Behavioral analysis of Drosophila transformants expressing human taste receptor genes in the gustatory receptor neurons.

    PubMed

    Adachi, Ryota; Sasaki, Yuko; Morita, Hiromi; Komai, Michio; Shirakawa, Hitoshi; Goto, Tomoko; Furuyama, Akira; Isono, Kunio

    2012-06-01

    Transgenic Drosophila expressing human T2R4 and T2R38 bitter-taste receptors or PKD2L1 sour-taste receptor in the fly gustatory receptor neurons and other tissues were prepared using conventional Gal4/UAS binary system. Molecular analysis showed that the transgene mRNAs are expressed according to the tissue specificity of the Gal4 drivers. Transformants expressing the transgene taste receptors in the fly taste neurons were then studied by a behavioral assay to analyze whether transgene chemoreceptors are functional and coupled to the cell response. Since wild-type flies show strong aversion against the T2R ligands as in mammals, the authors analyzed the transformants where the transgenes are expressed in the fly sugar receptor neurons so that they promote feeding ligand-dependently if they are functional and activate the neurons. Although the feeding preference varied considerably among different strains and individuals, statistical analysis using large numbers of transformants indicated that transformants expressing T2R4 showed a small but significant increase in the preference for denatonium and quinine, the T2R4 ligands, as compared to the control flies, whereas transformants expressing T2R38 did not. Similarly, transformants expressing T2R38 and PKD2L1 also showed a similar preference increase for T2R38-specific ligand phenylthiocarbamide (PTC) and a sour-taste ligand, citric acid, respectively. Taken together, the transformants expressing mammalian taste receptors showed a small but significant increase in the feeding preference that is taste receptor and also ligand dependent. Although future improvements are required to attain performance comparable to the endogenous robust response, Drosophila taste neurons may serve as a potential in vivo heterologous expression system for analyzing chemoreceptor function.

  20. Expression cloning of a high-affinity melatonin receptor from Xenopus dermal melanophores.

    PubMed Central

    Ebisawa, T; Karne, S; Lerner, M R; Reppert, S M

    1994-01-01

    Using an expression cloning strategy, a high-affinity melatonin receptor cDNA has been isolated from Xenopus laevis dermal melanophores. Transient expression of the cDNA in COS-7 cells resulted in high-affinity 2-[125I]-iodomelatonin binding (Kd = 6.3 +/- 0.3 x 10(-11) M). In addition, six ligands exhibited a rank order of inhibition of specific 2-[125I]iodomelatonin binding that was identical to that reported for endogenous high-affinity receptors. Functional studies of CHO cells stably expressing the receptor cDNA showed that melatonin acting through the cloned receptor inhibited forskolin-stimulated cAMP accumulation in a dose-dependent manner. Northern blot analysis showed that melatonin receptor transcripts are moderately expressed in Xenopus dermal melanophores. The cDNA encodes a protein of 420 amino acids, which contains seven hydrophobic segments. Structural analysis revealed that the receptor protein is a newly discovered member of the guanine nucleotide binding protein-coupled receptor family. Images PMID:7517042

  1. Comparison of albumin receptors expressed on bovine and human group G streptococci.

    PubMed Central

    Raeder, R; Otten, R A; Boyle, M D

    1991-01-01

    The albumin receptor expressed by bovine group G streptococci was extracted and affinity purified. The protein was characterized for species reactivity, and monospecific antibodies were prepared to the purified receptor. The bovine group G albumin receptor was compared functionally, antigenically, and for DNA homology with the albumin-binding protein expressed by human group G streptococci. In agreement with previous reports, the albumin-binding activity of human strains was mediated by a unique domain of the type III immunoglobulin G-Fc-binding molecule, protein G. The albumin receptor expressed by bovine group G strains was found to lack any immunoglobulin G-binding potential but displayed a wider profile of species albumin reactivity than protein G. Both albumin receptors could inhibit the binding of the other to immobilized human serum albumin, and each displayed similar binding properties. Antigenic comparison of the two albumin receptors demonstrated a low level of cross-reactivity; however comparison at the DNA level, using an oligonucleotide probe specific for the albumin-binding region of protein G, demonstrated that the two albumin receptors expressed by human and bovine group G streptococcal strains do not display significant homology. Images PMID:1846128

  2. GLP-2 receptors in human disease: high expression in gastrointestinal stromal tumors and Crohn's disease.

    PubMed

    Körner, Meike; Rehmann, Ruth; Reubi, Jean Claude

    2012-11-25

    Peptide hormones of the glucagon-like peptide (GLP) family play an increasing clinical role, as reported for GLP-1 in diabetes therapy and insulinoma diagnostics. GLP-2, despite its known trophic and anti-inflammatory intestinal actions translated into preliminary clinical studies using the GLP-2 analogue teduglutide for treatment of short bowel syndrome and Crohn's disease, remains poorly characterized in terms of expression of its receptor in tissues of interest. Therefore, the GLP-2 receptor expression was assessed in 237 tumor and 148 non-neoplastic tissue samples with in vitro receptor autoradiography. A GLP-2 receptor expression was present in 68% of gastrointestinal stromal tumors (GIST). Furthermore, GLP-2 receptors were identified in the intestinal myenteric plexus, with significant up-regulation in active Crohn's disease. The GLP-2 receptors in GIST may be used for clinical applications like in vivo targeting with radiolabelled GLP-2 analogues for imaging and therapy. Moreover, the over-expressed GLP-2 receptor in the myenteric plexus may represent the morphological correlate of the clinical target of teduglutide in Crohn's disease.

  3. Expression of the 5-HT receptors in rat brain during memory consolidation.

    PubMed

    Meneses, A; Manuel-Apolinar, L; Rocha, L; Castillo, E; Castillo, C

    2004-07-09

    Serotonin (5-hydroxytryptamine, 5-HT) system displays more than 14 receptors subtypes on brain areas involved in learning and memory processes, and pharmacological manipulation of specific receptors selectively affects memory formation. In order to begin the search of 5-HT receptors expression during memory formation, in this work, we aimed to determine, by autoradiography (using 3H 5-HT as ligand, 2 nM, specific activity 123 Ci/mmol), 5-HT receptors (5-HTR) expression in passive (untrained) and autoshaping trained (3 sessions) adult (3 months) and old (9 months) male rats. Thus, trained adult rats had better retention than old animals. Raphe nuclei of adult and old trained rats expressed less receptors on medial and dorsal, respectively. Hippocampal CA1 area and dentate gyrus of adult trained rats expressed less 5-HTR, while dentate gyrus of old increased them. Basomedial amygdaloid nucleus in old trained rats expressed more 5-HTR; while in the basolateral amygdaloid nucleus they were augmented in both groups. Training decreased or did not change 5-HTR in caudate-putamen of adult or old animals. The above profile of 5-HTR expression is consistent with previous reports, and suggests that memory formation and aging modulates 5-HTR expression in brain areas relevant to memory systems.

  4. Transsynaptic Tracing from Taste Receptor Cells Reveals Local Taste Receptor Gene Expression in Gustatory Ganglia and Brain.

    PubMed

    Voigt, Anja; Bojahr, Juliane; Narukawa, Masataka; Hübner, Sandra; Boehm, Ulrich; Meyerhof, Wolfgang

    2015-07-01

    Taste perception begins in the oral cavity by interactions of taste stimuli with specific receptors. Specific subsets of taste receptor cells (TRCs) are activated upon tastant stimulation and transmit taste signals to afferent nerve fibers and ultimately to the brain. How specific TRCs impinge on the innervating nerves and how the activation of a subset of TRCs leads to the discrimination of tastants of different qualities and intensities is incompletely understood. To investigate the organization of taste circuits, we used gene targeting to express the transsynaptic tracer barley lectin (BL) in the gustatory system of mice. Because TRCs are not synaptically connected with the afferent nerve fibers, we first analyzed tracer production and transfer within the taste buds (TBs). Surprisingly, we found that BL is laterally transferred across all cell types in TBs of mice expressing the tracer under control of the endogenous Tas1r1 and Tas2r131 promotor, respectively. Furthermore, although we detected the BL tracer in both ganglia and brain, we also found local low-level Tas1r1 and Tas2r131 gene, and thus tracer expression in these tissues. Finally, we identified the Tas1r1 and Tas2r131-expressing cells in the peripheral and CNS using a binary genetic approach. Together, our data demonstrate that genetic transsynaptic tracing from bitter and umami receptor cells does not selectively label taste-specific neuronal circuits and reveal local taste receptor gene expression in the gustatory ganglia and the brain. Previous papers described the organization of taste pathways in mice expressing a transsynaptic tracer from transgenes in bitter or sweet/umami-sensing taste receptor cells. However, reported results differ dramatically regarding the numbers of synapses crossed and the reduction of signal intensity after each transfer step. Nevertheless, all groups claimed this approach appropriate for quality-specific visualization of taste pathways. In the present study, we

  5. Functional expression of purinergic P2 receptors and transient receptor potential channels by the human urothelium.

    PubMed

    Shabir, Saqib; Cross, William; Kirkwood, Lisa A; Pearson, Joanna F; Appleby, Peter A; Walker, Dawn; Eardley, Ian; Southgate, Jennifer

    2013-08-01

    In addition to its role as a physical barrier, the urothelium is considered to play an active role in mechanosensation. A key mechanism is the release of transient mediators that activate purinergic P2 receptors and transient receptor potential (TRP) channels to effect changes in intracellular Ca²⁺. Despite the implied importance of these receptors and channels in urothelial tissue homeostasis and dysfunctional bladder disease, little is known about their functional expression by the human urothelium. To evaluate the expression and function of P2X and P2Y receptors and TRP channels, the human ureter and bladder were used to separate urothelial and stromal tissues for RNA isolation and cell culture. RT-PCR using stringently designed primer sets was used to establish which P2 and TRP species were expressed at the transcript level, and selective agonists/antagonists were used to confirm functional expression by monitoring changes in intracellular Ca²⁺ and in a scratch repair assay. The results confirmed the functional expression of P2Y₄ receptors and excluded nonexpressed receptors/channels (P2X₁, P2X₃, P2X₆, P2Y₆, P2Y₁₁, TRPV5, and TRPM8), while a dearth of specific agonists confounded the functional validation of expressed P2X₂, P2X₄, P2Y₁, P2Y₂, TRPV2, TRPV3, TRPV6 and TRPM7 receptors/channels. Although a conventional response was elicited in control stromal-derived cells, the urothelial cell response to well-characterized TRPV1 and TRPV4 agonists/antagonists revealed unexpected anomalies. In addition, agonists that invoked an increase in intracellular Ca²⁺ promoted urothelial scratch repair, presumably through the release of ATP. The study raises important questions about the ligand selectivity of receptor/channel targets expressed by the urothelium. These pathways are important in urothelial tissue homeostasis, and this opens the possibility of selective drug targeting.

  6. Estrogen and Progesterone hormone receptor expression in oral cavity cancer

    PubMed Central

    Biegner, Thorsten; Teriete, Peter; Hoefert, Sebastian; Krimmel, Michael; Munz, Adelheid; Reinert, Siegmar

    2016-01-01

    Background Recent studies have shown an increase in the incidence of oral squamous cell carcinoma (OSCC) in younger patients. The hypothesis that tumors could be hormonally induced during pregnancy or in young female patients without the well-known risk factors alcohol or tobacco abuse seems to be plausible. Material and Methods Estrogen Receptor alpha (ERα) and Progesterone Receptor (PR) expression were analyzed in normal oral mucosa (n=5), oral precursor lesions (simple hyperplasia, n=11; squamous intraepithelial neoplasia, SIN I-III, n=35), and OSCC specimen. OSCCs were stratified in a young female (n=7) study cohort and older patients (n=46). In the young female study cohort three patients (n=3/7) developed OSCC during or shortly after pregnancy. Breast cancer tissues were used as positive control for ERα and PR expression. Results ERα expression was found in four oral precursor lesions (squamous intraepithelial neoplasia, SIN I-III, n=4/35, 11%) and in five OSCC specimen (n=5/46, 11%). The five ERα positive OSCC samples were older male patients. All patients within the young female study cohort were negatively stained for both ERα and PR. Conclusions ER expression could be regarded as a seldom risk factor for OSCC. PR expression seems to be not relevant for the development of OSCC. Key words:Oral squamous cell carcinoma, estrogen receptor, progesterone receptor, hormone receptor. PMID:27475696

  7. Distinct nuclear receptor expression in stroma adjacent to breast tumors.

    PubMed

    Knower, Kevin C; Chand, Ashwini L; Eriksson, Natalie; Takagi, Kiyoshi; Miki, Yasuhiro; Sasano, Hironobu; Visvader, Jane E; Lindeman, Geoffrey J; Funder, John W; Fuller, Peter J; Simpson, Evan R; Tilley, Wayne D; Leedman, Peter J; Graham, J Dinny; Muscat, George E O; Clarke, Christine L; Clyne, Colin D

    2013-11-01

    The interaction between breast tumor epithelial and stromal cells is vital for initial and recurrent tumor growth. While breast cancer-associated stromal cells provide a favorable environment for proliferation and metastasis, the molecular mechanisms contributing to this process are not fully understood. Nuclear receptors (NRs) are intracellular transcription factors that directly regulate gene expression. Little is known about the status of NRs in cancer-associated stroma. Nuclear Receptor Low-Density Taqman Arrays were used to compare the gene expression profiles of all 48 NR family members in a collection of primary cultured cancer-associated fibroblasts (CAFs) obtained from estrogen receptor (ER)α positive breast cancers (n = 9) and normal breast adipose fibroblasts (NAFs) (n = 7). Thirty-three of 48 NRs were expressed in both the groups, while 11 NRs were not detected in either. Three NRs (dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1 (DAX-1); estrogen-related receptor beta (ERR-β); and RAR-related orphan receptor beta (ROR-β)) were only detected in NAFs, while one NR (liver receptor homolog-1 (LRH-1)) was unique to CAFs. Of the NRs co-expressed, four were significantly down-regulated in CAFs compared with NAFs (RAR-related orphan receptor-α (ROR-α); Thyroid hormone receptor-β (TR-β); vitamin D receptor (VDR); and peroxisome proliferator-activated receptor-γ (PPAR-γ)). Quantitative immunohistochemistry for LRH-1, TR-β, and PPAR-γ proteins in stromal fibroblasts from an independent panel of breast cancers (ER-positive (n = 15), ER-negative (n = 15), normal (n = 14)) positively correlated with mRNA expression profiles. The differentially expressed NRs identified in tumor stroma are key mediators in aromatase regulation and subsequent estrogen production. Our findings reveal a distinct pattern of NR expression that therefore fits with a sustained and increased local estrogen microenvironment in ER

  8. Functional lysophosphatidic acid receptors expressed in Oryzias latipes.

    PubMed

    Morimoto, Yuji; Ishii, Shoichi; Ishibashi, Jun-Ichi; Katoh, Kazutaka; Tsujiuchi, Toshifumi; Kagawa, Nao; Fukushima, Nobuyuki

    2014-11-10

    Lysophosphatidic acid (LPA) signaling is known to play biological and pathophysiological roles in many types of animals. Medaka (Oryzias latipes) is an experimental fish that can be easily maintained, propagated, and analyzed, and whose genome has been completely sequenced. However, there is limited information available regarding medaka LPA receptors. Here, using information from the medaka genome database, we examine the genomic structures, expression, and functions of six LPA receptor genes, Lpar1-Lpar6. Our analyses reveal that the genomic structures of Lpar1 and Lpar4 are different from those deduced from the database. Functional analyses using a heterologous expression system demonstrate that all medaka LPA receptors except for LPA5b respond to LPA treatment with cytoskeletal changes. These findings provide useful information on the structure and function of medaka LPA receptor genes, and identify medaka as a useful experimental model for exploration of the biological significance of LPA signaling. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. [Role of the expression of c-Met receptor in the progression of gastric cancer].

    PubMed

    Amemiya, Hideki; Menolascino, Francisco; Peña, Alix

    2010-09-01

    The product of the proto-oncogene C-MET (the c-Met receptor) and its ligand, hepatocyte growth factor (HGF), have been implicated in the progression of gastric cancer. The aim of this study was to analyze the expression of c-Met receptor, HGF and proliferating cell nuclear antigen (PCNA) by the immunohistochemistry method of labeled streptavidin-biotin, as well as survival, and they were correlated with anatomopathological factors in stomach specimens of 40 patients, who underwent gastrectomy for gastric cancer in the Department of General Surgery, Hospital Central Universitario "Antonio María Pineda" in Barquisimeto, Venezuela, in 2001-2004. High expression of c-Met receptor and PCNA was observed in patients with advanced stages of gastric cancer (III and IV) compared with early stages (I and II) (p<0.01). There was also overexpression of the c-Met receptor in histologic variables with low degree of differentiation, deeper tumor invasion into the submucosa, liver metastases and it is reported a lower survival rate in patients with increased receptor expression (+++ and ++++) when compared with patients with the lowest expression (+ and ++) (p<0.01). The expression of HGF was constant in both, advanced and early groups. The c-Met receptor is associated with proliferation and cell migration in Venezuelan patients with gastric cancer and could be used as a prognostic factor in this pathology.

  10. Activation of 5-HT7 receptors increases neuronal platelet-derived growth factor β receptor expression.

    PubMed

    Vasefi, Maryam S; Kruk, Jeff S; Liu, Hui; Heikkila, John J; Beazely, Michael A

    2012-03-09

    Several antipsychotics have a high affinity for 5-HT7 receptors yet despite intense interest in the 5-HT7 receptor as a potential drug target to treat psychosis, the function and signaling properties of 5-HT7 receptors in neurons remain largely uncharacterized. In primary mouse hippocampal and cortical neurons, as well as in the SH-SY5Y cell line, incubation with 5-HT, 5-carboxamidotryptamine (5-CT), or 5-HT7 receptor-selective agonists increases the expression of platelet-derived growth factor (PDGF)β receptors. The increased PDGFβ receptor expression is cyclic AMP-dependent protein kinase (PKA)-dependent, suggesting that 5-HT7 receptors couple to Gα(s) in primary neurons. Interestingly, up-regulated PDGFβ receptors display an increased basal phosphorylation state at the phospholipase Cγ-activating tyrosine 1021. This novel linkage between the 5-HT7 receptor and the PDGF system may be an important GPCR-neurotrophic factor signaling pathway in neurons.

  11. TAM Receptors in Leukemia: Expression, Signaling, and Therapeutic Implications

    PubMed Central

    Brandão, Luis; Migdall-Wilson, Justine; Eisenman, Kristen; Graham, Douglas K.

    2016-01-01

    In the past 30 years there has been remarkable progress in the treatment of leukemia and lymphoma. However, current treatments are largely ineffective against relapsed leukemia and, in the case of pediatric patients, are often associated with severe long-term toxicities. Thus, there continues to be a critical need for the development of effective biologically targeted therapies. The TAM family of receptor tyrosine kinases—Tyro3, Axl, and Mer—plays an important role in normal hematopoiesis, including natural killer cell maturation, macrophage function, and platelet activation and signaling. Furthermore, TAM receptor activation leads to upregulation of pro-survival and proliferation signaling pathways, and aberrant TAM receptor expression contributes to cancer development, including myeloid and lymphoid leukemia. This review summarizes the role of TAM receptors in leukemia. We outline TAM receptor expression patterns in different forms of leukemia, describe potential mechanisms leading to their overexpression, and delineate the signaling pathways downstream of receptor activation that have been implicated in leukemogenesis. Finally, we discuss the current research focused on inhibitors against these receptors in an effort to develop new therapeutic strategies for leukemia. PMID:22150307

  12. Receptor-mediated regulation of neuropeptide gene expression in astrocytes.

    PubMed

    Schwartz, J P; Nishiyama, N; Wilson, D; Taniwaki, T

    1994-06-01

    One of the functions of glial receptors is to regulate synthesis and release of a variety of neuropeptides and growth factor peptides, which in turn act on neurons or other glia. Because of the potential importance of these interactions in injured brain, we have examined the role of two different receptors in the regulation of astrocyte neuropeptide synthesis. Stimulation of beta-adrenergic receptors on type 1 astrocytes resulted in increased mRNA and protein for the proenkephalin (PE) and somatostatin genes. This receptor also increased expression of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF). The potential role of opiate receptors was examined in several ways. Treatment of newborn rats for 7 days with the opiate antagonist naltrexone, prior to preparation of astrocytes, had no effect on PE mRNA or met-enkephalin content but resulted in a significant increase in NGF content. However, treatment of astrocytes in culture with met-enkephalin, morphine, or naltrexone had no effect on any of these parameters. No opiate binding could be detected, using either etorphine or bremazocine, to membranes of astrocytes prepared from cortex, cerebellum, striatum, or hippocampus of 1-day, 7-day, or 14-day postnatal rats. Thus we conclude that type 1 astrocytes do not express opiate receptors and that the in vivo effects of naltrexone are mediated indirectly via some other cell type/receptor.

  13. Dopamine receptor gene expression by enkephalin neurons in rat forebrain

    SciTech Connect

    Le Moine, C.; Normand, E.; Guitteny, A.F.; Fouque, B.; Teoule, R.; Bloch, B. )

    1990-01-01

    In situ hybridization experiments were performed with brain sections from normal, control and haloperidol-treated rats to identify and map the cells expressing the D2 dopamine receptor gene. D2 receptor mRNA was detected with radioactive or biotinylated oligonucleotide probes. D2 receptor mRNA was present in glandular cells of the pituitary intermediate lobe and in neurons of the substantia nigra, ventral tegmental area, and forebrain, especially in caudate putamen, nucleus accumbens, olfactory tubercle, and piriform cortex. Hybridization with D2 and preproenkephalin A probes in adjacent sections, as well as combined hybridization with the two probes in the same sections, demonstrated that all detectable enkephalin neurons in the striatum contained the D2 receptor mRNA. Large neurons in caudate putamen, which were unlabeled with the preproenkephalin A probe and which may have been cholinergic, also expressed the D2 receptor gene. Haloperidol treatment (14 or 21 days) provoked an increase in mRNA content for D2 receptor and preproenkephalin A in the striatum. This suggests that the increase in D2 receptor number observed after haloperidol treatment is due to increased activity of the D2 gene. These results indicate that in the striatum, the enkephalin neurons are direct targets for dopamine liberated from mesostriatal neurons.

  14. Assays of dioxins and dioxin-like compounds in actually contaminated soils using transgenic tobacco plants carrying a recombinant mouse aryl hydrocarbon receptor-mediated β-glucuronidase reporter gene expression system.

    PubMed

    Inui, Hideyuki; Gion, Keiko; Utani, Yasushi; Wakai, Taketo; Kodama, Susumu; Eun, Heesoo; Kim, Yun-Seok; Ohkawa, Hideo

    2012-01-01

    The transgenic tobacco plant XD4V-26 carrying the recombinant mouse aryl hydrocarbon receptor XD4V-mediated β-glucuronidase (GUS) reporter gene expression system was used for assay of dioxins and dioxin-like compounds consisting of polychlorinated dibenzeno-p-dioxins, polychlorinated dibenzofurans, and coplanar polychlorinated biphenyls (Co-PCBs) in actually contaminated soils. The transgenic tobacco plant XD4V-26 showed a significant dose-dependent induced GUS activity when cultured on MS medium containing PCB126 [toxic equivalency factor (TEF) = 0.1]. In contrast, PCB169 and PCB180, which have 0.03 of TEF and unassigned TEF values, respectively, did not significantly induce GUS activity under the same conditions as with PCB126. When the tobacco plants were cultivated for up to 5 weeks on actually contaminated soils with dioxins and dioxin-like compounds collected from the periphery of an incinerator used for disposal of residential and industrial wastes, GUS activity in the leaves was dose-dependently increased. The plants clearly detected 360 pg-TEQ g(-1) of dioxins and dioxin-like compounds in this assay. There was a positive correlation between GUS activity and TEQ value of dioxins and dioxin-like compounds in the plants. This assay does not require any extraction and purification processes for the actually contaminated soil samples.

  15. Assays of dioxins and dioxin-like compounds in actually contaminated soils using transgenic tobacco plants carrying a recombinant mouse aryl hydrocarbon receptor-mediated β-glucuronidase reporter gene expression system

    PubMed Central

    Inui, Hideyuki; Gion, Keiko; Utani, Yasushi; Wakai, Taketo; Kodama, Susumu; Eun, Heesoo; Kim, Yun-Seok; Ohkawa, Hideo

    2012-01-01

    The transgenic tobacco plant XD4V-26 carrying the recombinant mouse aryl hydrocarbon receptor XD4V-mediated β-glucuronidase (GUS) reporter gene expression system was used for assay of dioxins and dioxin-like compounds consisting of polychlorodibenzo-p-dioxins, polychlorinated dibenzofurans, and coplanar polychlorinated biphenyls (Co-PCBs) in actually contaminated soils. The transgenic tobacco plant XD4V-26 showed a significant dose-dependent induced GUS activity when cultured on MS medium containing PCB126 [toxic equivalency factor (TEF) = 0.1]. In contrast, PCB169 and PCB180, which have 0.03 of TEF and unassigned TEF values, respectively, did not significantly induce GUS activity under the same conditions as with PCB126. When the tobacco plants were cultivated for up to 5 weeks on actually contaminated soils with dioxins and dioxin-like compounds collected from the periphery of an incinerator used for disposal of life and industrial wastes, GUS activity in the leaves was dose-dependently increased. The plants clearly detected 360 pg-TEQ g−1 of dioxins and dioxin-like compounds in this assay. There was a positive correlation between GUS activity and TEQ value of dioxins and dioxin-like compounds in the plants. This assay does not require any extraction and purification processes for the actually contaminated soil samples. PMID:22428884

  16. Assays of dioxins and dioxin-like compounds in actually contaminated soils using transgenic tobacco plants carrying a recombinant mouse aryl hydrocarbon receptor-mediated β-glucuronidase reporter gene expression system.

    PubMed

    Inui, Hideyuki; Gion, Keiko; Utani, Yasushi; Wakai, Taketo; Kodama, Susumu; Eun, Heesoo; Kim, Yun-Seok; Ohkawa, Hideo

    2012-01-01

    The transgenic tobacco plant XD4V-26 carrying the recombinant mouse aryl hydrocarbon receptor XD4V-mediated β-glucuronidase (GUS) reporter gene expression system was used for assay of dioxins and dioxin-like compounds consisting of polychlorodibenzo-p-dioxins, polychlorinated dibenzofurans, and coplanar polychlorinated biphenyls (Co-PCBs) in actually contaminated soils. The transgenic tobacco plant XD4V-26 showed a significant dose-dependent induced GUS activity when cultured on MS medium containing PCB126 [toxic equivalency factor (TEF) = 0.1]. In contrast, PCB169 and PCB180, which have 0.03 of TEF and unassigned TEF values, respectively, did not significantly induce GUS activity under the same conditions as with PCB126. When the tobacco plants were cultivated for up to 5 weeks on actually contaminated soils with dioxins and dioxin-like compounds collected from the periphery of an incinerator used for disposal of life and industrial wastes, GUS activity in the leaves was dose-dependently increased. The plants clearly detected 360 pg-TEQ g(-1) of dioxins and dioxin-like compounds in this assay. There was a positive correlation between GUS activity and TEQ value of dioxins and dioxin-like compounds in the plants. This assay does not require any extraction and purification processes for the actually contaminated soil samples.

  17. Amphioxus expresses both vertebrate-type and invertebrate-type dopamine D(1) receptors.

    PubMed

    Burman, Chloe; Evans, Peter D

    2010-12-01

    The cephalochordate amphioxus (Branchiostoma floridae) has recently been placed as the most basal of all the chordates, which makes it an ideal organism for studying the molecular basis of the evolutionary transition from invertebrates to vertebrates. The biogenic amine, dopamine regulates many aspects of motor control in both vertebrates and invertebrates, and in both cases, its receptors can be divided into two main groups (D1 and D2) based on sequence similarity, ligand affinity and effector coupling. A bioinformatic study shows that amphioxus has at least three dopamine D1-like receptor sequences. We have recently characterized one of these receptors, AmphiD1/β, which was found to have high levels of sequence similarity to both vertebrate D1 receptors and to β-adrenergic receptors, but functionally appeared to be a vertebrate-type dopamine D(1) receptor. Here, we report on the cloning of two further dopamine D(1) receptors (AmphiAmR1 and AmphiAmR2) from adult amphioxus cDNA libraries and their pharmacological characterisation subsequent to their expression in cell lines. AmphiAmR1 shows closer structural similarities to vertebrate D(1)-like receptors but shows some pharmacological similarities to invertebrate "DOP1" dopamine D(1)-like receptors. In contrast, AmphiAmR2 shows closer structural and pharmacological similarities to invertebrate "INDR"-like dopamine D(1)-like receptors.

  18. Morphine upregulates functional expression of neurokinin-1 receptor in neurons.

    PubMed

    Wan, Qi; Douglas, Steven D; Wang, Xu; Kolson, Dennis L; O'Donnell, Lauren A; Ho, Wen-Zhe

    2006-11-15

    Neuronkinin-1 receptor (NK-1R), the neuropeptide substance P (SP) preferring receptor, is highly expressed in areas of the central nervous system (CNS) that are especially implicated in depression, anxiety, and stress. Repeated exposure to opioids may sensitize neuronal systems involved in stress response. We examined the effects of morphine, the principal metabolite of heroin, on the functional expression of NK-1R in the cortical neurons. NK-1R and mu-opioid receptor (MOR) are co-expressed in the cortical neurons. Morphine enhanced NK-1R expression in the cortical neurons at both the mRNA and protein levels. The upregulated NK-1R by morphine had functional activity, because morphine-treated cortical neurons had greater SP-induced Ca(2+) mobilization than untreated neurons. Blocking opioid receptors on the cortical neurons by naltrexone or CTAP (a mu-opioid receptor antagonist) abolished the morphine action. Investigation of the mechanism(s) responsible for the morphine action showed that morphine activated NK-1R promoter and induced the phosphorylation of p38 MAPK protein in the cortical neurons. These in vitro data provide a plausible cellular mechanism for opioid-mediated neurological disorders.

  19. Purification of a rat neurotensin receptor expressed in Escherichia coli.

    PubMed Central

    Tucker, J; Grisshammer, R

    1996-01-01

    A truncated rat neurotensin receptor (NTR), expressed in Escherichia coli with the maltose-binding protein fused to its N-terminus and the 13 amino acid Bio tag fused to its C-terminus, was purified to apparent homogeneity in two steps by use of the monomeric avidin system followed by a novel neurotensin column. This purification protocol was developed by engineering a variety of affinity tags on to the C-terminus of NTR. Surprisingly, expression levels varied considerably depending on the C-terminal tag used. Functional expression of NTR was highest (800 receptors/cell) when thioredoxin was placed between the receptor C-terminus and the tag, indicating a stabilizing effect of the thioredoxin moiety. Several affinity chromatography methods were tested for purification. NTR with the in vivo-biotinylated Bio tag was purified with the highest efficiency compared with NTR with the Strep tag or a hexa-histidine tail. Co-expression of biotin ligase improved considerably the in vivo biotinylation of the Bio tag and, therefore, the overall purification yield. Proteolysis of the NTR fusion protein was prevented by removing a protease-sensitive site discovered at the N-terminus of NTR. The ligand binding properties of the purified receptor were similar to those of the membrane-bound protein and the native receptor. The scale-up of this purification scheme, to provide sufficient protein for biophysical studies, is in progress. PMID:8760379

  20. Characterization of cannabinoid receptor ligands in tissues natively expressing cannabinoid CB2 receptors

    PubMed Central

    Marini, Pietro; Cascio, Maria-Grazia; King, Angela; Pertwee, Roger G; Ross, Ruth A

    2013-01-01

    Background and Purpose Although cannabinoid CB2 receptor ligands have been widely characterized in recombinant systems in vitro, little pharmacological characterization has been performed in tissues natively expressing CB2 receptors. The aim of this study was to compare the pharmacology of CB2 receptor ligands in tissue natively expressing CB2 receptors (human, rat and mouse spleen) and hCB2-transfected CHO cells. Experimental Approach We tested the ability of well-known cannabinoid CB2 receptor ligands to stimulate or inhibit [35S]GTPγS binding to mouse, rat and human spleen membranes and to hCB2-transfected CHO cell membranes. cAMP assays were also performed in hCB2-CHO cells. Key Results The data presented demonstrate that: (i) CP 55,940, WIN 55,212-2 and JWH 133 behave as CB2 receptor full agonists both in spleen and hCB2-CHO cells, in both [35S]GTPγS and cAMP assays; (ii) JWH 015 behaves as a low-efficacy agonist in spleen as well as in hCB2-CHO cells when tested in the [35S]GTPγS assay, while it displays full agonism when tested in the cAMP assay using hCB2-CHO cells; (iii) (R)-AM 1241 and GW 405833 behave as agonists in the [35S]GTPγS assay using spleen, instead it behaves as a low-efficacy inverse agonist in hCB2-CHO cells; and (iv) SR 144528, AM 630 and JTE 907 behave as CB2 receptor inverse agonists in all the tissues. Conclusion and Implications Our results demonstrate that CB2 receptor ligands can display differential pharmacology when assays are conducted in tissues that natively express CB2 receptors and imply that conclusions from recombinant CB2 receptors should be treated with caution. PMID:23711022

  1. Hormone Receptor and ERBB2 Status in Gene Expression Profiles of Human Breast Tumor Samples

    PubMed Central

    Dvorkin-Gheva, Anna; Hassell, John A.

    2011-01-01

    The occurrence of large publically available repositories of human breast tumor gene expression profiles provides an important resource to discover new breast cancer biomarkers and therapeutic targets. For example, knowledge of the expression of the estrogen and progesterone hormone receptors (ER and PR), and that of the ERBB2 in breast tumor samples enables choice of therapies for the breast cancer patients that express these proteins. Identifying new biomarkers and therapeutic agents affecting the activity of signaling pathways regulated by the hormone receptors or ERBB2 might be accelerated by knowledge of their expression levels in large gene expression profiling data sets. Unfortunately, the status of these receptors is not invariably reported in public databases of breast tumor gene expression profiles. Attempts have been made to employ a single probe set to identify ER, PR and ERBB2 status, but the specificity or sensitivity of their prediction is low. We enquired whether estimation of ER, PR and ERBB2 status of profiled tumor samples could be improved by using multiple probe sets representing these three genes and others with related expression. We used 8 independent datasets of human breast tumor samples to define gene expression signatures comprising 24, 51 and 14 genes predictive of ER, PR and ERBB2 status respectively. These signatures, as demonstrated by sensitivity and specificity measures, reliably identified hormone receptor and ERBB2 expression in breast tumors that had been previously determined using protein and DNA based assays. Our findings demonstrate that gene signatures can be identified which reliably predict the expression status of the estrogen and progesterone hormone receptors and that of ERBB2 in publically available gene expression profiles of breast tumor samples. Using these signatures to query transcript profiles of breast tumor specimens may enable discovery of new biomarkers and therapeutic targets for particular subtypes of

  2. Receptor-targeted metalloradiopharmaceuticals. Final technical report

    SciTech Connect

    Green, Mark A.

    2000-03-22

    Copper (II) and platinum (II) coordination complexes were prepared and characterized. These complexes were designed to afford structural homology with steroidal and non-steroidal estrogens for possible use as receptor-targeted radiopharmaceuticals. While weak affinity for the estrogen receptor was detectable, none would appear to have sufficient receptor-affinity for estrogen-receptor-targeted imaging or therapy.

  3. Expression of TIR8 receptor in chicken tissues.

    PubMed

    Turin, L; Manarolla, G; Riva, F

    2014-01-01

    The orphan receptor TIR8, also known as SIGIRR, belongs to the TLR/IL-1R (TIR) superfamily and plays an important role in the immune response. The signalling pathways of the receptors belonging to the TIR family are tightly regulated at multiple levels and through different mechanisms. TIR8 negatively modulates innate immunity and inflammatory responses in the areas where it is primarily expressed (gastrointestinal tract, kidney and lung). TIR8 has been well characterized in mouse, humans and in other Mammalian species, but it is still poorly known in chicken. Given the importance of gastrointestinal diseases in chicken, the aim of our study was to investigate the distribution of TIR8 in a wide panel of non-pathologic tissues and organs. TIR8 expression was analyzed in chicken samples at both levels of transcript mRNA and translated protein. The pattern of expression of TIR8 (ubiquitous) was similar to Mammals for some tissues (high levels in kidney and gastrointestinal tract), but it resulted unique for other tissues. High expression was detected in liver, pancreas and female reproductive tract. Interestingly, the receptor was highly expressed also in heterophils, the most common granulocytes of birds. Few isoforms of chicken TIR8 were detected by Western blot, suggesting the occurrence of different post-translational processing in different organs. Immunohistochemistry revealed TIR8 immunolabelling in chicken intestine and thymus. These results demonstrate that the receptor, although evolutionarily conserved, show species-specific peculiarities.

  4. Concerted Gene Expression of Hippocampal Steroid Receptors during Spatial Learning in Male Wistar Rats: A Correlation Analysis

    PubMed Central

    Lubec, Gert; Korz, Volker

    2016-01-01

    Adrenal and gonadal steroid receptor activities are significantly involved and interact in the regulation of learning, memory and stress. Thus, a coordinated expression of steroid receptor genes during a learning task can be expected. Although coexpression of steroid receptors in response to behavioral tasks has been reported the correlative connection is unclear. According to the inverted U-shape model of the impact of stress upon learning and memory we hypothesized that glucocorticoid (GR) receptor expression should be correlated to corticosterone levels in a linear or higher order manner. Other cognition modulating steroid receptors like estrogen receptors (ER) should be correlated to GR receptors in a quadratic manner, which describes a parabola and thus a U-shaped connection. Therefore, we performed a correlational meta-analyis of data of a previous study (Meyer and Korz, 2013a) of steroid receptor gene expressions during spatial learning, which provides a sufficient data basis in order to perform such correlational connections. In that study male rats of different ages were trained in a spatial holeboard or remained untrained and the hippocampal gene expression of different steroid receptors as well as serum corticosterone levels were measured. Expressions of mineralocorticoid (MR) and GR receptors were positively and linearly correlated with blood serum corticosterone levels in spatially trained but not in untrained animals. Training induced a cubic (best fit) relationship between mRNA levels of estrogen receptor α (ERα) and androgen receptor (AR) with MR mRNA. GR gene expression was linearly correlated with MR expression under both conditions. ERα m RNA levels were negatively and linearily and MR and GR gene expressions were cubicely correlated with reference memory errors (RME). Due to only three age classes correlations with age could not be performed. The findings support the U-shape theory of steroid receptor interaction, however the cubic fit

  5. Post-transcriptional regulation of dopamine D1 receptor expression in caudate-putamen of cocaine-sensitized mice.

    PubMed

    Tobón, Krishna E; Catuzzi, Jennifer E; Cote, Samantha R; Sonaike, Adenike; Kuzhikandathil, Eldo V

    2015-07-01

    The dopamine D1 receptor is centrally involved in mediating the effects of cocaine and is essential for cocaine-induced locomotor sensitization. Changes in D1 receptor expression have been reported in various models of cocaine addiction; however, the mechanisms that mediate these changes in D1 receptor expression are not well understood. Using preadolescent drd1a-EGFP mice and a binge cocaine treatment protocol we demonstrate that the D1 receptor is post-transcriptionally regulated in the caudate-putamen of cocaine-sensitized animal. While cocaine-sensitized mice express high levels of steady-state D1 receptor mRNA, the expression of D1 receptor protein is not elevated. We determined that the post-transcriptional regulation of D1 receptor mRNA is rapidly attenuated and D1 receptor protein levels increase within 30 min when the sensitized mice are challenged with cocaine. The rapid increase in D1 receptor protein levels requires de novo protein synthesis and correlates with the cocaine-induced hyperlocomotor activity in the cocaine-sensitized mice. The increase in D1 receptor protein levels in the caudate-putamen inversely correlated with the levels of microRNA 142-3p and 382, both of which regulate D1 receptor protein expression. The levels of these two microRNAs decreased significantly within 5 min of cocaine challenge in sensitized mice. The results provide novel insights into the previously unknown rapid kinetics of D1 receptor protein expression which occurs in a time scale that is comparable to the expression of immediate early genes. Furthermore, the results suggest a potential novel role for inherently labile microRNAs in regulating the rapid expression of D1 receptor protein in cocaine-sensitized animals.

  6. Enhancement of G Protein-Coupled Receptor Surface Expression

    PubMed Central

    Dunham, Jill H.; Hall, Randy A.

    2009-01-01

    G protein-coupled receptors (GPCRs) mediate physiological responses to a diverse array of stimuli and are the molecular targets for numerous therapeutic drugs. GPCRs primarily signal from the plasma membrane, but when expressed in heterologous cells many GPCRs exhibit poor trafficking to the cell surface. Multiple approaches have been taken to enhance GPCR surface expression in heterologous cells, including addition/deletion of receptor sequences, co-expression with interacting proteins, and treatment with pharmacological chaperones. In addition to allowing for enhanced surface expression of certain GPCRs in heterologous cells, these approaches have also shed light on the control of GPCR trafficking in vivo and in some cases have led to new therapeutic approaches for treating human diseases that result from defects in GPCR trafficking. PMID:19679364

  7. Olfactory receptor gene expression in tiger salamander olfactory epithelium.

    PubMed

    Marchand, James E; Yang, Xinhai; Chikaraishi, Dona; Krieger, Jurgen; Breer, Heinz; Kauer, John S

    2004-06-28

    Physiological studies of odor-elicited responses from the olfactory epithelium and bulb in the tiger salamander, Ambystoma tigrinum, have elucidated a number of features of olfactory coding that appear to be conserved across several vertebrate species. This animal model has provided an accessible in vivo system for observing individual and ensemble olfactory responses to odorant stimulation using biochemical, neurophysiological, and behavioral assays. In this paper we have complemented these studies by characterizing 35 candidate odorant receptor genes. These receptor sequences are similar to those of the large families of olfactory receptors found in mammals and fish. In situ hybridization, using RNA probes to 20 of these sequences, demonstrates differential distributions of labeled cells across the extent and within the depth of the olfactory epithelium. The distributions of cells labeled with probes to different receptors show spatially restricted patterns that are generally localized to different degrees in medial-lateral and anterior-posterior directions. The patterns of receptor expression in the ventral olfactory epithelium (OE) are mirrored in the dorsal OE. We present a hypothesis as to how the sensory neuron populations expressing different receptor types responding to a particular odorant may relate to the distribution patterns of epithelial and bulbar responses previously characterized using single-unit and voltage-sensitive dye recording methods. Copyright 2004 Wiley-Liss, Inc.

  8. LTD expression is independent of glutamate receptor subtype.

    PubMed

    Granger, Adam J; Nicoll, Roger A

    2014-01-01

    Long-term depression (LTD) is a form of synaptic plasticity that plays a major role in the activity-dependent reshaping of synaptic transmission. LTD is expressed as a decrease in synaptic AMPA receptor number, though the exact mechanism remains controversial. Several lines of evidence have suggested necessary roles for both the GluA1 and GluA2 subunits, and specifically certain interactions with their cytoplasmic tails. However, it is unclear if either GluA1 or GluA2 are absolutely required for LTD. We tested this hypothesis using constitutive knock-outs and single-cell molecular replacement of AMPA receptor subunits in mouse hippocampus. We found that neither GluA1 or GluA2 are required for normal expression of LTD, and indeed a normal decrease in synaptic transmission was observed in cells in which all endogenous AMPA receptors have been replaced by kainate receptors. Thus, LTD does not require removal of specific AMPA receptor subunits, but likely involves a more general modification of the synapse and its ability to anchor a broad range of receptor proteins.

  9. Active NMDA glutamate receptors are expressed by mammalian osteoclasts

    PubMed Central

    Espinosa, Leon; Itzstein, Cécile; Cheynel, Hervé; Delmas, Pierre D; Chenu, Chantal

    1999-01-01

    The N-methyl-D-aspartate (NMDA) glutamate receptor, widely distributed in the mammalian nervous system, has recently been identified in bone. In this study, we have investigated whether NMDA receptors expressed by osteoclasts have an electrophysiological activity. Using the patch clamp technique two agonists of the NMDA receptor, L-glutamate (Glu) and NMDA, were shown to activate whole-cell currents recorded in isolated rabbit osteoclasts. The current-voltage (I-V) relationships of the currents induced by Glu (IGlu) and NMDA (INMDA) were studied using Mg2+-free solutions. The agonist-induced currents had a linear I-V relationship with a reversal potential near 0 mV, as expected for a voltage independent and non-selective cationic current. IGlu and INMDA were sensitive to specific blockers of NMDA subtype glutamate receptors, such as magnesium ions, (5R, 10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a, d]cyclohepten -5,10-imine (MK-801) and 1-(1,2-diphenylethyl) piperidine (DEP). The block of IGlu and INMDA by these specific antagonists was voltage dependent, strong for negative potentials (inward current) and absent for positive potentials (outward current). These results demonstrate that NMDA receptors are functional in rabbit osteoclasts, and that their electrophysiological and pharmacological properties in these cells are similar to those documented for neuronal cells. Active NMDA receptors expressed by osteoclasts may represent a new target for regulating bone resorption. PMID:10373688

  10. Histamine Receptor Expression in the Gastrointestinal Tract of Dogs.

    PubMed

    Schwittlick, U; Junginger, J; Hahn, K; Habierski, A; Hewicker-Trautwein, M

    2017-02-01

    Histamine is an important mediator of many physiological processes including gastrointestinal function that acts via four different histamine receptors (H1R to H4R). Elevated histamine levels and increased HR messenger ribonucleic acid (mRNA) have been shown in humans with gastrointestinal disorders such as irritable bowel syndrome or allergic intestinal diseases. As there is limited knowledge concerning the distribution of histamine receptors (HR) in dogs, one aim of this study was to investigate the expression of histamine 1 receptor (H1R), histamine 2 receptor (H2R) and histamine 4 receptor (H4R) in the canine gastrointestinal tract at protein level using immunohistochemistry. Histamine 1 receptor, H2R and H4R were widely expressed throughout the canine gastrointestinal tract including epithelial, mesenchymal, neuronal and immune cells. In addition, in situ hybridisation was established for detecting canine H4R mRNA. Results showed H4R mRNA to be present in enterocytes, lamina propria immune cells and submucosal plexus in the duodenum and colon of nearly all investigated animals. The results elucidate the importance of HR in the canine gut and represent the basis for investigating their possible impact on canine inflammatory gastrointestinal disorders.

  11. Progesterone receptor expression during prostate cancer progression suggests a role of this receptor in stromal cell differentiation.

    PubMed

    Yu, Yue; Yang, Ou; Fazli, Ladan; Rennie, Paul S; Gleave, Martin E; Dong, Xuesen

    2015-07-01

    The progesterone receptor, like the androgen receptor, belongs to the steroid receptor superfamily. Our previous studies have reported that the PR is expressed specifically in prostate stroma. PR inhibits proliferation of, and regulates cytokine secretion by stromal cells. However, PR protein expression in cancer-associated stroma during prostate cancer progression has not been profiled. Since the phenotypes of prostate stromal cells change dynamically as tumors progress, whether the PR plays a role in regulating stromal cell differentiation needs to be investigated. Immunohistochemistry assays measured PR protein levels on human prostate tissue microarrays containing 367 tissue cores from benign prostate, prostate tumors with different Gleason scores, tumors under various durations of castration therapy, and tumors at the castration-resistant stage. Immunoblotting assays determined whether PR regulated the expression of alpha smooth muscle actin (α-SMA), vimentin, and fibroblast specific protein (FSP) in human prostate stromal cells. PR protein levels decreased in cancer-associated stroma when compared with that in benign prostate stroma. This reduction in PR expression was not correlated with Gleason scores. PR protein levels were elevated by castration therapy, but reduced to pre-castration levels when tumors progressed to the castration-resistant stage. Enhanced PR expression in human prostate stromal cells increased α-SMA, but decreased vimentin and FSP protein levels ligand-independently. These results suggest that PR plays an active role in regulating stromal cell phenotypes during prostate cancer progression. © 2015 Wiley Periodicals, Inc.

  12. MicroRNA-222 Expression as a Predictive Marker for Tumor Progression in Hormone Receptor-Positive Breast Cancer

    PubMed Central

    Han, Song-Hee; Kim, Hyun Jeong; Gwak, Jae Moon; Kim, Mimi; Chung, Yul Ri

    2017-01-01

    Purpose The microRNA-221/222 (miR-221/222) gene cluster has been reported to be associated with the promotion of epithelial-mesenchymal transition (EMT), downregulation of estrogen receptor-α, and tamoxifen resistance in breast cancer. We studied the expression of miR-222 in human breast cancer samples to analyze its relationship with clinicopathologic features of the tumor, including estrogen receptor status, expression of EMT markers, and clinical outcomes. Methods Quantitative real-time polymerase chain reaction was performed to detect the expression of miR-222 in 197 invasive breast cancers. Expression of EMT markers (vimentin, smooth muscle actin, osteonectin, N-cadherin, and E-cadherin) was evaluated using immunohistochemistry. Results High miR-222 levels were associated with high T stage, high histologic grade, high Ki-67 proliferation index, and HER2 gene amplification. Its expression was significantly higher in the luminal B and human epidermal growth factor receptor 2-positive (HER2+) subtypes than in the luminal A and triple-negative subtypes. In the hormone receptor-positive subgroup, there was a significant negative correlation between miR-222 and estrogen receptor expression, and miR-222 expression was associated with EMT marker expression. In the group as a whole, high miR-222 expression was not associated with clinical outcome. However, subgroup analyses by hormone receptor status revealed that high miR-222 expression was a poor prognostic factor in the hormone receptor-positive subgroup, but not in the hormone receptor-negative subgroup. Conclusion This study showed that miR-222 is associated with down-regulation of the estrogen receptor, EMT, and tumor progression in hormone receptor-positive breast cancer, indicating that miR-222 might be associated with endocrine therapy resistance and poor clinical outcome in hormone receptor-positive breast cancer. PMID:28382093

  13. Cloning, functional expression and characterization of a human olfactory receptor.

    PubMed

    Hatt, H; Gisselmann, G; Wetzel, C H

    1999-05-01

    The human olfactory system can recognize and discriminate a large number of different odorant molecules. The detection of chemically distinct odorants begins with the binding of an odorant ligand to a specific receptor protein on the olfactory neuron cell surface. To address the problem of olfactory perception at a molecular level, we have cloned, functionally expressed and characterized the first human olfactory receptor (OR 17-40). Application of a mixture of hundred different odorants elicited a transient increase in intracellular calcium at HEK 293-cells which were transfected with a plasmid containing the receptor encoding DNA and a membrane import sequence. By subdividing the odorant mixture in smaller groups we could identify a single component which represented the only effective substance: helional. Testing some structurally closely related molecules we found only one other compound which also could activate the receptor: heliotropyl acetone. All other compounds tested were completely ineffective. These findings represent the beginning of molecular understanding of odorant recognition in humans.

  14. GLP-1 receptor agonist-induced polyarthritis: a case report.

    PubMed

    Ambrosio, Maria Luisa; Monami, Matteo; Sati, Lavinia; Marchionni, Niccolò; Di Bari, Mauro; Mannucci, Edoardo

    2014-08-01

    Occasional cases of bilateral, symmetrical, seronegative polyarthritis have been reported in patients treated with dipeptidyl peptidase-4 inhibitors (Crickx et al. in Rheumatol Int, 2013). We report here a similar case observed during treatment with a GLP-1 receptor agonist. A 42-year-old man with type 2 diabetes treated with metformin 1,500 mg/day and liraglutide 1.8 mg/day. After 6 months from the beginning of treatment, the patient complained of bilateral arthralgia (hands, feet, ankles, knees, and hips). Erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), and leukocytes were increased. Rheumatoid factor, anticyclic citrullinated protein antibody, antinuclear antibodies, anti-Borrelia, and burgdorferi antibodies were all negative, and myoglobin and calcitonin were normal. Liraglutide was withdrawn, and the symptoms completely disappeared within 1 week, with normalization of ESR, CRP, fibrinogen, and leukocytes. Previously described cases of polyarthritis associated with DPP4 inhibitors had been attributed to a direct effect of the drugs on inflammatory cells expressing the enzyme. The present case, occurred during treatment with a GLP-1 receptor agonists, suggests a possibly different mechanism, mediated by GLP-1 receptor stimulation, which deserved further investigation.

  15. Somatostatin receptor expression in non-medullary thyroid carcinomas.

    PubMed

    Pazaitou-Panayiotou, Kalliopi; Tiensuu Janson, Eva; Koletsa, Triantafyllia; Kotoula, Vassiliki; Stridsberg, Mats; Karkavelas, Georgios; Karayannopoulou, Georgia

    2012-01-01

    Peptide receptor radionuclide therapy (PRRT) is dependent upon binding of radiolabelled peptides to their respective receptor expressing cells. The main objective of this study was to characterize the expression of somatostatin receptor (SSTR) subtypes in non-medullary thyroid cancers in order to be able to recommend the use of PRRT as a treatment option in patients with progressive local or metastatic disease. We constructed tissue microarrays from paraffin blocks prepared from 47 cases of non-medullary thyroid carcinomas and related normal thyroid tissue. Immunohistochemical staining was performed with five different polyclonal SSTR antibodies. SSTR subtypes sst2 and sst3 were expressed in all non-medullary thyroid carcinomas, sst1 and sst5 in 75%, and sst4 in 38%. Coexpression of more than three subtypes was detected in 36 of the 47 cases. The expression of SSTR subtypes in normal thyroid tissue was low or absent. Non-medullary thyroid carcinomas frequently express all SSTR subtypes. This expression provides a basis for further studies with the aim of exploring PRRT as a possible new treatment for iodine-131 refractory metastatic non-medullary thyroid carcinomas.

  16. Differential expression of laminin receptors in human hepatocellular carcinoma

    PubMed Central

    Ozaki, I; Yamamoto, K; Mizuta, T; Kajihara, S; Fukushima, N; Setoguchi, Y; Morito, F; Sakai, T

    1998-01-01

    Background—Laminin receptors are involved in cell-extracellular matrix interactions in malignant cells that show invasion and metastasis. Hepatocellular carcinoma frequently shows early invasion into blood vessels, and intrahepatic and extrahepatic metastases. However, the role of laminin receptors in hepatocellular carcinoma is unknown. 
Aims—To examine the expression of mRNA for laminin receptors and their isoforms in hepatocellular carcinoma. 
Methods—The expression of several laminin receptors, including α1 integrin, α6 integrin and its isoforms α6A and α6B, β1 integrin and its isoforms β1A and β1B, and 32kD/67kDa laminin binding protein was examined in human hepatocellular carcinomas and non-cancerous liver tissues using the reverse transcription polymerase chain reaction. 
Results—α6 Integrin, β1 integrin, and laminin binding protein showed notably increased expression in hepatocellular carcinoma, compared with non-cancerous liver tissue, although the α1 integrin did not show a significant change. Furthermore, β1B integrin, a splicing variant of β1 integrin, was overexpressed in hepatocellular carcinoma while the β1A integrin isoform did not show significant changes between hepatocellular carcinoma and surrounding non-cancerous liver tissue. 
Conclusions—The differential upregulation of laminin receptors and their splicing isoforms was shown in hepatocellular carcinoma, suggesting that certain laminin receptors and their isoforms may be involved in the development and progression of hepatocellular carcinoma. 

 Keywords: laminin receptor; integrin α6β1; hepatocellular carcinoma PMID:9824613

  17. Problem-Solving Test: Expression Cloning of the Erythropoietin Receptor

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2008-01-01

    Terms to be familiar with before you start to solve the test: cytokines, cytokine receptors, cDNA library, cDNA synthesis, poly(A)[superscript +] RNA, primer, template, reverse transcriptase, restriction endonucleases, cohesive ends, expression vector, promoter, Shine-Dalgarno sequence, poly(A) signal, DNA helicase, DNA ligase, topoisomerases,…

  18. Problem-Solving Test: Expression Cloning of the Erythropoietin Receptor

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2008-01-01

    Terms to be familiar with before you start to solve the test: cytokines, cytokine receptors, cDNA library, cDNA synthesis, poly(A)[superscript +] RNA, primer, template, reverse transcriptase, restriction endonucleases, cohesive ends, expression vector, promoter, Shine-Dalgarno sequence, poly(A) signal, DNA helicase, DNA ligase, topoisomerases,…

  19. Finding Balance: T cell Regulatory Receptor Expression during Aging.

    PubMed

    Cavanagh, Mary M; Qi, Qian; Weyand, Cornelia M; Goronzy, Jörg J

    2011-10-01

    Aging is associated with a variety of changes to immune responsiveness. Reduced protection against infection, reduced responses to vaccination and increased risk of autoimmunity are all hallmarks of advanced age. Here we consider how changes in the expression of regulatory receptors on the T cell surface contribute to altered immunity during aging.

  20. Metabotropic glutamate receptor expression in olfactory receptor neurons from the channel catfish, Ictalurus punctatus.

    PubMed

    Medler, K F; Tran, H N; Parker, J M; Caprio, J; Bruch, R C

    1998-04-01

    Metabotropic glutamate receptors (mGluRs) were identified in olfactory receptor neurons of the channel catfish, Ictalurus punctatus, by polymerase chain reaction. DNA sequence analysis confirmed the presence of two subtypes, mGluR1 and mGluR3, that were coexpressed with each other and with the putative odorant receptors within single olfactory receptor neurons. Immunocytochemical data showed that both mGluR subtypes were expressed in the apical dendrites and some cilia of olfactory neurons. Pharmacological analysis showed that antagonists to each mGluR subtype significantly decreased the electrophysiological response to odorant amino acids. alpha-Methyl-L-CCG1/(2S,3S,4S)-2-methyl-2-(carboxycyclopropyl++ +)glycine (MCCG), a known antagonist to mGluR3, and (S)-4-carboxyphenylglycine (S-4CPG), a specific antagonist to mGluR1, each significantly reduced olfactory receptor responses to L-glutamate. S-4CPG and MCCG reduced the glutamate response to 54% and 56% of control, respectively, which was significantly greater than their effect on a neutral amino acid odorant, methionine. These significant reductions of odorant response by the antagonists, taken with the expression of these receptors throughout the dendritic and ciliated portions of some olfactory receptor neurons, suggest that these mGluRs may be involved in olfactory reception and signal transduction.

  1. Expression of androgen receptor in breast cancer & its correlation with other steroid receptors & growth factors

    PubMed Central

    Mishra, Ashwani K.; Agrawal, Usha; Negi, Shivani; Bansal, Anju; Mohil, R.; Chintamani, Chintamani; Bhatnagar, Amar; Bhatnagar, Dinesh; Saxena, Sunita

    2012-01-01

    Background & objectives: Breast cancer is the second most common malignancy in Indian women. Among the members of the steroid receptor superfamily the role of estrogen and progesterone receptors (ER and PR) is well established in breast cancer in predicting the prognosis and management of therapy, however, little is known about the clinical significance of androgen receptor (AR) in breast carcinogenesis. The present study was aimed to evaluate the expression of AR in breast cancer and to elucidate its clinical significance by correlating it with clinicopathological parameters, other steroid receptors (ER and PR) and growth factors receptors (EGFR and CD105). Methods: Expression of AR, ER, PR, epidermal growth factor receptor (EGFR) and endoglin (CD105) was studied in 100 cases of breast cancer by immunohistochemistry (IHC). Risk ratio (RR) along with 95% confidence interval (CI) was estimated to assess the strength of association between the markers and clinicopathological characteristics. Categorical principal component analysis (CATPCA) was applied to obtain new sets of linearly combined expression, for their further evaluation with clinicopathological characteristics (n=100). Results: In 31 cases presenting with locally advanced breast cancer (LABC), the expression of AR, ER, PR, EGFR and CD105 was associated with response to neoadjuvant chemotherapy (NACT). The results indicated the association of AR+ (P=0.001) and AR+/EGFR- (P=0.001) with the therapeutic response to NACT in LABC patients. The AR expression exhibited maximum sensitivity, specificity and likelihood ratio of positive and negative test. The present results showed the benefit of adding AR, EGFR and CD105 to the existing panel of markers to be able to predict response to therapy. Interpretation & conclusions: More studies on the expression profiles of AR+, AR+/CD105+ and AR+/EGFR- in larger set of breast cancer patients may possibly help in confirming their predictive role for therapeutic response

  2. Expression of oxytocin receptor in diabetic rat penis.

    PubMed

    Li, M; Wang, T; Guo, S; Rao, K; Liu, J; Ye, Z

    2012-05-01

    Oxytocin receptor (OTR) expressed in the rat penis and mediated the contractility of the corpus cavernosum smooth muscle both in vitro and in vivo, and OTR could maintain penile detumescence; however, the expression of OTR in diabetic rat penis remains unknown. In the present study, we investigated the expression of OTR in diabetic rat penis. The experimental rats were randomly divided into control group and STZ-diabetic rats group. The expressions of mRNA and protein were examined by real-time quantitative PCR, Western blotting and immunohistochemistry respectively. Erectile function was evaluated by measuring intracavernous pressure following electrostimulation of the cavernous nerves. mRNA and protein expression of OTR significantly increased in diabetic rats group compared with the control group. Erectile function of diabetic rats group significantly decreased compared with the control group. Our data showed that the expression of OTR significantly increased in diabetic rats group and OTR may involve in the development of diabetic erectile dysfunction.

  3. Sequence, genomic organization and expression of two channel catfish, Ictalurus punctatus, ghrelin receptors.

    PubMed

    Small, Brian C; Quiniou, Sylvie M A; Kaiya, Hiroyuki

    2009-12-01

    Two ghrelin receptor (GHS-R) genes were isolated from channel catfish tissue and a bacterial artificial chromosome (BAC) library. The two receptors were characterized by determining tissue distribution, ontogeny of receptor mRNA expression, and effects of exogenous homologous ghrelin administration on target tissue mRNA expression. Analysis of sequence similarities indicated two genes putatively encoding GHS-R1 and GHS-R2, respectively, which have been known to be present in zebrafish. Organization and tissue expression of the GHS-R1 gene was similar to that reported for other species, and likewise yielded two detectable mRNA products as a result of alternative splicing. Expression of both full-length, GHS-R1a, and splice variant, GHS-R1b, mRNA was highest in the pituitary. Gene organization of GHS-R2 was similar to GHS-R1, but no splice variant was identified. Expression of GHS-R2a mRNA was highest in the Brockmann bodies. GHS-R1a mRNA was detected in unfertilized eggs and throughout embryogenesis, whereas GHR-R2a mRNA was not expressed in unfertilized eggs or early developing embryos and was the highest at the time of hatching. Catfish intraperitoneally injected with catfish ghrelin-Gly had greater mRNA expression of GHS-R1a in pituitaries at 2 h and Brockmann bodies at 4 h, and of GHS-R2a in Brockmann bodies at 6 h post injection. Amidated catfish ghrelin (ghrelin-amide) had no observable effect on expression of either pituitary receptor; however, GHS-R1a and GHS-R2a mRNA expression levels were increased 4 h post injection of ghrelin-amide in Brockmann bodies. This is the first characterization of GHS-R2a and suggests regulatory and functional differences between the two catfish receptors.

  4. Expression Profile of Ectopic Olfactory Receptors Determined by Deep Sequencing

    PubMed Central

    Flegel, Caroline; Manteniotis, Stavros; Osthold, Sandra; Hatt, Hanns; Gisselmann, Günter

    2013-01-01

    Olfactory receptors (ORs) provide the molecular basis for the detection of volatile odorant molecules by olfactory sensory neurons. The OR supergene family encodes G-protein coupled proteins that belong to the seven-transmembrane-domain receptor family. It was initially postulated that ORs are exclusively expressed in the olfactory epithelium. However, recent studies have demonstrated ectopic expression of some ORs in a variety of other tissues. In the present study, we conducted a comprehensive expression analysis of ORs using an extended panel of human tissues. This analysis made use of recent dramatic technical developments of the so-called Next Generation Sequencing (NGS) technique, which encouraged us to use open access data for the first comprehensive RNA-Seq expression analysis of ectopically expressed ORs in multiple human tissues. We analyzed mRNA-Seq data obtained by Illumina sequencing of 16 human tissues available from Illumina Body Map project 2.0 and from an additional study of OR expression in testis. At least some ORs were expressed in all the tissues analyzed. In several tissues, we could detect broadly expressed ORs such as OR2W3 and OR51E1. We also identified ORs that showed exclusive expression in one investigated tissue, such as OR4N4 in testis. For some ORs, the coding exon was found to be part of a transcript of upstream genes. In total, 111 of 400 OR genes were expressed with an FPKM (fragments per kilobase of exon per million fragments mapped) higher than 0.1 in at least one tissue. For several ORs, mRNA expression was verified by RT-PCR. Our results support the idea that ORs are broadly expressed in a variety of tissues and provide the basis for further functional studies. PMID:23405139

  5. Expression of Arginine Vasotocin Receptors in the Developing Zebrafish CNS

    PubMed Central

    Iwasaki, Kenichi; Taguchi, Meari; Bonkowsky, Joshua L.; Kuwada, John Y.

    2013-01-01

    Vasotocin/vasopressin is a neuropeptide that regulates social and reproductive behaviors in a variety of animals including fish. Arginine vasotocin (AVT) is expressed by cells in the ventral hypothalamic and preoptic areas in the diencephalon during embryogenesis in zebrafish suggesting that vasotocin might mediate other functions within the CNS prior to the development of social and reproductive behaviors. In order to examine potential early roles for vasotocin we cloned two zebrafish vasotocin receptors homologous to AVPR1a. The receptors are expressed primarily in the CNS in similar but generally non-overlapping patterns. Both receptors are expressed in the forebrain, midbrain and hindbrain by larval stage. Of note, AVTR1a-expressing neurons in the hindbrain appear to be contacted by the axons of preoptic neurons in the forebrain that include avt+ neurons and from sensory axons in the lateral longitudinal fasciculus (LLF). Furthermore, AVTR1a-expressing hindbrain neurons extend axons into the medial longitudinal fasciculus (MLF) that contains axons of many neurons thought to be involved in locomotor responses to sensory stimulation. One hypothesis consistent with this anatomy is that AVT signaling mediates or gates sensory input to motor circuits in the hindbrain and spinal cord. PMID:23830982

  6. Regulation of retinoic acid receptor beta expression by peroxisome proliferator-activated receptor gamma ligands in cancer cells.

    PubMed

    James, Sharon Y; Lin, Feng; Kolluri, Siva Kumar; Dawson, Marcia I; Zhang, Xiao-kun

    2003-07-01

    The peroxisome proliferator-activated receptor gamma (PPAR gamma) is a nuclear receptor family member that can form a heterodimeric complex with retinoid X receptor (RXR) and initiate transcription of target genes. In this study, we have examined the effects of the PPAR gamma ligand ciglitazone and the RXR ligand SR11237 on growth and induction of retinoic acid receptor (RAR) beta expression in breast and lung cancer cells. Our results demonstrated that ciglitazone and SR11237 cooperatively inhibited the growth of ZR-75-1 and T-47D breast cancer and Calu-6 lung cancer cells. Gel shift analysis indicated that PPAR gamma, in the presence of RXR, formed a strong complex with a retinoic acid response element (beta retinoic acid response element) in the RAR beta promoter. In reporter gene assays, RXR ligands and ciglitazone, but not the PPAR gamma ligand 15d-PGJ(2), cooperatively promoted the transcriptional activity of the beta retinoic acid response element. Ciglitazone, but not 15d-PGJ(2), strongly induced RAR beta expression in human breast and lung cancer cell lines when used together with SR11237. The induction of RAR beta expression by the ciglitazone and SR11237 combination was diminished by a PPAR gamma-selective antagonist, bisphenol A diglycidyl ether. All-trans-retinoic acid or the combination of ciglitazone and SR11237 was able to induce RAR beta in all-trans-retinoic acid-resistant MDA-MB-231 breast cancer cells only when the orphan receptor chick ovalbumin upstream promoter transcription factor was expressed, or in the presence of the histone deacetylase inhibitor trichostatin A. These studies indicate the existence of a novel RAR beta-mediated signaling pathway of PPAR gamma action, which may provide a molecular basis for developing novel therapies involving RXR and PPAR gamma ligands in potentiating antitumor responses.

  7. Expression cloning of the murine interferon gamma receptor cDNA.

    PubMed

    Munro, S; Maniatis, T

    1989-12-01

    A cDNA encoding a receptor for murine interferon gamma (IFN-gamma) was isolated from an expression library made from murine thymocytes. The clone was identified by transfecting the library into monkey COS cells and probing the transfected monolayer with radiolabeled murine IFN-gamma. Cells expressing the receptor were identified by autoradiography and plasmids encoding the receptor were directly rescued from those cells producing a positive signal. A partial cDNA so obtained was used to isolate a full-length cDNA from mouse L929 cells by conventional means. When this cDNA was expressed in COS cells it produced a specific binding site for murine IFN-gamma with an affinity constant similar to that of the receptor found on L929 cells. The predicted amino acid sequence of the murine IFN-gamma receptor shows homology to that previously reported for the human IFN-gamma receptor. However, although the two proteins are clearly related, they show less than 60% identity in both the putative extracellular domain and the intracellular domain.

  8. Dopamine and Serotonin Modulate Human GABAρ1 Receptors Expressed in Xenopus laevis Oocytes

    PubMed Central

    2011-01-01

    GABAρ1 receptors are highly expressed in bipolar neurons of the retina and to a lesser extent in several areas of the central nervous system (CNS), and dopamine and serotonin are also involved in the modulation of retinal neural transmission. Whether these biogenic amines have a direct effect on ionotropic GABA receptors was not known. Here, we report that GABAρ1 receptors, expressed in X. laevis oocytes, were negatively modulated by dopamine and serotonin and less so by octopamine and tyramine. Interestingly, these molecules did not have effects on GABAA receptors. 5-Carboxamido-tryptamine and apomorphine did not exert evident effects on any of the receptors. Schild plot analyses of the inhibitory actions of dopamine and serotonin on currents elicited by GABA showed slopes of 2.7 ± 0.3 and 6.1 ± 1.8, respectively, indicating a noncompetitive mechanism of inhibition. The inhibition of GABAρ1 currents was independent of the membrane potential and was insensitive to picrotoxin, a GABA receptor channel blocker and to the GABAρ-specific antagonist (1,2,5,6-tetrahydropyridine-4-yl)methyl phosphinic acid (TPMPA). Dopamine and serotonin changed the sensitivity of GABAρ1 receptors to the inhibitory actions of Zn2+. In contrast, La3+ potentiated the amplitude of the GABA currents generated during negative modulation by dopamine (EC50 146 μM) and serotonin (EC50 196 μM). The functional role of the direct modulation of GABAρ receptors by dopamine and serotonin remains to be elucidated; however, it may represent an important modulatory pathway in the retina, where GABAρ receptors are highly expressed and where these biogenic amines are abundant. PMID:22860179

  9. Sex Steroid Receptor Expression in Idiopathic Pulmonary Fibrosis.

    PubMed

    Mehrad, Mitra; Trejo Bittar, Humberto E; Yousem, Samuel A

    2017-03-11

    Usual interstitial pneumonia (UIP) is characterized by progressive scarring of the lungs and is associated with high morbidity and mortality despite therapeutic interventions. Sex steroid receptors have been demonstrated to play an important role in chronic lung conditions; however, their significance is unknown in patients with UIP. We retrospectively reviewed 40 idiopathic UIP cases for the expression of hormonal receptors. Forty cases including 10 normal lung, 10 cryptogenic organizing pneumonia (COP), 10 idiopathic organizing diffuse alveolar damage (DAD), 7 hypersensitivity pneumonitis (HP) and 3 nonspecific interstitial pneumonitis (NSIP) served as controls. Immunohistochemistry for estrogen receptor alpha (ER-α), progesterone receptor (PR) and androgen receptor (AR) was performed in all groups. Expression of these receptors was assessed in four anatomic/pathologic compartments: alveolar and bronchiolar epithelium, arteries/veins, fibroblastic foci/airspace organization, and old scar. All UIPs (100%) stained positive for PR in myofibroblasts in the scarred areas, while among the control cases only one NSIP case stained focally positive and the rest were negative. PR was positive in myocytes of the large-sized arteries within the fibrotic areas in 31 cases (77.5%). PR was negative within the alveolar and bronchial epithelium, airspace organization and center of fibroblastic foci, however, weak PR positivity was noted in the peripheral fibroblasts of the fibroblastic foci where they merged with dense fibrous connective tissue scar. All UIP and control cases were negative for AR and ER-α. This is the first study to show the expression of PR within the established fibrotic areas of UIP, indicating that progesterone may have profibrotic effects in UIP patients. Hormonal therapy by targeting PR could be of potential benefit in patients with UIP/IPF.

  10. GABAA receptor subunit gene expression in human prefrontal cortex: comparison of schizophrenics and controls

    NASA Technical Reports Server (NTRS)

    Akbarian, S.; Huntsman, M. M.; Kim, J. J.; Tafazzoli, A.; Potkin, S. G.; Bunney, W. E. Jr; Jones, E. G.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    The prefrontal cortex of schizophrenics is hypoactive and displays changes related to inhibitory, GABAergic neurons, and GABAergic synapses. These changes include decreased levels of glutamic acid decarboxylase (GAD), the enzyme for GABA synthesis, upregulation of muscimol binding, and downregulation of benzodiazepine binding to GABAA receptors. Studies in the visual cortex of nonhuman primates have demonstrated that gene expression for GAD and for several GABAA receptor subunit polypeptides is under control of neuronal activity, raising the possibility that similar mechanisms in the hypoactive prefrontal cortex of schizophrenics may explain the abnormalities in GAD and in GABAA receptor regulation. In the present study, which is the first of its type on human cerebral cortex, levels of mRNAs for six GABAA receptor subunits (alpha 1, alpha 2, alpha 5, beta 1, beta 2, gamma 2) and their laminar expression patterns were analyzed in the prefrontal cortex of schizophrenics and matched controls, using in situ hybridization histochemistry and densitometry. Three types of laminar expression pattern were observed: mRNAs for the alpha 1, beta 2, and gamma 2 subunits, which are the predominant receptor subunits expressed in the mature cortex, were expressed at comparatively high levels by cells of all six cortical layers, but most intensely by cells in lower layer III and layer IV. mRNAs for the alpha 2, alpha 5, and beta 1 subunits were expressed at lower levels; alpha 2 and beta 1 were expressed predominantly by cells in layers II, III, and IV; alpha 5 was expressed predominantly in layers IV, V, and VI. There were no significant changes in overall mRNA levels for any of the receptor subunits in the prefrontal cortex of schizophrenics, and the laminar expression pattern of all six receptor subunit mRNAs did not differ between schizophrenics and controls. Because gene expression for GABAA receptor subunits is not consistently altered in the prefrontal cortex of

  11. GABAA receptor subunit gene expression in human prefrontal cortex: comparison of schizophrenics and controls

    NASA Technical Reports Server (NTRS)

    Akbarian, S.; Huntsman, M. M.; Kim, J. J.; Tafazzoli, A.; Potkin, S. G.; Bunney, W. E. Jr; Jones, E. G.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    The prefrontal cortex of schizophrenics is hypoactive and displays changes related to inhibitory, GABAergic neurons, and GABAergic synapses. These changes include decreased levels of glutamic acid decarboxylase (GAD), the enzyme for GABA synthesis, upregulation of muscimol binding, and downregulation of benzodiazepine binding to GABAA receptors. Studies in the visual cortex of nonhuman primates have demonstrated that gene expression for GAD and for several GABAA receptor subunit polypeptides is under control of neuronal activity, raising the possibility that similar mechanisms in the hypoactive prefrontal cortex of schizophrenics may explain the abnormalities in GAD and in GABAA receptor regulation. In the present study, which is the first of its type on human cerebral cortex, levels of mRNAs for six GABAA receptor subunits (alpha 1, alpha 2, alpha 5, beta 1, beta 2, gamma 2) and their laminar expression patterns were analyzed in the prefrontal cortex of schizophrenics and matched controls, using in situ hybridization histochemistry and densitometry. Three types of laminar expression pattern were observed: mRNAs for the alpha 1, beta 2, and gamma 2 subunits, which are the predominant receptor subunits expressed in the mature cortex, were expressed at comparatively high levels by cells of all six cortical layers, but most intensely by cells in lower layer III and layer IV. mRNAs for the alpha 2, alpha 5, and beta 1 subunits were expressed at lower levels; alpha 2 and beta 1 were expressed predominantly by cells in layers II, III, and IV; alpha 5 was expressed predominantly in layers IV, V, and VI. There were no significant changes in overall mRNA levels for any of the receptor subunits in the prefrontal cortex of schizophrenics, and the laminar expression pattern of all six receptor subunit mRNAs did not differ between schizophrenics and controls. Because gene expression for GABAA receptor subunits is not consistently altered in the prefrontal cortex of

  12. Sequence and functional expression of a single alpha subunit of an insect nicotinic acetylcholine receptor.

    PubMed Central

    Marshall, J; Buckingham, S D; Shingai, R; Lunt, G G; Goosey, M W; Darlison, M G; Sattelle, D B; Barnard, E A

    1990-01-01

    We report the isolation and sequence of a cDNA clone that encodes a locust (Schistocerca gregaria) nervous system nicotinic acetylcholine receptor (AChR) subunit (alpha L1). The calculated molecular weight of the unglycosylated polypeptide, which contains in the proposed extracellular domain two adjacent cysteine residues which are characteristic of alpha (ligand binding) subunits, is 60,641 daltons. Injection into Xenopus oocytes, of RNA synthesized from this clone in vitro, results in expression of functional nicotinic receptors in the oocyte membrane. In these, nicotine opens a cation channel; the receptors are blocked by both alpha-bungarotoxin (alpha-Bgt) and kappa-bungarotoxin (kappa-Bgt). Reversible block of the expressed insect AChR by mecamylamine, d-tubocurarine, tetraethylammonium, bicuculline and strychnine has also been observed. These data are entirely consistent with previously reported electrophysiological studies on in vivo insect nicotinic receptors and also with biochemical studies on an alpha-Bgt affinity purified locust AChR. Thus, a functional receptor exhibiting the characteristic pharmacology of an in vivo insect nicotinic AChR can be expressed in Xenopus oocytes by injection with a single subunit RNA. PMID:1702381

  13. Expression of anti-Mullerian hormone receptor on the appendix testis in connection with urological disorders

    PubMed Central

    Kistamás, Kornél; Ruzsnavszky, Olga; Telek, Andrea; Kosztka, Lívia; Kovács, Ilona; Dienes, Beatrix; Csernoch, László; Józsa, Tamás

    2013-01-01

    The female internal sex organs develop from the paramesonephric (Mullerian) duct. In male embryos, the regression of the Mullerian duct is caused by the anti-Mullerian hormone (AMH), which plays an important role in the process of testicular descent. The physiological remnant of the Mullerian duct in males is the appendix testis (AT). In our previous study, we presented evidence for the decreased incidence of AT in cryptorchidism with intraoperative surgery. In this report, the expression of the anti-Mullerian hormone receptor type 2 (AMHR2), the specific receptor of AMH, on the AT was investigated in connection with different urological disorders, such as hernia inguinalis, torsion of AT, cysta epididymis, varicocele, hydrocele testis and various forms of undescended testis. The correlation between the age of the patients and the expression of the AMHR2 was also examined. Reverse transcriptase-polymerase chain reaction (RT-PCR) and immunohistochemistry were used to detect the receptor's mRNA and protein levels, respectively. We demonstrate that AMHR2 is expressed in the ATs. Additionally, the presence of this receptor was proven at the mRNA and protein levels. The expression pattern of the receptor correlated with neither the examined urological disorders nor the age of the patients; therefore, the function of the AT remains obscure. PMID:23291863

  14. Transgenic silkworms expressing human insulin receptors for evaluation of therapeutically active insulin receptor agonists.

    PubMed

    Matsumoto, Yasuhiko; Ishii, Masaki; Ishii, Kenichi; Miyaguchi, Wataru; Horie, Ryo; Inagaki, Yoshinori; Hamamoto, Hiroshi; Tatematsu, Ken-ichiro; Uchino, Keiro; Tamura, Toshiki; Sezutsu, Hideki; Sekimizu, Kazuhisa

    2014-12-12

    We established a transgenic silkworm strain expressing the human insulin receptor (hIR) using the GAL4/UAS system. Administration of human insulin to transgenic silkworms expressing hIR decreased hemolymph sugar levels and facilitated Akt phosphorylation in the fat body. The decrease in hemolymph sugar levels induced by injection of human insulin in the transgenic silkworms expressing hIR was blocked by co-injection of wortmannin, a phosphoinositide 3-kinase inhibitor. Administration of bovine insulin, an hIR ligand, also effectively decreased sugar levels in the transgenic silkworms. These findings indicate that functional hIRs that respond to human insulin were successfully induced in the transgenic silkworms. We propose that the humanized silkworm expressing hIR is useful for in vivo evaluation of the therapeutic activities of insulin receptor agonists.

  15. Transient Receptor Potential Canonical 1 (TRPC1) Channels as Regulators of Sphingolipid and VEGF Receptor Expression

    PubMed Central

    Asghar, Muhammad Yasir; Magnusson, Melissa; Kemppainen, Kati; Sukumaran, Pramod; Löf, Christoffer; Pulli, Ilari; Kalhori, Veronica; Törnquist, Kid

    2015-01-01

    The identity of calcium channels in the thyroid is unclear. In human follicular thyroid ML-1 cancer cells, sphingolipid sphingosine 1-phosphate (S1P), through S1P receptors 1 and 3 (S1P1/S1P3), and VEGF receptor 2 (VEGFR2) stimulates migration. We show that human thyroid cells express several forms of transient receptor potential canonical (TRPC) channels, including TRPC1. In TRPC1 knockdown (TRPC1-KD) ML-1 cells, the basal and S1P-evoked invasion and migration was attenuated. Furthermore, the expression of S1P3 and VEGFR2 was significantly down-regulated. Transfecting wild-type ML-1 cells with a nonconducting TRPC1 mutant decreased S1P3 and VEGFR2 expression. In TRPC1-KD cells, receptor-operated calcium entry was decreased. To investigate whether the decreased receptor expression was due to attenuated calcium entry, cells were incubated with the calcium chelator BAPTA-AM (1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid). In these cells, and in cells where calmodulin and calmodulin-dependent kinase were blocked pharmacologically, S1P3 and VEGFR2 expression was decreased. In TRPC1-KD cells, both hypoxia-inducible factor 1α expression and the secretion and activity of MMP2 and MMP9 were attenuated, and proliferation was decreased in TRPC1-KD cells. This was due to a prolonged G1 phase of the cell cycle, a significant increase in the expression of the cyclin-dependent kinase inhibitors p21 and p27, and a decrease in the expression of cyclin D2, cyclin D3, and CDK6. Transfecting TRPC1 to TRPC1-KD cells rescued receptor expression, migration, and proliferation. Thus, the expression of S1P3 and VEGFR2 is mediated by a calcium-dependent mechanism. TRPC1 has a crucial role in this process. This regulation is important for the invasion, migration, and proliferation of thyroid cancer cells. PMID:25971967

  16. An mRNA expression analysis of stimulation and blockade of 5-HT7 receptors during memory consolidation.

    PubMed

    Pérez-García, Georgina; Gonzalez-Espinosa, Claudia; Meneses, Alfredo

    2006-04-25

    Despite the compelling support for 5-hydroxytryptamine (5-HT) receptors participation in learning and memory in mammal species, the molecular basis had been largely absent from any discussion of its mechanistic underpinnings. Here, we report that reverse transcriptase-polymerase chain reaction (RT-PCR) analysis revealed that there was a higher level of expression of the investigated 5-HT receptor mRNAs in autoshaping-trained relative to untrained groups. Actually, pharmacological naïve untrained and autoshaping-trained rats showed significant differences, the latter groups expressing, in decreasing order, 5-HT1A < 5-HT6 < 5-HT4 < or = 5-HT7 receptors mRNA in prefrontal cortex and hippocampus. In order to determine more precisely mRNA expression and memory consolidation, we combined selective 5-HT7 receptors stimulation or blockade in the same animals, and brain areas individually analyzed. 5-HT7 receptors were strongly expressed in all the three brain areas of vehicle-trained rats relative to untrained group. The potential selective 5-HT7 receptor agonist AS 19 enhanced memory consolidation, attenuated mRNA receptors expression, and the facilitatory memory effect was reversed by SB-269970. Finally, pharmacological stimulation of 5-HT7 receptors reversed scopolamine- or dizocilpine-induced amnesia and receptor down-regulation.

  17. Effects of retinoic acid on growth hormone-releasing hormone receptor, growth hormone secretagogue receptor gene expression and growth hormone secretion in rat anterior pituitary cells.

    PubMed

    Maliza, Rita; Fujiwara, Ken; Tsukada, Takehiro; Azuma, Morio; Kikuchi, Motoshi; Yashiro, Takashi

    2016-06-30

    Retinoic acid (RA) is an important signaling molecule in embryonic development and adult tissue. The actions of RA are mediated by the nuclear receptors retinoic acid receptor (RAR) and retinoid X receptor (RXR), which regulate gene expression. RAR and RXR are widely expressed in the anterior pituitary gland. RA was reported to stimulate growth hormone (GH) gene expression in the anterior pituitary cells. However, current evidence is unclear on the role of RA in gene expression of growth hormone-releasing hormone receptor (Ghrh-r), growth hormone secretagogue receptor (Ghs-r) and somatostatin receptors (Sst-rs). Using isolated anterior pituitary cells of rats, we examined the effects of RA on gene expression of these receptors and GH release. Quantitative real-time PCR revealed that treatment with all-trans retinoic acid (ATRA; 10(-6) M) for 24 h increased gene expression levels of Ghrh-r and Ghs-r; however, expressions of Sst-r2 and Sst-r5 were unchanged. Combination treatment with the RAR-agonist Am80 and RXR-agonist PA024 mimicked the effects of ATRA on Ghrh-r and Ghs-r gene expressions. Exposure of isolated pituitary cells to ATRA had no effect on basal GH release. In contrast, ATRA increased growth hormone-releasing hormone (GHRH)- and ghrelin-stimulated GH release from cultured anterior pituitary cells. Our results suggest that expressions of Ghrh-r and Ghs-r are regulated by RA through the RAR-RXR receptor complex and that RA enhances the effects of GHRH and ghrelin on GH release from the anterior pituitary gland.

  18. Growing vascular endothelial cells express somatostatin subtype 2 receptors

    PubMed Central

    Watson, J C; Balster, D A; Gebhardt, B M; O'Dorisio, T M; O'Dorisio, M S; Espenan, G D; Drouant, G J; Woltering, E A

    2001-01-01

    We hypothesized that non-proliferating (quiescent) human vascular endothelial cells would not express somatostatin receptor subtype 2 (sst 2) and that this receptor would be expressed when the endothelial cells begin to grow. To test this hypothesis, placental veins were harvested from 6 human placentas and 2 mm vein disks were cultured in 0.3% fibrin gels. Morphometric analysis confirmed that 50–75% of cultured vein disks developed radial capillary growth within 15 days. Sst 2 gene expression was determined by reverse transcription-polymerase chain reaction (RT-PCR) analysis of the RNA from veins before culture and from tissue-matched vein disks that exhibited an angiogenic response. The sst 2 gene was expressed in the proliferating angiogenic sprouts of human vascular endothelium. The presence of sst 2 receptors on proliferating angiogenic vessels was confirmed by immunohistochemical staining and in vivo scintigraphy. These results suggest that sst 2 may be a unique target for antiangiogenic therapy with sst 2 preferring somatostatin analogues conjugated to radioisotopes or cytotoxic agents. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11461088

  19. Striatal adenosine-cannabinoid receptor interactions in rats over-expressing adenosine A2A receptors.

    PubMed

    Chiodi, Valentina; Ferrante, Antonella; Ferraro, Luca; Potenza, Rosa Luisa; Armida, Monica; Beggiato, Sarah; Pèzzola, Antonella; Bader, Michael; Fuxe, Kjell; Popoli, Patrizia; Domenici, Maria Rosaria

    2016-03-01

    Adenosine A2A receptors (A2 A Rs) and cannabinoid CB1 receptors (CB1 Rs) are highly expressed in the striatum, where they functionally interact and form A2A /CB1 heteroreceptor complexes. We investigated the effects of CB1 R stimulation in a transgenic rat strain over-expressing A2 A Rs under the control of the neural-specific enolase promoter (NSEA2A rats) and in age-matched wild-type (WT) animals. The effects of the CB1 R agonist WIN 55,212-2 (WIN) were significantly lower in NSEA2A rats than in WT animals, as demonstrated by i) electrophysiological recordings of synaptic transmission in corticostriatal slices; ii) the measurement of glutamate outflow from striatal synaptosomes and iii) in vivo experiments on locomotor activity. Moreover, while the effects of WIN were modulated by both A2 A R agonist (CGS 21680) and antagonists (ZM 241385, KW-6002 and SCH-442416) in WT animals, the A2 A R antagonists failed to influence WIN-mediated effects in NSEA2A rats. The present results demonstrate that in rats with genetic neuronal over-expression of A2 A Rs, the effects mediated by CB1 R activation in the striatum are significantly reduced, suggesting a change in the stoichiometry of A2A and CB1 receptors and providing a strategy to dissect the involvement of A2 A R forming or not forming heteromers in the modulation of striatal functions. These findings add additional evidence for the existence of an interaction between striatal A2 A Rs and CB1 Rs, playing a fundamental role in the regulation of striatal functions. We studied A2A -CB1 receptor interaction in transgenic rats over-expressing adenosine A2A receptors under the control of the neuron-specific enolase promoter (NSEA2A ). In these rats, we demonstrated a reduced effect of the CB1 receptor agonist WIN 55,212-2 in the modulation of corticostriatal synaptic transmission and locomotor activity, while CB1 receptor expression level did not change with respect to WT rats. A reduction in the expression of A2A -CB1

  20. GABAA receptor-expressing neurons promote consumption in Drosophila melanogaster

    PubMed Central

    Cheung, Samantha K.

    2017-01-01

    Feeding decisions are highly plastic and bidirectionally regulated by neurons that either promote or inhibit feeding. In Drosophila melanogaster, recent studies have identified four GABAergic interneurons that act as critical brakes to prevent incessant feeding. These GABAergic neurons may inhibit target neurons that drive consumption. Here, we tested this hypothesis by examining GABA receptors and neurons that promote consumption. We find that Resistance to dieldrin (RDL), a GABAA type receptor, is required for proper control of ingestion. Knockdown of Rdl in a subset of neurons causes overconsumption of tastants. Acute activation of these neurons is sufficient to drive consumption of appetitive substances and non-appetitive substances and acute silencing of these neurons decreases consumption. Taken together, these studies identify GABAA receptor-expressing neurons that promote Drosophila ingestive behavior and provide insight into feeding regulation. PMID:28362856

  1. GABAA receptor-expressing neurons promote consumption in Drosophila melanogaster.

    PubMed

    Cheung, Samantha K; Scott, Kristin

    2017-01-01

    Feeding decisions are highly plastic and bidirectionally regulated by neurons that either promote or inhibit feeding. In Drosophila melanogaster, recent studies have identified four GABAergic interneurons that act as critical brakes to prevent incessant feeding. These GABAergic neurons may inhibit target neurons that drive consumption. Here, we tested this hypothesis by examining GABA receptors and neurons that promote consumption. We find that Resistance to dieldrin (RDL), a GABAA type receptor, is required for proper control of ingestion. Knockdown of Rdl in a subset of neurons causes overconsumption of tastants. Acute activation of these neurons is sufficient to drive consumption of appetitive substances and non-appetitive substances and acute silencing of these neurons decreases consumption. Taken together, these studies identify GABAA receptor-expressing neurons that promote Drosophila ingestive behavior and provide insight into feeding regulation.

  2. Pharmacological and molecular characterization of a dorsal root ganglion cell line expressing cannabinoid CB(1) and CB(2) receptors.

    PubMed

    Fan, Yihong; Hooker, Bradley A; Garrison, Tiffany Runyan; El-Kouhen, Odile F; Idler, Kenneth B; Holley-Shanks, Rhonda R; Meyer, Michael D; Yao, Betty Bei

    2011-06-01

    The behavioral effects evoked by cannabinoids are primarily mediated by the CB(1) and CB(2) cannabinoid receptor subtypes. In vitro pharmacology of cannabinoid receptors has been elucidated using recombinant expression systems expressing either CB(1) or CB(2) receptors, with limited characterization in native cell lines endogenously expressing both CB(1) and CB(2) receptors. In the current study, we report the molecular and pharmacological characterization of the F-11 cell line, a hybridoma of rat dorsal root ganglion neurons and mouse neuroblastoma (N18TG2) cells, reported to endogenously express both cannabinoid receptors. The present study revealed that both receptors are of mouse origin in F-11 cells, and describes the relative gene expression levels between the two receptors. Pharmacological characterization of the F-11 cell line using cannabinoid agonists and antagonists indicated that the functional responses to these cannabinoid ligands are mainly mediated by CB(1) receptors. The non-selective cannabinoid ligands CP 55,940 and WIN 55212-2 are potent agonists and their efficacies in adenylate cyclase and MAPK assays are inhibited by the CB(1) selective antagonist SR141716A (SR1), but not by the CB(2) selective antagonist SR144528 (SR2). The endocannabinoid ligand 2AG, although not active in adenylate cyclase assays, was a potent activator of MAPK signaling in F-11 cells. The analysis of CB(1) and CB(2) receptor gene expression and the characterization of cannabinoid receptor pharmacology in the F-11 cell line demonstrate that it can be used as a tool for interrogating the endogenous signal transduction of cannabinoid receptor subtypes.

  3. Multiple expression control mechanisms of peroxisome proliferator-activated receptors and their target genes.

    PubMed

    Tan, Nguan Soon; Michalik, Liliane; Desvergne, Beatrice; Wahli, Walter

    2005-02-01

    The peroxisome proliferator-activated receptors (PPAR) alpha, beta/delta and gamma belong to the nuclear hormone receptor superfamily. As ligand-activated receptors, they form a functional transcriptional unit upon heterodimerization with retinoid X receptors (RXRs). PPARs are activated by fatty acids and their derivatives, whereas RXR is activated by 9-cis retinoic acid. This heterodimer binds to peroxisome proliferator response elements (PPRE) residing in target genes and stimulates their expression. Recent reports now indicate that PPARs and RXRs can function independently, in the absence of a hetero-partner, to modulate gene expression. Of importance, these non-canonical mechanisms underscore the impact of both cofactors and DNA on gene expression. Furthermore, these different mechanisms reveal the increasing repertoire of PPAR 'target' genes that now encompasses non-PPREs containing genes. It is also becoming apparent that understanding the regulation of PPAR expression and activity, can itself have a significant influence on how the expression of subgroups of target genes is studied and integrated in current knowledge.

  4. Expression and distribution of sialic acid influenza virus receptors in wild birds.

    PubMed

    França, M; Stallknecht, D E; Howerth, E W

    2013-02-01

    Avian influenza (AI) viruses have been detected in more than 105 wild bird species from 12 different orders but species-related differences in susceptibility to AI viruses exist. Expression of α2,3-linked (avian-type) and α2,6-linked (human-type) sialic acid (SA) influenza virus receptors in tissues is considered one of the determinants of the host range and tissue tropism of influenza viruses. We investigated the expression of these SA receptors in 37 wild bird species from 11 different orders by lectin histochemistry. Two isoforms of Maackia amurensis (MAA) lectin, MAA1 and MAA2, were used to detect α2,3-linked SA, and Sambucus nigra lectin was used to detect α2,6-linked SA. All species evaluated expressed α2,3-linked and α2,6-linked SA receptors in endothelial cells and renal tubular epithelial cells. Both α2,3-linked and α-2,6-linked SA receptors were expressed in respiratory and intestinal tract tissues of aquatic and terrestrial wild bird species from different taxa, but differences in SA expression and in the predominant isoform of MAA lectin bound were observed. With a few possible exceptions, these observed differences were not generally predictive of reported species susceptibility to AI viruses based on published experimental and field data.

  5. Regulation of retinoid X receptor gamma expression by fed state in mouse liver

    SciTech Connect

    Park, Sangkyu; Lee, Yoo Jeong; Ko, Eun Hee; Kim, Jae-woo

    2015-02-27

    Glucose metabolism is balanced by glycolysis and gluconeogenesis with precise control in the liver. The expression of genes related to glucose metabolism is regulated primarily by glucose and insulin at transcriptional level. Nuclear receptors play important roles in regulating the gene expression of glucose metabolism at transcriptional level. Some of these nuclear receptors form heterodimers with RXRs to bind to their specific regulatory elements on the target promoters. To date, three isotypes of RXRs have been identified; RXRα, RXRβ and RXRγ. However, their involvement in the interactions with other nuclear receptors in the liver remains unclear. In this study, we found RXRγ is rapidly induced after feeding in the mouse liver, indicating a potential role of RXRγ in controlling glucose or lipid metabolism in the fasting–feeding cycle. In addition, RXRγ expression was upregulated by glucose in primary hepatocytes. This implies that glucose metabolism governed by RXRγ in conjunction with other nuclear receptors. The luciferase reporter assay showed that RXRγ as well as RXRα increased SREBP-1c promoter activity in hepatocytes. These results suggest that RXRγ may play an important role in tight control of glucose metabolism in the fasting–feeding cycle. - Highlights: • Refeeding increases the RXRγ expression level in mouse liver. • RXRγ expression is induced by high glucose condition in primary hepatocytes. • RXRγ and LXRα have synergistic effect on SREBP-1c promoter activity. • RXRγ binds to LXRE(-299/-280) located within SREBP-1c promoter region and interacts with LXRα.

  6. Molecular characterization of individual D3 dopamine receptor-expressing cells isolated from multiple brain regions of a novel mouse model

    PubMed Central

    Li, Ying

    2012-01-01

    Among dopamine receptors, the expression and function of the D3 receptor subtype is not well understood. The receptor has the highest affinity for dopamine and many drugs that target dopamine receptors. In this paper, we examined, at the single cell level, the characteristics of D3 receptor-expressing cells isolated from different brain regions of male and female mice that were either 35 or 70 days old. The brain regions included nucleus accumbens, Islands of Calleja, olfactory tubercle, retrosplenial cortex, dorsal subiculum, mammillary body, amygdala and septum. The expression analysis was done in the drd3-enhanced green fluorescent protein transgenic mice that report the endogenous expression of D3 receptor mRNA. Using single cell reverse transcriptase PCR, we determined if the D3 receptor-expressing fluorescent cells in these mice were neurons or glia and if they were glutamatergic, GABAergic or catecholaminergic. Next, we determined if the fluorescent cells co-expressed the four other dopamine receptor subtypes, adenylate cyclase V (ACV) isoform, and three different isoforms of G protein-coupled inward rectifier potassium (GIRK) channels. The results suggest that D3 receptor is expressed in neurons, with region-specific expression in glutamatergic and GABAergic neurons. The D3 receptor primarily co-expressed with D1 and D2 dopamine receptors with regional, sex and age-dependent differences in the co-expression pattern. The percentage of cells co-expressing D3 receptor and ACV or GIRK channels varied significantly by brain region, sex and age. The molecular characterization of D3 receptor-expressing cells in mouse brain reported here will facilitate the characterization of D3 receptor function in physiology and pathophysiology. PMID:22286951

  7. Canine pulmonary adenocarcinoma tyrosine kinase receptor expression and phosphorylation

    PubMed Central

    2014-01-01

    Background This study evaluated tyrosine kinase receptor (TKR) expression and activation in canine pulmonary adenocarcinoma (cpAC) biospecimens. As histological similarities exist between human and cpAC, we hypothesized that cpACs will have increased TKR mRNA and protein expression as well as TKR phosphorylation. The molecular profile of cpAC has not been well characterized making the selection of therapeutic targets that would potentially have relevant biological activity impossible. Therefore, the objectives of this study were to define TKR expression and their phosphorylation state in cpAC as well as to evaluate the tumors for the presence of potential epidermal growth factor receptor (EGFR) tyrosine kinase activating mutations in exons 18–21. Immunohistochemistry (IHC) for TKR expression was performed using a tissue microarray (TMA) constructed from twelve canine tumors and companion normal lung samples. Staining intensities of the IHC were quantified by a veterinary pathologist as well as by two different digitalized algorithm image analyses software programs. An antibody array was used to evaluate TKR phosphorylation of the tumor relative to the TKR phosphorylation of normal tissues with the resulting spot intensities quantified using array analysis software. Each EGFR exon PCR product from all of the tumors and non-affected lung tissues were sequenced using sequencing chemistry and the sequencing reactions were run on automated sequencer. Sequence alignments were made to the National Center for Biotechnology Information canine EGFR reference sequence. Results The pro-angiogenic growth factor receptor, PDGFRα, had increased cpAC tumor mRNA, protein expression and phosphorylation when compared to the normal lung tissue biospecimens. Similar to human pulmonary adenocarcinoma, significant increases in cpAC tumor mRNA expression and receptor phosphorylation of the anaplastic lymphoma kinase (ALK) tyrosine receptor were present when compared to the

  8. Adenosine receptor expression and function in rat striatal cholinergic interneurons.

    PubMed

    Preston, Z; Lee, K; Widdowson, L; Freeman, T C; Dixon, A K; Richardson, P J

    2000-06-01

    Cholinergic neurons were identified in rat striatal slices by their size, membrane properties, sensitivity to the NK(1) receptor agonist (Sar(9), Met(O(2))(11)) Substance P, and expression of choline acetyltransferase mRNA. A(1) receptor mRNA was detected in 60% of the neurons analysed, and A(2A) receptor mRNA in 67% (n=15). The A(1) receptor agonist R-N(6)-(2-phenylisopropyl)adenosine (R-PIA) hyperpolarized cholinergic neurons in a concentration dependent manner sensitive to the A(1) antagonist 8-cyclopentyl-1, 3-dipropylxanthine (DPCPX, 100 nM). In dual stimulus experiments, the A(2A) receptor antagonist 8-(3-chlorostyryl)caffeine (CSC, 500 nM) decreased release of [(3)H]-acetylcholine from striatal slices (S2/S1 0.78+/-0.07 versus 0.95+/-0.05 in control), as did adenosine deaminase (S2/S1 ratio 0.69+/-0.05), whereas the A(1) receptor antagonist DPCPX (100 nM) had no effect (S2/S1 1.05+/-0.14). In the presence of adenosine deaminase the adenosine A(2A) receptor agonist 2-p-((carboxyethyl)phenylethylamino)-5'-N-ethylcarboxamidoadeno sin e (CGS21680, 10 nM) increased release (S2/S1 ratio 1.03+/-0.05 versus 0.88+/-0.05 in control), an effect blocked by the antagonist CSC (500 nM, S2/S1 0.68+/-0.05, versus 0.73+/-0.08 with CSC alone). The combined superfusion of bicuculline (10 microM), saclofen (1 microM) and naloxone (10 microM) had no effect on the stimulation by CGS21680 (S2/S1 ratio 0.99+/-0.04). The A(1) receptor agonist R-PIA (100 nM) inhibited the release of [(3)H]-acetylcholine (S2/S1 ratio 0.70+/-0.03), an effect blocked by DPCPX (S2/S1 ratio 1.06+/-0.07). It is concluded that both A(1) and A(2A) receptors are expressed on striatal cholinergic neurons where they are functionally active.

  9. Regulation of bradykinin B2-receptor expression by oestrogen

    PubMed Central

    Madeddu, Paolo; Emanueli, Costanza; Varoni, Maria Vittoria; Demontis, Maria Piera; Anania, Vittorio; Gorioso, Nicola; Chao, Julie

    1997-01-01

    Tissue kallikrein is overexpressed in the kidney of female rats, this sexual dimorphism being associated with a greater effect of early blockade of bradykinin B2-receptors on female blood pressure phenotype. We evaluated the effect of ovariectomy and oestradiol benzoate (50 μg kg−1 every two days for two weeks) on the vasodepressor response to intra-arterial injection of bradykinin (150–900 ng kg−1) and on the expression of bradykinin B2-receptors.Ovariectomy reduced the magnitude of the vasodepressor response to bradykinin and unmasked a secondary vasopressor effect. Oestrogen replacement restored the vasodepressor response to bradykinin in ovariectomized rats.The vasodepressor responses to sodium nitroprusside (3–18 μg kg−1), acetylcholine (30–600 ng kg−1), desArg9-bradykinin (150–900 ng kg−1) or prostaglandin E2 (30–600 ng kg−1) were significantly reduced by ovariectomy. Oestrogen restored to normal the responses to desArg9-bradykinin, acetylcholine and prostaglandin E2, but not that to sodium nitroprusside.B2-receptor mRNA levels were decreased by ovariectomy in the aorta and kidney and they were restored to normal levels by oestrogen. Neither ovariectomy nor oestradiol affected receptor expression in the heart and uterus.These results indicate that oestrogen regulates B2-receptor gene expression and function. Since kinins exert a cardiovascular protective action, reduction in their vasodilator activity after menopause might contribute to the increased risk of pathological cardiovascular events. Conversely, the cardioprotective effects of oestrogen replacement might be, at least in part, mediated by activation of the kallikrein-kinin system. PMID:9283715

  10. Vitamin D Receptor, Retinoid X Receptor, Ki-67, Survivin, and Ezrin Expression in Canine Osteosarcoma

    PubMed Central

    Davies, John; Heeb, Heather; Garimella, Rama; Templeton, Kimberly; Pinson, David; Tawfik, Ossama

    2012-01-01

    Canine osteosarcoma (OS) is an aggressive malignant bone tumor. Prognosis is primarily determined by clinical parameters. Vitamin D has been postulated as a novel therapeutic option for many malignancies. Upon activation, vitamin D receptors (VDRs) combine with retinoid receptor (RXR) forming a heterodimer initiating a cascade of events. Vitamin D's antineoplastic activity and its mechanism of action in OS remain to be clearly established. Expression of VDR, RXR, Ki-67, survivin, and ezrin was studied in 33 archived, canine OS specimens. VDR, RXR, survivin, and ezrin were expressed in the majority of cases. There was no statistically significant difference in VDR expression in relationship with tumor grade, type, or locations or animal breed, age, and/or sex. No significant association (p = 0.316) between tumor grade and Ki-67 expression was found; in particular, no difference in Ki-67 expression between grades 2 and 3 OSs was found, while a negative correlation was noted between Ki-67 and VDR expression (ρ = −0.466), a positive correlation between survivin and RXR expression was found (p = 0.374). A significant relationship exists between VDR and RXR expression in OSs and proliferative/apoptosis markers. These results establish a foundation for elucidating mechanisms by which vitamin D induces antineoplastic activity in OS. PMID:23346460

  11. Characterization of purinergic receptors and receptor-channels expressed in anterior pituitary cells.

    PubMed

    Koshimizu, T A; Tomić, M; Wong, A O; Zivadinovic, D; Stojilkovic, S S

    2000-11-01

    Purinergic G protein-coupled receptors (P2YR) and ion-conducting receptor-channels (P2XR) are present in the pituitary. However, their identification, expression within pituitary cell subpopulations, and the ability to elevate intracellular Ca2+ concentration ([Ca2+]i) in response to ATP stimulation were incompletely characterized. Here we show that mixed populations of rat anterior pituitary cells express messenger RNA transcripts for P2Y2R, P2X2aR, P2X2bR, P2X3R, P2X4R, and P2X7R. The transcripts and functional P2Y2R were identified in lactotrophs and GH3 cells, but not in somatotrophs and gonadotrophs, and their activation by ATP led to an extracellular Ca2+-independent rise in [Ca2+]i in about 40% of cells tested. Lactotrophs and GH3 cells, but not somatotrophs, also express transcripts for P2X7R, P2X3R, and P2X4R. Functional P2X7R were identified in 74% of lactotrophs, whereas 50% of these cells expressed P2X3R and 33% expressed P2X4R. Coexpression of these receptor subtypes in single lactotrophs was frequently observed. Purified somatotrophs expressed transcripts for P2X2aR and P2X2bR, and functional receptors were identified in somatotrophs and gonadotrophs, but not in lactotrophs. Consistent with the cell-specific expression of transcripts for P2X2R and P2X3R, the expression of their functional heteromers was not evident in pituitary cells. Receptors differed in their capacities to elevate and sustain Ca2+ influx-dependent rise in [Ca2+]i during the prolonged ATP stimulation. These results indicate that the purinergic system of anterior pituitary is extremely complex and provides an effective mechanism for generating a cell- and receptor-specific Ca2+ signaling pattern in response to a common agonist.

  12. Effects of Repeated Ethanol Exposures on NMDA Receptor Expression and Locomotor Sensitization in Mice Expressing Ethanol Resistant NMDA Receptors

    PubMed Central

    den Hartog, Carolina R.; Gilstrap, Meghin; Eaton, Bethany; Lench, Daniel H.; Mulholland, Patrick J.; Homanics, Gregg. E.; Woodward, John J.

    2017-01-01

    Evidence from a large number of preclinical studies suggests that chronic exposure to drugs of abuse, such as psychostimulants or ethanol induces changes in glutamatergic transmission in key brain areas associated with reward and control of behavior. These changes include alterations in the expression of ionotropic glutamate receptors including N-methyl-D-aspartate receptors (NMDAR) that are important for regulating neuronal activity and synaptic plasticity. NMDA receptors are inhibited by ethanol and reductions in NMDA-mediated signaling are thought to trigger homestatic responses that limit ethanol's effects on glutamatergic transmission. Following repeated exposures to ethanol, these homeostatic responses may become unstable leading to an altered glutamatergic state that contributes to the escalations in drinking and cognitive deficits observed in alcohol-dependent subjects. An important unanswered question is whether ethanol-induced changes in NMDAR expression are modulated by the intrinsic sensitivity of the receptor to ethanol. In this study, we examined the effects of ethanol on NMDAR subunit expression in cortical (orbitofrontal, medial prefrontal), striatal (dorsal and ventral striatum) and limbic (dorsal hippocampus, basolateral amygdala) areas in mice genetically modified to express ethanol-resistant receptors (F639A mice). These mice have been previously shown to drink more ethanol than their wild-type counterparts and have altered behavioral responses to certain actions of ethanol. Following long-term voluntary drinking, F639A mice showed elevations in GluN2A but not GluN1 or GluN2B expression as compared to wild-type mice. Mice treated with repeated injections with ethanol (2–3.5 g/kg; i.p.) showed changes in NMDAR expression that varied in a complex manner with genotype, brain region, subunit type and exposure protocol all contributing to the observed response. F639A mice, but not wild-type mice, showed enhanced motor activity following repeated

  13. Expression of Hormone Receptors and HER-2 in Benign and Malignant Salivary Gland Tumors.

    PubMed

    Can, Nhu Thuy; Lingen, Mark W; Mashek, Heather; McElherne, James; Briese, Renee; Fitzpatrick, Carrie; van Zante, Annemieke; Cipriani, Nicole A

    2017-07-05

    With the advent of targeted therapies, expression of sex hormone receptors and HER-2 in salivary gland tumors (SGTs) is of clinical interest. Previous reports of estrogen (ER) and progesterone (PR) receptor expression have varied. Androgen receptor (AR) and HER-2 overexpression are frequently reported in salivary duct carcinoma (SDC), but have not been studied systematically in other SGTs. This study examines ER, PR, AR, and HER-2 expression in SGTs. Immunohistochemistry for ER, PR, AR, and HER-2 was performed on 254 SGTs (134 malignant). ER, PR, and AR expression was scored using Allred system. HER-2 expression was scored using Dako HercepTest guidelines. FISH for HER-2 amplification was performed on select cases with HER-2 overexpression (2-3+). No SGT demonstrated strong expression of ER or PR. Combined strong AR and HER-2 expression was seen in 22 carcinomas: 14/25 SDC, 3/16 poorly differentiated, two oncocytic, and one each carcinoma ex pleomorphic adenoma, squamous cell, and intraductal carcinoma. Eighteen additional high grade carcinomas had HER-2 overexpression with absent, weak, or moderate AR expression; eight high grade carcinomas had isolated strong AR expression with 0-1+ HER-2 staining. Of 15 tested cases, six demonstrated HER-2 amplification by FISH, all of which had 3+ immunoreactivity. Neither benign nor malignant SGTs had strong expression of ER or PR. None of the benign SGTs overexpressed AR or HER-2. Coexpression of AR and HER-2 should not define SDC, but immunostaining should be considered in high grade salivary carcinomas, as some show overexpression and may benefit from targeted therapy.

  14. Progesterone receptors A and B and estrogen receptor alpha expression in normal breast tissue and fibroadenomas.

    PubMed

    Branchini, Gisele; Schneider, Lolita; Cericatto, Rodrigo; Capp, Edison; Brum, Ilma Simoni

    2009-06-01

    Fibroadenomas are the most common benign breast tumors, occurring mainly in young women. Their responses to the hormonal environment are similar to those of normal breast tissue, which suggests that steroid receptors may play a role in tumor development. We evaluated the gene and protein expression of progesterone receptors A and B (PRA and PRB) and the protein expression of estrogen receptor alpha (ER-alpha) in fibroadenoma samples, comparing with adjacent normal breast tissue, from 11 premenopausal women. Progesterone and estradiol levels were determined. No alterations in the PRs gene and protein expression and the ER-alpha protein expression were observed between the follicular and luteal phases, in normal breast versus fibroadenomas. Protein levels of PRA and PRB were higher in fibroadenomas compared to normal breast tissue (P = 0.038 and P = 0.031), while the PRs mRNA levels were similar in both tissues (P = 0.721 and P = 0.139). There were no differences in ER-alpha protein expression between normal breast tissue and fibroadenomas (P = 0.508). The PRA:PRB ratio was similar in the tissues, and also showed a strong correlation in both (r = 0.964, P = 0.0001). Our data suggest a role of PRs in the growth and development of fibroadenomas, although without alterations of the PRA:PRB ratio in these tumors. The absence of alterations in ER-alpha protein levels could be a characteristic behavior of fibroadenomas, unlike breast cancer.

  15. BMP and BMP receptor expression during murine organogenesis.

    PubMed

    Danesh, Shahab M; Villasenor, Alethia; Chong, Diana; Soukup, Carrie; Cleaver, Ondine

    2009-06-01

    Cell-cell communication is critical for regulating embryonic organ growth and differentiation. The Bone Morphogenetic Protein (BMP) family of transforming growth factor beta (TGFbeta) molecules represents one class of such cell-cell signaling molecules that regulate the morphogenesis of several organs. Due to high redundancy between the myriad BMP ligands and receptors in certain tissues, it has been challenging to address the role of BMP signaling using targeting of single Bmp genes in mouse models. Here, we present a detailed study of the developmental expression profiles of three BMP ligands (Bmp2, Bmp4, Bmp7) and three BMP receptors (Bmpr1a, Bmpr1b, and BmprII), as well as their molecular antagonist (noggin), in the early embryo during the initial steps of murine organogenesis. In particular, we focus on the expression of Bmp family members in the first organs and tissues that take shape during embryogenesis, such as the heart, vascular system, lungs, liver, stomach, nervous system, somites and limbs. Using in situ hybridization, we identify domains where ligand(s) and receptor(s) are either singly or co-expressed in specific tissues. In addition, we identify a previously unnoticed asymmetric expression of Bmp4 in the gut mesogastrium, which initiates just prior to gut turning and the establishment of organ asymmetry in the gastrointestinal tract. Our studies will aid in the future design and/or interpretation of targeted deletion of individual Bmp or Bmpr genes, since this study identifies organs and tissues where redundant BMP signaling pathways are likely to occur.

  16. BMP and BMP receptor expression during murine organogenesis

    PubMed Central

    Danesh, Shahab M.; Villasenor, Alethia; Chong, Diana; Soukup, Carrie; Cleaver, Ondine

    2009-01-01

    Cell-cell communication is critical for regulating embryonic organ growth and differentiation. The Bone Morphogenetic Protein (BMP) family of transforming growth factor β (TGFβ) molecules represents one class of such cell-cell signaling molecules that regulate the morphogenesis of several organs. Due to high redundancy between the myriad BMP ligands and receptors in certain tissues, it has been challenging to address the role of BMP signaling using targeting of single Bmp genes in mouse models. Here, we present a detailed study of the developmental expression profiles of three BMP ligands (Bmp2, Bmp4, Bmp7) and three BMP receptors (Bmpr1a, Bmpr1b, and BmprII), as well as their molecular antagonist (noggin), in the early embryo during the initial steps of murine organogenesis. In particular, we focus on the expression of Bmp family members in the first organs and tissues that take shape during embryogenesis, such as the heart, vascular system, lungs, liver, stomach, nervous system, somites and limbs. Using in situ hybridization, we identify domains where ligand(s) and receptor(s) are either singly or co-expressed in specific tissues. In addition, we identify a previously unnoticed asymmetric expression of Bmp4 in the gut mesogastrium, which initiates just prior to gut turning and the establishment of organ asymmetry in the gastrointestinal tract. Our studies will aid in the future design and/or interpretation of targeted deletion of individual Bmp or Bmpr genes, since this study identifies organs and tissues where redundant BMP signaling pathways are likely to occur. PMID:19393343

  17. Expression of growth hormone receptor in the human brain.

    PubMed

    Castro, J R; Costoya, J A; Gallego, R; Prieto, A; Arce, V M; Señarís, R

    2000-03-10

    This study was designed to investigate the presence of growth hormone receptor (GHR) expression in the human brain tissue, both normal and tumoral, as well as in the human glioblastoma cell line U87MG. Reverse transcription-polymerase chain reaction revealed the presence of GHR mRNA in all brain samples investigated and in U87MG cells. GHR immunoreactivity was also detected in this cell line using both immunocytochemistry and western blotting. All together, our data demonstrate the existence of GHR expression within the central nervous system (CNS), thus supporting a possible role for GH in the CNS physiology.

  18. Inhibition of D4 Dopamine Receptors on Insulin Receptor Expression and Effect in Renal Proximal Tubule Cells.

    PubMed

    Zhang, Ye; Ren, Hongmei; Lu, Xi; He, Duofen; Han, Yu; Wang, Hongyong; Zeng, Chunyu; Shi, Weibin

    2016-04-22

    Ion transport in the renal proximal tubule (RPT), which is increased in essential hypertension, is regulated by numerous hormones and humoral factors, including insulin and dopamine. Activation of dopamine receptor inhibits sodium reabsorption, whereas activation of insulin receptor increases sodium reabsorption in RPTs, and hyperinsulinemic animals and patients have defective renal dopaminergic system. We presume that there is an inhibition of D4 receptor on insulin receptor expression and effect, and the regulation is lost in spontaneously hypertensive rats (SHRs). Insulin receptor expression was determined by immunoblotting, and Na(+)-K(+)-ATPase activity was detected in both Wistar-Kyoto (WKY) and SHR RPT cells. Stimulation of D4 receptor with PD168077 decreased expression of insulin receptors, which was blocked in the presence of the calcium-channel blocker, nicardipine (10(-6) mol/L per 24 hours), in cell culture medium without calcium or in the presence of inositol 1,4,5-trisphosphate (IP3) receptor blocker (2-aminoethyl diphenylborinate [2-ADB]; 10(-6) mol/L per 24 hours), indicating that extracellular calcium entry and calcium release from the endoplasmic reticulum were involved in the signal pathway. Stimulation of the insulin receptor stimulated Na(+)-K(+)-ATPase activity, whereas pretreatment with PD168077 for 24 hours decreased the inhibitory effects of insulin receptor on Na(+)-K(+)-ATPase activity in WKY cells. However, in SHR cells, inhibition of D4 receptor on insulin receptor expression and effect were lost. Activation of D4 receptor inhibits insulin receptor expression in RPT cells from WKY rats. The aberrant inhibition of D4 receptor on insulin receptor expression and effect might be involved in the pathogenesis of essential hypertension. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  19. Cell-free expression of G-protein-coupled receptors.

    PubMed

    Orbán, Erika; Proverbio, Davide; Haberstock, Stefan; Dötsch, Volker; Bernhard, Frank

    2015-01-01

    Cell-free expression has emerged as a new standard for the production of membrane proteins. The reduction of expression complexity in cell-free systems eliminates central bottlenecks and allows the reliable and efficient synthesis of many different types of membrane proteins. Furthermore, the open accessibility of cell-free reactions enables the co-translational solubilization of cell-free expressed membrane proteins in a large variety of supplied additives. Hydrophobic environments can therefore be adjusted according to the requirements of individual membrane protein targets. We present different approaches for the preparative scale cell-free production of G-protein-coupled receptors using the extracts of Escherichia coli cells. We exemplify expression conditions implementing detergents, nanodiscs, or liposomes. The generated protein samples could be directly used for further functional characterization.

  20. Estrogen and Progesterone hormone receptor expression in oral cavity cancer.

    PubMed

    Grimm, M; Biegner, T; Teriete, P; Hoefert, S; Krimmel, M; Munz, A; Reinert, S

    2016-09-01

    Recent studies have shown an increase in the incidence of oral squamous cell carcinoma (OSCC) in younger patients. The hypothesis that tumors could be hormonally induced during pregnancy or in young female patients without the well-known risk factors alcohol or tobacco abuse seems to be plausible. Estrogen Receptor alpha (ERα) and Progesterone Receptor (PR) expression were analyzed in normal oral mucosa (n=5), oral precursor lesions (simple hyperplasia, n=11; squamous intraepithelial neoplasia, SIN I-III, n=35), and OSCC specimen. OSCCs were stratified in a young female (n=7) study cohort and older patients (n=46). In the young female study cohort three patients (n=3/7) developed OSCC during or shortly after pregnancy. Breast cancer tissues were used as positive control for ERα and PR expression. ERα expression was found in four oral precursor lesions (squamous intraepithelial neoplasia, SIN I-III, n=4/35, 11%) and in five OSCC specimen (n=5/46, 11%). The five ERα positive OSCC samples were older male patients. All patients within the young female study cohort were negatively stained for both ERα and PR. ER expression could be regarded as a seldom risk factor for OSCC. PR expression seems to be not relevant for the development of OSCC.

  1. Spatiotemporal expression of Nogo-66 receptor after focal cerebral ischemia

    PubMed Central

    Cao, Yue; Dong, Ya-xian; Xu, Jie; Chu, Guo-liang; Yang, Zhi-hua; Liu, Yan-ming

    2016-01-01

    NgR, the receptor for the neurite outgrowth inhibitor Nogo-66, plays a critical role in the plasticity and regeneration of the nervous system after injury such as ischemic stroke. In the present study, we used immunohistochemistry to investigate the regional expression of NgR in rat brain following middle cerebral artery occlusion (MCAO). NgR protein expression was not observed in the center of the lesion, but was elevated in the marginal zone compared with control and sham-operated rats. The cerebral cortex and hippocampus (CA1, CA2, and CA3) showed the greatest expression of NgR. Furthermore, NgR expression was higher in the ipsilesional hemisphere than on the control side in the same coronal section. Although time-dependent changes in NgR expression across brain regions had their own characteristics, the overall trend complied with the following rules: NgR expression changes with time showed two peaks and one trough; the first peak in expression appeared between 1 and 3 days after MCAO; expression declined at 5 days; and the second peak occurred at 28 days. PMID:26981102

  2. Vanilloid Receptor-1 (TRPV1) Expression and Function in the Vasculature of the Rat

    PubMed Central

    Czikora, Ágnes; Pásztor, Enikő T.; Dienes, Beatrix; Bai, Péter; Csernoch, László; Rutkai, Ibolya; Csató, Viktória; Mányiné, Ivetta S.; Pórszász, Róbert; Édes, István; Papp, Zoltán; Boczán, Judit

    2014-01-01

    Transient receptor potential (TRP) cation channels are emerging in vascular biology. In particular, the expression of the capsaicin receptor (TRPV1) was reported in vascular smooth muscle cells. This study characterized the arteriolar TRPV1 function and expression in the rat. TRPV1 mRNA was expressed in various vascular beds. Six commercially available antibodies were tested for TRPV1 specificity. Two of them were specific (immunostaining was abolished by blocking peptides) for neuronal TRPV1 and one recognized vascular TRPV1. TRPV1 was expressed in blood vessels in the skeletal muscle, mesenteric and skin tissues, as well as in the aorta and carotid arteries. TRPV1 expression was found to be regulated at the level of individual blood vessels, where some vessels expressed, while others did not express TRPV1 in the same tissue sections. Capsaicin (a TRPV1 agonist) evoked constrictions in skeletal muscle arteries and in the carotid artery, but had no effect on the femoral and mesenteric arteries or the aorta. In blood vessels, TRPV1 expression was detected in most of the large arteries, but there were striking differences at level of the small arteries. TRPV1 activity was suppressed in some isolated arteries. This tightly regulated expression and function suggests a physiological role for vascular TRPV1. PMID:24217926

  3. Efficient silkworm expression of human GPCR (nociceptin receptor) by a Bombyx mori bacmid DNA system

    SciTech Connect

    Kajikawa, Mizuho; Sasaki, Kaori; Wakimoto, Yoshitaro; Toyooka, Masaru; Motohashi, Tomoko; Shimojima, Tsukasa; Takeda, Shigeki; Park, Enoch Y.; Maenaka, Katsumi

    2009-07-31

    Guanine nucleotide-binding protein (G protein) coupled receptors (GPCRs) are frequently expressed by a baculovirus expression vector system (BEVS). We recently established a novel BEVS using the bacmid system of Bombyx mori nucleopolyhedrovirus (BmNPV), which is directly applicable for protein expression in silkworms. Here, we report the first example of GPCR expression in silkworms by the simple injection of BmNPV bacmid DNA. Human nociceptin receptor, an inhibitory GPCR, and its fusion protein with inhibitory G protein alpha subunit (G{sub i}{alpha}) were both successfully expressed in the fat bodies of silkworm larvae as well as in the BmNPV viral fraction. Its yield was much higher than that from Sf9 cells. The microsomal fractions including the nociceptin receptor fusion, which are easily prepared by only centrifugation steps, exhibited [{sup 35}S]GTP{gamma}S-binding activity upon specific stimulation by nociceptin. Therefore, this rapid method is easy-to-use and has a high expression level, and thus will be an important tool for human GPCR production.

  4. Increased hypothalamic 5-HT2A receptor gene expression and effects of pharmacologic 5-HT2A receptor inactivation in obese A{sup y} mice

    SciTech Connect

    Nonogaki, Katsunori . E-mail: knonogaki-tky@umin.ac.jp; Nozue, Kana; Oka, Yoshitomo

    2006-12-29

    Serotonin (5-hydroxytryptamine; 5-HT) 2A receptors contribute to the effects of 5-HT on platelet aggregation and vascular smooth muscle cell proliferation, and are reportedly involved in decreases in plasma levels of adiponectin, an adipokine, in diabetic subjects. Here, we report that systemic administration of sarpogrelate, a 5-HT2A receptor antagonist, suppressed appetite and increased hypothalamic pro-opiomelanocortin and cocaine- and amphetamine-regulated transcript, corticotropin releasing hormone, 5-HT2C, and 5-HT1B receptor gene expression. A{sup y} mice, which have ectopic expression of the agouti protein, significantly increased hypothalamic 5-HT2A receptor gene expression in association with obesity compared with wild-type mice matched for age. Systemic administration of sarpogrelate suppressed overfeeding, body weight gain, and hyperglycemia in obese A{sup y} mice, whereas it did not increase plasma adiponectin levels. These results suggest that obesity increases hypothalamic 5-HT2A receptor gene expression, and pharmacologic inactivation of 5-HT2A receptors inhibits overfeeding and obesity in A{sup y} mice, but did not increase plasma adiponectin levels.

  5. Molecular biology of channel catfish gonadotropin receptors: 1. Cloning of a functional luteinizing hormone receptor and preovulatory induction of gene expression.

    PubMed

    Kumar, R S; Ijiri, S; Trant, J M

    2001-03-01

    There is little known about the molecular biology of piscine gonadotropin receptors, and information about gene expression during reproductive development is particularly lacking. We have cloned the LH receptor (LHR) in the channel catfish (cc), and examined its gene expression throughout a reproductive cycle. A cDNA encoding the receptor was isolated from the testis using reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends procedures. It encoded a 696-amino acid protein that showed the greatest homology (46-50% identity) with the known LHRs and lesser similarity with FSH receptors and thyroid-stimulating hormone receptors (44-47% and 42-44% identity, respectively). In addition, two characteristics unique to the LHRs were conserved in the cloned receptor and the encoding gene: presence of an intron corresponding to intron 10 in mammals and turkey and occurrence of a double cysteine residue in the cytoplasmic tail for potential palmitoylation. The ccLHR gene was well expressed in the gonads and kidney and merely detectable in the gills, muscle, and spleen. The isolated cDNA encoded an active ccLHR protein, as the recombinant receptor expressed in COS7 cells activated a cAMP response element-driven reporter gene (luciferase) upon exposure to hCG in a dose-dependent manner. Seasonal changes in the ovarian expression of the ccLHR gene, as examined by measuring the transcript abundance by quantitative real-time RT-PCR, remained rather low during most of the reproductive cycle but was acutely induced around the time of spawning. This pattern of expression correlates well with the reported expression of its ligand (LH) in fishes and concurs with the notion that LH is a key regulator of the periovulatory maturational events.

  6. Endothelin-1 downregulates Mas receptor expression in human cardiomyocytes.

    PubMed

    Chen, Zhiheng; Tang, Yamei; Yang, Zuocheng; Liu, Shaojun; Liu, Yong; Li, Yan; He, Wei

    2013-09-01

    Endothelin-1 (ET-1) and the renin-angiotensin system (RAS) are involved in the pathogenesis of cardiac dysfunction. The Mas receptor is a functional binding site for angiotensin (Ang)‑(1-7), which is now considered a critical component of the RAS and exerts cardioprotective effects. To the best of our knowledge, the present study aimed to examine, for the first time, the effects of ET-1 on Mas expression in cultured human cardiomyocytes. Human cardiomyocytes were treated with ET-1 at different concentrations (1, 5, 10, 20 and 30 nM) for varied time periods (0.5, 1.5, 3, 4.5 or 6 h) with or without the transcription inhibitor actinomycin D, endothelin A (ETA) receptor blocker BQ123 and ETB receptor blocker BQ788, or different kinase inhibitors. ET-1 decreased the Mas mRNA level in a statistically significant dose- and time-dependent manner within 4.5 h, which was reflected in the dose-dependent downregulation of Mas promoter activity, Mas protein levels and Ang-(1-7) binding on the cell membrane. Actinomycin D (1 mg/ml), BQ123 (1 µM), p38 mitogen-activated protein kinase (MAPK) siRNA and inhibitor PD169316 (25 µM), completely eliminated the inhibitory effects of ET-1 on Mas expression in human cardiomyocytes. In conclusion, the present study demonstrated that ET-1 downregulates Mas expression at the transcription level in human cardiomyocytes via the ETA receptor by a p38 MAPK‑dependent mechanism. This study provides novel insights into the function of ET-1 and the Ang‑(1-7)/Mas axis in cardiac pathophysiology.

  7. Anxious behavior induces elevated hippocampal Cb2 receptor gene expression.

    PubMed

    Robertson, James M; Achua, Justin K; Smith, Justin P; Prince, Melissa A; Staton, Clarissa D; Ronan, Patrick J; Summers, Tangi R; Summers, Cliff H

    2017-04-07

    Anxiety is differentially expressed across a continuum of stressful/fearful intensity, influenced endocannabinoid systems and receptors. The hippocampus plays important roles in the regulation of affective behavior, emotion, and anxiety, as well as memory. Location of Cb1/Cb2 receptor action could be important in determining emotional valence, because while the dorsal hippocampus is involved in spatial memory and cognition, the ventral hippocampus has projections to the PFC, BNST, amygdala, and HPA axis, and is important for emotional responses to stress. During repeated social defeat in a Stress-Alternatives Model arena (SAM; an oval open field with escape portals only large enough for smaller mice), smaller C57BL6/N mice are subject to fear conditioning (tone=CS), and attacked by novel larger aggressive CD1 mice (US) over four daily (5min) trials. Each SAM trial presents an opportunity for escape or submission, with stable behavioral responses established by the second day of interaction. Additional groups had access to a running wheel. Social aggression plus fear conditioning stimulates enhanced Cb2 receptor gene expression in the dorsal CA1, dorsal and ventral dentate gyrus subregions in animals displaying a submissive behavioral phenotype. Escape behavior is associated with reduced Cb2 expression in the dorsal CA1 region, with freezing and escape latency correlated with mRNA levels. Escaping and submitting animals with access to running wheels had increased Cb2 mRNA in dorsal DG/CA1. These results suggest that the Cb2 receptor system is rapidly induced during anxiogenic social interactions plus fear conditioning or exercise; with responses potentially adaptive for coping mechanisms.

  8. Characterization of dopamine D1 and D2 receptor-expressing neurons in the mouse hippocampus.

    PubMed

    Gangarossa, Giuseppe; Longueville, Sophie; De Bundel, Dimitri; Perroy, Julie; Hervé, Denis; Girault, Jean-Antoine; Valjent, Emmanuel

    2012-12-01

    The hippocampal formation is part of an anatomical system critically involved in learning and memory. Increasing evidence suggests that dopamine plays an important role in learning and memory as well as in several forms of synaptic plasticity. However, the precise identification of neuronal populations expressing D1 or D2 dopamine receptors within the hippocampus is still lacking. To clarify this issue, we used BAC transgenic mice expressing enhanced green fluorescent protein (EGFP) under the control of the promoter of dopamine D1 or D2 receptors. In Drd1a-EGFP mice, sparse GFP-expressing neurons were detected among glutamatergic projecting neurons of the granular layer of the dentate gyrus and GABAergic interneurons located in the hilus. A dense immunofluorescence was observed in the outer and medial part of the molecular layer of the dentate gyrus as well as in the inner part of the molecular layer of CA1 corresponding to the terminals of pyramidal neurons of the entorhinal cortex defining the perforant and the temporo-ammonic pathway respectively. Finally, scattered D1 receptor-expressing neurons were also identified as GABAergic interneurons in the CA3/CA1 fields of the hippocampus. In Drd2-EGFP transgenic mice, GFP was exclusively detected in the glutamatergic mossy cells located in the polymorphic layer of the dentate gyrus. This pattern was confirmed in Drd2-Cre mice crossed with NLS-LacZ-Tau(mGFP) :LoxP and RCE:LoxP reporter lines. Our results demonstrate that D1 and D2 receptor-expressing neurons are strictly segregated in the mouse hippocampus. By clarifying the identity of D1 and D2 receptor-expressing neurons in the hippocampus, this study establishes a basis for future investigations aiming at elucidating their roles in the hippocampal network.

  9. Expression of alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein and scavenger receptor in human atherosclerotic lesions.

    PubMed Central

    Luoma, J; Hiltunen, T; Särkioja, T; Moestrup, S K; Gliemann, J; Kodama, T; Nikkari, T; Ylä-Herttuala, S

    1994-01-01

    Macrophage- and smooth muscle cell (SMC)-derived foam cells are typical constituents of human atherosclerotic lesions. At least three receptor systems have been characterized that could be involved in the development of foam cells: alpha 2-macroglobulin receptor/LDL receptor-related protein (alpha 2 MR/LRP), scavenger receptor, and LDL receptor. We studied the expression of these receptors in human atherosclerotic lesions with in situ hybridization and immunocytochemistry. An abundant expression of alpha 2MR/LRP mRNA and protein was found in SMC and macrophages in both early and advanced lesions in human aortas. alpha 2MR/LRP was also present in SMC in normal aortas. Scavenger receptor mRNA and protein were expressed in lesion macrophages but no expression was found in lesion SMC. LDL receptor was absent from the lesion area but was expressed in some aortas in medial SMC located near the adventitial border. The results demonstrate that (a) alpha 2MR/LRP is, so far, the only lipoprotein receptor expressed in lesions SMC in vivo; (b) scavenger receptors are expressed only in lesion macrophages; and (c) both receptors may play important roles in the development of human atherosclerotic lesions. Images PMID:8182133

  10. Leptin receptor expression during the progression of endometrial carcinoma is correlated with estrogen and progesterone receptors

    PubMed Central

    Méndez-López, Luis Fernando; Zavala-Pompa, Angel; Cortés-Gutiérrez, Elva I.; Cerda-Flores, Ricardo M.

    2016-01-01

    Introduction The hormone leptin, which is produced in the adipose tissue, may influence tumorigenesis directly via its receptor (Ob-R). Thus, a role for Ob-R in endometrial carcinogenesis has been proposed. However, most studies neither included samples of the entire histological progression of endometrial carcinoma nor examined Ob-R jointly with the estrogen and progesterone receptors (ER and PR, respectively). Material and methods To determine the fluctuations of Ob-R, ER, and PR during the histological progression of endometrial carcinoma, we assessed their expression via immunohistochemistry (IHC) in six histological types of endometrium (proliferative, secretory, nonatypical and atypical hyperplasia, and endometrioid and nonendometrioid endometrial carcinoma), in which we performed histopathological and digital scoring for the quantification of receptors. Results We found that Ob-R expression was positively correlated with that of ER and PR (r = 1, p < 0.001; r = 0.943, p < 0.005, respectively), and there was a significant difference in Ob-R expression among proliferative normal endometrium, hyperplasias, and carcinomas, according to their relative digitally scored Ob-R expression (p < 0.001). In addition, we observed that Ob-R expression in the secretory endometrium was more similar to that of carcinomas than to its proliferative counterpart. Conclusions These results indicate that Ob-R expression fluctuates during endometrial carcinogenesis in correlation with ER and PR, suggesting that Ob-R expression in vivo is highly dependent on estrogen and progesterone activities in the endometrium and on its ER and PR status, as suggested previously by in vitro studies. PMID:28144276

  11. Expression of Estrogen Receptor Alpha in Malignant Melanoma

    PubMed Central

    Rajabi, Parvin; Bagheri, Marzieh; Hani, Mohsen

    2017-01-01

    Background: Features of malignant melanoma (MM) vary in the different geographic regions of the world. This may be attributable to environmental, ethnic, and genetic factors. The aim of this study was to determine the expression of estrogen receptor alpha (ER-α) in MM in Isfahan, Iran. Materials and Methods: This study was planned as a descriptive, analytical, cross-sectional investigation. During this study, paraffin-embedded tissue blocks of patients with a histopathologic diagnosis of MM was studied for ER-α using immunohistochemistry (IHC). Results: In this study, 38 patients (female/male; 20/18) with a definite diagnosis of malignant cutaneous melanoma and mean age of 52.4 ± 11.2 years were investigated. Using envision IHC staining, there were not any cases with ER-α expression. Conclusion: In confirmation to the most previous studies, expression of ER-α was negative in MM. It is recommended to investigate the expression of estrogen receptor beta and other markers in MM. PMID:28299306

  12. Expression of cloned α6* nicotinic acetylcholine receptors.

    PubMed

    Wang, Jingyi; Kuryatov, Alexander; Lindstrom, Jon

    2015-09-01

    Nicotinic acetylcholine receptors (AChRs) are ACh-gated ion channels formed from five homologous subunits in subtypes defined by their subunit composition and stoichiometry. Some subtypes readily produce functional AChRs in Xenopus oocytes and transfected cell lines. α6β2β3* AChRs (subtypes formed from these subunits and perhaps others) are not easily expressed. This may be because the types of neurons in which they are expressed (typically dopaminergic neurons) have unique chaperones for assembling α6β2β3* AChRs, especially in the presence of the other AChR subtypes. Because these relatively minor brain AChR subtypes are of major importance in addiction to nicotine, it is important for drug development as well as investigation of their functional properties to be able to efficiently express human α6β2β3* AChRs. We review the issues and progress in expressing α6* AChRs. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'.

  13. Hypoxia Selectively Enhances Integrin Receptor Expression to Promote Metastasis.

    PubMed

    Ju, Julia A; Godet, Ines; Ye, I Chae; Byun, Jungmin; Jayatilaka, Hasini; Lee, Sun Joo; Xiang, Lisha; Samanta, Debangshu; Lee, Meng Horng; Wu, Pei-Hsun; Wirtz, Denis; Semenza, Gregg L; Gilkes, Daniele M

    2017-02-17

    Metastasis is the leading cause of breast cancer (BCa)mortality. Previous studies have implicated hypoxia-induced changes in the composition and stiffness of the extracellular matrix (ECM) in the metastatic process. Therefore, the contribution of potential ECM binding receptors in this process was explored. Using a bioinformatics approach the expression of all integrin receptor subunits, in two independent BCa patient data sets, were analyzed to determine if integrin status correlates with a validated hypoxiainducible gene signature. Subsequently, a large panel of breast cancer cell lines were used to validate that hypoxia induces the expression of integrin's that bind to collagen (ITGA1, ITGA11, ITGB1) and fibronectin (ITGA5, ITGB1). Hypoxia-inducible factors (HIF-1 and HIF-2) are directly required for ITGA5 induction under hypoxic conditions, which leads to enhanced migration and invasion of single cells within a multicellular 3D tumor spheroid but did not affect migration in a 2D microenvironment. ITGB1 expression requires HIF-1alpha, but not HIF-2alpha, for hypoxic induction in breast cancer cells. ITGA5 (alpha5 subunit) is required for metastasis to lymph nodes and lungs in breast cancer models and high ITGA5 expression in clinical biopsies is associated with an increased risk of mortality.

  14. Cyclic AMP-receptor protein activates aerobactin receptor IutA expression in Vibrio vulnificus.

    PubMed

    Kim, Choon-Mee; Kim, Seong-Jung; Shin, Sung-Heui

    2012-04-01

    The ferrophilic bacterium Vibrio vulnificus can utilize the siderophore aerobactin of Escherichia coli for iron acquisition via its specific receptor IutA. This siderophore piracy by V. vulnificus may contribute to its survival and proliferation, especially in mixed bacterial environments. In this study, we examined the effects of glucose, cyclic AMP (cAMP), and cAMP-receptor protein (Crp) on iutA expression in V. vulnificus. Glucose dose-dependently repressed iutA expression. A mutation in cya encoding adenylate cyclase required for cAMP synthesis severely repressed iutA expression, and this change was recovered by in trans complementing cya or the addition of exogenous cAMP. Furthermore, a mutation in crp encoding Crp severely repressed iutA expression, and this change was recovered by complementing crp. Accordingly, glucose deprivation under iron-limited conditions is an environmental signal for iutA expression, and Crp functions as an activator that regulates iutA expression in response to glucose availability.

  15. Endothelial glucocorticoid receptor suppresses atherogenesis- Brief Report

    PubMed Central

    Zhang, Xinbo; Rotllan, Noemi; Feng, Yan; Zhou, Han; Fernández-Hernando, Carlos; Yu, Jun; Sessa, William C.

    2015-01-01

    Objective The purpose of this study was to determine the role of the endothelial glucocorticoid receptor in the pathogenesis of atherosclerosis. Approach and Results Control mice and mice lacking the endothelial glucocorticoid receptor were bred onto an Apoe knockout background and subjected to high-fat diet feeding for 12 weeks. Assessment of body weight and total cholesterol and triglycerides before and after the diet revealed no differences between the two groups of mice. However, mice lacking the endothelial glucocorticoid receptor developed more severe atherosclerotic lesions in the aorta, brachiocephalic artery and aortic sinus as well as a heightened inflammatory milieu as evidence by increased macrophage recruitment in the lesions. Conclusions These data suggest the endothelial glucocorticoid receptor is important for tonic inhibition of inflammation and limitation of atherosclerosis progression in this model. PMID:25810297

  16. The Glycophosphatidylinositol Anchor of the MCMV Evasin, m157, Facilitates Optimal Cell Surface Expression and Ly49 Receptor Recognition

    PubMed Central

    Carlin, Lindsey E.; Guseva, Natalya V.; Shey, Michael R.; Ballas, Zuhair K.; Heusel, Jonathan W.

    2013-01-01

    The murine cytomegalovirus-encoded protein m157 is a cognate ligand for both inhibitory and activating receptors expressed by natural killer cells. Additionally, m157 is expressed on the surface of infected cells by a glycophosphatidylinositol (GPI) anchor. Although endogenous GPI-anchored proteins are known to be ligands for the NK cell receptor, NKG2D, the contribution of the GPI anchor for viral m157 ligand function is unknown. To determine whether the GPI anchor for m157 is dispensable for m157 function, we generated m157 variants expressed as transmembrane fusion proteins and tested cells expressing transmembrane m157 for the capacity to activate cognate Ly49 receptors. We found that the GPI anchor is required for high-level cell surface expression of m157, and that the transmembrane m157 ligand retains the capacity to activate reporter cells and NK cells expressing Ly49H, as well as Ly49I129 reporter cells, but with reduced potency. Importantly, target cells expressing the transmembrane form of m157 were killed less efficiently and failed to mediate Ly49H receptor downregulation on fresh NK cells compared to targets expressing GPI-anchored m157. Taken together, these results show that the GPI anchor for m157 facilitates robust cell surface expression, and that NK cells are sensitive to the altered cell surface expression of this potent viral evasin. PMID:23840655

  17. Peroxisome proliferator-activated receptor {alpha} agonist-induced down-regulation of hepatic glucocorticoid receptor expression in SD rats

    SciTech Connect

    Chen Xiang; Li Ming; Sun Weiping; Bi Yan; Cai Mengyin; Liang Hua; Yu Qiuqiong; He Xiaoying; Weng Jianping

    2008-04-18

    It was reported that glucocorticoid production was inhibited by fenofibrate through suppression of type-1 11{beta}-hydroxysteroid dehydrogenase gene expression in liver. The inhibition might be a negative-feedback regulation of glucocorticoid receptor (GR) activity by peroxisome proliferator-activated receptor alpha (PPAR{alpha}), which is quickly induced by glucocorticoid in the liver. However, it is not clear if GR expression is changed by fenofibrate-induced PPAR{alpha} activation. In this study, we tested this possibility in the liver of Sprague-Dawley rats. GR expression was reduced by fenofibrate in a time- and does-dependent manner. The inhibition was observed in liver, but not in fat and muscle. The corticosterone level in the blood was increased significantly by fenofibrate. These effects of fenofibrate were abolished by PPAR{alpha} inhibitor MK886, suggesting that fenofibrate activated through PPAR{alpha}. In conclusion, inhibition of GR expression may represent a new molecular mechanism for the negative feedback regulation of GR activity by PPAR{alpha}.

  18. Human platelets express authentic CB₁ and CB₂ receptors.

    PubMed

    Catani, M V; Gasperi, V; Catanzaro, G; Baldassarri, S; Bertoni, A; Sinigaglia, F; Avigliano, L; Maccarrone, M

    2010-11-01

    In the last decade, the neurovascular effects exerted by endocannabinoids (eCBs) have attracted growing interest, because they hold the promise to open new avenues of therapeutic intervention against major causes of death in Western society. Several actions of eCBs are mediated by type-1 (CB₁) or type-2 (CB₂) cannabinoid receptors, yet there is no clear evidence of the presence of these proteins in platelets. To demonstrate that CB₁ and CB₂ are expressed in human platelets, we analyzed their protein level by Western blotting and ELISA, visualized their cellular localization by confocal microscopy, and ascertained their functionality by binding assays. We found that CB₁, and to a lesser extent CB₂, are expressed in highly purified human platelets. Both receptor subtypes were predominantly localized inside the cell, thus explaining why they might remain undetected in preparations of plasma membranes. The identification of authentic CB₁ and CB₂ in human platelets supports the potential exploitation of selective agonists or antagonists of these receptors as novel therapeutics to combat neurovascular disorders. It seems remarkable that some of these substances have been already used in humans to treat disease states.

  19. Acromegaly: molecular expression of somatostatin receptor subtypes and treatment outcome.

    PubMed

    Bronstein, Marcello D

    2006-01-01

    About a third of acromegalic patients are resistant to the currently commercially available somatostatin analogs (SA) octreotide and lanreotide. Such resistance is related to an overall reduction of somatostatin receptor (SSTR) density or to a differentiated expression of SSTR subtypes. There are five known SSTR subtypes. SSTR2 and SSTR5 are usually expressed in GH-secreting pituitary tumors, and both octreotide and lanreotide bind preferentially to SSTR2 and, to a lesser extent, to SSTR5. SA inhibitory effects on GH secretion and tumor cell proliferation can occur together or be dissociated events, depending on the tumor expression of SSTR subtypes involved in each mechanism. The development of specific somatostatin subtypes analogs, mainly for SSTR5, of a SSTR2-SSTR5 bispecific compound, and of a "universal" analog with high affinity to SSTR1, 2, 3, and 5 showed preliminary, albeit promising results for the treatment of resistant somatotropic adenomas.

  20. Selective prostacyclin receptor agonism augments glucocorticoid-induced gene expression in human bronchial epithelial cells.

    PubMed

    Wilson, Sylvia M; Shen, Pamela; Rider, Christopher F; Traves, Suzanne L; Proud, David; Newton, Robert; Giembycz, Mark A

    2009-11-15

    Prostacyclin receptor (IP-receptor) agonists display anti-inflammatory and antiviral activity in cell-based assays and in preclinical models of asthma and chronic obstructive pulmonary disease. In this study, we have extended these observations by demonstrating that IP-receptor activation also can enhance the ability of glucocorticoids to induce genes with anti-inflammatory activity. BEAS-2B bronchial epithelial cells stably transfected with a glucocorticoid response element (GRE) luciferase reporter were activated in a concentration-dependent manner by the glucocorticoid dexamethasone. An IP-receptor agonist, taprostene, increased cAMP in these cells and augmented luciferase expression at all concentrations of dexamethasone examined. Analysis of the concentration-response relationship that described this effect showed that taprostene increased the magnitude of transcription without affecting the potency of dexamethasone and was, thus, steroid-sparing in this simple system. RO3244794, an IP-receptor antagonist, and oligonucleotides that selectively silenced the IP-receptor gene, PTGIR, abolished these effects of taprostene. Infection of BEAS-2B GRE reporter cells with an adenovirus vector encoding a highly selective inhibitor of cAMP-dependent protein kinase (PKA) also prevented taprostene from enhancing GRE-dependent transcription. In BEAS-2B cells and primary cultures of human airway epithelial cells, taprostene and dexamethasone interacted either additively or cooperatively in the expression of three glucocorticoid-inducible genes (GILZ, MKP-1, and p57(kip2)) that have anti-inflammatory potential. Collectively, these data show that IP-receptor agonists can augment the ability of glucocorticoids to induce anti-inflammatory genes in human airway epithelial cells by activating a cAMP/PKA-dependent mechanism. This observation may have clinical relevance in the treatment of airway inflammatory diseases that are either refractory or respond suboptimally to

  1. Structure-activity studies with endogenous allatostatins from Periplaneta americana: expressed receptor compared with functional bioassay.

    PubMed

    Gäde, Gerd; Marco, Heather G; Richter, Dietmar; Weaver, Robert J

    2008-06-01

    The A-allatostatins (F/YXFGLamides) are insect neuropeptides with inhibitory actions on juvenile hormone (JH) synthesis, muscular contraction and vitellogenesis. They exist in multiple forms within each species. In the cockroach, Periplaneta americana, only one receptor for A-allatostatin has been identified thus far. Here, we have characterised the receptor response to all 15 of the endogenous A-allatostatins encoded by the P. americana allatostatin prohormone gene, together with some analogues, using an indirect heterologous system involving co-expression of the receptor and a potassium channel subunit in Xenopus laevis oocytes and electrophysiological measurements. We have also determined the relative potency of the same peptides to inhibit JH synthesis in corpora allata. Our data reveal that the heterologously expressed receptor responds to all of the endogenous allatostatins and, although differences in potency are recorded, this cannot readily be related to particular differences in the primary structure of the peptides. Similarly, all allatostatins act on the corpora allata to inhibit the synthesis of JH, again with varying potency not readily related to peptide structure. Interestingly, some of the peptides did not perform consistently across the two assays. We show that the receptor is widely expressed in adult P. americana tissues (head, retrocerebral glands, fat body, ovary, male accessory gland, gut, leg muscle, Malpighian tubule and nerve cord) as well as in early larval instars. The spatial expression supports the known pleiotropic activity of allatostatins and role as a paracrine effector. This is the first report of such a detailed characterisation of an invertebrate receptor for allatostatin.

  2. Human formyl peptide receptor ligand binding domain(s). Studies using an improved mutagenesis/expression vector reveal a novel mechanism for the regulation of receptor occupancy.

    PubMed

    Perez, H D; Vilander, L; Andrews, W H; Holmes, R

    1994-09-09

    Recently, we reported the domain requirements for the binding of formyl peptide to its specific receptor. Based on experiments using receptor chimeras, we also postulated an importance for the amino-terminal domain of the receptor in ligand binding (Perez, H. D., Holmes, R., Vilander, L., Adams, R., Manzana, W., Jolley, D., and Andrews, W. H. (1993) J. Biol. Chem. 268, 2292-2295). We have begun to perform a detailed analysis of the regions within the formyl peptide receptor involved in ligand binding. To address the importance of the receptor amino-terminal domain, we substituted (or inserted) hydrophilic sequences within the amino-terminal domain, expressed the receptors, and determined their ability to bind ligand. A stretch of nine amino acids next to the initial methionine was identified as crucial for receptor occupancy. A peptide containing such a sequence specifically completed binding of the ligand to the receptor. Alanine screen mutagenesis of the second extracellular domain also identified amino acids involved in ligand binding as well as a disulfide bond (Cys98 to Cys176) crucial for maintaining the binding pocket. These studies provide evidence for a novel mechanism involved in regulation of receptor occupancy. Binding of the ligand induces conformational changes in the receptor that result in the apposition of the amino-terminal domain over the ligand, providing a lid to the binding pocket.

  3. NMDA receptor subunit expression and PAR2 receptor activation in colospinal afferent neurons (CANs) during inflammation induced visceral hypersensitivity

    PubMed Central

    Suckow, Shelby K; Caudle, Robert M

    2009-01-01

    Background Visceral hypersensitivity is a clinical observation made when diagnosing patients with functional bowel disorders. The cause of visceral hypersensitivity is unknown but is thought to be attributed to inflammation. Previously we demonstrated that a unique set of enteric neurons, colospinal afferent neurons (CANs), co-localize with the NR1 and NR2D subunits of the NMDA receptor as well as with the PAR2 receptor. The aim of this study was to determine if NMDA and PAR2 receptors expressed on CANs contribute to visceral hypersensitivity following inflammation. Recently, work has suggested that dorsal root ganglion (DRG) neurons expressing the transient receptor potential vanilloid-1 (TRPV1) receptor mediate inflammation induced visceral hypersensitivity. Therefore, in order to study CAN involvement in visceral hypersensitivity, DRG neurons expressing the TRPV1 receptor were lesioned with resiniferatoxin (RTX) prior to inflammation and behavioural testing. Results CANs do not express the TRPV1 receptor; therefore, they survive following RTX injection. RTX treatment resulted in a significant decrease in TRPV1 expressing neurons in the colon and immunohistochemical analysis revealed no change in peptide or receptor expression in CANs following RTX lesioning as compared to control data. Behavioral studies determined that both inflamed non-RTX and RTX animals showed a decrease in balloon pressure threshold as compared to controls. Immunohistochemical analysis demonstrated that the NR1 cassettes, N1 and C1, of the NMDA receptor on CANs were up-regulated following inflammation. Furthermore, inflammation resulted in the activation of the PAR2 receptors expressed on CANs. Conclusion Our data show that inflammation causes an up-regulation of the NMDA receptor and the activation of the PAR2 receptor expressed on CANs. These changes are associated with a decrease in balloon pressure in response to colorectal distension in non-RTX and RTX lesioned animals. Therefore

  4. NMDA receptor subunit expression and PAR2 receptor activation in colospinal afferent neurons (CANs) during inflammation induced visceral hypersensitivity.

    PubMed

    Suckow, Shelby K; Caudle, Robert M

    2009-09-22

    Visceral hypersensitivity is a clinical observation made when diagnosing patients with functional bowel disorders. The cause of visceral hypersensitivity is unknown but is thought to be attributed to inflammation. Previously we demonstrated that a unique set of enteric neurons, colospinal afferent neurons (CANs), co-localize with the NR1 and NR2D subunits of the NMDA receptor as well as with the PAR2 receptor. The aim of this study was to determine if NMDA and PAR2 receptors expressed on CANs contribute to visceral hypersensitivity following inflammation. Recently, work has suggested that dorsal root ganglion (DRG) neurons expressing the transient receptor potential vanilloid-1 (TRPV1) receptor mediate inflammation induced visceral hypersensitivity. Therefore, in order to study CAN involvement in visceral hypersensitivity, DRG neurons expressing the TRPV1 receptor were lesioned with resiniferatoxin (RTX) prior to inflammation and behavioural testing. CANs do not express the TRPV1 receptor; therefore, they survive following RTX injection. RTX treatment resulted in a significant decrease in TRPV1 expressing neurons in the colon and immunohistochemical analysis revealed no change in peptide or receptor expression in CANs following RTX lesioning as compared to control data. Behavioral studies determined that both inflamed non-RTX and RTX animals showed a decrease in balloon pressure threshold as compared to controls. Immunohistochemical analysis demonstrated that the NR1 cassettes, N1 and C1, of the NMDA receptor on CANs were up-regulated following inflammation. Furthermore, inflammation resulted in the activation of the PAR2 receptors expressed on CANs. Our data show that inflammation causes an up-regulation of the NMDA receptor and the activation of the PAR2 receptor expressed on CANs. These changes are associated with a decrease in balloon pressure in response to colorectal distension in non-RTX and RTX lesioned animals. Therefore, these data suggest that CANs

  5. Folate Receptor α Expression Level Correlates With Histologic Grade in Lung Adenocarcinoma.

    PubMed

    Driver, Brandon R; Barrios, Roberto; Ge, Yimin; Haque, Abida; Tacha, David; Cagle, Philip T

    2016-07-01

    -Folate receptor α (FRA) is a glycosylphosphatidylinositol-anchored high-affinity folate receptor that localizes to the apical surface of epithelia when it is expressed in normal tissue. Unlike normal tissues, FRA may localize to the basolateral side in tumors. These features make FRA an attractive drug target, and several FRA-targeted drugs have been developed and are in phases of clinical testing. Folate receptor α protein expression shows intertumoral variability that may correlate with response to therapy and to clinicopathologic parameters. Using immunohistochemistry, a recent study of breast carcinomas found FRA protein expression was associated with triple-negative status and high histologic grade in breast cancer. Although a prior study of lung adenocarcinomas found the expression level of the gene encoding FRA, FOLR1, was significantly increased in low-histologic-grade tumors compared to high-histologic-grade tumors, the relationship between FRA protein expression and histologic grade has not been reported for lung adenocarcinomas. -To investigate the relationship between FRA protein expression level and clinicopathologic parameters in lung adenocarcinomas, including histologic grade, by performing immunohistochemistry for FRA on a cohort of non-small cell lung carcinomas. -High-density tissue microarrays constructed from 188 non-small cell lung carcinomas and used in prior studies were immunostained with FRA-specific antibody clone 26B3. Folate receptor α membranous staining intensity was given a semiquantitative score from 0 to 3+ for triplicate cores of tumor and averaged for each tumor. An average semiquantitative score from 0 to 1.4 was considered low expression, and an average semiquantitative score greater than 1.4 was considered high expression. -The majority (60 of 78; 77%) of lung adenocarcinomas and a minority (4 of 41; 10%) of lung squamous cell carcinomas were positive for FRA. Folate receptor α expression in lung adenocarcinomas compared

  6. Anatomical profiling of G protein-coupled receptor expression

    PubMed Central

    Regard, Jean B.; Sato, Isaac T.; Coughlin, Shaun R.

    2008-01-01

    Summary G protein-coupled receptors (GPCRs) comprise the largest family of transmembrane signaling molecules and regulate a host of physiological and disease processes. To better understand the functions of GPCRs in vivo, we quantified transcript levels of 353 non-odorant GPCRs in 41 adult mouse tissues. Cluster analysis placed many GPCRs into anticipated anatomical and functional groups and predicted novel roles for less studied receptors. From one such prediction, we showed that the Gpr91 ligand succinate can regulate lipolysis in white adipose tissue suggesting that signaling by this citric acid cycle intermediate may regulate energy homeostasis. We also showed that pairwise analysis of GPCR expression across tissues may help predict drug side effects. This resource will aid studies to understand GPCR function in vivo and may assist in the identification of therapeutic targets. PMID:18984166

  7. Molecular Cooperativity Governs Diverse and Monoallelic Olfactory Receptor Expression

    NASA Astrophysics Data System (ADS)

    Xing, Jianhua; Tian, Xiaojun; Zhang, Hang; Sannerud, Jens

    Multiple-objective optimization is common in biological systems. In the mammalian olfactory system, each sensory neuron stochastically expresses only one out of up to thousands of olfactory receptor (OR) gene alleles; at organism level the types of expressed ORs need to be maximized. The molecular mechanism of this Nobel-Prize winning puzzle remains unresolved after decades of extensive studies. Existing models focus only on monoallele activation, and cannot explain recent observations in mutants, especially the reduced global diversity of expressed ORs in G9a/GLP knockouts. In this work we integrated existing information on OR expression, and proposed an evolutionarily optimized three-layer regulation mechanism, which includes zonal segregation, epigenetic and enhancer competition coupled to a negative feedback loop. This model not only recapitulates monoallelic OR expression, but also elucidates how the olfactory system maximizes and maintains the diversity of OR expression. The model is validated by several experimental results, and particularly underscores cooperativity and synergy as a general design principle of multi-objective optimization in biology. The work is supported by the NIGMS/DMS Mathematical Biology program.

  8. Downregulation of transferrin receptor surface expression by intracellular antibody

    SciTech Connect

    Peng Jilin; Wu Sha; Zhao Xiaoping; Wang Min; Li Wenhan; Shen Xin; Liu Jing; Lei Ping; Zhu Huifen; Shen Guanxin . E-mail: guanxin_shen@yahoo.com.cn

    2007-03-23

    To deplete cellular iron uptake, and consequently inhibit the proliferation of tumor cells, we attempt to block surface expression of transferrin receptor (TfR) by intracellular antibody technology. We constructed two expression plasmids (scFv-HAK and scFv-HA) coding for intracellular single-chain antibody against TfR with or without endoplasmic reticulum (ER) retention signal, respectively. Then they were transfected tumor cells MCF-7 by liposome. Applying RT-PCR, Western blotting, immunofluorescence microscopy and immunoelectron microscope experiments, we insure that scFv-HAK intrabody was successfully expressed and retained in ER contrasted to the secreted expression of scFv-HA. Flow cytometric analysis confirmed that the TfR surface expression was markedly decreased approximately 83.4 {+-} 2.5% in scFv-HAK transfected cells, while there was not significantly decrease in scFv-HA transfected cells. Further cell growth and apoptosis characteristics were evaluated by cell cycle analysis, nuclei staining and MTT assay. Results indicated that expression of scFv-HAK can dramatically induce cell cycle G1 phase arrest and apoptosis of tumor cells, and consequently significantly suppress proliferation of tumor cells compared with other control groups. For First time this study demonstrates the potential usage of anti-TfR scFv-intrabody as a growth inhibitor of TfR overexpressing tumors.

  9. Expression of T cell antigen receptor during differentiation

    SciTech Connect

    Allison, J.P.; Lanier, L.L.; Guyden, J.; Richie, E.R.

    1986-03-01

    The authors have used flow cytometry with monoclonal antibodies, radioimmuneprecipitation with a rabbit antiserum to common epitopes of the TCR, and Northern and Southern blot analysis with cloned TCR genes to study antigen receptor (TCR) expression by normal murine and human thymocytes and by primary murine thymomas. L3T4-,Lyt2- murine thymomas corresponding to the earliest stage of thymic differentiation, were found to have rearranged TCR beta genes, and to express low levels of beta transcript, but lacked alpha gene transcript and failed to express TCR on the cell surface. L3T4+,Lyt2+ thymomas were variable, but the majority were found to contain significant levels of both alpha and beta transcripts and to express TCR at the cell surface. Similarly, alpha and beta transcripts and TCR protein were detected in sorted L3T4+,Lyt2+ murine thymocytes. Using three color fluorescence, the authors determined that app. 70% of human T4+T8+ thymocytes also expressed T3, a component of the TCR complex. These data indicate that in mouse and man expression of TCR occurs in the immature, or cortical, thymic population.

  10. Modulation of Progesterone Receptor Isoform Expression in Pregnant Human Myometrium

    PubMed Central

    2017-01-01

    Background. Regulation of myometrial progesterone receptor (PR) expression is an unresolved issue central to understanding the mechanism of functional progesterone withdrawal and initiation of labor in women. Objectives. To determine whether pregnant human myometrium undergoes culture-induced changes in PR isoform expression ex situ and, further, to determine if conditions approaching the in vivo environment stabilise PR isoform expression in culture. Methods. Term nonlaboring human myometrial tissues were cultured under specific conditions: serum supplementation, steroids, stretch, cAMP, PMA, PGF2α, NF-κB inhibitors, or TSA. Following 48 h culture, PR-T, PR-A, and PR-B mRNA levels were determined using qRT-PCR. PR-A/PR-B ratios were calculated. Results. PR-T and PR-A expression and the PR-A/PR-B ratio significantly increased in culture. Steroids prevented the culture-induced increase in PR-T and PR-A expression. Stretch blocked the effects of steroids on PR-T and PR-A expression. PMA further increased the PR-A/PR-B ratio, while TSA blocked culture-induced increases of PR-A expression and the PR-A/PR-B ratio. Conclusion. Human myometrial tissue in culture undergoes changes in PR gene expression consistent with transition toward a laboring phenotype. TSA maintained the nonlaboring PR isoform expression pattern. This suggests that preserving histone and/or nonhistone protein acetylation is critical for maintaining the progesterone dependent quiescent phenotype of human myometrium in culture. PMID:28540297

  11. G-protein coupled receptor expression patterns delineate medulloblastoma subgroups

    PubMed Central

    2013-01-01

    Background Medulloblastoma is the most common malignant brain tumor in children. Genetic profiling has identified four principle tumor subgroups; each subgroup is characterized by different initiating mutations, genetic and clinical profiles, and prognoses. The two most well-defined subgroups are caused by overactive signaling in the WNT and SHH mitogenic pathways; less is understood about Groups 3 and 4 medulloblastoma. Identification of tumor subgroup using molecular classification is set to become an important component of medulloblastoma diagnosis and staging, and will likely guide therapeutic options. However, thus far, few druggable targets have emerged. G-protein coupled receptors (GPCRs) possess characteristics that make them ideal targets for molecular imaging and therapeutics; drugs targeting GPCRs account for 30-40% of all current pharmaceuticals. While expression patterns of many proteins in human medulloblastoma subgroups have been discerned, the expression pattern of GPCRs in medulloblastoma has not been investigated. We hypothesized that analysis of GPCR expression would identify clear subsets of medulloblastoma and suggest distinct GPCRs that might serve as molecular targets for both imaging and therapy. Results Our study found that medulloblastoma tumors fall into distinct clusters based solely on GPCR expression patterns. Normal cerebellum clustered separately from the tumor samples. Further, two of the tumor clusters correspond with high fidelity to the WNT and SHH subgroups of medulloblastoma. Distinct over-expressed GPCRs emerge; for example, LGR5 and GPR64 are significantly and uniquely over-expressed in the WNT subgroup of tumors, while PTGER4 is over-expressed in the SHH subgroup. Uniquely under-expressed GPCRs were also observed. Our key findings were independently validated using a large international dataset. Conclusions Our results identify GPCRs with potential to act as imaging and therapeutic targets. Elucidating tumorigenic pathways

  12. Expression of endothelin receptors in frog, chicken, mouse and human pigment cells.

    PubMed

    Scarparo, Ana Cristina; Isoldi, Mauro César; de Lima, Leonardo Henrique Ribeiro Graciani; Visconti, Maria Aparecida; Castrucci, Ana Maria de Lauro

    2007-07-01

    Several reports have shown the participation of vasoactive endothelins (ETs) in the regulation of vertebrate pigment cells. In the present study, we identified ET receptors in pigment cells of vertebrate species by RT-PCR assays, and compared the differential expression of the various subtypes in each species by quantitative PCR. RT-PCR was performed with specific primers for ETC, ETA(X) or ETA in Xenopus laevis melanophores, ETA or ETB(2) in chicken melanocytes, ETA or ETB in murine (B-16, S-91 or Melan-A) or human (SK-Mel 23 or SK-Mel 28) melanoma cells, and the products obtained were confirmed by cloning and sequencing. The results showed the presence of ETA(X), but not ETA mRNA, and confirmed the expression of ETC in X. laevis melanophores. ETA and ETB(2) mRNAs were also demonstrated in chicken melanocytes. ETA and ETB receptor were identified in S-91, B16 and Melan-A murine cells. In human melanoma cells, SK-Mel 23 and SK-Mel 28, we confirmed the presence of ETB mRNA, and also found ETA mRNA. The comparison between the two subtypes present in the pigment cell of each species and among species demonstrated that the expression of ETAs in chicken, mouse, and human melanocytes is negligible, as is the expression of ETA(X) in Xenopus melanophores. The relative expression, as determined by quantitative PCR, was as follows: chicken ETB>SK-Mel 23 ETB>S91 ETB>Xenopus ETC, suggesting that the endothelin system plays a major role in avian and mammalian pigment cell regulation, as compared to lower vertebrates. The phylogenetic analysis revealed that subtype A receptors were probably the most primitive ET receptors, directly deriving from the ancestral type; all the other receptors, B subtypes and C, originated from diverse derivative molecules.

  13. Expression and functional activity of bitter taste receptors in primary renal tubular epithelial cells and M-1 cells.

    PubMed

    Liang, Jie; Chen, Fuxue; Gu, Fu; Liu, Xin; Li, Feng; Du, Dongshu

    2017-04-01

    The kidney is essential in the maintenance of in vivo homeostasis by body fluid and electrolyte conservation and metabolic waste removal. Previously, we reported the expression of a novel G protein family (Tas2rs), which includes bitter taste receptors, in the kidney tubule system, including the nephrons and the collecting duct system. Bitter taste receptors could affect kidney function via Ca(2+) intake. Alkaloids such as phenylthiocarbamide stimulate these receptors and cause an increase in Ca(2+) intake. In this study, we determined the expression of bitter taste receptors in the immature kidney and small intestine and in primary renal epithelial cells and M-1 (collecting tubule cell line) cells, by using QPCR and immunostaining. We found no expression of bitter taste receptors in the immature kidney and small intestine several days after birth; the relative abundance of Tas2rs transcripts varied depending on the developmental stage. Tas2rs were expressed in primary renal epithelial cells and M-1 cells. The traditional Chinese medicinal plant extracts phellodendrine and coptisine caused a rapid rise in intracellular Ca(2+) concentration, which was inhibited by the phospholipase C (PLC) inhibitor U-73122. Thus, phellodendrine and coptisine could change the physiological status of renal cells in vitro by mediation of bitter taste receptors in a PLC-dependent manner. Our results provide new insights on the expression and role of bitter taste receptors in renal development and function.

  14. Regulation of GIP and GLP1 receptor cell surface expression by N-glycosylation and receptor heteromerization.

    PubMed

    Whitaker, Gina M; Lynn, Francis C; McIntosh, Christopher H S; Accili, Eric A

    2012-01-01

    In response to a meal, Glucose-dependent Insulinotropic Polypeptide (GIP) and Glucagon-like Peptide-1 (GLP-1) are released from gut endocrine cells into the circulation and interact with their cognate G-protein coupled receptors (GPCRs). Receptor activation results in tissue-selective pleiotropic responses that include augmentation of glucose-induced insulin secretion from pancreatic beta cells. N-glycosylation and receptor oligomerization are co-translational processes that are thought to regulate the exit of functional GPCRs from the ER and their maintenance at the plasma membrane. Despite the importance of these regulatory processes, their impact on functional expression of GIP and GLP-1 receptors has not been well studied. Like many family B GPCRs, both the GIP and GLP-1 receptors possess a large extracellular N-terminus with multiple consensus sites for Asn-linked (N)-glycosylation. Here, we show that each of these Asn residues is glycosylated when either human receptor is expressed in Chinese hamster ovary cells. N-glycosylation enhances cell surface expression and function in parallel but exerts stronger control over the GIP receptor than the GLP-1 receptor. N-glycosylation mainly lengthens receptor half-life by reducing degradation in the endoplasmic reticulum. N-glycosylation is also required for expression of the GIP receptor at the plasma membrane and efficient GIP potentiation of glucose-induced insulin secretion from the INS-1 pancreatic beta cell line. Functional expression of a GIP receptor mutant lacking N-glycosylation is rescued by co-expressed wild type GLP1 receptor, which, together with data obtained using Bioluminescence Resonance Energy Transfer, suggests formation of a GIP-GLP1 receptor heteromer.

  15. Amylase expression in taste receptor cells of rat circumvallate papillae.

    PubMed

    Merigo, Flavia; Benati, Donatella; Cecchini, Maria Paola; Cristofoletti, Mirko; Osculati, Francesco; Sbarbati, Andrea

    2009-06-01

    The chemical composition of the luminal content is now accepted to have a profound influence on the performance of chemosensory receptors. Gustatory and intestinal chemoreceptors have in common their expression of molecules involved in taste sensing and signal transduction pathways. The recent finding that enterocytes of the duodenal epithelium are capable of expressing luminal pancreatic amylase suggests that taste cells of the gustatory epithelium might, in the same way, express salivary amylase in the oral cavity. Therefore, we investigated amylase expression in rat circumvallate papillae by using analyses involving immunohistochemistry, Western blot, and reverse transcription with the polymerase chain reaction. In addition, we used double-labeling confocal laser microscopy to compare amylase immunolabeling with that of the following markers: protein gene product 9.5 (PGP 9.5) and chromogranin A (CgA) for endocrine cells, alpha-gustducin and phospholipase C beta 2 (PLC beta 2) as taste-signaling molecules, and cystic fibrosis transmembrane regulator (CFTR) and Clara-cell-specific secretory protein of 10-kDa (CC10) as secretory markers. The results showed that amylase was present in some taste bud cells; its immunoreactivity was observed in subsets of cells that expressed CgA, alpha-gustducin, PLC beta 2, CFTR, or CC10. PGP 9.5 immunoreactivity was never colocalized with amylase. The data suggest that amylase-positive cells constitute an additional subset of taste receptor cells also associated with chemoreceptorial and/or secretory molecules, confirming the occurrence of various pathways in taste buds.

  16. ESR1 and PGR polymorphisms are associated with estrogen and progesterone receptor expression in breast tumors.

    PubMed

    Hertz, Daniel L; Henry, N Lynn; Kidwell, Kelley M; Thomas, Dafydd; Goddard, Audrey; Azzouz, Faouzi; Speth, Kelly; Li, Lang; Banerjee, Mousumi; Thibert, Jacklyn N; Kleer, Celina G; Stearns, Vered; Hayes, Daniel F; Skaar, Todd C; Rae, James M

    2016-09-01

    Hormone receptor-positive (HR+) breast cancers express the estrogen (ERα) and/or progesterone (PgR) receptors. Inherited single nucleotide polymorphisms (SNPs) in ESR1, the gene encoding ERα, have been reported to predict tamoxifen effectiveness. We hypothesized that these associations could be attributed to altered tumor gene/protein expression of ESR1/ERα and that SNPs in the PGR gene predict tumor PGR/PgR expression. Formalin-fixed paraffin-embedded breast cancer tumor specimens were analyzed for ESR1 and PGR gene transcript expression by the reverse transcription polymerase chain reaction based Oncotype DX assay and for ERα and PgR protein expression by immunohistochemistry (IHC) and an automated quantitative immunofluorescence assay (AQUA). Germline genotypes for SNPs in ESR1 (n = 41) and PGR (n = 8) were determined by allele-specific TaqMan assays. One SNP in ESR1 (rs9322336) was significantly associated with ESR1 gene transcript expression (P = 0.006) but not ERα protein expression (P > 0.05). A PGR SNP (rs518162) was associated with decreased PGR gene transcript expression (P = 0.003) and PgR protein expression measured by IHC (P = 0.016), but not AQUA (P = 0.054). There were modest, but statistically significant correlations between gene and protein expression for ESR1/ERα and PGR/PgR and for protein expression measured by IHC and AQUA (Pearson correlation = 0.32-0.64, all P < 0.001). Inherited ESR1 and PGR genotypes may affect tumor ESR1/ERα and PGR/PgR expression, respectively, which are moderately correlated. This work supports further research into germline predictors of tumor characteristics and treatment effectiveness, which may someday inform selection of hormonal treatments for patients with HR+ breast cancer.

  17. Identification and expression analyses of a novel serotonin receptor gene, 5-HT2β, in the field cricket, Gryllus bimaculatus.

    PubMed

    Watanabe, T; Aonuma, H

    2012-01-01

    Biogenic amine serotonin (5-HT) modulates various aspects of behaviors such as aggressive behavior and circadian behavior in the cricket. In our previous report, in order to elucidate the molecular basis of the cricket 5-HT system, we identified three genes involved in 5-HT biosynthesis, as well as four 5-HT receptor genes (5-HT1A, 5-HT1B, 5-HT2α, and 5-HT7) expressed in the brain of the field cricket Gryllus bimaculatus DeGeer [7]. In the present study, we identified Gryllus 5-HT2β gene, an additional 5-HT receptor gene expressed in the cricket brain, and examined its tissue-specific distribution and embryonic stage-dependent expression. Gryllus 5-HT2β gene was ubiquitously expressed in the all examined adult tissues, and was expressed during early embryonic development, as well as during later stages. This study suggests functional differences between two 5-HT2 receptors in the cricket.

  18. HDAC5 Inhibits Hepatic Lipogenic Genes Expression by Attenuating the Transcriptional Activity of Liver X Receptor.

    PubMed

    Jia, Hai-Yan; Li, Quan-Zhong; Lv, Li-Fang

    2016-01-01

    Liver X receptor (LXR), a member of the nuclear receptor superfamily, is known to induce the expression of SREBP-1c and ChREBP, two master regulators of hepatic lipogenesis. Histone deacyetylases (HDACs) have been shown to play critical roles in glucose and lipids metabolism. However, the exact role of HDAC5 in lipogenesis remains elusive. mRNA and protein levels of HDAC5 were analyzed by quantitative real-time PCR and Western blots in high-fat-diet-induced and leptin receptor deficiency-induced obese mice. HDAC5 was overexpressed or depleted in HepG2 cells, followed by analysis of cellular triglycerides contents. Quantitative real-time PCR was used to detect the expression levels of lipogenic genes. Luciferase reporter assay was used to determine the regulation of HDAC on the transcriptional activity of LXR. Co-immunoprecipitation experiment was used to determine the interaction between HDAC5 and LXR. We found that mRNA and protein expression levels of hepatic HDAC5 were reduced in high-fat-diet-induced and leptin receptor deficiency-induced obese mice. In vitro studies further demonstrated that knockdown of HDAC5 promoted cellular triglycerides accumulation, accompanied with up-regulation of lipogenic genes. At the molecular level, HDAC5 was shown to interact with LXR, thereby attenuating its transcriptional activity. Overall, our data suggest that hepatic HDAC5 is an important regulator of lipogenesis. © 2016 The Author(s) Published by S. Karger AG, Basel.

  19. Regulation of retinoid X receptor gamma expression by fed state in mouse liver.

    PubMed

    Park, Sangkyu; Lee, Yoo Jeong; Ko, Eun Hee; Kim, Jae-Woo

    2015-02-27

    Glucose metabolism is balanced by glycolysis and gluconeogenesis with precise control in the liver. The expression of genes related to glucose metabolism is regulated primarily by glucose and insulin at transcriptional level. Nuclear receptors play important roles in regulating the gene expression of glucose metabolism at transcriptional level. Some of these nuclear receptors form heterodimers with RXRs to bind to their specific regulatory elements on the target promoters. To date, three isotypes of RXRs have been identified; RXRα, RXRβ and RXRγ. However, their involvement in the interactions with other nuclear receptors in the liver remains unclear. In this study, we found RXRγ is rapidly induced after feeding in the mouse liver, indicating a potential role of RXRγ in controlling glucose or lipid metabolism in the fasting-feeding cycle. In addition, RXRγ expression was upregulated by glucose in primary hepatocytes. This implies that glucose metabolism governed by RXRγ in conjunction with other nuclear receptors. The luciferase reporter assay showed that RXRγ as well as RXRα increased SREBP-1c promoter activity in hepatocytes. These results suggest that RXRγ may play an important role in tight control of glucose metabolism in the fasting-feeding cycle.

  20. Measuring inotocin receptor gene expression in chronological order in ant queens.

    PubMed

    Chérasse, Sarah; Aron, Serge

    2017-09-24

    In vertebrates and invertebrates, oxytocin/vasopressin-like peptides modulate a variety of behaviors. The recent discovery of the gene and receptor sequences of inotocin, the insect ortholog of oxytocin/vasopressin, opens new opportunities for understanding the role of this peptide family in regulating behaviors in the most populated class of living animals. Ants live in highly organized colonies. Once a year, they produce future queens that soon leave the nest to mate and found new colonies. During the first months of their lives, ant queens display a sequence of behaviors ranging from copulation and social interactions to violent fighting. In order to investigate the potential roles of inotocin in shaping queen behavior, we measured gene expression of the inotocin receptor in the heads of Lasius niger ant queens at different points in time. The highest levels of expression occurred early in queen life when they experience crowded conditions in their mother nests and soon thereafter set out to mate. Inotocin could thus be involved in regulating social and reproductive behaviors as reported in other animals. While oxytocin and vasopressin are also involved in aggression in mammals, we found no direct link between these behaviors and inotocin receptor expression in L. niger. Our study provides a first glimpse into the roles the inotocin receptor might play in regulating important processes in ant physiology and behavior. Further studies are needed to understand the molecular function of this complex signaling system in more detail. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Expression of α(1)-adrenergic receptors in rat prefrontal cortex: cellular co-localization with 5-HT(2A) receptors.

    PubMed

    Santana, Noemí; Mengod, Guadalupe; Artigas, Francesc

    2013-06-01

    The prefrontal cortex (PFC) is involved in behavioural control and cognitive processes that are altered in schizophrenia. The brainstem monoaminergic systems control PFC function, yet the cells/networks involved are not fully known. Serotonin (5-HT) and norepinephrine (NE) increase PFC neuronal activity through the activation of α(1)-adrenergic receptors (α(1)ARs) and 5-HT(2A) receptors (5-HT(2A)Rs), respectively. Neurochemical and behavioural interactions between these receptors have been reported. Further, classical and atypical antipsychotic drugs share nm in vitro affinity for α(1)ARs while having preferential affinity for D(2) and 5-HT(2A)Rs, respectively. Using double in situ hybridization we examined the cellular expression of α(1)ARs in pyramidal (vGluT1-positive) and GABAergic (GAD(65/67)-positive) neurons in rat PFC and their co-localization with 5-HT(2A)Rs. α(1)ARs are expressed by a high proportion of pyramidal (59-85%) and GABAergic (52-79%) neurons. The expression in pyramidal neurons exhibited a dorsoventral gradient, with a lower percentage of α(1)AR-positive neurons in infralimbic cortex compared to anterior cingulate and prelimbic cortex. The expression of α(1A), α(1B) and α(1D) adrenergic receptors was segregated in different layers and subdivisions. In all them there is a high co-expression with 5-HT(2A)Rs (∼80%). These observations indicate that NE controls the activity of most PFC pyramidal neurons via α(1)ARs, either directly or indirectly, via GABAergic interneurons. Antipsychotic drugs can thus modulate the activity of PFC via α(1)AR blockade. The high co-expression with 5-HT(2A)Rs indicates a convergence of excitatory serotonergic and noradrenergic inputs onto the same neuronal populations. Moreover, atypical antipsychotics may exert a more powerful control of PFC function through the simultaneous blockade of α(1)ARs and 5-HT(2A)Rs.

  2. Functional Erythropoietin Receptors Expressed by Human Prostate Cancer Cells

    DTIC Science & Technology

    2006-10-01

    carcinoma cell line (PC-3). Invest Urol, 1979. 17(1): p. 16-23. 11. Yoshimura, A., A.D. D’Andrea, and H.F. Lodish , Friend spleen focus-forming virus...receptor expression in human prostate cancer. Mod Pathol, 2004. 13. Socolovsky, M., A.E. Fallon, S. Wang, C. Brugnara, and H.F. Lodish , Fetal anemia and...Socolovsky, M., H. Nam, M.D. Fleming, V.H. Haase, C. Brugnara, and H.F. Lodish , Ineffective erythropoiesis in Stat5a(-/-)5b(-/-) mice due to decreased

  3. Characterization of a single-chain T-cell receptor expressed in Escherichia coli.

    PubMed

    Hoo, W F; Lacy, M J; Denzin, L K; Voss, E W; Hardman, K D; Kranz, D M

    1992-05-15

    Despite progress in defining the nature of major histocompatibility complex products that are recognized by the T-cell antigen receptor, the binding properties and structure of the receptor have not been solved. The primary problem has been the difficulty in obtaining sufficient quantities of active receptor. In this report we show that a single-chain T-cell receptor gene can be expressed in Escherichia coli. The protein consists of the variable (V) regions of the alpha and beta chains (V alpha and V beta) encoded by the cytotoxic T-lymphocyte clone 2C (a H-2b anti-H-2d alloreactive cell line) linked by a 25-amino acid flexible peptide. Solubilized extracts that contain the 27-kDa V alpha 3V beta 8 protein are positive in solid-phase immunoassays with the anti-V beta 8 antibody KJ16 and the anti-clonotypic antibody 1B2. Approximately 1% of the protein can be specifically purified on a 1B2-conjugated column. These results indicate that a fraction of the protein is able to fold into a native conformation and that single-chain proteins should be useful not only as immunogens for eliciting anti-T-cell receptor antibodies but in the study of T-cell receptor structure and function.

  4. Tumor expression of adiponectin receptor 2 and lethal prostate cancer

    PubMed Central

    Fiorentino, Michelangelo; Kelly, Rachel; Gerke, Travis; Jordahl, Kristina; Sinnott, Jennifer A.; Giovannucci, Edward L.; Loda, Massimo; Mucci, Lorelei A.; Finn, Stephen

    2015-01-01

    To investigate the role of adiponectin receptor 2 (AdipoR2) in aggressive prostate cancer we used immunohistochemistry to characterize AdipoR2 protein expression in tumor tissue for 866 men with prostate cancer from the Physicians’ Health Study and the Health Professionals Follow-up Study. AdipoR2 tumor expression was not associated with measures of obesity, pathological tumor stage or prostate-specific antigen (PSA) at diagnosis. However, AdipoR2 expression was positively associated with proliferation as measured by Ki-67 expression quartiles (P-trend < 0.0001), with expression of fatty acid synthase (P-trend = 0.001), and with two measures of angiogenesis (P-trend < 0.1). An inverse association was observed with apoptosis as assessed by the TUNEL assay (P-trend = 0.006). Using Cox proportional hazards regression and controlling for age at diagnosis, Gleason score, year of diagnosis category, cohort and baseline BMI, we identified a statistically significant trend for the association between quartile of AdipoR2 expression and lethal prostate cancer (P-trend = 0.02). The hazard ratio for lethal prostate cancer for the two highest quartiles, as compared to the two lowest quartiles, of AdipoR2 expression was 1.9 (95% confidence interval [CI]: 1.2–3.0). Results were similar when additionally controlling for categories of PSA at diagnosis and Ki-67 expression quartiles. These results strengthen the evidence for the role of AdipoR2 in prostate cancer progression. PMID:25863129

  5. Differential receptor dependencies: expression and significance of muscarinic M1 receptors in the biology of prostate cancer.

    PubMed

    Mannan Baig, Abdul; Khan, Naveed A; Effendi, Vardah; Rana, Zohaib; Ahmad, H R; Abbas, Farhat

    2017-01-01

    Recent reports on acetylcholine muscarinic receptor subtype 3 (CHRM3) have shown its growth-promoting role in prostate cancer. Additional studies report the proliferative effect of the cholinergic agonist carbachol on prostate cancer by its agonistic action on CHRM3. This study shows that the type 1 acetylcholine muscarinic receptor (CHRM1) contributes toward the proliferation and growth of prostate cancer. We used growth and cytotoxic assays, the prostate cancer microarray database and CHRM downstream pathways' homology of CHRM subtypes to uncover multiple signals leading to the growth of prostate cancer. Growth assays showed that pilocarpine stimulates the proliferation of prostate cancer. Moreover, it shows that carbachol exerts an additional agonistic action on nicotinic cholinergic receptor of prostate cancer cells that can be blocked by tubocurarine. With the use of selective CHRM1 antagonists such as pirenzepine and dicyclomine, a considerable inhibition of proliferation of prostate cancer cell lines was observed in dose ranging from 15-60 µg/ml of dicyclomine. The microarray database of prostate cancer shows a dominant expression of CHRM1 in prostate cancer compared with other cholinergic subtypes. The bioinformatics of prostate cancer and CHRM pathways show that the downstream signalling include PIP3-AKT-CaM-mediated growth in LNCaP and PC3 cells. Our study suggests that antagonism of CHRM1 may be a potential therapeutic target against prostate cancer.

  6. Molecular neuroimaging in rodents: assessing receptor expression and function.

    PubMed

    Mueggler, Thomas; Baltes, Christof; Rudin, Markus

    2009-11-01

    Multimodal non-invasive neuroimaging in rodents constitutes an attractive tool for studying neurobiological processes in vivo. At present, imaging studies of brain anatomy and function as well as the investigation of structure-function relationships belong to the standard repertoire of neuroscientists. Molecular imaging adds a new perspective. The mapping of the receptor distribution and receptor occupancy can nowadays be complemented by specific readouts of receptor function either by visualizing the activity of signaling pathways or mapping the physiological consequences of receptor stimulation. Molecular information is obtained through the use of imaging probes that combine a target-specific ligand with a reporter moiety that generates a signal that can be detected from outside the body. For imaging probes targeting the central nervous system, penetration of the intact blood-brain barrier constitutes a major hurdle. Molecular imaging generates specific information and therefore has a large potential for disease phenotyping (diagnostics), therapy development and monitoring of treatment response. Molecular imaging is still in its infancy and major developments in imaging technology, probe design and data analysis are required in order to make an impact. Rodent molecular neuroimaging will play an important role in the development of these tools.

  7. The collagen receptor DDR2 is expressed during early cardiac development.

    PubMed

    Goldsmith, Edie C; Zhang, Xiadong; Watson, James; Hastings, Josh; Potts, Jay D

    2010-05-01

    Discoidin Domain Receptor 2 (DDR2) is a receptor tyrosine kinase which has been shown to regulate cell migration upon binding its ligand, collagen. Expression studies determined that DDR2 mRNA and protein are present in the atrioventricular canal during epithelial-mesenchymal transformation (EMT) and the receptor is expressed in both activated endothelial and migrating mesenchymal cells in vivo.

  8. Expression of human dopamine receptor in potato (Solanum tuberosum) results in altered tuber carbon metabolism.

    PubMed

    Skirycz, Aleksandra; Swiedrych, Anna; Szopa, Jan

    2005-02-09

    Even though the catecholamines (dopamine, norepinephrine and epinephrine) have been detected in plants their role is poorly documented. Correlations between norepinephrine, soluble sugars and starch concentration have been recently reported for potato plants over-expressing tyrosine decarboxylase, the enzyme mediating the first step of catecholamine synthesis. More recently norepinephrine level was shown to significantly increase after osmotic stress, abscisic acid treatment and wounding. Therefore, it is possible that catecholamines might play a role in plant stress responses by modulating primary carbon metabolism, possibly by a mechanism similar to that in animal cells. Since to date no catecholamine receptor has been identified in plants we transformed potato plants with a cDNA encoding human dopamine receptor (HD1). Tuber analysis of transgenic plants revealed changes in the activities of key enzymes mediating sucrose to starch conversion (ADP-glucose phosphorylase and sucrose synthase) and sucrose synthesis (sucrose phosphate synthase) leading to altered content of both soluble sugars and starch. Surprisingly the catecholamine level measured in transgenic plants was significantly increased; the reason for this is as yet unknown. However the presence of the receptor affected a broader range of enzyme activities than those affected by the massive accumulation of norepinephrine reported for plants over-expressing tyrosine decarboxylase. Therefore, it is suggested that the presence of the exogenous receptor activates catecholamine cAMP signalling in plants. Our data support the possible involvement of catecholamines in regulating plant carbon metabolism via cAMP signalling pathway.

  9. Exchange factors directly activated by cAMP mediate melanocortin 4 receptor-induced gene expression

    PubMed Central

    Glas, Evi; Mückter, Harald; Gudermann, Thomas; Breit, Andreas

    2016-01-01

    Gs protein-coupled receptors regulate many vital body functions by activation of cAMP response elements (CRE) via cAMP-dependent kinase A (PKA)-mediated phosphorylation of the CRE binding protein (CREB). Melanocortin 4 receptors (MC4R) are prototypical Gs-coupled receptors that orchestrate the hypothalamic control of food-intake and metabolism. Remarkably, the significance of PKA for MC4R-induced CRE-dependent transcription in hypothalamic cells has not been rigorously interrogated yet. In two hypothalamic cell lines, we observed that blocking PKA activity had only weak or no effects on reporter gene expression. In contrast, inhibitors of exchange factors directly activated by cAMP-1/2 (EPAC-1/2) mitigated MC4R-induced CRE reporter activation and mRNA induction of the CREB-dependent genes c-fos and thyrotropin-releasing hormone. Furthermore, we provide first evidence that extracellular-regulated kinases-1/2 (ERK-1/2) activated by EPACs and not PKA are the elusive CREB kinases responsible for MC4R-induced CREB/CRE activation in hypothalamic cells. Overall, these data emphasize the pivotal role of EPACs rather than PKA in hypothalamic gene expression elicited by a prototypical Gs-coupled receptor. PMID:27612207

  10. Constitutive androstane receptor activation evokes the expression of glycolytic genes.

    PubMed

    Yarushkin, Andrei A; Kazantseva, Yuliya A; Prokopyeva, Elena A; Markova, Diana N; Pustylnyak, Yuliya A; Pustylnyak, Vladimir O

    2016-09-23

    It is well-known that constitutive androstane receptor (CAR) activation by 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) increases the liver-to-body weight ratio. CAR-mediated liver growth is correlated with increased expression of the pleiotropic transcription factor cMyc, which stimulates cell cycle regulatory genes and drives proliferating cells into S phase. Because glycolysis supports cell proliferation and cMyc is essential for the activation of glycolytic genes, we hypothesized that CAR-mediated up-regulation of cMyc in mouse livers might play a role in inducing the expression of glycolytic genes. The aim of the present study was to examine the effect of long-term CAR activation on glycolytic genes in a mouse model not subjected to metabolic stress. We demonstrated that long-term CAR activation by TCPOBOP increases expression of cMyc, which was correlated with reduced expression of gluconeogenic genes and up-regulation of glucose transporter, glycolytic and mitochondrial pyruvate metabolising genes. These changes in gene expression after TCPOBOP treatment were strongly correlated with changes in levels of glycolytic intermediates in mouse livers. Moreover, we demonstrated a significant positive regulatory effect of TCPOBOP-activated CAR on both mRNA and protein levels of Pkm2, a master regulator of glucose metabolism and cell proliferation. Thus, our findings provide evidence to support the conclusion that CAR activation initiates a transcriptional program that facilitates the coordinated metabolic activities required for cell proliferation.

  11. Identification and characterization of two neuromedin U receptors differentially expressed in peripheral tissues and the central nervous system.

    PubMed

    Raddatz, R; Wilson, A E; Artymyshyn, R; Bonini, J A; Borowsky, B; Boteju, L W; Zhou, S; Kouranova, E V; Nagorny, R; Guevarra, M S; Dai, M; Lerman, G S; Vaysse, P J; Branchek, T A; Gerald, C; Forray, C; Adham, N

    2000-10-20

    Two structurally related, G-protein-coupled receptors were identified as receptors for the neuropeptide, neuromedin U. This peptide is found in highest levels in the gut and genitourinary system where it potently contracts smooth muscle but is also expressed in the spinal cord and discrete regions of the brain. Binding sites for neuromedin U have been characterized in rat uterus, however, little is known about the activity of this peptide in the regions of the central nervous system where it is expressed. The receptors characterized in this report are activated by neuromedin U at nanomolar potency in heterologous expression systems and bind radiolabeled neuromedin U with high affinity. Localization of the receptor RNA by quantitative reverse transcription-polymerase chain reaction in a variety of human tissues shows distinct expression patterns for the two receptors. NMU1 is expressed predominantly in peripheral tissues, whereas NMU2 is more highly expressed in the central nervous system. Identification of neuromedin U receptor subtypes will greatly aid in the determination of the physiological roles of this peptide.

  12. Cultured rat microglia express functional beta-chemokine receptors.

    PubMed

    Boddeke, E W; Meigel, I; Frentzel, S; Gourmala, N G; Harrison, J K; Buttini, M; Spleiss, O; Gebicke-Härter, P

    1999-08-03

    We have investigated the functional expression of the beta-chemokine receptors CCR1 to 5 in cultured rat microglia. RT-PCR analysis revealed constitutive expression of CCR1, CCR2 and CCR5 mRNA. The beta-chemokines MCP-1 (1-30 nM) as well as RANTES and MIP-1alpha (100-1000 nM) evoked calcium transients in control and LPS-treated microglia. Whereas, the response to MCP-1 was dependent on extracellular calcium the response to RANTES was not. The effect of MCP-1 but not that of RANTES was inhibited by the calcium-induced calcium release inhibitor ryanodine. Calcium responses to MCP-1- and RANTES were observed in distinct populations of microglia.

  13. Transferrin receptor expression by stimulated cells in mixed lymphocyte culture.

    PubMed Central

    Salmon, M; Bacon, P A; Symmons, D P; Walton, K W

    1985-01-01

    Transferrin receptor (TRFr) expression by cells in mixed lymphocyte culture increases steadily for the first 5 days, but then reaches a plateau. By the sixth day in culture, about 20% of viable cells express TRFr in two-way mixed lymphocyte reactions. This subpopulation of TRFr-positive cells represents the proliferating population; it is heterogeneous, containing T-cell blasts and smaller cells which are a mixture of T and non-T cells. A small group of non-T cells have phenotypic similarity to natural killer (NK) cells. T cells appear to divide earlier in the course of the response than non-T cells. The biphasic nature of this response and the slower non-T reactivity may be due to a secondary stimulation of non-T cells by factors released from activated T cells (such as interleukin-2). PMID:2982734

  14. An Epigenetic Signature for Monoallelic Olfactory Receptor Expression

    PubMed Central

    Magklara, Angeliki; Yen, Angela; Colquitt, Bradley M.; Clowney, E. Josephine; Allen, William; Markenscoff-Papadimitriou, Eirene; Evans, Zoe A.; Kheradpour, Pouya; Mountoufaris, George; Carey, Catriona; Barnea, Gilad; Kellis, Manolis; Lomvardas, Stavros

    2011-01-01

    SUMMARY Constitutive heterochromatin is traditionally viewed as the static form of heterochromatin that silences pericentromeric and telomeric repeats in a cell cycle and differentiation independent manner. Here, we show that in the mouse olfactory epithelium, olfactory receptor (OR) genes are marked, in a highly dynamic fashion, with the molecular hallmarks of constitutive heterochromatin, H3K9me3 and H4K20me3. The cell-type and developmentally dependent deposition of these marks along the OR clusters is, most likely, reversed during the process of OR choice to allow for monogenic and monoallelic OR expression. In contrast to the current view of OR choice, our data suggest that OR silencing takes place before OR expression, indicating that it is not the product of an OR-elicited feedback signal. This suggests a new role for chromatin-mediated silencing as the molecular foundation upon which singular and stochastic selection can be applied. PMID:21529909

  15. Alcohol Cirrhosis Alters Nuclear Receptor and Drug Transporter Expression in Human Liver

    PubMed Central

    More, Vijay R.; Cheng, Qiuqiong; Donepudi, Ajay C.; Buckley, David B.; Lu, Zhenqiang James; Cherrington, Nathan J.

    2013-01-01

    Unsafe use of alcohol results in approximately 2.5 million deaths worldwide, with cirrhosis contributing to 16.6% of reported deaths. Serum insulin levels are often elevated in alcoholism and may result in diabetes, which is why alcoholic liver disease and diabetes often are present together. Because there is a sizable population with these diseases alone or in combination, the purpose of this study was to determine whether transporter expression in human liver is affected by alcoholic cirrhosis, diabetes, and alcoholic cirrhosis coexisting with diabetes. Transporters aid in hepatobiliary excretion of many drugs and toxic chemicals and can be determinants of drug-induced liver injury. Drug transporter expression and transcription factor–relative mRNA and protein expression in normal, diabetic, cirrhotic, and cirrhosis with diabetes human livers were quantified. Cirrhosis significantly increased ABCC4, 5, ABCG2, and solute carrier organic anion (SLCO) 2B1 mRNA expression and decreased SLCO1B3 mRNA expression in the liver. ABCC1, 3–5, and ABCG2 protein expression was also upregulated by alcoholic cirrhosis. ABCC3-5 and ABCG2 protein expression was also upregulated in diabetic cirrhosis. Cirrhosis increased nuclear factor E2–related factor 2 mRNA expression, whereas it decreased pregnane-X-receptor and farnesoid-X-receptor mRNA expression in comparison with normal livers. Hierarchical cluster analysis indicated that expressions of ABCC2, 3, and 6; SLCO1B1 and 1B3; and ABCC4 and 5 were more closely related in the livers from this cohort. Overall, alcoholic cirrhosis altered transporter expression in human liver. PMID:23462698

  16. Alcohol cirrhosis alters nuclear receptor and drug transporter expression in human liver.

    PubMed

    More, Vijay R; Cheng, Qiuqiong; Donepudi, Ajay C; Buckley, David B; Lu, Zhenqiang James; Cherrington, Nathan J; Slitt, Angela L

    2013-05-01

    Unsafe use of alcohol results in approximately 2.5 million deaths worldwide, with cirrhosis contributing to 16.6% of reported deaths. Serum insulin levels are often elevated in alcoholism and may result in diabetes, which is why alcoholic liver disease and diabetes often are present together. Because there is a sizable population with these diseases alone or in combination, the purpose of this study was to determine whether transporter expression in human liver is affected by alcoholic cirrhosis, diabetes, and alcoholic cirrhosis coexisting with diabetes. Transporters aid in hepatobiliary excretion of many drugs and toxic chemicals and can be determinants of drug-induced liver injury. Drug transporter expression and transcription factor-relative mRNA and protein expression in normal, diabetic, cirrhotic, and cirrhosis with diabetes human livers were quantified. Cirrhosis significantly increased ABCC4, 5, ABCG2, and solute carrier organic anion (SLCO) 2B1 mRNA expression and decreased SLCO1B3 mRNA expression in the liver. ABCC1, 3-5, and ABCG2 protein expression was also upregulated by alcoholic cirrhosis. ABCC3-5 and ABCG2 protein expression was also upregulated in diabetic cirrhosis. Cirrhosis increased nuclear factor E2-related factor 2 mRNA expression, whereas it decreased pregnane-X-receptor and farnesoid-X-receptor mRNA expression in comparison with normal livers. Hierarchical cluster analysis indicated that expressions of ABCC2, 3, and 6; SLCO1B1 and 1B3; and ABCC4 and 5 were more closely related in the livers from this cohort. Overall, alcoholic cirrhosis altered transporter expression in human liver.

  17. Upregulated thymic stromal lymphopoietin receptor expression in children with asthma.

    PubMed

    Lin, Sheng-Chieh; Huang, Jian-Jhang; Wang, Jiu-Yao; Chuang, Hsiao-Chi; Chiang, Bor-Luen; Ye, Yi-Ling

    2016-06-01

    Thymic stromal lymphopoietin (TSLP) plays an important role in pathogenesis in patients with asthma. However, the role of thymic stromal lymphopoietin receptor (TSLPR) and correlation with IL-7Rα and clinical severity in asthmatic or nonasthmatic children remain unclear. We investigated TSLPR and IL-7Rα mRΝΑ levels in asthma and nonasthma and assessed TSLPR expression in children who were sensitive to mites. We enrolled asthmatic and nonasthmatic children. To minimize the influence of allergy, we also divided participants into following 4 groups: nonallergic and nonasthmatic group (NN) (healthy children), allergic but nonasthmatic group (AN), nonallergic but asthmatic group (NA) and allergic asthmatic group (AA). We drew blood samples to check total IgE, allergen-specific IgE and TSLP and measured the expression of the TSLPR and IL-7Rα genes using reverse-transcription polymerase chain reaction (RT-PCR) and real-time PCR. Asthma symptom score was also recorded. Thymic stromal lymphopoietin and TSLPR levels were found to be significantly higher in asthmatic than in nonasthmatic children. The levels of TSLP were found to be significantly different between AA and NN groups (P < 0·05). TSLPR expression in NA and AA groups was found to be significantly higher than in NN group (P < 0·05). TSLPR did not differ significantly between NA and AA groups. The TSLPR expression correlated strongly with IL-7Rα and weakly with mite-specific IgE. Clinical asthmatic severity of children was found to exert no influence on TSLPR level. Thymic stromal lymphopoietin receptor might be a significant disease biomarker for asthma. The levels of TSLPR were found to be higher in asthmatic patients than in healthy children, but were found to be not different between allergic and nonallergic asthmatic patients. © 2016 Stichting European Society for Clinical Investigation Journal Foundation.

  18. Urokinase type plasminogen activator receptor expression in colorectal neoplasms

    PubMed Central

    Suzuki, S; Hayashi, Y; Wang, Y; Nakamura, T; Morita, Y; Kawasaki, K; Ohta, K; Aoyama, N; Kim, S; Itoh, H; Kuroda, Y; Doe, W

    1998-01-01

    Background—The urokinase type plasminogen activator receptor (uPAR) may play a critical role in cancer invasion and metastasis. 
Aims—To study the involvement of uPAR in colorectal carcinogenesis. 
Methods—The cellular expression and localisation of uPAR were investigated in colorectal adenomas and invasive carcinomas by in situ hybridisation, immunohistochemistry, and northern and western blot analyses. 
Results—uPAR mRNA expression was found mainly in the cytoplasm of dysplastic epithelial cells of 30% of adenomas with mild (19%), moderate (21%), and severe (47%) dysplasia, and in that of carcinomatous cells of 85% of invasive carcinomas: Dukes' stages A (72%), B (93%), and C (91%). Some stromal cells in the adjacent neoplastic epithelium were faintly positive. Immunoreactivity for uPAR was detected in dysplastic epithelial cells of 14% of adenomas and in carcinomatous cells of 49% of invasive carcinomas. uPAR mRNA and protein concentrations were significantly higher in severe than in mild or moderate dysplasia (p<0.05); they were notably higher in Dukes' stage A than in severe dysplasia (p<0.05), and significantly higher in Dukes' stage B than in stage A (p<0.05), but those in stage B were not different from those in stage C or in metastatic colorectal carcinomas of the liver. 
Conclusions—Colorectal adenoma uPAR, expressed essentially in dysplastic epithelial cells, was upregulated with increasing severity of atypia, and increased notably during the critical transition from severe dysplasic adenoma to invasive carcinoma. These findings implicate uPAR expression in the invasive and metastatic processes of colorectal cancer. 

 Keywords: urokinase type plasminogen activator receptor; colorectal adenoma; colorectal cancer; adenoma-carcinoma sequence PMID:9824607

  19. The immunohistochemical expression of calcitonin receptor-like receptor (CRLR) in human gliomas

    PubMed Central

    Benes, L; Kappus, C; McGregor, G P; Bertalanffy, H; Mennel, H D; Hagner, S

    2004-01-01

    Background: Gliomas are the most common primary tumours of the central nervous system and exhibit rapid growth that is associated with neovascularisation. Adrenomedullin is an important tumour survival factor in human carcinogenesis. It has growth promoting effects on gliomas, and blockade of its actions has been experimentally shown to reduce the growth of glioma tissues and cell lines. There is some evidence that the calcitonin receptor-like receptor (CRLR) mediates the tumorigenic actions of adrenomedullin. Aim: To determine whether CRLR is expressed in human gliomas and the probable cellular targets of adrenomedullin. Methods: Biopsies from 95 human gliomas of varying grade were processed for immunohistochemical analysis using a previously developed and characterised antibody to CRLR. Results: All tumour specimens were positive for CRLR. As previously found in normal peripheral tissues, CRLR immunostaining was particularly intense in the endothelial cells. This was evident in all the various vascular conformations that were observed, and which are typical of gliomas. In addition, clear immunostaining of tumour cells with astrocyte morphology was observed. These were preferentially localised around vessels. Conclusions: This study has shown for the first time that the CRLR protein is present in human glioma tissue. The expression of the receptor in endothelial cells and in astrocytic tumour cells is consistent with the evidence that its endogenous ligand, adrenomedullin, may influence glioma growth by means of both direct mitogenic and indirect angiogenic effects. CRLR may be a valuable target for effective therapeutic intervention in these malignant tumours. PMID:14747444

  20. Expression and nuclear translocation of glucocorticoid receptors in type 2 taste receptor cells.

    PubMed

    Parker, M Rockwell; Feng, Dianna; Chamuris, Brianna; Margolskee, Robert F

    2014-06-13

    Stress increases the secretion of glucocorticoids (GCs), potent steroid hormones that exert their effects on numerous target tissues by acting through glucocorticoid receptors (GRs). GC signaling significantly affects ingestive behavior and taste preferences in humans and rodent models, but far less is known about the hormonal modulation of the peripheral sensory system that detects and assesses nutrient content of foods. A previous study linked restraint stress in rats to diminished expression of mRNA for one subunit of the sweet taste receptor (Tas1r3) in taste tissue and reduced gustatory nerve excitation by sweet compounds. Using RT-PCR, we detected mRNAs for GRα in circumvallate taste papillae and in oral epithelium devoid of taste buds ("non-taste" tissue). Further, circumvallate tissue was significantly enriched in GR mRNA compared to non-taste tissue based on quantitative PCR. Histologically, GR protein was expressed in all taste bud populations examined (circumvallate, foliate and fungiform papillae). Using transgenic mice expressing green fluorescent protein, almost all (97%) Tas1r3-positive taste cells (sweet-/umami-sensitive) expressed GR compared to a significantly smaller percentage (89%) of TrpM5-positive taste cells (sweet-, umami- and bitter-sensitive). When mice (n=4) were restrain stressed, GR protein mobilized to the nucleus in Tas1r3-GFP taste cells (1.7-fold over controls). Our results suggest that GR can be activated in taste receptor cells and may play a role in specific taste qualities (e.g., sweet, umami, and bitter) to shape how the taste system responds to stress. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. AMPA receptor subunits expression and phosphorylation in cingulate cortex in rats following esophageal acid exposure

    PubMed Central

    BANERJEE, B.; MEDDA, B. K.; POCHIRAJU, S.; KANNAMPALLI, P.; LANG, I. M.; SENGUPTA, J. N.; SHAKER, R.

    2014-01-01

    Background We recently reported an increase in N-methyl-d-aspartate (NMDA) receptor subunit expression and CaMKII-dependent phosphorylation of NR2B in the rostral cingulate cortical (rCC) neurons following esophageal acid exposure in rats. As α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors mediate the fast excitatory transmission and play a critical role in synaptic plasticity, in this study, we investigated the effect of esophageal acid exposure in rats on the expression of AMPA receptor subunits and the involvement of these molecular alterations in acid-induced sensitization of neurons in the anterior cingulate (ACC) and midcingulate (MCC) cortices. Methods In molecular study, we examined GluA1 and GluA2 expression and phosphorylation in membrane preparations and in the isolated postsynaptic densities (PSDs) from rats receiving acute esophageal exposure of either saline (control group) or 0.1 NHCl (experimental group). In electrophysiological study, the effect of selective AMPA receptor (Ca2+ permeable) antagonist IEM-1460 and CaMKII inhibitor KN-93 was tested on responses of cortical neurons during acid infusion to address the underlying molecular mechanism of acid-induced sensitization. Key Results The acid exposure significantly increased expression of GluA1, pGluA1Ser831, and phosphorylated CaMKIIThr286, in the cortical membrane preparations. In isolated PSDs, a significant increase in pGluA1Ser831 was observed in acid-treated rats compared with controls. Microinjection of IEM-1460 or KN-93 near the recording site significantly attenuated acid-induced sensitization of cortical neurons. Conclusions & Inferences The underlying mechanism of acid-induced cortical sensitization involves upregulation and CaMKII-mediated phosphorylation of GluA1. These molecular changes of AMPA receptors subunit GluA1 in the cortical neurons might play an important role in acid-induced esophageal hypersensitivity. PMID:24118589

  2. Molecular cloning and expression of a GABA receptor subunit from the crayfish Procambarus clarkii.

    PubMed

    Jiménez-Vázquez, Eric N; Díaz-Velásquez, Clara E; Uribe, R M; Arias, Juan M; García, Ubaldo

    2016-02-01

    Molecular cloning has introduced an unexpected, large diversity of neurotransmitter hetero- oligomeric receptors. Extensive research on the molecular structure of the γ-aminobutyric acid receptor (GABAR) has been of great significance for understanding how the nervous system works in both vertebrates and invertebrates. However, only two examples of functional homo-oligomeric GABA-activated Cl(-) channels have been reported. In the vertebrate retina, the GABAρ1 subunit of various species forms homo-oligomeric receptors; in invertebrates, a cDNA encoding a functional GABA-activated Cl(-) channel has been isolated from a Drosophila melanogaster head cDNA library. When expressed in Xenopus laevis oocytes, these subunits function efficiently as a homo-oligomeric complex. To investigate the structure-function of GABA channels from the crayfish Procambarus clarkii, we cloned a subunit and expressed it in human embryonic kidney cells. Electrophysiological recordings show that this subunit forms a homo-oligomeric ionotropic GABAR that gates a bicuculline-insensitive Cl(-) current. The order of potency of the agonists was GABA > trans-4-amino-crotonic acid = cis-4-aminocrotonic acid > muscimol. These data support the notion that X-organ sinus gland neurons express at least two GABA subunits responsible for the formation of hetero-oligomeric and homo-oligomeric receptors. In addition, by in situ hybridization studies we demonstrate that most X-organ neurons from crayfish eyestalk express the isolated pcGABAA β subunit. This study increases the knowledge of the genetics of the crayfish, furthers the understanding of this important neurotransmitter receptor family, and provides insight into the evolution of these genes among vertebrates and invertebrates.

  3. Human neutrophils do not express purinergic P2X7 receptors

    PubMed Central

    Martel-Gallegos, Guadalupe; Rosales-Saavedra, María T.; Reyes, Juan P.; Casas-Pruneda, Griselda; Toro-Castillo, Carmen; Pérez-Cornejo, Patricia

    2010-01-01

    It has been reported that in human neutrophils, external ATP activates plasma membrane purinergic P2X7 receptors (P2X7R) to elicit Ca2+ entry, production of reactive oxygen species (ROS), processing and release of pro-inflammatory cytokines, shedding of adhesion molecules and uptake of large molecules. However, the expression of P2X7R at the plasma membrane of neutrophils has also been questioned since these putative responses are not always reproduced. In this work, we used electrophysiological recordings to measure functional responses associated with the activation of membrane receptors, spectrofluorometric measurements of ROS production and ethidium bromide uptake to asses coupling of P2X7R activation to downstream effectors, immune-labelling of P2X7R using a fluorescein isothiocyanate-conjugated antibody to detect the receptors at the plasma membrane, RT-PCR to determine mRNA expression of P2X7R and Western blot to determine protein expression in neutrophils and HL-60 cells. None of these assays reported the presence of P2X7R in the plasma membrane of neutrophils and non-differentiated or differentiated HL-60 cells—a model cell for human neutrophils. We concluded that P2X7R are not present at plasma membrane of human neutrophils and that the putative physiological responses triggered by external ATP should be reconsidered. PMID:21103213

  4. Genetically controlled upregulation of adenosine A(1) receptor expression enhances the survival of primary cortical neurons.

    PubMed

    Serchov, Tsvetan; Atas, Hasan-Cem; Normann, Claus; van Calker, Dietrich; Biber, Knut

    2012-10-01

    Adenosine has a key endogenous neuroprotective role in the brain, predominantly mediated by the adenosine A(1) receptor (A(1)R). This has been mainly explored using pharmacological tools and/or receptor knockout mice strains. It has long been suggested that the neuroprotective effects of A(1)R are increased following receptor upregulation, thus attenuating neuronal damage in pathological conditions. We have previously shown that the neuroprotective and neuromodulatory actions of the cytokines IL-6 and oncostatin M are mediated by induction of neuronal A(1)R expression. In order to investigate the direct effects of A(1)R upregulation in neurons, we have generated a tetracycline-regulated expression system with a bidirectional promoter, directing the simultaneous expression of the mouse A(1)R and GFP/mCherry reporter genes. In a first step, we tested the efficacy of the system in transiently transfected human embryonic kidney 293 cells. In addition, we confirmed the functional integrity of the expressed A(1)R by whole-cell patch clamp recordings. We demonstrated that A(1)R-transfected primary neurons show enhanced survival against N-methyl-D-aspartate-induced excitotoxicity. Pretreatment with an A(1)R-selective agonist additionally strongly decreased neuronal cell death, while an A(1)R antagonist completely abolished the neuroprotective effects of A(1)R upregulation. The presented data provide for the first time direct evidence that the upregulation of A(1)R enhances neuronal survival.

  5. Liver X Receptor (LXR) activation negatively regulates visfatin expression in macrophages

    SciTech Connect

    Mayi, Therese Hervee; Rigamonti, Elena; Pattou, Francois; Staels, Bart; Chinetti-Gbaguidi, Giulia

    2011-01-07

    Research highlights: {yields} Synthetic LXR ligands decreased visfatin expression in human macrophages. {yields} LXR activation leads to a modest and transient decrease of NAD{sup +} concentration. {yields} LXR activation decreased PPAR{gamma}-induced visfatin in human macrophages. -- Abstract: Adipose tissue macrophages (ATM) are the major source of visfatin, a visceral fat adipokine upregulated during obesity. Also known to play a role in B cell differentiation (pre-B cell colony-enhancing factor (PBEF)) and NAD biosynthesis (nicotinamide phosphoribosyl transferase (NAMPT)), visfatin has been suggested to play a role in inflammation. Liver X Receptor (LXR) and Peroxisome Proliferator-Activated Receptor (PPAR){gamma} are nuclear receptors expressed in macrophages controlling the inflammatory response. Recently, we reported visfatin as a PPAR{gamma} target gene in human macrophages. In this study, we examined whether LXR regulates macrophage visfatin expression. Synthetic LXR ligands decreased visfatin gene expression in a LXR-dependent manner in human and murine macrophages. The decrease of visfatin mRNA was paralleled by a decrease of protein secretion. Consequently, a modest and transient decrease of NAD{sup +} concentration was observed. Interestingly, LXR activation decreased the PPAR{gamma}-induced visfatin gene and protein secretion in human macrophages. Our results identify visfatin as a gene oppositely regulated by the LXR and PPAR{gamma} pathways in human macrophages.

  6. Cardiac microvascular endothelial cells express a functional Ca+ -sensing receptor.

    PubMed

    Berra Romani, Roberto; Raqeeb, Abdul; Laforenza, Umberto; Scaffino, Manuela Federica; Moccia, Francesco; Avelino-Cruz, Josè Everardo; Oldani, Amanda; Coltrini, Daniela; Milesi, Veronica; Taglietti, Vanni; Tanzi, Franco

    2009-01-01

    The mechanism whereby extracellular Ca(2+) exerts the endothelium-dependent control of vascular tone is still unclear. In this study, we assessed whether cardiac microvascular endothelial cells (CMEC) express a functional extracellular Ca(2+)-sensing receptor (CaSR) using a variety of techniques. CaSR mRNA was detected using RT-PCR, and CaSR protein was identified by immunocytochemical analysis. In order to assess the functionality of the receptor, CMEC were loaded with the Ca(2+)-sensitive fluorochrome, Fura-2/AM. A number of CaSR agonists, such as spermine, Gd(3+), La(3+) and neomycin, elicited a heterogeneous intracellular Ca(2+) signal, which was abolished by disruption of inositol 1,4,5-trisphosphate (InsP(3)) signaling and by depletion of intracellular stores with cyclopiazonic acid. The inhibition of the Na(+)/Ca(2+) exchanger upon substitution of extracellular Na(+) unmasked the Ca(2+) signal triggered by an increase in extracellular Ca(2+) levels. Finally, aromatic amino acids, which function as allosteric activators of CaSR, potentiated the Ca(2+) response to the CaSR agonist La(3+). These data provide evidence that CMEC express CaSR, which is able to respond to physiological agonists by mobilizing Ca(2+) from intracellular InsP(3)-sensitive stores. Copyright 2008 S. Karger AG, Basel.

  7. [Innate immunity: cutaneous expression of Toll-like receptors].

    PubMed

    Musette, Philippe; Auquit Auckbur, Isabelle; Begon, Edouard

    2006-02-01

    Toll receptors were first identified as an essential molecule for embryonic patterning in Drosophila and were subsequently shown to be a key in antibacterial and antifungal immunity in adult flies. Toll receptors have been conserved throughout evolution. In mammals, TLRs have been implicated in both inflammatory responses and innate host defense to pathogens. The 11 different TLRs recognize conserved molecular patterns of microbial pathogens termed pathogen-specific molecular patterns (PAMPs), that permit to confer responsiveness to a wide variety of pathogens. Endogenous ligands are also able to activate TLRs. All adult tissue is capable to express at least one of member of TLR family, but a largest repertoire of TLRs is found in tissues exposed to the external environment. The TLR activation induce the NF-kappaB translocation to the nucleus and cytokine secretion. Since the primary function of skin is to provide an effective barrier against outside agression, it is likely that keratinocytes may play a role in a rapid and efficient host defence system, and the fact that keratinocytes are capable of expressing a wide variety of TLRs is subsequently not surprising.

  8. Heterogeneous expression of Drosophila gustatory receptors in enteroendocrine cells.

    PubMed

    Park, Jeong-Ho; Kwon, Jae Young

    2011-01-01

    The gastrointestinal tract is emerging as a major site of chemosensation in mammalian studies. Enteroendocrine cells are chemosensory cells in the gut which produce regulatory peptides in response to luminal contents to regulate gut physiology, food intake, and glucose homeostasis, among other possible functions. Increasing evidence shows that mammalian taste receptors and taste signaling molecules are expressed in enteroendocrine cells in the gut. Invertebrate models such as Drosophila can provide a simple and genetically tractable system to study the chemosensory functions of enteroendocrine cells in vivo. To establish Drosophila enteroendocrine cells as a model for studying gut chemosensation, we used the GAL4/UAS system to examine the expression of all 68 Gustatory receptors (Grs) in the intestine. We find that 12 Gr-GAL4 drivers label subsets of enteroendocrine cells in the midgut, and examine colocalization of these drivers with the regulatory peptides neuropeptide F (NPF), locustatachykinin (LTK), and diuretic hormone 31 (DH31). RT-PCR analysis provides additional evidence for the presence of Gr transcripts in the gut. Our results suggest that the Drosophila Grs have chemosensory roles in the intestine to regulate physiological functions such as food uptake, nutrient absorption, or sugar homeostasis.

  9. Expression of adiponectin and its receptors in the porcine hypothalamus during the oestrous cycle.

    PubMed

    Kaminski, T; Smolinska, N; Maleszka, A; Kiezun, M; Dobrzyn, K; Czerwinska, J; Szeszko, K; Nitkiewicz, A

    2014-06-01

    Adiponectin is a hormonal link between obesity and reproduction, and its actions are mediated by two types of receptors: adiponectin receptor 1 (AdipoR1) and adiponectin receptor 2 (AdipoR2). This study compares the expression levels of adiponectin and adiponectin receptor mRNAs and proteins in selected areas of the porcine hypothalamus responsible for GnRH production and secretion: the mediobasal hypothalamus (MBH), pre-optic area (POA) and stalk median eminence (SME). The tissue samples were harvested on days 2-3, 10-12, 14-16 and 17-19 of the oestrous cycle. Adiponectin mRNA expression in MBH was significantly lower on days 14-16, whereas in SME, the most pronounced gene expression was found on days 2-3 of the cycle (p < 0.05). Adiponectin protein in MBH was most abundant on days 17-19 and in POA on days 2-3 (p < 0.05). Adiponectin protein expression in SME was at similar level throughout the most of the cycle with a statistically significant drop (p < 0.05) on days 14-16. AdipoR1 gene expression in POA was potentiated on days 2-3 and 10-12 of the oestrous cycle (p < 0.05). In SME, the highest AdipoR1 mRNA expression was noted on days 2-3 (p < 0.05). The concentrations of the AdipoR1 protein in POA were similar throughout the luteal phase (days 2-14 of the cycle), and they decreased on days 17-19 (p < 0.05). In SME, AdipoR1 protein expression peak occurred on days 2-3 (p < 0.05). The expression patterns of the AdipoR2 gene in MBH, POA and SME revealed the highest mRNA levels on days 2-3 of the cycle (p < 0.05). The highest content of AdipoR2 protein in MBH was reported on days 2-3 (p < 0.05), while in POA on days 17-19 and in SME on days 10-12 and 14-16 (p < 0.05). This study demonstrated that adiponectin and adiponectin receptor mRNAs and proteins are present in the porcine hypothalamus and that their expression levels are determined by the pig's endocrine status related to the oestrous cycle.

  10. Osmotic swelling induces p75 neurotrophin receptor (p75NTR) expression via nitric oxide.

    PubMed

    Peterson, Suzanne; Bogenmann, Emil

    2003-09-05

    Brain injuries by physical trauma, epileptic seizures, or microbial infection upset the osmotic homeostasis resulting in cell swelling (cerebral edema), inflammation, and apoptosis. Expression of the neurotrophin receptor p75NTR is increased in the injured tissue and axon regeneration is repressed by the Nogo receptor using p75NTR as the signal transducer. Hence, p75NTR seems central to the injury response and we wished to determine the signals that regulate its expression. Here, we demonstrate that tonicity mediated cell swelling rapidly activates transcription of the endogenous p75NTR gene and of a p75NTR promoter-reporter gene in various cell types. Transcription activation is independent of de novo protein synthesis and requires the activities of phospholipase C, protein kinase C, and nitric-oxide synthase. Hence, p75NTR is a nitric oxide effector gene regulated by osmotic swelling, thereby providing a strategy for therapeutic intervention to modulate p75NTR functions following injury.

  11. Soluble hyaluronan receptor RHAMM induces mitotic arrest by suppressing Cdc2 and cyclin B1 expression

    PubMed Central

    1996-01-01

    The hyaluronan (HA) receptor RHAMM is an important regulator of cell growth. Overexpression of RHAMM is transforming and is required for H- ras transformation. The molecular mechanism underlying growth control by RHAMM and other extracellular matrix receptors remains largely unknown. We report that soluble RHAMM induces G2/M arrest by suppressing the expression of Cdc2/Cyclin B1, a protein kinase complex essential for mitosis. Down-regulation of RHAMM by use of dominant negative mutants or antisense of mRNA also decreases Cdc2 protein levels. Suppression of Cdc2 occurs as a result of an increased rate of cdc2 mRNA degradation. Moreover, tumor cells treated with soluble RHAMM are unable to form lung metastases. Thus, we show that mitosis is directly linked to RHAMM through control of Cdc2 and Cyclin B1 expression. Failure to sustain levels of Cdc2 and Cyclin B1 proteins leads to cell cycle arrest. PMID:8666924

  12. Cre-mediated recombination in cell lineages that express the progesterone receptor.

    PubMed

    Soyal, Selma M; Mukherjee, Atish; Lee, Kevin Y-S; Li, Jie; Li, Huaiguang; DeMayo, Francesco J; Lydon, John P

    2005-02-01

    Using gene-targeting methods, a progesterone receptor Cre knockin (PR-Cre) mouse was generated in which Cre recombinase was inserted into exon 1 of the PR gene. The insertion positions the Cre gene downstream (and under the specific control) of the endogenous PR promoter. As for heterozygotes for the progesterone receptor knockout (PRKO) mutation, mice heterozygous for the Cre knockin insertion are phenotypically indistinguishable from wildtype. Crossing the PR-Cre with the ROSA26R reporter revealed that Cre excision activity is restricted to cells that express PR in progesterone-responsive tissues such as the uterus, ovary, oviduct, pituitary gland, and mammary gland. Initial characterization of the PR-Cre mouse underscores the utility of this model to precisely ablate floxed target genes specifically in cell lineages that express the PR. In the wider context of female reproductive tissue ontology, this model will be indispensable in tracing the developmental fate of cell lineages that descend from PR positive progenitors.

  13. Clinical Relevance of VPAC1 Receptor Expression in Early Arthritis: Association with IL-6 and Disease Activity

    PubMed Central

    Seoane, Iria V.; Ortiz, Ana M.; Piris, Lorena; Lamana, Amalia; Juarranz, Yasmina; García-Vicuña, Rosario; González-Álvaro, Isidoro; Gomariz, Rosa P.; Martínez, Carmen

    2016-01-01

    Background The vasoactive intestinal peptide (VIP) receptors VPAC1 and VPAC2 mediate anti-inflammatory and immunoregulatory responses in rheumatoid arthritis (RA). Data on the expression of these receptors could complement clinical assessment in the management of RA. Our goal was to investigate the correlation between expression of both receptors and the 28-Joint Disease Activity Score (DAS28) in peripheral blood mononuclear cells (PBMCs) from patients with early arthritis (EA). We also measured expression of IL-6 to evaluate the association between VIP receptors and systemic inflammation. Methods We analyzed 250 blood samples collected at any of the 5 scheduled follow-up visits from 125 patients enrolled in the Princesa Early Arthritis Register Longitudinal study. Samples from 22 healthy donors were also analyzed. Sociodemographic, clinical, and therapeutic data were systematically recorded. mRNA expression levels were determined using real-time PCR. Then, longitudinal multivariate analyses were performed. Results PBMCs from EA patients showed significantly higher expression of VPAC2 receptors at baseline compared to healthy donors (p<0.001). With time, however, VPAC2 expression tended to be significantly lower while VPAC1 receptor expression increased in correlation with a reduction in DAS28 index. Our results reveal that more severe inflammation, based on high levels of IL-6, is associated with lower expression of VPAC1 (p<0.001) and conversely with increased expression of VPAC2 (p<0.001). A major finding of this study is that expression of VPAC1 is lower in patients with increased disease activity (p = 0.001), thus making it possible to differentiate between patients with various degrees of clinical disease activity. Conclusion Patients with more severe inflammation and higher disease activity show lower levels of VPAC1 expression, which is associated with patient-reported impairment. Therefore, VPAC1 is a biological marker in EA. PMID:26881970

  14. Immunohistochemical expression of estrogens and progesterone receptors in carcinoma ex pleomorphic adenoma-undifferentiated and adenocarcinoma types.

    PubMed

    Tarakji, Bassel; Nassani, Mohammad Z; Sloan, Philip

    2010-05-01

    Cancer of the salivary gland is one of the common cancers in the head and the neck regions. This type of cancer develops in the minor and the major salivary glands, and it sometimes metastasizes to other organs, particularly the lung. Morphologic mimicry and similarity in the expression of steroid hormone receptors between salivary gland tumours and breast tumours are well-known phenomena and are occasionally debated in the field of surgical pathology. The expression of sex hormone receptors in some tumours suggests a role for these receptors in tumor pathogenesis and therapy. Previous studies of the expression of estrogens and progesterone receptors in salivary gland tumours have reported conflicting results. Our study aimed to characterize alteration in the immunohistochemical expression of oestrogens receptor and progesterone receptor in the tumour cells of carcinoma arising in pleomorphic adenoma. 27 cases of carcinoma arising in pleomorphic adenoma (undifferentiated and adenocarcinoma types) were examined. The results showed that 27 (100 %) of 27 cases had negative nuclear staining for either oestrogens or progesterone receptors. Our data suggest that carcinomas arising in pleomorphic adenoma were not dependent on endocrine function.

  15. Specificity and sensitivity of a human olfactory receptor functionally expressed in human embryonic kidney 293 cells and Xenopus Laevis oocytes.

    PubMed

    Wetzel, C H; Oles, M; Wellerdieck, C; Kuczkowiak, M; Gisselmann, G; Hatt, H

    1999-09-01

    Here, we provide the first evidence for functional expression of a human olfactory receptor protein (OR17-40) and show that recombinant olfactory receptors can be functionally expressed in heterologous systems. A mixture of 100 different odorants (Henkel 100) elicited a transient increase in intracellular [Ca(2+)] in human embryonic kidney 293 (HEK293) cells stably or transiently transfected with the plasmid pOR17-40. By subdividing the odorant mixture into progressively smaller groups, we identified a single component that represented the only effective substance: helional. Only the structurally closely related molecule heliotroplyacetone also activated the receptor. Other compounds, including piperonal, safrole, and vanillin, were completely ineffective. Mock-transfected cells and cells transfected with other receptors showed no change in intracellular [Ca(2+)] in response to odor stimulation. We were also able to functionally express OR17-40 in Xenopus laevis oocytes. Coexpression of a "reporter" channel allowed measurement of the response of oocytes injected with the cRNA of the human receptor to the odor mixture Henkel 100. The effective substances were the same (helional, heliotropylacetone) as those identified by functionally expressing the receptor in HEK293 cells and were active at the same, lower micromolar concentration. These findings open the possibility of now characterizing the sensitivity and specificity of many, if not all, of the hundreds of different human olfactory receptors.

  16. Channel catfish (Ictalurus punctatus) leukocytes express estrogen receptor isoforms ERα and ERβ2 and are functionally modulated by estrogens

    USGS Publications Warehouse

    Iwanowicz, Luke R.; Stafford, James L.; Patiño, Reynaldo; Bengten, Eva; Miller, Norman W.; Blazer, Vicki

    2014-01-01

    Estrogens are recognized as modulators of immune responses in mammals and teleosts. While it is known that the effects of estrogens are mediated via leukocyte-specific estrogen receptors (ERs) in humans and mice, leucocyte-specific estrogen receptor expression and the effects of estrogens on this cell population is less explored and poorly understood in teleosts. Here in, we verify that channel catfish (Ictalurus punctaus) leukocytes express ERα and ERβ2. Transcripts of these isoforms were detected in tissue-associated leukocyte populations by PCR, but ERβ2 was rarely detected in PBLs. Expression of these receptors was temporally regulated in PBLs following polyclonal activation by concanavalin A, lipopolysaccharide or alloantigen based on evaluation by quantitative and end-point PCR. Examination of long-term leukocyte cell lines demonstrated that these receptors are differentially expressed depending on leukocyte lineage and phenotype. Expression of ERs was also temporally dynamic in some leukocyte lineages and may reflect stage of cell maturity. Estrogens affect the responsiveness of channel catfish peripheral blood leukocytes (PBLs) to mitogens in vitro. Similarly, bactericidal activity and phorbol 12-myristate 13-acetate induced respiratory burst was modulated by 17β-estradiol. These actions were blocked by the pure ER antagonist ICI 182780 indicating that response is, in part, mediated via ERα. In summary, estrogen receptors are expressed in channel catfish leukocytes and participate in the regulation of the immune response. This is the first time leukocyte lineage expression has been reported in teleost cell lines.

  17. Expression of growth factor and receptor mRNAs in skin epithelial cells following acute cutaneous injury.

    PubMed Central

    Antoniades, H. N.; Galanopoulos, T.; Neville-Golden, J.; Kiritsy, C. P.; Lynch, S. E.

    1993-01-01

    We report that acute injury induces the expression of selective growth factor and growth factor receptors in the epithelial cells of the wounded tissue. In situ hybridization analysis of skin biopsy specimens obtained after cutaneous injury in swine demonstrated the induction of the expression of transforming growth factor-alpha, its receptor, epidermal growth factor-R, acidic fibroblast growth factor, and basic fibroblast growth factor messenger RNAs in the skin epithelial cells of the wounded tissue. There was no significant expression in the epithelial cells of control, uninjured tissues. The expression levels were maximal during the period of active tissue repair (1 to 5 days after injury) and were totally suppressed upon the healing of the wounded tissues. In contrast, insulinlike growth factor-I, (IGF-I), IGF-I receptor, and IGF-II receptor messenger RNAs were expressed in the epithelial cells of both the control, uninjured tissues and in tissue specimens obtained after injury. There was no significant expression of IGF-II messenger RNA in the epithelial cells before or after injury. It seems that injury induces the coordinated expression of selective growth factor and growth factor receptor genes whose products contribute to the regulation of the complex processes involved in tissue repair and remodeling. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8386442

  18. Linking estrogen receptor β expression with inflammatory bowel disease activity

    PubMed Central

    Pierdominici, Marina; Maselli, Angela; Varano, Barbara; Barbati, Cristiana; Cesaro, Paola; Spada, Cristiano; Zullo, Angelo; Lorenzetti, Roberto; Rosati, Marco; Rainaldi, Gabriella; Limiti, Maria Rosaria; Guidi, Luisa

    2015-01-01

    Crohn disease (CD) and ulcerative colitis (UC) are chronic forms of inflammatory bowel disease (IBD) whose pathogenesis is only poorly understood. Estrogens have a complex role in inflammation and growing evidence suggests that these hormones may impact IBD pathogenesis. Here, we demonstrated a significant reduction (p < 0.05) of estrogen receptor (ER)β expression in peripheral blood T lymphocytes from CD/UC patients with active disease (n = 27) as compared to those in remission (n = 21) and healthy controls (n = 29). Accordingly, in a subgroup of CD/UC patients undergoing to anti-TNF-α therapy and responsive to treatment, ERβ expression was higher (p < 0.01) than that observed in not responsive patients and comparable to that of control subjects. Notably, ERβ expression was markedly decreased in colonic mucosa of CD/UC patients with active disease, reflecting the alterations observed in peripheral blood T cells. ERβ expression inversely correlated with interleukin (IL)-6 serum levels and exogenous exposure of both T lymphocytes and intestinal epithelial cells to this cytokine resulted in ERβ downregulation. These results demonstrate that the ER profile is altered in active IBD patients at both mucosal and systemic levels, at least in part due to IL-6 dysregulation, and highlight the potential exploitation of T cell-associated ERβ as a biomarker of endoscopic disease activity. PMID:26497217

  19. Expression of Formyl-peptide Receptors in Human Lung Carcinoma.

    PubMed

    Cattaneo, Fabio; Guerra, Germano; Parisi, Melania; Lucariello, Angela; De Luca, Antonio; De Rosa, Nicolina; Mazzarella, Gennaro; Bianco, Andrea; Ammendola, Rosario

    2015-05-01

    Formyl-peptide receptors (FPRs) are expressed in several tissues and cell types. The identification of markers involved in cell growth may further allow for molecular profiling of lung cancer. We investigated the possible role of FPRs as molecular markers in several types of lung carcinomas which is the main cause of cancer death worldwide. Tumor tissue samples were collected from six patients affected by lung cancer. Biopsies were analyzed for expression of FPR isoforms both in tumoral and peritumoral tissue by real-time polymerase chain reaction (PCR), western blot and immunofluorescence. Real-time PCR, western blot and immunofluorescence analyses showed that FPR expression is lower in types of human lung cancer tissues when compared to the surrounding peritumoral tissues. The study of the mechanistic basis for the control of FPR expression in normal peritumoral versus tumoral tissues could provide the basis for new diagnostic and therapeutic interventions. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  20. Expression of androgen receptor target genes in skeletal muscle.

    PubMed

    Rana, Kesha; Lee, Nicole K L; Zajac, Jeffrey D; MacLean, Helen E

    2014-01-01

    We aimed to determine the mechanisms of the anabolic actions of androgens in skeletal muscle by investigating potential androgen receptor (AR)-regulated genes in in vitro and in vivo models. The expression of the myogenic regulatory factor myogenin was significantly decreased in skeletal muscle from testosterone-treated orchidectomized male mice compared to control orchidectomized males, and was increased in muscle from male AR knockout mice that lacked DNA binding activity (AR(ΔZF2)) versus wildtype mice, demonstrating that myogenin is repressed by the androgen/AR pathway. The ubiquitin ligase Fbxo32 was repressed by 12 h dihydrotestosterone treatment in human skeletal muscle cell myoblasts, and c-Myc expression was decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle, and increased in AR(∆ZF2) muscle. The expression of a group of genes that regulate the transition from myoblast proliferation to differentiation, Tceal7 , p57(Kip2), Igf2 and calcineurin Aa, was increased in AR(∆ZF2) muscle, and the expression of all but p57(Kip2) was also decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle. We conclude that in males, androgens act via the AR in part to promote peak muscle mass by maintaining myoblasts in the proliferative state and delaying the transition to differentiation during muscle growth and development, and by suppressing ubiquitin ligase-mediated atrophy pathways to preserve muscle mass in adult muscle.

  1. Expression of coxsackievirus and adenovirus receptor and its cellular localization in myocardial tissues of dilated cardiomyopathy

    PubMed Central

    Kaur, Tripta; Mishra, Baijayantimala; Saikia, Uma Nahar; Sharma, Mirnalini; Bahl, Ajay; Ratho, Radha Kanta

    2012-01-01

    BACKGROUND: Myocarditis and dilated cardiomyopathy (DCM) are common causes of morbidity and mortality in children and adults. Recently, the human coxsackievirus and adenovirus receptor (CAR), a common receptor for coxsackieviruses and adenoviruses, was discovered and its increased expression has been reported in patients with DCM and myocarditis. OBJECTIVE: To measure the expression of CAR in myocardial tissues of patients with DCM and its cellular localization in DCM cases. METHODS: Formalin-fixed myocardial tissues collected during autopsy from 26 cases of DCM, and 20 cases each of noncardiac disease and cardiac disease other than DCM were included as the test group, and control groups A and B, respectively. Expression of CAR was studied using immunohistochemical staining of myocardial tissue with a CAR-specific rabbit polyclonal antibody. CAR messenger RNA was semiquantified by reverse transcription polymerase chain reaction followed by agarose gel analysis and measurement of band intensity. RESULTS: CAR positivity in DCM cases was found to be 96% (25 of 26) compared with 30% in control group A and 40% in control group B. CAR was found to be expressed in myocytes, endothelial and interstitial cells; however, positivity in myocytes was significantly higher than in other cells in all groups. The site of CAR expression was predominantly the sarcolemma along with cytoplasm in cardiomyocytes. CONCLUSIONS: The present study highlighted the increased expression of CAR in DCM cases, with localization in myocytes and endothelial cells. PMID:23592932

  2. Immune system expression of SLURP-1 and SLURP-2, two endogenous nicotinic acetylcholine receptor ligands.

    PubMed

    Moriwaki, Yasuhiro; Yoshikawa, Ken; Fukuda, Hiromi; Fujii, Yoshihito X; Misawa, Hidemi; Kawashima, Koichiro

    2007-05-30

    A novel transduction pathway via which apoptosis of keratinocytes is regulated through nicotinic acetylcholine (ACh) receptors (nAChRs) has emerged in studies of secreted mammalian Ly6/urokinase plasminogen-type activator receptor-related protein-1 and-2 (SLURP-1 and SLURP-2, respectively). SLURP-1 reportedly binds to alpha7 nAChRs and enhances the amplitude of macroscopic currents induced by ACh, leading to facilitation of apoptosis, whereas SLURP-2 binds to alpha3 nAChRs and prevents apoptosis. These observations prompted us to test whether SLURPs are expressed in immune cells and are involved in the regulation of immune function. We initially used reverse transcription-polymerase chain reaction analysis to characterize the expression profiles of SLURP mRNAs in several murine tissues and organs. Although SLURP-1 mRNA was not expressed in the pancreas, all other tissues and organs tested, including spleen and thymus, expressed both SLURP-1 and SLURP-2 mRNAs. Expression of both mRNAs also was detected in T and B cells, bone marrow-derived dendritic cells (DCs) and macrophages. Moreover, as in keratinocytes, stimulation of MOLT-3 human leukemic T cells with recombinant human SLURP-1 evoked intracellular Ca(2+) signaling. These results suggest that both SLURP-1 and SLURP-2 are expressed in various immune cells and organs, and that not only ACh but also SLURPs may be involved in regulating lymphocyte function via nAChR-mediated pathways.

  3. High-level expression, purification and characterization of a constitutively active thromboxane A2 receptor polymorphic variant.

    PubMed

    Xu, Bing; Chakraborty, Raja; Eilers, Markus; Dakshinamurti, Shyamala; O'Neil, Joe D; Smith, Steven O; Bhullar, Rajinder P; Chelikani, Prashen

    2013-01-01

    G protein-coupled receptors (GPCRs) exhibit some level of basal signaling even in the absence of a bound agonist. This basal or constitutive signaling can have important pathophysiological roles. In the past few years, a number of high resolution crystal structures of GPCRs have been reported, including two crystal structures of constitutively active mutants (CAM) of the dim-light receptor, rhodopsin. The structural characterizations of CAMs are impeded by the lack of proper expression systems. The thromboxane A2 receptor (TP) is a GPCR that mediates vasoconstriction and promotes thrombosis in response to the binding of thromboxane. Here, we report on the expression and purification of a genetic variant and CAM in TP, namely A160T, using tetracycline-inducible HEK293S-TetR and HEK293S (GnTI¯)-TetR cell lines. Expression of the TP and the A160T genes in these mammalian cell lines resulted in a 4-fold increase in expression to a level of 15.8 ±0.3 pmol of receptor/mg of membrane protein. The receptors expressed in the HEK293S (GnTI(-))-TetR cell line showed homogeneous glycosylation. The functional yield of the receptors using a single step affinity purification was 45 µg/10⁶ cells. Temperature- dependent secondary structure changes of the purified TP and A160T receptors were characterized using circular dichroism (CD) spectropolarimetry. The CD spectra shows that the loss of activity or thermal sensitivity that was previously observed for the A160T mutant, is not owing to large unfolding of the protein but rather to a more subtle effect. This is the first study to report on the successful high-level expression, purification, and biophysical characterization of a naturally occurring, diffusible ligand activated GPCR CAM.

  4. High-Level Expression, Purification and Characterization of a Constitutively Active Thromboxane A2 Receptor Polymorphic Variant

    PubMed Central

    Xu, Bing; Chakraborty, Raja; Eilers, Markus; Dakshinamurti, Shyamala; O’Neil, Joe D.; Smith, Steven O.; Bhullar, Rajinder P.; Chelikani, Prashen

    2013-01-01

    G protein-coupled receptors (GPCRs) exhibit some level of basal signaling even in the absence of a bound agonist. This basal or constitutive signaling can have important pathophysiological roles. In the past few years, a number of high resolution crystal structures of GPCRs have been reported, including two crystal structures of constitutively active mutants (CAM) of the dim-light receptor, rhodopsin. The structural characterizations of CAMs are impeded by the lack of proper expression systems. The thromboxane A2 receptor (TP) is a GPCR that mediates vasoconstriction and promotes thrombosis in response to the binding of thromboxane. Here, we report on the expression and purification of a genetic variant and CAM in TP, namely A160T, using tetracycline-inducible HEK293S-TetR and HEK293S (GnTI¯)-TetR cell lines. Expression of the TP and the A160T genes in these mammalian cell lines resulted in a 4-fold increase in expression to a level of 15.8 ±0.3 pmol of receptor/mg of membrane protein. The receptors expressed in the HEK293S (GnTI-)-TetR cell line showed homogeneous glycosylation. The functional yield of the receptors using a single step affinity purification was 45 µg/106 cells. Temperature- dependent secondary structure changes of the purified TP and A160T receptors were characterized using circular dichroism (CD) spectropolarimetry. The CD spectra shows that the loss of activity or thermal sensitivity that was previously observed for the A160T mutant, is not owing to large unfolding of the protein but rather to a more subtle effect. This is the first study to report on the successful high-level expression, purification, and biophysical characterization of a naturally occurring, diffusible ligand activated GPCR CAM. PMID:24086743

  5. Brain CB₁ receptor expression following lipopolysaccharide-induced inflammation.

    PubMed

    Hu, H; Ho, W; Mackie, K; Pittman, Q J; Sharkey, K A

    2012-12-27

    Cannabinoid 1 receptors (CB(1)) are highly expressed on presynaptic terminals in the brain where they are importantly involved in the control of neurotransmitter release. Alteration of CB(1) expression is associated with a variety of neurological and psychiatric disorders. There is now compelling evidence that peripheral inflammatory disorders are associated with depression and cognitive impairments. These can be modeled in rodents with peripheral administration of lipopolysaccharide (LPS), but central effects of this treatment remain to be fully elucidated. As a reduction in endocannabinoid tone is thought to contribute to depression, we asked whether the expression of CB(1) in the CNS is altered following LPS treatment. CD1 mice received LPS (0.1-1mg/kg, ip) and 6h later activated microglial cells were observed only in circumventricular organs and only at the higher dose. At 24h, activated microglial cells were identified in other brain regions, including the hippocampus, a structure implicated in some mood disorders. Immunohistochemistry and real-time polymerase chain reaction (PCR) were utilized to evaluate the change of CB(1) expression 24h after inflammation. LPS induced an increase of CB(1) mRNA in the hippocampus and brainstem. Subsequent immunohistochemical analysis revealed reduced CB(1) in the hippocampus, especially in CA3 pyramidal layer. Analysis of co-localization with markers of excitatory and inhibitory terminals indicated that the decrease in CB(1) expression was restricted to glutamatergic terminals. Despite widespread microglial activation, these results suggest that peripheral LPS treatment leads to limited changes in CB(1) expression in the brain.

  6. Altered glucocorticoid receptor expression and function during mouse skin carcinogenesis.

    PubMed

    Budunova, I V; Carbajal, S; Kang, H; Viaje, A; Slaga, T J

    1997-03-01

    Glucocorticoids are the most potent inhibitors of tumor promotion in mouse skin, when applied with a promoting agent at the early stages of promotion. However, established skin papillomas become resistant to growth inhibition by glucocorticoids. Glucocorticoid control of cellular functions is mediated by the glucocorticoid receptor (GR), a well-known transcription factor. Here we present data on GR expression and function in mouse papillomas and squamous cell carcinomas. Tumors were produced in SENCAR mice by a 7,12-dimethylbenz[a]anthracene and 12-O-tetradecanoylphorbol-13-acetate two-stage protocol. In early papillomas (after 15-20 wk of promotion), northern blotting revealed a decrease in the GR mRNA level that was confirmed by a binding assay. However, in late papillomas (after 30-40 wk of promotion), and especially in squamous cell carcinomas, the level of GR in both assays was similar to or higher than the GR level in normal epidermis. To test the functional capability of GR in tumors, we compared the effect of the synthetic glucocorticoid fluocinolone acetonide (FA) on keratinocyte proliferation and on expression of glucocorticoid-responsive genes in normal epidermis, hyperplastic skin surrounding tumors, and mouse skin papillomas. FA strongly inhibited DNA synthesis in keratinocytes in normal skin and tumor-surrounding skin but had no effect on DNA synthesis in papillomas. In addition, FA strongly induced metallothionein 1 expression and inhibited connexin 26 expression in skin but did not affect expression of these genes in tumors. These data suggest that alteration of both the expression and function of GR may be an important mechanism of tumor promotion in skin.

  7. Obtaining anti-type 1 melatonin receptor antibodies by immunization with melatonin receptor-expressing cells.

    PubMed

    Cordeiro, Nelia; Wijkhuisen, Anne; Savatier, Alexandra; Moulharat, Natacha; Ferry, Gilles; Léonetti, Michel

    2016-01-01

    Antibodies (Abs) specific to cell-surface receptors are attractive tools for studying the physiological role of such receptors or for controlling their activity. We sought to obtain such antibodies against the type 1 receptor for melatonin (MT1). For this, we injected mice with CHO cells transfected with a plasmid encoding human MT1 (CHO-MT1-h), in the presence or absence of an adjuvant mixture containing Alum and CpG1018. As we previously observed that the immune response to a protein antigen is increased when it is coupled to a fusion protein, called ZZTat101, we also investigated if the association of ZZTat101 with CHO-MT1-h cells provides an immunogenic advantage. We measured similar levels of anti-CHO and anti-MT1-h Ab responses in animals injected with either CHO-MT1-h cells or ZZTat101/CHO-MT1-h cells, with or without adjuvant, indicating that neither the adjuvant mixture nor ZZTat101 increased the anti-cell immune response. Then, we investigated whether the antisera also recognized murine MT1 (MT1-m). Using cloned CHO cells transfected with a plasmid encoding MT1-m, we found that antisera raised against CHO-MT1-h cells also bound the mouse receptor. Altogether our studies indicate that immunizing approaches based on MT1-h-expressing CHO cells allow the production of polyclonal antibodies against MT1 receptors of different origins. This paves the way to preparation of MT1-specific monoclonal antibodies.

  8. Lidocaine preferentially inhibits the function of purinergic P2X7 receptors expressed in Xenopus oocytes.

    PubMed

    Okura, Dan; Horishita, Takafumi; Ueno, Susumu; Yanagihara, Nobuyuki; Sudo, Yuka; Uezono, Yasuhito; Minami, Tomoko; Kawasaki, Takashi; Sata, Takeyoshi

    2015-03-01

    Lidocaine has been widely used to relieve acute pain and chronic refractory pain effectively by both systemic and local administration. Numerous studies reported that lidocaine affects several pain signaling pathways as well as voltage-gated sodium channels, suggesting the existence of multiple mechanisms underlying pain relief by lidocaine. Some extracellular adenosine triphosphate (ATP) receptor subunits are thought to play a role in chronic pain mechanisms, but there have been few studies on the effects of lidocaine on ATP receptors. We studied the effects of lidocaine on purinergic P2X3, P2X4, and P2X7 receptors to explore the mechanisms underlying pain-relieving effects of lidocaine. We investigated the effects of lidocaine on ATP-induced currents in ATP receptor subunits, P2X3, P2X4, and P2X7 expressed in Xenopus oocytes, by using whole-cell, two-electrode, voltage-clamp techniques. Lidocaine inhibited ATP-induced currents in P2X7, but not in P2X3 or P2X4 subunits, in a concentration-dependent manner. The half maximal inhibitory concentration for lidocaine inhibition was 282 ± 45 μmol/L. By contrast, mepivacaine, ropivacaine, and bupivacaine exerted only limited effects on the P2X7 receptor. Lidocaine inhibited the ATP concentration-response curve for the P2X7 receptor via noncompetitive inhibition. Intracellular and extracellular N-(2,6-dimethylphenylcarbamoylmethyl) triethylammonium bromide (QX-314) and benzocaine suppressed ATP-induced currents in the P2X7 receptor in a concentration-dependent manner. In addition, repetitive ATP treatments at 5-minute intervals in the continuous presence of lidocaine revealed that lidocaine inhibition was use-dependent. Finally, the selective P2X7 receptor antagonists Brilliant Blue G and AZ11645373 did not affect the inhibitory actions of lidocaine on the P2X7 receptor. Lidocaine selectively inhibited the function of the P2X7 receptor expressed in Xenopus oocytes. This effect may be caused by acting on sites in the ion

  9. Differential expression of bitter taste receptors in non-cancerous breast epithelial and breast cancer cells.

    PubMed

    Singh, Nisha; Chakraborty, Raja; Bhullar, Rajinder Pal; Chelikani, Prashen

    2014-04-04

    The human bitter taste receptors (T2Rs) are chemosensory receptors that belong to the G protein-coupled receptor superfamily. T2Rs are present on the surface of oral and many extra-oral cells. In humans 25 T2Rs are present, and these are activated by hundreds of chemical molecules of diverse structure. Previous studies have shown that many bitter compounds including chloroquine, quinidine, bitter melon extract and cucurbitacins B and E inhibit tumor growth and induce apoptosis in cancer cells. However, the existence of T2Rs in cancer cell is not yet elucidated. In this report using quantitative (q)-PCR and flow cytometry, we characterized the expression of T2R1, T2R4, T2R10, T2R38 and T2R49 in the highly metastatic breast cancer cell line MDA-MB-231, poorly metastatic cell line MCF-7, and non-cancerous mammary epithelial cell line MCF-10A. Among the 5 T2Rs analyzed by qPCR and flow cytometry, T2R4 is expressed at 40-70% in mammary epithelial cells in comparison to commonly used breast cancer marker proteins, estrogen receptor and E-cadherin. Interestingly, the expression of T2R4 was downregulated in breast cancer cells. An increase in intracellular calcium mobilization was observed after the application of bitter agonists, quinine, dextromethorphan, and phenylthiocarbamide that are specific for some of the 5 T2Rs. This suggests that the endogenous T2Rs expressed in these cells are functional. Taken together, our novel findings suggest that T2Rs are differentially expressed in mammary epithelial cells, with some T2Rs downregulated in breast cancer cells.

  10. Influence of Androgen Receptor Expression on the Survival Outcomes in Breast Cancer: A Meta-Analysis.

    PubMed

    Kim, Yoonseok; Jae, Eunae; Yoon, Myunghee

    2015-06-01

    Despite the fact that the androgen receptor (AR) is known to be involved in the pathogenesis of breast cancer, its prognostic effect remains controversial. In this meta-analysis, we explored AR expression and its impact on survival outcomes in breast cancer. We searched PubMed, EMBASE, Cochrane Library, ScienceDirect, SpringerLink, and Ovid databases and references of articles to identify studies reporting data until December 2013. Disease-free survival (DFS) and overall survival (OS) were analyzed by extracting the number of patients with recurrence and survival according to AR expression. There were 16 articles that met the criteria for inclusion in our meta-analysis. DFS and OS were significantly longer in patients with AR expression compared with patients without AR expression (odds ratio [OR], 0.60; 95% confidence interval [CI], 0.40-0.90; OR, 0.53; 95% CI, 0.38-0.73, respectively). In addition, hormone receptor (HR) positive patients had a longer DFS when AR was also expressed (OR, 0.63; 95% CI, 0.41-0.98). For patients with triple negative breast cancer (TNBC), AR expression was also associated with longer DFS and OS (OR, 0.44, 95% CI, 0.26-0.75; OR, 0.26, 95% CI, 0.12-0.55, respectively). Furthermore, AR expression was associated with a longer DFS and OS in women (OR, 0.42, 95% CI, 0.27-0.64; OR, 0.47, 95% CI, 0.38-0.59, respectively). However, in men, AR expression was associated with a worse DFS (OR, 6.00; 95% CI, 1.46-24.73). Expression of AR in breast cancer might be associated with better survival outcomes, especially in patients with HR-positive tumors and TNBC, and women. Based on this meta-analysis, we propose that AR expression might be related to prognostic features and contribute to clinical outcomes.

  11. Influence of Androgen Receptor Expression on the Survival Outcomes in Breast Cancer: A Meta-Analysis

    PubMed Central

    Kim, Yoonseok; Jae, Eunae

    2015-01-01

    Purpose Despite the fact that the androgen receptor (AR) is known to be involved in the pathogenesis of breast cancer, its prognostic effect remains controversial. In this meta-analysis, we explored AR expression and its impact on survival outcomes in breast cancer. Methods We searched PubMed, EMBASE, Cochrane Library, ScienceDirect, SpringerLink, and Ovid databases and references of articles to identify studies reporting data until December 2013. Disease-free survival (DFS) and overall survival (OS) were analyzed by extracting the number of patients with recurrence and survival according to AR expression. Results There were 16 articles that met the criteria for inclusion in our meta-analysis. DFS and OS were significantly longer in patients with AR expression compared with patients without AR expression (odds ratio [OR], 0.60; 95% confidence interval [CI], 0.40-0.90; OR, 0.53; 95% CI, 0.38-0.73, respectively). In addition, hormone receptor (HR) positive patients had a longer DFS when AR was also expressed (OR, 0.63; 95% CI, 0.41-0.98). For patients with triple negative breast cancer (TNBC), AR expression was also associated with longer DFS and OS (OR, 0.44, 95% CI, 0.26-0.75; OR, 0.26, 95% CI, 0.12-0.55, respectively). Furthermore, AR expression was associated with a longer DFS and OS in women (OR, 0.42, 95% CI, 0.27-0.64; OR, 0.47, 95% CI, 0.38-0.59, respectively). However, in men, AR expression was associated with a worse DFS (OR, 6.00; 95% CI, 1.46-24.73). Conclusion Expression of AR in breast cancer might be associated with better survival outcomes, especially in patients with HR-positive tumors and TNBC, and women. Based on this meta-analysis, we propose that AR expression might be related to prognostic features and contribute to clinical outcomes. PMID:26155289

  12. Human immunodeficiency virus receptor and coreceptor expression on human uterine epithelial cells: regulation of expression during the menstrual cycle and implications for human immunodeficiency virus infection

    PubMed Central

    Yeaman, Grant R; Howell, Alexandra L; Weldon, Sally; Demian, Douglas J; Collins, Jane E; O'Connell, Denise M; Asin, Susana N; Wira, Charles R; Fanger, Michael W

    2003-01-01

    Human immunodeficiency virus-1 (HIV-1) is primarily a sexually transmitted disease. Identification of cell populations within the female reproductive tract that are initially infected, and the events involved in transmission of infection to other cells, remain to be established. In this report, we evaluated expression of HIV receptors and coreceptors on epithelial cells in the uterus and found they express several receptors critical for HIV infection including CD4, CXCR4, CCR5 and galactosylceramide (GalC). Moreover, expression of these receptors varied during the menstrual cycle. Expression of CD4 and CCR5 on uterine epithelial cells is high throughout the proliferative phase of the menstrual cycle when blood levels of oestradiol are high. In contrast, CXCR4 expression increased gradually throughout the proliferative phase. During the secretory phase of the cycle when both oestradiol and progesterone are elevated, CD4 and CCR5 expression decreased whereas CXCR4 expression remained elevated. Expression of GalC on endometrial glands is higher during the secretory phase than during the proliferative phase of the menstrual cycle. Because epithelial cells line the female reproductive tract and express HIV receptors and coreceptors, it is likely that they are one of the first cell types to become infected. The hormonal regulation of HIV receptor expression may affect a woman's susceptibility to HIV infection during her menstrual cycle. Moreover, selective coreceptor expression could account for the preferential transmission of R5-HIV-1 strains to women. In addition, these studies provide evidence that the uterus, and potentially the entire upper reproductive tract, are important sites for the initial events involved in HIV infection. PMID:12709027

  13. Human immunodeficiency virus receptor and coreceptor expression on human uterine epithelial cells: regulation of expression during the menstrual cycle and implications for human immunodeficiency virus infection.

    PubMed

    Yeaman, Grant R; Howell, Alexandra L; Weldon, Sally; Demian, Douglas J; Collins, Jane E; O'Connell, Denise M; Asin, Susana N; Wira, Charles R; Fanger, Michael W

    2003-05-01

    Human immunodeficiency virus-1 (HIV-1) is primarily a sexually transmitted disease. Identification of cell populations within the female reproductive tract that are initially infected, and the events involved in transmission of infection to other cells, remain to be established. In this report, we evaluated expression of HIV receptors and coreceptors on epithelial cells in the uterus and found they express several receptors critical for HIV infection including CD4, CXCR4, CCR5 and galactosylceramide (GalC). Moreover, expression of these receptors varied during the menstrual cycle. Expression of CD4 and CCR5 on uterine epithelial cells is high throughout the proliferative phase of the menstrual cycle when blood levels of oestradiol are high. In contrast, CXCR4 expression increased gradually throughout the proliferative phase. During the secretory phase of the cycle when both oestradiol and progesterone are elevated, CD4 and CCR5 expression decreased whereas CXCR4 expression remained elevated. Expression of GalC on endometrial glands is higher during the secretory phase than during the proliferative phase of the menstrual cycle. Because epithelial cells line the female reproductive tract and express HIV receptors and coreceptors, it is likely that they are one of the first cell types to become infected. The hormonal regulation of HIV receptor expression may affect a woman's susceptibility to HIV infection during her menstrual cycle. Moreover, selective coreceptor expression could account for the preferential transmission of R5-HIV-1 strains to women. In addition, these studies provide evidence that the uterus, and potentially the entire upper reproductive tract, are important sites for the initial events involved in HIV infection.

  14. Dynamic regulation of platelet-derived growth factor receptor α expression in alveolar fibroblasts during realveolarization.

    PubMed

    Chen, Leiling; Acciani, Thomas; Le Cras, Tim; Lutzko, Carolyn; Perl, Anne-Karina T

    2012-10-01

    Although the importance of platelet-derived growth factor receptor (PDGFR)-α signaling during normal alveogenesis is known, it is unclear whether this signaling pathway can regulate realveolarization in the adult lung. During alveolar development, PDGFR-α-expressing cells induce α smooth muscle actin (α-SMA) and differentiate to interstitial myofibroblasts. Fibroblast growth factor (FGF) signaling regulates myofibroblast differentiation during alveolarization, whereas peroxisome proliferator-activated receptor (PPAR)-γ activation antagonizes myofibroblast differentiation in lung fibrosis. Using left lung pneumonectomy, the roles of FGF and PPAR-γ signaling in differentiation of myofibroblasts from PDGFR-α-positive precursors during compensatory lung growth were assessed. FGF receptor (FGFR) signaling was inhibited by conditionally activating a soluble dominant-negative FGFR2 transgene. PPAR-γ signaling was activated by administration of rosiglitazone. Changes in α-SMA and PDGFR-α protein expression were assessed in PDGFR-α-green fluorescent protein (GFP) reporter mice using immunohistochemistry, flow cytometry, and real-time PCR. Immunohistochemistry and flow cytometry demonstrated that the cell ratio and expression levels of PDGFR-α-GFP changed dynamically during alveolar regeneration and that α-SMA expression was induced in a subset of PDGFR-α-GFP cells. Expression of a dominant-negative FGFR2 and administration of rosiglitazone inhibited induction of α-SMA in PDGFR-α-positive fibroblasts and formation of new septae. Changes in gene expression of epithelial and mesenchymal signaling molecules were assessed after left lobe pneumonectomy, and results demonstrated that inhibition of FGFR2 signaling and increase in PPAR-γ signaling altered the expression of Shh, FGF, Wnt, and Bmp4, genes that are also important for epithelial-mesenchymal crosstalk during early lung development. Our data demonstrate for the first time that a comparable epithelial

  15. Expression of muscarinic acetylcholine receptors M3 and M5 in osteoporosis.

    PubMed

    Kauschke, Vivien; Lips, Katrin Susanne; Heiss, Christian; Schnettler, Reinhard

    2014-05-27

    Cholinergic signaling via muscarinic acetylcholine receptors (mAChR) is known to influence various physiological functions. In bone, M3 mAChR and M5 mAChR were identified on the membrane of osteoblast-like cells. M3 mAChR seems to be particularly relevant for bone physiology, as signaling via this receptor was reported to increase bone formation and decrease bone resorption. Thus, in the present study we investigated the relative mRNA expression of M3 and M5 mAChR in bones of a rat osteoporosis model. Osteoporosis was induced in Sprague-Dawley rats by bilateral ovariectomy and additional feeding of a diet deficient in calcium, vitamins C, D2, D3, and phosphorus, and free of soy and phytoestrogen. After a period of 3, 12, and 14 months, relative mRNA expression of M3 mAChR and M5 mAChR was analyzed in the 11th thoracic vertebra by real-time RT-PCR. Relative mRNA expression of M3 mAChR was significantly reduced in bones of osteoporotic rats compared to sham operated animals that served as controls. Further, M3 mAChR mRNA expression was significantly down-regulated when comparing 14-month osteoporotic rats to 3-month osteoporotic rats. Relative M5 mAChR mRNA was expressed to a lesser extent than M3 mAChR and did not show significant differences in mRNA expression level between the experimental groups. M3 mAChR mRNA expression was reduced upon induction of osteoporosis and progression of disease was associated with further decrease of this receptor, indicating that M3 mAChR is involved in the development and regulation of osteoporosis.

  16. Expression of muscarinic acetylcholine receptors M3 and M5 in osteoporosis

    PubMed Central

    Kauschke, Vivien; Lips, Katrin Susanne; Heiss, Christian; Schnettler, Reinhard

    2014-01-01

    Background Cholinergic signaling via muscarinic acetylcholine receptors (mAChR) is known to influence various physiological functions. In bone, M3 mAChR and M5 mAChR were identified on the membrane of osteoblast-like cells. M3 mAChR seems to be particularly relevant for bone physiology, as signaling via this receptor was reported to increase bone formation and decrease bone resorption. Thus, in the present study we investigated the relative mRNA expression of M3 and M5 mAChR in bones of a rat osteoporosis model. Material/Methods Osteoporosis was induced in Sprague-Dawley rats by bilateral ovariectomy and additional feeding of a diet deficient in calcium, vitamins C, D2, D3, and phosphorus, and free of soy and phytoestrogen. After a period of 3, 12, and 14 months, relative mRNA expression of M3 mAChR and M5 mAChR was analyzed in the 11th thoracic vertebra by real-time RT-PCR. Results Relative mRNA expression of M3 mAChR was significantly reduced in bones of osteoporotic rats compared to sham operated animals that served as controls. Further, M3 mAChR mRNA expression was significantly down-regulated when comparing 14-month osteoporotic rats to 3-month osteoporotic rats. Relative M5 mAChR mRNA was expressed to a lesser extent than M3 mAChR and did not show significant differences in mRNA expression level between the experimental groups. Conclusions M3 mAChR mRNA expression was reduced upon induction of osteoporosis and progression of disease was associated with further decrease of this receptor, indicating that M3 mAChR is involved in the development and regulation of osteoporosis. PMID:24866457

  17. Glomerular Glucocorticoid Receptors Expression and Clinicopathological Types of Childhood Nephrotic Syndrome.

    PubMed

    Gamal, Yasser; Badawy, Ahlam; Swelam, Salwa; Tawfeek, Mostafa S K; Gad, Eman Fathalla

    2017-02-01

    Glucocorticoids are primary therapy of idiopathic nephrotic syndrome (INS). However, not all children respond to steroid therapy. We assessed glomerular glucocorticoid receptor expression in fifty-one children with INS and its relation to response to steroid therapy and to histopathological type. Clinical, laboratory and glomerular expression of glucocorticoid receptors were compared between groups with different steroid response. Glomerular glucocorticoid expression was slightly higher in controls than in minimal change early responders, which in turn was significantly higher than in minimal change late responders. There was significantly lower glomerular glucocorticoid receptor expression in steroid-resistance compared to early responders, late responders and controls. Glomerular glucocorticoid expression was significantly higher in all minimal change disease (MCD) compared to focal segmental glomerulosclerosis. In INS, response to glucocorticoid is dependent on glomerular expression of receptors and peripheral expression. Evaluation of glomerular glucocorticoid receptor expression at time of diagnosis of NS can predict response to steroid therapy.

  18. Molecular cloning of an unusual bicistronic cholecystokinin receptor mRNA expressed in chicken brain: a structural and functional expression study.

    PubMed

    Nilsson, Isabelle B M; Svensson, Samuel P S; Monstein, Hans-Jürg

    2003-06-15

    This report describes the molecular cloning and pharmacological characterization of a transiently expressed chicken brain cholecystokinin receptor (CCK-CHR) in COS-7 cells. A polymerase chain reaction (PCR)-based cloning strategy was applied using: (1) an initial PCR with deoxyinosine-containing primers designed to target conserved regions in CCK receptors, followed by (2) rapid amplification of cDNA ends (RACE), and (3) full-length PCR of the CCK-CHR cDNA. The full-length cloned bicistronic CCK-CHR cDNA contained a short upstream open reading frame (uORF) coding for a putative six-amino-acid-long peptide of unknown function, followed by a long open reading frame (lORF) encoding the 436-amino-acid-long CCK-CHR receptor protein. At the amino acid level, the CCK-CHR shared approximately 50% homology with mammalian and Xenopus laevis CCK receptors. The pharmacological profile of CCK-CHR resembled that of CCK-B receptors using agonists (CCK-8, CCK-4, gastrin-17), whereas CCK-CHR showed higher affinity for the CCK-A receptor antagonist, devazepide, than for the CCK-B receptor antagonist, L-365,260. To the best of our knowledge, this is the first description and functional expression study of a cloned chicken CCK receptor cDNA.

  19. Equine insulin receptor and insulin-like growth factor-1 receptor expression in digital lamellar tissue and insulin target tissues.

    PubMed

    Kullmann, A; Weber, P S; Bishop, J B; Roux, T M; Norby, B; Burns, T A; McCutcheon, L J; Belknap, J K; Geor, R J

    2016-09-01

    Hyperinsulinaemia is implicated in the pathogenesis of endocrinopathic laminitis. Insulin can bind to different receptors: two insulin receptor isoforms (InsR-A and InsR-B), insulin-like growth factor-1 receptor (IGF-1R) and InsR/IGF-1R hybrid receptor (Hybrid). Currently, mRNA expression of these receptors in equine tissues and the influence of body type and dietary carbohydrate intake on expression of these receptors is not known. The study objectives were to characterise InsR-A, InsR-B, IGF-1R and Hybrid expression in lamellar tissue (LT) and insulin responsive tissues from horses and examine the effect of dietary nonstructural carbohydrate (NSC) on mRNA expression of these receptors in LT, skeletal muscle, liver and two adipose tissue (AT) depots of lean and obese ponies. In vivo experiment. Lamellar tissue samples were evaluated by quantitative reverse transcription polymerase chain reaction (RT-qPCR) for receptor mRNA expression (n = 8) and immunoblotting for protein expression (n = 3). Archived LT, skeletal muscle, liver and AT from lean and obese mixed-breed ponies fed either a low (~7% NSC as dry matter; 5 lean, 5 obese) or high NSC diet (~42% NSC as dry matter; 6 lean, 6 obese) for 7 days were evaluated by RT-qPCR to determine the effect of body condition and diet on expression of the receptors in different tissues. Significance was set at P≤0.05. Lamellar tissue expresses both InsR isoforms, IGF-1R and Hybrid. LT IGF-1R gene expression was greater than either InsR isoform and InsR-A expression was greater than InsR-B (P≤0.05). Obesity significantly lowered IGF-1R, InsR-A and InsR-B mRNA expression in LT and InsR-A in tailhead AT. High NSC diet lowered expression of all three receptor types in liver; IGF-1R and InsR-A in LT and InsR-A in tailhead AT. Lamellar tissue expresses IGF-1R, InsR isoforms and Hybrids. The functional characteristics of these receptors and their role in endocrinopathic laminitis warrants further investigation. © 2015 EVJ

  20. Expression of the human muscarinic receptor gene m2 in Dictyostelium discoideum

    SciTech Connect

    Voith, G.; Dingermann, T.

    1995-11-01

    We have expressed a functional human muscarinic M2 receptor, under the control of the homologous discoidin I{gamma} promoter, in the cellular slime mold Dictyostelium discoideum. The use of a contact site A leader peptide ensured insertion of the newly synthesized receptor protein into the plasma membrane. Due to the characteristics of the discoidin I{gamma} promoter, the M2 receptor is expressed during late growth and early development. The heterologously expressed M2 receptors show binding characteristics similar to authentic receptors. Membranes as well as whole cells can be used in ligand binding assays. 36 refs., 4 figs.

  1. Expression map of a complete set of gustatory receptor genes in chemosensory organs of Bombyx mori.

    PubMed

    Guo, Huizhen; Cheng, Tingcai; Chen, Zhiwei; Jiang, Liang; Guo, Youbing; Liu, Jianqiu; Li, Shenglong; Taniai, Kiyoko; Asaoka, Kiyoshi; Kadono-Okuda, Keiko; Arunkumar, Kallare P; Wu, Jiaqi; Kishino, Hirohisa; Zhang, Huijie; Seth, Rakesh K; Gopinathan, Karumathil P; Montagné, Nicolas; Jacquin-Joly, Emmanuelle; Goldsmith, Marian R; Xia, Qingyou; Mita, Kazuei

    2017-03-01

    Most lepidopteran species are herbivores, and interaction with host plants affects their gene expression and behavior as well as their genome evolution. Gustatory receptors (Grs) are expected to mediate host plant selection, feeding, oviposition and courtship behavior. However, due to their high diversity, sequence divergence and extremely low level of expression it has been difficult to identify precisely a complete set of Grs in Lepidoptera. By manual annotation and BAC sequencing, we improved annotation of 43 gene sequences compared with previously reported Grs in the most studied lepidopteran model, the silkworm, Bombyx mori, and identified 7 new tandem copies of BmGr30 on chromosome 7, bringing the total number of BmGrs to 76. Among these, we mapped 68 genes to chromosomes in a newly constructed chromosome distribution map and 8 genes to scaffolds; we also found new evidence for large clusters of BmGrs, especially from the bitter receptor family. RNA-seq analysis of diverse BmGr expression patterns in chemosensory organs of larvae and adults enabled us to draw a precise organ specific map of BmGr expression. Interestingly, most of the clustered genes were expressed in the same tissues and more than half of the genes were expressed in larval maxillae, larval thoracic legs and adult legs. For example, BmGr63 showed high expression levels in all organs in both larval and adult stages. By contrast, some genes showed expression limited to specific developmental stages or organs and tissues. BmGr19 was highly expressed in larval chemosensory organs (especially antennae and thoracic legs), the single exon genes BmGr53 and BmGr67 were expressed exclusively in larval tissues, the BmGr27-BmGr31 gene cluster on chr7 displayed a high expression level limited to adult legs and the candidate CO2 receptor BmGr2 was highly expressed in adult antennae, where few other Grs were expressed. Transcriptional analysis of the Grs in B. mori provides a valuable new reference for

  2. Allergic sensitization modifies the pulmonary expression of 5-hydroxytryptamine receptors in guinea pigs.

    PubMed

    Córdoba-Rodríguez, Guadalupe; Vargas, Mario H; Ruiz, Víctor; Carbajal, Verónica; Campos-Bedolla, Patricia; Mercadillo-Herrera, Paulina; Arreola-Ramírez, José Luis; Segura-Medina, Patricia

    2016-03-01

    There is mounting evidence that 5-hydroxytryptamine (5-HT) plays a role in asthma. However, scarce information exists about the pulmonary expression of 5-HT receptors and its modification after allergic sensitization. In the present work, we explored the expression of 5-HT1A, 5-HT2A, 5-HT3, 5-HT4, 5-ht5a, 5-HT6, and 5-HT7 receptors in lungs from control and sensitized guinea pigs through qPCR and Western blot. In control animals, mRNA from all receptors was detectable in lung homogenates, especially from 5-HT2A and 5-HT4 receptors. Sensitized animals had decreased mRNA expression of 5-HT2A and 5-HT4 receptors and increased that of 5-HT7 receptor. In contrast, they had increased protein expression of 5-HT2A receptor in bronchial epithelium and of 5-HT4 receptor in lung parenchyma. The degree of airway response to the allergic challenge was inversely correlated with mRNA expression of the 5-HT1A receptor. In summary, our results showed that major 5-HT receptor subtypes are constitutively expressed in the guinea pig lung, and that allergic sensitization modifies the expression of 5-HT2A, 5-HT4, and 5-HT7 receptors. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Differential microRNA expression is associated with androgen receptor expression in breast cancer.

    PubMed

    Shi, Yaqin; Yang, Fang; Sun, Zijia; Zhang, Wenwen; Gu, Jun; Guan, Xiaoxiang

    2017-01-01

    The androgen receptor (AR) is frequently expressed in breast cancer; however, its prognostic value remains unclear. AR expression in breast cancer has been associated with improved outcomes in estrogen receptor (ER)‑positive breast cancer compared with ER‑negative disease. Eliminating AR function in breast cancer is critically important for breast cancer progression. However, the mechanism underlying AR regulation remains poorly understood. The study of microRNAs (miRNAs) has provided important insights into the pathogenesis of hormone‑dependent cancer. To determine whether miRNAs function in the AR regulation of breast cancer, the present study performed miRNA expression profiling in AR‑positive and ‑negative breast cancer cell lines. A total of 153 miRNAs were differentially expressed in AR‑positive compared with AR‑negative breast cancer cells; 52 were upregulated and 101 were downregulated. A number of these have been extensively associated with breast cancer cell functions, including proliferation, invasion and drug‑resistance. Furthermore, through pathway enrichment analysis, signaling pathways associated with the prediction targets of the miRNAs were characterized, including the vascular endothelial growth factor and mammalian target of rapamycin signaling pathways. In conclusion, the results of the present study indicated that the expression of miRNAs may be involved in the mechanism underlying AR regulation of breast cancer, and may improve understanding of the role of AR in breast cancer.

  4. Differential microRNA expression is associated with androgen receptor expression in breast cancer

    PubMed Central

    Shi, Yaqin; Yang, Fang; Sun, Zijia; Zhang, Wenwen; Gu, Jun; Guan, Xiaoxiang

    2017-01-01

    The androgen receptor (AR) is frequently expressed in breast cancer; however, its prognostic value remains unclear. AR expression in breast cancer has been associated with improved outcomes in estrogen receptor (ER)-positive breast cancer compared with ER-negative disease. Eliminating AR function in breast cancer is critically important for breast cancer progression. However, the mechanism underlying AR regulation remains poorly understood. The study of microRNAs (miRNAs) has provided important insights into the pathogenesis of hormone-dependent cancer. To determine whether miRNAs function in the AR regulation of breast cancer, the present study performed miRNA expression profiling in AR-positive and -negative breast cancer cell lines. A total of 153 miRNAs were differentially expressed in AR-positive compared with AR-negative breast cancer cells; 52 were upregulated and 101 were downregulated. A number of these have been extensively associated with breast cancer cell functions, including proliferation, invasion and drug-resistance. Furthermore, through pathway enrichment analysis, signaling pathways associated with the prediction targets of the miRNAs were characterized, including the vascular endothelial growth factor and mammalian target of rapamycin signaling pathways. In conclusion, the results of the present study indicated that the expression of miRNAs may be involved in the mechanism underlying AR regulation of breast cancer, and may improve understanding of the role of AR in breast cancer. PMID:27959398

  5. Aryl hydrocarbon receptor activity modulates prolactin expression in the pituitary

    PubMed Central

    Moran, Tyler B.; Brannick, Katherine E.; Raetzman, Lori T.

    2012-01-01

    Pituitary tumors account for 15% of intracranial neoplasms, however the extent to which environmental toxicants contribute to the proliferation and hormone expression of pituitary cells is unknown. Aryl-hydrocarbon receptor (AhR) interacting protein (AIP) loss of function mutations cause somatotroph and lactotroph adenomas in humans. AIP sequesters AhR and inhibits its transcriptional function. Because of the link between AIP and pituitary tumors, we hypothesize that exposure to dioxins, potent exogenous ligands for AhR that are persistent in the environment, may predispose to pituitary dysfunction through activation of AhR. In the present study, we examined the effect of AhR activation on proliferation and endogenous pituitary hormone expression in the GH3 rat somato-lactotrope tumor cell line and the effect of loss of AhR action in knockout mice. GH3 cells respond to nM doses of the reversible AhR agonist β-naphthoflavone with a robust induction of Cyp1a1. Although mRNA levels of the anti-proliferative signaling cytokine TGFbeta1 are suppressed upon β-naphthoflavone treatment, we did not observe an alteration in cell proliferation. AhR activation with β-naphthoflavone suppresses Ahr expression and impairs expression of prolactin (PRL), but not growth hormone (GH) mRNA in GH3 cells. In mice, loss of Ahr similarly leads to a reduction in Prl mRNA at P3, while Gh is unaffected. Additionally, there is a significant reduction pituitary hormones Lhb and Fshb in the absence of Ahr. Overall, these results demonstrate that AhR is important for pituitary hormone expression and suggests environmental dioxins can exert endocrine disrupting effects at the pituitary. PMID:22975028

  6. p53-dependent expression of CXCR5 chemokine receptor in MCF-7 breast cancer cells.

    PubMed

    Mitkin, Nikita A; Hook, Christina D; Schwartz, Anton M; Biswas, Subir; Kochetkov, Dmitry V; Muratova, Alisa M; Afanasyeva, Marina A; Kravchenko, Julia E; Bhattacharyya, Arindam; Kuprash, Dmitry V

    2015-03-19

    Elevated expression of chemokine receptors in tumors has been reported in many instances and is related to a number of survival advantages for tumor cells including abnormal activation of prosurvival intracellular pathways. In this work we demonstrated an inverse correlation between expression levels of p53 tumor suppressor and CXCR5 chemokine receptor in MCF-7 human breast cancer cell line. Lentiviral transduction of MCF-7 cells with p53 shRNA led to elevated CXCR5 at both mRNA and protein levels. Functional activity of CXCR5 in p53-knockdown MCF-7 cells was also increased as shown by activation of target gene expression and chemotaxis in response to B-lymphocyte chemoattractant CXCL13. Using deletion analysis and site-directed mutagenesis of the cxcr5 gene promoter and enhancer elements, we demonstrated that p53 appears to act upon cxcr5 promoter indirectly, by repressing the activity of NFκB transcription factors. Using chromatin immunoprecipitation and reporter gene analysis, we further demonstrated that p65/RelA was able to bind the cxcr5 promoter in p53-dependent manner and to directly transactivate it when overexpressed. Through the described mechanism, elevated CXCR5 expression may contribute to abnormal cell survival and migration in breast tumors that lack functional p53.

  7. Glucocorticoid receptor exhibits sexually dimorphic expression in the medaka brain.

    PubMed

    Kikuchi, Yukiko; Hosono, Kohei; Yamashita, Junpei; Kawabata, Yukika; Okubo, Kataaki

    2015-11-01

    The differential impact of stress on brain functions of males and females has been widely observed in vertebrates. Recent evidence suggests that stress-induced glucocorticoid signaling affects sexual differentiation and sex changes in teleost fish. These facts led us to postulate that there were sex differences in glucocorticoid signaling in the teleost brain that underlie some sex differences in their physiological and behavioral traits. Here we found sexually dimorphic expression of a glucocorticoid receptor gene (gr1) in the brain of medaka fish (Oryzias latipes), with females having greater expression in several preoptic and thalamic nuclei. Further, gr1 exhibits female-biased expression in neurons of the anterior parvocellular preoptic nucleus that produce the neuropeptides vasotocin and gonadotropin-releasing hormone 1 (these neuropeptides have been implicated in the regulation of neuroendocrine and behavioral functions). These findings suggest that glucocorticoids have a greater influence on physiology and behavior mediated by these neuropeptides in females than in males, which may contribute to sex differences in the brain's response to stress. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Expression of glucocorticoid receptors in the regenerating human skeletal muscle.

    PubMed

    Filipović, D; Pirkmajer, S; Mis, K; Mars, T; Grubic, Z

    2011-01-01

    Many stress conditions are accompanied by skeletal muscle dysfunction and regeneration, which is essentially a recapitulation of the embryonic development. However, regeneration usually occurs under conditions of hypothalamus-pituitary-adrenal gland axis activation and therefore increased glucocorticoid (GC) levels. Glucocorticoid receptor (GR), the main determinant of cellular responsiveness to GCs, exists in two isoforms (GRalpha and GRbeta) in humans. While the role of GRalpha is well characterized, GRbeta remains an elusive player in GC signalling. To elucidate basic characteristics of GC signalling in the regenerating human skeletal muscle we assessed GRalpha and GRbeta expression pattern in cultured human myoblasts and myotubes and their response to 24-hour dexamethasone (DEX) treatment. There was no difference in GRalpha mRNA and protein expression or DEX-mediated GRalpha down-regulation in myoblasts and myotubes. GRbeta mRNA level was very low in myoblasts and remained unaffected by differentiation and/or DEX. GRbeta protein could not be detected. These results indicate that response to GCs is established very early during human skeletal muscle regeneration and that it remains practically unchanged before innervation is established. Very low GRbeta mRNA expression and inability to detect GRbeta protein suggests that GRbeta is not a major player in the early stages of human skeletal muscle regeneration.

  9. Characterization of the Olfactory Receptors Expressed in Human Spermatozoa

    PubMed Central

    Flegel, Caroline; Vogel, Felix; Hofreuter, Adrian; Schreiner, Benjamin S. P.; Osthold, Sandra; Veitinger, Sophie; Becker, Christian; Brockmeyer, Norbert H.; Muschol, Michael; Wennemuth, Gunther; Altmüller, Janine; Hatt, Hanns; Gisselmann, Günter

    2016-01-01

    The detection of external cues is fundamental for human spermatozoa to locate the oocyte in the female reproductive tract. This task requires a specific chemoreceptor repertoire that is expressed on the surface of human spermatozoa, which is not fully identified to date. Olfactory receptors (ORs) are candidate molecules and have been attributed to be involved in sperm chemotaxis and chemokinesis, indicating an important role in mammalian spermatozoa. An increasing importance has been suggested for spermatozoal RNA, which led us to investigate the expression of all 387 OR genes. This study provides the first comprehensive analysis of OR transcripts in human spermatozoa of several individuals by RNA-Seq. We detected 91 different transcripts in the spermatozoa samples that could be aligned to annotated OR genes. Using stranded mRNA-Seq, we detected a class of these putative OR transcripts in an antisense orientation, indicating a different function, rather than coding for a functional OR protein. Nevertheless, we were able to detect OR proteins in various compartments of human spermatozoa, indicating distinct functions in human sperm. A panel of various OR ligands induced Ca2+ signals in human spermatozoa, which could be inhibited by mibefradil. This study indicates that a variety of ORs are expressed at the mRNA and protein level in human spermatozoa. PMID:26779489

  10. Defining breast cancer intrinsic subtypes by quantitative receptor expression.

    PubMed

    Cheang, Maggie C U; Martin, Miguel; Nielsen, Torsten O; Prat, Aleix; Voduc, David; Rodriguez-Lescure, Alvaro; Ruiz, Amparo; Chia, Stephen; Shepherd, Lois; Ruiz-Borrego, Manuel; Calvo, Lourdes; Alba, Emilio; Carrasco, Eva; Caballero, Rosalia; Tu, Dongsheng; Pritchard, Kathleen I; Levine, Mark N; Bramwell, Vivien H; Parker, Joel; Bernard, Philip S; Ellis, Matthew J; Perou, Charles M; Di Leo, Angelo; Carey, Lisa A

    2015-05-01

    To determine intrinsic breast cancer subtypes represented within categories defined by quantitative hormone receptor (HR) and HER2 expression. We merged 1,557 cases from three randomized phase III trials into a single data set. These breast tumors were centrally reviewed in each trial for quantitative ER, PR, and HER2 expression by immunohistochemistry (IHC) stain and by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), with intrinsic subtyping by research-based PAM50 RT-qPCR assay. Among 283 HER2-negative tumors with <1% HR expression by IHC, 207 (73%) were basal-like; other subtypes, particularly HER2-enriched (48, 17%), were present. Among the 1,298 HER2-negative tumors, borderline HR (1%-9% staining) was uncommon (n = 39), and these tumors were heterogeneous: 17 (44%) luminal A/B, 12 (31%) HER2-enriched, and only 7 (18%) basal-like. Including them in the definition of triple-negative breast cancer significantly diminished enrichment for basal-like cancer (p < .05). Among 106 HER2-positive tumors with <1% HR expression by IHC, the HER2-enriched subtype was the most frequent (87, 82%), whereas among 127 HER2-positive tumors with strong HR (>10%) expression, only 69 (54%) were HER2-enriched and 55 (43%) were luminal (39 luminal B, 16 luminal A). Quantitative HR expression by RT-qPCR gave similar results. Regardless of methodology, basal-like cases seldom expressed ER/ESR1 or PR/PGR and were associated with the lowest expression level of HER2/ERBB2 relative to other subtypes. Significant discordance remains between clinical assay-defined subsets and intrinsic subtype. For identifying basal-like breast cancer, the optimal HR IHC cut point was <1%, matching the American Society of Clinical Oncology and College of American Pathologists guidelines. Tumors with borderline HR staining are molecularly diverse and may require additional assays to clarify underlying biology. ©AlphaMed Press.

  11. Perfluorooctane sulfonate (PFOS) affects hormone receptor activity, steroidogenesis, and expression of endocrine-related genes in vitro and in vivo.

    PubMed

    Du, Guizhen; Hu, Jialei; Huang, Hongyu; Qin, Yufeng; Han, Xiumei; Wu, Di; Song, Ling; Xia, Yankai; Wang, Xinru

    2013-02-01

    Perfluorooctane sulfonate (PFOS) is a widespread and persistent chemical in the environment. We investigated the endocrine-disrupting effects of PFOS using a combination of in vitro and in vivo assays. Reporter gene assays were used to detect receptor-mediated (anti-)estrogenic, (anti-)androgenic, and (anti-)thyroid hormone activities. The effect of PFOS on steroidogenesis was assessed both at hormone levels in the supernatant and at expression levels of hormone-induced genes in the H295R cell. A zebrafish-based short-term screening method was developed to detect the effect of PFOS on endocrine function in vivo. The results indicate that PFOS can act as an estrogen receptor agonist and thyroid hormone receptor antagonist. Exposure to PFOS decreased supernatant testosterone (T), increased estradiol (E2) concentrations in H295R cell medium and altered the expression of several genes involved in steroidogenesis. In addition, PFOS increased early thyroid development gene (hhex and pax8) expression in a concentration-dependent manner, decreased steroidogenic enzyme gene (CYP17, CYP19a, CYP19b) expression, and changed the expression pattern of estrogen receptor production genes (esr1, esr2b) after 500 µg/L PFOS treatment in zebrafish embryos. These results indicate that PFOS has the ability to act as an endocrine disruptor both in vitro and in vivo by disrupting the function of nuclear hormone receptors, interfering with steroidogenesis, and altering the expression of endocrine-related genes in zebrafish embryo. Copyright © 2012 SETAC.

  12. Scavenger receptor A gene regulatory elements target gene expression to macrophages and to foam cells of atherosclerotic lesions.

    PubMed Central

    Horvai, A; Palinski, W; Wu, H; Moulton, K S; Kalla, K; Glass, C K

    1995-01-01

    Transcription of the macrophage scavenger receptor A gene is markedly upregulated during monocyte to macrophage differentiation. In these studies, we demonstrate that 291 bp of the proximal scavenger receptor promoter, in concert with a 400-bp upstream enhancer element, is sufficient to direct macrophage-specific expression of a human growth hormone reporter in transgenic mice. These regulatory elements, which contain binding sites for PU.1, AP-1, and cooperating ets-domain transcription factors, are also sufficient to mediate regulation of transgene expression during the in vitro differentiation of bone marrow progenitor cells in response to macrophage colony-stimulating factor. Mutation of the PU.1 binding site within the scavenger receptor promoter severely impairs transgene expression, consistent with a crucial role of PU.1 in regulating the expression of the scavenger receptor gene. The ability of the scavenger receptor promoter and enhancer to target gene expression to macrophages in vivo, including foam cells of atherosclerotic lesions, suggests that these regulatory elements will be of general utility in the study of macrophage differentiation and function by permitting specific modifications of macrophage gene expression. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:7777517

  13. Anatomical and molecular consequences of Unilateral Naris Closure on two populations of olfactory sensory neurons expressing defined odorant receptors.

    PubMed

    Molinas, Adrien; Aoudé, Imad; Soubeyre, Vanessa; Tazir, Bassim; Cadiou, Hervé; Grosmaitre, Xavier

    2016-07-28

    Mammalian olfactory sensory neurons (OSNs), the primary elements of the olfactory system, are located in the olfactory epithelium lining the nasal cavity. Exposed to the environment, their lifespan is short. Consequently, OSNs are regularly regenerated and several reports show that activity strongly modulates their development and regeneration: the peripheral olfactory system can adjust to the amount of stimulus through compensatory mechanisms. Unilateral naris occlusion (UNO) was frequently used to investigate this mechanism at the entire epithelium level. However, there is little data regarding the effects of UNO at the cellular level, especially on individual neuronal populations expressing a defined odorant receptor. Here, using UNO during the first three postnatal weeks, we analyzed the anatomical and molecular consequences of sensory deprivation in OSNs populations expressing the MOR23 and M71 receptors. The density of MOR23-expressing neurons is decreased in the closed side while UNO does not affect the density of M71-expressing neurons. Using Real Time qPCR on isolated neurons, we observed that UNO modulates the transcript levels for transduction pathway proteins (odorant receptors, CNGA2, PDE1c). The transcripts modulated by UNO will differ between populations depending on the receptor expressed. These results suggest that sensory deprivation will have different effects on different OSNs' populations. As a consequence, early experience will shape the functional properties of OSNs differently depending on the type of odorant receptor they express.

  14. Expression and Regulation of Cholecystokinin Receptor in the Chicken's Immune Organs and Cells

    PubMed Central

    El-Kassas, Seham; Odemuyiwa, Solomon; Hajishengallis, George; Connell, Terry D; Nashar, Toufic O

    2017-01-01

    Cholecystokinin (CCK) is a neuropeptide that affects growth rate in chickens by regulating appetite. CCK peptides exert their function by binding to two identified receptors, CCKAR and CCKBR in the GI tract and the brain, respectively, as well as in other organs. In mammals, CCK/CCKAR interactions affect a number of immunological parameters, including regulation of lymphocytes and functioning of monocytes. Thus, food intake and growth can potentially be altered by infection and the resulting inflammatory immune response. It is uncertain, however, whether chicken express CCKAR in immune organs and cells, and, if so, whether CCKAR expression is regulated by pathogen derived inflammatory stimuli. Herein, we identify expression of CCKAR protein in chicken peripheral blood mononuclear cells (PBMC) including monocytes, and expression of the CCKAR gene in PBMC, thymus, bursa, and spleen, in selected commercial and pure chicken breeds. Further, stimulation with various types of E. coli heat-labile enterotoxins or lipopolysaccharide significantly regulated expression of CCKAR on monocytes in the different breeds. Ligation of CCKAR with antibodies in PBMC induced mobilization of Ca2+, indicating that CCKAR is signal competent. Injection with polyinosinic: polycytidylic acid (poly I:C), a synthetic analogue of double stranded viral RNA that binds Toll-Like Receptor-3 (TLR3), also regulated gene expressions of CCKAR and proinflammatory cytokines, in the different breeds. Interestingly, variations in the expression levels of proinflammatory cytokines in the different breeds were highly correlated with CCKAR expression levels. Taken together, these findings indicate that the physiological function of CCKAR in the chicken is tightly regulated in immune organs and cells by external inflammatory stimuli, which in turn regulate growth. This is the first report CCKAR expression in immune organs and cells, in any species, and the initial observation that CCKAR is regulated by

  15. Analysis of the expression of human bitter taste receptors in extraoral tissues.

    PubMed

    Jaggupilli, Appalaraju; Singh, Nisha; Upadhyaya, Jasbir; Sikarwar, Anurag S; Arakawa, Makoto; Dakshinamurti, Shyamala; Bhullar, Rajinder P; Duan, Kangmin; Chelikani, Prashen

    2017-02-01

    The 25 bitter taste receptors (T2Rs) in humans perform a chemosensory function. However, very little is known about the level of expression of these receptors in different tissues. In this study, using nCounter gene expression we analyzed the expression patterns of human TAS2R transcripts in cystic fibrosis bronchial epithelial (CuFi-1), normal bronchial epithelial (NuLi-1), airway smooth muscle (ASM), pulmonary artery smooth muscle (PASM), mammary epithelial, and breast cancer cells. Our results suggest a specific pattern of TAS2R expression with TAS2R3, 4, 5, 10, 13, 19, and 50 transcripts expressed at moderate levels and TAS2R14 and TAS2R20 (or TASR49) at high levels in the various tissues analyzed. This pattern of expression is mostly independent of tissue origin and the pathological state, except in cancer cells. To elucidate the expression at the protein level, we pursued flow cytometry analysis of select T2Rs from CuFi-1 and NuLi-1 cells. The expression levels observed at the gene level by nCounter analysis correlate with the protein levels for the T2Rs analyzed. Next, to assess the functionality of the expressed T2Rs in these cells, we pursued functional assays measuring intracellular calcium mobilization after stimulation with the bitter compound quinine. Using PLC inhibitor, U-73122, we show that the calcium mobilized in these cells predominantly takes place through the Quinine-T2R-Gαβγ-PLC pathway. This report will accelerate studies aimed at analyzing the pathophysiological function of T2Rs in different extraoral tissues.

  16. Pharmacological Characterization of Human Histamine Receptors and Histamine Receptor Mutantsin the Sf9 Cell Expression System.

    PubMed

    Schneider, Erich H; Seifert, Roland

    2017-02-24

    A large problem of histamine receptor research is data heterogeneity. Various experimental approaches, the complex signaling pathways of mammalian cells, and the use of different species orthologues render it difficult to compare and interpret the published results. Thus, the four human histamine receptor subtypes were analyzed side-by-side in the Sf9 insect cell expression system, using radioligand binding assays as well as functional readouts proximal to the receptor activation event (steady-state GTPase assays and [(35)S]GTPγS assays). The human H1R was co-expressed with the regulators of G protein signaling RGS4 or GAIP, which unmasked a productive interaction between hH1R and insect cell Gαq. By contrast, functional expression of the hH2R required the generation of an hH2R-Gsα fusion protein to ensure close proximity of G protein and receptor. Fusion of hH2R to the long (GsαL) or short (GsαS) splice variant of Gαs resulted in comparable constitutive hH2R activity, although both G protein variants show different GDP affinities. Medicinal chemistry studies revealed profound species differences between hH1R/hH2R and their guinea pig orthologues gpH1R/gpH2R. The causes for these differences were analyzed by molecular modeling in combination with mutational studies. Co-expression of the hH3R with Gαi1, Gαi2, Gαi3, and Gαi/o in Sf9 cells revealed high constitutive activity and comparable interaction efficiency with all G protein isoforms. A comparison of various cations (Li(+), Na(+), K(+)) and anions (Cl(-), Br(-), I(-)) revealed that anions with large radii most efficiently stabilize the inactive hH3R state. Potential sodium binding sites in the hH3R protein were analyzed by expressing specific hH3R mutants in Sf9 cells. In contrast to the hH3R, the hH4R preferentially couples to co-expressed Gαi2 in Sf9 cells. Its high constitutive activity is resistant to NaCl or GTPγS. The hH4R shows structural instability and adopts a G protein-independent high

  17. Expression pattern of mda-7/IL-24 receptors in liver cancer cell lines.

    PubMed

    Zhu, Hong; Yang, Zhi-Bin

    2009-08-01

    The mda-7/IL-24 receptor belongs to the type II cytokine receptor family, and its two heterodimeric receptors are IL-22R1/IL-20R2 and IL-20R1/IL-20R2. Mda-7/IL-24 receptor expression in liver cancer cell lines has not yet been described. This information may be helpful for further clinical gene therapy. With normal skin total RNA as template, the cDNA sequences of IL-20R1, IL-20R2 and IL-22R were amplified by RT-PCR. Total RNA was extracted from cultured liver cancer cell lines and a normal liver cell line, then detected by northern blotting, and the expression of mda-7/IL-24 receptors was analyzed. PLC/PRF/5 and SMMC-7721 expressed IL-20R1; BEL-7402, Hep3B, HepG2, and PLC/PRF/5 expressed IL-20R2; and HepG2 and PLC/PRF/5 expressed IL-22R. Only HepG2 expressed the IL-22R/IL-20R2 receptor complex. PLC/PRF/5 completely expressed both heterodimeric receptors. Huh-7, QGY-7701 and WRL-68 did not express the IL-24 receptor. Complete mda-7/IL-24 receptors are seldom expressed in liver cancer cell lines.

  18. EP receptor expression in human intestinal epithelium and localization relative to the stem cell zone of the crypts.

    PubMed

    Olsen Hult, Lene Th; Kleiveland, Charlotte R; Fosnes, Kjetil; Jacobsen, Morten; Lea, Tor

    2011-01-01

    There is substantial evidence for PGE2 affecting intestinal epithelial proliferation. PGE2 is also reported to be involved in the regulation of growth and differentiation in adult stem cells, both effects mediated by binding to EP-receptors. We have used the Lgr5 as a marker to scrutinize EP-receptor and COX expression in human intestinal epithelial cells with focus on the stem cell area of the crypts. Normal tissue from ileum and colon, but also duodenal biopsies from patients with untreated celiac disease, were investigated by immunohistochemistry and RT-PCR. The combination of fresh flash-frozen tissue and laser microdissection made it possible to isolate RNA from the epithelial cell layer, only. In the small intestine, Lgr5 labels cells are in the +4 position, while in the colon, Lgr5 positive cells are localized to the crypt bottoms. Epithelial crypt cells of normal small intestine expressed neither EP-receptor mRNA nor COX1/2. However, crypt cells in tissue from patients with untreated celiac disease expressed EP2/4 receptor and COX1 mRNA. In the colon, the situation was different. Epithelial crypt cells from normal colon were found to express EP2/4 receptor and COX1/2 transcripts. Thus, there are distinct differences between normal human small intestine and colon with regard to expression of EP2/4 receptors and COX1/2. In normal colon tissue, PGE2-mediated signaling through EP-receptors 2/4 could be involved in regulation of growth and differentiation of the epithelium, while the lack of EP-receptor expression in the small intestinal tissue exclude the possibility of a direct effect of PGE2 on the crypt epithelial cells.

  19. Serotonin 1A receptors alter expression of movement representations.

    PubMed

    Scullion, Kathleen; Boychuk, Jeffery A; Yamakawa, Glenn R; Rodych, Justin T G; Nakanishi, Stan T; Seto, Angela; Smith, Victoria M; McCarthy, Ryan W; Whelan, Patrick J; Antle, Michael C; Pittman, Quentin J; Teskey, G Campbell

    2013-03-13

    Serotonin has a myriad of central functions involving mood, appetite, sleep, and memory and while its release within the spinal cord is particularly important for generating movement, the corresponding role on cortical movement representations (motor maps) is unknown. Using adult rats we determined that pharmacological depletion of serotonin (5-HT) via intracerebroventricular administration of 5,7 dihydroxytryptamine resulted in altered movements of the forelimb in a skilled reaching task as well as higher movement thresholds and smaller maps derived using high-resolution intracortical microstimulation (ICMS). We ruled out the possibility that reduced spinal cord excitability could account for the serotonin depletion-induced changes as we observed an enhanced Hoffman reflex (H-reflex), indicating a hyperexcitable spinal cord. Motor maps derived in 5-HT1A receptor knock-out mice also showed higher movement thresholds and smaller maps compared with wild-type controls. Direct cortical application of the 5-HT1A/7 agonist 8-OH-DPAT lowered movement thresholds in vivo and increased map size in 5-HT-depleted rats. In rats, electrical stimulation of the dorsal raphe lowered movement thresholds and this effect could be blocked by direct cortical application of the 5-HT1A antagonist WAY-100135, indicating that serotonin is primarily acting through the 5-HT1A receptor. Next we developed a novel in vitro ICMS preparation that allowed us to track layer V pyramidal cell excitability. Bath application of WAY-100135 raised the ICMS current intensity to induce action potential firing whereas the agonist 8-OH-DPAT had the opposite effect. Together our results demonstrate that serotonin, acting through 5-HT1A receptors, plays an excitatory role in forelimb motor map expression.

  20. The application of the human beta-globin gene locus control region and murine erythroleukemia cell system to the expression and pharmacological characterization of human endothelin receptor subtypes.

    PubMed

    Davies, A; Whiting, E; Bath, C; Tang, E; Brennand, J

    1995-06-01

    The cDNAs encoding both A and B subtypes of the human endothelin receptor have been inserted into mammalian cell expression vectors that utilize the human globin gene, locus control region. These constructs have been introduced into murine erythroleukemia cells and inducible high level expression of the receptors has been achieved (approximately 1.5-pM/mg membrane protein and approximately 13,500 binding sites/cell for both receptor subtypes). Cell lines expressing these receptors were obtained on a rapid time scale (3-4 weeks), facilitated by the need for the analysis of only small numbers of cell clones/receptor (approximately 6). Competitive binding assays with endothelin-1 gave IC50s of 130 +/- 30 pM for endothelin-A receptor and 160 +/- 30 pM for endothelin-B receptor. Similar studies with the different isoforms of endothelin, sarafatoxin-S6b and -S6c, BQ123 and BQ3020, all gave the expected selectivity profiles. The IC50s for all compounds were in close agreement with those reported for native receptors. Thus, this expression system, which has several advantages over other described expression systems, is capable of rapidly providing large quantities of receptor for detailed pharmacological analyses or drug screening. In addition, the expressed receptors display the expected pharmacological profiles in the absence of any complicating, competing interactions from other subtypes or binding sites.

  1. Expression of the endogenous, nicotinic acetylcholine receptor ligand, SLURP-1, in human colon cancer.

    PubMed

    Pettersson, A; Nordlander, S; Nylund, G; Khorram-Manesh, A; Nordgren, S; Delbro, D S

    2008-10-01

    1. Secreted mammalian Ly-6/urokinase plasminogen activator receptor-related protein-1 (SLURP-1) is a recently discovered endogenous ligand at the alpha7 subunit of the nicotinic acetylcholine receptors. Previous reports have shown that SLURP-1 is expressed in normal human keratinocytes seemingly with a pro-apoptotic function. Conversely, such expression was markedly attenuated in transformed cells and it was suggested that the molecule could convey protection against malignant transformation. 2. In this study, we demonstrated the mRNA expression (by RT-PCR) and protein expression (by Western blotting and immunocytochemistry) of SLURP-1 in the human colon cancer cell line, HT-29. 3. Furthermore, we demonstrated the expression of SLURP-1 (by immunohistochemistry) in tumour cells of human colon cancer tissue, and, to a greater extent, in immune and smooth muscle cells of adjacent, macroscopically tumour-free colon tissue. 4. The current findings suggest that SLURP-1 participates in the regulation of gut immune functions and motility, as well as possibly playing a role in colon carcinogenesis/cancer progression.

  2. The expression of Mas-receptor of the renin-angiotensin system in the human eye.

    PubMed

    Vaajanen, A; Kalesnykas, G; Vapaatalo, H; Uusitalo, H

    2015-07-01

    The local renin-angiotensin system has been held to be expressed in many organs, including the eye. It has an important role in the regulation of local fluid homeostasis, cell proliferation, fibrosis, and vascular tone. Mas-receptor (Mas-R) is a potential receptor acting mainly opposite to the well-known angiotensin II receptor type 1. The aim of this study was to determine if Mas-R is expressed in the human eye. Seven enucleated human eyes were used in immunohistochemical detection of Mas-R and its endogenous ligand angiotensin (1-7) [Ang(1-7)]. Both light microscopy and immunofluorescent detection methods were used. A human kidney preparation sample was used as control. The Mas-R was found to have nuclear localization, and localized in the retinal nuclear layers and in the structures of the anterior segment of the eye. A cytoplasmic immunostaining pattern of Ang(1-7) was found in the inner and outer nuclear and plexiform layers of the retina and in the ciliary body. To the best of our knowledge, this is the first report showing Mas-R expression in the human eye. Its localization suggests that it may have a role in physiological and pathological processes in the anterior part of the eye and in the retina.

  3. Regulation of Pit-1 expression by ghrelin and GHRP-6 through the GH secretagogue receptor.

    PubMed

    García, A; Alvarez, C V; Smith, R G; Diéguez, C

    2001-09-01

    GH secretagogues are an expanding class of synthetic peptide and nonpeptide molecules that stimulate the pituitary gland to secrete GH through their own specific receptor, the GH-secretagogue receptor. The cloning of the receptor for these nonclassical GH releasing molecules, together with the more recent characterization of an endogenous ligand, named ghrelin, have unambiguously demonstrated the existence of a physiological system that regulates GH secretion. Somatotroph cell-specific expression of the GH gene is dependent on a pituitary-specific transcription factor (Pit-1). This factor is transcribed in a highly restricted manner in the anterior pituitary gland. The present experiments sought to determine whether the synthetic hexapeptide GHRP-6, a reference GH secretagogue compound, as well as an endogenous ligand, ghrelin, regulate pit-1 expression. By a combination of Northern and Western blot analysis we found that GHRP-6 elicits a time- and dose-dependent activation of pit-1 expression in monolayer cultures of infant rat anterior pituitary cells. This effect was blocked by pretreatment with actinomycin D, but not by cycloheximide, suggesting that this action was due to direct transcriptional activation of pit-1. Using an established cell line (HEK293-GHS-R) that overexpresses the GH secretagogue receptor, we showed a marked stimulatory effect of GHRP-6 on the pit-1 -2,500 bp 5'-region driving luciferase expression. We truncated the responsive region to -231 bp, a sequence that contains two CREs, and found that both CREs are needed for GHRP-6-induced transcriptional activation in both HEK293-GHS-R cells and infant rat anterior pituitary primary cultures. The effect was dependent on PKC, MAPK kinase, and PKA activation. Increasing Pit-1 by coexpression of pCMV-pit-1 potentiated the GHRP-6 effect on the pit-1 promoter. Similarly, we showed that the endogenous GH secretagogue receptor ligand ghrelin exerts a similar effect on the pit-1 promoter. These data

  4. Genetic modification of cytotoxic T lymphocytes to express cytokine receptors.

    PubMed

    Perna, Serena K; Savoldo, Barbara; Dotti, Gianpietro

    2014-01-01

    Adoptive transfer of tumor-infiltrating lymphocytes (TIL) or antigen-specific cytotoxic T lymphocytes (CTL) is safe and can be effective in cancer patients. Achievement of clinical responses in these patients is associated with the in vivo expansion and persistence of the transferred T lymphocytes. For this reason, recombinant human interleukin-2 (IL-2) is frequently used to support the in vivo survival of T lymphocytes infused into patients. However, IL-2 also causes important side effects. Thus, alternative strategies are highly demanded to limit cytokine-related off-target effects and to redirect the responsiveness of specific T-cell subsets to selected cytokines. Interleukin-7 (IL-7) is a promising alternative cytokine as it possesses the above mentioned properties. However, because its receptor is downregulated in ex vivo-expanded T cells, methods are required to restore their responsiveness to this homeostatic cytokine. In this chapter, we describe the methodology to obtain the ectopic expression of IL-7 receptor alpha (IL-7Rα) in antigen-specific CTL, using Epstein-Barr virus-specific CTL (EBV-CTL), as a model.

  5. Expression of melatonin receptors in arteries involved in thermoregulation

    SciTech Connect

    Viswanathan, M.; Laitinen, J.T.; Saavedra, J.M. )

    1990-08-01

    Melatonin binding sites were localized and characterized in the vasculature of the rat by using the melatonin analogue 2-(125I)iodomelatonin (125I-melatonin) and quantitative in vitro autoradiography. The expression of these sites was restricted to the caudal artery and to the arteries that form the circle of Willis at the base of the brain. The arterial 125I-melatonin binding was stable, saturable, and reversible. Saturation studies revealed that the binding represented a single class of high-affinity binding sites with a dissociation constant (Kd) of 3.4 x 10(-11) M in the anterior cerebral artery and 1.05 x 10(-10) M in the caudal artery. The binding capacities (Bmax) in these arteries were 19 and 15 fmol/mg of protein, respectively. The relative order of potency of indoles for inhibition of 125I-melatonin binding at these sites was typical of a melatonin receptor: 2-iodomelatonin greater than melatonin greater than N-acetylserotonin much much greater than 5-hydroxytryptamine. Norepinephrine-induced contraction of the caudal artery in vitro was significantly prolonged and potentiated by melatonin in a concentration-dependent manner, suggesting that these arterial binding sites are functional melatonin receptors. Neither primary steps in smooth muscle contraction (inositol phospholipid hydrolysis) nor relaxation (adenylate cyclase activation) were affected by melatonin. Melatonin, through its action on the tone of these arteries, may cause circulatory adjustments in these arteries, which are believed to be involved in thermoregulation.

  6. Proopiomelanocortin, glucocorticoid, and CRH receptor expression in human ACTH-secreting pituitary adenomas.

    PubMed

    Cassarino, Maria Francesca; Sesta, Antonella; Pagliardini, Luca; Losa, Marco; Lasio, Giovanni; Cavagnini, Francesco; Pecori Giraldi, Francesca

    2017-03-01

    ACTH-secreting pituitary tumors are by definition partially autonomous, i.e., secrete ACTH independent of physiological control. However, only few, small-sized studies on proopiomelanocortin (POMC) and its regulation by corticotropin-releasing hormone (CRH) or glucocorticoids are available. Objective of the present study was to report on constitutive and CRH- and dexamethasone-regulated POMC, CRH (CRH-R1), and glucocorticoid receptor (NR3C1) gene expression in a large series of human corticotrope adenomas. Fifty-three ACTH-secreting adenomas were incubated with 10 nM CRH or 10 nM dexamethasone for 24 h. POMC, CRH-R1, NR3C1, and its alpha and beta isoforms were quantified and medium ACTH measured. Constitutive POMC expression proved extremely variable, with macroadenomas exhibiting higher levels than microadenomas. POMC increased during CRH in most specimens; conversely, changes induced by dexamethasone were varied, ranging from decrease to paradoxical increase. No correlation between POMC and ACTH was detected in any experimental condition. CRH-R1 expression was not linked to the response to CRH while NR3C1 was expressed at greater levels in specimens who failed to inhibit during dexamethasone; glucocorticoid receptor α was the more abundant isoform and subject to down-regulation by dexamethasone. Our results demonstrate a considerable variability in POMC expression among tumors and no correlation between POMC and ACTH, suggesting that POMC peptide processing/transport plays a major role in modulating ACTH secretion. Further, CRH-R1 and NR3C1 expression were not linked to the expected ligand-induced outcome, indicating that receptor signaling rather than abundance determines corticotrope responses. Our findings pave the way to new avenues of research into Cushing's disease pathophysiology.

  7. Synaptic expression of glutamate receptor after encoding of fear memory in the rat amygdala.

    PubMed

    Yeh, Shiu-Hwa; Mao, Sheng-Chun; Lin, Hui-Ching; Gean, Po-Wu

    2006-01-01

    Fear conditioning has been ascribed to presynaptic mechanisms, particularly presynaptic facilitation of transmission at thalamo- and cortico-amygdala synapses. Here, by labeling surface receptors with biotin or using membrane fractionation approaches, we report that fear conditioning resulted in an increase in surface expression of GluR1 subunit of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors in the amygdala, whereas total GluR1 mRNA and protein levels were unchanged. The control group that received conditioned stimulus (CS) and unconditioned stimulus in an unpaired fashion did not present any increase, indicating that GluR1 increase was specific to the learning component of the task. Conditioning-induced increase in surface expression of GluR1 depended on the activation of N-methyl-d-aspartate receptors and protein kinases and required the synthesis of new proteins. CS-alone trials applied 24 h before training attenuated fear-potentiated startle and prevented conditioning-induced increase in surface expression of GluR1. Increase in GluR1 was also observed in the amygdala slices after delivery of tetanic stimulation that elicited long-term potentiation of synaptic transmission. Proteasome inhibitor increased surface expression of GluR1 in a time- and dose-dependent manner. Furthermore, pretraining administration of proteasome inhibitor into the amygdala facilitated the fear-potentiated startle. These results suggest that long-term memory formation is correlated with the change in synaptic expression of GluR1, and trafficking of GluR1 to the synaptic sites contributes at least in part to the expression of fear memory.

  8. Female Behaviour Drives Expression and Evolution of Gustatory Receptors in Butterflies

    PubMed Central

    Briscoe, Adriana D.; Macias-Muñoz, Aide; Kozak, Krzysztof M.; Walters, James R.; Yuan, Furong; Jamie, Gabriel A.; Martin, Simon H.; Dasmahapatra, Kanchon K.; Ferguson, Laura C.; Mallet, James; Jacquin-Joly, Emmanuelle; Jiggins, Chris D.

    2013-01-01

    Secondary plant compounds are strong deterrents of insect oviposition and feeding, but may also be attractants for specialist herbivores. These insect-plant interactions are mediated by insect gustatory receptors (Grs) and olfactory receptors (Ors). An analysis of the reference genome of the butterfly Heliconius melpomene, which feeds on passion-flower vines (Passiflora spp.), together with whole-genome sequencing within the species and across the Heliconius phylogeny has permitted an unprecedented opportunity to study the patterns of gene duplication and copy-number variation (CNV) among these key sensory genes. We report in silico gene predictions of 73 Gr genes in the H. melpomene reference genome, including putative CO2, sugar, sugar alcohol, fructose, and bitter receptors. The majority of these Grs are the result of gene duplications since Heliconius shared a common ancestor with the monarch butterfly or the silkmoth. Among Grs but not Ors, CNVs are more common within species in those gene lineages that have also duplicated over this evolutionary time-scale, suggesting ongoing rapid gene family evolution. Deep sequencing (∼1 billion reads) of transcriptomes from proboscis and labial palps, antennae, and legs of adult H. melpomene males and females indicates that 67 of the predicted 73 Gr genes and 67 of the 70 predicted Or genes are expressed in these three tissues. Intriguingly, we find that one-third of all Grs show female-biased gene expression (n = 26) and nearly all of these (n = 21) are Heliconius-specific Grs. In fact, a significant excess of Grs that are expressed in female legs but not male legs are the result of recent gene duplication. This difference in Gr gene expression diversity between the sexes is accompanied by a striking sexual dimorphism in the abundance of gustatory sensilla on the forelegs of H. melpomene, suggesting that female oviposition behaviour drives the evolution of new gustatory receptors in butterfly genomes. PMID

  9. Female behaviour drives expression and evolution of gustatory receptors in butterflies.

    PubMed

    Briscoe, Adriana D; Macias-Muñoz, Aide; Kozak, Krzysztof M; Walters, James R; Yuan, Furong; Jamie, Gabriel A; Martin, Simon H; Dasmahapatra, Kanchon K; Ferguson, Laura C; Mallet, James; Jacquin-Joly, Emmanuelle; Jiggins, Chris D

    2013-01-01

    Secondary plant compounds are strong deterrents of insect oviposition and feeding, but may also be attractants for specialist herbivores. These insect-plant interactions are mediated by insect gustatory receptors (Grs) and olfactory receptors (Ors). An analysis of the reference genome of the butterfly Heliconius melpomene, which feeds on passion-flower vines (Passiflora spp.), together with whole-genome sequencing within the species and across the Heliconius phylogeny has permitted an unprecedented opportunity to study the patterns of gene duplication and copy-number variation (CNV) among these key sensory genes. We report in silico gene predictions of 73 Gr genes in the H. melpomene reference genome, including putative CO2, sugar, sugar alcohol, fructose, and bitter receptors. The majority of these Grs are the result of gene duplications since Heliconius shared a common ancestor with the monarch butterfly or the silkmoth. Among Grs but not Ors, CNVs are more common within species in those gene lineages that have also duplicated over this evolutionary time-scale, suggesting ongoing rapid gene family evolution. Deep sequencing (∼1 billion reads) of transcriptomes from proboscis and labial palps, antennae, and legs of adult H. melpomene males and females indicates that 67 of the predicted 73 Gr genes and 67 of the 70 predicted Or genes are expressed in these three tissues. Intriguingly, we find that one-third of all Grs show female-biased gene expression (n = 26) and nearly all of these (n = 21) are Heliconius-specific Grs. In fact, a significant excess of Grs that are expressed in female legs but not male legs are the result of recent gene duplication. This difference in Gr gene expression diversity between the sexes is accompanied by a striking sexual dimorphism in the abundance of gustatory sensilla on the forelegs of H. melpomene, suggesting that female oviposition behaviour drives the evolution of new gustatory receptors in butterfly genomes.

  10. Expression of nerve growth factor and its receptor, tyrosine kinase receptor A, in rooster testes.

    PubMed

    Ma, Wei; Wang, Chunqiang; Su, Yuhong; Tian, Yumin; Zhu, Hongyan

    2015-10-01

    Nerve growth factor (NGF), which is required for the survival and differentiation of the nervous system, is also thought to play an important role in the development of mammalian reproductive tissues. To explore the function of NGF in the male reproductive system of non-mammalian animals, we determined the presence of NGF and its receptor, tyrosine kinase receptor A (TrkA), in rooster testes and investigated the regulation of NGF and TrkA expression by follicle-stimulating hormone (FSH). The mRNA and protein levels of NGF and TrkA in 6-week-old rooster testes were lower than those in 12-, 16- or 20-week age groups; levels were highest in the 16-week group. Immunohistochemistry showed that NGF and TrkA were both detected in spermatogonia, spermatocytes and spermatids. NGF immunoreactivity was observed in Leydig cells and strong TrkA signals were present in Sertoli cells. Meanwhile, FSH increased TrkA transcript levels in rooster testes in a dose-dependent manner. We present novel evidence for the developmental and FSH-regulated expression of the NGF/TrkA system, and our findings suggest that the NGF/TrkA system may play a prominent role in chicken spermatogenesis. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Differential expression of M3 muscarinic receptors in progressive colon neoplasia and metastasis.

    PubMed

    Cheng, Kunrong; Shang, Aaron C; Drachenberg, Cinthia B; Zhan, Min; Raufman, Jean-Pierre

    2017-03-28

    M3 muscarinic receptor (M3R) activation promotes colon cancer cell proliferation, migration, and invasion in vitro. Although over-expression of CHRM3, the gene encoding M3R, is reported in primary colon cancers, expression of M3R itself has not been studied in colon neoplasia. We compared M3R expression in normal colon to colon adenomas, and primary and metastatic colon cancers. Compared to adjacent normal colon, CHRM3 expression was increased up to 128-fold in 10 of 18 consecutive surgical cancer specimens (56%) and associated with metastatic spread (P < 0.05). To analyze M3R protein expression we interrogated 29 consecutive paraffin-embedded colon adenocarcinomas and adjacent normal colon using a specific anti-M3R antibody and immunoperoxidase staining. This revealed weak M3R expression in normal colonocytes, primarily on basolateral surfaces. In contrast, in 25 of 29 cancer tissues (86%) we observed both cytoplasmic and plasma membrane over-expression of M3R; compared to normal epithelium, mean M3R staining intensity was increased more than two-fold in colon cancer (P < 0.001). M3R staining was also increased in 22 colon adenomas compared to adjacent normal colon (P < 0.001). In contrast, M3R staining intensity was not increased in lymph node or liver metastases. These findings suggest M3R expression plays an important role in early progression and invasion of colon neoplasia but is less important once tumors have spread.

  12. Expression of epidermal growth factor receptor in canine osteosarcoma: association with clinicopathological parameters and prognosis.

    PubMed

    Selvarajah, Gayathri T; Verheije, Monique H; Kik, Marja; Slob, Adri; Rottier, Peter J M; Mol, Jan A; Kirpensteijn, Jolle

    2012-08-01

    Expression of epidermal growth factor receptor (EGFR) is associated with aggressive growth and metastasis of a range of tumours, including osteosarcomas (OS), although some studies have reported no relevance to clinicopathological events or prognosis. The present study evaluated EGFR mRNA and protein expression in a panel of OS cell lines, normal bones, frozen primary OS and tissue microarrays. EGFR expression was significantly elevated in primary OS compared to normal bones and in metastases of OS to the lungs in comparison with extrapulmonary sites. However, there were no clinical or pathological associations with mRNA expression levels in frozen tumours. Tissue microarray analysis demonstrated that a subset of canine OS with high EGFR expression was associated with significantly shorter survival times and disease-free intervals. Cytoplasmic expression of EGFR was present in 75% of metastases and was similar to expression in primary tumours. EGFR expression alone is not a reliable predictor of outcome and other markers are necessary for further prognostic stratification of dogs with OS. However, these findings suggest that a subset of dogs may benefit from anti-EGFR adjuvant therapies.

  13. The farnesoid X receptor is expressed in breast cancer and regulates apoptosis and aromatase expression.

    PubMed

    Swales, Karen E; Korbonits, Márta; Carpenter, Robert; Walsh, Desmond T; Warner, Timothy D; Bishop-Bailey, David

    2006-10-15

    Bile acids are present at high concentrations in breast cysts and in the plasma of postmenopausal women with breast cancer. The farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily that regulates bile acid homeostasis. FXR was detected in normal and tumor breast tissue, with a high level of expression in ductal epithelial cells of normal breast and infiltrating ductal carcinoma cells. FXR was also present in the human breast carcinoma cells, MCF-7 and MDA-MB-468. Activation of FXR by high concentrations of ligands induced MCF-7 and MDA-MB-468 apoptosis. At lower concentrations that had no direct effect on viability, the FXR agonist GW4064 induced expression of mRNA for the FXR target genes, small heterodimer partner (SHP), intestinal bile acid binding protein, and multidrug resistance-associated protein 2 (MRP-2), and repressed the expression of the SHP target gene aromatase. In contrast to MRP-2, mRNA for the breast cancer target genes MDR-3, MRP-1, and solute carrier transporter 7A5 were decreased. Although multidrug resistance transporters were regulated and are known FXR target genes, GW4064 had no effect on the cell death induced by the anticancer drug paclitaxel. Our findings show for the first time that FXR is expressed in breast cancer tissue and has multiple properties that could be used for the treatment of breast cancer.

  14. Expression, Functional Characterization, and Solid-State NMR Investigation of the G Protein-Coupled GHS Receptor in Bilayer Membranes

    PubMed Central

    Schrottke, Stefanie; Kaiser, Anette; Vortmeier, Gerrit; Els-Heindl, Sylvia; Worm, Dennis; Bosse, Mathias; Schmidt, Peter; Scheidt, Holger A.; Beck-Sickinger, Annette G.; Huster, Daniel

    2017-01-01

    The expression, functional reconstitution and first NMR characterization of the human growth hormone secretagogue (GHS) receptor reconstituted into either DMPC or POPC membranes is described. The receptor was expressed in E. coli. refolded, and reconstituted into bilayer membranes. The molecule was characterized by 15N and 13C solid-state NMR spectroscopy in the absence and in the presence of its natural agonist ghrelin or an inverse agonist. Static 15N NMR spectra of the uniformly labeled receptor are indicative of axially symmetric rotational diffusion of the G protein-coupled receptor in the membrane. In addition, about 25% of the 15N sites undergo large amplitude motions giving rise to very narrow spectral components. For an initial quantitative assessment of the receptor mobility, 1H-13C dipolar coupling values, which are scaled by molecular motions, were determined quantitatively. From these values, average order parameters, reporting the motional amplitudes of the individual receptor segments can be derived. Average backbone order parameters were determined with values between 0.56 and 0.69, corresponding to average motional amplitudes of 40–50° of these segments. Differences between the receptor dynamics in DMPC or POPC membranes were within experimental error. Furthermore, agonist or inverse agonist binding only insignificantly influenced the average molecular dynamics of the receptor. PMID:28387359

  15. Cyclic AMP Effectors Regulate Myometrial Oxytocin Receptor Expression.

    PubMed

    Yulia, Angela; Singh, Natasha; Lei, Kaiyu; Sooranna, Suren R; Johnson, Mark R

    2016-11-01

    The factors that initiate human labor are poorly understood. We have tested the hypothesis that a decline in cAMP/protein kinase A (PKA) function leads to the onset of labor. Initially, we identified myometrial cAMP/PKA-responsive genes (six up-regulated and five down-regulated genes) and assessed their expression in myometrial samples taken from different stages of pregnancy and labor. We found that the oxytocin receptor (OTR) was one of the cAMP-repressed genes, and, given the importance of OTR in the labor process, we studied the mechanisms involved in greater detail using small interfering RNA, chemical agonists, and antagonists of the cAMP effectors. We found that cAMP-repressed genes, including OTR, increased with the onset of labor. Our in vitro studies showed that cAMP acting via PKA reduced OTR expression but that in the absence of PKA, cAMP acts via exchange protein activated by cAMP (EPAC) to increase OTR expression. In early labor myometrial samples, PKA levels and activity declined and Epac1 levels increased, perhaps accounting for the increase in myometrial OTR mRNA and protein levels at this time. In vitro exposure of myometrial cells to stretch and IL-1β increased OTR levels and reduced basal and forskolin-stimulated cAMP and PKA activity, as judged by phospho-cAMP response element-binding protein levels, but neither stretch nor IL-1β had any effect on PKA or EPAC1 levels. In summary, there is a reduction in the activity of the cAMP/PKA pathway with the onset of human labor potentially playing a critical role in regulating OTR expression and the transition from myometrial quiescence to activation.

  16. The Orphan Nuclear Receptor ERRγ Regulates Hepatic CB1 Receptor-Mediated Fibroblast Growth Factor 21 Gene Expression.

    PubMed

    Jung, Yoon Seok; Lee, Ji-Min; Kim, Don-Kyu; Lee, Yong-Soo; Kim, Ki-Sun; Kim, Yong-Hoon; Kim, Jina; Lee, Myung-Shik; Lee, In-Kyu; Kim, Seong Heon; Cho, Sung Jin; Jeong, Won-Il; Lee, Chul-Ho; Harris, Robert A; Choi, Hueng-Sik

    2016-01-01

    Fibroblast growth factor 21 (FGF21), a stress inducible hepatokine, is synthesized in the liver and plays important roles in glucose and lipid metabolism. However, the mechanism of hepatic cannabinoid type 1 (CB1) receptor-mediated induction of FGF21 gene expression is largely unknown. Activation of the hepatic CB1 receptor by arachidonyl-2'-chloroethylamide (ACEA), a CB1 receptor selective agonist, significantly increased FGF21 gene expression. Overexpression of estrogen-related receptor (ERR) γ increased FGF21 gene expression and secretion both in hepatocytes and mice, whereas knockdown of ERRγ decreased ACEA-mediated FGF21 gene expression and secretion. Moreover, ERRγ, but not ERRα and ERRβ, induced FGF21 gene promoter activity. In addition, deletion and mutation analysis of the FGF21 promoter identified a putative ERRγ-binding motif (AGGTGC, a near-consensus response element). A chromatin immunoprecipitation assay revealed direct binding of ERRγ to the FGF21 gene promoter. Finally, GSK5182, an ERRγ inverse agonist, significantly inhibited hepatic CB1 receptor-mediated FGF21 gene expression and secretion. Based on our data, we conclude that ERRγ plays a key role in hepatic CB1 receptor-mediated induction of FGF21 gene expression and secretion.

  17. The Orphan Nuclear Receptor ERRγ Regulates Hepatic CB1 Receptor-Mediated Fibroblast Growth Factor 21 Gene Expression

    PubMed Central

    Jung, Yoon Seok; Lee, Ji-Min; Kim, Don-Kyu; Lee, Yong-Soo; Kim, Ki-Sun; Kim, Yong-Hoon; Kim, Jina; Lee, Myung-Shik; Lee, In-Kyu; Kim, Seong Heon; Cho, Sung Jin; Jeong, Won-Il; Lee, Chul-Ho; Harris, Robert A.; Choi, Hueng-Sik

    2016-01-01

    Background Fibroblast growth factor 21 (FGF21), a stress inducible hepatokine, is synthesized in the liver and plays important roles in glucose and lipid metabolism. However, the mechanism of hepatic cannabinoid type 1 (CB1) receptor-mediated induction of FGF21 gene expression is largely unknown. Results Activation of the hepatic CB1 receptor by arachidonyl-2’-chloroethylamide (ACEA), a CB1 receptor selective agonist, significantly increased FGF21 gene expression. Overexpression of estrogen-related receptor (ERR) γ increased FGF21 gene expression and secretion both in hepatocytes and mice, whereas knockdown of ERRγ decreased ACEA-mediated FGF21 gene expression and secretion. Moreover, ERRγ, but not ERRα and ERRβ, induced FGF21 gene promoter activity. In addition, deletion and mutation analysis of the FGF21 promoter identified a putative ERRγ-binding motif (AGGTGC, a near-consensus response element). A chromatin immunoprecipitation assay revealed direct binding of ERRγ to the FGF21 gene promoter. Finally, GSK5182, an ERRγ inverse agonist, significantly inhibited hepatic CB1 receptor-mediated FGF21 gene expression and secretion. Conclusion Based on our data, we conclude that ERRγ plays a key role in hepatic CB1 receptor-mediated induction of FGF21 gene expression and secretion. PMID:27455076

  18. Cranial irradiation modulates hypothalamic-pituitary-adrenal axis activity and corticosteroid receptor expression in the hippocampus of juvenile rat.

    PubMed

    Velickovic, Natasa; Djordjevic, Ana; Drakulic, Dunja; Stanojevic, Ivana; Secerov, Bojana; Horvat, Anica

    2009-01-01

    Glucocorticoids, essential for normal hypothalamic-pituitary-adrenal (HPA) axis activity, exert their action on the hippocampus through two types of corticosteroid receptors: the glucocorticoid receptor (GR) and the mineralocorticoid receptor (MR). Recent studies report that exposure of juvenile rats to cranial irradiation adversely affects HPA axis stability leading to its activation along with radiation- induced inflammation. This study was aimed to examine the acute effects of radiation on HPA axis activity and hippocampal corticosteroid receptor expression in 18-day-old rats. Since immobilization was part of irradiation procedure, both irradiated and sham-irradiated animals were exposed to this unavoidable stress. Our results demonstrate that the irradiated rats exhibited different pattern of corticosteroid receptor expression and hormone levels compared to respective controls. These differences included upregulation of GR protein in the hippocampus with a concomitant elevation of GR mRNA and an increase in circulating level of corticosterone. In addition, the expression of MR, both at the level of protein and gene expression, was not altered. Taken together, this study demonstrates that cranial irradiation in juvenile rats leads to enhanced HPA axis activity and increased relative GR/MR ratio in hippocampus. The present paper intends to show that neuroendocrine response of normal brain tissue to localized irradiation comprise both activation of HPA axis and altered corticosteroid receptor balance, probably as consequence of innate immune activation.

  19. Respiratory Syncytial Virus Persistence in Macrophages Upregulates Fcgamma Receptors Expression

    PubMed Central

    Gaona, Jorge; Santiago-Olivares, Carlos; Ortega, Enrique; Gómez, Beatriz

    2014-01-01

    Viruses can persist in differentiated cells (i.e., macrophages) over long periods of time, altering host cells functions but not inducing their death. We had previously reported that, in early passages (14–40) of a murine macrophage-like cell line persistently infected with respiratory syncytial virus (RSV) (MɸP), FcγR-mediated phagocytosis and expression of FcγRIIB/RIII on the cell membrane were increased with respect to mock-infected macrophages (MɸN). In this work, we explored the mechanism underlying such effects. Increases in FcγR expression and FcγR-mediated phagocytosis are preserved after more than 87 passages of the persistently infected culture. We analyzed the expression of FcγR isoforms at both mRNA and protein levels, and found out that RSV persistence distinctly affects the expression of FcγR isoforms. We also observed that the increase in FcγRs expression results neither from soluble factors (cytokines) or viral products released by the infected cells, nor from an increase in the rate of FcγR internalization. Our results suggest that RSV persistence in macrophages induce intracellular effects that have an impact on FcγRs gene expression at both mRNA and protein levels, and that the characteristics of RSV persistence were preserved for over 87 passages. PMID:24509813

  20. Cellular and species resistance to murine amphotropic, gibbon ape, and feline subgroup C leukemia viruses is strongly influenced by receptor expression levels and by receptor masking mechanisms.

    PubMed

    Tailor, C S; Nouri, A; Kabat, D

    2000-10-01

    Chinese hamster ovary (CHO) cells are resistant to infections by gibbon ape leukemia virus (GALV) and amphotropic murine leukemia virus (A-MLV) unless they are pretreated with tunicamycin, an inhibitor of N-linked glycosylation. These viruses use the related sodium-phosphate symporters Pit1 and Pit2, respectively, as receptors in nonhamster cells, and evidence has suggested that the corresponding transporters of CHO cells may be masked by tunicamycin-sensitive secreted inhibitors. Although the E36 line of Chinese hamster cells was reported to secrete the putative Pit2 inhibitor and to be sensitive to the inhibitory CHO factors, E36 cells are highly susceptible to both GALV and A-MLV in the absence of tunicamycin. Moreover, expression of E36 Pit2 in CHO cells conferred tunicamycin-independent susceptibilities to both viruses. Based on the latter results, it was suggested that E36 Pit2 must functionally differ from the endogenous Pit2 of CHO cells. To test these ideas, we analyzed the receptor properties of CHO Pit1 and Pit2 in CHO cells. Surprisingly, and counterintuitively, transfection of a CHO Pit2 expression vector into CHO cells conferred strong susceptibility to both GALV and A-MLV, and similar overexpression of CHO Pit1 conferred susceptibility to GALV. Thus, CHO Pit2 is a promiscuous functional receptor for both viruses, and CHO Pit1 is a functional receptor for GALV. Similarly, we found that the natural resistance of Mus dunni tail fibroblasts to subgroup C feline leukemia viruses (FeLV-C) was eliminated simply by overexpression of the endogenous FeLV-C receptor homologue. These results demonstrate a novel and simple method to unmask latent retroviral receptor activities that occur in some cells. Specifically, resistances to retroviruses that are caused by subthreshold levels of receptor expression or by stoichiometrically limited masking or interference mechanisms can be efficiently overcome simply by overexpressing the endogenous receptors in the same

  1. Receptor Expression in Rat Skeletal Muscle Cell Cultures

    NASA Technical Reports Server (NTRS)

    Young, Ronald B.

    1996-01-01

    One on the most persistent problems with long-term space flight is atrophy of skeletal muscles. Skeletal muscle is unique as a tissue in the body in that its ability to undergo atrophy or hypertrophy is controlled exclusively by cues from the extracellular environment. The mechanism of communication between muscle cells and their environment is through a group of membrane-bound and soluble receptors, each of which carries out unique, but often interrelated, functions. The primary receptors include acetyl choline receptors, beta-adrenergic receptors, glucocorticoid receptors, insulin receptors, growth hormone (i.e., somatotropin) receptors, insulin-like growth factor receptors, and steroid receptors. This project has been initiated to develop an integrated approach toward muscle atrophy and hypertrophy that takes into account information on the populations of the entire group of receptors (and their respective hormone concentrations), and it is hypothesized that this information can form the basis for a predictive computer model for muscle atrophy and hypertrophy. The conceptual basis for this project is illustrated in the figure below. The individual receptors are shown as membrane-bound, with the exception of the glucocorticoid receptor which is a soluble intracellular receptor. Each of these receptors has an extracellular signalling component (e.g., innervation, glucocorticoids, epinephrine, etc.), and following the interaction of the extracellular component with the receptor itself, an intracellular signal is generated. Each of these intracellular signals is unique in its own way; however, they are often interrelated.

  2. Defective expression of scavenger receptors in celiac disease mucosa.

    PubMed

    Cupi, Maria Laura; Sarra, Massimiliano; De Nitto, Daniela; Franzè, Eleonora; Marafini, Irene; Monteleone, Ivan; Del Vecchio Blanco, Giovanna; Paoluzi, Omero Alessandro; Di Fusco, Davide; Gentileschi, Paolo; Ortenzi, Angela; Colantoni, Alfredo; Pallone, Francesco; Monteleone, Giovanni

    2014-01-01

    Celiac disease (CD) is a gluten sensitive enteropathy characterized by a marked infiltration of the mucosa with immune cells, over-production of inflammatory cytokines and epithelial cell damage. The factors/mechanisms that sustain and amplify the ongoing mucosal inflammation in CD are not however fully understood. Here, we have examined whether in CD there is a defective clearance of apoptotic cells/bodies, a phenomenon that helps promote tolerogenic signals thus liming pathogenic responses. Accumulation of apoptotic cells and bodies was more pronounced in the epithelial and lamina propria compartments of active CD patients as compared to inactive CD patients and normal controls. Expression of scavenger receptors, which are involved in the clearance of apoptotic cells/bodies, namely thrombospondin (TSP)-1, CD36 and CD61, was significantly reduced in active CD as compared to inactive CD and normal mucosal samples. Consistently, lamina propria mononuclear cells (LPMC) of active CD patients had diminished ability to phagocyte apoptotic cells. Interleukin (IL)-15, IL-21 and interferon-γ, cytokines over-produced in active CD, inhibited the expression of TSP-1, CD36, and CD61 in normal intestinal LPMC. These results indicate that CD-related inflammation is marked by diminished clearance of apoptotic cells/bodies, thus suggesting a role for such a defect in the ongoing mucosal inflammation in this disorder.

  3. Defective Expression of Scavenger Receptors in Celiac Disease Mucosa

    PubMed Central

    Cupi, Maria Laura; Sarra, Massimiliano; De Nitto, Daniela; Franzè, Eleonora; Marafini, Irene; Monteleone, Ivan; Del Vecchio Blanco, Giovanna; Paoluzi, Omero Alessandro; Di Fusco, Davide; Gentileschi, Paolo; Ortenzi, Angela; Colantoni, Alfredo; Pallone, Francesco; Monteleone, Giovanni

    2014-01-01

    Celiac disease (CD) is a gluten sensitive enteropathy characterized by a marked infiltration of the mucosa with immune cells, over-production of inflammatory cytokines and epithelial cell damage. The factors/mechanisms that sustain and amplify the ongoing mucosal inflammation in CD are not however fully understood. Here, we have examined whether in CD there is a defective clearance of apoptotic cells/bodies, a phenomenon that helps promote tolerogenic signals thus liming pathogenic responses. Accumulation of apoptotic cells and bodies was more pronounced in the epithelial and lamina propria compartments of active CD patients as compared to inactive CD patients and normal controls. Expression of scavenger receptors, which are involved in the clearance of apoptotic cells/bodies, namely thrombospondin (TSP)-1, CD36 and CD61, was significantly reduced in active CD as compared to inactive CD and normal mucosal samples. Consistently, lamina propria mononuclear cells (LPMC) of active CD patients had diminished ability to phagocyte apoptotic cells. Interleukin (IL)-15, IL-21 and interferon-γ, cytokines over-produced in active CD, inhibited the expression of TSP-1, CD36, and CD61 in normal intestinal LPMC. These results indicate that CD-related inflammation is marked by diminished clearance of apoptotic cells/bodies, thus suggesting a role for such a defect in the ongoing mucosal inflammation in this disorder. PMID:24971453

  4. Cholecystokinin A and B receptors are differentially expressed in normal pancreas and pancreatic adenocarcinoma.

    PubMed Central

    Weinberg, D S; Ruggeri, B; Barber, M T; Biswas, S; Miknyocki, S; Waldman, S A

    1997-01-01

    Cholecystokinin (CCK) plays an important role in pancreatic carcinogenesis. While human CCK-A and -B receptors have been fully characterized, their relative roles in human pancreatic adenocarcinoma remain unclear. Thus, expression of CCK-A and -B receptors in normal human pancreas, pancreatic adenocarcinomas, and other human extrapancreatic tissues and malignancies was examined, using reverse transcription followed by the polymerase chain reaction (RT-PCR). mRNA isolated from 15 normal pancreas specimens, 22 pancreatic adenocarcinomas, and 58 extrapancreatic tissues and tumors was subjected to RT-PCR using primers specific for human CCK-A and -B receptors. Expression of CCK-B receptors was detected in all tissues arising from pancreas and in most extrapancreatic tissues and tumors. In contrast, CCK-A receptors exhibited a more selective pattern of expression in gall bladder, intestine, brain, ovary, spleen, and thymus. Of significance, CCK-A receptors were expressed selectively in all pancreatic adenocarcinomas, but not in any normal pancreas specimens. In situ hybridization, using receptor-specific riboprobes, localized CCK-A receptor expression to ductal cells, the presumed origin of most human pancreatic adenocarcinomas. Southern blot analysis revealed no evidence of CCK-A receptor gene amplification or rearrangement in pancreatic adenocarcinomas. Because of its selective expression, the CCK-A receptor may serve as selective biomarker for pancreatic adenocarcinoma. PMID:9239407

  5. Evidence for β1-adrenergic receptor involvement in amygdalar corticotropin-releasing factor gene expression: implications for cocaine withdrawal

    PubMed Central

    Rudoy, Carla A.; Reyes, Arith-Ruth S.; Van Bockstaele, Elisabeth J.

    2012-01-01

    We previously showed that betaxolol, a selective β1-adrenergic receptor antagonist, administered during early phases of cocaine abstinence, ameliorated withdrawal-induced anxiety and blocked increases in amygdalar β1-adrenergic receptor expression in rats. Here, we report the efficacy of betaxolol in reducing increases in gene expression of amygdalar corticotropin-releasing factor (CRF), a peptide known to be involved in mediating ‘anxiety-like’ behaviors during initial phases of cocaine abstinence. We also demonstrate attenuation of an amygdalar β1-adrenergic receptor-mediated cell signaling pathway following this treatment. Male rats were administered betaxolol at 24 and 44 hours following chronic cocaine administration. Animals were euthanized at the 48 hour time-point and the amygdala was micro-dissected and processed for quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) and/or Western blot analysis. Results showed that betaxolol treatment during early cocaine withdrawal attenuated increases in amygdalar CRF gene expression and cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) regulatory and catalytic subunit (nuclear fraction) protein expression. Our data also reveal that β1-adrenergic receptors are on amygdalar neurons which are immunoreactive for CRF. The present findings suggest that the efficacy of betaxolol treatment on cocaine withdrawal-induced anxiety may be related, in part, to its effect on amygdalar β1-adrenergic receptor, modulation of its downstream cell signaling elements and CRF gene expression. PMID:18596687

  6. Evidence for beta1-adrenergic receptor involvement in amygdalar corticotropin-releasing factor gene expression: implications for cocaine withdrawal.

    PubMed

    Rudoy, Carla A; Reyes, Arith-Ruth S; Van Bockstaele, Elisabeth J

    2009-04-01

    We previously showed that betaxolol, a selective beta(1)-adrenergic receptor antagonist, administered during early phases of cocaine abstinence, ameliorated withdrawal-induced anxiety and blocked increases in amygdalar beta(1)-adrenergic receptor expression in rats. Here, we report the efficacy of betaxolol in reducing increases in gene expression of amygdalar corticotropin-releasing factor (CRF), a peptide known to be involved in mediating 'anxiety-like' behaviors during initial phases of cocaine abstinence. We also demonstrate attenuation of an amygdalar beta(1)-adrenergic receptor-mediated cell-signaling pathway following this treatment. Male rats were administered betaxolol at 24 and 44 h following chronic cocaine administration. Animals were euthanized at the 48-h time point and the amygdala was microdissected and processed for quantitative reverse transcriptase-polymerase chain reaction and/or western blot analysis. Results showed that betaxolol treatment during early cocaine withdrawal attenuated increases in amygdalar CRF gene expression and cyclic adenosine monophosphate-dependent protein kinase regulatory and catalytic subunit (nuclear fraction) protein expression. Our data also reveal that beta(1)-adrenergic receptors are on amygdalar neurons, which are immunoreactive for CRF. The present findings suggest that the efficacy of betaxolol treatment on cocaine withdrawal-induced anxiety may be related, in part, to its effect on amygdalar beta(1)-adrenergic receptor, modulation of its downstream cell-signaling elements and CRF gene expression.

  7. Receptor expression and sympatric speciation: unique olfactory receptor neuron responses in F1 hybrid Rhagoletis populations.

    PubMed

    Olsson, Shannon B; Linn, Charles E; Michel, Andrew; Dambroski, Hattie R; Berlocher, Stewart H; Feder, Jeffrey L; Roelofs, Wendell L

    2006-10-01

    The Rhagoletis pomonella species complex is one of the foremost examples supporting the occurrence of sympatric speciation. A recent study found that reciprocal F(1) hybrid offspring from different host plant-infesting populations in the complex displayed significantly reduced olfactory host preference in flight-tunnel assays. Behavioral and electrophysiological studies indicate that olfactory cues from host fruit are important chemosensory signals for flies to locate fruit for mating and oviposition. The reduced olfactory abilities of hybrids could therefore constitute a significant post-mating barrier to gene flow among fly populations. The present study investigated the source of changes in the hybrid olfactory system by examining peripheral chemoreception in F(1) hybrid flies, using behaviorally relevant volatiles from the parent host fruit. Single-sensillum electrophysiological analyses revealed significant changes in olfactory receptor neuron (ORN) response specificities in hybrid flies when compared to parent ORN responses. We report that flies from F(1) crosses of apple-, hawthorn- and flowering dogwood-origin populations of R. pomonella exhibited distinct ORN response profiles absent from any parent population. These peripheral alterations in ORN response profiles could result from misexpression of multiple receptors in hybrid neurons as a function of genomic incompatibilities in receptor-gene pathways in parent populations. We conclude that these changes in peripheral chemoreception could impact olfactory host preference and contribute directly to reproductive isolation in the Rhagoletis complex, or could be genetically coupled to other host-associated traits.

  8. TR4 orphan nuclear receptor functions as an apoptosis modulator via regulation of Bcl-2 gene expression

    SciTech Connect

    Kim, Eungseok; Ma, Wen-Lung; Lin, Din-Lii; Inui, Shigeki; Chen, Yuh-Ling; Chang, Chawnshang . E-mail: chang@urmc.rochester.edu

    2007-09-21

    While Bcl-2 plays an important role in cell apoptosis, its relationship to the orphan nuclear receptors remains unclear. Here we report that mouse embryonic fibroblast (MEF) cells prepared from TR4-deficient (TR4{sup -} {sup /-}) mice are more susceptible to UV-irradiation mediated apoptosis compared to TR4-Wildtype (TR4 {sup +/+}) littermates. Substantial increasing TR4{sup -} {sup /-} MEF apoptosis to UV-irradiation was correlated to the down-regulation of Bcl-2 RNA and protein expression and collaterally increased caspase-3 activity. Furthermore, this TR4-induced Bcl-2 gene expression can be suppressed by co-transfection with TR4 coregulators, such as androgen receptor (AR) and receptor-interacting protein 140 (RIP140) in a dose-dependent manner. Together, our results demonstrate that TR4 might function as an apoptosis modulator through induction of Bcl-2 gene expression.

  9. Differential expression and function of alternative splicing variants of human liver X receptor α.

    PubMed

    Endo-Umeda, Kaori; Uno, Shigeyuki; Fujimori, Ko; Naito, Yoshikazu; Saito, Koichi; Yamagishi, Kenji; Jeong, Yangsik; Miyachi, Hiroyuki; Tokiwa, Hiroaki; Yamada, Sachiko; Makishima, Makoto

    2012-06-01

    The liver X receptor α (LXRα) is a nuclear receptor that is involved in regulation of lipid metabolism, cellular proliferation and apoptosis, and immunity. In this report, we characterize three human LXRα isoforms with variation in the ligand-binding domain (LBD). While examining the expression of LXRα3, which lacks 60 amino acids within the LBD, we identified two novel transcripts that encode LXRα-LBD variants (LXRα4 and LXRα5). LXRα4 has an insertion of 64 amino acids in helix 4/5, and LXRα5 lacks the C-terminal helices 7 to 12 due to a termination codon in an additional exon that encodes an intron in the LXRα1 mRNA. LXRα3, LXRα4, and LXRα5 were expressed at lower levels compared with LXRα1 in many human tissues and cell lines. We also observed weak expression of LXRα3 and LXRα4 in several tissues of mice. LXR ligand treatment induced differential regulation of LXRα isoform mRNA expression in a cell type-dependent manner. Whereas LXRα3 had no effect, LXRα4 has weak transactivation, retinoid X receptor (RXR) heterodimerization, and coactivator recruitment activities. LXRα5 interacted with a corepressor in a ligand-independent manner and inhibited LXRα1 transactivation and target gene expression when overexpressed. Combination of LXRα5 cotransfection and LXRα antagonist treatment produced additive effects on the inhibition of ligand-dependent LXRα1 activation. We constructed structural models of the LXRα4-LBD and its complexes with ligand, RXR-LBD, and coactivator peptide. The models showed that the insertion in the LBD can be predicted to disrupt RXR heterodimerization. Regulation of LXRα pre-mRNA splicing may be involved in the pathogenesis of LXRα-related diseases.

  10. The generation of knock-in mice expressing fluorescently tagged galanin receptors 1 and 2

    PubMed Central

    Kerr, Niall; Holmes, Fiona E.; Hobson, Sally-Ann; Vanderplank, Penny; Leard, Alan; Balthasar, Nina; Wynick, David

    2015-01-01

    The neuropeptide galanin has diverse roles in the central and peripheral nervous systems, by activating the G protein-coupled receptors Gal1, Gal2 and the less studied Gal3 (GalR1–3 gene products). There is a wealth of data on expression of Gal1–3 at the mRNA level, but not at the protein level due to the lack of specificity of currently available antibodies. Here we report the generation of knock-in mice expressing Gal1 or Gal2 receptor fluorescently tagged at the C-terminus with, respectively, mCherry or hrGFP (humanized Renilla green fluorescent protein). In dorsal root ganglia (DRG) neurons expressing the highest levels of Gal1-mCherry, localization to the somatic cell membrane was detected by live-cell fluorescence and immunohistochemistry, and that fluorescence decreased upon addition of galanin. In spinal cord, abundant Gal1-mCherry immunoreactive processes were detected in the superficial layers of the dorsal horn, and highly expressing intrinsic neurons of the lamina III/IV border showed both somatic cell membrane localization and outward transport of receptor from the cell body, detected as puncta within cell processes. In brain, high levels of Gal1-mCherry immunofluorescence were detected within thalamus, hypothalamus and amygdala, with a high density of nerve endings in the external zone of the median eminence, and regions with lesser immunoreactivity included the dorsal raphe nucleus. Gal2-hrGFP mRNA was detected in DRG, but live-cell fluorescence was at the limits of detection, drawing attention to both the much lower mRNA expression than to Gal1 in mice and the previously unrecognized potential for translational control by upstream open reading frames (uORFs). PMID:26292267

  11. Serotonin Transporter and Receptor Expression in Osteocytic MLO-Y4 Cells

    PubMed Central

    BLIZIOTES, M.; ESHLEMAN, A.; BURT-PICHAT, B.; ZHANG, X.-W.; HASHIMOTO, J.; WIREN, K.; CHENU, C.

    2006-01-01

    Neurotransmitter regulation of bone metabolism has been a subject of increasing interest and investigation. We reported previously that osteoblastic cells express a functional serotonin (5-HT) signal transduction system, with mechanisms for responding to and regulating uptake of 5-HT. The clonal murine osteocytic cell line, MLO-Y4, demonstrates expression of the serotonin transporter (5-HTT), and the 5-HT1A, and 5-HT2A receptors by real-time RT-PCR and immunoblot analysis. Immunohistochemistry using antibodies for the 5-HTT, and the 5-HT1A and 5-HT2A receptors reveals expression of all three proteins in both osteoblasts and osteocytes in rat tibia. 5-HTT binding sites were demonstrated in the MLO-Y4 cells with nanomolar affinity for the stable cocaine analog [125I]RTI-55. Imipramine and fluoxetine, antagonists with specificity for 5-HTT, show the highest potency to antagonize [125I]RTI-55 binding in the MLO-Y4 cells. GBR-12935, a relatively selective dopamine transporter antagonist, had a much lower potency, as did desipramine, a selective norepinephrine transporter antagonist. The maximal [3H]5-HT uptake rate in MLO-Y4 cells was 2.85 pmol/15 min/well, with a Km value of 290 nM. Imipramine and fluoxetine inhibited specific [3H]5-HT uptake with IC50 values in the nanomolar range. 5-HT rapidly stimulated PGE2 release from MLO-Y4 cells; the EC50 for 5-HT was 0.1 μM, with a 3-fold increase seen at 60 min. The rate limiting enzyme for serotonin synthesis, tryptophan hydroxylase, is expressed in MLO-Y4 cells as well as osteoblastic MC3T3-E1 cells. Thus, osteocytes, as well as osteoblasts, are capable of 5-HT synthesis, and express functional receptor and transporter components of the 5-HT signal transduction system. PMID:16884969

  12. Distribution of delta opioid receptor-expressing neurons in the mouse hippocampus.

    PubMed

    Erbs, E; Faget, L; Scherrer, G; Kessler, P; Hentsch, D; Vonesch, J-L; Matifas, A; Kieffer, B L; Massotte, D

    2012-09-27

    Delta opioid receptors participate to the control of chronic pain and emotional responses. Recent data also identified their implication in spatial memory and drug-context associations pointing to a critical role of hippocampal delta receptors. We examined the distribution of delta receptor-expressing cells in the hippocampus using fluorescent knock-in mice that express a functional delta receptor fused at its carboxyterminus with the green fluorescent protein in place of the native receptor. Colocalization with markers for different neuronal populations was performed by immunohistochemical detection. Fine mapping in the dorsal hippocampus confirmed that delta opioid receptors are mainly present in GABAergic neurons. Indeed, they are mostly expressed in parvalbumin-immunopositive neurons both in the Ammon's horn and dentate gyrus. These receptors, therefore, most likely participate in the dynamic regulation of hippocampal activity.

  13. Distribution of delta opioid receptor expressing neurons in the mouse hippocampus

    PubMed Central

    Eric, ERBS; Lauren, FAGET; Gregory, SCHERRER; Pascal, KESSLER; Didier, HENTSCH; Jean-Luc, VONESCH; Audrey, MATIFAS; Brigitte L., KIEFFER; Dominique, MASSOTTE

    2012-01-01

    Delta opioid receptors participate to the control of chronic pain and emotional responses. Recent data also identified their implication in spatial memory and drug-context associations pointing to a critical role of hippocampal delta receptors. We examined the distribution of delta receptor-expressing cells in the hippocampus using fluorescent knock-in mice that express a functional delta receptor fused at its carboxyterminus with the green fluorescent protein in place of the native receptor. Colocalization with markers for different neuronal populations was performed by immunohistochemical detection. Fine mapping in the dorsal hippocampus confirmed that delta opioid receptors are mainly present in GABAergic neurons. Indeed, they are mostly expressed in parvalbumin-immunopositive neurons both in the Ammon’s horn and dentate gyrus. These receptors, therefore, most likely participate to the dynamic regulation of hippocampal activity. PMID:22750239

  14. Cytokine receptor expression in human lymphoid tissue: analysis by fluorescence microscopy.

    PubMed

    Zola, H; Ridings, J; Weedon, H; Fusco, M; Byard, R W; Macardle, P J

    1995-08-01

    A highly-sensitive flourescence method, capable of detecting cytokine receptors present at low concentrations (around 100 molecules per cell) by flow cytometry, was adapted for use on tissue sections. This method was used to examine the expression of several cytokine receptors in lymphoid tissues. IL-2 receptors were distributed broadly, with higher concentrations in T cell areas. IL-1 receptor Type 1 was detected in T cell areas and in the follicular mantle, and was strongly expressed on vascular endothelium. IL-6 receptor was found at very low concentration, both within and outside germinal centres. The gp 130 molecule, which is involved in the functional receptor complex for IL-6 and several other cytokines, was present at higher concentrations, particularly in the germinal centre. Analysis of receptor expression in secondary lymphoid tissue provides evidence bearing on the physiological roles of cytokines, as these tissues contain cells at various stages of physiological activation located in well-defined functional zones.

  15. Involvement of aberrant DNA methylation on reduced expression of lysophosphatidic acid receptor-1 gene in rat tumor cell lines

    SciTech Connect

    Tsujiuchi, Toshifumi . E-mail: ttujiuch@life.kindai.ac.jp; Shimizu, Kyoko; Onishi, Mariko; Sugata, Eriko; Fujii, Hiromasa; Mori, Toshio; Honoki, Kanya; Fukushima, Nobuyuki

    2006-10-27

    Lysophosphatidic acid (LPA) is a bioactive phospholipid that stimulates cell proliferation, migration, and protects cells from apoptosis. It interacts with specific G protein-coupled transmembrane receptors. Recently, it has been reported that alterations of LPA receptor expression might be important in the malignant transformation of tumor cells. Therefore, to assess an involvement of DNA methylation in reduced expression of the LPA receptor-1 (lpa1) gene, we investigated the expression of the lpa1 gene and its DNA methylation patterns in rat tumor cell lines. Both rat brain-derived neuroblastoma B103 and liver-derived hepatoma RH7777 cells used in this study indicated no expression of lpa1. For the analysis of methylation status, bisulfite sequencing was performed with B103 and RH7777 cells, comparing with other lpa1 expressed cells and normal tissues of brain and liver. The lpa1 expressed cells and tissues were all unmethylated in this region of lpa1. In contrast, both B103 and RH7777 cells were highly methylated, correlating with reduced expression of the lpa1. Treatment with 5-aza 2'-deoxycytidine induced expression of lpa1 gene in B103 and RH7777 cells after 24 h. In RH7777 cells treated with 5-aza 2'-deoxycytidine, stress fiber formation was also observed in response to LPA in RH7777 cells, but not in untreated RH7777 cells. These results suggest that aberrant DNA methylation of the lpa1 gene may be involved in its reduced expression in rat tumor cells.

  16. Orphan nuclear receptor Nur77 participates in human apolipoprotein A5 gene expression

    SciTech Connect

    Song, Kwang-Hoon

    2010-01-29

    The orphan nuclear receptor Nur77 (NR4A1) has been reported to play a crucial role in the modulation of diverse metabolic processes in liver. Here, we reported the identification of human apolipoprotein A5 (ApoA5), which implicated in lowering plasma triglyceride levels, as a novel target gene of Nur77. Nur77 induced the human ApoA5 promoter activity. Using 5'-deletion and mutagenesis of human ApoA5 promoter analysis and chromatin immunoprecipitation assays, it was shown that Nur77 directly regulated human ApoA5 gene expression by binding to a Nur77 response element (AAAGGTCA) located in the proximal human ApoA5 promoter region. In addition, we demonstrated that blocking of Nur77 transcriptional activity via overexpression of dominant negative Nur77 suppressed human ApoA5 promoter activity and mRNA expression in human hepatoma cells, HepG2. Taken together, our results demonstrated that Nur77 is a novel regulator of human ApoA5 gene expression and provide a new insight into the role of this orphan nuclear receptor in lipoprotein metabolism and triglyceride homeostasis.

  17. Change in pharmacological effect of endothelin receptor antagonists in rats with pulmonary hypertension: Role of ETB-receptor expression levels

    PubMed Central

    Sauvageau, Stéphanie; Thorin, Eric; Villeneuve, Louis; Dupuis, Jocelyn

    2013-01-01

    Background and purpose The endothelin (ET) system is activated in pulmonary arterial hypertension (PAH). The therapeutic value of pharmacological blockade of ET receptors has been demonstrated in various animal models and led to the current approval and continued development of these drugs for the therapy of human PAH. However, we currently incompletely comprehend what local modifications of this system occur as a consequence of PAH, particularly in small resistance arteries, and how this could affect the pharmacological response to ET receptor antagonists with various selectivities for the receptor subtypes. Therefore, the purposes of this study were to evaluate potential modifications of the pharmacology of the ET system in rat pulmonary resistance arteries from monocrotaline (MCT)-induced pulmonary arterial hypertension. Experimental approach ET-1 levels were quantified by ELISA. PreproET-1, ETA and ETB receptor mRNA expressions were quantified in pulmonary resistance arteries using Q-PCR, while protein expression was evaluated by Western blots. Reactivity to ET-1 of isolated pulmonary resistance arteries was measured in the presence of ETA (A-147627), ETB (A-192621) and dual ETA/B (bosentan) receptor antagonists. Key results In rats with PAH, plasma ET-1 increased (p < 0.001) while pulmonary levels were reduced (p < 0.05). In PAH arteries, preproET-1 (p < 0.05) and ETB receptor (p < 0.001) gene expressions were reduced, as were ETB receptor protein levels (p < 0.05). ET-1 induced similar vasoconstrictions in both groups. In arteries from sham animals, neither bosentan nor the ETA or the ETB receptor antagonists modified the response. In arteries from PAH rats, however, bosentan and the ETA receptor antagonist potently reduced the maximal contraction, while bosentan also reduced sensitivity (p < 0.01). Conclusions and implications The effectiveness of both selective ETA and dual ETA/B receptor antagonists is markedly increased in PAH. Down-regulation of

  18. Selective Pyramidal Cell Reduction of GABAA Receptor α1 Subunit Messenger RNA Expression in Schizophrenia

    PubMed Central

    Glausier, Jill R; Lewis, David A

    2011-01-01

    Levels of messenger RNA (mRNA) for the α1 subunit of the GABAA receptor, which is present in 60% of cortical GABAA receptors, have been reported to be lower in layer 3 of the prefrontal cortex (PFC) in subjects with schizophrenia. This subunit is expressed in both pyramidal cells and interneurons, and thus lower α1 subunit levels in each cell population would have opposite effects on net cortical excitation. We used dual-label in situ hybridization to quantify GABAA α1 subunit mRNA expression in calcium/calmodulin-dependent kinase II α (CaMKIIα)-containing pyramidal cells and glutamic acid decarboxylase 65 kDa (GAD65)-containing interneurons in layer 3 of the PFC from matched schizophrenia and healthy comparison subjects. In subjects with schizophrenia, mean GABAA α1 subunit mRNA expression was significantly 40% lower in pyramidal cells, but was not altered in interneurons. Lower α1 subunit mRNA expression in pyramidal cells was not attributable to potential confounding factors, and thus appeared to reflect the disease process of schizophrenia. These results suggest that pyramidal cell inhibition is reduced in schizophrenia, whereas inhibition of GABA neurons is maintained. The cell type specificity of these findings may reflect a compensatory response to enhance layer 3 pyramidal cell activity in the face of the diminished excitatory drive associated with the lower dendritic spine density on these neurons. PMID:21677653

  19. Leptin receptor expression and Gln223Arg polymorphism as prognostic markers in oral and oropharyngeal cancer.

    PubMed

    Rodrigues, P R S; Maia, L L; Santos, M; Peterle, G T; Alves, L U; Takamori, J T; Souza, R P; Barbosa, W M; Mercante, A M C; Nunes, F D; Carvalho, M B; Tajara, E H; Louro, I D; Silva-Conforti, A M A

    2015-11-25

    The leptin gene product is released into the blood stream, passes through the blood-brain barrier, and finds the leptin receptor (LEPR) in the central nervous system. This hormone regulates food intake, hematopoiesis, inflammation, immunity, differentiation, and cell proliferation. The LEPR Gln223Arg polymorphism has been reported to alter receptor function and expression, both of which have been related with prognostics in several tumor types. Furthermore, several studies have shown a relationship between the Gln223Arg polymorphism and tumor development, and its role in oral and oropharyngeal squamous cell carcinoma is now well understood. In this study, 315 DNA samples were used for LEPR Gln223Arg genotyping and 87 primary oral and oropharyngeal squamous cell carcinomas were used for immunohistochemical expression analysis, such that a relationship between these and tumor development and prognosis could be established. Homozygous LEPR Arg223 was found to be associated with a 2-fold reduction in oral and oropharyngeal cancer risk. In contrast, the presence of the Arg223 allele in tumors was associated with worse disease-free and disease-specific survival. Low LEPR expression was found to be an independent risk factor, increasing the risk for lymph node metastasis 4-fold. In conclusion, the Gln223Arg polymorphism and LEPR expression might be valuable markers for oral and oropharyngeal cancer, suggesting that LEPR might serve as a potential target for future therapies.

  20. Deep Sequencing of the Human Retinae Reveals the Expression of Odorant Receptors

    PubMed Central

    Jovancevic, Nikolina; Wunderlich, Kirsten A.; Haering, Claudia; Flegel, Caroline; Maßberg, Désirée; Weinrich, Markus; Weber, Lea; Tebbe, Lars; Kampik, Anselm; Gisselmann, Günter; Wolfrum, Uwe; Hatt, Hanns; Gelis, Lian

    2017-01-01

    Several studies have demonstrated that the expression of odorant receptors (ORs) occurs in various tissues. These findings have served as a basis for functional studies that demonstrate the potential of ORs as drug targets for a clinical application. To the best of our knowledge, this report describes the first evaluation of the mRNA expression of ORs and the localization of OR proteins in the human retina that set a stage for subsequent functional analyses. RNA-Sequencing datasets of three individual neural retinae were generated using Next-generation sequencing and were compared to previously published but reanalyzed datasets of the peripheral and the macular human retina and to reference tissues. The protein localization of several ORs was investigated by immunohistochemistry. The transcriptome analyses detected an average of 14 OR transcripts in the neural retina, of which OR6B3 is one of the most highly expressed ORs. Immunohistochemical stainings of retina sections localized OR2W3 to the photosensitive outer segment membranes of cones, whereas OR6B3 was found in various cell types. OR5P3 and OR10AD1 were detected at the base of the photoreceptor connecting cilium, and OR10AD1 was also localized to the nuclear envelope of all of the nuclei of the retina. The cell type-specific expression of the ORs in the retina suggests that there are unique biological functions for those receptors. PMID:28174521

  1. Pathological features and clinical outcomes of breast cancer according to levels of oestrogen receptor expression.

    PubMed

    Zhang, Zhang; Wang, Jianmin; Skinner, Kristin A; Shayne, Michelle; Hajdu, Steven I; Bu, Hong; Hicks, David G; Tang, Ping

    2014-10-01

    Historically, nuclear staining of ≥10% of invasive tumour cells has been used for oestrogen receptor (ER) positivity. In 2010, ASCO/CAP guidelines recommended the cut-off value be changed to nuclear staining of ≥1%. This study will analyse the relationships between levels of ER expression and clinicopathological features and clinical outcomes, with an emphasis on the ER 1-10% subgroup. We analysed clinicopathological features in five subgroups based on ER expression levels in 1700 consecutive invasive breast cancer patients diagnosed and treated at our institution between 2000 and 2011. Of the cases, 24% had ER expression <1%, 2% were ER 1-10%, 5% were 11-50%, 5% were 51-70% and 64% were 71-100%. We observed four subgroups of patient cohorts (ER <1%, 1-10%, 11-70% and 71-100%) that were unique in Nottingham grade, nuclear grade, progesterone receptor expression and disease-free survival. Of the 341 patients with follow-up data, we found no significant differences in pathological features between patients in the ER 11-50% and ER 51-70% subgroups. These data support the important role of ER in breast cancer, and the importance of accurate testing and quantitative reporting for ER. Tumours with ER 1-10% are not common, and further studies are needed to understand more clearly this subgroup of breast cancer. © 2014 John Wiley & Sons Ltd.

  2. Peroxisome proliferator-activated receptor gamma activation inhibits progesterone-stimulated human MUC1 expression.

    PubMed

    Wang, Peng; Dharmaraj, Neeraja; Brayman, Melissa J; Carson, Daniel D

    2010-07-01

    Mucin 1 (MUC1) is a type I transmembrane glycoprotein abundantly expressed on nearly all epithelial tissues and overexpressed by many cancer cells. Previous studies from our lab showed that progesterone receptor (PR)B is a strong stimulator of MUC1 gene expression. It is reported that liganded peroxisome proliferator-activated receptor gamma (PPARgamma) stimulates Muc1 expression in murine trophoblast. Here, we demonstrate that although the PPARgamma ligand, rosiglitazone, stimulates the murine Muc1 promoter in HEC1A, a human uterine epithelial cell line, rosiglitazone alone, has no significant effect on basal human MUC1 promoter activity. In fact, rosiglitazone treatment antagonizes progesterone-stimulated human MUC1 promoter activity and protein expression in two human uterine epithelial cell lines and T47D human breast cancer cells. This response is antagonized by the PPARgamma antagonist, GW9662, as well as a dominant-negative form of PPARgamma, demonstrating the response is mediated by PPARgamma. Additional studies indicate that PPARgamma activation does not change PR binding to the MUC1 promoter but generally antagonizes progesterone activity by stimulating PRB degradation and inhibiting progesterone-induced PRB phosphorylation. Collectively, these studies indicate that PPARgamma activation inhibits PRB activity through both acute (phosphorylation) and long-term (PRB degradation) pathways.

  3. Calcium-Sensing Receptor Gene: Regulation of Expression

    PubMed Central

    Hendy, Geoffrey N.; Canaff, Lucie

    2016-01-01

    The human calcium-sensing receptor gene (CASR) has 8 exons, and localizes to chromosome 3q. Exons 1A and 1B encode alternative 5′-untranslated regions (UTRs) that splice to exon 2 encoding the AUG initiation codon. Exons 2–7 encode the CaSR protein of 1078 amino acids. Promoter P1 has TATA and CCAAT boxes upstream of exon 1A, and promoter P2 has Sp1/3 motifs at the start site of exon 1B. Exon 1A transcripts from the P1 promoter are reduced in parathyroid tumors and colon carcinomas. Studies of colon carcinomas and neuroblastomas have emphasized the importance of epigenetic changes—promoter methylation of the GC-rich P2 promoter, histone acetylation—as well as involvement of microRNAs in bringing about CASR gene silencing and reduced CaSR expression. Functional cis-elements in the CASR promoters responsive to 1,25-dihydroxyvitamin D [1,25(OH)2D], proinflammatory cytokines, and the transcription factor glial cells missing-2 (GCM2) have been characterized. Reduced levels of CaSR and reduced responsiveness to active vitamin D in parathyroid neoplasia and colon carcinoma may blunt the “tumor suppressor” activity of the CaSR. The hypocalcemia of critically ill patients with burn injury or sepsis is associated with CASR gene upregulation by TNF-alpha and IL-1beta via kappaB elements, and by IL-6 via Stat1/3 and Sp1/3 elements in the CASR gene promoters, respectively. The CASR is transactivated by GCM2—the expression of which is essential for parathyroid gland development. Hyperactive forms of GCM2 may contribute to later parathyroid hyperactivity or tumorigenesis. The expression of the CaSR—the calciostat—is regulated physiologically and pathophysiologically at the gene level. PMID:27679579

  4. Farnesoid X receptor represses hepatic human APOA gene expression

    PubMed Central

    Chennamsetty, Indumathi; Claudel, Thierry; Kostner, Karam M.; Baghdasaryan, Anna; Kratky, Dagmar; Levak-Frank, Sanja; Frank, Sasa; Gonzalez, Frank J.; Trauner, Michael; Kostner, Gert M.

    2011-01-01

    High plasma concentrations of lipoprotein(a) [Lp(a), which is encoded by the APOA gene] increase an individual’s risk of developing diseases, such as coronary artery diseases, restenosis, and stroke. Unfortunately, increased Lp(a) levels are minimally influenced by dietary changes or drug treatment. Further, the development of Lp(a)-specific medications has been hampered by limited knowledge of Lp(a) metabolism. In this study, we identified patients suffering from biliary obstructions with very low plasma Lp(a) concentrations that rise substantially after surgical intervention. Consistent with this, common bile duct ligation in mice transgenic for human APOA (tg-APOA mice) lowered plasma concentrations and hepatic expression of APOA. To test whether farnesoid X receptor (FXR), which is activated by bile acids, was responsible for the low plasma Lp(a) levels in cholestatic patients and mice, we treated tg-APOA and tg-APOA/Fxr–/– mice with cholic acid. FXR activation markedly reduced plasma concentrations and hepatic expression of human APOA in tg-APOA mice but not in tg-APOA/Fxr–/– mice. Incubation of primary hepatocytes from tg-APOA mice with bile acids dose dependently downregulated APOA expression. Further analysis determined that the direct repeat 1 element between nucleotides –826 and –814 of the APOA promoter functioned as a negative FXR response element. This motif is also bound by hepatocyte nuclear factor 4α (HNF4α), which promotes APOA transcription, and FXR was shown to compete with HNF4α for binding to this motif. These findings may have important implications in the development of Lp(a)-lowering medications. PMID:21804189

  5. Expression of Adiponectin Receptor-1 and Prognosis of Epithelial Ovarian Cancer Patients

    PubMed Central

    Li, Xiahui; Yu, Zhe; Fang, Liping; Liu, Fang; Jiang, Kui

    2017-01-01

    Background Adiponectin receptor-1 (AdipoR1) has been reported to be associated with the risk of obesity-associated malignancies, including epithelial ovarian cancer (EOC). The aim of this study was to determine if AdipoR1 could serve as a prognosis indicator for patients with EOC. Material/Methods In this study, expression of AdipoR1 in 73 EOC patients consecutively admitted to our hospital was detected by immunohistochemical staining. Univariate and multivariate analyses were performed to assess the relationship between AdipoR1 expression level and progression-free survival (PFS) and overall survival (OS) rates in patients. Results A relatively lower expression of AdipoR1 in the cancerous tissues was detected compared to normal ovarian tissues, but the difference was not significant (p>0.05). AdipoR1 expression level in EOC patients was negatively correlated with advanced FIGO stages in patients and tumor differentiation, but had no correlation with pathological types, presenting of ascites, shorter platinum-free interval (PFI), diabetes, preoperative and postoperative body mass index (BMI), or platelet counts (p>0.05). Moreover, patients with AdipoR1 expression had a significantly longer PFS and OS compared to the negative expression group (p<0.001). Conclusions Our findings suggest that AdipoR1 expression level in cancerous tissues might serve as an independent prognostic indicator in EOC patients and is associated with longer PFS and OS. PMID:28356549

  6. Constitutive expression of vascular endothelial cell growth factor (VEGF) gene family ligand and receptors on human upper and lower airway epithelial cells.

    PubMed

    Lee, Hyun Sil; Kim, Jean

    2014-01-01

    We previously reported that vascular endothelial cell growth factor (VEGF) is abundantly expressed by primary human nasal epithelial cells (PNECs) and functions to promote cell hyperplasia in polyposis. Therefore, we aimed to examine the full expression profile of other members of the VEGF gene family of ligands and receptors, which may play a role in cell growth and the development of chronic rhinosinusitis with nasal polyposis (CRSwNP). Messenger RNA (mRNA) and protein expression of VEGF genes, receptors, and co-receptors was examined from cultured PNECs (n = 4) and compared to that from primary human bronchial epithelial cells (PBECs; n = 4) and the BEAS2B cell line (n = 4) by real-time polymerase chain reaction (PCR) and flow cytometry. We report abundant expression of VEGFA, VEGFB, and VEGFC, detected by mRNA and flow cytometric analysis on PNECs. We herein report the novel finding that there is significant expression of VEGFR1, VEGFR2, VEGFR3, and both neuropilin co-receptors, NP1 and NP2, at baseline conditions on PNECs. Lower airway PBECs and BEAS2B cells displayed similar patterns of expression. PNECs express high constitutive levels of the VEGF gene family homolog of ligands and receptors. Expression of multiple VEGF ligand-receptor combinations may function as redundant pathways to promote upper and lower airway epithelial cell growth during inflammation.

  7. Modified expression of peripheral blood lymphocyte muscarinic cholinergic receptors in asthmatic children.

    PubMed

    Cherubini, Emanuela; Tabbì, Luca; Scozzi, Davide; Mariotta, Salvatore; Galli, Elena; Carello, Rossella; Avitabile, Simona; Tayebati, Seyed Koshrow; Amenta, Francesco; De Vitis, Claudia; Mancini, Rita; Ricci, Alberto

    2015-07-15

    Lymphocytes possess an independent cholinergic system. We assessed the expression of muscarinic cholinergic receptors in lymphocytes from 49 asthmatic children and 10 age matched controls using Western blot. We demonstrated that CD4+ and CD8+ T cells expressed M2 and M4 muscarinic receptors which density were significantly increased in asthmatic children in comparison with controls. M2 and M4 receptor increase was strictly related with IgE and fraction of exhaled nitric oxide (FeNO) measurements and with impairment in objective measurements of airway obstruction. Increased lymphocyte muscarinic cholinergic receptor expression may concur with lung cholinergic dysfunction and with inflammatory molecular framework in asthma.

  8. Expression of somatostatin receptor type-2 (sst2A) in immature porcine Leydig cells and a possible role in the local control of testosterone secretion

    PubMed Central

    Fombonne, Joanna; Csaba, Zsolt; von Boxberg, Ysander; Valayer, Amandine; Rey, Catherine; Benahmed, Mohamed; Dournaud, Pascal; Krantic, Slavica

    2003-01-01

    We recently reported that immature porcine Leydig cells express both somatostatin (SRIF) and SRIF receptor type-2 (sst-2) transcripts. The present study was therefore undertaken to assess whether SRIF might exert autocrine actions on these cells through sst2A receptor, one of the two sst2 isoforms known to exert important neuroendocrine and endocrine functions. Using a polyclonal antibody directed towards the C-terminal tail of the sst2A receptor subtype, receptor immunoreactivity was detected in a subpopulation of Leydig cells and spermatogonia. To address the physiological correlates of this expression we then studied the possible involvement of sst2 receptor in the regulation of testosterone secretion. Functional assays showed that the sst2 agonist octreotide inhibited both basal and hCG-stimulated testosterone secretion by testosterone pretreated Leydig cells. To assess whether sst2 receptor expression might be regulated by testosterone, we performed a semi-quantitative RT-PCR analysis of sst2 mRNA expression in Leydig cells cultured in the presence or in the absence of the androgen. A significant increase in sst2 receptor transcripts was observed in testosterone-treated cells. Taken together, these data suggest that SRIF can inhibit testosterone secretion through the sst2A receptor. The mechanism of the local inhibitory actions of SRIF is probably autocrine since immature porcine Leydig cells express SRIF itself and it might involve testosterone-induced increase of sst2 receptor expression in immature Leydig cells. PMID:12646058

  9. Propofol up-regulates Mas receptor expression in dorsal root ganglion neurons.

    PubMed

    Cao, Lijun; Xun, Junmei; Jiang, Xinghua; Tan, Rong

    2013-08-01

    Mas is a functional binding site for angiotensin (Ang)-(1-7), a critical component of the renin-angiotensin system that is involved in processing nociceptive information. A recent study reported the localization of Mas in rat dorsal root ganglia (DRG) and demonstrated that Ang-(1-7) produced a dose-dependent peripheral antinociceptive effect in rats through the Mas receptor by an opioid-independent mechanism. In the present study, we for the first time examined the effect of propofol on Mas expression in cultured DRG neurons. We treated rat DRG neurons with propofol at different concentrations (0.1, 0.5, 1, 5 or 10 microM) for different length of time (0.5, 1, 2, 4 or 6 h) with or without transcription inhibitor actinomycin D or different kinase inhibitors. Propofol increased the Mas receptormRNA level in a statistically significant dose- and time-dependent manner within 4 h, which led to dose-dependent up-regulation of the Mas receptor protein level as well as Ang-(1-7) binding on the cell membrane. Actinomycin D (1 mg/ml) and p38 mitogen-activated protein kinase inhibitor PD169316 (25 microM) completely abolished the effect of propofol on Mas receptor expression in DRG neurons. In conclusion, we demonstrate that propofol markedly up-regulates Mas receptor expression at the transcription level in DRG neurons by a p38 MAPK-dependent mechanism. This study provides new insights into the mechanisms of action of propofol in peripheral antinociception, and suggests a new regulatory mechanism on the Ang-(1-7)/Mas axis in the peripheral nervous system.

  10. Pericyte-specific expression of PDGF beta receptor in mouse models with normal and deficient PDGF beta receptor signaling.

    PubMed

    Winkler, Ethan A; Bell, Robert D; Zlokovic, Berislav V

    2010-08-25

    Pericytes are integral members of the neurovascular unit. Using mouse models lacking endothelial-secreted platelet derived growth factor-B (PDGF-B) or platelet derived growth factor receptor beta (PDGFRβ) on pericytes, it has been demonstrated that PDGF-B/PDGFRβ interactions mediate pericyte recruitment to the vessel wall in the embryonic brain regulating the development of the cerebral microcirculation and the blood-brain barrier (BBB). Relatively little is known, however, about the roles of PDGF-B/PDGFRβ interactions and pericytes in the adult brain in part due to a lack of adequate and/or properly characterized experimental models. To address whether genetic disruption of PDGFRβ signaling would result in a pericyte-specific insult in adult mice, we studied the pattern and cellular distribution of PDGFRβ expression in the brain in adult control mice and F7 mice that express two hypomorphic Pdgfrβ alleles containing seven point mutations in the cytoplasmic domain of PDGFRβ that impair downstream PDGFRβ receptor signaling. Using dual fluorescent in situ hybridization, immunofluorescent staining for different cell types in the neurovascular unit, and a fluorescent in situ proximity ligation assay to visualize molecular PDGF-B/PDGFRβ interactions on brain tissue sections, we show for the first time that PDGFRβ is exclusively expressed in pericytes, and not in neurons, astrocytes or endothelial cells, in the adult brain of control 129S1/SvlmJ mice. PDGFRβ co-localized only with well-established pericyte markers such as Chondroitin Sulfate Proteoglycan NG2 and the xLacZ4 transgenic reporter. We next confirm pericyte-specific PDGFRβ expression in the brains of F7 mutants and show that these mice are viable in spite of substantial 40-60% reductions in regional pericyte coverage of brain capillaries. Our data show that PDGFRβ is exclusively expressed in pericytes in the adult 129S1/Sv1mJ and F7 mouse brain. Moreover, our findings suggest that genetic

  11. Pericyte-specific expression of PDGF beta receptor in mouse models with normal and deficient PDGF beta receptor signaling

    PubMed Central

    2010-01-01

    Background Pericytes are integral members of the neurovascular unit. Using mouse models lacking endothelial-secreted platelet derived growth factor-B (PDGF-B) or platelet derived growth factor receptor beta (PDGFRβ) on pericytes, it has been demonstrated that PDGF-B/PDGFRβ interactions mediate pericyte recruitment to the vessel wall in the embryonic brain regulating the development of the cerebral microcirculation and the blood-brain barrier (BBB). Relatively little is known, however, about the roles of PDGF-B/PDGFRβ interactions and pericytes in the adult brain in part due to a lack of adequate and/or properly characterized experimental models. To address whether genetic disruption of PDGFRβ signaling would result in a pericyte-specific insult in adult mice, we studied the pattern and cellular distribution of PDGFRβ expression in the brain in adult control mice and F7 mice that express two hypomorphic Pdgfrβ alleles containing seven point mutations in the cytoplasmic domain of PDGFRβ that impair downstream PDGFRβ receptor signaling. Results Using dual fluorescent in situ hybridization, immunofluorescent staining for different cell types in the neurovascular unit, and a fluorescent in situ proximity ligation assay to visualize molecular PDGF-B/PDGFRβ interactions on brain tissue sections, we show for the first time that PDGFRβ is exclusively expressed in pericytes, and not in neurons, astrocytes or endothelial cells, in the adult brain of control 129S1/SvlmJ mice. PDGFRβ co-localized only with well-established pericyte markers such as Chondroitin Sulfate Proteoglycan NG2 and the xLacZ4 transgenic reporter. We next confirm pericyte-specific PDGFRβ expression in the brains of F7 mutants and show that these mice are viable in spite of substantial 40-60% reductions in regional pericyte coverage of brain capillaries. Conclusions Our data show that PDGFRβ is exclusively expressed in pericytes in the adult 129S1/Sv1mJ and F7 mouse brain. Moreover, our

  12. Increased expression of the interleukin 1 receptor on blood neutrophils of humans with the sepsis syndrome.

    PubMed Central

    Fasano, M B; Cousart, S; Neal, S; McCall, C E

    1991-01-01

    Because of the potential importance of interleukin 1 (IL-1) in modulating inflammation and the observations that human blood neutrophils (PMN) express IL-1 receptors (IL-1R) and synthesize IL-1 alpha and IL-1 beta, we studied the IL-1R on blood PMN from a group of patients with the sepsis syndrome. We report a marked enhancement in the sites per cell of IL-1R expressed on sepsis-PMN of 25 consecutively studied patients compared to 20 controls (patient mean = 9,329 +/- 2,212 SE; control mean = 716 +/- 42 SE, respectively). There was no demonstrable difference in the Kd of IL-1R on sepsis-PMN (approximately 1 nM) as determined by saturation curves of 125I-IL-1 alpha binding and the IL-1R on sepsis-PMN had an apparent Mr approximately 68,000, a value like that of normal PMN. Cytofluorographic analysis indicated that the sepsis-PMN phenotype is a single homogeneous population with respect to IL-1R expression. In contrast, expression of the membrane complement receptor CR3 is not increased on sepsis-PMN. Similar increases in expression of IL-1R were not observed in various other inflammatory processes, including acute disseminated inflammation and organ failure not caused by infection, acute infection without organ failure, and immunopathologies such as active systemic lupus erythematosus and rheumatoid arthritis. Enhanced expression of IL-1R was not related simply to the state of myeloid stimulation. Increased expression of IL-1R on normal PMN was induced in vitro by incubating cells with recombinant human granulocyte-macrophage/colony-stimulating factor for 18 h and this response was inhibited by cycloheximide, suggesting the possibility that de novo synthesis of IL-1R might occur in PMN during the sepsis syndrome. Images PMID:1834697

  13. Expression of extracellular calcium-sensing receptor in human osteoblastic MG-63 cell line

    NASA Technical Reports Server (NTRS)

    Yamaguchi, T.; Chattopadhyay, N.; Kifor, O.; Ye, C.; Vassilev, P. M.; Sanders, J. L.; Brown, E. M.

    2001-01-01

    We have previously shown the expression of the extracellular calcium (Ca2+o)-sensing receptor (CaR) in osteoblast-like cell lines, and others have documented its expression in sections of murine, bovine, and rat bone. The existence of the CaR in osteoblasts remains controversial, however, since some studies have failed to document its expression in the same osteoblast-like cell lines. The goals of the present study were twofold. 1) We sought to determine whether the CaR is expressed in the human osteoblast-like cell line, MG-63, which has recently been reported by others not to express this receptor. 2) We investigated whether the CaR, if present in MG-63 cells, is functionally active, since most previous studies have not proven the role of the CaR in mediating known actions of Ca2+o on osteoblast-like cells. We used immunocytochemistry and Western blotting with the specific, affinity-purified anti-CaR antiserum 4637 as well as Northern blot analysis and RT-PCR using a riboprobe and PCR primers specific for the human CaR, respectively, to show readily detectable CaR protein and mRNA expression in MG-63 cells. Finally, we employed the patch-clamp technique to show that an elevation in Ca2+o as well as the specific, allosteric CaR activator NPS R-467 (0.5 microM), but not its less active stereoisomer NPS S-467 (0.5 microM), activate an outward K+ channel in MG-63 cells, strongly suggesting that the CaR in MG-63 cells is not only expressed but is functionally active.

  14. Neuronal Expression of CB2 Cannabinoid Receptor mRNAs in the Mouse Hippocampus

    PubMed Central

    Li, Yong; Kim, Jimok

    2015-01-01

    In the brain, CB1 cannabinoid receptors primarily mediate the effects of cannabinoids, but CB2 cannabinoid receptors (CB2Rs) have recently been discovered in the nervous system and also implicated in neuromodulatory roles. To understand the mechanisms of CB2R functions in the brain, it is essential to localize CB2Rs, but the types of cells expressing CB2Rs have been controversial. Unequivocal localization of CB2Rs in the brain has been impeded in part by the low expression levels of CB2Rs and poor specificity of detection methods. Here, we used an ultrasensitive and specific in situ hybridization method called the RNAscope to determine the spatial pattern of CB2R mRNA expression in the mouse hippocampus. CB2R mRNAs were mostly expressed in a subset of excitatory and inhibitory neurons in the CA1, CA3 and dentate gyrus areas, but rarely in microglia. CB2R knock-out mice were used as a negative control. Using the quantitative real-time polymerase chain reaction, we also found that the temporal pattern of CB2R mRNA expression was stable during postnatal development. Consistent with previous reports, the immunological detection of CB2Rs was not reliable, implying extremely low levels of the protein expression and/or insufficient specificity of the current anti-CB2R antibodies. Our findings of the expression patterns of CB2R mRNAs may help determine the cell types involved in, and hence the mechanisms of, the CB2R-mediated neuromodulation. PMID:26515747

  15. Expression of extracellular calcium-sensing receptor in human osteoblastic MG-63 cell line

    NASA Technical Reports Server (NTRS)

    Yamaguchi, T.; Chattopadhyay, N.; Kifor, O.; Ye, C.; Vassilev, P. M.; Sanders, J. L.; Brown, E. M.

    2001-01-01

    We have previously shown the expression of the extracellular calcium (Ca2+o)-sensing receptor (CaR) in osteoblast-like cell lines, and others have documented its expression in sections of murine, bovine, and rat bone. The existence of the CaR in osteoblasts remains controversial, however, since some studies have failed to document its expression in the same osteoblast-like cell lines. The goals of the present study were twofold. 1) We sought to determine whether the CaR is expressed in the human osteoblast-like cell line, MG-63, which has recently been reported by others not to express this receptor. 2) We investigated whether the CaR, if present in MG-63 cells, is functionally active, since most previous studies have not proven the role of the CaR in mediating known actions of Ca2+o on osteoblast-like cells. We used immunocytochemistry and Western blotting with the specific, affinity-purified anti-CaR antiserum 4637 as well as Northern blot analysis and RT-PCR using a riboprobe and PCR primers specific for the human CaR, respectively, to show readily detectable CaR protein and mRNA expression in MG-63 cells. Finally, we employed the patch-clamp technique to show that an elevation in Ca2+o as well as the specific, allosteric CaR activator NPS R-467 (0.5 microM), but not its less active stereoisomer NPS S-467 (0.5 microM), activate an outward K+ channel in MG-63 cells, strongly suggesting that the CaR in MG-63 cells is not only expressed but is functionally active.

  16. Expression of histamine receptor genes Hrh3 and Hrh4 in rat brain endothelial cells.

    PubMed

    Karlstedt, K; Jin, C; Panula, P

    2013-09-01

    Brain vascular endothelial cells express histamine H1 and H2 receptors, which regulate brain capillary permeability. We investigated whether H3 and H4 receptors are also expressed in these cells and may thus play a role in permeability regulation. An immortalized rat brain endothelial cell line RBE4 was used to assess the presence of H3 and H4 receptors. Reverse transcription-PCR (RT-PCR) and sequencing were used to identify the receptor mRNAs. The receptors were stimulated with histamine and immepip, and specific inverse agonists/antagonists ciproxifan and JNJ 7777120 were used to block H3 and H4 receptors, respectively. RT-PCR of mRNA extracted from cultured immortalized RBE4 cells revealed two rat H4 receptor gene (Hrh4) transcripts, one full-length (coding sequence 1173 bp), and one with a 164 bp deletion. Also, two rat H3 receptor gene (Hrh3) isoform mRNAs were expressed in RBE4 cells, and sequencing showed they were the full-length H3 receptor and the 144 bp deletion form. Both histamine and immepip (H3 and H4 receptor agonists) activated the Erk1/2 MAPK pathway in the RBE4 cells and in vivo in brain blood vessels by activating H4 receptors, as the H4 receptor-specific inverse agonists/antagonist JNJ 7777120, but not ciproxifan, H3 receptor antagonist, dose-dependently blocked this effect in RBE4 cells. Both Hrh3 and Hrh4 receptors are expressed in rat brain endothelial cells, and activation of the histamine H4 receptor activates the Erk1/2 cascade. H3 and H4 receptors in endothelial cells are potentially important for regulation of blood-brain barrier permeability, including trafficking of immunocompetent cells. © 2013 The Authors. British Journal of Pharmacology © 2013 The British Pharmacological Society.

  17. Isolation, Expression Analysis, and Functional Characterization of the First Antidiuretic Hormone Receptor in Insects

    DTIC Science & Technology

    2010-06-01

    Isolation, expression analysis, and functional characterization of the first antidiuretic hormone receptor in insects Jean-Paul Paluzzia,1, Yoonseong...have cloned the cDNA of the first receptor known to be involved in an antidiuretic strategy in insects , a strategy that prevents diuresis. This...receptor belongs to the insect CAPA receptor family known in other insects to be activated by peptides encoded within the ca- pability gene. We characterize

  18. Sex steroid and thyroid hormone receptor expressions in the thyroid of the American alligator (Alligator mississippiensis) during different life stages.

    PubMed

    Bermudez, Dieldrich S; Skotko, Jeremy P; Ohta, Yasuhiko; Boggs, Ashley S P; Iguchi, Taisen; Guillette, Louis J

    2011-06-01

    The expression of estrogen receptors, ESR1 (ERα) and ESR2 (ERβ), and androgen receptors (AR) in the thyroid gland has been reported in few vertebrate species other than a few mammals. This study reports the presence of sex steroid hormone receptors and thyroid receptors (ERα, ERβ, AR, TRα, and TRβ) in the thyroid gland of the American alligator at several life stages. It provides a semiquantification and distribution of ERα in the thyroid follicle cells using an immunohistochemical approach as well as reports quantitative differences in mRNA expression of ERα, ERβ, TRα, TRβ, and AR in the same tissue using quantitative real time-PCR (Q-PCR) with primers designed specifically for alligators. The thyroid tissue of the American alligator expresses ERα, ERβ, and AR at all of the life stages examined here although no statistically significant differences were observed between male and female in thyroid mRNA expression for any of the genes analyzed. No sexual dimorphism was observed in ERα immunostaining. No statistical analysis across life stages were performed due to confounding factor of season. Copyright © 2011 Wiley-Liss, Inc.

  19. Cannabinoid receptor, CB1, expression follows neuronal differentiation in the early chick embryo

    PubMed Central

    Begbie, Jo; Doherty, Patrick; Graham, Anthony

    2004-01-01

    The role of the CB1 cannabinoid receptor and endocannabinoid signalling has been widely studied in the adult nervous system. However, an emerging body of evidence suggests that the CB1 receptor may also play a role during development. Here we have scrutinized the expression profile of the CB1 receptor from the onset of neurogenesis in the chick embryo. We find that this gene exhibits a dynamic expression pattern that spatially and temporally follows neuronal differentiation in the early embryo. PMID:15379926

  20. Differential Expression of Two Novel Members of the Tomato Ethylene-Receptor Family

    PubMed Central

    Tieman, Denise M.; Klee, Harry J.

    1999-01-01

    The phytohormone ethylene regulates many aspects of plant growth, development, and environmental responses. Much of the developmental regulation of ethylene responses in tomato (Lycopersicon esculentum) occurs at the level of hormone sensitivity. In an effort to understand the regulation of ethylene responses, we isolated and characterized tomato genes with sequence similarity to the Arabidopsis ETR1 (ethylene response 1) ethylene receptor. Previously, we isolated three genes that exhibit high similarity to ETR1 and to each other. Here we report the isolation of two additional genes, LeETR4 and LeETR5, that are only 42% and 40% identical to ETR1, respectively. Although the amino acids known to be involved in ethylene binding are conserved, LeETR5 lacks the histidine within the kinase domain that is predicted to be phosphorylated. This suggests that histidine kinase activity is not necessary for an ethylene response, because mutated forms of both LeETR4 and LeETR5 confer dominant ethylene insensitivity in transgenic Arabidopsis plants. Expression analysis indicates that LeETR4 accounts for most of the putative ethylene-receptor mRNA present in reproductive tissues, but, like LeETR5, it is less abundant in vegetative tissues. Taken together, ethylene perception in tomato is potentially quite complex, with at least five structurally divergent, putative receptor family members exhibiting significant variation in expression levels throughout development. PMID:10318694

  1. Fluorescence-based optimization of human bitter taste receptor expression in Saccharomyces cerevisiae

    SciTech Connect

    Sugawara, Taishi; Ito, Keisuke; Shiroishi, Mitsunori; Tokuda, Natsuko; Asada, Hidetsugu; Yurugi-Kobayashi, Takami; Shimamura, Tatsuro; Misaka, Takumi; Nomura, Norimichi; Murata, Takeshi; Abe, Keiko; Iwata, So; and others

    2009-05-15

    Human TAS2 receptors (hTAS2Rs) perceive bitter tastants, but few studies have explored the structure-function relationships of these receptors. In this paper, we report our trials on the large-scale preparations of hTAS2Rs for structural analysis. Twenty-five hTAS2Rs were expressed using a GFP-fusion yeast system in which the constructs and the culture conditions (e.g., the signal sequence, incubation time and temperature after induction) were optimized by measuring GFP fluorescence. After optimization, five hTAS2Rs (hTAS2R7, hTAS2R8, hTAS2R16, hTAS2R41, and hTAS2R48) were expressed at levels greater than 1 mg protein/L of culture, which is a preferable level for purification and crystallization. Among these five bitter taste receptors, hTAS2R41 exhibited the highest detergent solubilization efficiency of 87.1% in n-dodecyl-{beta}-D-maltopyranoside (DDM)/cholesteryl hemisuccinate (CHS). Fluorescence size-exclusion chromatography showed that hTAS2R41 exhibited monodispersity in DDM/CHS without aggregates, suggesting that hTAS2R41 is a good target for future crystallization trials.

  2. Differential expression of two novel members of the tomato ethylene-receptor family.

    PubMed

    Tieman, D M; Klee, H J

    1999-05-01

    The phytohormone ethylene regulates many aspects of plant growth, development, and environmental responses. Much of the developmental regulation of ethylene responses in tomato (Lycopersicon esculentum) occurs at the level of hormone sensitivity. In an effort to understand the regulation of ethylene responses, we isolated and characterized tomato genes with sequence similarity to the Arabidopsis ETR1 (ethylene response 1) ethylene receptor. Previously, we isolated three genes that exhibit high similarity to ETR1 and to each other. Here we report the isolation of two additional genes, LeETR4 and LeETR5, that are only 42% and 40% identical to ETR1, respectively. Although the amino acids known to be involved in ethylene binding are conserved, LeETR5 lacks the histidine within the kinase domain that is predicted to be phosphorylated. This suggests that histidine kinase activity is not necessary for an ethylene response, because mutated forms of both LeETR4 and LeETR5 confer dominant ethylene insensitivity in transgenic Arabidopsis plants. Expression analysis indicates that LeETR4 accounts for most of the putative ethylene-receptor mRNA present in reproductive tissues, but, like LeETR5, it is less abundant in vegetative tissues. Taken together, ethylene perception in tomato is potentially quite complex, with at least five structurally divergent, putative receptor family members exhibiting significant variation in expression levels throughout development.

  3. Impact of chronic morphine on delta opioid receptor-expressing neurons in the mouse hippocampus.

    PubMed

    Erbs, E; Faget, L; Ceredig, R A; Matifas, A; Vonesch, J-L; Kieffer, B L; Massotte, D

    2016-01-28

    Delta opioid (DOP) receptors participate to the control of chronic pain and emotional responses. Recent data also identified their implication in spatial memory and drug-context associations pointing to a critical role of hippocampal delta receptors. To better appreciate the impact of repeated drug exposure on their modulatory activity, we used fluorescent knock-in mice that express a functional delta receptor fused at its carboxy-terminus with the green fluorescent protein in place of the native receptor. We then tested the impact of chronic morphine treatment on the density and distribution of delta receptor-expressing cells in the hippocampus. A decrease in delta receptor-positive cell density was observed in the CA1, CA3 and dentate gyrus without alteration of the distribution across the different GABAergic populations that mainly express delta receptors. This effect partly persisted after four weeks of morphine abstinence. In addition, we observed increased DOP receptor expression at the cell surface compared to saline-treated animals. In the hippocampus, chronic morphine administration thus induces DOP receptor cellular redistribution and durably decreases delta receptor-expressing cell density. Such modifications are likely to alter hippocampal physiology, and to contribute to long-term cognitive deficits.

  4. Impact of chronic morphine on delta opioid receptor expressing neurons in the mouse hippocampus

    PubMed Central

    Eric, Erbs; Lauren, Faget; Alice, Ceredig Rhian; Audrey, Matifas; Jean-Luc, Vonesch; L., Kieffer Brigitte; Dominique, Massotte

    2015-01-01

    Delta opioid receptors participate to the control of chronic pain and emotional responses. Recent data also identified their implication in spatial memory and drug-context associations pointing to a critical role of hippocampal delta receptors. To better appreciate the impact of repeated drug exposure on their modulatory activity, we used fluorescent knock-in mice that express a functional delta receptor fused at its carboxy-terminus with the green fluorescent protein in place of the native receptor. We then tested the impact of chronic morphine treatment on the density and distribution of delta receptor-expressing cells in the hippocampus. A decrease in delta receptor positive cell density was observed in the CA1, CA3 and dentate gyrus without alteration of the distribution across the different GABAergic populations that mainly express delta receptors. This effect partly persisted after four weeks of morphine abstinence. In addition, we observed increased delta opioid receptor expression at the cell surface compared to saline treated animals. In the hippocampus, chronic morphine administration thus induces delta opioid receptor cellular redistribution and durably decreases delta receptor-expressing cell density. Such modifications are likely to alter hippocampal physiology, and to contribute to long-term cognitive deficits. PMID:26480813

  5. Expression of Cannabinoid Receptors in Human Osteoarthritic Cartilage: Implications for Future Therapies

    PubMed Central

    Dunn, Sara L.; Wilkinson, Jeremy Mark; Crawford, Aileen; Bunning, Rowena A.D.; Le Maitre, Christine L.

    2016-01-01

    Abstract Introduction: Cannabinoids have shown to reduce joint damage in animal models of arthritis and reduce matrix metalloproteinase expression in primary human osteoarthritic (OA) chondrocytes. The actions of cannabinoids are mediated by a number of receptors, including cannabinoid receptors 1 and 2 (CB1 and CB2), G-protein-coupled receptors 55 and 18 (GPR55 and GPR18), transient receptor potential vanilloid-1 (TRPV1), and peroxisome proliferator-activated receptors alpha and gamma (PPARα and PPARγ). However, to date very few studies have investigated the expression and localization of these receptors in human chondrocytes, and expression during degeneration, and thus their potential in clinical applications is unknown. Methods: Human articular cartilage from patients with symptomatic OA was graded histologically and the expression and localization of cannabinoid receptors within OA cartilage and underlying bone were determined immunohistochemically. Expression levels across regions of cartilage and changes with degeneration were investigated. Results: Expression of all the cannabinoid receptors investigated was observed with no change with grade of degeneration seen in the expression of CB1, CB2, GPR55, PPARα, and PPARγ. Conversely, the number of chondrocytes within the deep zone of cartilage displaying immunopositivity for GPR18 and TRPV1 was significantly decreased in degenerate cartilage. Receptor expression was higher in chondrocytes than in osteocytes in the underlying bone. Conclusions: Chondrocytes from OA joints were shown to express a wide range of cannabinoid receptors even in degenerate tissues, demonstrating that these cells could respond to cannabinoids. Cannabinoids designed to bind to receptors inhibiting the catabolic and pain pathways within the arthritic joint, while avoiding psychoactive effects, could provide potential arthritis therapies. PMID:28861474

  6. Expression of retinoid nuclear receptor superfamily members in human hair follicles and its implication in hair growth.

    PubMed

    Billoni, N; Gautier, B; Mahé, Y F; Bernard, B A

    1997-09-01

    Since clinical evidence of hair loss and hair depigmentation following etretinate therapy has been reported, we decided to study the expression levels of several members of the retinoid nuclear receptor superfamily in dermal and epithelial compartments of the human hair follicle. Additionally, we evaluated the effects of several ligands for these receptors on human hair growth in culture in vitro. We observed that the cellular/ cytoplasmic retinoic acid (RA) binding protein-II and the retinoid-X-receptor-alpha were constantly and strongly expressed in both compartments at levels comparable to those of vitamin D receptor. In dermal papilla cells, by contrast with RAR beta which was always expressed, RAR alpha and RAR gamma were not constantly expressed. In dermal sheath fibroblasts, both RAR alpha, RAR beta and RAR gamma mRNAs were moderately expressed, while in the epithelial compartment, namely the plucked hair, we observed the expression of the same genes in the absence of RAR beta. We also observed that RAR agonists all-trans RA and CD367 inhibited the survival of human hair follicles in culture in vitro, while RXR agonist CD2425 stimulated hair growth and survival at levels comparable to those of 1 alpha,25-dihydroxyvitamin D3, suggesting that RXR agonists might stimulate hair growth in humans in vivo.

  7. Developmental expression of the platelet-derived growth factor alpha-receptor gene in mammalian central nervous system.

    PubMed

    Yeh, H J; Silos-Santiago, I; Wang, Y X; George, R J; Snider, W D; Deuel, T F

    1993-03-01

    We recently reported that the platelet-derived growth factor (PDGF) A-chain gene is highly expressed in neurons of embryonic and adult mouse central nervous system and suggested that its secretion by neurons may support development and maintenance of glia. We have now analyzed the levels and sites of expression of the cognate PDGF alpha-receptor gene in brain and spinal cord of embryonic and adult mice by in situ hybridization. The predominant cell populations in both gray and white matter expressing transcripts of the PDGF alpha-receptor gene are glial cells or their precursors. Transcripts consistently were not detected in neurons. Expression of the PDGF alpha-receptor gene was first observed at embryonic day 15, increased through postnatal day 14, and fell to lower levels in adults. Expression of the alpha-receptor gene corresponds in temporal sequence to the developmental period of glial migration and proliferation and to the expression of PDGF A by neurons. The results indicate that glia but not neurons have the potential to respond to PDGF A and suggest that neurons influence glial cell development through paracrine regulation.

  8. TARP γ-8 glycosylation regulates the surface expression of AMPA receptors.

    PubMed

    Zheng, Chan-Ying; Chang, Kai; Suh, Young Ho; Roche, Katherine W

    2015-02-01

    TARP [transmembrane AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor regulatory protein] γ-8 is an auxiliary subunit of AMPA receptors that is widely distributed in the hippocampus. It has been shown that TARP γ-8 promotes surface expression of AMPA receptors; however, how TARP γ-8 regulates the expression of AMPA receptors remains unclear. In the present study, we examined the effect of TARP glycosylation on AMPA receptor trafficking. We first showed that TARP γ-8 is an N-glycosylated protein, which contains two glycosylation sites, Asn53 and Asn56, and compared this with the glycosylation of TARP γ-2 and the AMPA receptor auxiliary protein CNIH-2 (cornichon homologue 2). We next examine the effect of TARP glycosylation on TARP trafficking and also on AMPA receptor surface expression. We find that TARP γ-8 glycosylation is critical for surface expression of both TARP γ-8 and GluA1 in heterologous cells and neurons. Specifically, knockdown of TARP γ-8 causes a decrease in both total and surface AMPA receptors. We find that the expression of unglycosylated TARP γ-8 in cultured neurons is unable to restore GluA1 expression fully. Furthermore, when the maturation of TARP γ-8 is impaired, a large pool of immature GluA1 is retained intracellularly. Taken together, our data reveal an important role for the maturation of TARP γ-8 in the trafficking and function of the AMPA receptor complex.

  9. Abnormal gene expression of proinflammatory cytokines and their receptors in the lymphocytes of patients with bipolar disorder.

    PubMed

    Pandey, Ghanshyam N; Ren, Xinguo; Rizavi, Hooriyah S; Zhang, Hui

    2015-09-01

    Abnormalities of protein levels of proinflammatory cytokines and their soluble receptors have been reported in plasma of patients with bipolar disorder (BP). In this study, we tested the hypothesis that the mRNA expression of membrane-bound receptors for proinflammatory cytokines will be altered in the lymphocytes of patients with BP. We determined protein and mRNA expression of proinflammatory cytokines, and mRNA expression of their receptors in the lymphocytes from 29 drug-free, hospitalized patients with BP and 30 drug-free normal control subjects. The subjects were diagnosed according to DSM-IV criteria. Plasma protein levels of cytokines were determined by enzyme-linked immunosorbent assay (ELISA); mRNA levels in lymphocytes were determined by the quantitative polymerase chain reaction (qPCR) method. We found that mean mRNA levels of the proinflammatory cytokines interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α, and their receptors TNFR1, IL-1R1, and the antagonist IL-1RA were significantly higher in the lymphocytes of patients with BP compared with normal controls. This study suggests that the observed abnormalities of membrane-bound cytokine receptors may alter the functional response of cytokines in BP and that the mRNA levels of these receptors could be a potential biomarker. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. [Isoforms of the human histamine H3 receptor: Generation, expression in the central nervous system and functional implications].

    PubMed

    García-Gálvez, Ana Maricela; Arias-Montaño, José Antonio

    2016-01-01

    Histamine plays a significant role as a neuromodulator in the human central nervous system. Histamine-releasing neurons are exclusively located in the tuberomammillary nucleus of the hypothalamus, project to all major areas of the brain, and participate in functions such as the regulation of sleep/wakefulness, locomotor activity, feeding and drinking, analgesia, learning, and memory. The functional effects of histamine are exerted through the activation of four G protein-coupled receptors (H1, H2, H3 and H4), and in the central nervous system the first three receptors are widely expressed. The H3 receptor (H3R) is found exclusively in neuronal cells, where it functions as auto- and hetero-receptor. One remarkable characteristic of the H3R is the existence of isoforms, generated by alternative splicing of the messenger RNA. For the human H3R, 20 isoforms have been reported; although a significant number lack those regions required for agonist binding or receptor signaling, at least five isoforms appear functional upon heterologous expression. In this work we review the evidence for the generation of human H3R isoforms, their expression, and the available information regarding the functionality of such receptors.

  11. Low Density Lipoprotein Receptor-Related Protein and Apolipoprotein E Expression is Altered in Schizophrenia

    PubMed Central

    Gibbons, Andrew Stuart; Thomas, Elizabeth A.; Scarr, Elizabeth; Dean, Brian

    2010-01-01

    Our recent microarray study reported altered mRNA expression of several low density lipoprotein receptor-related proteins (LRP) associated with the first 4 years following diagnosis with schizophrenia. Whilst this finding is novel, apolipoprotein E (APOE), which mediates its activity through LRPs, has been reported by several studies to be altered in brains of subjects with schizophrenia. We used qPCR to measure the expression of LRP2, LRP4, LRP6, LRP8, LRP10 and LRP12 mRNA in Brodmann's area (BA) 46 of the dorsolateral prefrontal cortex in 15 subjects with short duration of illness schizophrenia (SDS) and 15 pair matched controls. We also used Western blotting to measure APOE protein expression in BA46 from these subjects. Amongst the LRPs examined, LRP10 expression was significantly increased (P = 0.03) and LRP12 was significantly decreased (P < 0.01) in SDS. APOE protein expression was also increased in SDS (P = 0.01). No other marker examined in this study was altered with diagnosis. Our data supports a role for distinct members of the LRP family in the pathology of schizophrenia and adds weight to the hypothesis that aberrant apolipoprotein signaling is involved in the early stages of schizophrenia. PMID:21423430

  12. Functional characterization of a sex pheromone receptor in the pest moth Spodoptera littoralis by heterologous expression in Drosophila.

    PubMed

    Montagné, Nicolas; Chertemps, Thomas; Brigaud, Isabelle; François, Adrien; François, Marie-Christine; de Fouchier, Arthur; Lucas, Philippe; Larsson, Mattias C; Jacquin-Joly, Emmanuelle

    2012-09-01

    Moth sex pheromone communication is recognised as a long-standing model for insect olfaction studies, and a widespread knowledge has been accumulated on this subject thanks to numerous chemical, electrophysiological and behavioural studies. A key step has been the identification of candidate sex pheromone receptors, opening new routes to understanding the specificity and sensitivity of this communication system, but only few of these receptors have as yet been functionally characterised. In this context, we aim at unravelling the molecular bases of pheromone reception in the noctuid moth Spodoptera littoralis. Taking advantage of a collection of antennal-expressed sequence tags, we previously identified three fragments of candidate pheromone receptors in this species. Here, we report full-length cloning of one of these receptors, named SlitOR6. Both sequence and expression pattern analyses were consistent with its annotation as a pheromone receptor, which we further confirmed by functional characterization. Using Drosophila antennae as a heterologous expression system, we identified a single component of the pheromone blend of S. littoralis, (Z,E)-9,12-tetradecadienyl acetate, as the ligand of SlitOR6. Two strategies were employed: (i) expressing SlitOR6 in the majority of Drosophila olfactory neurons, in addition to endogenous receptors, and monitoring the responses to pheromone stimuli by electroantennography; (ii) replacing the Drosophila pheromone receptor OR67d with SlitOR6 and monitoring the response by single sensillum recordings. Results were fully congruent and responses to (Z,E)-9,12-tetradecadienyl acetate were highly specific in both heterologous systems. This approach appears to be efficient and reliable for studying moth pheromone receptors in an in vivo context.

  13. Inhibitory effects of areca nut extract on expression of complement receptors and fc receptors in human neutrophils.

    PubMed

    Lee, Ya-Yun; Lin, Ming-Bin; Cheng, Chi-Fang; Chang, Lien-Yu; Liu, Tsung-Yun; Hung, Shan-Ling

    2014-08-01

    Chewing of areca quid increases the prevalence of periodontal diseases. Areca nut extract (ANE) inhibits the phagocytic activity of human neutrophils. This in vitro study investigates the effects of ANE on complement- and antibody-opsonized phagocytosis by neutrophils. Expression of complement receptors, Fc receptors, and F-actin in ANE-treated neutrophils is also analyzed. The viability of ANE-treated neutrophils was determined using the propidium iodide staining method. The possible effects of ANE on the expression of complement receptors and Fc receptors were examined using an immunofluorescence staining method followed by flow cytometry and confocal laser scanning microscopy. The phagocytic activity of neutrophils against complement or immunoglobulin (Ig)G-opsonized fluorescent beads was analyzed using flow cytometry. Expression of F-actin was determined using confocal laser scanning microscopy. ANE significantly inhibited the production of complement receptors (CR1, CR3, and CR4) and Fc receptors (FcγRII and FcγRIII) in a concentration-dependent manner. Treatment of neutrophils with ANE significantly impaired their ability to phagocytose fluorescent beads. ANE also inhibited phagocytosis of fluorescent beads that were opsonized by complement or IgG. Moreover, expression of F-actin was inhibited after ANE treatment. ANE inhibits the complement- and IgG-mediated neutrophil phagocytosis that may result from reduction of the expression of complement receptors, Fc receptors, and F-actin formation after ANE treatment. The findings suggest that areca nut chewing may jeopardize the defensive functions of neutrophils and affect periodontal health.

  14. Steroid hormone receptor gene expression in human breast cancer cells: inverse relationship between oestrogen and glucocorticoid receptor messenger RNA levels.

    PubMed

    Hall, R E; Lee, C S; Alexander, I E; Shine, J; Clarke, C L; Sutherland, R L

    1990-12-15

    The relative expression in human breast cancer cells of messenger ribonucleic acids (mRNA) encoding different steroid hormone receptors is unknown. Accordingly, mRNA levels in total RNA extracted from 13 human breast cancer cell lines were measured by Northern analysis employing complementary DNA probes for the human oestrogen (ER), progesterone (PR), androgen (AR), vitamin D3 (VDR) and glucocorticoid receptors (GR). The 7 ER+ lines expressed a single 6.4 kilobases (kb) ER mRNA. Interestingly, low concentrations of ER mRNA were detected in the ER- cell lines, MDA-MB-330 and BT 20. PR mRNA, predominantly a 13.5 kb species, was expressed in the 6 lines known to be ER+, PR+ by radioligand binding; however, one ER+ cell line, MDA-MB-134, failed to express PR mRNA. A 10.5 kb AR mRNA was expressed at significantly higher levels in ER+ than ER- cell lines. All cell lines expressed a single 4.6 kb mRNA for VDR and a single 7.4 kb mRNA for GR. ER and PR mRNA levels were positively correlated (p = 0.011) and each was positively correlated with androgen receptor (AR) mRNA levels (p less than or equal to 0.009). ER, PR and AR mRNAs were negatively associated with GR levels (p less than or equal to 0.012), while ER and AR mRNA levels were negatively correlated with mRNA for the epidermal growth factor receptor. In contrast, levels of VDR mRNA were unrelated to the concentration of any other steroid receptor mRNA. Our data demonstrate the coordinate expression of ER, PR and AR genes, and an inverse relationship between sex steroid hormone receptor and GR gene expression in human breast cancer cell lines.

  15. A Cleavable N-Terminal Signal Peptide Promotes Widespread Olfactory Receptor Surface Expression in HEK293T Cells

    PubMed Central

    Shepard, Blythe D.; Natarajan, Niranjana; Protzko, Ryan J.; Acres, Omar W.; Pluznick, Jennifer L.

    2013-01-01

    Olfactory receptors (ORs) are G protein-coupled receptors that detect odorants in the olfactory epithelium, and comprise the largest gene family in the genome. Identification of OR ligands typically requires OR surface expression in heterologous cells; however, ORs rarely traffic to the cell surface when exogenously expressed. Therefore, most ORs are orphan receptors with no known ligands. To date, studies have utilized non-cleavable rhodopsin (Rho) tags and/or chaperones (i.e. Receptor Transporting Protein, RTP1S, Ric8b and Gαolf) to improve surface expression. However, even with these tools, many ORs still fail to reach the cell surface. We used a test set of fifteen ORs to examine the effect of a cleavable leucine-rich signal peptide sequence (Lucy tag) on OR surface expression in HEK293T cells. We report here that the addition of the Lucy tag to the N-terminus increases the number of ORs reaching the cell surface to 7 of the 15 ORs (as compared to 3/15 without Rho or Lucy tags). Moreover, when ORs tagged with both Lucy and Rho were co-expressed with previously reported chaperones (RTP1S, Ric8b and Gαolf), we observed surface expression for all 15 receptors examined. In fact, two-thirds of Lucy-tagged ORs are able to reach the cell surface synergistically with chaperones even when the Rho tag is removed (10/15 ORs), allowing for the potential assessment of OR function with only an 8-amino acid Flag tag on the mature protein. As expected for a signal peptide, the Lucy tag was cleaved from the mature protein and did not alter OR-ligand binding and signaling. Our studies demonstrate that widespread surface expression of ORs can be achieved in HEK293T cells, providing promise for future large-scale deorphanization studies. PMID:23840901

  16. Expression of three GnRH receptors in specific tissues in male and female sea lampreys Petromyzon marinus at three distinct life stages

    PubMed Central

    Hall, Jeffrey A.; Decatur, Wayne A.; Daukss, Dana M.; Hayes, Mary K.; Marquis, Timothy J.; Morin, Scott J.; Kelleher, Thomas F.; Sower, Stacia A.

    2013-01-01

    Two recently cloned gonadotropin-releasing hormone (GnRH) receptors (lamprey GnRH-R-2 and lamprey GnRH-R-3) along with lamprey (l) GnRH-R-1 were shown to share similar structural features and amino acid motifs common to other vertebrate receptors. Here we report on our findings of RNA expression of these three GnRH receptors in the three major life stages (larval, parasitic, and adult phases) of the sea lamprey, Petromyzon marinus, a basal vertebrate. For each stage, we examined the expression of messenger RNA encoding the receptors in the brain, pituitary, gonad, heart, muscle, liver, eye, intestine, kidney, skin, thyroid, gill, and endostyle by RT-PCR. In adult lampreys, the spatial expression of the three receptors in the brain and pituitary was investigated by in situ hybridization. In general, the receptors were more widely expressed in adult tissues as compared to parasitic-phase tissues and least widely expressed in the larval tissues. There were noted differences in male and female lampreys in the adult and parasitic phases for all three receptors. The data showed the presence of all three receptor transcripts in brain tissues for adult and parasitic phases and all three receptor transcripts were expressed in the adult pituitaries, but not in the parasitic pituitaries. However, in the larval phase, only lGnRH-R-1 was expressed in the larval brain and pituitary. In situ hybridization revealed that lGnRH-R-2 and -3 were expressed in the pineal tissue of adult female lampreys while lGnRH-R-1 was expressed in the pineal in adult male lampreys, all restricted to the pineal pellucida. In summary, these data provide an initial comparative analysis of expression of three lamprey GnRH receptors suggesting differential regulation within males and females at three different life/reproductive stages. PMID:23754972

  17. Quantitative immunohistochemical analysis reveals association between sodium iodide symporter and estrogen receptor expression in breast cancer.

    PubMed

    Chatterjee, Sushmita; Malhotra, Renu; Varghese, Frency; Bukhari, Amirali B; Patil, Asawari; Budrukkar, Ashwini; Parmar, Vani; Gupta, Sudeep; De, Abhijit

    2013-01-01

    Human sodium iodide symporter (hNIS) gene over-expression is under active consideration worldwide as an alternative target molecule for breast cancer (BC) diagnosis and targeted radio-iodine treatment. However, the field demands better stratified analysis of endogenous hNIS expression across major BC subtypes. Therefore, we have analyzed subtype-specific variation of hNIS overexpression in breast tumor tissue samples by immunohistochemistry (IHC) and also report the development of a homogeneous, quantitative analysis method of digital IHC images. hNIS expression was analyzed from 108 BC tissue samples by IHC. Sub-cellular localization of hNIS protein was analyzed by dual immunofluorescence (IF) staining method using hNIS and HER2 antibodies. An ImageJ based two-step digital analysis method was developed and applied for the bias-free analysis of the images. Staining of the tumor samples show 70% cases are hNIS positive indicating high incidence of hNIS positive cases in BC. More importantly, a subtype specific analysis done for the first time shows that hNIS expression is overly dominated in estrogen receptor (ER) positive cases than the receptor negative cases. Further, 56% of the ER+ve, PgR+ve, HER2-ve and 36% of ER+ve, PgR+ve, HER2+ve cases show highest intensity staining equivalent to the thyroid tissue. A significant positive correlation is also observed between hNIS and estrogen receptor expression (p = 0.0033, CI = 95%) suggesting hNIS mediated targeted radio-iodine therapy procedures may benefit both ER+ve, PgR+ve, HER2-ve as well as HER2+ve cases. Further, in a few cases, hNIS and HER2 protein localization is demonstrated by overlapping membrane co-expression. ImageJ based image analysis method shows over 70% match with manual pathological scoring method. The study indicates a positive link between hNIS and ER expression in BC. The quantitative IHC image analysis method reported here will further help in patient stratification and potentially

  18. Expression of prostate apoptosis response (Par-4) is associated with progesterone receptor in breast cancer.

    PubMed

    Zapata-Benavides, Pablo; Méndez-Vázquez, José L; González-Rocha, Talina R; Zamora-Avila, Diana E; Franco-Molina, Moises A; Garza-Garza, Raúl; Rodriguez-Padilla, Cristina

    2009-10-01

    The prostate apoptosis response (Par-4) gene encodes a proapoptotic protein that selectively induces apoptosis in cancer cells after diverse apoptotic stimuli. Par-4 expression and its association with other biomarkers have not been reported in breast cancer. The purpose of this study was to determine Par-4 expression in breast cancer samples and its association with other biomarkers and clinical factors (T-stage, age, nodal status). Paraffin-embedded section samples of breast cancer were evaluated by immunohistochemical analysis to determine Par-4, estrogen receptor (ER), progesterone receptor (PgR), c-erbB2, Ki67, p53 and bcl-2 expression. The correlation between Par-4 and the other biomarkers and clinical factors was determined by multivariate analysis. Thirty five percent (n=21) of samples were PAR-4 positive and 64.4% (n=38) were negative. The hormonal status was 64% ER positive (n=38), 35% ER-negative (n=21) and 40.7% PgR positive (n=24), 59.3% PgR negative (n=35). The majority (90%) of the samples presented clear cytoplasmic localization and a small portion (10%) was cytoplasmic and nuclear. Univariate analysis indicates that the Par-4 expression has a significant inverse association (p=0.04) only with expression of PgR and not with the other variables analyzed. Normal breast tissue analyzed was negative for Par-4 immunostaining. Our results suggest that, in breast cancer, Par-4 plays a similar tumor suppressor gene role as reported in endometrial carcinoma. 2009. Published by Elsevier Inc.

  19. Establishment of Sf9 Transformants Constitutively Expressing PBAN Receptor Variants: Application to Functional Evaluation

    PubMed Central

    Lee, Jae Min; Hull, J. Joe; Kawai, Takeshi; Tsuneizumi, Kazuhide; Kurihara, Masaaki; Tanokura, Masaru; Nagata, Koji; Nagasawa, Hiromichi; Matsumoto, Shogo

    2012-01-01

    To facilitate further evaluation of pheromone biosynthesis activating neuropeptide receptor (PBANR) functionality and regulation, we generated cultured insect cell lines constitutively expressing green fluorescent protein chimeras of the recently identified Bombyx mori PBANR (BommoPBANR) and Pseudaletia separata PBANR (PsesePBANR) variants. Fluorescent chimeras included the BommoPBANR-A, -B, and -C variants and the PsesePBANR-B and -C variants. Cell lines expressing non-chimeric BommoPBANR-B and -C variants were also generated. Functional evaluation of these transformed cell lines using confocal laser microscopy revealed that a Rhodamine Red-labeled PBAN derivative (RR-C10PBANR2K) specifically co-localized with all of the respective PBANR variants at the plasma membrane. Near complete internalization of the fluorescent RR-C10PBANR2K ligand 30 min after binding was observed in all cell lines except those expressing the BommoPBANR-A variant, in which the ligand/receptor complex remained at the plasma membrane. Fluorescent Ca2+ imaging further showed that the BommoPBANR-A cell line exhibited drastically different Ca2+ mobilization kinetics at a number of RR-C10PBANR2K concentrations including 10 μM. These observations demonstrate a clear functional difference between the BommoPBANR-A variant and the BommoPBANR-B and -C variants in terms of receptor regulation and activation of downstream effector molecules. We also found that, contrary to previous reports, ligand-induced internalization of BommoPBANR-B and BommoPBANR-C in cell lines stably expressing these variants occurred in the absence of extracellular Ca2+. PMID:22654874

  20. Change of dopamine receptor mRNA expression in lymphocyte of schizophrenic patients

    PubMed Central

    Kwak, Yong T; Koo, Min-Seong; Choi, Chul-Hee; Sunwoo, IN

    2001-01-01

    Background Though the dysfunction of central dopaminergic system has been proposed, the etiology or pathogenesis of schizophrenia is still uncertain partly due to limited accessibility to dopamine receptor. The purpose of this study was to define whether or not the easily accessible dopamine receptors of peripheral lymphocytes can be the peripheral markers of schizophrenia. Results 44 drug-medicated schizophrenics for more than 3 years, 28 drug-free schizophrenics for more than 3 months, 15 drug-naïve schizophrenic patients, and 31 healthy persons were enrolled. Sequential reverse transcription and quantitative polymerase chain reaction of the mRNA were used to investigate the expression of D3 and D5 dopamine receptors in peripheral lymphocytes. The gene expression of dopamine receptors was compared in each group. After taking antipsychotics in drug-free and drug-naïve patients, the dopamine receptors of peripheral lymphocytes were sequentially studied 2nd week and 8th week after medication. In drug-free schizophrenics, D3 dopamine receptor mRNA expression of peripheral lymphocytes significantly increased compared to that of controls and drug-medicated schizophrenics, and D5 dopamine receptor mRNA expression increased compared to that of drug-medicated schizophrenics. After taking antipsychotics, mRNA of dopamine receptors peaked at 2nd week, after which it decreases but the level was above baseline one at 8th week. Drug-free and drug-naïve patients were divided into two groups according to dopamine receptor expression before medications, and the group of patients with increased dopamine receptor expression had more severe psychiatric symptoms. Conclusions These results reveal that the molecular biologically-determined dopamine receptors of peripheral lymphocytes are reactive, and that increased expression of dopamine receptor in peripheral lymphocyte has possible clinical significance for subgrouping of schizophrenis. PMID:11252158

  1. Neurokinin 1 receptor expression in the rat retina.

    PubMed

    Casini, G; Rickman, D W; Sternini, C; Brecha, N C

    1997-12-22

    Tachykinin (TK) peptides influence neuronal activity in the inner retina of mammals. The aim of this investigation was to determine the cellular localization of the neurokinin 1 receptor (NK1), whose preferred ligand is the TK peptide substance P (SP), in the rat retina. These studies used a polyclonal antiserum directed to the C-terminus of rat NK1. The majority of NK1-immunoreactive (IR) cells were located in the proximal inner nuclear layer (INL), and very rarely they were found in the distal INL. Some small and large NK1-IR somata were present in the ganglion cell layer. NK1-IR processes were densely distributed across the inner plexiform layer (IPL) with a maximum density over lamina 2 of the IPL. Immunoreactive processes also crossed the INL and ramified in the outer plexiform layer where they formed a sparse meshwork. NK1-IR processes were rarely observed in the optic nerve fiber layer. Double-label immunofluorescence studies with different histochemical markers for bipolar cells indicated that NK1 immunoreactivity was not present in bipolar cells. Together, these observations indicate that NK1 immunoreactivity is predominantly expressed by amacrine, displaced amacrine, interplexiform, and some ganglion cells. Double-label immunofluorescence experiments were also performed to characterize NK1-containing amacrine cells. Sixty-one percent of the gamma-aminobutyric acid (GABA)-IR cells, 71% of the large tyrosine hydroxylase (TH)-IR cells, and 100% of the small TH-IR cells contained NK1 immunoreactivity. In addition, most (91%) of the NK1-IR cells had GABA immunoreactivity. In contrast, vasoactive intestinal polypeptide-, TK-, choline acetyltransferase-, and parvalbumin-IR amacrine tells did not express NK1 immunoreactivity. Overall, the present findings suggest that SP acts directly upon several cell populations, including GABA-containing amacrine cells and ganglion cells, to influence visual information processing in the inner retina.

  2. Neurokinin 1 Receptor Expression in the Rat Retina

    PubMed Central

    Casini, Giovanni; Rickman, Dennis W.; Sternini, Catia; Brecha, Nicholas C.

    2010-01-01

    Tachykinin (TK) peptides influence neuronal activity in the inner retina of mammals. The aim of this investigation was to determine the cellular localization of the neurokinin 1 receptor (NK1), whose preferred ligand is the TK peptide substance P (SP), in the rat retina. These studies used a polyclonal antiserum directed to the C-terminus of rat NK1. The majority of NK1-immunoreactive (IR) cells were located in the proximal inner nuclear layer (INL), and very rarely they were found in the distal INL. Some small and large NK1-IR somata were present in the ganglion cell layer. NK1-IR processes were densely distributed across the inner plexiform layer (IPL) with a maximum density over lamina 2 of the IPL. Immunoreactive processes also crossed the INL and ramified in the outer plexiform layer where they formed a sparse meshwork. NK1-IR processes were rarely observed in the optic nerve fiber layer. Double-label immunofluorescence studies with different histochemical markers for bipolar cells indicated that NK1 immunoreactivity was not present in bipolar cells. Together, these observations indicate that NK1 immunoreactivity is predominantly expressed by amacrine, displaced amacrine, interplexiform, and some ganglion cells. Double-label immunofluorescence experiments were also performed to characterize NK1-containing amacrine cells. Sixty-one percent of the γ-aminobutyric acid (GABA)-IR cells, 71% of the large tyrosine hydroxylase (TH)-IR cells, and 100% of the small TH-IR cells contained NK1 immunoreactivity. In addition, most (91%) of the NK1-IR cells had GABA immunoreactivity. In contrast, vasoactive intestinal polypeptide-, TK-, choline acetyltransferase-, and parvalbumin-IR amacrine cells did not express NK1 immunoreactivity. Overall, the present findings suggest that SP acts directly upon several cell populations, including GABA-containing amacrine cells and ganglion cells, to influence visual information processing in the inner retina. J. Comp. Neurol. 389:496

  3. Abnormal gene expression of proinflammatory cytokines and their membrane-bound receptors in the lymphocytes of depressed patients.

    PubMed

    Rizavi, Hooriyah S; Ren, Xinguo; Zhang, Hui; Bhaumik, Runa; Pandey, Ghanshyam N

    2016-06-30

    Abnormalities of protein levels of proinflammatory cytokines and their soluble receptors have been reported in plasma of depressed patients. In this study, we examined the role of cytokines and their membrane-bound receptors in major depressive disorder (MDD). We determined the protein and mRNA expression of proinflammatory cytokines, interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and mRNA expression of their membrane-bound receptors in the lymphocytes from 31 hospitalized MDD patients and 30 non-hospitalized normal control (NC) subjects. The subjects were diagnosed according to DSM-IV criteria. Protein levels of cytokines were determined by ELISA, and mRNA levels in lymphocytes were determined by the qPCR method. We found that the mean mRNA levels of the proinflammatory cytokines IL-1β, IL-6, TNF-α, their receptors, TNFR1, TNFR2, IL-1R1 and the antagonist IL-1RA were significantly increased in the lymphocytes of MDD patients compared with NC. No significant differences in the lymphocyte mRNA levels of IL-1R2, IL-6R, and Gp130 were observed between MDD patients and NC. These studies suggest abnormal gene expression of these cytokines and their membrane-bound receptors in the lymphocytes of MDD patients, and that their mRNA expression levels in the lymphocytes could be a useful biomarker for depression. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Lack of significant estrogen and progesterone receptor expression in nasal telangiectasias in hereditary hemorrhagic telangiectasia: an immunohistochemical analysis.

    PubMed

    Eivazi, Behfar; Werner, Jochen A; Roessler, Marion; Negm, Hesham; Teymoortash, Afshin

    2012-01-01

    This immunohistochemical study of estrogen and progesterone receptors could not confirm a significant expression in nasal telangiectasias. Thus, a specific effect of these hormones or anti-hormone therapy on malformed nasal vessels has to be questioned and only offered under strict clinical control. The efforts to control recurrent epistaxis in hereditary hemorrhagic telangiectasia (HHT) using alternative methods are very intense. Hormone or anti-hormone therapy has frequently been postulated and the reported results are controversial. Therefore it was important to find an explanation regarding a possible impact of hormonal therapies by immunohistochemical evaluation of progesterone and estrogen receptor expression on nasal telangiectasias of affected patients. Tissue samples of nasal mucosa with evidence of telangiectasias from 14 patients with HHT were analyzed for the expression of progesterone and estrogen receptors on the nuclei of endothelial cells of the malformed vessels using immunohistochemistry. Progesterone receptors were not detected in any of the cases and only two cases showed a weak expression of estrogen receptors with an immunoreactive score of 2/12.

  5. Disparate temporal expression of the prothrombin and thrombin receptor genes during mouse development.

    PubMed Central

    Soifer, S. J.; Peters, K. G.; O'Keefe, J.; Coughlin, S. R.

    1994-01-01

    The protease thrombin is a potent agonist for platelet aggregation, mesenchymal cell proliferation, and endothelial production of growth factors and adhesion molecules. Thrombin also modulates neurite outgrowth in neuronal cultures. These apparently disparate responses to thrombin appear to be largely mediated by the recently cloned thrombin receptor. In the adult, thrombin is generated from its zymogen prothrombin at sites of vascular injury when circulating coagulation factors meet extravascular tissue factor. In this context thrombin's varied actions may mediate responses to wounding. Whether thrombin's actions on cells may also play a role in development is unknown. We examined the expression of thrombin receptor, prothrombin, and tissue factor by in situ hybridization in mouse development. Thrombin receptor mRNA was expressed widely in mesenchymal cell populations during early organogenesis (E9.5) and was particularly abundant in developing heart and blood vessels. Robust receptor expression was also noted in the germinal epithelium of the hindbrain. Thrombin receptor expression became more restricted with time and by the fetal growth stage (E16.5) was most readily detected in certain neurons, endocardial and endothelial cells, and within lung and liver. In contrast to the thrombin receptor, prothrombin mRNA was limited to the embryonic liver and was not detected until E12.5, well after the onset of receptor expression. mRNA for tissue factor, one important trigger for thrombin generation in the adult, was detected in embryonic epithelia from E9.5-12.5. In several instances, tissue factor-expressing epithelia were surrounded by thrombin receptor-expressing mesenchyme. These data suggest a possible role for the thrombin receptor in development. The finding of robust thrombin receptor expression before prothrombin mRNA was detected raises the question of whether other proteases or peptide ligands can activate the thrombin receptor. Images Figure 1 Figure 2

  6. Developmental Expression of Orphan G Protein-Coupled Receptor 50 in the Mouse Brain

    PubMed Central

    2012-01-01

    Mental disorders have a complex etiology resulting from interactions between multiple genetic risk factors and stressful life events. Orphan G protein-coupled receptor 50 (GPR50) has been identified as a genetic risk factor for bipolar disorder and major depression in women, and there is additional genetic and functional evidence linking GPR50 to neurite outgrowth, lipid metabolism, and adaptive thermogenesis and torpor. However, in the absence of a ligand, a specific function has not been identified. Adult GPR50 expression has previously been reported in brain regions controlling the HPA axis, but its developmental expression is unknown. In this study, we performed extensive expression analysis of GPR50 and three protein interactors using rt-PCR and immunohistochemistry in the developing and adult mouse brain. Gpr50 is expressed at embryonic day 13 (E13), peaks at E18, and is predominantly expressed by neurons. Additionally we identified novel regions of Gpr50 expression, including brain stem nuclei involved in neurotransmitter signaling: the locus coeruleus, substantia nigra, and raphe nuclei, as well as nuclei involved in metabolic homeostasis. Gpr50 colocalizes with yeast-two-hybrid interactors Nogo-A, Abca2, and Cdh8 in the hypothalamus, amygdala, cortex, and selected brain stem nuclei at E18 and in the adult. With this study, we identify a link between GPR50 and neurotransmitter signaling and strengthen a likely role in stress response and energy homeostasis. PMID:22860215

  7. Expression and Functional Role of Orphan Receptor GPR158 in Prostate Cancer Growth and Progression

    PubMed Central

    Patel, Nitin; Itakura, Tatsuo; Jeong, Shinwu; Liao, Chun-Peng; Roy-Burman, Pradip; Zandi, Ebrahim; Groshen, Susan; Pinski, Jacek; Coetzee, Gerhard A.; Gross, Mitchell E.; Fini, M. Elizabeth

    2015-01-01

    Prostate cancer (PCa) is the second-leading cause of cancer-related mortality, after lung cancer, in men from developed countries. In its early stages, primary tumor growth is dependent on androgens, thus generally can be controlled by androgen deprivation therapy (ADT). Eventually however, the disease progresses to castration-resistant prostate cancer (CRPC), a lethal form in need of more effective treatments. G-protein coupled receptors (GPCRs) comprise a large clan of cell surface proteins that have been implicated as therapeutic targets in PCa growth and progression. The findings reported here provide intriguing evidence of a role for the newly characterized glutamate family member GPR158 in PCa growth and progression. We found that GPR158 promotes PCa cell proliferation independent of androgen receptor (AR) functionality and that this requires its localization in the nucleus of the cell. This suggests that GPR158 acts by mechanisms different from other GPCRs. GPR158 expression is stimulated by androgens and GPR158 stimulates AR expression, implying a potential to sensitize tumors to low androgen conditions during ADT via a positive feedback loop. Further, we found GPR158 expression correlates with a neuroendocrine (NE) differentiation phenotype and promotes anchorage-independent colony formation implying a role for GPR158 in therapeutic progression and tumor formation. GPR158 expression was increased at the invading front of prostate tumors that formed in the genetically defined conditional Pten knockout mouse model, and co-localized with elevated AR expression in the cell nucleus. Kaplan-Meier analysis on a dataset from the Memorial Sloan Kettering cancer genome portal showed that increased GPR158 expression in tumors is associated with lower disease-free survival. Our findings strongly suggest that pharmaceuticals targeting GPR158 activities could represent a novel and innovative approach to the prevention and management of CRPC. PMID:25693195

  8. Gestational diabetes mellitus is associated with increased leukocyte peroxisome proliferator-activated receptor γ expression

    PubMed Central

    Mac-Marcjanek, Katarzyna; Nadel, Iwona; Woźniak, Lucyna; Cypryk, Katarzyna

    2015-01-01

    Introduction Peroxisome proliferator-activated receptor γ (PPARγ) is a ligand-activated transcription factor of the nuclear receptor superfamily that is involved in lipid and carbohydrate metabolism as well as inflammation; thereby it participates in metabolic diseases including diabetes. Although PPARγ expression has been observed in different tissues of diabetic patients, its level in leukocytes from subjects affected by gestational diabetes mellitus (GDM) has not yet been reported. This study aimed to investigate leukocyte PPARG expression in GDM patients at 24–33 weeks of gestation and, in turn, to correlate these alterations with anthropometric and metabolic parameters of patients. Material and methods Leukocytes were isolated from the blood of normal glucose tolerant (NGT; n = 34) and GDM (n = 77) pregnant women between 24 and 33 weeks of gestation. Leukocyte PPARG mRNA expression was determined by semi-quantitative polymerase chain reaction. Univariate correlation analysis was performed to investigate associations between PPARG expression and clinical characteristics of patients. Results Leukocyte PPARG mRNA level was significantly higher in GDM than NGT women (p < 0.05). In the whole study group, PPARG expression positively correlated with plasma glucose concentrations at 1 h (r = 0.222, p = 0.049) and 2 h (r = 0.315, p = 0.020) of 75 g oral glucose tolerance test (OGTT), and negatively correlated with plasma HDL cholesterol concentration (r = -0.351, p = 0.010). Conclusions The correlation between leukocyte PPARG overexpression and hyperglycaemia suggests that PPARG mRNA expression in these cells might be up-regulated in high-glucose conditions in GDM patients at 24–33 weeks of gestation. PMID:26322090

  9. Expression and functional role of orphan receptor GPR158 in prostate cancer growth and progression.

    PubMed

    Patel, Nitin; Itakura, Tatsuo; Jeong, Shinwu; Liao, Chun-Peng; Roy-Burman, Pradip; Zandi, Ebrahim; Groshen, Susan; Pinski, Jacek; Coetzee, Gerhard A; Gross, Mitchell E; Fini, M Elizabeth

    2015-01-01

    Prostate cancer (PCa) is the second-leading cause of cancer-related mortality, after lung cancer, in men from developed countries. In its early stages, primary tumor growth is dependent on androgens, thus generally can be controlled by androgen deprivation therapy (ADT). Eventually however, the disease progresses to castration-resistant prostate cancer (CRPC), a lethal form in need of more effective treatments. G-protein coupled receptors (GPCRs) comprise a large clan of cell surface proteins that have been implicated as therapeutic targets in PCa growth and progression. The findings reported here provide intriguing evidence of a role for the newly characterized glutamate family member GPR158 in PCa growth and progression. We found that GPR158 promotes PCa cell proliferation independent of androgen receptor (AR) functionality and that this requires its localization in the nucleus of the cell. This suggests that GPR158 acts by mechanisms different from other GPCRs. GPR158 expression is stimulated by androgens and GPR158 stimulates AR expression, implying a potential to sensitize tumors to low androgen conditions during ADT via a positive feedback loop. Further, we found GPR158 expression correlates with a neuroendocrine (NE) differentiation phenotype and promotes anchorage-independent colony formation implying a role for GPR158 in therapeutic progression and tumor formation. GPR158 expression was increased at the invading front of prostate tumors that formed in the genetically defined conditional Pten knockout mouse model, and co-localized with elevated AR expression in the cell nucleus. Kaplan-Meier analysis on a dataset from the Memorial Sloan Kettering cancer genome portal showed that increased GPR158 expression in tumors is associated with lower disease-free survival. Our findings strongly suggest that pharmaceuticals targeting GPR158 activities could represent a novel and innovative approach to the prevention and management of CRPC.

  10. Targeting of peptide conjugated magnetic nanoparticles to urokinase plasminogen activator receptor (uPAR) expressing cells

    NASA Astrophysics Data System (ADS)

    Hansen, Line; Unmack Larsen, Esben Kjær; Nielsen, Erik Holm; Iversen, Frank; Liu, Zhuo; Thomsen, Karen; Pedersen, Michael; Skrydstrup, Troels; Nielsen, Niels Chr.; Ploug, Michael; Kjems, Jørgen

    2013-08-01

    Ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles are currently being used as a magnetic resonance imaging (MRI) contrast agent in vivo, mainly by their passive accumulation in tissues of interest. However, a higher specificity can ideally be achieved when the nanoparticles are targeted towards cell specific receptors and this may also facilitate specific drug delivery by an enhanced target-mediated endocytosis. We report efficient peptide-mediated targeting of magnetic nanoparticles to cells expressing the urokinase plasminogen activator receptor (uPAR), a surface biomarker for poor patient prognosis shared by several cancers including breast, colorectal, and gastric cancers. Conjugation of a uPAR specific targeting peptide onto polyethylene glycol (PEG) coated USPIO nanoparticles by click chemistry resulted in a five times higher uptake in vitro in a uPAR positive cell line compared to nanoparticles carrying a non-binding control peptide. In accordance with specific receptor-mediated recognition, a low uptake was observed in the presence of an excess of ATF, a natural ligand for uPAR. The uPAR specific magnetic nanoparticles can potentially provide a useful supplement for tumor patient management when combined with MRI and drug delivery.Ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles are currently being used as a magnetic resonance imaging (MRI) contrast agent in vivo, mainly by their passive accumulation in tissues of interest. However, a higher specificity can ideally be achieved when the nanoparticles are targeted towards cell specific receptors and this may also facilitate specific drug delivery by an enhanced target-mediated endocytosis. We report efficient peptide-mediated targeting of magnetic nanoparticles to cells expressing the urokinase plasminogen activator receptor (uPAR), a surface biomarker for poor patient prognosis shared by several cancers including breast, colorectal, and gastric cancers. Conjugation of a uPAR specific

  11. Differential regulation of alpha7 nicotinic receptor gene (CHRNA7) expression in schizophrenic smokers.

    PubMed

    Mexal, Sharon; Berger, Ralph; Logel, Judy; Ross, Randal G; Freedman, Robert; Leonard, Sherry

    2010-01-01

    The alpha7 neuronal nicotinic receptor gene (CHRNA7) has been implicated in the pathophysiology of schizophrenia by genetic and pharmacological studies. Expression of the alpha7* receptor, as measured by [(125)I]alpha-bungarotoxin autoradiography, is decreased in postmortem brain of schizophrenic subjects compared to non-mentally ill controls. Most schizophrenic patients are heavy smokers, with high levels of serum cotinine. Smoking changes the expression of multiple genes and differentially regulates gene expression in schizophrenic hippocampus. We examined the effects of smoking on CHRNA7 expression in the same tissue and find that smoking differentially regulates expression of both mRNA and protein for this gene. CHRNA7 mRNA and protein levels are significantly lower in schizophrenic nonsmokers compared to control nonsmokers and are brought to control levels in schizophrenic smokers. Sufficient protein but low surface expression of the alpha7* receptor, seen in the autoradiographic studies, suggests aberrant assembly or trafficking of the receptor.

  12. Estrogen receptor α can selectively repress dioxin receptor-mediated gene expression by targeting DNA methylation.

    PubMed

    Marques, Maud; Laflamme, Liette; Gaudreau, Luc

    2013-09-01

    Selective inhibitory crosstalk has been known to occur within the signaling pathways of the dioxin (AhR) and estrogen (ERα) receptors. More specifically, ERα represses a cytochrome P450-encoding gene (CYP1A1) that converts cellular estradiol into a metabolite that inhibits the cell cycle, while it has no effect on a P450-encoding gene (CYP1B1) that converts estrodiol into a genotoxic product. Here we show that ERα represses CYP1A1 by targeting the Dnmt3B DNA methyltransferase and concomitant DNA methylation of the promoter. We also find that histone H2A.Z can positively contribute to CYP1A1 gene expression, and its presence at that gene is inversely correlated with DNA methylation. Taken together, our results provide a framework for how ERα can repress transcription, and how that impinges on the production of an enzyme that generates genotoxic estradiol metabolites, and potential breast cancer progression. Finally, our results reveal a new mechanism for how H2A.Z can positively influence gene expression, which is by potentially competing with DNA methylation events in breast cancer cells.

  13. Effect of P2X7 Receptor Knockout on AQP-5 Expression of Type I Alveolar Epithelial Cells

    PubMed Central

    Ebeling, Georg; Bläsche, Robert; Hofmann, Falk; Augstein, Antje; Kasper, Michael; Barth, Kathrin

    2014-01-01

    P2X7 receptors, ATP-gated cation channels, are specifically expressed in alveolar epithelial cells. The pathophysiological function of this lung cell type, except a recently reported putative involvement in surfactant secretion, is unknown. In addition, P2X7 receptor-deficient mice show reduced inflammation and lung fibrosis after exposure with bleomycin. To elucidate the role of the P2X7 receptor in alveolar epithelial type I cells we characterized the pulmonary phenotype of P2X7 receptor knockout mice by using immunohistochemistry, western blot analysis and real-time RT PCR. No pathomorphological signs of fibrosis were found. Results revealed, however, a remarkable loss of aquaporin-5 protein and mRNA in young knockout animals. Additional in vitro experiments with bleomycin treated precision cut lung slices showed a greater sensitivity of the P2X7 receptor knockout mice in terms of aquaporin-5 reduction as wild type animals. Finally, P2X7 receptor function was examined by using the alveolar epithelial cell lines E10 and MLE-12 for stimulation experiments with bleomycin. The in vitro activation of P2X7 receptor was connected with an increase of aquaporin-5, whereas the inhibition of the receptor with oxidized ATP resulted in down regulation of aquaporin-5. The early loss of aquaporin-5 which can be found in different pulmonary fibrosis models does not implicate a specific pathogenetic role during fibrogenesis. PMID:24941004

  14. Molecular cloning of natriuretic peptide receptor A from bullfrog (Rana catesbeiana) brain and its functional expression.

    PubMed

    Sekiguchi, T; Miyamoto, K; Mizutani, T; Yamada, K; Yazawa, T; Yoshino, M; Minegishi, T; Takei, Y; Kangawa, K; Minamino, N; Saito, Y; Kojima, M

    2001-08-08

    A comparative study of natriuretic peptide receptor (NPR) was performed by cloning the NPR-A receptor subtype from the bullfrog (Rana catesbeiana) brain and analyzing its functional expression. Like other mammalian NPR-A receptors, the bullfrog NPR-A receptor consists of an extracellular ligand binding domain, a hydrophobic transmembrane domain, a kinase-like domain and a guanylate cyclase domain. Sequence comparison among the bullfrog and mammalian receptors revealed a relatively low ( approximately 45%) similarity in the extracellular domain compared to a very high similarity ( approximately 92%) in the cytoplasmic regulatory and catalytic domains. Expression of NPR-A mRNA was detected in various bullfrog tissues including the brain, heart, lung, kidney and liver; highest levels were observed in lung. Functional expression of the receptor in COS-7 cells revealed that frog atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) elicited cyclic guanosine 3'5'-monophosphate production by stimulating the receptor in a dose-dependent manner from 10(-10) M concentrations. Rat ANP was also effective in stimulating the frog receptor whereas rat BNP and porcine BNP were less responsive to the receptor. On the other hand, frog C-type natriuretic peptide (CNP) as well as porcine CNP stimulated the receptor only at high concentrations (10(-7) M). This clearly indicates that the bullfrog receptor is a counterpart of mammalian NPR-A, and is specific for ANP or BNP but not for CNP.

  15. Differential Gene Expression of BMP2 and BMP Receptors in Chick Retina & Choroid Induced by Imposed Optical Defocus

    PubMed Central

    Zhang, Yan; Liu, Yue; Hang, Abraham; Phan, Eileen; Wildsoet, Christine F.

    2016-01-01

    Recent studies have demonstrated the defocus sign-dependent, bidirectional gene expression regulation of bone morphogenetic proteins, BMP2, 4 and 7 in chick RPE. In this study, we examined the effects of imposed positive (+10 D) and negative (−10 D) lenses on the gene expression of these BMPs and BMP receptors (BMPR1A, BMPR1B, BMPR2) in chick retina and choroid after monocular lens treatment for 2 or 48 hours, as indicators of the roles of retinal and choroidal BMPs and receptors in postnatal eye growth regulation. In retina, although all genes were expressed, neither +10 nor −10 D lenses, worn for either 2 or 48 h, significantly altered gene expression. In contrast, treatment-related differential gene expression was detected in the choroid for both BMPs and their receptors, although interestingly, with the +10 D lens, BMP2 was up-regulated by 156.7 ± 19.7 % after 2 h, while BMPR1A was down-regulated to 82.3 ± 12.5 % only after 48 h. With the −10 D lens, only the gene expression of BMPR1B was significantly altered, being up-regulated by 162.3 ± 21.2 % after 48 h. Untreated birds showed no difference in expression between their two eyes, for any of the genes examined. The finding that retinal gene expression for BMP2, 4, 7 and their receptors are not affected by short-term optical defocus contrasts with previous observations of sign-dependent expression changes for the same genes in the RPE. The latter changes were also larger and more consistent in direction than the choroidal gene expression changes reported here. The interrelationship between these various changes and their biological significance for eye growth regulation are yet to be elucidated. PMID:28359351

  16. Ubiquitination of the common cytokine receptor {gamma}{sub c} and regulation of expression by an ubiquitination/deubiquitination machinery

    SciTech Connect

    Gesbert, Franck; Malarde, Valerie; Dautry-Varsat, Alice . E-mail: adautry@pasteur.fr

    2005-08-26

    The common cytokine receptor {gamma}{sub c} is shared by the interleukin-2, -4, -7, -9, -15, and -21 receptors, and is essential for lymphocyte proliferation and survival. The regulation of {gamma}{sub c} receptor expression level is therefore critical for the ability of cells to respond to these cytokines. We previously reported that {gamma}{sub c} is efficiently constitutively internalized and addressed towards a degradation endocytic compartment. We show that {gamma}{sub c} is ubiquitinated and also associated to ubiquitinated proteins. We report that the ubiquitin-ligase c-Cbl induces {gamma}{sub c} down-regulation. In addition, the ubiquitin-hydrolase, DUB-2, counteracts the effect of c-Cbl on {gamma}{sub c} expression. We show that an increase in DUB-2 expression correlates with an increased {gamma}{sub c} half-life, resulting in the up-regulation of the receptor. Altogether, we show that {gamma}{sub c} is the target of an ubiquitination mechanism and its expression level can be regulated through the activities of a couple of ubiquitin-ligase/ubiquitin-hydrolase enzymes, namely c-Cbl/DUB-2.

  17. Modifications of 5-HT4 receptor expression in rat brain during memory consolidation.

    PubMed

    Manuel-Apolinar, L; Rocha, L; Pascoe, D; Castillo, E; Castillo, C; Meneses, A

    2005-04-25

    Pharmacological evidence indicates a specific role of 5-HT(4) receptors on memory function. These receptors are members of G-protein-coupled 7-transmembrane domain receptor superfamily, are positively coupled to adenylyl cyclase, and are heterogeneously located in some structures important for memory, such as the hippocampus and cortical regions. To further clarify 5-HT(4) receptors' role in memory, the expression of these receptors in passive (P3) untrained and autoshaping (A3) trained (3 sessions) adult (3 months) and old (P9 or A9; 9 months) male rats was determined by autoradiography. Adult trained (A3) rats showed a better memory respect to old trained (A9). Using [(3)H] GR113808 as ligand (0.2 nM specific activity 81 Ci/mmol) for 5-HT(4) receptor expression, 29 brain areas were analyzed, 16 areas of A3 and 17 of A9 animals displayed significant changes. The medial mammillary nucleus of A3 group showed diminished 5-HT(4) receptor expression, and in other 15 brain areas of A3 or 10 of A9 animals, 5-HT(4) receptors were increased. Thus, for A3 rats, 5-HT(4) receptors were augmented in olfactory lobule, caudate putamen, fundus striatum, CA2, retrosplenial, frontal, temporal, occipital, and cingulate cortex. Also, 5-HT(4) receptors were increased in olfactory tubercule, hippocampal CA1, parietal, piriform, and cingulate cortex of A9. However, hippocampal CA2 and CA3 areas, and frontal, parietal, and temporal cortex of A9 rats, expressed less 5-HT(4) receptors. These findings suggest that serotonergic activity, via 5-HT(4) receptors in hippocampal, striatum, and cortical areas, mediates memory function and provides further evidence for a complex and regionally specific regulation over 5-HT receptor expression during memory formation.

  18. Toll-like Receptors, Triggering Receptor Expressed on Myeloid Cells Family Members and Receptor for Advanced Glycation End-products in Allergic Airway Inflammation

    PubMed Central

    Hall, Sannette C.; Agrawal, Devendra K.

    2016-01-01

    Asthma is a chronic disorder of the airways characterized by cellular infiltration, airway hyper-responsive and airway inflammation. Innate immune cells are the first line of defense against endogenous and exogenous signals in the airways and as such possess a diverse array of pattern recognition receptors. Toll-like receptors are crucial sentinels which when activated, can either promote or ameliorate the inflammatory response in predisposed individuals. The recently discovered triggering receptor expressed on myeloid cells family members are emerging mediators of inflammation. These receptors are believed to modulate inflammatory responses by collaborating with classic PRRs. Endogenous signals like HMGB-1, signaling through the receptor for advanced glycation end products, also promotes inflammation, however, its contribution to inflammation in the airways is not well known. Here, we discuss the role of each receptor in airway inflammation and highlight potential synergistic mechanisms, which contribute to disease pathogenesis in allergic asthma. PMID:26678062

  19. Dopamine D2 receptor expression in the corticotroph cells of the human normal pituitary gland.

    PubMed

    Pivonello, Rosario; Waaijers, Marlijn; Kros, Johan M; Pivonello, Claudia; de Angelis, Cristina; Cozzolino, Alessia; Colao, Annamaria; Lamberts, Steven W J; Hofland, Leo J

    2017-08-01

    The dopamine D2 receptor is the main dopamine receptor expressed in the human normal pituitary gland. The aim of the current study was to evaluate dopamine D2 receptor expression in the corticotroph cell populations of the anterior lobe and pars intermedia, as well as posterior lobe of the human normal pituitary gland by immunohistochemistry. Human normal pituitary gland samples obtained from routine autopsies were used for the study. In all cases, histology together with immunostaining for adrenocorticotropic hormone, melanocyte-stimulating hormone, prolactin, and neurofilaments were performed and compared to the immunostaining for D2 receptor. D2 receptor was heterogeneously expressed in the majority of the cell populations of the anterior and posterior lobe as well as in the area localized between the anterior and posterior lobe, and arbitrary defined as "intermediate zone". This zone, characterized by the presence of nerve fibers included the residual pars intermedia represented by the colloid-filled cysts lined by the remnant melanotroph cells strongly expressing D2 receptors, and clusters of corticotroph cells, belonging to the anterior lobe but localized within the cysts and adjacent to the posterior lobe, variably expressing D2 receptors. D2 dopamine receptor is expressed in the majority of the cell populations of the human normal pituitary gland, and particularly, in the different corticotroph cell populations localized in the anterior lobe and the intermediate zone of the pituitary gland.

  20. Feasibility Study of Odor Biosensor Using Dissociate Neuronal Culture with Gene Expression of Ionotropic Odorant Receptors

    NASA Astrophysics Data System (ADS)

    Tanada, Norio; Sakurai, Takeshi; Mitsuno, Hidefumi; Bakkum, Douglas; Kanzaki, Ryohei; Takahashi, Hirokazu

    We propose a highly sensitive and real-time odor biosensor by expressing ionotropic odorant receptors of insects into dissociated cultures of neurons of rats. The odorant-gated ion channel structure of insect odorant receptor is expected to allow easy functional expression into cells. The neuronal dissociated cultures of rats have two significant advantages: a long lifetime comparable to rats, i.e., a few years; and amplification ability from weak ionic currents of odorant receptors into easily detectable action potentials of neurons. In the present work, in order to show the feasibility of the proposed sensor, we attempt to express the pheromone receptors of silkmoth, Bombyx mori, into cultured neurons of rats. We demonstrate that 10% of neuronal cells transfected using Lipofectamine successfully expressed pheromone receptors, and that these cells showed significant increase of calcium signals by 50% at the presentation of pheromone.

  1. Human rhabdomyosarcoma cells express functional pituitary and gonadal sex hormone receptors: Therapeutic implications

    PubMed Central

    PONIEWIERSKA-BARAN, AGATA; SCHNEIDER, GABRIELA; SUN, WENYUE; ABDELBASET-ISMAIL, AHMED; BARR, FREDERIC G.; RATAJCZAK, MARIUSZ Z.

    2016-01-01

    Evidence has accumulated that sex hormones play an important role in several types of cancer. Because they are also involved in skeletal muscle development and regeneration, we were therefore interested in their potential involvement in the pathogenesis of human rhabdomyosarcoma (RMS), a skeletal muscle tumor. In the present study, we employed eight RMS cell lines (three fusion positive and five fusion negative RMS cell lines) and mRNA samples obtained from RMS patients. The expression of sex hormone receptors was evaluated by RT-PCR and their functionality by chemotaxis, adhesion and direct cell proliferation assays. We report here for the first time that follicle-stimulating hormone (FSH) and luteinizing hormone (LH) receptors are expressed in established human RMS cell lines as well as in primary tumor samples isolated from RMS patients. We also report that human RMS cell lines responded both to pituitary and gonadal sex hormone stimulation by enhanced proliferation, chemotaxis, cell adhesion and phosphorylation of MAPKp42/44 and AKT. In summary, our results indicate that sex hormones are involved in the pathogenesis and progression of RMS, and therefore, their therapeutic application should be avoided in patients that have been diagnosed with RMS. PMID:26983595

  2. Sulfonylurea receptors inhibit the epithelial sodium channel (ENaC) by reducing surface expression.

    PubMed

    Konstas, A A; Bielfeld-Ackermann, A; Korbmacher, C

    2001-08-01

    In the kidney the epithelial Na+ channel (ENaC) is co-expressed with the sulfonylurea receptor (SUR), an ABC protein that shares a high degree of homology with the cystic fibrosis transmembrane conductance regulator (CFTR) and reportedly modifies ENaC in various preparations. To investigate a possible regulatory relationship between SUR and ENaC, we performed co-expression studies on Xenopus laevis oocytes, which were assayed for amiloride-sensitive currents (DeltaIami). Moreover, a chemiluminescence assay was used to investigate the surface expression of extracellular hemagglutinin-tagged SUR1 (SUR1-HA) or HA-tagged ENaC (ENaC-HA). In oocytes co-injected with SUR1/ENaC (or SUR2B/ENaC) DeltaIami was reduced by congruent with 53% (or congruent with 45%) compared to DeltaIami measured in matched control oocytes injected with ENaC alone. The inhibitory effect of SUR on DeltaIami was preserved in oocytes expressing ENaC with C-terminally truncated subunits. Co-expression of SURs did not confer sensitivity of DeltaIami to diazoxide, pinacidil, tolbutamide, or glibenclamide. ENaC does not facilitate the surface expression of SUR1-HA, which is known to be retained in the endoplasmatic reticulum (ER) by an ER-retention/retrieval signal. SUR1-HAAAA, a mutant that lacks this signal, still inhibits ENaC currents. Chemiluminescence was reduced by congruent with 49% in oocytes co-expressing ENaC-HA/SUR1 compared to that in control oocytes expressing ENaC-HA alone. We conclude that SUR does not interact with ENaC at the level of the plasma membrane but that it inhibits DeltaIami by reducing surface expression of the channel.

  3. ATP induces P2X7 receptor-independent cytokine and chemokine expression through P2X1 and P2X3 receptors in murine mast cells.

    PubMed

    Bulanova, Elena; Budagian, Vadim; Orinska, Zane; Koch-Nolte, Friedrich; Haag, Friedrich; Bulfone-Paus, Silvia

    2009-04-01

    Extracellular ATP mediates a diverse array of biological responses in many cell types and tissues, including immune cells. We have demonstrated that ATP induces purinergic receptor P2X(7) mediated membrane permeabilization, apoptosis, and cytokine expression in murine mast cells (MCs). Here, we report that MCs deficient in the expression of the P2X(7) receptor are resistant to the ATP-induced membrane permeabilization and apoptosis. However, ATP affects the tyrosine phosphorylation pattern of P2X(7)knockout cells, leading to the activation of ERK1/2. Furthermore, ATP induces expression of several cytokines and chemokines in these cells, including IL-4, IL-6, IFN-gamma, TNF-alpha, RANTES, and MIP-2, at the mRNA level. In addition, the release of IL-6 and IL-13 to cell-conditioned medium was confirmed by ELISA. The ligand selectivity and pharmacological profile indicate the involvement of two P2X family receptors, P2X(1) and P2X(3). Thus, depending on genetic background, particular tissue microenvironment, and ATP concentration, MCs can presumably engage different P2X receptor subtypes, which may result in functionally distinct biological responses to extracellular nucleotides. This finding highlights a novel level of complexity in the sophisticated biology of MCs and may facilitate the development of new therapeutic approaches to modulate MC activities.

  4. Beta-Adrenergic Receptor Expression in Muscle Cells

    NASA Technical Reports Server (NTRS)

    Young, Ronald B.; Bridge, K.; Vaughn, J. R.

    1999-01-01

    beta-adrenergic receptor (bAR) agonists presumably exert their physiological action on skeletal muscle cells through the bAR. Since the signal generated by the bAR is cyclic AMP (cAMP), experiments were initiated in primary chicken muscle cell cultures to determine if artificial elevation of intracellular cAMP by treatment with forskolin would alter the population of bAR expressed on the surface of muscle cells. Chicken skeletal muscle cells after 7 days in culture were employed for the experiments because muscle cells have attained a steady state with respect to muscle protein metabolism at this stage. Cells were treated with 0-10 uM forskolin for a total of three days. At the end of the 1, 2, and 3 day treatment intervals, the concentration of cAMP and the bAR population were measured. Receptor population was measured in intact muscle cell cultures as the difference between total binding of [H-3]CGP-12177 and non-specific binding of [H-3]CGP-12177 in the presence of 1 uM propranolol. Intracellular cAMP concentration was measured by radioimmunoassay. The concentration of cAMP in forskolin-treated cells increased up to 10-fold in a dose dependent manner. Increasing concentrations of forskolin also led to an increase in (beta)AR population, with a maximum increase of approximately 50% at 10 uM. This increase in (beta)AR population was apparent after only 1 day of treatment, and the pattern of increase was maintained for all 3 days of the treatment period. Thus, increasing the intracellular concentration of cAMP leads to up-regulation of (beta)AR population. Clenbuterol and isoproterenol gave similar effects on bAR population. The effect of forskolin on the quantity and apparent synthesis rate of the heavy chain of myosin (mhc) were also investigated. A maximum increase of 50% in the quantity of mhc was observed at 0.2 UM forskolin, but higher concentrations of forskolin reduced the quantity of mhc back to control levels.

  5. Beta-Adrenergic Receptor Expression in Muscle Cells

    NASA Technical Reports Server (NTRS)

    Young, Ronald B.; Bridge, K.; Vaughn, J. R.

    1999-01-01

    beta-adrenergic receptor (bAR) agonists presumably exert their physiological action on skeletal muscle cells through the bAR. Since the signal generated by the bAR is cyclic AMP (cAMP), experiments were initiated in primary chicken muscle cell cultures to determine if artificial elevation of intracellular cAMP by treatment with forskolin would alter the population of bAR expressed on the surface of muscle cells. Chicken skeletal muscle cells after 7 days in culture were employed for the experiments because muscle cells have attained a steady state with respect to muscle protein metabolism at this stage. Cells were treated with 0-10 uM forskolin for a total of three days. At the end of the 1, 2, and 3 day treatment intervals, the concentration of cAMP and the bAR population were measured. Receptor population was measured in intact muscle cell cultures as the difference between total binding of [H-3]CGP-12177 and non-specific binding of [H-3]CGP-12177 in the presence of 1 uM propranolol. Intracellular cAMP concentration was measured by radioimmunoassay. The concentration of cAMP in forskolin-treated cells increased up to 10-fold in a dose dependent manner. Increasing concentrations of forskolin also led to an increase in (beta)AR population, with a maximum increase of approximately 50% at 10 uM. This increase in (beta)AR population was apparent after only 1 day of treatment, and the pattern of increase was maintained for all 3 days of the treatment period. Thus, increasing the intracellular concentration of cAMP leads to up-regulation of (beta)AR population. Clenbuterol and isoproterenol gave similar effects on bAR population. The effect of forskolin on the quantity and apparent synthesis rate of the heavy chain of myosin (mhc) were also investigated. A maximum increase of 50% in the quantity of mhc was observed at 0.2 UM forskolin, but higher concentrations of forskolin reduced the quantity of mhc back to control levels.

  6. Enhanced Tumor Trafficking of GD2 Chimeric Antigen Receptor T Cells by Expression of the Chemokine Receptor CCR2b

    PubMed Central

    Craddock, John A; Lu, An; Bear, Adham; Pule, Martin; Brenner, Malcolm K; Rooney, Cliona M; Foster, Aaron E

    2010-01-01

    For adoptive T cell therapy to be effective against solid tumors, tumor-specific T cells must be able to migrate to the tumor site. One requirement for efficient migration is that the effector cells express chemokine receptors that match the chemokines produced either by tumor or tumor-associated cells. In this study, we investigated whether the tumor trafficking of activated T cells (ATCs) bearing a chimeric antigen receptor specific for the tumor antigen GD2 (GD2-CAR) could be enhanced by forced co-expression of the chemokine receptor CCR2b, since this receptor directs migration towards CCL2, a chemokine produced by many tumors, including neuroblastoma. Neuroblastoma cell lines (SK-N-SH and SK-N-AS) and primary tumor cells isolated from six patients all secreted high levels of CCL2, but GD2-CAR transduced ATCs lacked expression of CCR2 (<5%) and migrated poorly to recombinant CCL2 or tumor supernatants. Following retroviral transduction, however, ATCs expressed high levels of CCR2b (>60%) and migrated well in vitro. We expressed firefly luciferase in CCR2b-expressing ATCs and observed improved homing (>10-fold) to CCL2-secreting neuroblastoma compared to CCR2 negative ATCs. As a result, ATCs co-modified with both CCR2b and GD2-CAR had greater anti-tumor activity in vivo. PMID:20842059

  7. Molecular cloning and tissue-specific expression of Toll-like receptor 5 gene from turkeys.

    PubMed

    Gopinath, V P; Biswas, Moanaro; Raj, Gopal Dhinakar; Raja, A; Kumanan, A K; Elankumaran, Subbiah

    2011-09-01

    Toll-like receptors (TLRs), a family of transmembrane and cytosolic proteins, detect microbial patterns, initiating innate immune responses in various organisms. Although they are abundant, genetic characterization and functional differences of TLRs in economically important avian species such as chickens and turkeys have not been investigated in detail. In this study, the putative TLR5 coding region from turkey genome was sequenced, and its homology to other vertebrate species was analyzed. Secondary structure analysis revealed protein motifs typical of the chicken TLR5 protein structure, with 97% amino acid identity between them. mRNA expression profiling in adult turkeys revealed abundant TLR5 expression in a broad range of tissues. Stimulation with the TLR5 ligand flagellin resulted in the production of the inflammatory mediators interleukin (IL)-1beta, IL-6, and nitric oxide in peripheral blood mononuclear cells. To our knowledge, this is the first complete turkey TLR5 coding DNA sequence reported in sequence databases.

  8. Gustatory receptor expression in the labella and tarsi of Aedes aegypti.

    PubMed

    Sparks, Jackson T; Vinyard, Bryan T; Dickens, Joseph C

    2013-12-01

    The yellow-fever mosquito, Aedes aegypti, infects a growing number of people every year with dengue, yellow fever and chikungunya viruses. Contact chemoreception in mosquitoes influences a number of behaviors including host-selection, oviposition and feeding. While these behaviors are in many instances well documented, the molecular mechanisms mediating them are not well understood. Here we report the results of sequencing total messenger RNA in the labella and tarsi of both male and female Ae. aegypti to reveal Gustatory Receptor (GR) gene expression profiles in these major gustatory appendages. Gene expression levels in each tissue were verified by RT-qPCR. We discuss potential functions for the GRs revealed here by considering homologous GRs in other insects. Specific GRs provide molecular targets for modification of gustatory-mediated behaviors in this important disease vector. Published by Elsevier Ltd.

  9. Prostaglandin E2 suppresses beta1-integrin expression via E-prostanoid receptor in human monocytes/macrophages.

    PubMed

    Hasegawa, Shunji; Ichiyama, Takashi; Kohno, Fumitaka; Korenaga, Yuno; Ohsaki, Ayami; Hirano, Reiji; Haneda, Yasuhiro; Fukano, Reiji; Furukawa, Susumu

    2010-01-01

    Beta1-integrins mediate cell attachment to different extracellular matrix proteins, intracellular proteins, and intercellular adhesions. Recently, it has been reported that prostaglandin E2 (PGE2) has anti-inflammatory properties such as inhibition of the expression of adhesion molecules or production of chemokines. However, the effect of PGE2 on the expression of beta1-integrin remains unknown. In this study, we investigated the effects of PGE2 on the expression of beta1-integrin in the human monocytic cell line THP-1 and in CD14+ monocytes/macrophages in human peripheral blood. For this, we examined the role of four subtypes of PGE2 receptors and E-prostanoid (EP) receptors on PGE2-mediated inhibition. We found that PGE2 significantly inhibited the expression of beta1-integrin, mainly through EP4 receptors in THP-1 cells and CD14+ monocytes/macrophages in human peripheral blood. We suggest that PGE2 has anti-inflammatory effects, leading to the inhibited expression of beta1-integrin in human monocytes/macrophages, and that the EP4 receptor may play an important role in PGE2-mediated inhibition. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  10. Altered expression of the receptor-ligand pair CXCR5/CXCL13 in B cells during chronic HIV-1 infection.

    PubMed

    Cagigi, Alberto; Mowafi, Frida; Phuong Dang, Linh V; Tenner-Racz, Klara; Atlas, Ann; Grutzmeier, Sven; Racz, Paul; Chiodi, Francesca; Nilsson, Anna

    2008-12-01

    HIV-1 infection is associated with B-cell abnormalities, such as hypergammaglobulinemia, poor immunization responses, and loss of serologic memory. To determine whether altered expression of chemokine receptors and their ligands