Science.gov

Sample records for receptor gamma system

  1. The gamma-chain cytokine/receptor system in fish: more ligands and receptors.

    PubMed

    Wang, Tiehui; Huang, Wenshu; Costa, Maria M; Secombes, Christopher J

    2011-11-01

    The mammalian gamma-chain (γC) cytokine family consists of interleukin (IL)-2, IL-4, IL-7, IL-9, IL-15 and IL-21. They signal through a receptor complex containing the common γC and a private alpha chain, and in the case of IL-2 and IL-15 an additional common IL-2/15Rβ chain. Deficiency of γC signalling in mammals prevents CD4+ T cells from developing effector functions and CD8+ T cells from developing immunological memory. Thus γC cytokines are critical for the generation and peripheral homeostasis of naïve and memory T cells. This review will give an update on the γC ligands and receptor subunits in fish, and also present some new data on the cloning and expression of a second γC and two IL-2Rβ chains in rainbow trout Oncorhynchus mykiss. In recent years, aided by the availability of sequenced fish genomes and expressed sequence tag databases, five of the six mammalian γC cytokines and their cognate receptors have been discovered in fish, with only the IL-9/IL-9R homologues apparently absent. Paralogues have been discovered in diploid fish and all the receptors described in the tetraploid rainbow trout, including γC itself, IL-2Rβ, IL-4Rα, IL-13Rα1, IL-13Rα2 and IL-2/15Rα, have duplicates. As a consequence of the teleost and salmonid whole genome duplications, even more paralogues may yet be discovered. Some of the paralogues have changes in domain structures and show differential expression and modulation, suggesting the potential for a change in function. Functional characterisation of fish γC cytokines is beginning but made more difficult by the co-existence of so many paralogues of the ligands and their receptors. Initial functional studies have shown that fish γC cytokines can modulate the expression of key cytokines (e.g. interferon-γ, IL-10 and IL-22) of the adaptive immune response, and may thus have promise as adjuvants to improve vaccination efficiency in fish.

  2. Fc gamma receptors: glycobiology and therapeutic prospects

    PubMed Central

    Hayes, Jerrard M; Wormald, Mark R; Rudd, Pauline M; Davey, Gavin P

    2016-01-01

    Therapeutic antibodies hold great promise for the treatment of cancer and autoimmune diseases, and developments in antibody–drug conjugates and bispecific antibodies continue to enhance treatment options for patients. Immunoglobulin (Ig) G antibodies are proteins with complex modifications, which have a significant impact on their function. The most important of these modifications is glycosylation, the addition of conserved glycans to the antibody Fc region, which is critical for its interaction with the immune system and induction of effector activities such as antibody-dependent cell cytotoxicity, complement activation and phagocytosis. Communication of IgG antibodies with the immune system is controlled and mediated by Fc gamma receptors (FcγRs), membrane-bound proteins, which relay the information sensed and gathered by antibodies to the immune system. These receptors are also glycoproteins and provide a link between the innate and adaptive immune systems. Recent information suggests that this receptor glycan modification is also important for the interaction with antibodies and downstream immune response. In this study, the current knowledge on FcγR glycosylation is discussed, and some insight into its role and influence on the interaction properties with IgG, particularly in the context of biotherapeutics, is provided. For the purpose of this study, other Fc receptors such as FcαR, FcεR or FcRn are not discussed extensively, as IgG-based antibodies are currently the only therapeutic antibody-based products on the market. In addition, FcγRs as therapeutics and therapeutic targets are discussed, and insight into and comment on the therapeutic aspects of receptor glycosylation are provided. PMID:27895507

  3. Gamma interferon (IFN-γ) receptor restricts systemic dengue virus replication and prevents paralysis in IFN-α/β receptor-deficient mice.

    PubMed

    Prestwood, Tyler R; Morar, Malika M; Zellweger, Raphaël M; Miller, Robyn; May, Monica M; Yauch, Lauren E; Lada, Steven M; Shresta, Sujan

    2012-12-01

    We previously reported that mice lacking alpha/beta and gamma interferon receptors (IFN-α/βR and -γR) uniformly exhibit paralysis following infection with the dengue virus (DENV) clinical isolate PL046, while only a subset of mice lacking the IFN-γR alone and virtually no mice lacking the IFN-α/βR alone develop paralysis. Here, using a mouse-passaged variant of PL046, strain S221, we show that in the absence of the IFN-α/βR, signaling through the IFN-γR confers approximately 140-fold greater resistance against systemic vascular leakage-associated dengue disease and virtually complete protection from dengue-induced paralysis. Viral replication in the spleen was assessed by immunohistochemistry and flow cytometry, which revealed a reduction in the number of infected cells due to IFN-γR signaling by 2 days after infection, coincident with elevated levels of IFN-γ in the spleen and serum. By 4 days after infection, IFN-γR signaling was found to restrict DENV replication systemically. Clearance of DENV, on the other hand, occurred in the absence of IFN-γR, except in the central nervous system (CNS) (brain and spinal cord), where clearance relied on IFN-γ from CD8(+) T cells. These results demonstrate the roles of IFN-γR signaling in protection from initial systemic and subsequent CNS disease following DENV infection and demonstrate the importance of CD8(+) T cells in preventing DENV-induced CNS disease.

  4. PPAR-gamma in the Cardiovascular System.

    PubMed

    Duan, Sheng Zhong; Ivashchenko, Christine Y; Usher, Michael G; Mortensen, Richard M

    2008-01-01

    Peroxisome proliferator-activated receptor-gamma (PPAR-gamma), an essential transcriptional mediator of adipogenesis, lipid metabolism, insulin sensitivity, and glucose homeostasis, is increasingly recognized as a key player in inflammatory cells and in cardiovascular diseases (CVD) such as hypertension, cardiac hypertrophy, congestive heart failure, and atherosclerosis. PPAR-gamma agonists, the thiazolidinediones (TZDs), increase insulin sensitivity, lower blood glucose, decrease circulating free fatty acids and triglycerides, lower blood pressure, reduce inflammatory markers, and reduce atherosclerosis in insulin-resistant patients and animal models. Human genetic studies on PPAR-gamma have revealed that functional changes in this nuclear receptor are associated with CVD. Recent controversial clinical studies raise the question of deleterious action of PPAR-gamma agonists on the cardiovascular system. These complex interactions of metabolic responsive factors and cardiovascular disease promise to be important areas of focus for the future.

  5. Peroxisome proliferator-activated receptor gamma polymorphisms affect systemic inflammation and survival in end-stage renal disease patients starting renal replacement therapy.

    PubMed

    Yao, Q; Nordfors, L; Axelsson, J; Heimbürger, O; Qureshi, A R; Báràny, P; Lindholm, B; Lönnqvist, F; Schalling, M; Stenvinkel, P

    2005-09-01

    Inflammation may contribute to the markedly increased cardiovascular morbidity and mortality in end-stage renal disease (ESRD). However, the prevalence of inflammation varies in different ESRD populations. Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) is an important nuclear signaling protein that may regulate inflammatory response, and recent studies have revealed genetic polymorphisms that have significant effect on PPAR-gamma signaling. The aim of this study was to clarify whether the PPAR-gamma 161C/T and PPAR-gamma2 Pro12Ala single-nucleotide polymorphisms (SNPs) influence the inter-individual variance of inflammation and mortality in ESRD patients. The present prospective study included 229 incident Caucasian ESRD patients (62% males) just prior to starting renal replacement therapy and 207 healthy controls (62% males). Blood samples were taken for measuring systemic inflammatory (CRP, TNF-alpha, IL-6) and nutritional (S-albumin) parameters. The presence of diabetes mellitus, malnutrition (subjective global assessment (SGA)) and cardiovascular disease (CVD) were also assessed. Genotyping of the two PPAR-gamma SNPs was performed using Pyrosequencing. During follow-up (1621+/-63 days), both all-cause and CVD-mortality were investigated. ESRD patients had a higher prevalence of both the PPAR-gamma 161 CC and PPAR-gamma2 Pro12Pro genotypes than the general population (p<0.01). Whereas the Pro12Pro genotype was associated with higher median serum levels of both hs-CRP (p<0.05) and TNF-alpha (p<0.01) the 161CC genotype was associated with a significantly higher (6.6 mg/L versus 3.3 mg/L; p<0.01) median hs-CRP level. Following adjustment for age, gender, SGA and CVD a significantly higher mortality rate was observed in patients with the Pro12Pro genotype. This study demonstrates significant differences in PPAR-gamma genotype distribution between ESRD patients and healthy controls. Furthermore, as the PPAR-gamma2 Pro12Pro genotype was associated with

  6. Analysis of subcomponents of the gamma-aminobutyric acid/benzodiazepine receptor macromolecular complex in mammalian central nervous system

    SciTech Connect

    McCabe, R.T.

    1987-01-01

    Since the presence of endogenous gamma-aminobutyric acid (GABA) may affect benzodiazepine binding to tissue sections in autoradiographic studies, a protocol designed to check for this influence has been investigated. (/sup 3/H)Flunitrazepam (1 nM) was used to label benzodiazepine receptors for autoradiographic localization. Bicuculline was added to the incubation medium of an additional set of tissue sections to antagonize any potential effect of endogenous GABA. Binding in these sections was compared to that occurring in another set in which excess GABA was added to create further GABA enhancement. Binding was also compared to adjacent sections which were treated similarly but also preincubated in distilled-deionized water to burst the cells by osmotic shock and eliminate endogenous GABA, thereby preventing any effect on benzodiazepine binding. The results indicated that endogenous GABA is indeed present in the slide-mounted tissue sections and is affecting benzodiazepine receptor binding differentially in various regions of the brain depending on the density of GABAergic innervation. Scatchard analysis of saturation data demonstrated that the alteration in BZ binding due to GABA was a result of a change in the affinity rather than number of receptors present.

  7. Genomewide effects of peroxisome proliferator-activated receptor gamma in macrophages and dendritic cells--revealing complexity through systems biology.

    PubMed

    Cuaranta-Monroy, Ixchelt; Kiss, Mate; Simandi, Zoltan; Nagy, Laszlo

    2015-09-01

    Systems biology approaches have become indispensable tools in biomedical and basic research. These data integrating bioinformatic methods gained prominence after high-throughput technologies became available to investigate complex cellular processes, such as transcriptional regulation and protein-protein interactions, on a scale that had not been studied before. Immunology is one of the medical fields that systems biology impacted profoundly due to the plasticity of cell types involved and the accessibility of a wide range of experimental models. In this review, we summarize the most important recent genomewide studies exploring the function of peroxisome proliferator-activated receptor γ in macrophages and dendritic cells. PPARγ ChIP-seq experiments were performed in adipocytes derived from embryonic stem cells to complement the existing data sets and to provide comparators to macrophage data. Finally, lists of regulated genes generated from such experiments were analysed with bioinformatics and system biology approaches. We show that genomewide studies utilizing high-throughput data acquisition methods made it possible to gain deeper insights into the role of PPARγ in these immune cell types. We also demonstrate that analysis and visualization of data using network-based approaches can be used to identify novel genes and functions regulated by the receptor. The example of PPARγ in macrophages and dendritic cells highlights the crucial importance of systems biology approaches in establishing novel cellular functions for long-known signaling pathways. © 2015 Stichting European Society for Clinical Investigation Journal Foundation.

  8. Human Fc gamma RII, in the absence of other Fc gamma receptors, mediates a phagocytic signal.

    PubMed Central

    Indik, Z; Kelly, C; Chien, P; Levinson, A I; Schreiber, A D

    1991-01-01

    Fc gamma receptors are important components in the binding and phagocytosis of IgG-sensitized cells. Studies on the role of these receptors have been limited by the fact that most hematopoietic cells express more than one Fc gamma receptor. We studied the role of Fc gamma RIIA in isolation on a human erythroleukemia cell line (HEL) which expresses Fc gamma RIIA as its only Fc gamma receptor. HEL cells were observed to bind and phagocytose IgG-sensitized red blood cells (RBCs) in a dose-dependent manner. We then examined the role of Fc gamma RI and Fc gamma RII in isolation and in combination, in transfected COS-1 cells. Fc gamma RIIA-transfected COS cells also mediated both the binding and phagocytosis of IgG-sensitized RBCs. In contrast, phagocytosis was not observed in Fc gamma RI-transfected cells, although these cells avidly bound IgG-sensitized RBCs. Furthermore, coexpression of both receptors by doubly transfected cells did not affect the phagocytic efficiency of Fc gamma RIIA. These studies establish that Fc gamma RIIA can mediate phagocytosis and suggest that transfected COS-1 cells provide a model for examining this process. Since HEL cells exhibit characteristics of cells of the megakaryocyte-platelet lineage, including expression of Fc gamma RII as the only Fc gamma receptor, Fc gamma RIIA on megakaryocytes and platelets may be involved in the ingestion of IgG-containing immune complexes. Furthermore, these studies indicate that Fc gamma RI and Fc gamma RIIA differ in their requirements for transduction of a phagocytic signal. Images PMID:1834702

  9. Structurally divergent human T cell receptor. gamma. proteins encoded by distinct C. gamma. genes

    SciTech Connect

    Krangel, M.S.; Band, H.; Hata, S.; McLean, J.; Brenner, M.B.

    1987-07-03

    The human T cell receptor (TCR) ..gamma.. polypeptide occurs in structurally distinct forms on certain peripheral blood T lymphocytes. Complementary DNA clones representing the transcripts of functionally rearranged TCR ..gamma.. genes in these cells have been analyzed. The expression of a disulfide-linked and a nondisulfide-linked form of TCR ..gamma.. correlates with the use of the C..gamma..1 and C..gamma..2 constant-region gene segments, respectively. Variability in TCR ..gamma.. polypeptide and disulfide linkage is determined by the number of copies and the sequence of a repeated segment of the constant region. Thus, C..gamma..1 and C..gamma..2 are used to generate structurally distinct, yet functional, T3-associated receptor complexes on peripheral blood lymphocytes. Tryptic peptide mapping suggests that the T3-associated TCR ..gamma.. and delta peptides in the nondisulfide-linked form are distinct.

  10. Dietary modulation of peroxisome proliferator-activated receptor gamma.

    PubMed

    Marion-Letellier, R; Déchelotte, P; Iacucci, M; Ghosh, S

    2009-04-01

    Peroxisome proliferator-activated receptor gamma (PPAR gamma) is a nuclear receptor that regulates intestinal inflammation. PPAR gamma is highly expressed in the colon and can be activated by various dietary ligands. A number of fatty acids such as polyunsaturated fatty acids or eicosanoids are considered as endogenous PPAR gamma activators. Nevertheless, other nutrients such as glutamine, spicy food or flavonoids are also able to activate PPAR gamma. As PPAR gamma plays a key role in bacterial induced inflammation, anti-inflammatory properties of probiotics may be mediated through PPAR gamma. The aims of the present review are to discuss of the potential roles of dietary compounds in modulating intestinal inflammation through PPAR gamma.

  11. [Peroxisome proliferator-activated receptors-gamma (PPAR-gamma) and their role in immunoregulation and inflammation control].

    PubMed

    Sokołowska, Milena; Kowalski, Marek L; Pawliczak, Rafał

    2005-01-01

    Peroxisome proliferator-activated receptors-gamma (PPAR-gamma) are members of the nuclear receptor superfamily containing transcription factors regulating gene expression. PPAR-gamma have attracted attention so far as key factors in adipogenesis, lipid metabolism, insulin sensitivity, and apoptosis. Recently, growing evidence points to their implication in the regulation of the immune response, particularly in inflammation control. Not only are PPAR-gamma found in various structures of the immune system, but many inflammatory mediators, such as arachidonic acid and its metabolites, also act as potent and specific ligands of them. Inflammation is the basis of the pathogeneses of such chronic diseases as bronchial asthma, atherosclerosis, rheumatoid arthritis, and chronic inflammatory bowel diseases. The causative relationship between PPAR-gamma activity and the pathogeneses of these inflammatory disorders has been found in specific animal models. Moreover, PPAR-gamma agonists have been shown to act as potent anti-inflammatory agents. Thus, PPAR-gamma can serve as potential therapeutic targets in the treatment of inflammation. The aim of this paper is to present the characteristics of PPAR-gamma regarding their gene and protein structures, ligand selectivity, mechanisms of action, and target genes. The review highlights the roles that PPAR-gamma play in inflammation and immune responses. Particular emphasis is focused on their roles in asthma, atheroclerosis, rheumatoid arthritis and chronic inflammatory bowel diseases.

  12. Expression of functional receptors by the human gamma-aminobutyric acid A gamma 2 subunit.

    PubMed

    Martínez-Torres, Ataúlfo; Miledi, Ricardo

    2004-03-02

    gamma-Aminobutyric acid A (GABA(A)) receptors are heteromeric membrane proteins formed mainly by various combinations of alpha, beta, and gamma subunits; and it is commonly thought that the gamma 2 subunit alone does not form functional receptors. In contrast, we found that cDNA encoding the gamma 2L subunit of the human GABA(A) receptor, injected alone into Xenopus oocytes, expressed functional GABA receptors whose properties were investigated by using the two-microelectrode voltage-clamp technique. GABA elicited desensitizing membrane currents that recovered after a few minutes' wash. Repetitive applications of GABA induced a "run-up" of GABA currents that nearly doubled the amplitude of the first response. The GABA currents inverted direction at about -30 mV, indicating that they are carried mainly by Cl(-) ions. The homomeric gamma 2L receptors were also activated by beta-alanine > taurine > glycine, and, like some types of heteromeric GABA(A) receptors, the gamma 2L receptors were blocked by bicuculline and were potentiated by pentobarbital and flunitrazepam. These results indicate that the human gamma 2L subunit is capable of forming fully functional GABA receptors by itself in Xenopus oocytes and suggest that the roles proposed for the various subunits that make up the heteromeric GABA(A) receptors in situ require further clarification.

  13. A candidate gene study reveals association between a variant of the Peroxisome Proliferator-Activated Receptor Gamma (PPAR-γ) gene and systemic sclerosis.

    PubMed

    Marangoni, Roberta Goncalves; Korman, Benjamin D; Allanore, Yannick; Dieude, Philippe; Armstrong, Loren L; Rzhetskaya, Margarita; Hinchcliff, Monique; Carns, Mary; Podlusky, Sofia; Shah, Sanjiv J; Ruiz, Barbara; Hachulla, Eric; Tiev, Kiet; Cracowski, Jean-Luc; Varga, John; Hayes, M Geoffrey

    2015-05-19

    The multifunctional nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR-γ) has potent anti-fibrotic effects, and its expression and activity are impaired in patients with systemic sclerosis (SSc). We investigated PPAR-γ gene (PPARG) single nucleotide polymorphisms (SNPs) associated with SSc. Tag SNPs spanning PPARG were genotyped in a European ancestry US discovery cohort comprising 152 SSc patients and 450 controls, with replication of our top signal in a European cohort (1031 SSc patients and 1014 controls from France). Clinical parameters and disease severity were analyzed to evaluate clinical associations with PPARG variants. In the discovery cohort, a single PPARG intronic SNP (rs10865710) was associated with SSc (p=0.010; odds ratio=1.52 per C allele, 95% confidence interval 1.10-2.08). This association was replicated in the French validation cohort (p=0.052; odds ratio=1.16 per C allele, 95% confidence interval 1.00-1.35). Meta-analysis of both cohorts indicated stronger evidence for association (p=0.002; odds ratio=1.22 per C allele, 95% confidence interval 1.07-1.40). The rs10865710 C allele was also associated with pulmonary arterial hypertension in the French SSc cohort (p=0.002; odds ratio=2.33 per C allele, 95% confidence interval 1.34-4.03). A PPARG variant is associated with susceptibility to SSc, consistent with a role of PPAR-γ in the pathogenesis of SSc.

  14. Characterization of the human platelet Fc sub. gamma. receptor

    SciTech Connect

    King, M.

    1988-01-01

    Thrombocytopenia is often associated with immune complex disease and may in part be due to the interaction of circulating (IgG) immune complexes with an Fc{sub {gamma}} receptor on the platelet surface. Characterization of the immune complex-platelet interaction should provide for a better understanding of the pathophysiology of immune thrombocytpenia. To this end, a ligand binding assay, employing {sup 125}I-IgG trimer, was established. Receptor expression was determined by measuring the saturable binding of radiolabeled trimer to platelets at equilibrium. Normal human platelets were observed to express 8559 {plus minus} 852 binding sites for IgG trimer with a Kd of 12.5 {plus minus} 1.7 {times} 10{sup {minus}8} M. Binding of IgG trimer to human platelets was blocked following preincubation of the cells with an anti-Fc{sub {gamma}}RII monoclonal antibody. Furthermore, this binding was ionic-strength dependent but was unaffected by the presence of Mg{sup ++} or cytochalasin B. Platelet Fc{sub {gamma}} receptor modulation was examined by assessing the effects of various physiologic and pharmacologic on the ability of platelets to bind IgG trimer. Platelet Fc{sub {gamma}} receptor expression was not affected by thrombin, ADP, or {gamma}-interferon. However, in 7/12 normal donors, treatment of platelets with dexamethasone resulted in a decrease in the number of Fc{sub {gamma}} receptors expressed.

  15. Fc gamma receptor IIIb polymorphism and systemic lupus erythematosus: association with disease susceptibility and identification of a novel FCGR3B*01 variant.

    PubMed

    Santos, V C; Grecco, M; Pereira, K M C; Terzian, C C N; Andrade, L E C; Silva, N P

    2016-10-01

    The objective of this study was to evaluate the association between Fc gamma receptor IIIb polymorphism and susceptibility to systemic lupus erythematosus and clinical traits of the disease. Genomic DNA was obtained from 303 consecutive systemic lupus erythematosus patients and 300 healthy blood donors from the southeastern region of Brazil. The polymorphic region of the FCGR3B gene was sequenced and the alleles FCGR3B*01, FCGR3B*02 and FCGR3B*03 were analyzed. The FCGR3B*01 allele was more frequent in systemic lupus erythematosus patients (43.1%) while the FCGR3B*02 allele prevailed among controls (63.7%) (P = 0.001). The FCGR3B*03 allele was found equally in both groups. The FCGR3B*01/*01 (20.7%) and FCGR3B*01/*02 (41.1%) genotypes were more frequent among systemic lupus erythematosus patients (P = 0.028 and P = 0.012, respectively) while the FCGR3B*02/*02 genotype was more frequent in controls (45.5%) (P < 0.001). One variant of the FCGR3B*01 allele previously described in Germany was found in only one control. A new variant of the FCGR3B*01 allele with two substitutions (A227G/G277A) was found in one control. Three variants of the FCGR3B*02 allele previously described in African-Americans, Brazilians, Chinese and Japanese were found in ten 10 patients and two controls. In addition, several single nucleotide polymorphisms at non-polymorphic positions were identified in both patients and controls. Susceptibility to systemic lupus erythematosus was associated with the FCGR3B*01 allele, as well as with the FCGR3B*01/*01 and FCGR3B*01/*02 genotypes. No association was found between FCGR3B genotypes and clinical manifestations, disease severity or the presence of autoantibodies. © The Author(s) 2016.

  16. [Peroxisome proliferator-activated receptors-gamma and hypertension: lessons of the history of researches].

    PubMed

    Rasin, M S

    2013-01-01

    The paper analyzes data from the clinical use of thiazolidinediones, human genetic observations and experiments with peroxisome proliferator-activated receptor (PPAR-gamma) gene removal, and also those on the role of PPAR-alpha and -gamma in the function of the vascular endothelium, sympathetic autonomic nervous system, and renal sodium reabsorption. It is concluded that the tonic activity of PPAR is a universal protective mechanism counteracting the development of hypertension.

  17. Orexin Receptor Activation Generates Gamma Band Input to Cholinergic and Serotonergic Arousal System Neurons and Drives an Intrinsic Ca(2+)-Dependent Resonance in LDT and PPT Cholinergic Neurons.

    PubMed

    Ishibashi, Masaru; Gumenchuk, Iryna; Kang, Bryan; Steger, Catherine; Lynn, Elizabeth; Molina, Nancy E; Eisenberg, Leonard M; Leonard, Christopher S

    2015-01-01

    A hallmark of the waking state is a shift in EEG power to higher frequencies with epochs of synchronized intracortical gamma activity (30-60 Hz) - a process associated with high-level cognitive functions. The ascending arousal system, including cholinergic laterodorsal (LDT) and pedunculopontine (PPT) tegmental neurons and serotonergic dorsal raphe (DR) neurons, promotes this state. Recently, this system has been proposed as a gamma wave generator, in part, because some neurons produce high-threshold, Ca(2+)-dependent oscillations at gamma frequencies. However, it is not known whether arousal-related inputs to these neurons generate such oscillations, or whether such oscillations are ever transmitted to neuronal targets. Since key arousal input arises from hypothalamic orexin (hypocretin) neurons, we investigated whether the unusually noisy, depolarizing orexin current could provide significant gamma input to cholinergic and serotonergic neurons, and whether such input could drive Ca(2+)-dependent oscillations. Whole-cell recordings in brain slices were obtained from mice expressing Cre-induced fluorescence in cholinergic LDT and PPT, and serotonergic DR neurons. After first quantifying reporter expression accuracy in cholinergic and serotonergic neurons, we found that the orexin current produced significant high frequency, including gamma, input to both cholinergic and serotonergic neurons. Then, by using a dynamic clamp, we found that adding a noisy orexin conductance to cholinergic neurons induced a Ca(2+)-dependent resonance that peaked in the theta and alpha frequency range (4-14 Hz) and extended up to 100 Hz. We propose that this orexin current noise and the Ca(2+) dependent resonance work synergistically to boost the encoding of high-frequency synaptic inputs into action potentials and to help ensure cholinergic neurons fire during EEG activation. This activity could reinforce thalamocortical states supporting arousal, REM sleep, and intracortical gamma.

  18. Orexin Receptor Activation Generates Gamma Band Input to Cholinergic and Serotonergic Arousal System Neurons and Drives an Intrinsic Ca2+-Dependent Resonance in LDT and PPT Cholinergic Neurons

    PubMed Central

    Ishibashi, Masaru; Gumenchuk, Iryna; Kang, Bryan; Steger, Catherine; Lynn, Elizabeth; Molina, Nancy E.; Eisenberg, Leonard M.; Leonard, Christopher S.

    2015-01-01

    A hallmark of the waking state is a shift in EEG power to higher frequencies with epochs of synchronized intracortical gamma activity (30–60 Hz) – a process associated with high-level cognitive functions. The ascending arousal system, including cholinergic laterodorsal (LDT) and pedunculopontine (PPT) tegmental neurons and serotonergic dorsal raphe (DR) neurons, promotes this state. Recently, this system has been proposed as a gamma wave generator, in part, because some neurons produce high-threshold, Ca2+-dependent oscillations at gamma frequencies. However, it is not known whether arousal-related inputs to these neurons generate such oscillations, or whether such oscillations are ever transmitted to neuronal targets. Since key arousal input arises from hypothalamic orexin (hypocretin) neurons, we investigated whether the unusually noisy, depolarizing orexin current could provide significant gamma input to cholinergic and serotonergic neurons, and whether such input could drive Ca2+-dependent oscillations. Whole-cell recordings in brain slices were obtained from mice expressing Cre-induced fluorescence in cholinergic LDT and PPT, and serotonergic DR neurons. After first quantifying reporter expression accuracy in cholinergic and serotonergic neurons, we found that the orexin current produced significant high frequency, including gamma, input to both cholinergic and serotonergic neurons. Then, by using a dynamic clamp, we found that adding a noisy orexin conductance to cholinergic neurons induced a Ca2+-dependent resonance that peaked in the theta and alpha frequency range (4–14 Hz) and extended up to 100 Hz. We propose that this orexin current noise and the Ca2+ dependent resonance work synergistically to boost the encoding of high-frequency synaptic inputs into action potentials and to help ensure cholinergic neurons fire during EEG activation. This activity could reinforce thalamocortical states supporting arousal, REM sleep, and intracortical gamma. PMID

  19. The orphan nuclear receptor DAX-1 acts as a novel transcriptional corepressor of PPAR{gamma}

    SciTech Connect

    Kim, Gwang Sik; Lee, Gha Young; Nedumaran, Balachandar; Park, Yun-Yong; Kim, Kyung Tae; Park, Sang Chul; Lee, Young Chul; Kim, Jae Bum Choi, Hueng-Sik

    2008-05-30

    DAX-1 is an atypical nuclear receptor (NR) which functions primarily as a transcriptional corepressor of other NRs via heterodimerization. Peroxisome proliferator-activated receptor (PPAR) {gamma} is a ligand-dependent NR which performs a key function in adipogenesis. In this study, we evaluated a novel cross-talk mechanism between DAX-1 and PPAR{gamma}. Transient transfection assays demonstrated that DAX-1 inhibits the transactivity of PPAR{gamma} in a dose-dependent manner. DAX-1 directly competed with the PPAR{gamma} coactivator (PGC)-1{alpha} for binding to PPAR{gamma}. Endogenous levels of DAX-1 were significantly lower in differentiated 3T3-L1 adipocytes as compared to preadipocytes. Using a retroviral expression system, we demonstrated that DAX-1 overexpression downregulates the expression of PPAR{gamma} target genes, resulting in an attenuation of adipogenesis in 3T3-L1 cells. Our results suggest that DAX-1 acts as a corepressor of PPAR{gamma} and performs a potential function in the regulation of PPAR{gamma}-mediated cellular differentiation.

  20. Portable compton gamma-ray detection system

    DOEpatents

    Rowland, Mark S.; Oldaker, Mark E.

    2008-03-04

    A Compton scattered gamma-ray detector system. The system comprises a gamma-ray spectrometer and an annular array of individual scintillators. The scintillators are positioned so that they are arrayed around the gamma-ray spectrometer. The annular array of individual scintillators includes a first scintillator. A radiation shield is positioned around the first scintillator. A multi-channel analyzer is operatively connected to the gamma-ray spectrometer and the annular array of individual scintillators.

  1. Polo-like kinase 2 gene expression is regulated by the orphan nuclear receptor estrogen receptor-related receptor gamma (ERR{gamma})

    SciTech Connect

    Park, Yun-Yong; Kim, Seok-Ho; Kim, Yong Joo; Kim, Sun Yee; Lee, Tae-Hoon; Lee, In-Kyu; Park, Seung Bum; Choi, Hueng-Sik

    2007-10-12

    Estrogen receptor-related receptor gamma (ERR{gamma}) is a member of the nuclear receptor family of transcriptional activators. To date, the target genes and physiological functions of ERR{gamma} are not well understood. In the current study, we identify that Plk2 is a novel target of ERR{gamma}. Northern blot analysis showed that overexpression of ERR{gamma} induced Plk2 expression in cancer cell lines. ERR{gamma} activated the Plk2 gene promoter, and deletion and mutational analysis of the Plk2 promoter revealed that the ERR{gamma}-response region is located between nucleotides (nt) -2327 and -2229 and -441 and -432 (relative to the transcriptional start site at +1). Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) analysis demonstrated that ERR{gamma} binds directly to the Plk2 promoter. Overexpression of ERR{gamma} in the presence of the mitotic inhibitor nocodazole significantly decreased apoptosis, and induced S-phase cell cycle progression through the induction of Plk2 expression. Taken together, these results demonstrated that Plk2 is a novel target of ERR{gamma}, and suggest that this interaction is crucial for cancer cell proliferation.

  2. Novel regulation of p38gamma by dopamine D2 receptors during hypoxia.

    PubMed

    Conrad, P W; Millhorn, D E; Beitner-Johnson, D

    2000-07-01

    The p38 signalling pathway is part of the MAPK superfamily and is activated by various stressors. Our previous results have shown that two p38 isoforms, p38alpha and p38gamma, are activated by hypoxia in the neural-like PC12 cell line. PC12 cells also synthesize and secrete catecholamines, including dopamine, in response to hypoxia. We have now used this system to study the interaction between D2-dopamine receptor signalling and the p38 stress-activated protein kinases. Our results show that two D2 receptor antagonists, butaclamol and sulpiride, enhance hypoxia-induced phosphorylation of p38gamma, but not p38. This effect persists in protein kinase A (PKA)-deficient PC12 cells, demonstrating that p38gamma modulation by the D2 receptor is independent of the cAMP/PKA signalling system. We further show that removal of extracellular calcium blocks the hypoxia-induced increase in p38gamma activity. These results are the first to demonstrate that p38gamma can be regulated by the D2 receptor and calcium following hypoxic exposure.

  3. Fc gamma receptor III on human neutrophils. Allelic variants have functionally distinct capacities.

    PubMed Central

    Salmon, J E; Edberg, J C; Kimberly, R P

    1990-01-01

    As a model system to explore the functional consequences of structural variants of human Fc gamma receptors (Fc gamma R), we have investigated Fc gamma R-mediated phagocytosis in relation to the NA1-NA2 polymorphism of Fc gamma RIII (CD16) on neutrophils (Fc gamma RIIIPMN). The neutrophil-specific NA antigen system is a biallelic polymorphism with codominant expression demonstrating a gene dose effect with the anti-NA1 MAb CLB-gran 11 in a large donor population. To explore the impact of this allelic variation of Fc gamma RIIIPMN on phagocytosis, we used two Fc gamma RIII-dependent probes, IgG-sensitized erythrocytes (EA) and concanavalin. A-treated erythrocytes (E-ConA). Comparison of Fc gamma R-mediated phagocytosis by PMN from NA1 subjects and from NA2 subjects showed lower levels of phagocytosis of both probes by the NA2 individuals. The difference was most pronounced with lightly opsonized EA: at the lowest level of sensitization the phagocytic index was 72% lower for NA2 donors, whereas at the highest level of sensitization it was 21% lower (P less than 0.003). Blockade of Fc gamma RII with MAb IV.3 Fab amplified by threefold the difference between NA1 and NA2 donors. NA1 and NA2 individuals had identical phagocytic capacities for the non-Fc gamma RIII probes, serum-treated and heat-treated zymosan. These individuals did not show differential quantitative cell surface expression of Fc gamma RIIIPMN measured by a panel of anti-CD16 MAb (3G8, CLB FcR-gran 1, VEP13, BW209/2) and by Scatchard analysis of 125I-IgG dimer binding. The difference in Fc gamma R-mediated phagocytosis was not explicable on the basis of differential collaboration of Fc gamma RIIIPMN alleles with Fc gamma RII, since (a) the difference in phagocytic capacity between NA1 and NA2 individuals was readily apparent with the E-ConA probe (which is independent of Fc gamma RII) and (b) the difference in phagocytosis of EA was magnified by Fc gamma RII blockade. The demonstration that allelic

  4. Peroxisome proliferator activated receptor-gamma (PPAR-gamma) mediates the action of gamma linolenic acid in breast cancer cells.

    PubMed

    Jiang, W G; Redfern, A; Bryce, R P; Mansel, R E

    2000-02-01

    Gamma linolenic acid (GLA) is a polyunsaturated fatty acid, which induces cytotoxicity and regulates cell adhesion in cancer cells. The molecular mechanism of these actions is not clear. We have shown that GLA acts via peroxisome proliferator activated receptors (PPARs), by stimulating their phosphorylation and translocation to the nucleus. Removing PPAR gamma with antisense oligos abolished the effect of GLA on the expression of adhesion molecules and tumour suppressor genes, whereas removal of PPAR alpha had no effect. Tissues from patients with breast cancer showed a reduction of expression of both PPARs in cancer tissues, as compared with normal. Thus, PPAR gamma serves as the receptor for GLA in the regulation of gene expression in breast cancer cells.

  5. Evidence that human Fc gamma receptor IIA (CD32) subtypes are not receptors for oxidized LDL.

    PubMed

    Morganelli, P M; Groveman, D S; Pfeiffer, J R

    1997-11-01

    Several lines of evidence suggest that clearance of oxidized LDL (oxLDL) immune complexes by macrophage IgG Fc receptors (Fc gamma Rs) plays a role in atherogenesis. Ox-LDL may also be cleared directly by Fc gamma Rs, as shown for murine Fc gamma RII-B2. In humans, the homologous Fc gamma R is Fc gamma RIIA (CD32), which is abundantly expressed on monocytes and macrophages and shares 60% sequence identity with murine Fc gamma RII-B2. As murine Fc gamma RII-B2 and human Fc gamma RIIA also share similar IgG ligand-binding properties, the purpose of this study was to test the hypothesis that human CD32 is a receptor for oxLDL. For these studies we used transfected Chinese hamster ovary (CHO) cells, monocytes, and cell lines that functionally express either of two Fc gamma RIIA subtypes (R131 or H131) and assayed binding or degradation of several preparations of oxLDL. The integrity of all oxLDL preparations was checked by studying their ability to react with CHO cells expressing human type I scavenger receptors and by other characteristics of lipoprotein oxidation. Although we showed that each preparation of oxLDL could recognize class A or class B scavenger receptors, we did not detect any differences in the binding or degradation of any type of oxLDL preparation among control versus CHO cell transfectants. Using monocytes that express Fc gamma RIIA and CD36, we showed that the binding of oxLDL was inhibited by antibodies to CD36, but not by Fc gamma RIIA antibodies. Thus, the data do not support the hypothesis that human Fc gamma RIIA is by itself a receptor for oxLDL. We conclude that human CD32 can mediate uptake of lipoprotein immune complexes, but does not mediate uptake of oxLDL in the absence of anti-oxLDL antibodies. OxLDL may interact with human mononuclear phagocytes directly via other types of receptors, such as class A and class B scavenger receptors or CD68.

  6. Binding and cross-linking of recombinant mouse interferon-. gamma. to receptors in mouse leukemic L1210 cells; interferon-. gamma. internalization and receptor down-regulation

    SciTech Connect

    Wietzerbin, J.; Gaudelet, C.; Aguet, M.; Falcoff, E.

    1986-04-01

    Recombinant E. coli-derived murine IFN-..gamma.. (Mu-rIFN-..gamma..; 5 x 10/sup 7/ U/mg) was radiolabeled with /sup 125/I by the chloramine-T method without loss of its antiviral activity. The /sup 125/I-Mu-rIFN-..gamma.. showed specific binding to L1210 cells. Scatchard analysis indicates about 4000 binding sites per cell and an apparent Kd of 5 x 10/sup -10/ M. Binding of /sup 125/I-Mu-rIFn-..gamma.. to cells inhibited by both natural (glycosylated) and rIFN-..gamma.., but not by IFN-..gamma../..beta... Receptor-bound /sup 125/I-Mu-rIFN-..gamma.. was rapidly internalized when incubation temperature was raised from 4/sup 0/C to 37/sup 0/C. On internalization, almost no IFN-..gamma.. degradation was observed during 16 hr incubation. /sup 125/I-Mu-rIFN-..gamma.. binding capacity decreased in cells preincubated with low doses of unlabeled Mu-rIFN-..gamma.., but not with IFN-..cap alpha../..beta... This receptor down-regulation was dose-dependent: 90% reduction of /sup 125/I-Mu-rIFN-..gamma.. binding was observed after preincubation with 100 U/ml. After removal of IFN-..gamma.. from the culture medium, the binding capacity increased with time. However, reappearance of receptor was completely blocked by cycloheximide or tunicamycin, suggesting that re-expression of receptors is not due to recycling but to the synthesis of new receptors, and that the receptor is probably a glycoprotein. Cross-linking of /sup 125/I-Mu-rIFN-..gamma.. to surface L1210 cell proteins by using bifunctional agents yielded a predominant complex of m.w. 110,000 +/- 5000. Thus, assuming a bimolecular complex, the m.w. of the receptor or receptor subunit would be close to 95,000 +/- 5000.

  7. Mice lacking the gamma interferon receptor have an impaired granulomatous reaction to Schistosoma mansoni infection.

    PubMed Central

    Rezende, S A; Oliveira, V R; Silva, A M; Alves, J B; Goes, A M; Reis, L F

    1997-01-01

    The egg-induced granulomatous reaction in Schistosoma mansoni-infected individuals develops within the portal system of the liver and is the major pathological finding in schistosomiasis. We have infected mice lacking the gamma interferon (IFN-gamma) receptor with S. mansoni larvae and studied the development of hepatic granulomas in these mutant mice in comparison to that in control wild-type mice. In the absence of IFN-gamma activity, a dramatic reduction in the size and architecture of the granuloma was observed. Granulomas from mutant mice were smaller than those from the control group and showed a significant reduction in the number of infiltrating inflammatory cells. Moreover, they appear to prematurely progress to the chronic phase of the reaction at a time when the control group still has acute inflammation. Our data suggests a pivotal role for IFN-gamma in the early events of the granulomatous reaction in vivo. PMID:9234812

  8. syk protein tyrosine kinase regulates Fc receptor gamma-chain-mediated transport to lysosomes.

    PubMed Central

    Bonnerot, C; Briken, V; Brachet, V; Lankar, D; Cassard, S; Jabri, B; Amigorena, S

    1998-01-01

    B- and T-cell receptors, as well as most Fc receptors (FcR), are part of a large family of membrane proteins named immunoreceptors and are expressed on all cells of the immune system. Immunoreceptors' biological functions rely on two of their fundamental attributes: signal transduction and internalization. The signals required for these two functions are present in the chains associated with immunoreceptors, within conserved amino acid motifs called immunoreceptor tyrosine-based activation motifs (ITAMs). We have examined the role of the protein tyrosine kinase (PTK) syk, a critical effector of immunoreceptor-mediated cell signalling through ITAMs, in FcR-associated gamma-chain internalization and lysosomal targeting. A point mutation in the immunoreceptor-associated gamma-chain ITAM affecting syk activation, as well as overexpression of a syk dominant negative mutant, inhibited signal transduction without affecting receptor coated-pit localization or internalization. In contrast, blocking of gamma-chain-mediated syk activation impaired FcR transport from endosomes to lysosomes and selectively inhibited the presentation of certain T-cell epitopes. Therefore, activation of the PTK syk is dispensable for receptor internalization, but necessary for cell signalling and for gamma-chain-mediated FcR delivery to lysosomes. PMID:9707420

  9. Rescue of gamma2 subunit-deficient mice by transgenic overexpression of the GABAA receptor gamma2S or gamma2L subunit isoforms.

    PubMed

    Baer, K; Essrich, C; Balsiger, S; Wick, M J; Harris, R A; Fritschy, J M; Lüscher, B

    2000-07-01

    The gamma2 subunit is an important functional determinant of GABAA receptors and is essential for formation of high-affinity benzodiazepine binding sites and for synaptic clustering of major GABAA receptor subtypes along with gephyrin. There are two splice variants of the gamma2 subunit, gamma2 short (gamma2S) and gamma2 long (gamma2L), the latter carrying in the cytoplasmic domain an additional eight amino acids with a putative phosphorylation site. Here, we show that transgenic mice expressing either the gamma2S or gamma2L subunit on a gamma2 subunit-deficient background are phenotypically indistinguishable from wild-type. They express nearly normal levels of gamma2 subunit protein and [3H]flumazenil binding sites. Likewise, the distribution, number and size of GABAA receptor clusters colocalized with gephyrin are similar to wild-type in both juvenile and adult mice. Our results indicate that the two gamma2 subunit splice variants can substitute for each other and fulfil the basic functions of GABAA receptors, allowing in vivo studies that address isoform-specific roles in phosphorylation-dependent regulatory mechanisms.

  10. Scanning Gamma Ray Densitometer System for Detonations.

    DTIC Science & Technology

    in loaded detonators and delays. The 317 KEV gamma rays from an Ir192 source were collimated into a beam of 0.002 by 0.100 inch. A scanning system...minus 3%. With Ir192 , density measurements on NOL-130 were reproduced to plus or minus 5%, and on RDX to plus or minus 16%. Based on gamma ray

  11. Fc gamma receptor-dependent clearance is enhanced following lipopolysaccharide in vivo treatment.

    PubMed

    Palermo, M S; Alves Rosa, F; Fernández Alonso, G; Isturiz, M A

    1997-12-01

    Lipopolysaccharides (LPS) occupy centre stage in the pathogenesis of gram-negative sepsis. Although LPS are potent stimulators of the mononuclear phagocyte system (MPS), their effects on immune complex (IC)-specific clearance have not yet been reported. In order to evaluate this issue, we examined the MPS function after LPS treatment by measuring intravascular removal rate of syngeneic erythrocytes sensitized with specific immunoglobulin G (IgG) (EA). Our findings showed that LPS, directly or through the release of endogenous cytokines, enhance Fc gamma receptor (Fc gamma R)-dependent clearance. The EA uptake by liver, spleen and bone marrow was significantly increased leading to an effective clearance of immune complexes. Splenic antibody-dependent cellular cytotoxicity (ADCC), an in vitro indicator of Fc gamma R functionality, was also increased after in vivo LPS treatment. However, cytometric studies showed that endotoxin did not modify Fc gamma R expression on splenocytes, but markedly enhanced the expression of CD11b/CD18 (Mac-1), an adhesion molecule closely related to Fc gamma R activity. We conclude that LPS enhance Fc gamma R-dependent effector functions and suggest that this effect is mediated through alterations in adhesion molecules.

  12. Fc gamma receptor-dependent clearance is enhanced following lipopolysaccharide in vivo treatment.

    PubMed Central

    Palermo, M S; Alves Rosa, F; Fernández Alonso, G; Isturiz, M A

    1997-01-01

    Lipopolysaccharides (LPS) occupy centre stage in the pathogenesis of gram-negative sepsis. Although LPS are potent stimulators of the mononuclear phagocyte system (MPS), their effects on immune complex (IC)-specific clearance have not yet been reported. In order to evaluate this issue, we examined the MPS function after LPS treatment by measuring intravascular removal rate of syngeneic erythrocytes sensitized with specific immunoglobulin G (IgG) (EA). Our findings showed that LPS, directly or through the release of endogenous cytokines, enhance Fc gamma receptor (Fc gamma R)-dependent clearance. The EA uptake by liver, spleen and bone marrow was significantly increased leading to an effective clearance of immune complexes. Splenic antibody-dependent cellular cytotoxicity (ADCC), an in vitro indicator of Fc gamma R functionality, was also increased after in vivo LPS treatment. However, cytometric studies showed that endotoxin did not modify Fc gamma R expression on splenocytes, but markedly enhanced the expression of CD11b/CD18 (Mac-1), an adhesion molecule closely related to Fc gamma R activity. We conclude that LPS enhance Fc gamma R-dependent effector functions and suggest that this effect is mediated through alterations in adhesion molecules. Images Figure 2 Figure 3 Figure 4 PMID:9497496

  13. Gamma beam system at ELI-NP

    SciTech Connect

    Ur, Calin Alexandru

    2015-02-24

    The Gamma Beam System of ELI-NP will produce brilliant, quasi-monochromatic gamma-ray beams via Inverse Compton Scattering of short laser pulses on relativistic electron beam pulses. The scattered radiation is Doppler upshifted by more than 1,000,000 times and is forward focused in a narrow, polarized, tunable, laser-like beam. The gamma-ray beam at ELI-NP will be characterized by large spectral density of about 10{sup 4} photons/s/eV, narrow bandwidth (< 0.5%) and tunable energy from 200 keV up to about 20 MeV. The Gamma Beam System is a state-of-the-art equipment employing techniques and technologies at the limits of the present-day's knowledge.

  14. Molecular identification of duck and quail common cytokine receptor gamma chain genes

    USDA-ARS?s Scientific Manuscript database

    Common cytokine receptor gamma chain family cytokines play crucial roles in the regulation of innate and adaptive immune responses. Unlike mammals, chickens possess two different gamma chains transcripts. To determine if this difference is present in other avian species, gamma chain cDNA and genomic...

  15. Peroxisome proliferator-activated receptors gamma ligands and ischemia and reperfusion injury.

    PubMed

    Cuzzocrea, Salvatore

    2004-07-01

    Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily of ligand-activated transcription factors that are related to retinoid, steroid and thyroid hormone receptors. The PPAR subfamily comprises of three members, PPAR-alpha, PPAR-beta and PPAR-gamma. PPAR-gamma has recently been implicated as a regulator of cellular proliferation and inflammatory responses. There is good evidence that ligands of PPAR-gamma, including certain thiazolinediones, reduce tissue injury associated with ischemia and reperfusion. The potential utility of PPAR-gamma ligands in ischemia and reperfusion will be discussed in this review.

  16. Structural organization of mouse peroxisome proliferator-activated receptor {gamma} (mPPAR{gamma}) gene: Alternative promoter use and different splicing yield two mPPAR{gamma} isoforms

    SciTech Connect

    Zhu, Y.; Qi, C.; Rao, M.S.

    1995-08-15

    To gain insight into the regulation of expression of peroxisome proliferator-activated receptor (PPAR) isoforms, we have determined the structural organization of the mouse PPAR {gamma} (mPPAR{gamma}) gene. This gene extends >105 kb and gives rise to two mRNAs (mPPAR{gamma}1 and mPPAR{gamma}2) that differ at their 5{prime} ends. The mPPAR{gamma}2 cDNA encodes an additional 30 amino acids N-terminal to the first ATG codon of mPPAR{gamma}1 and reveals a different 5{prime} untranslated sequence. We show that mPPAR{gamma}1 mRNA is encoded by eight exons, whereas the mPPAR{gamma}2 mRNA is encoded by seven exons. Most of the 5{prime} untranslated sequence of mPPAR{gamma}1 mRNA is encoded by two exons, whereas the 5{prime} untranslated sequence of mPPAR{gamma}1 mRNA is encoded by two exons, whereas the 5{prime} untranslated sequence and the extra 30 N-terminal amino acids of mPPAR{gamma}2 are encoded by one exon, which is located between the second and third exons coding for mPPAR{gamma}1. The last six exons of mPPAR{gamma} gene code for identical sequences in mPPAR{gamma}1 and mPPAR{gamma}2 isoforms. The mPPAR{gamma}1 and mPPAR{gamma}2 isoforms are transcribed from different promoters. The mPPAR{gamma} gene has been mapped to chromosome 6 E3-F1 by in situ hybridization using a biotin-labeled probe. These results establish that at least one of the PPAR genes yields more than one protein product, similar to that encountered with retinoid X receptor and retinoic acid receptor genes. The existence of multiple PPAR isoforms transcribed from different promoters could increase in the diversity of ligand and tissue-specific transcriptional responses. 22 refs., 5 figs.

  17. High resolution gamma spectroscopy well logging system

    SciTech Connect

    Giles, J.R.; Dooley, K.J.

    1997-05-01

    A Gamma Spectroscopy Logging System (GSLS) has been developed to study sub-surface radionuclide contamination. The absolute counting efficiencies of the GSLS detectors were determined using cylindrical reference sources. More complex borehole geometries were modeled using commercially available shielding software and correction factors were developed based on relative gamma-ray fluence rates. Examination of varying porosity and moisture content showed that as porosity increases, and as the formation saturation ratio decreases, relative gamma-ray fluence rates increase linearly for all energies. Correction factors for iron and water cylindrical shields were found to agree well with correction factors determined during previous studies allowing for the development of correction factors for type-304 stainless steel and low-carbon steel casings. Regression analyses of correction factor data produced equations for determining correction factors applicable to spectral gamma-ray well logs acquired under non-standard borehole conditions.

  18. Crosslinking of surface antibodies and Fc sub. gamma. receptors: Theory and application

    SciTech Connect

    Wofsy, C.; Goldstein, B. Los Alamos National Lab., NM )

    1991-03-15

    In an immune response, the crosslinking of surface immunoglobulin (sIg) on B cells by multiply-bound ligand activates a range of cell responses, culminating in the production of antibody-secreting cells. However, when the crosslinking agent is itself an antibody, B cell activation is inhibited. Solution antibody (IgG) can bind simultaneously to sIg and to another cell surface receptor, Fc{sub {gamma}}R, co-crosslinking' the distinct receptors. Experiments point to co-crosslinking as the inhibitory signal. It is not clear how co-crosslinking inhibits B cell stimulation. The authors construct and analyze a mathematical model aimed at clarifying the nature and mechanisms of action of the separate cell signals controlling B cell responses to antibodies. Basophils and mast cells respond to the crosslinking of cell surface antibody by releasing histamine. Like B cells, basophils also express FC{sub {gamma}}R. They use their model to analyze new data on the effect of antibody-induced co-crosslinking of the two types of receptor on this family of cells. Predictions of the model indicate that an observed difference between the response patterns induced by antibodies and by antibody fragments that cannot bind to FC{sub {gamma}}R can be explained if co-crosslinking is neither inhibitory nor stimulatory in this system.

  19. Cyclin D1 repression of peroxisome proliferator-activated receptor gamma expression and transactivation.

    PubMed

    Wang, Chenguang; Pattabiraman, Nagarajan; Zhou, Jian Nian; Fu, Maofu; Sakamaki, Toshiyuki; Albanese, Chris; Li, Zhiping; Wu, Kongming; Hulit, James; Neumeister, Peter; Novikoff, Phyllis M; Brownlee, Michael; Scherer, Philipp E; Jones, Joan G; Whitney, Kathleen D; Donehower, Lawrence A; Harris, Emily L; Rohan, Thomas; Johns, David C; Pestell, Richard G

    2003-09-01

    The cyclin D1 gene is overexpressed in human breast cancers and is required for oncogene-induced tumorigenesis. Peroxisome proliferator-activated receptor gamma (PPAR gamma) is a nuclear receptor selectively activated by ligands of the thiazolidinedione class. PPAR gamma induces hepatic steatosis, and liganded PPAR gamma promotes adipocyte differentiation. Herein, cyclin D1 inhibited ligand-induced PPAR gamma function, transactivation, expression, and promoter activity. PPAR gamma transactivation induced by the ligand BRL49653 was inhibited by cyclin D1 through a pRB- and cdk-independent mechanism, requiring a region predicted to form an helix-loop-helix (HLH) structure. The cyclin D1 HLH region was also required for repression of the PPAR gamma ligand-binding domain linked to a heterologous DNA binding domain. Adipocyte differentiation by PPAR gamma-specific ligands (BRL49653, troglitazone) was enhanced in cyclin D1(-/-) fibroblasts and reversed by retroviral expression of cyclin D1. Homozygous deletion of the cyclin D1 gene, enhanced expression by PPAR gamma ligands of PPAR gamma and PPAR gamma-responsive genes, and cyclin D1(-/-) mice exhibit hepatic steatosis. Finally, reduction of cyclin D1 abundance in vivo using ponasterone-inducible cyclin D1 antisense transgenic mice, increased expression of PPAR gamma in vivo. The inhibition of PPAR gamma function by cyclin D1 is a new mechanism of signal transduction cross talk between PPAR gamma ligands and mitogenic signals that induce cyclin D1.

  20. Response kinetics and pharmacological properties of heteromeric receptors formed by coassembly of GABA rho- and gamma 2-subunits.

    PubMed Central

    Qian, H; Ripps, H

    1999-01-01

    Two of the gamma-aminobutyric acid (GABA) receptors, GABAA and GABAC, are ligand-gated chloride channels expressed by neurons in the retina and throughout the central nervous system. The different subunit composition of these two classes of GABA receptor result in very different physiological and pharmacological properties. Although little is known at the molecular level as to the subunit composition of any native GABA receptor, it is thought that GABAC receptors are homomeric assemblies of rho-subunits. However, we found that the kinetic and pharmacological properties of homomeric receptors formed by each of the rho-subunits cloned from perch retina did not resemble those of the GABAC receptors on perch bipolar cells. Because both GABAA and GABAC receptors are present on retinal bipolar cells, we attempted to determine whether subunits of these two receptor classes are capable of interacting with each other. We report here that, when coexpressed in Xenopus oocytes, heteromeric (rho 1B gamma 2) receptors formed by coassembly of the rho 1B-subunit with the gamma 2-subunit of the GABAA receptor displayed response properties very similar to those obtained with current recordings from bipolar cells. In addition to being unresponsive to bicuculline and diazepam, the time-constant of deactivation, and the sensitivities to GABA, picrotoxin and zinc closely approximated the values obtained from the native GABAC receptors on bipolar cells. These results provide the first direct evidence of interaction between GABA rho and GABAA receptor subunits. It seems highly likely that coassembly of GABAA and rho-subunits contributes to the molecular organization of GABAC receptors in the retina and perhaps throughout the nervous system. PMID:10643085

  1. Biological activity of liposome-encapsulated murine interferon gamma is mediated by a cell membrane receptor.

    PubMed Central

    Eppstein, D A; Marsh, Y V; van der Pas, M; Felgner, P L; Schreiber, A B

    1985-01-01

    Recombinant murine gamma interferon (rMuIFN-gamma) was found to bind reversibly to a specific high-affinity surface receptor on L929 cells; neither murine alpha or beta nor human gamma IFN competed for receptor binding. Encapsulation of the rMuIFN-gamma in either negatively or positively charged liposomes reduced its immediate ability to bind to this surface receptor. Disruption of liposome integrity with detergent resulted in full ability of the rMuIFN-gamma to bind to the membrane receptor. Incubation of the liposomal IFN in serum-containing medium resulted in significant leakage so that the IFN was able to bind to its surface receptor. Assessment of the biological activity of the rMuIFN-gamma preparations revealed that full antiviral activity was observed in vitro with the liposomal IFN preparations without their prior disruption by detergent. The antiviral activity observed with either free or liposomal IFN was neutralized completely by antibodies against rMuIFN-gamma. Both free and liposomal rMuIFN-gamma, in conjunction with bacterial lipopolysaccharide, were also able to activate murine peritoneal macrophages to the tumoricidal state. Again, this activity of both free and liposomal IFN could be neutralized completely by antibody. These results indicate that although rMuIFN-gamma can be effectively incorporated into liposomes, it must ultimately leak out of the liposome in order to mediate its biological effects; these effects are triggered after the IFN binds to its cell surface receptors. PMID:3159018

  2. Gamma ray observations of the solar system

    SciTech Connect

    Not Available

    1981-01-01

    Two general categories are discussed concerning the evolution of the solar system: the dualistic view, the planetesimal approach and the monistic view, the nebular hypothesis. The major points of each view are given and the models that are developed from these views are described. Possible applications of gamma ray astronomical observations to the question of the dynamic evolution of the solar system are discussed.

  3. Gamma ray observations of the solar system

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Two general categories are discussed concerning the evolution of the solar system: the dualistic view, the planetesimal approach; and the monistic view, the nebular hypothesis. The major points of each view are given and the models that are developed from these views are described. Possible applications of gamma ray astronomical observations to the question of the dynamic evolution of the solar system are discussed.

  4. Electrophysiological characterization, solubilization and purification of the Tityus gamma toxin receptor associated with the gating component of the Na+ channel from rat brain.

    PubMed Central

    Barhanin, J; Pauron, D; Lombet, A; Norman, R I; Vijverberg, H P; Giglio, J R; Lazdunski, M

    1983-01-01

    Electrophysiological studies with neuroblastoma cells have shown that toxin gamma from the venom of the scorpion Tityus serrulatus is a new toxin specific for the gating system of the Na+ channel. The procedure which solubilizes the tetrodotoxin receptor from rat brain also solubilizes the Tityus gamma toxin receptor. Binding experiments on the solubilized receptor with a radioiodinated derivative of Tityus gamma toxin have shown: (i) that the TiTx gamma-receptor complex is very stable with a dissociation constant of 8.6 X 10(-12) M and a very slow dissociation (T 1/2 = 15 h); (ii) that the toxin recognizes a class of sites with a 1:1 stoichiometry with those for tetrodotoxin (Bmax = 1.3 pmol/mg protein). The radioiodinated Tityus gamma-receptor complex has been substantially purified by ion-exchange chromatography, lectin affinity chromatography and sucrose gradient sedimentation. A ratio of one Tityus gamma toxin binding site per tetrodotoxin binding site was found throughout the purification. The purified material exhibited a sedimentation coefficient of 10.4S and had an apparent mol. wt. of 270 000 on SDS-gel electrophoresis. No other polypeptide chains were demonstrated to be associated with this large protein in the Tityus gamma receptor. The main conclusion is that the tetrodotoxin binding site associated with the selectivity filter of the Na+ channel and the Tityus gamma toxin binding site associated with the gating component are probably carried by the same polypeptide chain. Images Fig. 4. PMID:6315420

  5. Human IFN-gamma up-regulates IL-2 receptors in mitogen-activated T lymphocytes.

    PubMed Central

    Rodriguez, M A; De Sanctis, J B; Blasini, A M; Leon-Ponte, M; Abadi, I

    1990-01-01

    This study examined the role of human recombinant interferon-gamma (rIFN-gamma) in the expression of interleukin-2 receptors (IL-2R) by human T lymphocytes. rIFN-gamma enhanced total numbers of IL-2R in mitogen-activated but not resting T cells. Scatchard plot analysis indicated that rIFN-gamma increased both high- and low-affinity receptors, with a predominant effect on the latter. Phytohaemagglutinin (PHA)-activated T cells treated with IFN-gamma showed higher IL-2 binding and greater IL-2 internalization and degradation than cells treated with PHA alone. There was a corresponding increase of mitogen-driven proliferative responses, indicating an increase of functional receptors in IFN-treated cultures. IFN-gamma may influence T-cell activation and proliferation by enhancing expression of IL-2R and promoting IL-2 uptake by mitogen-activated lymphocytes. PMID:2110548

  6. Revealing a steroid receptor ligand as a unique PPAR[gamma] agonist

    SciTech Connect

    Lin, Shengchen; Han, Ying; Shi, Yuzhe; Rong, Hui; Zheng, Songyang; Jin, Shikan; Lin, Shu-Yong; Lin, Sheng-Cai; Li, Yong

    2012-06-28

    Peroxisome proliferator-activated receptor gamma (PPAR{gamma}) regulates metabolic homeostasis and is a molecular target for anti-diabetic drugs. We report here the identification of a steroid receptor ligand, RU-486, as an unexpected PPAR{gamma} agonist, thereby uncovering a novel signaling route for this steroid drug. Similar to rosiglitazone, RU-486 modulates the expression of key PPAR{gamma} target genes and promotes adipocyte differentiation, but with a lower adipogenic activity. Structural and functional studies of receptor-ligand interactions reveal the molecular basis for a unique binding mode for RU-486 in the PPAR{gamma} ligand-binding pocket with distinctive properties and epitopes, providing the molecular mechanisms for the discrimination of RU-486 from thiazolidinediones (TZDs) drugs. Our findings together indicate that steroid compounds may represent an alternative approach for designing non-TZD PPAR{gamma} ligands in the treatment of insulin resistance.

  7. Novel time-dependent vascular actions of {delta}{sup 9}-tetrahydrocannabinol mediated by peroxisome proliferator-activated receptor gamma

    SciTech Connect

    O'Sullivan, Saoirse E. . E-mail: Saoirse.o'sullivan@nottingham.ac.uk; Tarling, Elizabeth J.; Bennett, Andrew J.; Kendall, David A.; Randall, Michael D.

    2005-11-25

    Cannabinoids have widespread effects on the cardiovascular system, only some of which are mediated via G-protein-coupled cell surface receptors. The active ingredient of cannabis, {delta}{sup 9}-tetrahydrocannabinol (THC), causes acute vasorelaxation in various arteries. Here we show for the first time that THC also causes slowly developing vasorelaxation through activation of peroxisome proliferator-activated receptors gamma (PPAR{gamma}). In vitro, THC (10 {mu}M) caused time-dependent vasorelaxation of rat isolated arteries. Time-dependent vasorelaxation to THC was similar to that produced by the PPAR{gamma} agonist rosiglitazone and was inhibited by the PPAR{gamma} antagonist GW9662 (1 {mu}M), but not the cannabinoid CB{sub 1} receptor antagonist AM251 (1 {mu}M). Time-dependent vasorelaxation to THC requires an intact endothelium, nitric oxide, production of hydrogen peroxide, and de novo protein synthesis. In transactivation assays in cultured HEK293 cells, THC-activated PPAR{gamma}, transiently expressed in combination with retinoid X receptor {alpha} and a luciferase reporter gene, in a concentration-dependent manner (100 nM-10 {mu}M). In vitro incubation with THC (1 or 10 {mu}M, 8 days) stimulated adipocyte differentiation in cultured 3T3L1 cells, a well-accepted property of PPAR{gamma} ligands. The present results provide strong evidence that THC is a PPAR{gamma} ligand, stimulation of which causes time-dependent vasorelaxation, implying some of the pleiotropic effects of cannabis may be mediated by nuclear receptors.

  8. [Analog gamma camera digitalization computer system].

    PubMed

    Rojas, G M; Quintana, J C; Jer, J; Astudillo, S; Arenas, L; Araya, H

    2004-01-01

    Digitalization of analogue gamma cameras systems, using special acquisition boards in microcomputers and appropriate software for acquisition and processing of nuclear medicine images is described in detail. Microcomputer integrated systems interconnected by means of a Local Area Network (LAN) and connected to several gamma cameras have been implemented using specialized acquisition boards. The PIP software (Portable Image Processing) was installed on each microcomputer to acquire and preprocess the nuclear medicine images. A specialized image processing software has been designed and developed for these purposes. This software allows processing of each nuclear medicine exam, in a semiautomatic procedure, and recording of the results on radiological films. . A stable, flexible and inexpensive system which makes it possible to digitize, visualize, process, and print nuclear medicine images obtained from analogue gamma cameras was implemented in the Nuclear Medicine Division. Such a system yields higher quality images than those obtained with analogue cameras while keeping operating costs considerably lower (filming: 24.6%, fixing 48.2% and developing 26%.) Analogue gamma camera systems can be digitalized economically. This system makes it possible to obtain optimal clinical quality nuclear medicine images, to increase the acquisition and processing efficiency, and to reduce the steps involved in each exam.

  9. Purification and characterization of the human interferon-. gamma. receptor from placenta

    SciTech Connect

    Calderon, J.; Sheehan, K.C.F.; Chance, C.; Thomas, M.L.; Schreiber, R.D. )

    1988-07-01

    Purification of the human interferon-{gamma} (IFN-{gamma}) receptor was facilitated by identification of human placenta as a large-scale receptor source. When analyzed in radioligand binding experiments, intact placental membranes and detergent-solubilized membrane proteins expressed 1.3 and 5.9 {times} 10{sup 12} receptors per mg of protein, respectively, values that were 13-163 times greater than that observed for U937 membranes. Two protocols were followed to purify the IFN-{gamma} receptor from octyl glucoside-solubilized membranes: (i) sequential affinity chromatography over wheat germ agglutinin- and INF-{gamma}-Sepharose and (ii) affinity chromatography over columns containing receptor-specific monoclonal antibody and wheat germ agglutinin. Both procedures resulted in fully active preparations that were 70-90% pure. Purified receptor migrated as a single molecular species of 90 kDa either when analyzed on silver-stained NaDodSO{sub 4}/polyacrylamide gels or when subjected to electrophoretic transfer blot analysis using a labeled IFN-{gamma} receptor-specific monoclonal antibody. The identity of the 90-kDa component as the receptor was confirmed by demonstrating its ability to specifically bind {sup 125}I-labeled IFN-{gamma} following NaDodSO{sub 4}/PAGE and transfer to nitrocellulose. The ligand binding site, the epitope for the receptor-specific monoclonal antibody, and all of the N-linked carbohydrate could be localized to the 55-kDa domain of the molecule.

  10. The gamma-aminobutyrate/benzodiazepine receptor from pig brain. Enhancement of gamma-aminobutyrate-receptor binding by the anaesthetic propanidid.

    PubMed Central

    Kirkness, E F; Turner, A J

    1986-01-01

    The binding of [3H]muscimol, a gamma-aminobutyrate (GABA) receptor agonist, to a membrane preparation from pig cerebral cortex was enhanced by the anaesthetic propanidid in a concentration-dependent manner. At 0 degrees C, binding was stimulated to 220% of control values, with 50% stimulation at 60 microM-propanidid. At 37 degrees C, propanidid caused a more powerful stimulation of [3H]muscimol binding (340% of control values). Propanidid (1 mM) exerted little effect on the affinity of muscimol binding (KD approx. 10 nM), but increased the apparent number of high-affinity binding sites in the membrane by 2-fold. Enhancement of [3H]muscimol binding was observed only in the presence of Cl- ions, half-maximal activation being achieved at approx. 40 mM-Cl-. Picrotoxinin inhibited the stimulation of [3H]muscimol binding by propanidid with an IC50 (concentration causing 50% inhibition) value of approx. 25 microM. The enhancement of [3H]muscimol binding by propanidid was not additive with the enhancement produced by secobarbital. Phenobarbital inhibited the effect of propanidid and secobarbital. The GABA receptor was solubilized with Triton X-100 or with Chaps [3-[(3-cholamidopropyl)dimethylammonio]propanesulphonate]. Propanidid and secobarbital did not stimulate the binding of [3H]muscimol after solubilization with Triton X-100. However, the receptor could be solubilized by 5 mM-Chaps with retention of the stimulatory effects of propanidid and secobarbital. Unlike barbiturates, propanidid did not stimulate the binding of [3H]flunitrazepam to membranes. It is suggested that the ability to modulate the [3H]muscimol site of the GABA-receptor complex may be a common and perhaps functional characteristic of general anaesthetics. PMID:3006660

  11. The gamma-aminobutyrate/benzodiazepine receptor from pig brain. Enhancement of gamma-aminobutyrate-receptor binding by the anaesthetic propanidid.

    PubMed

    Kirkness, E F; Turner, A J

    1986-01-01

    The binding of [3H]muscimol, a gamma-aminobutyrate (GABA) receptor agonist, to a membrane preparation from pig cerebral cortex was enhanced by the anaesthetic propanidid in a concentration-dependent manner. At 0 degrees C, binding was stimulated to 220% of control values, with 50% stimulation at 60 microM-propanidid. At 37 degrees C, propanidid caused a more powerful stimulation of [3H]muscimol binding (340% of control values). Propanidid (1 mM) exerted little effect on the affinity of muscimol binding (KD approx. 10 nM), but increased the apparent number of high-affinity binding sites in the membrane by 2-fold. Enhancement of [3H]muscimol binding was observed only in the presence of Cl- ions, half-maximal activation being achieved at approx. 40 mM-Cl-. Picrotoxinin inhibited the stimulation of [3H]muscimol binding by propanidid with an IC50 (concentration causing 50% inhibition) value of approx. 25 microM. The enhancement of [3H]muscimol binding by propanidid was not additive with the enhancement produced by secobarbital. Phenobarbital inhibited the effect of propanidid and secobarbital. The GABA receptor was solubilized with Triton X-100 or with Chaps [3-[(3-cholamidopropyl)dimethylammonio]propanesulphonate]. Propanidid and secobarbital did not stimulate the binding of [3H]muscimol after solubilization with Triton X-100. However, the receptor could be solubilized by 5 mM-Chaps with retention of the stimulatory effects of propanidid and secobarbital. Unlike barbiturates, propanidid did not stimulate the binding of [3H]flunitrazepam to membranes. It is suggested that the ability to modulate the [3H]muscimol site of the GABA-receptor complex may be a common and perhaps functional characteristic of general anaesthetics.

  12. TARP gamma-8 controls hippocampal AMPA receptor number, distribution and synaptic plasticity.

    PubMed

    Rouach, Nathalie; Byrd, Keith; Petralia, Ronald S; Elias, Guillermo M; Adesnik, Hillel; Tomita, Susumu; Karimzadegan, Siavash; Kealey, Colin; Bredt, David S; Nicoll, Roger A

    2005-11-01

    Synaptic plasticity involves activity-dependent trafficking of AMPA-type glutamate receptors. Numerous cytoplasmic scaffolding proteins are postulated to control AMPA receptor trafficking, but the detailed mechanisms remain unclear. Here, we show that the transmembrane AMPA receptor regulatory protein (TARP) gamma-8, which is preferentially expressed in the mouse hippocampus, is important for AMPA receptor protein levels and extrasynaptic surface expression. By controlling the number of AMPA receptors, gamma-8 is also important in long-term potentiation, but not long-term depression. This study establishes gamma-8 as a critical protein for basal AMPA receptor expression and localization at extrasynaptic sites in the hippocampus and raises the possibility that TARP-dependent control of AMPA receptors during synapse development and plasticity may be widespread.

  13. Gamma-Guided Stereotactic Breast Biopsy System

    SciTech Connect

    B. Welch, R. Brem, B. Kross, V. Popov, R. Wojcik, S. Majewski

    2006-10-01

    A gamma-ray imaging system has been developed for acquiring stereo images of the distribution of radiopharmaceuticals in breast tissue. The system consists of a small field-of-view gamma-ray camera mounted to a stereotactic biopsy table. The camera is mounted on a rotational arm such that it can be used to image the breast from two 15deg stereo views. These stereo images can be used to determine the three dimensional spatial location of a region of focal uptake. Once the location of this region is determined, this information can be used as a guide for stereotactic core needle biopsy. The accuracy that the spatial location of a source can be determined was investigated by moving a point source within the field of view. A center-of gravity calculation was used to localize the centroid of the image of the source and this was used to determine the spatial location. Measurements indicate that the source can be localized to within 1 mm. A comparison of the operation of the gamma imaging system and an x-ray imaging system has been done using a dual modality phantom. These measurements indicated that the spatial location of an isolated source can be determined by the gamma imaging system to within approximately the same performance criteria as required for the X-ray system (1 mm). Collimators were tested to determine the spatial resolution in the transverse dimension and the impact of this transverse resolution on the axial resolution was investigated. The performance of this gamma-guided stereotactic biopsy system will be presented.

  14. IP receptor-dependent activation of PPAR{gamma} by stable prostacyclin analogues

    SciTech Connect

    Falcetti, Emilia; Flavell, David M.; Staels, Bart; Tinker, Andrew; Haworth, Sheila G.; Clapp, Lucie H. . E-mail: l.clapp@ucl.ac.uk

    2007-09-07

    Stable prostacyclin analogues can signal through cell surface IP receptors or by ligand binding to nuclear peroxisome proliferator-activated receptors (PPARs). So far these agents have been reported to activate PPAR{alpha} and PPAR{delta} but not PPAR{gamma}. Given PPAR{gamma} agonists and prostacyclin analogues both inhibit cell proliferation, we postulated that the IP receptor might elicit PPAR{gamma} activation. Using a dual luciferase reporter gene assay in HEK-293 cells stably expressing the IP receptor or empty vector, we found that prostacyclin analogues only activated PPAR{gamma} in the presence of the IP receptor. Moreover, the novel IP receptor antagonist, RO1138452, but not inhibitors of the cyclic AMP pathway, prevented activation. Likewise, the anti-proliferative effects of treprostinil observed in IP receptor expressing cells, were partially inhibited by the PPAR{gamma} antagonist, GW9662. We conclude that PPAR{gamma} is activated through the IP receptor via a cyclic AMP-independent mechanism and contributes to the anti-growth effects of prostacyclin analogues.

  15. Structure and physiological functions of the human peroxisome proliferator-activated receptor gamma.

    PubMed

    Zieleniak, Andrzej; Wójcik, Marzena; Woźniak, Lucyna A

    2008-01-01

    The peroxisome proliferator-activated receptors (PPARs) belong to the nuclear hormone receptor superfamily. To date, three different PPAR isotypes, namely PPAR-alpha, -delta, and -gamma, have been identified in vertebrates and have distinct patterns of tissue distribution. Like all nuclear receptors, the human PPAR-gamma (hPPAR-gamma) is characterized by a modular structure composed of an N-terminal A/B domain, a DNA-binding domain with two zinc fingers (C domain), a D domain, and a C-terminal ligand-binding domain (E/F domain). Human PPAR-gamma exists in two protein isoforms, hPPAR-gamma(1) and -gamma(2), with different lengths of the N-terminal. The hPPAR-gamma(2) isoform is predominantly expressed in adipose tissue, whereas hPPAR-gamma(1) is relatively widely expressed. Human PPAR-gamma plays a critical physiological role as a central transcriptional regulator of both adipogenic and lipogenic programs. Its transcriptional activity is induced by the binding of endogenous and synthetic lipophilic ligands, which has led to the determination of many roles for PPAR-gamma in pathological states such as type 2 diabetes, atherosclerosis, inflammation, and cancer. Of the synthetic ligands, the thiazolidinedione class of insulin-sensitizing drugs (ciglitazone, pioglitazone, troglitazone, rosiglitazone) is employed clinically in patients with type 2 diabetes.

  16. Channel opening of. gamma. -aminobutyric acid receptor from rat brain: molecular mechanisms of the receptor responses

    SciTech Connect

    Cash, D.J.; Subbarao, K.

    1987-12-01

    The function of ..gamma..-aminobutyric acid (GABA) receptors, which mediate transmembrane chloride flux, can be studied by use of /sup 36/Cl/sup -/ isotope tracer with membrane from mammalian brain by quench-flow technique, with reaction times that allow resolution of the receptor desensitization rates from the ion flux rates. The rates of chloride exchange into the vesicles in the absence and presence of GABA were characterized with membrane from rat cerebral cortex. Unspecific /sup 36/Cl/sup -/ influx was completed in three phases of ca. 3% (t/sub 1/2/ = 0.6 s), 56% (t/sub 1/2 = 82 s), and 41% (t/sub 1/2 = 23 min). GABA-mediated, specific chloride exchange occurred with 6.5% of the total vesicular internal volume. The GABA-dependent /sup 36/Cl/sup -/ influx proceeded in two phases, each progressively slowed by desensitization. The measurements supported the presence of two distinguishable active GABA receptors on the same membrane mediating chloride exchange into the vesicles. The half-response concentrations were similar for both receptors. The two receptors were present in the activity ratio of ca. 4/1, similar to the ratio of low affinity to high-affinity GABA sites found in ligand binding experiments. The desensitization rates have a different dependence on GABA concentration than the channel-opening equilibria. For both receptors, the measurements over a 2000-fold GABA concentration range required a minimal mechanism involving the occupation of both of the two GABA binding sites for significant channel opening; then the receptors were ca. 80% open. Similarly for both receptors, desensitization was mediated by a different pair of binding sites, although desensitization with only one ligand molecule bound could occur at a 20-fold slower rate.

  17. The gamma 2 subunit of GABA(A) receptors is required for maintenance of receptors at mature synapses.

    PubMed

    Schweizer, Claude; Balsiger, Sylvia; Bluethmann, Horst; Mansuy, Isabelle M; Fritschy, Jean-Marc; Mohler, Hanns; Lüscher, Bernhard

    2003-10-01

    The gamma2 subunit of GABA(A) receptor chloride channels is required for normal channel function and for postsynaptic clustering of these receptors during synaptogenesis. In addition, GABA(A) receptor function is thought to contribute to normal postnatal maturation of neurons. Loss of postsynaptic GABA(A) receptors in gamma2-deficient neurons might therefore reflect a deficit in maturation of neurons due to the reduced channel function. Here, we have used the Cre-loxP strategy to examine the clustering function of the gamma2 subunit at mature synapses. Deletion of the gamma2 subunit in the third postnatal week resulted in loss of benzodiazepine-binding sites and parallel loss of punctate immunoreactivity for postsynaptic GABA(A) receptors and gephyrin. Thus, the gamma2 subunit contributes to postsynaptic localization of GABA(A) receptors and gephyrin by a mechanism that is operant in mature neurons and not limited to immature neurons, most likely through interaction with proteins involved in trafficking of synaptic GABA(A) receptors.

  18. Tyrosine kinase activity is essential for the association of phospholipase C-gamma with the epidermal growth factor receptor.

    PubMed Central

    Margolis, B; Bellot, F; Honegger, A M; Ullrich, A; Schlessinger, J; Zilberstein, A

    1990-01-01

    Epidermal growth factor (EGF) treatment of NIH 3T3 cells transfected with wild-type EGF receptor induced tyrosine phosphorylation of phospholipase C-gamma (PLC-gamma). The EGF receptor and PLC-gamma were found to be physically associated such that antibodies directed against PLC-gamma or the EGF receptor coimmunoprecipitated both proteins. The association between PLC-gamma and wild-type EGF receptor was dependent on the concentration of EGF, but EGF did not enhance the association between PLC-gamma and a kinase-negative mutant of the EGF receptor. Oligomerization of the EGF receptor was not sufficient to induce association of the EGF receptor with PLC-gamma, since the kinase-negative mutant receptor underwent normal dimerization in response to EGF yet did not associate with PLC-gamma. The form of PLC-gamma associated with the EGF receptor appeared to be primarily the non-tyrosine-phosphorylated form. It is concluded that the kinase activity of the EGF receptor is essential for association of PLC-gamma with the EGF receptor, possibly by stimulating receptor autophosphorylation. Images PMID:2153914

  19. Histamine induces KCNQ channel-dependent gamma oscillations in rat hippocampus via activation of the H1 receptor.

    PubMed

    Andersson, Richard; Galter, Dagmar; Papadia, Daniela; Fisahn, André

    2017-05-15

    Histamine is an aminergic neurotransmitter, which regulates wakefulness, arousal and attention in the central nervous system. Histamine receptors have been the target of efforts to develop pro-cognitive drugs to treat disorders such as Alzheimer's disease and schizophrenia. Cognitive functions including attention are closely associated with gamma oscillations, a rhythmical electrical activity pattern in the 30-80 Hz range, which depends on the synchronized activity of excitatory pyramidal cells and inhibitory fast-spiking interneurons. We set out to explore whether histamine has a role in promoting gamma oscillations in the hippocampus. Using in-situ hybridization we demonstrate that histamine receptor subtypes 1, 2 and 3 are expressed in stratum pyramidale of area CA3 in rats. We show that both pyramidal cells and fast-spiking interneurons depolarize and increase action potential firing in response to histamine in vitro. The activation of histamine receptors generates dose-dependent, transient gamma oscillations in area CA3 of the hippocampus - the locus of the gamma rhythm generator. We also demonstrate that this histamine effect is independent of muscarinic receptors. Using specific antagonists we provide evidence that histamine gamma rhythmogenesis specifically depends on the H1 receptor. Histamine also depolarized both pyramidal cells and fast-spiking interneurons and increased membrane resistance in pyramidal cells. The increased membrane resistance is potentially mediated by the inhibition of potassium channels because application of the KCNQ channel opener ICA110381 abolished the oscillations. Taken together our data demonstrate a novel and physiological mechanism for generating gamma oscillations in hippocampus and suggest a role for KCNQ channels in this cognition-relevant brain activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Desensitization of. gamma. -aminobutyric acid receptor from rat brain: two distinguishable receptors on the same membrane

    SciTech Connect

    Cash, D.J.; Subbarao, K.

    1987-12-01

    Transmembrane chloride flux mediated by ..gamma..-aminobutyric acid (GABA) receptor can be measured with a mammalian brain homogenate preparation containing sealed membrane vesicles. The preparation can be mixed rapidly with solutions of defined composition. Influx of /sup 36/Cl/sup -/ tracer initiated by mixing with GABA was rapidly terminated by mixing with bicuculline methiodide. The decrease in the isotope influx measurement due to prior incubation of the vesicle preparation with GABA, which increased with preincubation time and GABA concentration, was attributed to desensitization of the GABA receptor. By varying the time of preincubation with GABA between 10 ms and 50 s with quench-flow technique, the desensitization rates could be measured over their whole time course independently of the chloride ion flux rate. Most of the receptor activity decreased in a fast phase of desensitization complete in 200 ms at saturation with GABA. Remaining activity was desensitized in a few seconds. These two phases of desensitization were each kinetically first order and were shown to correspond with two distinguishable GABA receptors on the same membrane. The receptor activities could be estimated, and the faster desensitizing receptor was the predominant one, giving on average ca. 80% of the total activity. The half-response concentrations were similar, 150 and 114 ..mu..M for the major and minor receptors, respectively. The dependence on GABA concentration indicated that desensitization is mediated by two GABA binding sites. The fast desensitization rate was approximately 20-fold faster than previously reported rates while the slower desensitization rate was slightly faster than previously reported rates.

  1. Activation of human peroxisome-activated receptor-gamma ...

    EPA Pesticide Factsheets

    Obesity in children has become an epidemic and recent research suggests a possible contribution from exposure to environmental chemicals. Several chemicals, such as phthalates, brominated flame retardants, and perfluorinated chemicals, are common in house dust on floors where children play and are suspected obesogens. Obesogens can act via a mechanism that involves activation of peroxisome proliferator-activated receptor-gamma (PPARy). A previous study found that dust collected from children’s homes binds to PPARy. Here, we investigated the ability of house dust to activate PPARy in a transiently transfected cell assay. Dust samples were collected in 2012 from carpeted and hardwood floors in children’s homes using thimbles fitted into a vacuum cleaner hose (“TEO” samples), or from homes in an adult cohort NIEHS study. Dust was extracted with 50:50 hexane:acetone, sonicated, centrifuged, and the organic layer collected. This was repeated 2X. The extracts were filtered to remove particulates, dried with purified nitrogen, and reconstituted in DMS0 at 200 ug/ul. COS-1 cells were transfected for 24 hrs with a human PPARy vector containing a luciferase reporter, and exposed for 24 hrs to negative controls water or DMSO (0.1%), positive controls Troglitazone (3 uM in water) or Rosiglitazone (100 nM in DMSO), or dust extracts serially diluted in DMEM at 50, 100, and 200 ug/ml in 0.1% DMSO. Cells were lysed and luciferase activity was measured. Data were log-tra

  2. Purification and partial characterization of a receptor protein for mouse interferon /gamma/

    SciTech Connect

    Basu, M.; Pace, J.L.; Pinson, D.M.; Hayes, M.P.; Trotta, P.P.; Russell, S.W.

    1988-09-01

    A receptor protein for mouse interferon /gamma/ has been purified from solubilized plasma membranes of the mouse monomyelocytic cell line WEHI-3. Sequential wheat germ agglutinin and ligand affinity chromatography of membranes extracted with octyl /beta/-D-glucopyranoside resulted in at least a 680-fold purification of the receptor, as measured by precipitating it in association with liposomes composed of phosphatidylcholine. The purified receptor bound /sup 125/I-labeled recombinant mouse interferon /gamma/ (rMuIFN-/gamma/) with a K/sub d/ of 10 nM, a value comparable to that obtained with isolated membranes, PAGE analysis of radiolabeled (with either /sup 35/S or /sup 125/I) receptor preparations consistently revealed a major band of 95 kDa. This species was degraged with time to smaller fragments, GR-20, a monoclonal antibody against the receptor, completely inhibited specific binding of /sup 125/I-labeled rMuIFN-/gamma/ to WEHI-3 cells, blocked the induction of priming by rMuIFN-/gamma/ of macrophage-mediated tumor cell killing, removed binding activity for /sup 125/I-labeled rMuIFN-/gamma/ from solubilized membranes, and immunoprecipitated a single 95-kDa protein from the extract of surface labeled (/sup 125/I) WEHI-3 cells. Cross-linking of /sup 125/I-labeled rMuIFN-/gamma/ to its receptor yielded a complex of 125 /plus minus/ 5 kDa, consistent with the binding of the dimeric form of mouse interferon /gamma/ (32 kDa) to a membrane protein of 95 kDa. These data suggest that the receptor for mouse interferon /gamma/ is a glycoprotein of 95 kDa.

  3. Peroxisome proliferator-activated receptor gamma: a novel target for cancer therapeutics?

    PubMed

    Han, ShouWei; Roman, Jesse

    2007-03-01

    Peroxisome proliferator-activated receptors are ligand-activated intracellular transcription factors that have been implicated in important biological processes such as inflammation, tissue remodeling and atherosclerosis. Emerging information also implicates peroxisome proliferator-activated receptors in oncogenesis. Peroxisome proliferator-activated receptor gamma, the best studied of the peroxisome proliferator-activated receptors, modulates the proliferation and apoptosis of many cancer cell types, and it is expressed in many human tumors including lung, breast, colon, prostate and bladder. Natural and synthetic agents capable of activating peroxisome proliferator-activated receptor gamma have been found to inhibit cancer cell growth in vitro and in animal models. These agents, however, are not specific and both peroxisome proliferator-activated receptor gamma-dependent and peroxisome proliferator-activated receptor gamma-independent pathways involved in their effects have been identified. Together, these studies, coupled with a few clinical trials, suggest that peroxisome proliferator-activated receptor gamma is a novel target for the development of new and effective anticancer therapies.

  4. Gamma-hydroxybutyrate (GHB) induces cognitive deficits and affects GABAB receptors and IGF-1 receptors in male rats.

    PubMed

    Johansson, Jenny; Grönbladh, Alfhild; Hallberg, Mathias

    2014-08-01

    In recent years, the abuse of the club drug gamma-hydroxybutyrate (GHB) has become increasingly popular among adolescents. The drug induces euphoria but can also result in sedation, anaesthesia as well as short-term amnesia. In addition, the abuse of GHB causes cognitive impairments and the mechanism by which GHB induces these impairments is not clarified. The present study investigates the impact of GHB treatment on spatial learning and memory using a water maze (WM) test in rats. Furthermore, the behavioural data is combined with an autoradiographic analysis of the GABAB and the IGF-1 receptor systems. The results demonstrate that the animals administered with GHB display an impaired performance in the WM test as compared to controls. In addition, significant alterations in GABAB and IGF-1 receptor density as well as GABAB receptor functionality, were observed in several brain regions associated with cognitive functions e.g. hippocampus. To conclude, our findings suggest that GHB treatment can affect spatial learning and memory, and that this outcome at least to some extent is likely to involve both GABAB and IGF-1 receptors.

  5. Different gamma delta T-cell receptors are expressed on thymocytes at different stages of development.

    PubMed Central

    Ito, K; Bonneville, M; Takagaki, Y; Nakanishi, N; Kanagawa, O; Krecko, E G; Tonegawa, S

    1989-01-01

    We have analyzed the structural diversity of the murine gamma delta T-cell receptor (TCR) heterodimer expressed on CD4- CD8- thymocyte populations and on TCR gamma delta-expressing hybridomas derived from thymocytes of fetal, newborn, and adult mice. We found that CD4- CD8- thymocytes derived from mice of different pre- and postnatal age preferentially express a gamma delta TCR encoded by different subsets of gamma and delta gene segments. This age-dependent differential expression of gamma delta TCR on thymocytes seems to be accomplished in part by a specific control of rearranged gamma genes operating at the level of transcription and/or RNA stability. We discuss the implications of these findings with respect to the recognition roles of the gamma delta TCR. Images PMID:2463632

  6. Peroxisome proliferator-activated receptor gamma overexpression suppresses proliferation of human colon cancer cells

    SciTech Connect

    Tsukahara, Tamotsu; Haniu, Hisao

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer We examined the correlation between PPAR{gamma} expression and cell proliferation. Black-Right-Pointing-Pointer PPAR{gamma} overexpression reduces cell viability. Black-Right-Pointing-Pointer We show the synergistic effect of cell growth inhibition by a PPAR{gamma} agonist. -- Abstract: Peroxisome proliferator-activated receptor gamma (PPAR{gamma}) plays an important role in the differentiation of intestinal cells and tissues. Our previous reports indicate that PPAR{gamma} is expressed at considerable levels in human colon cancer cells. This suggests that PPAR{gamma} expression may be an important factor for cell growth regulation in colon cancer. In this study, we investigated PPAR{gamma} expression in 4 human colon cancer cell lines, HT-29, LOVO, DLD-1, and Caco-2. Real-time polymerase chain reaction (PCR) and Western blot analysis revealed that the relative levels of PPAR{gamma} mRNA and protein in these cells were in the order HT-29 > LOVO > Caco-2 > DLD-1. We also found that PPAR{gamma} overexpression promoted cell growth inhibition in PPAR{gamma} lower-expressing cell lines (Caco-2 and DLD-1), but not in higher-expressing cells (HT-29 and LOVO). We observed a correlation between the level of PPAR{gamma} expression and the cells' sensitivity for proliferation.

  7. Expression cloning of the murine interferon gamma receptor cDNA.

    PubMed

    Munro, S; Maniatis, T

    1989-12-01

    A cDNA encoding a receptor for murine interferon gamma (IFN-gamma) was isolated from an expression library made from murine thymocytes. The clone was identified by transfecting the library into monkey COS cells and probing the transfected monolayer with radiolabeled murine IFN-gamma. Cells expressing the receptor were identified by autoradiography and plasmids encoding the receptor were directly rescued from those cells producing a positive signal. A partial cDNA so obtained was used to isolate a full-length cDNA from mouse L929 cells by conventional means. When this cDNA was expressed in COS cells it produced a specific binding site for murine IFN-gamma with an affinity constant similar to that of the receptor found on L929 cells. The predicted amino acid sequence of the murine IFN-gamma receptor shows homology to that previously reported for the human IFN-gamma receptor. However, although the two proteins are clearly related, they show less than 60% identity in both the putative extracellular domain and the intracellular domain.

  8. Regulation of retinoic acid receptor beta expression by peroxisome proliferator-activated receptor gamma ligands in cancer cells.

    PubMed

    James, Sharon Y; Lin, Feng; Kolluri, Siva Kumar; Dawson, Marcia I; Zhang, Xiao-kun

    2003-07-01

    The peroxisome proliferator-activated receptor gamma (PPAR gamma) is a nuclear receptor family member that can form a heterodimeric complex with retinoid X receptor (RXR) and initiate transcription of target genes. In this study, we have examined the effects of the PPAR gamma ligand ciglitazone and the RXR ligand SR11237 on growth and induction of retinoic acid receptor (RAR) beta expression in breast and lung cancer cells. Our results demonstrated that ciglitazone and SR11237 cooperatively inhibited the growth of ZR-75-1 and T-47D breast cancer and Calu-6 lung cancer cells. Gel shift analysis indicated that PPAR gamma, in the presence of RXR, formed a strong complex with a retinoic acid response element (beta retinoic acid response element) in the RAR beta promoter. In reporter gene assays, RXR ligands and ciglitazone, but not the PPAR gamma ligand 15d-PGJ(2), cooperatively promoted the transcriptional activity of the beta retinoic acid response element. Ciglitazone, but not 15d-PGJ(2), strongly induced RAR beta expression in human breast and lung cancer cell lines when used together with SR11237. The induction of RAR beta expression by the ciglitazone and SR11237 combination was diminished by a PPAR gamma-selective antagonist, bisphenol A diglycidyl ether. All-trans-retinoic acid or the combination of ciglitazone and SR11237 was able to induce RAR beta in all-trans-retinoic acid-resistant MDA-MB-231 breast cancer cells only when the orphan receptor chick ovalbumin upstream promoter transcription factor was expressed, or in the presence of the histone deacetylase inhibitor trichostatin A. These studies indicate the existence of a novel RAR beta-mediated signaling pathway of PPAR gamma action, which may provide a molecular basis for developing novel therapies involving RXR and PPAR gamma ligands in potentiating antitumor responses.

  9. GammaCam{trademark} radiation imaging system

    SciTech Connect

    1998-02-01

    GammaCam{trademark}, a gamma-ray imaging system manufactured by AIL System, Inc., would benefit a site that needs to locate radiation sources. It is capable of producing a two-dimensional image of a radiation field superimposed on a black and white visual image. Because the system can be positioned outside the radiologically controlled area, the radiation exposure to personnel is significantly reduced and extensive shielding is not required. This report covers the following topics: technology description; performance; technology applicability and alternatives; cost; regulatory and policy issues; and lessons learned. The demonstration of GammaCam{trademark} in December 1996 was part of the Large-Scale Demonstration Project (LSDP) whose objective is to select and demonstrate potentially beneficial technologies at the Argonne National Laboratory-East (ANL) Chicago Pile-5 Research Reactor (CP-5). The purpose of the LSDP is to demonstrate that by using innovative and improved decontamination and decommissioning (D and D) technologies from various sources, significant benefits can be achieved when compared to baseline D and D technologies.

  10. Review of the expression of peroxisome proliferator-activated receptors alpha (PPAR alpha), beta (PPAR beta), and gamma (PPAR gamma) in rodent and human development.

    PubMed

    Abbott, Barbara D

    2009-06-01

    The peroxisome proliferator-activated receptors (PPAR) belong to the nuclear hormone receptor superfamily and there are three primary subtypes, PPARalpha, beta, and gamma. These receptors regulate important physiological processes that impact lipid homeostasis, inflammation, adipogenesis, reproduction, wound healing, and carcinogenesis. These nuclear receptors have important roles in reproduction and development and their expression may influence the responses of an embryo exposed to PPAR agonists. PPARs are relevant to the study of the biological effects of the perfluorinated alkyl acids as these compounds, including perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), activate PPARalpha. Exposure of the rodent to PFOA or PFOS during gestation results in neonatal deaths, developmental delay and growth deficits. Studies in PPARalpha knockout mice demonstrate that the developmental effects of PFOA, but not PFOS, depend on expression of PPARalpha. This review provides an overview of PPARalpha, beta, and gamma protein and mRNA expression during mouse, rat, and human development. The review presents the results from many published studies and the information is organized by organ system and collated to show patterns of expression at comparable developmental stages for human, mouse, and rat. The features of the PPAR nuclear receptor family are introduced and what is known or inferred about their roles in development is discussed relative to insights from genetically modified mice and studies in the adult.

  11. Regulation of CD3-induced phospholipase C-gamma 1 (PLC gamma 1) tyrosine phosphorylation by CD4 and CD45 receptors.

    PubMed Central

    Kanner, S B; Deans, J P; Ledbetter, J A

    1992-01-01

    Stimulation of the signal transduction cascade in T cells through the T-cell receptor (CD3) coincides with activation of the phosphatidylinositol-phospholipase C (PI-PLC) pathway. activation of phospholipase C-gamma 1 (PLC gamma 1) occurs through tyrosine phosphorylation in T cells following surface ligation of CD3 receptors with CD3-specific monoclonal antibodies (mAb). Here we show that cross-linking of CD4 molecules with CD3 augments the tyrosine phosphorylation of PLC gamma 1, while co-ligation of CD3 with CD45 (a receptor tyrosine phosphatase) results in reduced PLC gamma 1 tyrosine phosphorylation. Mobilization of intracellular calcium correlated with the extent of PLC gamma 1 tyrosine phosphorylation, indicating that PLC gamma 1 enzymatic activity in T cells may be regulated by its phosphorylation state. The time-course of PLC gamma 1 tyrosine phosphorylation in cells stimulated by soluble anti-CD3 was transient and closely paralleled that of calcium mobilization, while the kinetics in cells stimulated by immobilized anti-CD3 were prolonged. The PI-PLC pathway in T cells was not stimulated by tyrosine phosphorylation of PLC gamma 2, a homologue of PLC gamma 1, demonstrating the strict regulation of PLC gamma isoform usage in CD3-stimulated T cells. A 35,000/36,000 MW tyrosine phosphorylated protein in T cells formed stable complexes with PLC gamma 1, and its tyrosine phosphorylation was co-regulated with that of PLC gamma 1 by CD4 and CD45 receptors. Enzymatic activation and tyrosine phosphorylation of PLC gamma 1 occurs during growth factor stimulation of fibroblasts, where PLC gamma 1 exists in multi-component complexes. The observation that PLC gamma 1 exists in complexes with unique tyrosine phosphorylated proteins in T cells suggests that haematopoietic lineage-specific proteins associated with PLC gamma 1 may play roles in cellular signalling. Images Figure 1 Figure 4 PMID:1533389

  12. Stimulation of Estrogen Receptor Signaling in Breast Cancer by a Novel Chaperone Synuclein Gamma

    DTIC Science & Technology

    2006-06-01

    AD_________________ Award Number: W81XWH- 04 -1-0569 TITLE: Stimulation of estrogen receptor...Stimulation of estrogen receptor signaling in breast cancer by a novel chaperone 5a. CONTRACT NUMBER synuclein gamma 5b. GRANT NUMBER W81XWH- 04 -1...UNIT NUMBER 7 . PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER North Shore University Hospital

  13. Synchronization system for Gamma-4 electrophysical facility

    NASA Astrophysics Data System (ADS)

    Grishin, A. V.; Nazarenko, S. T.; Kozachek, A. V.; Kalashnikov, D. A.; Glushkov, S. L.; Mironychev, B. P.; Martynov, V. M.; Turutin, V. V.; Kul'dyushov, D. A.; Pavlov, V. S.; Demanov, V. A.; Shikhanova, T. F.; Esaeva, Yu. A.

    2015-01-01

    A synchronization system for the Gamma-4 four-module electrophysical facility has been developed. It has been shown that the synchronization system should provide triggering (with precision not worse than ±3 ns) of the high-voltage gas-filled trigatron-type switches of the facility modules (144 spark gaps with an operating voltage of 1 MV), the pre-pulse switches of the modules (24 spark gaps with an operating voltage of 3 MV) and eight Arkad'ev-Marx generators (40 spark gaps with an operating voltage of 100 kV).

  14. Fc gamma-receptor activity of isolated human placental syncytiotrophoblast plasma membrane.

    PubMed Central

    Brown, P J; Johnson, P M

    1981-01-01

    Fc gamma-receptor activity of isolated human placental syncytiotrophoblast microvillous plasma membrane (StMPM) vesicle preparations has been determined in an immunoradiometric assay using Sepharose-immobilized protein A to separate free 125I-labelled human IgG from membrane-bound 125I-IgG. This receptor assay has been optimalized in terms of buffer pH and molarity, and used to demonstrate that prior 60 min washing of isolated membranes in 3 M KCl to remove extrinsic membrane-bound protein substantially increases the membrane-binding capacity for IgG. Inhibition studies have determined the syncytiotrophoblast Fc gamma-receptor equilibrium constant for association (Ka) as 4.0 x 10(7) M-1 at 37 degrees and the number of available Fc gamma-receptor sites as 1.5 x 10(14) per mg membrane protein. PMID:7461733

  15. Effects of beer and hop on ionotropic gamma-aminobutyric acid receptors.

    PubMed

    Aoshima, Hitoshi; Takeda, Katsuichi; Okita, Yoichi; Hossain, Sheikh Julfikar; Koda, Hirofumi; Kiso, Yoshinobu

    2006-04-05

    Beer induced the response of the ionotropic gamma-aminobutyric acid receptors (GABA(A) receptors) expressed in Xenopus oocytes, indicating the presence of gamma-aminobutyric acid (GABA)-like activity. Furthermore, the pentane extract of the beer, hop (Humulus lupulus L.) oil, and myrcenol potentiated the GABA(A) receptor response elicited by GABA. The GABA(A) receptor responses were also potentiated by the addition of aliphatic esters, most of which are reported to be present in beer flavor. Aliphatic esters showed the tendency to decrease in the potentiation of the GABA(A) receptor response with an increase in their carbon chain length. When myrcenol was injected to mice prior to intraperitoneal administration of pentobarbital, the pentobarbital-induced sleeping time of mice increased additionally. Therefore, the beer contained not only GABA-like activity but also the modulator(s) of the GABA(A) receptor response.

  16. Feline T-Cell Receptor gamma V- and J-Region Sequences Retrieved from the Trace Archive and from Transcriptome Analysis of Cats.

    PubMed

    Weiss, Alexander Thomas Andreas; Hecht, Werner; Reinacher, Manfred

    2010-01-01

    The variable domains of antigen receptors are very diverse and assembled in a modular system from a number of V-, D-, and J-region genes. Here we describe additional variants of V- and J-region genes of the feline T-cell receptor gamma (TRG) as well as the corresponding RSSs retrieved from Trace Archive of feline genomic sequences. Additionally, an unusually recombined TRGV-domain containing a partial inverted repeat of the included J-region and a short interspersed element of the CAN-SINE family located within the feline T-cell receptor gamma locus are also described.

  17. A regulatory role for Fc gamma receptors (CD16 and CD32) in hematopoiesis.

    PubMed

    de Andres, B; Hagen, M; Sandor, M; Verbeek, S; Rokhlin, O; Lynch, R G

    1999-05-03

    Progenitor cells of the T- and B-lineages in mice express (CD32) and Fc gamma RIII (CD16) but as the developing lymphocytes begin to express clonal antigen receptors, CD16 and CD32 are downregulated in T-cells, and CD16 is downregulated in B-cells. Considering that counter-receptors for Fc gamma R occur on thymic and bone marrow stromal cells, the possibility exists that Fc gamma R might participate in some aspect of T- and B-lineage development prior to the stage of antigen receptor expression. Previous studies provided evidence that Fc gamma R can influence murine T-lineage development. In the present studies we found that anti-Fc gamma RII/III mAb accelerated B-lineage development in bone marrow cultures from normal mice, but not in cultures from CD16-/- or CD32-/- mice. Similar results were observed when FACS-purified B-progenitor cells were co-cultured with BMS2, a bone marrow stromal cell line. Fresh bone marrow from CD32-/- mice contained about two-fold more B-lineage cells compared to bone marrow from normal or CD16-/- mice. These studies indicate that the Fc gamma R on B-lineage progenitor cells can influence their further development and add to a growing body of evidence that implicates Fc gamma R as regulatory elements in hematopoiesis.

  18. Peroxisome proliferator-activated receptor-gamma ligands for the treatment of breast cancer.

    PubMed

    Fenner, Martin H; Elstner, Elena

    2005-06-01

    Pioglitazone and rosiglitazone are thiazolidinediones used for the treatment of Type 2 diabetes mellitus. They modulate glucose and fat metabolism, mainly by binding to the nuclear hormone receptor peroxisome proliferator-activated receptor (PPAR)-gamma. PPAR-gamma signalling is involved in a number of other disease conditions including cancer. In breast cancer cells, PPAR-gamma ligands inhibit proliferation and induce apoptosis both in vitro and in vivo. PPAR-gamma ligands also inhibit tumour angiogenesis and invasion. The only published clinical trial using a PPAR-gamma ligand in patients with metastatic breast cancer failed to show any clinical benefits. The mechanism of action of the thiazolidinediones in breast cancer cells is not fully understood but involves interactions with other nuclear hormone receptors, transcriptional co-activators and repressors as well as PPAR-gamma-independent effects. A better understanding of these mechanisms will be needed before PPAR-gamma ligands may be useful in the treatment of breast cancer patients.

  19. A point mutation in a domain of gamma interferon receptor 1 provokes severe immunodeficiency.

    PubMed

    Allende, L M; López-Goyanes, A; Paz-Artal, E; Corell, A; García-Pérez, M A; Varela, P; Scarpellini, A; Negreira, S; Palenque, E; Arnaiz-Villena, A

    2001-01-01

    Gamma interferon (IFN-gamma) and the cellular responses induced by it are essential for controlling mycobacterial infections. Most patients bearing an IFN-gamma receptor ligand-binding chain (IFN-gammaR1) deficiency present gross mutations that truncate the protein and prevent its expression, giving rise to severe mycobacterial infections and, frequently, a fatal outcome. In this report a new mutation that affects the IFN-gammaR1 ligand-binding domain in a Spanish patient with mycobacterial disseminated infection and multifocal osteomyelitis is characterized. The mutation generates an amino acid change that does not abrogate protein expression on the cellular surface but that severely impairs responses after the binding of IFN-gamma (CD64 and HLA class II induction and tumor necrosis factor alpha and interleukin-12 production). A patient's younger brother, who was also probably homozygous for the mutation, died from meningitis due to Mycobacterium bovis. These findings suggest that a point mutation may be fatal when it affects functionally important domains of the receptor and that the severity is not directly related to a lack of IFN-gamma receptor expression. Future research on these nontruncating mutations will make it possible to develop new therapeutical alternatives in this group of patients.

  20. Casein kinase 1 gamma couples Wnt receptor activation to cytoplasmic signal transduction.

    PubMed

    Davidson, Gary; Wu, Wei; Shen, Jinlong; Bilic, Josipa; Fenger, Ursula; Stannek, Peter; Glinka, Andrei; Niehrs, Christof

    2005-12-08

    Signalling by Wnt proteins (Wingless in Drosophila) has diverse roles during embryonic development and in adults, and is implicated in human diseases, including cancer. LDL-receptor-related proteins 5 and 6 (LRP5 and LRP6; Arrow in Drosophila) are key receptors required for transmission of Wnt/beta-catenin signalling in metazoa. Although the role of these receptors in Wnt signalling is well established, their coupling with the cytoplasmic signalling apparatus remains poorly defined. Using a protein modification screen for regulators of LRP6, we describe the identification of Xenopus Casein kinase 1 gamma (CK1gamma), a membrane-bound member of the CK1 family. Gain-of-function and loss-of-function experiments show that CK1gamma is both necessary and sufficient to transduce LRP6 signalling in vertebrates and Drosophila cells. In Xenopus embryos, CK1gamma is required during anterio-posterior patterning to promote posteriorizing Wnt/beta-catenin signalling. CK1gamma is associated with LRP6, which has multiple, modular CK1 phosphorylation sites. Wnt treatment induces the rapid CK1gamma-mediated phosphorylation of these sites within LRP6, which, in turn, promotes the recruitment of the scaffold protein Axin. Our results reveal an evolutionarily conserved mechanism that couples Wnt receptor activation to the cytoplasmic signal transduction apparatus.

  1. Recombinant GABAA receptor desensitization: the role of the gamma 2 subunit and its physiological significance.

    PubMed

    Dominguez-Perrot, C; Feltz, P; Poulter, M O

    1996-11-15

    1. The purpose of these investigations was to examine the role that the gamma 2 subunit plays in human GABAA receptor desensitization. Two different recombinant GABAA receptors (alpha 1 beta 3 and alpha 1 beta 3 gamma 2) were compared by measuring the relaxation of whole-cell currents during the application of GABA, isoguvacine or taurine. 2. At concentrations which trigger a maximum response (100-500 microM GABA) the current relaxation usually fitted the sum of two exponentials. For alpha 1 beta 3 subunit receptors these values were tau 1 = 145 +/- 12 ms and tau 2 = 6.3 +/- 2.1 s (means +/- S.E.M.). Receptors consisting of alpha 1 beta 3 gamma 2 subunits desensitized faster: tau 1 = 41.6 +/- 8.3 ms and tau 2 = 2.4 +/- 0.6 s. 3. The Hill slope, determined for each receptor subunit combination, was the same and greater than 1.0, implying two binding steps in the activation of both receptor subunit combinations. 4. For alpha 1 beta 3 subunit receptors the fast desensitization rates were unaltered by reducing the GABA concentration from the EC100 (100 microM) to the approximate EC50 values (10-20 microM), whereas for alpha 1 beta 3 gamma 2 subunit receptors a significant slowing was observed. The fast desensitization disappeared at agonist concentrations below the EC50 for both subunit combinations. In contrast, the slow desensitization appeared at agonist concentrations near the EC20. This rate was dependent on agonist concentration reaching a maximum near the EC60 value of GABA. 5. The fast desensitization rates were unaltered by changing the holding potential of the cell during agonist application. However, for alpha 1 beta 3 gamma 2 subunit receptors the slow desensitization rate increased by approximately 15- to 20-fold over the range of voltages of -60 to +40 mV. This indicates that the gamma 2 subunit makes GABAA receptor desensitization voltage dependent. 6. Recovery from desensitization was also biphasic. The first recovery phase was faster for alpha 1 beta 3

  2. Frequency of the Fc gamma RIIIA-158F allele in African American patients with systemic lupus erythematosus.

    PubMed

    Oh, M; Petri, M A; Kim, N A; Sullivan, K E

    1999-07-01

    Defects in genes involved in immune complex clearance constitute one of the most common gene defects identified in patients with systemic lupus erythematosus (SLE). Defects in early complement components, complement receptors, and Fc receptors have all been implicated in the susceptibility to SLE. Recently, the role of functionally relevant Fc receptor polymorphisms in the etiology of SLE has been investigated. Specifically, a polymorphism of FC gamma RIII, termed Fc gamma RIIIA-158F, has been found to be associated with SLE in 2 largely Caucasian populations and appeared to constitute a risk factor for nephritis. We investigated the association of the Fc gamma RIIIA-158F and Fc gamma RIIIA-131R polymorphisms with SLE in an African American study population. Nested polymerase chain reaction (PCR) and allele-specific PCR was used to genotype patients with SLE and controls. There was no difference in Fc gamma RIIIA-158F or Fc gamma RIIA-131R gene frequencies in the SLE populations compared to controls. There was no significant association between Fc gamma RIIIA-158F or Fc gamma RIIA-131R and any specific clinical or laboratory variable. In our African American study population, there did not appear to be any association of Fc gamma RIIA-158F or Fc gamma RIIA-131R with SLE.

  3. Interleukin-7 receptor alpha is essential for the development of gamma delta + T cells, but not natural killer cells

    PubMed Central

    1996-01-01

    Mice that lack a functional gamma c subunit of the receptors for interleukin (IL)-2, IL-4, IL-7, IL-9, and IL-15 display profound defects in lymphoid development. The IL-7/IL-7R system represents a critical interaction for conventional T and B cell development. In this report, the role of IL-7R alpha in the development of lymphoid lineages other than conventional T and B cells was examined. We demonstrate that gamma delta + T cells were absent in IL-7R alpha-deficient mice, whereas the development and function of natural killer cells were normal. Thus, IL-7R alpha function is required for the development of gamma delta + T cells but not natural killer cells. PMID:8691145

  4. Identification and sequence of an accessory factor required for activation of the human interferon gamma receptor.

    PubMed

    Soh, J; Donnelly, R J; Kotenko, S; Mariano, T M; Cook, J R; Wang, N; Emanuel, S; Schwartz, B; Miki, T; Pestka, S

    1994-03-11

    Human chromosomes 6 and 21 are both necessary to confer sensitivity to human interferon gamma (Hu-IFN-gamma), as measured by induction of class I human leukocyte antigen (HLA) and protection against encephalomyocarditis virus (EMCV) infection. Whereas human chromosome 6 encodes the Hu-IFN-gamma receptor, human chromosome 21 encodes accessory factors for generating biological activity through the Hu-IFN-gamma receptor. Probes from a genomic clone were used to identity cDNA clones expressing a species-specific accessory factor. These cDNA clones are able to substitute for human chromosome 21 to reconstitute the Hu-IFN-gamma receptor-mediated induction of class I HLA antigens. However, the factor encoded by the cDNA does not confer full antiviral protection against EMCV, confirming that an additional factor encoded on human chromosome 21 is required for reconstitution of antiviral activity against EMCV. We conclude that this accessory factor belongs to a family of such accessory factors responsible for different actions of IFN-gamma.

  5. Ligands of peroxisome proliferator-activated receptor-gamma block activation of pancreatic stellate cells.

    PubMed

    Masamune, Atsushi; Kikuta, Kazuhiro; Satoh, Masahiro; Sakai, Yoshitaka; Satoh, Akihiko; Shimosegawa, Tooru

    2002-01-04

    Activated pancreatic stellate cells (PSCs) have recently been implicated in the pathogenesis of pancreatic fibrosis and inflammation. Peroxisome proliferator-activated receptor gamma (PPAR-gamma) is a ligand-activated transcription factor which controls growth, differentiation, and inflammation in different tissues. Roles of PPAR-gamma activation in PSCs are poorly characterized. Here we examined the effects of PPAR-gamma ligands on the key parameters of PSC activation. PSCs were isolated from rat pancreas tissue, and used in their culture-activated, myofibroblast-like phenotype. Activation of PPAR-gamma was induced with 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2) or with troglitazone. Expression of PPAR-gamma was predominantly localized in the nuclei, and PPAR-gamma was transcriptionally active after ligand stimulation. PPAR-gamma ligands inhibited platelet-derived growth factor-induced proliferation. This effect was associated with inhibition of cell cycle progression beyond the G1 phase. PPAR-gamma ligands decreased alpha-smooth muscle actin protein expression and alpha1(I) procollagen and prolyl 4-hydroxylase(alpha) mRNA levels. Activation of PPAR-gamma also resulted in the inhibition of inducible monocyte chemoattractant protein-1 expression. 15d-PGJ2, but not troglitazone, inhibited the degradation of IkappaB-alpha and consequent NF-kappaB activation. In conclusion, activation of PPAR-gamma inhibited profibrogenic and proinflammatory actions in activated PSCs, suggesting a potential application of PPAR-gamma ligands in the treatment of pancreatic fibrosis and inflammation.

  6. A critical role for NMDA receptors in parvalbumin interneurons for gamma rhythm induction and behavior

    PubMed Central

    Carlén, M; Meletis, K; Siegle, J H; Cardin, J A; Futai, K; Vierling-Claassen, D; Rühlmann, C; Jones, S R; Deisseroth, K; Sheng, M; Moore, C I; Tsai, L-H

    2012-01-01

    Synchronous recruitment of fast-spiking (FS) parvalbumin (PV) interneurons generates gamma oscillations, rhythms that emerge during performance of cognitive tasks. Administration of N-methyl-D-aspartate (NMDA) receptor antagonists alters gamma rhythms, and can induce cognitive as well as psychosis-like symptoms in humans. The disruption of NMDA receptor (NMDAR) signaling specifically in FS PV interneurons is therefore hypothesized to give rise to neural network dysfunction that could underlie these symptoms. To address the connection between NMDAR activity, FS PV interneurons, gamma oscillations and behavior, we generated mice lacking NMDAR neurotransmission only in PV cells (PV-Cre/NR1f/f mice). Here, we show that mutant mice exhibit enhanced baseline cortical gamma rhythms, impaired gamma rhythm induction after optogenetic drive of PV interneurons and reduced sensitivity to the effects of NMDAR antagonists on gamma oscillations and stereotypies. Mutant mice show largely normal behaviors except for selective cognitive impairments, including deficits in habituation, working memory and associative learning. Our results provide evidence for the critical role of NMDAR in PV interneurons for expression of normal gamma rhythms and specific cognitive behaviors. PMID:21468034

  7. A critical role for NMDA receptors in parvalbumin interneurons for gamma rhythm induction and behavior.

    PubMed

    Carlén, M; Meletis, K; Siegle, J H; Cardin, J A; Futai, K; Vierling-Claassen, D; Rühlmann, C; Jones, S R; Deisseroth, K; Sheng, M; Moore, C I; Tsai, L-H

    2012-05-01

    Synchronous recruitment of fast-spiking (FS) parvalbumin (PV) interneurons generates gamma oscillations, rhythms that emerge during performance of cognitive tasks. Administration of N-methyl-D-aspartate (NMDA) receptor antagonists alters gamma rhythms, and can induce cognitive as well as psychosis-like symptoms in humans. The disruption of NMDA receptor (NMDAR) signaling specifically in FS PV interneurons is therefore hypothesized to give rise to neural network dysfunction that could underlie these symptoms. To address the connection between NMDAR activity, FS PV interneurons, gamma oscillations and behavior, we generated mice lacking NMDAR neurotransmission only in PV cells (PV-Cre/NR1f/f mice). Here, we show that mutant mice exhibit enhanced baseline cortical gamma rhythms, impaired gamma rhythm induction after optogenetic drive of PV interneurons and reduced sensitivity to the effects of NMDAR antagonists on gamma oscillations and stereotypies. Mutant mice show largely normal behaviors except for selective cognitive impairments, including deficits in habituation, working memory and associative learning. Our results provide evidence for the critical role of NMDAR in PV interneurons for expression of normal gamma rhythms and specific cognitive behaviors.

  8. Binding interactions of convulsant and anticonvulsant gamma-butyrolactones and gamma-thiobutyrolactones with the picrotoxin receptor

    SciTech Connect

    Holland, K.D.; McKeon, A.C.; Covey, D.F.; Ferrendelli, J.A. )

    1990-08-01

    Alkyl-substituted gamma-butyrolactones (GBLs) and gamma-thiobutyrolactones (TBLs) are neuroactive chemicals. beta-Substituted compounds are convulsant, whereas alpha-alkyl substituted GBLs and TBLs are anticonvulsant. The structural similarities between beta-alkyl GBLs and the convulsant picrotoxinin suggested that alkyl substituted GBLs and TBLs act at the picrotoxin receptor. To test this hypothesis we examined the interactions of convulsant and anticonvulsant GBLs and TBLs with the picrotoxin, benzodiazepine and gamma-aminobutyric acid (GABA) binding sites of the GABA receptor complex. All of these convulsants and anticonvulsants studied competitively displaced 35S-t-butylbicyclophosphorothionate (35S-TBPS), a ligand that binds to the picrotoxin receptor. This inhibition of 35S-TBPS binding was not blocked by the GABA antagonist bicuculline methobromide. The convulsant GBLs and TBLs also partially inhibited (3H)muscimol binding to the GABA site and (3H)flunitrazepam binding to the benzodiazepine site, but they did so at concentrations substantially greater than those that inhibited 35S-TBPS binding. The anticonvulsant GBLs and TBLs had no effect on either (3H)muscimol or (3H)flunitrazepam binding. In contrast to the GBLs and TBLs, pentobarbital inhibited TBPS binding in a manner that was blocked by bicuculline methobromide, and it enhanced both (3H)flunitrazepam and (3H)muscimol binding. Both ethosuximide and tetramethylsuccinimide, neuroactive compounds structurally similar to GBLs, competitively displaced 35S-TBPS from the picrotoxin receptor and both compounds were weak inhibitors of (3H) muscimol binding. In addition, ethosuximide also partially diminished (3H)flunitrazepam binding. These data demonstrate that the site of action of alkyl-substituted GBLs and TBLs is different from that of GABA, barbiturates and benzodiazepines.

  9. T3 glycoprotein is functional although structurally distinct on human T-cell receptor. gamma. T lymphocytes

    SciTech Connect

    Krangel, M.S.; Bierer, B.E.; Devlin, P.; Clabby, M.; Strominger, J.L.; McLean, J.; Brenner, M.B.

    1987-06-01

    The T-cell receptor (TCR) ..gamma.. gene product occurs in association with T3 (CD3) polypeptides on the surface of human T lymphocytes. TCR ..gamma.. lymphocytes express arrays of T3 polypeptides distinct from those typically observed on TCR ..cap alpha beta.. lymphocytes. This report demonstrates that identical T3 ..gamma.., delta, and element of polypeptides are synthesized by TCR ..gamma.. lymphocytes and TCR ..cap alpha beta.. lymphocytes. However, the processing of T3 delta oligosaccharides is distinct in the two cell types. This observation may suggest distinct quaternary structures of these receptor complexes. Despite these structural differences, the T3 molecule on TCR ..gamma.. lymphocytes is functional. It is associated with and comodulates with TCR ..gamma.. and it serves as a substrate from protein kinase C-mediated phosphorylation. Anti-T3 monoclonal antibodies induce a rapid increase in cytoplasmic free calcium, indicating that the receptor complex is involved in signal transduction and triggering of TCR ..gamma.. lymphocytes.

  10. Importance of the loop connecting A and B helices of human interferon-gamma in recognition by interferon-gamma receptor.

    PubMed

    Lundell, D; Lunn, C A; Senior, M M; Zavodny, P J; Narula, S K

    1994-06-10

    Characterization of murine-human hybrid interferon-gamma (IFN-gamma) molecules suggests that substitution of the peptide connecting the A and B helices in human IFN-gamma with the murine sequence significantly blocks the protein's binding to the human interferon-gamma receptor. Mutagenesis showed that this effect is localized to the central part of this A-B loop peptide, particularly Ser20, Asp21, Val22, and Ala23. One mutant, IFN-gamma/A23E,D24E,N25K, was examined by NMR. This "EEK" mutation does not significantly alter the conformation of interferon-gamma, suggesting that the effects of these mutations are not the result of global conformational changes. The A-B loop is near histidine 111, a residue previously shown to be important in receptor-ligand interaction (Lunn, C. A., Fossetta, J., Dalgarno, D., Murgolo, N., Windsor, W., Zavodny, P. J., Narula, S. K., and Lundell, D. (1992) Protein Eng. 5, 253-257). We show that copper forms a complex between histidine 19 in the A-B loop and histidine 111. This metal complex lacks the ability to interact with the interferon-gamma receptor. These results suggest that the A-B loop contains important structural information needed for receptor-ligand binding and hence biological activity of human interferon-gamma.

  11. Characterization of arrangement and expression of the T cell receptor gamma locus in the sandbar shark.

    PubMed

    Chen, Hao; Kshirsagar, Sarika; Jensen, Ingvill; Lau, Kevin; Covarrubias, Roman; Schluter, Samuel F; Marchalonis, John J

    2009-05-26

    Ig and T cell receptor (TCR) genes consist of separate genomic elements, which must undergo rearrangement and joining before a functional protein can be expressed. Considerable plasticity in the genomic arrangement of these elements has occurred during the evolution of the immune system. In tetrapods, all Ig and TCR chain elements are arranged as translocons. In teleosts, the Ig heavy and TCR chains are translocons, but light chain genes may occur as clusters. However, in chondrichthyes, all of the Ig light and heavy chain genes are arranged as clusters. These clusters vary in number from <10 to several hundred, depending on isotype and species. Here, we report that the germ-line gene for the TCR gamma chain in a chondrichthyan, the sandbar shark (Carcharhinus plumbeus), is present as a single locus arranged in a classic translocon pattern. Thus, the shark utilizes 2 types of genomic arrangements, the unique cluster organization for Ig genes and the "conventional" translocon organization for TCR genes. The TCR gamma translocon contains at least 5 V region genes, 3 J segment genes, and 1 C segment. As expected, the third hypervariable segment (CDR3), formed by the rearrangement of the Vgamma and Jgamma segments, contributed the major variability in the intact V region structure. Our data also suggest that diversity may be generated by mutation in the V regions.

  12. Peroxisome proliferator-activated receptor gamma inhibits hepatic fibrosis in rats.

    PubMed

    Wang, Zheng; Xu, Jia-Peng; Zheng, Yong-Chao; Chen, Wei; Sun, Yong-Wei; Wu, Zhi-Yong; Luo, Meng

    2011-02-01

    Hepatic fibrosis is a necessary step in the development of hepatic cirrhosis. In this study we used lentiviral vector-mediated transfection technology to evaluate the effect of peroxisome proliferator-activated receptor gamma (PPAR-gamma) on rat hepatic fibrosis. Hepatic fibrosis in rats was induced by CCl4 for 2 weeks (early fibrosis) and 8 weeks (sustained fibrosis). The rats were randomly divided into four groups: normal control, fibrosis, blank vector, and PPAR-gamma. They were infected with the recombinant lentiviral expression vector carrying the rat PPAR-gamma gene by portal vein injection. The liver of the rats was examined histologically and hydroxyproline was assessed. In vitro primary hepatic stellate cells (HSCs) were infected with the recombinant lentiviral expression vector carrying the rat PPAR-gamma gene. The status of HSC proliferation was measured by the MTT assay. The protein levels of PPAR-gamma, alpha-smooth muscle actin (alpha-SMA) and type I collagen expression were evaluated by the Western blotting method. In vitro studies revealed that expression of PPAR-gamma inhibited expression of alpha-SMA and type I collagen in activated HSCs (P<0.01) as well as HSC proliferation (P<0.01). In vivo experiments indicated that in the early hepatic fibrosis group, the hydroxyproline content and the level of collagen I protein in the liver in the PPAR-gamma transfected group were not significantly different compared to the hepatic fibrosis group and the blank vector group; whereas the expressions of PPAR-gamma and alpha-SMA were different compared to the hepatic fibrosis group (P<0.01). In the sustained hepatic fibrosis group, there were significant differences in the hydroxyproline content and the expression of PPAR-gamma, alpha-SMA, and type I collagen between each group. PPAR-gamma can inhibit HSC proliferation and hepatic fibrosis, and suppress alpha-SMA and type I collagen expression.

  13. The pathophysiological function of peroxisome proliferator-activated receptor-gamma in lung-related diseases.

    PubMed

    Huang, Tom Hsun-Wei; Razmovski-Naumovski, Valentina; Kota, Bhavani Prasad; Lin, Diana Shu-Hsuan; Roufogalis, Basil D

    2005-09-09

    Research into respiratory diseases has reached a critical stage and the introduction of novel therapies is essential in combating these debilitating conditions. With the discovery of the peroxisome proliferator-activated receptor and its involvement in inflammatory responses of cardiovascular disease and diabetes, attention has turned to lung diseases and whether knowledge of this receptor can be applied to therapy of the human airways. In this article, we explore the prospect of peroxisome proliferator-activated receptor-gamma as a marker and treatment focal point of lung diseases such as asthma, chronic obstructive pulmonary disorder, lung cancer and cystic fibrosis. It is anticipated that peroxisome proliferator-activated receptor-gamma ligands will provide not only useful mechanistic pathway information but also a possible new wave of therapies for sufferers of chronic respiratory diseases.

  14. Cell death is induced by ciglitazone, a peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) agonist, independently of PPAR{gamma} in human glioma cells

    SciTech Connect

    Lee, Myoung Woo; Kim, Dae Seong; Kim, Hye Ryung; Kim, Hye Jin; Yang, Jin Mo; Ryu, Somi; Noh, Yoo Hun; Lee, Soo Hyun; Son, Meong Hi; Jung, Hye Lim; Yoo, Keon Hee; Koo, Hong Hoe; Sung, Ki Woong

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Greater than 30 {mu}M ciglitazone induces cell death in glioma cells. Black-Right-Pointing-Pointer Cell death by ciglitazone is independent of PPAR{gamma} in glioma cells. Black-Right-Pointing-Pointer CGZ induces cell death by the loss of MMP via decreased Akt. -- Abstract: Peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) regulates multiple signaling pathways, and its agonists induce apoptosis in various cancer cells. However, their role in cell death is unclear. In this study, the relationship between ciglitazone (CGZ) and PPAR{gamma} in CGZ-induced cell death was examined. At concentrations of greater than 30 {mu}M, CGZ, a synthetic PPAR{gamma} agonist, activated caspase-3 and induced apoptosis in T98G cells. Treatment of T98G cells with less than 30 {mu}M CGZ effectively induced cell death after pretreatment with 30 {mu}M of the PPAR{gamma} antagonist GW9662, although GW9662 alone did not induce cell death. This cell death was also observed when cells were co-treated with CGZ and GW9662, but was not observed when cells were treated with CGZ prior to GW9662. In cells in which PPAR{gamma} was down-regulated cells by siRNA, lower concentrations of CGZ (<30 {mu}M) were sufficient to induce cell death, although higher concentrations of CGZ ( Greater-Than-Or-Slanted-Equal-To 30 {mu}M) were required to induce cell death in control T98G cells, indicating that CGZ effectively induces cell death in T98G cells independently of PPAR{gamma}. Treatment with GW9662 followed by CGZ resulted in a down-regulation of Akt activity and the loss of mitochondrial membrane potential (MMP), which was accompanied by a decrease in Bcl-2 expression and an increase in Bid cleavage. These data suggest that CGZ is capable of inducing apoptotic cell death independently of PPAR{gamma} in glioma cells, by down-regulating Akt activity and inducing MMP collapse.

  15. Interferon gamma rapidly induces in human monocytes a DNA-binding factor that recognizes the gamma response region within the promoter of the gene for the high-affinity Fc gamma receptor.

    PubMed Central

    Wilson, K C; Finbloom, D S

    1992-01-01

    Interferon gamma (IFN-gamma) transcriptionally activates several early-response genes in monocytes that are important for the ultimate phenotype of the activated macrophage. One of these genes is the high-affinity Fc receptor for IgG (Fc gamma RI). Recently, Pearse et al. [Pearse, R.N., Feinman, R. & Ravetch, J. V. (1991) Proc. Natl. Acad. Sci. USA 88, 11305-11309] defined within the promoter region of the Fc gamma RI gene an element, the gamma response region, which was necessary for IFN-gamma-induced enhancement of Fc gamma RI. In this report we describe the induction by IFN-gamma of a DNA-binding factor, FcRF gamma (Fc gamma RI DNA-binding factor, IFN-gamma induced), that specifically recognizes the gamma response region element. Electrophoretic mobility shift assays (EMSAs) demonstrated the presence of FcRF gamma in human monocytes within 1 min after exposure to IFN-gamma. On EMSA, FcRF gamma consisted of two complexes termed FcRF gamma 1 and FcRF gamma 2. The nuclear concentration of FcRF gamma rapidly increased, peaked at 15 min, and then fell after 1-2 hr. Dose-response studies revealed (i) as little as 0.05 ng of IFN-gamma per ml induced FcRF gamma, (ii) maximum activation occurred at 1 ng/ml, and (iii) steady-state levels of Fc gamma RI mRNA closely paralleled that of FcRF gamma. Since FcRF gamma was activated in cells normally not expressing Fc gamma RI RNA, other regulatory mechanisms must control Fc gamma RI-restricted tissue expression. Activation of FcRF gamma by IFN-gamma was inhibited by pretreatment with 500 nM staurosporin and 25 microM phenyl arsine oxide. These data suggest that a kinase and possibly a phosphatase activity are required for IFN-gamma-induced signaling of FcRF gamma in monocytes. Images PMID:1334553

  16. Increased peroxisome proliferator-activated receptor-gamma activity reduces imatinib uptake and efficacy in chronic myeloid leukemia mononuclear cells.

    PubMed

    Wang, Jueqiong; Lu, Liu; Kok, Chung H; Saunders, Verity A; Goyne, Jarrad M; Dang, Phuong; Leclercq, Tamara M; Hughes, Timothy P; White, Deborah L

    2017-02-02

    Imatinib is actively transported by OCT-1 influx transporter, and low OCT-1 activity in diagnostic chronic myeloid leukemia blood mononuclear cells is significantly associated with poor molecular response to imatinib. Here we report that, in diagnostic chronic myeloid leukemia mononuclear cells and BCR-ABL1+ cell lines, peroxisome proliferator-activated receptor gamma agonists (GW1929, rosiglitazone, pioglitazone) significantly decrease OCT-1 activity; conversely, peroxisome proliferator-activated receptor gamma antagonists (GW9662, T0070907) increase OCT-1 activity. Importantly, these effects can lead to corresponding changes in sensitivity to Bcr-Abl kinase inhibition. Results were confirmed in peroxisome proliferator-activated receptor gamma-transduced K562 cells. Furthermore, we identified a strong negative correlation between OCT-1 activity and peroxisome proliferator-activated receptor gamma transcriptional activity in diagnostic chronic myeloid leukemia patients (n=84; p<0.0001), suggesting that peroxisome proliferator-activated receptor gamma activation has a negative impact on the intracellular uptake of imatinib and consequent Bcr-Abl kinase inhibition. The inter-patient variability of peroxisome proliferator-activated receptor gamma activation likely accounts for the heterogeneity observed in patient OCT-1 activity at diagnosis. Recently, the peroxisome proliferator-activated receptor gamma agonist pioglitazone was reported to act synergistically with imatinib targeting the residual chronic myeloid leukemia stem cell pool. Our findings suggest that peroxisome proliferator-activated receptor gamma ligands have differential effects on circulating mononuclear cells compared to stem cells. Since the effect of peroxisome proliferator-activated receptor gamma activation on imatinib uptake in mononuclear cells may counteract the clinical benefit of this activation in stem cells, caution should be applied when combining these therapies, especially in patients

  17. T-cell receptor gamma--delta lymphocytes and Eimeria vermiformis infection.

    PubMed Central

    Rose, M E; Hesketh, P; Rothwell, L; Gramzinski, R A

    1996-01-01

    The role of T-cell receptor gamma--delta T lymphocytes in coccidiosis was examined by determining the course of infection with Eimeria vermiformis in BALB/c mice depleted of gamma--delta lymphocytes by treatment with GL3 monoclonal antibody. The replication of the parasite in primary infections was not greatly, or consistently, affected by this treatment, and there was no correlation between the extent of depletion of small intestinal intraepithelial lymphocytes and the number of oocysts produced. The resistance of immunized mice to challenge was not compromised by depletion of intraintestinal epithelial lymphocytes when their depletion was effected at the time of primary infection and/or administration of the challenge inoculum. Thus, T-cell receptor gamma--delta T lymphocytes do not appear to be crucial to the establishment, or the control, of primary infection with E. vermiformis and are not principal mediators of the solid immunity to challenge that this infection induces. PMID:8890252

  18. The Distinctive Features of Anticoincidence Detector System of the GAMMA-400 Gamma-ray Telescope

    NASA Astrophysics Data System (ADS)

    Runtso, M. F.; Arkhangelskiy, A. I.; Arkhangelskaja, I. V.; Galper, A. M.; Kaplin, V. A.; Leonov, A. A.; sNaumov, P. Yu.; Kheimitz, M. D.; Yurkin, Yu. T.; Kushin, V. V.; Lazarev, S. D.; Likhacheva, V. L.; Maklyaev, E. F.; Loginov, V. A.; Manuilova, E. S.; Fedotov, S. N.; Sharapov, M. P.

    Some features of scintillation anticoincidence system (includes ACtop detector section located upper the converter-tracker and four AClat ones placed from its lateral sides) of the GAMMA-400 gamma-ray telescope, related to joint operations with another fast scintillation systems: SDC (scintillation detector system of calorimeter) and TOF (time-of-flight system) are considered. The main problem for high-energy (over 50 GeV) gamma-rays registration by gamma-telescopes is the presence of so-called «backsplash current» (BS) of particles from massive calorimeter when detecting of particles is provided. BS is a set of low energy particles, moving up from the calorimeter and producing triggering of the anticoincidence detectors, imitating detection of a charged particle. As an additional indicator of BS particles presence of in the ACtop detector, we offer the value of energy release in the S3 scintillation detector placing between two parts of the calorimeter (CC1 and CC2). Fast trigger signal in the main aperture for gamma-quanta is composed of analysis of TOF system signal, showing that charged particle or particles move in the direction from up to down, and ACtop energy deposition taking in to account specially designed for GAMMA-400 algorithms of backsplash rejection.

  19. Interferon Gamma Receptor: The Beginning of the Journey

    PubMed Central

    Blouin, Cédric M.; Lamaze, Christophe

    2013-01-01

    Our view of endocytosis and membrane trafficking of transmembrane receptors has dramatically changed over the last 20 years. Several new endocytic routes have been discovered and mechanistically characterized in mammalian cells. Long considered as a passive means to terminate signaling through down-regulation of the number of activated receptors at the plasma membrane, it is now established that receptor endocytosis and endosomal sorting can be directly linked to the regulation of intracellular signaling pathways. The functional links between membrane trafficking of interferon receptors and JAK/STAT signaling have recently begun to be unraveled. These studies raise the exciting possibility that a certain level of signal specificity can be achieved through endocytosis and selective localization of the activated complexes within cellular membranes. The ongoing development of high-resolution cell imaging techniques with better spatial and temporal resolution gives new means of deciphering the inherent complexity of membrane trafficking and signaling. This should help to better comprehend the molecular mechanisms by which endocytosis and endosomal sorting of interferon receptors can orchestrate signaling selectivity within the JAK/STAT pathway that can be activated by as many as 60 different cytokines, growth factors, and hormones. PMID:24027571

  20. Gamma interferon expression during acute and latent nervous system infection by herpes simplex virus type 1.

    PubMed Central

    Cantin, E M; Hinton, D R; Chen, J; Openshaw, H

    1995-01-01

    This study was initiated to evaluate a role for gamma interferon (IFN-gamma) in herpes simplex virus type 1 (HSV-1) infection. At the acute stage of infection in mice, HSV-1 replication in trigeminal ganglia and brain stem tissue was modestly but consistently enhanced in mice from which IFN-gamma was by ablated monoclonal antibody treatment and in mice genetically lacking the IFN-gamma receptor (Rgko mice). As determined by reverse transcriptase PCR, IFN-gamma and tumor necrosis factor alpha transcripts were present in trigeminal ganglia during both acute and latent HSV-1 infection. CD4+ and CD8+ T cells were detected initially in trigeminal ganglia at day 5 after HSV-1 inoculation, and these cells persisted for 6 months into latency. The T cells were focused around morphologically normal neurons that showed no signs of active infection, but many of which expressed HSV-1 latency-associated transcripts. Secreted IFN-gamma was present up to 6 months into latency in areas of the T-cell infiltration. By 9 months into latency, both the T-cell infiltrate and IFN-gamma expression had cleared, although there remained a slight increase in macrophage levels in trigeminal ganglia. In HSV-1-infected brain stem tissue, T cells and IFN-gamma expression were present at 1 month but were gone by 6 months after infection. Our hypothesis is that the persistence of T cells and the sustained IFN-gamma expression occur in response to an HSV-1 antigen(s) in the nervous system. This hypothesis is consistent with a new model of HSV-1 latency which suggests that limited HSV-1 antigen expression occurs during latency (M. Kosz-Vnenchak, J. Jacobson, D.M. Coen, and D.M. Knipe, J. Virol. 67:5383-5393, 1993). We speculate that prolonged secretion of IFN-gamma during latency may modulate a reactivated HSV-1 infection. PMID:7609058

  1. Role of G-protein beta gamma subunits in the augmentation of P2Y2 (P2U)receptor-stimulated responses by neuropeptide Y Y1 Gi/o-coupled receptors.

    PubMed Central

    Selbie, L A; King, N V; Dickenson, J M; Hill, S J

    1997-01-01

    inhibited by two different G beta gamma scavengers, significantly contribute to the synergistic interaction between NPY Y1 Gi/o- and Gq/11-coupled receptor activity, and are required for the augmentation of IP production and AA release observed in this model cell system. PMID:9359846

  2. Development of Gamma-Emitting Receptor Binding Radiopharmace

    SciTech Connect

    Reba, Richard

    2003-02-20

    The long-term objective is to develop blood-brain barrier (BBB) permeable m2-selective (relative to m1, m3, and m4) receptor-binding radiotracers and utilize these radiotracers for quantifying receptor concentrations obtained from PET or SPECT images of human brain. In initial studies, we concluded that the lipophilicity and high affinity prevented (R,S)-I-QNB from reaching a flow-independent and receptor-dependent state in a reasonable time. Thus, it was clear that (R,S)-I-QNB should be modified. Therefore, during the last portion of this funded research, we proposed that more polar heterocycles should help accomplish that. Since reports of others concluded that radiobromination and radiofluorination of the unactivated phenyl ring is not feasible (Newkome et al,,1982), we, therefore, explored during this grant period a series of analogues of (R)-QNB in which one or both of the six-membered phenyl rings is replaced by a five-membered thienyl (Boulay et al., 1995), or furyl ring. The chemistry specific aims were to synthesize novel compounds designed to be m2-selective mAChR ligands capable of penetrating into the CNS, and develop methods for efficient radiolabeling of promising m2-selective muscarinic ligands. The pharmacology specific aims were to determine the affinity and subtype-selectivity of the novel compounds using competition binding studies with membranes from cells that express each of the five muscarinic receptor subtypes, to determine the ability of the promising non-radioactive compounds and radiolabeled novel compounds to cross the BBB, to determine the biodistribution, in-vivo pharmacokinetics, and in-vitm kinetics of promising m2-selective radioligands and to determine the distribution of receptors for the novel m2-selective radioligands using quantitative autoradiography of rat brain, and compare this distribution to the distribution of known m2-selective compounds.

  3. Cannabinoid Receptors Mediate Methamphetamine Induction of High Frequency Gamma Oscillations in the Nucleus Accumbens

    PubMed Central

    Morra, Joshua T.; Glick, Stanley D.; Cheer, Joseph F.

    2012-01-01

    Patients suffering from amphetamine---induced psychosis display repetitive behaviors, partially alleviated by antipsychotics, which are reminiscent of rodent stereotypies. Due to recent evidence implicating endocannabinoid involvement in brain disorders, including psychosis, we studied the effects of endocannabinoid signaling on neuronal oscillations of rats exhibiting methamphetamine stereotypy. Neuronal network oscillations were recorded with multiple single electrode arrays aimed at the nucleus accumbens of freely moving rats. During the experiments, animals were dosed intravenously with the CB1 receptor antagonist rimonabant (0.3 mg/kg) or vehicle followed by an ascending dose regimen of methamphetamine (0.01, 0.1, 1, and 3 mg/kg; cumulative dosing). The effects of drug administration on stereotypy and local gamma oscillations were evaluated. Methamphetamine treatment significantly increased high frequency gamma oscillations (~ 80 Hz). Entrainment of a subpopulation of nucleus accumbens neurons to high frequency gamma was associated with stereotypy encoding in putative fast-spiking interneurons, but not in putative medium spiny neurons. The observed ability of methamphetamine to induce both stereotypy and high frequency gamma power was potently disrupted following CB1 receptor blockade. The present data suggest that CB1 receptor-dependent mechanisms are recruited by methamphetamine to modify striatal interneuron oscillations that accompany changes in psychomotor state, further supporting the link between endocannabinoids and schizophrenia spectrum disorders. PMID:22609048

  4. Computer-aided discovery, validation, and mechanistic characterization of novel neolignan activators of peroxisome proliferator-activated receptor gamma.

    PubMed

    Fakhrudin, Nanang; Ladurner, Angela; Atanasov, Atanas G; Heiss, Elke H; Baumgartner, Lisa; Markt, Patrick; Schuster, Daniela; Ellmerer, Ernst P; Wolber, Gerhard; Rollinger, Judith M; Stuppner, Hermann; Dirsch, Verena M

    2010-04-01

    Peroxisome proliferator-activated receptor gamma (PPAR gamma) agonists are used for the treatment of type 2 diabetes and metabolic syndrome. However, the currently used PPAR gamma agonists display serious side effects, which has led to a great interest in the discovery of novel ligands with favorable properties. The aim of our study was to identify new PPARgamma agonists by a PPAR gamma pharmacophore-based virtual screening of 3D natural product libraries. This in silico approach led to the identification of several neolignans predicted to bind the receptor ligand binding domain (LBD). To confirm this prediction, the neolignans dieugenol, tetrahydrodieugenol, and magnolol were isolated from the respective natural source or synthesized and subsequently tested for PPAR gamma receptor binding. The neolignans bound to the PPAR gamma LBD with EC(50) values in the nanomolar range, exhibiting a binding pattern highly similar to the clinically used agonist pioglitazone. In intact cells, dieugenol and tetrahydrodieugenol selectively activated human PPAR gamma-mediated, but not human PPAR alpha- or -beta/delta-mediated luciferase reporter expression, with a pattern suggesting partial PPAR gamma agonism. The coactivator recruitment study also demonstrated partial agonism of the tested neolignans. Dieugenol, tetrahydrodieugenol, and magnolol but not the structurally related eugenol induced 3T3-L1 preadipocyte differentiation, confirming effectiveness in a cell model with endogenous PPAR gamma expression. In conclusion, we identified neolignans as novel ligands for PPAR gamma, which exhibited interesting activation profiles, recommending them as potential pharmaceutical leads or dietary supplements.

  5. Physical proximity and functional interplay of PECAM-1 with the Fc receptor Fc gamma RIIa on the platelet plasma membrane.

    PubMed

    Thai, Le M; Ashman, Leonie K; Harbour, Stacey N; Hogarth, P Mark; Jackson, Denise E

    2003-11-15

    We and others have recently defined that Platelet Endothelial Cell Adhesion Molecule-1 (PECAM-1/CD31) functions as a negative regulator of platelet-collagen interactions involving the glycoprotein VI/Fc receptor gamma chain (GPVI/FcR-gamma chain) signaling pathway.1,2 In this study, we hypothesized that PECAM-1 may be physically and functionally associated with Fc gamma RIIa on the platelet membrane. The functional relationship between PECAM-1 and Fc gamma RIIa was assessed by determining the effect of anti-PECAM-1 monoclonal antibody Fab fragments on Fc gamma RIIa-mediated platelet aggregation and heparin-induced thrombocytopenia (HITS)-mediated platelet aggregation. Preincubation of washed platelets with monoclonal antibody fragments of 2BD4 directed against PECAM-1 and IV.3 directed against Fc gamma RIIa completely blocked Fc gamma RIIa-mediated platelet aggregation and HITS-mediated platelet aggregation, whereas anti-CD151 antibody had no blocking effect. Coengagement of Fc gamma RIIa and PECAM-1 resulted in negative regulation of Fc gamma RIIa-mediated phospholipase C gamma 2 activation, calcium mobilization, and phosphoinositide 3-kinase-dependent signaling pathways. In addition, the physical proximity of Fc gamma RIIa and PECAM-1 was confirmed by using fluorescence resonance energy transfer and coimmunoprecipitation studies. These results indicate that PECAM-1 and Fc gamma RIIa are colocalized on the platelet membrane and PECAM-1 down-regulates Fc gamma RIIa-mediated platelet responses.

  6. Gamma Ray Imaging System (GRIS) GammaCam{trademark}. Final report, January 3, 1994--May 31, 1996

    SciTech Connect

    1996-12-31

    This report describes the activities undertaken during the development of the Gamma Ray Imaging System (GRIS) program now referred to as the GammaCam{trademark}. The purpose of this program is to develop a 2-dimensional imaging system for gamma-ray energy scenes that may be present in nuclear power plants. The report summarizes the overall accomplishments of the program and the most recent GammaCam measurements made at LANL and Estonia. The GammaCam is currently available for sale from AIL Systems as an off-the-shelf instrument.

  7. Gamma-ray tracking method for pet systems

    DOEpatents

    Mihailescu, Lucian; Vetter, Kai M.

    2010-06-08

    Gamma-ray tracking methods for use with granular, position sensitive detectors identify the sequence of the interactions taking place in the detector and, hence, the position of the first interaction. The improved position resolution in finding the first interaction in the detection system determines a better definition of the direction of the gamma-ray photon, and hence, a superior source image resolution. A PET system using such a method will have increased efficiency and position resolution.

  8. Estrogen receptor alpha binds to peroxisome proliferator-activated receptor response element and negatively interferes with peroxisome proliferator-activated receptor gamma signaling in breast cancer cells.

    PubMed

    Bonofiglio, Daniela; Gabriele, Sabrina; Aquila, Saveria; Catalano, Stefania; Gentile, Mariaelena; Middea, Emilia; Giordano, Francesca; Andò, Sebastiano

    2005-09-01

    The molecular mechanisms involved in the repressive effects exerted by estrogen receptors (ER) on peroxisome proliferator-activated receptor (PPAR) gamma-mediated transcriptional activity remain to be elucidated. The aim of the present study was to provide new insight into the crosstalk between ERalpha and PPARgamma pathways in breast cancer cells. Using MCF7 and HeLa cells as model systems, we did transient transfections and electrophoretic mobility shift assay and chromatin immunoprecipitation studies to evaluate the ability of ERalpha to influence PPAR response element-mediated transcription. A possible direct interaction between ERalpha and PPARgamma was ascertained by co-immunoprecipitation assay, whereas their modulatory role in the phosphatidylinositol 3-kinase (PI3K)/AKT pathway was evaluated by determining PI3K activity and AKT phosphorylation. As a biological counterpart, we investigated the growth response to the cognate ligands of both receptors in hormone-dependent MCF7 breast cancer cells. Our data show for the first time that ERalpha binds to PPAR response element and represses its transactivation. Moreover, we have documented the physical and functional interactions of ERalpha and PPARgamma, which also involve the p85 regulatory subunit of PI3K. Interestingly, ERalpha and PPARgamma pathways have an opposite effect on the regulation of the PI3K/AKT transduction cascade, explaining, at least in part, the divergent response exerted by the cognate ligands 17beta-estradiol and BRL49653 on MCF7 cell proliferation. ERalpha physically associates with PPARgamma and functionally interferes with PPARgamma signaling. This crosstalk could be taken into account in setting new pharmacologic strategies for breast cancer disease.

  9. Functions of Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) in Gynecologic Disorders

    PubMed Central

    Ren, Ping; Zhang, Yuquan; Huang, Yan; Yang, Yingli; Jiang, Ming

    2015-01-01

    Peroxisome proliferator-activated receptor gamma (PPARγ) is a member of a class of nuclear hormone receptors intimately involved in the regulation of expression of myriad genes that regulate energy metabolism, cell differentiation, apoptosis, and inflammation. Although originally discovered as a pivotal regulator of adipocyte differentiation, the roles that PPARγ plays in gynecological disorders are still unknown. There are a number of studies on the functions of PPARγ and its agonists in gynecological disorders. In this mini-review, we provide a brief summary of the advances in recent years. PMID:25987855

  10. Detection of three nonsense mutations and one missense mutation in the interleukin-2 receptor [gamma] chain gene in SCIDX1 that differently affect the mRNA processing

    SciTech Connect

    Markiewicz, S.; Fischer, A.; Saint Basile, G. de ); Subtil, A.; Dautry-Varsat, A. )

    1994-05-01

    The interleukin-2 receptor [gamma] (IL-2R[gamma]) chain gene encodes a 64-kDa protein that not only composes the high-affinity form of the IL-2 binding receptor in association with the 2R [alpha] and [beta] chains, but also participates in at least the IL-4 and IL-7 receptor complexes. Mutations in this gene have recently been shown to cause X-linked severe combined immunodeficiency (SCIDX1). This disease of the immune system results from an early block of T lymphocyte and natural killer (NK) cell differentiation, which leads to a severe cellular and humoral immune defect that is lethal unless treated by bone marrow transplantation. Analysis of the IL-2R[gamma] gene in SCIDX1 patients has revealed the presence of heterogeneous mutations principally located in the extracellular domain of the molecule. We report here three intraexonic mutations and one deletion in the IL-2R[gamma] gene in four SCIDX1 patients. These mutations appear to differentially affect RNA processing, either by decreasing IL-2R[gamma] mRNA level or by the skipping of a constitutive exon. 16 refs., 1 fig.

  11. Unsaturated phosphinic analogues of gamma-aminobutyric acid as GABA(C) receptor antagonists.

    PubMed

    Chebib, M; Vandenberg, R J; Froestl, W; Johnston, G A

    1997-06-25

    The phosphinic and methylphosphinic analogues of gamma-aminobutyric acid (GABA) are potent GABA(C) receptor antagonists but are even more potent as GABA(B) receptor agonists. Conformationally restricted unsaturated phosphinic and methylphosphinic analogues of GABA and some potent GABA(B) receptor phosphonoamino acid antagonists were tested on GABA(C) receptors in Xenopus oocytes expressing human retinal rho1 mRNA. 3-Aminopropyl-n-butyl-phosphinic acid (CGP36742), an orally active GABA(B) receptor antagonist, was found to be a moderately potent GABA(C) receptor antagonist (IC50 = 62 microM). The unsaturated methylphosphinic and phosphinic analogues of GABA were competitive antagonists of the GABA(C) receptors, the order of potency being [(E)-3-aminopropen-1-yl]methylphosphinic acid (CGP44530, IC50 = 5.53 microM) > [(E)-3-aminopropen-1-yl]phosphinic acid (CGP38593, IC50 = 7.68 microM) > [(Z)-3-aminopropen-1-yl]methylphosphinic acid (CGP70523, IC50 = 38.94 microM) > [(Z)-3-aminopropen-1-yl]phosphinic acid (CGP70522, IC50 > 100 microM). This order of potency differs from that reported for these compounds as GABA(B) receptor agonists, where the phosphinic acids are more potent than the corresponding methylphosphinic acids.

  12. Ubiquitination of the common cytokine receptor {gamma}{sub c} and regulation of expression by an ubiquitination/deubiquitination machinery

    SciTech Connect

    Gesbert, Franck; Malarde, Valerie; Dautry-Varsat, Alice . E-mail: adautry@pasteur.fr

    2005-08-26

    The common cytokine receptor {gamma}{sub c} is shared by the interleukin-2, -4, -7, -9, -15, and -21 receptors, and is essential for lymphocyte proliferation and survival. The regulation of {gamma}{sub c} receptor expression level is therefore critical for the ability of cells to respond to these cytokines. We previously reported that {gamma}{sub c} is efficiently constitutively internalized and addressed towards a degradation endocytic compartment. We show that {gamma}{sub c} is ubiquitinated and also associated to ubiquitinated proteins. We report that the ubiquitin-ligase c-Cbl induces {gamma}{sub c} down-regulation. In addition, the ubiquitin-hydrolase, DUB-2, counteracts the effect of c-Cbl on {gamma}{sub c} expression. We show that an increase in DUB-2 expression correlates with an increased {gamma}{sub c} half-life, resulting in the up-regulation of the receptor. Altogether, we show that {gamma}{sub c} is the target of an ubiquitination mechanism and its expression level can be regulated through the activities of a couple of ubiquitin-ligase/ubiquitin-hydrolase enzymes, namely c-Cbl/DUB-2.

  13. Potential effects of curcumin on peroxisome proliferator-activated receptor-gamma in vitro and in vivo

    USDA-ARS?s Scientific Manuscript database

    Natural peroxisome proliferator-activated receptor-gamma (PPAR-gamma) agonists are found in food and may be important for health through their anti-inflammatory properties. Curcumin (Cur) is a bright yellow spice, derived from the rhizome of Curcuma longa Linn. It has been shown to have many biologi...

  14. Nuclear receptor ERR alpha and coactivator PGC-1 beta are effectors of IFN-gamma-induced host defense.

    PubMed

    Sonoda, Junichiro; Laganière, Josée; Mehl, Isaac R; Barish, Grant D; Chong, Ling-Wa; Li, Xiangli; Scheffler, Immo E; Mock, Dennis C; Bataille, Alain R; Robert, Francois; Lee, Chih-Hao; Giguère, Vincent; Evans, Ronald M

    2007-08-01

    Macrophage activation by the proinflammatory cytokine interferon-gamma (IFN-gamma) is a critical component of the host innate response to bacterial pathogenesis. However, the precise nature of the IFN-gamma-induced activation pathway is not known. Here we show using genome-wide expression and chromatin-binding profiling that IFN-gamma induces the expression of many nuclear genes encoding mitochondrial respiratory chain machinery via activation of the nuclear receptor ERR alpha (estrogen-related receptor alpha, NR3B1). Studies with macrophages lacking ERR alpha demonstrate that it is required for induction of mitochondrial reactive oxygen species (ROS) production and efficient clearance of Listeria monocytogenes (LM) in response to IFN-gamma. As a result, mice lacking ERR alpha are susceptible to LM infection, a phenotype that is localized to bone marrow-derived cells. Furthermore, we found that IFN-gamma-induced activation of ERR alpha depends on coactivator PGC-1 beta (peroxisome proliferator-activated receptor gamma coactivator-1 beta), which appears to be a direct target for the IFN-gamma/STAT-1 signaling cascade. Thus, ERR alpha and PGC-1 beta act together as a key effector of IFN-gamma-induced mitochondrial ROS production and host defense.

  15. Myasthenia gravis. CD4+ T epitopes on the embryonic gamma subunit of human muscle acetylcholine receptor.

    PubMed Central

    Protti, M P; Manfredi, A A; Wu, X D; Moiola, L; Dalton, M W; Howard, J F; Conti-Tronconi, B M

    1992-01-01

    In myasthenia gravis (MG) an autoimmune response against muscle acetylcholine receptor (AChR) occurs. Embryonic muscle AChR contains a gamma subunit, substituted in adult muscle by a homologous epsilon subunit. Antibodies and CD4+ cells specific for embryonic AChR have been demonstrated in MG patients. We identified sequence segments of the human gamma subunit forming epitopes recognized by four embryonic AChR-specific CD4+ T cell lines, propagated from MG patients' blood by stimulation with synthetic peptides corresponding to the human gamma subunit sequence. Each line had an individual epitope repertoire, but two 20-residue sequence regions were recognized by three lines of different HLA haplotype. Most T epitope sequences were highly diverged between the gamma and the other AChR subunits, confirming the specificity of the T cells for embryonic AChR. These T cells may have been sensitized against AChR expressed by a tissue other than innervated skeletal muscle, possibly the thymus, which expresses an embryonic muscle AChR-like protein, containing a gamma subunit. Several sequence segments forming T epitopes are similar to regions of microbial and/or mammalian proteins unrelated to the AChR. These findings are consistent with the possibility that T cell cross-reactivity between unrelated proteins ("molecular mimicry"), proposed as a cause of autoimmune responses, is not a rare event. PMID:1383275

  16. Intravenous immunoglobulin ameliorates ITP via activating Fc gamma receptors on dendritic cells.

    PubMed

    Siragam, Vinayakumar; Crow, Andrew R; Brinc, Davor; Song, Seng; Freedman, John; Lazarus, Alan H

    2006-06-01

    Despite a more than 20-year experience of therapeutic benefit, the relevant molecular and cellular targets of intravenous immunoglobulin (IVIg) in autoimmune disease remain unclear. Contrary to the prevailing theories of IVIg action in autoimmunity, we show that IVIg drives signaling through activating Fc gamma receptors (Fc gammaR) in the amelioration of mouse immune thrombocytopenic purpura (ITP). The actual administration of IVIg was unnecessary because as few as 10(5) IVIg-treated cells could, upon adoptive transfer, ameliorate ITP. IVIg did not interact with the inhibitory Fc gammaRIIB on the initiator cell, although Fc gammaRIIB does have a role in the late phase of IVIg action. Notably, only IVIg-treated CD11c+ dendritic cells could mediate these effects. We hypothesize that IVIg forms soluble immune complexes in vivo that prime dendritic-cell regulatory activity. In conclusion, the clinical effects of IVIg in ameliorating ITP seem to involve the acute interaction of IVIg with activating Fc gammaR on dendritic cells.

  17. Effect of paraoxon on muscarinic, dopamine and. gamma. -aminobutyric acid receptors of brain and sensitivity to muscarinic antagonists

    SciTech Connect

    Fernando, J.C.R.; Hoskins, B.; Ho, I.K.

    1986-03-05

    Several acetylcholinesterase (AChE) inhibitors decrease muscarinic cholinergic (mACh) receptors in the brain, alteration of dopamine (DA) and ..gamma..-aminobutyric acid (GABA) receptors after AChE inhibition was also reported. In view of the important interactions among DA, GABA and ACh systems, whether this is a common effect of AChE inhibitors should be established. They report the effect of the AChE inhibitor, paraoxon, on DA, GABA and mACh receptors in the rat. The binding of /sup 3/H-QNB (for mACh), /sup 3/H-spiperone (for DA) and /sup 3/H-muscimol (for GABA) to striatal and hippocampal membranes was analyzed. Also, behavioral sensitivity to atropine was studied. Twenty-four hr after a single dose (0.75 mg/kg, s.c.) of paraoxon, the density of mACh receptors in the striatum was decreased but, at 3 days, no change was seen. In the hippocampus, the mACh receptors were not affected. Repeated treatment with paraoxon (0.3 mg/kg, 48 hourly) for 2 weeks reduced the mACh receptor density in both regions. Neither single nor repeated paraoxon treatment had an effect on DA or GABA receptors. After single or repeated dosing with paraoxon, myoclonus induced by atropine (10 mg/kg, i.p.) was enhanced. The results show rapid downregulation of mACh receptors by paraoxon. DA or GABA, however, appear not to be affected under these treatment regimens.

  18. Carbonic anhydrase III regulates peroxisome proliferator-activated receptor-{gamma}2

    SciTech Connect

    Mitterberger, Maria C.; Kim, Geumsoo; Rostek, Ursula; Levine, Rodney L.; Zwerschke, Werner

    2012-05-01

    Carbonic anhydrase III (CAIII) is an isoenzyme of the CA family. Because of its low specific anhydrase activity, physiological functions in addition to hydrating CO{sub 2} have been proposed. CAIII expression is highly induced in adipogenesis and CAIII is the most abundant protein in adipose tissues. The function of CAIII in both preadipocytes and adipocytes is however unknown. In the present study we demonstrate that adipogenesis is greatly increased in mouse embryonic fibroblasts (MEFs) from CAIII knockout (KO) mice, as demonstrated by a greater than 10-fold increase in the induction of fatty acid-binding protein-4 (FABP4) and increased triglyceride formation in CAIII{sup -/-} MEFs compared with CAIII{sup +/+} cells. To address the underlying mechanism, we investigated the expression of the two adipogenic key regulators, peroxisome proliferator-activated receptor-{gamma}2 (PPAR{gamma}2) and CCAAT/enhancer binding protein-{alpha}. We found a considerable (approximately 1000-fold) increase in the PPAR{gamma}2 expression in the CAIII{sup -/-} MEFs. Furthermore, RNAi-mediated knockdown of endogenous CAIII in NIH 3T3-L1 preadipocytes resulted in a significant increase in the induction of PPAR{gamma}2 and FABP4. When both CAIII and PPAR{gamma}2 were knocked down, FABP4 was not induced. We conclude that down-regulation of CAIII in preadipocytes enhances adipogenesis and that CAIII is a regulator of adipogenic differentiation which acts at the level of PPAR{gamma}2 gene expression. -- Highlights: Black-Right-Pointing-Pointer We discover a novel function of Carbonic anhydrase III (CAIII). Black-Right-Pointing-Pointer We show that CAIII is a regulator of adipogenesis. Black-Right-Pointing-Pointer We demonstrate that CAIII acts at the level of PPAR{gamma}2 gene expression. Black-Right-Pointing-Pointer Our data contribute to a better understanding of the role of CAIII in fat tissue.

  19. A new ligand for the peroxisome proliferator-activated receptor-gamma (PPAR-gamma), GW7845, inhibits rat mammary carcinogenesis.

    PubMed

    Suh, N; Wang, Y; Williams, C R; Risingsong, R; Gilmer, T; Willson, T M; Sporn, M B

    1999-11-15

    We have tested a new ligand for peroxisome proliferator-activated receptor-gamma, GW7845, as an inhibitor of experimental mammary carcinogenesis, using the classic rat model with nitrosomethylurea as carcinogen. Rats were first treated with a single dose of nitrosomethylurea (50 mg/kg body weight, i.p.). Starting 1 week later, they were fed GW7845, at either 60 or 30 mg/kg of diet, for 2 months. This agent significantly reduced tumor incidence, tumor number, and tumor weight at both doses. This is the first report of the use of a ligand for peroxisome proliferator-activated receptor-gamma to prevent experimental breast cancer.

  20. The Advanced Gamma-ray Imaging System (AGIS): Simulation studies

    SciTech Connect

    Maier, G.; Buckley, J.; Bugaev, V.; Fegan, S.; Funk, S.; Konopelko, A.; Vassiliev, V.V.; /UCLA

    2011-06-14

    The Advanced Gamma-ray Imaging System (AGIS) is a next-generation ground-based gamma-ray observatory being planned in the U.S. The anticipated sensitivity of AGIS is about one order of magnitude better than the sensitivity of current observatories, allowing it to measure gamma-ray emission from a large number of Galactic and extra-galactic sources. We present here results of simulation studies of various possible designs for AGIS. The primary characteristics of the array performance - collecting area, angular resolution, background rejection, and sensitivity - are discussed.

  1. Characterization and crystallization of soluble human Fc gamma receptor II (CD32) isoforms produced in insect cells.

    PubMed

    Sondermann, P; Jacob, U; Kutscher, C; Frey, J

    1999-06-29

    Fc gamma RII (CD32), the receptor for the Fc part of IgG, is responsible for the clearance of immunocomplexes by macrophages and plays a role in the regulation of antibody production by B cells. To investigate the process of immunocomplex binding in terms of stoichiometry and stability of the Fc gamma RII:IgG complex, we produced both Fc gamma RII isoforms (Fc gamma RIIa and Fc gamma RIIb) as soluble proteins in insect cells. The expressed proteins could be purified in high yields and were biologically active as judged by their ability to bind IgG. Thus, the minor glycosylation performed by the insect cells is not crucial for the binding of the usually highly glycosylated Fc gamma RII to IgG. The dissociation constant of the sFc gamma RIIa:IgG-hFc complex was determined by fluorescence titration (KD = 2.5 x 10(-)7 M). Complementary sFc gamma RIIa antagonizes immunocomplex binding to B cells. Here sFc gamma RIIa showed a comparable dissociation constant (KD = 1.7 x 10(-)7 M) which was almost 10-fold lower than the constant for Fc gamma RIIb. The stoichiometry of the FcRIIa:IgG-hFc complex was determined by equilibrium gel filtration and shows that IgG is able to bind alternatively one or two Fc gamma RII molecules in a noncooperative manner. Furthermore, in an ELISA-based assay the isotype specificity of various anti-Fc gamma RII monoclonal antibodies was measured as well as their ability to interfere with the IgG recognition through its receptors. To further investigate the molecular basis of the Fc gamma RII-ligand interaction, we crystallized Fc gamma RIIb. Trigonal crystals diffracted to 3 A and the structure solution is in progress.

  2. RELAXIN ACTIVATES PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR GAMMA

    PubMed Central

    Singh, Sudhir; Bennett, Robert G

    2009-01-01

    SUMMARY Relaxin is a polypeptide hormone that triggers multiple signaling pathways through its receptor RXFP1. Many of relaxin’s functions, including vascular and antifibrotic effects, are similar to those induced by activation of PPARγ. In this study, we tested the hypothesis that relaxin signaling through RXFP1 would activate PPARγ activity. In cells overexpressing RXFP1 (HEK-RXFP1), relaxin increased transcriptional activity through a PPAR response element (PPRE) in a concentration-dependent manner. In cells lacking RXFP1, relaxin had no effect. Relaxin increased both the baseline activity and the response to the PPARγ agonists rosiglitazone and 15d-PGJ2, but not to agonists of PPARα or PPARδ. In HEK-RXFP1 cells infected with adenovirus expressing PPARγ, relaxin increased transcriptional activity through PPRE, and this effect was blocked with an adenovirus expressing a dominant-negative PPARγ. Knockdown of PPARγ using siRNA resulted in a decrease in the response to both relaxin and rosiglitazone. Both relaxin and rosiglitazone increased expression of the PPARγ target genes CD36 and LXRα in HEK-RXFP1 and in THP-1 cells naturally expressing RXFP1. Relaxin did not increase PPARγ mRNA or protein levels. Treatment of cells with GW9662, an inhibitor of PPARγ ligand binding, effectively blocked rosiglitazone-induced PPARγ activation, but had no effect on relaxin activation of PPARγ. These results suggest that relaxin activates PPARγ activity, and increases the overall response in the presence PPARγ agonists. This activation is dependent on the presence of RXFP1. Furthermore, relaxin activates PPARγ via a ligand-independent mechanism. These studies represent the first report that relaxin can activate the transcriptional activity of PPARγ. PMID:19712722

  3. Modeling of gamma/gamma-prime phase equilibrium in the nickel-aluminum system

    NASA Technical Reports Server (NTRS)

    Sanchez, J. M.; Barefoot, J. R.; Jarrett, R. N.; Tien, J. K.

    1984-01-01

    A theoretical model is proposed for the determination of phase equilibrium in alloys, taking into consideration dissimilar lattice parameters. Volume-dependent pair interactions are introduced by means of phenomenological Lennard-Jones potentials and the configurational entropy of the system is treated in the tetrahedron approximation of the cluster variation method. The model is applied to the superalloy-relevant, nickel-rich, gamma/gamma-prime phase region of the Ni-Al phase diagram. The model predicts reasonable values for the lattice parameters and the enthalpy of formation as a function of composition, and the calculated phase diagram closely approximates the experimental diagram.

  4. Gamma detectors in explosives and narcotics detection systems

    NASA Astrophysics Data System (ADS)

    Bystritsky, V. M.; Zubarev, E. V.; Krasnoperov, A. V.; Porohovoi, S. Yu.; Rapatskii, V. L.; Rogov, Yu. N.; Sadovskii, A. B.; Salamatin, A. V.; Salmin, R. A.; Slepnev, V. M.; Andreev, E. I.

    2013-11-01

    Gamma detectors based on BGO crystals were designed and developed at the Joint Institute for Nuclear Research. These detectors are used in explosives and narcotics detection systems. Key specifications and design features of the detectors are presented. A software temperature-compensation method that makes it possible to stabilize the gamma detector response and operate the detector in a temperature range from -20 to 50°C is described.

  5. Phenotypic consequences of deletion of the gamma 3, alpha 5, or beta 3 subunit of the type A gamma-aminobutyric acid receptor in mice.

    PubMed

    Culiat, C T; Stubbs, L J; Montgomery, C S; Russell, L B; Rinchik, E M

    1994-03-29

    Three genes (Gabrg3, Gabra5, and Gabrb3) encoding the gamma 3, alpha 5, and beta 3 subunits of the type A gamma-aminobutyric acid receptor, respectively, are known to map near the pink-eyed dilution (p) locus in mouse chromosome 7. This region shares homology with a segment of human chromosome 15 that is implicated in Angelman syndrome, an inherited neurobehavioral disorder. By mapping Gabrg3 on a panel of p-locus deletions, we have determined that the order of genes within this cluster is centromere-p(D15S12h)-Gabrg3-Gabra5-Gabrb3-telom ere. Like Gabrb3, neither the Gabra5 nor Gabrg3 gene is functionally imprinted in adult mouse brain. Mice deleted for all three subunits die at birth with a cleft palate, although there are rare survivors (approximately 5%) that do not have a cleft palate but do exhibit a neurological abnormality characterized by tremor, jerky gait, and runtiness. We have previously suggested that deficiency of the beta 3 subunit may be responsible for the clefting defect. Most notably, however, in this report we describe mice carrying two overlapping, complementing p deletions that fail to express the gamma 3 transcript, as well as mice from another line that express neither the gamma 3 nor alpha 5 transcripts. Surprisingly, mice from both of these lines are phenotypically normal and do not exhibit any of the neurological symptoms characteristic of the rare survivors that are deleted for all three (gamma 3, alpha 5, and beta 3) subunits. These mice therefore provide a whole-organism type A gamma-aminobutyric-acid receptor background that is devoid of any receptor subtypes that normally contain the gamma 3 and/or alpha 5 subunits. The absence of an overt neurological phenotype in mice lacking the gamma 3 and/or alpha 5 subunits also suggests that mutations in these genes are unlikely to provide useful animal models for Angelman syndrome in humans.

  6. On the capacity of MISO FSO systems over gamma-gamma and misalignment fading channels.

    PubMed

    Boluda-Ruiz, Rubén; García-Zambrana, Antonio; Castillo-Vázquez, Beatriz; Castillo-Vázquez, Carmen

    2015-08-24

    In this work, the ergodic capacity performance for multiple-input/single-output (MISO) free-space optical (FSO) communications system with equal gain combining (EGC) reception is analyzed over gamma-gamma and misalignment fading channels, which are modeled as statistically independent, but not necessarily identically distributed (i.n.i.d.). Novel and analytical closed-form ergodic capacity expression is obtained in terms of H-Fox function by using the well-known inequality between arithmetic and geometric mean of positive random variables (RV) in order to obtain an approximate closed-form expression of the distribution of the sum of M gamma-gamma with pointing errors variates. In addition, we present an asymptotic ergodic capacity expression at high signal-to-noise ratio (SNR) for the ergodic capacity of MISO FSO systems. It can be concluded that the use of MISO technique can significantly reduce the effect of the atmospheric turbulence as well as pointing errors and, hence, provide significant capacity gain over the direct path link (DL). The impact of pointing errors on the MISO FSO system is also analyzed, which only depends on the number of laser sources and pointing error parameters. Moreover, it can be also concluded that the ergodic capacity performance is dramatically reduced as a consequence of the severity of pointing error effects. Simulation results are further demonstrated to confirm the analytical results.

  7. SWEPP Gamma-Ray Spectrometer System software design description

    SciTech Connect

    Femec, D.A.; Killian, E.W.

    1994-08-01

    To assist in the characterization of the radiological contents of contract-handled waste containers at the Stored Waste Examination Pilot Plant (SWEPP), the SWEPP Gamma-Ray Spectrometer (SGRS) System has been developed by the Radiation Measurements and Development Unit of the Idaho National Engineering Laboratory. The SGRS system software controls turntable and detector system activities. In addition to determining the concentrations of gamma-ray-emitting radionuclides, this software also calculates attenuation-corrected isotopic mass ratios of-specific interest. This document describes the software design for the data acquisition and analysis software associated with the SGRS system.

  8. Taurine activates glycine and gamma-aminobutyric acid A receptors in rat substantia gelatinosa neurons.

    PubMed

    Wu, Jun; Kohno, Tatsuro; Georgiev, Stefan K; Ikoma, Miho; Ishii, Hideaki; Petrenko, Andrey B; Baba, Hiroshi

    2008-02-12

    Taurine has been suggested to modulate nociceptive information at the spinal cord level. In this study, the pharmacological properties of taurine were investigated in adult rat substantia gelatinosa (SG) neurons using whole-cell patch-clamp method. We found that taurine seemed to have higher efficacy than glycine on glycine receptors in SG neurons. An increase in chloride conductance was responsible for taurine-induced currents. Taurine at 0.3 mM activated glycine receptors, whereas at 3 mM activated both glycine and gamma-aminobutyric acid A receptors. The currents activated by coapplication of taurine and glycine are cross inhibitive. Altogether these results show that taurine might represent another important neurotransmitter or modulator in SG neurons, which may be involved in antinociception.

  9. Gamma spectrometry of the minor bodies of the solar system

    SciTech Connect

    Surkov, Yu.A.; Moskaleva, L.P.; Manvelyan, O.S.

    1987-01-01

    The authors investigate the possibility of determining the elemental composition of the surfaces of minor bodies of the solar system (asteroids, the Martian satellites Phobos and Deimos, etc.) using spacecraft-based ..gamma..-spectrometry. The dependence of ..gamma..-photon flux on altitude above the body was calculated for body radii from 13 to 500 km. Estimates were made of the sensitivity of the determination of basic rock-forming elements with respect to changes in geometry of a factor of two, using ..gamma..-spectrometry with a 100 mm by 100 mm crystal of NaI(Tl). Finally, the time required to determine the stipulated characteristic ..gamma..-radiation of surface rocks with the given precision was derived as a function of altitude.

  10. CREB controls hepatic lipid metabolism through nuclear hormone receptor PPAR-gamma.

    PubMed

    Herzig, Stephan; Hedrick, Susan; Morantte, Ianessa; Koo, Seung-Hoi; Galimi, Francesco; Montminy, Marc

    2003-11-13

    Fasting triggers a series of hormonal cues that promote energy balance by inducing glucose output and lipid breakdown in the liver. In response to pancreatic glucagon and adrenal cortisol, the cAMP-responsive transcription factor CREB activates gluconeogenic and fatty acid oxidation programmes by stimulating expression of the nuclear hormone receptor coactivator PGC-1 (refs 2-5). In parallel, fasting also suppresses lipid storage and synthesis (lipogenic) pathways, but the underlying mechanism is unknown. Here we show that mice deficient in CREB activity have a fatty liver phenotype and display elevated expression of the nuclear hormone receptor PPAR-gamma, a key regulator of lipogenic genes. CREB inhibits hepatic PPAR-gamma expression in the fasted state by stimulating the expression of the Hairy Enhancer of Split (HES-1) gene, a transcriptional repressor that is shown here to be a mediator of fasting lipid metabolism in vivo. The coordinate induction of PGC-1 and repression of PPAR-gamma by CREB during fasting provides a molecular rationale for the antagonism between insulin and counter-regulatory hormones, and indicates a potential role for CREB antagonists as therapeutic agents in enhancing insulin sensitivity in the liver.

  11. Structural and Biochemical Basis for the Binding Selectivity of Peroxisome Proliferator-activated Receptor [gamma] to PGC-1[alpha

    SciTech Connect

    Li, Yong; Kovach, Amanda; Suino-Powell, Kelly; Martynowski, Dariusz; Xu, H. Eric

    2008-07-23

    The functional interaction between the peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) and its coactivator PGC-1{alpha} is crucial for the normal physiology of PPAR{gamma} and its pharmacological response to antidiabetic treatment with rosiglitazone. Here we report the crystal structure of the PPAR{gamma} ligand-binding domain bound to rosiglitazone and to a large PGC-1{alpha} fragment that contains two LXXLL-related motifs. The structure reveals critical contacts mediated through the first LXXLL motif of PGC-1{alpha} and the PPAR{gamma} coactivator binding site. Through a combination of biochemical and structural studies, we demonstrate that the first LXXLL motif is the most potent among all nuclear receptor coactivator motifs tested, and only this motif of the two LXXLL-related motifs in PGC-1{alpha} is capable of binding to PPAR{gamma}. Our studies reveal that the strong interaction of PGC-1{alpha} and PPAR{gamma} is mediated through both hydrophobic and specific polar interactions. Mutations within the context of the full-length PGC-1{alpha} indicate that the first PGC-1{alpha} motif is necessary and sufficient for PGC-1{alpha} to coactivate PPAR{gamma} in the presence or absence of rosiglitazone. These results provide a molecular basis for specific recruitment and functional interplay between PPAR{gamma} and PGC-1{alpha} in glucose homeostasis and adipocyte differentiation.

  12. Betulin binds to gamma-aminobutyric acid receptors and exerts anticonvulsant action in mice.

    PubMed

    Muceniece, Ruta; Saleniece, Kristine; Rumaks, Juris; Krigere, Liga; Dzirkale, Zane; Mezhapuke, Rudolfs; Zharkova, Olga; Klusa, Vija

    2008-10-01

    The lupane type pentacyclic triterpenes: lupeol, betulin, and betulinic acid are widely distributed natural compounds. Recently, pharmaceutical compositions from plant extracts (family Marcgraviaceae) containing betulinic acid, have been patented as anxiolytic remedies. To extend our knowledge of the CNS effects of the triterpenes, we suggest here that the chemically related lupeol, betulin and betulinic acid may interact with the brain neurotransmitter gamma-aminobutyric acid (GABA) receptors in vitro and in vivo. Using radioligand receptor-binding assay, we showed that only betulin bound to the GABA(A)-receptor sites in mice brain in vitro and antagonised the GABA(A)-receptor antagonist bicuculline-induced seizures in mice after intracisternal and intraperitoneal administration. Neither betulinic acid nor lupeol bound to GABA(A) receptor nor did they inhibit bicuculline-induced seizures in vivo. These findings demonstrate for the first time the CNS effects of betulin in vivo, and they also show distinct GABA(A)-receptor-related properties of lupane type triterpenes. These findings may open new avenues in understanding the central effects of betulin, and they also indicate possibilities for novel drug design on the basis of betulin structure.

  13. Characterization of bicuculline/baclofen-insensitive (rho-like) gamma-aminobutyric acid receptors expressed in Xenopus oocytes. II. Pharmacology of gamma-aminobutyric acidA and gamma-aminobutyric acidB receptor agonists and antagonists.

    PubMed

    Woodward, R M; Polenzani, L; Miledi, R

    1993-04-01

    Poly(A)+ RNA from mammalian retina expresses bicuculline/baclofen-insensitive gamma-aminobutyric acid (GABA) receptors in Xenopus oocytes with properties similar to those of homooligomeric GABA rho 1 receptors. The pharmacological profile of these rho-like receptors was extended by measuring sensitivities to various GABAA and GABAB receptor ligands. For direct comparison the same compounds were also assayed with GABAA receptors expressed by rat brain RNA. The potency sequence for heterocyclic GABA analogues at the GABA rho-like receptors was GABA (1.3) > muscimol (2.3) > isoguvacine (100) (approximate EC50 in parentheses; all EC50 and Kb values given in microM). Both muscimol and isoguvacine were partial agonists at the rho-like receptors. 4,5,6,7-Tetrahydroisoxazolo[5,4-c]pyridin-3-ol (Kb congruent to 32), piperidine-4-sulfonic acid (Kb congruent to 85), and isonipecotic acid (Kb congruent to 1000) acted primarily as competitive antagonists, showing little or no activity as agonists. The sulfonic acid GABA analogue 3-aminopropanesulfonic acid was also a competitive antagonist (Kb congruent to 20). Conformationally restricted GABA analogues trans- and cis-4-aminocrotonic acid (TACA and CACA) were agonists at the rho-like receptors. TACA (EC50 congruent to 0.6) had twice the potency of GABA and was 125 times more potent than CACA (EC50 congruent to 75). Z-3-(Amidinothio)propenoic acid, an isothiouronium analogue of GABA, had little activity as an agonist but instead acted as a competitive antagonist (Kb congruent to 20). At concentrations of > 100 microM, bicuculline did have some weak competitive inhibitory effects on the GABA rho-like receptors (Kb congruent to 6000), but it was at least 5000 times more potent at GABAA receptors. Strychnine (Kb congruent to 70) and SR-95531 (Kb congruent to 35) also were competitive inhibitors of the rho-like receptors but were, respectively, 20 and 240 times more potent at GABAA receptors. The GABAB receptor ligands baclofen

  14. The UCR gamma ray telescope data acquisition system

    NASA Technical Reports Server (NTRS)

    O'Neill, T. J.; Sweeney, W. E.; Tumer, O. T.; Zych, A. D.; White, R. S.

    1988-01-01

    A description is given of an electronics system based on the DEC Falcon SBC-11/23+, which has been designed and built to support a balloon-borne double Compton gamma-ray telescope. The system provides support for commands, data acquisition, data routing and compression, and photomultiplier tube gain control. The software consists of a number of interrupt-driven routines of differing priorities to handle each system task. This includes two circular buffers for onboard processing and bit encoding before transmission of the information to the ground computer. Acquisition of gamma-ray events at rates above the 200-Hz telemetry constraint is easily achieved.

  15. Insights into the Relationship between Toll Like Receptors and Gamma Delta T Cell Responses

    PubMed Central

    Dar, Asif Amin; Patil, Rushikesh Sudam; Chiplunkar, Shubhada Vivek

    2014-01-01

    The tumor microenvironment is an important aspect of cancer biology that contributes to tumor initiation, tumor progression and responses to therapy. The composition and characteristics of the tumor microenvironment vary widely and are important in determining the anti-tumor immune response. Successful immunization requires activation of both innate and adaptive immunity. Generally, immune system is compromised in patients with cancer due to immune suppression, loss of tumor antigen expression and dysfunction of antigen presenting cells (APC). Thus, therapeutic immunization leading to cancer regression remains a significant challenge. Certain cells of the immune system, including dendritic cells (DCs) and gamma delta (γδ) T cells are capable of driving potent anti-tumor responses. The property of MHC-unrestricted cytotoxicity, high potential of cytokine release, tissue tropism and early activation in infections and malignant disease makes γδ T cells as an emerging candidate for immunotherapy. Various strategies are being developed to enhance anti-tumor immune responses of γδ T cells and DCs one of them is the use of novel adjuvants like toll like receptors (TLR) agonists, which enhance γδ T cell function directly or through DC activation, which has ability to prime γδ T cells. TLR agonists are being used clinically either alone or in combination with tumor antigens and has shown initial success in both enhancing immune responses and eliciting anti-tumor activity. TLR activated γδ T cells and DCs nurture each other’s activation. This provides a potent base for first line of defense and manipulation of the adaptive response against pathogens and cancer. The available data provides a strong rationale for initiating combinatorial therapy for the treatment of diseases and this review will summarize the application of adjuvants (TLRs) for boosting immune response of γδ T cells to treat cancer and infectious diseases and their use in combinatorial therapy

  16. Gamma-ray Albedo of Small Solar System Bodies

    SciTech Connect

    Moskalenko, I.V.

    2008-03-25

    We calculate the {gamma}-ray albedo flux from cosmic-ray (CR) interactions with the solid rock and ice in Main Belt asteroids and Kuiper Belt objects (KBOs) using the Moon as a template. We show that the {gamma}-ray albedo for the Main Belt and KBOs strongly depends on the small-body mass spectrum of each system and may be detectable by the forthcoming Gamma Ray Large Area Space Telescope (GLAST). If detected, it can be used to derive the mass spectrum of small bodies in the Main Belt and Kuiper Belt and to probe the spectrum of CR nuclei at close-to-interstellar conditions. The orbits of the Main Belt asteroids and KBOs are distributed near the ecliptic, which passes through the Galactic center and high Galactic latitudes. Therefore, the {gamma}-ray emission by the Main Belt and Kuiper Belt has to be taken into account when analyzing weak {gamma}-ray sources close to the ecliptic. The asteroid albedo spectrum also exhibits a 511 keV line due to secondary positrons annihilating in the rock. This may be an important and previously unrecognized celestial foreground for the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) observations of the Galactic 511 keV line emission including the direction of the Galactic center. For details of our calculations and references see [1].

  17. The Counting and Triggers Signals Formation System for Gamma-telescope GAMMA-400

    NASA Astrophysics Data System (ADS)

    Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Chasovikov, E. N.; Galper, A. M.; Kheymits, M. D.; Murchenko, A. E.; Yurkin, Y. T.

    Gamma-telescope GAMMA-400 consists of anticoincidence system (polyvinylyltoluene BC-408 based top and lateral detector sections, the converter-tracker with thickness of ∼1 X0 (where X0 is radiation length), time-of-flight system (two sections composed of BC-408 detectors with 50 cm distance between), two calorimeters makes of CsI(Tl) crystals (position-sensitive and electromagnetic. Also it includes neutron detector, two BC-408 based scintillation detectors of the calorimeter, and four BC-408 based lateral detectors of the calorimeter. The total calorimeter thickness is 25 X0 or 1.2 λ0 for vertical incident particles registration and 54 X0 or 2.5 λ0 for laterally incident ones (where λ0 is nuclear interaction length). The counting and triggers signals formation system started the data acquisition and provides particle identification. It used 2 pulses types: fast (t≤10 ns) from BC-408 based scintillation detectors and slow (t≤10 ms) from inorganic ones. Also fast pulses (t∼10 ns) from inorganic calorimeters individual detectors amplitude discriminators are included to this system information processing. Only signals from each detectors system individual detecting units without any summation are used for particle identification. The relationship between γ-quanta and relativistic particles (electrons and protons) energy deposition in GAMMA-400 detectors are discussed. The onboard triggers and trigger markers formation algorithms are described jointly with particles identification methods.

  18. Protein tyrosine kinase activity is essential for Fc gamma receptor-mediated intracellular killing of Staphylococcus aureus by human monocytes.

    PubMed Central

    Zheng, L; Nibbering, P H; Zomerdijk, T P; van Furth, R

    1994-01-01

    Our previous study revealed that the intracellular killing of Staphylococcus aureus by human monocytes after cross-linking Fc gamma receptor I (Fc gamma RI) or Fc gamma RII is a phospholipase C (PLC)-dependent process. The aim of the present study was to investigate whether protein tyrosine kinase (PTK) activity plays a role in the Fc gamma R-mediated intracellular killing of bacteria and activation of PLC in these cells. The results showed that phagocytosis of bacteria by monocytes was not affected by the PTK inhibitors genistein and tyrphostin-47. The intracellular killing of S. aureus by monocytes after cross-linking Fc gamma RII or Fc gamma RII with anti-Fc gamma R monoclonal antibody and a bridging antibody or with human immunoglobulin G (IgG) was inhibited by these compounds in a dose-dependent fashion. The production of O2- by monocytes after stimulation with IgG or IgG-opsonized S. aureus was almost completely blocked by the PTK inhibitor. These results indicate that inhibition of PTK impairs the oxygen-dependent bactericidal mechanisms of monocytes. Genistein and tyrphostin-47, which do not affect the enzymatic activity of purified PLC, prevented activation of PLC after cross-linking Fc gamma RI or Fc gamma RII, measured as an increase in the intracellular inositol 1,4,5-trisphosphate concentration. Cross-linking Fc gamma RI or Fc gamma RII induced rapid tyrosine phosphorylation of several proteins in monocytes, one of which was identified as PLC-gamma 1, and the phosphorylation could be completely blocked by PTK inhibitors, leading to the conclusion that activation of PLC after cross-linking Fc gamma R in monocytes is regulated by PTK activity. Together, these results demonstrate that PTK activity is essential for the activation of PLC which is involved in the Fc gamma R-mediated intracellular killing of S. aureus by human monocytes. Images PMID:7927687

  19. A Gamma Memory Neural Network for System Identification

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.; Principe, Jose C.

    1992-01-01

    A gamma neural network topology is investigated for a system identification application. A discrete gamma memory structure is used in the input layer, providing delayed values of both the control inputs and the network output to the input layer. The discrete gamma memory structure implements a tapped dispersive delay line, with the amount of dispersion regulated by a single, adaptable parameter. The network is trained using static back propagation, but captures significant features of the system dynamics. The system dynamics identified with the network are the Mach number dynamics of the 16 Foot Transonic Tunnel at NASA Langley Research Center, Hampton, Virginia. The training data spans an operating range of Mach numbers from 0.4 to 1.3.

  20. Regulated intramembrane proteolysis of the interleukin-1 receptor II by alpha-, beta-, and gamma-secretase.

    PubMed

    Kuhn, Peer-Hendrik; Marjaux, Els; Imhof, Axel; De Strooper, Bart; Haass, Christian; Lichtenthaler, Stefan F

    2007-04-20

    Ectodomain shedding and intramembrane proteolysis of the amyloid precursor protein (APP) by alpha-, beta- and gamma-secretase are involved in the pathogenesis of Alzheimer disease (AD). Increased proteolytic processing and secretion of another membrane protein, the interleukin-1 receptor II (IL-1R2), have also been linked to the pathogenesis of AD. IL-1R2 is a decoy receptor that may limit detrimental effects of IL-1 in the brain. At present, the proteolytic processing of IL-1R2 remains little understood. Here we show that IL-1R2 can be proteolytically processed in a manner similar to APP. IL-1R2 expressed in human embryonic kidney 293 cells first undergoes ectodomain shedding in an alpha-secretase-like manner, resulting in secretion of the IL-1R2 ectodomain and the generation of an IL-1R2 C-terminal fragment. This fragment undergoes further intramembrane proteolysis by gamma-secretase, leading to the generation of the soluble intracellular domain of IL-1R2. Intramembrane cleavage of IL-1R2 was abolished by a highly specific inhibitor of gamma-secretase and was absent in mouse embryonic fibroblasts deficient in gamma-secretase activity. Surprisingly, the beta-secretase BACE1 and its homolog BACE2 increased IL-1R2 secretion resulting in C-terminal fragments nearly identical to the ones generated by the alpha-secretase-like cleavage. This suggests that both proteases may act as alternative alpha-secretase-like proteases. Importantly, BACE1 and BACE2 did not cleave several other membrane proteins, demonstrating that both proteases do not contribute to general membrane protein turnover but only cleave specific proteins. This study reveals a similar proteolytic processing of IL-1R2 and APP and may provide an explanation for the increased IL-1R2 secretion observed in AD.

  1. Prognostic and biological significance of peroxisome proliferator-activated receptor-gamma in luminal breast cancer.

    PubMed

    Abduljabbar, Rezvan; Al-Kaabi, Methaq Mueen; Negm, Ola H; Jerjees, Dena; Muftah, Abir A; Mukherjee, Abhik; Lai, Chun F; Buluwela, Laki; Ali, Simak; Tighe, Patrick J; Green, Andrew; Ellis, Ian; Rakha, Emad

    2015-04-01

    Peroxisome proliferator-activated receptor-gamma (PPARγ) is an adopted orphan receptor that belongs to the nuclear receptor superfamily of transcription factors. PPARγ is regarded as a differentiation factor and it plays an important role in regulating adipogenesis, cell growth, proliferation and tumour progression. In breast cancer (BC), PPARγ agonists were reported to inhibit proliferation and growth invasion and promote phenotypic changes associated with a less malignant and more differentiated status. This study aims to assess the prognostic and biological roles of PPARγ protein expression in a large cohort of BC patients (n = 1100) with emphasis on the luminal oestrogen receptor (ER) positive class. Immunohistochemistry was used to assess the levels of PPARγ expression in BC series prepared as tissue microarrays (TMAs). PPARγ antibody specificity was confirmed using Western blotting. PPARγ nuclear expression was detected in 79 % of the cases and its expression was positively correlated with the hormonal receptors (ER, progesterone receptor and androgen receptor). PPARγ levels were significantly higher in tumours with lobular subtype, smaller size and lower grade, while HER2-positive, ductal or medullary tumours were associated with lower PPARγ levels. Survival analysis showed that PPARγ is associated with better outcome in the whole series as well as in luminal ER-positive class. Cox regression model showed that PPARγ is an independent predictor of outcome. Higher PPARγ was associated with longer survival in patients with ER-positive tumours who did not receive hormone therapy. PPARγ is a good prognostic marker associated with hormone receptors. In patients with luminal BCs, PPARγ is a marker of better prognosis and is associated with longer survival.

  2. Polymorphisms in the Fc Gamma Receptor IIIA and Toll-Like Receptor 9 Are Associated with Protection against Severe Malarial Anemia and Changes in Circulating Gamma Interferon Levels

    PubMed Central

    Munde, Elly O.; Okeyo, Winnie A.; Anyona, Samwel B.; Raballah, Evans; Konah, Stephen; Okumu, Wilson; Ogonda, Lilian; Vulule, John

    2012-01-01

    An understanding of the immunogenetic basis of naturally acquired immunity to Plasmodium falciparum infection would aid in the designing of a rationally based malaria vaccine. Variants within the Fc gamma receptors (FcγRs) mediate immunity through engagement of immunoglobulin G and other immune mediators, such as gamma interferon (IFN-γ), resulting in erythrophagocytosis and production of inflammatory cytokines in severe malarial anemia (SMA). The Toll-like receptors (TLRs) trigger transcription of proinflammatory cytokines and induce adaptive immune responses. Therefore, these receptors may condition malaria disease pathogenesis through alteration in adaptive and innate immune responses. To further delineate the impacts of FcγRIIIA and TLR9 in SMA pathogenesis, the associations between FcγRIIIA −176F/V and TLR9 −1237T/C variants, SMA (hemoglobin [Hb] < 6.0 g/dl), and circulating IFN-γ levels were investigated in children (n = 301) from western Kenya with acute malaria. Multivariate logistic regression analysis (controlling for potential confounders) revealed that children with the FcγRIIIA −176V/TLR9 −1237C (VC) variant combination had 64% reduced odds of developing SMA (odds ratio [OR], 0.36; 95% confidence interval [CI], 0.20 to 0.64; P = 0.001), while carriers of the FcγRIIIA −176V/TLR9 −1237T (VT) variant combination were twice as susceptible to SMA (OR, 2.04; 95% CI, 1.19 to 3.50; P = 0.009). Children with SMA had higher circulating IFN-γ levels than non-SMA children (P = 0.008). Hemoglobin levels were negatively correlated with IFN-γ levels (r = −0.207, P = 0.022). Consistently, the FcγRIIIA −176V/TLR9 −1237T (VT) carriers had higher levels of circulating IFN-γ (P = 0.011) relative to noncarriers, supporting the observation that higher IFN-γ levels are associated with SMA. These results demonstrate that FcγRIIIA-176F/V and TLR9 −1237T/C variants condition susceptibility to SMA and functional changes in circulating IFN

  3. Human Fc. gamma. RIII: Cloning, expression, and identification of the chromosomal locus of two Fc receptors for IgG

    SciTech Connect

    Peltz, G.A.; Moore, K.W. ); Grundy, H.O.; Lebo, R.V.; Barsh, G.S. ); Yssel, H. )

    1989-02-01

    A cDNA clone encoding a human receptor for the Fc portion of IgG Fc{gamma}RIII or CD16, was isolated from a human leukocyte library by a transient expression-immunoselection procedure. This cDNA (pGP5) encodes a 46-kDa phosphatidylinositol-linked cell surface protein with CD16 determinants and affinity for human IgG. The deduced protein sequence is most homologous to the murine receptor Fc{gamma}RII{alpha}, with slightly less homology to the human receptors Fc{gamma}RII and Fc{epsilon}RI. The cDNA hybridizes to a 2.2 kilobase mRNA in human leukocytes and a cloned human natural killer cell line. Fc{gamma}RIII is mapped to chromosome 1 by spot-blot analysis of sorted human chromosomes. Hybridization of Fc{gamma}RII and Fc{gamma}RIII probes to restriction digests of human genomic DNA separated by pulsed-field gel electrophoresis demonstrates physical linkage of the two genes within a maximum distance of 200 kilobases. The results identify a locus for at least two Fc{gamma}R genes on human chromosome 1.

  4. Gamma-telescopes Fermi/LAT and GAMMA-400 Trigger Systems Event Recognizing Methods Comparison

    NASA Astrophysics Data System (ADS)

    Arkhangelskaja, I. V.; Murchenko, A. E.; Chasovikov, E. N.; Arkhangelskiy, A. I.; Kheymits, M. D.

    Usually instruments for high-energy γ-quanta registration consists of converter (where γ-quanta produced pairs) and calorimeter for particles energy measurements surrounded by anticoincidence shield used to events identification (whether incident particle was charged or neutral). The influence of pair formation by γ-quanta in shield and the backsplash (moved in the opposite direction particles created due high energy γ-rays interact with calorimeter) should be taken into account. It leads to decrease both effective area and registration efficiency at E>10 GeV. In the presented article the event recognizing methods used in Fermi/LAT trigger system is considered in comparison with the ones applied in counting and triggers signals formation system of gamma-telescope GAMMA-400. The GAMMA-400 (Gamma Astronomical Multifunctional Modular Apparatus) will be the new high-apogee space γ-observatory. The GAMMA-400 consist of converter-tracker based on silicon-strip coordinate detectors interleaved with tungsten foils, imaging calorimeter make of 2 layers of double (x, y) silicon strip coordinate detectors interleaved with planes of CsI(Tl) crystals and the electromagnetic calorimeter CC2 consists only of CsI(Tl) crystals. Several plastics detections systems used as anticoincidence shield, for particles energy and moving direction estimations. The main differences of GAMMA-400 constructions from Fermi/LAT one are using the time-of-flight system with base of 50 cm and double layer structure of plastic detectors provides more effective particles direction definition and backsplash rejection. Also two calorimeters in GAMMA-400 composed the total absorbtion spectrometer with total thickness ∼ 25 X0 or ∼1.2 λ0 for vertical incident particles registration and 54 X0 or 2.5 λ0 for laterally incident ones (where λ0 is nuclear interaction length). It provides energy resolution 1-2% for 10 GeV-3.0×103 GeV events while the Fermi/LAT energy resolution does not reach such a

  5. The peroxisome proliferator-activated receptor-gamma2 Pro12Ala polymorphism.

    PubMed

    Stumvoll, Michael; Häring, Hans

    2002-08-01

    Peroxisome proliferator-activated receptor (PPAR)-gamma is a transcription factor with a key role in adipocyte differentiation. The Ala allele of the common Pro12Ala polymorphism in the isoform PPAR-gamma2 is associated with reduced risk for type 2 diabetes. The effect on the individual is weak, but because of a prevalence of >75% of the high-risk Pro allele, the population-attributable risk is enormous. The in vivo effects of the polymorphism are secondary to alterations in adipose tissue, where PPAR-gamma2 is predominantly expressed. Moderate reduction in transcriptional activity of PPAR-gamma as a result of the polymorphism modulates production and release of adipose-derived factors. Both decreased release of insulin-desensitizing free fatty acids, tumor necrosis factor-alpha, and resistin and increased release of the insulin-sensitizing hormone adiponectin result in secondary improvement of insulin sensitivity of glucose uptake and suppression of glucose production. The population effect of this polymorphism may be modulated by environmental or genetic factors such as obesity, ethnicity, ratio of unsaturated to saturated fatty acids, and genetic background. Once diabetes has developed, the protective effect of the Ala allele may be lost, since increased vascular complications and more pronounced beta-cell dysfunction have been reported. These observations, however, are currently unexplained. In conclusion, the Pro12Ala polymorphism in PPAR-gamma2 represents the first genetic variant with a broad impact on the risk of common type 2 diabetes. The precise understanding of its mechanism may lead to novel diagnostic, preventive, and therapeutic approaches for improving the management of type 2 diabetes.

  6. 5-Hydroxytryptamine1A receptor-activation hyperpolarizes pyramidal cells and suppresses hippocampal gamma oscillations via Kir3 channel activation.

    PubMed

    Johnston, April; McBain, Chris J; Fisahn, André

    2014-10-01

    Rhythmic cortical neuronal oscillations in the gamma frequency band (30-80 Hz, gamma oscillations) have been associated with cognitive processes such as sensory perception and integration, attention, learning, and memory. Gamma oscillations are disrupted in disorders for which cognitive deficits are hallmark symptoms such as schizophrenia and Alzheimer's disease.In vitro, various neurotransmitters have been found to modulate gamma oscillations. Serotonin(5-HT) has long been known to be important for both behavioural and cognitive functions such as learning and memory. Multiple 5-HT receptor subtypes are expressed in the CA3 region of the hippocampus and high doses of 5-HT reduce the power of induced gamma oscillations.Hypothesizing that 5-HT may have cell- and receptor subtype-specific modulatory effects, we investigated the receptor subtypes, cell types and cellular mechanisms engaged by 5-HT in the modulation of gamma oscillations in mice and rats. We found that 5-HT decreases the power of kainate-induced hippocampal gamma oscillations in both species via the 5-HT1A receptor subtype. Whole-cell patch clamp recordings demonstrated that this decrease was caused by a hyperpolarization of CA3 pyramidal cells and a reduction of their firing frequency, but not by alteration of inhibitory neurotransmission. Finally, our results show that the effect on pyramidal cells is mediated via the G protein-coupled receptor inwardly rectifying potassium channel Kir3.Our findings suggest this novel cellular mechanism as a potential target for therapies that are aimed at alleviating cognitive decline by helping the brain to maintain or re-establish normal gamma oscillation levels in neuropsychiatric and neurodegenerative disorders.

  7. Cationic modulation of rho 1-type gamma-aminobutyrate receptors expressed in Xenopus oocytes.

    PubMed Central

    Calvo, D J; Vazquez, A E; Miledi, R

    1994-01-01

    A study was made of the effects of di- and trivalent cations on homomeric rho 1-type gamma-aminobutyrate (GABA rho 1) receptors expressed in Xenopus oocytes after injection of mRNA coding for the GABA rho 1 subunit. GABA elicited large currents with a Kd approximately 1 microM. The properties of these GABA rho 1 receptors were similar to those of native bicuculline-resistant GABA receptors expressed by retinal mRNA. GABA rho 1 currents showed very little desensitization, were blocked by picrotoxin but not by bicuculline, and were not modulated by barbiturates, benzodiazepines, or beta-carbolines. Zn2+ reversibly decreased GABA rho 1 responses (IC50 = 22 microM). Other divalent cations were also tested and their rank order of potency was: Zn2+ approximately Ni2+ approximately Cu2+ >> Cd2+, whereas Ba2+, Co2+, Sr2+, Mn2+, Mg2+, and Ca2+ showed little or no effect. In contrast, La3+ reversibly potentiated the GABA currents mediated by homomeric GABA rho 1 receptors, with an EC50 = 135 microM and a maximal potentiation of about 100% (GABA, 1 microM; La3+, 1 mM). Other lanthanides showed similar effects (Lu3+ > Eu3+ > Tb3+ > Gd3+ > Er3% > Nd3+ > La3+ > Ce3+). Thus, GABA rho 1 receptors contain sites for cationic recognition, and in particular, Zn2+ may play a role during synaptic transmission in the retina. Images Fig. 3 PMID:7809110

  8. Characterization of gamma-aminobutyric acid receptors in the neurointermediate lobe of the amphibian Xenopus laevis.

    PubMed

    Verburg-van Kemenade, B M; Jenks, B G; Lenssen, F J; Vaudry, H

    1987-02-01

    The neurotransmitter gamma-aminobutyric acid (GABA) is involved in the regulation of secretion of MSH from the intermediate lobe of Xenopus laevis. The purpose of this study was to identify the GABA receptor(s) involved by determination of the effect of specific receptor agonists and antagonists on the release of immunoreactive MSH from superfused neurointermediate lobes of Xenopus. Exogenous GABA induces a rapid inhibition of MSH secretion. There was no evidence for a transitory stimulatory effect of GABA as reported for the rat melanotropes. Both the GABA agonists (GABAa) homotaurine and isoguvacine and the GABA agonist (GABAb) baclofen inhibited MSH release in a dose-dependent manner. In vivo, homotaurine and baclofen caused aggregation of pigment in dermal melanophores. The MSH release-inhibiting effect of homotaurine and isoguvacine could be antagonized by the specific GABAa receptor antagonist bicuculline. However, bicuculline and picrotoxin failed to block the effect of exogenous GABA. We conclude that in the neurointermediate lobe of Xenopus laevis both GABAa and GABAb receptors are present, suggesting a dual inhibitory regulation.

  9. A large-area gamma-ray imaging telescope system

    NASA Technical Reports Server (NTRS)

    Koch, D. G.

    1983-01-01

    The concept definition of using the External Tank (ET) of the Space Shuttle as the basis for constructing a large area gamma ray imaging telescope in space is detailed. The telescope will be used to locate and study cosmic sources of gamma rays of energy greater than 100 MeV. Both the telescope properties and the means whereby an ET is used for this purpose are described. A parallel is drawn between those systems that would be common to both a Space Station and this ET application. In addition, those systems necessary for support of the telescope can form the basis for using the ET as part of the Space Station. The major conclusions of this concept definition are that the ET is ideal for making into a gamma ray telescope, and that this telescope will provide a substantial increase in collecting area.

  10. Implementation of Monte Carlo Simulations for the Gamma Knife System

    NASA Astrophysics Data System (ADS)

    Xiong, W.; Huang, D.; Lee, L.; Feng, J.; Morris, K.; Calugaru, E.; Burman, C.; Li, J.; Ma, C.-M.

    2007-06-01

    Currently the Gamma Knife system is accompanied with a treatment planning system, Leksell GammaPlan (LGP) which is a standard, computer-based treatment planning system for Gamma Knife radiosurgery. In LGP, the dose calculation algorithm does not consider the scatter dose contributions and the inhomogeneity effect due to the skull and air cavities. To improve the dose calculation accuracy, Monte Carlo simulations have been implemented for the Gamma Knife planning system. In this work, the 201 Cobalt-60 sources in the Gamma Knife unit are considered to have the same activity. Each Cobalt-60 source is contained in a cylindric stainless steel capsule. The particle phase space information is stored in four beam data files, which are collected in the inner sides of the 4 treatment helmets, after the Cobalt beam passes through the stationary and helmet collimators. Patient geometries are rebuilt from patient CT data. Twenty two Patients are included in the Monte Carlo simulation for this study. The dose is calculated using Monte Carlo in both homogenous and inhomogeneous geometries with identical beam parameters. To investigate the attenuation effect of the skull bone the dose in a 16cm diameter spherical QA phantom is measured with and without a 1.5mm Lead-covering and also simulated using Monte Carlo. The dose ratios with and without the 1.5mm Lead-covering are 89.8% based on measurements and 89.2% according to Monte Carlo for a 18mm-collimator Helmet. For patient geometries, the Monte Carlo results show that although the relative isodose lines remain almost the same with and without inhomogeneity corrections, the difference in the absolute dose is clinically significant. The average inhomogeneity correction is (3.9 ± 0.90) % for the 22 patients investigated. These results suggest that the inhomogeneity effect should be considered in the dose calculation for Gamma Knife treatment planning.

  11. Ultraviolet irradiation selectively disrupts the gamma-aminobutyric acid/benzodiazepine receptor-linked chloride ionophore

    SciTech Connect

    Evoniuk, G.; Moody, E.J.; Skolnick, P. )

    1989-05-01

    The ability of UV light to affect radioligand binding and 36Cl-uptake at the gamma-aminobutyric acidA (GABAA) receptor-chloride channel complex was examined. Exposure to 302 nm UV light produced a rapid (t1/2 = 4 min) reduction in (35S)t-butylbicyclo-phosphorothionate binding (assayed in the presence of 200 mM chloride) to sites associated with the GABAA receptor-coupled chloride ionophore. Saturation analysis revealed that this effect could be attributed entirely to a decrease in the maximum number of binding sites. Exposure to UV irradiation at lower (254 nm) and higher (366 nm) wavelengths also inhibited (35S)t-butylbicy-clophosphorothionate binding, but the respective rates of inactivation were 8- and 27-fold slower, compared with 302 nm. Other anion-dependent interactions at the GABAA receptor complex were disrupted in a similar manner. In the absence of permeant anion, (3H)flunitrazepam binding to benzodiazepine receptors was unaffected by 302 nm UV irradiation, whereas chloride-enhanced (3H)flunitrazepam binding was inhibited markedly. In the presence of 250-500 mM chloride, (3H)methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate binding to benzodiazepine receptors was also inhibited after UV exposure. Basal 36Cl- uptake into synaptoneurosomes was nearly doubled after 15 min of exposure to 302 nm light, whereas pentobarbital- and muscimol-stimulated 36Cl- uptake were reduced significantly. UV irradiation at 302 nm appears to disrupt selectively the anion-dependent functional interactions at the GABAA receptor complex. The apparent wavelength specificity suggests that the gating structure (channel) may contain tryptophan and/or tyrosine residues vital to the regulation of anion movement through the ionophore portion of this supramolecular receptor-ion channel complex.

  12. In vivo functions of the gamma-butyrolactone autoregulator receptor in Streptomyces ambofaciens producing spiramycin.

    PubMed

    Choi, Sun-Uk; Kim, Mi-Kyung; Ha, Heon-Su; Hwang, Yong-Il

    2008-05-01

    A gene encoding a gamma-butyrolactone autoregulator receptor was cloned in to E. coli from Streptomyces ambofaciens producing spiramycin, a macrolide antibiotic used in both veterinary medicine and human medicine. A 714-bp intact receptor gene (saaR) was obtained by PCR and genomic Southern hybridization with the 100-bp PCR product as a probe. To clarify the in vivo function of saaR, a saaR-disrupted strain was constructed by means of homologous recombination, and phenotypes were compared with those of the wild-type strain. The number of saaR-disruptant spores was 4-fold less than that of the wild-type strain. In addition, saaR deletion from the S. ambofaciens chromosome resulted in complete loss of spiramycin production suggesting that saaR is a rare positive regulator, controlling both spiramycin biosynthesis and sporulation.

  13. Peroxisome proliferator-activated receptor gamma signaling in human sperm physiology

    PubMed Central

    Liu, Li-Li; Xian, Hua; Cao, Jing-Chen; Zhang, Chong; Zhang, Yong-Hui; Chen, Miao-Miao; Qian, Yi; Jiang, Ming

    2015-01-01

    Peroxisome proliferator-activated receptor gamma (PPARγ) is a member of the PPARs, which are transcription factors of the steroid receptor superfamily. PPARγ acts as an important molecule for regulating energy homeostasis, modulates the hypothalamic-pituitary-gonadal (HPG) axis, and is reciprocally regulated by HPG. In the human, PPARγ protein is highly expressed in ejaculated spermatozoa, implying a possible role of PPARγ signaling in regulating sperm energy dissipation. PPARγ protein is also expressed in Sertoli cells and germ cells (spermatocytes). Its activation can be induced during capacitation and the acrosome reaction. This mini-review will focus on how PPARγ signaling may affect fertility and sperm quality and the potential reversibility of these adverse effects. PMID:25851655

  14. Wakayama Symposium: Peroxisome Proliferator-Activated Receptor-gamma (PPARγ) and Meibomian Gland Dysfunction

    PubMed Central

    Jester, James V.; Brown, Donald J.

    2012-01-01

    Recently we have shown that mouse and human meibomian glands undergo specific age-related changes, including decreased acinar cell proliferation, acinar atrophy, and altered peroxisome proliferator-activated receptor gamma (PPARγ) localization from cytoplasmic-vesicular/nuclear in young mice and humans to nuclear in old mice and humans. Since PPARγ is a lipid-sensitive, nuclear receptor implicated in regulating adipocyte and sebocyte differentiation and lipogenesis, our findings suggest that PPARγ may be involved in modulating meibomian gland differentiation during aging. Based on these findings, we propose that aging of the meibomian gland results in downregulation of PPARγ, leading to decreased meibocyte differentiation and lipid synthesis, gland atrophy, and a hyposecretory meibomian gland dysfunction. PMID:23084144

  15. Retinoid X receptor alpha (RXRα) and peroxisome proliferator-activated receptor gamma (PPARγ) expression in breast cancer: an immunohistochemical study.

    PubMed

    Ditsch, N; Vrekoussis, T; Lenhard, M; Rühl, I; Gallwas, J; Weissenbacher, T; Friese, K; Mayr, D; Makrigiannakis, A; Jeschke, U

    2012-01-01

    The role of retinoid X receptor alpha (RXRα) and peroxisome proliferator-activated receptor gamma (PPARγ) in breast cancer has been well studied in vitro. The aim of the study was to assess the presence of these molecules in human breast cancer specimens and correlate them with major clinicopathological features. Tissue sections from 82 breast cancer cases clustered according to histological grade, lymph node (LN) and hormone receptor (HR) status were assessed by immunohistochemistry for RXRα and PPARγ. RXRα was found to be strongly and moderately expressed in 11 (14.10%) and 33 (42.31%) cases, respectively. PPARγ was found to be strongly and moderately expressed in 33 (41.25%) and 25 (31.25%) cases, respectively. Only RXRα expression was inversely correlated with histological grade. Surprisingly, significantly elevated PPARγ expression was found in cases with positive LN status. Survival analysis did not yield significant results. Our data support the current thesis of RXRα being a potential target for feature molecular interventions.

  16. Possible intermolecular interaction between quinolones and biphenylacetic acid inhibits gamma-aminobutyric acid receptor sites.

    PubMed Central

    Akahane, K; Kimura, Y; Tsutomi, Y; Hayakawa, I

    1994-01-01

    The combination of some new quinolone antibacterial agents with 4-biphenylacetic acid (BPAA), a metabolite of fenbufen, is known to specifically induce functional blockade of the gamma-aminobutyric acid (GABA) receptors. The mechanisms of these drug interactions were further examined. Scatchard analysis of [3H]muscimol binding to rat brain plasma membranes in the presence of enoxacin and BPAA revealed that a significant decrease in the number of muscimol binding sites was produced without affecting the affinity of binding to the receptors. In the presence of norfloxacin, BPAA inhibited muscimol binding the most potently of the six BPAA-related compounds tested. Fenbufen and 9,10-dihydro-gamma-oxo-2-phenanthrenebutyric acid also inhibited the binding, and 4-biphenylcarboxylic acid and methyl 4-biphenylacetate inhibited it slightly, but 3-benzoylpropionic acid exhibited no competitive inhibition. Accordingly, hybrid molecules of norfloxacin and BPAA were synthesized for stereochemical analysis of these drug interactions. A hybrid with a -CONH(CH2)3- chain between norfloxacin and BPAA (flexible structure) inhibited muscimol binding, and intracisternal injection of this hybrid caused clonic convulsions in mice more potently than the combination of norfloxacin and BPAA did. In contrast, a hybrid linked by -CONH- (stretched structure) showed almost no such inhibitory effect. 1H NMR analysis indicated the presence of intramolecular attraction at the quinoline ring of the hybrid exhibiting the antagonistic activity. These results suggest the possibility that quinolones and BPAA interact with the GABA receptor at nearby sites and that the binding affinity of quinolones to the GABA receptors is largely enhanced by the intermolecular interaction with BPAA. PMID:7840564

  17. Nucleotide and deduced amino acid sequences of Torpedo californica acetylcholine receptor gamma subunit.

    PubMed Central

    Claudio, T; Ballivet, M; Patrick, J; Heinemann, S

    1983-01-01

    The nucleotide sequence has been determined of a cDNA clone that codes for the 60,000-dalton gamma subunit of Torpedo californica acetylcholine receptor. The length of the cDNA clone is 2,010 base pairs. The 5' and 3' untranslated regions have respective lengths of 31 and 461 base pairs. Data suggest that the putative polyadenylylation consensus sequence A-A-T-A-A-A may not be required for polyadenylylation of the mRNA corresponding to the cDNA clone described in this study. From the DNA sequence data, the amino acid sequence of the gamma subunit was deduced. The subunit is composed of 489 amino acids giving a molecular mass of 56,600 daltons. The deduced amino acid sequence data also indicate the presence of a 17-amino acid extension or signal peptide on this subunit. From these data, structural predictions for the gamma subunit are made such as potential membrane-spanning regions, possible asparagine-linked glycosylation sites, and the assignment of regions of the protein to the extracellular, internal, and cytoplasmic domains of the lipid bilayer. Images PMID:6573658

  18. Mini gamma camera, camera system and method of use

    DOEpatents

    Majewski, Stanislaw; Weisenberger, Andrew G.; Wojcik, Randolph F.

    2001-01-01

    A gamma camera comprising essentially and in order from the front outer or gamma ray impinging surface: 1) a collimator, 2) a scintillator layer, 3) a light guide, 4) an array of position sensitive, high resolution photomultiplier tubes, and 5) printed circuitry for receipt of the output of the photomultipliers. There is also described, a system wherein the output supplied by the high resolution, position sensitive photomultipiler tubes is communicated to: a) a digitizer and b) a computer where it is processed using advanced image processing techniques and a specific algorithm to calculate the center of gravity of any abnormality observed during imaging, and c) optional image display and telecommunications ports.

  19. The Advanced Gamma-ray Imaging System (AGIS) - Simulation Studies

    SciTech Connect

    Maier, G.; Buckley, J.; Bugaev, V.; Fegan, S.; Vassiliev, V. V.; Funk, S.; Konopelko, A.

    2008-12-24

    The Advanced Gamma-ray Imaging System (AGIS) is a US-led concept for a next-generation instrument in ground-based very-high-energy gamma-ray astronomy. The most important design requirement for AGIS is a sensitivity of about 10 times greater than current observatories like Veritas, H.E.S.S or MAGIC. We present results of simulation studies of various possible designs for AGIS. The primary characteristics of the array performance, collecting area, angular resolution, background rejection, and sensitivity are discussed.

  20. Technical evaluation of software for gamma-ray logging system

    SciTech Connect

    Stromswold, D.C.

    1994-05-01

    This report contains results of a technical review of software, identified as LGCALC, that processes data collected by a high-resolution gamma-ray borehole logging system. The software presently operates within Westinghouse Hanford Company, Department of Geosciences, to process data collected by the Radionuclide Logging System. The software has been reviewed for its suitability for processing data to be collected by new high-resolution gamma-ray logging trucks scheduled to begin operational tests within Westinghouse Tank Waste Remediation Systems during 1994. Examination of the program code and hands-on operational tests have shown that this software is suitable for its intended use of processing high-resolution gamma-ray data obtained from borehole logging. Most of the code requires no changes, but in a few limited cases, suggestions have been made to correct errors or improve operation. Section 4 describes these changes. The technical review has confirmed the appropriateness, correctness, completeness, and coding accuracy of algorithms used to process spectral gamma-ray data, leading to a calculation of subsurface radionuclide contaminants. Running the program with test data from calibration models has confirmed that the program operates correctly. Comparisons with hand calculations have shown the correctness of the output from the program, based on known input data. Section 3 describes these tests. The recommended action is to make the near term programming changes suggested in Section 4.1 and then use the LGCALC analysis program with the new high-resolution logging systems once they have been properly calibrated.

  1. Identification of a phospholipase C-gamma1 (PLC-gamma1) SH3 domain-binding site in SLP-76 required for T-cell receptor-mediated activation of PLC-gamma1 and NFAT.

    PubMed

    Yablonski, D; Kadlecek, T; Weiss, A

    2001-07-01

    SLP-76 is an adapter protein required for T-cell receptor (TCR) signaling. In particular, TCR-induced tyrosine phosphorylation and activation of phospholipase C-gamma1 (PLC-gamma1), and the resultant TCR-inducible gene expression, depend on SLP-76. Nonetheless, the mechanisms by which SLP-76 mediates PLC-gamma1 activation are not well understood. We now demonstrate that SLP-76 directly interacts with the Src homology 3 (SH3) domain of PLC-gamma1. Structure-function analysis of SLP-76 revealed that each of the previously defined protein-protein interaction domains can be individually deleted without completely disrupting SLP-76 function. Additional deletion mutations revealed a new, 67-amino-acid functional domain within the proline-rich region of SLP-76, which we have termed the P-1 domain. The P-1 domain mediates a constitutive interaction of SLP-76 with the SH3 domain of PLC-gamma1 and is required for TCR-mediated activation of Erk, PLC-gamma1, and NFAT (nuclear factor of activated T cells). The adjacent Gads-binding domain of SLP-76, also within the proline-rich region, mediates inducible recruitment of SLP-76 to a PLC-gamma1-containing complex via the recruitment of both PLC-gamma1 and Gads to another cell-type-specific adapter, LAT. Thus, TCR-induced activation of PLC-gamma1 entails the binding of PLC-gamma1 to both LAT and SLP-76, a finding that may underlie the requirement for both LAT and SLP-76 to mediate the optimal activation of PLC-gamma1.

  2. Cloning and functional expression of a Drosophila gamma-aminobutyric acid receptor.

    PubMed Central

    Chen, R; Belelli, D; Lambert, J J; Peters, J A; Reyes, A; Lan, N C

    1994-01-01

    A cDNA encoding a functional gamma-aminobutyric (GABA)-activated Cl- channel has been isolated from an adult Drosophila head cDNA library. When expressed in Xenopus laevis oocytes, the subunit functions efficiently, presumably as a homooligomeric complex and is activated by GABA or muscimol. GABA-evoked currents are highly sensitive to antagonism by picrotoxin but are insensitive to bicuculline, RU 5135, or zinc. Pentobarbitone greatly enhances GABA-evoked currents, whereas the neurosteroid 5 alpha-pregnan-3 alpha-ol-20-one demonstrates a large reduction in both the potency and maximal effect when compared with its actions upon vertebrate GABA type A receptors. Although zinc-insensitive, the subunit is also insensitive to flunitrazepam. Hence, the GABA receptors formed by this subunit exhibit a unique pharmacology when compared with vertebrate GABA type A receptors or those composed of rho subunits. Because the receptor-channel complex functions as a homooligomer, this subunit may be of value in mutagenesis studies aiming to define drug-binding sites. Images PMID:8016117

  3. Physical association of JAK1 and JAK2 tyrosine kinases with the interleukin 2 receptor beta and gamma chains.

    PubMed Central

    Tanaka, N; Asao, H; Ohbo, K; Ishii, N; Takeshita, T; Nakamura, M; Sasaki, H; Sugamura, K

    1994-01-01

    The functional interleukin 2 (IL-2) receptors contain the beta and gamma chains which are necessary for the transduction of cell growth signals. Monoclonal antibodies specific for the beta chain and gamma chain coimmunoprecipitated JAK1 and 114-kDa JAK2 tyrosine kinases, respectively. Tyrosine phosphorylation of JAK1 and JAK2 was induced upon IL-2 stimulation, and IL-2 activated the JAK2 kinase. These results demonstrate that the JAK1 and JAK2 tyrosine kinases are physically associated with the beta chain and gamma chain, respectively, and suggest that regulation of the kinases may be linked to IL-2-induced signal transduction. Images PMID:8041779

  4. Pharmacophore modeling improves virtual screening for novel peroxisome proliferator-activated receptor-gamma ligands

    NASA Astrophysics Data System (ADS)

    Lewis, Stephanie N.; Garcia, Zulma; Hontecillas, Raquel; Bassaganya-Riera, Josep; Bevan, David R.

    2015-05-01

    Peroxisome proliferator-activated receptor-gamma (PPARγ) is a nuclear hormone receptor involved in regulating various metabolic and immune processes. The PPAR family of receptors possesses a large binding cavity that imparts promiscuity of ligand binding not common to other nuclear receptors. This feature increases the challenge of using computational methods to identify PPAR ligands that will dock favorably into a structural model. Utilizing both ligand- and structure-based pharmacophore methods, we sought to improve agonist prediction by grouping ligands according to pharmacophore features, and pairing models derived from these features with receptor structures for docking. For 22 of the 33 receptor structures evaluated we observed an increase in true positive rate (TPR) when screening was restricted to compounds sharing molecular features found in rosiglitazone. A combination of structure models used for docking resulted in a higher TPR (40 %) when compared to docking with a single structure model (<20 %). Prediction was also improved when specific protein-ligand interactions between the docked ligands and structure models were given greater weight than the calculated free energy of binding. A large-scale screen of compounds using a marketed drug database verified the predictive ability of the selected structure models. This study highlights the steps necessary to improve screening for PPARγ ligands using multiple structure models, ligand-based pharmacophore data, evaluation of protein-ligand interactions, and comparison of docking datasets. The unique combination of methods presented here holds potential for more efficient screening of compounds with unknown affinity for PPARγ that could serve as candidates for therapeutic development.

  5. Pharmacophore modeling improves virtual screening for novel peroxisome proliferator-activated receptor-gamma ligands

    PubMed Central

    Lewis, Stephanie N.; Garcia, Zulma; Hontecillas, Raquel; Bassaganya-Riera, Josep; Bevan, David R.

    2015-01-01

    Peroxisome proliferator-activated receptor-gamma (PPARγ) is a nuclear hormone receptor involved in regulating various metabolic and immune processes. The PPAR family of receptors possesses a large binding cavity that imparts promiscuity of ligand binding not common to other nuclear receptors. This feature increases the challenge of using computational methods to identify PPAR ligands that will dock favorably into a structural model. Utilizing both ligand- and structure-based pharmacophore methods, we sought to improve agonist prediction by grouping ligands according to pharmacophore features, and pairing models derived from these features with receptor structures for docking. For 22 of the 33 receptor structures evaluated we observed an increase in true positive rate (TPR) when screening was restricted to compounds sharing molecular features found in rosiglitazone. A combination of structure models used for docking resulted in a higher TPR (40%) when compared to docking with a single structure model (less than 20%). Prediction was also improved when specific protein-ligand interactions between the docked ligands and structure models were given greater weight than the calculated free energy of binding. A large-scale screen of compounds using a marketed drug database verified the predictive ability of the selected structure models. This study highlights the steps necessary to improve screening for PPARγ ligands using multiple structure models, ligand-based pharmacophore data, evaluation of protein-ligand interactions, and comparison of docking datasets. The unique combination of methods presented here holds potential for more efficient screening of compounds with unknown affinity for PPARγ that could serve as candidates for therapeutic development. PMID:25616366

  6. Topological dispositions of lysine. alpha. 380 and lysine. gamma. 486 in the acetylcholine receptor from Torpedo californica

    SciTech Connect

    Dwyer, B.P. )

    1991-04-23

    The locations have been determined, with respect to the plasma membrane, of lysine {alpha}380 and lysine {gamma}486 in the {alpha} subunit and the {gamma} subunit, respectively, of the nicotinic acetylcholine receptor from Torpedo californica. Immunoadsorbents were constructed that recognize the carboxy terminus of the peptide GVKYIAE released by proteolytic digestion from positions 378-384 in the amino acid sequence of the {alpha} subunit of the acetylcholine receptor and the carboxy terminus of the peptide KYVP released by proteolytic digestion from positions 486-489 in the amino acid sequence of the {gamma} subunit. They were used to isolate these peptides from proteolytic digests of polypeptides from the acetylcholine receptor. Sealed vesicles containing the native acetylcholine receptor were labeled with pyridoxal phosphate and sodium ({sup 3}H)-borohydride. The effect of saponin on the incorporation of pyridoxamine phosphate into lysine {alpha}380 and lysine {gamma}486 from the acetylcholine receptor in these vesicles was assessed with the immunoadsorbents. The conclusions that follow from these results are that lysine {alpha}380 is on the inside surface of a vesicle and lysine {gamma}486 is on the outside surface. Because a majority (85%) of the total binding sites for {alpha}-bungarotoxin bind the toxin in the absence of saponin, the majority of the vesicles are right side out with the inside of the vesicle corresponding to the cytoplasmic surface and the outside of the vesicle corresponding to the extracytoplasmic, synaptic surface. Because lysine {alpha}380 and lysine {gamma}486 lie on opposite sides of the membrane, a membrane-spanning segment must be located between the two positions occupied by these two amino acids in the common sequence of a polypeptide of the acetylcholine receptor.

  7. Peroxisome proliferator-activated receptor-gamma agonist rosiglitazone attenuates postincisional pain by regulating macrophage polarization

    SciTech Connect

    Hasegawa-Moriyama, Maiko; Ohnou, Tetsuya; Godai, Kohei; Kurimoto, Tae; Nakama, Mayo; Kanmura, Yuichi

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Rosiglitazone attenuated postincisional pain. Black-Right-Pointing-Pointer Rosiglitazone alters macrophage polarization to F4/80{sup +}CD206{sup +} M2 macrophages at the incisional sites. Black-Right-Pointing-Pointer Transplantation of rosiglitazone-treated macrophages produced analgesic effects. -- Abstract: Acute inflammation triggered by macrophage infiltration to injured tissue promotes wound repair and may induce pain hypersensitivity. Peroxisome proliferator-activated receptor {gamma} (PPAR){gamma} signaling is known to regulate heterogeneity of macrophages, which are often referred to as classically activated (M1) and alternatively activated (M2) macrophages. M1 macrophages have considerable antimicrobial activity and produce a wide variety of proinflammatory cytokines. In contrast, M2 macrophages are involved in anti-inflammatory and homeostatic functions linked to wound healing and tissue repair. Although it has been suggested that PPAR{gamma} agonists attenuate pain hypersensitivity, the molecular mechanism of macrophage-mediated effects of PPAR{gamma} signaling on pain development has not been explored. In this study, we investigated the link between the phenotype switching of macrophage polarization induced by PPAR{gamma} signaling and the development of acute pain hypersensitivity. Local administration of rosiglitazone significantly ameliorated hypersensitivity to heat and mechanical stimuli, and paw swelling. Consistent with the down-regulation of nuclear factor {kappa}B (NF{kappa}B) phosphorylation by rosiglitazone at the incisional sites, the number of F4/80{sup +}iNOS{sup +} M1 macrophages was decreased whereas numbers of F4/80{sup +}CD206{sup +} M2 macrophages were increased in rosiglitazone-treated incisional sites 24 h after the procedure. In addition, gene induction of anti-inflammatory M2-macrophage-associated markers such as arginase1, FIZZ1 and interleukin (IL)-10 were significantly increased, whereas

  8. Dual role of SLP-76 in mediating T cell receptor-induced activation of phospholipase C-gamma1.

    PubMed

    Beach, Dvora; Gonen, Ronnie; Bogin, Yaron; Reischl, Ilona G; Yablonski, Deborah

    2007-02-02

    Phospholipase C-gamma1 (PLC-gamma1) activation depends on a heterotrimeric complex of adaptor proteins composed of LAT, Gads, and SLP-76. Upon T cell receptor stimulation, a portion of PLC-gamma1 is recruited to a detergent-resistant membrane fraction known as the glycosphingolipid-enriched membrane microdomains (GEMs), or lipid rafts, to which LAT is constitutively localized. In addition to LAT, PLC-gamma1 GEM recruitment depended on SLP-76, and, in particular, required the Gads-binding domain of SLP-76. The N-terminal tyrosine phosphorylation sites and P-I region of SLP-76 were not required for PLC-gamma1 GEM recruitment, but were required for PLC-gamma1 phosphorylation at Tyr(783). Thus, GEM recruitment can be insufficient for full activation of PLC-gamma1 in the absence of a second SLP-76-mediated event. Indeed, a GEM-targeted derivative of PLC-gamma1 depended on SLP-76 for T cell receptor-induced phosphorylation at Tyr783 and subsequent NFAT activation. On a biochemical level, SLP-76 inducibly associated with both Vav and catalytically active ITK, which efficiently phosphorylated a PLC-gamma1 fragment at Tyr783 in vitro. Both associations were disrupted upon mutation of the N-terminal tyrosine phosphorylation sites of SLP-76. The P-I region deletion disrupted Vav association and reduced SLP-76-associated kinase activity. A smaller deletion within the P-I region, which does not impair PLC-gamma1 activation, did not impair the association with Vav, but reduced SLP-76-associated kinase activity. These results provide new insight into the multiple roles of SLP-76 and the functional importance of its interactions with other signaling proteins.

  9. A gamma-ray verification system for special nuclear material

    SciTech Connect

    Lanier, R.G.; Prindle, A.L.; Friensehner, A.V.; Buckley, W.M.

    1994-07-01

    The Safeguards Technology Program at the Lawrence Livermore National Laboratory (LLNL) has developed a gamma-ray screening system for use by the Materials Management Section of the Engineering Sciences Division at LLNL for verifying the presence or absence of special nuclear material (SNM) in a sample. This system facilitates the measurements required under the ``5610`` series of US Department of Energy orders. MMGAM is an intelligent, menu driven software application that runs on a personal computer and requires a precalibrated multi-channel analyzer and HPGe detector. It provides a very quick and easy-to-use means of determining the presence of SNM in a sample. After guiding the operator through a menu driven set-up procedure, the system provides an on-screen GO/NO-GO indication after determining the system calibration status. This system represents advances over earlier used systems in the areas of ease-of use, operator training requirements, and quality assurance. The system records the gamma radiation from a sample using a sequence of measurements involving a background measurement followed immediately by a measurement of the unknown sample. Both spectra are stored and available for analysis or output. In the current application, the presence of {sup 235}U, {sup 238}U, {sup 239}Pu, and {sup 208}Tl isotopes are indicated by extracting, from the stored spectra, four energy ``windows`` preset around gamma-ray lines characteristic of the radioactive decay of these nuclides. The system is easily extendible to more complicated problems.

  10. The Pro12Ala polymorphism of the gene for peroxisome proliferator activated receptor-gamma is associated with a lower Global Acne Grading System score in patients with acne vulgaris.

    PubMed

    Amr, K; Abdel-Hameed, M; Sayed, K; Nour-Edin, F; Abdel Hay, R

    2014-08-01

    Acne vulgaris is a multifactorial disease of the skin. Several studies have shown that sebocyte proliferation and/or lipogenesis, as well as inflammatory reactions, may be regulated by peroxisome proliferator-activated receptor (PPAR)γ-mediated pathways. To investigate whether the Pro12Ala polymorphism of the PPARγ gene might be associated with the risk of acne, and to assess the effect of this polymorphism on acne severity. This case-control study enrolled 100 patients with acne and 100 apparently healthy subjects. The clinical grade of acne was assessed using the Global Acne Grading System. We used PCR to identify the presence of the Pro12Ala polymorphism in exon 2 of PPARγ. Our results revealed a statistically significant difference (P = 0.001) in the genotype distribution between patients and controls, with higher incidence of the Pro/Ala genotype in controls (51%) than in patients (28%). A statistically significant association (P < 0.001) between disease severity and genotype distribution was found, indicating that the Pro/Ala genotype is less prevalent in patients with severe acne. Our results suggest that that the Ala allele might be a protective factor against acne development or may attenuate acne severity. © 2014 British Association of Dermatologists.

  11. Gamma Ray Measurement Information Barriers for the FMTT Demonstration System

    SciTech Connect

    Wolford Jr., J.K.

    2000-08-16

    The gamma ray attribute measurement information barrier discussion directly complements the discussion of gamma ray measurement, presented in the measurements paper by Gosnell and the general discussion of information barriers (IBs) by MacArthur. It focuses on the information barrier features applied specifically to the gamma-ray measurement and attribute analysis system. The FMTT demonstration instrument represents the second application of an IB design paradigm developed in conjunction with the Joint DOE/DoD Information Barriers Working Group (IBWG) as well as representatives from the Russian Federation's delegations to the Trilateral Initiative and meetings on the agreement for transparency at the Mayak Fissile Storage Facility (FMSF). It is also the second evolutionary step in constructing hardware to embody these jointly developed ideas. The first step was the prototype instrument developed for the Trilateral Initiative, the so-called Attribute Verification System with Information Barriers for Plutonium with Classified Characteristics utilizing Neutron Multiplicity Counting and High-Resolution Gamma-ray Spectroscopy (AVNG), that was demonstrated at Los Alamos National Laboratory in June 1999. Several improvements are evident in this second effort, and will be discussed. Improved, though this information barrier may be, it is still a prototype meant only for demonstration purposes. Its evolving specification and design are appropriately a subject for joint discussion and development. Part of that development must include creating components that the respective governments can trust enough to certify.

  12. Antibody penetration into living cells. V. Interference between two fc gamma receptor-mediated functions: antibody penetration and antibody-dependent cellular cytotoxicity.

    PubMed Central

    Llerena, J M; Ruíz-Argüelles, A; Alarcón-Segovia, D; Llorente, L; Díaz-Jouanen, E

    1981-01-01

    The same Fc gamma receptor appears to be shared for two important phenomena: antibody-dependent cellular cytotoxicity (ADCC) and antibody penetration into living cells. ADCC is inhibited through interaction with the Fc gamma receptor during the antibody penetration process, indicating that both mechanisms may modulate each other in vitro. PMID:6972908

  13. Pro12Ala polymorphism in the peroxisome proliferator-activated receptor-gamma (PPARgamma) gene in inflammatory bowel disease.

    PubMed

    Atug, Ozlen; Tahan, Veysel; Eren, Fatih; Tiftikci, Arzu; Imeryuz, Nese; Hamzaoglu, Hulya Over; Tozun, Nurdan

    2008-12-01

    Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) has recently been implicated as an endogenous regulator of cellular proliferation and inflammation. Impaired expression of PPAR-gamma in colonic epithelial cells in ulcerative colitis (UC) and increased expression in hypertrophic mesenteric adipose tissue in Crohn's disease (CD) have been reported. Furthermore, PPAR-gamma ligands have been shown to inhibit tissue injury associated with immune activation in UC. Any mutation in PPAR-gamma gene may be responsible for the increase in inflammatory mediators and hence the perpetuation of inflammation in inflammatory bowel disease (IBD) patients. One common polymorphism in PPAR-gamma gene is proline to alanine substitution (Pro12Ala) which results from a CCA to GCA missense substitution in codon 12 of exon 2 of the PPAR-gamma gene. In this study, we aimed to explore Pro12Ala polymorphism in PPAR-gamma gene in IBD in Turkish patients. 69 patients with CD, 45 with UC and 100 controls of similar age and sex were studied. Genomic DNA was isolated from peripheral blood leucocytes and mutagenically separated-polymerase chain reaction (PCR) analyses were performed to determine the Pro12Ala polymorphism of the PPAR-gamma gene. We observed no significant differences in the frequency of the Pro12Ala polymorphism in the PPAR-gamma gene among subjects with CD, UC and controls (15.9%, 15.5% and 13%, respectively, p>0.05). These results suggest that Pro12Ala polymorphism in the PPAR-gamma gene relates neither to the risk of the development of inflammatory bowel disease nor to the clinical subtypes of CD in the Turkish population.

  14. Gamma Band Activity in the Reticular Activating System

    PubMed Central

    Urbano, Francisco J.; Kezunovic, Nebojsa; Hyde, James; Simon, Christen; Beck, Paige; Garcia-Rill, Edgar

    2012-01-01

    This review considers recent evidence showing that cells in three regions of the reticular activating system (RAS) exhibit gamma band activity, and describes the mechanisms behind such manifestation. Specifically, we discuss how cells in the mesopontine pedunculopontine nucleus (PPN), intralaminar parafascicular nucleus (Pf), and pontine subcoeruleus nucleus dorsalis (SubCD) all fire in the beta/gamma band range when maximally activated, but no higher. The mechanisms behind this ceiling effect have been recently elucidated. We describe recent findings showing that every cell in the PPN have high-threshold, voltage-dependent P/Q-type calcium channels that are essential, while N-type calcium channels are permissive, to gamma band activity. Every cell in the Pf also showed that P/Q-type and N-type calcium channels are responsible for this activity. On the other hand, every SubCD cell exhibited sodium-dependent subthreshold oscillations. A novel mechanism for sleep–wake control based on well-known transmitter interactions, electrical coupling, and gamma band activity is described. The data presented here on inherent gamma band activity demonstrates the global nature of sleep–wake oscillation that is orchestrated by brainstem–thalamic mechanism, and questions the undue importance given to the hypothalamus for regulation of sleep–wakefulness. The discovery of gamma band activity in the RAS follows recent reports of such activity in other subcortical regions like the hippocampus and cerebellum. We hypothesize that, rather than participating in the temporal binding of sensory events as seen in the cortex, gamma band activity manifested in the RAS may help stabilize coherence related to arousal, providing a stable activation state during waking and paradoxical sleep. Most of our thoughts and actions are driven by pre-conscious processes. We speculate that continuous sensory input will induce gamma band activity in the RAS that could participate in the processes of

  15. Gamma band activity in the reticular activating system.

    PubMed

    Urbano, Francisco J; Kezunovic, Nebojsa; Hyde, James; Simon, Christen; Beck, Paige; Garcia-Rill, Edgar

    2012-01-01

    This review considers recent evidence showing that cells in three regions of the reticular activating system (RAS) exhibit gamma band activity, and describes the mechanisms behind such manifestation. Specifically, we discuss how cells in the mesopontine pedunculopontine nucleus (PPN), intralaminar parafascicular nucleus (Pf), and pontine subcoeruleus nucleus dorsalis (SubCD) all fire in the beta/gamma band range when maximally activated, but no higher. The mechanisms behind this ceiling effect have been recently elucidated. We describe recent findings showing that every cell in the PPN have high-threshold, voltage-dependent P/Q-type calcium channels that are essential, while N-type calcium channels are permissive, to gamma band activity. Every cell in the Pf also showed that P/Q-type and N-type calcium channels are responsible for this activity. On the other hand, every SubCD cell exhibited sodium-dependent subthreshold oscillations. A novel mechanism for sleep-wake control based on well-known transmitter interactions, electrical coupling, and gamma band activity is described. The data presented here on inherent gamma band activity demonstrates the global nature of sleep-wake oscillation that is orchestrated by brainstem-thalamic mechanism, and questions the undue importance given to the hypothalamus for regulation of sleep-wakefulness. The discovery of gamma band activity in the RAS follows recent reports of such activity in other subcortical regions like the hippocampus and cerebellum. We hypothesize that, rather than participating in the temporal binding of sensory events as seen in the cortex, gamma band activity manifested in the RAS may help stabilize coherence related to arousal, providing a stable activation state during waking and paradoxical sleep. Most of our thoughts and actions are driven by pre-conscious processes. We speculate that continuous sensory input will induce gamma band activity in the RAS that could participate in the processes of pre

  16. The nuclear resonance scattering calibration technique for the EuroGammaS gamma characterisation system at ELI-NP-GBS

    NASA Astrophysics Data System (ADS)

    Pellegriti, M. G.; Albergo, S.; Adriani, O.; Andreotti, M.; Berto, D.; Borgheresi, R.; Cappello, G.; Cardarelli, P.; Consoli, E.; Di Domenico, G.; Evangelisti, F.; Gambaccini, M.; Graziani, G.; Lenzi, M.; Marziani, M.; Palumbo, L.; Passaleva, G.; Paternò, G.; Serban, A.; Squerzanti, S.; Starodubtsev, O.; Tricomi, A.; Variola, A.; Veltri, M.; Zerbo, B.

    2017-03-01

    A Gamma Beam System (GBS), designed by the EuroGammaS collaboration, will be implemented for the ELI-NP facility in Magurele, Romania. The facility will deliver an intense gamma beam, obtained by collimatio of the emerging radiation from inverse Compton interaction. Gamma beam energy range will span from 0.2 up to 19.5 MeV with unprecedented performances in terms of brilliance, photon flux and energy bandwidth. For the characterisation of the gamma beam during the commissioning and normal operation, a full detection system has been designed to measure energy spectrum, beam intensity, space and time profiles. The gamma-beam characterisation system consists of four elements: a Compton spectrometer, to measure and monitor the photon energy spectrum, in particular the energy bandwidth; a sampling calorimeter, for a fast combined measurement of the beam average energy and its intensity; a nuclear resonant scattering spectrometer, for absolute beam energy calibration and inter-calibration of the other detector elements; and finally a beam profile imager to be used for alignment and diagnostics purposes. In this paper, a general overview of the ELI-NP gamma characterisation system will be given and the NRSS system will be in particular discussed.

  17. Peroxisome proliferator-activated receptor-gamma gene: a key regulator of adipocyte differentiation in chickens.

    PubMed

    Wang, Y; Mu, Y; Li, H; Ding, N; Wang, Q; Wang, Y; Wang, S; Wang, N

    2008-02-01

    The peroxisome proliferator-activated receptors (PPAR) are members of the nuclear hormone receptor superfamily. Peroxisome proliferator-activated receptor-gamma is regarded as a "master regulator" of adipocyte differentiation in mammals. The current study was designed to investigate the function and regulatory mechanism of PPARgamma in chicken adipogenesis by RNA interference. Preadipocytes were isolated from the abdominal fat tissue of 12-d-old chickens and cultured. Small-interference PPARgamma RNA (siPPARgamma) was synthesized by in vitro transcription and transfected into chicken preadipocytes by using liposomes. The suppressive effect of siPPARgamma was detected by real-time reverse-transcription PCR and reverse-transcription PCR. The results showed that transient transfection with siPPARgamma significantly inhibited differentiation and enhanced proliferation of chicken preadipocytes (P < 0.05). The adipogenesis-associated adipocyte fatty acid-binding protein gene was down-regulated when PPARgamma was silenced. The current work indicates that PPARgamma is a key regulator of chicken preadipocyte differentiation.

  18. Peroxisome proliferator-activated receptor gamma as modulator of inflammation in pulmonary sarcoidosis.

    PubMed

    Pejcić, Tatjana; Stanković, Ivana; Petković, Tatjana Radjenović; Borovac, Desa Nastasijević; Djordjević, Ivanka; Jeftović-Stoimenov, Tatjana

    2013-01-01

    Peroxisome proliferator-activated receptor (PPAR) includes the family of ligand-activated transcription factors which belong to the group of nuclear hormone receptors and are connected to retinoid, glucocorticoid and thyroid hormone receptors. There are three subtypes of PPARs: PPARalpha (also known as NR1C3), PPARgamma (known as NR1C1) and PPARdelta (known as PPARbeta or NR1C2). All of them take part in the metabolism, cell proliferation and immune response. PPARgamma and PPARalpha are identified as important immunomodulators and potentially represent an anti-inflammatory target for respiratory diseases. PPARgamma deficiency in the lungs has been observed in the inflammatory diseases such as asthma, pulmonary alveolar proteinosis, fibrosis and sarcoidosis, as well as in the animal models of the lung inflammation. A small number of papers concerned with PPARgamma in sarcoidosis pointto the lowered activity of this factor in the alveolar macrophages and a lowered gene expression for the PPARgamma, while the activity is preserved in healthy individuals. At the same time, an increased activity of the nuclear factor kappa B (NF-kappaB) in the bronchoalveolar lavage has been recorded in patients with sarcoidosis. The reason for the decrease in the production of PPARgamma in sarcoidosis remains unknown. Several possible mechanisms are mentioned: genetic defect with lowered production, down-regulation due to the increased values of IFN-gamma or an increased decomposition of PPARgamma. Further investigation will explain the mechanisms regarding the decreased production of PPARgamma in sarcoidosis.

  19. Peroxisome proliferator-activated receptor gamma in bladder cancer: a promising therapeutic target.

    PubMed

    Mansure, Jose J; Nassim, Roland; Kassouf, Wassim

    2009-04-01

    Peroxisome Proliferator-Activated Receptors (PPARs) are ligand-activated intracellular transcription factors, members of the nuclear hormone receptor superfamily. The PPAR subfamily consist of three subtypes encoded by distinct genes denoted PPARalpha, PPARbeta/delta, and PPARgamma. The peroxisome proliferator-activated receptor gamma (PPARgamma) is the most extensively studied subtype of the PPARs. Over the last decade, research on PPARgamma unveiled its role in important biological processes, including lipid biosynthesis, glucose metabolism, anti-inflammatory response, and atherosclerosis. Recently, PPARgamma has been shown to be expressed in many cancers including, lung, prostate, bladder, colon, breast, duodenal, thyroid, and has been demonstrated to potentially play an important role in carcinogenesis. In bladder cancer, PPARgamma ligands such as troglitazone and 15d-PGJ2 have shown to inhibit tumor growth. We have recently published the first report to show that a new class of PPARgamma agonists, PPARgamma-active C-DIMs, which are more potent than the previous generation of drugs, exhibit anti-tumorigenic activity against bladder cancer cells in vitro and bladder tumors in vivo. The following review will discuss the molecular structure of PPARgamma, its function and its role in cancer biology and how it is emerging as a promising therapeutic target in bladder cancer.

  20. A Point Mutation in a Domain of Gamma Interferon Receptor 1 Provokes Severe Immunodeficiency

    PubMed Central

    Allende, Luis M.; López-Goyanes, Alberto; Paz-Artal, Estela; Corell, Alfredo; García-Pérez, M. Angel; Varela, Pilar; Scarpellini, Atilio; Negreira, Sagrario; Palenque, Elia; Arnaiz-Villena, Antonio

    2001-01-01

    Gamma interferon (IFN-γ) and the cellular responses induced by it are essential for controlling mycobacterial infections. Most patients bearing an IFN-γ receptor ligand-binding chain (IFN-γR1) deficiency present gross mutations that truncate the protein and prevent its expression, giving rise to severe mycobacterial infections and, frequently, a fatal outcome. In this report a new mutation that affects the IFN-γR1 ligand-binding domain in a Spanish patient with mycobacterial disseminated infection and multifocal osteomyelitis is characterized. The mutation generates an amino acid change that does not abrogate protein expression on the cellular surface but that severely impairs responses after the binding of IFN-γ (CD64 and HLA class II induction and tumor necrosis factor alpha and interleukin-12 production). A patient's younger brother, who was also probably homozygous for the mutation, died from meningitis due to Mycobacterium bovis. These findings suggest that a point mutation may be fatal when it affects functionally important domains of the receptor and that the severity is not directly related to a lack of IFN-γ receptor expression. Future research on these nontruncating mutations will make it possible to develop new therapeutical alternatives in this group of patients. PMID:11139207

  1. P-selectin suppresses hepatic inflammation and fibrosis in mice by regulating interferon gamma and the IL-13 decoy receptor.

    PubMed

    Wynn, Thomas A; Hesse, Matthias; Sandler, Netanya G; Kaviratne, Mallika; Hoffmann, Karl F; Chiaramonte, Monica G; Reiman, Rachael; Cheever, Allen W; Sypek, Joseph P; Mentink-Kane, Margaret M

    2004-03-01

    The selectin family of cell adhesion molecules is widely thought to promote inflammatory reactions by facilitating leukocyte recruitment. However, it was unexpectedly found that mice with targeted deletion of the P-selectin gene (PsKO mice) developed unpolarized type 1/type 2 cytokine responses and severely aggravated liver pathology following infection with the type 2-promoting pathogen Schistosoma mansoni. In fact, liver fibrosis, which is dependent on interleukin 13 (IL-13), increased by a factor of more than 6, despite simultaneous induction of the antifibrotic cytokine interferon gamma (IFN-gamma). Inflammation, as measured by granuloma size, also increased significantly in the absence of P-selectin. When infected PsKO mice were treated with neutralizing anti-IFN-gamma monoclonal antibodies, however, granuloma size was restored to wild-type levels; this finding revealed the potent proinflammatory role of IFN-gamma when expressed concomitantly with IL-13. Untreated PsKO mice also exhibited a significant (sixfold) reduction in decoy IL-13 receptor (IL-13 receptor alpha-2) expression when compared with infected wild-type animals. It is noteworthy, however, that when decoy receptor activity was restored in PsKO mice by treatment with soluble IL-13 receptor alpha-2-Fc, the exacerbated fibrotic response was completely inhibited. Thus, reduced expression of the decoy IL-13 receptor mediated by the elevated type 1 cytokine response probably accounts for the enhanced activity of IL-13 in PsKO mice and for the resultant increase in collagen deposition. In conclusion, the current study has revealed the critical role of P-selectin in the progression of chronic liver disease caused by schistosome parasites. By suppressing IFN-gamma and up-regulating the decoy IL-13 receptor, P-selectin dramatically inhibits the pathologic tissue remodeling that results from chronic type 2 cytokine-mediated inflammation.

  2. Peroxisome-proliferator-activated receptor-{gamma} agonists inhibit the release of proinflammatory cytokines from RSV-infected epithelial cells

    SciTech Connect

    Arnold, Ralf . E-mail: ralf.arnold@medizin.uni-magdeburg.de; Koenig, Wolfgang

    2006-03-15

    The epithelial cells of the airways are the target cells for respiratory syncytial virus (RSV) infection and the site of the majority of the inflammation associated with the disease. Recently, peroxisome-proliferator-activated receptor {gamma} (PPAR{gamma}), a member of the nuclear hormone receptor superfamily, has been shown to possess anti-inflammatory properties. Therefore, we investigated the role of PPAR{gamma} agonists (15d-PGJ{sub 2}, ciglitazone and troglitazone) on the synthesis of RSV-induced cytokine release from RSV-infected human lung epithelial cells (A549). We observed that all PPAR{gamma} ligands inhibited dose-dependently the release of TNF-{alpha}, GM-CSF, IL-1{alpha}, IL-6 and the chemokines CXCL8 (IL-8) and CCL5 (RANTES) from RSV-infected A549 cells. Concomitantly, the PPAR{gamma} ligands diminished the cellular amount of mRNA encoding for IL-6, CXCL8 and CCL5 and the RSV-induced binding activity of the transcription factors NF-{kappa}B (p65/p50) and AP-1 (c-fos), respectively. Our data presented herein suggest a potential application of PPAR{gamma} ligands in the anti-inflammatory treatment of RSV infection.

  3. Ginkgolides, diterpene trilactones of Ginkgo biloba, as antagonists at recombinant alpha1beta2gamma2L GABAA receptors.

    PubMed

    Huang, Shelley H; Duke, Rujee K; Chebib, Mary; Sasaki, Keiko; Wada, Keiji; Johnston, Graham A R

    2004-06-28

    Ginkgolides A, B, and C are diterpene trilactones and active constituents of the 50:1 Ginkgo biloba leaf extract widely used in the symptomatic treatment of mild to moderate dementia. Using the two-electrode voltage clamp methodology, these ginkgolides were found to be moderately potent antagonists at recombinant human alpha(1)beta(2)gamma(2L) GABA(A) receptors expressed in Xenopus oocytes. Ginkgolides A, B, and C inhibited the direct action of gamma-aminobutyric acid (GABA) with K(i) values of 14.5+/-1.0, 12.7+/-1.7, and 16.3+/-2.4 microM respectively. Antagonism by these ginkgolides at alpha(1)beta(2)gamma(2L) GABA(A) receptors appears to be noncompetitive as indicated by the nonparallel right shift and reduced maximal GABA response in their GABA concentration-effect curves.

  4. Structure-activity relationships of rosiglitazone for peroxisome proliferator-activated receptor gamma transrepression.

    PubMed

    Toyota, Yosuke; Nomura, Sayaka; Makishima, Makoto; Hashimoto, Yuichi; Ishikawa, Minoru

    2017-06-15

    Anti-inflammatory effects of peroxisome proliferator-activated receptor gamma (PPRAγ) ligands are thought to be largely due to PPARγ-mediated transrepression. Thus, transrepression-selective PPARγ ligands without agonistic activity or with only partial agonistic activity should exhibit anti-inflammatory properties with reduced side effects. Here, we investigated the structure-activity relationships (SARs) of PPARγ agonist rosiglitazone, focusing on transrepression activity. Alkenic analogs showed slightly more potent transrepression with reduced efficacy of transactivating agonistic activity. Removal of the alkyl group on the nitrogen atom improved selectivity for transrepression over transactivation. Among the synthesized compounds, 3l exhibited stronger transrepressional activity (IC50: 14μM) and weaker agonistic efficacy (11%) than rosiglitazone or pioglitazone. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Fc-gamma receptors: Attractive targets for autoimmune drug discovery searching for intelligent therapeutic designs.

    PubMed

    Bosques, Carlos J; Manning, Anthony M

    2016-11-01

    Autoantibody immune complexes (ICs) mediate pathogenesis in multiple autoimmune diseases via direct interference with target function, complement fixation, and interaction with Fc-gamma receptors (FcγRs). Through high avidity interactions, ICs are able to crosslink low affinity FcγRs expressed on a wide variety of effector cells, leading to secretion of pro-inflammatory mediators and inducing cytotoxicity, ultimately resulting in tissue injury. Given their relevance in numerous autoimmune diseases, FcγRs have been considered as attractive therapeutic targets for the last three decades. However, a limited number of investigational drug candidates have been developed targeting FcγRs and only a few approved therapeutics have been associated with impacting FcγRs. This review provides a historical overview of the different therapeutic approaches used to target FcγRs for the treatment of autoimmune and inflammatory diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Constitutive receptor systems for drug discovery.

    PubMed

    Chen, G; Jayawickreme, C; Way, J; Armour, S; Queen, K; Watson, C; Ignar, D; Chen, W J; Kenakin, T

    1999-12-01

    This paper discusses the use of constitutively active G-protein-coupled receptor systems for drug discovery. Specifically, the ternary complex model is used to define the two major theoretical advantages of constitutive receptor screening-namely, the ability to detect antagonists as well as agonists directly and the fact that constitutive systems are more sensitive to agonists. In experimental studies, transient transfection of Chinese hamster ovary cyclic AMP response element (CRE) luciferase reporter cells with cDNA for human parathyroid hormone receptor, glucagon receptor, and glucagon-like peptide (GLP-1) receptor showed cDNA concentration-dependent constitutive activity with parathyroid hormone (PTH-1) and glucagon. In contrast, no constitutive activity was observed for GLP-1 receptor, yet responses to GLP-1 indicated that receptor expression had taken place. In another functional system, Xenopus laevi melanophores transfected with cDNA for human calcitonin receptor showed constitutive activity. Nine ligands for the calcitonin receptor either increased or decreased constitutive activity in this assay. The sensitivity of the system to human calcitonin increased with increasing constitutive activity. These data indicate that, for those receptors which naturally produce constitutive activity, screening in this mode could be advantageous over other methods.

  7. Ovary-specific novel peroxisome proliferator activated receptors-gamma transcripts in buffalo.

    PubMed

    Sharma, Isha; Monga, Rachna; Singh, Natwar; Datta, Tirtha Kumar; Singh, Dheer

    2012-08-10

    In the present study, we describe the isolation and characterization of the transcripts encoding peroxisome proliferator-activated receptor gamma (PPARγ1 and PPARγ2) in buffalo ovary. 5' RACE experiments and sequence analysis showed that these transcripts (PPARγ1a, PPARγ1b and PPARγ2) were transcribed by the different promoter usage and alternative splicing of terminal 5'-exon. The distribution of these isoforms of PPARγ transcripts in different tissues (ovary, mammary gland, spleen, liver, lung, adipose tissue) was investigated using quantitative real time analysis. Tissue- and transcript-specific expression analyses showed that a transcript, transcribed from distal promoter, not only expressed preferentially in ovary but contributes predominantly to PPAR gamma expression in ovary. Western blot analysis of both, in vivo and in vitro, experiments also supported that PPARγ1 predominantly expressed in ovary. In buffalo granulosa cells culture, the isolated transcripts were found to be up-regulated by both natural (CLA) and synthetic (Rosiglitazone) ligands and effect was reversed by PPARγ antagonist GW9662. In conclusion, the present study identified an ovary-specific novel transcript, transcribed by distal promoter, predominantly expressed in ovary which could have functional relevance in buffalo ovary. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Expression and function of a variant T cell receptor complex lacking CD3-gamma

    PubMed Central

    1991-01-01

    A T cell line termed DIL2 has been derived from an infant with a polyclonal T cell receptor (TCR)/CD3 cell surface expression defect. Indirect immunofluorescence showed that the expression of certain TCR/CD3 epitopes (like those detected by WT31 and BMA031 monoclonals) was strongly reduced (around five-fold) on DIL2, whereas other epitopes (like those detected by SP34 and Leu4) were only around two-fold lower than in normal T cell lines. Specific immunoprecipitates of surface- radioiodinated DIL2 cells contained TCR-alpha, TCR-beta, CD3-delta, CD3- epsilon and TCR-zeta chains, but lacked CD3-gamma. This structural TCR/CD3 variant was, however, capable of transducing certain activation signals, since normal proliferation and a low but significant calcium flux was observed in DIL2 cells after engagement with specific antibodies. Our data suggest that a functional TCR/CD3 complex can be expressed on the surface of T cells in the absence of CD3-gamma. PMID:1713248

  9. [The construction of attenuated Tiantan recombinant vaccinia virus vector with IFN-gamma receptor gene deletion].

    PubMed

    Huang, Wei; Liu, Ying; Duan, Dan-li; Li, Hai-shan; Liu, Yong; Hong, Kun-Xue; Zhu, Jia-hong; Shao, Yi-ming

    2004-03-01

    B8R gene encodes a secreted protein with homology to IFN-gamma receptor, which neutralizes the antiviral and immunological regulation activities of IFN-gamma. To improve the safety of vaccinia virus vector, an attenuated recombinant vaccinia virus with the B8R gene deletion from Tiantan vaccine strain (VTT) was constructed. The transfer vectors were generated by joining B8R left flank, B8R right flank, vv promoter, LacZ, multicloning site and pBRSK fragments. The recombinant viruses VTTdeltaB8RLacZ (VTT with B8R deletion and LacZ insertion) were constructed by homologous recombination. The B8R deletion mutants were confirmed by dot blot with B8R gene probe and PCR amplification. The replication ability of VTTdeltaB8RLacZ strain in vitro was similar to that of the VTT. The skin lesions formed by VTTdeltaB8RLacZ (10(6) pfu) were significantly smaller and healed faster than those formed by VTT when injected intradermally to the rabbits,and no visible ulceration occurred. Meanwhile LacZ in VTKgpedeltaB8RLacZ was expressed stably. The attenuated vector with B8R gene deletion improves the safety of recombinant vaccinia virus vaccine B8R locus may be used as a new site for insertion of foreign genes in vaccinia virus vector.

  10. Potentiation of Gamma Aminobutyric Acid Receptors (GABAAR) by Ethanol: How Are Inhibitory Receptors Affected?

    PubMed Central

    Förstera, Benjamin; Castro, Patricio A.; Moraga-Cid, Gustavo; Aguayo, Luis G.

    2016-01-01

    In recent years there has been an increase in the understanding of ethanol actions on the type A γ-aminobutyric acid chloride channel (GABAAR), a member of the pentameric ligand gated ion channels (pLGICs). However, the mechanism by which ethanol potentiates the complex is still not fully understood and a number of publications have shown contradictory results. Thus many questions still remain unresolved requiring further studies for a better comprehension of this effect. The present review concentrates on the involvement of GABAAR in the acute actions of ethanol and specifically focuses on the immediate, direct or indirect, synaptic and extra-synaptic modulatory effects. To elaborate on the immediate, direct modulation of GABAAR by acute ethanol exposure, electrophysiological studies investigating the importance of different subunits, and data from receptor mutants will be examined. We will also discuss the nature of the putative binding sites for ethanol based on structural data obtained from other members of the pLGICs family. Finally, we will briefly highlight the glycine gated chloride channel (GlyR), another member of the pLGIC family, as a suitable target for the development of new pharmacological tools. PMID:27199667

  11. Association of peroxisome proliferator-activated receptor-gamma gene polymorphisms with the development of asthma.

    PubMed

    Oh, Sun-Hee; Park, Se-Min; Lee, Yoo Hoon; Cha, Ji Yeon; Lee, Ji-Yeon; Shin, Eun Kyong; Park, Jong-Sook; Park, Byeong-Lae; Shin, Hyoung Doo; Park, Choon-Sik

    2009-07-01

    The peroxisome proliferator-activated receptors (PPAR) are the nuclear hormone receptor superfamily of ligand-activated transcriptional factors. PPAR-gamma (PPARG) activation downregulates production of Th2 type cytokines and eosinophil function. Additionally, treatment with a synthetic PPARG ligand can reduce lung inflammation and IFN-gamma, IL-4, and IL-2 production in experimental allergic asthma. In patients with asthma, PPARG gene expression is known to be associated with the airway inflammatory and remodeling responses. Thus, genetic variants of PPARG may be associated with the development of asthma. We genotyped two single nucleotide polymorphisms on the PPARG gene, +34C>G (Pro12Ala) and +82466C>T (His449His), in Korean subjects (839 subjects with asthma and 449 normal controls). Association analysis using logistic regression analysis showed that +82466C>T and haplotypes 1(CC) and 2(CT) were associated with the development of asthma (p=0.01-0.04). The frequency of PPARG-ht2 was significantly lower in the patients with asthma compared to the normal controls in codominant and dominant models (p=0.01, p(corr)=0.03 and p=0.02, p(corr)=0.03, respectively). Conversely, the frequency of PPARG-ht1 was significantly higher in the patients with asthma compared to the normal controls in the codominant model [p=0.04, OR: 1.27 (1.01-1.6)]. In addition, the rare allele frequency of +82466C>T was significantly lower in patients with asthma in comparison to normal controls in the codominant model (OR: 0.78, p=0.04). Thus, polymorphism of the PPARG gene may be linked to an increased risk of asthma development.

  12. Molecular cloning and characterization of chicken interferon-gamma receptor alpha-chain.

    PubMed

    Han, Xue; Chen, Tong; Wang, Ming

    2008-07-01

    In this study, a cDNA sequence of Huiyang chicken interferon-gamma (IFN-gamma) receptor alpha-chain (chIFNGR-1) gene wasgenerated using rapid amplification of cDNA ends (RACE) method for the first time. The predicted 422 amino acids showed approximately 25%-29% sequence identity and 53%-55% similarity to mammalian homologues. There are two fibronectin type-III (FN-III) domains of about 110 residues in the extracellular domain, and LPKS and YDKPH motifs in the intracellular domain, which are conserved in the mammalian IFNGR-1 as the binding sites of JAK1 and STAT1. Expression analysis by Northern blot revealed that the chIFNGR-1 was highly expressed in spleen, thymus, peripheral blood lymphocytes (PBLs), lung, cecum tonsil, and liver. The extracellular region of chIFNGR-1 (chIFNGR-1EC) was expressed in Escherichia coli and purified. The purified IFNGR-1EC was further characterized by mass spectroscopy and circular dichroism (CD) spectroscopy. The molecular weight of the recombinant chIFNGR-1EC (rchIFNGR-1EC) was measured as 24 364 Da, and its secondary structure contained 17.6% alpha-helix, 36.4% beta-sheet, 17.2% turn, and 28.8% random coil. Furthermore, three-dimensional modeling presented the most probable structure of chIFNGR-1EC. These * ndings show that the identified chicken cDNA sequence encodes an IFNGR1 homologue, and the chIFNGR-1EC resembles the similar structure with other IFN receptors.

  13. Peroxisome proliferator-activated receptor gamma in human breast carcinoma: a modulator of estrogenic actions.

    PubMed

    Suzuki, T; Hayashi, S; Miki, Y; Nakamura, Y; Moriya, T; Sugawara, A; Ishida, T; Ohuchi, N; Sasano, H

    2006-03-01

    It has been reported that agonists of peroxisome proliferator-activated receptor gamma (PPARgamma) inhibit proliferation of breast carcinoma cells, but the biological significance of PPARgamma remains undetermined in human breast carcinomas. Therefore, we immunolocalized PPARgamma in 238 human breast carcinoma tissues. PPARgamma immunoreactivity was detected in 42% of carcinomas, and was significantly associated with the status of estrogen receptor (ER) alpha, ERbeta, progesterone receptor, retinoic X receptors, p21 or p27, and negatively correlated with histological grade or cyclooxygenase-2 status. PPARgamma immunoreactivity was significantly associated with an improved clinical outcome of breast carcinoma patients by univariate analysis, and multivariate analysis demonstrated that PPARgamma immunoreactivity was an independent prognostic factor for overall survival in ERalpha-positive patients. We then examined possible mechanisms of modulation by PPARgamma on estrogenic actions in MCF-7 breast carcinoma cells. A PPARgamma activator, 15-deoxy-Delta(12,14)- prostaglandin J(2) (15d-PGJ(2)), significantly inhibited estrogen-responsive element-dependent transactivation by estradiol in MCF-7 cells, which was blocked by addition of a PPARgamma antagonist GW9662. Subsequent study, employing a custom-made microarray focused on estrogen-responsive genes, revealed that mRNA expression was significantly regulated by estradiol in 49 genes, but this significance vanished on addition of 15d-PGJ(2) in 16 out of 49 (33%) genes. These findings were confirmed by real-time PCR in 11 genes. 15d-PGJ(2) significantly inhibited estrogen-mediated proliferation of MCF-7 cells, and caused accumulation of p21 and p27 protein. These results suggest that PPARgamma is mainly expressed in well-differentiated and ER-positive breast carcinomas, and modulates estrogenic actions.

  14. Classification of inhibitory amino acid receptors in the mammalian nervous system.

    PubMed

    Simmonds, M A

    1986-01-01

    Electrophysiological and pharmacological evidence is summarized for the existence of an inhibitory receptor system operated by glycine and another two separate systems operated by gamma-aminobutyric acid (GABA) through GABA-A and GABA-B receptors, respectively. Claims for subclasses of GABA-A receptor are critically reviewed and found not-proven. A quantitative pharmacological profile of the GABA-A receptor and associated regulatory sites for picrotoxin, barbiturates and benzodiazepines on the dorsal funiculus of the rat cuneate nucleus is described. When compared with this profile and the pharmacological properties of the glycine receptor complex, the effects of taurine cannot be entirely explained by actions on these two receptor systems.

  15. Deficiency of the beta 3 subunit of the type A gamma-aminobutyric acid receptor causes cleft palate in mice.

    PubMed

    Culiat, C T; Stubbs, L J; Woychik, R P; Russell, L B; Johnson, D K; Rinchik, E M

    1995-11-01

    In addition to its function in the nervous system, gamma-aminobutyric acid (GABA) has been implicated in mouse craniofacial development by the results of both teratological, and genetic studies. We previously reported that disruption of the cleft palate 1 (cp1) locus, closely linked to the pink-eyed dilution (p) locus on mouse chromosome 7, causes a 95% penetrant, recessive, neonatally-lethal cleft palate (CP) in mice homozygous for the p(4THO-II) deletion. We proposed that the beta 3 subunit gene (Gabrb3) of the GABAA receptor might be a candidate for cp1 (ref. 4); our earlier studies had localized cp1 to an interval beginning distal to the gene for the GABAA receptor alpha 5 subunit (Gabra5) and ending within the Gabrb3 coding region. To test the hypothesis that deletion of Gabrb3, and not another gene in the interval, causes CP, we performed an experiment to rescue the CP phenotype by introducing a Gabrb3 transgene into p(4THO-II) homozygotes. We now show that such transgenic mice are phenotypically normal, indicating that Gabrb3 is indeed the cp1 locus.

  16. Crosstalk between the peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) and the vitamin D receptor (VDR) in human breast cancer cells: PPAR{gamma} binds to VDR and inhibits 1{alpha},25-dihydroxyvitamin D{sub 3} mediated transactivation

    SciTech Connect

    Alimirah, Fatouma; Peng, Xinjian; Yuan, Liang; Mehta, Rajeshwari R.; Knethen, Andreas von; Choubey, Divaker; Mehta, Rajendra G.

    2012-11-15

    Heterodimerization and cross-talk between nuclear hormone receptors often occurs. For example, estrogen receptor alpha (ER{alpha}) physically binds to peroxisome proliferator-activated receptor gamma (PPAR{gamma}) and inhibits its transcriptional activity. The interaction between PPAR{gamma} and the vitamin D receptor (VDR) however, is unknown. Here, we elucidate the molecular mechanisms linking PPAR{gamma} and VDR signaling, and for the first time we show that PPAR{gamma} physically associates with VDR in human breast cancer cells. We found that overexpression of PPAR{gamma} decreased 1{alpha},25-dihydroxyvitamin D{sub 3} (1,25D{sub 3}) mediated transcriptional activity of the vitamin D target gene, CYP24A1, by 49% and the activity of VDRE-luc, a vitamin D responsive reporter, by 75% in T47D human breast cancer cells. Deletion mutation experiments illustrated that helices 1 and 4 of PPAR{gamma}'s hinge and ligand binding domains, respectively, governed this suppressive function. Additionally, abrogation of PPAR{gamma}'s AF2 domain attenuated its repressive action on 1,25D{sub 3} transactivation, indicating that this domain is integral in inhibiting VDR signaling. PPAR{gamma} was also found to compete with VDR for their binding partner retinoid X receptor alpha (RXR{alpha}). Overexpression of RXR{alpha} blocked PPAR{gamma}'s suppressive effect on 1,25D{sub 3} action, enhancing VDR signaling. In conclusion, these observations uncover molecular mechanisms connecting the PPAR{gamma} and VDR pathways. -- Highlights: PPAR{gamma}'s role on 1{alpha},25-dihydroxyvitamin D{sub 3} transcriptional activity is examined. Black-Right-Pointing-Pointer PPAR{gamma} physically binds to VDR and inhibits 1{alpha},25-dihydroxyvitamin D{sub 3} action. Black-Right-Pointing-Pointer PPAR{gamma}'s hinge and ligand binding domains are important for this inhibitory effect. Black-Right-Pointing-Pointer PPAR{gamma} competes with VDR for the availability of their binding partner, RXR{alpha}.

  17. Neutron monitoring systems including gamma thermometers and methods of calibrating nuclear instruments using gamma thermometers

    DOEpatents

    Moen, Stephan Craig; Meyers, Craig Glenn; Petzen, John Alexander; Foard, Adam Muhling

    2012-08-07

    A method of calibrating a nuclear instrument using a gamma thermometer may include: measuring, in the instrument, local neutron flux; generating, from the instrument, a first signal proportional to the neutron flux; measuring, in the gamma thermometer, local gamma flux; generating, from the gamma thermometer, a second signal proportional to the gamma flux; compensating the second signal; and calibrating a gain of the instrument based on the compensated second signal. Compensating the second signal may include: calculating selected yield fractions for specific groups of delayed gamma sources; calculating time constants for the specific groups; calculating a third signal that corresponds to delayed local gamma flux based on the selected yield fractions and time constants; and calculating the compensated second signal by subtracting the third signal from the second signal. The specific groups may have decay time constants greater than 5.times.10.sup.-1 seconds and less than 5.times.10.sup.5 seconds.

  18. Peroxisome Proliferator-Activated Receptor Gamma in Obesity and Colorectal Cancer: the Role of Epigenetics.

    PubMed

    Motawi, T K; Shaker, O G; Ismail, M F; Sayed, N H

    2017-09-06

    Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor that is deregulated in obesity. PPARγ exerts diverse antineoplastic effects. Attempting to determine the clinical relevance of the epigenetic mechanisms controlling the expression PPARγ and susceptibility to colorectal cancer (CRC) in obese subjects, this study investigated the role of some microRNAs and DNA methylation on the deregulation of PPARγ. Seventy CRC patients (34 obese and 36 lean), 22 obese and 24 lean healthy controls were included. MicroRNA levels were measured in serum. PPARγ promoter methylation was evaluated in peripheral blood mononuclear cells (PBMC). PPARγ level was evaluated by measuring mRNA level in PBMC and protein level in serum. The tested microRNAs (miR-27b, 130b and 138) were significantly upregulated in obese and CRC patients. Obese and CRC patients had significantly low levels of PPARγ. A significant negative correlation was found between PPARγ levels and the studied microRNAs. There was a significant PPARγ promoter hypermethylation in CRC patients that correlated to low PPARγ levels. Our results suggest that upregulation of microRNAs 27b, 130b and 138 is associated with susceptibility to CRC in obese subjects through PPARγ downregulation. Hypermethylation of PPARγ gene promoter is associated with CRC through suppression of PPARγ regardless of BMI.

  19. Peroxisome proliferator-activated receptor gamma agonists as therapy for chronic airway inflammation.

    PubMed

    Belvisi, Maria G; Hele, David J; Birrell, Mark A

    2006-03-08

    Peroxisome proliferator-activated receptor gamma (PPARgamma) is a ligand-activated transcription factor belonging to the nuclear hormone receptor superfamily. PPARgamma regulates several metabolic pathways by binding to sequence-specific PPAR response elements in the promoter region of target genes, including lipid biosynthesis and glucose metabolism. Synthetic PPARgamma agonists have been developed, such as the thiazolidinediones rosiglitazone and pioglitazone. These act as insulin sensitizers and are used in the treatment of type 2 diabetes. Recently however, PPARgamma ligands have been implicated as regulators of cellular inflammatory and immune responses. They are thought to exert anti-inflammatory effects by negatively regulating the expression of pro-inflammatory genes. Several studies have demonstrated that PPARgamma ligands possess anti-inflammatory properties and that these properties may prove helpful in the treatment of inflammatory diseases of the airways. This review will outline the anti-inflammatory effects of synthetic and endogenous PPARgamma ligands and discuss their potential therapeutic effects in animal models of inflammatory airway disease.

  20. Statins enhance peroxisome proliferator-activated receptor gamma coactivator-1alpha activity to regulate energy metabolism.

    PubMed

    Wang, Wenxian; Wong, Chi-Wai

    2010-03-01

    Peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) serves as an inducible coactivator for a number of transcription factors to control energy metabolism. Insulin signaling through Akt kinase has been demonstrated to phosphorylate PGC-1alpha at serine 571 and downregulate its activity in the liver. Statins are 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors that reduce cholesterol synthesis in the liver. In this study, we found that statins reduced the active form of Akt and enhanced PGC-1alpha activity. Specifically, statins failed to activate an S571A mutant of PGC-1alpha. The activation of PGC-1alpha by statins selectively enhanced the expression of energy metabolizing enzymes and regulators including peroxisome proliferator-activated receptor alpha, acyl-CoA oxidase, carnitine palmitoyl transferase-1A, and pyruvate dehydrogenase kinase 4. Importantly, a constitutively active form of Akt partially reduced the statin-enhanced gene expression. Our study thus provides a plausible mechanistic explanation for the hypolipidemic effect of statin through elevating the rate of beta-oxidation and mitochondrial Kreb's cycle capacity to enhance fatty acid utilization while reducing the rate of glycolysis.

  1. Peroxisome proliferator-activated receptor gamma activation inhibits progesterone-stimulated human MUC1 expression.

    PubMed

    Wang, Peng; Dharmaraj, Neeraja; Brayman, Melissa J; Carson, Daniel D

    2010-07-01

    Mucin 1 (MUC1) is a type I transmembrane glycoprotein abundantly expressed on nearly all epithelial tissues and overexpressed by many cancer cells. Previous studies from our lab showed that progesterone receptor (PR)B is a strong stimulator of MUC1 gene expression. It is reported that liganded peroxisome proliferator-activated receptor gamma (PPARgamma) stimulates Muc1 expression in murine trophoblast. Here, we demonstrate that although the PPARgamma ligand, rosiglitazone, stimulates the murine Muc1 promoter in HEC1A, a human uterine epithelial cell line, rosiglitazone alone, has no significant effect on basal human MUC1 promoter activity. In fact, rosiglitazone treatment antagonizes progesterone-stimulated human MUC1 promoter activity and protein expression in two human uterine epithelial cell lines and T47D human breast cancer cells. This response is antagonized by the PPARgamma antagonist, GW9662, as well as a dominant-negative form of PPARgamma, demonstrating the response is mediated by PPARgamma. Additional studies indicate that PPARgamma activation does not change PR binding to the MUC1 promoter but generally antagonizes progesterone activity by stimulating PRB degradation and inhibiting progesterone-induced PRB phosphorylation. Collectively, these studies indicate that PPARgamma activation inhibits PRB activity through both acute (phosphorylation) and long-term (PRB degradation) pathways.

  2. Estrogen-related receptor gamma promotes mesenchymal-to-epithelial transition and suppresses breast tumor growth.

    PubMed

    Tiraby, Claire; Hazen, Bethany C; Gantner, Marin L; Kralli, Anastasia

    2011-04-01

    Estrogen-related receptors (ERR), ERR alpha (ERRα) and ERR gamma (ERRγ), are orphan nuclear receptors implicated in breast cancer that function similarly in the regulation of oxidative metabolism genes. Paradoxically, in clinical studies, high levels of ERRα are associated with poor outcomes whereas high levels of ERRγ are associated with a favorable course. Recent studies suggest that ERRα may indeed promote breast tumor growth. The roles of ERRγ in breast cancer progression and how ERRα and ERRγ may differentially affect cancer growth are unclear. In mammary carcinoma cells that do not express endogenous ERRγ, we found that ectopic expression of ERRγ enhanced oxidative metabolism in vitro and inhibited the growth of tumor xenografts in vivo. In contrast, ectopic expression of the ERRα coactivator PGC-1α enhanced oxidative metabolism but did not affect tumor growth. Notably, ERRγ activated expression of a genetic program characteristic of mesenchymal-to-epithelial transition (MET). This program was apparent by changes in cellular morphology, upregulation of epithelial cell markers, downregulation of mesenchymal markers, and decreased cellular invasiveness. We determined that this program was also associated with upregulation of E-cadherin, which is activated directly by ERRγ. In contrast, PGC-1α activated only a subset of genes characteristic of the MET program and, unlike ERRγ, did not upregulate E-cadherin. In conclusion, these results show that ERRγ induces E-cadherin, promotes MET, and suppresses breast cancer growth. Our findings suggest that ERRγ agonists may have applications in the treatment of breast cancer.

  3. Differential expression of key regulators of Toll-like receptors in ulcerative colitis and Crohn's disease: a role for Tollip and peroxisome proliferator-activated receptor gamma?

    PubMed

    Fernandes, P; MacSharry, J; Darby, T; Fanning, A; Shanahan, F; Houston, A; Brint, E

    2016-03-01

    The innate immune system is currently seen as the probable initiator of events which culminate in the development of inflammatory bowel disease (IBD) with Toll-like receptors (TLRs) known to be involved in this disease process. Many regulators of TLRs have been described, and dysregulation of these may also be important in the pathogenesis of IBD. The aim of this study was to perform a co-ordinated analysis of the expression levels of both key intestinal TLRs and their inhibitory proteins in the same IBD cohorts, both ulcerative colitis (UC) and Crohn's disease (CD), in order to evaluate the potential roles of these proteins in the pathogenesis of IBD. Of the six TLRs (TLRs 1, 2, 4, 5, 6 and 9) examined, only TLR-4 was increased significantly in IBD, specifically in active UC. In contrast, differential alterations in expression of TLR inhibitory proteins were observed. A20 and suppressor of cytokine signalling 1 (SOCS1) were increased only in active UC while interleukin-1 receptor-associated kinase 1 (IRAK-m) and B cell lymphoma 3 protein (Bcl-3) were increased in both active UC and CD. In contrast, expression of both peroxisome proliferator-activated receptor gamma (PPARγ) and Toll interacting protein (Tollip) was decreased in both active and inactive UC and CD and at both mRNA and protein levels. In addition, expression of both PPARγ and A20 expression was increased by stimulation of a colonic epithelial cell line Caco-2 with both TLR ligands and commensal bacterial strains. These data suggest that IBD may be associated with distinctive changes in TLR-4 and TLR inhibitory proteins, implying that alterations in these may contribute to the pathogenesis of IBD.

  4. Fc gamma receptor cross-linking activates p42, p38, and JNK/SAPK mitogen-activated protein kinases in murine macrophages: role for p42MAPK in Fc gamma receptor-stimulated TNF-alpha synthesis.

    PubMed

    Rose, D M; Winston, B W; Chan, E D; Riches, D W; Gerwins, P; Johnson, G L; Henson, P M

    1997-04-01

    Fc gamma R cross-linking on murine macrophages resulted in the activation of mitogen-activated protein kinase (MAPK) family members p42MAPK, p38, and c-Jun NH2-terminal kinase (JNK)/stress-activated protein kinase (SAPK). The temporal pattern of activation was distinct for each kinase. p42MAPK activation peaked at 5 min after receptor cross-linking, while peak p38 activity occurred 5 to 10 min later. Maximal JNK/SAPK activation occurred 20 min after Fc gamma R cross-linking. The selective MAPK/extracellular signal-regulated kinase-1 (MEK-1) inhibitor PD 098059 inhibited activation of p42MAPK induced by Fc gamma R cross-linking, but not p38 or JNK/SAPK activation. PD 098059 also inhibited the synthesis of TNF-alpha induced by Fc gamma R cross-linking (IC50 approximately 0.1 microM). Together, these results suggest that 1) the activation of MAPKs may play a role in Fc gammaR signal transduction, and 2) the activation of p42MAPK is necessary for Fc gamma R cross-linking-induced TNF-alpha synthesis.

  5. Peroxisome proliferator-activated receptor-alpha and receptor-gamma activators prevent cardiac fibrosis in mineralocorticoid-dependent hypertension.

    PubMed

    Iglarz, Marc; Touyz, Rhian M; Viel, Emilie C; Paradis, Pierre; Amiri, Farhad; Diep, Quy N; Schiffrin, Ernesto L

    2003-10-01

    Peroxisome proliferator-activated receptor (PPAR) activation may prevent cardiac hypertrophy and inhibit production of endothelin-1 (ET-1), a hypertrophic agent. The aim of this in vivo study was to investigate the effects of PPAR activators on cardiac remodeling in DOCA-salt rats, a model overexpressing ET-1. Unilaterally nephrectomized 16-week-old Sprague-Dawley rats (Uni-Nx) were randomly divided into 4 groups: control rats, DOCA-salt, DOCA-salt+rosiglitazone (PPAR-gamma activator, 5 mg/kg per day), and DOCA-salt+fenofibrate (PPAR-alpha activator, 100 mg/kg per day). After 3 weeks of treatment, mean arterial blood pressure was significantly increased in DOCA-salt by 36 mm Hg. Mean arterial blood pressure was normalized by coadministration of rosiglitazone but not by fenofibrate. Both PPAR activators prevented cardiac fibrosis and abrogated the increase in prepro-ET-1 mRNA content in the left ventricle of DOCA-salt rats. Coadministration of rosiglitazone or fenofibrate failed to prevent thickening of left ventricle (LV) walls as measured by echocardiography and the increase in atrial natriuretic peptide mRNA levels. However, rosiglitazone and fenofibrate prevented the decrease in LV internal diameter and thus concentric remodeling of the LV found in DOCA-salt rats. Taken together, these data indicate a modulatory role of PPAR activators on cardiac remodeling in mineralocorticoid-induced hypertension, in part associated with decreased ET-1 production.

  6. Peroxisome proliferator-activated receptor (PPAR)gamma can inhibit chronic renal allograft damage.

    PubMed

    Kiss, Eva; Popovic, Zoran V; Bedke, Jens; Adams, Judith; Bonrouhi, Mahnaz; Babelova, Andrea; Schmidt, Claudia; Edenhofer, Frank; Zschiedrich, Inka; Domhan, Sophie; Abdollahi, Amir; Schäfer, Liliana; Gretz, Norbert; Porubsky, Stefan; Gröne, Hermann-Josef

    2010-05-01

    Chronic inflammation and fibrosis are the leading causes of chronic allograft failure. The nuclear receptor peroxisome proliferator-activated receptor (PPAR)gamma is a transcription factor known to have antidiabetogenic and immune effects, and PPARgamma forms obligate heterodimers with the retinoid X receptor (RXR). We have reported that a retinoic acid (RAR)/RXR-agonist can potently influence the course of renal chronic allograft dysfunction. In this study, in a Fischer to Lewis rat renal transplantation model, administration of the PPARgamma-agonist, rosiglitazone, independent of dose (3 or 30 mg/kgBW/day), lowered serum creatinine, albuminuria, and chronic allograft damage with a chronic vascular damage score as follows: 35.0 +/- 5.8 (controls) vs. 8.1 +/- 2.4 (low dose-Rosi; P < 0.05); chronic tubulointerstitial damage score: 13.6 +/- 1.8 (controls) vs. 2.6 +/- 0.4 (low dose-Rosi; P < 0.01). The deposition of extracellular matrix proteins (collagen, fibronectin, decorin) was strikingly lower. The expression of transforming growth factor-beta1 was inhibited, whereas that of bone morphogenic protein-7 (BMP-7) was increased. Intragraft mononuclear cells and activated fibroblast numbers were reduced by 50%. In addition, the migratory and proliferative activity of these cells was significantly inhibited in vitro. PPARgamma activation diminished the number of cells expressing the proinflammatory and fibrogenic proteoglycan biglycan. In macrophages its secretion was blocked by rosiglitazone in a predominantly PPARgamma-dependent manner. The combination of PPARgamma- and RAR/RXR-agonists resulted in additive effects in the inhibition of fibrosis. In summary, PPARgamma activation was potently immunosuppressive and antifibrotic in kidney allografts, and these effects were enhanced by a RAR/RXR-agonist.

  7. Role of peroxisome proliferator-activated receptors alpha and gamma in gastric ulcer: An overview of experimental evidences.

    PubMed

    Saha, Lekha

    2015-11-06

    Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors belonging to the nuclear hormone receptor superfamily. Three subtypes, PPARα, PPARβ/δ, and PPARγ, have been identified so far. PPARα is expressed in the liver, kidney, small intestine, heart, and muscle, where it activates the fatty acid catabolism and control lipoprotein assembly in response to long-chain unsaturated fatty acids, eicosanoids, and hypolipidemic drugs (e.g., fenofibrate). PPARβ/δ is more broadly expressed and is implicated in fatty acid oxidation, keratinocyte differentiation, wound healing, and macrophage response to very low density lipoprotein metabolism. This isoform has been implicated in transcriptional-repression functions and has been shown to repress the activity of PPARα or PPARγ target genes. PPARγ1 and γ2 are generated from a single-gene peroxisome proliferator-activated receptors gamma by differential promoter usage and alternative splicing. PPARγ1 is expressed in colon, immune system (e.g., monocytes and macrophages), and other tissues where it participates in the modulation of inflammation, cell proliferation, and differentiation. PPARs regulate gene expression through distinct mechanisms: Ligand-dependent transactivation, ligand-independent repression, and ligand-dependent transrepression. Studies in animals have demonstrated the gastric antisecretory activity of PPARα agonists like ciprofibrate, bezafibrate and clofibrate. Study by Pathak et al also demonstrated the effect of PPARα agonist, bezafibrate, on gastric secretion and gastric cytoprotection in various gastric ulcer models in rats. The majority of the experimental studies is on pioglitazone and rosiglitazone, which are PPARγ activators. In all the studies, both the PPARγ activators showed protection against the gastric ulcer and also accelerate the ulcer healing in gastric ulcer model in rats. Therefore, PPARα and PPARγ may be a target for gastric ulcer therapy

  8. Role of peroxisome proliferator-activated receptors alpha and gamma in gastric ulcer: An overview of experimental evidences

    PubMed Central

    Saha, Lekha

    2015-01-01

    Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors belonging to the nuclear hormone receptor superfamily. Three subtypes, PPARα, PPARβ/δ, and PPARγ, have been identified so far. PPARα is expressed in the liver, kidney, small intestine, heart, and muscle, where it activates the fatty acid catabolism and control lipoprotein assembly in response to long-chain unsaturated fatty acids, eicosanoids, and hypolipidemic drugs (e.g., fenofibrate). PPARβ/δ is more broadly expressed and is implicated in fatty acid oxidation, keratinocyte differentiation, wound healing, and macrophage response to very low density lipoprotein metabolism. This isoform has been implicated in transcriptional-repression functions and has been shown to repress the activity of PPARα or PPARγ target genes. PPARγ1 and γ2 are generated from a single-gene peroxisome proliferator-activated receptors gamma by differential promoter usage and alternative splicing. PPARγ1 is expressed in colon, immune system (e.g., monocytes and macrophages), and other tissues where it participates in the modulation of inflammation, cell proliferation, and differentiation. PPARs regulate gene expression through distinct mechanisms: Ligand-dependent transactivation, ligand-independent repression, and ligand-dependent transrepression. Studies in animals have demonstrated the gastric antisecretory activity of PPARα agonists like ciprofibrate, bezafibrate and clofibrate. Study by Pathak et al also demonstrated the effect of PPARα agonist, bezafibrate, on gastric secretion and gastric cytoprotection in various gastric ulcer models in rats. The majority of the experimental studies is on pioglitazone and rosiglitazone, which are PPARγ activators. In all the studies, both the PPARγ activators showed protection against the gastric ulcer and also accelerate the ulcer healing in gastric ulcer model in rats. Therefore, PPARα and PPARγ may be a target for gastric ulcer therapy

  9. Type I (CD64) and type II (CD32) Fc gamma receptor-mediated phagocytosis by human blood dendritic cells.

    PubMed

    Fanger, N A; Wardwell, K; Shen, L; Tedder, T F; Guyre, P M

    1996-07-15

    Three classes of Fc receptors for IgG, Fc gamma RI (CD64), Fc gamma RII (CD32), and Fc gamma RIII (CD16), are expressed on blood leukocytes. Although Fc gamma R are important phagocytic receptors on phagocytes, most reports suggest that dendritic cells lack Fc gamma R-mediated phagocytosis and express significant levels of only CD32. We now report that phagocytically active forms of both CD64 and CD32 are expressed significantly on at least one subset of human blood dendritic cells. Countercurrent elutriation and magnetic bead selection were used to rapidly enrich subsets of blood dendritic cells (CD33brightCD14-HLA-DRbrightCD83-) and monocytes (CD33brightCD14brightHLA-DRdimCD83-). Upon culture for 2 days, dendritic cells became CD83-positive and markedly increased HLA-DR expression, whereas monocytes did not express CD83 and exhibited reduced levels of HLA-DR. Constitutive CD64 expression was identified on this circulating dendritic cell population, but at a lower level than on monocytes. CD64 expression by dendritic cells and monocytes did not decrease during 2 days in culture, and was up-regulated on both cell types following incubation with IFN-gamma. Freshly isolated blood dendritic cells performed CD64- and CD32-mediated phagocytosis, although at a lower level than monocytes. Dendritic cells generated by culture of adherent mononuclear cells in granulocyte-macrophage CSF and IL-4 also up-regulated CD64 following IFN-gamma stimulation, and mediated CD64-dependent phagocytosis. These results indicate that both CD64 and CD32 expressed on blood dendritic cells may play a role in uptake of foreign particles and macromolecules through a phagocytic mechanism before trafficking to T cell-reactive areas.

  10. The alpha9 nicotinic acetylcholine receptor shares pharmacological properties with type A gamma-aminobutyric acid, glycine, and type 3 serotonin receptors.

    PubMed

    Rothlin, C V; Katz, E; Verbitsky, M; Elgoyhen, A B

    1999-02-01

    In the present study, we provide evidence that the alpha9 nicotinic acetylcholine receptor (nAChR) shares pharmacological properties with members of the Cys-loop family of receptors. Thus, the type A gamma-aminobutyric acid receptor antagonist bicuculline, the glycinergic antagonist strychnine, and the type 3 serotonin receptor antagonist ICS-205,930 block ACh-evoked currents in alpha9-injected Xenopus laevis oocytes with the following rank order of potency: strychnine > ICS-205,930 > bicuculline. Block by antagonists was reflected in an increase in the acetylcholine (ACh) EC50 value, with no changes in agonist maximal response or Hill coefficient, which suggests a competitive type of block. Moreover, whereas neither gamma-aminobutyric acid nor glycine modified ACh-evoked currents, serotonin blocked responses to ACh in a concentration-dependent manner. The present results suggest that the alpha9 nAChR must conserve in its primary structure some residues responsible for ligand binding common to other Cys-loop receptors. In addition, it adds further evidence that the alpha9 nAChR and the cholinergic receptor present at the base of cochlear outer hair cells have similar pharmacological properties.

  11. Laser System for Livermore's Mono Energetic Gamma-Ray Source

    SciTech Connect

    Gibson, D; Albert, F; Bayramian, A; Marsh, R; Messerly, M; Ebbers, C; Hartemann, F

    2011-03-14

    A Mono-energetic Gamma-ray (MEGa-ray) source, based on Compton scattering of a high-intensity laser beam off a highly relativistic electron beam, requires highly specialized laser systems. To minimize the bandwidth of the {gamma}-ray beam, the scattering laser must have minimal bandwidth, but also match the electron beam depth of focus in length. This requires a {approx}1 J, 10 ps, fourier-transform-limited laser system. Also required is a high-brightness electron beam, best provided by a photoinjector. This electron source requires a second laser system with stringent requirements on the beam including flat transverse and longitudinal profiles and fast rise times. Furthermore, these systems must be synchronized to each other with ps-scale accuracy. Using a novel hyper-dispersion compressor configuration and advanced fiber amplifiers and diode-pumped Nd:YAG amplifiers, we have designed laser systems that meet these challenges for the X-band photoinjector and Compton-scattering source being built at Lawrence Livermore National Laboratory.

  12. 5-HT3a Receptors Modulate Hippocampal Gamma Oscillations by Regulating Synchrony of Parvalbumin-Positive Interneurons.

    PubMed

    Huang, Ying; Yoon, Kristopher; Ko, Ho; Jiao, Song; Ito, Wataru; Wu, Jian-Young; Yung, Wing-Ho; Lu, Bai; Morozov, Alexei

    2016-02-01

    Gamma-frequency oscillatory activity plays an important role in information integration across brain areas. Disruption in gamma oscillations is implicated in cognitive impairments in psychiatric disorders, and 5-HT3 receptors (5-HT3Rs) are suggested as therapeutic targets for cognitive dysfunction in psychiatric disorders. Using a 5-HT3aR-EGFP transgenic mouse line and inducing gamma oscillations by carbachol in hippocampal slices, we show that activation of 5-HT3aRs, which are exclusively expressed in cholecystokinin (CCK)-containing interneurons, selectively suppressed and desynchronized firings in these interneurons by enhancing spike-frequency accommodation in a small conductance potassium (SK)-channel-dependent manner. Parvalbumin-positive interneurons therefore received diminished inhibitory input leading to increased but desynchronized firings of PV cells. As a consequence, the firing of pyramidal neurons was desynchronized and gamma oscillations were impaired. These effects were independent of 5-HT3aR-mediated CCK release. Our results therefore revealed an important role of 5-HT3aRs in gamma oscillations and identified a novel crosstalk among different types of interneurons for regulation of network oscillations. The functional link between 5-HT3aR and gamma oscillations may have implications for understanding the cognitive impairments in psychiatric disorders.

  13. Fetal liver T cell receptor gamma/delta+ T cells as cytotoxic T lymphocytes specific for maternal alloantigens

    PubMed Central

    1992-01-01

    We have established fetal liver-derived T cell receptor (TCR) gamma/delta+, CD3+ T cell lines that are cytotoxic for maternal T cells. Fetal liver-derived lymphoid progenitors yielded predominantly TCR-gamma/delta+ cell clusters when cultured on fetal bone marrow- derived stromal cells in the presence of a cytokine cocktail under magnetic force. These tightly adherent clusters were cloned by limiting dilution and the resulting cell lines analyzed for phenotype and function. Six of eight TCR-gamma/delta lines from 8-9.5-wk gestation fetuses were V delta 2+ as compared with zero of eight lines from later stages of gestation (10 and 15 wk), where all the lines were V delta 1+. In cytotoxicity assays, these TCR-gamma/delta+, CD3+, CD4-, and CD8+ or CD8- long-term cultured lymphoid cells (LLC) were killer cells active against the class I antigens on maternal T cells. Of the cell lines, the CD8+ TCR-gamma/delta+ LLC had the highest levels of killer activity. Thus fetal liver TCR-gamma/delta+ T cells may play a crucial role in protection against invading maternal T cells generated in the feto-maternal interaction. PMID:1535364

  14. Selective regulation of long-form calcium-permeable AMPA receptors by an atypical TARP, gamma-5.

    PubMed

    Soto, David; Coombs, Ian D; Renzi, Massimiliano; Zonouzi, Marzieh; Farrant, Mark; Cull-Candy, Stuart G

    2009-03-01

    Although the properties and trafficking of AMPA-type glutamate receptors (AMPARs) depend critically on associated transmembrane AMPAR regulatory proteins (TARPs) such as stargazin (gamma-2), no TARP has been described that can specifically regulate the important class of calcium-permeable (CP-) AMPARs. We examined the stargazin-related protein gamma-5, which is highly expressed in Bergmann glia, a cell type possessing only CP-AMPARs. gamma-5 was previously thought not to be a TARP, and it has been widely used as a negative control. Here we find that, contrary to expectation, gamma-5 acts as a TARP and serves this role in Bergmann glia. Whereas gamma-5 interacts with all AMPAR subunits, and modifies their behavior to varying extents, its main effect is to regulate the function of AMPAR subunit combinations that lack short-form subunits, which constitute predominantly CP-AMPARs. Our results suggest an important role for gamma-5 in regulating the functional contribution of CP-AMPARs.

  15. Gamma-quanta onboard identification in the GAMMA-400 experiment using the counting and triggers signals formation system.

    NASA Astrophysics Data System (ADS)

    Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Chasovikov, E. N.; Galper, A. M.; Kheymits, M. D.; Murchenko, A. E.; Yurkin, Y. T.

    2016-02-01

    GAMMA-400 (Gamma Astronomical Multifunctional Modular Apparatus) will be the new generation satellite gamma-observatory. Gamma-telescope GAMMA-400 consists of anticoincidence system (top and lateral sections - ACtop and AClat), the converter-tracker (C), time-of-flight system (2 sections S1 and S2), position-sensitive calorimeter CC1 makes of 2 strips layers and 2 layers of CsI(Tl) detectors, electromagnetic calorimeter CC2 composed of CsI(Tl) crystals, neutron detector ND, scintillation detectors of the calorimeter (S3 and S4) and lateral detectors of the calorimeter (LD). All detector systems ACtop, AClat, S1-S4, LD consist of two BC-408 based sensitive layers of 1 cm thickness each. Three apertures provide events registration both from upper and lateral directions. The main aperture provides the best angular (all strip layers information analysis) and energy (energy deposition in the all detectors studying) resolution. Gamma-telescope GAMMA-400 is optimized for the gamma-quanta and charged particles with energy 100 GeV detection with the best parameters in the main aperture. Triggers in the main aperture will be formed using information about particle direction provided by time of flight system and presence of charged particle or backsplash signal formed according to analysis of energy deposition in combination of both layers anticoincidence systems ACtop and AClat individual detectors. For double-layer ACtop taking into account both amplitude and temporal trigger marker onboard analysis only 2.8% photons will be wrongly recognized as electrons or protons for 100 GeV particles. The part of charged particles mistakenly identified as gammas is ∼10-5 using described algorithms. For E∼3 GeV less than 3% photons will be wrongly recognized as charged particles and fraction of wrongly identified charged particles will be also ∼10-5. In the additional aperture the particles identification is provided by analysis of signals corresponding to energy deposition in the

  16. Absence of regulation of the T-type calcium current by Cav1.1, beta1a and gamma1 dihydropyridine receptor subunits in skeletal muscle cells.

    PubMed

    Strube, Caroline

    2008-02-01

    The subunit structure of low voltage activated T-type Ca2+ channels is still unknown. Co-expression of dihydropyridine receptor (DHPR) auxiliary subunits with T-type alpha1 subunits in heterologous systems has produced conflicting results. In developing foetal skeletal muscle fibres which abundantly express DHPR subunits, Cav3.2 (alpha1H) subunits are believed to underlie T-type calcium currents which disappear 2 to 3 weeks after birth. Therefore, a possible regulation of foetal skeletal muscle T-type Ca2+ channels by DHPR subunits was investigated in freshly isolated foetal skeletal muscle using knockout mice, which provide a powerful tool to address this question. The possible involvement of alpha1S (Cav1.1), beta1 and gamma1 DHPR subunits was tested using dysgenic (alpha1S-null), beta1a and gamma1 knockout mice. The results show that the absence of alpha1S, beta1 or gamma1 DHPR subunits does not significantly affect the electrophysiological properties of T-type Ca2+ currents in skeletal muscle, suggesting that (1) native Cav3.2 is not regulated by beta1 or gamma1 DHPR subunits; (2) T-type and L-type currents have distinct and not interchangeable roles.

  17. Differential dependence of the D1 and D5 dopamine receptors on the G protein gamma 7 subunit for activation of adenylylcyclase.

    PubMed

    Wang, Q; Jolly, J P; Surmeier, J D; Mullah, B M; Lidow, M S; Bergson, C M; Robishaw, J D

    2001-10-19

    The D(1) dopamine receptor, G protein gamma(7) subunit, and adenylylcyclase are selectively expressed in the striatum, suggesting their potential interaction in a common signaling pathway. To evaluate this possibility, a ribozyme strategy was used to suppress the expression of the G protein gamma(7) subunit in HEK 293 cells stably expressing the human D(1) dopamine receptor. Prior in vitro analysis revealed that the gamma(7) ribozyme possessed cleavage activity directed exclusively toward the gamma(7) RNA transcript (Wang, Q., Mullah, B., Hansen, C., Asundi, J., and Robishaw, J. D. (1997) J. Biol. Chem. 272, 26040-26048). In vivo analysis of cells transfected with the gamma(7) ribozyme showed a specific reduction in the expression of the gamma(7) protein. Coincident with the loss of the gamma(7) protein, there was a noticeable reduction in the expression of the beta(1) protein, confirming their interaction in these cells. Finally, functional analysis of ribozyme-mediated suppression of the beta(1) and gamma(7) proteins revealed a significant attenuation of SKF81297-stimulated adenylylcyclase activity in D(1) dopamine receptor-expressing cells. By contrast, ribozyme-mediated suppression of the beta(1) and gamma(7) proteins showed no reduction of SKF81297-stimulated adenylylcyclase activity in D(5) dopamine receptor-expressing cells. Taken together, these data indicate that the structurally related D(1) and D(5) dopamine receptor subtypes utilize G proteins composed of distinct betagamma subunits to stimulate adenylylcyclase in HEK 293 cells. Underscoring the physiological relevance of these findings, single cell reverse transcriptase-polymerase chain reaction analysis revealed that the D(1) dopamine receptor and the G protein gamma(7) subunit are coordinately expressed in substance P containing neurons in rat striatum, suggesting that the G protein gamma(7) subunit may be a new target for drugs to selectively alter dopaminergic signaling within the brain.

  18. Dopamine, cognitive function, and gamma oscillations: role of D4 receptors

    PubMed Central

    Furth, Katrina E.; Mastwal, Surjeet; Wang, Kuan H.; Buonanno, Andres; Vullhorst, Detlef

    2013-01-01

    Cognitive deficits in individuals with schizophrenia (SCZ) are considered core symptoms of this disorder, and can manifest at the prodromal stage. Antipsychotics ameliorate positive symptoms but only modestly improve cognitive symptoms. The lack of treatments that improve cognitive abilities currently represents a major obstacle in developing more effective therapeutic strategies for this debilitating disorder. While D4 receptor (D4R)-specific antagonists are ineffective in the treatment of positive symptoms, animal studies suggest that D4R drugs can improve cognitive deficits. Moreover, recent work from our group suggests that D4Rs synergize with the neuregulin/ErbB4 signaling pathway, genetically identified as risk factors for SCZ, in parvalbumin (PV)-expressing interneurons to modulate gamma oscillations. These high-frequency network oscillations correlate with attention and increase during cognitive tasks in healthy subjects, and this correlation is attenuated in affected individuals. This finding, along with other observations indicating impaired GABAergic function, has led to the idea that abnormal neural activity in the prefrontal cortex (PFC) in individuals with SCZ reflects a perturbation in the balance of excitation and inhibition. Here we review the current state of knowledge of D4R functions in the PFC and hippocampus, two major brain areas implicated in SCZ. Special emphasis is given to studies focusing on the potential role of D4Rs in modulating GABAergic transmission and to an emerging concept of a close synergistic relationship between dopamine/D4R and neuregulin/ErbB4 signaling pathways that tunes the activity of PV interneurons to regulate gamma frequency network oscillations and potentially cognitive processes. PMID:23847468

  19. Minimum Detectable Activity for Tomographic Gamma Scanning System

    SciTech Connect

    Venkataraman, Ram; Smith, Susan; Kirkpatrick, J. M.; Croft, Stephen

    2015-01-01

    For any radiation measurement system, it is useful to explore and establish the detection limits and a minimum detectable activity (MDA) for the radionuclides of interest, even if the system is to be used at far higher values. The MDA serves as an important figure of merit, and often a system is optimized and configured so that it can meet the MDA requirements of a measurement campaign. The non-destructive assay (NDA) systems based on gamma ray analysis are no exception and well established conventions, such the Currie method, exist for estimating the detection limits and the MDA. However, the Tomographic Gamma Scanning (TGS) technique poses some challenges for the estimation of detection limits and MDAs. The TGS combines high resolution gamma ray spectrometry (HRGS) with low spatial resolution image reconstruction techniques. In non-imaging gamma ray based NDA techniques measured counts in a full energy peak can be used to estimate the activity of a radionuclide, independently of other counting trials. However, in the case of the TGS each “view” is a full spectral grab (each a counting trial), and each scan consists of 150 spectral grabs in the transmission and emission scans per vertical layer of the item. The set of views in a complete scan are then used to solve for the radionuclide activities on a voxel by voxel basis, over 16 layers of a 10x10 voxel grid. Thus, the raw count data are not independent trials any more, but rather constitute input to a matrix solution for the emission image values at the various locations inside the item volume used in the reconstruction. So, the validity of the methods used to estimate MDA for an imaging technique such as TGS warrant a close scrutiny, because the pair-counting concept of Currie is not directly applicable. One can also raise questions as to whether the TGS, along with other image reconstruction techniques which heavily intertwine data, is a suitable method if one expects to measure samples whose activities

  20. A gamma 2(R43Q) mutation, linked to epilepsy in humans, alters GABAA receptor assembly and modifies subunit composition on the cell surface.

    PubMed

    Frugier, Guillaume; Coussen, Françoise; Giraud, Marie-France; Odessa, Marie-Françoise; Emerit, Michel B; Boué-Grabot, Eric; Garret, Maurice

    2007-02-09

    Genetic defects leading to epilepsy have been identified in gamma2 GABA(A) receptor subunit. A gamma2(R43Q) substitution is linked to childhood absence epilepsy and febrile seizure, and a gamma2(K289M) mutation is associated with generalized epilepsy with febrile seizures plus. To understand the effect of these mutations, surface targeting of GABA(A) receptors was analyzed by subunit-specific immunofluorescent labeling of living cells. We first transfected hippocampal neurons in culture with recombinant gamma2 constructs and showed that the gamma 2(R43Q) mutation prevented surface expression of the subunit, unlike gamma2(K289M) substitution. Several gamma2-subunit constructs, bearing point mutations within the Arg-43 domain, were expressed in COS-7 cells with alpha3- and beta3-subunits. R43Q and R43A substitutions dramatically reduced surface expression of the gamma2-subunit, whereas R43K, P44A, and D39A substitutions had a lesser, but still significant, impact and K289M substitution had no effect. Whereas the mutant gamma2(R43Q) was retained within intracellular compartments, alphabeta complexes were still targeted at the cell membrane. Coimmunoprecipitation experiments showed that gamma2(R43Q) was able to associate with alpha3- or beta3-subunits, although the stoichiometry of the complex with alpha3 was altered. Our data show that gamma2(R43Q) is not a dominant negative and that the mutation leads to a modification of GABA(A) receptor subunit composition on the cell surface that impairs the synaptic targeting in neurons. This study reveals an involvement of the gamma2-Arg-43 domain in the control of receptor assembly that may be relevant to the effect of the heterozygous gamma2(R43Q) mutation leading to childhood absence epilepsy and febrile seizure.

  1. Constitutive Smad signaling and Smad-dependent collagen gene expression in mouse embryonic fibroblasts lacking peroxisome proliferator-activated receptor-{gamma}

    SciTech Connect

    Ghosh, Asish K Wei, Jun; Wu, Minghua; Varga, John

    2008-09-19

    Transforming growth factor-{beta} (TGF-{beta}), a potent inducer of collagen synthesis, is implicated in pathological fibrosis. Peroxisome proliferator-activated receptor-{gamma} (PPAR-{gamma}) is a nuclear hormone receptor that regulates adipogenesis and numerous other biological processes. Here, we demonstrate that collagen gene expression was markedly elevated in mouse embryonic fibroblasts (MEFs) lacking PPAR-{gamma} compared to heterozygous control MEFs. Treatment with the PPAR-{gamma} ligand 15d-PGJ{sub 2} failed to down-regulate collagen gene expression in PPAR-{gamma} null MEFs, whereas reconstitution of these cells with ectopic PPAR-{gamma} resulted in their normalization. Compared to control MEFs, PPAR-{gamma} null MEFs displayed elevated levels of the Type I TGF-{beta} receptor (T{beta}RI), and secreted more TGF-{beta}1 into the media. Furthermore, PPAR-{gamma} null MEFs showed constitutive phosphorylation of cellular Smad2 and Smad3, even in the absence of exogenous TGF-{beta}, which was abrogated by the ALK5 inhibitor SB431542. Constitutive Smad2/3 phosphorylation in PPAR-{gamma} null MEFs was associated with Smad3 binding to its cognate DNA recognition sequences, and interaction with coactivator p300 previously implicated in TGF-{beta} responses. Taken together, these results indicate that loss of PPAR-{gamma} in MEFs is associated with upregulation of collagen synthesis, and activation of intracellular Smad signal transduction, due, at least in part, to autocrine TGF-{beta} stimulation.

  2. The Differential Interactions of Peroxisome Proliferator-Activated Receptor [gamma] Ligands with Tyr473 Is a Physical Basis for Their Unique Biological Activities

    SciTech Connect

    Einstein, Monica; Akiyama, Taro E.; Castriota, Gino A.; Wang, Chuanlin F.; McKeever, Brian; Mosley, Ralph T.; Becker, Joseph W.; Moller, David E.; Meinke, Peter T.; Wood, Harold B.; Berger, Joel P.

    2008-08-01

    Despite their proven antidiabetic efficacy, widespread use of peroxisome proliferator-activated receptor (PPAR){gamma} agonists has been limited by adverse cardiovascular effects. To overcome this shortcoming, selective PPAR{gamma} modulators (SPPAR{gamma}Ms) have been identified that have antidiabetic efficacy comparable with full agonists with improved tolerability in preclinical species. The results of structural studies support the proposition that SPPAR{gamma}Ms interact with PPAR{gamma} differently from full agonists, thereby providing a physical basis for their novel activities. Herein, we describe a novel PPAR{gamma} ligand, SPPAR{gamma}M2. This compound was a partial agonist in a cell-based transcriptional activity assay, with diminished adipogenic activity and an attenuated gene signature in cultured human adipocytes. X-ray cocrystallography studies demonstrated that, unlike rosiglitazone, SPPAR{gamma}M2 did not interact with the Tyr473 residue located within helix 12 of the ligand binding domain (LBD). Instead, SPPAR{gamma}M2 was found to bind to and activate human PPAR{gamma} in which the Tyr473 residue had been mutated to alanine (hPPAR{gamma}Y473A), with potencies similar to those observed with the wild-type receptor (hPPAR{gamma}WT). In additional studies, we found that the intrinsic binding and functional potencies of structurally distinct SPPAR{gamma}Ms were not diminished by the Y473A mutation, whereas those of various thiazolidinedione (TZD) and non-TZD PPAR{gamma} full agonists were reduced in a correlative manner. These results directly demonstrate the important role of Tyr473 in mediating the interaction of full agonists but not SPPAR{gamma}Ms with the PPAR{gamma} LBD, thereby providing a precise molecular determinant for their differing pharmacologies.

  3. Interaction between a peroxisome proliferator-activated receptor gamma gene polymorphism and dietary fat intake in relation to body mass.

    PubMed

    Memisoglu, Asli; Hu, Frank B; Hankinson, Susan E; Manson, JoAnn E; De Vivo, Immaculata; Willett, Walter C; Hunter, David J

    2003-11-15

    The peroxisome proliferator-activated receptor gamma (PPAR gamma) is a critical regulator of adipogenesis. PPAR gamma+/- mice are resistant to high-fat diet-induced obesity and thus PPAR gamma may mediate physiological responses to dietary fat in other mammals. The aim of this study was to determine whether the human PPAR gamma proline to alanine substitution polymorphism (Pro12Ala) modifies the association between dietary fat and adiposity and plasma lipids. Subjects (n=2141) were controls selected for three case-control studies nested within the Nurses' Health Study, a large ongoing prospective cohort study. Associations between intake of total fat, fat subtypes and BMI were different in PPAR gamma 12Ala variant allele-carriers compared with non-carriers. Among homozygous wild-type Pro/Pro individuals, those in the highest quintile of total fat intake, had significantly higher mean body mass index (BMI) compared with those in the lowest quintile (27.3 versus 25.4 kg/m2, respectively; P-trend<0.0001) whereas among 12Ala variant allele-carriers there was no significant trend observed between dietary fat intake and BMI (P-trend=0.99; P-interaction=0.003). In contrast, intake of monounsaturated fat was not associated with BMI among homozygous wild-type women but was inversely associated with BMI among 12Ala variant allele-carriers (mean in lowest quintile=27.6 versus mean in highest quintile=25.5 kg/m2; P-trend=0.006; P-interaction=0.003). The relationship between dietary fat intake and plasma lipid concentrations also differed according to PPAR gamma genotype. These data suggest that PPAR gamma genotype is an important factor in physiological responses to dietary fat in humans.

  4. Preservation of mucosal and systemic adjuvant properties of ISCOMS in the absence of functional interleukin-4 or interferon-gamma.

    PubMed Central

    Smith, R E; Donachie, A M; McLaren, F H; Mowat, A M

    1998-01-01

    Adjuvants are a critical component of non-viable vaccine vectors, particularly for those to be used via mucosal routes. Although most adjuvants act by inducing local inflammatory responses, the molecular basis of many of these effects is unclear. Here we have investigated whether interleukin-4 (IL-4) and interferon-gamma (IFN-gamma) are required for the induction of local and systemic immune responses by oral and parenteral administration of ovalbumin (OVA) in immune stimulating complexes (ISCOMS), a potent mucosal adjuvant vector. Our results show that after oral or systemic immunization with OVA ISCOMS, IL-4 knockout (IL4KO) and IFN-gamma receptor knockout (IFN-gamma RKO) mice develop an entirely normal range of immune responses including delayed-type hypersensitivity (DTH), serum immunoglobulin G (IgG) antibodies, T-cell proliferation and cytokine production, class I major histocompatibility complex (MHC)-restricted cytotoxic T lymphocyte (CTL) activity and intestinal IgA antibodies. These responses were of a similar magnitude to those found in the wild-type mice, indicating that the immunogenicity of ISCOMS is not influenced by the presence of IL-4 or IFN-gamma and emphasizing the potential of ISCOMS as widely applicable mucosal adjuvants. PMID:9659229

  5. Design and evaluation of an IDM-based MIMO FSO system over Gamma-Gamma turbulence channels

    NASA Astrophysics Data System (ADS)

    Zhang, Chenglei; Zhou, Xiaolin; Zheng, Xiaowei; Du, Jianhong

    2011-12-01

    In this paper, we design an interleave-division-multiplexing (IDM) based multiple-input multiple-output (MIMO) free-space optics (FSO) communication system. The system overcomes problems harassing conventional optical MIMO systems such as restrictions of antenna number and high complexity in receiver. An iterative on-off keying (OOK) modulated IDM MIMO detection algorithm is developed. Expression of an upper bound of frame-error-rate (FER) is derived. In addition, we evaluate the BER performance of the proposed optical MIMO scheme in various FSO scenarios. Simulations confirm that the proposed scheme can effectively increase the feasibility of FSO communications over Gamma-Gamma turbulence-induced fading channels.

  6. Mice lacking the IFN-gamma receptor or fyn develop severe experimental autoimmune uveoretinitis characterized by different immune responses.

    PubMed

    Fukushima, Atsuki; Yamaguchi, Tomoko; Ishida, Waka; Fukata, Kazuyo; Udaka, Keiko; Ueno, Hisayuki

    2005-06-01

    Endogenous interferon (IFN)-gamma negatively regulates experimental autoimmune uveoretinitis (EAU), a Th1-mediated disease. Although it is well known that IFN-gamma exerts its effects by binding to the IFN-gamma receptor (IFN-gammaR), the role that IFN-gammaR plays in the development of EAU has not been investigated. Fyn has been reported to inhibit Th2 differentiation. We aimed to investigate how endogenous IFN-gammaR and fyn, which influence Th1/Th2 differentiation, participate in the development of EAU. Sex-matched 6- to 10-week-old C57BL/6 wild-type (WT), IFN-gammaR knockout (GRKO) and fyn knockout (fyn KO) mice were compared. Mice were immunized subcutaneously with human interphotoreceptor retinoid-binding protein peptide 1-20 emulsified in Freund's complete adjuvant together with an intraperitoneal injection of Bordetella pertussis toxin. Three weeks later, mice were sacrificed, and their eyes and spleens were harvested for histopathologic analyses and examination of cellular immune responses, respectively. Cellular immune responses were evaluated by measuring the proliferative responses and cytokine production [interleukin (IL)-4, IL-5, IL-6, IL-13, IFN-gamma and tumor necrosis factor (TNF)-alpha] of splenocytes. The incidence of EAU was 40.0% in WT mice, 59.3% in GRKO mice and 78.6% in fyn KO mice. The average EAU score was 0.294 in WT mice, 0.917 in GRKO mice and 1.063 in fyn KO mice. Upon EAU induction, significant infiltration of eosinophils into the eyes was observed in GRKO and fyn KO mice compared to WT mice. Splenocytes from GRKO mice proliferated against the antigen and a mitogen more vigorously than those from WT and fyn KO mice. Stimulation of splenocytes with the antigen induced a higher production of IL-4, IL-6, IL-13 and IFN-gamma in GRKO mice compared to WT and fyn KO mice. In contrast, IL-5 and TNF-alpha were most abundantly produced by splenocytes from fyn KO mice compared to WT and GRKO mice. The incidence and mean severity of EAU were

  7. Antifibrotic effect by activation of peroxisome proliferator-activated receptor-gamma in corneal fibroblasts.

    PubMed

    Pan, Hongwei; Chen, Jiansu; Xu, Jintang; Chen, Miaojiao; Ma, Rong

    2009-11-10

    The transformation of quiescent keratocytes to active phenotypes and the ensuing fibrotic response play important roles in corneal scar formation. This study aims to observe the antifibrotic effect of peroxisome proliferator-activated receptor-gamma (PPARgamma) agonist on corneal fibroblasts cultured in vitro, and to explore the potential application of peroxisome proliferator-activated receptor agonist to the prevention of corneal opacity following wound repair. Rabbit corneal keratocytes were cultured in a medium containing 10% serum to induce their transformation to fibroblasts and myofibroblasts, which are similar to those that repair corneas. After incubation with the PPARgamma agonist pioglitazone at different concentrations, the effect of pioglitazone on the migration, contractility, and viability of corneal fibroblasts was examined. The secretion of matrix metalloproteinase-2 and matrix metalloproteinase-9 was determined by gelatin zymography, and the synthesis of collagen I and fibronectin was investigated by western blotting. Treatment with pioglitazone at concentrations ranging from 1 to 10 mum significantly decreased corneal fibroblast migration, as determined by scrape-wound assay, inhibited corneal fibroblast-induced collagen lattice contraction, and reduced MMP-2 and MMP-9 secretion into the supernatant of cell cultures in a dose-dependent manner. The expression of fibronectin was significantly decreased, while the expression of collagen I was only decreased when treated with 10 mum pioglitazone. Cell viability was not evidently changed compared to the control. This in vitro study demonstrated the anti-fibrotic effect of pioglitazone, suggesting that activation of PPARgamma may be a new approach for the treatment of corneal opacity and scar formation in the corneal wound healing process.

  8. Activation of peroxisome proliferator-activated receptor gamma is crucial for antitumoral effects of 6-iodolactone.

    PubMed

    Nava-Villalba, Mario; Nuñez-Anita, Rosa E; Bontempo, Alexander; Aceves, Carmen

    2015-09-17

    Molecular iodine (I2) exhibits antiproliferative and apoptotic effects on in vivo and in vitro cancer models. These effects are thought to be mediated by an iodinated arachidonic acid derivative, 6-iodolactone (6IL), and one of the proposed mechanisms is that 6IL activates Peroxisome Proliferator-Activated Receptors type gamma (PPARG). These receptors have been implicated in the inhibition of carcinogenic processes, in addition to their classical role in maintaining lipid and glucose homeostasis. The aim of this study was to determine whether PPARG participates in the 6IL antiproliferative and apoptotic effects on the mammary cancer cell line MCF-7. The 6IL/PPARG complex was inhibited by the PPARG antagonist GW9662, in both an endogenous and overexpressed (adenoviral vector infection) context, and stable PPARG-knockdown MCF-7 cells (RNA interference, confirmed with hydrolysis probes and Western blot), were used to corroborate the PPARG participation. 6IL effects on proliferation (measured by Trypan Blue exclusion) and apoptosis (phosphatidylserine identification by flow cytometer) were evaluated in conditions of chemical inhibition (GW9662) and silencing (RNA interference). A wound-healing assay was conducted on wild-type and stable PPARG-knockdown MCF-7 cells to evaluate the antimigrational effect of 6IL. Caspase-8 activity was evaluated to determine if the extrinsic pathway is involved in the effects of 6IL and I2 treatment. Antiproliferative and pro-apoptotic 6IL effects require the activation of PPARG. In addition, wound-healing assays show that 6IL is able to inhibit MCF-7 cell migration and that PPARG plays a role in this phenomenon. Finally, the data exclude the participation of the extrinsic apoptotic pathway in 6IL- and I2-induced apoptosis. These results support the previously proposed mechanism, in which the I2 effects are mediated by 6IL, and they provide further support for the use of I2 as coadjuvant in breast cancer treatment.

  9. Impact of peroxisome proliferator-activated receptors gamma and delta on adiposity in toddlers and preschoolers in the GENESIS Study.

    PubMed

    Lagou, Vasiliki; Scott, Robert A; Manios, Yannis; Chen, Tun-Li Joshua; Wang, Guan; Grammatikaki, Evangelia; Kortsalioudaki, Christine; Liarigkovinos, Thodoris; Moschonis, George; Roma-Giannikou, Eleftheria; Pitsiladis, Yannis P

    2008-04-01

    Peroxisome proliferator-activated receptor gamma (PPAR gamma) and peroxisome proliferator-activated receptor delta (PPAR delta) are promising candidate genes for obesity. Associations between adiposity-related phenotypes and genetic variation in PPAR gamma (Pro12Ala and C1431T), as well as PPAR delta (T+294C) were assessed in 2,102 Greek children aged 1-6 years, as part of a large-scale epidemiological study (Growth, Exercise and Nutrition Epidemiological Study In preSchoolers). In girls aged 3-4 years, the Ala12 allele was associated with higher mid-upper arm (P = 0.010) and hip (P = 0.005) circumferences, as well as subscapular (P = 0.008) and total skinfolds (P = 0.011) that explained 2.0, 3.7, 2.1, and 1.9% of the phenotypic variance, respectively, while the T1431 allele was associated with higher mean values for waist circumference (P = 0.018) and suprailiac skinfold (P = 0.017), genotype accounting for 1.6% of the variance in both phenotypes. No significant effects of PPAR delta T+294C polymorphism or the interaction of the PPAR delta and PPAR gamma variants on adiposity-related phenotypes were observed in any age group or gender. Haplotype-based analysis including both PPAR gamma polymorphisms revealed that in girls aged 3-4 years, the Ala-T haplotype was associated with higher waist (P = 0.014) and hip (P = 0.007) circumferences compared to the common Pro-C haplotype. The PPAR gamma Pro12Ala and C1431T polymorphisms are associated with increased adiposity during early childhood in a gender- and age-specific manner and independently of the PPAR delta T+294C polymorphism.

  10. Peroxisome proliferator-activated receptor gamma regulates expression of signal transducer and activator of transcription 5A

    SciTech Connect

    Olsen, Hanne; Haldosen, Lars-Arne . E-mail: Lars-Arne.Haldosen@mednut.ki.se

    2006-05-01

    Signal transducer and activator of transcription 5A (STAT5A) has been shown to be important for terminal differentiation of mammary epithelial cells. In order to understand regulation of expression of STAT5A, the 5' end of the mouse Stat5a gene was isolated. Putative regulatory elements was searched for and several peroxisome proliferator response elements (PPREs) were found, one with high (12/13 nucleotides) and three with less (8-10/13) similarity to the reported consensus sequence. Mouse mammary epithelial HC11 cells were treated with peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) ligand, the thiazolidinedione (TZD) troglitazone, and an increase in STAT5A protein expression was seen. The 5' flank of Stat5a gene was cloned in a luciferase reporter vector. A concentration dependent activation of the STAT5A-luciferase reporter was detected, when transiently transfected HC11 cells were treated with TZD. The activation could be inhibited by treatment with a PPAR{gamma} antagonist. It has earlier been shown that epidermal growth factor (EGF) induces MAPK phosphorylation of PPAR{gamma} resulting in a less transcriptionally active receptor. In HC11 cells, EGF inhibited TZD induced STAT5A-reporter activity suggesting that our previously reported EGF-mediated suppression of STAT5A expression is mediated in all or partly through inhibition of PPAR{gamma} activity. Furthermore, the MEK inhibitor PD98059 inhibited the EGF effect. All together, data presented suggest that PPAR{gamma} participates in regulation of STAT5A expression.

  11. Interferon-gamma and transforming growth factor-beta modulate the activation of mitogen-activated protein kinases and tumor necrosis factor-alpha production induced by Fc gamma-receptor stimulation in murine macrophages.

    PubMed

    Rose, D M; Winston, B W; Chan, E D; Riches, D W; Henson, P M

    1997-09-08

    Engagement of receptors for the Fc region of IgG (Fc gamma R) can activate a variety of biological responses in macrophages, and these responses can be modulated either positively or negatively by co-stimulation with a variety of agents including cytokines such as interferon-gamma (IFN-gamma) and transforming growth factor-beta (TGF-beta). We have previously demonstrated that Fc gamma R crosslinking activates the mitogen-activated protein kinase (MAPK) family members p42MAPK, p38, and JNK. Herein, we examined the modulatory effect of IFN-gamma, TGF-beta, and platelet-activating factor (PAF) on Fc gamma R-induced MAPK activation in murine macrophages. Fc gamma R-induced activation of p42MAPK and JNK was augmented nearly two-fold by pretreatment with IFN-gamma. Conversely, TGF-beta pretreatment suppressed Fc gamma R-induced activation of p42MAPK, JNK, and p38. These modulatory effects of IFN-gamma and TGF-beta on MAPK activation correlated with changes in Fc gamma R-stimulated TNF-alpha production by these two cytokines.

  12. Induction of human adiponectin gene transcription by telmisartan, angiotensin receptor blocker, independently on PPAR-{gamma} activation

    SciTech Connect

    Moriuchi, Akie ||. E-mail: f1195@cc.nagasaki-u-ac.jp; Shimamura, Mika; Kita, Atsushi; Kuwahara, Hironaga; Satoh, Tsuyoshi; Satoh, Tsuyoshi; Fujishima, Keiichiro; Fukushima, Keiko |; Hayakawa, Takao; Mizuguchi, Hiroyuki; Nagayama, Yuji; Kawasaki, Eiji

    2007-05-18

    Adiponectin, an adipose tissue-specific plasma protein, has been shown to ameliorate insulin resistance and inhibit the process of atherosclerosis. Recently, several reports have stated that angiotensin type 1 receptor blockers (ARBs), increase adiponectin plasma level, and ameliorate insulin resistance. Telmisartan, a subclass of ARBs, has been shown to be a partial agonist of the peroxisome proliferator-activated receptor (PPAR)-{gamma}, and to increase the plasma adiponectin level. However, the transcriptional regulation of the human adiponectin gene by telmisartan has not been determined yet. To elucidate the effect of telmisartan on adiponectin, the stimulatory regulation of human adiponectin gene by telmisartan was investigated in 3T3-L1 adipocytes, utilizing adenovirus-mediated luciferase reporter gene-transferring technique. This study indicates that telmisartan may stimulate adiponectin transcription independent of PPAR-{gamma}.

  13. Adiponectin, a downstream target gene of peroxisome proliferator-activated receptor {gamma}, controls hepatitis B virus replication

    SciTech Connect

    Yoon, Sarah; Jung, Jaesung; Kim, Taeyeung; Park, Sun; Chwae, Yong-Joon; Shin, Ho-Joon; Kim, Kyongmin

    2011-01-20

    In this study, HepG2-hepatitis B virus (HBV)-stable cells that did not overexpress HBx and HBx-deficient mutant-transfected cells were analyzed for their expression of HBV-induced, upregulated adipogenic and lipogenic genes. The mRNAs of CCAAT enhancer binding protein {alpha} (C/EBP{alpha}), peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}), adiponectin, liver X receptor {alpha} (LXR{alpha}), sterol regulatory element binding protein 1c (SREBP1c), and fatty acid synthase (FAS) were expressed at higher levels in HepG2-HBV and lamivudine-treated stable cells and HBx-deficient mutant-transfected cells than in the HepG2 cells. Lamivudine treatment reduced the mRNA levels of PPAR{gamma} and C/EBP{alpha}. Conversely, HBV replication was upregulated by adiponectin and PPAR{gamma} agonist rosiglitazone treatments and was downregulated by adiponectin siRNAs. Collectively, our results demonstrate that HBV replication and/or protein expression, even in the absence of HBx, upregulated adipogenic or lipogenic genes, and that the control of adiponectin might prove useful as a therapeutic modality for the treatment of chronic hepatitis B.

  14. Inverse Fourier Transform in the Gamma Coordinate System

    PubMed Central

    Wei, Yuchuan; Yu, Hengyong; Wang, Ge

    2011-01-01

    This paper provides auxiliary results for our general scheme of computed tomography. In 3D parallel-beam geometry, we first demonstrate that the inverse Fourier transform in different coordinate systems leads to different reconstruction formulas and explain why the Radon formula cannot directly work with truncated projection data. Also, we introduce a gamma coordinate system, analyze its properties, compute the Jacobian of the coordinate transform, and define weight functions for the inverse Fourier transform assuming a simple scanning model. Then, we generate Orlov's theorem and a weighted Radon formula from the inverse Fourier transform in the new system. Furthermore, we present the motion equation of the frequency plane and the conditions for sharp points of the instantaneous rotation axis. Our analysis on the motion of the frequency plane is related to the Frenet-Serret theorem in the differential geometry. PMID:21076520

  15. Activating Fc gamma receptors participate in the development of autoimmune diabetes in NOD mice.

    PubMed

    Inoue, Yoshihiro; Kaifu, Tomonori; Sugahara-Tobinai, Akiko; Nakamura, Akira; Miyazaki, Jun-Ichi; Takai, Toshiyuki

    2007-07-15

    Type 1 diabetes mellitus (T1D) in humans is an organ-specific autoimmune disease in which pancreatic islet beta cells are ruptured by autoreactive T cells. NOD mice, the most commonly used animal model of T1D, show early infiltration of leukocytes in the islets (insulitis), resulting in islet destruction and diabetes later. NOD mice produce various islet beta cell-specific autoantibodies, although it remains a subject of debate regarding whether these autoantibodies contribute to the development of T1D. Fc gammaRs are multipotent molecules that play important roles in Ab-mediated regulatory as well as effector functions in autoimmune diseases. To investigate the possible role of Fc gammaRs in NOD mice, we generated several Fc gammaR-less NOD lines, namely FcR common gamma-chain (Fc Rgamma)-deficient (NOD.gamma(-/-)), Fc gammaRIII-deficient (NOD.III(-/-)), Fc gammaRIIB-deficient (NOD.IIB(-/-)), and both Fc Rgamma and Fc gammaRIIB-deficient NOD (NOD.null) mice. In this study, we show significant protection from diabetes in NOD.gamma(-/-), NOD.III(-/-), and NOD.null, but not in NOD.IIB(-/-) mice even with grossly comparable production of autoantibodies among them. Insulitis in NOD.gamma(-/-) mice was also alleviated. Adoptive transfer of bone marrow-derived dendritic cells or NK cells from NOD mice rendered NOD.gamma(-/-) animals more susceptible to diabetes, suggesting a possible scenario in which activating Fc gammaRs on dendritic cells enhance autoantigen presentation leading to the activation of autoreactive T cells, and Fc gammaRIII on NK cells trigger Ab-dependent effector functions and inflammation. These findings highlight the critical roles of activating Fc gammaRs in the development of T1D, and indicate that Fc gammaRs are novel targets for therapies for T1D.

  16. Identification of novel peroxisome proliferator-activated receptor-gamma (PPARγ) agonists using molecular modeling method

    NASA Astrophysics Data System (ADS)

    Gee, Veronica M. W.; Wong, Fiona S. L.; Ramachandran, Lalitha; Sethi, Gautam; Kumar, Alan Prem; Yap, Chun Wei

    2014-11-01

    Peroxisome proliferator-activated receptor-gamma (PPARγ) plays a critical role in lipid and glucose homeostasis. It is the target of many drug discovery studies, because of its role in various disease states including diabetes and cancer. Thiazolidinediones, a synthetic class of agents that work by activation of PPARγ, have been used extensively as insulin-sensitizers for the management of type 2 diabetes. In this study, a combination of QSAR and docking methods were utilised to perform virtual screening of more than 25 million compounds in the ZINC library. The QSAR model was developed using 1,517 compounds and it identified 42,378 potential PPARγ agonists from the ZINC library, and 10,000 of these were selected for docking with PPARγ based on their diversity. Several steps were used to refine the docking results, and finally 30 potentially highly active ligands were identified. Four compounds were subsequently tested for their in vitro activity, and one compound was found to have a K i values of <5 μM.

  17. Association of Pro12Ala polymorphism in peroxisome proliferator activated receptor gamma with proliferative diabetic retinopathy

    PubMed Central

    Tariq, Khadija; Malik, Saira Bano; Ali, Syeda Hafiza Benish; Maqsood, Sundas Ejaz; Azam, Aisha; Muslim, Irfan; Khan, Muhammad Shakil; Azam, Maleeha; Waheed, Nadia Khalida

    2013-01-01

    Purpose The association of non-synonymous substitution polymorphism rs1801282 (c.34C>G, p.Pro12Ala) in exon 4 of the peroxisome proliferator activated receptor gamma gene with diabetic retinopathy (DR) has been reported inconsistently. Therefore, the purpose of the present study was to understand the population-specific role of the Pro12Ala polymorphism in DR susceptibility in Pakistani subjects. Methods A total of 180 subjects with DR, 193 subjects with type 2 diabetes mellitus (T2DM) with no diabetic retinopathy, and 200 healthy normoglycemic non-retinopathic Pakistani individuals were genotyped for the rs1801282 (c.34C>G) polymorphism using polymerase chain reaction-restriction fragment length polymorphism. Results We found the individuals with T2DM carrying 12Ala were at a reduced risk of developing DR (odds ratio [OR]=0.53; 95% confidence interval [CI]=0.33–0.87). Upon stratified analysis regarding disease severity, we observed this protective effect was confined to proliferative DR (OR=0.4; 95% CI=0.2–0.8) with non-significant effects on the susceptibility of non-proliferative DR (OR=0.67; 95% CI=0.37–1.19). Conclusions We report a protective role of the 12Ala polymorphism against proliferative DR in individuals with T2DM in Pakistan. PMID:23559865

  18. Identification of novel peroxisome proliferator-activated receptor-gamma (PPARγ) agonists using molecular modeling method.

    PubMed

    Gee, Veronica M W; Wong, Fiona S L; Ramachandran, Lalitha; Sethi, Gautam; Kumar, Alan Prem; Yap, Chun Wei

    2014-11-01

    Peroxisome proliferator-activated receptor-gamma (PPARγ) plays a critical role in lipid and glucose homeostasis. It is the target of many drug discovery studies, because of its role in various disease states including diabetes and cancer. Thiazolidinediones, a synthetic class of agents that work by activation of PPARγ, have been used extensively as insulin-sensitizers for the management of type 2 diabetes. In this study, a combination of QSAR and docking methods were utilised to perform virtual screening of more than 25 million compounds in the ZINC library. The QSAR model was developed using 1,517 compounds and it identified 42,378 potential PPARγ agonists from the ZINC library, and 10,000 of these were selected for docking with PPARγ based on their diversity. Several steps were used to refine the docking results, and finally 30 potentially highly active ligands were identified. Four compounds were subsequently tested for their in vitro activity, and one compound was found to have a K i values of <5 μM.

  19. Adipogenesis and insulin sensitivity in obesity are regulated by retinoid-related orphan receptor gamma

    PubMed Central

    Meissburger, Bettina; Ukropec, Jozef; Roeder, Eva; Beaton, Nigel; Geiger, Matthias; Teupser, Daniel; Civan, Burcak; Langhans, Wolfgang; Nawroth, Peter P; Gasperikova, Daniela; Rudofsky, Gottfried; Wolfrum, Christian

    2011-01-01

    Obesity is a well-known risk factor for the development of secondary complications such as type 2 diabetes. However, only a part of the obese population develops secondary metabolic disorders. Here, we identify the transcription factor retinoid-related orphan receptor gamma (RORγ) as a negative regulator of adipocyte differentiation through expression of its newly identified target gene matrix metalloproteinase 3. In vivo differentiation of adipocyte progenitor cells from Rorγ-deficient mice is enhanced and obese Rorγ−/− mice show decreased adipocyte sizes. These small adipocytes are highly insulin sensitive, leading to an improved control of circulating free fatty acids. Ultimately, Rorγ−/− mice are protected from hyperglycemia and insulin resistance in the state of obesity. In adipose stromal-vascular fraction from obese human subjects, Rorγ expression is correlated with adipocyte size and negatively correlated with adipogenesis and insulin sensitivity. Taken together, our findings identify RORγ as a factor, which controls adipogenesis as well as adipocyte size and modulates insulin sensitivity in obesity. RORγ might therefore serve as a novel pharmaceutical target to treat obesity-associated insulin resistance. PMID:21853531

  20. Dehydroepiandrosterone down-regulates the expression of peroxisome proliferator-activated receptor gamma in adipocytes.

    PubMed

    Kajita, Kazuo; Ishizuka, Tatsuo; Mune, Tomoatsu; Miura, Atsushi; Ishizawa, Masayoshi; Kanoh, Yoshinori; Kawai, Yasunori; Natsume, Yoshiyuki; Yasuda, Keigo

    2003-01-01

    Dehydroepiandrosterone (DHEA) is expected to have a weight-reducing effect. In this study, we evaluated the effect of DHEA on genetically obese Otsuka Long Evans Fatty rats (OLETF) compared with Long-Evans Tokushima rats (LETO) as control. Feeding with 0.4% DHEA-containing food for 2 wk reduced the weight of sc, epididymal, and perirenal adipose tissue in association with decreased plasma leptin levels in OLETF. Adipose tissue from OLETF showed increased expression of peroxisome proliferator-activated receptor gamma (PPARgamma) protein, which was prevented by DHEA treatment. Further, we examined the effect of DHEA on PPARgamma in primary cultured adipocytes and monolayer adipocytes differentiated from rat preadipocytes. PPARgamma protein level was decreased in a time- and concentration-dependent manner, and DHEA significantly reduced mRNA levels of PPARgamma, adipocyte lipid-binding protein, and sterol regulatory element-binding protein, but not CCAAT/enhancer binding protein alpha. DHEA-sulfate also reduced the PPARgamma protein, but dexamethasone, testosterone, or androstenedione did not alter its expression. In addition, treatment with DHEA for 5 d reduced the triglyceride content in monolayer adipocytes. These results suggest that DHEA down-regulates adiposity through the reduction of PPARgamma in adipocytes.

  1. Endothelial expression of Fc gamma receptor IIb in the full-term human placenta.

    PubMed

    Mishima, T; Kurasawa, G; Ishikawa, G; Mori, M; Kawahigashi, Y; Ishikawa, T; Luo, S-S; Takizawa, T; Goto, T; Matsubara, S; Takeshita, T; Robinson, J M; Takizawa, T

    2007-01-01

    In the third trimester, human placental endothelial cells express Fc gamma receptor IIb (FcgammaRIIb). This expression is unique because FcgammaRIIb is generally expressed on immune cells and is typically undetectable in adult endothelial cells. Recently, we found a novel FcgammaRIIb-defined, IgG-containing organelle in placental endothelial cells; this organelle may be a key structure for the transcytosis of IgG across the endothelial layer. In this study, we verify the expression of FcgammaRIIb in endothelial placenta cells and use reverse transcriptase-polymerase chain reaction (RT-PCR) and sequencing analyses to define the expressed FCGR2B mRNA transcript variant. We also investigated the distribution of FCGR2B mRNA and protein within the vascular tree of the full-term human placenta by RT-PCR and quantitative microscopy. The mRNA sequence of FCGR2B expressed specifically in placental endothelial cells is that of transcript variant 2. FcgammaRIIb expression and synthesis occur throughout the placental vascular tree but do not extend into the umbilical cord. This study provides additional information on FcgammaRIIb expression in the human placenta.

  2. Estrogen-related receptor gamma and hearing function: evidence of a role in humans and mice

    PubMed Central

    Nolan, Lisa S.; Maier, Hannes; Hermans-Borgmeyer, Irm; Girotto, Giorgia; Ecob, Russell; Pirastu, Nicola; Cadge, Barbara A.; Hübner, Christian; Gasparini, Paolo; Strachan, David P.; Davis, Adrian; Dawson, Sally J.

    2013-01-01

    Since estrogen is thought to protect pre-menopausal women from age-related hearing loss, we investigated whether variation in estrogen-signalling genes is linked to hearing status in the 1958 British Birth Cohort. This analysis implicated the estrogen-related receptor gamma (ESRRG) gene in determining adult hearing function and was investigated further in a total of 6134 individuals in 3 independent cohorts: (i) the 1958 British Birth Cohort; (ii) a London ARHL case-control cohort; and (iii) a cohort from isolated populations of Italy and Silk Road countries. Evidence of an association between the minor allele of single nucleotide polymorphism (SNP) rs2818964 and hearing status was found in females, but not in males in 2 of these cohorts: p = 0.0058 (London ARHL) and p = 0.0065 (Carlantino, Italy). Furthermore, assessment of hearing in Esrrg knock-out mice revealed a mild 25-dB hearing loss at 5 weeks of age. At 12 weeks, average hearing thresholds in female mice(-/-) were 15 dB worse than in males(-/-). Together these data indicate ESRRG plays a role in maintenance of hearing in both humans and mice. PMID:23540940

  3. Thiazolidinediones repress ob gene expression in rodents via activation of peroxisome proliferator-activated receptor gamma.

    PubMed Central

    De Vos, P; Lefebvre, A M; Miller, S G; Guerre-Millo, M; Wong, K; Saladin, R; Hamann, L G; Staels, B; Briggs, M R; Auwerx, J

    1996-01-01

    The ob gene product, leptin, is a signaling factor regulating body weight and energy balance. ob gene expression in rodents is increased in obesity and is regulated by feeding patterns and hormones, such as insulin and glucocorticoids. In humans with gross obesity, ob mRNA levels are higher, but other modulators of human ob expression are unknown. In view of the importance of peroxisome proliferator-activated receptor gamma (PPARgamma) in adipocyte differentiation, we analyzed whether ob gene expression is subject to regulation by factors activating PPARs. Treatment of rats with the PPARalpha activator fenofibrate did not change adipose tissue and body weight and had no significant effect on ob mRNA levels. However, administration of the thiazolidinedione BRL49653, a PPARgamma ligand, increased food intake and adipose tissue weight while reducing ob mRNA levels in rats in a dose-dependent manner. The inhibitory action of the thiazolidinedione BRL49653 on ob mRNA levels was also observed in vitro. Thiazolidinediones reduced the expression of the human ob promoter in primary adipocytes, however, in undifferentiated 3T3-L1 preadipocytes lacking endogenous PPARgamma, cotransfection of PPARgamma was required to observe the decrease. In conclusion, these data suggest that PPARgamma activators reduce ob mRNA levels through an effect of PPARgamma on the ob promoter. PMID:8770873

  4. Sequence and diversity of rabbit T-cell receptor gamma chain genes

    SciTech Connect

    Isono, T.; Kim, C.J.; Seto, A.

    1995-03-01

    The nucleotide sequences of one constant (C), six variable (V), and two joining (J) gene segments coding for the rabbit T-cell receptor gamma chain (Tcrg) were determined by directly sequencing fragments amplified by the cassette-ligation mediated polymerase chain reaction. The Tcrg-C gene segment did not encode a cysteine residue for connection to the Tcr delta chain in the connecting region, and two variant forms of the Tcrg-C gene segment were generated by alternative splicing, like the human Tcrg-C2 gene. Five of six rabbit Tcrg-V gene segments belonged to the same family and displayed similarity to five productive human Tcrg-V1 family genes as well as the mouse Tcrg-V5 gene. The remaining rabbit Tcrg-V gene segment displayed similarity to the human Tcrg-V3 gene. Both rabbit Tcrg-J gene segments displayed similarity to the human Tcrg-J2.1 and 2.3, respectively. These findings suggested that the genomic organization of rabbit Tcrg genes is more similar to that of human than of mouse Tcrg genes. 18 refs., 4 figs., 1 tab.

  5. Functional genomics analysis of big data identifies novel peroxisome proliferator–activated receptor gamma target single nucleotide polymorphisms showing association with cardiometabolic outcomes

    USDA-ARS?s Scientific Manuscript database

    Background Cardiovascular disease and type 2 diabetes mellitus represent overlapping diseases where a large portion of the variation attributable to genetics remains unexplained. An important player in their pathogenesis is peroxisome proliferator–activated receptor gamma (PPARgamma) that is involve...

  6. Gamma-Aminobutyric acid and benzodiazepine receptors in the kindling model of epilepsy: a quantitative radiohistochemical study

    SciTech Connect

    Shin, C.; Pedersen, H.B.; McNamara, J.O.

    1985-10-01

    Quantitative radiohistochemistry was utilized to study alterations of gamma-aminobutyric acid (GABA) and benzodiazepine receptors in the kindling model of epilepsy. The radioligands used for GABA and benzodiazepine receptors were (TH) muscimol and (TH)flunitrazepam, respectively. GABA receptor binding was increased by 22% in fascia dentata of the hippocampal formation but not in neocortex or substantia nigra of kindled rats. Within fascia dentata, GABA receptor binding was increased to an equivalent extent in stratum granulosum and throughout stratum moleculare; no increase was found in dentate hilus or stratum lacunosummoleculare or stratum radiatum of CA1. The increased binding was present at 24 hr but not at 28 days after the last kindled seizure. The direction, anatomic distribution, and time course of the increased GABA receptor binding were paralleled by increased benzodiazepine receptor binding. The anatomic distribution of the increased GABA receptor binding is consistent with a localization to somata and dendritic trees of dentate granule cells. The authors suggest that increased GABA and benzodiazepine receptor binding may contribute to enhanced inhibition of dentate granule cells demonstrated electrophysiologically in kindled animals.

  7. A Mobile Automated Tomographic Gamma Scanning System - 13231

    SciTech Connect

    Kirkpatrick, J.M.; LeBlanc, P.J.; Nakazawa, D.; Petroka, D.L.; Kane Smith, S.; Venkataraman, R.; Villani, M.

    2013-07-01

    Canberra Industries have recently designed and built a new automated Tomographic Gamma Scanning (TGS) system for mobile deployment. The TGS technique combines high-resolution gamma spectroscopy with low spatial resolution 3-dimensional image reconstruction to provide increased accuracy over traditional approaches for the assay of non-uniform source distributions in low-to medium-density, non-heterogeneous matrices. Originally pioneered by R. Estep at Los Alamos National Laboratory (LANL), the TGS method has been further developed and commercialized by Canberra Industries in recent years. The present system advances the state of the art on several fronts: it is designed to be housed in a standard cargo transport container for ease of transport, allowing waste characterization at multiple facilities under the purview of a single operator. Conveyor feed, drum rotator, and detector and collimator positioning mechanisms operated by programmable logic control (PLC) allow automated batch mode operation. The variable geometry settings can accommodate a wide range of waste packaging, including but not limited to standard 220 liter drums, 380 liter overpack drums, and smaller 20 liter cans. A 20 mCi Eu-152 transmission source provides attenuation corrections for drum matrices up to 1 g/cm{sup 3} in TGS mode; the system can be operated in Segmented Gamma Scanning (SGS) mode to measure higher density drums. To support TGS assays at higher densities, the source shield is sufficient to house an alternate Co-60 transmission source of higher activity, up to 250 mCi. An automated shutter and attenuator assembly is provided for operating the system with a dual intensity transmission source. The system's 1500 kg capacity rotator turntable can handle heavy containers such as concrete lined 380 liter overpack drums. Finally, data acquisition utilizes Canberra's Broad Energy Germanium (BEGE) detector and Lynx MCA, with 32 k channels, providing better than 0.1 keV/channel resolution to

  8. Biphasic effects of baclofen on phrenic motoneurons: possible involvement of two types of gamma-aminobutyric acid (GABA) receptors.

    PubMed

    Lalley, P M

    1983-08-01

    Intravenous injections of baclofen have two general dose-dependent effects on phrenic motoneurons in anesthetized cats. Small doses (0.5-1.5 mg/kg) increase the frequency of action potentials recorded from single motoneurons and from the phrenic nerve, whereas large doses (2-10 mg/kg) reduce or abolish action potentials. The increase in frequency produced by small doses is accompanied by membrane depolarization and, in most experiments, by increased input resistance. Large doses hyperpolarize phrenic motoneurons and produce greater increases in input resistance. Extracellular recording during microelectrophoretic application of baclofen reveals only one effect, depression of cell firing, at all effective current strengths. The low dose stimulatory effect of i.v. baclofen is attributed to disinhibition, whereas the depression by large doses is attributed to disfacilitation. During incomplete inhibition by baclofen, CO2 administration further depresses phrenic nerve activity. Bicuculline (100-600 micrograms/kg i.v.) and picrotoxin (900 micrograms/kg i.v.) restore firing depressed by baclofen, whereas strychnine (80-1280 micrograms/kg) does not. 3-Aminopropanesulfonic acid (5-75 mg/kg i.v.) an agonist at gamma-aminobutyric acid-A receptor sites, depresses phrenic nerve activity. It is suggested that the low dose stimulatory effects are related to actions at gamma-aminobutyric acid-B receptors, whereas the high dose depressant effects are related, at least in part, to activation of gamma-aminobutyric acid-A receptors.

  9. Phospholipase C-gamma1 is a guanine nucleotide exchange factor for dynamin-1 and enhances dynamin-1-dependent epidermal growth factor receptor endocytosis.

    PubMed

    Choi, Jang Hyun; Park, Jong Bae; Bae, Sun Sik; Yun, Sanguk; Kim, Hyeon Soo; Hong, Won-Pyo; Kim, Il-Shin; Kim, Jae Ho; Han, Mi Young; Ryu, Sung Ho; Patterson, Randen L; Snyder, Solomon H; Suh, Pann-Ghill

    2004-08-01

    Phospholipase C-gamma1 (PLC-gamma1), which interacts with a variety of signaling molecules through its two Src homology (SH) 2 domains and a single SH3 domain has been implicated in the regulation of many cellular functions. We demonstrate that PLC-gamma1 acts as a guanine nucleotide exchange factor (GEF) of dynamin-1, a 100 kDa GTPase protein, which is involved in clathrin-mediated endocytosis of epidermal growth factor (EGF) receptor. Overexpression of PLC-gamma1 increases endocytosis of the EGF receptor by increasing guanine nucleotide exchange activity of dynamin-1. The GEF activity of PLC-gamma1 is mediated by the direct interaction of its SH3 domain with dynamin-1. EGF-dependent activation of ERK and serum response element (SRE) are both up-regulated in PC12 cells stably overexpressing PLC-gamma1, but knockdown of PLC-gamma1 by siRNA significantly reduces ERK activation. These results establish a new role for PLC-gamma1 in the regulation of endocytosis and suggest that endocytosis of activated EGF receptors may mediate PLC-gamma1-dependent proliferation.

  10. Gamma-quanta and charged particles recognition by the counting and triggers signals formation system of GAMMA-400 space gamma-telescope

    NASA Astrophysics Data System (ADS)

    Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Chasovikov, E. N.; Kheymits, M. D.; Yurkin, Y. T.; Galper, A. M.; Suchkov, S. I.; Topchiev, N. P.; Murchenko, A. E.

    2017-01-01

    Registered events identification procedures details in three apertures of gamma-telescope GAMMA-400 are discussed in the presented article for gammas, electrons/positrons and protons both in low and high energy bands. Gamma-telescope GAMMA-400 consists of the converter-tracker (C) surrounded by anticoincidence system, time-of-flight system (2 sections S1 and S2) and calorimeter. Anticoincidence system will make of top and lateral sections - ACtop and AClat, time-of-flight system TOF contain 2 segments S1 and S2. Calorimeter consists of position-sensitive calorimeter CC1 makes of 2 strips layers and 2 layers of CsI(Tl) detectors and electromagnetic calorimeter CC2 composed of CsI(Tl) crystals surrounded by plastic lateral detectors LD. Scintillation detectors of the calorimeter S3 and S4 placed correspondingly between CC1 and CC2 and after electromagnetic calorimeter. All segments of detector systems ACtop, AClat, S1-S4, LD composed of two BC-408 based sensitive layers thickness of 1 cm each. Events registration both from upper and lateral directions provides due three apertures: main, additional and lateral. GAMMA-400 parameters are optimized for detection of gamma-quanta with the energy ∼ 100 GeV in the main aperture. Gammas, electrons/positrons and protons recognition in main aperture provides due energy deposition analysis in individual detectors of ACtop, AClat, S1-S3 and CC1 individual scintillator detectors discriminators. Particles identification in the additional aperture supplied by study of energy deposition in the individual detectors S2, S3 and position-sensitive calorimeter individual scintillator detectors discriminators. In the lateral aperture low energy (0.2 - 100 MeV) photons classified by using simple anticoincidence signals from the individual detectors of LD and CC2. Higher energies γ-quanta (E>100 MeV) recognized using energy deposition analysis in the individual detectors of S3, S4, LD and CC2.

  11. Structural requirements for eszopiclone and zolpidem binding to the gamma-aminobutyric acid type-A (GABAA) receptor are different.

    PubMed

    Hanson, Susan M; Morlock, Elaine V; Satyshur, Kenneth A; Czajkowski, Cynthia

    2008-11-27

    The sleep-aids zolpidem and eszopiclone exert their effects by binding to and modulating gamma-aminobutyric acid type-A receptors (GABA(A)Rs), but little is known about the structural requirements for their actions. We made 24 cysteine mutations in the benzodiazepine (BZD) binding site of alpha(1)beta(2)gamma(2) GABA(A)Rs and measured zolpidem, eszopiclone, and BZD-site antagonist binding. Mutations in gamma(2)loop D and alpha(1)loops A and B altered the affinity of all ligands tested, indicating that these loops are important for BZD pocket structural integrity. In contrast, gamma(2)loop E and alpha(1)loop C mutations differentially affected ligand affinity, suggesting that these loops are important for ligand selectivity. In agreement with our mutagenesis data, eszopiclone docking yielded a single model stabilized by several hydrogen bonds. Zolpidem docking yielded three equally populated orientations with few polar interactions, suggesting that unlike eszopiclone, zolpidem relies more on shape recognition of the binding pocket than on specific residue interactions and may explain why zolpidem is highly alpha(1)- and gamma(2)-subunit selective.

  12. T-cell receptor gamma/delta expressing acute leukemia emerging from sideroblastic anemia: morphological, immunological, and cytogenetic features.

    PubMed

    Meckenstock, G; Fonatsch, C; Heyll, A; Schneider, E M; Kögler, G; Söhngen, D; Aul, C; Schneider, W

    1992-01-01

    Striking numerical and structural chromosome abnormalities (-Y, +8, i(7q), del (10)(q24), and del (11)(q21)) were detected by cytogenetic analysis in a patient's bone marrow with morphological features of both acute lymphoblastic leukemia and myelodysplastic disorder. Surface marker analysis characterized blast cells to be CD2+ CD7+ CD3+ CD4- CD8- expressing gamma/delta-T-cell receptor antigen and coexpressing CD11b and CD16. Exhibiting an identical phenotype as the leukemic cells, a prominent gamma/delta-TCR+ lymphocyte population was found in the bone marrow as well as in the peripheral blood. Cells of the latter compartment coexpressed CD56 and HLA-DR antigens and exhibited nonspecific cytotoxic activity. In the bone marrow cells NSCA could be induced after stimulation with interleukin 2 in vitro. Morphological, immunological, and cytogenetic findings suggest that gamma/delta-T-ALL emerged from a myelodysplastic disorder after sequential steps of malignant transformation. Leukemic cells with "mixed lineage" character may provide evidence for a common progenitor cell in the bone marrow. Assuming that the leukemic cells represent the malignant counterpart of normal CD3+ gamma/delta-TCR+ cells the results may contribute to our understanding of the origin and differentiation as well as the possible steps of malignant transformation of a gamma/delta-TCR+ lymphocyte population.

  13. Peroxisome proliferator-activated receptor- gamma expression in human malignant and normal brain, breast and prostate-derived cells.

    PubMed

    Nwankwo, J O; Robbins, M E

    2001-01-01

    The constitutive and gamma -linolenic acid (GLA)-induced expression of peroxisome proliferator-activated receptor gamma (PPAR gamma) immunoreactive protein in a panel of human malignant brain (U87MG, T98G); breast (MCF-7, MB MDA-231, MB MDA 435) and prostate (ALVA, DU-145, LNCaP, PC3) cell lines have been compared with those for their normal cell counterparts, the human normal astrocyte (NHA), mammary epithelial (HMEC) and prostate epithelial (PrEC) cells, respectively. Constitutive levels of expression for PPAR gamma protein were significantly higher in the malignant cell lines relative to their normal cells. GLA supplementation did not affect the protein expression in malignant cells but caused 6- and 3-fold increases in normal breast and prostate cells, respectively. Since activation of PPAR gamma protein in some human malignant cell lines has been demonstrated to induce tumour cell death, these findings signal the need to exploit the significantly elevated expression of this protein in the therapy of human cancer. Copyright 2001 Harcourt Publishers Ltd.

  14. Software for Control and Measuring Instrumentation of the GAMMA-400 Gamma-telescope Fast Scintillator Detector System

    NASA Astrophysics Data System (ADS)

    Naumov, P. P.; Naumov, P. Yu.; Runtso, M. F.; Solodovnikov, A. A.

    Currently, the final stage of the ground tests for the technological detector of the high-energy gamma-ray telescope (GRT) GAMMA-400 are finished. The new space GRT will accept the gamma-rays with energy more than 400 MeV and is aimed to open our eyes for so-called "dark matter" problem in the Universe. The high-speed scintillation detectors system (SDS) is used one of the main GRT particle detectors and the good ground test measurements will let the future space mission to get the reliable data. This paper describes the software and hardware of the laboratory control and calibration systems for physical measurements of GRT STDS properties.

  15. The taurine uptake inhibitor guanidinoethyl sulphonate is an agonist at gamma-aminobutyric acid(A) receptors in cultured murine cerebellar granule cells.

    PubMed

    Mellor, J R; Gunthorpe, M J; Randall, A D

    2000-05-26

    In patch clamp experiments the beta-amino acid uptake inhibitor guanidinoethyl sulphonate (GES) activated currents in intact cultured murine cerebellar granule neurones. These responses could be attenuated by the gamma-aminobutyric acid(A) (GABA(A)) receptor antagonists bicuculline and picrotoxin. With intracellular chloride concentrations of either 20 or 130 mM, GES-induced current responses reversed polarity near the chloride equilibrium potential. When fast applications of agonist were made to excised granule cell macropatches GES responses were dose-dependent and exhibited significant outward rectification. Like taurine (but unlike GABA and beta-alanine) responses, macroscopic desensitisation of GES-induced currents was slow. Our data indicate that care should be exercised when using GES as a taurine uptake inhibitor in systems that also contain GABA(A) receptors.

  16. Subunit-specific coupling between gamma-aminobutyric acid type A and P2X2 receptor channels.

    PubMed

    Boué-Grabot, Eric; Toulmé, Estelle; Emerit, Michel B; Garret, Maurice

    2004-12-10

    ATP and gamma-aminobutyric acid (GABA) are two fast neurotransmitters co-released at central synapses, where they co-activate excitatory P2X and inhibitory GABAA (GABA type A) receptors. We report here that co-activation of P2X2 and various GABAA receptors, co-expressed in Xenopus oocytes, leads to a functional cross-inhibition dependent on GABAA subunit composition. Sequential applications of GABA and ATP revealed that alphabeta- or alphabetagamma-containing GABAA receptors inhibited P2X2 channels, whereas P2X2 channels failed to inhibit gamma-containing GABAA receptors. This functional cross-talk is independent of membrane potential, changes in current direction, and calcium. Non-additive responses observed between cation-selective GABAA and P2X2 receptors further indicate the chloride independence of this process. Overexpression of minigenes encoding either the C-terminal fragment of P2X2 or the intracellular loop of the beta3 subunit disrupted the functional cross-inhibition. We previously demonstrated functional and physical cross-talk between rho1 and P2X2 receptors, which induced a retargeting of rho1 channels to surface clusters when co-expressed in hippocampal neurons (Boue-Grabot, E., Emerit, M. B., Toulme, E., Seguela, P., and Garret, M. (2004) J. Biol. Chem. 279, 6967-6975). Co-expression of P2X2 and chimeric rho1 receptors with the C-terminal sequences of alpha2, beta3, or gamma2 subunits indicated that only rho1-beta3 and P2X2 channels exhibit both functional cross-inhibition in Xenopus oocytes and co-clustering/retargeting in hippocampal neurons. Therefore, the C-terminal domain of P2X2 and the intracellular loop of beta GABAA subunits are required for the functional interaction between ATP- and GABA-gated channels. This gamma subunit-dependent cross-talk may contribute to the regulation of synaptic activity.

  17. Gamma ray bursts as a signature for entangled gravitational systems

    NASA Astrophysics Data System (ADS)

    Basini, Giuseppe; Capozziello, Salvatore; Longo, Giuseppe

    2004-01-01

    Gamma ray bursts (GRBs), due to their features, can be considered not only extremely energetic, but also as the most relativistic astrophysical objects discovered. Their phenomenology is still matter of debate and, till now, no fully satisfactory model has been formulated to explain the nature of their origin. In the framework of a recently developed new theory, where general conservation laws are always and absolutely conserved in nature, we propose an alternative model where an ``entangled'' gravitational system, dynamically constituted by a black holes connected to a white hole through a worm hole, seems capable of explaining most of the properties inferred for the GRB engine. In particular, it leads to a natural explanation of energetics, beaming, polarization, and, very likely, distribution. On the other hand, GRBs can be considered a signature of such entangled gravitational systems.

  18. Dopamine acting at D1-like, D2-like and α1-adrenergic receptors differentially modulates theta and gamma oscillatory activity in primary motor cortex.

    PubMed

    Özkan, Mazhar; Johnson, Nicholas W; Sehirli, Umit S; Woodhall, Gavin L; Stanford, Ian M

    2017-01-01

    The loss of dopamine (DA) in Parkinson's is accompanied by the emergence of exaggerated theta and beta frequency neuronal oscillatory activity in the primary motor cortex (M1) and basal ganglia. DA replacement therapy or deep brain stimulation reduces the power of these oscillations and this is coincident with an improvement in motor performance implying a causal relationship. Here we provide in vitro evidence for the differential modulation of theta and gamma activity in M1 by DA acting at receptors exhibiting conventional and non-conventional DA pharmacology. Recording local field potentials in deep layer V of rat M1, co-application of carbachol (CCh, 5 μM) and kainic acid (KA, 150 nM) elicited simultaneous oscillations at a frequency of 6.49 ± 0.18 Hz (theta, n = 84) and 34.97 ± 0.39 Hz (gamma, n = 84). Bath application of DA resulted in a decrease in gamma power with no change in theta power. However, application of either the D1-like receptor agonist SKF38393 or the D2-like agonist quinpirole increased the power of both theta and gamma suggesting that the DA-mediated inhibition of oscillatory power is by action at other sites other than classical DA receptors. Application of amphetamine, which promotes endogenous amine neurotransmitter release, or the adrenergic α1-selective agonist phenylephrine mimicked the action of DA and reduced gamma power, a result unaffected by prior co-application of D1 and D2 receptor antagonists SCH23390 and sulpiride. Finally, application of the α1-adrenergic receptor antagonist prazosin blocked the action of DA on gamma power suggestive of interaction between α1 and DA receptors. These results show that DA mediates complex actions acting at dopamine D1-like and D2-like receptors, α1 adrenergic receptors and possibly DA/α1 heteromultimeric receptors to differentially modulate theta and gamma activity in M1.

  19. State-dependent increase of cortical gamma activity during REM sleep after selective blockade of NR2B subunit containing NMDA receptors.

    PubMed

    Kocsis, Bernat

    2012-07-01

    Sub-anesthetic doses of NMDA receptor antagonists suppress sleep and elicit continuous high-power gamma oscillations lasting for hours. This effect is subunit-specific, as it was also seen after preferential blockade of the NR2A but not of the NR2B subunit-containing receptors. The objective of this study was to test whether NR2B receptor antagonists that do not induce lasting aberrant gamma elevation affect gamma activity during specific behaviors and states, including REM sleep, when gamma normally occurs. Gamma oscillations in cortical EEG were assessed in different vigilance states in rats and were compared before and after injection of nonselective (ketamine, 10 mg/kg, and MK801, 0.2 mg/kg), as well as NR2A-preferring (NVP-AAM077, 20 mg/kg), and NR2B-selective NMDA receptor antagonists (Ro25-6985, 10 mg), and vehicle. In contrast to nonselective and NR2A-preferring antagonists, Ro25-6985 did not disrupt sleep and had no effect on gamma activity during waking and slow wave sleep. It significantly increased, however, gamma power in the frontal (but not in occipital) cortex during REM sleep (by 37% ± 10%, average in the first 4 h). The effect had a short onset; enhanced gamma activity appeared as early as in the first REM sleep episode post-injection and lasted over 8 hours. Increased gamma power induced by MK-801 (46% ± 5%) and NVP-AAM077 (100% ± 8%) during REM sleep could also be detected several hours after injection when periodic alternation of sleep-wake states returned. By acting on gamma oscillations in a state-dependent manner, NMDA receptors might have subunit-specific role in REM sleep-associated cognitive processes.

  20. Nifedipine inhibits advanced glycation end products (AGEs) and their receptor (RAGE) interaction-mediated proximal tubular cell injury via peroxisome proliferator-activated receptor-gamma activation

    SciTech Connect

    Matsui, Takanori; Yamagishi, Sho-ichi; Takeuchi, Masayoshi; Ueda, Seiji; Fukami, Kei; Okuda, Seiya

    2010-07-23

    Research highlights: {yields} Nifedipine inhibited the AGE-induced up-regulation of RAGE mRNA levels in tubular cells, which was prevented by GW9662, an inhibitor of peroxisome proliferator-activated receptor-{gamma}. {yields} GW9662 treatment alone increased RAGE mRNA levels in tubular cells. {yields} Nifedipine inhibited the AGE-induced reactive oxygen species generation, NF-{kappa}B activation and increases in intercellular adhesion molecule-1 and transforming growth factor-{beta} gene expression in tubular cells, all of which were blocked by GW9662. -- Abstract: There is a growing body of evidence that advanced glycation end products (AGEs) and their receptor (RAGE) interaction evokes oxidative stress generation and subsequently elicits inflammatory and fibrogenic reactions, thereby contributing to the development and progression of diabetic nephropathy. We have previously found that nifedipine, a calcium-channel blocker (CCB), inhibits the AGE-induced mesangial cell damage in vitro. However, effects of nifedipine on proximal tubular cell injury remain unknown. We examined here whether and how nifedipine blocked the AGE-induced tubular cell damage. Nifedipine, but not amlodipine, a control CCB, inhibited the AGE-induced up-regulation of RAGE mRNA levels in tubular cells, which was prevented by the simultaneous treatment of GW9662, an inhibitor of peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}). GW9662 treatment alone was found to increase RAGE mRNA levels in tubular cells. Further, nifedipine inhibited the AGE-induced reactive oxygen species generation, NF-{kappa}B activation and increases in intercellular adhesion molecule-1 and transforming growth factor-beta gene expression in tubular cells, all of which were blocked by GW9662. Our present study provides a unique beneficial aspect of nifedipine on diabetic nephropathy; it could work as an anti-oxidative and anti-inflammatory agent against AGEs in tubular cells by suppressing RAGE expression

  1. Analysis of gamma-aminobutyric acidB receptor function in the in vitro and in vivo regulation of alpha-melanotropin-stimulating hormone secretion from melanotrope cells of Xenopus laevis.

    PubMed

    De Koning, H P; Jenks, B G; Roubos, E W

    1993-02-01

    The activity of many endocrine cells is regulated by gamma-aminobutyric acid (GABA). The effects of GABA are mediated by GABAA and/or GABAB receptors. While GABAB receptors in the central nervous system have now been extensively characterized, little is known of the function and pharmacology of GABAB receptors on endocrine cells. In the amphibian Xenopus laevis, GABA inhibits the release of alpha MSH from the endocrine melanotrope cells through both GABAA and GABAB receptors. We have investigated the following aspects of the GABAB receptor of the melanotrope cells of X. laevis: 1) the pharmacology of this receptor, using antagonists previously established to demonstrate GABAB receptors in the mammalian central nervous system; 2) the relative contribution to the regulation of hormone secretion by the GABAA and GABAB receptors on melanotrope cells in vitro; and 3) the role of the GABAB receptor with respect to the physiological function of the melanotrope cell in vivo, i.e. regulation of pigment dispersion in skin melanophores in relation to background color. Our results demonstrate that phaclofen, 2-hydroxysaclofen, and 4-aminobutylphosphonic acid dose-dependently blocked the inhibition of alpha MSH release by GABAB receptor activation, but not by GABAA receptor activation. The GABAB receptor antagonist delta-aminovaleric acid appeared to be a selective agonist on the GABAB receptor of melanotrope cells. The inhibitory secretory response to a low dose of GABA (10(-5) M) was not affected by bicuculline, but was significantly reduced by phaclofen, indicating that at a low GABA concentration, the GABAB receptor mechanism would dominate in inhibiting the melanotrope cells. Different thresholds of activation may form the basis for differential action of GABA through both GABA receptor types. The tonic inhibition of alpha MSH release in animals adapted to a white background was not affected by 4-aminobutylphosphonic acid, indicating that the GABAB receptor is not (solely

  2. Common polymorphisms of the peroxisome proliferator-activated receptor-gamma (Pro12Ala) and peroxisome proliferator-activated receptor-gamma coactivator-1 (Gly482Ser) and the response to pioglitazone in Chinese patients with type 2 diabetes mellitus.

    PubMed

    Hsieh, Ming-Chia; Lin, Kun-Der; Tien, Kai-Jen; Tu, Shih-Te; Hsiao, Jeng-Yueh; Chang, Shun-Jen; Lin, Shiu-Ru; Shing, Shih-Jang; Chen, Hung-Chun

    2010-08-01

    We investigated the effects of the common polymorphisms in the peroxisome proliferator-activated receptor-gamma (PPAR-gamma; Pro12Ala) and in PPAR-gamma coactivator-1(PGC-1; Gly482Ser) genes on the response to pioglitazone in Chinese with type 2 diabetes mellitus. A total of 250 patients with type 2 diabetes mellitus were treated with pioglitazone (30 mg/d) for 24 weeks without a change in previous medications. All patients were genotyped for the PPAR-gamma Pro12Ala and PGC-1 Gly482Ser polymorphisms. The Ala12Ala and Pro12Ala genotypes (26.0% vs 13.5%, P = .025) and Ala allele (15.6% vs 7.3%, P = .008) were significantly more frequent in pioglitazone responders than in nonresponders. The distribution of PGC-1 genotypes and alleles was not significantly different between responders and nonresponders. The decrease in fasting glucose (50.4 +/- 52.2 vs 43.3 +/- 51.7 mg/dL, P < .001) and hemoglobin A(1c) (0.57% +/- 1.44% vs 0.35% +/- 1.10%, P = .004) levels was significantly greater in subjects with the Ala12 carriers (Pro12Ala and Ala12Ala) than in those without the allele (Pro12Pro). Baseline fasting glucose and triglyceride levels were related to the response of pioglitazone. Only the PPAR-gamma Pro12Ala polymorphism was found to be associated with the response of pioglitazone by multiple logistic regression analysis. The PPAR-gamma Pro12Ala gene polymorphism is associated with the response to pioglitazone in Chinese patients with type 2 diabetes mellitus. These findings may be helpful for targeted treatment of diabetes by identifying patients who are likely to respond to pioglitazone. Copyright 2010 Elsevier Inc. All rights reserved.

  3. Functional co-localization of monocytic aminopeptidase N/CD13 with the Fc{gamma} receptors CD32 and CD64

    SciTech Connect

    Riemann, Dagmar; Wulfaenger, Jens

    2005-06-17

    Information about the function of aminopeptidase N/CD13 on monocytes is limited. In order to gain more insight into its interaction with other proteins, we have identified molecules that co-localize with the membrane ectoenzyme at the cell surface of monocytes. Using laser scanning and electron microscopy as well as fluorescence resonance energy transfer (FRET) measured by flow cytometry we show that monocytic CD13 co-localized with the Fc{gamma} receptor II/CD32 after Fc receptor ligation by a CD32-specific antibody. FRET was also observed between CD13 and the Fc{gamma} receptor I/CD64, but not with the myeloid marker CD33 representing a member of the sialoadhesin family. Our results imply a novel functional role of CD13 and Fc{gamma} receptors as members of a multimeric receptor complex. Further studies have to be done to elucidate common signaling pathways of these molecules.

  4. Functional co-localization of monocytic aminopeptidase N/CD13 with the Fc gamma receptors CD32 and CD64.

    PubMed

    Riemann, Dagmar; Tcherkes, Anatolij; Hansen, Gert H; Wulfaenger, Jens; Blosz, Tanja; Danielsen, E Michael

    2005-06-17

    Information about the function of aminopeptidase N/CD13 on monocytes is limited. In order to gain more insight into its interaction with other proteins, we have identified molecules that co-localize with the membrane ectoenzyme at the cell surface of monocytes. Using laser scanning and electron microscopy as well as fluorescence resonance energy transfer (FRET) measured by flow cytometry we show that monocytic CD13 co-localized with the Fc gamma receptor II/CD32 after Fc receptor ligation by a CD32-specific antibody. FRET was also observed between CD13 and the Fc gamma receptor I/CD64, but not with the myeloid marker CD33 representing a member of the sialoadhesin family. Our results imply a novel functional role of CD13 and Fc gamma receptors as members of a multimeric receptor complex. Further studies have to be done to elucidate common signaling pathways of these molecules.

  5. Protection from Streptococcus pneumoniae infection by C-reactive protein and natural antibody requires complement but not Fc gamma receptors.

    PubMed

    Mold, Carolyn; Rodic-Polic, Bojana; Du Clos, Terry W

    2002-06-15

    Streptococcus pneumoniae is an important human pathogen and the most common cause of community-acquired pneumonia. Both adaptive and innate immune mechanisms provide protection from infection. Innate immunity to S. pneumoniae in mice is mediated by naturally occurring anti-phosphocholine (PC) Abs and complement. The human acute-phase reactant C-reactive protein (CRP) also protects mice from lethal S. pneumoniae infection. CRP and anti-PC Ab share the ability to bind to PC on the cell wall C-polysaccharide of S. pneumoniae and to activate complement. CRP and IgG anti-PC also bind to Fc gamma R. In this study, Fc gamma R- and complement-deficient mice were used to compare the mechanisms of protection conferred by CRP and anti-PC Ab. Injection of CRP protected wild-type, FcR gamma-chain-, Fc gamma RIIb-, and Fc gamma RIII-deficient mice from infection. Complement was required for the protective effect of CRP as cobra venom factor treatment eliminated the effect of CRP in both gamma-chain-deficient and wild-type mice, and CRP failed to protect C3- or C4-deficient mice from infection. Unexpectedly, gamma-chain-deficient mice were extremely sensitive to pneumococcal infection. This sensitivity was associated with low levels of natural anti-PC Ab. Gamma-chain-deficient mice immunized with nonencapsulated S. pneumoniae produced both IgM- and IgG PC-specific Abs, were protected from infection, and were able to clear the bacteria from the bloodstream. The protection provided by immunization was eliminated by complement depletion. The results show that in this model of systemic infection with highly virulent S. pneumoniae, protection from lethality by CRP and anti-PC Abs requires complement, but not Fc gamma R.

  6. The vitronectin receptor serves as an accessory molecule for the activation of a subset of gamma/delta T cells

    PubMed Central

    1991-01-01

    Constitutive production of cytokines was observed in 3 of 12 gamma/delta T cell lines derived from murine epidermis and correlated with the expression of the C gamma 4, V delta 6 T cell receptor (TCR). After adaptation of one of the lines (T195/BW) to serum-free culture conditions, cessation of the "spontaneous" production of interleukin 4 (IL-4) was observed and IL-4 production could then by induced by the addition of RGD-containing extracellular matrix (ECM) proteins to the culture. The response to the ECM proteins could be completely inhibited by a mAb to the murine vitronectin receptor (VNR). However, the induction of IL-4 production could also be inhibited by anti-CD3 and by an anti-clonotypic mAb to the TCR-gamma/delta of T195/BW. As TCR- gamma/delta loss mutants of T195/BW also failed to respond to ECM proteins, these data demonstrate that engagement of the VNR by its ligand is necessary, but not sufficient, for the induction of IL-4 production. Furthermore, the VNR is expressed by many other T cell clones (both gamma/delta and alpha/beta), none of which produce lymphokines constitutively. Taken together, these observations strongly favor the view that not only is coexpression of the VNR and TCR required for the induction of IL-4 production, but that the TCR must also be engaged by its ligand, most likely a cell surface antigen expressed by the hybridoma itself. PMID:1702138

  7. Quantitative autoradiographic characterization of GA-BA sub B receptors in mammalian central nervous system

    SciTech Connect

    Chu, D.Chin-Mei.

    1989-01-01

    The inhibitory effects of the amino acid neurotransmitter {gamma}-aminobutyric acid (GABA) within the nervous system appear to be mediated through two distinct classes of receptors: GABA{sub A} and GABA{sub B} receptors. A quantitative autoradiographic method with {sup 3}H-GABA was developed to examine the hypotheses that GABA{sub A} and GABA{sub B} sites have distinct anatomical distributions, pharmacologic properties, and synaptic localizations within the rodent nervous system. The method was also applied to a comparative study of these receptors in postmortem human brain from individuals afflicted with Alzheimer's disease and those without neurologic disease. The results indicated that GABA{sub B} receptors occur in fewer numbers and have a lower affinity for GABA than GABA{sub A} receptors in both rodent and human brain. Within rodent brain, the distribution of these two receptor populations were clearly distinct. GABA{sub B} receptors were enriched in the medial habenula, interpeduncular nucleus, cerebellar molecular layer and olfactory glomerular layer. After selective lesions of postsynaptic neurons of the corticostriatal and perforant pathway, both GABA{sub B} and GABA{sub A} receptors were significantly decreased in number. Lesions of the presynaptic limbs of the perforant but not the corticostriatal pathway resulted in upregulation of both GABA receptors in the area of innervation. GABA{sub B} receptors were also upregulated in CA3 dendritic regions after destruction of dentate granule neurons.

  8. A novel gene of beta chain of the IFN-gamma receptor of Huiyang chicken: cloning, distribution, and CD assay.

    PubMed

    Han, Chun-Lai; Zhang, Wei; Dong, Hai-Tao; Han, Xue; Wang, Ming

    2006-07-01

    The beta chain of the interferon-gamma receptor (IFNGR-2) plays a critical role in signal transmission to the nucleus by IFN-gamma. Here, we cloned the full-length cDNA of IFNGR-2 of Huiyang chicken using RACE. mRNA transcripts of IFNGR-2 were detected in peripheral blood leukocytes (PBL) and various organs using Northern blot analysis. The extracellular region of IFNGR-2 (IFNGR-2EC) was expressed in Pichia pastoris, and its secondary structure was investigated by circular dichroism (CD). The Huiyang chicken IFNGR-2 gene is 2221 bp with a polyA+ tail, and it encodes 334 amino acids sharing 30%-33% identity with that of rat, mouse, and human IFNGR-2. IFNGR-2 is localized on chromosome 1 of chicken in tandem with IFNAR-1, interleukin- 10 receptor (IL-10R-2), and IFNAR-2. IFNGR-2 was highly expressed in PBL, muscle, spleen, thymus, and cecal tonsil, whereas its expression in cardiac muscle, cloacal bursa, liver, and kidney was comparatively low. Recombinant protein of IFNGR-2EC expressed in P. pastoris formed the secondary structure including 19.8% alpha-helix, 29.6% beta-sheet, 19.7% turn, and 30.9% random. The data show that Huiyang chicken IFNGR-2 shares properties of the IFN receptor family in gene structure and distribution in multiple tissues and PBL. CD analysis indicated that the recombinant protein of IFNGR-2EC resembles the known structure of human IFN receptors.

  9. Method and System for Gamma-Ray Localization Induced Spacecraft Navigation Using Celestial Gamma-Ray Sources

    NASA Technical Reports Server (NTRS)

    Sheikh, Suneel I. (Inventor); Hisamoto, Chuck (Inventor); Arzoumanian, Zaven (Inventor)

    2015-01-01

    A method and system for spacecraft navigation using distant celestial gamma-ray bursts which offer detectable, bright, high-energy events that provide well-defined characteristics conducive to accurate time-alignment among spatially separated spacecraft. Utilizing assemblages of photons from distant gamma-ray bursts, relative range between two spacecraft can be accurately computed along the direction to each burst's source based upon the difference in arrival time of the burst emission at each spacecraft's location. Correlation methods used to time-align the high-energy burst profiles are provided. The spacecraft navigation may be carried out autonomously or in a central control mode of operation.

  10. Estrogen receptor expert system overview and examples

    EPA Science Inventory

    The estrogen receptor expert system (ERES) is a rule-based system developed to prioritize chemicals based upon their potential for binding to the ER. The ERES was initially developed to predict ER affinity of chemicals from two specific EPA chemical inventories, antimicrobial pe...

  11. Estrogen receptor expert system overview and examples

    EPA Science Inventory

    The estrogen receptor expert system (ERES) is a rule-based system developed to prioritize chemicals based upon their potential for binding to the ER. The ERES was initially developed to predict ER affinity of chemicals from two specific EPA chemical inventories, antimicrobial pe...

  12. Fc-gamma receptor polymorphisms as predictive and prognostic factors in patients receiving oncolytic adenovirus treatment

    PubMed Central

    2013-01-01

    Background Oncolytic viruses have shown potential as cancer therapeutics, but not all patients seem to benefit from therapy. Polymorphisms in Fc gamma receptors (FcgRs) lead to altered binding affinity of IgG between the receptor allotypes and therefore contribute to differences in immune defense mechanisms. Associations have been identified between FcgR polymorphisms and responsiveness to different immunotherapies. Taken together with the increasing understanding that immunological factors might determine the efficacy of oncolytic virotherapy we studied whether FcgR polymorphisms would have prognostic and/or predictive significance in the context of oncolytic adenovirus treatments. Methods 235 patients with advanced solid tumors were genotyped for two FcgR polymorphisms, FcgRIIa-H131R (rs1801274) and FcgRIIIa-V158F (rs396991), using TaqMan based qPCR. The genotypes were correlated with patient survival and tumor imaging data. Results In patients treated with oncolytic adenoviruses, overall survival was significantly shorter if the patient had an FcgRIIIa-VV/ FcgRIIa-HR (VVHR) genotype combination (P = 0,032). In contrast, patients with FFHR and FFRR genotypes had significantly longer overall survival (P = 0,004 and P = 0,006, respectively) if they were treated with GM-CSF-armed adenovirus in comparison to other viruses. Treatment of these patients with unarmed virus correlated with shorter survival (P < 0,0005 and P = 0,016, respectively). Treating FFHH individuals with CD40L-armed virus resulted in longer survival than treatment with other viruses (P = 0,047). Conclusions Our data are compatible with the hypothesis that individual differences in effector cell functions, such as NK cell-mediated antibody-dependent cellular cytotoxicity (ADCC) and tumor antigen presentation by APCs caused by polymorphisms in FcgRs could play role in the effectiveness of oncolytic virotherapies. If confirmed in larger populations, FcgR polymorphisms could

  13. Cloning of two melanocortin (MC) receptors in spiny dogfish: MC3 receptor in cartilaginous fish shows high affinity to ACTH-derived peptides while it has lower preference to gamma-MSH.

    PubMed

    Klovins, Janis; Haitina, Tatjana; Ringholm, Aneta; Löwgren, Maja; Fridmanis, Davids; Slaidina, Maija; Stier, Susanne; Schiöth, Helgi B

    2004-11-01

    We report the cloning and characterization of two melanocortin receptors (MCRs) from the spiny dogfish (Squalus acanthias) (Sac). Phylogenetic analysis shows that these shark receptors are orthologues of the MC3R and MC5R subtypes, sharing 65% and 70% overall amino acid identity with the human counterparts, respectively. The SacMC3R was expressed and pharmacologically characterized in HEK293 cells. The radioligand binding results show that this receptor has high affinity for adrenocorticotropic hormone (ACTH)-derived peptides while it has comparable affinity for alpha- and beta-melanocyte stimulating hormone (MSH), and slightly lower affinity for gamma-MSH when compared with the human orthologue. ACTH(1-24) has high potency in a second-messenger cAMP assay while alpha- and gamma-MSH had slightly lower potency in cells expressing the SacMC3R. We used receptor-enhanced green fluorescence protein (EGFP) fusion to show the presence of SacMC3R in plasma membrane of Chinese hamster ovary and HEK293 cells but the SacMC5R was retained in intracellular compartments of these cells hindering pharmacological characterization. The anatomical distribution of the receptors were determined using reverse transcription PCR. The results showed that the SacMC3R is expressed in the hypothalamus, brain stem and telencephalon, optic tectum and olfactory bulbs, but not in the cerebellum of the spiny dogfish while the SacMC5R was found only in the same central regions. This report describes the first molecular characterization of a MC3R in fish. The study indicates that many of the important elements of the MC system existed before radiation of gnathostomes, early in vertebrate evolution, at least 450 million years ago.

  14. Peroxisome proliferator-activated receptor gamma polymorphism is related to peak bone mass: the JPOS study.

    PubMed

    Tamaki, J; Iki, M; Morita, A; Ikeda, Y; Sato, Y; Kajita, E; Kagamimori, S; Kagawa, Y; Yoneshima, H

    2010-02-01

    We analyzed 1,217 women to examine the effect of peroxisome proliferator-activated receptors gamma (PPARgamma) C161 --> T on bone status. Among 664 premenopausal women, the C161 --> T is associated with low bone mineral density (BMD) at the total hip and femoral neck. Moreover, the odds ratio for osteopenia or osteoporosis at the femoral neck was 1.98 for premenopausal CT/TT genotypes. The impact of PPARgamma on BMD has not been conclusively established. We examined if PPARgamma C161T polymorphism is associated with BMD and its change. We conducted a baseline survey in 1996 and a 10-year follow-up survey, Japanese Population-based Osteoporosis Study, with a sample population representative of Japanese women. Of these, 1,217 participants in the 1996 survey were analyzed cross-sectionally, while longitudinal analysis was performed on 563 women. A P value < 0.0042 (=0.05/12 for three menstrual statuses and four skeletal sites) was considered statistically significant after Bonferroni correction in multiple testing for cross-sectional analysis. The total hip and femoral neck BMDs were significantly higher for CC genotype than for CT/TT genotypes among 664 premenopausal women (P = 0.0020, P = 0.0022, respectively). Compared to the CC genotype, the odds ratio for osteopenia or osteoporosis (T-scores below -1) at the femoral neck was 1.98 for premenopausal CT/TT genotypes with statistical significance (P = 0.0041). Change of BMD at either skeletal site during the follow-up period was not significantly different for either menstrual status. We conclude that the PPARgamma C161T is associated with low peak bone mass.

  15. Activation of A-type gamma-aminobutyric acid receptors excites gonadotropin-releasing hormone neurons.

    PubMed

    DeFazio, R Anthony; Heger, Sabine; Ojeda, Sergio R; Moenter, Suzanne M

    2002-12-01

    Gamma-aminobutyric acid (GABA), acting through GABA(A) receptors (GABA(A)R), is hypothesized to suppress reproduction by inhibiting GnRH secretion, but GABA actions directly on GnRH neurons are not well established. In green fluorescent protein-identified adult mouse GnRH neurons in brain slices, gramicidin-perforated-patch-clamp experiments revealed the reversal potential (E(GABA)) for current through GABA(A)Rs was depolarized relative to the resting potential. Furthermore, rapid GABA application elicited action potentials in GnRH neurons but not controls. The consequence of GABA(A)R activation depends on intracellular chloride levels, which are maintained by homeostatic mechanisms. Membrane proteins that typically extrude chloride (KCC-2 cotransporter, CLC-2 channel) were absent from the GT1-7 immortalized GnRH cell line and GnRH neurons in situ or were not localized to the proper cell compartment for function. In contrast, GT1-7 cells and some GnRH neurons expressed the chloride-accumulating cotransporter, NKCC-1. Patch-clamp experiments showed that blockade of NKCC hyperpolarized E(GABA) by lowering intracellular chloride. Regardless of reproductive state, rapid GABA application excited GnRH neurons. In contrast, bath application of the GABA(A)R agonist muscimol transiently increased then suppressed firing; suppression persisted 4-15 min. Rapid activation of GABA(A)R thus excites GnRH neurons whereas prolonged activation reduces excitability, suggesting the physiological consequence of synaptic activation of GABA(A)R in GnRH neurons is excitation.

  16. Neural protein gamma-synuclein interacting with androgen receptor promotes human prostate cancer progression

    PubMed Central

    2012-01-01

    Background Gamma-synuclein (SNCG) has previously been demonstrated to be significantly correlated with metastatic malignancies; however, in-depth investigation of SNCG in prostate cancer is still lacking. In the present study, we evaluated the role of SNCG in prostate cancer progression and explored the underlying mechanisms. Methods First, alteration of SNCG expression in LNCaP cell line to test the ability of SNCG on cellular properties in vitro and vivo whenever exposing with androgen or not. Subsequently, the Dual-luciferase reporter assays were performed to evaluate whether the role of SNCG in LNCaP is through AR signaling. Last, the association between SNCG and prostate cancer progression was assessed immunohistochemically using a series of human prostate tissues. Results Silencing SNCG by siRNA in LNCaP cells contributes to the inhibition of cellular proliferation, the induction of cell-cycle arrest at the G1 phase, the suppression of cellular migration and invasion in vitro, as well as the decrease of tumor growth in vivo with the notable exception of castrated mice. Subsequently, mechanistic studies indicated that SNCG is a novel androgen receptor (AR) coactivator. It interacts with AR and promotes prostate cancer cellular growth and proliferation by activating AR transcription in an androgen-dependent manner. Finally, immunohistochemical analysis revealed that SNCG was almost undetectable in benign or androgen-independent tissues prostate lesions. The high expression of SNCG is correlated with peripheral and lymph node invasion. Conclusions Our data suggest that SNCG may serve as a biomarker for predicting human prostate cancer progression and metastasis. It also may become as a novel target for biomedical therapy in advanced prostate cancer. PMID:23231703

  17. Peroxisome proliferator-activated receptor-gamma in cystic fibrosis lung epithelium.

    PubMed

    Perez, Aura; van Heeckeren, Anna M; Nichols, David; Gupta, Sanhita; Eastman, Jean F; Davis, Pamela B

    2008-08-01

    The pathophysiology of cystic fibrosis (CF) inflammatory lung disease is not well understood. CF airway epithelial cells respond to inflammatory stimuli with increased production of proinflammatory cytokines as a result of increased NF-kappaB activation. Peroxisome proliferator-activated receptor-gamma (PPARgamma) inhibits NF-kappaB activity and is reported to be reduced in CF. If PPARgamma participates in regulatory dysfunction in the CF lung, perhaps PPARgamma ligands might be useful therapeutically. Cell models of CF airway epithelium were used to evaluate PPARgamma expression and binding to NF-kappaB at basal and under conditions of inflammatory stimulation by Pseudomonas aeruginosa or TNFalpha/IL-1beta. An animal model of CF was used to evaluate the potential of PPARgamma agonists as therapeutic agents in vivo. In vitro, PPARgamma agonists reduced IL-8 and MMP-9 release from airway epithelial cells in response to PAO1 or TNFalpha/IL-1beta stimulation. Less NF-kappaB bound to PPARgamma in CF than normal cells, in two different assays; PPARgamma agonists abrogated this reduction. PPARgamma bound less to its target DNA sequence in CF cells. To test the importance of the reported PPARgamma inactivation by phosphorylation, we observed that inhibitors of ERK, but not JNK, were synergistic with PPARgamma agonists in reducing IL-8 secretion. In vivo, administration of PPARgamma agonists reduced airway inflammation in response to acute infection with P. aeruginosa in CF, but not wild-type, mice. In summary, PPARgamma inhibits the inflammatory response in CF, at least in part by interaction with NF-kappaB in airway epithelial cells. PPARgamma agonists may be therapeutic in CF.

  18. Crosstalk between circulating peroxisome proliferator-activated receptor gamma, adipokines and metabolic syndrome in obese subjects

    PubMed Central

    2013-01-01

    Background Peroxisome proliferator-activated receptor gamma (PPARγ) has direct and indirect function in adipokines production process. We aimed to assess the possible influence of circulating PPARγ on relative risk of metabolic syndrome and also examine the association between circulating PPARγ and adipokines levels among obese subjects. Methods A total of 96 obese subjects (body mass index (BMI) ≥30) were included in the current cross-sectional study. We assessed the body composition with the use of Body Composition Analyzer BC-418MA - Tanita. The MetS (metabolic syndrome) was defined based on the National Cholesterol Education Program Adult Treatment Panel III. All baseline blood samples were obtained following an overnight fasting. Serum concentrations of adipokines including Retinol binding protein 4 (RBP4), omentin-1, vaspin, progranulin, nesfatin-1 and circulating PPARγ was measured with the use of an enzyme-linked immunosorbent assay method. Statistical analyses were performed using software package used for statistical analysis (SPSS). Results We found main association between circulating PPARγ and body composition in obese population. The risk of metabolic syndrome in subjects with higher concentration of PPARγ was 1.9 fold in compared with lower concentration of PPARγ after adjustment for age, sex and BMI. There was significant association between PPARγ and adipokines, specially nesfatin-1 and progranulin. Defined adipokines pattern among participants demonstrated the markedly higher concentration of vaspin, RBP4 and nesfatin-1 in participants with MetS compared to non-MetS subjects. Conclusions It appears all of studied adipokines might have association with PPARγ level and might simultaneously be involve in some common pathway to make susceptible obese subjects for MetS. PMID:24330836

  19. Associations between Fc gamma receptor IIA polymorphisms and the risk and prognosis of meningococcal disease.

    PubMed

    Domingo, Pere; Muñiz-Diaz, Eduardo; Baraldès, Maria A; Arilla, Marina; Barquet, Nicolau; Pericas, Roser; Juárez, Cándido; Madoz, Pedro; Vázquez, Guillermo

    2002-01-01

    In vitro studies have shown that the neutrophil Fc gamma receptor IIA (FcgammaRIIA) polymorphism influences the phagocytic capacity of neutrophils and the removal of encapsulated bacteria from the bloodstream. In particular, the R/R131 allotype is associated with less phagocytic activity. We performed a case-control study to determine the influence of the FcgammaRIIA polymorphism (R/R131, R/H131, H/H131) on the risk and outcome of meningococcal disease. The polymorphisms were measured in 130 patients with microbiologically proven meningococcal disease diagnosed from 1987 to 1998 (cases) and 260 asymptomatic sex-matched blood donors (controls). Clinical manifestations and complications of meningococcal disease were recorded, and a prognostic score (based on age, hemorrhagic diathesis, neurologic signs, and the absence of preadmission antibiotic) therapy was calculated. The distributions of FcgammaRIIA allotypes were similar in cases and controls. However, among patients with meningococcal infection, fulminant meningococcal disease (odds ratio [OR] = 3.9; 95% confidence interval [CI]: 1.0 to 16; P = 0.04) and meningococcemia without meningitis (OR = 3.0; 95% CI: 1.4 to 7.8; P = 0.004) were more common in those with the FcgammaRIIA-R/R131 allotype. Complications were also significantly more frequent in these patients. Of the 42 patients with the R/R131 allotype, 31 (74%) had an adverse prognostic score, compared with 7% (4 of 59) of those with the R/H131 allotype and 3% (1 of 29) of those with the H/H131 allotype (P <0.0001). The FcgammaRIIA-R/R131 allotype is associated with more severe forms of meningococcal disease.

  20. Fc gamma receptor IIb participates in maternal IgG trafficking of human placental endothelial cells

    PubMed Central

    ISHIKAWA, TOMOKO; TAKIZAWA, TAKAMI; IWAKI, JUN; MISHIMA, TAKUYA; UI-TEI, KUMIKO; TAKESHITA, TOSHIYUKI; MATSUBARA, SHIGEKI; TAKIZAWA, TOSHIHIRO

    2015-01-01

    The human placental transfer of maternal IgG is crucial for fetal and newborn immunity. Low-affinity immunoglobulin gamma Fc region receptor IIb2 (FCGR2B2 or FcγRIIb2) is exclusively expressed in an IgG-containing, vesicle-like organelle (the FCGR2B2 compartment) in human placental endothelial cells; thus, we hypothesized that the FCGR2B2 compartment functions as an IgG transporter. In this study, to examine this hypothesis, we performed in vitro bio-imaging analysis of IgG trafficking by FCGR2B2 compartments using human umbilical vein endothelial cells transfected with a plasmid vector containing enhanced GFP-tagged FCGR2B2 (pFCGR2B2-EGFP). FCGR2B2-EGFP signals were detected as intracellular vesicular structures similar to FCGR2B2 compartments in vivo. The internalization and transcytosis of IgG was significantly higher in the pFCGR2B2-EGFP-transfected cells than in the mock-transfected cells, and the majority of the internalized IgG was co-localized with the FCGR2B2-EGFP signals. Furthermore, we isolated FCGR2B2 compartments from the human placenta and found that the Rab family of proteins [RAS-related protein Rab family (RABs)] were associated with FCGR2B2 compartments. Among the RABs, RAB3D was expressed predominantly in placental endothelial cells. The downregulation of RAB3D by small interfering RNA (siRNA) resulted in a marked reduction in the FCGR2B2-EGFP signals at the cell periphery. Taken together, these findings suggest that FCGR2B2 compartments participate in the transcytosis of maternal IgG across the human placental endothelium and that RAB3D plays a role in regulating the intracellular dynamics of FCGR2B2 compartments. PMID:25778799

  1. T Cell Mineralocorticoid Receptor Controls Blood Pressure by Regulating Interferon Gamma.

    PubMed

    Sun, Xue Nan; Li, Chao; Liu, Yuan; Du, Lin-Juan; Zeng, Meng-Ru; Zheng, Xiao Jun; Zhang, Wu Chang; Liu, Yan; Zhu, Mingjiang; Kong, Deping; Zhou, Li; Lu, Limin; Shen, Zhu-Xia; Yi, Yi; Du, Lili; Qin, Mu; Liu, Xu; Hua, Zichun; Sun, Shuyang; Yin, Huiyong; Zhou, Bin; Yu, Ying; Zhang, Zhiyuan; Duan, Sheng-Zhong

    2017-03-15

    Rationale: Hypertension remains to be a global public health burden and demands novel intervention strategies such as targeting T cells and T cell-derived cytokines. Mineralocorticoid receptor (MR) antagonists have been clinically used to treat hypertension. However, the function of T cell MR in blood pressure (BP) regulation has not been elucidated. Objective: We aim to determine the role of T cell MR in BP regulation and to explore the mechanism. Methods and Results: Using T cell MR knockout (TMRKO) mouse in combination with angiotensin II (AngII)-induced hypertensive mouse model, we demonstrated that MR deficiency in T cells strikingly decreased both systolic and diastolic BP, and attenuated renal and vascular damage. Flow cytometric analysis showed that TMRKO mitigated AngII-induced accumulation of interferon-gamma (IFNγ)-producing T cells, particularly CD8(+) population, in both kidneys and aortas. Similarly, eplerenone attenuated AngII-induced elevation of BP and accumulation of IFNγ-producing T cells in wild type mice. In cultured CD8(+) T cells, TMRKO suppressed IFNγ expression whereas T cell MR overexpression and aldosterone both enhanced IFNγ expression. At the molecular level, MR interacted with nuclear factor of activated T-cells 1 (NFAT1) and activator protein-1 (AP-1) in T cells. Finally, T cell MR overexpressing mice manifested more elevated BP compared to control mice after AngII infusion and such difference was abolished by IFNγ-neutralizing antibodies. Conclusions: MR may interact with NFAT1 and AP-1 to control IFNγ in T cells, and to regulate target organ damage and ultimately BP. Targeting MR in T cells specifically may be an effective novel approach for hypertension treatment.

  2. The agile alert system for gamma-ray transients

    SciTech Connect

    Bulgarelli, A.; Trifoglio, M.; Gianotti, F.; Fioretti, V.; Chen, A. W.; Pittori, C.; Verrecchia, F.; Lucarelli, F.; Santolamazza, P.; Fanari, G.; Giommi, P.; Pellizzoni, A.; and others

    2014-01-20

    In recent years, a new generation of space missions has offered great opportunities for discovery in high-energy astrophysics. In this article we focus on the scientific operations of the Gamma-Ray Imaging Detector (GRID) on board the AGILE space mission. AGILE-GRID, sensitive in the energy range of 30 MeV-30 GeV, has detected many γ-ray transients of both galactic and extragalactic origin. This work presents the AGILE innovative approach to fast γ-ray transient detection, which is a challenging task and a crucial part of the AGILE scientific program. The goals are to describe (1) the AGILE Gamma-Ray Alert System, (2) a new algorithm for blind search identification of transients within a short processing time, (3) the AGILE procedure for γ-ray transient alert management, and (4) the likelihood of ratio tests that are necessary to evaluate the post-trial statistical significance of the results. Special algorithms and an optimized sequence of tasks are necessary to reach our goal. Data are automatically analyzed at every orbital downlink by an alert pipeline operating on different timescales. As proper flux thresholds are exceeded, alerts are automatically generated and sent as SMS messages to cellular telephones, via e-mail, and via push notifications from an application for smartphones and tablets. These alerts are crosschecked with the results of two pipelines, and a manual analysis is performed. Being a small scientific-class mission, AGILE is characterized by optimization of both scientific analysis and ground-segment resources. The system is capable of generating alerts within two to three hours of a data downlink, an unprecedented reaction time in γ-ray astrophysics.

  3. The AGILE Alert System for Gamma-Ray Transients

    NASA Astrophysics Data System (ADS)

    Bulgarelli, A.; Trifoglio, M.; Gianotti, F.; Tavani, M.; Parmiggiani, N.; Fioretti, V.; Chen, A. W.; Vercellone, S.; Pittori, C.; Verrecchia, F.; Lucarelli, F.; Santolamazza, P.; Fanari, G.; Giommi, P.; Beneventano, D.; Argan, A.; Trois, A.; Scalise, E.; Longo, F.; Pellizzoni, A.; Pucella, G.; Colafrancesco, S.; Conforti, V.; Tempesta, P.; Cerone, M.; Sabatini, P.; Annoni, G.; Valentini, G.; Salotti, L.

    2014-01-01

    In recent years, a new generation of space missions has offered great opportunities for discovery in high-energy astrophysics. In this article we focus on the scientific operations of the Gamma-Ray Imaging Detector (GRID) on board the AGILE space mission. AGILE-GRID, sensitive in the energy range of 30 MeV-30 GeV, has detected many γ-ray transients of both galactic and extragalactic origin. This work presents the AGILE innovative approach to fast γ-ray transient detection, which is a challenging task and a crucial part of the AGILE scientific program. The goals are to describe (1) the AGILE Gamma-Ray Alert System, (2) a new algorithm for blind search identification of transients within a short processing time, (3) the AGILE procedure for γ-ray transient alert management, and (4) the likelihood of ratio tests that are necessary to evaluate the post-trial statistical significance of the results. Special algorithms and an optimized sequence of tasks are necessary to reach our goal. Data are automatically analyzed at every orbital downlink by an alert pipeline operating on different timescales. As proper flux thresholds are exceeded, alerts are automatically generated and sent as SMS messages to cellular telephones, via e-mail, and via push notifications from an application for smartphones and tablets. These alerts are crosschecked with the results of two pipelines, and a manual analysis is performed. Being a small scientific-class mission, AGILE is characterized by optimization of both scientific analysis and ground-segment resources. The system is capable of generating alerts within two to three hours of a data downlink, an unprecedented reaction time in γ-ray astrophysics.

  4. The structure, logic of operation and distinctive features of the system of triggers and counting signals formation for gamma-telescope GAMMA-400

    NASA Astrophysics Data System (ADS)

    Topchiev, N. P.; Galper, A. M.; Arkhangelskiy, A. I.; Arkhangelskaja, I. V.; Kheymits, M. D.; Suchkov, S. I.; Yurkin, Y. T.

    2017-01-01

    Scientific project GAMMA-400 (Gamma Astronomical Multifunctional Modular Apparatus) relates to the new generation of space observatories intended to perform an indirect search for signatures of dark matter in the cosmic-ray fluxes, measurements of characteristics of diffuse gamma-ray emission and gamma-rays from the Sun during periods of solar activity, gamma-ray bursts, extended and point gamma-ray sources, electron/positron and cosmic-ray nuclei fluxes up to TeV energy region by means of the GAMMA-400 gamma-ray telescope represents the core of the scientific complex. The system of triggers and counting signals formation of the GAMMA-400 gamma-ray telescope constitutes the pipelined processor structure which collects data from the gamma-ray telescope subsystems and produces summary information used in forming the trigger decision for each event. The system design is based on the use of state-of-the-art reconfigurable logic devices and fast data links. The basic structure, logic of operation and distinctive features of the system are presented.

  5. TIRF imaging of Fc gamma receptor microclusters dynamics and signaling on macrophages during frustrated phagocytosis.

    PubMed

    Lin, Jia; Kurilova, Svetlana; Scott, Brandon L; Bosworth, Elizabeth; Iverson, Bradley E; Bailey, Elizabeth M; Hoppe, Adam D

    2016-03-12

    Recent evidence indicates that in addition to the T-cell receptor, microclustering is an important mechanism for the activation of the B-cell receptor and the mast cell Fcε-receptor. In macrophages and neutrophils, particles opsonized with immunoglobulin G (IgG) antibodies activate the phagocytic Fcγ-receptor (FcγR) leading to rearrangements of the actin cytoskeleton. The purpose of this study was to establish a system for high-resolution imaging of FcγR microclustering dynamics and the recruitment of the downstream signaling machinery to these microclusters. We developed a supported lipid bilayer platform with incorporated antibodies on its surface to study the formation and maturation of FcγR signaling complexes in macrophages. Time-lapse multicolor total internal reflection microscopy was used to capture the formation of FcγR-IgG microclusters and their assembly into signaling complexes on the plasma membrane of murine bone marrow derived macrophages. Upon antibody binding, macrophages formed FcγR-IgG complexes at the leading edge of advancing pseudopods. These complexes then moved toward the center of the cell to form a structure reminiscent of the supramolecular complex observed in the T-cell/antigen presenting cell immune synapse. Colocalization of signaling protein Syk with nascent clusters of antibodies indicated that phosphorylated receptor complexes underwent maturation as they trafficked toward the center of the cell. Additionally, imaging of fluorescent BtkPH domains indicated that 3'-phosphoinositides propagated laterally away from the FcγR microclusters. We demonstrate that surface-associated but mobile IgG induces the formation of FcγR microclusters at the pseudopod leading edge. These clusters recruit Syk and drive the production of diffusing PI(3,4,5)P3 that is coordinated with lamellar actin polymerization. Upon reaching maximal extension, FcγR microclusters depart from the leading edge and are transported to the center of the cellular

  6. Binding of IgG-opsonized particles to Fc gamma R is an active stage of phagocytosis that involves receptor clustering and phosphorylation.

    PubMed

    Sobota, Andrzej; Strzelecka-Kiliszek, Agnieszka; Gładkowska, Ewelina; Yoshida, Kiyotsugu; Mrozińska, Kazimiera; Kwiatkowska, Katarzyna

    2005-10-01

    Fc gammaR mediate the phagocytosis of IgG-coated particles and the clearance of IgG immune complexes. By dissecting binding from internalization of the particles, we found that the binding stage, rather than particle internalization, triggered tyrosine phosphorylation of Fc gammaR and accompanying proteins. High amounts of Lyn kinase were found to associate with particles isolated at the binding stage from J774 cells. PP2 (4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine), an Src kinase inhibitor, but not piceatannol, an inhibitor of Syk kinase, reduced the amount of Lyn associated with the bound particles and simultaneously diminished the binding of IgG-coated particles. Studies of baby hamster kidney cells transfected with wild-type and mutant Fc gammaRIIA revealed that the ability of the receptor to bind particles was significantly reduced when phosphorylation of the receptor was abrogated by Y298F substitution in the receptor signaling motif. Under these conditions, binding of immune complexes of aggregated IgG was depressed to a lesser extent. A similar effect was exerted on the binding ability of wild-type Fc gammaRIIA by PP2. Moreover, expression of mutant kinase-inactive Lyn K275R inhibited both Fc gammaRIIA phosphorylation and IgG-opsonized particle binding. To gain insight into the mechanism by which protein tyrosine phosphorylation can control Fc gammaR-mediated binding, we investigated the efficiency of clustering of wild-type and Y298F-substituted Fc gammaRIIA upon binding of immune complexes. We found that a lack of Fc gammaRIIA phosphorylation led to an impairment of receptor clustering. The results indicate that phosphorylation of Fc gammaR and accompanying proteins, dependent on Src kinase activity, facilitates the clustering of activated receptors that is required for efficient particle binding.

  7. Instructions for calibrating gamma detectors using the Canberra-Nuclear Data Genie Gamma Spectroscopy System

    SciTech Connect

    Brunk, J.L.

    1995-09-01

    A straight forward protocol provides a way to guide the calibration of a gamma detector for a particular geometry and material. Several programs have used the Low Level Gamma Counting Facility of the Health and Ecological Assessment Division of the Lawrence Livermore National Laboratory to count a variety of large environmental samples contained in several unique geometries. The equipment and calibration requirements needed to analyze these types of samples are explained. This document describes the calibration protocol that has been developed and describes how it is used to calibrate the detectors.

  8. Anisakis pegreffii-induced airway hyperresponsiveness is mediated by gamma interferon in the absence of interleukin-4 receptor alpha responsiveness.

    PubMed

    Kirstein, Frank; Horsnell, William G C; Nieuwenhuizen, Natalie; Ryffel, Bernhard; Lopata, Andreas L; Brombacher, Frank

    2010-09-01

    Infection with the fish parasite Anisakis following exposure to contaminated fish can lead to allergic reactions in humans. The present study examined the immunological mechanisms underlying the development of allergic airway inflammation in mice after different routes of sensitization to Anisakis. Wild-type and interleukin-4 receptor alpha (IL-4Ralpha)-deficient BALB/c mice were sensitized intraperitoneally with live or heat-killed Anisakis larvae or by intranasal administration of an Anisakis extract and were subsequently challenged intranasally with an Anisakis extract. Both routes of sensitization induced IL-4Ralpha-dependent allergic airway responses, whereas allergen-specific antibody responses developed only when mice were sensitized intraperitoneally. Intranasal sensitization induced airway hyperresponsiveness (AHR) in wild-type mice only, showing that AHR was IL-4/IL-13 dependent. Unexpectedly, infection with Anisakis larvae induced AHR in both wild-type and IL-4Ralpha-deficient mice. IL-4Ralpha-independent AHR was mediated by gamma interferon (IFN-gamma), as evidenced by the fact that in vivo neutralization of IFN-gamma abrogated AHR. Together, these results demonstrate that both infection with larvae and inhalational exposure to Anisakis proteins are potent routes of allergic sensitization to Anisakis, explaining food- and work-related allergies in humans. Importantly for diagnosis, allergic airway inflammation can be independent of detectable Anisakis-specific antibodies. Moreover, depending on the route of sensitization, AHR can be induced either by IL-4/IL-13 or by IFN-gamma.

  9. T helper cell recognition of muscle acetylcholine receptor in myasthenia gravis. Epitopes on the gamma and delta subunits.

    PubMed Central

    Manfredi, A A; Protti, M P; Dalton, M W; Howard, J F; Conti-Tronconi, B M

    1993-01-01

    We tested the response of CD4+ cells and/or total lymphocytes from the blood of 22 myasthenic patients and 10 healthy controls to overlapping synthetic peptides, 20 residues long, to screen the sequence of the gamma and delta subunits of human muscle acetylcholine receptor (AChR). The gamma subunit is part of the AChR expressed in embryonic muscle and is substituted in the AChRs of most adult muscles by an epsilon subunit. The delta subunit is present in both embryonic and adult AChRs. Adult extrinsic ocular muscles, which are preferentially and sometimes uniquely affected by myasthenic symptoms, and thymus, which has a still obscure but important role in the pathogenesis of myasthenia gravis, express the embryonic gamma subunit. Anti-AChR CD4+ responses were more easily detected after CD8+ depletion. All responders recognized epitopes on both the gamma and delta subunits and had severe symptoms. In four patients the CD4+ cell response was tested twice, when the symptoms were severe and during a period of remission. Consistently, the response was only detectable, or larger, when the patients were severely affected. Images PMID:7688757

  10. Peroxisome proliferator activated receptor alpha/gamma dual agonist tesaglitazar attenuates diabetic nephropathy in db/db mice.

    PubMed

    Cha, Dae Ryong; Zhang, Xiaoyan; Zhang, Yahua; Wu, Jing; Su, Dongming; Han, Jee Young; Fang, Xuefen; Yu, Bo; Breyer, Matthew D; Guan, Youfei

    2007-08-01

    Peroxisome proliferator-activated receptors (PPARs) are nuclear transcription factors and play a central role in insulin sensitivity, lipid metabolism, and inflammation. Both PPARalpha and -gamma are expressed in the kidney, and their agonists exhibit renoprotective effects in type 2 diabetes. In the present studies, we investigated the effect of the PPARalpha/gamma dual agonist tesaglitazar on diabetic nephropathy in type 2 diabetic db/db mice. Treatment of db/db mice with tesaglitazar for 3 months significantly lowered fasting plasma glucose and homeostasis model assessment of insulin resistance levels but had little effect on body weight, adiposity, or cardiac function. Treatment with tesaglitazar was associated with reduced plasma insulin and total triglyceride levels and increased plasma adiponectin levels. Notably, tesaglitazar markedly attenuated albuminuria and significantly lowered glomerulofibrosis, collagen deposition, and transforming growth factor-beta1 expression in renal tissues of db/db mice. In cultured mesangial cells and proximal tubule cells, where both PPARalpha and -gamma were expressed, tesaglitazar treatment abolished high glucose-induced total collagen protein production and type I and IV collagen gene expression. Collectively, tesaglitazar treatment not only improved insulin resistance, glycemic control, and lipid profile but also markedly attenuated albuminuria and renal glomerular fibrosis in db/db mice. These findings support the utility of dual PPARalpha/gamma agonists in treating type 2 diabetes and diabetic nephropathy.

  11. Activation of peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}) induces cell death through MAPK-dependent mechanism in osteoblastic cells

    SciTech Connect

    Kim, Sung Hun; Yoo, Chong Il; Kim, Hui Taek; Park, Ji Yeon; Kwon, Chae Hwa; Keun Kim, Yong . E-mail: kim430@pusan.ac.kr

    2006-09-01

    The present study was undertaken to determine the role of the mitogen-activated protein kinase (MAPK) subfamilies in cell death induced by PPAR{gamma} agonists in osteoblastic cells. Ciglitazone and troglitazone, PPAR{gamma} agonists, resulted in a concentration- and time-dependent cell death, which was largely attributed to apoptosis. But a PPAR{alpha} agonist ciprofibrate did not affect the cell death. Ciglitazone caused reactive oxygen species (ROS) generation and ciglitazone-induced cell death was prevented by antioxidants, suggesting an important role of ROS generation in the ciglitazone-induced cell death. ROS generation and cell death induced by ciglitazone were inhibited by the PPAR{gamma} antagonist GW9662. Ciglitazone treatment caused activation of extracellular signal-regulated kinase (ERK) and p38. Activation of ERK was dependent on epidermal growth factor receptor (EGFR) and that of p38 was independent. Ciglitazone-induced cell death was significantly prevented by PD98059, an inhibitor of ERK upstream kinase MEK1/2, and SB203580, a p38 inhibitor. Ciglitazone treatment increased Bax expression and caused a loss of mitochondrial membrane potential, and its effect was prevented by N-acetylcysteine, PD98059, and SB203580. Ciglitazone induced caspase activation, which was prevented by PD98059 and SB203580. The general caspase inhibitor z-DEVD-FMK and the specific inhibitor of caspases-3 DEVD-CHO exerted the protective effect against the ciglitazone-induced cell death. The EGFR inhibitors AG1478 and suramin protected against the ciglitazone-induced cell death. Taken together, these findings suggest that the MAPK signaling pathways play an active role in mediating the ciglitazone-induced cell death of osteoblasts and function upstream of a mitochondria-dependent mechanism. These data may provide a novel insight into potential therapeutic strategies for treatment of osteoporosis.

  12. The Advanced Gamma-Ray Imaging System (AGIS): Science Highlights

    SciTech Connect

    Buckley, J.; Coppi, P.; Digel, S.; Funk, S.; Krawczynski, H.; Krennrich, F.; Pohl, M.; Romani, R.; Vassiliev, V.; /UCLA

    2011-11-21

    The Advanced Gamma-ray Imaging System (AGIS), a future gamma-ray telescope consisting of an array of {approx}50 atmospheric Cherenkov telescopes distributed over an area of {approx}1 km{sup 2}, will provide a powerful new tool for exploring the high-energy universe. The order-of-magnitude increase in sensitivity and improved angular resolution could provide the first detailed images of {gamma}-ray emission from other nearby galaxies or galaxy clusters. The large effective area will provide unprecedented sensitivity to short transients (such as flares from AGNs and GRBs) probing both intrinsic spectral variability (revealing the details of the acceleration mechanism and geometry) as well as constraining the high-energy dispersion in the velocity of light (probing the structure of spacetime and Lorentz invariance). A wide field of view ({approx}4 times that of current instruments) and excellent angular resolution (several times better than current instruments) will allow for an unprecedented survey of the Galactic plane, providing a deep unobscured survey of SNRs, X-ray binaries, pulsar-wind nebulae, molecular cloud complexes and other sources. The differential flux sensitivity of {approx}10{sup -13} erg cm{sup -2} sec{sup -1} will rival the most sensitive X-ray instruments for these extended Galactic sources. The excellent capabilities of AGIS at energies below 100 GeV will provide sensitivity to AGN and GRBs out to cosmological redshifts, increasing the number of AGNs detected at high energies from about 20 to more than 100, permitting population studies that will provide valuable insights into both a unified model for AGN and a detailed measurement of the effects of intergalactic absorption from the diffuse extragalactic background light. A new instrument with fast-slewing wide-field telescopes could provide detections of a number of long-duration GRBs providing important physical constraints from this new spectral component. The new array will also have excellent

  13. Germanium orthogonal strip detector system for gamma-ray imaging

    NASA Astrophysics Data System (ADS)

    Hull, Ethan L.; Burks, Morgan; Cork, Chris P.; Craig, William W.; Eckels, Del; Fabris, Lorenzo; Lavietes, Anthony D.; Luke, Paul N.; Madden, Norman W.; Pehl, Richard H.; Ziock, Klaus

    2001-12-01

    A germanium-detector based, gamma-ray imaging system has been designed, fabricated, and tested. The detector, cryostat, electronics, readout, and imaging software are discussed. An 11 millimeter thick, 2 millimeter pitch 19x19 orthogonal strip planar germanium detector is used in front of a coaxial detector to provide broad energy coverage. The planar detector was fabricated using amorphous germanium contacts. Each channel is read out with a compact, low noise external FET preamplifier specially designed for this detector. A bank of shaping amplifiers, fast amplifiers, and fast leading edge discriminators were designed and fabricated to process the signals from preamplifiers. The readout system coordinates time coincident x-y strip addresses with an x-strip spectroscopy signal and a spectroscopy signal from the coaxial detector. This information is sent to a computer where an image is formed. Preliminary shadow and pinhole images demonstrate the viability of a germanium based imaging system. The excellent energy resolution of the germanium detector system provides isotopic imaging.

  14. Demonstration of lightweight gamma spectrometry systems in urban environments.

    PubMed

    Cresswell, A J; Sanderson, D C W; Harrold, M; Kirley, B; Mitchell, C; Weir, A

    2013-10-01

    Urban areas present highly complex radiation environments; with small scale features resulting from different construction materials, topographic effects and potential anthropogenic inputs from past industrial activity or other sources. Mapping of the radiation fields in urban areas allows a detailed assessment of exposure pathways for the people who live and work there, as well as locating discrete sources of activity that may warrant removal to mitigate dose to the general public. These areas also present access difficulties for radiometric mapping using vehicles or aircraft. A lightweight portable gamma spectrometry system has been used to survey sites in the vicinity of Glasgow to demonstrate the possibilities of radiometric mapping of urban areas, and to investigate the complex radiometric features such areas present. Variations in natural activity due to construction materials have been described, the presence of (137)Cs used to identify relatively undisturbed ground, and a previously unknown NORM feature identified. The effect of topographic enclosure on measurements of activity concentration has been quantified. The portable system is compared with the outputs that might be expected from larger vehicular or airborne systems. For large areas airborne surveys are the most cost effective approach, but provide limited spatial resolution, vehicular surveys can provide sparse exploratory data rapidly or detailed mapping of open areas where off-road access is possible. Backpack systems are ideally suited to detailed surveys of small areas, especially where vehicular access is difficult.

  15. Ec sub. gamma. receptor type III (CD16) is included in the. zeta. NK receptor complex expressed by human natural killer cells

    SciTech Connect

    Anderson, P.; Caligiuri, M.; O'Brien, C.; Manley, T.; Ritz, J.; Schlossman, S.F. )

    1990-03-01

    The authors recently reported that CD3{sup {minus}} natural killer (NK) cells express the {zeta} chain of the T-cell receptor complex ({zeta} NK) in association with higher molecular weight structures whose expression differs between individual NK cell clones. Because NK cell cytolytic activity is known to be triggered by perturbation of the type III Fc{sub {gamma}} receptor (CD16), they sought to determine whether this activating molecule is included in the {zeta}NK molecular complex. Biochemical evidence for a physical association between CD16 and {zeta}NK was obtained by comparing immunoprecipitates formed using monoclonal antibodies reactive with each of these molecules by SDS/polyacrylamide gel electrophoresis, immunoblotting, and peptide mapping. In both clonal and polyclonal populations of CD3{sup {minus}}NK cells, CD16 and {zeta}NK specifically associated with one another. Functional evidence for a specific association between CD16 and {zeta}NK in intact cells was obtained by demonstrating a coordinate down-modulation of both of these molecules induced by either phorbol 12-myristate 13-acetate or monoclonal antibodies reactive with CD16. The results suggest that Fc{sub {gamma}} receptor type III (CD16) is included in the {zeta}NK complex and that this complex is likely to play an important role in NK cell activation.

  16. Fc gamma receptor type III (CD16) is included in the zeta NK receptor complex expressed by human natural killer cells.

    PubMed Central

    Anderson, P; Caligiuri, M; O'Brien, C; Manley, T; Ritz, J; Schlossman, S F

    1990-01-01

    We recently reported that CD3- natural killer (NK) cells express the zeta chain of the T-cell receptor complex (zeta NK) in association with higher molecular weight structures whose expression differs between individual NK cell clones. Because NK cell cytolytic activity is known to be triggered by perturbation of the type III Fc gamma receptor (CD16), we sought to determine whether this activating molecule is included in the zeta NK molecular complex. Biochemical evidence for a physical association between CD16 and zeta NK was obtained by comparing immunoprecipitates formed using monoclonal antibodies reactive with each of these molecules by SDS/polyacrylamide gel electrophoresis, immunoblotting, and peptide mapping. In both clonal and polyclonal populations of CD3- NK cells, CD16 and zeta NK specifically associated with one another. Functional evidence for a specific association between CD16 and zeta NK in intact cells was obtained by demonstrating a coordinate down-modulation of both of these molecules induced by either phorbol 12-myristate 13-acetate or monoclonal antibodies reactive with CD16. Our results suggest that Fc gamma receptor type III (CD16) is included in the zeta NK complex and that this complex is likely to play an important role in NK cell activation. Images PMID:2138330

  17. A case of relapsing encephalitis positive for gamma aminobutyric acid (GABA)A receptor antibody associated with Type B3 thymoma.

    PubMed

    Kitano, Takaya; Kinoshita, Makoto; Shimazu, Kohki; Fushimi, Hiroaki; Omori, Kenichi; Hazama, Takanori

    2016-11-29

    A 87-year-old female presented with subacute progression of cognitive decline. Fluid-attenuated inversion recovery images of brain MRI showed multifocal high-intensity lesions. Thoracic CT image revealed the presence of thymoma, and serum autoantibody screening showed positivity for anti-gamma aminobutyric acid (GABA)A receptor antibody. Histopathological analysis confirmed type B3 thymoma after thymectomy. The patient received both plasmapheresis and intravenous methylprednisolone therapy, and showed remarkable amelioration of clinical symptoms and MRI abnormal high intensity. However, after 2 month from the clinical recovery, the patient showed recurrence of brain lesions and intravenous methylprednisolone monotherapy was performed. Continuation of oral steroid therapy was required to maintain the quienscent state of inflammation within the central nervous system. Anti-GABAA receptor antibody is a recently discovered novel autoantibody associated with autoimmue encephalitis. Due to the limited number of literature reported, clinical course and therapeutic response of GABAA receptor antibody encephalitis remains elusive. Here we reported a rare case of GABAA receptor antibody encephalitis with type B3 thymoma. Clinical, radiological and therapeutic courses described in our report highlight the importance of immunotherapy for treatment of the disease.

  18. Cloning of the. gamma. -aminobutyric acid (GABA). rho. sub 1 cDNA: A GABA receptor subunit highly expressed in the retina

    SciTech Connect

    Cutting, G.R.; Lu, Luo; Kasch, L.M.; Montrose-Rafizadeh, C.; Antonarakis, S.E.; Guggino, W.B.; Kazazian, H.H. Jr. ); O'Hara, B.F.; Donovan, D.M.; Shimada, Shoichi ); Uhl, G.R. Johns Hopkins Univ. School of Medicine, Baltimore, MD )

    1991-04-01

    Type A {gamma}-aminobutyric acid (GABA{sub A}) receptors are a family of ligand-gated chloride channels that are the major inhibitory neurotransmitter receptors in the nervous system. Molecular cloning has revealed diversity in the subunits that compose this heterooligomeric receptor, but each previously elucidated subunit displays amino acid similarity in conserved structural elements. The authors have used these highly conserved regions to identify additional members of this family by using the polymerase chain reaction (PCR). One PCR product was used to isolate a full-length cDNA from a human retina cDNA library. The mature protein predicted from this cDNA sequence is 458 amino acids long and displays between 30 and 38% amino acid similarity to the previously identified GABA{sub A} subunits. This gene is expressed primarily in the retina but transcripts are also detected in the brain, lung, and thymus. Injection of Xenopus oocytes with RNA transcribed in vitro produces a GABA-responsive chloride conductance and expression of the cDNA in COS cells yields GABA-displaceable muscimol binding. These features are consistent with our identification of a GABA subunit, GABA {rho}{sub 1}, with prominent retinal expression that increases the diversity and tissue specificity of this ligand-gated ion-channel receptor family.

  19. Cloning of the gamma-aminobutyric acid (GABA) rho 1 cDNA: a GABA receptor subunit highly expressed in the retina.

    PubMed Central

    Cutting, G R; Lu, L; O'Hara, B F; Kasch, L M; Montrose-Rafizadeh, C; Donovan, D M; Shimada, S; Antonarakis, S E; Guggino, W B; Uhl, G R

    1991-01-01

    Type A gamma-aminobutyric acid (GABAA) receptors are a family of ligand-gated chloride channels that are the major inhibitory neurotransmitter receptors in the nervous system. Molecular cloning has revealed diversity in the subunits that compose this heterooligomeric receptor, but each previously elucidated subunit displays amino acid similarity in conserved structural elements. We have used these highly conserved regions to identify additional members of this family by using the polymerase chain reaction (PCR). One PCR product was used to isolate a full-length cDNA from a human retina cDNA library. The mature protein predicted from this cDNA sequence in 458 amino acids long and displays between 30 and 38% amino acid similarity to the previously identified GABAA subunits. This gene is expressed primarily in the retina but transcripts are also detected in the brain, lung, and thymus. Injection of Xenopus oocytes with RNA transcribed in vitro produces a GABA-responsive chloride conductance and expression of the cDNA in COS cells yields GABA-displaceable muscimol binding. These features are consistent with our identification of a GABA subunit, GABA rho 1, with prominent retinal expression that increases the diversity and tissue specificity of this ligand-gated ion-channel receptor family. Images PMID:1849271

  20. A Case Study Correlating Innovative Gamma Ray Scanning Detection Systems Data to Surface Soil Gamma Spectrometry Results - 13580

    SciTech Connect

    Thompson, Shannon; Rodriguez, Rene; Billock, Paul; Lit, Peter

    2013-07-01

    HydroGeoLogic (HGL), Inc. completed a United States Environmental Protection Agency (USEPA) study to characterize radiological contamination at a site near Canoga Park, California. The characterized area contained 470 acres including the site of a prototype commercial nuclear reactor and other nuclear design, testing, and support operations from the 1950's until 1988 [1]. The site history included radiological releases during operation followed by D and D activities. The characterization was conducted under an accelerated schedule and the results will support the project remediation. The project has a rigorous cleanup to background agenda and does not allow for comparison to risk-based guidelines. To target soil sample locations, multiple lines of evidence were evaluated including a gamma radiation survey, geophysical surveys, historical site assessment, aerial photographs, and former worker interviews. Due to the time since production and decay, the primary gamma emitting radionuclide remaining is cesium-137 (Cs-137). The gamma ray survey covered diverse, rugged terrain using custom designed sodium iodide thallium-activated (NaI(Tl)) scintillation detection systems. The survey goals included attaining 100% ground surface coverage and detecting gamma radiation as sensitively as possible. The effectiveness of innovative gamma ray detection systems was tested by correlating field Cs-137 static count ratios to Cs-137 laboratory gamma spectrometry results. As a case study, the area encompassing the former location of the first nuclear power station in the U. S. was scanned, and second by second global positioning system (GPS)-linked gamma spectral data were evaluated by examining total count rate and nuclide-specific regions of interest. To compensate for Compton scattering from higher energy naturally occurring radionuclides (U-238, Th-232 and their progeny, and K-40), count rate ratios of anthropogenic nuclide-specific regions of interest to the total count rate were

  1. Expression of the peroxisome proliferator-activated receptors-alpha, -beta, and -gamma in ovarian carcinoma effusions is associated with poor chemoresponse and shorter survival.

    PubMed

    Davidson, Ben; Hadar, Rivka; Stavnes, Helene Tuft; Trope', Claes G; Reich, Reuven

    2009-05-01

    Peroxisome proliferator-activated receptors regulate lipid metabolism, affecting inflammation and cancer. The present study analyzed the anatomical site-related expression and prognostic role of peroxisome proliferator-activated receptors in ovarian carcinoma. Fresh-frozen effusions (n = 79), primary carcinomas (n = 44), and solid metastases (n = 16) were studied for peroxisome proliferator-activated receptor-alpha, -beta, and -gamma messenger RNA expression using reverse transcriptase polymerase chain reaction. Peroxisome proliferator-activated receptor-gamma messenger RNA expression was further assessed in 60 tumors (30 effusions, 20 primary carcinomas, 10 metastases) using in situ hybridization. Peroxisome proliferator-activated receptor-gamma protein expression was immunohistochemically analyzed in 160 effusions. All peroxisome proliferator-activated receptors were expressed in most tumors at all anatomical sites using reverse transcriptase polymerase chain reaction, but peroxisome proliferator-activated receptor-alpha (P = .004) and peroxisome proliferator-activated receptor-beta (P = .002) messenger RNA levels were higher in effusions compared with primary carcinomas and solid metastases. In situ hybridization localized peroxisome proliferator-activated receptor-gamma messenger RNA to carcinoma cells in both effusions and solid lesions. Peroxisome proliferator-activated receptor-gamma protein was detected in carcinoma cells in 102 of 160 (64%) effusions. Higher effusion messenger RNA levels of all peroxisome proliferator-activated receptors were associated with less favorable response to chemotherapy at diagnosis (P = .009). In univariate survival analysis, higher messenger RNA expression of all peroxisome proliferator-activated receptors was associated with poor progression-free (P = .045) and overall (P = .014) survival. Higher peroxisome proliferator-activated receptor-gamma protein expression was similarly associated with poor overall survival for the

  2. Peroxisome proliferator-activated receptors: role of isoform gamma in the antineoplastic effect of iodine in mammary cancer.

    PubMed

    Nunez-Anita, R E; Cajero-Juarez, M; Aceves, C

    2011-09-01

    Peroxisome proliferator-activated receptors (PPAR) are ligand-activated transcription factors. Three subtypes--PPAR alpha, PPAR beta, and PPAR gamma--have been identified and are differentially expressed in tissues. Originally, they were described as molecular regulators of lipid metabolism; recently, it has been shown that they are also involved in regulating the cell cycle and apoptosis in both normal and tumoral cells. In fact, some synthetic PPAR ligands are used to treat dyslipidemia, metabolic diseases, and type 2 diabetes. Here, we review the role of PPAR gamma (PPARγ) in tumor initiation and progression, emphasizing the relationship between this isoform and the cellular and molecular mechanisms involved in the antineoplastic effect of iodine on mammary cancer.

  3. Disruption of transforming growth factor beta signaling and profibrotic responses in normal skin fibroblasts by peroxisome proliferator-activated receptor gamma.

    PubMed

    Ghosh, Asish K; Bhattacharyya, Swati; Lakos, Gabriella; Chen, Shu-Jen; Mori, Yasuji; Varga, John

    2004-04-01

    In fibroblasts, transforming growth factor beta (TGF beta) stimulates collagen synthesis and myofibroblast transdifferentiation through the Smad intracellular signal transduction pathway. TGF beta-mediated fibroblast activation is the hallmark of scleroderma and related fibrotic conditions, and disrupting the intracellular TGF beta/Smad signaling may provide a novel approach to controlling fibrosis. Because of its potential role in modulating inflammatory and fibrotic responses, we examined the expression of the nuclear hormone receptor peroxisome proliferator-activated receptor gamma (PPAR gamma) in normal skin fibroblasts and its effect on TGF beta-induced cellular responses. The expression and activity of PPAR gamma in normal dermal fibroblasts were examined by Northern and Western blot analyses, immunocytochemistry, flow cytometry, and transient transfections with reporter constructs. The same approaches were used to evaluate the effects of PPAR gamma activation by naturally occurring and synthetic ligands on collagen synthesis and alpha-smooth muscle actin (alpha-SMA) expression. Modulation of Smad-mediated transcriptional responses was examined by transient transfection assays using wild-type and dominant-negative PPAR gamma expression constructs. The PPAR gamma receptor was expressed and fully functional in quiescent normal skin fibroblasts. Whereas ligand activation of cellular PPAR gamma resulted in modest suppression of basal collagen gene expression, it abrogated TGF beta-induced stimulation in a concentration-dependent manner. This response was mimicked by overexpressing PPAR gamma in fibroblasts, and was blocked by a selective antagonist of PPAR gamma signaling or by transfection of fibroblasts with dominant-negative PPAR gamma constructs. Furthermore, PPAR gamma ligands abrogated TGF beta-induced expression of alpha-SMA, a marker of myofibroblasts. Stimulation of Smad-dependent transcriptional responses by TGF beta was suppressed by PPAR gamma despite

  4. Gamma-ray imaging system. Innovative technology summary report

    SciTech Connect

    1998-11-01

    The RadScan 600 gamma-ray imaging system is designed to survey large surface areas for radiological contamination with accuracy and efficiency. The resulting survey data are clear, concise, and precise in describing how much contamination is present at exact locations. Data can be permanently stored electronically and on video tape, making storage and retrieval economical and efficient. This technology can perform accurate measurements in high radiation contamination areas while minimizing worker exposure. The RadScan 600 system is a safe and effective alternative to hand-held radiation detection devices. Performance data of the demonstrated survey area of the RadScan 600 system versus the baseline, which is the hand-held radiation detection devices (RO-2 and RO-7) for a given survey, production rate is 72% of the baseline. It should be noted that the innovative technology provides 100% coverage at a unit cost of $8.64/m{sup 2} versus a static measurement of a unit cost of $1.61/m{sup 2} for the baseline.

  5. A live attenuated Bordetella pertussis candidate vaccine does not cause disseminating infection in gamma interferon receptor knockout mice.

    PubMed

    Skerry, Ciaran M; Cassidy, Joseph P; English, Karen; Feunou-Feunou, Pascal; Locht, Camille; Mahon, Bernard P

    2009-09-01

    Bordetella pertussis is the cause of whooping cough and responsible for 300,000 infant deaths per annum. Current vaccines require 6 months to confer optimal immunity on infants, the population at highest risk. Recently, an attenuated strain of B. pertussis (BPZE1) has been developed to be used as a low-cost, live, intranasal, single-dose vaccine for newborns. Preclinical proof of concept has been established; however, it is necessary to evaluate the safety of BPZE1, especially in immunodeficient models, prior to human clinical trials. Here, the preclinical safety of BPZE1 was examined in well-characterized murine models. Immunocompetent and gamma interferon (IFN-gamma) receptor knockout mice were challenged by aerosol with either virulent B. pertussis or BPZE1. The two strains colonized the lung at equal levels, but inflammation was associated with carriage of only virulent bacteria. Virulent bacteria disseminated to the liver of IFN-gamma receptor-deficient mice, resulting in atypical pathology. In contrast, attenuated BPZE1 did not disseminate in either immunocompetent or immunodeficient mice and did not induce atypical pathology. In neonatal challenge models, virulent B. pertussis infection resulted in significant mortality of both immunodeficient and immunocompetent mice, whereas no mortality was observed for any neonatal mice challenged with BPZE1. BPZE1 was shown to elicit strong IFN-gamma responses in mice, equivalent to those elicited by the virulent streptomycin-resistant B. pertussis Tohama I derivative BPSM, also inducing immunoglobulin G2a, a process requiring TH1 cytokines in mice. These data indicate that a live attenuated whooping cough vaccine candidate shows no signs of disseminating infection in preclinical models but rather evokes an immunological profile associated with optimal protection against disease.

  6. Lysophosphatidic acid inhibits adipocyte differentiation via lysophosphatidic acid 1 receptor-dependent down-regulation of peroxisome proliferator-activated receptor gamma2.

    PubMed

    Simon, Marie Françoise; Daviaud, Danièle; Pradère, Jean Philippe; Grès, Sandra; Guigné, Charlotte; Wabitsch, Martin; Chun, Jerold; Valet, Philippe; Saulnier-Blache, Jean Sébastien

    2005-04-15

    Lysophosphatidic acid (LPA) is a bioactive phospholipid acting via specific G protein-coupled receptors that is synthesized at the extracellular face of adipocytes by a secreted lysophospholipase D (autotaxin). Preadipocytes mainly express the LPA(1) receptor subtype, and LPA increases their proliferation. In monocytes and CV1 cells LPA was recently reported to bind and activate peroxisome proliferator-activated receptor gamma (PPARgamma), a transcription factor also known to play a pivotal role in adipogenesis. Here we show that, unlike the PPARgamma agonist rosiglitazone, LPA was unable to increase transcription of PPARgamma-sensitive genes (PEPCK and ALBP) in the mouse preadipose cell line 3T3F442A. In contrast, treatment with LPA decreased PPARgamma2 expression, impaired the response of PPARgamma-sensitive genes to rosiglitazone, reduced triglyceride accumulation, and reduced the expression of adipocyte mRNA markers. The anti-adipogenic activity of LPA was also observed in the human SGBS (Simpson-Golabi-Behmel syndrome) preadipocyte cell line, as well as in primary preadipocytes isolated from wild type mice. Conversely, the anti-adipogenic activity of LPA was not observed in primary preadipocytes from LPA(1) receptor knock-out mice, which, in parallel, exhibited a higher adiposity than wild type mice. In conclusion, LPA does not behave as a potent PPARgamma agonist in adipocytes but, conversely, inhibits PPARgamma expression and adipogenesis via LPA(1) receptor activation. The local production of LPA may exert a tonic inhibitory effect on the development of adipose tissue.

  7. The peroxisome proliferator-activated receptor gamma/retinoid X receptor alpha heterodimer targets the histone modification enzyme PR-Set7/Setd8 gene and regulates adipogenesis through a positive feedback loop.

    PubMed

    Wakabayashi, Ken-ichi; Okamura, Masashi; Tsutsumi, Shuichi; Nishikawa, Naoko S; Tanaka, Toshiya; Sakakibara, Iori; Kitakami, Jun-ichi; Ihara, Sigeo; Hashimoto, Yuichi; Hamakubo, Takao; Kodama, Tatsuhiko; Aburatani, Hiroyuki; Sakai, Juro

    2009-07-01

    Control of cell differentiation occurs through transcriptional mechanisms and through epigenetic modification. Using a chromatin immunoprecipitation-on-chip approach, we performed a genome-wide search for target genes of peroxisome proliferator-activated receptor gamma (PPAR gamma) and its partner protein retinoid X receptor alpha during adipogenesis. We show that these two receptors target several genes that encode histone lysine methyltransferase SET domain proteins. The histone H4 Lys 20 (H4K20) monomethyltransferase PR-Set7/Setd8 gene is upregulated by PPAR gamma during adipogenesis, and the knockdown of PR-Set7/Setd8 suppressed adipogenesis. Intriguingly, monomethylated H4K20 (H4K20me1) levels are robustly increased toward the end of differentiation. PR-Set7/Setd8 positively regulates the expression of PPAR gamma and its targets through H4K20 monomethylation. Furthermore, the activation of PPAR gamma transcriptional activity leads to the induction of H4K20me1 modification of PPAR gamma and its targets and thereby promotes adipogenesis. We also show that PPAR gamma targets PPAR gamma2 and promotes its gene expression through H4K20 monomethylation. Our results connect transcriptional regulation and epigenetic chromatin modulation through H4K20 monomethylation during adipogenesis through a feedback loop.

  8. Transgenic mice demonstrate that epithelial homing of gamma/delta T cells is determined by cell lineages independent of T cell receptor specificity

    PubMed Central

    1990-01-01

    gamma/delta T cells with different TCR repertoires are compartmentalized in different epithelia. This raises the possibility that the TCR-gamma/delta directs homing of T cells to these epithelia. Alternatively, the signals that induce TCR-gamma/delta expression in developing T cells may also induce homing properties in such cells, presumably in the form of cell surface receptors. We have examined this issue by studying the homing of gamma/delta T cells in transgenic mice constructed with specific pairs of rearranged gamma and delta genes. In such mice, most gamma/delta T cells express the transgene-encoded TCR. We find that homing to both skin and gut epithelia is a property of T cells and is not determined by the type of gamma and delta genes used to encode their TCR. We also studied the effect of TCR replacement on the expression of Thy-1 and CD8 proteins on the gamma/delta T cells associated with gut epithelia. Our results show that the expression of the appropriate type of TCR-gamma/delta is not required for the Thy-1 expression by these T cells, suggesting that Thy-1 is not an activation marker. In contrast, CD8 expression by gut gamma/delta T cells seems to depend on the expression of the appropriate type of TCR. PMID:2109035

  9. A comparison of reptilian and avian olfactory receptor gene repertoires: species-specific expansion of group gamma genes in birds.

    PubMed

    Steiger, Silke S; Kuryshev, Vladimir Y; Stensmyr, Marcus C; Kempenaers, Bart; Mueller, Jakob C

    2009-09-21

    The detection of odorants is mediated by olfactory receptors (ORs). ORs are G-protein coupled receptors that form a remarkably large protein superfamily in vertebrate genomes. We used data that became available through recent sequencing efforts of reptilian and avian genomes to identify the complete OR gene repertoires in a lizard, the green anole (Anolis carolinensis), and in two birds, the chicken (Gallus gallus) and the zebra finch (Taeniopygia guttata). We identified 156 green anole OR genes, including 42 pseudogenes. The OR gene repertoire of the two bird species was substantially larger with 479 and 553 OR gene homologs in the chicken and zebra finch, respectively (including 111 and 221 pseudogenes, respectively). We show that the green anole has a higher fraction of intact OR genes (approximately 72%) compared with the chicken (approximately 66%) and the zebra finch (approximately 38%). We identified a larger number and a substantially higher proportion of intact OR gene homologs in the chicken genome than previously reported (214 versus 82 genes and 66% versus 15%, respectively). Phylogenetic analysis showed that lizard and bird OR gene repertoires consist of group alpha, theta and gamma genes. Interestingly, the vast majority of the avian OR genes are confined to a large expansion of a single branch (the so called gamma-c clade). An analysis of the selective pressure on the paralogous genes of each gamma-c clade revealed that they have been subjected to adaptive evolution. This expansion appears to be bird-specific and not sauropsid-specific, as it is lacking from the lizard genome. The gamma-c expansions of the two birds do not intermix, i.e., they are lineage-specific. Almost all (group gamma-c) OR genes mapped to the unknown chromosome. The remaining OR genes mapped to six homologous chromosomes plus three to four additional chromosomes in the zebra finch and chicken. We identified a surprisingly large number of potentially functional avian OR genes

  10. Pioglitazone and dexamethasone induce adipogenesis in D1 bone marrow stromal cell line, but not through the peroxisome proliferator-activated receptor-gamma pathway.

    PubMed

    Hung, Shao-Hung; Yeh, Ching-Hua; Huang, Hsuan-Ti; Wu, Peihua; Ho, Mei-Ling; Chen, Chung-Hwan; Wang, Chihuei; Chao, David; Wang, Gwo-Jaw

    2008-03-12

    Osteoblasts and adipocytes share a common progenitor in bone marrow. Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) plays a critical role in adipogenesis. Using a mouse pluripotent mesenchymal cell, D1, as a model, several reports have demonstrated that dexamethasone, a glucocorticoid, can induce adipogenesis. We first examined whether adipogenesis induction in D1 cells is initiated by activation of PPAR-gamma. The results revealed that pioglitazone induces adipogenesis in D1 cells in a dose-dependent manner and decreases alkaline phosphatase activity in D1 cells. Interestingly, this adipogenesis was not blocked by bisphenol A diglycidyl ether, a PPAR-gamma antagonist. A PPAR-gamma-mediated reporter gene assay showed no response to pioglitazone. We then asked whether dexamethasone-induced adipogenesis can be repressed by mifepristone (RU486), an antagonist of glucocorticoid receptor. The results disclosed that mifepristone cannot counteract dexamethasone-induced adipogenesis, and mifepristone itself induced adipogenesis in D1 cells. Moreover, glucocorticoid receptor-mediated reporter gene assay was not responsive to dexamethasone or mifepristone. We concluded that the adipogenesis induced by pioglitazone and dexamethasone in D1 cells may not occur via a PPAR-gamma and glucocorticoid receptor pathway. Finally, we analyzed the gene expression profile of D1 by cDNA microarray after treatment with dexamethasone. We found that the expression of several adipogenesis-related genes is highly provoked by this agent.

  11. Repression of gamma-aminobutyric acid type A receptor alpha1 polypeptide biosynthesis requires chronic agonist exposure.

    PubMed

    Miranda, J D; Barnes, E M

    1997-06-27

    Although it is well established that the number of gamma-aminobutyric acid type A (GABAA) receptors declines in cortical neurons exposed to GABAA receptor agonists, the mechanisms responsible for this use-dependent down-regulation remain unclear. Two hypotheses have been proposed: (i) agonist-evoked sequestration and degradation of surface GABAA receptors and (ii) repression of receptor subunit biosynthesis. We have addressed this problem using [35S]Met/Cys pulse-chase labeling of chick cortical neurons in culture and immunoprecipitation and immunoblotting with an antibody (RP4) directed against a GABAA receptor alpha1-(331-381) fusion protein. Exposure of the cells to GABA or isoguvacine for 2 h to 4 days had no effect on the initial rate of 35S incorporation into the GABAA receptor 51-kDa alpha1 polypeptide, but this rate declined by 33% after a 7-day treatment. This is consistent with a previous report (Baumgartner, B. J., Harvey, R. J., Darlison, M. G., and Barnes, E. M. (1994) Mol. Brain Res. 26, 9-17) that a 7-day GABA treatment of this preparation produced a 45% reduction in the alpha1 subunit mRNA level, while a 4-day exposure had no detectable effect. On the other hand, after a 4-day exposure to these agonists, a 30% reduction in the level of the alpha1 polypeptide was observed on immunoblots, similar to that found previously for down-regulation of GABAA receptor ligand-binding sites. Thus, the de novo synthesis of GABAA receptor alpha1 subunits is subject to a delayed use-dependent repression that was observed after, rather than before, the decline in neuronal levels of the polypeptide. Pulse-chase experiments showed a monophasic degradation of the GABAA receptor 35S-alpha1 subunit with a t1/2 = 7.7 h, a process that was unaffected by the addition of GABA to neurons during the chase period. These nascent 35S-labeled polypeptides are presumably diluted into the neuronal pool of unlabeled unassembled alpha1 subunits, which was found to exceed by a 4:1 molar

  12. Selection at a gamma-aminobutyric acid receptor gene in Haemonchus contortus resistant to avermectins/milbemycins.

    PubMed

    Blackhall, William J; Prichard, Roger K; Beech, Robin N

    2003-10-01

    Gamma-aminobutyric acid (GABA) Type A receptors are inhibitory chloride channels in membranes of vertebrate and invertebrate neuromuscular cells. Gating of the channels by GABA leads to an influx of chloride ions into, and hyperpolarisation of, the cell. GABA receptors are believed to form channels by the association of five protein molecules of varying subunit types, with the second transmembrane (M2) domain of each protein molecule forming a central pore through which chloride ions can pass. We have analysed by single-strand conformation polymorphism the genetic variation of a GABA-receptor gene, HG1, from two sets of unselected and anthelmintic-selected strains of the parasitic nematode Haemonchus contortus. Significant differences in allele frequencies were detected between one unselected strain and its derived ivermectin-selected strain and between the other unselected strain and its derived ivermectin- and moxidectin-selected strains. In each set of strains, one allele increased substantially in frequency in the drug-selected strains relative to their respective unselected strains. The selected allele, however, differed between the two sets of strains. Similar analyses were performed on a phosphoenolpyruvate carboxykinase gene and a nicotinic acetylcholine receptor subunit gene. No significant differences were found in allele frequencies between the unselected and their derived anthelmintic-selected strains. These results indicate the GABA receptor as a possible site of action for avermectins and milbemycins, and suggest its involvement in resistance to these anthelmintics.

  13. Fc Gamma Receptor 3A Polymorphism and Risk for HIV-Associated Cryptococcal Disease

    PubMed Central

    Rohatgi, Soma; Gohil, Shruti; Kuniholm, Mark H.; Schultz, Hannah; Dufaud, Chad; Armour, Kathryn L.; Badri, Sheila; Mailliard, Robbie B.; Pirofski, Liise-anne

    2013-01-01

    ABSTRACT Cryptococcus neoformans is one of the most common causes of fungal disease in HIV-infected persons, but not all of those who are infected develop cryptococcal disease (CD). Although CD4+ T cell deficiency is a risk factor for HIV-associated CD, polymorphisms of phagocytic Fc gamma receptors (FCGRs) have been linked to CD risk in HIV-uninfected persons. To investigate associations between FCGR2A 131 H/R and FCGR3A 158 F/V polymorphisms and CD risk in HIV-infected persons, we performed PCR-based genotyping on banked samples from 164 men enrolled in the Multicenter AIDS Cohort Study (MACS): 55 who were HIV infected and developed CD and a matched control group of 54 who were HIV infected and 55 who were HIV uninfected. Using additive and allelic statistical models for analysis, the high-affinity FCGR3A 158V allele was significantly associated with CD status after adjusting for race/ethnicity (odds ratio [OR], 2.1; P = 0.005), as was the FCGR3A 158 VV homozygous genotype after adjusting for race/ethnicity, rate of CD4+ T cell decline, and nadir CD4+ T cell count (OR, 21; P = 0.005). No associations between CD and FCGR2A 131 H/R polymorphism were identified. In binding studies, human IgG (hIgG)-C. neoformans complexes exhibited more binding to CHO-K1 cells expressing FCGR3A 158V than to those expressing FCGR3A 158F, and in cytotoxicity assays, natural killer (NK) cells expressing FCGR3A 158V induced more C. neoformans-infected monocyte cytotoxicity than those expressing FCGR3A 158F. Together, these results show an association between the FCGR3A 158V allele and risk for HIV-associated CD and suggest that this polymorphism could promote C. neoformans pathogenesis via increased binding of C. neoformans immune complexes, resulting in increased phagocyte cargo and/or immune activation. PMID:23982074

  14. Role of Peroxisome Proliferator-Activated Receptor Gamma and Its Ligands in the Treatment of Hematological Malignancies

    PubMed Central

    Garcia-Bates, Tatiana M.; Lehmann, Geniece M.; Simpson-Haidaris, Patricia J.; Bernstein, Steven H.; Sime, Patricia J.; Phipps, Richard P.

    2008-01-01

    Peroxisome proliferator-activated receptor gamma (PPARγ) is a multifunctional transcription factor with important regulatory roles in inflammation, cellular growth, differentiation, and apoptosis. PPARγ is expressed in a variety of immune cells as well as in numerous leukemias and lymphomas. Here, we review recent studies that provide new insights into the mechanisms by which PPARγ ligands influence hematological malignant cell growth, differentiation, and survival. Understanding the diverse properties of PPARγ ligands is crucial for the development of new therapeutic approaches for hematological malignancies. PMID:18528522

  15. Differences in the negative allosteric modulation of gamma-aminobutyric acid receptors elicited by 4'-chlorodiazepam and by a beta-carboline-3-carboxylate ester: a study with natural and reconstituted receptors.

    PubMed Central

    Puia, G; Santi, M R; Vicini, S; Pritchett, D B; Seeburg, P H; Costa, E

    1989-01-01

    Cl- currents elicited by gamma-aminobutyric acid (GABA) application were recorded with the whole-cell tight-seal technique from voltage-clamped cortical neurons of neonatal rats in primary culture. The peripheral benzodiazepine recognition site ligand 4'-chlorodiazepam [Ro 5-4864; 7-chloro-1,3-dihydro-1-methyl-5-(4-chlorophenyl)-2H-[1,4]-benzodiazep in-2- one] inhibited the GABA-generated currents in a dose-dependent manner. Also, a beta-carboline (DMCM; 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate methyl ester), acting as a negative allosteric modulator of GABAA receptors, reduced the intensity of GABA-generated currents with similar efficacy but greater potency. Flumazenil (Ro 15-1788; 8-fluro-5,6-dihydro-5-methyl-6-oxo-4H-imidazo-[1,5-a] [1,4]-benzodiazepine-3-carboxylate ethyl ester) antagonized DMCM inhibition but not that elicited by 4'-chlorodiazepam. The isoquinoline carboxamide PK 11195, an antagonist of 4'-chlorodiazepam effects in other systems, failed to antagonize the action of 4'-chlorodiazepam. The transient expression of various molecular forms of GABAA receptors in the human embryonic kidney cell line 293 allowed a study of the minimal structural requirements for the inhibition of GABA-induced Cl- currents by bicuculline, picrotoxin, 4'-chlorodiazepam, and DMCM. GABA-elicited Cl- currents in cells coexpressing alpha 1 and beta 1 subunits of GABAA receptors were inhibited by bicuculline and picrotoxin, but not by DMCM or 4'-chlorodiazepam. Conversely, the GABA currents in cells coexpressing alpha 1 beta 1 and gamma 2 subunits were inhibited by bicuculline, picrotoxin, 4'-chlorodiazepam, and DMCM. Since the Cl- currents generated by GABA in some molecular forms of GABAA receptors are inhibited by bicuculline and picrotoxin only, 4'-chlorodiazepam cannot be acting isosterically with picrotoxin. PMID:2476816

  16. Telmisartan protects against diabetic vascular complications in a mouse model of obesity and type 2 diabetes, partially through peroxisome proliferator activated receptor-{gamma}-dependent activity

    SciTech Connect

    Toyama, Kensuke; Nakamura, Taishi; Kataoka, Keiichiro; Yasuda, Osamu; Fukuda, Masaya; Tokutomi, Yoshiko; Dong, Yi-Fei; Ogawa, Hisao; Kim-Mitsuyama, Shokei

    2011-07-08

    Highlights: {yields} Telmisartan, an angiotensin receptor blocker, acts as a partial PPAR{gamma} agonist. {yields} The protective effects of telmisartan against diabetic vascular injury were associated with attenuation of vascular NF{kappa}B activation and TNF {alpha}. {yields} PPAR{gamma} activity of telmisartan was involved in the normalization of vascular PPAR{gamma} downregulation in diabetic mice. {yields} We provided the first evidence indicating that PPAR{gamma} activity of telmisartan contributed to the protective effects of telmisartan against diabetic vascular complication. -- Abstract: Experimental and clinical data support the notion that peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) activation is associated with anti-atherosclerosis as well as anti-diabetic effect. Telmisartan, an angiotensin receptor blocker (ARB), acts as a partial PPAR{gamma} agonist. We hypothesized that telmisartan protects against diabetic vascular complications, through PPAR{gamma} activation. We compared the effects of telmisartan, telmisartan combined with GW9662 (a PPAR{gamma} antagonist), and losartan with no PPAR{gamma} activity on vascular injury in obese type 2 diabetic db/db mice. Compared to losartan, telmisartan significantly ameliorated vascular endothelial dysfunction, downregulation of phospho-eNOS, and coronary arterial remodeling in db/db mice. More vascular protective effects of telmisartan than losartan were associated with greater anti-inflammatory effects of telmisartan, as shown by attenuation of vascular nuclear factor kappa B (NF{kappa}B) activation and tumor necrosis factor {alpha}. Coadministration of GW9662 with telmisartan abolished the above mentioned greater protective effects of telmisartan against vascular injury than losartan in db/db mice. Thus, PPAR{gamma} activity appears to be involved in the vascular protective effects of telmisartan in db/db mice. Moreover, telmisartan, but not losartan, prevented the downregulation of

  17. The Interaction Between β-3 Adrenergic Receptor and Peroxisome Proliferator-Activated Receptor Gamma Gene Polymorphism to Periodontal Disease in Community-Dwelling Elderly Japanese.

    PubMed

    Yoshihara, Akihiro; Sugita, Noriko; Iwasaki, Masanori; Wang, Yanming; Miyazaki, Hideo; Yoshie, Hiromasa; Nakamura, Kazutoshi

    2015-08-01

    It has been hypothesized that β-3 adrenergic receptor and peroxisome proliferator-activated receptor gamma (PPARγ) might have gene-environmental and gene-gene interactions in periodontal disease. The purpose of this study is to elucidate the interaction between β-3 adrenergic receptor and PPARγ gene polymorphism with periodontal disease. Three hundred thirty-two postmenopausal females were enrolled, and their serum high-sensitivity C-reactive protein (hsCRP) and hemoglobin A1c (HbA1c) were examined. β-3 adrenergic receptor and PPARγ genotypes were then determined. An oral examination was performed. The number of remaining teeth was counted, and the probing depth (PD) and clinical attachment level (CAL) were measured. Prevalence-rate ratios (PRRs) were calculated by multiple Poisson regression analyses to evaluate the relationship among periodontal disease markers, such as the number of sites with CAL 4 to 5 or ≥6 mm or PD 4 to 5 or ≥6 mm, and β-3 adrenergic receptor polymorphisms, PPARγ polymorphisms, and the interaction term adjusted by age, hsCRP, and HbA1c, after converting the number of remaining teeth (n) to an offset variable. In the participants with body mass index (BMI) ≥25, PRRs of β-3 adrenergic receptor genotype (Trp/Arg and Arg/Arg) for periodontal disease markers were 0.13 to 0.70 (P <0.0001 to 0.74), those of PPARγ genotype (Pro/Pro) were 0.66 to 3.14 (P = 0.01 to 0.68), and those of the interaction term for the two genotypes were 1.69 to 12.61 (P <0.0001 to 0.33). However, in the participants with BMI <25, a constant tendency was not observed. The results confirmed a positive relationship between the interaction term for β-3 adrenergic receptor genotype and PPARγ genotype and various periodontal markers in obese elderly females.

  18. Altered gamma oscillations during pregnancy through loss of δ subunit-containing GABAA receptors on parvalbumin interneurons

    PubMed Central

    Ferando, Isabella; Mody, Istvan

    2013-01-01

    Gamma (γ) oscillations (30–120 Hz), an emergent property of neuronal networks, correlate with memory, cognition and encoding. In the hippocampal CA3 region, locally generated γ oscillations emerge through feedback between inhibitory parvalbumin-positive basket cells (PV+BCs) and the principal (pyramidal) cells. PV+BCs express δ-subunit-containing GABAARs (δ-GABAARs) and NMDA receptors (NMDA-Rs) that balance the frequency of γ oscillations. Neuroactive steroids (NS), such as the progesterone-derived (3α,5α)-3-hydroxy-pregnan-20-one (allopregnanolone; ALLO), modulate the expression of δ-GABAARs and the tonic conductance they mediate. Pregnancy produces large increases in ALLO and brain-region-specific homeostatic changes in δ-GABAARs expression. Here we show that in CA3, where most PV+ interneurons (INs) express δ-GABAARs, expression of δ-GABAARs on INs diminishes during pregnancy, but reverts to control levels within 48 h postpartum. These anatomical findings were corroborated by a pregnancy-related increase in the frequency of kainate-induced CA3 γ oscillations in vitro that could be countered by the NMDA-R antagonists D-AP5 and PPDA. Mimicking the typical hormonal conditions during pregnancy by supplementing 100 nM ALLO lowered the γ frequencies to levels found in virgin or postpartum mice. Our findings show that states of altered NS levels (e.g., pregnancy) may provoke perturbations in γ oscillatory activity through direct effects on the GABAergic system, and underscore the importance of δ-GABAARs homeostatic plasticity in maintaining constant network output despite large hormonal changes. Inaccurate coupling of NS levels to δ-GABAAR expression may facilitate abnormal neurological and psychiatric conditions such as epilepsy, post-partum depression, and post-partum psychosis, thus providing insights into potential new treatments. PMID:24062647

  19. Altered gamma oscillations during pregnancy through loss of δ subunit-containing GABA(A) receptors on parvalbumin interneurons.

    PubMed

    Ferando, Isabella; Mody, Istvan

    2013-01-01

    Gamma (γ) oscillations (30-120 Hz), an emergent property of neuronal networks, correlate with memory, cognition and encoding. In the hippocampal CA3 region, locally generated γ oscillations emerge through feedback between inhibitory parvalbumin-positive basket cells (PV+BCs) and the principal (pyramidal) cells. PV+BCs express δ-subunit-containing GABA(A)Rs (δ-GABA(A)Rs) and NMDA receptors (NMDA-Rs) that balance the frequency of γ oscillations. Neuroactive steroids (NS), such as the progesterone-derived (3α,5α)-3-hydroxy-pregnan-20-one (allopregnanolone; ALLO), modulate the expression of δ-GABA(A)Rs and the tonic conductance they mediate. Pregnancy produces large increases in ALLO and brain-region-specific homeostatic changes in δ-GABA(A)Rs expression. Here we show that in CA3, where most PV+ interneurons (INs) express δ-GABA(A)Rs, expression of δ-GABA(A)Rs on INs diminishes during pregnancy, but reverts to control levels within 48 h postpartum. These anatomical findings were corroborated by a pregnancy-related increase in the frequency of kainate-induced CA3 γ oscillations in vitro that could be countered by the NMDA-R antagonists D-AP5 and PPDA. Mimicking the typical hormonal conditions during pregnancy by supplementing 100 nM ALLO lowered the γ frequencies to levels found in virgin or postpartum mice. Our findings show that states of altered NS levels (e.g., pregnancy) may provoke perturbations in γ oscillatory activity through direct effects on the GABAergic system, and underscore the importance of δ-GABA(A)Rs homeostatic plasticity in maintaining constant network output despite large hormonal changes. Inaccurate coupling of NS levels to δ-GABA(A)R expression may facilitate abnormal neurological and psychiatric conditions such as epilepsy, post-partum depression, and post-partum psychosis, thus providing insights into potential new treatments.

  20. Phenotypic consequences of deletion of the {gamma}{sub 3}, {alpha}{sub 5}, or {beta}{sub 3} subunit of the type A {gamma}-aminobutyric acid receptor in mice

    SciTech Connect

    Culia, C.T.; Stubbs, L.J.; Montgomery, C.S.; Russell, L.B.; Rinchik, E.M.

    1994-03-29

    Three genes (Gabrg3, Gabra5, and Gabrb3) encoding the {gamma}{sub 3}, {alpha}{sub 5}, and {beta}{sub 3} subunits of the type A {gamma}-aminobutyric acid receptor, respectively, are known to map near the pink-eyed dilution (p) locus in mouse chromosome 7. This region shares homology with a segment of human chromosome 15 that is implicated in Angelman syndrome, an inherited neurobehavioral disorder. By mapping Gabrg3-Gabra5-Gabrb3-telomere. Like Gabrb3, neither the Gabra5 nor Gabrg3 gene is functionally imprinted in adult mouse brain. Mice deleted for all three subunits die at birth with a cleft palate, although there are rare survivors ({approximately} 5%) that do not have a cleft palate but do exhibit a neurological abnormality characterized by tremor, jerky gait, and runtiness. The authors have previously suggested that deficiency of the {beta}{sub 3} subunit may be responsible for the clefting defect. Most notably, however, in this report they describe mice carrying two overlapping, complementing p deletions that fail to express the {gamma}{sub 3} transcript, as well as mice from another line that express neither the {gamma}{sub 3} nor {alpha}{sub 5} transcripts. Surprisingly, mice from both of these lines are phenotypically normal and do not exhibit any of the neurological symptoms characteristic of the rare survivors that are deleted for all three ({gamma}{sub 3}, {alpha}{sub 5}, and {beta}{sub 3}) subunits. These mice therefore provide a whole-organism type A {gamma}-aminobutyric-acid receptor background that is devoid of any receptor subtypes that normally contain the {gamma}{sub 3} and/or {alpha}{sub 5} subunits. The absence of an overt neurological phenotype in mice lacking the {gamma}{sub 3} and/or {alpha}{sub 5} subunits also suggests that mutations in these genes are unlikely to provide useful animal models for Angelman syndrome in humans.

  1. SER Analysis of MPPM-Coded MIMO-FSO System over Uncorrelated and Correlated Gamma-Gamma Atmospheric Turbulence Channels

    NASA Astrophysics Data System (ADS)

    Khallaf, Haitham S.; Garrido-Balsells, José M.; Shalaby, Hossam M. H.; Sampei, Seiichi

    2015-12-01

    The performance of multiple-input multiple-output free space optical (MIMO-FSO) communication systems, that adopt multipulse pulse position modulation (MPPM) techniques, is analyzed. Both exact and approximate symbol-error rates (SERs) are derived for both cases of uncorrelated and correlated channels. The effects of background noise, receiver shot-noise, and atmospheric turbulence are taken into consideration in our analysis. The random fluctuations of the received optical irradiance, produced by the atmospheric turbulence, is modeled by the widely used gamma-gamma statistical distribution. Uncorrelated MIMO channels are modeled by the α-μ distribution. A closed-form expression for the probability density function of the optical received irradiance is derived for the case of correlated MIMO channels. Using our analytical expressions, the degradation of the system performance with the increment of the correlation coefficients between MIMO channels is corroborated.

  2. Phenotypic screening of hepatocyte nuclear factor (HNF) 4-{gamma} receptor knockout mice

    SciTech Connect

    Gerdin, Anna Karin; Surve, Vikas V.; Joensson, Marie; Bjursell, Mikael; Edenro, Anne; Schuelke, Meint; Saad, Alaa; Bjurstroem, Sivert; Lundgren, Elisabeth Jensen; Snaith, Michael; Fransson-Steen, Ronny; Toernell, Jan; Bohlooly-Y, Mohammad . E-mail: mohammad.bohlooly@astrazeneca.com

    2006-10-20

    Using the mouse as a model organism in pharmaceutical research presents unique advantages as its physiology in many ways resembles the human physiology, it also has a relatively short generation time, low breeding and maintenance costs, and is available in a wide variety of inbred strains. The ability to genetically modify mouse embryonic stem cells to generate mouse models that better mimic human disease is another advantage. In the present study, a comprehensive phenotypic screening protocol is applied to elucidate the phenotype of a novel mouse knockout model of hepatocyte nuclear factor (HNF) 4-{gamma}. HNF4-{gamma} is expressed in the kidneys, gut, pancreas, and testis. First level of the screen is aimed at general health, morphologic appearance, normal cage behaviour, and gross neurological functions. The second level of the screen looks at metabolic characteristics and lung function. The third level of the screen investigates behaviour more in-depth and the fourth level consists of a thorough pathological characterisation, blood chemistry, haematology, and bone marrow analysis. When compared with littermate wild-type mice (HNF4-{gamma}{sup +/+}), the HNF4-{gamma} knockout (HNF4-{gamma}{sup -/-}) mice had lowered energy expenditure and locomotor activity during night time that resulted in a higher body weight despite having reduced intake of food and water. HNF4-{gamma}{sup -/-} mice were less inclined to build nest and were found to spend more time in a passive state during the forced swim test.

  3. Experimental study of the vidicon system for information recording using the wide-gap spark chamber of gamma - telescope gamma-I

    NASA Technical Reports Server (NTRS)

    Akimov, V. V.; Bazer-Bashv, R.; Voronov, S. A.; Galper, A. M.; Gro, M.; Kalinkin, L. F.; Kerl, P.; Kozlov, V. D.; Koten, F.; Kretol, D.

    1979-01-01

    The development of the gamma ray telescope is investigated. The wide gap spark chambers, used to identify the gamma quanta and to determine the directions of their arrival, are examined. Two systems of information recording with the spark chambers photographic and vidicon system are compared.

  4. Expression of peroxisome proliferator activated receptor-gamma in non-small cell lung carcinoma: correlation with histological type and grade.

    PubMed

    Theocharis, Stamatios; Kanelli, Helen; Politi, Ekaterini; Margeli, Alexandra; Karkandaris, Christos; Philippides, Theodoros; Koutselinis, Antonios

    2002-06-01

    Peroxisome Proliferator Activated Receptor-gamma (PPAR-gamma) is a ligand-activated transcription factor belonging to the steroid receptor superfamily. It is a key regulator of adipogenic differentiation and glucose homeostasis, the ligands of which have also been demonstrated to induce differentiation in human breast, lung and colon cancer cell lines. In the present study, PPAR-gamma expression in cases of non-small cell lung carcinoma (NSCLC) was examined immunohistochemically and was correlated with tumor histological type and grade. Primary tumor samples from 147 patients with NSCLC were immunostained using a monoclonal antibody against PPAR-gamma. Positive PPAR-gamma immunostaining was prominent in 61 out of 147 cases (42%) and negative in the rest. PPAR-gamma positivity was prominent in 37 out of 79 cases (47%) of squamous cell lung carcinoma and in 24 out of 68 ones (35%) of lung adenocarcinoma. PPAR-gamma positivity was most frequently observed in squamous cell tumors (P=0.021) and in tumors of high histological grade of both histological types (P=0.041). Well-differentiated adenocarcinoma cases presented increased frequency for PPAR-gamma positivity compared with moderately and poorly differentiated ones (P=0.001). The intensity and pattern of PPAR-gamma staining in tumor cells were not correlated with histopathological parameters in PPAR-gamma positive cases of NSCLC examined. Our findings support evidence for participation of this protein in the biological mechanisms underlying the carcinogenic evolution in the lung, suggesting also the importance of specific PPAR-gamma ligands as future therapeutic approach in lung cancer.

  5. The CD3-gamma and CD3-delta subunits of the T cell antigen receptor can be expressed within distinct functional TCR/CD3 complexes.

    PubMed Central

    Alarcón, B; Ley, S C; Sánchez-Madrid, F; Blumberg, R S; Ju, S T; Fresno, M; Terhorst, C

    1991-01-01

    The T cell receptor for antigen (TCR) consists of two glycoproteins containing variable regions (TCR-alpha/beta or TCR-gamma/delta) which are expressed on the cell surface in association with at least four invariant proteins (CD3-gamma, -delta, -epsilon and -zeta). CD3-gamma and CD3-delta chains are highly homologous, especially in the cytoplasmic domain. The similarity observed in their genomic organization and their proximity in the chromosome indicate that both genes arose from duplication of a single gene. Here, we provide several lines of evidence which indicate that in human and murine T cells which expressed both the CD3-gamma and CD3-delta chains on their surface, the TCR/CD3 complex consisted of a mixture of alpha beta gamma epsilon zeta and alpha beta delta epsilon zeta complexes rather than a single alpha beta gamma delta epsilon zeta complex. First, a CD3-gamma specific antibody failed to co-immunoprecipitate CD3-delta and conversely, several CD3-delta specific antibodies did not coprecipitate CD3-gamma. Secondly, analysis of a panel of human and murine T cell lines demonstrated that CD3-gamma and CD3-delta were expressed at highly variable ratios on their surface. This suggested that these chains were not expressed as a single complex. Thirdly, CD3-gamma and CD3-delta competed for binding to CD3-epsilon in transfected COS cells, suggesting that CD3-gamma and CD3-delta formed mutually exclusive complexes. The existence of these two forms of TCR/CD3 complexes could have important implications in the understanding of T cell receptor function and its role in T cell development. Images PMID:1826255

  6. Innovative Gamma Ray Spectrometer Detection Systems for Conducting Scanning Surveys on Challenging Terrain - 13583

    SciTech Connect

    Palladino, Carl; Mason, Bryan; Engle, Matt; LeVangie, James; Dempsey, Gregg; Klemovich, Ron

    2013-07-01

    The Santa Susana Field Laboratory located near Simi Valley, California was investigated to determine the nature and extent of gamma radiation anomalies. The primary objective was to conduct gamma scanning surveys over 100 percent of the approximately 1,906,000 square meters (471 acre) project site with the most sensitive detection system possible. The site had challenging topography that was not conducive to traditional gamma scanning detection systems. Terrain slope varied from horizontal to 48 degrees and the ground surface ranged from flat, grassy meadows to steep, rocky hillsides. In addition, the site was home to many protected endangered plant and animal species, and archaeologically significant sites that required minimal to no disturbance of the ground surface. Therefore, four innovative and unique gamma ray spectrometer detection systems were designed and constructed to successfully conduct gamma scanning surveys of approximately 1,076,000 square meters (266 acres) of the site. (authors)

  7. Neutron interrogation system using high gamma ray signature to detect contraband special nuclear materials in cargo

    DOEpatents

    Slaughter, Dennis R.; Pohl, Bertram A.; Dougan, Arden D.; Bernstein, Adam; Prussin, Stanley G.; Norman, Eric B.

    2008-04-15

    A system for inspecting cargo for the presence of special nuclear material. The cargo is irradiated with neutrons. The neutrons produce fission products in the special nuclear material which generate gamma rays. The gamma rays are detecting indicating the presence of the special nuclear material.

  8. Development of gamma-emitting, receptor binding radiotracers for imaging the brain and pancreas

    SciTech Connect

    Reba, R.C.

    1990-01-01

    This progress report covers period from Nov. 1, 1989 to Aug. 31, 1990. The long term objective was to develop receptor-binding radiotracers for SPECT or PET imaging of CNS or peripheral nervous system. The specific chemistry aims, as understood on the basis of past findings, were: to synthesize and develop a more polar analogs of 4IQNB, possessing similar binding characteristics but eliminated more rapidly from the surrounding tissues and the target organ, to design a method of introducing a technetium chelating group onto a molecule or cholinergic agent without drastic lowering of its apparent affinity, to synthesize and develop radiotracers based on m-AChR antagonists selective for one of the subtypes of the receptor. The chemistry service aims were to prepare and characterize (R,R)- and (R,S)-4IQNB and derivatives, to provide the triazene intermediate to other investigators, and to provide ({sup 123}I)4IQNB for in vivo imaging. The biochemistry aims were to characterize the vitro and in vivo properties of novel compounds and to perform the pharmacokinetic studies. 3 refs., 5 tabs.

  9. Performance analysis of free space optical system with spatial modulation and diversity combiners over the Gamma Gamma atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Odeyemi, Kehinde O.; Owolawi, Pius A.; Srivastava, Viranjay M.

    2017-01-01

    Atmospheric turbulence is a major impairment that degrades the performance of free space optical (FSO) communication systems. Spatial modulation (SM) with receive spatial diversity is considered as a powerful technique to mitigate the fading effect induced by atmospheric turbulence. In this paper, the performance of free space optical spatial modulation (FSO-SM) system under Gamma-Gamma atmospheric turbulence is presented. We studied the Average Bit Error Rate (ABER) for the system by employing spatial diversity combiners such Maximum Ratio Combining (MRC) and Equal Gain Combining (EGC) at the receiving end. In particular, we provide a theoretical framework for the system error by deriving Average Pairwise Error Probability (APEP) expression using a generalized infinite power series expansion approach and union bounding technique is applied to obtain the ABER for each combiner. Based on this study, it was found that spatial diversity combiner significantly improved the system error rate where MRC outperforms the EGC. The performance of this system is also compared with other well established diversity combiner systems. The proposed system performance is further improved by convolutional coding technique and our analysis confirmed that the system performance of MRC coded system is enhanced by approximately 20 dB while EGC falls within 17 dB.

  10. Differential interaction of Crkl with Cbl or C3G, Hef-1, and gamma subunit immunoreceptor tyrosine-based activation motif in signaling of myeloid high affinity Fc receptor for IgG (Fc gamma RI).

    PubMed

    Kyono, W T; de Jong, R; Park, R K; Liu, Y; Heisterkamp, N; Groffen, J; Durden, D L

    1998-11-15

    Cbl-Crkl and Crkl-C3G interactions have been implicated in T cell and B cell receptor signaling and in the regulation of the small GTPase, Rap1. Recent evidence suggests that Rap1 plays a prominent role in the regulation of immunoreceptor tyrosine-based activation motif (ITAM) signaling. To gain insight into the role of Crkl in myeloid ITAM signaling, we investigated Cbl-Crkl and Crkl-C3G interactions following Fc gamma RI aggregation in U937IF cells. Fc gamma RI cross-linking of U937IF cells results in the tyrosine phosphorylation of Cbl, Crkl, and Hef-1, an increase in the association of Crkl with Cbl via direct SH2 domain interaction and increased Crkl-Hef-1 binding. Crkl constitutively binds to the guanine nucleotide-releasing protein, C3G, via direct SH3 domain binding. Our data show that distinct Cbl-Crkl and Crkl-C3G complexes exist in myeloid cells, suggesting that these complexes may modulate distinct signaling events. Anti-Crkl immunoprecipitations demonstrate that the ITAM-containing gamma subunit of Fc gamma RI is induced to form a complex with the Crkl protein, and Crkl binds to the cytoskeletal protein, Hef-1. The induced association of Crkl with Cbl, Hef-1, and Fc gamma RI gamma after Fc gamma RI activation and the constitutive association between C3G and Crkl provide the first evidence that a Fc gamma RI gamma-Crkl-C3G complex may link ITAM receptors to the activation of Rap1 in myeloid cells.

  11. Networked gamma radiation detection system for tactical deployment

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ronald; Smith, Ethan; Guss, Paul; Mitchell, Stephen

    2015-08-01

    A networked gamma radiation detection system with directional sensitivity and energy spectral data acquisition capability is being developed by the National Security Technologies, LLC, Remote Sensing Laboratory to support the close and intense tactical engagement of law enforcement who carry out counterterrorism missions. In the proposed design, three clusters of 2″ × 4″ × 16″ sodium iodide crystals (4 each) with digiBASE-E (for list mode data collection) would be placed on the passenger side of a minivan. To enhance localization and facilitate rapid identification of isotopes, advanced smart real-time localization and radioisotope identification algorithms like WAVRAD (wavelet-assisted variance reduction for anomaly detection) and NSCRAD (nuisance-rejection spectral comparison ratio anomaly detection) will be incorporated. We will test a collection of algorithms and analysis that centers on the problem of radiation detection with a distributed sensor network. We will study the basic characteristics of a radiation sensor network and focus on the trade-offs between false positive alarm rates, true positive alarm rates, and time to detect multiple radiation sources in a large area. Empirical and simulation analyses of critical system parameters, such as number of sensors, sensor placement, and sensor response functions, will be examined. This networked system will provide an integrated radiation detection architecture and framework with (i) a large nationally recognized search database equivalent that would help generate a common operational picture in a major radiological crisis; (ii) a robust reach back connectivity for search data to be evaluated by home teams; and, finally, (iii) a possibility of integrating search data from multi-agency responders.

  12. 4-Hydroxydocosahexaenoic acid, a potent peroxisome proliferator-activated receptor {gamma} agonist alleviates the symptoms of DSS-induced colitis

    SciTech Connect

    Yamamoto, Keiko; Ninomiya, Yuichi; Iseki, Mioko; Nakachi, Yutaka; Kanesaki-Yatsuka, Yukiko; Yamanoue, Yu; Itoh, Toshimasa; Nishii, Yasuho; Petrovsky, Nikolai; Okazaki, Yasushi

    2008-03-14

    (5E,7Z,10Z,13Z,16Z,19Z)-4-Hydroxy-5,7,10,13,16,19-docosahexaenoic acid (4-OHDHA) is a potential agonist of peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}) and antidiabetic agent as has been previously reported. As PPAR{gamma} agonists may also have anti-inflammatory functions, in this study, we investigated whether 4-OHDHA has an inhibitory effect on expression of inflammatory genes in vitro and whether 4-OHDHA could relieve the symptoms of dextran sodium sulfate (DSS)-induced colitis in a murine model of inflammatory bowel disease. 4-OHDHA inhibited production of nitric oxide and expression of a subset of inflammatory genes including inducible nitric oxide synthase (Nos2/iNOS) and interleukin 6 (Il6) by lipopolysaccharide (LPS)-activated macrophages. In addition, 4-OHDHA-treated mice when compared to control mice not receiving treatment recovered better from the weight loss caused by DSS-induced colitis. Changes in disease activity index (DAI) of 4-OHDHA-treated mice were also more favorable than for control mice and were comparable with mice treated with a typical anti-inflammatory-drug, 5-aminosalichylic acid (5-ASA). These results suggest that 4-OHDHA has potentially clinically useful anti-inflammatory effects mediated by suppression of inflammatory gene expression.

  13. A novel peroxisome proliferator-activated receptor alpha/gamma dual agonist demonstrates favorable effects on lipid homeostasis.

    PubMed

    Guo, Qiu; Sahoo, Soumya P; Wang, Pei-Ran; Milot, Denise P; Ippolito, Marc C; Wu, Margaret S; Baffic, Joanne; Biswas, Chhabi; Hernandez, Melba; Lam, My-Hanh; Sharma, Neelam; Han, Wei; Kelly, Linda J; MacNaul, Karen L; Zhou, Gaochao; Desai, Ranjit; Heck, James V; Doebber, Thomas W; Berger, Joel P; Moller, David E; Sparrow, Carl P; Chao, Yu-Sheng; Wright, Samuel D

    2004-04-01

    Patients with type 2 diabetes mellitus exhibit hyperglycemia and dyslipidemia as well as a markedly increased incidence of atherosclerotic cardiovascular disease. Here we report the characterization of a novel arylthiazolidinedione capable of lowering both glucose and lipid levels in animal models. This compound, designated TZD18, is a potent agonist with dual human peroxisome proliferator-activated receptor (PPAR)-alpha/gamma activities. In keeping with its PPARgamma activity, TZD18 caused complete normalization of the elevated glucose in db/db mice and Zucker diabetic fatty rats. TZD18 lowered both cholesterol and triglycerides in hamsters and dogs. TZD18 inhibited cholesterol biosynthesis at steps before mevalonate and reduced hepatic levels of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity. Moreover, TZD18 significantly suppressed gene expression of fatty acid synthesis and induced expression of genes for fatty acid degradation and triglyceride clearance. Studies on 17 additional PPARalpha or PPARalpha/gamma agonists showed that lipid lowering in hamsters correlated with the magnitude of hepatic gene expression changes. Importantly, the presence of PPARgamma agonism did not affect the relationship between hepatic gene expression and lipid lowering. Taken together, these data suggest that PPARalpha/gamma agonists, such as TZD18, affect lipid homeostasis, leading to an antiatherogenic plasma lipid profile. Agents with these properties may provide favorable means for treatment of type 2 diabetes and dyslipidemia and the prevention of atherosclerotic cardiovascular disease.

  14. The {gamma}-aminobutyric acid receptor {gamma}3 subunit gene (GABRG3) is tightly linked to the {alpha}5 subunit gene (GABRA5) on human chromosome 15q11-q13 and is transcribed in the same orientation

    SciTech Connect

    Greger, V. |; Knoll, J.H.M.; Woolf, E. |

    1995-03-20

    GABA{sub A} receptors are heterooligomeric ligand-gated ion channels that mediate the effect of the inhibitory neurotransmitter {gamma}-aminobutyric acid. The GABA{sub A} receptors consist of at least 15 different receptor subunits that can be classified into 5 subfamilies ({alpha},{beta},{gamma},{delta},{rho}) on the basis of sequence similarity. Chromosomal mapping studies have revealed that several of the GABA{sub A} receptor subunit genes appear to be organized as clusters. One such cluster, which consists of the GABA{sub A} receptor {beta}3 (GABRB3) and {alpha}5 (GABRA5) sub-unit genes, is located in chromosome 15q11-q13. It is shown here that the GABA{sub A} receptor {gamma}3 subunit gene (GABRG3) also maps to this region. Lambda and P1 phage clones surrounding both ends of GABRG3 were isolated; the clones derived from the 5{prime} end of GABRG3 were linked to an existing phage contig spanning the 3{prime} end of GABRA5. The two genes are located within 35 kb of each other and are transcribed in the same orientation. 39 refs., 4 figs.

  15. Regulation of peroxisome proliferator-activated receptor-gamma in liver fibrosis.

    PubMed

    Yang, Liu; Chan, Che-Chang; Kwon, Oh-Sang; Liu, Songling; McGhee, Jason; Stimpson, Stephen A; Chen, Lihong Z; Harrington, W Wallace; Symonds, William T; Rockey, Don C

    2006-11-01

    The peroxisome proliferator-activated receptors (PPARs) impart diverse cellular effects in biological systems. Because stellate cell activation during liver injury is associated with declining PPARgamma expression, we hypothesized that its expression is critical in stellate cell-mediated fibrogenesis. We therefore modulated its expression during liver injury in vivo. PPARgamma was depleted in rat livers by using an adenovirus-Cre recombinase system. PPARgamma was overexpressed by using an additional adenoviral vector (AdPPARgamma). Bile duct ligation was utilized to induce stellate cell activation and liver fibrosis in vivo; phenotypic effects (collagen I, smooth muscle alpha-actin, hydroxyproline content, etc.) were measured. PPARgamma mRNA levels decreased fivefold and PPARgamma protein was undetectable in stellate cells after culture-induced activation. During activation in vivo, collagen accumulation, assessed histomorphometrically and by hydroxyproline content, was significantly increased after PPARgamma depletion compared with controls (1.28 +/- 0.14 vs. 1.89 +/- 0.21 mg/g liver tissue, P < 0.03). In isolated stellate cells, AdPPARgamma overexpression resulted in significantly increased adiponectin mRNA expression and decreased collagen I and smooth muscle alpha-actin mRNA expression compared with controls. During in vivo fibrogenesis, rat livers exposed to AdPPARgamma had significantly less fibrosis than controls. Collagen I and smooth muscle alpha-actin mRNA expression were significantly reduced in AdPPARgamma-infected rats compared with controls (P < 0.05, n = 10). PPARgamma-deficient mice exhibited enhanced fibrogenesis after liver injury, whereas PPARgamma receptor overexpression in vivo attenuated stellate cell activation and fibrosis. The data highlight a critical role for PPARgamma during in vivo fibrogenesis and emphasize the importance of the PPARgamma pathway in stellate cells during liver injury.

  16. Prototype system for proton beam range measurement based on gamma electron vertex imaging

    NASA Astrophysics Data System (ADS)

    Lee, Han Rim; Kim, Sung Hun; Park, Jong Hoon; Jung, Won Gyun; Lim, Hansang; Kim, Chan Hyeong

    2017-06-01

    In proton therapy, for both therapeutic effectiveness and patient safety, it is very important to accurately measure the proton dose distribution, especially the range of the proton beam. For this purpose, recently we proposed a new imaging method named gamma electron vertex imaging (GEVI), in which the prompt gammas emitting from the nuclear reactions of the proton beam in the patient are converted to electrons, and then the converted electrons are tracked to determine the vertices of the prompt gammas, thereby producing a 2D image of the vertices. In the present study, we developed a prototype GEVI system, including dedicated signal processing and data acquisition systems, which consists of a beryllium plate (= electron converter) to convert the prompt gammas to electrons, two double-sided silicon strip detectors (= hodoscopes) to determine the trajectories of those converted electrons, and a plastic scintillation detector (= calorimeter) to measure their kinetic energies. The system uses triple coincidence logic and multiple energy windows to select only the events from prompt gammas. The detectors of the prototype GEVI system were evaluated for electronic noise level, energy resolution, and time resolution. Finally, the imaging capability of the GEVI system was tested by imaging a 90Sr beta source, a 60Co gamma source, and a 45-MeV proton beam in a PMMA phantom. The overall results of the present study generally show that the prototype GEVI system can image the vertices of the prompt gammas produced by the proton nuclear interactions.

  17. T cell receptor (alpha, beta, gamma) gene rearrangements and expression in normal and leukemic large granular lymphocytes/natural killer cells.

    PubMed

    Pelicci, P G; Allavena, P; Subar, M; Rambaldi, A; Pirelli, A; Di Bello, M; Barbui, T; Knowles, D M; Dalla-Favera, R; Mantovani, A

    1987-11-01

    The large granular lymphocyte (LGL) population, which effects a natural killer (NK) function, consists of cells whose lineage derivation has not been clearly established on the basis of phenotypic and functional properties. To clarify the relationship of LGL/NK cells to T cells we studied patterns of rearrangement and expression of the T cell receptor (Ti) genes alpha, beta, and gamma in normal human LGLs; in CD8+, CD8-, Mol+, and Mol- LGL subsets; and in 17 cases of leukemic LGL proliferations (T gamma LPD). T alpha, T beta, and T gamma genes were not expressed, nor were T beta and T gamma genes rearranged in normal LGLs or LGL subsets. The T gamma LPD were divided into two groups. One group (15/17 cases) was characterized as CD3+ and displayed Ti gene rearrangements. Seven of these cases were reactive with monoclonal antibody WT31, which suggested expression of an alpha/beta heterodimer on the cell surface. The other group (2/17 cases) was CD3- with unrearranged Ti genes. These results indicate that the normal LGL/NK population is homogeneous and distinct from the normal T cell population because it does not express, and as a result, cannot effect its immune function through the T cell receptor molecules. Conversely, T gamma LPDs represent a heterogeneous group of lymphoproliferative diseases within which the CD3-, Ti- cases most likely represent the neoplastic counterpart of normal LGL cells. The more frequent CD3+ cases may be related to recently described NK-like T cells. The observations that normal LGLs maintain germline T gamma genes and that many CD3+ T gamma LPD display an alpha/beta heterodimer suggest that a T gamma-containing receptor may not be necessary for NK or NK-like cytotoxicity.

  18. Identification and characterization of estrogen receptor-related receptor alpha and gamma in human glioma and astrocytoma cells.

    PubMed

    Gandhari, Mukesh K; Frazier, Chester R; Hartenstein, Julia S; Cloix, Jean-Francois; Bernier, Michel; Wainer, Irving W

    2010-02-05

    The purpose of this study was to examine expression and function of estrogen receptor-related receptors (ERRs) in human glioma and astrocytoma cell lines. These estrogen receptor-negative cell lines expressed ERRalpha and ERRgamma proteins to varying degree in a cell context dependent manner, with U87MG glioma cells expressing both orphan nuclear receptors. Cell proliferation assays were performed in the presence of ERR isoform-specific agonists and antagonists, and the calculated EC(50) and IC(50) values were consistent with previous reported values determined in other types of cancer cell lines. Induction of luciferase expression under the control of ERR isoform-specific promoters was also observed in these cells. These results indicate that ERRalpha and ERRgamma are differentially expressed in these tumor cell lines and likely contribute to agonist-dependent ERR transcriptional activity.

  19. A system for the measurement of delayed neutrons and gammas from special nuclear materials

    DOE PAGES

    Andrews, M. T.; Corcoran, E. C.; Goorley, J. T.; ...

    2014-11-27

    The delayed neutron counting (DNC) system at the Royal Military College of Canada has been upgraded to accommodate concurrent delayed neutron and gamma measurements. This delayed neutron and gamma counting (DNGC) system uses a SLOWPOKE-2 reactor to irradiate fissile materials before their transfer to a counting arrangement consisting of six ³He and one HPGe detector. The application of this system is demonstrated in an example where delayed neutron and gamma emissions are used in complement to examine ²³³U content and determine fissile mass with an average relative error and accuracy of -2.2 and 1.5 %, respectively.

  20. Cloning, purification, crystallization and preliminary X-ray analysis of the catalytic domain of human receptor-like protein tyrosine phosphatase [gamma] in three different crystal forms

    SciTech Connect

    Kish, Kevin; McDonnell, Patricia A.; Goldfarb, Valentina; Gao, Mian; Metzler, William J.; Langley, David R.; Bryson, James W.; Kiefer, Susan E.; Carpenter, Brian; Kostich, Walter A.; Westphal, Ryan S.; Sheriff, Steven

    2013-03-07

    Protein tyrosine phosphatase {gamma} is a membrane-bound receptor and is designated RPTP{gamma}. RPTP{gamma} and two mutants, RPTP{gamma}(V948I, S970T) and RPTP{gamma}(C858S, S970T), were recombinantly expressed and purified for X-ray crystallographic studies. The purified enzymes were crystallized using the hanging-drop vapor-diffusion method. Crystallographic data were obtained from several different crystal forms in the absence and the presence of inhibitor. In this paper, a description is given of how three different crystal forms were obtained that were used with various ligands. An orthorhombic crystal form and a trigonal crystal form were obtained both with and without ligand, and a monoclinic crystal form was only obtained in the presence of a particularly elaborated inhibitor.

  1. Olfactory system gamma oscillations: the physiological dissection of a cognitive neural system

    PubMed Central

    Rojas-Líbano, Daniel

    2008-01-01

    Oscillatory phenomena have been a focus of dynamical systems research since the time of the classical studies on the pendulum by Galileo. Fast cortical oscillations also have a long and storied history in neurophysiology, and olfactory oscillations have led the way with a depth of explanation not present in the literature of most other cortical systems. From the earliest studies of odor-evoked oscillations by Adrian, many reports have focused on mechanisms and functional associations of these oscillations, in particular for the so-called gamma oscillations. As a result, much information is now available regarding the biophysical mechanisms that underlie the oscillations in the mammalian olfactory system. Recent studies have expanded on these and addressed functionality directly in mammals and in the analogous insect system. Sub-bands within the rodent gamma oscillatory band associated with specific behavioral and cognitive states have also been identified. All this makes oscillatory neuronal networks a unique interdisciplinary platform from which to study neurocognitive and dynamical phenomena in intact, freely behaving animals. We present here a summary of what has been learned about the functional role and mechanisms of gamma oscillations in the olfactory system as a guide for similar studies in other cortical systems. PMID:19003484

  2. Structure-activity relationships of seco-prezizaane terpenoids in gamma-aminobutyric acid receptors of houseflies and rats.

    PubMed

    Kuriyama, Tadahiko; Schmidt, Thomas J; Okuyama, Emi; Ozoe, Yoshihisa

    2002-06-01

    Thirteen seco-prezizaane terpenoids isolated from star anise species (Illcium floridanum, Illcium parviflorum, and Illcium verum) were investigated for their ability to inhibit the specific binding of [(3)H]4'-ethynyl-4-n-propylbicycloorthobenzoate (EBOB), a non-competitive antagonist of gamma-aminobutyric acid (GABA) receptors, to housefly-head and rat-brain membranes. Veranisatin A was found to be the most potent inhibitor in both membranes, with an IC(50)(fly) of 78.5 nM and an IC(50)(rat) of 271 nM, followed by anisatin (IC(50)(fly)=123 nM; IC(50)(rat)=282 nM). Six of the other 11 tested compounds were effective only in housefly-head membranes. Pseudoanisatin proved to display a high (>26-fold) selectivity for housefly versus rat GABA receptors (IC(50)(fly)=376 nM; IC(50)(rat) >10,000 nM). Although pseudoanisatin does not structurally resemble EBOB, Scatchard plots indicated that the two compounds bind to the same site in housefly receptors. Anisatin and pseudoanisatin exhibited moderate insecticidal activity against German cockroaches. Comparative molecular field analysis (CoMFA), a method of three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis, demonstrated that seco-prezizaane terpenoids can bind to the same site as do picrotoxane terpenoids such as picrotoxinin and picrodendrins, and the CoMFA maps allowed us to identify the parts of the molecules essential to high activity in housefly GABA receptors.

  3. Propofol inhibits T-helper cell type-2 differentiation by inducing apoptosis via activating gamma-aminobutyric acid receptor.

    PubMed

    Meng, Jingxia; Xin, Xin; Liu, Zhen; Li, Hao; Huang, Bo; Huang, Yuguang; Zhao, Jing

    2016-12-01

    Propofol has been shown to attenuate airway hyperresponsiveness in asthma patients. Our previous study showed that it may alleviate lung inflammation in a mouse model of asthma. Given the critical role of T-helper cell type-2 (Th2) differentiation in asthma pathology and the immunomodulatory role of the gamma-aminobutyric acid type A (GABAA) receptor, we hypothesized that propofol could alleviate asthma inflammation by inhibiting Th2 cell differentiation via the GABA receptor. For in vivo testing, chicken ovalbumin-sensitized and challenged asthmatic mice were used to determine the effect of propofol on Th2-type asthma inflammation. For in vitro testing, Th2-type cytokines as well as the cell proliferation and apoptosis were measured to assess the effects of propofol on Th2 cell differentiation and determine the underlying mechanisms. We found that propofol significantly decreased inflammatory cell counts and interleukin-4 and inflammation score in vivo. Propofol, but not intralipid, significantly reduced the Th2-type cytokine interleukin-5 secretion and caused Th2 cell apoptosis without obvious inhibition of proliferation in vitro. A GABA receptor agonist simulated the effect of propofol, whereas pretreatment with an antagonist reversed this effect. This study demonstrates that the antiinflammatory effects of propofol on Th2-type asthma inflammation in mice are mediated by inducing apoptosis without compromising proliferation during Th2 cell differentiation via activation of the GABA receptor. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. The gamma-aminobutyric acid type B (GABAB) receptor agonist baclofen inhibits morphine sensitization by decreasing the dopamine level in rat nucleus accumbens

    PubMed Central

    2012-01-01

    Background Repeated morphine exposure can induce behavioral sensitization. There are evidences have shown that central gamma-aminobutyric acid (GABA) system is involved in morphine dependence. However, the effect of a GABAB receptor agonist baclofen on morphine-induced behavioral sensitization in rats is unclear. Methods We used morphine-induced behavioral sensitization model in rat to investigate the effects of baclofen on behavioral sensitization. Moreover, dopamine release in the shell of the nucleus accumbens was evaluated using microdialysis assay in vivo. Results The present study demonstrated that morphine challenge (3 mg/kg, s.c.) obviously enhanced the locomotor activity following 4-day consecutive morphine administration and 3-day withdrawal period, which indicated the expression of morphine sensitization. In addition, chronic treatment with baclofen (2.5, 5 mg/kg) significantly inhibited the development of morphine sensitization. It was also found that morphine challenge 3 days after repeated morphine administration produced a significant increase of extracellular dopamine release in nucleus accumbens. Furthermore, chronic treatment with baclofen decreased the dopamine release induced by morphine challenge. Conclusions Our results indicated that gamma-aminobutyric acid system plays an important role in the morphine sensitization in rat and suggested that behavioral sensitization is a promising model to study the mechanism underlying drug abuse. PMID:22559224

  5. Pro12Ala polymorphism in the peroxisome proliferator-activated receptor-gamma (PPAR-gamma) gene and risk of prostate cancer among men in a large cancer prevention study.

    PubMed

    Paltoo, Dina; Woodson, Karen; Taylor, Philip; Albanes, Demetrius; Virtamo, Jarmo; Tangrea, Joseph

    2003-02-28

    The nuclear hormone receptor peroxisome proliferator-activated receptor-gamma (PPAR-gamma) may play a role in prostate carcinogenesis. We examined the association between the PPAR-gamma Pro12Ala polymorphism and prostate cancer risk in a cohort of Finnish male smokers. In a nested case-control analysis that included 193 prostate cancer cases and 188 matched controls, we found no significant association between this polymorphism and prostate cancer risk (odds ratio, OR=1.27, 95% confidence interval, CI: 0.83-1.94), or significant trend or association with tumor stage (OR=1.28, 95% CI: 0.54-3.04 for metastatic disease) or grade (OR=1.57, 95% CI: 0.63-3.91 for poorly differentiated disease). The Pro12Ala polymorphism does not appear to play a significant role in prostate cancer risk in this cohort of men.

  6. Effects of subcutaneous administration of the gamma-aminobutyric acid(A) receptor agonist muscimol on water intake in water-deprived rats.

    PubMed

    Houston, Abigail J; Wong, John C L; Ebenezer, Ivor S

    2002-11-01

    The effects of the gamma-aminobutyric acid(A) (GABA(A)) receptor agonist muscimol were investigated on water intake in rats that had been deprived of water for 16 h. Muscimol (0.5-2.0 mg/kg sc) produced a dose-related inhibition of water consumption in both male (n=8) and female (n=8) rats, with maximal suppression of drinking occurring during the first 30 min after administration. Doses of 1 and 2 mg/kg produced significant decreases in water intake (P<.01), while a lower dose of 0.5 mg/kg was without effect. The hypodipsic effect of muscimol (1.0 mg/kg sc) was abolished by pretreatment of the animals with the GABA(A) receptor antagonist bicuculline (1 mg/kg sc). Furthermore, muscimol (2 mg/kg sc) did not produce aversion in a two-bottle conditioned taste aversion test, indicating that the suppressant effects of muscimol on water intake are not due to drug-induced malaise. The results suggest that systemic administration of muscimol produces a behaviourally specific suppression of primary drinking in rats by a GABA(A) receptor-mediated mechanism. Moreover, this action of muscimol appears to be independent of the gender of the animals.

  7. Adenosine receptors and the central nervous system.

    PubMed

    Sebastião, Ana M; Ribeiro, Joaquim A

    2009-01-01

    The adenosine receptors (ARs) in the nervous system act as a kind of "go-between" to regulate the release of neurotransmitters (this includes all known neurotransmitters) and the action of neuromodulators (e.g., neuropeptides, neurotrophic factors). Receptor-receptor interactions and AR-transporter interplay occur as part of the adenosine's attempt to control synaptic transmission. A(2A)ARs are more abundant in the striatum and A(1)ARs in the hippocampus, but both receptors interfere with the efficiency and plasticity-regulated synaptic transmission in most brain areas. The omnipresence of adenosine and A(2A) and A(1) ARs in all nervous system cells (neurons and glia), together with the intensive release of adenosine following insults, makes adenosine a kind of "maestro" of the tripartite synapse in the homeostatic coordination of the brain function. Under physiological conditions, both A(2A) and A(1) ARs play an important role in sleep and arousal, cognition, memory and learning, whereas under pathological conditions (e.g., Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, stroke, epilepsy, drug addiction, pain, schizophrenia, depression), ARs operate a time/circumstance window where in some circumstances A(1)AR agonists may predominate as early neuroprotectors, and in other circumstances A(2A)AR antagonists may alter the outcomes of some of the pathological deficiencies. In some circumstances, and depending on the therapeutic window, the use of A(2A)AR agonists may be initially beneficial; however, at later time points, the use of A(2A)AR antagonists proved beneficial in several pathologies. Since selective ligands for A(1) and A(2A) ARs are now entering clinical trials, the time has come to determine the role of these receptors in neurological and psychiatric diseases and identify therapies that will alter the outcomes of these diseases, therefore providing a hopeful future for the patients who suffer from these diseases.

  8. Development of gamma-photon/Cerenkov-light hybrid system for simultaneous imaging of I-131 radionuclide

    NASA Astrophysics Data System (ADS)

    Yamamoto, Seiichi; Suzuki, Mayumi; Kato, Katsuhiko; Watabe, Tadashi; Ikeda, Hayato; Kanai, Yasukazu; Ogata, Yoshimune; Hatazawa, Jun

    2016-09-01

    Although iodine 131 (I-131) is used for radionuclide therapy, high resolution images are difficult to obtain with conventional gamma cameras because of the high energy of I-131 gamma photons (364 keV). Cerenkov-light imaging is a possible method for beta emitting radionuclides, and I-131 (606 MeV maximum beta energy) is a candidate to obtain high resolution images. We developed a high energy gamma camera system for I-131 radionuclide and combined it with a Cerenkov-light imaging system to form a gamma-photon/Cerenkov-light hybrid imaging system to compare the simultaneously measured images of these two modalities. The high energy gamma imaging detector used 0.85-mm×0.85-mm×10-mm thick GAGG scintillator pixels arranged in a 44×44 matrix with a 0.1-mm thick reflector and optical coupled to a Hamamatsu 2 in. square position sensitive photomultiplier tube (PSPMT: H12700 MOD). The gamma imaging detector was encased in a 2 cm thick tungsten shield, and a pinhole collimator was mounted on its top to form a gamma camera system. The Cerenkov-light imaging system was made of a high sensitivity cooled CCD camera. The Cerenkov-light imaging system was combined with the gamma camera using optical mirrors to image the same area of the subject. With this configuration, we simultaneously imaged the gamma photons and the Cerenkov-light from I-131 in the subjects. The spatial resolution and sensitivity of the gamma camera system for I-131 were respectively 3 mm FWHM and 10 cps/MBq for the high sensitivity collimator at 10 cm from the collimator surface. The spatial resolution of the Cerenkov-light imaging system was 0.64 mm FWHM at 10 cm from the system surface. Thyroid phantom and rat images were successfully obtained with the developed gamma-photon/Cerenkov-light hybrid imaging system, allowing direct comparison of these two modalities. Our developed gamma-photon/Cerenkov-light hybrid imaging system will be useful to evaluate the advantages and disadvantages of these two

  9. Leukotriene E4 activates peroxisome proliferator-activated receptor gamma and induces prostaglandin D2 generation by human mast cells.

    PubMed

    Paruchuri, Sailaja; Jiang, Yongfeng; Feng, Chunli; Francis, Sanjeev A; Plutzky, Jorge; Boyce, Joshua A

    2008-06-13

    Cysteinyl leukotrienes (cys-LTs) are potent inflammatory lipid mediators, of which leukotriene (LT) E(4) is the most stable and abundant in vivo. Although only a weak agonist of established G protein-coupled receptors (GPCRs) for cys-LTs, LTE(4) potentiates airway hyper-responsiveness (AHR) by a cyclooxygenase (COX)-dependent mechanism and induces bronchial eosinophilia. We now report that LTE(4) activates human mast cells (MCs) by a pathway involving cooperation between an MK571-sensitive GPCR and peroxisome proliferator-activated receptor (PPAR)gamma, a nuclear receptor for dietary lipids. Although LTD(4) is more potent than LTE(4) for inducing calcium flux by the human MC sarcoma line LAD2, LTE(4) is more potent for inducing proliferation and chemokine generation, and is at least as potent for upregulating COX-2 expression and causing prostaglandin D(2) (PGD(2)) generation. LTE(4) caused phosphorylation of extracellular signal-regulated kinase (ERK), p90RSK, and cyclic AMP-regulated-binding protein (CREB). ERK activation in response to LTE(4), but not to LTD(4), was resistant to inhibitors of phosphoinositol 3-kinase. LTE(4)-mediated COX-2 induction, PGD(2) generation, and ERK phosphorylation were all sensitive to interference by the PPARgamma antagonist GW9662 and to targeted knockdown of PPARgamma. Although LTE(4)-mediated PGD(2) production was also sensitive to MK571, an antagonist for the type 1 receptor for cys-LTs (CysLT(1)R), it was resistant to knockdown of this receptor. This LTE(4)-selective receptor-mediated pathway may explain the unique physiologic responses of human airways to LTE(4) in vivo.

  10. Gamma (γ) tocopherol upregulates peroxisome proliferator activated receptor (PPAR) gamma (γ) expression in SW 480 human colon cancer cell lines

    PubMed Central

    Campbell, Sharon E; Stone, William L; Whaley, Sarah G; Qui, Min; Krishnan, Koyamangalath

    2003-01-01

    Background Tocopherols are lipid soluble antioxidants that exist as eight structurally different isoforms. The intake of γ-tocopherol is higher than α-tocopherol in the average US diet. The clinical results of the effects of vitamin E as a cancer preventive agent have been inconsistent. All published clinical trials with vitamin E have used α-tocopherol. Recent epidemiological, experimental and molecular studies suggest that γ-tocopherol may be a more potent chemopreventive form of vitamin E compared to the more-studied α-tocopherol. γ-Tocopherol exhibits differences in its ability to detoxify nitrogen dioxide, growth inhibitory effects on selected cancer cell lines, inhibition of neoplastic transformation in embryonic fibroblasts, and inhibition of cyclooxygenase-2 (COX-2) activity in macrophages and epithelial cells. Peroxisome proliferator activator receptor γ (PPARγ) is a promising molecular target for colon cancer prevention. Upregulation of PPARγ activity is anticarcinogenic through its effects on downstream genes that affect cellular proliferation and apoptosis. The thiazolidine class of drugs are powerful PPARγ ligands. Vitamin E has structural similarity to the thiazolidine, troglitazone. In this investigation, we tested the effects of both α and γ tocopherol on the expression of PPARγ mRNA and protein in SW 480 colon cancer cell lines. We also measured the intracellular concentrations of vitamin E in SW 480 colon cancer cell lines. Results We have discovered that the α and γ isoforms of vitamin E upregulate PPARγ mRNA and protein expression in the SW480 colon cancer cell lines. γ-Tocopherol is a better modulator of PPARγ expression than α-tocopherol at the concentrations tested. Intracellular concentrations increased as the vitamin E concentration added to the media was increased. Further, γ-tocopherol-treated cells have higher intracellular tocopherol concentrations than those treated with the same concentrations of

  11. IFN-gamma and IFN-alpha posttranscriptionally down-regulate the IL-4-induced IL-4 receptor gene expression.

    PubMed

    So, E Y; Park, H H; Lee, C E

    2000-11-15

    As Th1 and Th2 cytokines, IFN-gamma/alpha and IL-4 counterregulate diverse immune functions. In particular, IFN-gamma and IFN-alpha have been reported to markedly suppress the IL-4-induced IgE production and type II IgE receptor (FcepsilonRII/CD23) expression. Because modulation of IL-4R may be an important mechanism in the regulation of IL-4 response, we have investigated the effect of IFN-gamma/alpha on IL-4R expression and signal transduction mechanisms involved in this process. In human mononuclear cells and B cells isolated from tonsil or peripheral blood, IL-4 up-regulates IL-4R(alpha) expression at surface protein and mRNA levels, and the IL-4-induced IL-4R(alpha) is significantly down-regulated by both IFN-gamma and IFN-alpha to a similar extent. The inhibitory effects of IFN-gamma/alpha on the IL-4R mRNA expression require a lag period of about 8 h, and are sensitive to cycloheximide treatment, which suggests that the suppressive effect of IFNs on IL-4R gene expression is a secondary response requiring de novo synthesis of IFN-induced factors. Under such conditions that the inhibitory effects of IFNs are observed, IFNs do not affect the IL-4-induced STAT6 activation and IL-4R transcription, as analyzed by EMSA and nuclear run-on assays, respectively. Subsequently, mRNA stability studies have indicated that the action of IFN-gamma/alpha is primarily mediated by an accelerated decay of IL-4-induced IL-4R mRNA. Thus, it appears that, as already shown in the case of the IL-4-induced FcepsilonRII regulation, posttranscriptional inhibition of IL-4-inducible genes by mRNA destabilization is a common mechanism by which type I and II IFNs antagonize the IL-4 response in human immune cells.

  12. Activation of peroxisome proliferator-activated receptor-alpha and -gamma in auricular tissue from heart failure patients.

    PubMed

    Gómez-Garre, Dulcenombre; Herraíz, Marta; González-Rubio, Ma Luisa; Bernal, Rosa; Aragoncillo, Paloma; Carbonell, Amparo; Rufilanchas, Juan José; Fernández-Cruz, Arturo

    2006-03-01

    Peroxisome proliferator-activated receptors (PPARs), key transcriptional regulators of lipid and energy metabolism in cardiomyocytes, have recently been proposed to modulate cardiovascular pathophysiological responses in experimental models. However, there is little information about the functional activity of PPARs in human heart failure. To investigate PPAR-alpha and -gamma expression and activity, and the association with ET-1 production and fibrosis, in cardiac biopsies from patients with end-stage heart failure due to ischemic cardiomyopathy (ICM) in comparison and from non-failing donor hearts. All samples were obtained during cardiac transplantation. Morphological analysis (by Masson trichrome and image analysis) did not detect fibrosis in the left atrium from non-failing donors (NFLA) or from ICM patients (FLA). However, left ventricles from failing hearts (FLV) contained a greater number of fibrotic areas (NFLA: 3.21+/-1.15, FLA: 1.63+/-0.83, FLV: 14.5+/-3.45%; n = 9, P<0.05). By RT-PCR, preproET-1 expression was similar in the non-failing and failing atrium but was significantly higher in the ventricles from failing hearts (NFLA: 1.00+/-0.06, FLA: 1.08+/-0.11, FLV: 1.74+/-0.19; n = 9, P<0.05). PPAR-alpha and PPAP-gamma mRNA (by RT-PCR) and protein (by Western blot) levels were higher in the ventricles from failing hearts compared with the atrium from failing and non-failing hearts. Electrophoretic mobility shift assays showed that PPAR-alpha and PPAP-gamma were not activated in the ventricles (NFLA: 1.00+/-0.11, FLA: 1.89+/-0.24, FLV: 0.95+/-0.07; n = 9, P<0.05). These data suggest that PPAR-alpha and PPAP-gamma are selectively activated in the atria from ICM patients and might be functionally important in the maintenance of atrial morphology.

  13. Correction of interleukin-2 receptor function in X-SCID lymphoblastoid cells by retrovirally mediated transfer of the gamma-c gene.

    PubMed

    Taylor, N; Uribe, L; Smith, S; Jahn, T; Kohn, D B; Weinberg, K

    1996-04-15

    X-SCID, the most common form of human SCID, is due to mutations in the common gamma chain gene (gamma-c) that encodes an essential component of the cytokine receptors for interleukin-2 (IL-2), IL-4, IL-7, IL-9, and IL-15. Activation of the Janus family tyrosine kinases Jak1 and Jak3 is necessary for appropriate signalling through the IL-2 receptor (IL-2R). Neither Jak1 nor Jak3 was phosphorylated after IL-2 stimulation of an Epstein-Barr virus-transformed cell line (LCL) from an X-SCID patient with a gamma-c null mutation. However, we now show that appropriate IL-2R function can be restored in an X-SCID LCL by transduction of a wild-type gamma-c gene. A retroviral vector, G1gamma-cSvNa, was constructed and produced in the PG13 packaging line. Transduced X-SCID LCL expressed the G1gamma-cSvNa transcript. IL-2 stimulation of the transduced cell line resulted in appropriate tyrosine phosphorylation of both Jak1 and Jak3. Thus, retroviral-mediated transduction of normal gamma-c can reconstitute downstream signalling through the IL-2R in X-SCID cell lines, suggesting that gene therapy may be a treatment for this disease.

  14. Peroxisome proliferator-activated receptor {gamma} is expressed in hippocampal neurons and its activation prevents {beta}-amyloid neurodegeneration: role of Wnt signaling

    SciTech Connect

    Inestrosa, Nibaldo C. . E-mail: ninestr@genes.bio.puc.cl; Godoy, Juan A.; Quintanilla, Rodrigo A.; Koenig, Cecilia S.; Bronfman, Miguel

    2005-03-10

    The molecular pathogenesis of Alzheimer's disease (AD) involves the participation of the amyloid-{beta}-peptide (A{beta}), which plays a critical role in the neurodegeneration that triggers the disease. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors, which are members of the nuclear receptor family. We report here that (1) PPAR{gamma} is present in rat hippocampal neurons in culture. (2) Activation of PPAR{gamma} by troglitazone and rosiglitazone protects rat hippocampal neurons against A{beta}-induced neurodegeneration, as shown by the 3-[4,5 -2yl]-2,5-diphenyltetrazolium bromide (MTT) reduction assay, immunofluorescence using an anti-heavy neurofilament antibody, and quantitative electron microscopy. (3) Hippocampal neurons treated with several PPAR{gamma} agonists, including troglitazone, rosiglitazone, and ciglitazone, prevent the excitotoxic A{beta}-induced rise in bulk-free Ca{sup 2+}. (4) PPAR{gamma} activation results in the modulation of Wnt signaling components, including the inhibition of glycogen synthase kinase-3{beta} (GSK-3{beta}) and an increase of the cytoplasmic and nuclear {beta}-catenin levels. We conclude that the activation of PPAR{gamma} prevents A{beta}-induced neurodegeneration by a mechanism that may involve a cross talk between neuronal PPAR{gamma} and the Wnt signaling pathway. More important, the fact that the activation of PPAR{gamma} attenuated A{beta}-dependent neurodegeneration opens the possibility to fight AD from a new therapeutic perspective.

  15. Localization of the binding site on IgG for solubilized placental Fc gamma receptor.

    PubMed

    Matre, R; Tönder, O

    1984-01-01

    Placental Fc gamma R (FcR) inhibited the rosette formation between monocytes and rabbit IgG-sensitized erythrocytes (EA), whereas the rosette formation with granulocytes was not impaired. Staphylococcal protein A (SpA) inhibited the rosette formation with both cell types. Results obtained in absorption and agglutination experiments showed that SpA blocked the binding of FcR to IgG, and Cl did not. Furthermore, FcR did not interfere with the binding of SpA to IgG, whereas C1 affected this binding. FcR apparently bind to the C gamma 3 region. Since FcR inhibited the binding of EA to monocytes, the monocyte FcR binding site is probably also located within the C gamma 3 region.

  16. Discovery of a Series of Imidazo[4,5-b]pyridines with Dual Activity at Angiotensin II Type 1 Receptor and Peroxisome Proliferator-Activated Receptor-[gamma

    SciTech Connect

    Casimiro-Garcia, Agustin; Filzen, Gary F.; Flynn, Declan; Bigge, Christopher F.; Chen, Jing; Davis, Jo Ann; Dudley, Danette A.; Edmunds, Jeremy J.; Esmaeil, Nadia; Geyer, Andrew; Heemstra, Ronald J.; Jalaie, Mehran; Ohren, Jeffrey F.; Ostroski, Robert; Ellis, Teresa; Schaum, Robert P.; Stoner, Chad

    2013-03-07

    Mining of an in-house collection of angiotensin II type 1 receptor antagonists to identify compounds with activity at the peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}) revealed a new series of imidazo[4,5-b]pyridines 2 possessing activity at these two receptors. Early availability of the crystal structure of the lead compound 2a bound to the ligand binding domain of human PPAR{gamma} confirmed the mode of interaction of this scaffold to the nuclear receptor and assisted in the optimization of PPAR{gamma} activity. Among the new compounds, (S)-3-(5-(2-(1H-tetrazol-5-yl)phenyl)-2,3-dihydro-1H-inden-1-yl)-2-ethyl-5-isobutyl-7-methyl-3H-imidazo[4,5-b]pyridine (2l) was identified as a potent angiotensin II type I receptor blocker (IC{sub 50} = 1.6 nM) with partial PPAR{gamma} agonism (EC{sub 50} = 212 nM, 31% max) and oral bioavailability in rat. The dual pharmacology of 2l was demonstrated in animal models of hypertension (SHR) and insulin resistance (ZDF rat). In the SHR, 2l was highly efficacious in lowering blood pressure, while robust lowering of glucose and triglycerides was observed in the male ZDF rat.

  17. Characterization of a family of gamma-ray-induced CHO mutants demonstrates that the ldlA locus is diploid and encodes the low-density lipoprotein receptor

    SciTech Connect

    Sege, R.D.; Kozarsky, K.F.; Krieger, M.

    1986-09-01

    The ldlA locus is one of four Chinese hamster ovary (CHO) cell loci which are known to be required for the synthesis of functional low-density lipoprotein (LDL) receptors. Previous studies have suggested that the ldlA locus is diploid and encodes the LDL receptor. To confirm this assignment, we have isolated a partial genomic clone of the Chinese hamster LDL receptor gene and used this and other nucleic acid and antibody probes to study a family of ldlA mutants isolated after gamma-irradiation. Our analysis suggests that there are two LDL receptor alleles in wild-type CHO cells. Each of the three mutants isolated after gamma-irradiation had detectable deletions affecting one of the two LDL receptor alleles. One of the mutants also had a disruption of the remaining allele, resulting in the synthesis of an abnormal receptor precursor which was not subject to Golgi-associated posttranslational glycoprotein processing. The correlation of changes in the expression, structure, and function of LDL receptors with deletions in the LDL receptor genes in these mutants directly demonstrated that the ldlA locus in CHO cells is diploid and encodes the LDL receptor. In addition, our analysis suggests that CHO cells in culture may contain a partial LDL receptor pseudogene.

  18. Characterization of a family of gamma-ray-induced CHO mutants demonstrates that the ldlA locus is diploid and encodes the low-density lipoprotein receptor.

    PubMed

    Sege, R D; Kozarsky, K F; Krieger, M

    1986-09-01

    The ldlA locus is one of four Chinese hamster ovary (CHO) cell loci which are known to be required for the synthesis of functional low-density lipoprotein (LDL) receptors. Previous studies have suggested that the ldlA locus is diploid and encodes the LDL receptor. To confirm this assignment, we have isolated a partial genomic clone of the Chinese hamster LDL receptor gene and used this and other nucleic acid and antibody probes to study a family of ldlA mutants isolated after gamma-irradiation. Our analysis suggests that there are two LDL receptor alleles in wild-type CHO cells. Each of the three mutants isolated after gamma-irradiation had detectable deletions affecting one of the two LDL receptor alleles. One of the mutants also had a disruption of the remaining allele, resulting in the synthesis of an abnormal receptor precursor which was not subject to Golgi-associated posttranslational glycoprotein processing. The correlation of changes in the expression, structure, and function of LDL receptors with deletions in the LDL receptor genes in these mutants directly demonstrated that the ldlA locus in CHO cells is diploid and encodes the LDL receptor. In addition, our analysis suggests that CHO cells in culture may contain a partial LDL receptor pseudogene.

  19. Corticotropin-releasing factor induces phosphorylation of phospholipase C-gamma at tyrosine residues via its receptor 2beta in human epidermoid A-431 cells.

    PubMed

    Kiang, J G; Ding, X Z; Gist, I D; Jones, R R; Tsokos, G C

    1998-12-18

    This laboratory previously reported that corticotropin-releasing factor (CRF) increased intracellular free calcium concentrations, cellular cAMP, inositol 1,4,5-trisphosphate, protein kinase C activity, and protein phosphorylation in human A-431 cells. The increase was blocked by CRF receptor antagonist. In this study, we identified the type of CRF receptors present and investigated whether CRF induced tyrosine phosphorylation of phospholipase C-gamma via CRF receptors. Using novel primers in reverse transcriptase-polymerase chain reaction, we determined the CRF receptor type to be that of 2beta. The levels of the CRF receptor type 2beta were not altered in cells treated with activators of protein kinase C, Ca2+ ionophore, or cells overexpressing heat shock protein 70 kDa. Cells treated with CRF displayed increases in protein tyrosine phosphorylation approximately at 150 kDa as detected by immunoblotting using an antibody against phosphotyrosine. Immunoprecipitation with antibodies directed against phospholipase C-beta3, -gamma1, or -gamma2 isoforms (which have molecular weights around 150 kDa) followed by Western blotting using an anti-phosphotyrosine antibody showed that only phospholipase C-gamma1 and -gamma2 were phosphorylated. The increase in phospholipase C-gamma phosphorylation was concentration-dependent with an EC50 of 4.2+/-0.1 pM. The maximal phosphorylation by CRF at 1 nM occurred by 5 min. The CRF-induced phosphorylation was inhibited by the protein tyrosine kinase inhibitors genistein and herbimycin A, suggesting that CRF activates protein tyrosine kinases. Treatment of cells with CRF receptor antagonist, but not pertussis toxin, prior to treatment with CRF inhibited the CRF-induced phosphorylation, suggesting it is mediated by the CRF receptor type 2beta that is not coupled to pertussis toxin-sensitive G-proteins. Treatment with 1,2-bis(2iminophenoxy)ethane-N,N,N',N'-tetraacetic acid attenuated the phospholipase C-gamma phosphorylation. In summary

  20. Determination of the optimal positions for installing gamma ray detection systems at Tehran Research Reactor

    NASA Astrophysics Data System (ADS)

    Sayyah, A.; Rahmani, F.; Khalafi, H.

    2015-09-01

    Dosimetric instruments must constantly monitor radiation dose levels in different areas of nuclear reactor. Tehran Research Reactor (TRR) has seven beam tubes for different research purposes. All the beam tubes extend from the reactor core to Beam Port Floor (BPF) of the reactor facility. During the reactor operation, the gamma rays exiting from each beam tube outlet produce a specific gamma dose rate field in the space of the BPF. To effectively monitor the gamma dose rates on the BPF, gamma ray detection systems must be installed in optimal positions. The selection of optimal positions is a compromise between two requirements. First, the installation positions must possess largest gamma dose rates and second, gamma ray detectors must not be saturated in these positions. In this study, calculations and experimental measurements have been carried out to identify the optimal positions of the gamma ray detection systems. Eight three dimensional models of the reactor core and related facilities corresponding to eight scenarios have been simulated using MCNPX Monte Carlo code to calculate the gamma dose equivalent rate field in the space of the BPF. These facilities are beam tubes, thermal column, pool, BPF space filled with air, facilities such as neutron radiography facility, neutron powder diffraction facility embedded in the beam tubes as well as biological shields inserted into the unused beam tubes. According to the analysis results of the combined gamma dose rate field, three positions on the north side and two positions on the south side of the BPF have been recognized as optimal positions for installing the gamma ray detection systems. To ensure the consistency of the simulation data, experimental measurements were conducted using TLDs (600 and 700) pairs during the reactor operation at 4.5 MW.

  1. Tyrosine kinase phosphorylation of GABA(A) receptor alpha1, beta2 and gamma2 subunits following chronic intermittent ethanol (CIE) exposure of cultured cortical neurons of mice.

    PubMed

    Ravindran, C R Marutha; Ticku, Maharaj K

    2006-09-01

    There is evidence that many of the GABA(A) receptor subunits contain consensus sequence for tyrosine kinase, and phosphorylation may play a key role in ethanol's regulation of GABA(A) receptors. Recently, we investigated the effect of chronic exposure of ethanol (CE) on tyrosine kinase phosphorylation and reported that there was an up-regulation in tyrosine kinase phosphorylation of the beta(2)- and gamma(2)- subunits and no effect on alpha(1)-subunit of the GABA(A) receptor in the cultured cortical neurons of mice. In the present study, we have further investigated the effect of chronic intermittent administration of ethanol (CIE) on tyrosine kinase phosphorylation of the GABA(A) receptor subunits (alpha(1), beta(2), and gamma(2)) in the mouse cultured cortical neurons by immunoprecipitation and Western blot techniques. We observed that there was an up-regulation in the tyrosine kinase phosphorylation of the GABA(A )receptor beta(2)- and gamma(2)-subunits following CIE exposure, and no effect on alpha(1)-subunit in the cultured cortical neurons of mice. These CIE changes, unlike CE, were not reverted back to the control level following ethanol withdrawal even after 7 days. Acute exposure of ethanol did not cause any change in the tyrosine kinase regulation of the GABA(A) receptor subunits. In conclusion, the CIE exposure, unlike chronic/acute ethanol exposure, regulates the tyrosine kinase phosphorylation of the selective population of GABA(A )receptors in a long lasting manner.

  2. AZ-101 Mixer Pump Demonstration Data Acquisition System and Gamma Cart Data Acquisition Control System Software Configuration Management Plan

    SciTech Connect

    WHITE, D.A.

    1999-12-29

    This Software Configuration Management Plan (SCMP) provides the instructions for change control of the AZ1101 Mixer Pump Demonstration Data Acquisition System (DAS) and the Sludge Mobilization Cart (Gamma Cart) Data Acquisition and Control System (DACS).

  3. Lipid synthesis in macrophages during inflammation in vivo: effect of agonists of peroxisome proliferator activated receptors alpha and gamma and of retinoid X receptors.

    PubMed

    Posokhova, E N; Khoshchenko, O M; Chasovskikh, M I; Pivovarova, E N; Dushkin, M I

    2008-03-01

    The effects of peroxisome proliferator activated receptors alpha and gamma (PPAR-alpha and PPAR-gamma) and retinoid X receptor (RXR) agonists upon synthesis and accumulation of lipids in murine C57Bl macrophages during inflammation induced by injection of zymosan and Escherichia coli lipopolysaccharide (LPS) have been studied. It is significant that intraperitoneal injection of zymosan (50 mg/kg) or LPS (0.1 mg/kg) in mice led to a dramatic increase of [14C]oleate incorporation into cholesteryl esters and triglycerides and [14C]acetate incorporation into cholesterol and fatty acids in peritoneal macrophages. Lipid synthesis reached its maximum rate 18-24 h after injection and was decreased 5-7 days later to control level after LPS injection or was still heightened after zymosan injection. In macrophages obtained in acute phase of inflammation (24 h), degradation of 125I-labeled native low density lipoprotein (NLDL) was 4-fold increased and degradation of 125I-labeled acetylated LDL (AcLDL) was 2-3-fold decreased. Addition of NLDL (50 microg/ml) or AcLDL (25 microg/ml) into the incubation medium of activated macrophages induced 9-14- and 1.25-fold increase of cholesteryl ester synthesis, respectively, compared with control. Addition of NLDL and AcLDL into the incubation medium completely inhibited cholesterol synthesis in control macrophages but had only slightly effect on cholesterol synthesis in activated macrophages. Injection of RXR, PPAR-alpha, or PPAR-gamma agonists--9-cis-retinoic acid (5 mg/kg), bezafibrate (10 mg/kg), or rosiglitazone (10 mg/kg), respectively--30 min before zymosan or LPS injection led to significant decrease of lipid synthesis. Ten hour preincubation of activated in vivo macrophages with the abovementioned agonists (5 microM) decreased cholesteryl ester synthesis induced by NLDL and AcLDL addition into the cell cultivation medium. The data suggest that RXR, PPAR-alpha, or PPAR-gamma agonists inhibited lipid synthesis and induction of

  4. The gamma-aminobutyrate/benzodiazepine receptor from pig brain. Purification and characterization of the receptor complex from cerebral cortex and cerebellum.

    PubMed Central

    Kirkness, E F; Turner, A J

    1986-01-01

    The gamma-aminobutyrate/benzodiazepine-receptor complex has been purified from a Triton X-100 extract of crude synaptic membranes from pig cerebral cortex and cerebellum by a combination of affinity and ion-exchange chromatography. [3H]Flunitrazepam binding activity was purified 2200-fold from cortex with an overall yield of 2%. The dissociation constants for the binding of [3H]muscimol and [3H]flunitrazepam to the receptor complex were 14 +/- 3 nM and 14 +/- 2 nM respectively. The ratio of [3H]muscimol to [3H]flunitrazepam binding sites was in the range 2.2-2.8. There appeared to be no selective inactivation of either binding site during the purification procedure. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis revealed two major polypeptides of Mr 49 000 and 55 000 from both cortex and cerebellum. When the receptor from cortex was photoaffinity labelled with [3H]flunitrazepam, radioactivity was incorporated predominantly into the Mr-49 000 polypeptide, although some radioactivity was detectable in the Mr-55 000 band. The cerebellar receptor was photoaffinity labelled on the 49 000-Mr polypeptide but not on the polypeptide of Mr 55 000. In addition, some radioactivity was detected in a minor polypeptide of Mr 43 000. When purified in the presence of 3-[(3-cholamidopropyl)dimethylammonio]propanesulphonate the same major polypeptide components (Mr 49 000 and 55 000) were isolated, but the receptor now retained its ability to be modulated by secobarbital and by the anaesthetic propanidid. Images Fig. 2. PMID:3006661

  5. Real time method and computer system for identifying radioactive materials from HPGe gamma-ray spectroscopy

    DOEpatents

    Rowland, Mark S.; Howard, Douglas E.; Wong, James L.; Jessup, James L.; Bianchini, Greg M.; Miller, Wayne O.

    2007-10-23

    A real-time method and computer system for identifying radioactive materials which collects gamma count rates from a HPGe gamma-radiation detector to produce a high-resolution gamma-ray energy spectrum. A library of nuclear material definitions ("library definitions") is provided, with each uniquely associated with a nuclide or isotope material and each comprising at least one logic condition associated with a spectral parameter of a gamma-ray energy spectrum. The method determines whether the spectral parameters of said high-resolution gamma-ray energy spectrum satisfy all the logic conditions of any one of the library definitions, and subsequently uniquely identifies the material type as that nuclide or isotope material associated with the satisfied library definition. The method is iteratively repeated to update the spectrum and identification in real time.

  6. Measurements of gamma-ray production cross sections for shielding materials of space nuclear systems

    NASA Technical Reports Server (NTRS)

    Orphan, V. J.; John, J.; Hoot, C. G.

    1972-01-01

    Measurements of secondary gamma ray production from neutron interactions have been made over the entire energy range of interest in shielding applications. The epithermal capture gamma ray yields for both resolved gamma ray lines and continuum have been measured from thermal energies to 100 KeV for natural tungsten and U-238, two important candidate shield materials in SNAP reactor systems. Data are presented to illustrate the variation of epithermal capture gamma ray yields with neutron energy. The gamma ray production cross sections from (n,xy) reactions have been measured for Fe and Al from the threshold energies for inelastic scattering to approximately 16 MeV. Typical Fe and Al cross sections obtained with high-neutron energy resolution and averaged over broad neutron-energy groups are presented.

  7. Gamma-butyrolactone (GBL) disruption of passive avoidance learning in the day-old chick appears to be due to its effect on GABAB not gamma-hydroxybutyric [corrected] acid (GHB) receptors.

    PubMed

    Sherry, Joanne M; Hazi, Agnes; Hale, Mathew W; Milsome, Sarah L; Crowe, Simon F

    2009-02-11

    Gamma-butyrolactone (GBL) is a prodrug to gamma-hydroxybutyric acid (GHB) and metabolises to GHB when ingested. Discrimination stimulus studies report generalisation of effects of GHB to GBL. While amnesia is one of the most commonly reported symptoms of GHB's ingestion in human users, as yet few studies have examined this effect. Although an endogenous GHB specific receptor is present in the brain, several studies have indicated that the clinical effects of exogenous doses of GBL/GHB are due to its action on GABA(B) receptors rather than on the GHB receptor. In this series of studies, New Hampshire x White leghorn cockerels were trained using a modified version of the passive avoidance learning task. Subcutaneous injections of GBL induced a memory deficit by 10 min post-training, which persisted for at least 24 h. No effect on memory was seen with administration of the specific GHB agonist NCS-356 (gamma-p-chlorophenyl-trans-4-hydroxycrotonate). The GBL-induced memory deficit appeared similar to the deficit produced by baclofen, where the antagonist facilitated learning. Additionally, GBL-induced memory deficit was ameliorated by application of a GABA(B) antagonist. The results support the hypothesis that GBL exerts its influence on memory via the GABA(B) receptor rather than by the specific GHB receptor.

  8. Identification of a yeast artificial chromosome clone encoding an accessory factor for the human interferon [gamma] receptor: Evidence for multiple accessory factors

    SciTech Connect

    Soh, J.; Donnelly, R.J.; Mariano, T.M.; Cook, J.R.; Schwartz, B.; Pestka, S. )

    1993-09-15

    Human chromosomes 6 and 21 are both necessary to confer sensitivity to human interferon [gamma](Hu-IFN-[gamma]), as measured by the induction of human HLA class I antigen. Human chromosome 6 encodes the receptor for Hu-IFN-[gamma], and human chromosome 21 encodes accessory factors for generating biological activity through the Hu-IFN-[gamma] receptor. A small region of human chromosome 21 that is responsible for encoding such factors was localized with hamster-human somatic cell hybrids carrying an irradiation-reduced fragment of human chromosome 21. The cell line with the minimum chromosome 21-specific DNA is Chinese hamster ovary 3x1S. To localize the genes further, 10 different yeast artificial chromosome clones from six different loci in the vicinity of the 3x1S region were fused to a human-hamster hybrid cell line (designated 16-9) that contains human chromosome 6q (supplying the Hy-IFN-[gamma] receptor) and the human HLA-B7 gene. These transformed 16-9 cells were assayed for induction of class I HLA antigens upon treatment with Hu-IFN-[gamma]. Here the authors report that a 540-kb yeast artificial chromosome encodes the necessary species-specific factor(s) and can substitute for human chromosome 21 to reconstitute the Hu-IFN-[gamma]-receptor-mediated induction of class I HLA antigens. However, the factor encoded on the yeast artificial chromosome does not confer antiviral protection against encephalomyocarditis virus, demonstrating that an additional factor encoded on human chromosome 21 is required for the antiviral activity. 51 refs., 3 figs., 2 tabs.

  9. Identification of a yeast artificial chromosome clone encoding an accessory factor for the human interferon gamma receptor: evidence for multiple accessory factors.

    PubMed

    Soh, J; Donnelly, R J; Mariano, T M; Cook, J R; Schwartz, B; Pestka, S

    1993-09-15

    Human chromosomes 6 and 21 are both necessary to confer sensitivity to human interferon gamma (Hu-IFN-gamma), as measured by the induction of human HLA class I antigen. Human chromosome 6 encodes the receptor for Hu-IFN-gamma, and human chromosome 21 encodes accessory factors for generating biological activity through the Hu-IFN-gamma receptor. A small region of human chromosome 21 that is responsible for encoding such factors was localized with hamster-human somatic cell hybrids carrying an irradiation-reduced fragment of human chromosome 21. The cell line with the minimum chromosome 21-specific DNA is Chinese hamster ovary 3x1S. To localize the genes further, 10 different yeast artificial chromosome clones from six different loci in the vicinity of the 3x1S region were fused to a human-hamster hybrid cell line (designated 16-9) that contains human chromosome 6q (supplying the Hu-IFN-gamma receptor) and the human HLA-B7 gene. These transformed 16-9 cells were assayed for induction of class I HLA antigens upon treatment with Hu-IFN-gamma. Here we report that a 540-kb yeast artificial chromosome encodes the necessary species-specific factor(s) and can substitute for human chromosome 21 to reconstitute the Hu-IFN-gamma-receptor-mediated induction of class I HLA antigens. However, the factor encoded on the yeast artificial chromosome does not confer antiviral protection against encephalomyocarditis virus, demonstrating that an additional factor encoded on human chromosome 21 is required for the antiviral activity.

  10. Antagonist of peroxisome proliferator-activated receptor {gamma} induces cerebellar amyloid-{beta} levels and motor dysfunction in APP/PS1 transgenic mice

    SciTech Connect

    Du, Jing; Sun, Bing; Chen, Kui; Fan, Li; Wang, Zhao

    2009-07-03

    Recent evidences show that peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) is involved in the modulation of the amyloid-{beta} (A{beta}) cascade causing Alzheimer's disease (AD) and treatment with PPAR{gamma} agonists protects against AD pathology. However, the function of PPAR{gamma} steady-state activity in A{beta} cascade and AD pathology remains unclear. In this study, an antagonist of PPAR{gamma}, GW9662, was injected into the fourth ventricle of APP/PS1 transgenic mice to inhibit PPAR{gamma} activity in cerebellum. The results show that inhibition of PPAR{gamma} significantly induced A{beta} levels in cerebellum and caused cerebellar motor dysfunction in APP/PS1 transgenic mice. Moreover, GW9662 treatment markedly decreased the cerebellar levels of insulin-degrading enzyme (IDE), which is responsible for the cellular degradation of A{beta}. Since cerebellum is spared from significant A{beta} accumulation and neurotoxicity in AD patients and animal models, these findings suggest a crucial role of PPAR{gamma} steady-state activity in protection of cerebellum against AD pathology.

  11. Resveratrol prevents the impairment of advanced glycosylation end products (AGE) on macrophage lipid homeostasis by suppressing the receptor for AGE via peroxisome proliferator-activated receptor gamma activation.

    PubMed

    Zhang, Yihua; Luo, Zhidan; Ma, Liqun; Xu, Qiang; Yang, Qihong; Si, Liangyi

    2010-05-01

    Advanced glycosylation end products (AGE) and its receptor (RAGE) axis is involved in the regulation of lipid homeostasis and is critical in the pathogenesis of diabetic atherosclerosis. We investigated the protective role of resveratrol against the AGE-induced impairment on macrophage lipid homeostasis. In THP-1-derived macrophages, RAGE was dose-dependently induced by AGE and played a key role in the AGE-induced cholesterol accumulation. Resveratrol markedly reduced RAGE expression via peroxisome proliferator-activated receptor (PPAR) gamma but not PPARalpha or AMP-activated protein kinase. Importantly, pretreatment with resveratrol significantly ameliorated AGE-induced up-regulation of scavenger receptor-A (SR-A) and down-regulation of ATP-binding cassette (ABC) A1 and ABCG1 and thus effectively prevented the cholesterol accumulation in macrophages as shown by cellular cholesterol analysis and oil red O staining. Moreover, blockade of PPARgamma abolished all these effects of resveratrol. Collectively, our results indicate that resveratrol prevents the impairment of AGE on macrophage lipid homeostasis partially by suppressing RAGE via PPARgamma activation, which might provide new insight into the protective role of resveratrol against diabetic atherosclerosis.

  12. Ca2+ oscillation induced by P2Y2 receptor activation and its regulation by a neuron-specific subtype of PKC (gammaPKC).

    PubMed

    Ashida, Noriaki; Ueyama, Takehiko; Rikitake, Kyoko; Shirai, Yasuhito; Eto, Mika; Kondoh, Takeshi; Kohmura, Eiji; Saito, Naoaki

    2008-12-03

    We found that stimulation of P2Y2 receptor (P2Y2R), which is endogenously expressed in CHO-K1 cells, induced intracellular calcium ([Ca2+]i) oscillation with a low frequency of 11.4 +/- 2.7 mHz. When CHO-K1 cells expressing GFP-tagged kinase-negative gammaPKC (gammaPKC-KN-GFP), which is a neuron-specific subtype of PKC, were stimulated with UDP, gammaPKC-KN-GFP, but not wild-type gammaPKC (gammaPKC-GFP) showed an oscillatory translocation. The oscillatory translocation of gammaPKC-KN-GFP corresponded with [Ca2+]i oscillation, which was not observed in the cells expressing gammaPKC-GFP. We examined the mechanism ofP2Y2R-induced [Ca2+]i oscillation pharmacologically. gammaPKC-KN-GFP oscillation was stopped by an extracellular Ca2+ chelator, EGTA, an antagonist of P2Y2R, Suramin, and store-operated calcium channel (SOC) inhibitors, SKF96365 and 2-ABP. Taken together, P2Y2R-induced [Ca2+]i oscillation in CHO-K1 cells is related with Ca2+ influx through SOC, whose function may be negatively regulated by gammaPKC. This [Ca2]i oscillation was distinct from that induced by metabotropic glutamate receptor 5 (mGluR5) stimulation in the frequency (72.3 +/- 5.3 mHz) and in the regulatory mechanism.

  13. Code System for Isotope Identification by Gamma-Ray Analysis

    SciTech Connect

    1996-01-01

    For a set of a priori given nuclides taken from a work library, DIMEN uses median estimates of the peak areas and estimates of their errors to produce a list of possible nuclides matching a gamma-ray line and some measure of the reliability of this assignment.

  14. Solar System Gamma Ray observations using Fermi-LAT detector

    SciTech Connect

    Giglietto, N.

    2009-04-08

    The Fermi Gamma-ray Space Telescope, launched in June 2008, is an international space mission dedicated to the study of the high-energy gamma rays from the Universe. The main instrument aboard Fermi is the Large Area Telescope (LAT), a pair conversion telescope equipped with the state-of-the art in gamma-ray detectors technology, and operating at energies >30 MeV. During first two months of data taking, Fermi has detected high-energy gamma rays from the quiet Sun and the Moon. This emission is produced by interactions of cosmic rays; by nucleons with the solar and lunar surface, and electrons with solar photons in the heliosphere. While the Moon was detected by EGRET on CGRO with low statistics, Fermi provides high-sensitivity measurements on a daily basis allowing both short- and long-term variability to be studied. Since Galactic cosmic rays are at their maximum flux at solar minimum we expect that the quiescent solar and lunar emission to be a maximum during the period covered by this report. Fermi is the only mission capable of monitoring the Sun at energies above several hundred MeV over the full 24th solar cycle. We present first analysis showing images of Moon and the quiet emission of the solar disk, giving a description of the analysis tools used.

  15. Phagocytosis via Complement or Fc-Gamma Receptors Is Compromised in Monocytes from Type 2 Diabetes Patients with Chronic Hyperglycemia

    PubMed Central

    Restrepo, Blanca I.; Twahirwa, Marcel; Rahbar, Mohammad H.; Schlesinger, Larry S.

    2014-01-01

    Type 2 diabetes patients (DM2) have a higher risk of tuberculosis (TB) that may be attributed to functional defects in their mononuclear phagocytes given the critical role of these cells in Mycobacterium tuberculosis containment. Our previous findings suggest that monocytes from DM2 have reduced association with serum-opsonized M. tuberculosis. To determine if this alteration is due to defects in phagocytosis via complement or Fc-gamma receptors (FcγRs), in this study we evaluated the uptake of sheep red blood cells coated with IgG or complement, respectively, by monocytes from individuals with and without DM2. We found that chronic hyperglycemia was significantly associated with reduced phagocytosis via either receptor by univariable and multivariable analyses. This defect was independent of host serum opsonins and flow cytometry data indicated this was not attributed to reduced expression of these phagocytic receptors on DM2 monocytes. The positive correlation between both pathways (R = 0.64; p = 0.003) indicate that monocytes from individuals with chronic hyperglycemia have a defect in the two predominant phagocytic pathways of these cells. Given that phagocytosis is linked to activation of effector mechanisms for bacterial killing, it is likely that this defect is one factor contributing to the higher susceptibility of DM2 patients to pathogens like M. tuberculosis. PMID:24671137

  16. Monte Carlo simulation of pulse pile-up effect in gamma spectrum of a PGNAA system

    NASA Astrophysics Data System (ADS)

    Mowlavi, Ali Asghar; Hadizadeh Yazdi, Mohammad Hadi

    2011-12-01

    We have applied a pile-up Monte Carlo simulation code on gamma spectrum of a prompt gamma neutron activation analysis (PGNAA) system. The code has been run in nonparalyzable mode for a specific geometry of a PGNAA system with 241Am-9Be source and NaI(Tl) detector to obtain the distortion due to “pile-up” in the pulse height of gamma spectrum. The results show that the main background in the nitrogen region of interest (ROI) is due to two pile-ups. We have also evaluated the variation of count rate and total photon sampling over the Monte Carlo spectra. At high count rates, not only the nitrogen ROI but also carbon ROI, and hydrogen peak are disturbed strongly. Comparison between the results of simulations and the experimental spectra has shown a good agreement. The code could be used for other source setups and different gamma detection systems.

  17. Study of gamma detection capabilities of the REWARD mobile spectroscopic system

    NASA Astrophysics Data System (ADS)

    Balbuena, J. P.; Baptista, M.; Barros, S.; Dambacher, M.; Disch, C.; Fiederle, M.; Kuehn, S.; Parzefall, U.

    2017-07-01

    REWARD is a novel mobile spectroscopic radiation detector system for Homeland Security applications. The system integrates gamma and neutron detection equipped with wireless communication. A comprehensive simulation study on its gamma detection capabilities in different radioactive scenarios is presented in this work. The gamma detection unit consists of a precise energy resolution system based on two stacked (Cd,Zn)Te sensors working in coincidence sum mode. The volume of each of these CZT sensors is 1 cm3. The investigated energy windows used to determine the detection capabilities of the detector correspond to the gamma emissions from 137Cs and 60Co radioactive sources (662 keV and 1173/1333 keV respectively). Monte Carlo and Technology Computer-Aided Design (TCAD) simulations are combined to determine its sensing capabilities for different radiation sources and estimate the limits of detection of the sensing unit as a function of source activity for several shielding materials.

  18. Partial Agonism of Taurine at Gamma-Containing Native and Recombinant GABAA Receptors

    PubMed Central

    Kletke, Olaf; Gisselmann, Guenter; May, Andrea; Hatt, Hanns; A. Sergeeva, Olga

    2013-01-01

    Taurine is a semi-essential sulfonic acid found at high concentrations in plasma and mammalian tissues which regulates osmolarity, ion channel activity and glucose homeostasis. The structural requirements of GABAA-receptors (GABAAR) gated by taurine are not yet known. We determined taurine potency and efficacy relative to GABA at different types of recombinant GABAAR occurring in central histaminergic neurons of the mouse hypothalamic tuberomamillary nucleus (TMN) which controls arousal. At binary α1/2β1/3 receptors taurine was as efficient as GABA, whereas incorporation of the γ1/2 subunit reduced taurine efficacy to 60–90% of GABA. The mutation γ2F77I, which abolishes zolpidem potentiation, significantly reduced taurine efficacy at recombinant and native receptors compared to the wild type controls. As taurine was a full- or super- agonist at recombinant αxβ1δ-GABAAR, we generated a chimeric γ2 subunit carrying the δ subunit motif around F77 (MTVFLH). At α1/2β1γ2(MTVFLH) receptors taurine became a super-agonist, similar to δ-containing ternary receptors, but remained a partial agonist at β3-containing receptors. In conclusion, using site-directed mutagenesis we found structural determinants of taurine’s partial agonism at γ-containing GABAA receptors. Our study sheds new light on the β1 subunit conferring the widest range of taurine-efficacies modifying GABAAR function under (patho)physiological conditions. PMID:23637894

  19. Partial agonism of taurine at gamma-containing native and recombinant GABAA receptors.

    PubMed

    Kletke, Olaf; Gisselmann, Guenter; May, Andrea; Hatt, Hanns; A Sergeeva, Olga

    2013-01-01

    Taurine is a semi-essential sulfonic acid found at high concentrations in plasma and mammalian tissues which regulates osmolarity, ion channel activity and glucose homeostasis. The structural requirements of GABAA-receptors (GABAAR) gated by taurine are not yet known. We determined taurine potency and efficacy relative to GABA at different types of recombinant GABAAR occurring in central histaminergic neurons of the mouse hypothalamic tuberomamillary nucleus (TMN) which controls arousal. At binary α(1/2)β(1/3) receptors taurine was as efficient as GABA, whereas incorporation of the γ(1/2) subunit reduced taurine efficacy to 60-90% of GABA. The mutation γ(2F77I), which abolishes zolpidem potentiation, significantly reduced taurine efficacy at recombinant and native receptors compared to the wild type controls. As taurine was a full- or super- agonist at recombinant αxβ1δ-GABAAR, we generated a chimeric γ(2) subunit carrying the δ subunit motif around F77 (MTVFLH). At α(1/2)β(1)γ2(MTVFLH) receptors taurine became a super-agonist, similar to δ-containing ternary receptors, but remained a partial agonist at β3-containing receptors. In conclusion, using site-directed mutagenesis we found structural determinants of taurine's partial agonism at γ-containing GABAA receptors. Our study sheds new light on the β1 subunit conferring the widest range of taurine-efficacies modifying GABAAR function under (patho)physiological conditions.

  20. Search for genetic variants in the retinoid X receptor-gamma-gene by polymerase chain reaction-single-strand conformation polymorphism in patients with resistance to thyroid hormone without mutations in thyroid hormone receptor beta gene.

    PubMed

    Romeo, Stefano; Menzaghi, Claudia; Bruno, Rocco; Sentinelli, Federica; Fallarino, Mara; Fioretti, Francesca; Filetti, Sebastiano; Balsamo, Armando; Di Mario, Umberto; Baroni, Marco G

    2004-05-01

    Resistance to thyroid hormone (RTH) is an inherited disease characterized by reduced tissue sensitivity to thyroid hormone. Approximately 90% of subjects with RTH have mutation in the thyroid hormone receptor beta (TRbeta) gene. Approximately 10% of subjects diagnosed as having RTH do not carry mutation in the TRbeta gene. A possible linkage was reported with the retinoid X receptor-gamma (RXR-gamma) gene in two families. The aim of this study is to search for mutation within the RXR-gamma gene in unrelated subjects with diagnosed RTH without mutations in the TRbeta gene. Four subjects with RTH were studied, and sequence variants in the RXR-gamma gene were searched by polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP). Analysis of all the 10 exons of the RXR-gamma gene, including intron-exon boundaries, promoter region and 3' untranslated region (UTR) reveled two variant bands in subjects II and III. Sequencing of these variants showed two single nucleotide polymorphisms (SNPs): 447C > T in exon 3 for patients II and IVS9 + 6A > G for patient III. Both SNPs were also present at high frequency in a group of normal subjects and in nonaffected relatives of subject III. In conclusion, in patients with RTH we have found two SNPs in the RXR-gamma gene; these SNPS are common in the general population, thus excluding a role for the RXR-gamma gene in these patients.

  1. Peroxisome proliferator-activated receptor-alpha and -gamma mRNA levels are reduced in chronic hepatitis C with steatosis and genotype 3 infection.

    PubMed

    de Gottardi, A; Pazienza, V; Pugnale, P; Bruttin, F; Rubbia-Brandt, L; Juge-Aubry, C E; Meier, C A; Hadengue, A; Negro, F

    2006-01-01

    Steatosis in chronic hepatitis C is associated with inflammation and accelerated fibrogenesis. To assess the contribution of peroxisome proliferator-activated receptor-alpha and -gamma to the pathogenesis of hepatitis C virus associated steatosis is unknown. We measured peroxisome proliferator-activated receptor (PPAR)-alpha and -gamma mRNA by quantitative polymerase chain reaction in liver biopsies of 35 genotype 1 and 22 genotype 3 infected patients and in Huh7 cells expressing hepatitis C virus 1b or 3a core protein. PPAR-alpha mRNA was significantly reduced in livers of patients with genotype 3 compared with genotype 1. Steatosis was associated to a decreased expression of PPAR-alpha in genotype 1, but not in genotype 3. PPAR-gamma expression was significantly lower in genotype 3 compared with genotype 1 and steatosis was associated to decreased levels of PPAR-gamma, but only in genotype 1. There was no significant relationship between PPARs mRNA levels and liver activity or fibrosis. Expression of the hepatitis C virus 3a core protein was associated with an increase in triglyceride accumulation and with a significant reduction of PPAR-gamma mRNA compared with hepatitis C virus 1b. The presence of steatosis and hepatitis C virus genotype 3 are both associated with a significant down-regulation of PPARs. These receptors, and also additional factors, seem to play a role in the pathogenesis of hepatitis C virus-associated steatosis.

  2. Development of a high resolution gamma camera system using finely grooved GAGG scintillator

    NASA Astrophysics Data System (ADS)

    Yamamoto, Seiichi; Kataoka, Jun; Oshima, Tsubasa; Ogata, Yoshimune; Watabe, Tadashi; Ikeda, Hayato; Kanai, Yasukazu; Hatazawa, Jun

    2016-06-01

    High resolution gamma cameras require small pixel scintillator blocks with high light output. However, manufacturing a small pixel scintillator block is difficult when the pixel size becomes small. To solve this limitation, we developed a high resolution gamma camera system using a finely grooved Ce-doped Gd3Al2Ga3O12 (GAGG) plate. Our gamma camera's detector consists of a 1-mm-thick finely grooved GAGG plate that is optically coupled to a 1-in. position sensitive photomultiplier tube (PSPMT). The grooved GAGG plate has 0.2×0.2 mm pixels with 0.05-mm wide slits (between the pixels) that were manufactured using a dicing saw. We used a Hamamatsu PSPMT with a 1-in. square high quantum efficiency (HQE) PSPMT (R8900-100-C12). The energy resolution for the Co-57 gamma photons (122 keV) was 18.5% FWHM. The intrinsic spatial resolution was estimated to be 0.7-mm FWHM. With a 0.5-mm diameter pinhole collimator mounted to its front, we achieved a high resolution, small field-of-view gamma camera. The system spatial resolution for the Co-57 gamma photons was 1.0-mm FWHM, and the sensitivity was 0.0025%, 10 mm from the collimator surface. The Tc-99m HMDP administered mouse images showed the fine structures of the mouse body's parts. Our developed high resolution small pixel GAGG gamma camera is promising for such small animal imaging.

  3. Activation-dependent expression of low affinity IgG receptors Fc gamma RII(CD32) and Fc gamma RIII(CD16) in subpopulations of human T lymphocytes.

    PubMed

    Engelhardt, W; Matzke, J; Schmidt, R E

    1995-04-01

    Receptors for IgG (Fc gamma R) are expressed by small subpopulations of peripheral blood T lymphocytes. Our studies demonstrate that T lymphocytes can be induced in vitro to express two different low-affinity Fc gamma R. Mitogen activation of peripheral blood T lymphocytes obtained from eight healthy individuals leads to considerable augmentation of the Fc gamma RIII+ (CD32) T cell subpopulation. The highest percentage of CD32 expressing T lymphocytes could be detected after three days of activation. The T cell subpopulation which transiently express the CD32 antigen, encompasses CD4+ and CD8+ cells. Molecular cloning of the CD32 antigen by reverse transcription and polymerase chain reaction demonstrates that activated human T lymphocytes express the Fc gamma RIIIb2 isoform. The percentage of the Fc gamma RIII+ (CD16) T cell subpopulation was significantly increased only in the lymphocyte populations obtained from three out of eight volunteers immediately after mitogen activation. However, during short-term cell culture the CD16 expressing CD8+ T cell subset increased in the T cell population from all individuals investigated. During this time, the IL-2 receptor alpha-chain (CD25) expression level decreased as a function of time. In contrast to the CD8+CD16+ T cells, the percentage of the non-MCH-restricted CD56+CD16+ T cells was not influenced by mitogen activation and time of cell cultivation. We could show that CD16 in T cells is able to mediate a stimulus leading to proliferation of the CD8+CD56-CD16+ T cells but not that of the CD56+CD16+ T cell subset. This discrepancy cannot be explained by the expression of different Fc gamma RIII isoforms, because both T cell subsets express Fc gamma RIIIA alpha, as we demonstrate in this report.

  4. Single gene contributions: genetic variants of peroxisome proliferator-activated receptor (isoforms alpha, beta/delta and gamma) and mechanisms of dyslipidemias.

    PubMed

    Yong, Eu Leong; Li, Jun; Liu, Mei Hui

    2008-04-01

    Polymorphisms in peroxisome proliferator-activated receptor isoforms may be among the most important single-gene contributors to dyslipidemias, insulin resistance, and maturity-onset diabetes. Familial partial lipodystrophy is a rare but characteristic phenotype associated with carriers of peroxisome proliferator-activated receptor-gamma missense mutations. Mutant receptors are transcriptionally defective, exhibit aberrant affinity for co-regulator molecules, and can exert dominant-negative or haplo-insufficiency effects on normal peroxisome proliferator-activated receptor-gamma function. The P12A variant of isoform gamma is estimated to reduce diabetes risk by 19% in many populations, and has a large attributable risk because of high prevalence of the normal allele. Variants L162V and V227A of isoform alpha (common in white and Oriental populations, respectively) are associated with sexually dimorphic perturbations of lipid metabolism and cardiovascular risk. Polymorphisms in isoforms alpha and beta/delta are reported to influence lipid and glucose utilization. Apart from lipodystrophic syndromes, metabolic and cardiovascular risk in peroxisome proliferator-activated receptor variants is apparently modulated by dietary and exercise interventions, and interactions with polymorphisms in other genetic loci. Polymorphisms in peroxisome proliferator-activated receptors are critical susceptibility risk factors for dyslipidemias and diabetes. They provide attractive targets for gene-environment interventions to reduce the burden of metabolic disease.

  5. Inhibition of human lung cancer cell growth by the peroxisome proliferator-activated receptor-gamma agonists through induction of apoptosis.

    PubMed

    Tsubouchi, Y; Sano, H; Kawahito, Y; Mukai, S; Yamada, R; Kohno, M; Inoue, K; Hla, T; Kondo, M

    2000-04-13

    Peroxisome proliferator-activated receptors (PPARs), members of the nuclear hormone receptors superfamily, have an important regulatory role in adipogenesis and inflammation. PPAR-gamma ligands induce terminal differentiation and growth inhibition of human breast cancer cells and prostatic cancer cells. In this study, we demonstrated that PPAR-gamma, but not PPAR-alpha, was expressed in human lung cancer cell lines by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis. We also found that the synthetic PPAR-gamma agonist thiazolidinedione compounds (troglitazone) and the endogenous PPAR-gamma ligand, 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)), inhibited the growth of human lung cancer cells through the induction of apoptosis. However, PPAR-alpha agonist (bezafibrate) and other prostanoids (PGE(2), PGF(2alpha)) did not induce apoptosis. These findings suggest that PPAR-gamma may play an important role in the pathogenesis of lung cancer and that PPAR-gamma agonist may be useful therapeutic agents in the treatment of human lung cancer. Copyright 2000 Academic Press.

  6. A collimation system for ELI-NP Gamma Beam System - design and simulation of performance

    NASA Astrophysics Data System (ADS)

    Paternò, G.; Cardarelli, P.; Marziani, M.; Bagli, E.; Evangelisti, F.; Andreotti, M.; Gambaccini, M.; Petrillo, V.; Drebot, I.; Bacci, A.; Vaccarezza, C.; Palumbo, L.; Variola, A.

    2017-07-01

    The purpose of this study was to evaluate the performance and refine the design of the collimation system for the gamma radiation source (GBS) currently being realised at ELI-NP facility. The gamma beam, produced by inverse Compton scattering, will provide a tunable average energy in the range between 0.2 and 20 MeV, an energy bandwidth 0.5% and a flux of about 108 photons/s. As a result of the inverse Compton interaction, the energy of the emitted radiation is related to the emission angle, it is maximum in the backscattering direction and decreases as the angle increase [1,2]. Therefore, the required energy bandwidth can be obtained only by developing a specific collimation system of the gamma beam, i.e. filtering out the radiation emitted at larger angles. The angular acceptance of the collimation for ELI-NP-GBS must be continuously adjustable in a range from about 700 to 60 μrad, to obtain the required parameters in the entire energy range. The solution identified is a stack of adjustable slits, arranged with a relative rotation around the beam axis to obtain an hole with an approximately circular shape. In this contribution, the final collimation design and its performance evaluated by carrying out a series of detailed Geant4 simulations both of the high-energy and the low-energy beamline are presented.

  7. Shaped scintillation detector systems for measurements of gamma ray flux anisotropy

    NASA Technical Reports Server (NTRS)

    Trombka, J. I.; Vette, J. I.; Stecker, F. W.; Eller, E. L.; Wildes, W. T.

    1973-01-01

    The detection efficiencies of cylindrical detectors for various gamma ray photon angular distributions were studied in the energy range from .10 Mev to 15 Mev. These studies indicate that simple detector systems on small satellites can be used to measure flux anisotropy of cosmic gamma rays and the angular distribution of albedo gamma rays produced in planetary atmospheres. The results indicate that flat cylindrical detectors are most suitable for measuring flux anisotropy because of their angular response function. A general method for calculating detection efficiencies for such detectors is presented.

  8. Functional RNAi screen targeting cytokine and growth factor receptors reveals oncorequisite role for interleukin-2 gamma receptor in JAK3-mutation-positive leukemia.

    PubMed

    Agarwal, A; MacKenzie, R J; Eide, C A; Davare, M A; Watanabe-Smith, K; Tognon, C E; Mongoue-Tchokote, S; Park, B; Braziel, R M; Tyner, J W; Druker, B J

    2015-06-04

    To understand the role of cytokine and growth factor receptor-mediated signaling in leukemia pathogenesis, we designed a functional RNA interference (RNAi) screen targeting 188 cytokine and growth factor receptors that we found highly expressed in primary leukemia specimens. Using this screen, we identified interleukin-2 gamma receptor (IL2Rγ) as a critical growth determinant for a JAK3(A572V) mutation-positive acute myeloid leukemia cell line. We observed that knockdown of IL2Rγ abrogates phosphorylation of JAK3 and downstream signaling molecules, JAK1, STAT5, MAPK and pS6 ribosomal protein. Overexpression of IL2Rγ in murine cells increased the transforming potential of activating JAK3 mutations, whereas absence of IL2Rγ completely abrogated the clonogenic potential of JAK3(A572V), as well as the transforming potential of additional JAK3-activating mutations such as JAK3(M511I). In addition, mutation at the IL2Rγ interaction site in the FERM domain of JAK3 (Y100C) completely abrogated JAK3-mediated leukemic transformation. Mechanistically, we found IL2Rγ contributes to constitutive JAK3 mutant signaling by increasing JAK3 expression and phosphorylation. Conversely, we found that mutant, but not wild-type JAK3, increased the expression of IL2Rγ, indicating IL2Rγ and JAK3 contribute to constitutive JAK/STAT signaling through their reciprocal regulation. Overall, we demonstrate a novel role for IL2Rγ in potentiating oncogenesis in the setting of JAK3-mutation-positive leukemia. In addition, our study highlights an RNAi-based functional assay that can be used to facilitate the identification of non-kinase cytokine and growth factor receptor targets for inhibiting leukemic cell growth.

  9. Role of a gamma-aminobutryic acid (GABA) receptor mutation in the evolution and spread of Diabrotica virgifera virgifera resistance to cyclodiene insecticides

    USDA-ARS?s Scientific Manuscript database

    An alanine to serine amino acid substitution within the Rdl subunit of the gamma-aminobutyric acid (GABA) receptor confers resistance to cyclodiene insecticides in many species. The corn rootworm, Diabrotica virgifera virgifera, is a damaging pest of cultivated corn that was partially controlled by ...

  10. An alpha–gamma coincidence spectrometer based on the Photon–Electron Rejecting Alpha Liquid Scintillation (PERALS®) system

    DOE PAGES

    Cadieux, J. R.; Fugate, G. A.; King, III, G. S.

    2015-02-07

    Here, an alpha–gamma coincidence spectrometer has been developed for the measurement of selected actinide isotopes in the presence of high beta/gamma fields. The system is based on a PERALS® liquid scintillation counter for beta/alpha discrimination and was successfully tested with both high purity germanium and bismuth germanate, gamma-ray detectors using conventional analog electronics.

  11. GABAB receptor-mediated, layer-specific synaptic plasticity reorganizes gamma-frequency neocortical response to stimulation

    PubMed Central

    Ainsworth, Matthew; Lee, Shane; Kaiser, Marcus; Simonotto, Jennifer; Kopell, Nancy J.

    2016-01-01

    Repeated presentations of sensory stimuli generate transient gamma-frequency (30–80 Hz) responses in neocortex that show plasticity in a task-dependent manner. Complex relationships between individual neuronal outputs and the mean, local field potential (population activity) accompany these changes, but little is known about the underlying mechanisms responsible. Here we show that transient stimulation of input layer 4 sufficient to generate gamma oscillations induced two different, lamina-specific plastic processes that correlated with lamina-specific changes in responses to further, repeated stimulation: Unit rates and recruitment showed overall enhancement in supragranular layers and suppression in infragranular layers associated with excitatory or inhibitory synaptic potentiation onto principal cells, respectively. Both synaptic processes were critically dependent on activation of GABAB receptors and, together, appeared to temporally segregate the cortical representation. These data suggest that adaptation to repetitive sensory input dramatically alters the spatiotemporal properties of the neocortical response in a manner that may both refine and minimize cortical output simultaneously. PMID:27118845

  12. Inhibitory effect on hepatitis B virus in vitro by a peroxisome proliferator-activated receptor-{gamma} ligand, rosiglitazone

    SciTech Connect

    Wakui, Yuta; Inoue, Jun; Ueno, Yoshiyuki; Fukushima, Koji; Kondo, Yasuteru; Kakazu, Eiji; Obara, Noriyuki; Kimura, Osamu; Shimosegawa, Tooru

    2010-05-28

    Although chronic infection of hepatitis B virus (HBV) is currently managed with nucleot(s)ide analogues or interferon-{alpha}, the control of HBV infection still remains a clinical challenge. Peroxisome proliferator-activated receptor (PPAR) is a ligand-activated transcription factor, that plays a role in glucose and lipid metabolism, immune reactions, and inflammation. In this study, the suppressive effect of PPAR ligands on HBV replication was examined in vitro using a PPAR{alpha} ligand, bezafibrate, and a PPAR{gamma} ligand, rosiglitazone. The effects were examined in HepG2 cells transfected with a plasmid containing 1.3-fold HBV genome. Whereas bezafibrate showed no effect against HBV replication, rosiglitazone reduced the amount of HBV DNA, hepatitis B surface antigen, and hepatitis B e antigen in the culture supernatant. Southern blot analysis showed that the replicative intermediates of HBV in the cells were also inhibited. It was confirmed that GW9662, an antagonist of PPAR{gamma}, reduced the suppressive effect of rosiglitazone on HBV. Moreover, rosiglitazone showed a synergistic effect on HBV replication with lamivudine or interferon-{alpha}-2b. In conclusion, this study showed that rosiglitazone inhibited the replication of HBV in vitro, and suggested that the combination therapy of rosiglitazone and nucleot(s)ide analogues or interferon could be a therapeutic option for chronic HBV infection.

  13. Transcriptional activation of peroxisome proliferator-activated receptor-{gamma} requires activation of both protein kinase A and Akt during adipocyte differentiation

    SciTech Connect

    Kim, Sang-pil; Ha, Jung Min; Yun, Sung Ji; Kim, Eun Kyoung; Chung, Sung Woon; Hong, Ki Whan; Kim, Chi Dae; Bae, Sun Sik

    2010-08-13

    Research highlights: {yields} Elevated cAMP activates both PKA and Epac. {yields} PKA activates CREB transcriptional factor and Epac activates PI3K/Akt pathway via Rap1. {yields} Akt modulates PPAR-{gamma} transcriptional activity in concert with CREB. -- Abstract: Peroxisome proliferator-activated receptor-{gamma} (PPAR-{gamma}) is required for the conversion of pre-adipocytes. However, the mechanism underlying activation of PPAR-{gamma} is unclear. Here we showed that cAMP-induced activation of protein kinase A (PKA) and Akt is essential for the transcriptional activation of PPAR-{gamma}. Hormonal induction of adipogenesis was blocked by a phosphatidylinositol 3-kinase (PI3K) inhibitor (LY294002), by a protein kinase A (PKA) inhibitor (H89), and by a Rap1 inhibitor (GGTI-298). Transcriptional activity of PPAR-{gamma} was markedly enhanced by 3-isobutyl-1-methylxanthine (IBMX), but not insulin and dexamethasone. In addition, IBMX-induced PPAR-{gamma} transcriptional activity was blocked by PI3K/Akt, PKA, or Rap1 inhibitors. 8-(4-Chlorophenylthio)-2'-O-methyl-cAMP (8-pCPT-2'-O-Me-cAMP) which is a specific agonist for exchanger protein directly activated by cAMP (Epac) significantly induced the activation of Akt. Furthermore, knock-down of Akt1 markedly attenuated PPAR-{gamma} transcriptional activity. These results indicate that both PKA and Akt signaling pathways are required for transcriptional activation of PPAR-{gamma}, suggesting post-translational activation of PPAR-{gamma} might be critical step for adipogenic gene expression.

  14. Honokiol inhibits gastric tumourigenesis by activation of 15-lipoxygenase-1 and consequent inhibition of peroxisome proliferator-activated receptor-gamma and COX-2-dependent signals.

    PubMed

    Liu, Shing Hwa; Shen, Chin Chang; Yi, Yu Chiao; Tsai, Jaw Ji; Wang, Chih Chien; Chueh, Ju Ting; Lin, Keh Liang; Lee, Tso Ching; Pan, Hung Chuan; Sheu, Meei Ling

    2010-08-01

    Peroxisome proliferator-activated receptor-gamma (PPAR-gamma), COX-2 and 15-lipoxygenase (LOX)-1 have been shown to be involved in tumour growth. However, the roles of PPAR-gamma, COX-2 or 15-LOX-1 in gastric tumourigenesis remain unclear. Here, we investigate the role of 15-LOX-1 induction by honokiol, a small-molecular weight natural product, in PPAR-gamma and COX-2 signalling during gastric tumourigenesis. Human gastric cancer cell lines (AGS, MKN45, N87 and SCM-1) were cultured with or without honokiol. Gene and protein expressions were analysed by RT-PCR and Western blotting respectively. Small interfering RNAs (siRNAs) for COX-2, PPAR-gamma and 15-LOX-1 were used to interfere with the expressions of these genes. A xenograft gastric tumour model in mouse was used for in vivo study. PPAR-gamma and COX-2 proteins were highly expressed in gastric cancer cells. Inhibitors, or siRNA for COX-2 or PPAR-gamma, significantly decreased cell viability. Honokiol markedly inhibited PPAR-gamma and COX-2 expressions in gastric cancer cells and tumours of xenograft mice, and induced apoptosis and cell death. Honokiol markedly activated cellular 15-LOX-1 expression and 13-S-hydroxyoctadecadienoic acid (a primary product of 15-LOX-1 metabolism of linoleic acid) production. 15-LOX-1 siRNA could reverse the honokiol-induced down-regulation of PPAR-gamma and COX-2, and cell apoptosis. 15-LOX-1 was markedly induced in tumours of xenograft mice treated with honokiol. These findings suggest that induction of 15-LOX-1-mediated down-regulation of a PPAR-gamma and COX-2 pathway by honokiol may be a promising therapeutic strategy for gastric cancer.

  15. Environmental Protection Agency (EPA) airborne gamma spectrometry system for environmental and emergency response surveys

    NASA Astrophysics Data System (ADS)

    Cardarelli, John, II; Thomas, Mark; Curry, Timothy

    2010-08-01

    The EPA Airborne Spectral Photometric Environmental Collection Technology (ASPECT) Program provides airborne ortho-rectified imagery, video, chemical and now radiological information directly to emergency response personnel via a commercial satellite link onboard the aircraft. EPA initiated the ASPECT Gamma Emergency Mapper GEM Project in 2008 to improve its airborne gamma-screening and mapping capability for monitoring any ground-based gamma contamination. This paper will provide an overview of the system, which can be configured to carry six 2"x4"x16" NaI(Tl) detectors and two 3"x3" LaBr3(Ce) detectors or eight 2"x4"x16" NaI(Tl) detectors. The paper will provide an overview of the analysis of gamma radiation spectra, system limitations, and emergency response applications.

  16. Experimental approaches for the development of gamma spectroscopy well logging system

    SciTech Connect

    Shin, Jehyun; Hwang, Seho; Kim, Jongman; Won, Byeongho

    2015-03-10

    This article discusses experimental approaches for the development of gamma spectroscopy well logging system. Considering the size of borehole sonde, we customize 2 x 2 inches inorganic scintillators and the system including high voltage, preamplifier, amplifier and multichannel analyzer (MCA). The calibration chart is made by test using standard radioactive sources so that the measured count rates are expressed by energy spectrum. Optimum high-voltage supplies and the measurement parameters of each detector are set up by experimental investigation. Also, the responses of scintillation detectors have been examined by analysis according to the distance between source and detector. Because gamma spectroscopy well logging needs broad spectrum, high sensitivity and resolution, the energy resolution and sensitivity as a function of gamma ray energy are investigated by analyzing the gamma ray activities of the radioactive sources.

  17. Development of remaining wall thickness measurement system for boiler wall tube using gamma scattering technique

    NASA Astrophysics Data System (ADS)

    Durongsak, K.; Yenjai, C.; Rassame, S.

    2017-06-01

    In this study, the General Monte Carlo N-Particle version 5 (MCNP5) simulation of the measuring system for the remaining thickness of the wall tube using gamma scattering technique is performed to investigate the applicability of this technique and to find the optimum geometrical setup for the experimental setup. The numerical results show that the optimal geometry condition to provide the highest ratio between the gamma flux changes per thickness variation, namely, the measurement sensitivity, is the alignment of the source incidence angle of 30 degree and detector scattering angle of 30 degrees. Sequentially, the preliminary experiment of thickness measurement system for the tube using the gamma scattering technique is conducted based on the selected geometrical test setup by the simulation. It is found that the experimental results have generally a good agreement with the calculated results. Conclusively, it is suggested that the gamma scattering technique has a potential method to measure the remaining wall thickness in the boiler wall tube.

  18. Bisphenol A diglycidyl ether induces apoptosis in tumour cells independently of peroxisome proliferator-activated receptor-gamma, in caspase-dependent and -independent manners.

    PubMed Central

    Fehlberg, Sebastian; Trautwein, Stefan; Göke, Alexandra; Göke, Rüdiger

    2002-01-01

    Peroxisome proliferator-activated receptors (PPARs) are nuclear transcription factors which are involved in many biological processes, such as regulation of cell differentiation, lipid metabolism, inflammation and cell death. PPARs consist of three families, PPAR-alpha, PPAR-delta and PPAR-gamma. Bisphenol A diglycidyl ether (BADGE) has been described as a pure antagonist of PPAR-gamma. However, recent data also revealed PPAR-gamma-agonistic activities of BADGE. Here we show that BADGE kills transformed cells by apoptosis and promotes the cytotoxic effects of tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) and indomethacin. The cytotoxic effect of BADGE does not require PPAR-gamma expression and is mediated in caspase-dependent and caspase-independent manners. PMID:11879183

  19. Radiation detection system for portable gamma-ray spectroscopy

    DOEpatents

    Rowland, Mark S.; Howard, Douglas E.; Wong, James L.; Jessup, James L.; Bianchini, Greg M.; Miller, Wayne O.

    2006-06-20

    A portable gamma ray detection apparatus having a gamma ray detector encapsulated by a compact isolation structure having at least two volumetrically-nested enclosures where at least one is a thermal shield. The enclosures are suspension-mounted to each other to successively encapsulate the detector without structural penetrations through the thermal shields. A low power cooler is also provided capable of cooling the detector to cryogenic temperatures without consuming cryogens, due to the heat load reduction by the isolation structure and the reduction in the power requirements of the cooler. The apparatus also includes a lightweight portable power source for supplying power to the apparatus, including to the cooler and the processing means, and reducing the weight of the apparatus to enable handheld operation or toting on a user's person.

  20. Peroxisome proliferator-activated receptor gamma activators affect the maturation of human monocyte-derived dendritic cells.

    PubMed

    Gosset, P; Charbonnier, A S; Delerive, P; Fontaine, J; Staels, B; Pestel, J; Tonnel, A B; Trottein, F

    2001-10-01

    Peroxisome proliferator-activated receptor gamma (PPARgamma ), a member of the nuclear receptor superfamily, has recently been described as a modulator of macrophage functions and as an inhibitor of T cell proliferation. Here, we investigated the role of PPARgamma in dendritic cells (DC), the most potent antigen-presenting cells. We showed that PPARgamma is highly expressed in immature human monocyte-derived DC (MDDC) and that it may affect the immunostimulatory function of MDDC stimulated with lipopolysaccharide (LPS) or via CD40 ligand (CD40L). We found that the synthetic PPARgamma agonist rosiglitazone (as well as pioglitazone and troglitazone) significantly increases on LPS- and CD40L-activated MDDC, the surface expression of CD36 (by 184% and 104%, respectively) and CD86 (by 54% and 48%), whereas it reduces the synthesis of CD80 (by 42% and 42%). Moreover, activation of PPARgamma resulted in a dramatic decreased secretion of the Th1-promoting factor IL-12 in LPS- and CD40L-stimulated cells (by 47% and 62%), while the production of IL-1beta, TNF-alpha, IL-6 and IL-10 was unaffected. Finally, PPARgamma ligands down-modulate the synthesis of IFN-gamma -inducible protein-10 (recently termed as CXCL10) and RANTES (CCL5), both chemokines involved in the recruitment of Th1 lymphocytes (by 49% and 30%), but not the levels of the Th2 cell-attracting chemokines,macrophage-derived chemokine (CCL22) and thymus and activation regulated chemokine (CCL17), in mature MDDC. Taken together, our data suggest that activation of PPARgamma in human DC may have an impact in the orientation of primary and secondary immune responses by favoring type 2 responses.

  1. Changes in cortical acetylcholine and gamma-aminobutyric acid outflow during morphine withdrawal involve alpha-1 and alpha-2 receptors.

    PubMed

    Beani, L; Tanganelli, S; Antonelli, T; Simonato, M; Spalluto, P; Tomasini, C; Bianchi, C

    1989-08-01

    Naloxone (0.3-9 mumol kg-1), electrical stimulation of locus ceruleus or clonidine at low doses (7.5-112 nmol kg-1) increased the release of acetylcholine from the exposed parietal cortex of freely moving, morphine-tolerant guinea pigs. This increase was not additive and was prevented by prazosin (35.8 nmol kg-1), suggesting the involvement of alpha-1 receptors. At high doses (374 nmol kg-1 or more) clonidine inhibited acetylcholine release through alpha-2 receptors, as it did in naive animals at 7.5 nmol kg-1. Clonidine (374 nmol kg-1) and prazosin (35.8 nmol kg-1) reduced the objective signs of naloxone-precipitated withdrawal. Electrical stimulation of the locus ceruleus or naloxone treatment reduced the release of gamma-aminobutyric acid (GABA) from the exposed parietal cortex of morphine-tolerant guinea pigs. This reduction was not additive and was prevented by idazoxan (84 nmol kg-1), suggesting the involvement of alpha-2 receptors. Clonidine (7.5 nmol kg-1), too, reduced the release of GABA in morphine-tolerant animals. However, when tested jointly with naloxone, clonidine (7.5-112 nmol kg-1) induced alpha-1-mediated facilitation of GABA release (like that elicited in naive animals at 112-374 nmol kg-1) leaving the signs of withdrawal unchanged. This points to the stimulation of alpha-1 receptors highly responsive to this agonist (but not to locus ceruleus stimulation) during naloxone-precipitated withdrawal. In conclusion, chronic morphine treatment modifies the alpha-1- and alpha-2-mediated control of GABA and acetylcholine neurons.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. The peroxisome proliferator-activated receptor gamma is an inhibitor of ErbBs activity in human breast cancer cells.

    PubMed

    Pignatelli, M; Cortés-Canteli, M; Lai, C; Santos, A; Perez-Castillo, A

    2001-11-01

    One of the most interesting recent developments in the nuclear receptor field has been the identification of natural and synthetic agonists of the peroxisome proliferator-activated receptor (PPAR) family, coupled with a growing recognition that the gamma isoform (PPARgamma) affects pathways important in a variety of human diseases. Here we show that the activation of PPARgamma through the 15-deoxy-Delta-12,14-prostaglandin J(2) (PG-J(2)) ligand causes a dramatic inhibition of ErbB-2 and ErbB-3 tyrosine phosphorylation caused by neuregulin 1 (NRG1) and neuregulin 2 (NRG2) in MCF-7 cells. This effect is accompanied by a very efficient blocking of ErbBs effects upon proliferation, differentiation and cell death in these cells. Preincubation of MCF-7 cells with PG-J(2) before addition of NRG1 and NRG2 had a dramatic growth-suppressive effect accompanied by accumulation of cells in the G0/G1 compartment of the cell cycle, and a marked increase in apoptosis. NRG1 and NRG2 induce G1 progression, which was associated with stimulation of the phosphatidylinositol-3 kinase (PI 3-K) pathway, whereas survival was dependent on ERK1/ERK2 activation. Both pathways were inhibited by PG-J(2). Furthermore, PG-J(2) can abolish the NRG1 and NRG2-induced increase in anchorage-independent growth of these cells. PG-J(2) also blocks phosphorylation of other receptor tyrosine kinases, such as IGF-IR, in MCF-7 cells, and suppress proliferation of other breast cancer cell lines. In summary, our data show a specific inhibitory action of PG-J(2) on the activity of the ErbB receptors in breast cancer cells.

  3. Specifying dual-detector gamma cameras and associated computer systems.

    PubMed

    Tindale, W B

    1995-07-01

    Increasingly, dual-detector gamma cameras are being purchased as replacements for single-headed cameras. The improvement in sensitivity offered by a dual-detector device can be used in several ways: to shorten acquisition times, to improve signal-to-noise ratios, or to reduce administered doses. This paper focuses on the practical aspects of dual-headed devices and aims to provide some guidance for potential purchasers in the drawing up of an equipment specification.

  4. T-cell subpopulations, expression of interleukin-2 receptor, and production of interleukin-2 and gamma interferon in human American cutaneous leishmaniasis.

    PubMed Central

    Castes, M; Cabrera, M; Trujillo, D; Convit, J

    1988-01-01

    Leukocyte subpopulations, the expression of the interleukin-2 (IL-2) receptor, and the production of IL-2 and gamma interferon (IFN-gamma) were studied in the peripheral blood mononuclear cells of American cutaneous leishmaniasis patients that had been stimulated in vitro with either leishmanial antigen or mitogen (phytohemagglutinin M). The 75 patients examined were classified as having either the localized (LCL; 66 patients), mucocutaneous (MCL; 5 patients), or the rare diffuse (DCL; 4 patients) form of the disease. Patients with DCL, who are characterized by their defective cell-mediated immune response to leishmanial antigen, failed to express the IL-2 receptor and did not produce IFN-gamma when exposed to the antigen but did so when stimulated by phytohemagglutinin M. Both LCL and MCL patients showed strong proliferative responses to leishmanial antigen; these were by far the greatest in MCL patients. Both groups had significantly increased IL-2 receptor expression and IFN-gamma production after exposure to either antigen or mitogen, and these were highest in the MCL patients. Concerning the leukocyte subpopulations evaluated (CD2, CD4, CD8, CD20, MO2), the most significant findings were a decrease of both CD4+ cells and the CD4/CD8 ratio in MCL patients compared with the other groups. Considering IL-2 production, in response to phytohemagglutinin M both MCL and LCL patients showed amounts of IL-2 comparable to those of the controls. Our results help explain the anergy of T cells from DCL patients to leishmanial antigen, which could lead to a defective production of IFN-gamma and possibly contribute to their incapacity to kill the Leishmania parasite. Concerning MCL patients, the significantly increased expression of IL-2 receptor, decreased expression of the CD4 (helper-inducer of suppression) phenotype, and elevated IFV-gamma production might partially explains the state of hypersensitivity and mucosal damage exhibited by these patients. PMID:3133391

  5. Analysis of Gafchromic EBT3 film calibration irradiated with gamma rays from different systems: Gamma Knife and Cobalt-60 unit.

    PubMed

    Najafi, Mohsen; Geraily, Ghazale; Shirazi, Alireza; Esfahani, Mahbod; Teimouri, Javad

    2017-01-01

    In recent years, Gafchromic films are used as an advanced instrument for dosimetry systems. The EBT3 films are a new generation of Gafchromic films. Our main interest is to compare the response of the EBT3 films exposed to gamma rays provided by the Theratron 780C as a conventional radiotherapy system and the Leksell Gamma Knife as a stereotactic radiotherapy system (SRS). Both systems use Cobalt-60 sources, thus using the same energy. However, other factors such as source-to-axis distance, number of sources, dose rate, direction of irradiation, shape of phantom, the field shape of radiation, and different scatter contribution may influence the calibration curve. Calibration curves for the 2 systems were measured and plotted for doses ranging from 0 to 40 Gy at the red and green channels. The best fitting curve was obtained with the Levenberg-Marquardt algorithm. Also, the component of dose uncertainty was obtained for any calibration curve. With the best fitting curve for the EBT3 films, we can use the calibration curve to measure the absolute dose in radiation therapy. Although there is a small deviation between the 2 curves, the p-value at any channel shows no significant difference between the 2 calibration curves. Therefore, the calibration curve for each system can be the same because of minor differences. The results show that with the best fitting curve from measured data, while considering the measurement uncertainties related to them, the EBT3 calibration curve can be used to measure the unknown dose both in SRS and in conventional radiotherapy. Copyright © 2017. Published by Elsevier Inc.

  6. Central N/OFQ-NOP Receptor System in Pain Modulation

    PubMed Central

    Kiguchi, Norikazu; Ding, Huiping; Ko, Mei-Chuan

    2016-01-01

    It has been two decades since the peptide, nociceptin/orphanin FQ (N/OFQ), and its cognate (NOP) receptor were discovered. Although NOP receptor activation causes a similar pattern of intracellular actions as mu opioid (MOP) receptors, NOP receptor-mediated pain modulation in rodents are more complicated than MOP receptor activation. In this review, we highlight the functional evidence of spinal, supraspinal, and systemic actions of NOP receptor agonists for regulating pain. In rodents, effects of the N/OFQ-NOP receptor system in spinal and supraspinal sites for modulating pain are bidirectional depending on the doses, assays, and pain modalities. The net effect of systemically administered NOP receptor agonists may depend on relative contribution of spinal and supraspinal actions of the N/OFQ-NOP receptor signaling in rodents under different pain states. In stark contrast, NOP receptor agonists produce only antinociception and antihypersensitivity in spinal and supraspinal regions of nonhuman primates regardless of doses and assays. More importantly, NOP receptor agonists and a few bifunctional NOP/MOP receptor agonists do not exhibit reinforcing effects (abuse liability), respiratory depression, itch pruritus, nor do they delay the gastrointestinal transit function (constipation) in nonhuman primates. Depending upon their intrinsic efficacies for activating NOP and MOP receptors, bifunctional NOP/MOP receptor agonists warrant additional investigation in primates regarding their side effect profiles. Nevertheless, NOP receptor-related agonists display a much wider therapeutic window as compared to that of MOP receptor agonists in primates. Both selective NOP receptor agonists and bifunctional NOP/MOP receptor agonists hold a great potential as effective and safe analgesics without typical opioid-associated side effects in humans. PMID:26920014

  7. Central N/OFQ-NOP Receptor System in Pain Modulation.

    PubMed

    Kiguchi, Norikazu; Ding, Huiping; Ko, Mei-Chuan

    2016-01-01

    Two decades have passed since the peptide, nociceptin/orphanin FQ (N/OFQ), and its cognate (NOP) receptor were discovered. Although NOP receptor activation causes a similar pattern of intracellular actions as mu-opioid (MOP) receptors, NOP receptor-mediated pain modulation in rodents are more complicated than MOP receptor activation. This review highlights the functional evidence of spinal, supraspinal, and systemic actions of NOP receptor agonists for regulating pain. In rodents, effects of the N/OFQ-NOP receptor system in spinal and supraspinal sites for modulating pain are bidirectional depending on the doses, assays, and pain modalities. The net effect of systemically administered NOP receptor agonists may depend on relative contribution of spinal and supraspinal actions of the N/OFQ-NOP receptor signaling in rodents under different pain states. In stark contrast, NOP receptor agonists produce only antinociception and antihypersensitivity in spinal and supraspinal regions of nonhuman primates regardless of doses and assays. More importantly, NOP receptor agonists and a few bifunctional NOP/MOP receptor agonists do not exhibit reinforcing effects (abuse liability), respiratory depression, itch pruritus, nor do they delay the gastrointestinal transit function (constipation) in nonhuman primates. Depending upon their intrinsic efficacies for activating NOP and MOP receptors, bifunctional NOP/MOP receptor agonists warrant additional investigation in primates regarding their side effect profiles. Nevertheless, NOP receptor-related agonists display a much wider therapeutic window as compared to that of MOP receptor agonists in primates. Both selective NOP receptor agonists and bifunctional NOP/MOP receptor agonists hold great potential as effective and safe analgesics without typical opioid-associated side effects in humans.

  8. Oleamide activates peroxisome proliferator-activated receptor gamma (PPARγ) in vitro.

    PubMed

    Dionisi, Mauro; Alexander, Stephen P H; Bennett, Andrew J

    2012-05-14

    Oleamide (ODA) is a fatty acid primary amide first identified in the cerebrospinal fluid of sleep-deprived cats, which exerts effects on vascular and neuronal tissues, with a variety of molecular targets including cannabinoid receptors and gap junctions. It has recently been reported to exert a hypolipidemic effect in hamsters. Here, we have investigated the nuclear receptor family of peroxisome proliferator-activated receptors (PPARs) as potential targets for ODA action. Activation of PPARα, PPARβ and PPARγ was assessed using recombinant expression in Chinese hamster ovary cells with a luciferase reporter gene assay. Direct binding of ODA to the ligand binding domain of each of the three PPARs was monitored in a cell-free fluorescent ligand competition assay. A well-established assay of PPARγ activity, the differentiation of 3T3-L1 murine fibroblasts into adipocytes, was assessed using an Oil Red O uptake-based assay. ODA, at 10 and 50 μM, was able to transactivate PPARα, PPARβ and PPARγ receptors. ODA bound to the ligand binding domain of all three PPARs, although complete displacement of fluorescent ligand was only evident for PPARγ, at which an IC50 value of 38 μM was estimated. In 3T3-L1 cells, ODA, at 10 and 20 μM, induced adipogenesis. We have, therefore, identified a novel site of action of ODA through PPAR nuclear receptors and shown how ODA should be considered as a weak PPARγ ligand in vitro.

  9. The insulin receptor substrate-1-related 4PS substrate but not the interleukin-2R gamma chain is involved in interleukin-13-mediated signal transduction.

    PubMed

    Wang, L M; Michieli, P; Lie, W R; Liu, F; Lee, C C; Minty, A; Sun, X J; Levine, A; White, M F; Pierce, J H

    1995-12-01

    Interleukin-13 (IL-13) induced a potent mitogenic response in IL-3-dependent TF-1 cells and DNA synthesis to a lesser extent in MO7E and FDC-P1 cells. IL-13 stimulation of these lines, like IL-4 and insulin-like growth factor-1 (IGF-1), resulted in tyrosine phosphorylation of a 170-kD substrate. The tyrosine-phosphorylated 170-kD substrate strongly associated with the 85-kD subunit of phosphoinositol-3 (PI-3) kinase and with Grb-2. Anti-4PS serum readily detected the 170-kD substrate in lysates from both TF-1 and FDC-P1 cells stimulated with IL-13 or IL-4. These data provide evidence that IL-13 induces tyrosine phosphorylation of the 4PS substrate, providing an essential interface between the IL-13 receptor and signaling molecules containing SH2 domains. IL-13 and IL-4 stimulation of murine L cell fibroblasts, which endogenously express the IL-4 receptor (IL-4R alpha) and lack expression of the IL-2 receptor gamma subunit (IL-2R gamma), resulted in tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1)/4PS. Enhanced tyrosine phosphorylation of IRS-1/4PS was observed in response to IL-4, but not IL-13 treatment of L cells transfected with the IL-2R gamma chain. These results indicate that IL-13 does not use the IL-2R gamma subunit in its receptor complex and that expression of IL-2R gamma enhances, but is not absolutely required for mediating IL-4-induced tyrosine phosphorylation of IRS-1/4PS.

  10. Apoptosis Induction by Targeting Interferon Gamma Receptor 2 (IFNgammaR2) in Prostate Cancer: Ligand (IFNgamma)-Independent Novel Function of IFNgammaR2 as a Bax Inhibitor

    DTIC Science & Technology

    2014-08-01

    Interferon Gamma Receptor 2 (IFNgammaR2) in Prostate Cancer: Ligand (IFNgamma)-Independent Novel Function of IFNgammaR2 as a Bax Inhibitor PRINCIPAL...DATES COVERED 1August2013-31July2014 4. TITLE AND SUBTITLE Apoptosis Induction by Targeting Interferon Gamma Receptor 2 (IFNgammaR2) in Prostate...Introduction In our preliminary study, we identified interferon g receptor 2 (IFNγR2) as a Bax suppressor using yeast-based functional screening of Bax

  11. EPI-001 is a selective peroxisome proliferator-activated receptor-gamma modulator with inhibitory effects on androgen receptor expression and activity in prostate cancer

    PubMed Central

    Brand, Lucas J.; Olson, Margaret E.; Ravindranathan, Preethi; Guo, Hong; Kempema, Aaron M.; Andrews, Timothy E.; Chen, Xiaoli; Raj, Ganesh V.; Harki, Daniel A.; Dehm, Scott M.

    2015-01-01

    The androgen receptor (AR) is a driver of prostate cancer (PCa) cell growth and disease progression. Therapies for advanced PCa exploit AR dependence by blocking the production or action of androgens, but these interventions inevitably fail via multiple mechanisms including mutation or deletion of the AR ligand binding domain (LBD). Thus, the development of new inhibitors which act through non-LBD interfaces is an unmet clinical need. EPI-001 is a bisphenol A-derived compound shown to bind covalently and inhibit the AR NH2-terminal domain (NTD). Here, we demonstrate that EPI-001 has general thiol alkylating activity, resulting in multilevel inhibitory effects on AR in PCa cell lines and tissues. At least one secondary mechanism of action associated with AR inhibition was found to be selective modulation of peroxisome proliferator activated receptor-gamma (PPARγ). These multi-level effects of EPI-001 resulted in inhibition of transcriptional activation units (TAUs) 1 and 5 of the AR NTD, and reduced AR expression. EPI-001 inhibited growth of AR-positive and AR-negative PCa cell lines, with the highest sensitivity observed in LNCaP cells. Overall, this study provides new mechanistic insights to the chemical biology of EPI-001, and raises key issues regarding the use of covalent inhibitors of the intrinsically unstructured AR NTD. PMID:25669987

  12. Peroxisome proliferator-activated receptor gamma agonists induce proteasome-dependent degradation of cyclin D1 and estrogen receptor alpha in MCF-7 breast cancer cells.

    PubMed

    Qin, Chunhua; Burghardt, Robert; Smith, Roger; Wormke, Mark; Stewart, Jessica; Safe, Stephen

    2003-03-01

    Treatment of MCF-7 cells with the peroxisome proliferator-activated receptor (PPAR) gamma agonists ciglitazone or 15-deoxy-Delta 12,14-prostaglandin J2 resulted in a concentration- and time-dependent decrease of cyclin D1 and estrogen receptor (ER) alpha proteins, and this was accompanied by decreased cell proliferation and G(1)-G(0)-->S-phase progression. Down-regulation of cyclin D1 and ER alpha by PPARgamma agonists was inhibited in cells cotreated with the proteasome inhibitors MG132 and PSII, but not in cells cotreated with the protease inhibitors calpain II and calpeptin. Moreover, after treatment of MCF-7 cells with 15-deoxy-Delta 12,14-prostaglandin J2 and immunoprecipitation with cyclin D1 or ER alpha antibodies, there was enhanced formation of ubiquitinated cyclin D1 and ER alpha bands. Thus, PPARgamma-induced inhibition of breast cancer cell growth is due, in part, to proteasome-dependent degradation of cyclin D1 (and ER alpha), and this pathway may be important for other cancer cell lines.

  13. Ligands and Regulatory Modes of Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) in Avians.

    PubMed

    Navidshad, Bahman; Royan, M

    2015-01-01

    Nutrient and gene interaction is an important aspect of poultry metabolism that determines performance capacity. New technological tools in biochemistry and biotechnology make it possible to explore the molecular base of phenotypic characteristics of poultry production. Fats act as energy deposits in the poultry body and are an essential constituent of animal cell membranes. From a functional standpoint, it has been suggested that ingested lipids change liver fatty acid synthesis and other lipogenic enzymes by regulating mRNA synthesis. Nuclear hormone receptors are ligand-activated transcription factors that control several genes involved in lipid metabolism. The peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily of transcription factors. Three separate PPAR genes have been identified; they are known as α, δ, and γ. The most important metabolic effect of PPARγ in chicken is its task in adipogenesis. Reviewing the ligands of chicken PPARγ gene can be useful to a better understanding of PPARγ regulatory functions.

  14. (Development of gamma emitting, receptor-binding, radiotracers for imaging the brain and pancreas)

    SciTech Connect

    Not Available

    1989-01-01

    This progress report covers the period from March 1, 1987 to Feb. 28, 1988. In studies to better understand the nature of the m-AChR receptor subtypes, we have generated a manuscript which has been submitted for publication in Life sciences entitled: The effect of chronic atropine and diisopropylfluorophosphate on rat brain muscarinic acetylcholine receptor subtype concentrations. We have also developed a more direct synthesis of 3-quinuclidinyl 4-iodobenzilate and its analogues. During this contract period, we have been involved with the synthesis of analogues 3-quinuclidinyl benzilate (QNB). We have determined the affinity constants of various compounds synthesized this year for the muscarinic receptor from rat corpus striatum. We have continued our investigation of the m-AChR in pancreas. 25 refs., 3 figs., 5 tabs.

  15. Development of a high-resolution Si-PM-based gamma camera system.

    PubMed

    Yamamoto, Seiichi; Watabe, Hiroshi; Kanai, Yasukazu; Imaizumi, Masao; Watabe, Tadashi; Shimosegawa, Eku; Hatazawa, Jun

    2011-12-07

    A silicon photomultiplier (Si-PM) is a promising photodetector for PET, especially for PET/MRI combined systems, due to its high gain, small size, and lower sensitivity to static magnetic fields. However, these properties are also promising for gamma camera systems for single-photon imaging. We developed an ultra-high-resolution Si-PM-based compact gamma camera system for small animals. Y(2)SiO(5):Ce (YSO) was selected as scintillators because of its high light output and no natural radioactivity. The gamma camera consists of 0.6 mm × 0.6 mm × 6 mm YSO pixels combined with a 0.1 mm thick reflector to form a 17 × 17 matrix that was optically coupled to a Si-PM array (Hamamatsu multi-pixel photon counter S11064-050P) with a 2 mm thick light guide. The YSO block size was 12 mm × 12 mm. The YSO gamma camera was encased in a 5 mm thick gamma shield, and a parallel hole collimator was mounted in front of the camera (0.5 mm hole, 0.7 mm separation, 5 mm thick). The two-dimensional distribution for the Co-57 gamma photons (122 keV) was almost resolved. The energy resolution was 24.4% full-width at half-maximum (FWHM) for the Co-57 gamma photons. The spatial resolution at 1.5 mm from the collimator surface was 1.25 mm FWHM measured using a 1 mm diameter Co-57 point source. Phantom and small animal images were successfully obtained. We conclude that a Si-PM-based gamma camera is promising for molecular imaging research.

  16. REBOCOL (Robotic Calorimetry): An automated NDA (Nondestructive assay) calorimetry and gamma isotopic system

    SciTech Connect

    Hurd, J.R.; Bonner, C.A.; Ostenak, C.A.; Phelan, P.F.; Powell, W.D.; Sheer, N.L.; Schneider, D.N.; Staley, H.C.

    1989-01-01

    ROBOCAL, which is presently being developed and tested at Los Alamos National Laboratory, is a full-scale, prototypical robotic system, for remote calorimetric and gamma-ray analysis of special nuclear materials. It integrates a fully automated, multi-drawer, vertical stacker-retriever system for staging unmeasured nuclear materials, and a fully automated gantry robot for computer-based selection and transfer of nuclear materials to calorimetric and gamma-ray measurement stations. Since ROBOCAL is designed for minimal operator intervention, a completely programmed user interface and data-base system are provided to interact with the automated mechanical and assay systems. The assay system is designed to completely integrate calorimetric and gamma-ray data acquisition and to perform state-of-the-art analyses on both homogeneous and heterogeneous distributions of nuclear materials in a wide variety of matrices. 10 refs., 10 figs., 4 tabs.

  17. The time-of-flight system on the Goddard medium energy gamma-ray telescope

    NASA Technical Reports Server (NTRS)

    Ross, R. W.; Chesney, J. R.

    1979-01-01

    A scintillation counter time of flight system, incorporated into the Goddard 50 cm by 50 cm spark chamber gamma ray telescope is described. The system, which utilizes constant fractions timing and particle position compensation and digitizes up to 10 ns time differences to six bit accuracy in less than 500 ns is analyzed. The performance of this system during balloon flight is discussed.

  18. Structural analysis of the human interferon gamma receptor: a small segment of the intracellular domain is specifically required for class I major histocompatibility complex antigen induction and antiviral activity.

    PubMed

    Cook, J R; Jung, V; Schwartz, B; Wang, P; Pestka, S

    1992-12-01

    Mutations of the human interferon gamma (IFN-gamma) receptor intracellular domain have permitted us to define a restricted region of that domain as necessary for both induction of class I major histocompatibility complex antigen by IFN-gamma and protection against encephalomyocarditis virus. This region consists of five amino acids (YDKPH), all of which are conserved in the human and murine receptors. Tyr-457 and His-461 are essential for activity. Approximately 80% of the amino acids of the intracellular domain of the receptor is not required for major histocompatibility complex class I antigen induction or for antiviral protection against encephalomyocarditis virus. The observation that there was no protection by IFN-gamma against vesiculostomatitis virus indicates that other factors, in addition to chromosome 21 accessory factor(s), are required to generate the full complement of transduction signals from the human IFN-gamma receptor.

  19. GammaScorpion: mobile gamma-ray tomography system for early detection of basal stem rot in oil palm plantations

    NASA Astrophysics Data System (ADS)

    Abdullah, Jaafar; Hassan, Hearie; Shari, Mohamad Rabaie; Mohd, Salzali; Mustapha, Mahadi; Mahmood, Airwan Affendi; Jamaludin, Shahrizan; Ngah, Mohd Rosdi; Hamid, Noor Hisham

    2013-03-01

    Detection of the oil palm stem rot disease Ganoderma is a major issue in estate management and production in Malaysia. Conventional diagnostic techniques are difficult and time consuming when using visual inspection, and destructive and expensive when based on the chemical analysis of root or stem tissue. As an alternative, a transportable gamma-ray computed tomography system for the early detection of basal stem rot (BSR) of oil palms due to Ganoderma was developed locally at the Malaysian Nuclear Agency, Kajang, Malaysia. This system produces high quality tomographic images that clearly differentiate between healthy and Ganoderma infected oil palm stems. It has been successfully tested and used to detect the extent of BSR damage in oil palm plantations in Malaysia without the need to cut down the trees. This method offers promise for in situ inspection of oil palm stem diseases compared to the more conventional methods.

  20. Implementation of gamma-ray instrumentation for solid solar system bodies using neutron activation method

    NASA Astrophysics Data System (ADS)

    Litvak, M. L.; Golovin, D. V.; Jun, I.; Kozyrev, A. S.; Mitrofanov, I. G.; Sanin, A. B.; Shvetsov, V. N.; Timoshenko, G. N.; Zontikov, A.

    2016-06-01

    In this paper we present the results of ground tests performed with a flight model and with industry prototypes of passive and active gamma ray spectrometers with the objective of understanding their capability to distinguish the elemental composition of planetary bodies in the solar system. The gamma instrumentation, which was developed for future space missions was used in the measurements at a special ground test facility where a simulant of planetary material was fabricated with a martian-like composition. In this study, a special attention was paid to the gamma lines from activation reaction products generated by a pulsed neutron generator. The instrumentation was able to detect and identify gamma lines attributed to O, Na, Mg, Al, Si, K, Ca and Fe.

  1. Detection system for high-resolution gamma radiation spectroscopy with neutron time-of-flight filtering

    DOEpatents

    Dioszegi, Istvan; Salwen, Cynthia; Vanier, Peter

    2014-12-30

    A .gamma.-radiation detection system that includes at least one semiconductor detector such as HPGe-Detector, a position-sensitive .alpha.-Detector, a TOF Controller, and a Digitizer/Integrator. The Digitizer/Integrator starts to process the energy signals of a .gamma.-radiation sent from the HPGe-Detector instantly when the HPGe-Detector detects the .gamma.-radiation. Subsequently, it is determined whether a coincidence exists between the .alpha.-particles and .gamma.-radiation signal, based on a determination of the time-of-flight of neutrons obtained from the .alpha.-Detector and the HPGe-Detector. If it is determined that the time-of-flight falls within a predetermined coincidence window, the Digitizer/Integrator is allowed to continue and complete the energy signal processing. If, however, there is no coincidence, the Digitizer/Integrator is instructed to be clear and reset its operation instantly.

  2. System to quantify gamma-ray radial energy deposition in semiconductor detectors

    DOEpatents

    Kammeraad, Judith E.; Blair, Jerome J.

    2001-01-01

    A system for measuring gamma-ray radial energy deposition is provided for use in conjunction with a semiconductor detector. The detector comprises two electrodes and a detector material, and defines a plurality of zones within the detecting material in parallel with the two electrodes. The detector produces a charge signal E(t) when a gamma-ray interacts with the detector. Digitizing means are provided for converting the charge signal E(t) into a digitized signal. A computational means receives the digitized signal and calculates in which of the plurality of zones the gamma-ray deposited energy when interacting with the detector. The computational means produces an output indicating the amount of energy deposited by the gamma-ray in each of the plurality of zones.

  3. Environmental Chemicals Modulate Polar Bear (Ursus maritimus) Peroxisome Proliferator-Activated Receptor Gamma (PPARG) and Adipogenesis in Vitro.

    PubMed

    Routti, Heli; Lille-Langøy, Roger; Berg, Mari K; Fink, Trine; Harju, Mikael; Kristiansen, Kurt; Rostkowski, Pawel; Rusten, Marte; Sylte, Ingebrigt; Øygarden, Lene; Goksøyr, Anders

    2016-10-04

    We studied interactions between polar bear peroxisome proliferator-activated receptor gamma (pbPPARG) and selected compounds using a luciferase reporter assay and predictions through molecular docking. Furthermore, we studied adipogenesis by liver and adipose tissue extracts from a polar bear and three synthetic mixtures of contaminants in murine 3T3-L1 preadipocytes and polar bear adipose tissue-derived stem cells (pbASCs). PCB153 and p,p'-DDE antagonized pbPPARG, although their predicted receptor-ligand affinity was weak. PBDEs, tetrabromobisphenol A, and PCB170 had a weak agonistic effect on pbPPARG, while hexabromocyclododecane, bisphenol A, oxychlordane, and endosulfan were weak antagonists. pbPPARG-mediated luciferase activity was suppressed by synthetic contaminant mixtures reflecting levels measured in polar bear adipose tissue, as were transcript levels of PPARG and the PPARG target gene fatty acid binding protein 4 (FABP4) in pbASCs. Contaminant extracts from polar bear tissues enhanced triglyceride accumulation in murine 3T3-L1 cells and pbASCs, whereas triglyceride accumulation was not affected by the synthetic mixtures. Chemical characterization of extracts using nontarget methods revealed presence of exogenous compounds that have previously been reported to induce adipogenesis. These compounds included phthalates, tonalide, and nonylphenol. In conclusion, major legacy contaminants in polar bear adipose tissue exert antagonistic effects on PPARG, but adipogenesis by a mixture containing emerging compounds may be enhanced through PPARG or other pathways.

  4. Interaction of anisatin with rat brain gamma-aminobutyric acidA receptors: allosteric modulation by competitive antagonists.

    PubMed

    Kakemoto, E; Okuyama, E; Nagata, K; Ozoe, Y

    1999-08-15

    Anisatin, a toxic sesquiterpene isolated from the Japanese star anise (Illicium anisatum L.), competitively inhibited the specific binding of [3H]4'-ethynyl-4-n-propylbicycloorthobenzoate ([3H]EBOB), a non-competitive antagonist of gamma-aminobutyric acid (GABA)A receptors, to rat brain membranes with an IC50 value of 0.43 microM. R 5135, a competitive GABA antagonist, decreased the potency of anisatin in inhibiting [3H]EBOB binding in a negatively cooperative manner. Two other competitive antagonists, SR 95531 (gabazine) and (-)-bicuculline methiodide, had similar effects. On the other hand, R 5135 exerted little influence on the potencies of the other non-competitive antagonists tested: EBOB, picrotoxinin, isopropylbicyclophosphate, and dieldrin. Thus, anisatin was clearly different from the other non-competitive antagonists in responding to the action of competitive antagonists on (GABA)A receptors. These findings suggest that the binding region of anisatin might overlap with that of the other non-competitive antagonists, but that anisatin must interact with other specific region(s).

  5. Chlorination of bisphenol F and the estrogenic and peroxisome proliferator-activated receptor gamma effects of its disinfection byproducts.

    PubMed

    Zheng, Sai; Shi, Jia-Chen; Hu, Jian-Ying; Hu, Wen-Xin; Zhang, Jing; Shao, Bing

    2016-12-15

    The reaction kinetics and transformation pathways between bisphenol F (BPF) and sodium hypochlorite were investigated at pH values ranging from 6.5 to 8.5 and with different initial concentration ratios. The reaction rate was pH- and free available chlorine (FAC)-dependent: the reaction rate at pH 8.5 was almost 10 times than that at pH 6.5. A total of 40 compounds were tentatively identified as chloro-substituted BPF and polyphenolic compounds by liquid chromatography quadrupole time-of-flight mass spectrometry operating in electrospray ionization mode (LC-ESI-Q-ToF), and 4 main byproducts were confirmed by (1)H and (13)C nuclear magnetic resonance (NMR). Toxicity tests indicated that the estrogenic effects of chloro-substituted BPF decrease as the chlorine substitution increase. On the contrary, increasing numbers of chlorines on the phenolic rings of BPF enhanced the nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) activity. Tetra-chlorinated BPF had an approximately 6.9-fold higher activity than BPF. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Role of peroxisome proliferator-activated receptor gamma gene polymorphisms in type 2 diabetes mellitus patients of West Bengal, India.

    PubMed

    Pattanayak, Arup Kumar; Bankura, Biswabandhu; Balmiki, Nisha; Das, Tapas Kumar; Chowdhury, Subhankar; Das, Madhusudan

    2014-03-23

    Peroxisome proliferator activated receptor gamma (PPARG) is a nuclear hormone receptor of the ligand-dependent transcription factor involved in adipogenesis, and a molecular target of the insulin sensitizer, thiazolidinediones. The present study aimed to investigate whether the PPARG gene is associated with type 2 diabetes mellitus and its related traits within the population of West Bengal, India. The study participants (200 type 2 diabetes mellitus and 200 normal individuals) were chosen randomly, and the variants were screened by direct sequencing. The results showed that rs1801282 (odds ratio 0.66; 95% confidence interval 0.15-2.96; P = 0.57) and rs3856806 (odds ratio 1.23; 95% confidence interval 0.73-2.06; P = 0.44) variants of the PPARG gene were not associated with type 2 diabetes mellitus. The results showed that the PPARG gene was not associated with type 2 diabetes mellitus in our study population. As the lack of association might come from the small sample size, further studies with larger sample size are required to verify the present observation.

  7. Crystal Structure of the Interferon Gamma Receptor Alpha Chain from Chicken Reveals an Undetected Extra Helix Compared with the Human Counterparts

    PubMed Central

    Ping, Zhiguang; Qi, Jianxun; Sun, Yanling; Lu, Guangwen; Shi, Yi; Wang, Xiaojia

    2014-01-01

    Interferon gamma (IFN-γ) is an important cytokine that induces antiviral, antiproliferative, and immunomodulatory effects on target cells, and is also crucial in the early defense against intracellular parasites, such as Listeria monocytogenes and Toxoplasma gondii. The biological activity of IFN-γ relies upon the formation of a complex with its 2 receptors, the interferon gamma alpha chain (IFNGR1) and beta chain (IFNGR2), which are type II cytokine receptors. Structural models of ligand–receptor interaction and complex structure of chicken IFNs with their receptors have remained elusive. Here we report the first structure of Gallus gallus (chicken) IFNGR1 (chIFNGR1) at 2.0 Å by molecule replacement according to the structure of selenomethionine substituted chIFNGR1. The structural comparison reveals its structural similarities with other class II cytokine receptors, despite divergent primary sequences. We further investigate the ligand–receptor interaction properties of chicken IFN-γ (chIFN-γ) and chIFNGR1 using size-exclusion chromatography and surface plasmon resonance techniques. These data aid in the understanding of the interaction of chicken (avian) IFN-γ with its receptors and its signal transduction. PMID:24283193

  8. Fc gamma receptors regulate immune activation and susceptibility during Mycobacterium tuberculosis infection.

    PubMed

    Maglione, Paul J; Xu, Jiayong; Casadevall, Arturo; Chan, John

    2008-03-01

    The critical role of cellular immunity during tuberculosis (TB) has been extensively studied, but the impact of Abs upon this infection remains poorly defined. Previously, we demonstrated that B cells are required for optimal protection in Mycobacterium tuberculosis-infected mice. FcgammaR modulate immunity by engaging Igs produced by B cells. We report that C57BL/6 mice deficient in inhibitory FcgammaRIIB (RIIB-/-) manifested enhanced mycobacterial containment and diminished immunopathology compared with wild-type controls. These findings corresponded with enhanced pulmonary Th1 responses, evidenced by increased IFN-gamma-producing CD4+ T cells, and elevated expression of MHC class II and costimulatory molecules B7-1 and B7-2 in the lungs. Upon M. tuberculosis infection and immune complex engagement, RIIB-/- macrophages produced more of the p40 component of the Th1-promoting cytokine IL-12. These data strongly suggest that FcgammaRIIB engagement can dampen the TB Th1 response by attenuating IL-12p40 production or activation of APCs. Conversely, C57BL/6 mice lacking the gamma-chain shared by activating FcgammaR had enhanced susceptibility and exacerbated immunopathology upon M. tuberculosis challenge, associated with increased production of the immunosuppressive cytokine IL-10. Thus, engagement of distinct FcgammaR can divergently affect cytokine production and susceptibility during M. tuberculosis infection.

  9. Murine atopic dermatitis responds to peroxisome proliferator-activated receptors alpha and beta/delta (but not gamma) and liver X receptor activators.

    PubMed

    Hatano, Yutaka; Man, Mao-Qiang; Uchida, Yoshikazu; Crumrine, Debra; Mauro, Theodora M; Feingold, Kenneth R; Elias, Peter M; Holleran, Walter M

    2010-01-01

    Atopic dermatitis (AD) is a chronic inflammatory dermatosis now increasingly linked to mutations that alter the structure and function of the stratum corneum. Activators of peroxisome proliferator-activated receptors (PPARs) alpha, beta/delta, and gamma and liver X receptor (LXR) regulate epidermal protein and lipid production, leading to superior barrier function. Additionally, some of these activators exhibit potent antihyperplastic and anti-inflammatory activity in irritant contact dermatitis and acute allergic contact dermatitis murine models. We evaluated the efficacy of PPAR/LXR activation in a hapten (oxazolone [Ox])-induced AD-like model (Ox-AD) in hairless mice. Ox-AD was established with 10 Ox challenges (every other day) on the flank. After the establishment of Ox-AD, twice-daily topical application with individual PPAR/LXR activators was then performed for 4 days, with continued Ox challenges every other day. The efficacy of topical PPAR/LXR activators to reduce parameters of Ox-AD was assessed physiologically, morphologically, and immunologically. Certain topical activators of PPARalpha, PPARbeta/delta, and LXR, but not activators of PPARgamma, reversed the clinical dermatosis, significantly improved barrier function, and increased stratum corneum hydration in Ox-AD mice. In addition, the same activators, but again not PPARgamma, largely reversed the immunologic abnormalities in Ox-AD mice, including the increased T(H)2 markers, such as tissue eosinophil/mast cell density, serum thymus and activation-related chemokine levels, the density of chemoattractant receptor-homologous molecule expressed on T(H)2-positive lymphocytes (but not serum IgE levels), and reduced IL-1alpha and TNF-alpha activation, despite ongoing hapten challenges. These results suggest that topical applications of certain activators/ligands of PPARalpha, PPARbeta/delta, and LXR could be useful for the treatment of AD in human subjects. Copyright 2010 American Academy of Allergy

  10. Effects of 900-MHz microwave radiation on gamma-ray-induced damage to mouse hematopoietic system.

    PubMed

    Cao, Yi; Xu, Qian; Jin, Zong-Da; Zhang, Jun; Lu, Min-Xia; Nie, Ji-Hua; Tong, Jian

    2010-01-01

    Exposure of humans simultaneously to microwave and gamma-ray irradiation may be a commonly encountered phenomenon. In a previous study data showed that low-dose microwave radiation increased the survival rate of mice irradiated with 8Gy gamma-ray; however, the mechanisms underlying these findings remain unclear. Consequently, studies were undertaken to examine the effects of microwave exposure on hematopoietic system adversely altered by gamma-ray irradiation in mice. Preexposure to low-dose microwaves attenuated the damage produced by gamma-ray irradiation as evidenced by less severe pathological alterations in bone marrow and spleen. The protective effects of microwaves were postulated to be due to up-expression of some hematopoietic growth factors, stimulation of proliferation of the granulocyte-macrophages in bone marrow, and inhibition of the gamma-ray induced suppression of hematopoietic stem cells/hematopoietic progenitor cells. Data thus indicate that prior exposure to microwaves may be beneficial in providing protection against injuries produced by gamma-ray on the hematopoietic system in mice.

  11. V-chain preference of gamma/delta T-cell receptors in peripheral blood during term labor.

    PubMed

    Barakonyi, Aliz; Miko, Eva; Varga, Peter; Szekeres-Bartho, Julia

    2008-03-01

    An altered function of the maternal immune system creates a favorable environment for the developing fetus during pregnancy. At term, new regulatory mechanisms are activated, to initiate labor. Earlier we showed that in peripheral blood of pregnant women gamma/delta T cells of cytotoxic phenotype are replaced by those of a non-cytotoxic phenotype. Here we studied the Vgamma and Vdelta chain usage of peripheral gamma/delta T cells from women in labor. Vgamma and Vdelta chain expression on peripheral blood lymphocytes obtained at the 3rd trimester of pregnancy and during parturition were examined by immuncytochemistry and flow cytometry. Increased % of Vgamma9/Vdelta2 and decreased % of Vgamma4/Vdelta1 T cells were found in peripheral blood during labor, together with unaltered percentages of single Vgamma+ or Vdelta+ cells. The initially high Vgamma4/Vdelta1 to Vgamma9/Vdelta2 ratio decreased during labor. The initiation of labor is characterized by an altered V-chain usage of gamma/delta T cells.

  12. Working Memory Deficits in Retinoid X receptor [gamma]-Deficient Mice

    ERIC Educational Resources Information Center

    Wietrzych, Marta; Meziane, Hamid; Sutter, Anne; Ghyselinck, Norbert; Chapman, Paul F.; Chambon, Pierre; Krezel, Wojciech

    2005-01-01

    Retinoid signaling has been recently shown to be required for mnemonic functions in rodents. To dissect the behavioral and molecular mechanisms involved in this requirement, we have analyzed the spatial and recognition working memory in mice carrying null mutations of retinoid receptors RAR[subscript [beta

  13. Regulation of retinoid X receptor gamma expression by fed state in mouse liver.

    PubMed

    Park, Sangkyu; Lee, Yoo Jeong; Ko, Eun Hee; Kim, Jae-Woo

    2015-02-27

    Glucose metabolism is balanced by glycolysis and gluconeogenesis with precise control in the liver. The expression of genes related to glucose metabolism is regulated primarily by glucose and insulin at transcriptional level. Nuclear receptors play important roles in regulating the gene expression of glucose metabolism at transcriptional level. Some of these nuclear receptors form heterodimers with RXRs to bind to their specific regulatory elements on the target promoters. To date, three isotypes of RXRs have been identified; RXRα, RXRβ and RXRγ. However, their involvement in the interactions with other nuclear receptors in the liver remains unclear. In this study, we found RXRγ is rapidly induced after feeding in the mouse liver, indicating a potential role of RXRγ in controlling glucose or lipid metabolism in the fasting-feeding cycle. In addition, RXRγ expression was upregulated by glucose in primary hepatocytes. This implies that glucose metabolism governed by RXRγ in conjunction with other nuclear receptors. The luciferase reporter assay showed that RXRγ as well as RXRα increased SREBP-1c promoter activity in hepatocytes. These results suggest that RXRγ may play an important role in tight control of glucose metabolism in the fasting-feeding cycle.

  14. Different strategies for producing soluble form of natural common cytokine receptor gamma chain

    USDA-ARS?s Scientific Manuscript database

    The common cytokine receptor ' chain ('c) plays an essential role in regulating lymphoid homeostasis and alterations in its structure causes severe immunodeficient diseases. Although soluble 'c (s'c) was first reported in the late 1990's, many questions still remain unanswered concerning the sheddi...

  15. ACTIVATION OF PPAR GAMMA RECEPTORS REDUCES LEVODOPA-INDUCED DYSKINESIAS IN 6-OHDA-LESIONED RATS

    PubMed Central

    Martinez, A. A.; Morgese, M. G.; Pisanu, A.; Macheda, T.; Paquette, M. A.; Seillier, A.; Cassano, T.; Carta, A.R.; Giuffrida, A.

    2014-01-01

    Long-term administration of L-3,4-dihydroxyphenylalanine (levodopa), the mainstay treatment for Parkinson’s disease (PD), is accompanied by fluctuations in its duration of action and motor complications (dyskinesia) that dramatically affect the quality of life of patients. Levodopa-induced dyskinesias (LID) can be modeled in rats with unilateral 6-OHDA lesions via chronic administration of levodopa, which causes increasingly severe axial, limb and oro-facial abnormal involuntary movements (AIMs) over time. In previous studies, we showed that direct activation of CB1 cannabinoid receptors alleviated rat AIMs. Interestingly, elevation of the endocannabinoid anandamide by URB597 (URB), an inhibitor of endocannabinoid catabolism, produced an anti-dyskinetic response that was only partially mediated via CB1 receptors and required the concomitant blockade of transient receptor potential vanilloid type-1 (TRPV1) channels by capsazepine (CPZ) [1]. In this study, we showed that stimulation of peroxisome proliferator-activated receptors (PPAR), a family of transcription factors activated by anandamide, contributes to the anti-dyskinetic effects of URB+CPZ, and that direct activation of the PPARγ subtype by rosiglitazone (RGZ) alleviates levodopa-induced AIMs in 6-OHDA rats. AIM reduction was associated with an attenuation of levodopa-induced increase of dynorphin, zif-268 and of ERK phosphorylation in the denervated striatum. RGZ treatment did not decrease striatal levodopa and dopamine bioavailability, nor did it affect levodopa antiparkinsonian activity. Collectively, these data indicate that PPARγ may represent a new pharmacological target for the treatment of LID. PMID:25486547

  16. Working Memory Deficits in Retinoid X receptor [gamma]-Deficient Mice

    ERIC Educational Resources Information Center

    Wietrzych, Marta; Meziane, Hamid; Sutter, Anne; Ghyselinck, Norbert; Chapman, Paul F.; Chambon, Pierre; Krezel, Wojciech

    2005-01-01

    Retinoid signaling has been recently shown to be required for mnemonic functions in rodents. To dissect the behavioral and molecular mechanisms involved in this requirement, we have analyzed the spatial and recognition working memory in mice carrying null mutations of retinoid receptors RAR[subscript [beta

  17. Regulation of retinoid X receptor gamma expression by fed state in mouse liver

    SciTech Connect

    Park, Sangkyu; Lee, Yoo Jeong; Ko, Eun Hee; Kim, Jae-woo

    2015-02-27

    Glucose metabolism is balanced by glycolysis and gluconeogenesis with precise control in the liver. The expression of genes related to glucose metabolism is regulated primarily by glucose and insulin at transcriptional level. Nuclear receptors play important roles in regulating the gene expression of glucose metabolism at transcriptional level. Some of these nuclear receptors form heterodimers with RXRs to bind to their specific regulatory elements on the target promoters. To date, three isotypes of RXRs have been identified; RXRα, RXRβ and RXRγ. However, their involvement in the interactions with other nuclear receptors in the liver remains unclear. In this study, we found RXRγ is rapidly induced after feeding in the mouse liver, indicating a potential role of RXRγ in controlling glucose or lipid metabolism in the fasting–feeding cycle. In addition, RXRγ expression was upregulated by glucose in primary hepatocytes. This implies that glucose metabolism governed by RXRγ in conjunction with other nuclear receptors. The luciferase reporter assay showed that RXRγ as well as RXRα increased SREBP-1c promoter activity in hepatocytes. These results suggest that RXRγ may play an important role in tight control of glucose metabolism in the fasting–feeding cycle. - Highlights: • Refeeding increases the RXRγ expression level in mouse liver. • RXRγ expression is induced by high glucose condition in primary hepatocytes. • RXRγ and LXRα have synergistic effect on SREBP-1c promoter activity. • RXRγ binds to LXRE(-299/-280) located within SREBP-1c promoter region and interacts with LXRα.

  18. Improved readout system for multi-crystal gamma cameras

    DOEpatents

    Derenzo, S.E.

    1985-08-21

    A radioisotope camera having an array of scintillation crystals arranged in N rows and M columns and adapted to be struck by gamma-rays from a subject, a separate solid state photodetector optically coupled to each crystal, and N + M amplifiers connected to the photodetectors to distinguish the particular row and column of an activated photodetector. One of the anode or cathode leads of each photodetector is coupled to the row amplifier associated with the row containing that photodetector while the other of the two leads is coupled to the column amplifier associated with the column containing that photodetector.

  19. T cell receptor-induced activation of phospholipase C-gamma1 depends on a sequence-independent function of the P-I region of SLP-76.

    PubMed

    Gonen, Ronnie; Beach, Dvora; Ainey, Carmit; Yablonski, Deborah

    2005-03-04

    SLP-76 forms part of a hematopoietic-specific adaptor protein complex, and is absolutely required for T cell development and activation. T cell receptor (TCR)-induced activation of phospholipase C-gamma1 (PLC-gamma1) depends on three features of SLP-76: the N-terminal tyrosine phosphorylation sites, the Gads-binding site, and an intervening sequence, denoted the P-I region, which binds to the SH3 domain of PLC-gamma1 (SH3(PLC)) via a low affinity interaction. Despite extensive research, the mechanism whereby SLP-76 regulates PLC-gamma1 remains uncertain. In this study, we uncover and explore an apparent paradox: whereas the P-I region as a whole is essential for TCR-induced activation of PLC-gamma1 and nuclear factor of activated T cells (NFAT), no particular part of this region is absolutely required. To better understand the contribution of the P-I region to PLC-gamma1 activation, we mapped the PLC-gamma1-binding site within the region, and created a SLP-76 mutant that fails to bind SH3(PLC), but is fully functional, mediating TCR-induced phosphorylation of PLC-gamma1 at tyrosine 783, calcium flux, and nuclear factor of activated T cells activation. Unexpectedly, full functionality of this mutant was maintained even under less than optimal stimulation conditions, such as a low concentration of the anti-TCR antibody. Another SLP-76 mutant, in which the P-I region was scrambled to abolish any sequence-dependent protein-binding motifs, also retained significant functionality. Our results demonstrate that SLP-76 need not interact with SH3(PLC) to activate PLC-gamma1, and further suggest that the P-I region of SLP-76 serves a structural role that is sequence-independent and is not directly related to protein-protein interactions.

  20. A simultaneous beta and coincidence-gamma imaging system for plant leaves.

    PubMed

    Ranjbar, Homayoon; Wen, Jie; Mathews, Aswin J; Komarov, Sergey; Wang, Qiang; Li, Ke; O'Sullivan, Joseph A; Tai, Yuan-Chuan

    2016-05-07

    Positron emitting isotopes, such as (11)C, (13)N, and (18)F, can be used to label molecules. The tracers, such as (11)CO2, are delivered to plants to study their biological processes, particularly metabolism and photosynthesis, which may contribute to the development of plants that have a higher yield of crops and biomass. Measurements and resulting images from PET scanners are not quantitative in young plant structures or in plant leaves due to poor positron annihilation in thin objects. To address this problem we have designed, assembled, modeled, and tested a nuclear imaging system (simultaneous beta-gamma imager). The imager can simultaneously detect positrons ([Formula: see text]) and coincidence-gamma rays (γ). The imaging system employs two planar detectors; one is a regular gamma detector which has a LYSO crystal array, and the other is a phoswich detector which has an additional BC-404 plastic scintillator for beta detection. A forward model for positrons is proposed along with a joint image reconstruction formulation to utilize the beta and coincidence-gamma measurements for estimating radioactivity distribution in plant leaves. The joint reconstruction algorithm first reconstructs beta and gamma images independently to estimate the thickness component of the beta forward model and afterward jointly estimates the radioactivity distribution in the object. We have validated the physics model and reconstruction framework through a phantom imaging study and imaging a tomato leaf that has absorbed (11)CO2. The results demonstrate that the simultaneously acquired beta and coincidence-gamma data, combined with our proposed joint reconstruction algorithm, improved the quantitative accuracy of estimating radioactivity distribution in thin objects such as leaves. We used the structural similarity (SSIM) index for comparing the leaf images from the simultaneous beta-gamma imager with the ground truth image. The jointly reconstructed images yield SSIM indices of 0

  1. A simultaneous beta and coincidence-gamma imaging system for plant leaves

    NASA Astrophysics Data System (ADS)

    Ranjbar, Homayoon; Wen, Jie; Mathews, Aswin J.; Komarov, Sergey; Wang, Qiang; Li, Ke; O'Sullivan, Joseph A.; Tai, Yuan-Chuan

    2016-05-01

    Positron emitting isotopes, such as 11C, 13N, and 18F, can be used to label molecules. The tracers, such as 11CO2, are delivered to plants to study their biological processes, particularly metabolism and photosynthesis, which may contribute to the development of plants that have a higher yield of crops and biomass. Measurements and resulting images from PET scanners are not quantitative in young plant structures or in plant leaves due to poor positron annihilation in thin objects. To address this problem we have designed, assembled, modeled, and tested a nuclear imaging system (simultaneous beta-gamma imager). The imager can simultaneously detect positrons ({β+} ) and coincidence-gamma rays (γ). The imaging system employs two planar detectors; one is a regular gamma detector which has a LYSO crystal array, and the other is a phoswich detector which has an additional BC-404 plastic scintillator for beta detection. A forward model for positrons is proposed along with a joint image reconstruction formulation to utilize the beta and coincidence-gamma measurements for estimating radioactivity distribution in plant leaves. The joint reconstruction algorithm first reconstructs beta and gamma images independently to estimate the thickness component of the beta forward model and afterward jointly estimates the radioactivity distribution in the object. We have validated the physics model and reconstruction framework through a phantom imaging study and imaging a tomato leaf that has absorbed 11CO2. The results demonstrate that the simultaneously acquired beta and coincidence-gamma data, combined with our proposed joint reconstruction algorithm, improved the quantitative accuracy of estimating radioactivity distribution in thin objects such as leaves. We used the structural similarity (SSIM) index for comparing the leaf images from the simultaneous beta-gamma imager with the ground truth image. The jointly reconstructed images yield SSIM indices of 0.69 and 0.63, whereas the

  2. Oleamide activates peroxisome proliferator-activated receptor gamma (PPARγ) in vitro

    PubMed Central

    2012-01-01

    Background Oleamide (ODA) is a fatty acid primary amide first identified in the cerebrospinal fluid of sleep-deprived cats, which exerts effects on vascular and neuronal tissues, with a variety of molecular targets including cannabinoid receptors and gap junctions. It has recently been reported to exert a hypolipidemic effect in hamsters. Here, we have investigated the nuclear receptor family of peroxisome proliferator-activated receptors (PPARs) as potential targets for ODA action. Results Activation of PPARα, PPARβ and PPARγ was assessed using recombinant expression in Chinese hamster ovary cells with a luciferase reporter gene assay. Direct binding of ODA to the ligand binding domain of each of the three PPARs was monitored in a cell-free fluorescent ligand competi