Science.gov

Sample records for receptor gene results

  1. Association of oestrogen receptor gene polymorphism with the long-term results of rotational acetabular osteotomy.

    PubMed

    Yamanaka, Makoto; Ishijima, Muneaki; Tokita, Akifumi; Sakamoto, Yuko; Kaneko, Haruka; Maezawa, Katsuhiko; Nozawa, Masahiko; Kurosawa, Hisashi

    2009-08-01

    Acetabular dysplasia (AD) contributes to the development of osteoarthritis of the hip. A rotational acetabular osteotomy (RAO) is one of the methods of pelvic osteotomy to prevent or treat secondary osteoarthritis of the hip. Although most of the patients that undergo RAO show satisfactory results, some have poor results. This study investigated whether gene polymorphisms of both the vitamin D receptor (VDR) and oestrogen receptor (ER) are involved in both AD and the postoperative results following RAOs. Sixty-four Japanese patients with AD who were treated by an RAO were enrolled in this study (59 women and 5 men, aged 13-59, with an average age of 40.3). Gene polymorphisms of the VDR [ApaI and TaqI restriction fragment length polymorphisms (RFLPs)] and ER (PvuII and XbaI RFLPs) were determined in these patients. The relationship between both the AD and radiographic postoperative changes of the hip joint after an RAO with these gene polymorphisms were examined. The frequencies of ER gene polymorphism coded as pp (RFLP/PvuII) in patients with AD were statistically significantly different (p = .011) from those coded as both PP and Pp. The joint space width narrowed even after RAO in 90% of the patients with the pp gene polymorphism, while it narrowed in only 35% of the patients with either PP or Pp seven years or longer after an RAO. The PvuII polymorphism in the ER gene was associated with the postoperative result of an RAO, while no association was observed between the AD with VDR and ER gene polymorphisms.

  2. FGF receptor genes and breast cancer susceptibility: results from the Breast Cancer Association Consortium

    PubMed Central

    Agarwal, D; Pineda, S; Michailidou, K; Herranz, J; Pita, G; Moreno, L T; Alonso, M R; Dennis, J; Wang, Q; Bolla, M K; Meyer, K B; Menéndez-Rodríguez, P; Hardisson, D; Mendiola, M; González-Neira, A; Lindblom, A; Margolin, S; Swerdlow, A; Ashworth, A; Orr, N; Jones, M; Matsuo, K; Ito, H; Iwata, H; Kondo, N; Hartman, M; Hui, M; Lim, W Y; T-C Iau, P; Sawyer, E; Tomlinson, I; Kerin, M; Miller, N; Kang, D; Choi, J-Y; Park, S K; Noh, D-Y; Hopper, J L; Schmidt, D F; Makalic, E; Southey, M C; Teo, S H; Yip, C H; Sivanandan, K; Tay, W-T; Brauch, H; Brüning, T; Hamann, U; Dunning, A M; Shah, M; Andrulis, I L; Knight, J A; Glendon, G; Tchatchou, S; Schmidt, M K; Broeks, A; Rosenberg, E H; van't Veer, L J; Fasching, P A; Renner, S P; Ekici, A B; Beckmann, M W; Shen, C-Y; Hsiung, C-N; Yu, J-C; Hou, M-F; Blot, W; Cai, Q; Wu, A H; Tseng, C-C; Van Den Berg, D; Stram, D O; Cox, A; Brock, I W; Reed, M W R; Muir, K; Lophatananon, A; Stewart-Brown, S; Siriwanarangsan, P; Zheng, W; Deming-Halverson, S; Shrubsole, M J; Long, J; Shu, X-O; Lu, W; Gao, Y-T; Zhang, B; Radice, P; Peterlongo, P; Manoukian, S; Mariette, F; Sangrajrang, S; McKay, J; Couch, F J; Toland, A E; Yannoukakos, D; Fletcher, O; Johnson, N; Silva, I dos Santos; Peto, J; Marme, F; Burwinkel, B; Guénel, P; Truong, T; Sanchez, M; Mulot, C; Bojesen, S E; Nordestgaard, B G; Flyer, H; Brenner, H; Dieffenbach, A K; Arndt, V; Stegmaier, C; Mannermaa, A; Kataja, V; Kosma, V-M; Hartikainen, J M; Lambrechts, D; Yesilyurt, B T; Floris, G; Leunen, K; Chang-Claude, J; Rudolph, A; Seibold, P; Flesch-Janys, D; Wang, X; Olson, J E; Vachon, C; Purrington, K; Giles, G G; Severi, G; Baglietto, L; Haiman, C A; Henderson, B E; Schumacher, F; Le Marchand, L; Simard, J; Dumont, M; Goldberg, M S; Labrèche, F; Winqvist, R; Pylkäs, K; Jukkola-Vuorinen, A; Grip, M; Devilee, P; Tollenaar, R A E M; Seynaeve, C; García-Closas, M; Chanock, S J; Lissowska, J; Figueroa, J D; Czene, K; Eriksson, M; Humphreys, K; Darabi, H; Hooning, M J; Kriege, M; Collée, J M; Tilanus-Linthorst, M; Li, J; Jakubowska, A; Lubinski, J; Jaworska-Bieniek, K; Durda, K; Nevanlinna, H; Muranen, T A; Aittomäki, K; Blomqvist, C; Bogdanova, N; Dörk, T; Hall, P; Chenevix-Trench, G; Easton, D F; Pharoah, P D P; Arias-Perez, J I; Zamora, P; Benítez, J; Milne, R L

    2014-01-01

    Background: Breast cancer is one of the most common malignancies in women. Genome-wide association studies have identified FGFR2 as a breast cancer susceptibility gene. Common variation in other fibroblast growth factor (FGF) receptors might also modify risk. We tested this hypothesis by studying genotyped single-nucleotide polymorphisms (SNPs) and imputed SNPs in FGFR1, FGFR3, FGFR4 and FGFRL1 in the Breast Cancer Association Consortium. Methods: Data were combined from 49 studies, including 53 835 cases and 50 156 controls, of which 89 050 (46 450 cases and 42 600 controls) were of European ancestry, 12 893 (6269 cases and 6624 controls) of Asian and 2048 (1116 cases and 932 controls) of African ancestry. Associations with risk of breast cancer, overall and by disease sub-type, were assessed using unconditional logistic regression. Results: Little evidence of association with breast cancer risk was observed for SNPs in the FGF receptor genes. The strongest evidence in European women was for rs743682 in FGFR3; the estimated per-allele odds ratio was 1.05 (95% confidence interval=1.02–1.09, P=0.0020), which is substantially lower than that observed for SNPs in FGFR2. Conclusion: Our results suggest that common variants in the other FGF receptors are not associated with risk of breast cancer to the degree observed for FGFR2. PMID:24548884

  3. Association between olfactory receptor genes, eating behavior traits and adiposity: results from the Quebec Family Study.

    PubMed

    Choquette, Anne C; Bouchard, Luigi; Drapeau, Vicky; Lemieux, Simone; Tremblay, Angelo; Bouchard, Claude; Vohl, Marie-Claude; Pérusse, Louis

    2012-02-01

    Obesity is a major health problem that can be influenced by eating behaviors. Evidence suggests that the sensory properties of food influence eating behaviors and lead to overeating and overweight. A previous genome-wide linkage scan for eating behavior traits assessed with the Three-Factor Eating Questionnaire (cognitive dietary restraint, disinhibition and hunger) performed in the Quebec Family Study (QFS) revealed a quantitative trait locus for disinhibition on chromosome 19p13. This region encodes a cluster of seven olfactory receptor (OR) genes, including OR7D4, previously associated with odor perceptions. Direct sequencing of the OR7D4 gene revealed 16 sequence variants. Nine OR7D4 sequence variants with minor allele frequency (MAF)>1% as well as 100 SNPs spanning the cluster of OR genes on 19p13 were tested for association with age- and sex-adjusted eating behaviors as well as adiposity traits in 890 subjects. One OR7D4 sequence variant (rs2878329 G>A) showed evidence of association with reduced levels of adiposity (p=0.03), cognitive dietary restraint (p=0.05) and susceptibility to hunger (p=0.008). None of the OR7D4 SNPs was associated with disinhibition, but a SNP (rs2240927) in another OR gene (OR7E24) showed evidence of association (p=0.03). Another SNP in the OR7G3 gene (rs10414255) was also found to be associated with adiposity and eating behaviors. These results are the first to suggest that variations in human olfactory receptor genes can influence eating behaviors and adiposity. The associations reported in the present study should be interpreted with caution considering the number of tests performed and considered as potential new hypotheses about the effects OR polymorphisms on eating behaviors and obesity that need to be further explored in other populations.

  4. Genetic Variation in the Platelet Endothelial Aggregation Receptor 1 Gene Results in Endothelial Dysfunction.

    PubMed

    Fisch, Adam S; Yerges-Armstrong, Laura M; Backman, Joshua D; Wang, Hong; Donnelly, Patrick; Ryan, Kathleen A; Parihar, Ankita; Pavlovich, Mary A; Mitchell, Braxton D; O'Connell, Jeffrey R; Herzog, William; Harman, Christopher R; Wren, Jonathan D; Lewis, Joshua P

    2015-01-01

    Platelet Endothelial Aggregation Receptor 1 (PEAR1) is a newly identified membrane protein reported to be involved in multiple vascular and thrombotic processes. While most studies to date have focused on the effects of this receptor in platelets, PEAR1 is located in multiple tissues including the endothelium, where it is most highly expressed. Our first objective was to evaluate the role of PEAR1 in endothelial function by examining flow-mediated dilation of the brachial artery in 641 participants from the Heredity and Phenotype Intervention Heart Study. Our second objective was to further define the impact of PEAR1 on cardiovascular disease computationally through meta-analysis of 75,000 microarrays, yielding insights regarding PEAR1 function, and predictions of phenotypes and diseases affected by PEAR1 dysregulation. Based on the results of this meta-analysis we examined whether genetic variation in PEAR1 influences endothelial function using an ex vivo assay of endothelial cell migration. We observed a significant association between rs12041331 and flow-mediated dilation in participants of the Heredity and Phenotype Intervention Heart Study (P = 0.02). Meta-analysis results revealed that PEAR1 expression is highly correlated with several genes (e.g. ANG2, ACVRL1, ENG) and phenotypes (e.g. endothelial cell migration, angiogenesis) that are integral to endothelial function. Functional validation of these results revealed that PEAR1 rs12041331 is significantly associated with endothelial migration (P = 0.04). Our results suggest for the first time that genetic variation of PEAR1 is a significant determinant of endothelial function through pathways implicated in cardiovascular disease. PMID:26406321

  5. Constitutive activation of gene expression by thyroid hormone receptor results from reversal of p53-mediated repression.

    PubMed Central

    Qi, J S; Desai-Yajnik, V; Yuan, Y; Samuels, H H

    1997-01-01

    Thyroid hormone receptor (T3R) is a member of the steroid hormone receptor gene family of nuclear hormone receptors. In most cells T3R activates gene expression only in the presence of its ligand, L-triiodothyronine (T3). However, in certain cell types (e.g., GH4C1 cells) expression of T3R leads to hormone-independent constitutive activation. This activation by unliganded T3R occurs with a variety of gene promoters and appears to be independent of the binding of T3R to specific thyroid hormone response elements (TREs). Previous studies indicate that this constitutive activation results from the titration of an inhibitor of transcription. Since the tumor suppresser p53 is capable of repressing a wide variety of gene promoters, we considered the possibility that the inhibitor is p53. Evidence to support this comes from studies indicating that expression of p53 blocks T3R-mediated constitutive activation in GH4C1 cells. In contrast with hormone-independent activation by T3R, p53 had little or no effect on T3-dependent stimulation which requires TREs. In addition, p53 mutants which oligomerize with wild-type p53 and interfere with its function also increase promoter activity. This enhancement is of similar magnitude to but is not additive with the stimulation mediated by unliganded T3R, suggesting that they target the same factor. Since p53 mutants are known to target wild-type p53 in the cell, this suggests that T3R also interacts with p53 in vivo and that endogenous levels of p53 act to suppress promoter activity. Evidence supporting both functional and physical interactions of T3R and p53 in the cell is presented. The DNA binding domain (DBD) of T3R is important in mediating constitutive activation, and the receptor DBD appears to functionally interact with the N terminus of p53 in the cell. In vitro binding studies indicate that the T3R DBD is important for interaction of T3R with p53 and that this interaction is reduced by T3. These findings are consistent with

  6. A Semidwarf Phenotype of Barley uzu Results from a Nucleotide Substitution in the Gene Encoding a Putative Brassinosteroid Receptor

    PubMed Central

    Chono, Makiko; Honda, Ichiro; Zeniya, Haruko; Yoneyama, Koichi; Saisho, Daisuke; Takeda, Kazuyoshi; Takatsuto, Suguru; Hoshino, Tsuguhiro; Watanabe, Yoshiaki

    2003-01-01

    Brassinosteroids (BRs) play important roles throughout plant growth and development. Despite the importance of clarifying the mechanism of BR-related growth regulation in cereal crops, BR-related cereal mutants have been identified only in rice (Oryza sativa). We previously found that semidwarf barley (Hordeum vulgare) accessions carrying the “uzu” gene, called “uzu” barley in Japan, are non-responding for brassinolide (BL). We then performed chemical and molecular analyses to clarify the mechanisms of uzu dwarfism using isogenic line pairs of uzu gene. The response of the uzu line to BL was significantly lower than that of its corresponding normal line. Measurement of BRs showed that the uzu line accumulates BRs, similar to known BR-insensitive mutants. The marker synteny of rice and barley chromosomes suggests that the uzu gene may be homologous to rice D61, a rice homolog of Arabidopsis BR-insensitive 1 (BRI1), encoding a BR-receptor protein. A barley homolog of BRI1, HvBRI1, was isolated by using degenerate primers. A comparison of HvBRI1 sequences in uzu and normal barley varieties showed that the uzu phenotype is correlated with a single nucleotide substitution. This substitution results in an amino acid change at a highly conserved residue in the kinase domain of the BR-receptor protein. These results may indicate that uzu dwarfism is caused by the missense mutation in HvBRI1. The uzu gene is being introduced into all hull-less barley cultivars in Japan as an effective dwarf gene for practical use, and this is the first report about an agronomically important mutation related to BRs. PMID:14551335

  7. A semidwarf phenotype of barley uzu results from a nucleotide substitution in the gene encoding a putative brassinosteroid receptor.

    PubMed

    Chono, Makiko; Honda, Ichiro; Zeniya, Haruko; Yoneyama, Koichi; Saisho, Daisuke; Takeda, Kazuyoshi; Takatsuto, Suguru; Hoshino, Tsuguhiro; Watanabe, Yoshiaki

    2003-11-01

    Brassinosteroids (BRs) play important roles throughout plant growth and development. Despite the importance of clarifying the mechanism of BR-related growth regulation in cereal crops, BR-related cereal mutants have been identified only in rice (Oryza sativa). We previously found that semidwarf barley (Hordeum vulgare) accessions carrying the "uzu" gene, called "uzu" barley in Japan, are non-responding for brassinolide (BL). We then performed chemical and molecular analyses to clarify the mechanisms of uzu dwarfism using isogenic line pairs of uzu gene. The response of the uzu line to BL was significantly lower than that of its corresponding normal line. Measurement of BRs showed that the uzu line accumulates BRs, similar to known BR-insensitive mutants. The marker synteny of rice and barley chromosomes suggests that the uzu gene may be homologous to rice D61, a rice homolog of Arabidopsis BR-insensitive 1 (BRI1), encoding a BR-receptor protein. A barley homolog of BRI1, HvBRI1, was isolated by using degenerate primers. A comparison of HvBRI1 sequences in uzu and normal barley varieties showed that the uzu phenotype is correlated with a single nucleotide substitution. This substitution results in an amino acid change at a highly conserved residue in the kinase domain of the BR-receptor protein. These results may indicate that uzu dwarfism is caused by the missense mutation in HvBRI1. The uzu gene is being introduced into all hull-less barley cultivars in Japan as an effective dwarf gene for practical use, and this is the first report about an agronomically important mutation related to BRs.

  8. RNAi suppression of the ryanodine receptor gene results in decreased susceptibility to chlorantraniliprole in Colorado potato beetle Leptinotarsa decemlineata.

    PubMed

    Wan, Pin-Jun; Guo, Wei-Yan; Yang, Yao; Lü, Feng-Gong; Lu, Wei-Ping; Li, Guo-Qing

    2014-04-01

    Leptinotarsadecemlineata is the most important pest in potato and causes serious yield loss each year. Chlorantraniliprole acts on insect ryanodine receptors (RyRs) and is among the most active compounds against L. decemlineata. Here we cloned and characterized a 15,792-bp full-length LdRyR cDNA that encoded a 5128-amino acid protein. LdRyR shares 85-92% amino acid similarities with other insect RyR homologues, and 59-61% similarities with those from Caenorhabditis elegans and Homo sapiens. All hallmarks of the RyR proteins are conserved in LdRyR. LdRyR has a MIR domain, two RIH domains, three SPRY domains, four copies of RyR domain and a RIH-associated domain in the N-terminus, and it possesses two consensus calcium ion-binding EF-hand motifs and six predicted transmembrane helices in the C-terminus. Temporal, spatial and tissue-specific expression patterns of LdRyR were evaluated. LdRyR expression level was increased constantly from egg to wandering stages, dropped in pupal stage and was increased again in the adult stage. It was widely expressed in the head, thorax and abdomen of day 3 fourth-instar larvae. Moreover, it was ubiquitously expressed in all inspected tissues including epidermis, foregut, midgut, ileum, rectum, fat body, ventral ganglia and Malpighian tubules in day 3 fourth-instar larvae. Dietary introduction of double-stranded RNA of LdRyR significantly reduced the mRNA levels of the target gene in the larvae and adults, respectively, and significantly decreased chlorantraniliprole-induced mortalities. Thus, our results suggested that LdRyR encoded a functional ryanodine receptor in L. decemlineata. PMID:24607641

  9. RNAi suppression of the ryanodine receptor gene results in decreased susceptibility to chlorantraniliprole in Colorado potato beetle Leptinotarsa decemlineata.

    PubMed

    Wan, Pin-Jun; Guo, Wei-Yan; Yang, Yao; Lü, Feng-Gong; Lu, Wei-Ping; Li, Guo-Qing

    2014-04-01

    Leptinotarsadecemlineata is the most important pest in potato and causes serious yield loss each year. Chlorantraniliprole acts on insect ryanodine receptors (RyRs) and is among the most active compounds against L. decemlineata. Here we cloned and characterized a 15,792-bp full-length LdRyR cDNA that encoded a 5128-amino acid protein. LdRyR shares 85-92% amino acid similarities with other insect RyR homologues, and 59-61% similarities with those from Caenorhabditis elegans and Homo sapiens. All hallmarks of the RyR proteins are conserved in LdRyR. LdRyR has a MIR domain, two RIH domains, three SPRY domains, four copies of RyR domain and a RIH-associated domain in the N-terminus, and it possesses two consensus calcium ion-binding EF-hand motifs and six predicted transmembrane helices in the C-terminus. Temporal, spatial and tissue-specific expression patterns of LdRyR were evaluated. LdRyR expression level was increased constantly from egg to wandering stages, dropped in pupal stage and was increased again in the adult stage. It was widely expressed in the head, thorax and abdomen of day 3 fourth-instar larvae. Moreover, it was ubiquitously expressed in all inspected tissues including epidermis, foregut, midgut, ileum, rectum, fat body, ventral ganglia and Malpighian tubules in day 3 fourth-instar larvae. Dietary introduction of double-stranded RNA of LdRyR significantly reduced the mRNA levels of the target gene in the larvae and adults, respectively, and significantly decreased chlorantraniliprole-induced mortalities. Thus, our results suggested that LdRyR encoded a functional ryanodine receptor in L. decemlineata.

  10. Taste Receptor Genes

    PubMed Central

    Bachmanov, Alexander A.; Beauchamp, Gary K.

    2009-01-01

    In the past several years, tremendous progress has been achieved with the discovery and characterization of vertebrate taste receptors from the T1R and T2R families, which are involved in recognition of bitter, sweet, and umami taste stimuli. Individual differences in taste, at least in some cases, can be attributed to allelic variants of the T1R and T2R genes. Progress with understanding how T1R and T2R receptors interact with taste stimuli and with identifying their patterns of expression in taste cells sheds light on coding of taste information by the nervous system. Candidate mechanisms for detection of salts, acids, fat, complex carbohydrates, and water have also been proposed, but further studies are needed to prove their identity. PMID:17444812

  11. Melatonin Receptor Genes in Vertebrates

    PubMed Central

    Li, Di Yan; Smith, David Glenn; Hardeland, Rüdiger; Yang, Ming Yao; Xu, Huai Liang; Zhang, Long; Yin, Hua Dong; Zhu, Qing

    2013-01-01

    Melatonin receptors are members of the G protein-coupled receptor (GPCR) family. Three genes for melatonin receptors have been cloned. The MT1 (or Mel1a or MTNR1A) and MT2 (or Mel1b or MTNR1B) receptor subtypes are present in humans and other mammals, while an additional melatonin receptor subtype, Mel1c (or MTNR1C), has been identified in fish, amphibians and birds. Another melatonin related orphan receptor, GPR50, which does not bind melatonin, is found exclusively in mammals. The hormone melatonin is secreted primarily by the pineal gland, with highest levels occurring during the dark period of a circadian cycle. This hormone acts systemically in numerous organs. In the brain, it is involved in the regulation of various neural and endocrine processes, and it readjusts the circadian pacemaker, the suprachiasmatic nucleus. This article reviews recent studies of gene organization, expression, evolution and mutations of melatonin receptor genes of vertebrates. Gene polymorphisms reveal that numerous mutations are associated with diseases and disorders. The phylogenetic analysis of receptor genes indicates that GPR50 is an outgroup to all other melatonin receptor sequences. GPR50 may have separated from a melatonin receptor ancestor before the split between MTNR1C and the MTNR1A/B ancestor. PMID:23712359

  12. The fetal thymus has a unique genomic copy number profile resulting from physiological T cell receptor gene rearrangement

    PubMed Central

    Valind, Anders; Haikal, C.; Klasson, M. E. K.; Johansson, M. C.; Gullander, J.; Soller, M.; Baldetorp, B.; Gisselsson, David

    2016-01-01

    Somatic mosaicism, the presence of genetically distinct cells within an organism, has been increasingly associated with human morbidity, ranging from being a cause of rare syndromes to a risk factor for common disorders such as malignancy and cardiovascular disease. Previous studies interrogating the normal prevalence of somatic mosaicism have focused on adults. We here present an estimate of the baseline frequency of somatic mosaic copy number variation (CNV) at the time around birth, by sampling eight different organs from a total of five fetuses and newborns. Overall we find a significantly lower frequency of organ specific (i.e. mosaic) CNVs as compared to adults (p = 0.003; Mann-Whitney U-test). The rate of somatic CNV in adults has been estimated to around 2.2 CNV per organ assayed. In contrast, after stringent filtering, we found no organ-private CNVs in fetuses or newborns with exception of the thymus. This organ exhibited a specific genome profile in the form of deletions resulting from polyclonal T-cell receptor rearrangements. This implies that somatic non-immune related CNVs, if present at birth, are typically confined to very small cell populations within organs. PMID:27009469

  13. Genetic background can result in a marked or minimal effect of gene knockout (GPR55 and CB2 receptor) in experimental autoimmune encephalomyelitis models of multiple sclerosis.

    PubMed

    Sisay, Sofia; Pryce, Gareth; Jackson, Samuel J; Tanner, Carolyn; Ross, Ruth A; Michael, Gregory J; Selwood, David L; Giovannoni, Gavin; Baker, David

    2013-01-01

    Endocannabinoids and some phytocannabinoids bind to CB1 and CB2 cannabinoid receptors, transient receptor potential vanilloid one (TRPV1) receptor and the orphan G protein receptor fifty-five (GPR55). Studies using C57BL/10 and C57BL/6 (Cnr2 (tm1Zim)) CB2 cannabinoid receptor knockout mice have demonstrated an immune-augmenting effect in experimental autoimmune encephalomyelitis (EAE) models of multiple sclerosis. However, other EAE studies in Biozzi ABH mice often failed to show any treatment effect of either CB2 receptor agonism or antagonism on inhibition of T cell autoimmunity. The influence of genetic background on the induction of EAE in endocannabinoid system-related gene knockout mice was examined. It was found that C57BL/6.GPR55 knockout mice developed less severe disease, notably in female mice, following active induction with myelin oligodendrocyte glycoprotein 35-55 peptide. In contrast C57BL/6.CB2 (Cnr2 (Dgen)) receptor knockout mice developed augmented severity of disease consistent with the genetically and pharmacologically-distinct, Cnr2 (tm1Zim) mice. However, when the knockout gene was bred into the ABH mouse background and EAE induced with spinal cord autoantigens the immune-enhancing effect of CB2 receptor deletion was lost. Likewise CB1 receptor and transient receptor potential vanilloid one knockout mice on the ABH background demonstrated no alteration in immune-susceptibility, in terms of disease incidence and severity of EAE, in contrast to that reported in some C57BL/6 mouse studies. Furthermore the immune-modulating influence of GPR55 was marginal on the ABH mouse background. Whilst sedative doses of tetrahydrocannabinol could induce immunosuppression, this was associated with a CB1 receptor rather than a CB2 receptor-mediated effect. These data support the fact that non-psychoactive doses of medicinal cannabis have a marginal influence on the immune response in MS. Importantly, it adds a note of caution for the translational value of some

  14. Genetic Background Can Result in a Marked or Minimal Effect of Gene Knockout (GPR55 and CB2 Receptor) in Experimental Autoimmune Encephalomyelitis Models of Multiple Sclerosis

    PubMed Central

    Jackson, Samuel J.; Tanner, Carolyn; Ross, Ruth A.; Michael, Gregory J.; Selwood, David L.; Giovannoni, Gavin; Baker, David

    2013-01-01

    Endocannabinoids and some phytocannabinoids bind to CB1 and CB2 cannabinoid receptors, transient receptor potential vanilloid one (TRPV1) receptor and the orphan G protein receptor fifty-five (GPR55). Studies using C57BL/10 and C57BL/6 (Cnr2tm1Zim) CB2 cannabinoid receptor knockout mice have demonstrated an immune-augmenting effect in experimental autoimmune encephalomyelitis (EAE) models of multiple sclerosis. However, other EAE studies in Biozzi ABH mice often failed to show any treatment effect of either CB2 receptor agonism or antagonism on inhibition of T cell autoimmunity. The influence of genetic background on the induction of EAE in endocannabinoid system-related gene knockout mice was examined. It was found that C57BL/6.GPR55 knockout mice developed less severe disease, notably in female mice, following active induction with myelin oligodendrocyte glycoprotein 35-55 peptide. In contrast C57BL/6.CB2 (Cnr2Dgen) receptor knockout mice developed augmented severity of disease consistent with the genetically and pharmacologically-distinct, Cnr2tm1Zim mice. However, when the knockout gene was bred into the ABH mouse background and EAE induced with spinal cord autoantigens the immune-enhancing effect of CB2 receptor deletion was lost. Likewise CB1 receptor and transient receptor potential vanilloid one knockout mice on the ABH background demonstrated no alteration in immune-susceptibility, in terms of disease incidence and severity of EAE, in contrast to that reported in some C57BL/6 mouse studies. Furthermore the immune-modulating influence of GPR55 was marginal on the ABH mouse background. Whilst sedative doses of tetrahydrocannabinol could induce immunosuppression, this was associated with a CB1 receptor rather than a CB2 receptor-mediated effect. These data support the fact that non-psychoactive doses of medicinal cannabis have a marginal influence on the immune response in MS. Importantly, it adds a note of caution for the translational value of some

  15. Treatment differences between urban and rural women with hormone receptor-positive early-stage breast cancer based on 21-gene assay recurrence score results

    PubMed Central

    Andreason, Molly; Zhang, Chong; Onitilo, Adedayo A; Engel, Jessica; Ledesma, Wendy M; Ridolfi, Kimberly; Kim, KyungMann; Charlson, John C; Wisinski, Kari B; Tevaarwerk, Amye J

    2015-01-01

    Background Women who live in rural and urban settings have different outcomes for breast cancer. A 21-gene assay predicts 10-year distant recurrence risk and potential benefit of chemotherapy for women with hormone receptor-positive (HR+) breast cancer. Objective To assess differences in scores and cancer therapies received by rural versus urban residence. Methods We conducted a multi-institutional retrospective chart review of breast cancer patients diagnosed 2005-2010 with score results. Comparisons by rural versus urban residence (determined by rural-urban commuting area (RUCA) codes derived from zip codes) were made using the Fisher exact test for discrete data such as recurrence score results (<18 vs >18; score range, 0-100, with lower results correlated with less risk of distant recurrence), stage, and receptor status. The Wilcoxon rank sum test was used for continuous data (score results 0-100 and age.) All tests were at a 2-sided significance level of .05. Results 504 patients had RUCA codes (92% white, 62% postmenopausal). For rural (n = 135) compared with urban (n = 369) patients, the median scores were 16 and 18, respectively, P = .18. Most of the patients received endocrine therapy, 123 of 135 (91%) rural, compared with 339 of 369 (92%) urban (P = .19). For scores 18-30, 20 of 56 (36%) rural patients, compared with 82 of 159 (52%) urban patients received chemotherapy (P = .03). Limitations Limitations include lack of randomization to receipt of the assay. Conclusions Recurrence score results did not significantly differ between women based on residence, although women living in a rural area received significantly less chemotherapy for scores >18. This suggests that for HR-positive breast cancer, discrepancies between rural and urban residence are driven by treatment factors rather than differences in biology. Funding Genomic Health Inc PMID:26029936

  16. Evolution of the nuclear receptor gene superfamily.

    PubMed Central

    Laudet, V; Hänni, C; Coll, J; Catzeflis, F; Stéhelin, D

    1992-01-01

    Nuclear receptor genes represent a large family of genes encoding receptors for various hydrophobic ligands such as steroids, vitamin D, retinoic acid and thyroid hormones. This family also contains genes encoding putative receptors for unknown ligands. Nuclear receptor gene products are composed of several domains important for transcriptional activation, DNA binding (C domain), hormone binding and dimerization (E domain). It is not known whether these genes have evolved through gene duplication from a common ancestor or if their different domains came from different independent sources. To test these possibilities we have constructed and compared the phylogenetic trees derived from two different domains of 30 nuclear receptor genes. The tree built from the DNA binding C domain clearly shows a common progeny of all nuclear receptors, which can be grouped into three subfamilies: (i) thyroid hormone and retinoic acid receptors, (ii) orphan receptors and (iii) steroid hormone receptors. The tree constructed from the central part of the E domain which is implicated in transcriptional regulation and dimerization shows the same distribution in three subfamilies but two groups of receptors are in a different position from that in the C domain tree: (i) the Drosophila knirps family genes have acquired very different E domains during evolution, and (ii) the vitamin D and ecdysone receptors, as well as the FTZ-F1 and the NGF1B genes, seem to have DNA binding and hormone binding domains belonging to different classes. These data suggest a complex evolutionary history for nuclear receptor genes in which gene duplication events and swapping between domains of different origins took place. PMID:1312460

  17. Targeted disruption of the M(r) 46,000 mannose 6-phosphate receptor gene in mice results in misrouting of lysosomal proteins.

    PubMed Central

    Köster, A; Saftig, P; Matzner, U; von Figura, K; Peters, C; Pohlmann, R

    1993-01-01

    Lysosomal enzymes containing mannose 6-phosphate recognition markers are sorted to lysosomes by mannose 6-phosphate receptors (MPRs). The physiological importance of this targeting mechanism is illustrated by I-cell disease, a fatal lysosomal storage disorder caused by the absence of mannose 6-phosphate residues in lysosomal enzymes. Most mammalian cells express two MPRs. Although the binding specificities, subcellular distribution and expression pattern of the two receptors can be differentiated, their coexpression is not understood. The larger of the two receptors with an M(r) of approximately 300,000 (MPR300), which also binds IGFII, appears to have a dominant role in lysosomal enzyme targeting, while the function of the smaller receptor with an M(r) of 46,000 (MPR46) is less clear. To investigate the in vivo function of the MPR46, we generated MPR46-deficient mice using gene targeting in embryonic stem cells. Reduced intracellular retention of newly synthesized lysosomal proteins in cells from MPR46 -/- mice demonstrated an essential sorting function of MPR46. The phenotype of MPR46 -/- mice was normal, indicating mechanisms that compensate the MPR46 deficiency in vivo. Images PMID:8262064

  18. Deletion of scavenger receptor A gene in mice resulted in protection from septic shock and modulation of TLR4 signaling in isolated peritoneal macrophages

    PubMed Central

    Drummond, Robert; Cauvi, David M; Hawisher, Dennis; Song, Donghuan; Niño, Diego F; Coimbra, Raul; Bickler, Stephen; De Maio, Antonio

    2015-01-01

    Scavenger receptor A (Sra), also known as macrophage scavenger receptor 1 (Msr1), is a surface glycoprotein preferentially present in macrophages that plays a primary role in innate immunity. Previous studies have shown that Sra is a modifier gene for the response to bacterial LPS in mice at the level of IL-10 production, in particular. In the present study, we found that Sra(−/−) mice are more resistant to septic shock induced by cecal ligation and puncture than wild-type C57BL/6 J (B6) mice. In addition, Sra(−/−) mice displayed initial elevated high density lipoprotein (HDL) circulating levels. Naïve peritoneal macrophages (PMϕs) were isolated from Sra(−/−) mice to understand the possible protective mechanism. Incubation of these cells with LPS was found to modulate TLR4 signaling, leading to a reduction in IL-10 and IL-6 mRNA levels, but not TNF-α expression, at low concentrations of LPS in comparison with PMϕs isolated from B6 mice. No differences were found in LPS binding between PMϕs derived from Sra(−/−) or B6 mice. The lack of Sra binding to LPS was confirmed after transfection of Chinese hamster ovary (CHO) cells with the Sra gene. The contribution of Sra to the outcome of sepsis may be a combination of changes in TLR4 signaling pathway and elevated levels of HDL in circulation, but also LPS toxicity. PMID:22751446

  19. Conserved structure and adjacent location of the thrombin receptor and protease-activated receptor 2 genes define a protease-activated receptor gene cluster.

    PubMed Central

    Kahn, M.; Ishii, K.; Kuo, W. L.; Piper, M.; Connolly, A.; Shi, Y. P.; Wu, R.; Lin, C. C.; Coughlin, S. R.

    1996-01-01

    BACKGROUND: Thrombin is a serine protease that elicits a variety of cellular responses. Molecular cloning of a thrombin receptor revealed a G protein-coupled receptor that is activated by a novel proteolytic mechanism. Recently, a second protease-activated receptor was discovered and dubbed PAR2. PAR2 is highly related to the thrombin receptor by sequence and, like the thrombin receptor, is activated by cleavage of its amino terminal exodomain. Also like the thrombin receptor, PAR2 can be activated by the hexapeptide corresponding to its tethered ligand sequence independent of receptor cleavage. Thus, functionally, the thrombin receptor and PAR2 constitute a fledgling receptor family that shares a novel proteolytic activation mechanism. To further explore the relatedness of the two known protease-activated receptors and to examine the possibility that a protease-activated gene cluster might exist, we have compared the structure and chromosomal locations of the thrombin receptor and PAR2 genes. MATERIALS AND METHODS: The genomic structures of the two protease-activated receptor genes were determined by analysis of lambda phage, P1 bacteriophage, and bacterial artificial chromosome (BAC) genomic clones. Chromosomal location was determined with fluorescent in situ hybridization (FISH) on metaphase chromosomes, and the relative distance separating the two genes was evaluated both by means of two-color FISH and analysis of YACs and BACs containing both genes. RESULTS: Analysis of genomic clones revealed that the two protease-activated receptor genes share a two-exon genomic structure in which the first exon encodes 5'-untranslated sequence and signal peptide, and the second exon encodes the mature receptor protein and 3'-untranslated sequence. The two receptor genes also share a common locus with the two human genes located at 5q13 and the two mouse genes at 13D2, a syntenic region of the mouse genome. These techniques also suggest that the physical distance separating

  20. Gene silencing by nuclear orphan receptors.

    PubMed

    Zhang, Ying; Dufau, Maria L

    2004-01-01

    Nuclear orphan receptors represent a large and diverse subgroup in the nuclear receptor superfamily. Although putative ligands for these orphan members remain to be identified, some of these receptors possess intrinsic activating, inhibitory, or dual regulatory functions in development, differentiation, homeostasis, and reproduction. In particular, gene-silencing events elicited by chicken ovalbumin upstream promoter-transcription factors (COUP-TFs); dosage-sensitive sex reversal-adrenal hypoplasia congenita critical region on the X chromosome, gene 1 (DAX-1); germ cell nuclear factor (GCNF); short heterodimer partner (SHP); and testicular receptors 2 and 4 (TR2 and TR4) are among the best characterized. These orphan receptors are critical in controlling basal activities or hormonal responsiveness of numerous target genes. They employ multiple and distinct mechanisms to mediate target gene repression. Complex cross-talk exists between these orphan receptors at their cognate DNA binding elements and an array of steroid?nonsteroid hormone receptors, other transcriptional activators, coactivators and corepressors, histone modification enzyme complexes, and components of basal transcriptional components. Therefore, perturbation induced by these orphan receptors at multiple levels, including DNA binding activities, receptor homo- or heterodimerization, recruitment of cofactor proteins, communication with general transcriptional machinery, and changes at histone acetylation status and chromatin structures, may contribute to silencing of target gene expression in a specific promoter or cell-type context. Moreover, the findings derived from gene-targeting studies have demonstrated the significance of these orphan receptors' function in physiologic settings. Thus, COUP-TFs, DAX-1, GCNF, SHP, and TR2 and 4 are known to be required for multiple physiologic and biologic functions, including neurogenesis and development of the heart and vascular system steroidogenesis and sex

  1. Expression of plasma membrane receptor genes during megakaryocyte development

    PubMed Central

    Sun, Sijie; Wang, Wenjing; Latchman, Yvette; Gao, Dayong; Aronow, Bruce

    2013-01-01

    Megakaryocyte (MK) development is critically informed by plasma membrane-localized receptors that integrate a multiplicity of environmental cues. Given that the current understanding about receptors and ligands involved in megakaryocytopoiesis is based on single targets, we performed a genome-wide search to identify a plasma membrane receptome for developing MKs. We identified 40 transmembrane receptor genes as being upregulated during MK development. Seven of the 40 receptor-associated genes were selected to validate the dataset. These genes included: interleukin-9 receptor (IL9R), transforming growth factor, β receptor II (TGFBR2), interleukin-4 receptor (IL4R), colony stimulating factor-2 receptor-beta (CSFR2B), adiponectin receptor (ADIPOR2), thrombin receptor (F2R), and interleukin-21 receptor (IL21R). RNA and protein analyses confirmed their expression in primary human MKs. Matched ligands to IL9R, TGFBR2, IL4R, CSFR2B, and ADIPOR2 affected megakaryocytopoiesis. IL9 was unique in its ability to increase the number of MKs formed. In contrast, MK colony formation was inhibited by adiponectin, TGF-β, IL4, and GM-CSF. The thrombin-F2R axis affected platelet function, but not MK development, while IL21 had no apparent detectable effects. ADP-induced platelet aggregation was suppressed by IL9, TGF-β, IL4, and adiponectin. Overall, six of seven of the plasma membrane receptors were confirmed to have functional roles in MK and platelet biology. Also, results show for the first time that adiponectin plays a regulatory role in MK development. Together these data support a strong likelihood that the 40 transmembrane genes identified as being upregulated during MK development will be an important resource to the research community for deciphering the complex repertoire of environmental cues regulating megakaryocytopoiesis and/or platelet function. PMID:23321270

  2. Structure of the human progesterone receptor gene.

    PubMed

    Misrahi, M; Venencie, P Y; Saugier-Veber, P; Sar, S; Dessen, P; Milgrom, E

    1993-11-16

    The complete organization of the human progesterone receptor (hPR) gene has been determined. It spans over 90 kbp and contains eight exons. The first exon encodes the N-terminal part of the receptor. The DNA binding domain is encoded by two exons, each exon corresponding to one zinc finger. The steroid binding domain is encoded by five exons. The nucleotide sequence of 1144 bp of the 5' flanking region has been determined. PMID:8241270

  3. T Cell Receptor Gene Therapy for Cancer

    PubMed Central

    Schmitt, Thomas M.; Ragnarsson, Gunnar B.

    2009-01-01

    Abstract T cell-based adoptive immunotherapy has been shown to be a promising treatment for various types of cancer. However, adoptive T cell therapy currently requires the custom isolation and characterization of tumor-specific T cells from each patient—a process that can be not only difficult and time-consuming but also often fails to yield high-avidity T cells, which together have limited the broad application of this approach as a clinical treatment. Employing T cell receptor (TCR) gene therapy as a component of adoptive T cell therapy strategies can overcome many of these obstacles, allowing autologous T cells with a defined specificity to be generated in a much shorter time period. Initial studies using this approach have been hampered by a number of technical difficulties resulting in low TCR expression and acquisition of potentially problematic specificities due to mispairing of introduced TCR chains with endogenous TCR chains. The last several years have seen substantial progress in our understanding of the multiple facets of TCR gene therapy that will have to be properly orchestrated for this strategy to succeed. Here we outline the challenges of TCR gene therapy and the advances that have been made toward realizing the promise of this approach. PMID:19702439

  4. Dopamine receptor gene expression by enkephalin neurons in rat forebrain

    SciTech Connect

    Le Moine, C.; Normand, E.; Guitteny, A.F.; Fouque, B.; Teoule, R.; Bloch, B. )

    1990-01-01

    In situ hybridization experiments were performed with brain sections from normal, control and haloperidol-treated rats to identify and map the cells expressing the D2 dopamine receptor gene. D2 receptor mRNA was detected with radioactive or biotinylated oligonucleotide probes. D2 receptor mRNA was present in glandular cells of the pituitary intermediate lobe and in neurons of the substantia nigra, ventral tegmental area, and forebrain, especially in caudate putamen, nucleus accumbens, olfactory tubercle, and piriform cortex. Hybridization with D2 and preproenkephalin A probes in adjacent sections, as well as combined hybridization with the two probes in the same sections, demonstrated that all detectable enkephalin neurons in the striatum contained the D2 receptor mRNA. Large neurons in caudate putamen, which were unlabeled with the preproenkephalin A probe and which may have been cholinergic, also expressed the D2 receptor gene. Haloperidol treatment (14 or 21 days) provoked an increase in mRNA content for D2 receptor and preproenkephalin A in the striatum. This suggests that the increase in D2 receptor number observed after haloperidol treatment is due to increased activity of the D2 gene. These results indicate that in the striatum, the enkephalin neurons are direct targets for dopamine liberated from mesostriatal neurons.

  5. The androgen receptor gene mutations database.

    PubMed

    Patterson, M N; Hughes, I A; Gottlieb, B; Pinsky, L

    1994-09-01

    The androgen receptor gene mutations database is a comprehensive listing of mutations published in journals and meetings proceedings. The majority of mutations are point mutations identified in patients with androgen insensitivity syndrome. Information is included regarding the phenotype, the nature and location of the mutations, as well as the effects of the mutations on the androgen binding activity of the receptor. The current version of the database contains 149 entries, of which 114 are unique mutations. The database is available from EMBL (NetServ@EMBL-Heidelberg.DE) or as a Macintosh Filemaker file (mc33001@musica.mcgill.ca).

  6. The Mouse Solitary Odorant Receptor Gene Promoters as Models for the Study of Odorant Receptor Gene Choice

    PubMed Central

    Degl'Innocenti, Andrea

    2016-01-01

    Background In vertebrates, several anatomical regions located within the nasal cavity mediate olfaction. Among these, the main olfactory epithelium detects most conventional odorants. Olfactory sensory neurons, provided with cilia exposed to the air, detect volatile chemicals via an extremely large family of seven-transmembrane chemoreceptors named odorant receptors. Their genes are expressed in a monogenic and monoallelic fashion: a single allele of a single odorant receptor gene is transcribed in a given mature neuron, through a still uncharacterized molecular mechanism known as odorant receptor gene choice. Aim Odorant receptor genes are typically arranged in genomic clusters, but a few are isolated (we call them solitary) from the others within a region broader than 1 Mb upstream and downstream with respect to their transcript's coordinates. The study of clustered genes is problematic, because of redundancy and ambiguities in their regulatory elements: we propose to use the solitary genes as simplified models to understand odorant receptor gene choice. Procedures Here we define number and identity of the solitary genes in the mouse genome (C57BL/6J), and assess the conservation of the solitary status in some mammalian orthologs. Furthermore, we locate their putative promoters, predict their homeodomain binding sites (commonly present in the promoters of odorant receptor genes) and compare candidate promoter sequences with those of wild-caught mice. We also provide expression data from histological sections. Results In the mouse genome there are eight intact solitary genes: Olfr19 (M12), Olfr49, Olfr266, Olfr267, Olfr370, Olfr371, Olfr466, Olfr1402; five are conserved as solitary in rat. These genes are all expressed in the main olfactory epithelium of three-day-old mice. The C57BL/6J candidate promoter of Olfr370 has considerably varied compared to its wild-type counterpart. Within the putative promoter for Olfr266 a homeodomain binding site is predicted. As a

  7. Genes involved in Drosophila glutamate receptor expression and localization

    PubMed Central

    Liebl, Faith LW; Featherstone, David E

    2005-01-01

    Background A clear picture of the mechanisms controlling glutamate receptor expression, localization, and stability remains elusive, possibly due to an incomplete understanding of the proteins involved. We screened transposon mutants generated by the ongoing Drosophila Gene Disruption Project in an effort to identify the different types of genes required for glutamate receptor cluster development. Results To enrich for non-silent insertions with severe disruptions in glutamate receptor clustering, we identified and focused on homozygous lethal mutants in a collection of 2185 BG and KG transposon mutants generated by the BDGP Gene Disruption Project. 202 lethal mutant lines were individually dissected to expose glutamatergic neuromuscular junctions, stained using antibodies that recognize neuronal membrane and the glutamate receptor subunit GluRIIA, and viewed using laser-scanning confocal microscopy. We identified 57 mutants with qualitative differences in GluRIIA expression and/or localization. 84% of mutants showed loss of receptors and/or clusters; 16% of mutants showed an increase in receptors. Insertion loci encode a variety of protein types, including cytoskeleton proteins and regulators, kinases, phosphatases, ubiquitin ligases, mucins, cell adhesion proteins, transporters, proteins controlling gene expression and protein translation, and proteins of unknown/novel function. Expression pattern analyses and complementation tests, however, suggest that any single mutant – even if a mutant gene is uniquely tagged – must be interpreted with caution until the mutation is validated genetically and phenotypically. Conclusion Our study identified 57 transposon mutants with qualitative differences in glutamate receptor expression and localization. Despite transposon tagging of every insertion locus, extensive validation is needed before one can have confidence in the role of any individual gene. Alternatively, one can focus on the types of genes identified, rather

  8. Social regulation of cortisol receptor gene expression

    PubMed Central

    Korzan, Wayne J.; Grone, Brian P.; Fernald, Russell D.

    2014-01-01

    In many social species, individuals influence the reproductive capacity of conspecifics. In a well-studied African cichlid fish species, Astatotilapia burtoni, males are either dominant (D) and reproductively competent or non-dominant (ND) and reproductively suppressed as evidenced by reduced gonadotropin releasing hormone (GnRH1) release, regressed gonads, lower levels of androgens and elevated levels of cortisol. Here, we asked whether androgen and cortisol levels might regulate this reproductive suppression. Astatotilapia burtoni has four glucocorticoid receptors (GR1a, GR1b, GR2 and MR), encoded by three genes, and two androgen receptors (ARα and ARβ), encoded by two genes. We previously showed that ARα and ARβ are expressed in GnRH1 neurons in the preoptic area (POA), which regulates reproduction, and that the mRNA levels of these receptors are regulated by social status. Here, we show that GR1, GR2 and MR mRNAs are also expressed in GnRH1 neurons in the POA, revealing potential mechanisms for both androgens and cortisol to influence reproductive capacity. We measured AR, MR and GR mRNA expression levels in a microdissected region of the POA containing GnRH1 neurons, comparing D and ND males. Using quantitative PCR (qPCR), we found D males had higher mRNA levels of ARα, MR, total GR1a and GR2 in the POA compared with ND males. In contrast, ND males had significantly higher levels of GR1b mRNA, a receptor subtype with a reduced transcriptional response to cortisol. Through this novel regulation of receptor type, neurons in the POA of an ND male will be less affected by the higher levels of cortisol typical of low status, suggesting GR receptor type change as a potential adaptive mechanism to mediate high cortisol levels during social suppression. PMID:25013108

  9. Expression of serotonin receptor genes in cranial ganglia.

    PubMed

    Maeda, Naohiro; Ohmoto, Makoto; Yamamoto, Kurumi; Kurokawa, Azusa; Narukawa, Masataka; Ishimaru, Yoshiro; Misaka, Takumi; Matsumoto, Ichiro; Abe, Keiko

    2016-03-23

    Taste cells release neurotransmitters to gustatory neurons to transmit chemical information they received. Sweet, umami, and bitter taste cells use ATP as a neurotransmitter. However, ATP release from sour taste cells has not been observed so far. Instead, they release serotonin when they are activated by sour/acid stimuli. Thus it is still controversial whether sour taste cells use ATP, serotonin, or both. By reverse transcription-polymerase chain reaction and subsequent in situ hybridization (ISH) analyses, we revealed that of 14 serotonin receptor genes only 5-HT3A and 5-HT3B showed significant/clear signals in a subset of neurons of cranial sensory ganglia in which gustatory neurons reside. Double-fluorescent labeling analyses of ISH for serotonin receptor genes with wheat germ agglutinin (WGA) in cranial sensory ganglia of pkd1l3-WGA mice whose sour neural pathway is visualized by the distribution of WGA originating from sour taste cells in the posterior region of the tongue revealed that WGA-positive cranial sensory neurons rarely express either of serotonin receptor gene. These results suggest that serotonin receptors expressed in cranial sensory neurons do not play any role as neurotransmitter receptor from sour taste cells. PMID:26854841

  10. Treatment with bisphenol A and methoxychlor results in the growth of human breast cancer cells and alteration of the expression of cell cycle-related genes, cyclin D1 and p21, via an estrogen receptor-dependent signaling pathway.

    PubMed

    Lee, Hye-Rim; Hwang, Kyung-A; Park, Min-Ah; Yi, Bo-Rim; Jeung, Eui-Bae; Choi, Kyung-Chul

    2012-05-01

    Various endocrine disrupting chemicals (EDCs) are exogenous compounds found in the environment and have the potential to interfere with the endocrine system and hormonal regulation. Among EDCs, bisphenol A (BPA) and 1,1,1-trichloro-2,2-bis(4-methoxyphenol)-ethane [methoxychlor (MXC)] have estrogenic activity resulting in a variety of dysfunctions in the E2-mediated response by binding to estrogen receptors (ERs), causing human health problems such as abnormal reproduction and carcinogenesis. In this study, we investigated the effects of BPA and MXC on cell proliferation facilitated by ER signaling in human breast cancer cells. MCF-7 cells are known to be ERα-positive and to be a highly E2-responsive cancer cell line; these cells are, therefore, a useful in vitro model for detecting estrogenic activity in response to EDCs. We evaluated cancer cell proliferation following BPA and MXC treatment using an MTT assay. We analyzed alterations in the expression of genes associated with the cell cycle in MCF-7 cells by semi-quantitative reverse-transcription PCR following treatment with BPA or MXC compared to EtOH. To determine whether BPA and MXC stimulate cancer cell growth though ER signaling, we co-treated the cells with agonists (propyl pyrazoletriol, PPT; and diarylpropionitrile, DPN) or an antagonist (ICI 182,780) of ER signaling and reduced ERα gene expression via siRNA in MCF-7 cells before treatment with EDCs. These studies confirmed the carcinogenicity of EDCs in vitro. As a result, BPA and MXC induced the cancer cell proliferation by the upregulation of genes that promote the cell cycle and the downregulation of anti-proliferative genes, especially ones affecting the G1/S transition via ERα signaling. These collective results confirm the carcinogenicity of these EDCs in vitro. Further studies are required to determine whether EDCs promote carcinogenesis in vivo.

  11. Evolution of an Expanded Mannose Receptor Gene Family

    PubMed Central

    Staines, Karen; Hunt, Lawrence G.; Young, John R.; Butter, Colin

    2014-01-01

    Sequences of peptides from a protein specifically immunoprecipitated by an antibody, KUL01, that recognises chicken macrophages, identified a homologue of the mammalian mannose receptor, MRC1, which we called MRC1L-B. Inspection of the genomic environment of the chicken gene revealed an array of five paralogous genes, MRC1L-A to MRC1L-E, located between conserved flanking genes found either side of the single MRC1 gene in mammals. Transcripts of all five genes were detected in RNA from a macrophage cell line and other RNAs, whose sequences allowed the precise definition of spliced exons, confirming or correcting existing bioinformatic annotation. The confirmed gene structures were used to locate orthologues of all five genes in the genomes of two other avian species and of the painted turtle, all with intact coding sequences. The lizard genome had only three genes, one orthologue of MRC1L-A and two orthologues of the MRC1L-B antigen gene resulting from a recent duplication. The Xenopus genome, like that of most mammals, had only a single MRC1-like gene at the corresponding locus. MRC1L-A and MRC1L-B genes had similar cytoplasmic regions that may be indicative of similar subcellular migration and functions. Cytoplasmic regions of the other three genes were very divergent, possibly indicating the evolution of a new functional repertoire for this family of molecules, which might include novel interactions with pathogens. PMID:25390371

  12. Prospective Clinical Utility Study of the Use of the 21-Gene Assay in Adjuvant Clinical Decision Making in Women With Estrogen Receptor-Positive Early Invasive Breast Cancer: Results From the SWITCH Study

    PubMed Central

    Pivot, Xavier B.; Jacot, William; Naman, Hervé L.; Spaeth, Dominique; Misset, Jean-Louis; Largillier, Rémy; Sautiere, Jean-Loup; de Roquancourt, Anne; Pomel, Christophe; Rouanet, Philippe; Rouzier, Roman; Penault-Llorca, Frederique M.

    2015-01-01

    Background. The 21-gene Oncotype DX Recurrence Score assay is a validated assay to help decide the appropriate treatment for estrogen receptor-positive (ER+), early-stage breast cancer (EBC) in the adjuvant setting. The choice of adjuvant treatments might vary considerably in different countries according to various treatment guidelines. This prospective multicenter study is the first to assess the impact of the Oncotype DX assay in the French clinical setting. Methods. A total of 100 patients with ER+, human epidermal growth factor receptor 2-negative EBC, and node-negative (pN0) disease or micrometastases in up to 3 lymph nodes (pN1mi) were enrolled. Treatment recommendations, physicians’ confidence before and after knowing the Recurrence Score value, and physicians’ perception of the assay were recorded. Results. Of the 100 patients, 95 were evaluable (83 pN0, 12 pN1mi). Treatment recommendations changed in 37% of patients, predominantly from chemoendocrine to endocrine treatment alone. The proportion of patients recommended chemotherapy decreased from 52% pretest to 25% post-test. Of patients originally recommended chemotherapy, 61% were recommended endocrine treatment alone after receiving the Recurrence Score result. For both pN0 and pN1mi patients, post-test recommendations appeared to follow the Recurrence Score result for low and high values. Physicians’ confidence improved significantly. Conclusion. These are the first prospective data on the impact of the Oncotype DX assay on adjuvant treatment decisions in France. Using the assay was associated with a significant change in treatment decisions and an overall reduction in chemotherapy use. These data are consistent with those presented from European and non-European studies. Implications for Practice: This study shows that in estrogen receptor-positive, human epidermal growth factor receptor 2-negative early breast cancer (either node-negative or with micrometastases in up to 3 lymph nodes

  13. The farnesoid X receptor induces very low density lipoprotein receptor gene expression.

    PubMed

    Sirvent, Audrey; Claudel, Thierry; Martin, Geneviève; Brozek, John; Kosykh, Vladimir; Darteil, Raphaël; Hum, Dean W; Fruchart, Jean-Charles; Staels, Bart

    2004-05-21

    The farnesoid X receptor (FXR) is a nuclear receptor activated by bile acids (BAs). In response to ligand-binding, FXR regulates many genes involved in BA, lipid, and lipoprotein metabolism. To identify new FXR target genes, microarray technology was used to profile total RNA extracted from HepG2 cells treated with the natural FXR agonist chenodeoxycholic acid (CDCA). Interestingly, a significant increase of transcript level of the very low density lipoprotein receptor (VLDLR) was observed. Our data, resulting from selective FXR activation, FXR RNA silencing and FXR-deficient mice, clearly demonstrate that BAs up-regulate VLDLR transcript levels via a FXR-dependent mechanism in vitro in human and in vivo in mouse liver cells.

  14. Estrogen receptor and progesterone receptor genes are expressed differentially in mouse embryos during preimplantation development.

    PubMed Central

    Hou, Q; Gorski, J

    1993-01-01

    Estrogen and progesterone play an important role in the development and implantation of preimplantation embryos. However, it is controversial whether these hormones act directly on the embryos. The effects of these hormones depend on the existence of their specific receptors. To determine whether estrogen receptor (ER) and progesterone receptor genes are expressed in mouse preimplantation embryos, we examined RNA from embryos at different stages of preimplantation development by reverse transcription-polymerase chain reaction techniques. ER mRNA was found in oocytes and fertilized eggs. The message level began to decline at the two-cell stage and reached its lowest level at the five- to eight-cell stage. ER mRNA was not detectable at the morula stage but reappeared at the blastocyst stage. Progesterone receptor mRNA was not detectable until the blastocyst stage. The embryonic expression of ER and progesterone receptor genes in the blastocyst suggests a possible functional requirement for ER and progesterone receptor at this stage of development. These results provide a basis for determining the direct role of estrogen and progesterone in preimplantation embryos. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8415723

  15. The Androgen Receptor Gene Mutations Database.

    PubMed

    Gottlieb, B; Lehvaslaiho, H; Beitel, L K; Lumbroso, R; Pinsky, L; Trifiro, M

    1998-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. The total number of reported mutations has risen from 272 to 309 in the past year. We have expanded the database: (i) by giving each entry an accession number; (ii) by adding information on the length of polymorphic polyglutamine (polyGln) and polyglycine (polyGly) tracts in exon 1; (iii) by adding information on large gene deletions; (iv) by providing a direct link with a completely searchable database (courtesy EMBL-European Bioinformatics Institute). The addition of the exon 1 polymorphisms is discussed in light of their possible relevance as markers for predisposition to prostate or breast cancer. The database is also available on the internet (http://www.mcgill. ca/androgendb/ ), from EMBL-European Bioinformatics Institute (ftp. ebi.ac.uk/pub/databases/androgen ), or as a Macintosh FilemakerPro or Word file (MC33@musica.mcgill.ca).

  16. The Orphan Nuclear Receptor ERRγ Regulates Hepatic CB1 Receptor-Mediated Fibroblast Growth Factor 21 Gene Expression

    PubMed Central

    Jung, Yoon Seok; Lee, Ji-Min; Kim, Don-Kyu; Lee, Yong-Soo; Kim, Ki-Sun; Kim, Yong-Hoon; Kim, Jina; Lee, Myung-Shik; Lee, In-Kyu; Kim, Seong Heon; Cho, Sung Jin; Jeong, Won-Il; Lee, Chul-Ho; Harris, Robert A.; Choi, Hueng-Sik

    2016-01-01

    Background Fibroblast growth factor 21 (FGF21), a stress inducible hepatokine, is synthesized in the liver and plays important roles in glucose and lipid metabolism. However, the mechanism of hepatic cannabinoid type 1 (CB1) receptor-mediated induction of FGF21 gene expression is largely unknown. Results Activation of the hepatic CB1 receptor by arachidonyl-2’-chloroethylamide (ACEA), a CB1 receptor selective agonist, significantly increased FGF21 gene expression. Overexpression of estrogen-related receptor (ERR) γ increased FGF21 gene expression and secretion both in hepatocytes and mice, whereas knockdown of ERRγ decreased ACEA-mediated FGF21 gene expression and secretion. Moreover, ERRγ, but not ERRα and ERRβ, induced FGF21 gene promoter activity. In addition, deletion and mutation analysis of the FGF21 promoter identified a putative ERRγ-binding motif (AGGTGC, a near-consensus response element). A chromatin immunoprecipitation assay revealed direct binding of ERRγ to the FGF21 gene promoter. Finally, GSK5182, an ERRγ inverse agonist, significantly inhibited hepatic CB1 receptor-mediated FGF21 gene expression and secretion. Conclusion Based on our data, we conclude that ERRγ plays a key role in hepatic CB1 receptor-mediated induction of FGF21 gene expression and secretion. PMID:27455076

  17. Mu Opioid Receptor Gene: New Point Mutations in Opioid Addicts

    PubMed Central

    Dinarvand, Amin; Goodarzi, Ali; Vousooghi, Nasim; Hashemi, Mehrdad; Dinarvand, Rasoul; Ostadzadeh, Fahimeh; Khoshzaban, Ahad; Zarrindast, Mohammad-Reza

    2014-01-01

    Introduction Association between single-nucleotide polymorphisms (SNPs) in mu opioid receptor gene and drug addiction has been shown in various studies. Here, we have evaluated the existence of polymorphisms in exon 3 of this gene in Iranian population and investigated the possible association between these mutations and opioid addiction. Methods 79 opioid-dependent subjects (55 males, 24 females) and 134 non-addict or control individuals (74 males, 60 females) participated in the study. Genomic DNA was extracted from volunteers’ peripheral blood and exon 3 of the mu opioid receptor gene was amplified by polymerase chain reaction (PCR) whose products were then sequenced. Results Three different heterozygote polymorphisms were observed in 3 male individuals: 759T > C and 877G > A mutations were found in 2 control volunteers and 1043G > C substitution was observed in an opioid-addicted subject. Association between genotype and opioid addiction for each mutation was not statistically significant. Discussion It seems that the sample size used in our study is not enough to confirm or reject any association between 759T > C, 877G > A and 1043G > C substitutions in exon 3 of the mu opioid receptor gene and opioid addiction susceptibility in Iranian population. PMID:25436079

  18. Corticosteroid receptor gene expression is related to sex and social behaviour in a social fish.

    PubMed

    O'Connor, Constance M; Rodela, Tammy M; Mileva, Viktoria R; Balshine, Sigal; Gilmour, Kathleen M

    2013-03-01

    Circulating corticosteroids have been related to social status in a variety of species. However, our understanding of corticosteroid receptor expression and its relationship with sociality is still in its infancy. Knowledge of variation in receptor expression is critical to understand the physiological relevance of differences in circulating corticosteroid concentrations. In this study, we examined corticosteroid receptor gene expression in relation to dominance rank, sex, and social behaviour in the highly social cichlid fish, Neolamprologus pulcher. We examined the relative gene expression of the three known teleost corticosteroid receptors: glucocorticoid receptor 1 (GR1), glucocorticoid receptor 2 (GR2), and the mineralocorticoid receptor (MR) in liver and brain tissue of dominant and subordinate N. pulcher males and females. Phylogenetic analysis revealed the N. pulcher gene originally described as GR2, clustered with other teleost GR1 genes, while the originally-described N. pulcher GR1 gene clustered with the GR2 genes of other teleosts. Therefore we propose a change in the original nomenclature of the N. pulcher GRs: GR1 (formerly GR2) and GR2 (formerly GR1) and adopt this new nomenclature throughout this manuscript. Liver MR transcript levels were higher in males than females, and positively related to submissive behaviour. Liver GR2 (formerly GR1) transcript levels were also higher in males than females. Collectively, the results demonstrate sex differences in corticosteroid receptor abundance, and suggest tissue- and receptor-specific roles for corticosteroid receptors in mediating aspects of social behaviour.

  19. Farnesoid X receptor represses hepatic lipase gene expression.

    PubMed

    Sirvent, Audrey; Verhoeven, Adrie J M; Jansen, Hans; Kosykh, Vladimir; Darteil, Raphaël J; Hum, Dean W; Fruchart, Jean-Charles; Staels, Bart

    2004-11-01

    The farnesoid X receptor (FXR) is a nuclear receptor that regulates gene expression in response to bile acids (BAs). FXR plays a central role in BA, cholesterol, and lipoprotein metabolism. Here, we identify HL, an enzyme involved in the metabolism of remnant and high density lipoproteins, as a novel FXR-regulated gene. The natural FXR ligand, chenodeoxycholic acid (CDCA), downregulates HL gene expression in a dose- and time-dependent manner in human hepatoma HepG2 cells. The nonsteroidal synthetic FXR agonist GW4064 also decreases HL mRNA levels in HepG2 cells and in primary human hepatocytes. Moreover, the decrease of HL mRNA levels after treatment with FXR agonists was associated with a significant decrease in secreted enzymatic activity. In addition, FXR-specific gene silencing using small interfering RNAs demonstrated that CDCA- and GW4064-mediated downregulation of HL transcript levels occurs via an FXR-dependent mechanism. Finally, using transient transfection experiments, it is shown that FXR represses transcriptional activity of a reporter driven by the -698/+13 bp human HL promoter. Taken together, these results identify HL as a new FXR-regulated gene in human liver cells. In view of the role of HL in plasma lipoprotein metabolism, our results further emphasize the central role of FXR in lipid homeostasis.

  20. Androgen receptor gene mutation, rearrangement, polymorphism.

    PubMed

    Eisermann, Kurtis; Wang, Dan; Jing, Yifeng; Pascal, Laura E; Wang, Zhou

    2013-09-01

    Genetic aberrations of the androgen receptor (AR) caused by mutations, rearrangements, and polymorphisms result in a mutant receptor that has varied functions compared to wild type AR. To date, over 1,000 mutations have been reported in the AR with most of these being associated with androgen insensitivity syndrome (AIS). While mutations of AR associated with prostate cancer occur less often in early stage localized disease, mutations in castration-resistant prostate cancer (CRPC) patients treated with anti-androgens occur more frequently with 10-30% of these patients having some form of mutation in the AR. Resistance to anti-androgen therapy usually results from gain-of-function mutations in the LBD such as is seen with bicalutamide and more recently with enzalutamide (MDV3100). Thus, it is crucial to investigate these new AR mutations arising from drug resistance to anti-androgens and other small molecule pharmacological agents.

  1. Androgen receptor gene polymorphism in zebra species.

    PubMed

    Ito, Hideyuki; Langenhorst, Tanya; Ogden, Rob; Inoue-Murayama, Miho

    2015-09-01

    Androgen receptor genes (AR) have been found to have associations with reproductive development, behavioral traits, and disorders in humans. However, the influence of similar genetic effects on the behavior of other animals is scarce. We examined the loci AR glutamine repeat (ARQ) in 44 Grevy's zebras, 23 plains zebras, and three mountain zebras, and compared them with those of domesticated horses. We observed polymorphism among zebra species and between zebra and horse. As androgens such as testosterone influence aggressiveness, AR polymorphism among equid species may be associated with differences in levels of aggression and tameness. Our findings indicate that it would be useful to conduct further studies focusing on the potential association between AR and personality traits, and to understand domestication of equid species. PMID:26236645

  2. The androgen receptor gene mutations database.

    PubMed

    Gottlieb, B; Trifiro, M; Lumbroso, R; Pinsky, L

    1997-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. The total number of reported mutations has risen from 212 to 272. We have expanded the database: (i) by adding a large amount of new data on somatic mutations in prostatic cancer tissue; (ii) by defining a new constitutional phenotype, mild androgen insensitivity (MAI); (iii) by placing additional relevant information on an internet site (http://www.mcgill.ca/androgendb/ ). The database has allowed us to examine the contribution of CpG sites to the multiplicity of reports of the same mutation in different families. The database is also available from EMBL (ftp.ebi.ac.uk/pub/databases/androgen) or as a Macintosh Filemaker Pro or Word file (MC33@musica,mcgill.ca)

  3. The androgen receptor gene mutations database.

    PubMed

    Gottlieb, B; Trifiro, M; Lumbroso, R; Vasiliou, D M; Pinsky, L

    1996-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. We have added (if available) data on the androgen binding phenotype of the mutant AR, the clinical phenotype of the affected persons, the family history and whether the pathogenicity of a mutation has been proven. Exonic mutations are now listed in 5'-->3' sequence regardless of type and single base pair changes are presented in codon context. Splice site and intronic mutations are listed separately. The database has allowed us to substantiate and amplify the observation of mutational hot spots within exons encoding the AR androgen binding domain. The database is available from EML (ftp://www.ebi.ac.uk/pub/databases/androgen) or as a Macintosh Filemaker file (MC33@musica.mcgill.ca).

  4. Evolution of the chicken Toll-like receptor gene family: A story of gene gain and gene loss

    PubMed Central

    Temperley, Nicholas D; Berlin, Sofia; Paton, Ian R; Griffin, Darren K; Burt, David W

    2008-01-01

    Background Toll-like receptors (TLRs) perform a vital role in disease resistance through their recognition of pathogen associated molecular patterns (PAMPs). Recent advances in genomics allow comparison of TLR genes within and between many species. This study takes advantage of the recently sequenced chicken genome to determine the complete chicken TLR repertoire and place it in context of vertebrate genomic evolution. Results The chicken TLR repertoire consists of ten genes. Phylogenetic analyses show that six of these genes have orthologs in mammals and fish, while one is only shared by fish and three appear to be unique to birds. Furthermore the phylogeny shows that TLR1-like genes arose independently in fish, birds and mammals from an ancestral gene also shared by TLR6 and TLR10. All other TLRs were already present prior to the divergence of major vertebrate lineages 550 Mya (million years ago) and have since been lost in certain lineages. Phylogenetic analysis shows the absence of TLRs 8 and 9 in chicken to be the result of gene loss. The notable exception to the tendency of gene loss in TLR evolution is found in chicken TLRs 1 and 2, each of which underwent gene duplication about 147 and 65 Mya, respectively. Conclusion Comparative phylogenetic analysis of vertebrate TLR genes provides insight into their patterns and processes of gene evolution, with examples of both gene gain and gene loss. In addition, these comparisons clarify the nomenclature of TLR genes in vertebrates. PMID:18241342

  5. Gene Transfer and Molecular Cloning of the Human NGF Receptor

    NASA Astrophysics Data System (ADS)

    Chao, Moses V.; Bothwell, Mark A.; Ross, Alonzo H.; Koprowski, Hilary; Lanahan, Anthony A.; Buck, C. Randall; Sehgal, Amita

    1986-04-01

    Nerve growth factor (NGF) and its receptor are important in the development of cells derived from the neural crest. Mouse L cell transformants have been generated that stably express the human NGF receptor gene transfer with total human DNA. Affinity cross-linking, metabolic labeling and immunoprecipitation, and equilibrium binding with 125I-labeled NGF revealed that this NGF receptor had the same size and binding characteristics as the receptor from human melanoma cells and rat PC12 cells. The sequences encoding the NGF receptor were molecularly cloned using the human Alu repetitive sequence as a probe. A cosmid clone that contained the human NGF receptor gene allowed efficient transfection and expression of the receptor.

  6. Toll-Like Receptor Gene Expression during Trichinella spiralis Infection

    PubMed Central

    Kim, Sin; Park, Mi Kyung; Yu, Hak Sun

    2015-01-01

    In Trichinella spiralis infection, type 2 helper T (Th2) cell-related and regulatory T (Treg) cell-related immune responses are the most important immune events. In order to clarify which Toll-like receptors (TLRs) are closely associated with these responses, we analyzed the expression of mouse TLR genes in the small intestine and muscle tissue during T. spiralis infection. In addition, the expression of several chemokine- and cytokine-encoding genes, which are related to Th2 and Treg cell mediated immune responses, were analyzed in mouse embryonic fibroblasts (MEFs) isolated from myeloid differentiation factor 88 (MyD88)/TIR-associated proteins (TIRAP) and Toll receptor-associated activator of interferons (TRIF) adapter protein deficient and wild type (WT) mice. The results showed significantly increased TLR4 and TLR9 gene expression in the small intestine after 2 weeks of T. spiralis infection. In the muscle, TLR1, TLR2, TLR5, and TLR9 gene expression significantly increased after 4 weeks of infection. Only the expression of the TLR4 and TLR9 genes was significantly elevated in WT MEF cells after treatment with excretory-secretory (ES) proteins. Gene expression for Th2 chemokine genes were highly enhanced by ES proteins in WT MEF cells, while this elevation was slightly reduced in MyD88/TIRAP-/- MEF cells, and quite substantially decreased in TRIF-/- MEF cells. In contrast, IL-10 and TGF-β expression levels were not elevated in MyD88/TIRAP-/- MEF cells. In conclusion, we suggest that TLR4 and TLR9 might be closely linked to Th2 cell and Treg cell mediated immune responses, although additional data are needed to convincingly prove this observation. PMID:26323841

  7. Dopamine receptor genes: new tools for molecular psychiatry.

    PubMed Central

    Niznik, H B; Van Tol, H H

    1992-01-01

    For over a decade it has been generally assumed that all the pharmacological and biochemical actions of dopamine within the central nervous system and periphery were mediated by two distinct dopamine receptors. These receptors, termed D1 and D2, were defined as those coupled to the stimulation or inhibition of adenylate cyclase, respectively, and by their selectivity and avidity for various drugs and compounds. The concept that two dopamine receptors were sufficient to account for all the effects mediated by dopamine was an oversimplification. Recent molecular biological studies have identified five distinct genes which encode at least eight functional dopamine receptors. The members of the expanded dopamine receptor family, however, can still be codifed by way of the original D1 and D2 receptor dichotomy. These include two genes encoding dopamine D1-like receptors (D1 [D1A]/D5 [D1B]) and three genes encoding D2-like receptors (D2/D3/D4). We review here our recent work on the cloning and characterization of some of the members of the dopamine receptor gene family (D1, D2, D4, D5), their relationship to neuropsychiatric disorders and their potential role in antipsychotic drug action. Images Fig. 1 PMID:1450188

  8. Parathyroid receptor gene expression by epiphyseal growth plates in rickets and tibial dyschondroplasia.

    PubMed

    Ben-Bassat, S; Genina, O; Lavelin, I; Leach, R M; Pines, M

    1999-03-25

    PTH/PTHrP receptor gene expression was evaluated in situ in avian epiphyseal growth plates taken from normal, rachitic and tibial dyschondroplasia (TD) afflicted chicks induced by thiram or by genetic selection. In the normal growth plates, PTH/PTHrP receptor gene expression was localized to the maturation zone as demonstrated by the expression of collagen type II (col II), osteopontin (OPN) genes and alkaline phosphatase activity (AP). In TD, either induced by thiram or by genetic selection, normal levels of PTH/PTHrP receptor gene expression were observed up to 21 days post-hatch. In rickets, on the other hand, no PTH/PTHrP receptor gene expression was observed in the growth plate from day 8 of a vitamin D-deficient diet. In cultured chondrocytes, PTH caused time-dependent down-regulation of its own receptor. These results suggest that alterations in the PTH/PTHrP receptor gene expression are associated with rickets but not with TD. The reduction in the PTH/PTHrP receptor gene expression in rickets may be due to the high plasma levels of PTH.

  9. Adenovirus receptors and their implications in gene delivery

    PubMed Central

    Sharma, Anurag; Li, Xiaoxin; Bangari, Dinesh S.; Mittal, Suresh K.

    2010-01-01

    Adenoviruses (Ads) have gained popularity as gene delivery vectors for therapeutic and prophylactic applications. Ad entry into host cells involves specific interactions between cell surface receptors and viral capsid proteins. Several cell surface molecules have been identified as receptors for Ad attachment and entry. Tissue tropism of Ad vectors is greatly influenced by their receptor usage. A variety of strategies have been investigated to modify Ad vector tropism by manipulating the receptor-interacting moieties. Many such strategies are aimed at targeting and/or detargeting of Ad vectors. In this review, we discuss the various cell surface molecules that are implicated as receptors for virus attachment and internalization. Special emphasis is given to Ad types that are utilized as gene delivery vectors. Various strategies to modify Ad tropism using the knowledge of Ad receptors are also discussed. PMID:19647886

  10. Comparative Genomics of Natural Killer Cell Receptor Gene Clusters

    PubMed Central

    Kelley, James; Walter, Lutz; Trowsdale, John

    2005-01-01

    Many receptors on natural killer (NK) cells recognize major histocompatibility complex class I molecules in order to monitor unhealthy tissues, such as cells infected with viruses, and some tumors. Genes encoding families of NK receptors and related sequences are organized into two main clusters in humans: the natural killer complex on Chromosome 12p13.1, which encodes C-type lectin molecules, and the leukocyte receptor complex on Chromosome 19q13.4, which encodes immunoglobulin superfamily molecules. The composition of these gene clusters differs markedly between closely related species, providing evidence for rapid, lineage-specific expansions or contractions of sets of loci. The choice of NK receptor genes is polarized in the two species most studied, mouse and human. In mouse, the C-type lectin-related Ly49 gene family predominates. Conversely, the single Ly49 sequence is a pseudogene in humans, and the immunoglobulin superfamily KIR gene family is extensive. These different gene sets encode proteins that are comparable in function and genetic diversity, even though they have undergone species-specific expansions. Understanding the biological significance of this curious situation may be aided by studying which NK receptor genes are used in other vertebrates, especially in relation to species-specific differences in genes for major histocompatibility complex class I molecules. PMID:16132082

  11. Human T-cell receptor variable gene segment families

    SciTech Connect

    Arden, B.; Kabelitz, D.; Clark, S.P.; Mak, T.W.

    1995-10-01

    Multiple DNA and protein sequence alignments have been constructed for the human T-cell receptor {alpha}/{delta}, {beta}, and {gamma} (TCRA/D, B, and G) variable (V) gene segments. The traditional classification into subfamilies was confirmed using a much larger pool of sequences. For each sequence, a name was derived which complies with the standard nomenclature. The traditional numbering of V gene segments in the order of their discovery was continued and changed when in conflict with names of other segments. By discriminating between alleles at the same locus versus genes from different loci, we were able to reduce the number of more than 150 different TCRBV sequences in the database to a repertoire of only 47 functional TCRBV gene segments. An extension of this analysis to the over 100 TCRAV sequences results in a predicted repertoire of 42 functional TCRAV gene segments. Our alignment revealed two residues that distinguish between the highly homologous V{delta} and V{alpha}, one at a site that in V{sub H} contacts the constant region, the other at the interface between immunoglobulin V{sub H} and V{sub L}. This site may be responsible for restricted pairing between certain V{delta} and V{gamma} chains. On the other hand, V{beta} and V{gamma} appear to be related by the fact that their CDR2 length is increased by four residues as compared with that of V{alpha}/{delta} peptides. 150 refs., 12 figs., 5 tabs.

  12. Killer cell immunoglobulin-like receptor gene association with cryptorchidism.

    PubMed

    Niepiekło-Miniewska, Wanda; Kuśnierczyk, Piotr; Havrylyuk, Anna; Kamieniczna, Marzena; Nakonechnyy, Andrij; Chopyak, Valentyna; Kurpisz, Maciej

    2015-12-01

    Cryptorchidism is a condition where a testis persists in the abdominal cavity. Thus, due to elevated temperature we may expect induction of aberrant immune reactions depending on genetic constitution of individual. This may be reflected by development of anti-sperm antibodies (ASA) in cryptorchid males. Also, natural killer (NK) cells which belong to innate immunity may control adaptive immunity. Therefore, the gene system encoding polymorphic NK cell immunoglobulin receptors (KIRs) has been studied. 109 prepubertal boys with cryptorchidism and 136 ethnically matched young male donors were selected to study NK cell KIRs. DNA was isolated using automatic Maxwell(®) system from the peripheral venous blood drawn onto anticoagulant. Olerup SSP KIR Genotyping kit including Taq polymerase was used for detection of KIR genes. Human leukocyte antigen-C (HLA-C) groups, C1 and C2 were established using a Olerup SSP KIR HLA Ligand kit. KIR2DL2 (killer immunoglobulin-like receptor two-domain long 2) and KIR2DS2 (killer immunoglobulin-like receptor two-domain short 2) genes were less frequent in patients than in control individuals (corrected p values: 0.0110 and 0.0383, respectively). However, no significant differences were observed between ASA-positive and ASA-negative patients, or between bilateral or unilateral cryptorchidism. No association between KIR ligands C1 and C2, alone or together with KIR2DL2, was found. However, the results suggest that KIR2DL2+/KIR2DS2+ genotype may be, to some extent, protective against cryptorchidism.

  13. A nonsense mutation in the LDL receptor gene leads to familial hypercholesterolemia in the Druze sect

    SciTech Connect

    Landsberger, D.; Meiner, V.; Reshef, A.; Leitersdorf, E. ); Levy, Yishai ); Westhytzen, D.R. van der; Coetzee, G.A. )

    1992-02-01

    Familial hypercholesterolemia (FH) is an autosomal dominant disease caused by mutations in the LDL receptor gene. Here the authors characterize and LDL receptor mutation that is associated with a distinct haplotype and causes FH in the Druze, a small Middle Eastern Islamic sect with a high degree of inbreeding. The mutation was found in FH families from two distinct Druze villages from the Golan Heights (northern Israel). It was not found either in another Druze FH family residing in a different geographical area nor in eight Arab and four Jewish FH heterozygote index cases whose hypercholesterolemia cosegregates with an identical LDL receptor gene haplotype. The mutation, a single-base substitution, results in a termination codon in exon 4 of the LDL receptor gene that encodes for the fourth repeat of the binding domain of the mature receptor. It can be diagnosed by allele-specific oligonucleotide hybridization of PCR-amplified DNA from FH patients.

  14. Oleocanthal Modulates Estradiol-Induced Gene Expression Involving Estrogen Receptor α.

    PubMed

    Keiler, Annekathrin Martina; Djiogue, Sefirin; Ehrhardt, Tino; Zierau, Oliver; Skaltsounis, Leandros; Halabalaki, Maria; Vollmer, Günter

    2015-09-01

    Oleocanthal is a bioactive compound from olive oil. It has attracted considerable attention as it is anti-inflammatory, antiproliferative, and has been shown to possess neuroprotective properties in vitro and in vivo. Delineated from its polyphenolic structure, the aim of this study was to characterize oleocanthal towards estrogenic properties. This might contribute to partly explain the beneficial effects described for the Mediterranean diet. Estrogenic properties of oleocanthal were assessed by different methods: a) stimulation of reporter gene activity in MVLN or RNDA cells either expressing estrogen receptor α or β, b) stimulation of luciferase reporter gene activity in U2OS osteosarcoma cells expressing estrogen receptor α or β, and c) elucidation of the impact on estradiol-induced gene expression in U2OS cells transduced with both estrogen receptors. Depending on the cell line origin, oleocanthal inhibited luciferase activity (MVLN, U2OS-estrogen receptor β) or weakly induced reporter gene activity at 10 µM in U2OS-estrogen receptor α cells. However, oleocanthal inhibited stimulation of luciferase activity by estradiol from both estrogen receptors. Oleocanthal, if given alone, did not stimulate gene expression in U2OS cells, but it significantly modulated the response of estradiol. Oleocanthal enhanced the effect of estradiol on the regulation of those genes, which are believed to be regulated through heterodimeric estrogen receptors. As the estrogenic response pattern of oleocanthal is rather unique, we compared the results obtained with oleacein. Oleocanthal binds to both estrogen receptors inducing estradiol-agonistic or antiagonistic effects depending on the cell line. Regarding regulation of gene expression in U2OS-estrogen receptor α/β cells, oleocanthal and oleacein enhanced estradiol-mediated regulation of heterodimer-regulated genes. PMID:26166135

  15. Variations in Opioid Receptor Genes in Neonatal Abstinence Syndrome*

    PubMed Central

    Wachman, Elisha M; Hayes, Marie J; Sherva, Richard; Brown, Mark S; Davis, Jonathan M; Farrer, Lindsay A; Nielsen, David A

    2015-01-01

    Background There is significant variability in the severity of neonatal abstinence syndrome (NAS) due to in-utero opioid exposure. We wanted to determine if single nucleotide polymorphisms (SNPs) in key candidate genes contribute to this variability. Methods Full-term opioid-exposed newborns and their mothers (n=86 pairs) were studied. DNA was genotyped for 80 SNPs from 14 genes utilizing a custom designed microarray. The association of each SNP with NAS outcomes was evaluated. Results SNPs in two opioid receptor genes in the infants were associated with worse NAS severity: 1) The PNOC rs732636 A allele (OR=3.8, p=0.004) for treatment with 2 medications and a longer hospital stay (LOS) of 5.8 days (p=0.01), and 2) The OPRK1 rs702764 C allele (OR=4.1, p=0.003) for treatment with 2 medications. The OPRM1 rs1799971 G allele (β= −6.9 days, p=0.02) and COMT rs740603 A allele (β= −5.3 days, p=0.01) were associated with shorter LOS. The OPRD1 rs204076 A allele in the mothers was associated with a longer LOS by 6.6 days (p=0.008). Results were significant point-wise but did not meet the experiment-wide significance level. Conclusions These findings suggest that SNPs in opioid receptor and the PNOC genes are associated with NAS severity. However, further testing in a large sample is warranted. This has important implications for prenatal prediction and personalized treatment regimens for infants at highest risk for severe NAS. PMID:26233486

  16. Phenotypical characterization of the rat striatal neurons expressing the D1 dopamine receptor gene.

    PubMed Central

    Le Moine, C; Normand, E; Bloch, B

    1991-01-01

    In situ hybridization experiments were performed in rat brain sections from normal and 6-hydroxydopamine-treated rats in order to map and identify the neurons expressing the D1 receptor gene in the striatum and the substantia nigra. Procedures of combined in situ hybridization, allowing the simultaneous detection of two mRNAs in the same section or in adjacent sections, were used to characterize the phenotypes of the neurons expressing the D1 receptor gene. D1 receptor mRNA was found in neurons all over the caudate-putamen, the accumbens nucleus, and the olfactory tubercle but not in the substantia nigra. In the caudate-putamen and accumbens nucleus, most of the neurons containing D1 receptor mRNA were characterized as medium-sized substance P neurons and distinct from those containing D2 receptor mRNA. Nevertheless, 15-20% of the substance P neurons did not contain D1 receptor mRNA. The neurons containing preproenkephalin A mRNA did not contain D1 receptor mRNA but contained D2 receptor mRNA. A small number of cholinergic and somatostatinergic neurons exhibited a weak reaction for D1 receptor mRNA. These results demonstrate that dopamine acts on efferent striatal neurons through expression of distinct receptors--namely, D1 and D2 in separate cell populations (substance P and preproenkephalin A neurons, respectively)--and can also act on nonprojecting neurons through D1 receptor expression. Images PMID:1827915

  17. Functional Characterization of Soybean Glyma04g39610 as a Brassinosteroid Receptor Gene and Evolutionary Analysis of Soybean Brassinosteroid Receptors

    PubMed Central

    Peng, Suna; Tao, Ping; Xu, Feng; Wu, Aiping; Huo, Weige; Wang, Jinxiang

    2016-01-01

    Brassinosteroids (BR) play important roles in plant growth and development. Although BR receptors have been intensively studied in Arabidopsis, the BR receptors in soybean remain largely unknown. Here, in addition to the known receptor gene Glyma06g15270 (GmBRI1a), we identified five putative BR receptor genes in the soybean genome: GmBRI1b, GmBRL1a, GmBRL1b, GmBRL2a, and GmBRL2b. Analysis of their expression patterns by quantitative real-time PCR showed that they are ubiquitously expressed in primary roots, lateral roots, stems, leaves, and hypocotyls. We used rapid amplification of cDNA ends (RACE) to clone GmBRI1b (Glyma04g39160), and found that the predicted amino acid sequence of GmBRI1b showed high similarity to those of AtBRI1 and pea PsBRI1. Structural modeling of the ectodomain also demonstrated similarities between the BR receptors of soybean and Arabidopsis. GFP-fusion experiments verified that GmBRI1b localizes to the cell membrane. We also explored GmBRI1b function in Arabidopsis through complementation experiments. Ectopic over-expression of GmBRI1b in Arabidopsis BR receptor loss-of-function mutant (bri1-5 bak1-1D) restored hypocotyl growth in etiolated seedlings; increased the growth of stems, leaves, and siliques in light; and rescued the developmental defects in leaves of the bri1-6 mutant, and complemented the responses of BR biosynthesis-related genes in the bri1-5 bak1-D mutant grown in light. Bioinformatics analysis demonstrated that the six BR receptor genes in soybean resulted from three gene duplication events during evolution. Phylogenetic analysis classified the BR receptors in dicots and monocots into three subclades. Estimation of the synonymous (Ks) and the nonsynonymous substitution rate (Ka) and selection pressure (Ka/Ks) revealed that the Ka/Ks of BR receptor genes from dicots and monocots were less than 1.0, indicating that BR receptor genes in plants experienced purifying selection during evolution. PMID:27338344

  18. Functional Characterization of Soybean Glyma04g39610 as a Brassinosteroid Receptor Gene and Evolutionary Analysis of Soybean Brassinosteroid Receptors.

    PubMed

    Peng, Suna; Tao, Ping; Xu, Feng; Wu, Aiping; Huo, Weige; Wang, Jinxiang

    2016-01-01

    Brassinosteroids (BR) play important roles in plant growth and development. Although BR receptors have been intensively studied in Arabidopsis, the BR receptors in soybean remain largely unknown. Here, in addition to the known receptor gene Glyma06g15270 (GmBRI1a), we identified five putative BR receptor genes in the soybean genome: GmBRI1b, GmBRL1a, GmBRL1b, GmBRL2a, and GmBRL2b. Analysis of their expression patterns by quantitative real-time PCR showed that they are ubiquitously expressed in primary roots, lateral roots, stems, leaves, and hypocotyls. We used rapid amplification of cDNA ends (RACE) to clone GmBRI1b (Glyma04g39160), and found that the predicted amino acid sequence of GmBRI1b showed high similarity to those of AtBRI1 and pea PsBRI1. Structural modeling of the ectodomain also demonstrated similarities between the BR receptors of soybean and Arabidopsis. GFP-fusion experiments verified that GmBRI1b localizes to the cell membrane. We also explored GmBRI1b function in Arabidopsis through complementation experiments. Ectopic over-expression of GmBRI1b in Arabidopsis BR receptor loss-of-function mutant (bri1-5 bak1-1D) restored hypocotyl growth in etiolated seedlings; increased the growth of stems, leaves, and siliques in light; and rescued the developmental defects in leaves of the bri1-6 mutant, and complemented the responses of BR biosynthesis-related genes in the bri1-5 bak1-D mutant grown in light. Bioinformatics analysis demonstrated that the six BR receptor genes in soybean resulted from three gene duplication events during evolution. Phylogenetic analysis classified the BR receptors in dicots and monocots into three subclades. Estimation of the synonymous (Ks) and the nonsynonymous substitution rate (Ka) and selection pressure (Ka/Ks) revealed that the Ka/Ks of BR receptor genes from dicots and monocots were less than 1.0, indicating that BR receptor genes in plants experienced purifying selection during evolution. PMID:27338344

  19. Gene expression of NMDA receptor subunits in the cerebellum of elderly patients with schizophrenia.

    PubMed

    Schmitt, Andrea; Koschel, Jiri; Zink, Mathias; Bauer, Manfred; Sommer, Clemens; Frank, Josef; Treutlein, Jens; Schulze, Thomas; Schneider-Axmann, Thomas; Parlapani, Eleni; Rietschel, Marcella; Falkai, Peter; Henn, Fritz A

    2010-03-01

    To determine if NMDA receptor alterations are present in the cerebellum in schizophrenia, we measured NMDA receptor binding and gene expression of the NMDA receptor subunits in a post-mortem study of elderly patients with schizophrenia and non-affected subjects. Furthermore, we assessed influence of genetic variation in the candidate gene neuregulin-1 (NRG1) on the expression of the NMDA receptor in an exploratory study. Post-mortem samples from the cerebellar cortex of ten schizophrenic patients were compared with nine normal subjects. We investigated NMDA receptor binding by receptor autoradiography and gene expression of the NMDA receptor subunits NR1, NR2A, NR2B, NR2C and NR2D by in situ hybridization. For the genetic study, we genotyped the NRG1 polymorphism rs35753505 (SNP8NRG221533). Additionally, we treated rats with the antipsychotics haloperidol or clozapine and assessed cerebellar NMDA receptor binding and gene expression of subunits to examine the effects of antipsychotic treatment. Gene expression of the NR2D subunit was increased in the right cerebellum of schizophrenic patients compared to controls. Individuals carrying at least one C allele of rs35753505 (SNP8NRG221533) showed decreased expression of the NR2C subunit in the right cerebellum, compared to individuals homozygous for the T allele. Correlation with medication parameters and the animal model revealed no treatment effects. In conclusion, increased NR2D expression results in a hyperexcitable NMDA receptor suggesting an adaptive effect due to receptor hypofunction. The decreased NR2C expression in NRG1 risk variant may cause a deficit in NMDA receptor function. This supports the hypothesis of an abnormal glutamatergic neurotransmission in the right cerebellum in the pathophysiology of schizophrenia.

  20. Neuropeptide Y receptor gene y6: multiple deaths or resurrections?

    PubMed

    Starbäck, P; Wraith, A; Eriksson, H; Larhammar, D

    2000-10-14

    The neuropeptide Y family of G-protein-coupled receptors consists of five cloned members in mammals. Four genes give rise to functional receptors in all mammals investigated. The y6 gene is a pseudogene in human and pig and is absent in rat, but generates a functional receptor in rabbit and mouse and probably in the collared peccary (Pecari tajacu), a distant relative of the pig family. We report here that the guinea pig y6 gene has a highly distorted nucleotide sequence with multiple frame-shift mutations. One evolutionary scenario may suggest that y6 was inactivated before the divergence of the mammalian orders and subsequently resurrected in some lineages. However, the pseudogene mutations seem to be distinct in human, pig, and guinea pig, arguing for separate inactivation events. In either case, the y6 gene has a quite unusual evolutionary history with multiple independent deaths or resurrections.

  1. Organization, structure, and expression of the gene encoding the rat substance P receptor.

    PubMed

    Hershey, A D; Dykema, P E; Krause, J E

    1991-03-01

    The gene for the rat substance P receptor has been cloned, its genomic structure determined, and the patterns of mRNA expression extensively analyzed. Unlike many genes encoding G protein-coupled receptors, the protein-coding region of this gene is divided into five exons consisting of 965, 195, 151, 197, and 2,010 base pairs. The substance P receptor gene extends more than 45 kilobases in length, and the splice sites for the exons occur at the borders of the sequences encoding putative membrane-spanning domains. The transcription initiation site has been defined by solution hybridization-nuclease protection and nucleotide sequence analyses, and lies downstream of a conventional TATA sequence. Substance P receptor mRNA levels in various tissues have been quantitated using solution hybridization-nuclease protection assays and were found to comprise from 0.00008 to 0.0016% of total RNA levels. Relatively high levels of substance P receptor mRNA are seen in the urinary bladder and the sublingual salivary gland, whereas moderate levels are observed for the submandibular salivary gland, striatum, hippocampus, midbrain, and olfactory bulb with lower levels in the remainder of the central nervous system and alimentary canal. These results are discussed in relation to the evolutionary role of multiple exons for a G protein-coupled receptor and with regard to the locations and mechanisms of substance P receptor gene expression.

  2. Concomitant Duplications of Opioid Peptide and Receptor Genes before the Origin of Jawed Vertebrates

    PubMed Central

    Sundström, Görel; Dreborg, Susanne; Larhammar, Dan

    2010-01-01

    Background The opioid system is involved in reward and pain mechanisms and consists in mammals of four receptors and several peptides. The peptides are derived from four prepropeptide genes, PENK, PDYN, PNOC and POMC, encoding enkephalins, dynorphins, orphanin/nociceptin and beta-endorphin, respectively. Previously we have described how two rounds of genome doubling (2R) before the origin of jawed vertebrates formed the receptor family. Methodology/Principal Findings Opioid peptide gene family members were investigated using a combination of sequence-based phylogeny and chromosomal locations of the peptide genes in various vertebrates. Several adjacent gene families were investigated similarly. The results show that the ancestral peptide gene gave rise to two additional copies in the genome doublings. The fourth member was generated by a local gene duplication, as the genes encoding POMC and PNOC are located on the same chromosome in the chicken genome and all three teleost genomes that we have studied. A translocation has disrupted this synteny in mammals. The PDYN gene seems to have been lost in chicken, but not in zebra finch. Duplicates of some peptide genes have arisen in the teleost fishes. Within the prepropeptide precursors, peptides have been lost or gained in different lineages. Conclusions/Significance The ancestral peptide and receptor genes were located on the same chromosome and were thus duplicated concomitantly. However, subsequently genetic linkage has been lost. In conclusion, the system of opioid peptides and receptors was largely formed by the genome doublings that took place early in vertebrate evolution. PMID:20463905

  3. Functional characterization of bursicon receptor and genome-wide analysis for identification of genes affected by bursicon receptor RNAi.

    PubMed

    Bai, Hua; Palli, Subba R

    2010-08-01

    Bursicon is an insect neuropeptide hormone that is secreted from the central nervous system into the hemolymph and initiates cuticle tanning. The receptor for bursicon is encoded by the rickets (rk) gene and belongs to the G protein-coupled receptor (GPCR) superfamily. The bursicon and its receptor regulate cuticle tanning as well as wing expansion after adult eclosion. However, the molecular action of bursicon signaling remains unclear. We utilized RNA interference (RNAi) and microarray to study the function of the bursicon receptor (Tcrk) in the model insect, Tribolium castaneum. The data included here showed that in addition to cuticle tanning and wing expansion reported previously, Tcrk is also required for development and expansion of integumentary structures and adult eclosion. Using custom microarrays, we identified 24 genes that are differentially expressed between Tcrk RNAi and control insects. Knockdown in the expression of one of these genes, TC004091, resulted in the arrest of adult eclosion. Identification of genes that are involved in bursicon receptor mediated biological processes will provide tools for future studies on mechanisms of bursicon action.

  4. Transcriptional Characterization of Porcine Leptin and Leptin Receptor Genes

    PubMed Central

    Pérez-Montarelo, Dafne; Fernández, Almudena; Barragán, Carmen; Noguera, Jose L.; Folch, Josep M.; Rodríguez, M. Carmen; Óvilo, Cristina; Silió, Luis; Fernández, Ana I.

    2013-01-01

    The leptin (LEP) and its receptor (LEPR) regulate food intake and energy balance through hypothalamic signaling. However, the LEP-LEPR axis seems to be more complex and its expression regulation has not been well described. In pigs, LEP and LEPR genes have been widely studied due to their relevance. Previous studies reported significant effects of SNPs located in both genes on growth and fatness traits. The aim of this study was to determine the expression profiles of LEP and LEPR across hypothalamic, adipose, hepatic and muscle tissues in Iberian x Landrace backcrossed pigs and to analyze the effects of gene variants on transcript abundance. To our knowledge, non porcine LEPR isoforms have been described rather than LEPRb. A short porcine LEPR isoform (LEPRa), that encodes a protein lacking the intracellular residues responsible of signal transduction, has been identified for the first time. The LEPRb isoform was only quantifiable in hypothalamus while LEPRa appeared widely expressed across tissues, but at higher levels in liver, suggesting that both isoforms would develop different roles. The unique LEP transcript showed expression in backfat and muscle. The effects of gene variants on transcript expression revealed interesting results. The LEPRc.1987C>T polymorphism showed opposite effects on LEPRb and LEPRa hypothalamic expression. In addition, one out of the 16 polymorphisms identified in the LEPR promoter region revealed high differential expression in hepatic LEPRa. These results suggest a LEPR isoform-specific regulation at tissue level. Conversely, non-differential expression of LEP conditional on the analyzed polymorphisms could be detected, indicating that its regulation is likely affected by other mechanisms rather than gene sequence variants. The present study has allowed a transcriptional characterization of LEP and LEPR isoforms on a range of tissues. Their expression patterns seem to indicate that both molecules develop peripheral roles apart from

  5. Transcriptional Characterization of Porcine Leptin and Leptin Receptor Genes.

    PubMed

    Pérez-Montarelo, Dafne; Fernández, Almudena; Barragán, Carmen; Noguera, Jose L; Folch, Josep M; Rodríguez, M Carmen; Ovilo, Cristina; Silió, Luis; Fernández, Ana I

    2013-01-01

    The leptin (LEP) and its receptor (LEPR) regulate food intake and energy balance through hypothalamic signaling. However, the LEP-LEPR axis seems to be more complex and its expression regulation has not been well described. In pigs, LEP and LEPR genes have been widely studied due to their relevance. Previous studies reported significant effects of SNPs located in both genes on growth and fatness traits. The aim of this study was to determine the expression profiles of LEP and LEPR across hypothalamic, adipose, hepatic and muscle tissues in Iberian x Landrace backcrossed pigs and to analyze the effects of gene variants on transcript abundance. To our knowledge, non porcine LEPR isoforms have been described rather than LEPRb. A short porcine LEPR isoform (LEPRa), that encodes a protein lacking the intracellular residues responsible of signal transduction, has been identified for the first time. The LEPRb isoform was only quantifiable in hypothalamus while LEPRa appeared widely expressed across tissues, but at higher levels in liver, suggesting that both isoforms would develop different roles. The unique LEP transcript showed expression in backfat and muscle. The effects of gene variants on transcript expression revealed interesting results. The LEPRc.1987C>T polymorphism showed opposite effects on LEPRb and LEPRa hypothalamic expression. In addition, one out of the 16 polymorphisms identified in the LEPR promoter region revealed high differential expression in hepatic LEPRa. These results suggest a LEPR isoform-specific regulation at tissue level. Conversely, non-differential expression of LEP conditional on the analyzed polymorphisms could be detected, indicating that its regulation is likely affected by other mechanisms rather than gene sequence variants. The present study has allowed a transcriptional characterization of LEP and LEPR isoforms on a range of tissues. Their expression patterns seem to indicate that both molecules develop peripheral roles apart from

  6. Co-regulation of a large and rapidly evolving repertoire of odorant receptor genes

    PubMed Central

    Kambere, Marijo B; Lane, Robert P

    2007-01-01

    The olfactory system meets niche- and species-specific demands by an accelerated evolution of its odorant receptor repertoires. In this review, we describe evolutionary processes that have shaped olfactory and vomeronasal receptor gene families in vertebrate genomes. We emphasize three important periods in the evolution of the olfactory system evident by comparative genomics: the adaptation to land in amphibian ancestors, the decline of olfaction in primates, and the delineation of putative pheromone receptors concurrent with rodent speciation. The rapid evolution of odorant receptor genes, the sheer size of the repertoire, as well as their wide distribution in the genome, presents a developmental challenge: how are these ever-changing odorant receptor repertoires coordinated within the olfactory system? A central organizing principle in olfaction is the specialization of sensory neurons resulting from each sensory neuron expressing only ~one odorant receptor allele. In this review, we also discuss this mutually exclusive expression of odorant receptor genes. We have considered several models to account for co-regulation of odorant receptor repertoires, as well as discussed a new hypothesis that invokes important epigenetic properties of the system. PMID:17903278

  7. Mouse T-cell receptor variable gene segment families

    SciTech Connect

    Arden, B.; Kabelitz, D.; Clark, S.P.; Mak, T.W.

    1995-10-01

    All mouse T-cell receptor {alpha}/{delta}, {beta}, and {gamma} variable (Tcra/d-, b-, and g-V) gene segments were aligned to compare the sequences with one another, to group them into subfamilies, and to derive a name which complies with the standard nomenclature. it was necessary to change the names of some V gene segments because they conflicted with those of other segments. The traditional classification into subfamilies was re-evaluated using a much larger pool of sequences. In the mouse, most V gene segments can be grouped into subfamilies of closely related genes with significantly less similarity between different subfamilies. 118 refs., 11 figs., 4 tabs.

  8. Identification of a null mutation in the human dopamine D4 receptor gene

    SciTech Connect

    Noethen, M.M.; Cichon, S.; Hebebrand, J.

    1994-09-01

    Dopamine receptors belong to the family of G protein-coupled receptors. Five different dopamine receptor genes have thus far been identified. These receptors are classified into two main subfamilies: D1, which includes the D1 and D5 receptors, and D2, which includes the D2, D3, and D4 receptors. The dopamine D4 receptor is of great interest for research into neuropsychiatric disorders and psychopharmacology in light of the fact that it binds the antipsychotic medication clozapine with higher affinity than does any other dopamine receptor. In addition, among the dopamine receptors, the D4 receptor shows a uniquely high degree of genetic variation in the human population. We identified a new 13 bp deletion in exon 1 of the D4 gene. This frameshift creates a terminator codon at amino acid position 98. mRNA isolated from brain tissue of two heterozygous persons showed both alleles to be expressed. The deletion occurs with a frequency of 2% in the German population. One person was identified to be homozygous for the deletion. Interestingly, he has a normal intelligence and did not exhibit a major psychiatric disorder as defined by DSM III-R. The 13 bp deletion is the first mutation resulting in premature translation termination reported for a dopamine receptor gene so far. This mutation is a good candidate to test for potential effects on disease and/or individual response to pharmacotherapy. Association studies in patients with various psychiatric illnesses and differences in response to clozapine are underway.

  9. Variants in the vitamin D receptor gene and asthma

    PubMed Central

    Wjst, Matthias

    2005-01-01

    Background Early lifetime exposure to dietary or supplementary vitamin D has been predicted to be a risk factor for later allergy. Twin studies suggest that response to vitamin D exposure might be influenced by genetic factors. As these effects are primarily mediated through the vitamin D receptor (VDR), single base variants in this gene may be risk factors for asthma or allergy. Results 951 individuals from 224 pedigrees with at least 2 asthmatic children were analyzed for 13 SNPs in the VDR. There was no preferential transmission to children with asthma. In their unaffected sibs, however, one allele in the 5' region was 0.5-fold undertransmitted (p = 0.049), while two other alleles in the 3' terminal region were 2-fold over-transmitted (p = 0.013 and 0.018). An association was also seen with bronchial hyperreactivity against methacholine and with specific immunoglobulin E serum levels. Conclusion The transmission disequilibrium in unaffected sibs of otherwise multiple-affected families seem to be a powerful statistical test. A preferential transmission of vitamin D receptor variants to children with asthma could not be confirmed but raises the possibility of a protective effect for unaffected children. PMID:15651992

  10. Allelic association of the D2 dopamine receptor gene with receptor-binding characteristics in alcoholism

    SciTech Connect

    Noble, E.P.; Blum, K.; Ritchie, T.; Montgomery, A.; Sheridan, P.J. )

    1991-07-01

    The allelic association of the human D2 dopamine receptor gene with the binding characteristics of the D2 dopamine receptor was determined in 66 brains of alcoholic and non-alcoholic subjects. In a blinded experiment, DNA from the cerebral cortex was treated with the restriction endonuclease Taql and probed with a 1.5-kilobase (kb) digest of a clone (lambda hD2G1) of the human D2 dopamine receptor gene. The binding characteristics (Kd (binding affinity) and Bmax (number of binding sites)) of the D2 dopamine receptor were determined in the caudate nuclei of these brains using tritiated spiperone as the ligand. The adjusted Kd was significantly lower in alcoholic than in nonalcoholic subjects. In subjects with the A1 allele, in whom a high association with alcoholism was found, the Bmax was significantly reduced compared with the Bmax of subjects with the A2 allele. Moreover, a progressively reduced Bmax was found in subjects with A2/A2, A1/A2, and A1/A1 alleles, with subjects with A2/A2 having the highest mean values, and subjects with A1/A1, the lowest. The polymorphic pattern of the D2 dopamine receptor gene and its differential expression of receptors suggests the involvement of the dopaminergic system in conferring susceptibility to at least one subtype of severe alcoholism.

  11. Chemosensory receptor genes in the Oriental tobacco budworm Helicoverpa assulta.

    PubMed

    Xu, W; Papanicolaou, A; Liu, N-Y; Dong, S-L; Anderson, A

    2015-04-01

    The Oriental tobacco budworm (Helicoverpa assulta) is a specialist herbivore moth and its larvae feed on Solanaceous plants. (Z)-9-hexadecenal (Z9-16: Ald) is the major sex pheromone component in H. assulta but the specific pheromone receptor (PR) against Z9-16: Ald has not yet been identified. In the present study, we integrated transcriptomic, bioinformatic and functional characterization approaches to investigate the chemosensory receptor genes of H. assulta. We identified seven potential PRs with 44 olfactory receptors, 18 gustatory receptors and 24 ionotropic receptors, which were further studied by in silico gene expression profile, phylogenetic analysis, reverse transcription PCR and calcium imaging assays. The candidate PR, HassOR13, showed a strong response to the minor sex pheromone component, (Z)-11-hexadecenal, but not the major component, Z9-16: Ald, in calcium imaging assays. This study provides the molecular basis for comparative studies of chemosensory receptors between H. assulta and other Helicoverpa species and will advance our understanding of the evolution and function of Lepidoptera insect chemosensation. PMID:25430896

  12. A novel mutation of the luteinizing hormone receptor gene causing male gonadotropin-independent precocious puberty.

    PubMed

    Latronico, A C; Anasti, J; Arnhold, I J; Mendonça, B B; Domenice, S; Albano, M C; Zachman, K; Wajchenberg, B L; Tsigos, C

    1995-08-01

    Familial male-limited precocious puberty (FMPP) is an autosomal dominant gonadotropin-independent disorder. Affected males generally develop signs of precocious puberty in early childhood. They typically show Leydig cell hyperplasia and increased testosterone production typical for their age, whereas circulating LH concentrations remain prepubertal. Several dominant point mutations of the LH receptor gene were identified in pedigrees with familial male-limited precocious puberty and were shown to cosegregate with the disease. Here we report a novel heterozygote point mutation in the LH receptor gene of a Brazilian boy with gonadotropin-independent precocious puberty. This mutation substitutes alanine 568 with valine at the carboxyterminus of the third cytosolic loop of the LH receptor. The unoccupied mutant receptors confer constitutive activation of adenyl cyclase activity when expressed in COS-7 cells, resulting in 4-fold higher cAMP concentrations over baseline compared with cells expressing an equivalent number of wild-type receptors. The affinity of the mutant receptors to 125I-labeled human LH was not altered compared with the wild type. Mutations of the homologue alanine residue in the alpha 1-adrenergic (in vitro), FSH (in vitro), and TSH (naturally occurring) receptors also result in constitutive adenyl cyclase activation, suggesting that this alanine residue is crucial for signal transduction and a potential site for upregulatory/oncogenic mutations in G-protein coupled receptors. PMID:7629248

  13. Elevated Resistin Gene Expression in African American Estrogen and Progesterone Receptor Negative Breast Cancer

    PubMed Central

    Vallega, Karin A.; Liu, NingNing; Myers, Jennifer S.; Yu, Kaixian; Sang, Qing-Xiang Amy

    2016-01-01

    Introduction African American (AA) women diagnosed with breast cancer are more likely to have aggressive subtypes. Investigating differentially expressed genes between patient populations may help explain racial health disparities. Resistin, one such gene, is linked to inflammation, obesity, and breast cancer risk. Previous studies indicated that resistin expression is higher in serum and tissue of AA breast cancer patients compared to Caucasian American (CA) patients. However, resistin expression levels have not been compared between AA and CA patients in a stage- and subtype-specific context. Breast cancer prognosis and treatments vary by subtype. This work investigates differential resistin gene expression in human breast cancer tissues of specific stages, receptor subtypes, and menopause statuses in AA and CA women. Methods Differential gene expression analysis was performed using human breast cancer gene expression data from The Cancer Genome Atlas. We performed inter-race resistin gene expression level comparisons looking at receptor status and stage-specific data between AA and CA samples. DESeq was run to test for differentially expressed resistin values. Results Resistin RNA was higher in AA women overall, with highest values in receptor negative subtypes. Estrogen-, progesterone-, and human epidermal growth factor receptor 2- negative groups showed statistically significant elevated resistin levels in Stage I and II AA women compared to CA women. In inter-racial comparisons, AA women had significantly higher levels of resistin regardless of menopause status. In whole population comparisons, resistin expression was higher among Stage I and III estrogen receptor negative cases. In comparisons of molecular subtypes, resistin levels were significant higher in triple negative than in luminal A breast cancer. Conclusion Resistin gene expression levels were significantly higher in receptor negative subtypes, especially estrogen receptor negative cases in AA

  14. P2Y2 receptor activation regulates the expression of acetylcholinesterase and acetylcholine receptor genes at vertebrate neuromuscular junctions.

    PubMed

    Tung, Edmund K K; Choi, Roy C Y; Siow, Nina L; Jiang, Joy X S; Ling, Karen K Y; Simon, Joseph; Barnard, Eric A; Tsim, Karl W K

    2004-10-01

    At the vertebrate neuromuscular junction (nmj), ATP is known to be coreleased with acetylcholine from the synaptic vesicles. We have previously shown that the P2Y1 receptor is localized at the nmj. Here, we extend the findings to show that another nucleotide receptor, P2Y2, is also localized there and with P2Y1 jointly mediates trophic responses to ATP. The P2Y2 receptor mRNA in rat muscle increased during development and peaked in adulthood. The P2Y2 receptor protein was shown to become restricted to the nmjs during embryonic development, in chick and in rat. In both rat and chick myotubes, P2Y1 and P2Y2 are expressed, increasing with differentiation, but P2Y4 is absent. The P2Y2 agonist UTP stimulated there inositol trisphosphate production and phosphorylation of extracellular signal-regulated kinases, in a dose-dependent manner. These UTP-induced responses were insensitive to the P2Y1-specific antagonist MRS 2179 (2'-deoxy-N6-methyl adenosine 3',5'-diphosphate diammonium salt). In differentiated myotubes, P2Y2 activation induced expression of acetylcholinesterase (AChE) protein (but not control alpha-tubulin). This was shown to arise from AChE promoter activation, mediated by activation of the transcription factor Elk-1. Two Elk-1-responsive elements, located in intron-1 of the AChE promoter, were found by mutation to act in this gene activation initiated at the P2Y2 receptor and also in that initiated at the P2Y1 receptor. Furthermore, the promoters of different acetylcholine receptor subunits were also stimulated by application of UTP to myotubes. These results indicate that ATP regulates postsynaptic gene expressions via a common pathway triggered by the activation of P2Y1 and P2Y2 receptors at the nmjs. PMID:15258260

  15. Selection for Genes Encoding Secreted Proteins and Receptors

    NASA Astrophysics Data System (ADS)

    Klein, Robert D.; Gu, Qimin; Goddard, Audrey; Rosenthal, Arnon

    1996-07-01

    Extracellular proteins play an essential role in the formation, differentiation, and maintenance of multicellular organisms. Despite that, the systematic identification of genes encoding these proteins has not been possible. We describe here a highly efficient method to isolate genes encoding secreted and membrane-bound proteins by using a single-step selection in yeast. Application of this method, termed signal peptide selection, to various tissues yielded 559 clones that appear to encode known or novel extracellular proteins. These include members of the transforming growth factor and epidermal growth factor protein families, endocrine hormones, tyrosine kinase receptors, serine/threonine kinase receptors, seven transmembrane receptors, cell adhesion molecules, extracellular matrix proteins, plasma proteins, and ion channels. The eventual identification of most, or all, extracellular signaling molecules will advance our understanding of fundamental biological processes and our ability to intervene in disease states.

  16. Characterization of the "CCR5" Chemokine Receptor Gene

    ERIC Educational Resources Information Center

    Thomas, John C.

    2004-01-01

    The life cycle of retroviruses is an essential topic of modern cell biology instruction. Furthermore, the process of HIV viral entry into the cell is a question of great interest in basic and clinical biology. This paper describes how students can easily recover their own DNA, amplify a portion of the "CCR5" chemokine receptor gene, characterize…

  17. The Association of Polymorphisms in Leptin/Leptin Receptor Genes and Ghrelin/Ghrelin Receptor Genes With Overweight/Obesity and the Related Metabolic Disturbances: A Review

    PubMed Central

    Ghalandari, Hamid; Hosseini-Esfahani, Firoozeh; Mirmiran, Parvin

    2015-01-01

    Context: Leptin and ghrelin are two important appetite and energy balance-regulating peptides. Common polymorphisms in the genes coding these peptides and their related receptors are shown to be associated with body weight, different markers of obesity and metabolic abnormalities. This review article aims to investigate the association of common polymorphisms of these genes with overweight/obesity and the metabolic disturbances related to it. Evidence Acquisition: The keywords leptin, ghrelin, polymorphism, single-nucleotide polymorphism (SNP), obesity, overweight, Body Mass Index, metabolic syndrome, and type 2 diabetes mellitus (T2DM) (MeSH headings) were used to search in the following databases: Pubmed, Sciencedirect (Elsevier), and Google scholar. Overall, 24 case-control studies, relevant to our topic, met the criteria and were included in the review. Results: The most prevalent leptin/leptin receptor genes (LEP/LEPR) and ghrelin/ghrelin receptor genes (GHRL/GHSR) single nucleotide polymorphisms studied were LEP G-2548A, LEPR Q223R, and Leu72Met, respectively. Nine studies of the 17 studies on LEP/LEPR, and three studies of the seven studies on GHRL/GHSR showed significant relationships. Conclusions: In general, our study suggests that the association between LEP/LEPR and GHRL/GHSR with overweight/obesity and the related metabolic disturbances is inconclusive. These results may be due to unidentified gene-environment interactions. More investigations are needed to further clarify this association. PMID:26425125

  18. 5-HT2 Receptor Regulation of Mitochondrial Genes: Unexpected Pharmacological Effects of Agonists and Antagonists.

    PubMed

    Harmon, Jennifer L; Wills, Lauren P; McOmish, Caitlin E; Demireva, Elena Y; Gingrich, Jay A; Beeson, Craig C; Schnellmann, Rick G

    2016-04-01

    In acute organ injuries, mitochondria are often dysfunctional, and recent research has revealed that recovery of mitochondrial and renal functions is accelerated by induction of mitochondrial biogenesis (MB). We previously reported that the nonselective 5-HT2 receptor agonist DOI [1-(4-iodo-2,5-dimethoxyphenyl)propan-2-amine] induced MB in renal proximal tubular cells (RPTCs). The goal of this study was to determine the role of 5-HT2 receptors in the regulation of mitochondrial genes and oxidative metabolism in the kidney. The 5-HT2C receptor agonist CP-809,101 [2-[(3-chlorophenyl)methoxy]-6-(1-piperazinyl)pyrazine] and antagonist SB-242,084 [6-chloro-2,3-dihydro-5-methyl-N-[6-[(2-methyl-3-pyridinyl)oxy]-3-pyridinyl]-1H-indole-1-carboxyamide dihydrochloride] were used to examine the induction of renal mitochondrial genes and oxidative metabolism in RPTCs and in mouse kidneys in the presence and absence of the 5-HT2C receptor. Unexpectedly, both CP-809,101 and SB-242,084 increased RPTC respiration and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) mRNA expression in RPTCs at 1-10 nM. In addition, CP-809,101 and SB-242,084 increased mRNA expression of PGC-1α and the mitochondrial proteins NADH dehydrogenase subunit 1 and NADH dehydrogenase (ubiquinone) β subcomplex 8 in mice. These compounds increased mitochondrial genes in RPTCs in which the 5-HT2C receptor was downregulated with small interfering RNA and in the renal cortex of mice lacking the 5-HT2C receptor. By contrast, the ability of these compounds to increase PGC-1α mRNA and respiration was blocked in RPTCs treated with 5-HT2A receptor small interfering RNA or the 5-HT2A receptor antagonist eplivanserin. In addition, the 5-HT2A receptor agonist NBOH-2C-CN [4-[2-[[(2-hydroxyphenyl)methyl]amino]ethyl]-2,5-dimethoxybenzonitrile] increased RPTC respiration at 1-100 nM. These results suggest that agonism of the 5-HT2A receptor induces MB and that the classic 5-HT2C receptor agonist CP

  19. A hot spot for hotfoot mutations in the gene encoding the delta2 glutamate receptor.

    PubMed

    Wang, Ying; Matsuda, Shinji; Drews, Valerie; Torashima, Takashi; Meisler, Miriam H; Yuzaki, Michisuke

    2003-04-01

    The orphan glutamate receptor delta2 is selectively expressed in Purkinje cells and plays a crucial role in cerebellar functions. Recently, ataxia in the hotfoot mouse ho4J was demonstrated to be caused by a deletion in the delta2 receptor gene (Grid2) removing the N-terminal 170 amino acids of the delta2 receptor. To understand how delta2 receptors function, we characterized mutations in eight additional spontaneously occurring hotfoot alleles of Grid2. The mouse Grid2 gene consists of 16 exons, spanning approximately 1.4 Mb. Genomic DNA analysis showed that seven hotfoot mutants had a deletion of one or more exons encoding the N-terminal domain of delta2 receptors. The exception is ho5J, which has a point mutation in exon 12. Deletions in ho7J, ho9J, ho11J and ho12J mice result in the in-frame deletion of between 40 and 95 amino acids. Expression of constructs containing these deletions in HEK293 cells resulted in protein retention in the endoplasmic reticulum or cis-Golgi without transport to the cell surface. Coimmunoprecipitation assays indicated that these deletions also reduce the intermolecular interaction between individual delta2 receptors. These results indicate that the deleted N-terminal regions are crucial for oligomerization of delta2 receptors and their subsequent transport to the cell surface of Purkinje cells. The relatively large size of the Grid2 gene may be one of the reasons why many spontaneous mutations occur in this gene. In addition, the frequent occurrence of in-frame deletions within the N-terminal domain in hotfoot mutants suggests the importance of this domain in the function of delta2 receptors.

  20. Interspecies variations in Bordetella catecholamine receptor gene regulation and function.

    PubMed

    Brickman, Timothy J; Suhadolc, Ryan J; Armstrong, Sandra K

    2015-12-01

    Bordetella bronchiseptica can use catecholamines to obtain iron from transferrin and lactoferrin via uptake pathways involving the BfrA, BfrD, and BfrE outer membrane receptor proteins, and although Bordetella pertussis has the bfrD and bfrE genes, the role of these genes in iron uptake has not been demonstrated. In this study, the bfrD and bfrE genes of B. pertussis were shown to be functional in B. bronchiseptica, but neither B. bronchiseptica bfrD nor bfrE imparted catecholamine utilization to B. pertussis. Gene fusion analyses found that expression of B. bronchiseptica bfrA was increased during iron starvation, as is common for iron receptor genes, but that expression of the bfrD and bfrE genes of both species was decreased during iron limitation. As shown previously for B. pertussis, bfrD expression in B. bronchiseptica was also dependent on the BvgAS virulence regulatory system; however, in contrast to the case in B. pertussis, the known modulators nicotinic acid and sulfate, which silence Bvg-activated genes, did not silence expression of bfrD in B. bronchiseptica. Further studies using a B. bronchiseptica bvgAS mutant expressing the B. pertussis bvgAS genes revealed that the interspecies differences in bfrD modulation are partly due to BvgAS differences. Mouse respiratory infection experiments determined that catecholamine utilization contributes to the in vivo fitness of B. bronchiseptica and B. pertussis. Additional evidence of the in vivo importance of the B. pertussis receptors was obtained from serologic studies demonstrating pertussis patient serum reactivity with the B. pertussis BfrD and BfrE proteins. PMID:26371128

  1. Interspecies Variations in Bordetella Catecholamine Receptor Gene Regulation and Function

    PubMed Central

    Brickman, Timothy J.; Suhadolc, Ryan J.

    2015-01-01

    Bordetella bronchiseptica can use catecholamines to obtain iron from transferrin and lactoferrin via uptake pathways involving the BfrA, BfrD, and BfrE outer membrane receptor proteins, and although Bordetella pertussis has the bfrD and bfrE genes, the role of these genes in iron uptake has not been demonstrated. In this study, the bfrD and bfrE genes of B. pertussis were shown to be functional in B. bronchiseptica, but neither B. bronchiseptica bfrD nor bfrE imparted catecholamine utilization to B. pertussis. Gene fusion analyses found that expression of B. bronchiseptica bfrA was increased during iron starvation, as is common for iron receptor genes, but that expression of the bfrD and bfrE genes of both species was decreased during iron limitation. As shown previously for B. pertussis, bfrD expression in B. bronchiseptica was also dependent on the BvgAS virulence regulatory system; however, in contrast to the case in B. pertussis, the known modulators nicotinic acid and sulfate, which silence Bvg-activated genes, did not silence expression of bfrD in B. bronchiseptica. Further studies using a B. bronchiseptica bvgAS mutant expressing the B. pertussis bvgAS genes revealed that the interspecies differences in bfrD modulation are partly due to BvgAS differences. Mouse respiratory infection experiments determined that catecholamine utilization contributes to the in vivo fitness of B. bronchiseptica and B. pertussis. Additional evidence of the in vivo importance of the B. pertussis receptors was obtained from serologic studies demonstrating pertussis patient serum reactivity with the B. pertussis BfrD and BfrE proteins. PMID:26371128

  2. Interspecies variations in Bordetella catecholamine receptor gene regulation and function.

    PubMed

    Brickman, Timothy J; Suhadolc, Ryan J; Armstrong, Sandra K

    2015-12-01

    Bordetella bronchiseptica can use catecholamines to obtain iron from transferrin and lactoferrin via uptake pathways involving the BfrA, BfrD, and BfrE outer membrane receptor proteins, and although Bordetella pertussis has the bfrD and bfrE genes, the role of these genes in iron uptake has not been demonstrated. In this study, the bfrD and bfrE genes of B. pertussis were shown to be functional in B. bronchiseptica, but neither B. bronchiseptica bfrD nor bfrE imparted catecholamine utilization to B. pertussis. Gene fusion analyses found that expression of B. bronchiseptica bfrA was increased during iron starvation, as is common for iron receptor genes, but that expression of the bfrD and bfrE genes of both species was decreased during iron limitation. As shown previously for B. pertussis, bfrD expression in B. bronchiseptica was also dependent on the BvgAS virulence regulatory system; however, in contrast to the case in B. pertussis, the known modulators nicotinic acid and sulfate, which silence Bvg-activated genes, did not silence expression of bfrD in B. bronchiseptica. Further studies using a B. bronchiseptica bvgAS mutant expressing the B. pertussis bvgAS genes revealed that the interspecies differences in bfrD modulation are partly due to BvgAS differences. Mouse respiratory infection experiments determined that catecholamine utilization contributes to the in vivo fitness of B. bronchiseptica and B. pertussis. Additional evidence of the in vivo importance of the B. pertussis receptors was obtained from serologic studies demonstrating pertussis patient serum reactivity with the B. pertussis BfrD and BfrE proteins.

  3. Folate receptor gene variants and neural tube defect occurrence

    SciTech Connect

    Finnell, R.; Greer, K.; Lammer, E.

    1994-09-01

    Recent epidemiological evidence shows that periconceptional use of folic acid supplements may prevent 40-50% of neural tube defects (NTDs). The FDA has subsequently recommended folic acid supplementation of all women of childbearing potential, even though the mechanism by which folic acid prevents NTDs is unknown. We investigated genetic variation of a candidate gene, the 5-methyltetrahydrofolate (5-MeTHF) receptor, that may mediate this preventive effect. The receptor concentrates folate within cells and we have localized its mRNA to neuroepithelial cells during neurulation. Our hypothesis is that dysfunctional 5-MeTHF receptors inadequately concentrate folate intracellularly, predisposing infants to NTDs. We have completed SSCP analysis on 3 of the 4 coding exons of the 5-MeTHF receptor gene of 474 infants participating in a large population-based epidemiological case-control study of NTDs in California; genotyping of another 500 infants is ongoing. Genomic DNA was extracted from residual blood spots from newborn screening samples of cases and controls. Genotyping was done blinded to case status. Polymorphisms have been detected for exons 4 and 5; fourteen percent of the infants have exon 5 polymorphisms. Data will be presented on the prevalence of 5-MeTHF receptor polymorphisms among cases and controls. Relationships among the polymorphisms and NTD occurrence may shed light on how folic acid supplementation prevents NTDs.

  4. Massive losses of taste receptor genes in toothed and baleen whales.

    PubMed

    Feng, Ping; Zheng, Jinsong; Rossiter, Stephen J; Wang, Ding; Zhao, Huabin

    2014-05-06

    Taste receptor genes are functionally important in animals, with a surprising exception in the bottlenose dolphin, which shows extensive losses of sweet, umami, and bitter taste receptor genes. To examine the generality of taste gene loss, we examined seven toothed whales and five baleen whales and sequenced the complete repertoire of three sweet/umami (T1Rs) and ten bitter (T2Rs) taste receptor genes. We found all amplified T1Rs and T2Rs to be pseudogenes in all 12 whales, with a shared premature stop codon in 10 of the 13 genes, which demonstrated massive losses of taste receptor genes in the common ancestor of whales. Furthermore, we analyzed three genome sequences from two toothed whales and one baleen whale and found that the sour taste marker gene Pkd2l1 is a pseudogene, whereas the candidate salty taste receptor genes are intact and putatively functional. Additionally, we examined three genes that are responsible for taste signal transduction and found the relaxation of functional constraints on taste signaling pathways along the ancestral branch leading to whales. Together, our results strongly suggest extensive losses of sweet, umami, bitter, and sour tastes in whales, and the relaxation of taste function most likely arose in the common ancestor of whales between 36 and 53 Ma. Therefore, whales represent the first animal group to lack four of five primary tastes, probably driven by the marine environment with high concentration of sodium, the feeding behavior of swallowing prey whole, and the dietary switch from plants to meat in the whale ancestor.

  5. Gene Expression Control by Glucocorticoid Receptors during Innate Immune Responses

    PubMed Central

    Xavier, Andre Machado; Anunciato, Aparecida Kataryna Olimpio; Rosenstock, Tatiana Rosado; Glezer, Isaias

    2016-01-01

    Glucocorticoids (GCs) are potent anti-inflammatory compounds that have been extensively used in clinical practice for several decades. GC’s effects on inflammation are generally mediated through GC receptors (GRs). Signal transduction through these nuclear receptors leads to dramatic changes in gene expression programs in different cell types, typically due to GR binding to DNA or to transcription modulators. During the last decade, the view of GCs as exclusive anti-inflammatory molecules has been challenged. GR negative interference in pro-inflammatory gene expression was a landmark in terms of molecular mechanisms that suppress immune activity. In fact, GR can induce varied inhibitory molecules, including a negative regulator of Toll-like receptors pathway, or subject key transcription factors, such as NF-κB and AP-1, to a repressor mechanism. In contrast, the expression of some acute-phase proteins and other players of innate immunity generally requires GR signaling. Consequently, GRs must operate context-dependent inhibitory, permissive, or stimulatory effects on host defense signaling triggered by pathogens or tissue damage. This review aims to disclose how contradictory or comparable effects on inflammatory gene expression can depend on pharmacological approach (including selective GC receptor modulators; SEGRMs), cell culture, animal treatment, or transgenic strategies used as models. Although the current view of GR-signaling integrated many advances in the field, some answers to important questions remain elusive. PMID:27148162

  6. CRDB: database of chemosensory receptor gene families in vertebrate.

    PubMed

    Dong, Dong; Jin, Ke; Wu, Xiaoli; Zhong, Yang

    2012-01-01

    Chemosensory receptors (CR) are crucial for animals to sense the environmental changes and survive on earth. The emergence of whole-genome sequences provides us an opportunity to identify the entire CR gene repertoires. To completely gain more insight into the evolution of CR genes in vertebrates, we identified the nearly all CR genes in 25 vertebrates using homology-based approaches. Among these CR gene repertoires, nearly half of them were identified for the first time in those previously uncharacterized species, such as the guinea pig, giant panda and elephant, etc. Consistent with previous findings, we found that the numbers of CR genes vary extensively among different species, suggesting an extreme form of 'birth-and-death' evolution. For the purpose of facilitating CR gene analysis, we constructed a database with the goals to provide a resource for CR genes annotation and a web tool for exploring their evolutionary patterns. Besides a search engine for the gene extraction from a specific chromosome region, an easy-to-use phylogenetic analysis tool was also provided to facilitate online phylogeny study of CR genes. Our work can provide a rigorous platform for further study on the evolution of CR genes in vertebrates.

  7. Natural killer cell receptor genes in the family Equidae: not only Ly49.

    PubMed

    Futas, Jan; Horin, Petr

    2013-01-01

    Natural killer (NK) cells have important functions in immunity. NK recognition in mammals can be mediated through killer cell immunoglobulin-like receptors (KIR) and/or killer cell lectin-like Ly49 receptors. Genes encoding highly variable NK cell receptors (NKR) represent rapidly evolving genomic regions. No single conservative model of NKR genes was observed in mammals. Single-copy low polymorphic NKR genes present in one mammalian species may expand into highly polymorphic multigene families in other species. In contrast to other non-rodent mammals, multiple Ly49-like genes appear to exist in the horse, while no functional KIR genes were observed in this species. In this study, Ly49 and KIR were sought and their evolution was characterized in the entire family Equidae. Genomic sequences retrieved showed the presence of at least five highly conserved polymorphic Ly49 genes in horses, asses and zebras. These findings confirmed that the expansion of Ly49 occurred in the entire family. Several KIR-like sequences were also identified in the genome of Equids. Besides a previously identified non-functional KIR-Immunoglobulin-like transcript fusion gene (KIR-ILTA) and two putative pseudogenes, a KIR3DL-like sequence was analyzed. In contrast to previous observations made in the horse, the KIR3DL sequence, genomic organization and mRNA expression suggest that all Equids might produce a functional KIR receptor protein molecule with a single non-mutated immune tyrosine-based inhibition motif (ITIM) domain. No evidence for positive selection in the KIR3DL gene was found. Phylogenetic analysis including rhinoceros and tapir genomic DNA and deduced amino acid KIR-related sequences showed differences between families and even between species within the order Perissodactyla. The results suggest that the order Perissodactyla and its family Equidae with expanded Ly49 genes and with a potentially functional KIR gene may represent an interesting model for evolutionary biology of

  8. Natural Killer Cell Receptor Genes in the Family Equidae: Not only Ly49

    PubMed Central

    Futas, Jan; Horin, Petr

    2013-01-01

    Natural killer (NK) cells have important functions in immunity. NK recognition in mammals can be mediated through killer cell immunoglobulin-like receptors (KIR) and/or killer cell lectin-like Ly49 receptors. Genes encoding highly variable NK cell receptors (NKR) represent rapidly evolving genomic regions. No single conservative model of NKR genes was observed in mammals. Single-copy low polymorphic NKR genes present in one mammalian species may expand into highly polymorphic multigene families in other species. In contrast to other non-rodent mammals, multiple Ly49-like genes appear to exist in the horse, while no functional KIR genes were observed in this species. In this study, Ly49 and KIR were sought and their evolution was characterized in the entire family Equidae. Genomic sequences retrieved showed the presence of at least five highly conserved polymorphic Ly49 genes in horses, asses and zebras. These findings confirmed that the expansion of Ly49 occurred in the entire family. Several KIR-like sequences were also identified in the genome of Equids. Besides a previously identified non-functional KIR-Immunoglobulin-like transcript fusion gene (KIR-ILTA) and two putative pseudogenes, a KIR3DL-like sequence was analyzed. In contrast to previous observations made in the horse, the KIR3DL sequence, genomic organization and mRNA expression suggest that all Equids might produce a functional KIR receptor protein molecule with a single non-mutated immune tyrosine-based inhibition motif (ITIM) domain. No evidence for positive selection in the KIR3DL gene was found. Phylogenetic analysis including rhinoceros and tapir genomic DNA and deduced amino acid KIR-related sequences showed differences between families and even between species within the order Perissodactyla. The results suggest that the order Perissodactyla and its family Equidae with expanded Ly49 genes and with a potentially functional KIR gene may represent an interesting model for evolutionary biology of

  9. Natural killer cell receptor genes in the family Equidae: not only Ly49.

    PubMed

    Futas, Jan; Horin, Petr

    2013-01-01

    Natural killer (NK) cells have important functions in immunity. NK recognition in mammals can be mediated through killer cell immunoglobulin-like receptors (KIR) and/or killer cell lectin-like Ly49 receptors. Genes encoding highly variable NK cell receptors (NKR) represent rapidly evolving genomic regions. No single conservative model of NKR genes was observed in mammals. Single-copy low polymorphic NKR genes present in one mammalian species may expand into highly polymorphic multigene families in other species. In contrast to other non-rodent mammals, multiple Ly49-like genes appear to exist in the horse, while no functional KIR genes were observed in this species. In this study, Ly49 and KIR were sought and their evolution was characterized in the entire family Equidae. Genomic sequences retrieved showed the presence of at least five highly conserved polymorphic Ly49 genes in horses, asses and zebras. These findings confirmed that the expansion of Ly49 occurred in the entire family. Several KIR-like sequences were also identified in the genome of Equids. Besides a previously identified non-functional KIR-Immunoglobulin-like transcript fusion gene (KIR-ILTA) and two putative pseudogenes, a KIR3DL-like sequence was analyzed. In contrast to previous observations made in the horse, the KIR3DL sequence, genomic organization and mRNA expression suggest that all Equids might produce a functional KIR receptor protein molecule with a single non-mutated immune tyrosine-based inhibition motif (ITIM) domain. No evidence for positive selection in the KIR3DL gene was found. Phylogenetic analysis including rhinoceros and tapir genomic DNA and deduced amino acid KIR-related sequences showed differences between families and even between species within the order Perissodactyla. The results suggest that the order Perissodactyla and its family Equidae with expanded Ly49 genes and with a potentially functional KIR gene may represent an interesting model for evolutionary biology of

  10. Estrogen Receptor beta binds Sp1 and recruits a Corepressor Complex to the Estrogen Receptor alpha Gene Promoter

    PubMed Central

    Bartella, V; Rizza, P; Barone, I; Zito, D; Giordano, F; Giordano, C; Catalano, S; Mauro, L; Sisci, D; Panno, ML; Fuqua, SA; Andò, Sebastiano

    2015-01-01

    Human estrogen receptors (ERs) alpha and beta are crucially involved in the regulation of mammary growth and development. Normal breast tissues display a prevalently expression of ER beta than ER alpha, which drastically increases during breast tumorogenesis. So, it is reasonable to assume how a dysregulation of the two estrogen receptor subtypes may induce breast cancer development. However, the molecular mechanism underlying the opposite role played by the two estrogen receptors on tumor cell growth remains to be elucidated. In the present study, we have demonstrated that ER beta overexpression in breast cancer cells decreases cell proliferation and down-regulates ER alpha mRNA and protein content along with a concomitant repression of estrogen-regulated genes. Transient transfection experiments, using a vector containing the human ER alpha promoter region, showed that elevated levels of the ER beta down-regulated basal ER alpha promoter activity. Furthermore, side-directed mutagenesis and deletion analysis have revealed that the proximal GC-rich motifs at −223 and −214 is crucial for the ER beta-induced ER alpha down-regulation in breast cancer cells. This occurred through ER beta-Sp1 protein-protein interaction within the ER alpha promoter region and the recruitment of a corepressor complex containing NCoR/SMRT (nuclear receptor corepressor/silencing mediator of retinoic acid and thyroid hormone receptor), accompanied by hypoacetylation of histone H4 and displacement of RNA polymerase II. Silencing of NCoR gene expression by RNA interference reversed the down-regulatory effect of ER beta on ER alpha gene expression and cell proliferation. Our results provide evidence for a novel mechanism by which overexpression of ER beta through NCoR is able to down regulate ER alpha gene expression, thus inhibiting ER alpha’s driving role on breast cancer cell growth. PMID:22622808

  11. Potential of GRID2 receptor gene for preventing TNF-induced neurodegeneration in autism.

    PubMed

    Kalkan, Zeynep; Durasi, İlknur Melis; Sezerman, Ugur; Atasever-Arslan, Belkis

    2016-05-01

    Autism is one of the most common subtypes of autism spectrum disorder (ASD). Recent studies suggested a relationship between immune-dependent coding genes and ASD, indicating that long term neuroimmunological anomalies affect brain development and synaptic transmission among neural networks. Furthermore, various studies focused on biomarker potential of TNF-α in autism. Ionotropic receptors are also studied as potential marker for autism since altered gene expression levels are observed in autistic patients. GRID2 is a candidate ionotropic receptor which is involved glutamate transfer. In this study, to propose TNF-α dependent cellular processes involved in autism aetiology in relation to GRID2 we performed a bioinformatic network analysis and identified potential pathways and genes that are involved in TNF-α induced changes at GRID2 receptor levels. As a result, we ascertained the GRID2 receptor gene as a candidate gene and further studied the association between GRID2 expression levels and TNF-induced neurodegeneration. Our bioinformatic analyses and experimental results revealed that TNF-α regulates GRID2 gene expression by activating Cdc42 and GOPC genes. Moreover, increased TNF-α levels leads to increase of caspase-3 protein levels triggering neuronal apoptosis leading to neuronal deficiency, which is one of the major symptoms of autism. The study is the first to show the role of TNF-α in regulation of GRID2 gene expression and its signalling pathway. As a result, GRID2 gene can be a suppressor in TNF-induced neurodegeneration which may help to understand the main factors leading to autism.

  12. Oxytocin, vasopressin and estrogen receptor gene expression in relation to social recognition in female mice

    PubMed Central

    Clipperton-Allen, Amy E.; Lee, Anna W.; Reyes, Anny; Devidze, Nino; Phan, Anna; Pfaff, Donald W.; Choleris, Elena

    2012-01-01

    Inter- and intra-species differences in social behavior and recognition-related hormones and receptors suggest that different distribution and/or expression patterns may relate to social recognition. We used qRT-PCR to investigate naturally occurring differences in expression of estrogen receptor-alpha (ERα), ER-beta (ERβ), progesterone receptor (PR), oxytocin (OT) and receptor, and vasopressin (AVP) and receptors in proestrous female mice. Following four 5 min exposures to the same two conspecifics, one was replaced with a novel mouse in the final trial (T5). Gene expression was examined in mice showing high (85–100%) and low (40–60%) social recognition scores (i.e., preferential novel mouse investigation in T5) in eight socially-relevant brain regions. Results supported OT and AVP involvement in social recognition, and suggest that in the medial preoptic area, increased OT and AVP mRNA, together with ERα and ERβ gene activation, relate to improved social recognition. Initial social investigation correlated with ERs, PR and OTR in the dorsolateral septum, suggesting that these receptors may modulate social interest without affecting social recognition. Finally, increased lateral amygdala gene activation in the LR mice may be associated with general learning impairments, while decreased lateral amygdala activity may indicate more efficient cognitive mechanisms in the HR mice. PMID:22079582

  13. Direct reduction of antigen receptor expression in polyclonal B cell populations developing in vivo results in light chain receptor editing.

    PubMed

    Shen, Shixue; Manser, Tim

    2012-01-01

    Secondary Ab V region gene segment rearrangement, termed receptor editing, is a major mechanism contributing to B lymphocyte self-tolerance. However, the parameters that determine whether a B cell undergoes editing are a current subject of debate. We tested the role that the level of BCR expression plays in the regulation of receptor editing in a polyclonal population of B cells differentiating in vivo. Expression of a short hairpin RNA for κ L chain RNA in B cells resulted in reduction in levels of this RNA and surface BCRs. Strikingly, fully mature and functional B cells that developed in vivo and efficiently expressed the short hairpin RNA predominantly expressed BCRs containing λ light chains. This shift in L chain repertoire was accompanied by inhibition of development, increased Rag gene expression, and increased λ V gene segment-cleavage events at the immature B cell stage. These data demonstrated that reducing the translation of BCRs that are members of the natural repertoire at the immature B cell stage is sufficient to promote editing.

  14. The Role of Metabotropic Glutamate Receptor Genes in Schizophrenia.

    PubMed

    Maj, Carlo; Minelli, Alessandra; Giacopuzzi, Edoardo; Sacchetti, Emilio; Gennarelli, Massimo

    2016-01-01

    Genomic studies revealed two main components in the genetic architecture of schizophrenia, one constituted by common variants determining a distributed polygenic effect and one represented by a large number of heterogeneous rare and highly disruptive mutations. These gene modifications often affect neural transmission and different studies proved an involvement of metabotropic glutamate receptors in schizophrenia phenotype. Through the combination of literature information with genomic data from public repositories, we analyzed the current knowledge on the involvement of genetic variations of the human metabotropic glutamate receptors in schizophrenia and related endophenotypes. Despite the analysis did not reveal a definitive connection, different suggestive associations have been identified and in particular a relevant role has emerged for GRM3 in affecting specific schizophrenia endophenotypes. This supports the hypothesis that these receptors are directly involved in schizophrenia disorder. PMID:27296644

  15. The Role of Metabotropic Glutamate Receptor Genes in Schizophrenia.

    PubMed

    Maj, Carlo; Minelli, Alessandra; Giacopuzzi, Edoardo; Sacchetti, Emilio; Gennarelli, Massimo

    2016-01-01

    Genomic studies revealed two main components in the genetic architecture of schizophrenia, one constituted by common variants determining a distributed polygenic effect and one represented by a large number of heterogeneous rare and highly disruptive mutations. These gene modifications often affect neural transmission and different studies proved an involvement of metabotropic glutamate receptors in schizophrenia phenotype. Through the combination of literature information with genomic data from public repositories, we analyzed the current knowledge on the involvement of genetic variations of the human metabotropic glutamate receptors in schizophrenia and related endophenotypes. Despite the analysis did not reveal a definitive connection, different suggestive associations have been identified and in particular a relevant role has emerged for GRM3 in affecting specific schizophrenia endophenotypes. This supports the hypothesis that these receptors are directly involved in schizophrenia disorder.

  16. Gene Expression Switching of Receptor Subunits in Human Brain Development

    PubMed Central

    Bar-Shira, Ossnat; Maor, Ronnie; Chechik, Gal

    2015-01-01

    Synaptic receptors in the human brain consist of multiple protein subunits, many of which have multiple variants, coded by different genes, and are differentially expressed across brain regions and developmental stages. The brain can tune the electrophysiological properties of synapses to regulate plasticity and information processing by switching from one protein variant to another. Such condition-dependent variant switch during development has been demonstrated in several neurotransmitter systems including NMDA and GABA. Here we systematically detect pairs of receptor-subunit variants that switch during the lifetime of the human brain by analyzing postmortem expression data collected in a population of donors at various ages and brain regions measured using microarray and RNA-seq. To further detect variant pairs that co-vary across subjects, we present a method to quantify age-corrected expression correlation in face of strong temporal trends. This is achieved by computing the correlations in the residual expression beyond a cubic-spline model of the population temporal trend, and can be seen as a nonlinear version of partial correlations. Using these methods, we detect multiple new pairs of context dependent variants. For instance, we find a switch from GLRA2 to GLRA3 that differs from the known switch in the rat. We also detect an early switch from HTR1A to HTR5A whose trends are negatively correlated and find that their age-corrected expression is strongly positively correlated. Finally, we observe that GRIN2B switch to GRIN2A occurs mostly during embryonic development, presumably earlier than observed in rodents. These results provide a systematic map of developmental switching in the neurotransmitter systems of the human brain. PMID:26636753

  17. Gene Expression Switching of Receptor Subunits in Human Brain Development.

    PubMed

    Bar-Shira, Ossnat; Maor, Ronnie; Chechik, Gal

    2015-12-01

    Synaptic receptors in the human brain consist of multiple protein subunits, many of which have multiple variants, coded by different genes, and are differentially expressed across brain regions and developmental stages. The brain can tune the electrophysiological properties of synapses to regulate plasticity and information processing by switching from one protein variant to another. Such condition-dependent variant switch during development has been demonstrated in several neurotransmitter systems including NMDA and GABA. Here we systematically detect pairs of receptor-subunit variants that switch during the lifetime of the human brain by analyzing postmortem expression data collected in a population of donors at various ages and brain regions measured using microarray and RNA-seq. To further detect variant pairs that co-vary across subjects, we present a method to quantify age-corrected expression correlation in face of strong temporal trends. This is achieved by computing the correlations in the residual expression beyond a cubic-spline model of the population temporal trend, and can be seen as a nonlinear version of partial correlations. Using these methods, we detect multiple new pairs of context dependent variants. For instance, we find a switch from GLRA2 to GLRA3 that differs from the known switch in the rat. We also detect an early switch from HTR1A to HTR5A whose trends are negatively correlated and find that their age-corrected expression is strongly positively correlated. Finally, we observe that GRIN2B switch to GRIN2A occurs mostly during embryonic development, presumably earlier than observed in rodents. These results provide a systematic map of developmental switching in the neurotransmitter systems of the human brain.

  18. Gene set of chemosensory receptors in the polyembryonic endoparasitoid Macrocentrus cingulum

    PubMed Central

    Ahmed, Tofael; Zhang, Tiantao; Wang, Zhenying; He, Kanglai; Bai, Shuxiong

    2016-01-01

    Insects are extremely successful animals whose odor perception is very prominent due to their sophisticated olfactory system. The main chemosensory organ, antennae play a critical role in detecting odor in ambient environment before initiating appropriate behavioral responses. The antennal chemosensory receptor genes families have been suggested to be involved in olfactory signal transduction pathway as a sensory neuron response. The Macrocentrus cingulum is deployed successfully as a biological control agent for corn pest insects from the Lepidopteran genus Ostrinia. In this research, we assembled antennal transcriptomes of M. cingulum by using next generation sequencing to identify the major chemosensory receptors gene families. In total, 112 olfactory receptors candidates (79 odorant receptors, 20 gustatory receptors, and 13 ionotropic receptors) have been identified from the male and female antennal transcriptome. The sequences of all of these transcripts were confirmed by RT-PCR, and direct DNA sequencing. Expression profiles of gustatory receptors in olfactory and non-olfactory tissues were measured by RT-qPCR. The sex-specific and sex-biased chemoreceptors expression patterns suggested that they may have important functions in sense detection which behaviorally relevant to odor molecules. This reported result provides a comprehensive resource of the foundation in semiochemicals driven behaviors at molecular level in polyembryonic endoparasitoid. PMID:27090020

  19. Gene set of chemosensory receptors in the polyembryonic endoparasitoid Macrocentrus cingulum.

    PubMed

    Ahmed, Tofael; Zhang, Tiantao; Wang, Zhenying; He, Kanglai; Bai, Shuxiong

    2016-01-01

    Insects are extremely successful animals whose odor perception is very prominent due to their sophisticated olfactory system. The main chemosensory organ, antennae play a critical role in detecting odor in ambient environment before initiating appropriate behavioral responses. The antennal chemosensory receptor genes families have been suggested to be involved in olfactory signal transduction pathway as a sensory neuron response. The Macrocentrus cingulum is deployed successfully as a biological control agent for corn pest insects from the Lepidopteran genus Ostrinia. In this research, we assembled antennal transcriptomes of M. cingulum by using next generation sequencing to identify the major chemosensory receptors gene families. In total, 112 olfactory receptors candidates (79 odorant receptors, 20 gustatory receptors, and 13 ionotropic receptors) have been identified from the male and female antennal transcriptome. The sequences of all of these transcripts were confirmed by RT-PCR, and direct DNA sequencing. Expression profiles of gustatory receptors in olfactory and non-olfactory tissues were measured by RT-qPCR. The sex-specific and sex-biased chemoreceptors expression patterns suggested that they may have important functions in sense detection which behaviorally relevant to odor molecules. This reported result provides a comprehensive resource of the foundation in semiochemicals driven behaviors at molecular level in polyembryonic endoparasitoid. PMID:27090020

  20. [Histamine H₁ receptor gene as an allergic diseases-sensitive gene and its impact on therapeutics for allergic diseases].

    PubMed

    Mizuguchi, Hiroyuki; Kitamura, Yoshiaki; Kondo, Yuto; Kuroda, Wakana; Yoshida, Haruka; Miyamoto, Yuko; Hattori, Masashi; Takeda, Noriaki; Fukui, Hiroyuki

    2011-02-01

    Therapeutics targeting disease-sensitive genes are required for the therapy of multifactorial diseases. There is no clinical report on therapeutics for allergic disease-sensitive genes. We are focusing on the histamine H₁ receptor (H1R) as a sensitive gene. H1R mediates allergy histamine signals. H1R is a rate-limiting molecule of the H1R signal because the signal is increased with elevated receptor expression level. We discovered that the stimulation of H1R induced H1R gene expression through PKCδ activation, resulting in receptor upregulation. The mechanism of H1R gene expression was revealed to play a key role in the receptor expression level in studies using cultured HeLa cells and allergic rhinitis model rats. Preseasonal prophylactic treatment with antihistamines is recommended for the therapy of pollinosis. However, the mechanism of the therapy remains to be elucidated. We demonstrated that repeated pretreatment treatment with antihistamines in the allergic rhinitis model rats resulted not only in improvement of symptoms but also in suppressed elevation of H1R mRNA levels in the nasal mucosa. A clinical trial was then initiated. When symptoms and H1R mRNA levels in the nasal mucosa of pollinosis patients with or without preseasonal prophylactic treatment with antihistamines were examined, both symptoms and high levels of H1R mRNA were significantly improved in treated compared with untreated patients. These results strongly suggest that H1R is an allergic disease-sensitive gene.

  1. Mechanisms of oestrogen receptor (ER) gene regulation in breast cancer

    PubMed Central

    2016-01-01

    Most breast cancers are driven by a transcription factor called oestrogen receptor (ER). Understanding the mechanisms of ER activity in breast cancer has been a major research interest and recent genomic advances have revealed extraordinary insights into how ER mediates gene transcription and what occurs during endocrine resistance. This review discusses our current understanding on ER activity, with an emphasis on several evolving, but important areas of ER biology. PMID:26884552

  2. The C. elegans nuclear receptor gene fax-1 and homeobox gene unc-42 coordinate interneuron identity by regulating the expression of glutamate receptor subunits and other neuron-specific genes.

    PubMed

    Wightman, Bruce; Ebert, Bryan; Carmean, Nicole; Weber, Katherine; Clever, Sheila

    2005-11-01

    The fax-1 gene of the nematode C. elegans encodes a conserved nuclear receptor that is the ortholog of the human PNR gene and functions in the specification of neuron identities. Mutations in fax-1 result in locomotion defects. FAX-1 protein accumulates in the nuclei of 18 neurons, among them the AVA, AVB, and AVE interneuron pairs that coordinate body movements. The identities of AVA and AVE interneurons are defective in fax-1 mutants; neither neuron expresses the NMDA receptor subunits nmr-1 and nmr-2. Other ionotropic glutamate receptor subunits are expressed normally in the AVA and AVE neurons. The unc-42 homeobox gene also regulates AVA and AVE identity; however, unc-42 mutants display the complementary phenotype: NMDA receptor subunit expression is normal, but some non-NMDA glutamate receptor subunits are not expressed. These observations support a combinatorial role for fax-1 and unc-42 in specifying AVA and AVE identity. However, in four other neuron types, fax-1 is regulated by unc-42, and both transcriptional regulators function in the regulation of the opt-3 gene in the AVE neurons and the flp-1 and ncs-1 genes in the AVK neurons. Therefore, while fax-1 and unc-42 act in complementary parallel pathways in some cells, they function in overlapping or linear pathways in other cellular contexts, suggesting that combinatorial relationships among transcriptional regulators are complex and cannot be generalized from one neuron type to another.

  3. The Expression Pattern of Melatonin Receptor 1a Gene during Early Life Stages in the Nile tilapia (Oreochromis niloticus)

    PubMed Central

    Jin, Ye Hwa; Park, Jin Woo; Kim, Jung-Hyun; Kwon, Joon Yeong

    2013-01-01

    The action of melatonin within the body of animals is known to be mediated by melatonin receptors. Three different types of melatonin receptors have been identified so far in fish. However, which of these are specifically involved in puberty onset is not known in fish. We cloned and analyzed the sequence of melatonin receptor 1a (mel 1a) gene in Nile tilapia Oreochromis niloticus. In addition, we examined the tissue distribution of gene expressions for three types of receptors, mel 1a, 1b and lc and investigated which of them is involved in the onset of puberty by comparing their expression with that of gonadotropin-releasing hormone receptor I (GnRHr I) gene using quantitative real-time PCR from 1 week post hatch (wph) to 24 wph. The mel 1a gene of Nile tilapia consisted of two exons and one bulky intron between them. Mel 1a gene was found to be highly conserved gene showing high homology with the corresponding genes from different teleost. All three types of melatonin receptor genes were expressed in the brain, eyes and ovary in common. Expression of mel 1a gene was the most abundant and ubiquitous among 3 receptors in the brain, liver, gill, ovary, muscle, eye, heart, intestine, spleen and kidney. Mel 1b and mel 1c genes were, however, expressed in fewer tissues at low level. During the development post hatch, expressions of both mel 1a and GnRHr I genes significantly increased at 13 wph which was close to the putative timing of puberty onset in this species. These results suggest that among three types of receptors mel 1a is most likely associated with the action of melatonin in the onset of puberty in Nile tilapia. PMID:25949120

  4. Linkage analysis of schizophrenia with five dopamine receptor genes in nine pedigrees

    SciTech Connect

    Coon, H.; Byerley, W.; Holik, J.; Hoff, M.; Myles-Worsley, M.; Plaetke, R. ); Lannfelt, L. ); Sokoloff, P.; Schwartz, J.C. ); Waldo, M.; Freedman, R. )

    1993-02-01

    Alterations in dopamine neurotransmission have been strongly implicated in the pathogenesis of schizophrenia for nearly 2 decades. Recently, the genes for five dopamine receptors have been cloned and characterized, and genetic and physical map information has become available. Using these five loci as candidate genes, the authors have tested for genetic linkage to schizophrenia in nine multigenerational families which include multiple affected individuals. In addition to testing conservative disease models, the have used a neurophysiological indicator variable, the P50 auditory evoked response. Deficits in gating of the P50 response have been shown to segregate with schizophrenia in this sample and may identify carriers of gene(s) predisposing for schizophrenia. Linkage results were consistently negative, indicating that a defect at any of the actual receptor sites is unlikely to be a major contributor to schizophrenia in the nine families studied. 47 refs., 1 fig., 4 tabs.

  5. Association study of dopamine D3 receptor gene and schizophrenia

    SciTech Connect

    Kennedy, J.L.; Billett, E.A.; Macciardi, F.M.

    1995-12-18

    Several groups have reported an association between schizophrenia and the MscI polymorphism in the first exon of the dopamine D3 receptor gene (DRD3). We studied this polymorphism using a North American sample (117 patients plus 188 controls) and an Italian sample (97 patients plus 64 controls). In the first part of the study, we compared allele frequencies of schizophrenia patients and unmatched controls and observed a significant difference in the total sample (P = 0.01). The second part of the study involved a case control approach in which each schizophrenia patient was matched to a control of the same sex, and of similar age and ethnic background. The DRD3 allele frequencies of patients and controls revealed no significant difference between the two groups in the Italian (N = 53) or the North American (N = 54) matched populations; however, when these two matched samples were combined, a significant difference was observed (P = 0.026). Our results suggest that the MscI polymorphism may be associated with schizophrenia in the populations studied. 32 refs., 2 tabs.

  6. Penguins reduced olfactory receptor genes common to other waterbirds

    PubMed Central

    Lu, Qin; Wang, Kai; Lei, Fumin; Yu, Dan; Zhao, Huabin

    2016-01-01

    The sense of smell, or olfaction, is fundamental in the life of animals. However, penguins (Aves: Sphenisciformes) possess relatively small olfactory bulbs compared with most other waterbirds such as Procellariiformes and Gaviiformes. To test whether penguins have a reduced reliance on olfaction, we analyzed the draft genome sequences of the two penguins, which diverged at the origin of the order Sphenisciformes; we also examined six closely related species with available genomes, and identified 29 one-to-one orthologous olfactory receptor genes (i.e. ORs) that are putatively functionally conserved and important across the eight birds. To survey the 29 one-to-one orthologous ORs in penguins and their relatives, we newly generated 34 sequences that are missing from the draft genomes. Through the analysis of totaling 378 OR sequences, we found that, of these functionally important ORs common to other waterbirds, penguins have a significantly greater percentage of OR pseudogenes than other waterbirds, suggesting a reduction of olfactory capability. The penguin-specific reduction of olfactory capability arose in the common ancestor of penguins between 23 and 60 Ma, which may have resulted from the aquatic specializations for underwater vision. Our study provides genetic evidence for a possible reduction of reliance on olfaction in penguins. PMID:27527385

  7. Penguins reduced olfactory receptor genes common to other waterbirds.

    PubMed

    Lu, Qin; Wang, Kai; Lei, Fumin; Yu, Dan; Zhao, Huabin

    2016-08-16

    The sense of smell, or olfaction, is fundamental in the life of animals. However, penguins (Aves: Sphenisciformes) possess relatively small olfactory bulbs compared with most other waterbirds such as Procellariiformes and Gaviiformes. To test whether penguins have a reduced reliance on olfaction, we analyzed the draft genome sequences of the two penguins, which diverged at the origin of the order Sphenisciformes; we also examined six closely related species with available genomes, and identified 29 one-to-one orthologous olfactory receptor genes (i.e. ORs) that are putatively functionally conserved and important across the eight birds. To survey the 29 one-to-one orthologous ORs in penguins and their relatives, we newly generated 34 sequences that are missing from the draft genomes. Through the analysis of totaling 378 OR sequences, we found that, of these functionally important ORs common to other waterbirds, penguins have a significantly greater percentage of OR pseudogenes than other waterbirds, suggesting a reduction of olfactory capability. The penguin-specific reduction of olfactory capability arose in the common ancestor of penguins between 23 and 60 Ma, which may have resulted from the aquatic specializations for underwater vision. Our study provides genetic evidence for a possible reduction of reliance on olfaction in penguins.

  8. Penguins reduced olfactory receptor genes common to other waterbirds.

    PubMed

    Lu, Qin; Wang, Kai; Lei, Fumin; Yu, Dan; Zhao, Huabin

    2016-01-01

    The sense of smell, or olfaction, is fundamental in the life of animals. However, penguins (Aves: Sphenisciformes) possess relatively small olfactory bulbs compared with most other waterbirds such as Procellariiformes and Gaviiformes. To test whether penguins have a reduced reliance on olfaction, we analyzed the draft genome sequences of the two penguins, which diverged at the origin of the order Sphenisciformes; we also examined six closely related species with available genomes, and identified 29 one-to-one orthologous olfactory receptor genes (i.e. ORs) that are putatively functionally conserved and important across the eight birds. To survey the 29 one-to-one orthologous ORs in penguins and their relatives, we newly generated 34 sequences that are missing from the draft genomes. Through the analysis of totaling 378 OR sequences, we found that, of these functionally important ORs common to other waterbirds, penguins have a significantly greater percentage of OR pseudogenes than other waterbirds, suggesting a reduction of olfactory capability. The penguin-specific reduction of olfactory capability arose in the common ancestor of penguins between 23 and 60 Ma, which may have resulted from the aquatic specializations for underwater vision. Our study provides genetic evidence for a possible reduction of reliance on olfaction in penguins. PMID:27527385

  9. Extraordinary diversity of chemosensory receptor gene repertoires among vertebrates.

    PubMed

    Shi, P; Zhang, J

    2009-01-01

    Chemosensation (smell and taste) is important to the survival and reproduction of vertebrates and is mediated by specific bindings of odorants, pheromones, and tastants by chemoreceptors that are encoded by several large gene families. This review summarizes recent comparative genomic and evolutionary studies of vertebrate chemoreceptor genes. It focuses on the remarkable diversity of chemoreceptor gene repertoires in terms of gene number and gene sequence across vertebrates and the evolutionary mechanisms that are responsible for generating this diversity. We argue that the great among-species variation of chemoreceptor gene repertoires is a result of adaptations of individual species to their environments and diets. PMID:19145414

  10. Molecular mechanisms of gonadotropin-releasing hormone receptor gene regulation.

    PubMed

    Norwitz, E R; Jeong, K H; Chin, W W

    1999-01-01

    GnRH plays a critical role in regulating mammalian reproductive development and function. At the level of the anterior pituitary, GnRH binds to the GnRH receptor (GnRHR) on the cell surface of pituitary gonadotropes. Here, it activates intracellular signal transduction pathways to effect both the synthesis and intermittent release of the gonadotropins LH and FSH. These hormones then enter the systemic circulation to regulate gonadal function, including steroid hormone synthesis and gametogenesis. The response of pituitary gonadotropes to GnRH correlates directly with the concentration of GnRHR on the cell surface, which is mediated, at least in part, at the level of gene expression. A number of endocrine, paracrine, and autocrine factors are known to regulate GnRHR gene expression. This article reviews in detail the role of the GnRHR in the hypothalamic-pituitary-gonadal axis and the factors mediating expression of this gene. A better understanding of the molecular mechanisms that regulate transcription of the GnRHR gene will further our knowledge about the role of this receptor in mammalian reproductive physiology in health and disease.

  11. Deletion of exon 3 of the insulin receptor gene in a kindred with a familial form of insulin resistance

    SciTech Connect

    Wertheimer, E.; Barbetti, F.; Accili, D.; Taylor, S.I.; Litvin, Y.; Ebstein, R.P.; Bennet, E.R.

    1994-05-01

    Molecular scanning techniques, such as denaturing gradient gel electrophoresis (DGGE), greatly facilitate screening candidate genes for mutations. The authors have used DGGE to screen for mutations in the insulin receptor gene in a family in which four of five daughters were affected by type A insulin resistance in association with acanthosis nigricans and hyperandrogenism. DGGE did not detect mutations in any of the 22 exons of the insulin receptor gene. Nevertheless, Southern blot analysis suggested that there was a deletion of exon 3 in the other paternal allele of the insulin receptor gene. Analysis of the father`s cDNA confirmed that exon 3 was deleted from mRNA molecules derived from one of his two alleles of the insulin receptor gene. Furthermore, the father was found to be hemizygous for a polymorphic sequence (GAC{sup Asp} at codon 234) in exon 3 that was not inherited by any of the five daughters. Instead, all five daughters inherited the paternal allele with the deletion mutation. They did not detect mutations in the mother`s insulin receptor gene. Furthermore, the clinical syndrome did not segregate with either of the mother`s two alleles of the insulin receptor gene. Although the youngest daughter inherited the mutant allele from her father, she was not clinically affected. The explanation for the incomplete penetrance is not known. These results emphasize the importance of specifically searching for deletion mutations when screening candidate genes for mutations. Furthermore, the existence of apparently asymptomatic carriers of mutations in the insulin receptor gene, such as the father in the present study, suggests that the prevalence of mutations in the insulin receptor gene may be higher than would be predicted on the basis of the observed prevalence of patients with extreme insulin resistance. 34 refs., 6 figs., 1 tab.

  12. Cognitive deficits and changes in gene expression of NMDA receptors after prenatal methylmercury exposure.

    PubMed Central

    Baraldi, Mario; Zanoli, Paola; Tascedda, Fabio; Blom, Joan M C; Brunello, Nicoletta

    2002-01-01

    Previous studies showed learning and memory deficit in adult rats that were prenatally exposed to methylmercury chloride (MMC) in an advanced stage of pregnancy (15 days). Under these conditions, the cognitive deficits found at 60 days of age paralleled particularly changes in the N-methyl-D-aspartate (NMDA) receptor characteristics. In the present study, we report the behavioral effects of a single oral dose of MMC (8 mg/kg) administered earlier at gestational day 8. The use of different learning and memory tests (passive avoidance, object recognition, water maze) showed a general cognitive impairment in the in utero-exposed rats tested at 60 days of age compared with matched controls. Considering the importance of the glutamatergic receptor system and its endogenous ligands in learning and memory process regulation, we surmised that MMC could affect the gene expression of NMDA receptor subtypes. The use of a sensitive RNase protection assay allowed the evaluation of gene expression of two families of NMDA receptors (NR-1 and NR-2 subtypes). The result obtained in 60-day-old rats prenatally exposed to MMC, showed increased mRNA levels of the NR-2B subunit in the hippocampus but not in the frontal cortex. The data suggest that the behavioral abnormalities of MMC-exposed rats might be ascribed to a neurotoxic effect of the metal that alters the gene expression of a specific NMDA receptor subunit in the hippocampus. PMID:12426146

  13. Comparison of Lentiviral and Sleeping Beauty Mediated αβ T Cell Receptor Gene Transfer

    PubMed Central

    Field, Anne-Christine; Vink, Conrad; Gabriel, Richard; Al-Subki, Roua; Schmidt, Manfred; Goulden, Nicholas; Stauss, Hans; Thrasher, Adrian; Morris, Emma; Qasim, Waseem

    2013-01-01

    Transfer of tumour antigen-specific receptors to T cells requires efficient delivery and integration of transgenes, and currently most clinical studies are using gamma retroviral or lentiviral systems. Whilst important proof-of-principle data has been generated for both chimeric antigen receptors and αβ T cell receptors, the current platforms are costly, time-consuming and relatively inflexible. Alternative, more cost-effective, Sleeping Beauty transposon-based plasmid systems could offer a pathway to accelerated clinical testing of a more diverse repertoire of recombinant high affinity T cell receptors. Nucleofection of hyperactive SB100X transposase-mediated stable transposition of an optimised murine-human chimeric T cell receptor specific for Wilm’s tumour antigen from a Sleeping Beauty transposon plasmid. Whilst transfer efficiency was lower than that mediated by lentiviral transduction, cells could be readily enriched and expanded, and mediated effective target cells lysis in vitro and in vivo. Integration sites of transposed TCR genes in primary T cells were almost randomly distributed, contrasting the predilection of lentiviral vectors for transcriptionally active sites. The results support exploitation of the Sleeping Beauty plasmid based system as a flexible and adaptable platform for accelerated, early-phase assessment of T cell receptor gene therapies. PMID:23840834

  14. Carbon dioxide receptor genes in cotton bollworm Helicoverpa armigera

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Anderson, Alisha

    2015-04-01

    Carbon dioxide (CO2) is important in insect ecology, eliciting a range of behaviours across different species. Interestingly, the numbers of CO2 gustatory receptors (GRs) vary among insect species. In the model organism Drosophila melanogaster, two GRs (DmelGR21a and DmelGR63a) have been shown to detect CO2. In the butterfly, moth, beetle and mosquito species studied so far, three CO2 GR genes have been identified, while in tsetse flies, four CO2 GR genes have been identified. In other species including honeybees, pea aphids, ants, locusts and wasps, no CO2 GR genes have been identified from the genome. These genomic differences may suggest different mechanisms for CO2 detection exist in different insects but, with the exception of Drosophila and mosquitoes, limited attention has been paid to the CO2 GRs in insects. Here, we cloned three putative CO2 GR genes from the cotton bollworm Helicoverpa armigera and performed phylogenetic and expression analysis. All three H. armigera CO2 GRs (HarmGR1, HarmGR2 and HarmGR3) are specifically expressed in labial palps, the CO2-sensing tissue of this moth. HarmGR3 is significantly activated by NaHCO3 when expressed in insect Sf9 cells but HarmGR1 and HarmGR2 are not. This is the first report characterizing the function of lepidopteran CO2 receptors, which contributes to our general understanding of the molecular mechanisms of insect CO2 gustatory receptors.

  15. A polymorphism in the nuclear receptor coactivator 7 gene and breast cancer susceptibility.

    PubMed

    Süllner, Julia; Lattrich, Claus; Häring, Julia; Görse, Regina; Ortmann, Olaf; Treeck, Oliver

    2012-01-01

    The nuclear receptor coactivator 7 (NCoA7) gene codes for an estrogen receptor-associated protein that plays a significant role in the cellular response to estrogens. Given that NCoA7 is expressed in the mammary gland, alterations in this gene may affect breast cancer risk. In this study, we compared the genotype and allele frequencies of the missense single nucleotide polymorphism (SNP) rs1567, located in the coding region of the NCoA7 gene and resulting in an amino acid exchange from asparagine to glutamine, in 305 women with sporadic breast cancer and 346 women without any malignancy. Statistical analysis of the observed frequencies did not reveal a significant difference between the cancer and control groups, nor did a comparison between histological breast cancer subgroups. In conclusion, the results of our phenotype-genotype association study indicate that NCoA7 SNP rs1567 does not affect breast cancer susceptibility. PMID:22740868

  16. A polymorphism in the nuclear receptor coactivator 7 gene and breast cancer susceptibility

    PubMed Central

    SÜLLNER, JULIA; LATTRICH, CLAUS; HÄRING, JULIA; GÖRSE, REGINA; ORTMANN, OLAF; TREECK, OLIVER

    2012-01-01

    The nuclear receptor coactivator 7 (NCoA7) gene codes for an estrogen receptor-associated protein that plays a significant role in the cellular response to estrogens. Given that NCoA7 is expressed in the mammary gland, alterations in this gene may affect breast cancer risk. In this study, we compared the genotype and allele frequencies of the missense single nucleotide polymorphism (SNP) rs1567, located in the coding region of the NCoA7 gene and resulting in an amino acid exchange from asparagine to glutamine, in 305 women with sporadic breast cancer and 346 women without any malignancy. Statistical analysis of the observed frequencies did not reveal a significant difference between the cancer and control groups, nor did a comparison between histological breast cancer subgroups. In conclusion, the results of our phenotype-genotype association study indicate that NCoA7 SNP rs1567 does not affect breast cancer susceptibility. PMID:22740868

  17. Evidence of selection at insulin receptor substrate-1 gene loci.

    PubMed

    Yoshiuchi, Issei

    2013-10-01

    Type 2 diabetes mellitus (T2DM) is a complex disease characterized by insulin resistance and defect of insulin secretion. The worldwide prevalence of T2DM is steadily increasing. T2DM is also significantly associated with obesity, coronary artery disease (CAD), and metabolic syndrome. There is a clear difference in the prevalence of T2DM among populations, and T2DM is highly heritable. Human adaptations to environmental changes in food supply, lifestyle, and geography may have pressured the selection of genes associated with the metabolism of glucose, lipids, carbohydrates, and energy. The insulin receptor substrate-1 (IRS1) gene is considered a major T2DM gene, and common genetic variations near the IRS1 gene were found to be associated with T2DM, insulin resistance, adiposity, and CAD. Here, we aimed to find evidence of selection at the IRS1 gene loci using the HapMap population data. We investigated a 3-step test procedure-Wright's F statistics (Fst), the long-range haplotype (LRH) test, and the integrated haplotype score (iHS) test-to detect selection at the IRS1 gene loci using the HapMap population data. We observed that 1 CAD-associated SNP (rs2943634) and 1 adiposity- and insulin resistance-associated SNP (rs2943650) exhibited high Fst values. We also found selection at the IRS1 gene loci by the LRH test and the iHS test. These findings suggest evidence of selection at the IRS1 gene loci and that further studies should examine the adaptive evolution of T2DM genes. PMID:22797928

  18. Perilipin, a critical regulator of fat storage and breakdown, is a target gene of estrogen receptor-related receptor {alpha}

    SciTech Connect

    Akter, Mst. Hasina; Yamaguchi, Tomohiro; Hirose, Fumiko; Osumi, Takashi

    2008-04-11

    Perilipin is a protein localized on lipid droplet surfaces in adipocytes and steroidogenic cells, playing a central role in regulated lipolysis. Expression of the perilipin gene is markedly induced during adipogenesis. We found that transcription from the perilipin gene promoter is activated by an orphan nuclear receptor, estrogen receptor-related receptor (ERR){alpha}. A response element to this receptor was identified in the promoter region by a gene reporter assay, the electrophoretic-gel mobility-shift assay and the chromatin immunoprecipitation assay. Peroxisome proliferator-activated receptor {gamma} coactivator (PGC)-1{alpha} enhanced, whereas small heterodimer partner (SHP) repressed, the transactivating function of ERR{alpha} on the promoter. Thus, the perilipin gene expression is regulated by a transcriptional network controlling energy metabolism, substantiating the functional importance of perilipin in the maintenance of body energy balance.

  19. Somatic and germline mutations of the TSH receptor gene in thyroid diseases

    SciTech Connect

    Van Sande, J.; Parma, J.; Tonacchera, M.

    1995-09-01

    Under physiological circumstances, thyrotropin (TSH) is the primary hormone that controls thyroid function and growth. TSH acts by binding to its receptor at the basolateral membrane of thyroid follicular cells. The TSH receptor is a member of the large family of G protein-coupled receptors, which share a similar structural pattern: seven transmembrane segments connected by three extra and three intracellular loops. Together with the receptors for other glycoprotein hormones LH/CG and FSH, the TSH receptor has a long aminoterminal domain that has been shown to encode the specificity for hormone recognition and binding. The G protein-coupled receptors share a common mode of intracellular signalling: They control the on/off state of a variety of trimeric G proteins (G{alpha}{beta}{gamma}) by stimulating the exchange of GDP for GTP on the {alpha} subunit (G{alpha}). The result is that G{alpha} or G{beta}{gamma}, after dissociation of the trimer, will interact with downstream effectors of the receptor. In the case of the TSH receptor, the main G protein involved is Gs, which activates adenylyl cyclase via Gs{alpha}. In some species, including man, the TSH receptor is also capable of activating phospholipase C (via Gq), thus stimulating the production of diacylglycerol and inositolphosphate (IP{sub 3}). However, higher concentrations of TSH are required to activate phospholipase C, compared with adenylyl cyclase. As a consequence, the main second messenger of TSH effects on the human thyroid is cyclic AMP. The present review will summarize recent findings identifying mutations of the TSH receptor gene as a cause for thyroid diseases. 59 refs., 4 figs.

  20. Role of peroxisome proliferator-activated receptors gene polymorphisms in type 2 diabetes and metabolic syndrome

    PubMed Central

    Dong, Chen; Zhou, Hui; Shen, Chong; Yu, Lu-Gang; Ding, Yi; Zhang, Yong-Hong; Guo, Zhi-Rong

    2015-01-01

    Metabolic syndrome (MetS) and type 2 diabetes mellitus (T2DM) are the serious public health problems worldwide. Moreover, it is estimated that MetS patients have about five-fold greater risk of the T2DM development compared with people without the syndrome. Peroxisome proliferator-activated receptors are a subgroup of the nuclear hormone receptor superfamily of ligand-activated transcription factors which play an important role in the pathogenesis of MetS and T2DM. All three members of the peroxisome proliferator-activated receptor (PPAR) nuclear receptor subfamily, PPARα, PPARβ/δ and PPARγ are critical in regulating insulin sensitivity, adipogenesis, lipid metabolism, and blood pressure. Recently, more and more studies indicated that the gene polymorphism of PPARs, such as Leu162Val and Val227Ala of PPARα, +294T > C of PPARβ/δ, Pro12Ala and C1431T of PPARγ, are significantly associated with the onset and progressing of MetS and T2DM in different population worldwide. Furthermore, a large body of evidence demonstrated that the glucose metabolism and lipid metabolism were influenced by gene-gene interaction among PPARs genes. However, given the complexity pathogenesis of metabolic disease, it is unlikely that genetic variation of a single locus would provide an adequate explanation of inter-individual differences which results in diverse clinical syndromes. Thus, gene-gene interactions and gene-environment interactions associated with T2DM and MetS need future comprehensive studies. PMID:25987964

  1. Functional Expression of Two Neuronal Nicotinic Acetylcholine Receptors from cDNA Clones Identifies a Gene Family

    NASA Astrophysics Data System (ADS)

    Boulter, Jim; Connolly, John; Deneris, Evan; Goldman, Dan; Heinemann, Steven; Patrick, Jim

    1987-11-01

    A family of genes coding for proteins homologous to the α subunit of the muscle nicotinic acetylcholine receptor has been identified in the rat genome. These genes are transcribed in the central and peripheral nervous systems in areas known to contain functional nicotinic receptors. In this paper, we demonstrate that three of these genes, which we call alpha3, alpha4, and beta2, encode proteins that form functional nicotinic acetylcholine receptors when expressed in Xenopus oocytes. Oocytes expressing either alpha3 or alpha4 protein in combination with the beta2 protein produced a strong response to acetylcholine. Oocytes expressing only the alpha4 protein gave a weak response to acetylcholine. These receptors are activated by acetylcholine and nicotine and are blocked by Bungarus toxin 3.1. They are not blocked by α -bungarotoxin, which blocks the muscle nicotinic acetylcholine receptor. Thus, the receptors formed by the alpha3, alpha4, and beta2 subunits are pharmacologically similar to the ganglionic-type neuronal nicotinic acetylcholine receptor. These results indicate that the alpha3, alpha4, and beta2 genes encode functional nicotinic acetylcholine receptor subunits that are expressed in the brain and peripheral nervous system.

  2. Constraint and Adaptation in newt Toll-Like Receptor Genes

    PubMed Central

    Babik, Wiesław; Dudek, Katarzyna; Fijarczyk, Anna; Pabijan, Maciej; Stuglik, Michał; Szkotak, Rafał; Zieliński, Piotr

    2015-01-01

    Acute die-offs of amphibian populations worldwide have been linked to the emergence of viral and fungal diseases. Inter and intraspecific immunogenetic differences may influence the outcome of infection. Toll-like receptors (TLRs) are an essential component of innate immunity and also prime acquired defenses. We report the first comprehensive assessment of TLR gene variation for urodele amphibians. The Lissotriton newt TLR repertoire includes representatives of 13 families and is compositionally most similar to that of the anuran Xenopus. Both ancient and recent gene duplications have occurred in urodeles, bringing the total number of TLR genes to at least 21. Purifying selection has predominated the evolution of newt TLRs in both long (∼70 Ma) and medium (∼18 Ma) timescales. However, we find evidence for both purifying and positive selection acting on TLRs in two recently diverged (2–5 Ma) allopatric evolutionary lineages (Lissotriton montandoni and L. vulgaris graecus). Overall, both forms of selection have been stronger in L. v. graecus, while constraint on most TLR genes in L. montandoni appears relaxed. The differences in selection regimes are unlikely to be biased by demographic effects because these were controlled by means of a historical demographic model derived from an independent data set of 62 loci. We infer that TLR genes undergo distinct trajectories of adaptive evolution in closely related amphibian lineages, highlight the potential of TLRs to capture the signatures of different assemblages of pathogenic microorganisms, and suggest differences between lineages in the relative roles of innate and acquired immunity. PMID:25480684

  3. Chicken interferons, their receptors and interferon-stimulated genes.

    PubMed

    Goossens, Kate E; Ward, Alister C; Lowenthal, John W; Bean, Andrew G D

    2013-11-01

    The prevalence of pathogenic viruses is a serious issue as they pose a constant threat to both the poultry industry and to human health. To prevent these viral infections an understanding of the host-virus response is critical, especially for the development of novel therapeutics. One approach in the control of viral infections would be to boost the immune response through administration of cytokines, such as interferons. However, the innate immune response in chickens is poorly characterised, particularly concerning the interferon pathway. This review will provide an overview of our current understanding of the interferon system of chickens, including their cognate receptors and known interferon-stimulated gene products.

  4. Cardiac gene expression data and in silico analysis provide novel insights into human and mouse taste receptor gene regulation.

    PubMed

    Foster, Simon R; Porrello, Enzo R; Stefani, Maurizio; Smith, Nicola J; Molenaar, Peter; dos Remedios, Cristobal G; Thomas, Walter G; Ramialison, Mirana

    2015-10-01

    G protein-coupled receptors are the principal mediators of the sweet, umami, bitter, and fat taste qualities in mammals. Intriguingly, the taste receptors are also expressed outside of the oral cavity, including in the gut, airways, brain, and heart, where they have additional functions and contribute to disease. However, there is little known about the mechanisms governing the transcriptional regulation of taste receptor genes. Following our recent delineation of taste receptors in the heart, we investigated the genomic loci encoding for taste receptors to gain insight into the regulatory mechanisms that drive their expression in the heart. Gene expression analyses of healthy and diseased human and mouse hearts showed coordinated expression for a subset of chromosomally clustered taste receptors. This chromosomal clustering mirrored the cardiac expression profile, suggesting that a common gene regulatory block may control the taste receptor locus. We identified unique domains with strong regulatory potential in the vicinity of taste receptor genes. We also performed de novo motif enrichment in the proximal promoter regions and found several overrepresented DNA motifs in cardiac taste receptor gene promoters corresponding to ubiquitous and cardiac-specific transcription factor binding sites. Thus, combining cardiac gene expression data with bioinformatic analyses, this study has provided insights into the noncoding regulatory landscape for taste GPCRs. These findings also have broader relevance for the study of taste GPCRs outside of the classical gustatory system, where understanding the mechanisms controlling the expression of these receptors may have implications for future therapeutic development.

  5. Cardiac gene expression data and in silico analysis provide novel insights into human and mouse taste receptor gene regulation.

    PubMed

    Foster, Simon R; Porrello, Enzo R; Stefani, Maurizio; Smith, Nicola J; Molenaar, Peter; dos Remedios, Cristobal G; Thomas, Walter G; Ramialison, Mirana

    2015-10-01

    G protein-coupled receptors are the principal mediators of the sweet, umami, bitter, and fat taste qualities in mammals. Intriguingly, the taste receptors are also expressed outside of the oral cavity, including in the gut, airways, brain, and heart, where they have additional functions and contribute to disease. However, there is little known about the mechanisms governing the transcriptional regulation of taste receptor genes. Following our recent delineation of taste receptors in the heart, we investigated the genomic loci encoding for taste receptors to gain insight into the regulatory mechanisms that drive their expression in the heart. Gene expression analyses of healthy and diseased human and mouse hearts showed coordinated expression for a subset of chromosomally clustered taste receptors. This chromosomal clustering mirrored the cardiac expression profile, suggesting that a common gene regulatory block may control the taste receptor locus. We identified unique domains with strong regulatory potential in the vicinity of taste receptor genes. We also performed de novo motif enrichment in the proximal promoter regions and found several overrepresented DNA motifs in cardiac taste receptor gene promoters corresponding to ubiquitous and cardiac-specific transcription factor binding sites. Thus, combining cardiac gene expression data with bioinformatic analyses, this study has provided insights into the noncoding regulatory landscape for taste GPCRs. These findings also have broader relevance for the study of taste GPCRs outside of the classical gustatory system, where understanding the mechanisms controlling the expression of these receptors may have implications for future therapeutic development. PMID:25986534

  6. Genomic imprinting of the human serotonin-receptor (HTR2) gene involved in development of retinoblastoma

    SciTech Connect

    Kato, Mitsuo V.; Nagayoshi, Mariko; Shimuzu, Takashi

    1996-11-01

    Epidemiological and genetic studies of retinoblastoma (RB) suggested that imprinted genes might be genetically linked to the RB gene. In this study, we found that the human serotonin-receptor, HTR2, gene, which had been mapped nearby the RB gene on chromosome 13, was expressed only in human fibroblasts with a maternal allele and not in cells without a maternal allele. The 5{prime} genomic region of the human HTR2 gene was cloned by PCR-mediated method. Only the 5{prime} region of the gene was methylated in cells with the maternal gene, and it was not methylated in cells without the maternal gene. A polymorphism of PvuII site of the gene was also found and useful for the segregation analysis in a family of an RB patient and for analysis of loss of heterozygosity on chromosome 13 in tumor and its parental origin. These results suggest that the human HTR2 gene might be affected by genomic imprinting and that exclusive expression of the maternal HTR2 gene may be associated with the delayed occurrence of RB, which had lost the maternal chromosome 13. 33 refs., 5 figs., 2 tabs.

  7. Mutations in the 'DRY' motif of the CB1 cannabinoid receptor result in biased receptor variants.

    PubMed

    Gyombolai, Pál; Tóth, András D; Tímár, Dániel; Turu, Gábor; Hunyady, László

    2015-02-01

    The role of the highly conserved 'DRY' motif in the signaling of the CB1 cannabinoid receptor (CB1R) was investigated by inducing single-, double-, and triple-alanine mutations into this site of the receptor. We found that the CB1R-R3.50A mutant displays a partial decrease in its ability to activate heterotrimeric Go proteins (∼80% of WT CB1R (CB1R-WT)). Moreover, this mutant showed an enhanced basal β-arrestin2 (β-arr2) recruitment. More strikingly, the double-mutant CB1R-D3.49A/R3.50A was biased toward β-arrs, as it gained a robustly increased β-arr1 and β-arr2 recruitment ability compared with the WT receptor, while its G-protein activation was decreased. In contrast, the double-mutant CB1R-R3.50A/Y3.51A proved to be G-protein-biased, as it was practically unable to recruit β-arrs in response to agonist stimulus, while still activating G-proteins, although at a reduced level (∼70% of CB1R-WT). Agonist-induced ERK1/2 activation of the CB1R mutants showed a good correlation with their β-arr recruitment ability but not with their G-protein activation or inhibition of cAMP accumulation. Our results suggest that G-protein activation and β-arr binding of the CB1R are mediated by distinct receptor conformations, and the conserved 'DRY' motif plays different roles in the stabilization of these conformations, thus mediating both G-protein- and β-arr-mediated functions of CB1R.

  8. Identification and evolution of two insulin receptor genes involved in Tribolium castaneum development and reproduction.

    PubMed

    Sang, Ming; Li, Chengjun; Wu, Wei; Li, Bin

    2016-07-10

    The insulin and insulin-like signaling (IIS) pathway exists in a wide range of organisms from mammals to invertebrates and regulates several vital physiological functions. A phylogenetic analysis have indicated that insulin receptors have been duplicated at least twice among vertebrates, whereas only one duplication occurred in insects before the differentiation of Coleoptera, Hymenoptera, and Hemiptera. Thus, we cloned two putative insulin receptor genes, T.cas-ir1 and T.cas-ir2, from T. castaneum and determined that T.cas-ir1 is most strongly expressed during the late adult and early pupal stages, whereas T.cas-ir2 is most strongly expressed during the late larval stage. We found that larval RNAi against T.cas-ir1 and T.cas-ir2 causes 100% and 42.0% insect death, respectively, and that parental RNAi against T.cas-ir1 and T.cas-ir2 leads to 100% and 33.3% reductions in beetle fecundity, respectively. The hatching rate of ds-ir2 insects was 66.2%. Moreover, RNAi against these two genes increased the expression of the pkc, foxo, jnk, cdc42, ikk, and mekk genes but decreased erk gene expression. Despite these similarities, these two genes act via distinct regulatory pathways. These results indicate that these two receptors have functionally diverged with respect to the development and reproduction of T. castaneum, even though they retain some common regulatory signaling pathways.

  9. Control of transcriptional repression of the vitellogenin receptor gene in largemouth bass (Micropterus salmoides) by select estrogen receptors isotypes.

    PubMed

    Dominguez, Gustavo A; Bisesi, Joseph H; Kroll, Kevin J; Denslow, Nancy D; Sabo-Attwood, Tara

    2014-10-01

    The vitellogenin receptor (Vtgr) plays an important role in fish reproduction. This receptor functions to incorporate vitellogenin (Vtg), a macromolecule synthesized and released from the liver in the bloodstream, into oocytes where it is processed into yolk. Although studies have focused on the functional role of Vtgr in fish, the mechanistic control of this gene is still unexplored. Here we report the identification and analysis of the first piscine 5' regulatory region of the vtgr gene which was cloned from largemouth bass (Micropterus salmoides). Using this putative promoter sequence, we investigated a role for hormones, including insulin and 17β-estradiol (E2), in transcriptional regulation through cell-based reporter assays. No effect of insulin was observed, however, E2 was able to repress transcriptional activity of the vtgr promoter through select estrogen receptor subtypes, Esr1 and Esr2a but not Esr2b. Electrophoretic mobility shift assay demonstrated that Esr1 likely interacts with the vtgr promoter region through half ERE and/or SP1 sites, in part. Finally we also show that ethinylestradiol (EE2), but not bisphenol-A (BPA), represses promoter activity similarly to E2. These results reveal for the first time that the Esr1 isoform may play an inhibitory role in the expression of LMB vtgr mRNA under the influence of E2, and potent estrogens such as EE2. In addition, this new evidence suggests that vtgr may be a target of select endocrine disrupting compounds through environmental exposures. PMID:25061109

  10. Control of transcriptional repression of the vitellogenin receptor gene in largemouth bass (Micropterus salmoides) by select estrogen receptors isotypes.

    PubMed

    Dominguez, Gustavo A; Bisesi, Joseph H; Kroll, Kevin J; Denslow, Nancy D; Sabo-Attwood, Tara

    2014-10-01

    The vitellogenin receptor (Vtgr) plays an important role in fish reproduction. This receptor functions to incorporate vitellogenin (Vtg), a macromolecule synthesized and released from the liver in the bloodstream, into oocytes where it is processed into yolk. Although studies have focused on the functional role of Vtgr in fish, the mechanistic control of this gene is still unexplored. Here we report the identification and analysis of the first piscine 5' regulatory region of the vtgr gene which was cloned from largemouth bass (Micropterus salmoides). Using this putative promoter sequence, we investigated a role for hormones, including insulin and 17β-estradiol (E2), in transcriptional regulation through cell-based reporter assays. No effect of insulin was observed, however, E2 was able to repress transcriptional activity of the vtgr promoter through select estrogen receptor subtypes, Esr1 and Esr2a but not Esr2b. Electrophoretic mobility shift assay demonstrated that Esr1 likely interacts with the vtgr promoter region through half ERE and/or SP1 sites, in part. Finally we also show that ethinylestradiol (EE2), but not bisphenol-A (BPA), represses promoter activity similarly to E2. These results reveal for the first time that the Esr1 isoform may play an inhibitory role in the expression of LMB vtgr mRNA under the influence of E2, and potent estrogens such as EE2. In addition, this new evidence suggests that vtgr may be a target of select endocrine disrupting compounds through environmental exposures.

  11. Ethanol upregulates NMDA receptor subunit gene expression in human embryonic stem cell-derived cortical neurons.

    PubMed

    Xiang, Yangfei; Kim, Kun-Yong; Gelernter, Joel; Park, In-Hyun; Zhang, Huiping

    2015-01-01

    Chronic alcohol consumption may result in sustained gene expression alterations in the brain, leading to alcohol abuse or dependence. Because of ethical concerns of using live human brain cells in research, this hypothesis cannot be tested directly in live human brains. In the present study, we used human embryonic stem cell (hESC)-derived cortical neurons as in vitro cellular models to investigate alcohol-induced expression changes of genes involved in alcohol metabolism (ALDH2), anti-apoptosis (BCL2 and CCND2), neurotransmission (NMDA receptor subunit genes: GRIN1, GRIN2A, GRIN2B, and GRIN2D), calcium channel activity (ITPR2), or transcriptional repression (JARID2). hESCs were differentiated into cortical neurons, which were characterized by immunostaining using antibodies against cortical neuron-specific biomarkers. Ethanol-induced gene expression changes were determined by reverse-transcription quantitative polymerase chain reaction (RT-qPCR). After a 7-day ethanol (50 mM) exposure followed by a 24-hour ethanol withdrawal treatment, five of the above nine genes (including all four NMDA receptor subunit genes) were highly upregulated (GRIN1: 1.93-fold, P = 0.003; GRIN2A: 1.40-fold, P = 0.003; GRIN2B: 1.75-fold, P = 0.002; GRIN2D: 1.86-fold, P = 0.048; BCL2: 1.34-fold, P = 0.031), and the results of GRIN1, GRIN2A, and GRIN2B survived multiple comparison correction. Our findings suggest that alcohol responsive genes, particularly NMDA receptor genes, play an important role in regulating neuronal function and mediating chronic alcohol consumption-induced neuroadaptations.

  12. Association study between schizophrenia and dopamine D3 receptor gene polymorphism

    SciTech Connect

    Tanaka, Toshihisa; Takahashi, Makoto; Maeda, Masaya

    1996-07-26

    Crocq et al. reported the existence of an association between schizophrenia and homozygosity of a BalI polymorphism in the first exon of the dopamine D3 receptor (DRD3) gene. In response to this report, further studies were conducted; however, these studies yielded conflicting results. In the present study, we examined 100 unrelated Japanese schizophrenics and 100 normal controls to determine any association between this polymorphism and schizophrenia. Results suggest that neither allele nor genotype frequencies of the DRD3 gene in the schizophrenics as a whole are significantly different from those of the controls. Further, we found no association between any allele or genotype and any clinical subtype based on family history of schizophrenia and age-at-onset. A significantly high frequency of homozygosity of a dopamine D3 receptor gene allele was not observed in the schizophrenics as a whole, or in clinical subtypes. Our results suggest that an association between the dopamine D3 receptor gene and schizophrenia is unlikely to exist. 26 refs., 1 tab.

  13. Update of the androgen receptor gene mutations database.

    PubMed

    Gottlieb, B; Beitel, L K; Lumbroso, R; Pinsky, L; Trifiro, M

    1999-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. The total number of reported mutations has risen from 309 to 374 during the past year. We have expanded the database by adding information on AR-interacting proteins; and we have improved the database by identifying those mutation entries that have been updated. Mutations of unknown significance have now been reported in both the 5' and 3' untranslated regions of the AR gene, and in individuals who are somatic mosaics constitutionally. In addition, single nucleotide polymorphisms, including silent mutations, have been discovered in normal individuals and in individuals with male infertility. A mutation hotspot associated with prostatic cancer has been identified in exon 5. The database is available on the internet (http://www.mcgill.ca/androgendb/), from EMBL-European Bioinformatics Institute (ftp.ebi.ac.uk/pub/databases/androgen), or as a Macintosh FilemakerPro or Word file (MC33@musica.mcgill.ca).

  14. Insulin receptor gene expression in normal and diseased bovine liver.

    PubMed

    Liu, G W; Zhang, Z G; Wang, J G; Wang, Z; Xu, C; Zhu, X L

    2010-11-01

    The aim of the present study was to compare insulin receptor (IR) gene expression in normal bovine liver (n=7) with samples of liver from cows in the perinatal period with ketosis (n=7) and cows with fatty liver (n=7). Gene expression was determined by internally controlled reverse transcriptase polymerase chain reaction (RT-PCR). The expression of IR mRNA in the liver of ketotic dairy cows was higher than in cows with fatty liver, but in both disease groups the expression was substantially lower than that in normal liver. Reduced expression of IR mRNA in fatty liver indicates that responses to insulin are markedly decreased, which might be due to insulin resistance. The relatively lower IR mRNA expression in the liver tissue of dairy cows with ketosis might enhance gluconeogenesis and lipid mobilization to relieve energy negative balance.

  15. Identification of putative chemosensory receptor genes from yellow peach moth Conogethes punctiferalis (Guenée) antennae transcriptome

    PubMed Central

    Ge, Xing; Zhang, Tiantao; Wang, Zhenying; He, Kanglai; Bai, Shuxiong

    2016-01-01

    The yellow peach moth, Conogethes punctiferalis, is an extremely important polyphagous insect in Asia. The chemosensory systems of moth play an important role in detecting food, oviposition sites and mate attraction. Several antennal chemosensory receptors are involved in odor detection. Our study aims to identify chemosensory receptor genes for potential applications in behavioral responses of yellow peach moth. By transcriptomic analysis of male and female antennae, 83 candidate chemosensory receptors, including 62 odorant receptors, 11 ionotropic receptors and 10 gustatory receptors were identified. Through Blast and sequence alignment, the highly conserved co-receptor Orco was annotated, eight unigenes clustered into pheromone receptors, and two clustered as sugar receptor. Among the IRs, one unigenes was similar with co-receptors IR25a. Expression levels of 50 odorant receptors were further evaluated by quantitative real-time PCR in antennae. All the ORs tested were detected in antennae and some of which were associated with sex-biased expression. The chemosensory receptors identified in C. punctiferalis provide a foundational resource for further analysis on olfaction for behavior. The expression profiles of ORs in antennae indicated variant functions in olfactory recognition, and our results provided the possibility for the potential application of semiochemical to control this pest moth. PMID:27659493

  16. A reference gene set for chemosensory receptor genes of Manduca sexta.

    PubMed

    Koenig, Christopher; Hirsh, Ariana; Bucks, Sascha; Klinner, Christian; Vogel, Heiko; Shukla, Aditi; Mansfield, Jennifer H; Morton, Brian; Hansson, Bill S; Grosse-Wilde, Ewald

    2015-11-01

    The order of Lepidoptera has historically been crucial for chemosensory research, with many important advances coming from the analysis of species like Bombyx mori or the tobacco hornworm, Manduca sexta. Specifically M. sexta has long been a major model species in the field, especially regarding the importance of olfaction in an ecological context, mainly the interaction with its host plants. In recent years transcriptomic data has led to the discovery of members of all major chemosensory receptor families in the species, but the data was fragmentary and incomplete. Here we present the analysis of the newly available high-quality genome data for the species, supplemented by additional transcriptome data to generate a high quality reference gene set for the three major chemosensory receptor gene families, the gustatory (GR), olfactory (OR) and antennal ionotropic receptors (IR). Coupled with gene expression analysis our approach allows association of specific receptor types and behaviors, like pheromone and host detection. The dataset will provide valuable support for future analysis of these essential chemosensory modalities in this species and in Lepidoptera in general. PMID:26365739

  17. Perfluorooctane sulfonate (PFOS) affects hormone receptor activity, steroidogenesis, and expression of endocrine-related genes in vitro and in vivo.

    PubMed

    Du, Guizhen; Hu, Jialei; Huang, Hongyu; Qin, Yufeng; Han, Xiumei; Wu, Di; Song, Ling; Xia, Yankai; Wang, Xinru

    2013-02-01

    Perfluorooctane sulfonate (PFOS) is a widespread and persistent chemical in the environment. We investigated the endocrine-disrupting effects of PFOS using a combination of in vitro and in vivo assays. Reporter gene assays were used to detect receptor-mediated (anti-)estrogenic, (anti-)androgenic, and (anti-)thyroid hormone activities. The effect of PFOS on steroidogenesis was assessed both at hormone levels in the supernatant and at expression levels of hormone-induced genes in the H295R cell. A zebrafish-based short-term screening method was developed to detect the effect of PFOS on endocrine function in vivo. The results indicate that PFOS can act as an estrogen receptor agonist and thyroid hormone receptor antagonist. Exposure to PFOS decreased supernatant testosterone (T), increased estradiol (E2) concentrations in H295R cell medium and altered the expression of several genes involved in steroidogenesis. In addition, PFOS increased early thyroid development gene (hhex and pax8) expression in a concentration-dependent manner, decreased steroidogenic enzyme gene (CYP17, CYP19a, CYP19b) expression, and changed the expression pattern of estrogen receptor production genes (esr1, esr2b) after 500 µg/L PFOS treatment in zebrafish embryos. These results indicate that PFOS has the ability to act as an endocrine disruptor both in vitro and in vivo by disrupting the function of nuclear hormone receptors, interfering with steroidogenesis, and altering the expression of endocrine-related genes in zebrafish embryo.

  18. Perfluorooctane sulfonate (PFOS) affects hormone receptor activity, steroidogenesis, and expression of endocrine-related genes in vitro and in vivo.

    PubMed

    Du, Guizhen; Hu, Jialei; Huang, Hongyu; Qin, Yufeng; Han, Xiumei; Wu, Di; Song, Ling; Xia, Yankai; Wang, Xinru

    2013-02-01

    Perfluorooctane sulfonate (PFOS) is a widespread and persistent chemical in the environment. We investigated the endocrine-disrupting effects of PFOS using a combination of in vitro and in vivo assays. Reporter gene assays were used to detect receptor-mediated (anti-)estrogenic, (anti-)androgenic, and (anti-)thyroid hormone activities. The effect of PFOS on steroidogenesis was assessed both at hormone levels in the supernatant and at expression levels of hormone-induced genes in the H295R cell. A zebrafish-based short-term screening method was developed to detect the effect of PFOS on endocrine function in vivo. The results indicate that PFOS can act as an estrogen receptor agonist and thyroid hormone receptor antagonist. Exposure to PFOS decreased supernatant testosterone (T), increased estradiol (E2) concentrations in H295R cell medium and altered the expression of several genes involved in steroidogenesis. In addition, PFOS increased early thyroid development gene (hhex and pax8) expression in a concentration-dependent manner, decreased steroidogenic enzyme gene (CYP17, CYP19a, CYP19b) expression, and changed the expression pattern of estrogen receptor production genes (esr1, esr2b) after 500 µg/L PFOS treatment in zebrafish embryos. These results indicate that PFOS has the ability to act as an endocrine disruptor both in vitro and in vivo by disrupting the function of nuclear hormone receptors, interfering with steroidogenesis, and altering the expression of endocrine-related genes in zebrafish embryo. PMID:23074026

  19. Molecular Characterization of the Aphis gossypii Olfactory Receptor Gene Families

    PubMed Central

    Walker, William B.; Li, Jianhong; Wang, Guirong

    2014-01-01

    The cotton aphid, Aphis gossypii Glover, is a polyphagous pest that inflicts great damage to cotton yields worldwide. Antennal olfaction, which is extremely important for insect survival, mediates key behaviors such as host preference, mate choice, and oviposition site selection. In insects, odor detection is mediated by odorant receptors (ORs) and ionotropic receptors (IRs), which ensure the specificity of the olfactory sensory neuron responses. In this study, our aim is to identify chemosensory receptors in the cotton aphid genome, as a means to uncover olfactory encoding of the polyphagous feeding habits as well as to aid the discovery of new targets for behavioral interference. We identified a total of 45 candidate ORs and 14 IRs in the cotton aphid genome. Among the candidate AgoORs, 9 are apparent pseudogenes, while 19 can be clustered with ORs from the pea aphid, forming 16 AgoOR/ApOR orthologous subgroups. Among the candidate IRs, we identified homologs of the two highly conserved co-receptors IR8a and IR25a; no AgoIR retain the complete glutamic acid binding domain, suggesting that putative AgoIRs bind different ligands. Our results provide the necessary information for functional characterization of the chemosensory receptors of A. gossypii, with potential for new or refined applications of semiochemicals-based control of this pest insect. PMID:24971460

  20. Molecular characterization of the Aphis gossypii olfactory receptor gene families.

    PubMed

    Cao, Depan; Liu, Yang; Walker, William B; Li, Jianhong; Wang, Guirong

    2014-01-01

    The cotton aphid, Aphis gossypii Glover, is a polyphagous pest that inflicts great damage to cotton yields worldwide. Antennal olfaction, which is extremely important for insect survival, mediates key behaviors such as host preference, mate choice, and oviposition site selection. In insects, odor detection is mediated by odorant receptors (ORs) and ionotropic receptors (IRs), which ensure the specificity of the olfactory sensory neuron responses. In this study, our aim is to identify chemosensory receptors in the cotton aphid genome, as a means to uncover olfactory encoding of the polyphagous feeding habits as well as to aid the discovery of new targets for behavioral interference. We identified a total of 45 candidate ORs and 14 IRs in the cotton aphid genome. Among the candidate AgoORs, 9 are apparent pseudogenes, while 19 can be clustered with ORs from the pea aphid, forming 16 AgoOR/ApOR orthologous subgroups. Among the candidate IRs, we identified homologs of the two highly conserved co-receptors IR8a and IR25a; no AgoIR retain the complete glutamic acid binding domain, suggesting that putative AgoIRs bind different ligands. Our results provide the necessary information for functional characterization of the chemosensory receptors of A. gossypii, with potential for new or refined applications of semiochemicals-based control of this pest insect. PMID:24971460

  1. Methuselah/Methuselah-like G protein-coupled receptors constitute an ancient metazoan gene family

    PubMed Central

    de Mendoza, Alexandre; Jones, Jeffery W.; Friedrich, Markus

    2016-01-01

    Inconsistent conclusions have been drawn regarding the phylogenetic age of the Methuselah/Methuselah-like (Mth/Mthl) gene family of G protein-coupled receptors, the founding member of which regulates development and lifespan in Drosophila. Here we report the results from a targeted homolog search of 39 holozoan genomes and phylogenetic analysis of the conserved seven transmembrane domain. Our findings reveal that the Mth/Mthl gene family is ancient, has experienced numerous extinction and expansion events during metazoan evolution, and acquired the current definition of the Methuselah ectodomain during its exceptional expansion in arthropods. In addition, our findings identify Mthl1, Mthl5, Mthl14, and Mthl15 as the oldest Mth/Mthl gene family paralogs in Drosophila. Future studies of these genes have the potential to define ancestral functions of the Mth/Mthl gene family. PMID:26915348

  2. Oxytocin receptor and vasopressin receptor 1a genes are respectively associated with emotional and cognitive empathy.

    PubMed

    Uzefovsky, F; Shalev, I; Israel, S; Edelman, S; Raz, Y; Mankuta, D; Knafo-Noam, A; Ebstein, R P

    2015-01-01

    Empathy is the ability to recognize and share in the emotions of others. It can be considered a multifaceted concept with cognitive and emotional aspects. Little is known regarding the underlying neurochemistry of empathy and in the current study we used a neurogenetic approach to explore possible brain neurotransmitter pathways contributing to cognitive and emotional empathy. Both the oxytocin receptor (OXTR) and the arginine vasopressin receptor 1a (AVPR1a) genes contribute to social cognition in both animals and humans and hence are prominent candidates for contributing to empathy. The following research examined the associations between polymorphisms in these two genes and individual differences in emotional and cognitive empathy in a sample of 367 young adults. Intriguingly, we found that emotional empathy was associated solely with OXTR, whereas cognitive empathy was associated solely with AVPR1a. Moreover, no interaction was observed between the two genes and measures of empathy. The current findings contribute to our understanding of the distinct neurogenetic pathways involved in cognitive and emotional empathy and underscore the pervasive role of both oxytocin and vasopressin in modulating human emotions.

  3. Structural and phylogenetic analysis of the MHC class I-like Fc receptor gene

    SciTech Connect

    Kandil, Eman; Ishibashi, Teruo; Kasahara, Masanori

    1995-06-01

    The intestinal epithelium of neonatal mice and rats expresses an Fc receptor that mediates selective uptake of IgG in mothers`milk. This receptor (FcRn), which helps newborn animals to acquire passive immunity, is an MHC class I-like heterodimer made up of a heavy chain and {beta}{sub 2}-microglobulin. In the present study, we determined the genomic structure of a mouse gene (FcRn) encoding the heavy of FcRn. The overall exon-intron organization of the Fcrn gene was similar to that of the Fcrn gene, thus providing structural evidence that Fcrn os a bona fide class I gene. The 5{prime}-flanking region of the Fcrn gene contained the binding motifs for two cytokine-inducible transcription factors, NF-IL6 and NF1. However, regulatory elements found in MHC class I genes (enhancer A, enhancer B, and the IFN response element) were absent. Phylogenetic tree analysis suggested that, like the MICA, AZGP1, and CD1 genes, the Fcrn gene diverged form MHC class I genes after the emergence of amphibians but before the split of placental and marsupial mammals. Consistent with this result, Southern blot analysis with a mouse Fcrn cDNA probe detected cross-hybridizing bands in various mammalian species and chickens. Sequence analysis of the Fcrn gene isolated from eight mouse strains showed that the membrane-distal domain of FcRn has at least three amino acid variants. The fact that Fcrn is a single copy gene indicates that it is expressed in both the neonatal intestine and the fetal yolk sac. 74 refs., 7 figs., 2 tabs.

  4. Smallest bitter taste receptor (T2Rs) gene repertoire in carnivores.

    PubMed

    Hu, Ling-Ling; Shi, Peng

    2013-06-01

    Bitter taste reception is presumably associated with dietary selection, preventing animals from ingesting potentially harmful compounds. Accordingly, carnivores, who encounter these toxic substances less often, should have fewer genes associated with bitter taste reception compared with herbivores and omnivores. To investigate the genetic basis of bitter taste reception, we confirmed bitter taste receptor (T2R) genes previously found in the genome sequences of two herbivores (cow and horse), two omnivores (mouse and rat) and one carnivore (dog). We also identified, for the first time, the T2R repertoire from the genome of other four carnivore species (ferret, giant panda, polar bear and cat) and detected 17-20 bitter receptor genes from the five carnivore genomes, including 12-16 intact genes, 0-1 partial but putatively functional genes, and 3-8 pseudogenes. Both the intact T2R genes and the total T2R gene number among carnivores were the smallest among the tested species, supporting earlier speculations that carnivores have fewer T2R genes, herbivores an intermediate number, and omnivores the largest T2R gene repertoire. To further explain the genetic basis for this disparity, we constructed a phylogenetic tree, which showed most of the T2R genes from the five carnivores were one-to-one orthologs across the tree, suggesting that carnivore T2Rs were conserved among mammals. Similarly, the small carnivore T2R family size was likely due to rare duplication events. Collectively, these results strengthen arguments for the connection between T2R gene family size, diet and habit. PMID:23776004

  5. Smallest bitter taste receptor (T2Rs) gene repertoire in carnivores.

    PubMed

    Hu, Ling-Ling; Shi, Peng

    2013-06-01

    Bitter taste reception is presumably associated with dietary selection, preventing animals from ingesting potentially harmful compounds. Accordingly, carnivores, who encounter these toxic substances less often, should have fewer genes associated with bitter taste reception compared with herbivores and omnivores. To investigate the genetic basis of bitter taste reception, we confirmed bitter taste receptor (T2R) genes previously found in the genome sequences of two herbivores (cow and horse), two omnivores (mouse and rat) and one carnivore (dog). We also identified, for the first time, the T2R repertoire from the genome of other four carnivore species (ferret, giant panda, polar bear and cat) and detected 17-20 bitter receptor genes from the five carnivore genomes, including 12-16 intact genes, 0-1 partial but putatively functional genes, and 3-8 pseudogenes. Both the intact T2R genes and the total T2R gene number among carnivores were the smallest among the tested species, supporting earlier speculations that carnivores have fewer T2R genes, herbivores an intermediate number, and omnivores the largest T2R gene repertoire. To further explain the genetic basis for this disparity, we constructed a phylogenetic tree, which showed most of the T2R genes from the five carnivores were one-to-one orthologs across the tree, suggesting that carnivore T2Rs were conserved among mammals. Similarly, the small carnivore T2R family size was likely due to rare duplication events. Collectively, these results strengthen arguments for the connection between T2R gene family size, diet and habit.

  6. The dopamine D3 receptor gene and posttraumatic stress disorder.

    PubMed

    Wolf, Erika J; Mitchell, Karen S; Logue, Mark W; Baldwin, Clinton T; Reardon, Annemarie F; Aiello, Alison; Galea, Sandro; Koenen, Karestan C; Uddin, Monica; Wildman, Derek; Miller, Mark W

    2014-08-01

    The dopamine D3 receptor (DRD3) gene has been implicated in schizophrenia, autism, and substance use-disorders and is related to emotion reactivity, executive functioning, and stress-responding, processes impaired in posttraumatic stress disorder (PTSD). The aim of this candidate gene study was to evaluate DRD3 polymorphisms for association with PTSD. The discovery sample was trauma-exposed White, non-Hispanic U.S. veterans and their trauma-exposed intimate partners (N = 491); 60.3% met criteria for lifetime PTSD. The replication sample was 601 trauma-exposed African American participants living in Detroit, Michigan; 23.6% met criteria for lifetime PTSD. Genotyping was based on high-density bead chips. In the discovery sample, 4 single nucleotide polymorphisms (SNPs), rs2134655, rs201252087, rs4646996, and rs9868039, showed evidence of association with PTSD and withstood correction for multiple testing. The minor alleles were associated with reduced risk for PTSD (OR range = 0.59 to 0.69). In the replication sample, rs2251177, located 149 base pairs away from the most significant SNP in the discovery sample, was nominally associated with PTSD in men (OR = 0.32). Although the precise role of the D3 receptor in PTSD is not yet known, its role in executive functioning and emotional reactivity, and the sensitivity of the dopamine system to environmental stressors could potentially explain this association. PMID:25158632

  7. The Dopamine D3 Receptor Gene and Posttraumatic Stress Disorder

    PubMed Central

    Wolf, Erika J.; Mitchell, Karen S.; Logue, Mark W.; Baldwin, Clinton T.; Reardon, Annemarie F.; Aiello, Alison; Galea, Sandro; Koenen, Karestan C.; Uddin, Monica; Wildman, Derek; Miller, Mark W.

    2014-01-01

    The dopamine D3 receptor (DRD3) gene has been implicated in schizophrenia, autism, and substance use-disorders and is related to emotion reactivity, executive functioning, and stress-responding, processes impaired in posttraumatic stress disorder (PTSD). This aim of this candidate gene study was to evaluate DRD3 polymorphisms for association with PTSD. The discovery sample was trauma-exposed white, non-Hispanic veterans and their trauma-exposed intimate partners (N = 491); 60% met criteria for lifetime PTSD. The replication sample was 601 trauma-exposed African American participants; 24% met criteria for lifetime PTSD. Genotyping was based on high-density bead chips. In the discovery sample, four single nucleotide polymorphisms (SNPs), rs2134655, rs201252087, rs4646996, and rs9868039, showed evidence of association with PTSD and withstood correction for multiple testing. The minor alleles were associated with reduced risk for PTSD (odds ratio range: 0.59 – 0.69). In the replication sample, rs2251177, located 149 base pairs away from the most significant SNP in the discovery sample, was nominally associated with PTSD in men (odds ratio: 0.32). Although the precise role of the D3 receptor in PTSD is not yet known, its role in executive functioning and emotional reactivity, and the sensitivity of the dopamine system to environmental stressors, could potentially explain this association. PMID:25158632

  8. T cell receptor gamma gene status of human alpha/beta+ and gamma/delta+ T cell clones: absence of V9JP rearrangements in alpha/beta+ clones is not a result of a lack of rearrangements involving more 5' J gamma segments.

    PubMed

    Christmas, S E

    1989-11-01

    T cell receptor (TCR) gamma gene rearrangements were examined in panels of human T cell clones expressing TCR alpha/beta or gamma/delta heterodimers. Over half of the alpha/beta+ clones had both chromosomes rearranged to C gamma 2 but this was the case for only 20% of the gamma/delta+ clones. While more than half of the gamma/delta+ clones showed a V9JP rearrangement, this configuration was absent from all 49 alpha/beta+ clones analysed. However, this was not a result of all rearrangements being to the more 3' J gamma genes as 11 alpha/beta+ clones had rearrangement(s) to JP1, the most 5' J gamma gene segment. Both alpha/beta+ and gamma/delta+ clones showed a similar pattern of V gamma gene usage in rearrangements to J gamma 1 or J gamma 2 with a lower proportion of the more 3' genes being rearranged to J gamma 2 than for the more 5' genes. Several alpha/beta+ and several gamma/delta+ clones had noncoordinate patterns of rearrangement involving both C gamma 1 and C gamma 2. Eleven out of fourteen CD8+ clones tested had both chromosomes rearranged to C gamma 2 whereas all clones derived from CD4-8- cells and having unconventional phenotypes (CD4-8- or CD4+8+) had at least one C gamma 1 rearrangement. Twelve out of twenty-seven CD4+ clones also had this pattern, suggesting that CD4-8+ clones had a tendency to utilize more 3' J gamma gene segments than CD4+ clones. There was some evidence for interdonor variation in the proportions of TCR gamma rearrangements to C gamma 1 or C gamma 2 in alpha/beta+ clones as well as gamma/delta+ clones. The results illustrate the unique nature of the V9JP rearrangement in gamma/delta+ clones and the possible use of a sequential mechanism of TCR gamma gene rearrangements during T cell differentiation is discussed.

  9. A polymorphism in the oestrogen receptor gene explains covariance between digit ratio and mating behaviour

    PubMed Central

    Forstmeier, Wolfgang; Mueller, Jakob C.; Kempenaers, Bart

    2010-01-01

    In vertebrates, including humans, the relative length of the second to the fourth digit correlates with sex hormone-dependent behavioural, psychological and physiological traits. However, despite a decade of research, the underlying mechanism linking digit ratio to these sex hormone-dependent traits remains unclear. Previous work suggests that during embryo development, circulating levels of plasma androgens or oestrogens may act through their receptors to affect transcription levels of posterior HOX genes in the developing digits, thereby possibly influencing their relative length. The correlation between digit ratio and sex hormone-dependent traits might thus stem from variation in expression or sensitivity of the sex hormone receptors, or from variation in sex hormone levels in the embryo. Here, we show that in a population of 1156 zebra finches Taeniopygia guttata, a polymorphism in the oestrogen receptor α gene (ESR1) explains 11.3 per cent of the variation in digit ratio, and is also associated with male and female-mating behaviour. By contrast, we found no associations between digit ratio or mating behaviours and polymorphisms in the androgen receptor gene. Thus, our results (i) provide an explanation for the observed significant genetic covariance between digit ratio and male and female mating behaviour and (ii) strongly confirm the indicator function of digit ratio through the oestrogen pathway. Finally, we note that the commonly invoked effect of foetal testosterone on human digit ratio seems to be substantially weaker than the effect described here. PMID:20534613

  10. Association of Toll-like receptors 2, 3, and 4 genes polymorphisms with periapical pathosis risk

    PubMed Central

    Özan, Ülkü; Ocak, Zeynep; Özan, Fatih; Oktay, Elif-Aybala; Şahman, Halil; Yikilgan, İhsan; Oruçoğlu, Hasan; Er, Kürşat

    2016-01-01

    Background The aim of this study was to investigate the role of gene variations of Toll-like receptors (TLR) 2, 3, and 4 on genetic susceptibility to periapical pathosis. Material and Methods One hundred patients were included in the study and divided into two groups as follows; Control Group (n=50) that have root canal treatment and no periapical lesion, Patient Group (n=50) that have root canal treatment and periapical lesion. TLR2 Arg753Gln, TLR3 (c.1377C/T) and TLR4 Asp299Gly and Thr399Ile polymorphisms were genotyped by using PCR-RFLP. Genotypical analysis of control and patient groups were investigated to disclose whether there is any association between periapical lesions and gene variations. Results There are no significant statistical differences between control and patient groups according to TLR 2 and 4 gene sequence. On the contrary, CC allele detected 74% for TLR 3 in patient group, and this difference was found to be statistically significant (p < 0.005). Conclusions According to these results, it can be suggested that patients with Toll-like receptor 3 gene polymorphisms could be susceptible to periapical pathosis. Key words:Toll-like receptors, periapical pathosis, endodontics. PMID:27031066

  11. Thyroid hormone receptors bind to defined regions of the growth hormone and placental lactogen genes.

    PubMed Central

    Barlow, J W; Voz, M L; Eliard, P H; Mathy-Harter, M; De Nayer, P; Economidis, I V; Belayew, A; Martial, J A; Rousseau, G G

    1986-01-01

    The intracellular receptor for thyroid hormone is a protein found in chromatin. Since thyroid hormone stimulates transcription of the growth hormone gene through an unknown mechanism, the hypothesis that the thyroid hormone-receptor complex interacts with defined regions of this gene has been investigated in a cell-free system. Nuclear extracts from human lymphoblastoid IM-9 cells containing thyroid hormone receptors were incubated with L-3,5,3'-tri[125I]iodothyronine and calf thymus DNA-cellulose. Restriction fragments of the human growth hormone gene were added to determine their ability to inhibit labeled receptor binding to DNA-cellulose. These fragments encompassed nucleotide sequences from about three kilobase pairs upstream to about four kilobase pairs downstream from the transcription initiation site. The thyroid hormone-receptor complex bound preferentially to the 5'-flanking sequences of the growth hormone gene in a region between nucleotide coordinates -290 and -129. The receptor also bound to an analogous promoter region in the human placental lactogen gene, which has 92% nucleotide sequence homology with the growth hormone gene. These binding regions appear to be distinct from those that are recognized by the receptor for glucocorticoids, which stimulate growth hormone gene expression synergistically with thyroid hormone. The presence of thyroid hormone was required for binding of its receptor to the growth hormone gene promoter, suggesting that thyroid hormone renders the receptor capable of recognizing specific gene regions. PMID:3466175

  12. Multimodality Imaging of Gene Transfer with a Receptor-Based Reporter Gene

    PubMed Central

    Chen, Ron; Parry, Jesse J.; Akers, Walter J.; Berezin, Mikhail Y.; El Naqa, Issam M.; Achilefu, Samuel; Edwards, W. Barry; Rogers, Buck E.

    2010-01-01

    Gene therapy trials have traditionally used tumor and tissue biopsies for assessing the efficacy of gene transfer. Non-invasive imaging techniques offer a distinct advantage over tissue biopsies in that the magnitude and duration of gene transfer can be monitored repeatedly. Human somatostatin receptor subtype 2 (SSTR2) has been used for the nuclear imaging of gene transfer. To extend this concept, we have developed a somatostatin receptor–enhanced green fluorescent protein fusion construct (SSTR2-EGFP) for nuclear and fluorescent multimodality imaging. Methods An adenovirus containing SSTR2-EGFP (AdSSTR2-EGFP) was constructed and evaluated in vitro and in vivo. SCC-9 human squamous cell carcinoma cells were infected with AdEGFP, AdSSTR2, or AdSSTR2-EGFP for in vitro evaluation by saturation binding, internalization, and fluorescence spectroscopy assays. In vivo biodistribution and nano-SPECT imaging studies were conducted with mice bearing SCC-9 tumor xenografts directly injected with AdSSTR2-EGFP or AdSSTR2 to determine the tumor localization of 111In-diethylenetriaminepentaacetic acid (DTPA)-Tyr3-octreotate. Fluorescence imaging was conducted in vivo with mice receiving intratumoral injections of AdSSTR2, AdSSTR2-EGFP, or AdEGFP as well as ex vivo with tissues extracted from mice. Results The similarity between AdSSTR2-EGFP and wild-type AdSSTR2 was demonstrated in vitro by the saturation binding and internalization assays, and the fluorescence emission spectra of cells infected with AdSSTR2-EGFP was almost identical to the spectra of cells infected with wild-type AdEGFP. Biodistribution studies demonstrated that the tumor uptake of 111In-DTPA-Tyr3-octreotate was not significantly different (P > 0.05) when tumors (n = 5) were injected with AdSSTR2 or AdSSTR2-EGFP but was significantly greater than the uptake in control tumors. Fluorescence was observed in tumors injected with AdSSTR2-EGFP and AdEGFP in vivo and ex vivo but not in tumors injected with AdSSTR2

  13. Molecular cloning and characterization of a Toll receptor gene from Macrobrachium rosenbergii.

    PubMed

    Srisuk, Chutima; Longyant, Siwaporn; Senapin, Saengchan; Sithigorngul, Paisarn; Chaivisuthangkura, Parin

    2014-02-01

    Toll receptors are cell surface molecules acting as pattern recognition receptors (PRRs) that have been implicated in the signaling pathway of innate immune responses. In this study, the full-length cDNA of a Toll receptor gene of Macrobrachium rosenbergii, designated MrToll, was successfully isolated using designed degenerate primers and the rapid amplification of cDNA ends (RACE). The MrToll gene sequence contained an open reading frame (ORF) of 2799 nucleotides encoding a protein of 932 amino acid residues. The protein contained distinct structural motifs of the Toll-like receptor (TLR) family, including an extracellular domain containing 15 leucine-rich repeats (LRRs), a transmembrane segment of 23 amino acids, and a cytoplasmic Toll/interleukin-1R (TIR) domain of 139 residues. Phylogenetic analysis revealed that MrToll and Toll receptor of Marsupenaeus japonicus (MjToll) evolved closely. However, the MrToll ORF demonstrated only 48-49% identity with shrimp Toll1, suggesting that MrToll isolated from a palaemonid shrimp might belong to a novel class of Toll receptors in shrimp. The transcripts of the MrToll gene were constitutively expressed in various tissues, with high levels in hemocytes, the stomach and muscle. A reverse transcriptase PCR assay demonstrated that the expression patterns of MrToll were distinctly modulated after Aeromonas caviae stimulation, with significant enhancement at 3-12 h post-challenge and a decline to basal levels at 24 h post-challenge. In addition, when MrToll-silenced shrimp were challenged with A. caviae, there was a significant increase in mortality and bacterial CFU counts. These results suggest that MrToll might be involved in host innate defense, especially against the pathogen A. caviae.

  14. Molecular cloning and characterization of a Toll receptor gene from Macrobrachium rosenbergii.

    PubMed

    Srisuk, Chutima; Longyant, Siwaporn; Senapin, Saengchan; Sithigorngul, Paisarn; Chaivisuthangkura, Parin

    2014-02-01

    Toll receptors are cell surface molecules acting as pattern recognition receptors (PRRs) that have been implicated in the signaling pathway of innate immune responses. In this study, the full-length cDNA of a Toll receptor gene of Macrobrachium rosenbergii, designated MrToll, was successfully isolated using designed degenerate primers and the rapid amplification of cDNA ends (RACE). The MrToll gene sequence contained an open reading frame (ORF) of 2799 nucleotides encoding a protein of 932 amino acid residues. The protein contained distinct structural motifs of the Toll-like receptor (TLR) family, including an extracellular domain containing 15 leucine-rich repeats (LRRs), a transmembrane segment of 23 amino acids, and a cytoplasmic Toll/interleukin-1R (TIR) domain of 139 residues. Phylogenetic analysis revealed that MrToll and Toll receptor of Marsupenaeus japonicus (MjToll) evolved closely. However, the MrToll ORF demonstrated only 48-49% identity with shrimp Toll1, suggesting that MrToll isolated from a palaemonid shrimp might belong to a novel class of Toll receptors in shrimp. The transcripts of the MrToll gene were constitutively expressed in various tissues, with high levels in hemocytes, the stomach and muscle. A reverse transcriptase PCR assay demonstrated that the expression patterns of MrToll were distinctly modulated after Aeromonas caviae stimulation, with significant enhancement at 3-12 h post-challenge and a decline to basal levels at 24 h post-challenge. In addition, when MrToll-silenced shrimp were challenged with A. caviae, there was a significant increase in mortality and bacterial CFU counts. These results suggest that MrToll might be involved in host innate defense, especially against the pathogen A. caviae. PMID:24398262

  15. A missense mutation in the Ca-sensing receptor gene causes familial autosomal dominant hypoparathyroidism

    SciTech Connect

    Perry, Y.M.; Finegold, D.N.; Armitage, M.M.

    1994-09-01

    A large family was identified in which hypoparathyroidism was observed to segregate as an autosomal dominant trait in 3 generations. Linkage analysis using short tandem repeat polymorphisms linked the disease phenotype to chromosomal region 3q13. This region contains a newly identified Ca-sensing receptor (PCAR1) gene. This receptor regulates the secretion of parathyroid hormone from parathyroid cells in response to extracellular ionized Ca concentration ([Ca{sup +2}]). PCR-based single stranded conformational analysis of exonic sequences of the PCAR1 gene revealed an abnormal conformer in exon 3 in affected individuals. Direct sequencing of the amplification product from an affected and an unaffected family member showed an A {yields} G transition at nucleotide 770 of the PCAR1 gene [numbering based on the bovine sequence (Genbank accession number S67307)]. This substitution created a Msp1 restriction site which cosegregated with hypoparathyroidism in this family. This substitution was not observed in unaffected family members, unrelated spouses, or unrelated population controls. This substitution is predicted to result in the replacement of a glutamine residue at amino acid 246 by an arginine residue. The Ca-sensing receptor appears to be a member of the family of seven membrane spanning G-protein linked receptors. The extracellular location of this amino acid substitution appears to produce a gain of function mutation increasing the receptor sensitivity to [Ca{sup +2}] and decreasing the calcium {open_quotes}set point{close_quotes}. This is in contrast to the loss of function mutations observed in the PCAR1 gene in pedigrees with familial hypercalcemic hypocalciuria.

  16. Function of Partially Duplicated Human α7 Nicotinic Receptor Subunit CHRFAM7A Gene

    PubMed Central

    de Lucas-Cerrillo, Ana M.; Maldifassi, M. Constanza; Arnalich, Francisco; Renart, Jaime; Atienza, Gema; Serantes, Rocío; Cruces, Jesús; Sánchez-Pacheco, Aurora; Andrés-Mateos, Eva; Montiel, Carmen

    2011-01-01

    The neuronal α7 nicotinic receptor subunit gene (CHRNA7) is partially duplicated in the human genome forming a hybrid gene (CHRFAM7A) with the novel FAM7A gene. The hybrid gene transcript, dupα7, has been identified in brain, immune cells, and the HL-60 cell line, although its translation and function are still unknown. In this study, dupα7 cDNA has been cloned and expressed in GH4C1 cells and Xenopus oocytes to study the pattern and functional role of the expressed protein. Our results reveal that dupα7 transcript was natively translated in HL-60 cells and heterologously expressed in GH4C1 cells and oocytes. Injection of dupα7 mRNA into oocytes failed to generate functional receptors, but when co-injected with α7 mRNA at α7/dupα7 ratios of 5:1, 2:1, 1:1, 1:5, and 1:10, it reduced the nicotine-elicited α7 current generated in control oocytes (α7 alone) by 26, 53, 75, 93, and 94%, respectively. This effect is mainly due to a reduction in the number of functional α7 receptors reaching the oocyte membrane, as deduced from α-bungarotoxin binding and fluorescent confocal assays. Two additional findings open the possibility that the dominant negative effect of dupα7 on α7 receptor activity observed in vitro could be extrapolated to in vivo situations. (i) Compared with α7 mRNA, basal dupα7 mRNA levels are substantial in human cerebral cortex and higher in macrophages. (ii) dupα7 mRNA levels in macrophages are down-regulated by IL-1β, LPS, and nicotine. Thus, dupα7 could modulate α7 receptor-mediated synaptic transmission and cholinergic anti-inflammatory response. PMID:21047781

  17. A common polymorphism in the LDL receptor gene has multiple effects on LDL receptor function.

    PubMed

    Gao, Feng; Ihn, Hansel E; Medina, Marisa W; Krauss, Ronald M

    2013-04-01

    A common synonymous single nucleotide polymorphism in exon 12 of the low-density lipoprotein receptor (LDLR) gene, rs688, has been associated with increased plasma total and LDL cholesterol in several populations. Using immortalized lymphoblastoid cell lines from a healthy study population, we confirmed an earlier report that the minor allele of rs688 is associated with increased exon 12 alternative splicing (P < 0.05) and showed that this triggered nonsense-mediated decay (NMD) of the alternatively spliced LDLR mRNA. However, since synonymous single nucleotide polymorphisms may influence structure and function of the encoded proteins by co-translational effects, we sought to test whether rs688 was also functional in the full-length mRNA. In HepG2 cells expressing LDLR cDNA constructs engineered to contain the major or minor allele of rs688, the latter was associated with a smaller amount of LDLR protein at the cell surface (-21.8 ± 0.6%, P = 0.012), a higher amount in the lysosome fraction (+25.7 ± 0.3%, P = 0.037) and reduced uptake of fluorescently labeled LDL (-24.3 ± 0.7%, P < 0.01). Moreover, in the presence of exogenous proprotein convertase subtilisin/kexin type 9 (PCSK9), a protein that reduces cellular LDL uptake by promoting lysosomal degradation of LDLR, the minor allele resulted in reduced capacity of a PCSK9 monoclonal antibody to increase LDL uptake. These findings are consistent with the hypothesis that rs688, which is located in the β-propeller region of LDLR, has effects on LDLR activity beyond its role in alternative splicing due to impairment of LDLR endosomal recycling and/or PCSK9 binding, processes in which the β-propeller is critically involved.

  18. Sweet taste receptor gene variation and aspartame taste in primates and other species.

    PubMed

    Li, Xia; Bachmanov, Alexander A; Maehashi, Kenji; Li, Weihua; Lim, Raymond; Brand, Joseph G; Beauchamp, Gary K; Reed, Danielle R; Thai, Chloe; Floriano, Wely B

    2011-06-01

    Aspartame is a sweetener added to foods and beverages as a low-calorie sugar replacement. Unlike sugars, which are apparently perceived as sweet and desirable by a range of mammals, the ability to taste aspartame varies, with humans, apes, and Old World monkeys perceiving aspartame as sweet but not other primate species. To investigate whether the ability to perceive the sweetness of aspartame correlates with variations in the DNA sequence of the genes encoding sweet taste receptor proteins, T1R2 and T1R3, we sequenced these genes in 9 aspartame taster and nontaster primate species. We then compared these sequences with sequences of their orthologs in 4 other nontasters species. We identified 9 variant sites in the gene encoding T1R2 and 32 variant sites in the gene encoding T1R3 that distinguish aspartame tasters and nontasters. Molecular docking of aspartame to computer-generated models of the T1R2 + T1R3 receptor dimer suggests that species variation at a secondary, allosteric binding site in the T1R2 protein is the most likely origin of differences in perception of the sweetness of aspartame. These results identified a previously unknown site of aspartame interaction with the sweet receptor and suggest that the ability to taste aspartame might have developed during evolution to exploit a specialized food niche.

  19. Characterization of leptin receptor gene in Bubalus bubalis and association analysis with body measurement traits.

    PubMed

    De Matteis, Giovanna; Scatà, Maria Carmela; Catillo, Gennaro; Terzano, Giuseppina Maria; Grandoni, Francesco; Napolitano, Francesco

    2015-06-01

    Leptin has a pleiotropic effect on regulating appetite, energy metabolism, growth, reproduction, body composition and immunity. This property supports leptin and its receptor as candidate genes for evaluating genetic polymorphisms to associate with growth, milk yield and other economic traits. The aim of this study is to characterize the leptin receptor gene in Bubalus bubalis, to identify single-nucleotide polymorphism (SNP) sites in different coding and non-coding regions and to analyse potential associations between SNPs identified and the body measurements traits of growing buffalo heifers. A group of 64 animals were genotyped by direct sequencing and twenty-eight SNPs were detected. A sequence analysis revealed the presence of nine interesting SNPs in gene sequence. The association analysis of polymorphisms with the body measurements traits of growing buffalo heifers shows significant statistical effects on chest depth and sacrum height. Therefore according to the results obtained from this study, the leptin receptor gene appears to have potential effects on the body measurement traits of Bubalus bubalis. PMID:25431006

  20. Sweet Taste Receptor Gene Variation and Aspartame Taste in Primates and Other Species

    PubMed Central

    Li, Xia; Bachmanov, Alexander A.; Maehashi, Kenji; Li, Weihua; Lim, Raymond; Brand, Joseph G.; Beauchamp, Gary K.; Reed, Danielle R.; Thai, Chloe

    2011-01-01

    Aspartame is a sweetener added to foods and beverages as a low-calorie sugar replacement. Unlike sugars, which are apparently perceived as sweet and desirable by a range of mammals, the ability to taste aspartame varies, with humans, apes, and Old World monkeys perceiving aspartame as sweet but not other primate species. To investigate whether the ability to perceive the sweetness of aspartame correlates with variations in the DNA sequence of the genes encoding sweet taste receptor proteins, T1R2 and T1R3, we sequenced these genes in 9 aspartame taster and nontaster primate species. We then compared these sequences with sequences of their orthologs in 4 other nontasters species. We identified 9 variant sites in the gene encoding T1R2 and 32 variant sites in the gene encoding T1R3 that distinguish aspartame tasters and nontasters. Molecular docking of aspartame to computer-generated models of the T1R2 + T1R3 receptor dimer suggests that species variation at a secondary, allosteric binding site in the T1R2 protein is the most likely origin of differences in perception of the sweetness of aspartame. These results identified a previously unknown site of aspartame interaction with the sweet receptor and suggest that the ability to taste aspartame might have developed during evolution to exploit a specialized food niche. PMID:21414996

  1. Increased hypothalamic 5-HT2A receptor gene expression and effects of pharmacologic 5-HT2A receptor inactivation in obese A{sup y} mice

    SciTech Connect

    Nonogaki, Katsunori . E-mail: knonogaki-tky@umin.ac.jp; Nozue, Kana; Oka, Yoshitomo

    2006-12-29

    Serotonin (5-hydroxytryptamine; 5-HT) 2A receptors contribute to the effects of 5-HT on platelet aggregation and vascular smooth muscle cell proliferation, and are reportedly involved in decreases in plasma levels of adiponectin, an adipokine, in diabetic subjects. Here, we report that systemic administration of sarpogrelate, a 5-HT2A receptor antagonist, suppressed appetite and increased hypothalamic pro-opiomelanocortin and cocaine- and amphetamine-regulated transcript, corticotropin releasing hormone, 5-HT2C, and 5-HT1B receptor gene expression. A{sup y} mice, which have ectopic expression of the agouti protein, significantly increased hypothalamic 5-HT2A receptor gene expression in association with obesity compared with wild-type mice matched for age. Systemic administration of sarpogrelate suppressed overfeeding, body weight gain, and hyperglycemia in obese A{sup y} mice, whereas it did not increase plasma adiponectin levels. These results suggest that obesity increases hypothalamic 5-HT2A receptor gene expression, and pharmacologic inactivation of 5-HT2A receptors inhibits overfeeding and obesity in A{sup y} mice, but did not increase plasma adiponectin levels.

  2. Receptor protein kinase gene encoded at the self-incompatibility locus

    DOEpatents

    Nasrallah, June B.; Nasrallah, Mikhail E.; Stein, Joshua

    1996-01-01

    Described herein is a S receptor kinase gene (SRK), derived from the S locus in Brassica oleracea, having a extracellular domain highly similar to the secreted product of the S-locus glycoprotein gene.

  3. Calcium-Sensing Receptor Gene: Regulation of Expression.

    PubMed

    Hendy, Geoffrey N; Canaff, Lucie

    2016-01-01

    The human calcium-sensing receptor gene (CASR) has 8 exons, and localizes to chromosome 3q. Exons 1A and 1B encode alternative 5'-untranslated regions (UTRs) that splice to exon 2 encoding the AUG initiation codon. Exons 2-7 encode the CaSR protein of 1078 amino acids. Promoter P1 has TATA and CCAAT boxes upstream of exon 1A, and promoter P2 has Sp1/3 motifs at the start site of exon 1B. Exon 1A transcripts from the P1 promoter are reduced in parathyroid tumors and colon carcinomas. Studies of colon carcinomas and neuroblastomas have emphasized the importance of epigenetic changes-promoter methylation of the GC-rich P2 promoter, histone acetylation-as well as involvement of microRNAs in bringing about CASR gene silencing and reduced CaSR expression. Functional cis-elements in the CASR promoters responsive to 1,25-dihydroxyvitamin D [1,25(OH)2D], proinflammatory cytokines, and the transcription factor glial cells missing-2 (GCM2) have been characterized. Reduced levels of CaSR and reduced responsiveness to active vitamin D in parathyroid neoplasia and colon carcinoma may blunt the "tumor suppressor" activity of the CaSR. The hypocalcemia of critically ill patients with burn injury or sepsis is associated with CASR gene upregulation by TNF-alpha and IL-1beta via kappaB elements, and by IL-6 via Stat1/3 and Sp1/3 elements in the CASR gene promoters, respectively. The CASR is transactivated by GCM2-the expression of which is essential for parathyroid gland development. Hyperactive forms of GCM2 may contribute to later parathyroid hyperactivity or tumorigenesis. The expression of the CaSR-the calciostat-is regulated physiologically and pathophysiologically at the gene level. PMID:27679579

  4. Calcium-Sensing Receptor Gene: Regulation of Expression

    PubMed Central

    Hendy, Geoffrey N.; Canaff, Lucie

    2016-01-01

    The human calcium-sensing receptor gene (CASR) has 8 exons, and localizes to chromosome 3q. Exons 1A and 1B encode alternative 5′-untranslated regions (UTRs) that splice to exon 2 encoding the AUG initiation codon. Exons 2–7 encode the CaSR protein of 1078 amino acids. Promoter P1 has TATA and CCAAT boxes upstream of exon 1A, and promoter P2 has Sp1/3 motifs at the start site of exon 1B. Exon 1A transcripts from the P1 promoter are reduced in parathyroid tumors and colon carcinomas. Studies of colon carcinomas and neuroblastomas have emphasized the importance of epigenetic changes—promoter methylation of the GC-rich P2 promoter, histone acetylation—as well as involvement of microRNAs in bringing about CASR gene silencing and reduced CaSR expression. Functional cis-elements in the CASR promoters responsive to 1,25-dihydroxyvitamin D [1,25(OH)2D], proinflammatory cytokines, and the transcription factor glial cells missing-2 (GCM2) have been characterized. Reduced levels of CaSR and reduced responsiveness to active vitamin D in parathyroid neoplasia and colon carcinoma may blunt the “tumor suppressor” activity of the CaSR. The hypocalcemia of critically ill patients with burn injury or sepsis is associated with CASR gene upregulation by TNF-alpha and IL-1beta via kappaB elements, and by IL-6 via Stat1/3 and Sp1/3 elements in the CASR gene promoters, respectively. The CASR is transactivated by GCM2—the expression of which is essential for parathyroid gland development. Hyperactive forms of GCM2 may contribute to later parathyroid hyperactivity or tumorigenesis. The expression of the CaSR—the calciostat—is regulated physiologically and pathophysiologically at the gene level. PMID:27679579

  5. Calcium-Sensing Receptor Gene: Regulation of Expression

    PubMed Central

    Hendy, Geoffrey N.; Canaff, Lucie

    2016-01-01

    The human calcium-sensing receptor gene (CASR) has 8 exons, and localizes to chromosome 3q. Exons 1A and 1B encode alternative 5′-untranslated regions (UTRs) that splice to exon 2 encoding the AUG initiation codon. Exons 2–7 encode the CaSR protein of 1078 amino acids. Promoter P1 has TATA and CCAAT boxes upstream of exon 1A, and promoter P2 has Sp1/3 motifs at the start site of exon 1B. Exon 1A transcripts from the P1 promoter are reduced in parathyroid tumors and colon carcinomas. Studies of colon carcinomas and neuroblastomas have emphasized the importance of epigenetic changes—promoter methylation of the GC-rich P2 promoter, histone acetylation—as well as involvement of microRNAs in bringing about CASR gene silencing and reduced CaSR expression. Functional cis-elements in the CASR promoters responsive to 1,25-dihydroxyvitamin D [1,25(OH)2D], proinflammatory cytokines, and the transcription factor glial cells missing-2 (GCM2) have been characterized. Reduced levels of CaSR and reduced responsiveness to active vitamin D in parathyroid neoplasia and colon carcinoma may blunt the “tumor suppressor” activity of the CaSR. The hypocalcemia of critically ill patients with burn injury or sepsis is associated with CASR gene upregulation by TNF-alpha and IL-1beta via kappaB elements, and by IL-6 via Stat1/3 and Sp1/3 elements in the CASR gene promoters, respectively. The CASR is transactivated by GCM2—the expression of which is essential for parathyroid gland development. Hyperactive forms of GCM2 may contribute to later parathyroid hyperactivity or tumorigenesis. The expression of the CaSR—the calciostat—is regulated physiologically and pathophysiologically at the gene level.

  6. Transferrin protein nanospheres: a nanoplatform for receptor-mediated cancer cell labeling and gene delivery

    NASA Astrophysics Data System (ADS)

    McDonald, Michael A.; Spurlin, Tighe A.; Tona, Alessandro; Elliott, John T.; Halter, Michael; Plant, Anne L.

    2010-02-01

    This paper presents preliminary results on the use of transferrin protein nanospheres (TfpNS) for targeting cancer cells in vitro. Protein nanospheres represent an easily prepared and modifiable nanoplatform for receptor-specific targeting, molecular imaging and gene delivery. Rhodamine B isothiocyanate conjugated TfpNS (RBITC-TfpNS) show significantly enhanced uptake in vitro in SK-MEL-28 human malignant melanoma cells known to overexpress transferrin receptors compared to controls. RBITCTfpNS labeling of the cancer cells is due to transferrin receptor-mediated uptake, as demonstrated by competitive inhibition with native transferrin. Initial fluorescence microscopy studies indicate GFP plasmid can be transfected into melanoma cells via GFP plasmid encapsulated by TfpNS.

  7. A constitutive promoter directs expression of the nerve growth factor receptor gene

    SciTech Connect

    Sehgal, A.; Patil, N.; Chao, M.

    1988-08-01

    Expression of nerve growth factor receptor is normally restricted to cells derived from the neural crest in a developmentally regulated manner. The authors analyzed promoter sequences for the human nerve growth factor receptor gene and found that the receptor promoter resembles others which are associated with constitutively expressed genes that have housekeeping and growth-related functions. Unlike these other genes, the initiation of transcription occurred at one major site rather than at multiple sites. The constitutive nature of the nerve growth factor receptor promoter may account for the ability of this gene to be transcribed in a diverse number of heterologous cells after gene transfer. The intron-exon structure of the receptor gene indicated that structural features are precisely divided into discrete domains.

  8. The dopamine D sub 2 receptor locus as a modifying gene in neuropsychiatric disorders

    SciTech Connect

    Comings, D.E.; Comings, B.G.; Muhleman, D.; Dietz, G.; Shahbahrami, B.; Tast, D.; Knell, E.; Kocsis, P.; Baumgarten, R.; Kovacs, B.W.; Gysin, R.; Flanagan, S.D. ); Levy, D.L. ); Smith, M. ); Klein, D.N. ); MacMurray, J.; Tosk, J.M. ); Sverd, J. Cornell Univ. Medical College, Manhasset, NY ); Borison, R.L.; Evans, D.D. )

    1991-10-02

    The A1 allele of the Taq I polymorphism of the dopamine D{sub 2} receptor (DRD2) gene has been earlier reported to occur in 69% of alcoholics, compared with 20% of controls. Other research has reported no significant difference in the prevalence of the A1 allele in alcoholics vs controls and no evidence that the DRD2 gene was linked to alcoholism. The authors hypothesized that these seemingly conflicting results might be because increases in the prevalence of the A1 allele may not be specific to alcoholism. Thus, they examined other disorders frequently associated with alcoholism or those believed to involve defects in dopaminergic neurotransmission.

  9. Association of a complement receptor 1 gene variant with baseline erythrocyte sedimentation rate levels in patients starting anti-TNF therapy in a UK rheumatoid arthritis cohort: results from the Biologics in Rheumatoid Arthritis Genetics and Genomics Study Syndicate cohort

    PubMed Central

    Bluett, J; Ibrahim, I; Plant, D; Hyrich, K L; Morgan, A W; Wilson, A G; Isaacs, J D; Gaston, H; Mulherin, D; Price, T; Sheeran, T; Chalam, V; Baskar, S; Emery, P; Morgan, A; Buch, M; Bingham, S; O'Reilly, S; Badcock, L; Regan, M; Ding, T; Deighton, C; Summers, G; Raj, N; Stevens, R; Williams, N; Isaacs, J; Platt, P; Walker, D; Kay, L; Griffiths, B; Ng, W-F; Peterson, P; Lorenzi, A; Foster, H; Friswell, M; Thompson, B; Lee, M; Griffiths, I; Hassell, A; Dawes, P; Dowson, C; Kamath, S; Packham, J; Shadforth, M; Brownfield, Ann; Williams, R; Mukhtyar, C; Harrison, B; Snowden, N; Naz, S; Ledingham, J; Hull, R; McCrae, F; Thomas, A; Min, S Young; Shaban, R; Wong, E; Kelly, C; Heycock, C; Hamilton, J; Saravanan, V; Wilson, G; Bax, D; Dunkley, L; Akil, M; Tattersall, R; Kilding, R; Till, S; Boulton, J; Tait, T; Bukhari, M; Halsey, J; Ottewell, L; Buckley, C; Situnayake, D; Carruthers, D; Grindulis, K; Khatack, F; Elamanchi, S; Raza, K; Filer, A; Jubb, R; Abernathy, R; Plant, M; Pathare, S; Clarke, F; Tuck, S; Fordham, J; Paul, A; Bridges, M; Hakim, A; O'Reilly, D; Rajagopal, V; Bhagat, S; Edwards, C; Prouse, P; Moitra, R; Shawe, D; Bamji, A; Klimiuk, P; Bowden, A; Mitchell, W; Bruce, I; Barton, A; Gorodkin, R; Ho, P; Hyrich, K; Dixon, W; Rai, A; Kitas, G; Erb, N; Klocke, R; Douglas, K; Pace, A; Sandhu, R; Whallett, A; Birrell, F; Allen, M; Chaudhuri, K; Chattopadhyay, C; McHale, J; Jones, A; Gupta, A; Pande, I; Gaywood, I; Lanyon, P; Courtney, P; Doherty, M; Chinoy, H; O'Neill, T; Herrick, A; Jones, A; Cooper, R; Bucknall, R; Marguerie, C; Rigby, S; Dunn, N; Green, S; Al-Ansari, A; Webber, S; Hopkinson, N; Dunne, C; Quilty, B; Szebenyi, B; Green, M; Quinn, M; Isdale, A; Brown, A; Saleem, B; Samanta, A; Sheldon, P; Hassan, W; Francis, J; Kinder, A; Neame, R; Moorthy, A; Al-Allaf, W; Taggart, A; Fairburn, K; McKenna, F; Green, M; Gough, A; Lawson, C; Piper, M; Korendowych, E; Jenkinson, T; Sengupta, R; Bhalla, A; McHugh, N; Bond, Debbie; Luqmani, R; Bowness, B; Wordsworth, P; David, J; Smith, W; Mewar, D; Tunn, E; Nelson, K; Kennedy, T; Nixon, J; Woolf, A; Davis, M; Hutchinson, D; Endean, A; Coady, D; Wright, D; Morley, C; Raftery, G; Bracewell, C; Kidd, L; Abbas, I; Filer, C; Kallarackal, G; Barton, A

    2014-01-01

    Eligibility for anti-tumour necrosis factor (TNF) therapy in most European countries is restricted to severe, active rheumatoid arthritis (RA). The DAS28 score is a marker of disease severity and incorporates one of two inflammatory markers, erythrocyte sedimentation rate (ESR) or C-reactive protein. We aimed to determine the relation between genetic variants known to affect ESR and levels of ESR in patients with active RA. DNA samples were genotyped for four single-nucleotide polymorphisms (SNPs) rs7527798 (CR1L), rs6691117 (CR1), rs10903129 (TMEM57) and rs1043879 (C1orf63). The association between SNPs and baseline ESR, baseline DAS28-ESR, and change in DAS28-ESR was evaluated. Baseline ESR was significantly associated with CR1 rs6691117 genotype (P=0.01). No correlation was identified between baseline DAS28-ESR or change in DAS28-ESR. In conclusion, genetic variation in the gene encoding CR1 may alter ESR levels but not DAS28-ESR, indicating no adjustment for CR1 genotype is required in the assessment of patients with severe active RA. PMID:23856853

  10. Enhancement of gene transactivation activity of androgen receptor by hepatitis B virus X protein

    SciTech Connect

    Zheng Yanyan; Chen Wenling; Ma, W.-L. Maverick; Chang Chawnshang; Ou, J.-H. James . E-mail: jamesou@hsc.usc.edu

    2007-07-05

    Hepatitis B virus (HBV) X protein (HBx) is a regulatory protein that is required for efficient replication of HBV in its natural host. In this report, we demonstrate by co-immunoprecipitation experiments that HBx can physically bind to the androgen receptor (AR), which is a nuclear hormone receptor that is expressed in many different tissues including the liver. This observation is further supported by confocal microscopy, which reveals that HBx can alter the subcellular localization of the AR both in the presence and in the absence of dihydrotestosterone (DHT). Further studies indicate that HBx can enhance the gene transactivation activity of AR by enhancing its DNA binding activity in a DHT-dependent manner. However, HBx does not remain associated with AR on the DNA. As AR can regulate the expression of a number of cellular genes, our results raise the possibility that HBV pathogenesis may be mediated in part via the interaction between HBx and AR.

  11. Growth and gene expression are predominantly controlled by distinct regions of the human IL-4 receptor.

    PubMed

    Ryan, J J; McReynolds, L J; Keegan, A; Wang, L H; Garfein, E; Rothman, P; Nelms, K; Paul, W E

    1996-02-01

    IL-4 causes hematopoietic cells to proliferate and express a series of genes, including CD23. We examined whether IL-4-mediated growth, as measured by 4PS phosphorylation, and gene induction were similarly controlled. Studies of M12.4.1 cells expressing human IL-4R truncation mutants indicated that the region between amino acids 557-657 is necessary for full gene expression, which correlated with Stat6 DNA binding activity. This region was not required for 4PS phosphorylation. Tyrosine-to-phenylalanine mutations in the interval between amino acids 557-657 revealed that as long as one tyrosine remained unmutated, CD23 was fully induced. When all three tyrosines were mutated, the receptor was unable to induce CD23. The results indicate that growth regulation and gene expression are principally controlled by distinct regions of IL-4R.

  12. Ethylene and pollination decrease transcript abundance of an ethylene receptor gene in Dendrobium petals.

    PubMed

    Thongkum, Monthathip; Burns, Parichart; Bhunchoth, Anjana; Warin, Nuchnard; Chatchawankanphanich, Orawan; van Doorn, Wouter G

    2015-03-15

    We studied the expression of a gene encoding an ethylene receptor, called Ethylene Response Sensor 1 (Den-ERS1), in the petals of Dendrobium orchid flowers. Transcripts accumulated during the young floral bud stage and declined by the time the flowers had been open for several days. Pollination or exposure to exogenous ethylene resulted in earlier flower senescence, an increase in ethylene production and a lower Den-ERS1 transcript abundance. Treatment with 1-methylcyclopropene (1-MCP), an inhibitor of the ethylene receptor, decreased ethylene production and resulted in high transcript abundance. The literature indicates two kinds of ethylene receptor genes with regard to the effects of ethylene. One group shows ethylene-induced down-regulated transcription, while the other has ethylene-induced up-regulation. The present gene is an example of the first group. The 5' flanking region showed binding sites for Myb and myb-like, homeodomain, MADS domain, NAC, TCP, bHLH and EIN3-like transcription factors. The binding site for the EIN3-like factor might explain the ethylene effect on transcription. A few other transcription factors (RAV1 and NAC) seem also related to ethylene effects.

  13. Progesterone receptor gene variants and risk of endometrial cancer

    PubMed Central

    O'Mara, Tracy A.; Fahey, Paul; Ferguson, Kaltin; Marquart, Louise; Lambrechts, Diether; Despierre, Evelyn; Vergote, Ignace; Amant, Frederic; Hall, Per; Liu, Jianjun; Czene, Kamila; Rebbeck, Timothy R.; Ahmed, Shahana; Dunning, Alison M.; Gregory, Catherine S.; Shah, Mitul; Webb, Penelope M.; Spurdle, Amanda B.

    2011-01-01

    Prolonged excessive estrogen exposure unopposed by progesterone is widely accepted to be a risk factor for endometrial cancer development. The physiological function of progesterone is dependent upon the presence of its receptor [progesterone receptor (PGR)] and several studies have reported single nucleotide polymorphisms (SNPs) in the PGR gene to be associated with endometrial cancer risk. We sought to confirm the associations with endometrial cancer risk previously reported for four different PGR polymorphisms. A maximum of 2888 endometrial cancer cases and 4483 female control subjects from up to three studies were genotyped for four PGR polymorphisms (rs1042838, rs10895068, rs11224561 and rs471767). Logistic regression with adjustment for age, study, ethnicity and body mass index was performed to calculate odds ratios (ORs) and associated 95% confidence intervals (CIs) and P-values. Of the four SNPs investigated, only rs11224561 in the 3′ region of the PGR gene was found to be significantly associated with endometrial cancer risk. The A allele of the rs11224561 SNP was associated with increased risk of endometrial cancer (OR per allele 1.31; 95% CI 1.12–1.53, P = 0.001, adjusted for age and study), an effect of the same magnitude and direction as reported previously. We have validated the endometrial cancer risk association with a tagSNP in the 3′ untranslated region of PGR previously reported in an Asian population. Replication studies will be required to refine the risk estimate and to establish if this, or a correlated SNP, is the underlying causative variant. PMID:21148628

  14. An Expression Refinement Process Ensures Singular Odorant Receptor Gene Choice.

    PubMed

    Abdus-Saboor, Ishmail; Al Nufal, Mohammed J; Agha, Maha V; Ruinart de Brimont, Marion; Fleischmann, Alexander; Shykind, Benjamin M

    2016-04-25

    Odorant receptor (OR) gene choice in mammals is a paradigmatic example of monogenic and monoallelic transcriptional selection, in which each olfactory sensory neuron (OSN) chooses to express one OR allele from over 1,000 encoded in the genome [1-3]. This process, critical for generation of the circuit from nose to brain [4-6], is thought to occur in two steps: a slow initial phase that randomly activates a single OR allele, followed by a rapid feedback that halts subsequent expression [7-14]. Inherent in this model is a finite failure rate wherein multiple OR alleles may be activated prior to feedback suppression [15, 16]. Confronted with more than one receptor, the neuron would need to activate a refinement mechanism to eliminate multigenic OR expression and resolve unique neuronal identity [16], critical to the generation of the circuit from nose to olfactory bulb. Here we used a genetic approach in mice to reveal a new facet of OR regulation that corrects adventitious activation of multiple OR alleles, restoring monogenic OR expression and unique neuronal identity. Using the tetM71tg model system, in which the M71 OR is expressed in >95% of mature OSNs and potently suppresses the expression of the endogenous OR repertoire [10], we provide clear evidence of a post-selection refinement (PSR) process that winnows down the number of ORs. We further demonstrate that PSR efficiency is linked to OR expression level, suggesting an underlying competitive process and shedding light on OR gene switching and the fundamental mechanism of singular OR choice. PMID:27040780

  15. Association between the vitamin D receptor gene polymorphism and osteoporosis

    PubMed Central

    Wu, Ju; Shang, De-Peng; Yang, Sheng; Fu, Da-Peng; Ling, Hao-Yi; Hou, Shuang-Shuang; Lu, Jian-Min

    2016-01-01

    The influence of the vitamin D receptor (VDR) gene for the risk of osteoporosis remains to be elucidated. The aim of the present study was to understand the distribution of various single-nucleotide polymorphisms (SNPs) within the VDR gene and its association with the risk of osteoporosis. In total, 378 subjects without a genetic relationship were recruited to the study between January 2013 and July 2015. The subjects were divided into three groups, which were the normal (n=234), osteoporosis (n=65) and osteoporosis with osteoporotic fracture (n=79) groups. Three pertinent SNPs of the VDR gene rs17879735 (ApaI, Allele A/a, SNP C>A) were examined with polymerase chain reaction-restriction fragment length polymorphism. The bone mineral density (BMD) of the lumbar spine (L2-L4), femoral neck, Ward's and Tro was measured using dual-energy X-ray absorptiometry. The distributions of genotype frequencies aa, AA and Aa were 48.68, 42.86 and 8.46%, separately. Following analysis of each site, BMD, body mass index (BMI) and age, BMD for each site was negatively correlated with age (P<0.01) and positively correlated with BMI (P<0.01). Correction analysis revealed that there were significant differences in the Ward's triangle BMD among each genotype (P<0.05), in which the aa genotype exhibited the lower BMD (P<0.05). No significant difference was identified among the different genotypes in the occurrence of osteoporosis with osteoporotic fracture (P>0.05). In conclusion, these indicated that the VDR gene ApaI polymorphisms had an important role in the osteoporosis risk. PMID:27446548

  16. The human gene for neurotrophic tyrosine kinase receptor type 2 (NTRK2) is located on chromosome 9 but is not the familial dysautonomia gene

    SciTech Connect

    Slaugenhaupt, S.A. |; Liebert, C.B.; Lucente, D.E.

    1995-02-10

    The neurotrophic tyrosine kinase receptor type 2 (NTRK2) gene is a member of the trk family of tyrosine protein kinases, which encode receptors for the nerve growth factor-related proteins known as neurotrophins. The neurotrophins and their receptors have long been considered candidate genes for familial dysautonomia (FD), a hereditary sensory neuropathy resulting from the congenital loss of both sensory and autonomic neurons. The DYS gene has recently been mapped to human chromosome 9q31-q33, and therefore we set out to determine the chromosomal localization of the candidate gene NTRK2. A mouse trkB probe was hybridized to both somatic cell hybrids containing human chromosome 9 and a human chromosome 9 flow-sorted cosmid library. The human homologue of trkB, NTRK2, was assigned to chromosome 9. To localize the NTRK2 gene further, a dinucleotide repeat polymorphism was identified within a cosmid that contains NTRK2 exon sequences. This marker was genotyped in the CEPH reference pedigrees and places the NTRK2 gene near D9S1 on the proximal long arm of human chromosome 9. The NTRK2 gene is located approximately 22 cm proximal to DYS and shows several recombinants in disease families. Therefore, the NTRK2 gene can now be excluded as a candidate gene for familial dysautonomia. 18 refs., 1 fig.

  17. Olfactory receptor genes cooperate with protocadherin genes in human extreme obesity.

    PubMed

    Mariman, Edwin C M; Szklarczyk, Radek; Bouwman, Freek G; Aller, Erik E J G; van Baak, Marleen A; Wang, Ping

    2015-07-01

    Worldwide, the incidence of obesity has increased dramatically over the past decades. More knowledge about the complex etiology of obesity is needed in order to find additional approaches for treatment and prevention. Investigating the exome sequencing data of 30 extremely obese subjects (BMI 45-65 kg/m(2)) shows that predicted damaging missense variants in olfactory receptor genes on chromosome 1q and rare predicted damaging variants in the protocadherin (PCDH) beta-cluster genes on chromosome 5q31, reported in our previous work, co-localize in subjects with extreme obesity. This implies a synergistic effect between genetic variation in these gene clusters in the predisposition to extreme obesity. Evidence for a general involvement of the olfactory transduction pathway on itself could not be found. Bioinformatic analysis indicates a specific involvement of the PCDH beta-cluster genes in controlling tissue development. Further mechanistic insight needs to await the identification of the ligands of the 1q olfactory receptors. Eventually, this may provide the possibility to manipulate food flavor in a way to reduce the risk of overeating and of extreme obesity in genetically predisposed subjects.

  18. The Dopamine D2 Receptor Gene, Perceived Parental Support, and Adolescent Loneliness: Longitudinal Evidence for Gene-Environment Interactions

    ERIC Educational Resources Information Center

    van Roekel, Eeske; Goossens, Luc; Scholte, Ron H. J.; Engels, Rutger C. M. E.; Verhagen, Maaike

    2011-01-01

    Background: Loneliness is a common problem in adolescence. Earlier research focused on genes within the serotonin and oxytocin systems, but no studies have examined the role of dopamine-related genes in loneliness. In the present study, we focused on the dopamine D2 receptor gene (DRD2). Methods: Associations among the DRD2, sex, parental support,…

  19. Ecdysone Receptor Gene Switch Technology for Inducible Gene Expression in Plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inducible gene regulation systems based on specific chemicals have many potential applications in agriculture and in the basic understanding of gene function. As a result several gene switches have been developed. However, the properties of the chemicals used in most of these switches make their use...

  20. Atlantic salmon possesses two clusters of type I interferon receptor genes on different chromosomes, which allows for a larger repertoire of interferon receptors than in zebrafish and mammals.

    PubMed

    Sun, Baojian; Greiner-Tollersrud, Linn; Koop, Ben F; Robertsen, Børre

    2014-12-01

    Mammalian type I interferons (IFNs) signal through a receptor composed of the IFNAR1 and IFNAR2 chains. In zebrafish two-cysteine IFNs utilize a receptor composed of CRFB1 and CRFB5, while four-cysteine IFNs signal through a receptor formed by CRFB2 and CRFB5. In the present work two CRFB clusters were identified in different chromosomes of Atlantic salmon. Genes of three CRFB5s, one CRFB1, one CRFB2 and the novel CRFB5x were identified, cloned and studied functionally. All CRFBs were expressed in 10 different organs, but the relative expression of CRFBs varied. Mx-reporter assay was used to study which CRFBs might be involved in receptors for salmon IFNa, IFNb and IFNc. The results of Mx-reporter assays suggest that IFNa signals through a receptor composed of CRFB1a as the long chain and either CRFB5a, CRFB5b or CRFB5c as the short chain; IFNc signals through a receptor with CRFB5a or CRFB5c as the short chain while IFNb may signal through a receptor with CRFB5x as a short chain. Taken together, the present work demonstrates that Atlantic salmon has a more diverse repertoire of type I IFN receptors compared to zebrafish or mammals. PMID:25149134

  1. The effect of TAK-778 on gene expression of osteoblastic cells is mediated through estrogen receptor.

    PubMed

    Bellesini, Larissa S; Beloti, Marcio M; Crippa, Grasiele E; Bombonato-Prado, Karina F; Junta, Cristina M; Marques, Marcia M; Passos, Geraldo A; Rosa, Adalberto L

    2009-02-01

    This study evaluated the effect of TAK-778 [(2R, 4S)-(-)-N-(4-diethoxyphosphorylmethylphenyl)-1,2,4,5-tetrahydro-4-methyl-7,8-methylenedioxy-5-oxo-3-benzothiepin-2-carboxamide)] on in vitro osteogenic events and on gene expression of osteoblastic cells derived from human alveolar bone and the participation of estrogen receptors (ERs) on such effect. Osteoblastic cells were subcultured, with or without TAK-778 (10(-5) M), to evaluate cell growth and viability, total protein content, and alkaline phosphatase (ALP) activity at 7, 14, and 21 days; bone-like formation at 21 days; and gene expression, using cDNA microarray, at 7 days. Also, osteoblastic cells were exposed to TAK-778 (10(-5) M) combined to ICI182,780, a nonspecific ER antagonist (10(-6) M), and gene expression was evaluated by real-time polymerase chain reaction (PCR) at 7 days. TAK-778 induced a reduction in culture growth and an increase in cell synthesis, ALP activity, and bone-like formation. The cDNA microarray showed genes associated with cell adhesion and differentiation, skeletal development, ossification, and transforming growth factor-beta receptor signaling pathway, with a tendency to be higher expressed in cells exposed to TAK-778. The gene expression of ALP, osteocalcin, Msh homeobox 2, receptor activator of NF-kappa B ligand, and intercellular adhesion molecule 1 was increased by TAK-778 as demonstrated by real-time PCR, and this effect was antagonized by ICI182,780. The present results demonstrated that TAK-778 acts at a transcriptional level to enhance the in vitro osteogenic process and that its effect on gene expression of osteoblastic cells is mediated, at least partially, through ERs. Based on these findings, TAK-778 could be considered in the treatment of bone metabolic disorders.

  2. Expression and retinoic acid regulation of the zebrafish nr2f orphan nuclear receptor genes

    PubMed Central

    Love, Crystal E.; Prince, Victoria E.

    2012-01-01

    Background The vertebrate nuclear receptor subfamily 2, group f (nr2f) genes encode orphan receptors that have the capacity to act as negative regulators of retinoic acid (RA) signaling. Results We describe embryonic and larval expression of four of the six zebrafish nr2f genes, nr2f1a, nr2f1b, nr2f2 and nr2f5. These genes show highly regulated patterns of expression within the CNS, including in the developing hindbrain, as well as in the mesoderm and endoderm. We also investigated the role of RA and Fgf signaling in regulating early nr2f gene expression. RA is not required for nr2f expression in the hindbrain; however, exogenous RA can repress this expression. Conversely, we find that RA positively regulates nr2f1a expression in trunk endoderm and mesoderm. Fgf signaling is not required for nr2f expression onset in the hindbrain; however, it may play a role in maintaining rhombomere-specific expression. Conclusions We report detailed expression analysis of four nr2f genes in all three germ layers. The onset of nr2f expression in the hindbrain does not require RA or Fgf signals. Our finding that RA positively regulates nr2f1a expression in the trunk supports the possibility that Nr2fs function in a negative feedback loop to modulate RA signaling in this region. PMID:22836912

  3. Interaction between Calpain 5, Peroxisome proliferator-activated receptor-gamma and Peroxisome proliferator-activated receptor-delta genes: a polygenic approach to obesity

    PubMed Central

    Sáez, María E; Grilo, Antonio; Morón, Francisco J; Manzano, Luis; Martínez-Larrad, María T; González-Pérez, Antonio; Serrano-Hernando, Javier; Ruiz, Agustín; Ramírez-Lorca, Reposo; Serrano-Ríos, Manuel

    2008-01-01

    Context Obesity is a multifactorial disorder, that is, a disease determined by the combined effect of genes and environment. In this context, polygenic approaches are needed. Objective To investigate the possibility of the existence of a crosstalk between the CALPAIN 10 homologue CALPAIN 5 and nuclear receptors of the peroxisome proliferator-activated receptors family. Design Cross-sectional, genetic association study and gene-gene interaction analysis. Subjects The study sample comprise 1953 individuals, 725 obese (defined as body mass index ≥ 30) and 1228 non obese subjects. Results In the monogenic analysis, only the peroxisome proliferator-activated receptor delta (PPARD) gene was associated with obesity (OR = 1.43 [1.04–1.97], p = 0.027). In addition, we have found a significant interaction between CAPN5 and PPARD genes (p = 0.038) that reduces the risk for obesity in a 55%. Conclusion Our results suggest that CAPN5 and PPARD gene products may also interact in vivo. PMID:18657264

  4. The frequency distribution of vitamin D Receptor fok I gene polymorphism among Ugandan pulmonary TB patients

    PubMed Central

    Acen, Ester L.; Worodria, William; Mulamba, Peter; Kambugu, Andrew; Erume, Joseph

    2016-01-01

    Background: Mycobacterium tuberculosis (TB) is still a major problem globally and especially in Africa. Vitamin D deficiency has been linked to TB in the past and studies have found vitamin D deficiency to be common among Ugandan TB patients. The functional activity of vitamin D is dependent on the genotype of the vitamin D receptor (VDR) polymorphic genes. Recent findings have indicated that VDR polymorphisms may cause increased resistance or susceptibility to TB. The vitamin D ligand and its receptor play a pivotal role in innate immunity by eliciting antimicrobial activity, which is important in prevention of TB. The fok I vitamin D receptor gene has extensively been examined in TB patients but findings so far have been inconclusive. Objectives: This study sought to investigate the frequency distribution of the VDR fok I gene polymorphisms in pulmonary TB patients and controls. Methods: A pilot case control study of 41 newly diagnosed TB patients and 41 healthy workers was set up. Vitamin D receptor fok I gene was genotyped. Results: The frequency distribution of fok I genotype in Ugandan TB patients was 87.8% homozygous-dominant (FF), 7.3% (Ff) heterozygous and 4.8% (ff) homozygous recessive. For normal healthy subjects the frequencies were (FF) 92.6%, (Ff) 2.4% and (ff) 4.8%. No significant difference was observed in the FF and ff genotypes among TB patients and controls. The Ff heterozygous genotype distribution appeared more in TB patients than in controls. A significant difference was observed in the fok I genotype among gender p value 0.02. No significant difference was observed in ethnicity, p value 0.30. Conclusions: The heterozygous Ff fok I genotype may be associated with TB in the Ugandan population.

  5. Sequence Analysis of Bitter Taste Receptor Gene Repertoires in Different Ruminant Species

    PubMed Central

    Monteiro Ferreira, Ana; Tomás Marques, Andreia; Bhide, Mangesh; Cubric-Curik, Vlatka; Hollung, Kristin; Knight, Christopher Harold; Raundrup, Katrine; Lippolis, John; Palmer, Mitchell; Sales-Baptista, Elvira; Araújo, Susana Sousa; de Almeida, André Martinho

    2015-01-01

    Bitter taste has been extensively studied in mammalian species and is associated with sensitivity to toxins and with food choices that avoid dangerous substances in the diet. At the molecular level, bitter compounds are sensed by bitter taste receptor proteins (T2R) present at the surface of taste receptor cells in the gustatory papillae. Our work aims at exploring the phylogenetic relationships of T2R gene sequences within different ruminant species. To accomplish this goal, we gathered a collection of ruminant species with different feeding behaviors and for which no genome data is available: American bison, chamois, elk, European bison, fallow deer, goat, moose, mouflon, muskox, red deer, reindeer and white tailed deer. The herbivores chosen for this study belong to different taxonomic families and habitats, and hence, exhibit distinct foraging behaviors and diet preferences. We describe the first partial repertoires of T2R gene sequences for these species obtained by direct sequencing. We then consider the homology and evolutionary history of these receptors within this ruminant group, and whether it relates to feeding type classification, using MEGA software. Our results suggest that phylogenetic proximity of T2R genes corresponds more to the traditional taxonomic groups of the species rather than reflecting a categorization by feeding strategy. PMID:26061084

  6. Sequence Analysis of Bitter Taste Receptor Gene Repertoires in Different Ruminant Species.

    PubMed

    Monteiro Ferreira, Ana; Tomás Marques, Andreia; Bhide, Mangesh; Cubric-Curik, Vlatka; Hollung, Kristin; Knight, Christopher Harold; Raundrup, Katrine; Lippolis, John; Palmer, Mitchell; Sales-Baptista, Elvira; Araújo, Susana Sousa; de Almeida, André Martinho

    2015-01-01

    Bitter taste has been extensively studied in mammalian species and is associated with sensitivity to toxins and with food choices that avoid dangerous substances in the diet. At the molecular level, bitter compounds are sensed by bitter taste receptor proteins (T2R) present at the surface of taste receptor cells in the gustatory papillae. Our work aims at exploring the phylogenetic relationships of T2R gene sequences within different ruminant species. To accomplish this goal, we gathered a collection of ruminant species with different feeding behaviors and for which no genome data is available: American bison, chamois, elk, European bison, fallow deer, goat, moose, mouflon, muskox, red deer, reindeer and white tailed deer. The herbivores chosen for this study belong to different taxonomic families and habitats, and hence, exhibit distinct foraging behaviors and diet preferences. We describe the first partial repertoires of T2R gene sequences for these species obtained by direct sequencing. We then consider the homology and evolutionary history of these receptors within this ruminant group, and whether it relates to feeding type classification, using MEGA software. Our results suggest that phylogenetic proximity of T2R genes corresponds more to the traditional taxonomic groups of the species rather than reflecting a categorization by feeding strategy.

  7. IDENTIFICATION OF NOVEL FIBROBLAST GROWTH FACTOR RECEPTOR 3 GENE MUTATIONS IN ACTINIC CHEILITIS

    PubMed Central

    Chou, Annie; Dekker, Nusi; Jordan, Richard C.K.

    2009-01-01

    Objective Activating mutations in the fibroblast growth factor receptor 3 (FGFR3) gene are responsible for several craniosynostosis and chondrodysplasia syndromes as well as some human cancers including bladder and cervical carcinoma. Despite a high frequency in some benign skin disorders, FGFR3 mutations have not been reported in cutaneous malignancies. Actinic cheilitis (AC) is a sun-induced premalignancy affecting the lower lip that frequently progresses to squamous cell carcinoma (SCC). The objective of this study was to determine if FGFR3 gene mutations are present in AC and SCC of the lip. Study Design DNA was extracted and purified from micro-dissected, formalin-fixed, paraffin-embedded tissue sections of 20 cases of AC and SCC arising in AC. Exons 7, 15, and 17 were PCR amplified and direct sequenced. Results Four novel somatic mutations in the FGFR3 gene were identified: exon 7 mutation 742C→T (amino acid change R248C), exon 15 mutations 1850A→G (D617G) and 1888G→A (V630M), and exon 17 mutation 2056G→A (E686K). Grade of dysplasia did not correlate with presence of mutations. Conclusion The frequency of FGFR3 receptor mutations suggests a functional role for the FGFR3 receptor in the development of epithelial disorders and perhaps a change may contribute to the pathogenesis of some AC and SCC. PMID:19327639

  8. Rapid, Nonradioactive Detection of Clonal T-Cell Receptor Gene Rearrangements in Lymphoid Neoplasms

    NASA Astrophysics Data System (ADS)

    Bourguin, Anne; Tung, Rosann; Galili, Naomi; Sklar, Jeffrey

    1990-11-01

    Southern blot hybridization analysis of clonal antigen receptor gene rearrangements has proved to be a valuable adjunct to conventional methods for diagnosing lymphoid neoplasia. However, Southern blot analysis suffers from a number of technical disadvantages, including the time necessary to obtain results, the use of radioactivity, and the susceptibility of the method to various artifacts. We have investigated an alternative approach for assessing the clonality of antigen receptor gene rearrangements in lymphoid tissue biopsy specimens. This approach involves the amplification of rearranged γ T-cell receptor genes by the polymerase chain reaction and analysis of the polymerase chain reaction products by denaturing gradient gel electrophoresis. By use of this approach, clonal rearrangements from neoplastic lymphocytes constituting as little as 0.1-1% of the total cells in the tissue are detected as discrete bands in the denaturing gel after the gel is stained with ethidium bromide and viewed under ultraviolet light. In contrast, polyclonal rearrangements from reactive lymphocytes appear as a diffuse smear along the length of the gel. Our findings suggest that polymerase chain reaction combined with denaturing gradient gel electrophoresis may offer a rapid, nonradioactive, and sensitive alternative to Southern blot analysis for the diagnostic evaluation of lymphoid tissue biopsy specimens.

  9. Twisting integrin receptors increases endothelin-1 gene expression in endothelial cells

    NASA Technical Reports Server (NTRS)

    Chen, J.; Fabry, B.; Schiffrin, E. L.; Wang, N.; Ingber, D. E. (Principal Investigator)

    2001-01-01

    A magnetic twisting stimulator was developed based on the previously published technique of magnetic twisting cytometry. Using ligand-coated ferromagnetic microbeads, this device can apply mechanical stresses with varying amplitudes, duration, frequencies, and waveforms to specific cell surface receptors. Biochemical and biological responses of the cells to the mechanical stimulation can be assayed. Twisting integrin receptors with RGD (Arg-Gly-Asp)-containing peptide-coated beads increased endothelin-1 (ET-1) gene expression by >100%. In contrast, twisting scavenger receptors with acetylated low-density lipoprotein-coated beads or twisting HLA antigen with anti-HLA antibody-coated beads did not lead to alterations in ET-1 gene expression. In situ hybridization showed that the increase in ET-1 mRNA was localized in the cells that were stressed with the RGD-coated beads. Blocking stretch-activated ion channels with gadolinium, chelating Ca2+ with EGTA, or inhibiting tyrosine phosphorylation with genistein abolished twist-induced ET-1 mRNA elevation. Abolishing cytoskeletal tension with an inhibitor of the myosin ATPase, with an inhibitor of myosin light chain kinase, or with an actin microfilament disrupter blocked twisted-induced increases in ET-1 expression. Our results are consistent with the hypothesis that the molecular structural linkage of integrin-cytoskeleton is an important pathway for stress-induced ET-1 gene expression.

  10. Sequence Analysis of Bitter Taste Receptor Gene Repertoires in Different Ruminant Species.

    PubMed

    Monteiro Ferreira, Ana; Tomás Marques, Andreia; Bhide, Mangesh; Cubric-Curik, Vlatka; Hollung, Kristin; Knight, Christopher Harold; Raundrup, Katrine; Lippolis, John; Palmer, Mitchell; Sales-Baptista, Elvira; Araújo, Susana Sousa; de Almeida, André Martinho

    2015-01-01

    Bitter taste has been extensively studied in mammalian species and is associated with sensitivity to toxins and with food choices that avoid dangerous substances in the diet. At the molecular level, bitter compounds are sensed by bitter taste receptor proteins (T2R) present at the surface of taste receptor cells in the gustatory papillae. Our work aims at exploring the phylogenetic relationships of T2R gene sequences within different ruminant species. To accomplish this goal, we gathered a collection of ruminant species with different feeding behaviors and for which no genome data is available: American bison, chamois, elk, European bison, fallow deer, goat, moose, mouflon, muskox, red deer, reindeer and white tailed deer. The herbivores chosen for this study belong to different taxonomic families and habitats, and hence, exhibit distinct foraging behaviors and diet preferences. We describe the first partial repertoires of T2R gene sequences for these species obtained by direct sequencing. We then consider the homology and evolutionary history of these receptors within this ruminant group, and whether it relates to feeding type classification, using MEGA software. Our results suggest that phylogenetic proximity of T2R genes corresponds more to the traditional taxonomic groups of the species rather than reflecting a categorization by feeding strategy. PMID:26061084

  11. Pharmacogenetics of the β2-Adrenergic Receptor Gene

    PubMed Central

    Ortega, Victor E.; Hawkins, Gregory A.; Peters, Stephen P.; Bleecker, Eugene R.

    2009-01-01

    Asthma is a complex genetic disease with multiple genetic and environmental determinants contributing to the observed variability in response to common anti-asthma therapies. Asthma pharmacogenetic research has focused on multiple candidate genes including the β2-adrenergic receptor gene (ADRβ2) and its effect on individual responses to beta agonist therapy. At present, knowledge about the effects of ADRβ2 variation on therapeutic responses is evolving and should not alter current Asthma Guideline approaches consisting of the use of short acting beta agonists for as-needed symptom based therapy and the use of a regular long-acting beta agonist in combination with inhaled corticosteroid therapy for optimal control of asthma symptoms in those asthmatics who are not controlled on inhaled corticosteroid alone. This approach is based upon studies showing a consistent pharmacogenetic response to regular use of short acting beta agonists (SABA) and less consistent findings in studies evaluating long acting beta agonist (LABA). While emerging pharmacogenetic studies are provocative and should lead to functional approaches, conflicting data with responses to LABA therapy may be caused by factors that include small sample sizes of study populations and differences in experimental design that may limit the conclusions that may be drawn from these clinical trials at the present time. PMID:17996583

  12. Anti-Epidermal Growth Factor Receptor Gene Therapy for Glioblastoma

    PubMed Central

    Hicks, Martin J.; Chiuchiolo, Maria J.; Ballon, Douglas; Dyke, Jonathan P.; Aronowitz, Eric; Funato, Kosuke; Tabar, Viviane; Havlicek, David; Fan, Fan; Sondhi, Dolan; Kaminsky, Stephen M.; Crystal, Ronald G.

    2016-01-01

    Glioblastoma multiforme (GBM) is the most common and aggressive primary intracranial brain tumor in adults with a mean survival of 14 to 15 months. Aberrant activation of the epidermal growth factor receptor (EGFR) plays a significant role in GBM progression, with amplification or overexpression of EGFR in 60% of GBM tumors. To target EGFR expressed by GBM, we have developed a strategy to deliver the coding sequence for cetuximab, an anti-EGFR antibody, directly to the CNS using an adeno-associated virus serotype rh.10 gene transfer vector. The data demonstrates that single, local delivery of an anti-EGFR antibody by an AAVrh.10 vector coding for cetuximab (AAVrh.10Cetmab) reduces GBM tumor growth and increases survival in xenograft mouse models of a human GBM EGFR-expressing cell line and patient-derived GBM. AAVrh10.CetMab-treated mice displayed a reduction in cachexia, a significant decrease in tumor volume and a prolonged survival following therapy. Adeno-associated-directed delivery of a gene encoding a therapeutic anti-EGFR monoclonal antibody may be an effective strategy to treat GBM. PMID:27711187

  13. Control of energy balance by hypothalamic gene circuitry involving two nuclear receptors, neuron-derived orphan receptor 1 and glucocorticoid receptor.

    PubMed

    Kim, Sun-Gyun; Lee, Bora; Kim, Dae-Hwan; Kim, Juhee; Lee, Seunghee; Lee, Soo-Kyung; Lee, Jae W

    2013-10-01

    Nuclear receptors (NRs) regulate diverse physiological processes, including the central nervous system control of energy balance. However, the molecular mechanisms for the central actions of NRs in energy balance remain relatively poorly defined. Here we report a hypothalamic gene network involving two NRs, neuron-derived orphan receptor 1 (NOR1) and glucocorticoid receptor (GR), which directs the regulated expression of orexigenic neuropeptides agouti-related peptide (AgRP) and neuropeptide Y (NPY) in response to peripheral signals. Our results suggest that the anorexigenic signal leptin induces NOR1 expression likely via the transcription factor cyclic AMP response element-binding protein (CREB), while the orexigenic signal glucocorticoid mobilizes GR to inhibit NOR1 expression by antagonizing the action of CREB. Also, NOR1 suppresses glucocorticoid-dependent expression of AgRP and NPY. Consistently, relative to wild-type mice, NOR1-null mice showed significantly higher levels of AgRP and NPY and were less responsive to leptin in decreasing the expression of AgRP and NPY. These results identify mutual antagonism between NOR1 and GR to be a key rheostat for peripheral metabolic signals to centrally control energy balance.

  14. Haplotype structure and linkage disequilibrium in chemokine and chemokine receptor genes

    PubMed Central

    2004-01-01

    , representing at least 1 per cent of the total sample. Additionally, a possible signature of selection at a non-synonymous coding SNP (M106V) in the MPIF-1 (CCL23) gene warrants further study. We anticipate that the results of this study of chemokine and chemokine receptor variation will be applicable to more extensive surveys of long-range haplotype structure in these gene regions and to association studies of HIV-1 disease and cancer. PMID:15588486

  15. Control of Transcriptional Repression of the Vitellogenin Receptor Gene in Largemouth Bass (Micropterus Salmoides) by Select Estrogen Receptors Isotypes

    PubMed Central

    Dominguez, Gustavo A.; Bisesi, Joseph H.; Kroll, Kevin J.; Denslow, Nancy D.; Sabo-Attwood, Tara

    2014-01-01

    The vitellogenin receptor (Vtgr) plays an important role in fish reproduction. This receptor functions to incorporate vitellogenin (Vtg), a macromolecule synthesized and released from the liver in the bloodstream, into oocytes where it is processed into yolk. Although studies have focused on the functional role of Vtgr in fish, the mechanistic control of this gene is still unexplored. Here we report the identification and analysis of the first piscine 5′ regulatory region of the vtgr gene which was cloned from largemouth bass (Micropterus salmoides). Using this putative promoter sequence, we investigated a role for hormones, including insulin and 17β-estradiol (E2), in transcriptional regulation through cell-based reporter assays. No effect of insulin was observed, however, E2 was able to repress transcriptional activity of the vtgr promoter through select estrogen receptor subtypes, Esr1 and Esr2a but not Esr2b. Electrophoretic mobility shift assay demonstrated that Esr1 likely interacts with the vtgr promoter region through half ERE and/or SP1 sites, in part. Finally we also show that ethinylestradiol (EE2), but not bisphenol-A (BPA), represses promoter activity similarly to E2. These results reveal for the first time that the Esr1 isoform may play an inhibitory role in the expression of LMB vtgr mRNA under the influence of E2, and potent estrogens such as EE2. In addition, this new evidence suggests that vtgr may be a target of select endocrine disrupting compounds through environmental exposures. PMID:25061109

  16. Latitudinal Clines of the Human Vitamin D Receptor and Skin Color Genes.

    PubMed

    Tiosano, Dov; Audi, Laura; Climer, Sharlee; Zhang, Weixiong; Templeton, Alan R; Fernández-Cancio, Monica; Gershoni-Baruch, Ruth; Sánchez-Muro, José Miguel; El Kholy, Mohamed; Hochberg, Zèev

    2016-05-03

    The well-documented latitudinal clines of genes affecting human skin color presumably arise from the need for protection from intense ultraviolet radiation (UVR) vs. the need to use UVR for vitamin D synthesis. Sampling 751 subjects from a broad range of latitudes and skin colors, we investigated possible multilocus correlated adaptation of skin color genes with the vitamin D receptor gene (VDR), using a vector correlation metric and network method called BlocBuster. We discovered two multilocus networks involving VDR promoter and skin color genes that display strong latitudinal clines as multilocus networks, even though many of their single gene components do not. Considered one by one, the VDR components of these networks show diverse patterns: no cline, a weak declining latitudinal cline outside of Africa, and a strong in- vs. out-of-Africa frequency pattern. We confirmed these results with independent data from HapMap. Standard linkage disequilibrium analyses did not detect these networks. We applied BlocBuster across the entire genome, showing that our networks are significant outliers for interchromosomal disequilibrium that overlap with environmental variation relevant to the genes' functions. These results suggest that these multilocus correlations most likely arose from a combination of parallel selective responses to a common environmental variable and coadaptation, given the known Mendelian epistasis among VDR and the skin color genes.

  17. Asialoglycoprotein Receptor-Mediated Gene Delivery to Hepatocytes Using Galactosylated Polymers.

    PubMed

    Thapa, Bindu; Kumar, Piyush; Zeng, Hongbo; Narain, Ravin

    2015-09-14

    Highly efficient, specific, and nontoxic gene delivery vector is required for gene therapy to the liver. Hepatocytes exclusively express asialoglycoprotein receptor (ASGPR), which can recognize and bind to galactose or N-acetylgalactosamine. Galactosylated polymers are therefore explored for targeted gene delivery to the liver. A library of safe and stable galactose-based glycopolymers that can specifically deliver genes to hepatocytes were synthesized having different architectures, compositions, and molecular weights via the reversible addition-fragmentation chain transfer process. The physical and chemical properties of these polymers have a great impact on gene delivery efficacy into hepatocytes, as such block copolymers are found to form more stable complexes with plasmid and have high gene delivery efficiency into ASGPR expressing hepatocytes. Transfection efficiency and uptake of polyplexes with these polymers decreased significantly by preincubation of hepatocytes with free asialofetuin or by adding free asialofetuin together with polyplexes into hepatocytes. The results confirmed that polyplexes with these polymers were taken up specifically by hepatocytes via ASGPR-mediated endocytosis. The results from transfection efficiency and uptake of these polymers in cells without ASGPR, such as SK Hep1 and HeLa cells, further support this mechanism. Since in vitro cytotoxicity assays prove these glycopolymers to be nontoxic, they may be useful for delivery of clinically important genes specifically to the liver.

  18. Genes Involved in Interleukin-1 Receptor Type II Activities Are Associated With Asthmatic Phenotypes

    PubMed Central

    Madore, Anne-Marie; Vaillancourt, Vanessa T.; Bouzigon, Emmanuelle; Sarnowski, Chloé; Monier, Florent; Dizier, Marie-Hélène; Demenais, Florence

    2016-01-01

    Purpose Interleukin-1 (IL-1) plays a key role in inflammation and immunity and its decoy receptor, IL-1R2, has been implicated in transcriptomic and genetic studies of asthma. Methods Two large asthma family collections, the French-Canadian Saguenay—Lac-St-Jean (SLSJ) study and the French Epidemiological Study on the Genetics and Environment of Asthma (EGEA), were used to investigate the association of SNPs in 10 genes that modulate IL-1R2 activities with asthma, allergic asthma, and atopy. Gene-gene interactions were also tested. Results One SNP in BACE2 was associated with allergic asthma in the SLSJ study and replicated in the EGEA study before statistical correction for multiple testing. Additionally, two SNPs in the MMP2 gene were replicated in both studies prior to statistical correction and reached significance in the combined analysis. Moreover, three gene-gene interactions also survived statistical correction in the combined analyses (BACE1-IL1RAP in asthma and allergic asthma and IL1R1-IL1RAP in atopy). Conclusions Our results highlight the relevance of genes involved in the IL-1R2 activity in the context of asthma and asthma-related traits. PMID:27334786

  19. Uterine Development and Fertility Are Dependent on Gene Dosage of the Nuclear Receptor Coregulator REA

    PubMed Central

    Park, Sunghee; Yoon, Sangyeon; Zhao, Yuechao; Park, Seong-Eun; Liao, Lan; Xu, Jianming; Lydon, John P.; DeMayo, Francesco J.; O'Malley, Bert W.; Bagchi, Milan K.

    2012-01-01

    Although the effectiveness of nuclear hormone-receptor complexes is known to depend on coregulator partner proteins, relatively little is known about the roles of coregulators in uterine development and early stages of pregnancy and implantation. Because conventional genetic deletion of the coregulator, repressor of estrogen receptor activity (REA), was embryonic lethal, we here study REA conditional knockout mice generated by cre-loxP recombination, in which REA function was abrogated only in progesterone receptor-expressing tissues, to define the roles of REA in postembryonic stages and in a tissue-specific manner. We find that REA has gene dose-dependent activity impacting uterine development and fertility. Conditional homozygous mutant (REAd/d) mice developed to adulthood and showed normal ovarian function, but females were infertile with severely compromised uterine development and function characterized by cell cycle arrest, apoptosis, and altered adenogenesis (endometrial gland morphogenesis), resulting in failure of implantation and decidualization. By contrast, mice heterozygous for REA (REAf/d) had a very different phenotype, with estradiol treatment resulting in hyperstimulated, large uteri showing increased proliferation of luminal epithelial cells, and enhanced fluid imbibition associated with altered regulation of aquaporins. These REAf/d female mice showed a subfertility phenotype with reduced numbers and sizes of litters. These findings highlight that uterine development and regulation of estrogen receptor activities show a bimodal dependence on the gene dosage of REA. Optimal uterine development and functional activities require the normal gene dosage of REA, with partial or complete deletion resulting in hyperresponsiveness or underresponsiveness to hormone and subfertility or infertility, respectively. PMID:22585830

  20. Impact of gene polymorphisms of gonadotropins and their receptors on human reproductive success.

    PubMed

    Casarini, Livio; Santi, Daniele; Marino, Marco

    2015-12-01

    Gonadotropins and their receptors' genes carry several single-nucleotide polymorphisms resulting in endocrine genotypes modulating reproductive parameters, diseases, and lifespan leading to important implications for reproductive success and potential relevance during human evolution. Here we illustrate common genotypes of the gonadotropins and gonadotropin receptors' genes and their clinical implications in phenotypes relevant for reproduction such as ovarian cycle length, age of menopause, testosterone levels, polycystic ovary syndrome, and cancer. We then discuss their possible role in human reproduction and adaptation to the environment. Gonadotropins and their receptors' variants are differently distributed among human populations. Some hints suggest that they may be the result of natural selection that occurred in ancient times, increasing the individual chance of successful mating, pregnancy, and effective post-natal parental cares. The gender-related differences in the regulation of the reproductive endocrine systems imply that many of these genotypes may lead to sex-dependent effects, increasing the chance of mating and reproductive success in one sex at the expenses of the other sex. Also, we suggest that sexual conflicts within the FSH and LH-choriogonadotropin receptor genes contributed to maintain genotypes linked to subfertility among humans. Because the distribution of polymorphic markers results in a defined geographical pattern due to human migrations rather than natural selection, these polymorphisms may have had only a weak impact on reproductive success. On the contrary, such genotypes could acquire relevant consequences in the modern, developed societies in which parenthood attempts often occur at a later age, during a short, suboptimal reproductive window, making clinical fertility treatments necessary.

  1. Taste and odorant receptors of the coelacanth--a gene repertoire in transition.

    PubMed

    Picone, Barbara; Hesse, Uljana; Panji, Sumir; Van Heusden, Peter; Jonas, Mario; Christoffels, Alan

    2014-09-01

    G-protein coupled chemosensory receptors (GPCR-CRs) aid in the perception of odors and tastes in vertebrates. So far, six GPCR-CR families have been identified that are conserved in most vertebrate species. Phylogenetic analyses indicate differing evolutionary dynamics between teleost fish and tetrapods. The coelacanth Latimeria chalumnae belongs to the lobe-finned fishes, which represent a phylogenetic link between these two groups. We searched the genome of L. chalumnae for GPCR-CRs and found that coelacanth taste receptors are more similar to those in tetrapods than in teleost fish: two coelacanth T1R2s co-segregate with the tetrapod T1R2s that recognize sweet substances, and our phylogenetic analyses indicate that the teleost T1R2s are closer related to T1R1s (umami taste receptors) than to tetrapod T1R2s. Furthermore, coelacanths are the first fish with a large repertoire of bitter taste receptors (58 T2Rs). Considering current knowledge on feeding habits of coelacanths the question arises if perception of bitter taste is the only function of these receptors. Similar to teleost fish, coelacanths have a variety of olfactory receptors (ORs) necessary for perception of water-soluble substances. However, they also have seven genes in the two tetrapod OR subfamilies predicted to recognize airborne molecules. The two coelacanth vomeronasal receptor families are larger than those in teleost fish, and similar to tetrapods and form V1R and V2R monophyletic clades. This may point to an advanced development of the vomeronasal organ as reported for lungfish. Our results show that the intermediate position of Latimeria in the phylogeny is reflected in its GPCR-CR repertoire.

  2. Identification of chemical modulators of the constitutive activated receptor (CAR) in a gene expression compendium

    PubMed Central

    Oshida, Keiyu; Vasani, Naresh; Jones, Carlton; Moore, Tanya; Hester, Susan; Nesnow, Stephen; Auerbach, Scott; Geter, David R.; Aleksunes, Lauren M.; Thomas, Russell S.; Applegate, Dawn; Klaassen, Curtis D.; Corton, J. Christopher

    2015-01-01

    The nuclear receptor family member constitutive activated receptor (CAR) is activated by structurally diverse drugs and environmentally-relevant chemicals leading to transcriptional regulation of genes involved in xenobiotic metabolism and transport. Chronic activation of CAR increases liver cancer incidence in rodents, whereas suppression of CAR can lead to steatosis and insulin insensitivity. Here, analytical methods were developed to screen for chemical treatments in a gene expression compendium that lead to alteration of CAR activity. A gene expression biomarker signature of 83 CAR-dependent genes was identified using microarray profiles from the livers of wild-type and CAR-null mice after exposure to three structurally-diverse CAR activators (CITCO, phenobarbital, TCPOBOP). A rank-based algorithm (Running Fisher’s algorithm (p-value ≤ 10-4)) was used to evaluate the similarity between the CAR biomarker signature and a test set of 28 and 32 comparisons positive or negative, respectively, for CAR activation; the test resulted in a balanced accuracy of 97%. The biomarker signature was used to identify chemicals that activate or suppress CAR in an annotated mouse liver/primary hepatocyte gene expression database of ~1850 comparisons. CAR was activated by 1) activators of the aryl hydrocarbon receptor (AhR) in wild-type but not AhR-null mice, 2) pregnane X receptor (PXR) activators in wild-type and to lesser extents in PXR-null mice, and 3) activators of PPARα in wild-type and PPARα-null mice. CAR was consistently activated by five conazole fungicides and four perfluorinated compounds. Comparison of effects in wild-type and CAR-null mice showed that the fungicide propiconazole increased liver weight and hepatocyte proliferation in a CAR-dependent manner, whereas the perfluorinated compound perfluorooctanoic acid (PFOA) increased these endpoints in a CAR-independent manner. A number of compounds suppressed CAR coincident with increases in markers of

  3. Genome-wide landscape of liver X receptor chromatin binding and gene regulation in human macrophages

    PubMed Central

    2012-01-01

    Background The liver X receptors (LXRs) are oxysterol sensing nuclear receptors with multiple effects on metabolism and immune cells. However, the complete genome-wide cistrome of LXR in cells of human origin has not yet been provided. Results We performed ChIP-seq in phorbol myristate acetate-differentiated THP-1 cells (macrophage-type) after stimulation with the potent synthetic LXR ligand T0901317 (T09). Microarray gene expression analysis was performed in the same cellular model. We identified 1357 genome-wide LXR locations (FDR < 1%), of which 526 were observed after T09 treatment. De novo analysis of LXR binding sequences identified a DR4-type element as the major motif. On mRNA level T09 up-regulated 1258 genes and repressed 455 genes. Our results show that LXR actions are focused on 112 genomic regions that contain up to 11 T09 target genes per region under the control of highly stringent LXR binding sites with individual constellations for each region. We could confirm that LXR controls lipid metabolism and transport and observed a strong association with apoptosis-related functions. Conclusions This first report on genome-wide binding of LXR in a human cell line provides new insights into the transcriptional network of LXR and its target genes with their link to physiological processes, such as apoptosis. The gene expression microarray and sequence data have been submitted collectively to the NCBI Gene Expression Omnibus http://www.ncbi.nlm.nih.gov/geo under accession number GSE28319. PMID:22292898

  4. Expression of the human ABCC6 gene is induced by retinoids through the retinoid X receptor

    SciTech Connect

    Ratajewski, Marcin; Bartosz, Grzegorz; Pulaski, Lukasz . E-mail: lpulaski@cbm.pan.pl

    2006-12-01

    Mutations in the human ABCC6 gene are responsible for the disease pseudoxanthoma elasticum, although Physiological function or substrate of the gene product (an ABC transporter known also as MRP6) is not known. We found that the expression of this gene in cells of hepatic origin (where this gene is predominantly expressed in the body) is significantly upregulated by retinoids, acting as agonists of the retinoid X receptor (RXR) rather than the retinoid A receptor (RAR). The direct involvement of this nuclear receptor in the transcriptional regulation of ABCC6 gene expression was confirmed by transient transfection and chromatin immunoprecipitation assays. This constitutes the first direct proof of previously suggested involvement of nuclear hormone receptors in ABCC6 gene expression and the first identification of a transcription factor which may be relevant to regulation of ABCC6 level in tissues and in some PXE patients.

  5. Nuclear β-adrenergic receptors modulate gene expression in adult rat heart

    PubMed Central

    Vaniotis, George; Del Duca, Danny; Trieu, Phan; Rohlicek, Charles V.; Hébert, Terence E.; Allen, Bruce G.

    2016-01-01

    Both β1- and β3-adrenergic receptors (β1ARs and β3ARs) are present on nuclear membranes in adult ventricular myocytes. These nuclear-localized receptors are functional with respect to ligand binding and effector activation. In isolated cardiac nuclei, the non-selective βAR agonist isoproterenol stimulated de novo RNA synthesis measured using assays of transcription initiation (Boivin et al., 2006 Cardiovasc Res. 71:69–78). In contrast, stimulation of endothelin receptors, another G protein-coupled receptor (GPCR) that localizes to the nuclear membrane, resulted in decreased RNA synthesis. To investigate the signalling pathway(s) involved in GPCR-mediated regulation of RNA synthesis, nuclei were isolated from intact adult rat hearts and treated with receptor agonists in the presence or absence of inhibitors of different mitogen-activated protein kinase (MAPK) and PI3K/PKB pathways. Components of p38, JNK, and ERK1/2 MAP kinase cascades as well as PKB were detected in nuclear preparations. Inhibition of PKB with triciribine, in the presence of isoproterenol, converted the activation of the βAR from stimulatory to inhibitory with regards to RNA synthesis, while ERK1/2, JNK and p38 inhibition reduced both basal and isoproterenol-stimulated activity. Analysis by qPCR indicated an increase in the expression of 18 S rRNA following isoproterenol treatment and a decrease in NFκB mRNA. Further qPCR experiments revealed that isoproterenol treatment also reduced the expression of several other genes involved in the activation of NFκB, while ERK1/2 and PKB inhibition substantially reversed this effect. Our results suggest that GPCRs on the nuclear membrane regulate nuclear functions such as gene expression and this process is modulated by activation/inhibition of downstream protein kinases within the nucleus. PMID:20732414

  6. Differential modulation of expression of nuclear receptor mediated genes by tris(2-butoxyethyl) phosphate (TBOEP) on early life stages of zebrafish (Danio rerio).

    PubMed

    Ma, Zhiyuan; Yu, Yijun; Tang, Song; Liu, Hongling; Su, Guanyong; Xie, Yuwei; Giesy, John P; Hecker, Markus; Yu, Hongxia

    2015-12-01

    As one substitute for phased-out brominated flame retardants (BFRs), tris(2-butoxyethyl) phosphate (TBOEP) is frequently detected in aquatic organisms. However, knowledge about endocrine disrupting mechanisms associated with nuclear receptors caused by TBOEP remained restricted to results from in vitro studies with mammalian cells. In the study, results of which are presented here, embryos/larvae of zebrafish (Danio rerio) were exposed to 0.02, 0.1 or 0.5μM TBOEP to investigate expression of genes under control of several nuclear hormone receptors (estrogen receptors (ERs), androgen receptor (AR), thyroid hormone receptor alpha (TRα), mineralocorticoid receptor (MR), glucocorticoid receptor (GR), aryl hydrocarbon (AhR), peroxisome proliferator-activated receptor alpha (PPARα), and pregnane×receptor (P×R)) pathways at 120hpf. Exposure to 0.5μM TBOEP significantly (p<0.05, one-way analysis of variance) up-regulated expression of estrogen receptors (ERs, er1, er2a, and er2b) genes and ER-associated genes (vtg4, vtg5, pgr, ncor, and ncoa3), indicating TBOEP modulates the ER pathway. In contrast, expression of most genes (mr, 11βhsd, ube2i,and adrb2b) associated with the mineralocorticoid receptor (MR) pathway were significantly down-regulated. Furthermore, in vitro mammalian cell-based (MDA-kb2 and H4IIE-luc) receptor transactivation assays, were also conducted to investigate possible agonistic or antagonistic effects on AR- and AhR-mediated pathways. In mammalian cells, none of these pathways were affected by TBOEP at the concentrations studied. Receptor-mediated responses (in vivo) and mammalian cell lines receptor binding assay (in vitro) combined with published information suggest that TBOEP can modulate receptor-mediated, endocrine process (in vivo/in vitro), particularly ER and MR. PMID:26562049

  7. Human kininogen gene is transactivated by the farnesoid X receptor.

    PubMed

    Zhao, Annie; Lew, Jane-L; Huang, Li; Yu, Jinghua; Zhang, Theresa; Hrywna, Yaroslav; Thompson, John R; de Pedro, Nuria; Blevins, Richard A; Peláez, Fernando; Wright, Samuel D; Cui, Jisong

    2003-08-01

    Human kininogen belongs to the plasma kallikreinkinin system. High molecular weight kininogen is the precursor for two-chain kinin-free kininogen and bradykinin. It has been shown that the two-chain kinin-free kininogen has the properties of anti-adhesion, anti-platelet aggregation, and anti-thrombosis, whereas bradykinin is a potent vasodilator and mediator of inflammation. In this study we show that the human kininogen gene is strongly up-regulated by agonists of the farnesoid X receptor (FXR), a nuclear receptor for bile acids. In primary human hepatocytes, both the endogenous FXR agonist chenodeoxycholate and synthetic FXR agonist GW4064 increased kininogen mRNA with a maximum induction of 8-10-fold. A more robust induction of kininogen expression was observed in HepG2 cells, where kininogen mRNA was increased by chenodeoxycholate or GW4064 up to 130-140-fold as shown by real time PCR. Northern blot analysis confirmed the up-regulation of kininogen expression by FXR agonists. To determine whether kininogen is a direct target of FXR, we examined the sequence of the kininogen promoter and identified a highly conserved FXR response element (inverted repeat, IR-1) in the proximity of the kininogen promoter (-66/-54). FXR/RXRalpha heterodimers specifically bind to this IR-1. A construct of a minimal promoter with the luciferase reporter containing this IR-1 was transactivated by FXR. Deletion or mutation of this IR-1 abolished FXR-mediated promoter activation, indicating that this IR-1 element is responsible for the promoter transactivation by FXR. We conclude that kininogen is a novel and direct target of FXR, and bile acids may play a role in the vasodilation and anti-coagulation processes.

  8. Identification of Putative Chemosensory Receptor Genes from the Athetis dissimilis Antennal Transcriptome

    PubMed Central

    Dong, Junfeng; Song, Yueqin; Li, Wenliang; Shi, Jie; Wang, Zhenying

    2016-01-01

    Olfaction plays a crucial role in insect population survival and reproduction. Identification of the genes associated with the olfactory system, without the doubt will promote studying the insect chemical communication system. In this study, RNA-seq technology was used to sequence the antennae transcriptome of Athetis dissimilis, an emerging crop pest in China with limited genomic information, with the purpose of identifying the gene set involved in olfactory recognition. Analysis of the transcriptome of female and male antennae generated 13.74 Gb clean reads in total from which 98,001 unigenes were assembled, and 25,930 unigenes were annotated. Total of 60 olfactory receptors (ORs), 18 gustatory receptors (GRs), and 12 ionotropic receptors (IRs) were identified by Blast and sequence similarity analyzes. One obligated olfactory receptor co-receptor (Orco) and four conserved sex pheromone receptors (PRs) were annotated in 60 ORs. Among the putative GRs, five genes (AdisGR1, 6, 7, 8 and 94) clustered in the sugar receptor family, and two genes (AdisGR3 and 93) involved in CO2 detection were identified. Finally, AdisIR8a.1 and AdisIR8a.2 co-receptors were identified in the group of candidate IRs. Furthermore, expression levels of these chemosensory receptor genes in female and male antennae were analyzed by mapping the Illumina reads. PMID:26812239

  9. Structural organization and chromosomal assignment of the human prostacyclin receptor gene

    SciTech Connect

    Ogawa, Yoshihiro; Tanaka, Issei; Inoue, Miho

    1995-05-01

    Prostacyclin receptor is a member of the prostanoid receptor family in the G protein-coupled receptor superfamily with seven transmembrane domains. The authors report here the isolation and structural organization of the human prostacyclin receptor gene. Southern blot analysis demonstrated a single copy of the human prostacyclin receptor gene in the human genome. The human prostacyclin receptor gene spanned approximately 7.0 kb and was composed of three exons separated by two introns. The first intron occurred in the 5`-untranslated region, 13 bp upstream to the ATG start codon. The second intron was located at the end of the sixth transmembrane domain, thereby separating it from the downstream coding region and the 3`-untranslated region. By primer extension analysis, the transcription initiation sites were mapped 870-872 bp upstream to the ATG start codon. The 1.2-kb human prostacyclin receptor 5`-flanking region lacked conventional TATA and CCAAT boxes, but it contained several cis-acting regulatory elements including an inverted CCAAT box (Y box) and two copies of SP-1 binding sites. Using human-rodent somatic hybrid cell DNA, the human prostacyclin receptor gene was assigned to human chromosome 19. The present study helps establish the genetic basis for prostacyclin receptor research and provides further insight into the molecular mechanisms underlying the prostanoid receptor family. 38 refs., 6 figs.

  10. Adenoviral-mediated imaging of gene transfer using a somatostatin receptor-cytosine deaminase fusion protein.

    PubMed

    Lears, K A; Parry, J J; Andrews, R; Nguyen, K; Wadas, T J; Rogers, B E

    2015-03-01

    Suicide gene therapy is a process by which cells are administered a gene that encodes a protein capable of converting a nontoxic prodrug into an active toxin. Cytosine deaminase (CD) has been widely investigated as a means of suicide gene therapy owing to the enzyme's ability to convert the prodrug 5-fluorocytosine (5-FC) into the toxic compound 5-fluorouracil (5-FU). However, the extent of gene transfer is a limiting factor in predicting therapeutic outcome. The ability to monitor gene transfer, non-invasively, would strengthen the efficiency of therapy. In this regard, we have constructed and evaluated a replication-deficient adenovirus (Ad) containing the human somatostatin receptor subtype 2 (SSTR2) fused with a C-terminal yeast CD gene for the non-invasive monitoring of gene transfer and therapy. The resulting Ad (AdSSTR2-yCD) was evaluated in vitro in breast cancer cells to determine the function of the fusion protein. These studies demonstrated that both the SSTR2 and yCD were functional in binding assays, conversion assays and cytotoxicity assays. In vivo studies similarly demonstrated the functionality using conversion assays, biodistribution studies and small animal positron-emission tomography (PET) imaging studies. In conclusion, the fusion protein has been validated as useful for the non-invasive imaging of yCD expression and will be evaluated in the future for monitoring yCD-based therapy. PMID:25837665

  11. Methylation Status of Vitamin D Receptor Gene Promoter in Benign and Malignant Adrenal Tumors

    PubMed Central

    Pilon, Catia; Rebellato, Andrea; Urbanet, Riccardo; Guzzardo, Vincenza; Cappellesso, Rocco; Sasano, Hironobu; Fassina, Ambrogio

    2015-01-01

    We previously showed a decreased expression of vitamin D receptor (VDR) mRNA/protein in a small group of adrenocortical carcinoma (ACC) tissues, suggesting the loss of a protective role of VDR against malignant cell growth in this cancer type. Downregulation of VDR gene expression may result from epigenetics events, that is, methylation of cytosine nucleotide of CpG islands in VDR gene promoter. We analyzed methylation of CpG sites in the VDR gene promoter in normal adrenals and adrenocortical tumor samples. Methylation of CpG-rich 5′ regions was assessed by bisulfite sequencing PCR using bisulfite-treated DNA from archival microdissected paraffin-embedded adrenocortical tissues. Three normal adrenals and 23 various adrenocortical tumor samples (15 adenomas and 8 carcinomas) were studied. Methylation in the promoter region of VDR gene was found in 3/8 ACCs, while no VDR gene methylation was observed in normal adrenals and adrenocortical adenomas. VDR mRNA and protein levels were lower in ACCs than in benign tumors, and VDR immunostaining was weak or negative in ACCs, including all 3 methylated tissue samples. The association between VDR gene promoter methylation and reduced VDR gene expression is not a rare event in ACC, suggesting that VDR epigenetic inactivation may have a role in adrenocortical carcinogenesis. PMID:26843863

  12. Adenoviral-Mediated Imaging of Gene Transfer Using a Somatostatin Receptor-Cytosine Deaminase Fusion Protein

    PubMed Central

    Lears, Kimberly A.; Parry, Jesse J.; Andrews, Rebecca; Nguyen, Kim; Wadas, Thaddeus J.; Rogers, Buck E.

    2015-01-01

    Suicide gene therapy is a process by which cells are administered a gene that encodes a protein capable of converting a nontoxic prodrug into an active toxin. Cytosine deaminase (CD) has been widely investigated as a means of suicide gene therapy due to the enzyme’s ability to convert the prodrug 5-fluorocytosine (5-FC) into the toxic compound 5-fluorouracil (5-FU). However, the extent of gene transfer is a limiting factor in predicting therapeutic outcome. The ability to monitor gene transfer, non-invasively, would strengthen the efficiency of therapy. In this regard, we have constructed and evaluated a replication-deficient adenovirus (Ad) containing the human somatostatin receptor subtype 2 (SSTR2) fused with a C-terminal yeast CD gene for the non-invasive monitoring of gene transfer and therapy. The resulting Ad (AdSSTR2-yCD) was evaluated in vitro in breast cancer cells to determine the function of the fusion protein. These studies demonstrated that the both the SSTR2 and yCD were functional in binding assays, conversion assays, and cytotoxicity assays. In vivo studies similarly demonstrated the functionality using conversion assays, biodistribution studies, and small animal positron-emission tomography (PET) imaging studies. In conclusion, the fusion protein has been validated as useful for the non-invasive imaging of yCD expression and will be evaluated in the future for monitoring yCD-based therapy. PMID:25837665

  13. Ghrelin axis genes, peptides and receptors: recent findings and future challenges.

    PubMed

    Seim, Inge; Josh, Peter; Cunningham, Peter; Herington, Adrian; Chopin, Lisa

    2011-06-20

    The ghrelin axis consists of the gene products of the ghrelin gene (GHRL), and their receptors, including the classical ghrelin receptor GHSR. While it is well-known that the ghrelin gene encodes the 28 amino acid ghrelin peptide hormone, it is now also clear that the locus encodes a range of other bioactive molecules, including novel peptides and non-coding RNAs. For many of these molecules, the physiological functions and cognate receptor(s) remain to be determined. Emerging research techniques, including proteogenomics, are likely to reveal further ghrelin axis-derived molecules. Studies of the role of ghrelin axis genes, peptides and receptors, therefore, promises to be a fruitful area of basic and clinical research in years to come.

  14. Natural genetic variability of the neuronal nicotinic acetylcholine receptor subunit genes in mice: Consequences and confounds.

    PubMed

    Wilking, Jennifer A; Stitzel, Jerry A

    2015-09-01

    Recent human genetic studies have identified genetic variants in multiple nicotinic acetylcholine receptor (nAChR) subunit genes that are associated with risk for nicotine dependence and other smoking-related measures. Genetic variability also exists in the nAChR subunit genes in mice. Most studies on mouse nAChR subunit gene variability to date have focused on Chrna4, the gene that encodes the α4 nAChR subunit and Chrna7, the gene that encodes the α7 nAChR subunit. However, genetic variability exists for all nAChR genes in mice. In this review, we will describe what is known about nAChR subunit gene polymorphisms in mice and how it relates to variability in nAChR expression and function in brain. The relationship between nAChR genetic variability in mice and the effects of nicotine on several behavioral and physiological measures also will be discussed. In addition, an overview of the contribution of other genetic variation to nicotine sensitivity in mice will be provided. Finally, the potential for natural genetic variability to confound and/or modify the results of studies that utilize genetically engineered mice will be considered. As an example of the ability of a natural genetic variant to modify the effect of an engineered mutation, data will be presented that demonstrate that the effect of Chrna5 deletion on oral nicotine intake is dependent upon naturally occurring variant alleles of Chrna4. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'. PMID:25498233

  15. ALK1 signalling analysis identifies angiogenesis related genes and reveals disparity between TGF-β and constitutively active receptor induced gene expression

    PubMed Central

    Lux, Andreas; Salway, Fiona; Dressman, Holly K; Kröner-Lux, Gabriele; Hafner, Mathias; Day, Philip JR; Marchuk, Douglas A; Garland, John

    2006-01-01

    Background TGF-β1 is an important angiogenic factor involved in the different aspects of angiogenesis and vessel maintenance. TGF-β signalling is mediated by the TβRII/ALK5 receptor complex activating the Smad2/Smad3 pathway. In endothelial cells TGF-β utilizes a second type I receptor, ALK1, activating the Smad1/Smad5 pathway. Consequently, a perturbance of ALK1, ALK5 or TβRII activity leads to vascular defects. Mutations in ALK1 cause the vascular disorder hereditary hemorrhagic telangiectasia (HHT). Methods The identification of ALK1 and not ALK5 regulated genes in endothelial cells, might help to better understand the development of HHT. Therefore, the human microvascular endothelial cell line HMEC-1 was infected with a recombinant constitutively active ALK1 adenovirus, and gene expression was studied by using gene arrays and quantitative real-time PCR analysis. Results After 24 hours, 34 genes were identified to be up-regulated by ALK1 signalling. Analysing ALK1 regulated gene expression after 4 hours revealed 13 genes to be up- and 2 to be down-regulated. Several of these genes, including IL-8, ET-1, ID1, HPTPη and TEAD4 are reported to be involved in angiogenesis. Evaluation of ALK1 regulated gene expression in different human endothelial cell types was not in complete agreement. Further on, disparity between constitutively active ALK1 and TGF-β1 induced gene expression in HMEC-1 cells and primary HUVECs was observed. Conclusion Gene array analysis identified 49 genes to be regulated by ALK1 signalling and at least 14 genes are reported to be involved in angiogenesis. There was substantial agreement between the gene array and quantitative real-time PCR data. The angiogenesis related genes might be potential HHT modifier genes. In addition, the results suggest endothelial cell type specific ALK1 and TGF-β signalling. PMID:16594992

  16. Signal transduction through the fibronectin receptor induces collagenase and stromelysin gene expression

    PubMed Central

    1989-01-01

    We have investigated the effects of ligation of the fibronectin receptor (FnR) on gene expression in rabbit synovial fibroblasts. Monoclonal antibodies to the FnR that block initial adhesion of fibroblasts to fibronectin induced the expression of genes encoding the secreted extracellular matrix-degrading metalloproteinases collagenase and stromelysin. That induction was a direct consequence of interaction with the FnR was shown by the accumulation of mRNA for stromelysin and collagenase. Monoclonal antibodies to several other membrane glycoprotein receptors had no effect on metalloproteinase gene expression. Less than 2 h of treatment of the fibroblasts with anti-FnR in solution was sufficient to trigger the change in gene expression, and induction was blocked by dexamethasone. Unlike other inducers of metalloproteinase expression, including phorbol diesters and growth factors, addition of the anti-FnR in solution to cells adherent to serum-derived adhesion proteins or collagen produced no detectable change in cell shape or actin microfilament organization. Inductive effects were potentiated by cross-linking of the ligand. Fab fragments of anti-FnR were ineffective unless cross-linked or immobilized on the substrate. Adhesion of fibroblasts to native fibronectin did not induce metallo-proteinases. However, adhesion to covalently immobilized peptides containing the arg-gly-asp sequence that were derived from fibronectin, varying in size from hexapeptides up to 120 kD, induced collagenase and stromelysin gene expression. This suggests that degradation products of fibronectin are the natural inductive ligands for the FnR. These data demonstrate that signals leading to changes in gene expression are transduced by the FnR, a member of the integrin family of extracellular matrix receptors. The signaling of changes in gene expression by the FnR is distinct from signaling involving cell shape and actin cytoarchitecture. At least two distinct signals are generated: the

  17. No association between polymorphisms in the human dopamine D3 and D4 receptors genes and alcoholism.

    PubMed

    Parsian, A; Chakraverty, S; Fisher, L; Cloninger, C R

    1997-05-31

    The human dopamine D2 receptor gene (DRD2) has received considerable attention for the past several years as a potential candidate that may affect susceptibility to alcoholism. The association studies that compared the frequencies of alleles of DRD2 gene between alcoholics and control groups have produced equivocal results. Dopamine D3 and D4 receptor genes (DRD3 and DRD4) are in the same class as DRD2 but with different pharmacological properties. We have used relative risk and haplotype relative risk approaches to test associations between alleles of DRD3 and DRD4 genes and alcoholism. For relative risk studies 162 probands from multiple incidence alcoholic families have been compared to 89 psychiatrically normal controls. Haplotype relative risk approaches have used 29 alcoholic probands in which both parents were available for genotyping. The Bal I restriction enzyme site in DRD3 and tandem repeat (VNTR) in DRD4 genes polymorphisms were used to genotype the above samples. The results of relative risk approaches for both DRD3 and DRD4 genes were negative for comparisons of alcoholics and subtypes of alcoholics with normal controls. Haplotype relative risk approaches also were negative for both genes. These results suggest that any role played by these receptors may account for only part of the variation in susceptibility to alcoholism.

  18. Functional variants of the interleukin-23 receptor gene in non-gastrointestinal autoimmune diseases.

    PubMed

    Safrany, E; Melegh, B

    2009-01-01

    Variants of the gene of the interleukin-23 receptor (IL23R) were first identified as susceptibility factors in association with inflammatory bowel diseases. Since then it became clear that different variants of the gene play also role in a number of other autoimmune diseases like psoriasis, rheumatoid arthritis, ankylosing spondylitis and multiple sclerosis while in others, like systemic sclerosis, systemic lupus erythematosus or Sjögren syndrome the same effect could not be seen. However, the results are very controversial both in terms of the various polymorphisms and also in population specificity. The aim of the current paper is to overview all available reports on IL23R gene polymorphisms in various autoimmune and inflammatory diseases and to try to give an explanation on the possible effect of the examined variants.

  19. [The correlations between polymorphism of growth hormone receptor gene and butcher traits in rabbit].

    PubMed

    Deng, Xiao-Song; Wan, Jie; Chen, Shi-Yi; Wang, Yan; Lai, Song-Jia; Jiang, Mei-Shan; Xu, Min

    2008-11-01

    Five rabbit populations (Belgian hare, Tianfu black rabbit, Great line of Zika rabbit, Harbin white rabbit, and California rabbit) were used to analyze the polymorphism of growth hormone receptor (GHR) gene by PCR-SSCP. Results indicated that there were two mutation sites (C705T and C810T) in the 5 populations. The least square analyses showed that the live weight, visceraste weight, and slaughter percentage of AA and MM genotypes were significantly lower than BB and NN genotypes (P<0.05). In contrast, the GHR polymorphism had no significant difference for least squares means of feed transformation efficiency (P>0.05). It suggested that GHR gene may be a candidate gene responsible for butcher trait in rabbit.

  20. Classification of Dopamine Receptor Genes in Vertebrates: Nine Subtypes in Osteichthyes.

    PubMed

    Yamamoto, Kei; Fontaine, Romain; Pasqualini, Catherine; Vernier, Philippe

    2015-01-01

    Dopamine neurotransmission regulates various brain functions, and its regulatory roles are mediated by two families of G protein-coupled receptors: the D1 and D2 receptor families. In mammals, the D1 family comprises two receptor subtypes (D1 and D5), while the D2 family comprises three receptor subtypes (D2, D3 and D4). Phylogenetic analyses of dopamine receptor genes strongly suggest that the common ancestor of Osteichthyes (bony jawed vertebrates) possessed four subtypes in the D1 family and five subtypes in the D2 family. Mammals have secondarily lost almost half of the ancestral dopamine receptor genes, whereas nonmammalian species kept many of them. Although the mammalian situation is an exception among Osteichthyes, the current classification and characterization of dopamine receptors are based on mammalian features, which have led to confusion in the identification of dopamine receptor subtypes in nonmammalian species. Here we begin by reviewing the history of the discovery of dopamine receptors in vertebrates. The recent genome sequencing of coelacanth, gar and elephant shark led to the proposal of a refined scenario of evolution of dopamine receptor genes. We also discuss a current problem of nomenclature of dopamine receptors. Following the official nomenclature of mammalian dopamine receptors from D1 to D5, we propose to name newly identified receptor subtypes from D6 to D9 in order to facilitate the use of an identical name for orthologous genes among different species. To promote a nomenclature change which allows distinguishing the two dopamine receptor families, a nomenclature consortium is needed. This comparative perspective is crucial to correctly interpret data obtained in animal studies on dopamine-related brain disorders, and more fundamentally, to understand the characteristics of dopamine neurotransmission in vertebrates. PMID:26613258

  1. Lack of association between dopamine D2 receptor gene Cys311 variant and schizophrenia

    SciTech Connect

    Tanaka, Toshihisa; Fukushima, Noboru; Takahashi, Makoto; Kameda, Kensuke; Ihda, Shin

    1996-04-09

    Itokawa et al. reported identifying one missense nucleotide mutation from C to G resulting in a substitution of serine with cysteine at codon 311 in the third intracellular loop of the dopamine D2 receptor in schizophrenics. Arinami et al. reported finding a positive association between the Cys311 variant and schizophrenia. In response to the report by Arinami et al. we examined 106 unrelated Japanese schizophrenics and 106 normal controls to determine if there is any association of the Cys311 variant with schizophrenia. However, we found no statistically significant differences in allelic frequencies of Cys311 between schizophrenia and normal controls. The present results as well as those of all previous studies except for that of Arinami et al. indicated that an association between the dopamine D2 receptor gene and schizophrenia is unlikely to exist. 24 refs., 1 fig., 1 tab.

  2. Failure to find linkage between a functional polymorphism in the dopamine D4 receptor gene and schizophrenia

    SciTech Connect

    Shaikh, S.; Gill, M.; Collier, D.A.

    1994-03-15

    We report the results of a linkage study in 24 families multiply affected with schizophrenia using a polymorphic DNA sequence encoding the third cytoplasmic loop of the dopamine D4 receptor. Two-point LOD score analyses with a range of single gene models ranging from near dominant to near recessive revealed no evidence for linkage. In addition, we examined the data by non-parametric sib-pair analysis and found no excess sharing of alleles between affected sib-pairs. We therefore conclude that mutations within the dopamine D4 receptor gene do not have a major aetiological role in schizophrenia in our collection of pedigrees. 20 refs., 2 tabs.

  3. Latitudinal Clines of the Human Vitamin D Receptor and Skin Color Genes

    PubMed Central

    Tiosano, Dov; Audi, Laura; Climer, Sharlee; Zhang, Weixiong; Templeton, Alan R.; Fernández-Cancio, Monica; Gershoni-Baruch, Ruth; Sánchez-Muro, José Miguel; El Kholy, Mohamed; Hochberg, Zèev

    2016-01-01

    The well-documented latitudinal clines of genes affecting human skin color presumably arise from the need for protection from intense ultraviolet radiation (UVR) vs. the need to use UVR for vitamin D synthesis. Sampling 751 subjects from a broad range of latitudes and skin colors, we investigated possible multilocus correlated adaptation of skin color genes with the vitamin D receptor gene (VDR), using a vector correlation metric and network method called BlocBuster. We discovered two multilocus networks involving VDR promoter and skin color genes that display strong latitudinal clines as multilocus networks, even though many of their single gene components do not. Considered one by one, the VDR components of these networks show diverse patterns: no cline, a weak declining latitudinal cline outside of Africa, and a strong in- vs. out-of-Africa frequency pattern. We confirmed these results with independent data from HapMap. Standard linkage disequilibrium analyses did not detect these networks. We applied BlocBuster across the entire genome, showing that our networks are significant outliers for interchromosomal disequilibrium that overlap with environmental variation relevant to the genes’ functions. These results suggest that these multilocus correlations most likely arose from a combination of parallel selective responses to a common environmental variable and coadaptation, given the known Mendelian epistasis among VDR and the skin color genes. PMID:26921301

  4. Estrogen-related receptor {alpha} modulates the expression of adipogenesis-related genes during adipocyte differentiation

    SciTech Connect

    Ijichi, Nobuhiro; Ikeda, Kazuhiro; Horie-Inoue, Kuniko; Yagi, Ken; Okazaki, Yasushi; Inoue, Satoshi . E-mail: INOUE-GER@h.u-tokyo.ac.jp

    2007-07-06

    Estrogen-related receptor {alpha} (ERR{alpha}) is an orphan nuclear receptor that regulates cellular energy metabolism by modulating gene expression involved in fatty acid oxidation and mitochondrial biogenesis in brown adipose tissue. However, the physiological role of ERR{alpha} in adipogenesis and white adipose tissue development has not been well studied. Here, we show that ERR{alpha} and ERR{alpha}-related transcriptional coactivators, peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) coactivator-1{alpha} (PGC-1{alpha}) and PGC-1{beta}, can be up-regulated in 3T3-L1 preadipocytes at mRNA levels under the adipogenic differentiation condition including the inducer of cAMP, glucocorticoid, and insulin. Gene knockdown by ERR{alpha}-specific siRNA results in mRNA down-regulation of fatty acid binding protein 4, PPAR{gamma}, and PGC-1{alpha} in 3T3-L1 cells in the adipogenesis medium. ERR{alpha} and PGC-1{beta} mRNA expression can be also up-regulated in another preadipocyte lineage DFAT-D1 cells and a pluripotent mesenchymal cell line C3H10T1/2 under the differentiation condition. Furthermore, stable expression of ERR{alpha} in 3T3-L1 cells up-regulates adipogenic marker genes and promotes triglyceride accumulation during 3T3-L1 differentiation. These results suggest that ERR{alpha} may play a critical role in adipocyte differentiation by modulating the expression of various adipogenesis-related genes.

  5. Fluoxetine potentiation of methylphenidate-induced gene regulation in striatal output pathways: potential role for 5-HT1B receptor.

    PubMed

    Van Waes, Vincent; Ehrlich, Sarah; Beverley, Joel A; Steiner, Heinz

    2015-02-01

    Drug combinations that include the psychostimulant methylphenidate plus a selective serotonin reuptake inhibitor (SSRI) such as fluoxetine are increasingly used in children and adolescents. For example, this combination is indicated in the treatment of attention-deficit/hyperactivity disorder and depression comorbidity and other mental disorders. Such co-exposure also occurs in patients on SSRIs who use methylphenidate as a cognitive enhancer. The neurobiological consequences of these drug combinations are poorly understood. Methylphenidate alone can produce gene regulation effects that mimic addiction-related gene regulation by cocaine, consistent with its moderate addiction liability. We have previously shown that combining SSRIs with methylphenidate potentiates methylphenidate-induced gene regulation in the striatum. The present study investigated which striatal output pathways are affected by the methylphenidate + fluoxetine combination, by assessing effects on pathway-specific neuropeptide markers, and which serotonin receptor subtypes may mediate these effects. Our results demonstrate that a 5-day repeated treatment with fluoxetine (5 mg/kg) potentiates methylphenidate (5 mg/kg)-induced expression of both dynorphin (direct pathway marker) and enkephalin (indirect pathway). These changes were accompanied by correlated increases in the expression of the 5-HT1B, but not 5-HT2C, serotonin receptor in the same striatal regions. A further study showed that the 5-HT1B receptor agonist CP94253 (3-10 mg/kg) mimics the fluoxetine potentiation of methylphenidate-induced gene regulation. These findings suggest a role for the 5-HT1B receptor in the fluoxetine effects on striatal gene regulation. Given that 5-HT1B receptors are known to facilitate addiction-related gene regulation and behavior, our results suggest that SSRIs may enhance the addiction liability of methylphenidate by increasing 5-HT1B receptor signaling.

  6. Association of vitamin D receptor gene variants with polycystic ovary syndrome: A case control study

    PubMed Central

    Mahmoudi, Touraj; Majidzadeh-A, Keivan; Farahani, Hamid; Mirakhorli, Mojgan; Dabiri, Reza; Nobakht, Hossein; Asadi, Asadollah

    2015-01-01

    Background: Vitamin D and insulin play an important role in susceptibility to polycystic ovary syndrome (PCOS), and therefore vitamin D receptor (VDR), parathyroid hormone (PTH), and insulin receptor (INSR) gene variants might be involved in the pathogenesis of PCOS. Objective: The present study was designed to investigate the possible associations between polymorphisms in VDR, PTH, and INSR genes and the risk of PCOS. Materials and Methods: VDR, PTH, and INSR gene variants were genotyped in 35 women with PCOS and 35 controls using Polymerase chain reaction – Restriction fragment length polymorphism method. Furthermore, serum levels of glucose and insulin were measured in all participants. Results: No significant differences were observed for the VDR FokI, VDR Tru9I, VDR TaqI, PTH DraII, INSR NsiI, and INSR PmlI gene polymorphisms between the women with PCOS and controls. However, after adjustment for confounding factors, the VDR BsmI “Bb” genotype and the VDR ApaI "Aa" genotype were significantly under transmitted to the patients (p= 0.016; OR= 0.250; 95% CI= 0.081-0.769, and p= 0.017; OR= 0.260; 95% CI= 0.086-0.788, respectively). Furthermore, in the women with PCOS, insulin levels were lower in the participants with the INSR NsiI "NN" genotype compared with those with the "Nn + nn" genotypes (P= 0.045). Conclusion: The results showed an association between the VDR gene BsmI and ApaI polymorphisms and PCOS risk. These data also indicated that the INSR "NN" genotype was a marker of decreased insulin in women with PCOS. Our findings, however, do not lend support to the hypothesis that PTH gene DraII variant plays a role in susceptibility to PCOS. PMID:27141540

  7. Rearrangement by inversion of a T-cell receptor delta variable region gene located 3' of the delta constant region gene.

    PubMed Central

    Korman, A J; Maruyama, J; Raulet, D H

    1989-01-01

    We have located a T-cell receptor variable (V) delta gene segment immediately 3' of the delta constant (C) region gene and 5' to the known joining (J) alpha gene segments. This V delta gene is in the opposite transcriptional polarity to C delta and has rearranged to C delta by inversion in a gamma/delta-expressing hybridoma, DN7.3. This V delta gene is commonly rearranged in adult but not fetal gamma/delta-expressing thymocytes and has not been observed among alpha gene rearrangements reported to date. The reciprocal joining sequence isolated from this cell line contains N region nucleotides between the recombination signal sequences, in contrast to previously analyzed reciprocal joints. The results are discussed in the context of models accounting for ordered V gene usage during lymphocyte development. Images PMID:2789518

  8. Identification of Modulators of the Nuclear Receptor Peroxisome Proliferator-Activated Receptor α (PPARα) in a Mouse Liver Gene Expression Compendium

    EPA Science Inventory

    The nuclear receptor family member peroxisome proliferator-activated receptor α (PPARα) is activated by therapeutic hypolipidemic drugs and environmentally-relevant chemicals to regulate genes involved in lipid transport and catabolism. Chronic activation of PPARα in rodents inc...

  9. The human glutamate receptor delta 2 gene (GRID2) maps to chromosome 4q22.

    PubMed

    Hu, W; Zuo, J; De Jager, P L; Heintz, N

    1998-01-01

    We isolated the human glutamate receptor delta 2 (GRID2) gene, which has 97.0% identity in amino acid sequence to the mouse glutamate receptor delta 2 (Grid2) gene. We subsequently mapped this gene to human chromosome 4q22 by radiation hybrid mapping and by hybridization to two overlapping human yeast artificial chromosomes that are located in 4q22. The Grid2 gene, which is mutated in lurcher (Lc) mice, maps to mouse chromosome 6. Thus, the mapping of the GRID2 gene to human chromosome 4q22 confirms and refines a region of synteny between mouse and human genomes.

  10. Association between Tourette Syndrome and the Dopamine D3 Receptor Gene Rs6280

    PubMed Central

    He, Fan; Zheng, Yi; Huang, Huan-Huan; Cheng, Yu-Hang; Wang, Chuan-Yue

    2015-01-01

    Background: Tourette syndrome (TS) is a complex, heterozygous genetic disorder. The number of molecular genetic studies have investigated several candidate genes, particularly those implicated in the dopamine system. The dopamine D3 receptor (DRD3) gene has been considered as a candidate gene in TS. There was not any report about the association study of TS and DRD3 gene in Han Chinese population. We combined a case–control genetic association analysis and nuclear pedigrees transmission disequilibrium test (TDT) analysis to investigate the association between DRD3 gene rs6280 single nucleotide polymorphisms (SNPs) and TS in a Han Chinese population. Methods: A total of 160 TS patients was diagnosed by the diagnostic criteria of the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition. The DRD3 gene rs6280 SNPs were genotyped by TaqMan SNP genotyping assay technique in all subjects. We used a case–control genetic association analysis to compare the difference in genotype and allele frequencies between 160 TS patients and 90 healthy controls. At the same time, we used TDT analysis to identify the DRD3 gene rs6280 transmission disequilibrium among 101 nuclear pedigrees. Results: The genotype and allele frequency of DRD3 gene rs6280 SNPs had no statistical difference between control group (90) and TS group (160) (χ2 = 3.647, P = 0.161; χ2 = 0.643, P = 0.423) using Chi-squared test. At the basis of the 101 nuclear pedigrees, TDT analysis showed no transmission disequilibrium of DRD3 gene rs6280 SNPs (χ2 = 0; P = 1). Conclusions: Our findings provide no evidence for an association between DRD3 gene rs6280 and TS in the Han Chinese population. PMID:25698199

  11. Deviation from major codons in the Toll-like receptor genes is associated with low Toll-like receptor expression

    PubMed Central

    Zhong, Fei; Cao, Weiping; Chan, Edmund; Tay, Puei Nam; Cahya, Florence Feby; Zhang, Haifeng; Lu, Jinhua

    2005-01-01

    Microbial structures activate Toll-like receptors (TLRs) and TLR-mediated cell signalling elicits and regulates host immunity. Most TLRs are poorly expressed but the underlying expression mechanism is not clear. Examination TLR sequences revealed that most human TLR genes deviated from using major human codons. CD14 resembles TLRs in sequence but its gene preferentially uses major codons. Indeed, CD14 expression on monocytes was higher than expression of TLR1 and TLR2. The TLR9 gene is abundant in major codons and it also showed higher expression than TLR1, TLR2 and TLR7 in transfected 293T cells. Change of the 5′-end 302 base pairs of the TLR2 sequence into major human codons markedly increased TLR2 expression, which led to increased TLR2-mediated constitutive nuclear factor-κB activation. Change of the 5′-end 381 base pairs of the CD14 sequence into prevalent TLR codons markedly reduced CD14 expression. These results collectively show that the deviation of TLR sequences from using major codons dictates the low TLR expression and this may protect the host against excessive inflammation and tissue damages. PMID:15606798

  12. Allelic association of human dopamine D sub 2 receptor gene in alcoholism

    SciTech Connect

    Blum, K.; Sheridan, P.J.; Montgomery, A.; Jagadeeswaran, P.; Nogami, H.; Briggs, A.H. ); Noble, E.P.; Ritchie, T.; Cohn, J.B. )

    1990-04-18

    In a blinded experiment, the authors report the first allelic association of the dopamine D{sub 2} receptor gene in alcoholism. From 70 brain samples of alcoholics and nonalcoholics, DNA was digested with restriction endonucleases and probed with a clone that contained the entire 3{prime} coding exon, the polyadenylation signal, and approximately 16.4 kilobases of noncoding 3{prime} sequence of the human dopamine D{sub 2} receptor gene ({lambda}hD2G1). In the present samples, the presence of A1 allele of the dopamine D{sub 2} receptor gene correctly classified 77% of alcoholics, and its absence classified 72% of nonalcoholics. The polymorphic pattern of this receptor gene suggests that a gene that confers susceptibility to at least one form of alcoholism is located on the q22-q23 region of chromosome 11.

  13. Almost all human genes resulted from ancient duplication.

    PubMed

    Britten, Roy J

    2006-12-12

    Results of protein sequence comparison at open criterion show a very large number of relationships that have, up to now, gone unreported. The relationships suggest many ancient events of gene duplication. It is well known that gene duplication has been a major process in the evolution of genomes. A collection of human genes that have known functions have been examined for a history of gene duplications detected by means of amino acid sequence similarity by using BLASTp with an expectation of two or less (open criterion). Because the collection of genes in build 35 includes sets of transcript variants, all genes of known function were collected, and only the longest transcription variant was included, yielding a 13,298-member library called KGMV (for known genes maximum variant). When all lengths of matches are accepted, >97% of human genes show significant matches to each other. Many form matches with a large number of other different proteins, showing that most genes are made up from parts of many others as a result of ancient events of duplication. To support the use of the open criterion, all of the members of the KGMV library were twice replaced with random protein sequences of the same length and average composition, and all were compared with each other with BLASTp at expectation two or less. The set of matches averaged 0.35% of that observed for the KGMV set of proteins. PMID:17146051

  14. Perceptual variation in umami taste and polymorphisms in TAS1R taste receptor genes1234

    PubMed Central

    Chen, Qing-Ying; Alarcon, Suzanne; Tharp, Anilet; Ahmed, Osama M; Estrella, Nelsa L; Greene, Tiffani A; Rucker, Joseph; Breslin, Paul AS

    2009-01-01

    Background: The TAS1R1 and TAS1R3 G protein–coupled receptors are believed to function in combination as a heteromeric glutamate taste receptor in humans. Objective: We hypothesized that variations in the umami perception of glutamate would correlate with variations in the sequence of these 2 genes, if they contribute directly to umami taste. Design: In this study, we first characterized the general sensitivity to glutamate in a sample population of 242 subjects. We performed these experiments by sequencing the coding regions of the genomic TAS1R1 and TAS1R3 genes in a separate set of 87 individuals who were tested repeatedly with monopotassium glutamate (MPG) solutions. Last, we tested the role of the candidate umami taste receptor hTAS1R1-hTAS1R3 in a functional expression assay. Results: A subset of subjects displays extremes of sensitivity, and a battery of different psychophysical tests validated this observation. Statistical analysis showed that the rare T allele of single nucleotide polymorphism (SNP) R757C in TAS1R3 led to a doubling of umami ratings of 25 mmol MPG/L. Other suggestive SNPs of TAS1R3 include the A allele of A5T and the A allele of R247H, which both resulted in an approximate doubling of umami ratings of 200 mmol MPG/L. We confirmed the potential role of the human TAS1R1-TAS1R3 heteromer receptor in umami taste by recording responses, specifically to l-glutamate and inosine 5′-monophosphate (IMP) mixtures in a heterologous expression assay in HEK (human embryonic kidney) T cells. Conclusions: There is a reliable and valid variation in human umami taste of l-glutamate. Variations in perception of umami taste correlated with variations in the human TAS1R3 gene. The putative human taste receptor TAS1R1-TAS1R3 responds specifically to l-glutamate mixed with the ribonucleotide IMP. Thus, this receptor likely contributes to human umami taste perception. PMID:19587085

  15. Enhanced muscarinic M1 receptor gene expression in the corpus striatum of streptozotocin-induced diabetic rats

    PubMed Central

    Gireesh, G; Kumar, T Peeyush; Mathew, Jobin; Paulose, CS

    2009-01-01

    Acetylcholine (ACh), the first neurotransmitter to be identified, regulate the activities of central and peripheral functions through interactions with muscarinic receptors. Changes in muscarinic acetylcholine receptor (mAChR) have been implicated in the pathophysiology of many major diseases of the central nervous system (CNS). Previous reports from our laboratory on streptozotocin (STZ) induced diabetic rats showed down regulation of muscarinic M1 receptors in the brainstem, hypothalamus, cerebral cortex and pancreatic islets. In this study, we have investigated the changes of acetylcholine esterase (AChE) enzyme activity, total muscarinic and muscarinic M1 receptor binding and gene expression in the corpus striatum of STZ – diabetic rats and the insulin treated diabetic rats. The striatum, a neuronal nucleus intimately involved in motor behaviour, is one of the brain regions with the highest acetylcholine content. ACh has complex and clinically important actions in the striatum that are mediated predominantly by muscarinic receptors. We observed that insulin treatment brought back the decreased maximal velocity (Vmax) of acetylcholine esterase in the corpus striatum during diabetes to near control state. In diabetic rats there was a decrease in maximal number (Bmax) and affinity (Kd) of total muscarinic receptors whereas muscarinic M1 receptors were increased with decrease in affinity in diabetic rats. We observed that, in all cases, the binding parameters were reversed to near control by the treatment of diabetic rats with insulin. Real-time PCR experiment confirmed the increase in muscarinic M1 receptor gene expression and a similar reversal with insulin treatment. These results suggest the diabetes-induced changes of the cholinergic activity in the corpus striatum and the regulatory role of insulin on binding parameters and gene expression of total and muscarinic M1 receptors. PMID:19344500

  16. Association between GABAA Receptor Subunit Gene Cluster and Zolpidem-Induced Complex Sleep Behaviors in Han Chinese

    PubMed Central

    Tsai, Jui-Hsiu; Yang, Pinchen; Lin, Hung-Hsun; Cheng, Kuang-hung; Yang, Yi-Hsin; Wu, Ming-Tsang; Chen, Cheng-Chung

    2013-01-01

    Study Objectives: To investigate and elucidate the role of GABAA receptor subunits, specifically the 2 genetic markers at the GABAA α1 and GABAA α6 receptors, in zolpidem-induced complex sleep behaviors (CSBs). Design: Genetic association study. Setting: Kaohsiung Medical University-affiliated hospitals, Kaohsiung, Taiwan. Patients: 30 zolpidem-induced CSB subjects and 37 controls. Interventions: N/A. Measurements and Results: The χ2 test demonstrated an association between the A15G variant at the GABAA α1 receptor subunit gene and zolpidem-induced CSBs (P = 0.007). The adjusted odds ratio of the GABAA α1 receptor subunit genotype for the risk of zolpidem-induced CSBs was approximately 10 (OR = 9.99, 95% CI = 1.82, 74.87; P = 0.013). Conclusions: The finding reveals that the A15G variant at the GABAA α1 receptor subunit gene confers a high risk of zolpidem-induced CSBs and may be considered in clinical services. Citation: Tsai JH; Yang P; Lin HH; Cheng Kh; Yang YH; Wu MT; Chen CC. Association between GABAA receptor subunit gene cluster and zolpidem-induced complex sleep behaviors in Han Chinese. SLEEP 2013;36(2):197–202. PMID:23372267

  17. Enhancement of p53 gene transfer efficiency in hepatic tumor mediated by transferrin receptor through trans-arterial delivery.

    PubMed

    Lu, Qin; Teng, Gao-Jun; Zhang, Yue; Niu, Huan-Zhang; Zhu, Guang-Yu; An, Yan-Li; Yu, Hui; Li, Guo-Zhao; Qiu, Ding-Hong; Wu, Chuan-Ging

    2008-02-01

    Transferrin-DNA complex mediated by transferrin receptor in combination with interventional trans-arterial injection into a target organ may be a duel-target-oriented delivery means to achieve an efficient gene therapy. In this study, transferrin receptor expression in normal human hepatocyte and two hepatocellular-carcinoma cells (Huh7/SK-Hep1) was determined. p53-LipofectAMINE with different amounts of transferrin was transfected into the cells and the gene transfection efficiency was evaluated. After VX2 rabbit hepatocarcinoma model was established, the transferrin-p53-LipofectAMINE complex was delivered into the hepatic artery via interventional techniques to analyze the therapeutic p53 gene transfer efficiency in vivo by Western blot, immunohistochemical/immunofluorescence staining analysis and survival time. The results were transferrin receptor expression in Huh7 and SK-Hep1 cells was higher than in normal hepatocyte. Transfection efficiency of p53 was increased in vitro in both Huh7 and SK-Hep1 cells with increasing transferrin in a dose-dependent manner. As compared to intravenous administration, interventional injection of p53-gene complex into hepatic tumor mediated by transferrin-receptor, could enhance the gene transfer efficiency in vivo as evaluated by Western blot, immunohistochemical/immunofluorenscence staining analyses and improved animal survival (H = 12.567, p = 0.0019). These findings show the transferrin-transferrin receptor system combined with interventional techniques enhanced p53-gene transfer to hepatic tumor and the duel-target-oriented gene delivery may be an effective approach for gene therapy. PMID:18347429

  18. Degeneration of olfactory receptor gene repertories in primates: no direct link to full trichromatic vision.

    PubMed

    Matsui, Atsushi; Go, Yasuhiro; Niimura, Yoshihito

    2010-05-01

    Odor molecules in the environment are detected by olfactory receptors (ORs), being encoded by a large multigene family in mammalian genomes. It is generally thought that primates are vision oriented and dependent weakly on olfaction. Previous studies suggested that Old World monkeys (OWMs) and hominoids lost many functional OR genes after the divergence from New World monkeys (NWMs) due to the acquisition of well-developed trichromatic vision. To examine this hypothesis, here we analyzed OR gene repertoires of five primate species including NWMs, OWMs, and hominoids for which high-coverage genome sequences are available, together with two prosimians and tree shrews with low-coverage genomes. The results showed no significant differences in the number of functional OR genes between NWMs (marmosets) and OWMs/hominoids. Two independent analyses, identification of orthologous genes among the five primates and estimation of the numbers of ancestral genes by the reconciled tree method, did not support a sudden loss of OR genes at the branch of the OWMs/hominoids ancestor but suggested a gradual loss in every lineage. Moreover, we found that humans retain larger numbers of ancestral OR genes that were in the common ancestor of NWMs/OWMs/hominoids than orangutans and macaques and that the OR gene repertoire in humans is more similar to that of marmosets than those of orangutans and macaques. These results suggest that the degeneration of OR genes in primates cannot simply be explained by the acquisition of trichromatic vision, and our sense of smell may not be inferior to other primate species. PMID:20061342

  19. Unliganded Thyroid Hormone Receptor α Regulates Developmental Timing via Gene Repression in Xenopus tropicalis

    PubMed Central

    Choi, Jinyoung; Suzuki, Ken-ichi T.; Sakuma, Tetsushi; Shewade, Leena; Yamamoto, Takashi

    2015-01-01

    Thyroid hormone (TH) receptor (TR) expression begins early in development in all vertebrates when circulating TH levels are absent or minimal, yet few developmental roles for unliganded TRs have been established. Unliganded TRs are expected to repress TH-response genes, increase tissue responsivity to TH, and regulate the timing of developmental events. Here we examined the role of unliganded TRα in gene repression and development in Xenopus tropicalis. We used transcription activator-like effector nuclease gene disruption technology to generate founder animals with mutations in the TRα gene and bred them to produce F1 offspring with a normal phenotype and a mutant phenotype, characterized by precocious hind limb development. Offspring with a normal phenotype had zero or one disrupted TRα alleles, and tadpoles with the mutant hind limb phenotype had two truncated TRα alleles with frame shift mutations between the two zinc fingers followed by 40–50 mutant amino acids and then an out-of-frame stop codon. We examined TH-response gene expression and early larval development with and without exogenous TH in F1 offspring. As hypothesized, mutant phenotype tadpoles had increased expression of TH-response genes in the absence of TH and impaired induction of these same genes after exogenous TH treatment, compared with normal phenotype animals. Also, mutant hind limb phenotype animals had reduced hind limb and gill responsivity to exogenous TH. Similar results in methimazole-treated tadpoles showed that increased TH-response gene expression and precocious development were not due to early production of TH. These results indicate that unliganded TRα delays developmental progression by repressing TH-response genes. PMID:25456067

  20. Positive association between a DNA sequence variant in the serotonin 2A receptor gene and schizophrenia

    SciTech Connect

    Inayama, Y.; Yoneda, H.; Sakai, T.

    1996-02-16

    Sixty-two patients with schizophrenia and 96 normal controls were investigated for genetic association with restriction fragment length polymorphisms (RFLPs) in the serotonin receptor genes. A positive association between the serotonin 2A receptor gene (HTR2A) and schizophrenia was found, but not between schizophrenia and the serotonin 1A receptor gene. The positive association we report here would suggest that the DNA region with susceptibility to schizophrenia lies in the HTR2A on the long arm of chromosome 13. 15 refs., 2 tabs.

  1. Epigenetic regulation of olfactory receptor gene expression by the Myb-MuvB/dREAM complex.

    PubMed

    Sim, Choon Kiat; Perry, Sarah; Tharadra, Sana Khalid; Lipsick, Joseph S; Ray, Anandasankar

    2012-11-15

    In both mammals and insects, an olfactory neuron will usually select a single olfactory receptor and repress remaining members of large receptor families. Here we show that a conserved multiprotein complex, Myb-MuvB (MMB)/dREAM, plays an important role in mediating neuron-specific expression of the carbon dioxide (CO(2)) receptor genes (Gr63a/Gr21a) in Drosophila. Activity of Myb in the complex is required for expression of Gr63a/Gr21a and acts in opposition to the histone methyltransferase Su(var)3-9. Consistent with this, we observed repressive dimethylated H3K9 modifications at the receptor gene loci, suggesting a mechanism for silencing receptor gene expression. Conversely, other complex members, Mip120 (Myb-interacting protein 120) and E2F2, are required for repression of Gr63a in inappropriate neurons. Misexpression in mutants is accompanied by an increase in the H3K4me3 mark of active chromatin at the receptor gene locus. Nuclei of CO(2) receptor-expressing neurons contain reduced levels of the repressive subunit Mip120 compared with surrounding neurons and increased levels of Myb, suggesting that activity of the complex can be regulated in a cell-specific manner. Our evidence suggests a model in which olfactory receptors are regulated epigenetically and the MMB/dREAM complex plays a critical role in specifying, maintaining, and modulating the receptor-to-neuron map.

  2. Expression of five acetylcholine receptor subunit genes in Brugia malayi adult worms.

    PubMed

    Li, Ben-Wen; Rush, Amy C; Weil, Gary J

    2015-12-01

    Acetylcholine receptors (AChRs) are required for body movement in parasitic nematodes and are targets of "classical" anthelmintic drugs such as levamisole and pyrantel and of newer drugs such as tribendimidine and derquantel. While neurotransmission explains the effects of these drugs on nematode movement, their effects on parasite reproduction are unexplained. The levamisole AChR type (L-AChRs) in Caenorhabditis elegans is comprised of five subunits: Cel-UNC-29, Cel-UNC-38, Cel-UNC-63, Cel-LEV-1 and Cel-LEV-8. The genome of the filarial parasite Brugia malayi contains nine AChRs subunits including orthologues of Cel-unc-29, Cel-unc-38, and Cel-unc-63. We performed in situ hybridization with RNA probes to localize the expression of five AChR genes (Bm1_35890-Bma-unc-29, Bm1_20330-Bma-unc-38, Bm1_38195-Bma-unc-63, Bm1_48815-Bma-acr-26 and Bm1_40515-Bma-acr-12) in B. malayi adult worms. Four of these genes had similar expression patterns with signals in body muscle, developing embryos, spermatogonia, uterine wall adjacent to stretched microfilariae, wall of V as deferens, and lateral cord. Three L-AChR subunit genes (Bma-unc-29, Bma-unc-38 and Bma-unc-63) were expressed in body muscle, which is a known target of levamisole. Bma-acr-12 was co-expressed with these levamisole subunit genes in muscle, and this suggests that its protein product may form receptors with other alpha subunits. Bma-acr-26 was expressed in male muscle but not in female muscle. Strong expression signals of these genes in early embryos and gametes in uterus and testis suggest that AChRs may have a role in nervous system development of embryogenesis and spermatogenesis. This would be consistent with embryotoxic effects of drugs that target these receptors in filarial worms. Our data show that the expression of these receptor genes is tightly regulated with regard to localization in adult worms and developmental stage in embryos and gametes. These results may help to explain the broad effects of

  3. Intronic deletions of tva receptor gene decrease the susceptibility to infection by avian sarcoma and leukosis virus subgroup A

    PubMed Central

    Chen, Weiguo; Liu, Yang; Li, Hongxing; Chang, Shuang; Shu, Dingming; Zhang, Huanmin; Chen, Feng; Xie, Qingmei

    2015-01-01

    The group of avian sarcoma and leukosis virus (ASLV) in chickens contains six highly related subgroups, A to E and J. Four genetic loci, tva, tvb, tvc and tvj, encode for corresponding receptors that determine the susceptibility to the ASLV subgroups. The prevalence of ASLV in hosts may have imposed strong selection pressure toward resistance to ASLV infection, and the resistant alleles in all four receptor genes have been identified. In this study, two new alleles of the tva receptor gene, tvar5 and tvar6, with similar intronic deletions were identified in Chinese commercial broilers. These natural mutations delete the deduced branch point signal within the first intron, disrupting mRNA splicing of the tva receptor gene and leading to the retention of intron 1 and introduction of premature TGA stop codons in both the longer and shorter tva isoforms. As a result, decreased susceptibility to subgroup A ASLV in vitro and in vivo was observed in the subsequent analysis. In addition, we identified two groups of heterozygous allele pairs which exhibited quantitative differences in host susceptibility to ASLV-A. This study demonstrated that defective splicing of the tva receptor gene can confer genetic resistance to ASLV subgroup A in the host. PMID:25873518

  4. From "junk" to gene: curriculum vitae of a primate receptor isoform gene.

    PubMed

    Singer, Silke S; Männel, Daniela N; Hehlgans, Thomas; Brosius, Jürgen; Schmitz, Jürgen

    2004-08-20

    Exonization of Alu retroposons awakens public opinion, particularly when causing genetic diseases. However, often neglected, alternative "Alu-exons" also carry the potential to greatly enhance genetic diversity by increasing the transcriptome of primates chiefly via alternative splicing.Here, we report a 5' exon generated from one of the two alternative transcripts in human tumor necrosis factor receptor gene type 2 (p75TNFR) that contains an ancient Alu-SINE, which provides an alternative N-terminal protein-coding domain. We follow the primate evolution over the past 63 million years to reconstruct the key events that gave rise to a novel receptor isoform. The Alu integration and start codon formation occurred between 58 and 40 million years ago (MYA) in the common ancestor of anthropoid primates. Yet a functional gene product could not be generated until a novel splice site and an open reading frame were introduced between 40 and 25 MYA on the catarrhine lineage (Old World monkeys including apes).

  5. Ku proteins function as corepressors to regulate farnesoid X receptor-mediated gene expression

    SciTech Connect

    Ohno, Masae; Kunimoto, Masaaki; Nishizuka, Makoto; Osada, Shigehiro; Imagawa, Masayoshi

    2009-12-18

    The farnesoid X receptor (FXR; NR1H4) is a member of the nuclear receptor superfamily and regulates the expression of genes involved in enterohepatic circulation and the metabolism of bile acids. Based on functional analyses, nuclear receptors are divided into regions A-F. To explore the cofactors interacting with FXR, we performed a pull-down assay using GST-fused to the N-terminal A/B region and the C region, which are required for the ligand-independent transactivation and DNA-binding, respectively, of FXR, and nuclear extracts from HeLa cells. We identified DNA-dependent protein kinase catalytic subunit (DNA-PKcs), Ku80, and Ku70 as FXR associated factors. These proteins are known to have an important role in DNA repair, recombination, and transcription. DNA-PKcs mainly interacted with the A/B region of FXR, whereas the Ku proteins interacted with the C region and with the D region (hinge region). Chromatin immunoprecipitation assays revealed that the Ku proteins associated with FXR on the bile salt export pump (BSEP) promoter. Furthermore, we demonstrated that ectopic expression of the Ku proteins decreased the promoter activity and expression of BSEP gene mediated by FXR. These results suggest that the Ku proteins function as corepressors for FXR.

  6. Mutation analysis of aryl hydrocarbon receptor interacting protein (AIP) gene in colorectal, breast, and prostate cancers.

    PubMed

    Georgitsi, M; Karhu, A; Winqvist, R; Visakorpi, T; Waltering, K; Vahteristo, P; Launonen, V; Aaltonen, L A

    2007-01-29

    Germline mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene were recently identified in individuals with pituitary adenoma predisposition (PAP). These patients have prolactin (PRL) or growth hormone (GH) oversecreting pituitary adenomas, the latter exhibiting acromegaly or gigantism. Loss-of-heterozygosity (LOH) analysis revealed that AIP is lost in PAP tumours, suggesting that it acts as a tumour-suppressor gene. Aryl hydrocarbon receptor interacting protein is involved in several pathways, but it is best characterised as a cytoplasmic partner of the aryl hydrocarbon receptor (AHR). To examine the possible role of AIP in the genesis of common cancers, we performed somatic mutation screening in a series of 373 colorectal cancers (CRCs), 82 breast cancers, and 44 prostate tumour samples. A missense R16H (47G>A) change was identified in two CRC samples, as well as in the respective normal tissues, but was absent in 209 healthy controls. The remaining findings were silent, previously unreported, changes of the coding, non-coding, or untranslated regions of AIP. These results suggest that somatic AIP mutations are not common in CRC, breast, and prostate cancers. PMID:17242703

  7. Identification and Expression Analysis of Putative Chemosensory Receptor Genes in Microplitis mediator by Antennal Transcriptome Screening

    PubMed Central

    Wang, Shan-Ning; Peng, Yong; Lu, Zi-Yun; Dhiloo, Khalid Hussain; Gu, Shao-Hua; Li, Rui-Jun; Zhou, Jing-Jiang; Zhang, Yong-Jun; Guo, Yu-Yuan

    2015-01-01

    Host-seeking, ovipositional behavior and mating of insects are controlled mainly by odor perception through sensory organs such as antennae. Antennal chemoreception is extremely important for insect survival. Several antennal chemosensory receptors are involved in mediating the odor detection in insects, especially the odorant receptors (ORs) and ionotropic receptors (IRs), to ensure the specificity of the olfactory sensory neuron responses. In the present study, we identified the chemosensory receptor gene repertoire of the parasitoid wasp Microplitis mediator, a generalist endoparasitoid that infests more than 40 types of Lepidopterous larvae and is widely distributed in the Palaearctic region. By transcriptome sequencing of male and female antennae we identified 60 candidate odorant receptors, six candidate ionotropic receptors and two gustatory receptors in M. mediator. The full-length sequences of these putative chemosensory receptor genes were obtained by using the rapid amplification of cDNA ends PCR (RACE-PCR) method. We also conducted reverse transcription PCR (RT-PCR) combined with real-time quantitative PCR (qPCR) for investigating the expression profiles of these chemosensory receptor genes in olfactory and non-olfactory tissues. The tissue- and sex-biased expression patterns may provide insights into the roles of the chemosensory receptor in M. mediator. Our findings support possible future study of the chemosensory behavior of M. mediator at the molecular level. PMID:26078716

  8. Regulation of thyrotropin receptor gene expression in rat FRTL-5 thyroid cells.

    PubMed

    Saji, M; Akamizu, T; Sanchez, M; Obici, S; Avvedimento, E; Gottesman, M E; Kohn, L D

    1992-01-01

    TSH receptor mRNA levels in FRTL-5 thyroid cells are autoregulated at a transcriptional level by the same hormones required for the growth and function of the cells: TSH, insulin, and insulin-like growth factor-I (IGF-I). Thus, the ability of TSH, via its cAMP signal, to down-regulate steady state receptor mRNA levels is preceded by the action of TSH to decrease pre-mRNA levels in nuclear run-on assays to the same quantitative level as evident in Northern analyses. In contrast, the receptor mRNA half-life is shown not to change when down-regulation is reversed by withdrawing TSH in the presence or absence of actinomycin-D. Evidence is additionally provided that TSH receptor mRNA levels are increased by insulin, IGF-I, or calf serum in both Northern and run-on assays. This action cannot be duplicated by hydrocortisone and is evident at more than 20-fold lower concentrations of IGF-I than insulin. Moreover, insulin, IGF-I, and/or calf serum are required for the autoregulatory negative transcriptional regulation of the TSH receptor by TSH/cAMP, as is the case for thyroglobulin. This occurs despite the opposite actions of TSH/cAMP on the two genes, positive in the case of thyroglobulin and negative with TSH receptor. The positive and negative regulatory actions, respectively, of insulin/IGF-I and TSH on receptor gene expression are associated with coincident increases or decreases in cell surface receptors measured by [125I]TSH binding. The autoregulation additionally involves the interplay of a second cAMP-modulated regulatory factor, one which up-regulates TSH receptor mRNA levels rather than causing down-regulation. Thus, cycloheximide inhibits the transcriptional action of both TSH/cAMP and insulin/IGF-I/serum within 4 h, i.e. a rapidly synthesized protein is an intermediate in both cases. The presence of cycloheximide for as little as 1 h, however, uncovers the ability of TSH/cAMP to increase TSH receptor mRNA levels. This activity is the result of the action of a

  9. The farnesoid X receptor induces fetuin-B gene expression in human hepatocytes

    PubMed Central

    Murakami, Takeshi; Walczak, Robert; Caron, Sandrine; Duhem, Christian; Vidal, Vincent; Darteil, Raphaël; Staels, Bart

    2007-01-01

    FXR (farnesoid X receptor), a nuclear receptor activated by BAs (bile acids), is a key factor in the regulation of BA, lipid and carbohydrate metabolism. The recent development of synthetic FXR agonists and knockout mouse models has accelerated the discovery of FXR target genes. In the present study, we identify human fetuin-B as a novel FXR target gene. Treatment with FXR agonists increased fetuin-B expression in human primary hepatocytes and in the human hepatoma HepG2 cell line. In contrast, fetuin-B expression was not responsive to FXR agonist treatment in murine primary hepatocytes. Fetuin-B induction by FXR agonist was abolished upon FXR knockdown by siRNA (small interfering RNA). In addition to the previously described P1 promoter, we show that the human fetuin-B gene is also transcribed from an alternative promoter, termed P2. Transcription via the P2 promoter was induced by FXR agonist treatment, whereas P1 promoter activity was not sensitive to FXR agonist treatment. Two putative FXR-response elements [IR-1 (inverted repeat-1)] were identified in the region –1.6 kb upstream of the predicted P2 transcriptional start site. Both motifs bound FXR–RXR (retinoid X receptor) complexes in vitro and were activated by FXR in transient transfection reporter assays. Mutations in the IR-1 sites abolished FXR–RXR binding and activation. Taken together, these results identify human fetuin-B as a new FXR target gene in human hepatocytes. PMID:17655523

  10. Identification of the ancestral killer immunoglobulin-like receptor gene in primates

    PubMed Central

    Sambrook, Jennifer G; Bashirova, Arman; Andersen, Hanne; Piatak, Mike; Vernikos, George S; Coggill, Penny; Lifson, Jeff D; Carrington, Mary; Beck, Stephan

    2006-01-01

    Background Killer Immunoglobulin-like Receptors (KIR) are essential immuno-surveillance molecules. They are expressed on natural killer and T cells, and interact with human leukocyte antigens. KIR genes are highly polymorphic and contribute vital variability to our immune system. Numerous KIR genes, belonging to five distinct lineages, have been identified in all primates examined thus far and shown to be rapidly evolving. Since few KIR remain orthologous between species, with only one of them, KIR2DL4, shown to be common to human, apes and monkeys, the evolution of the KIR gene family in primates remains unclear. Results Using comparative analyses, we have identified the ancestral KIR lineage (provisionally named KIR3DL0) in primates. We show KIR3DL0 to be highly conserved with the identification of orthologues in human (Homo sapiens), common chimpanzee (Pan troglodytes), gorilla (Gorilla gorilla), rhesus monkey (Macaca mulatta) and common marmoset (Callithrix jacchus). We predict KIR3DL0 to encode a functional molecule in all primates by demonstrating expression in human, chimpanzee and rhesus monkey. Using the rhesus monkey as a model, we further show the expression profile to be typical of KIR by quantitative measurement of KIR3DL0 from an enriched population of natural killer cells. Conclusion One reason why KIR3DL0 may have escaped discovery for so long is that, in human, it maps in between two related leukocyte immunoglobulin-like receptor clusters outside the known KIR gene cluster on Chromosome 19. Based on genomic, cDNA, expression and phylogenetic data, we report a novel lineage of immunoglobulin receptors belonging to the KIR family, which is highly conserved throughout 50 million years of primate evolution. PMID:16911775

  11. Vampire bats exhibit evolutionary reduction of bitter taste receptor genes common to other bats.

    PubMed

    Hong, Wei; Zhao, Huabin

    2014-08-01

    The bitter taste serves as an important natural defence against the ingestion of poisonous foods and is thus believed to be indispensable in animals. However, vampire bats are obligate blood feeders that show a reduced behavioural response towards bitter-tasting compounds. To test whether bitter taste receptor genes (T2Rs) have been relaxed from selective constraint in vampire bats, we sampled all three vampire bat species and 11 non-vampire bats, and sequenced nine one-to-one orthologous T2Rs that are assumed to be functionally conserved in all bats. We generated 85 T2R sequences and found that vampire bats have a significantly greater percentage of pseudogenes than other bats. These results strongly suggest a relaxation of selective constraint and a reduction of bitter taste function in vampire bats. We also found that vampire bats retain many intact T2Rs, and that the taste signalling pathway gene Calhm1 remains complete and intact with strong functional constraint. These results suggest the presence of some bitter taste function in vampire bats, although it is not likely to play a major role in food selection. Together, our study suggests that the evolutionary reduction of bitter taste function in animals is more pervasive than previously believed, and highlights the importance of extra-oral functions of taste receptor genes.

  12. Targeted gene delivery mediated by folate-polyethylenimine-block-poly(ethylene glycol) with receptor selectivity.

    PubMed

    Cheng, Han; Zhu, Jing-Ling; Zeng, Xuan; Jing, Yue; Zhang, Xian-Zheng; Zhuo, Ren-Xi

    2009-03-18

    The folate receptor (FR) is a tumor marker overexpressed in large numbers of cancer cells. Folic acid has high affinity to the FR and retains its binding affinity upon derivatization via its gamma-carboxyl. Therefore, in this article, folate-polyethylenimine-block-poly(ethylene glycol) (FOL-PEI-b-PEG) was designed for specific receptor targeted gene delivery. Physicochemical characterizations of resulting FOL-PEI-b-PEG/DNA complexes in terms of agarose gel electrophoresis, particle size, and zeta potential measurements were investigated. The results indicated that FOL-PEI-b-PEG was able to condense plasmid DNA tightly with a suitable particle size. The cytotoxicity study indicated that the copolymer exhibited less toxicity in comparison with that of 25 kDa PEI. Luciferase assay and green fluorescent protein (GFP) detections were also used to confirm that FOL-PEI-b-PEG could be an effective gene vector. Importantly, transfection efficiency of FOL-PEI-b-PEG with free folic acid was much lower than that of the copolymer without free folic acid on FR-positive HeLa cells, suggesting that FOL-PEI-b-PEG has great potential as a targeting gene vector.

  13. The Glu727 Allele of Thyroid Stimulating Hormone Receptor Gene is Associated with Osteoporosis

    PubMed Central

    Liu, Ren-De; Chen, Rui-Xiong; Li, Wen-Rui; Huang, Yu-Liang; Li, Wen-Hu; Cai, Guang-Rong; Zhang, Heng

    2012-01-01

    Background: Published data indicate that thyroid stimulating hormone receptor (TSHR) activities are associated with osteoporosis in some patients. Aim: This study aimed to elucidate whether a given polymorphism of the TSHR gene is associated with osteoporosis. Materials and Methods: One hundred and fifty subjects with osteoporosis were recruited in this study. The diagnosis of osteoporosis was performed with quantitative ultrasound system. The TSHR gene polymorphism was examined by polymerase chain reaction–restriction fragment length polymorphism. Results: The results showed a nucleotide substitution in the first position of codon 36 of the TSHR gene. The nucleotide substitution was from G to C, leading to a 36D → 36H change (D36H) in the predicted amino acid sequence of the receptor. The change did not show significance between healthy subjects and patients with osteoporosis (P > 0.05). On the other hand, we identified another single nucleotide polymorphism that is a C-to-G substitution at codon 727 (GAC to GAG); its frequency was significantly higher in patients with osteoporosis than that in healthy subjects. Using logistic regression analysis, significant correlation was revealed between the genotype D727E and the serum levels of TSH, or the quantitative ultrasound value of the calcaneal bone. Conclusions: The present study suggests that the genotype D727E of the TSHR, but not the genotype D36H, may be a genetic risk factor for osteoporosis. PMID:22866266

  14. Vampire bats exhibit evolutionary reduction of bitter taste receptor genes common to other bats.

    PubMed

    Hong, Wei; Zhao, Huabin

    2014-08-01

    The bitter taste serves as an important natural defence against the ingestion of poisonous foods and is thus believed to be indispensable in animals. However, vampire bats are obligate blood feeders that show a reduced behavioural response towards bitter-tasting compounds. To test whether bitter taste receptor genes (T2Rs) have been relaxed from selective constraint in vampire bats, we sampled all three vampire bat species and 11 non-vampire bats, and sequenced nine one-to-one orthologous T2Rs that are assumed to be functionally conserved in all bats. We generated 85 T2R sequences and found that vampire bats have a significantly greater percentage of pseudogenes than other bats. These results strongly suggest a relaxation of selective constraint and a reduction of bitter taste function in vampire bats. We also found that vampire bats retain many intact T2Rs, and that the taste signalling pathway gene Calhm1 remains complete and intact with strong functional constraint. These results suggest the presence of some bitter taste function in vampire bats, although it is not likely to play a major role in food selection. Together, our study suggests that the evolutionary reduction of bitter taste function in animals is more pervasive than previously believed, and highlights the importance of extra-oral functions of taste receptor genes. PMID:24966321

  15. Parathyroid hormone ablation alters erythrocyte parameters that are rescued by calcium-sensing receptor gene deletion.

    PubMed

    Romero, Jose R; Youte, Rodeler; Brown, Edward M; Pollak, Martin R; Goltzman, David; Karaplis, Andrew; Pong, Lie-Chin; Chien, Lawrence; Chattopadhyay, Naibedya; Rivera, Alicia

    2013-07-01

    The mechanisms by which parathyroid hormone (PTH) produces anemia are unclear. Parathyroid hormone secretion is regulated by the extracellular Ca2+ -sensing receptor. We investigated the effects of ablating PTH on hematological indices and erythrocytes volume regulation in wild-type, PTH-null, and Ca2+ -sensing receptor-null/PTH-null mice. The erythrocyte parameters were measured in whole mouse blood, and volume regulatory systems were determined by plasma membrane K+ fluxes, and osmotic fragility was measured by hemoglobin determination at varying osmolarities. We observed that the absence of PTH significantly increases mean erythrocyte volume and reticulocyte counts, while decreasing erythrocyte counts, hemoglobin, hematocrit, and mean corpuscular hemoglobin concentration. These changes were accompanied by increases in erythrocyte cation content, a denser cell population, and increased K+ permeability, which were in part mediated by activation of the K+ /Cl- cotransporter and Gardos channel. In addition we observed that erythrocyte osmotic fragility in PTH-null compared with wild-type mice was enhanced. When Ca2+ -sensing receptor gene was deleted on the background of PTH-null mice, we observed that several of the alterations in erythrocyte parameters of PTH-null mice were largely rescued, particularly those related to erythrocyte volume, K+ fluxes and osmotic fragility, and became similar to those observed in wild-type mice. Our results demonstrate that Ca2+ -sensing receptor and parathyroid hormone are functionally coupled to maintain erythrocyte homeostasis. PMID:23528155

  16. The arginine vasopressin V1b receptor gene and prosociality: Mediation role of emotional empathy.

    PubMed

    Wu, Nan; Shang, Siyuan; Su, Yanjie

    2015-09-01

    The vasopressin V1b receptor (AVPR1B) gene has been shown to be closely associated with bipolar disorder and depression. However, whether it relates to positive social outcomes, such as empathy and prosocial behavior, remains unknown. This study explored the possible role of the AVPR1B gene rs28373064 in empathy and prosociality. A total of 256 men, who were genetically unrelated, non-clinical ethnic Han Chinese college students, participated in the study. Prosociality was tested by measuring the prosocial tendencies of cognitive and emotional empathy using the Interpersonal Reactivity Index (IRI). The single nucleotide polymorphism (SNP), rs28373064, was genotyped using a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis. The results suggest that the AVPR1B gene rs28373064 is linked to emotional empathy and prosociality. The mediation analysis indicated that the effect of the AVPR1B gene on prosociality might be mediated by emotional empathy. This study demonstrated the link between the AVPR1B gene and prosociality and provided evidence that emotional empathy might mediate the relation between the AVPR1B gene and prosociality.

  17. A novel human gene encoding a G-protein-coupled receptor (GPR15) is located on chromosome 3

    SciTech Connect

    Heiber, M.; Marchese, A.; O`Dowd, B.F.

    1996-03-05

    We used sequence similarities among G-protein-coupled receptor genes to discover a novel receptor gene. Using primers based on conserved regions of the opioid-related receptors, we isolated a PCR product that was used to locate the full-length coding region of a novel human receptor gene, which we have named GPR15. A comparison of the amino acid sequence of the receptor gene, which we have named GPR15. A comparison of the amino acid sequence of the receptor encoded by GPR15 with other receptors revealed that it shared sequence identity with the angiotensin II AT1 and AT2 receptors, the interleukin 8b receptor, and the orphan receptors GPR1 and AGTL1. GPR15 was mapped to human chromosome 3q11.2-q13.1. 12 refs., 2 figs.

  18. Receptor Activity-modifying Protein-directed G Protein Signaling Specificity for the Calcitonin Gene-related Peptide Family of Receptors*

    PubMed Central

    Weston, Cathryn; Winfield, Ian; Harris, Matthew; Hodgson, Rose; Shah, Archna; Dowell, Simon J.; Mobarec, Juan Carlos; Woodlock, David A.; Reynolds, Christopher A.; Poyner, David R.; Watkins, Harriet A.; Ladds, Graham

    2016-01-01

    The calcitonin gene-related peptide (CGRP) family of G protein-coupled receptors (GPCRs) is formed through the association of the calcitonin receptor-like receptor (CLR) and one of three receptor activity-modifying proteins (RAMPs). Binding of one of the three peptide ligands, CGRP, adrenomedullin (AM), and intermedin/adrenomedullin 2 (AM2), is well known to result in a Gαs-mediated increase in cAMP. Here we used modified yeast strains that couple receptor activation to cell growth, via chimeric yeast/Gα subunits, and HEK-293 cells to characterize the effect of different RAMP and ligand combinations on this pathway. We not only demonstrate functional couplings to both Gαs and Gαq but also identify a Gαi component to CLR signaling in both yeast and HEK-293 cells, which is absent in HEK-293S cells. We show that the CGRP family of receptors displays both ligand- and RAMP-dependent signaling bias among the Gαs, Gαi, and Gαq/11 pathways. The results are discussed in the context of RAMP interactions probed through molecular modeling and molecular dynamics simulations of the RAMP-GPCR-G protein complexes. This study further highlights the importance of RAMPs to CLR pharmacology and to bias in general, as well as identifying the importance of choosing an appropriate model system for the study of GPCR pharmacology. PMID:27566546

  19. Phosphorylated and sumoylation-deficient progesterone receptors drive proliferative gene signatures during breast cancer progression

    PubMed Central

    2012-01-01

    Introduction Progesterone receptors (PR) are emerging as important breast cancer drivers. Phosphorylation events common to breast cancer cells impact PR transcriptional activity, in part by direct phosphorylation. PR-B but not PR-A isoforms are phosphorylated on Ser294 by mitogen activated protein kinase (MAPK) and cyclin dependent kinase 2 (CDK2). Phospho-Ser294 PRs are resistant to ligand-dependent Lys388 SUMOylation (that is, a repressive modification). Antagonism of PR small ubiquitin-like modifier (SUMO)ylation by mitogenic protein kinases suggests a mechanism for derepression (that is, transcriptional activation) of target genes. As a broad range of PR protein expression is observed clinically, a PR gene signature would provide a valuable marker of PR contribution to early breast cancer progression. Methods Global gene expression patterns were measured in T47D and MCF-7 breast cancer cells expressing either wild-type (SUMOylation-capable) or K388R (SUMOylation-deficient) PRs and subjected to pathway analysis. Gene sets were validated by RT-qPCR. Recruitment of coregulators and histone methylation levels were determined by chromatin immunoprecipitation. Changes in cell proliferation and survival were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays and western blotting. Finally, human breast tumor cohort datasets were probed to identify PR-associated gene signatures; metagene analysis was employed to define survival rates in patients whose tumors express a PR gene signature. Results 'SUMO-sensitive' PR target genes primarily include genes required for proliferative and pro-survival signaling. DeSUMOylated K388R receptors are preferentially recruited to enhancer regions of derepressed genes (that is, MSX2, RGS2, MAP1A, and PDK4) with the steroid receptor coactivator, CREB-(cAMP-response element-binding protein)-binding protein (CBP), and mixed lineage leukemia 2 (MLL2), a histone methyltransferase mediator of nucleosome

  20. Human T-cell receptor v{beta} gene polymorphism and multiple sclerosis

    SciTech Connect

    Wei, S.; Charmley, P.; Birchfield, R.I.; Concannon, P.

    1995-04-01

    Population-based genetic associations have been reported between RFLPs detected with probes corresponding to the genes encoding the {beta} chain of the T-cell receptor for antigen (RCRB) and a variety of autoimmune disorders. In the case of multiple sclerosis (MS), these studies have localized a putative disease-associated gene to a region of {approximately}110 kb in length, located within the TCRB locus. In the current study, all 14 known TCRBV (variable region) genes within the region of localization were mapped and identified. The nucleotide sequences of these genes were determined in a panel of six MS patients and six healthy controls, who were human-leukocyte antigen and TCRB-RFLP haplotype matched. Nine of the 14 TCRBV genes studied showed evidence of polymorphism. PCR-based assays for each of these polymorphic genes were developed, and allele and genotype frequencies were determined in a panel of DNA samples from 48 MS patients and 60 control individuals. No significant differences in allele, genotype, or phenotype frequencies were observed between the MS patients and controls for any of the 14 TCRBV-gene polymorphisms studied. In light of the extensive linkage disequilibrium across the region studied, the saturating numbers of polymorphisms examined, and the direct sequence analysis of all BV genes in the region, these results suggest that it is unlikely that germ-line polymorphism in the TCRBV locus makes a major contribution to MS susceptibility. The TCRBV coding region-specific markers generated in these studies, as well as the approach of testing for associations with specific functionally relevant polymorphic sites within individual BV genes, should be useful in the evaluation of the many reported disease associations involving the human TCRB region. 22 refs., 1 fig., 3 tabs.

  1. The Sigma-2 Receptor and Progesterone Receptor Membrane Component 1 are Different Binding Sites Derived From Independent Genes

    PubMed Central

    Chu, Uyen B.; Mavlyutov, Timur A.; Chu, Ming-Liang; Yang, Huan; Schulman, Amanda; Mesangeau, Christophe; McCurdy, Christopher R.; Guo, Lian-Wang; Ruoho, Arnold E.

    2015-01-01

    The sigma-2 receptor (S2R) is a potential therapeutic target for cancer and neuronal diseases. However, the identity of the S2R has remained a matter of debate. Historically, the S2R has been defined as (1) a binding site with high affinity to 1,3-di-o-tolylguanidine (DTG) and haloperidol but not to the selective sigma-1 receptor ligand (+)-pentazocine, and (2) a protein of 18–21 kDa, as shown by specific photolabeling with [3H]-Azido-DTG and [125I]-iodoazido-fenpropimorph ([125I]-IAF). Recently, the progesterone receptor membrane component 1 (PGRMC1), a 25 kDa protein, was reported to be the S2R (Nature Communications, 2011, 2:380). To confirm this identification, we created PGRMC1 knockout NSC34 cell lines using the CRISPR/Cas9 technology. We found that in NSC34 cells devoid of or overexpressing PGRMC1, the maximum [3H]-DTG binding to the S2R (Bmax) as well as the DTG-protectable [125I]-IAF photolabeling of the S2R were similar to those of wild-type control cells. Furthermore, the affinities of DTG and haloperidol for PGRMC1 (KI = 472 μM and 350 μM, respectively), as determined in competition with [3H]-progesterone, were more than 3 orders of magnitude lower than those reported for the S2R (20–80 nM). These results clarify that PGRMC1 and the S2R are distinct binding sites expressed by different genes. PMID:26870805

  2. Orthologs of Human Disease Associated Genes and RNAi Analysis of Silencing Insulin Receptor Gene in Bombyx mori

    PubMed Central

    Zhang, Zan; Teng, Xiaolu; Chen, Maohua; Li, Fei

    2014-01-01

    The silkworm, Bombyx mori L., is an important economic insect that has been domesticated for thousands of years to produce silk. It is our great interest to investigate the possibility of developing the B. mori as human disease model. We searched the orthologs of human disease associated genes in the B. mori by bi-directional best hits of BLAST and confirmed by searching the OrthoDB. In total, 5006 genes corresponding to 1612 kinds of human diseases had orthologs in the B. mori, among which, there are 25 genes associated with diabetes mellitus. Of these, we selected the insulin receptor gene of the B. mori (Bm-INSR) to study its expression in different tissues and at different developmental stages and tissues. Quantitative PCR showed that Bm-INSR was highly expressed in the Malpighian tubules but expressed at low levels in the testis. It was highly expressed in the 3rd and 4th instar larvae, and adult. We knocked down Bm-INSR expression using RNA interference. The abundance of Bm-INSR transcripts were dramatically reduced to ~4% of the control level at 6 days after dsRNA injection and the RNAi-treated B. mori individuals showed apparent growth inhibition and malformation such as abnormal body color in black, which is the typical symptom of diabetic patients. Our results demonstrate that B. mori has potential use as an animal model for diabetic mellitus research. PMID:25302617

  3. Association of vitamin D receptor gene polymorphisms and Parkinson's disease in Hungarians.

    PubMed

    Török, Rita; Török, Nora; Szalardy, Levente; Plangar, Imola; Szolnoki, Zoltan; Somogyvari, Ferenc; Vecsei, Laszlo; Klivenyi, Peter

    2013-09-13

    Vitamin D receptor (VDR) gene encodes a transcription factor that influences calcium homeostasis and immunoregulation, and may play a role in neurological disorders including Parkinson's disease (PD). The investigations of the association between VDR and PD in different populations revealed various results. In a present study 100 PD patients and 109 healthy controls from the Hungarian population were genotyped for four polymorphic sites (BsmI, ApaI, FokI and TaqI) in the VDR gene. The polymorphisms were determined by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP). Our results demonstrate an association between the FokI C allele and PD; the frequency of the C allele was significantly higher in PD patients than in controls, suggesting that this polymorphism may have a role in the development of PD in these patients.

  4. Identification of microsatellite markers linked to the human leptin receptor gene on chromosome 1

    SciTech Connect

    Winick, J.D.; Friedman, J.M.; Stoffel, M.

    1996-08-15

    This report describes the localization of the human leptin receptor gene to human chromosome 1 using polymerase chain reaction of somatic cell hybrids. Leptin is a secreted protein important in the regulation of body weight. 16 refs., 1 fig.

  5. Farnesoid X receptor (FXR) gene deficiency impairs urine concentration in mice

    PubMed Central

    Zhang, Xiaoyan; Huang, Shizheng; Gao, Min; Liu, Jia; Jia, Xiao; Han, Qifei; Zheng, Senfeng; Miao, Yifei; Li, Shuo; Weng, Haoyu; Xia, Xuan; Du, Shengnan; Wu, Wanfu; Gustafsson, Jan-Åke; Guan, Youfei

    2014-01-01

    The farnesoid X receptor (FXR) is a ligand-activated transcription factor belonging to the nuclear receptor superfamily. FXR is mainly expressed in liver and small intestine, where it plays an important role in bile acid, lipid, and glucose metabolism. The kidney also has a high FXR expression level, with its physiological function unknown. Here we demonstrate that FXR is ubiquitously distributed in renal tubules. FXR agonist treatment significantly lowered urine volume and increased urine osmolality, whereas FXR knockout mice exhibited an impaired urine concentrating ability, which led to a polyuria phenotype. We further found that treatment of C57BL/6 mice with chenodeoxycholic acid, an FXR endogenous ligand, significantly up-regulated renal aquaporin 2 (AQP2) expression, whereas FXR gene deficiency markedly reduced AQP2 expression levels in the kidney. In vitro studies showed that the AQP2 gene promoter contained a putative FXR response element site, which can be bound and activated by FXR, resulting in a significant increase of AQP2 transcription in cultured primary inner medullary collecting duct cells. In conclusion, the present study demonstrates that FXR plays a critical role in the regulation of urine volume, and its activation increases urinary concentrating capacity mainly via up-regulating its target gene AQP2 expression in the collecting ducts. PMID:24464484

  6. Transactivation of the proximal promoter of human oxytocin gene by TR4 orphan receptor

    SciTech Connect

    Wang, C.-P.; Lee, Y.-F.; Chang, C.; Lee, H.-J. . E-mail: hjlee@mail.ndhu.edu.tw

    2006-12-08

    The human testicular receptor 4 (TR4) shares structural homology with members of the nuclear receptor superfamily. Some other members of this superfamily were able to regulate the transcriptional activity of the human oxytocin (OXT) promoter by binding to the first DR0 regulatory site. However, little investigation was conducted systematically in the study of the second dDR4 site of OXT proximal promoter, and the relationship between the first and the second sites of OXT promoter. Here, we demonstrated for the first time that TR4 could increase the proximal promoter activity of the human OXT gene via DR0, dDR4, and OXT (both DR0 and dDR4) elements, respectively. TR4 might induce OXT gene expression through the OXT element in a dose-dependent manner. However, there is no synergistic effect between DR0 and dDR4 elements during TR4 transactivation. Taken together, these results suggested that TR4 should be one of important regulators of OXT gene expression.

  7. Orphan nuclear receptor Nur77 participates in human apolipoprotein A5 gene expression

    SciTech Connect

    Song, Kwang-Hoon

    2010-01-29

    The orphan nuclear receptor Nur77 (NR4A1) has been reported to play a crucial role in the modulation of diverse metabolic processes in liver. Here, we reported the identification of human apolipoprotein A5 (ApoA5), which implicated in lowering plasma triglyceride levels, as a novel target gene of Nur77. Nur77 induced the human ApoA5 promoter activity. Using 5'-deletion and mutagenesis of human ApoA5 promoter analysis and chromatin immunoprecipitation assays, it was shown that Nur77 directly regulated human ApoA5 gene expression by binding to a Nur77 response element (AAAGGTCA) located in the proximal human ApoA5 promoter region. In addition, we demonstrated that blocking of Nur77 transcriptional activity via overexpression of dominant negative Nur77 suppressed human ApoA5 promoter activity and mRNA expression in human hepatoma cells, HepG2. Taken together, our results demonstrated that Nur77 is a novel regulator of human ApoA5 gene expression and provide a new insight into the role of this orphan nuclear receptor in lipoprotein metabolism and triglyceride homeostasis.

  8. Computational design of a Zn2+ receptor that controls bacterial gene expression

    NASA Astrophysics Data System (ADS)

    Dwyer, M. A.; Looger, L. L.; Hellinga, H. W.

    2003-09-01

    The control of cellular physiology and gene expression in response to extracellular signals is a basic property of living systems. We have constructed a synthetic bacterial signal transduction pathway in which gene expression is controlled by extracellular Zn2+. In this system a computationally designed Zn2+-binding periplasmic receptor senses the extracellular solute and triggers a two-component signal transduction pathway via a chimeric transmembrane protein, resulting in transcriptional up-regulation of a -galactosidase reporter gene. The Zn2+-binding site in the designed receptor is based on a four-coordinate, tetrahedral primary coordination sphere consisting of histidines and glutamates. In addition, mutations were introduced in a secondary coordination sphere to satisfy the residual hydrogen-bonding potential of the histidines coordinated to the metal. The importance of the secondary shell interactions is demonstrated by their effect on metal affinity and selectivity, as well as protein stability. Three designed protein sequences, comprising two distinct metal-binding positions, were all shown to bind Zn2+ and to function in the cell-based assay, indicating the generality of the design methodology. These experiments demonstrate that biological systems can be manipulated with computationally designed proteins that have drastically altered ligand-binding specificities, thereby extending the repertoire of genetic control by extracellular signals.

  9. Oxytocin Receptor Gene Polymorphisms Are Associated with Human Directed Social Behavior in Dogs (Canis familiaris)

    PubMed Central

    Lakatos, Gabriella; Pergel, Enikő; Turcsán, Borbála; Pluijmakers, Jolanda; Vas, Judit; Elek, Zsuzsanna; Brúder, Ildikó; Földi, Levente; Sasvári-Székely, Mária; Miklósi, Ádám; Rónai, Zsolt; Kubinyi, Enikő

    2014-01-01

    The oxytocin system has a crucial role in human sociality; several results prove that polymorphisms of the oxytocin receptor gene are related to complex social behaviors in humans. Dogs' parallel evolution with humans and their adaptation to the human environment has made them a useful species to model human social interactions. Previous research indicates that dogs are eligible models for behavioral genetic research, as well. Based on these previous findings, our research investigated associations between human directed social behaviors and two newly described (−212AG, 19131AG) and one known (rs8679684) single nucleotide polymorphisms (SNPs) in the regulatory regions (5′ and 3′ UTR) of the oxytocin receptor gene in German Shepherd (N = 104) and Border Collie (N = 103) dogs. Dogs' behavior traits have been estimated in a newly developed test series consisting of five episodes: Greeting by a stranger, Separation from the owner, Problem solving, Threatening approach, Hiding of the owner. Buccal samples were collected and DNA was isolated using standard protocols. SNPs in the 3′ and 5′ UTR regions were analyzed by polymerase chain reaction based techniques followed by subsequent electrophoresis analysis. The gene–behavior association analysis suggests that oxytocin receptor gene polymorphisms have an impact in both breeds on (i) proximity seeking towards an unfamiliar person, as well as their owner, and on (ii) how friendly dogs behave towards strangers, although the mediating molecular regulatory mechanisms are yet unknown. Based on these results, we conclude that similarly to humans, the social behavior of dogs towards humans is influenced by the oxytocin system. PMID:24454713

  10. Specific repertoire of olfactory receptor genes in the male germ cells of several mammalian species

    SciTech Connect

    Vanderhaeghen, P.; Schurmans, S.; Vassart, G.; Parmentier, M.

    1997-02-01

    Olfactory receptors constitute the largest family among G protein-coupled receptors, with up to 1000 members expected. We have previously shown that genes belonging to this family were expressed in the male germ line from both dog and human. We have subsequently demonstrated the presence of one of the corresponding olfactory receptor proteins during dog spermatogenesis and in mature sperm cells. In this study, we investigated whether the unexpected pattern of expression of olfactory receptors in the male germ line was conserved in other mammalian species. Using reverse transcription-PCR with primers specific for the olfactory receptor gene family, about 20 olfactory receptor cDNA fragments were cloned from the testis of each mammalian species tested. As a whole, they displayed no sequence specificity compared to other olfactory receptors, but highly homologous, possibly orthologous, genes were amplified from different species. Finally, their pattern of expression, as determined by RNase protection assay, revealed that many but not all of these receptors were expressed predominantly in testis. The male germ line from each mammalian species tested is thus characterized by a specific repertoire of olfactory receptors, which display a pattern of expression suggestive of their potential implication in the control of sperm maturation, migration, or fertilization. 34 refs., 4 figs., 1 tab.

  11. Adenosine A2A receptor gene disruption provokes marked changes in melanocortin content and pro-opiomelanocortin gene expression.

    PubMed

    Jégou, S; El Yacoubi, M; Mounien, L; Ledent, C; Parmentier, M; Costentin, J; Vaugeois, J-M; Vaudry, H

    2003-12-01

    A2A receptor knockout (A2AR-/-) mice are more anxious and aggressive, and exhibit reduced exploratory activity than their wild-type littermates (A2AR+/+). Because alpha-melanocyte-stimulating hormone (alpha-MSH) influences anxiety, aggressiveness and motor activity, we investigated the effect of A2AR gene disruption on alpha-MSH content in discrete brain regions and pro-opiomelanocortin (POMC) expression in the hypothalamus and pituitary. No modification in alpha-MSH content was observed in the hypothalamus and medulla oblongata where POMC-expressing perikarya are located. In the arcuate nucleus of the hypothalamus, POMC mRNA levels were not affected by A2AR disruption. Conversely, in A2AR-/- mice, a significant increase in alpha-MSH content was observed in the amygdala and cerebral cortex, two regions that are innervated by POMC terminals. In the pars intermedia of the pituitary, A2AR disruption provoked a significant reduction of POMC mRNA expression associated with a decrease in alpha-MSH content. By contrast, in the anterior lobe of the pituitary, a substantial increase in POMC mRNA and adrenocorticotropin hormone concentrations was observed, and plasma corticosterone concentration was significantly higher in A2AR-/- mice, revealing hyperactivity of their pituitary-adrenocortical axis. Together, these results suggest that adenosine, acting through A2A receptors, may modulate the release of alpha-MSH in the cerebral cortex and amygdala. The data also indicate that A2A receptors are involved in the control of POMC gene expression and biosynthesis of POMC-derived peptides in pituitary melanotrophs and corticotrophs.

  12. A Novel Point Mutation in the Amino Terminal Domain of the Human Glucocorticoid Receptor (hGR) Gene Enhancing hGR-Mediated Gene Expression

    PubMed Central

    Charmandari, Evangelia; Ichijo, Takamasa; Jubiz, William; Baid, Smita; Zachman, Keith; Chrousos, George P.; Kino, Tomoshige

    2008-01-01

    Context: Interindividual variations in glucocorticoid sensitivity have been associated with manifestations of cortisol excess or deficiency and may be partly explained by polymorphisms in the human glucocorticoid receptor (hGR) gene. We studied a 43-yr-old female, who presented with manifestations consistent with tissue-selective glucocorticoid hypersensitivity. We detected a novel, single, heterozygous nucleotide (G → C) substitution at position 1201 (exon 2) of the hGR gene, which resulted in aspartic acid to histidine substitution at amino acid position 401 in the amino-terminal domain of the hGRα. We investigated the molecular mechanisms of action of the natural mutant receptor hGRαD401H. Methods-Results: Compared with the wild-type hGRα, the mutant receptor hGRαD401H demonstrated a 2.4-fold increase in its ability to transactivate the glucocorticoid-inducible mouse mammary tumor virus promoter in response to dexamethasone but had similar affinity for the ligand (dissociation constant = 6.2 ± 0.6 vs. 6.1 ± 0.6 nm) and time to nuclear translocation (14.75 ± 0.25 vs. 14.25 ± 1.13 min). The mutant receptor hGRαD401H did not exert a dominant positive or negative effect upon the wild-type receptor, it preserved its ability to bind to glucocorticoid response elements, and displayed a normal interaction with the glucocorticoid receptor-interacting protein 1 coactivator. Conclusions: The mutant receptor hGRαD401H enhances the transcriptional activity of glucocorticoid-responsive genes. The presence of the D401H mutation may predispose subjects to obesity, hypertension, and other manifestations of the metabolic syndrome. PMID:18827003

  13. Direct modulation of simian virus 40 late gene expression by thyroid hormone and its receptor.

    PubMed

    Zuo, F; Kraus, R J; Gulick, T; Moore, D D; Mertz, J E

    1997-01-01

    Transcription of the late genes of simian virus 40 (SV40) is repressed during the early phase of the lytic cycle of infection of primate cells by the binding of cellular factors, called IBP-s, to the SV40 late promoter; repression is relieved after the onset of viral DNA replication by titration of these repressors (S. R. Wiley, R. J. Kraus, F. R. Zuo, E. E. Murray, K. Loritz, and J. E. Mertz, Genes Dev. 7:2206-2219, 1993). Recently, we showed that IBP-s consists of several members of the steroid/thyroid hormone receptor superfamily (F. Zuo and J. E. Mertz, Proc. Natl. Acad. Sci. USA 92:8586-8590, 1995). Here, we show that the thyroid hormone receptor TRalpha1, in combination with retinoid X receptor alpha (RXRalpha), is specifically bound at the transcriptional initiation site of the major late promoter of SV40. This binding repressed transcription from the SV40 late promoter by preventing the formation of pre-initiation complexes. Addition of the thyroid hormone 3,5,3'-L-triiodothyronine (T3) resulted in reversal of this repression in cotransfected CV-1 cells. Interestingly, repression did not occur when this thyroid response element (TRE) was translocated to 50 bp upstream of the major late initiation site. Binding of TRalpha1/RXRalpha heterodimers to this TRE induced bending of the promoter DNA. We conclude that hormones and their receptors can directly affect the expression of SV40, probably by affecting protein-protein and protein-DNA interactions involved in the formation of functional preinitiation complexes.

  14. On the organization of human T-cell receptor loci: log-periodic distribution of T-cell receptor gene segments

    PubMed Central

    Toor, Amir A.; Toor, Abdullah A.; Rahmani, Mohamed; Manjili, Masoud H.

    2016-01-01

    The human T-cell repertoire is complex and is generated by the rearrangement of variable (V), diversity (D) and joining (J) segments on the T-cell receptor (TCR) loci. The T-cell repertoire demonstrates self-similarity in terms clonal frequencies when defined by V, D and J gene segment usage; therefore to determine whether the structural ordering of these gene segments on the TCR loci contributes to the observed clonal frequencies, the TCR loci were examined for self-similarity and periodicity in terms of gene segment organization. Logarithmic transformation of numeric sequence order demonstrated that the V and J gene segments for both T-cell receptor α (TRA) and β (TRB) loci are arranged in a self-similar manner when the spacing between the adjacent segments was considered as a function of the size of the neighbouring gene segment, with an average fractal dimension of approximately 1.5. Accounting for the gene segments occurring on helical DNA molecules with a logarithmic distribution, sine and cosine functions of the log-transformed angular coordinates of the start and stop nucleotides of successive TCR gene segments showed an ordered progression from the 5′ to the 3′ end of the locus, supporting a log-periodic organization. T-cell clonal frequency estimates, based on V and J segment usage, from normal stem cell donors were plotted against the V and J segment on TRB locus and demonstrated a periodic distribution. We hypothesize that this quasi-periodic variation in gene-segment representation in the T-cell clonal repertoire may be influenced by the location of the gene segments on the periodic-logarithmically scaled TCR loci. Interactions between the two strands of DNA in the double helix may influence the probability of gene segment usage by means of either constructive or destructive interference resulting from the superposition of the two helices. PMID:26763333

  15. RAR-related orphan receptor A (RORA): A new susceptibility gene for multiple sclerosis.

    PubMed

    Eftekharian, Mohammad Mahdi; Noroozi, Rezvan; Sayad, Arezou; Sarrafzadeh, Shaghayegh; Toghi, Mehdi; Azimi, Tahereh; Komaki, Alireza; Mazdeh, Mehrdokht; Inoko, Hidetoshi; Taheri, Mohammad; Mirfakhraie, Reza

    2016-10-15

    Retinoic acid receptor-related orphan receptor alpha (RORA) is proposed to promote Th17 cells differentiation that play a crucial role in many inflammatory diseases, including multiple sclerosis (MS). The gene is also involved in regulation of inflammatory responses and neuronal cell development. The aim of the present study is to determine if any relation exists between RORA rs11639084 and rs4774388 gene polymorphisms on the individual susceptibility of multiple sclerosis. 410 patients with clinically definite MS and 500 ethnically-matched healthy controls participated in this study. Genotyping was performed using tetra primer-amplification refractory mutation system-PCR (4P-ARMS-PCR) method for the mentioned polymorphisms in the RORA gene. Both variants showed significant differences in allele and genotype distributions between the studied groups. Genotypes were risk associated in additive (P-value of 0.0003 and odds ratio equal to 1.7 (95% CI: 1.27-2.26)), dominant (P-value of <0.0001 and odds ratio equal to 0.55 (95% CI: 0.41-0.73)) and recessive (P-value of 0.04 and odds ratio equal to 0.33 (95% CI: (0.12-0.96)) models for rs11639084. However, the rs4774388 genotypes were risk associated in recessive model with a P-value of 0.036 and an odds ratio of 0.62 (95% CI: (0.4-0.97)). To the best of our knowledge this is the first report concerning the association between RORΑ gene polymorphisms and MS. The further study of RORΑ related pathways and gene networks might result in the better understanding of the pathophysiology of MS and related symptoms.

  16. RAR-related orphan receptor A (RORA): A new susceptibility gene for multiple sclerosis.

    PubMed

    Eftekharian, Mohammad Mahdi; Noroozi, Rezvan; Sayad, Arezou; Sarrafzadeh, Shaghayegh; Toghi, Mehdi; Azimi, Tahereh; Komaki, Alireza; Mazdeh, Mehrdokht; Inoko, Hidetoshi; Taheri, Mohammad; Mirfakhraie, Reza

    2016-10-15

    Retinoic acid receptor-related orphan receptor alpha (RORA) is proposed to promote Th17 cells differentiation that play a crucial role in many inflammatory diseases, including multiple sclerosis (MS). The gene is also involved in regulation of inflammatory responses and neuronal cell development. The aim of the present study is to determine if any relation exists between RORA rs11639084 and rs4774388 gene polymorphisms on the individual susceptibility of multiple sclerosis. 410 patients with clinically definite MS and 500 ethnically-matched healthy controls participated in this study. Genotyping was performed using tetra primer-amplification refractory mutation system-PCR (4P-ARMS-PCR) method for the mentioned polymorphisms in the RORA gene. Both variants showed significant differences in allele and genotype distributions between the studied groups. Genotypes were risk associated in additive (P-value of 0.0003 and odds ratio equal to 1.7 (95% CI: 1.27-2.26)), dominant (P-value of <0.0001 and odds ratio equal to 0.55 (95% CI: 0.41-0.73)) and recessive (P-value of 0.04 and odds ratio equal to 0.33 (95% CI: (0.12-0.96)) models for rs11639084. However, the rs4774388 genotypes were risk associated in recessive model with a P-value of 0.036 and an odds ratio of 0.62 (95% CI: (0.4-0.97)). To the best of our knowledge this is the first report concerning the association between RORΑ gene polymorphisms and MS. The further study of RORΑ related pathways and gene networks might result in the better understanding of the pathophysiology of MS and related symptoms. PMID:27653902

  17. Cloning of human genes encoding novel G protein-coupled receptors

    SciTech Connect

    Marchese, A.; Docherty, J.M.; Heiber, M.

    1994-10-01

    We report the isolation and characterization of several novel human genes encoding G protein-coupled receptors. Each of the receptors contained the familiar seven transmembrane topography and most closely resembled peptide binding receptors. Gene GPR1 encoded a receptor protein that is intronless in the coding region and that shared identity (43% in the transmembrane regions) with the opioid receptors. Northern blot analysis revealed that GPR1 transcripts were expressed in the human hippocampus, and the gene was localized to chromosome 15q21.6. Gene GPR2 encoded a protein that most closely resembled an interleukin-8 receptor (51% in the transmembrane regions), and this gene, not expressed in the six brain regions examined, was localized to chromosome 17q2.1-q21.3. A third gene, GPR3, showed identity (56% in the transmembrane regions) with a previously characterized cDNA clone from rat and was localized to chromosome 1p35-p36.1. 31 refs., 5 figs., 1 tab.

  18. Simian virus 40 late gene expression is regulated by members of the steroid/thyroid hormone receptor superfamily.

    PubMed

    Zuo, F; Mertz, J E

    1995-09-12

    Transcription of the late genes of simian virus 40 (SV40) is repressed during the early phase of the lytic cycle of infection of binding of cellular factors, called IBP-s, to the SV40 late promoter; repression is relieved after the onset of viral DNA replication by titration of these repressors. Preliminary data indicated that one of the major components of IBP-s was human estrogen-related receptor 1 (hERR1). We show here that several members of the steroid/thyroid hormone receptor superfamily, including testis receptor 2, thyroid receptor alpha 1 in combination with retinoid X receptor alpha, chicken ovalbumin upstream promoter transcription factors 1 and 2 (COUP-TF1 and COUP-TF2), as well as hERR1, possess the properties of IBP-s. These receptors bind specifically to hormone receptor binding sites present in the SV40 major late promoter. Recombinant COUP-TF1 specifically represses transcription from the SV40 major late promoter in a cell-free transcription system. Expression of COUP-TF1, COUP-TF2, or hERR1 in monkey cells results in repression of the SV40 late promoter, but not the early promoter, in the absence of the virally encoded large tumor antigen. Overexpression of COUP-TF1 leads to a delay in the early-to-late switch in SV40 gene expression during the lytic cycle of infection. Thus, members of this superfamily can play major direct roles in regulating expression of SV40. Possibly, natural or synthetic ligands to these receptors can serve as antiviral drugs. Our findings also provide the basis for the development of assays to screen for the ligands to testis receptor 2 and hERR1.

  19. 68Ga-DOTATOC PET and gene expression profile in patients with neuroendocrine carcinomas: strong correlation between PET tracer uptake and gene expression of somatostatin receptor subtype 2

    PubMed Central

    Olsen, Ingrid H; Langer, Seppo W; Federspiel, Birgitte H; Oxbøl, Jytte; Loft, Annika; Berthelsen, Anne Kiil; Mortensen, Jann; Oturai, Peter; Knigge, Ulrich; Kjær, Andreas

    2016-01-01

    Somatostatin receptor expression on both protein and gene expression level was compared with in vivo 68Ga-DOTATOC PET/CT in patients with neuroendocrine carcinomas (NEC). Twenty-one patients with verified NEC who underwent a 68Ga-DOTATOC PET/CT between November 2012 and May 2014, were retrospectively included. By real-time polymerase chain reaction, we quantitatively determined the gene expression of several genes and compared with 68Ga-DOTATOC PET uptake. By immunohistochemistry we qualitatively studied the expression of assorted proteins in NEC. The median age at diagnosis was 68 years (range 41-84) years. All patients had WHO performance status 0-1. Median Ki67 index was 50% (range 20-100%). Gene expression of somatostatin receptor subtype (SSTR) 2 and Ki67 were both positively correlated to the 68Ga-DOTATOC uptake (r=0.89; p<0.0001 and r=0.5; p=0.021, respectively). Furthermore, SSTR2 and SSTR5 gene expression were strongly and positively correlated (r=0.57; p=0.006). This study as the first verifies a positive and close correlation of 68Ga-DOTATOC uptake and gene expression of SSTR2 in NEC. SSTR2 gene expression has a stronger correlation to 68Ga-DOTATOC uptake than SSTR5. In addition, the results indicate that the gene expression levels of SSTR2 and SSTR5 at large follow one another. PMID:27069766

  20. Rearrangement of immunoglobulin and T-cell receptor genes in Hodgkin's disease.

    PubMed Central

    Roth, M. S.; Schnitzer, B.; Bingham, E. L.; Harnden, C. E.; Hyder, D. M.; Ginsburg, D.

    1988-01-01

    The precise cellular origin of the malignant cell population in Hodgkin's disease (HD) is unknown. Recent application of Southern blotting techniques to detect clonal rearrangements of immunoglobulin (Ig) and T-cell receptor (TCR) genes has yielded conflicting results. The authors report the detailed analysis of tumor tissue DNA obtained from 18 cases of HD using Ig and TCR gene probes. The distribution of HD subtypes was similar to that in other series. Samples were examined for rearrangement by means of multiple restriction enzymes with specific probes for the Ig heavy chain, Ig kappa, Ig lambda, TCR beta, and TCR gamma loci. Only germline bands were detected in all 18 cases with the Ig gene probes and in 15 of 18 cases with the TCR probes. In 2 cases blot analysis suggested a predominance of polyclonal (or oligoclonal) T cells. In 1 case monoclonal rearrangement of the TCR beta gene was detected. Based on the intensity of the rearrangement and the small percentage of Reed-Sternberg (R-S) cells in this case, the clonal population detected was most likely not the R-S cell itself. The data do not support the frequent occurrence of Ig or TCR monoclonal gene rearrangement in HD. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:3358458

  1. Variable expressivity and mutation databases: The androgen receptor gene mutations database.

    PubMed

    Gottlieb, B; Beitel, L K; Trifiro, M A

    2001-05-01

    For over 50 years genetics has presumed that variations in phenotypic expression have, for the most part, been the result of alterations in genotype. The importance and value of mutation databases has been based on the premise that the same gene or allelic variation in a specific gene that has been proven to determine a specific phenotype, will always produce the same phenotype. However, recent evidence has shown that so called "simple" Mendelian disorders or monogenic traits are often far from simple, exhibiting phenotypic variation (variable expressivity) that cannot be explained solely by a gene or allelic alteration. The AR gene mutations database now lists 25 cases where different degrees of androgen insensitivity are caused by identical mutations in the androgen receptor gene. In five of these cases the phenotypic variability is due to somatic mosaicism, that is, somatic mutations that occur in only certain cells of androgen-sensitive tissue. Recently, a number of other cases of variable expressivity have also been linked to somatic mosaicism. The impact of variable expressivity due to somatic mutations and mosaicism on mutation databases is discussed. In particular, the effect of an organism exhibiting genetic heterogeneity within its tissues, and the possibility of an organism's genotype changing over its lifetime, are considered to have important implications for mutation databases in the future. PMID:11317353

  2. Multiple Functions of Let-23, a Caenorhabditis Elegans Receptor Tyrosine Kinase Gene Required for Vulval Induction

    PubMed Central

    Aroian, R. V.; Sternberg, P. W.

    1991-01-01

    The let-23 gene, which encodes a putative tyrosine kinase of the epidermal growth factor (EGF) receptor subfamily, has multiple functions during Caenorhabditis elegans development. We show that let-23 function is required for vulval precursor cells (VPCs) to respond to the signal that induces vulval differentiation: a complete loss of let-23 function results in no induction. However, some let-23 mutations that genetically reduce but do not eliminate let-23 function result in VPCs apparently hypersensitive to inductive signal: as many as five of six VPCs can adopt vulval fates, in contrast to the three that normally do. These results suggest that the let-23 receptor tyrosine kinase controls two opposing pathways, one that stimulates vulval differentiation and another that negatively regulates vulval differentiation. Furthermore, analysis of 16 new let-23 mutations indicates that the let-23 kinase functions in at least five tissues. Since various let-23 mutant phenotypes can be obtained independently, the let-23 gene is likely to have tissue-specific functions. PMID:2071015

  3. Transgenic Over Expression of Nicotinic Receptor Alpha 5, Alpha 3, and Beta 4 Subunit Genes Reduces Ethanol Intake in Mice

    PubMed Central

    Gallego, Xavier; Ruiz, Jessica; Valverde, Olga; Molas, Susanna; Robles, Noemí; Sabrià, Josefa; Crabbe, John C.; Dierssen, Mara

    2012-01-01

    Abuse of alcohol and smoking are extensively co-morbid. Some studies suggest partial commonality of action of alcohol and nicotine mediated through nicotinic acetylcholine receptors (nAChRs). We tested mice with transgenic over expression of the alpha 5, alpha 3, beta 4 receptor subunit genes, which lie in a cluster on human chromosome 15, that were previously shown to have increased nicotine self-administration, for several responses to ethanol. Transgenic and wild-type mice did not differ in sensitivity to several acute behavioral responses to ethanol. However, transgenic mice drank less ethanol than wild-type in a two-bottle (ethanol vs. water) preference test. These results suggest a complex role for this receptor subunit gene cluster in the modulation of ethanol’s as well as nicotine’s effects. PMID:22459873

  4. Transgenic over expression of nicotinic receptor alpha 5, alpha 3, and beta 4 subunit genes reduces ethanol intake in mice.

    PubMed

    Gallego, Xavier; Ruiz-Medina, Jessica; Valverde, Olga; Molas, Susanna; Robles, Noemí; Sabrià, Josefa; Crabbe, John C; Dierssen, Mara

    2012-05-01

    Abuse of alcohol and smoking are extensively co-morbid. Some studies suggest partial commonality of action of alcohol and nicotine mediated through nicotinic acetylcholine receptors (nAChRs). We tested mice with transgenic over expression of the alpha 5, alpha 3, beta 4 receptor subunit genes, which lie in a cluster on human chromosome 15, that were previously shown to have increased nicotine self-administration, for several responses to ethanol. Transgenic and wild-type mice did not differ in sensitivity to several acute behavioral responses to ethanol. However, transgenic mice drank less ethanol than wild-type in a two-bottle (ethanol vs. water) preference test. These results suggest a complex role for this receptor subunit gene cluster in the modulation of ethanol's as well as nicotine's effects.

  5. TR4 orphan nuclear receptor functions as an apoptosis modulator via regulation of Bcl-2 gene expression

    SciTech Connect

    Kim, Eungseok; Ma, Wen-Lung; Lin, Din-Lii; Inui, Shigeki; Chen, Yuh-Ling; Chang, Chawnshang . E-mail: chang@urmc.rochester.edu

    2007-09-21

    While Bcl-2 plays an important role in cell apoptosis, its relationship to the orphan nuclear receptors remains unclear. Here we report that mouse embryonic fibroblast (MEF) cells prepared from TR4-deficient (TR4{sup -} {sup /-}) mice are more susceptible to UV-irradiation mediated apoptosis compared to TR4-Wildtype (TR4 {sup +/+}) littermates. Substantial increasing TR4{sup -} {sup /-} MEF apoptosis to UV-irradiation was correlated to the down-regulation of Bcl-2 RNA and protein expression and collaterally increased caspase-3 activity. Furthermore, this TR4-induced Bcl-2 gene expression can be suppressed by co-transfection with TR4 coregulators, such as androgen receptor (AR) and receptor-interacting protein 140 (RIP140) in a dose-dependent manner. Together, our results demonstrate that TR4 might function as an apoptosis modulator through induction of Bcl-2 gene expression.

  6. Structure and chromosomal localization of the human antidiuretic hormone receptor gene

    SciTech Connect

    Seibold, A.; Brabet, P.; Rosenthal, W.; Birnbaumer, M. )

    1992-11-01

    Applying a genomic DNA-expression approach, the authors cloned the gene and cDNA coding for the human antidiuretic hormone receptor, also called vasopressin V2 receptor' (V2R). The nucleotide sequence of both cloned DNAs provided the information to elucidate the structure of the isolated transcriptional unit. The structure of this gene is unusual in that it is the first G protein-coupled receptor gene that contains two very small intervening sequences, the second of which separates the region encoding the seventh transmembrane region from the rest of the open reading frame. The sequence information was used to synthesize appropriate oligonucleotides to be used as primers in the PCR. The V2R gene was localized by PCR using DNA from hybrid cells as template. The gene was found to reside in the q28-qter portion of the human X chromosome, a region identified as the locus for congential nephrogenic diabetes insipidus. 27 refs., 4 figs.

  7. Further evidence of no linkage between schizophrenia and the dopamine D{sub 3} receptor gene locus

    SciTech Connect

    Nanko, S.; Fukuda, R.; Hattori, M.

    1994-09-15

    The dopamine hypothesis of schizophrenia proposed that dopaminergic pathways are involved in the etiology of the disease. In particular, interest among psychiatrists has focused on the D{sub 2} receptor because of its affinity to antipsychotic drugs. Recently a new dopamine receptor gene has been cloned and named the dopamine D{sub 3} receptor. The D{sub 3} receptor is a potential site for antipsychotic drug action and may be involved in the pathophysiology of schizophrenia. We have carried out a linkage study between the susceptibility gene for schizophrenia and polymorphism of the dopamine D{sub 3} receptor gene in two Japanese pedigrees. The LOD scores were negative for all genetic models and for all affective status at a recombination fraction {theta} = 0. Linkage of DRD{sub 3} has been excluded for the model 1 (dominant model) and the model 3 (recessive model). The LOD score was -3.43 at {theta} = 0 for model 1 (dominant model) and broad definition of affected status. These results were consistent with previous studies. 19 refs., 2 figs., 3 tabs.

  8. Evidence for beta1-adrenergic receptor involvement in amygdalar corticotropin-releasing factor gene expression: implications for cocaine withdrawal.

    PubMed

    Rudoy, Carla A; Reyes, Arith-Ruth S; Van Bockstaele, Elisabeth J

    2009-04-01

    We previously showed that betaxolol, a selective beta(1)-adrenergic receptor antagonist, administered during early phases of cocaine abstinence, ameliorated withdrawal-induced anxiety and blocked increases in amygdalar beta(1)-adrenergic receptor expression in rats. Here, we report the efficacy of betaxolol in reducing increases in gene expression of amygdalar corticotropin-releasing factor (CRF), a peptide known to be involved in mediating 'anxiety-like' behaviors during initial phases of cocaine abstinence. We also demonstrate attenuation of an amygdalar beta(1)-adrenergic receptor-mediated cell-signaling pathway following this treatment. Male rats were administered betaxolol at 24 and 44 h following chronic cocaine administration. Animals were euthanized at the 48-h time point and the amygdala was microdissected and processed for quantitative reverse transcriptase-polymerase chain reaction and/or western blot analysis. Results showed that betaxolol treatment during early cocaine withdrawal attenuated increases in amygdalar CRF gene expression and cyclic adenosine monophosphate-dependent protein kinase regulatory and catalytic subunit (nuclear fraction) protein expression. Our data also reveal that beta(1)-adrenergic receptors are on amygdalar neurons, which are immunoreactive for CRF. The present findings suggest that the efficacy of betaxolol treatment on cocaine withdrawal-induced anxiety may be related, in part, to its effect on amygdalar beta(1)-adrenergic receptor, modulation of its downstream cell-signaling elements and CRF gene expression.

  9. The retinoid-related orphan receptor alpha (RORA) gene and fear-related psychopathology

    PubMed Central

    Miller, Mark W.; Wolf, Erika J.; Logue, Mark W.; Baldwin, Clinton T.

    2013-01-01

    Background This study followed on findings from a recent genome-wide association study of PTSD that implicated the retinoid-related orphan receptor alpha (RORA) gene (Logue et al, 2012) by examining its relationship to broader array of disorders. Methods Using data from the same cohort (N = 540), we analyzed patterns of association between 606 single nucleotide polymorphisms (SNPs) spanning the RORA gene and comorbidity factors termed fear, distress (i.e., internalizing factors) and externalizing. Results Results showed that rs17303244 was associated with the fear component of internalizing (i.e., defined by symptoms of panic, agoraphobia, specific phobia, and obsessive-compulsive disorder) at a level of significance that withstood correction for gene-wide multiple testing. Limitations The primary limitations were the modest size of the cohort and the absence of a replication sample. Conclusions Results add to a growing literature implicating the RORA gene in a wide range of neuropsychiatric disorders and offer new insight into possible molecular mechanisms of the effects of traumatic stress on the brain and the role of genetic factors in those processes. PMID:24007783

  10. Cyclic AMP regulation of early gene expression in Dictyostelium discoideum: mediation via the cell surface cyclic AMP receptor.

    PubMed Central

    Mann, S K; Firtel, R A

    1987-01-01

    We examined two sets of genes expressed early in the developmental cycle of Dictyostelium discoideum that appear to be regulated by cyclic AMP (cAMP). The transcripts of both sets of genes were not detectable in vegetative cells. During normal development on filter pads, RNA complementary to these genes could be detected at about 2 h, peaked around 6 to 8 h, and decreased gradually thereafter. Expression of these genes upon starvation in shaking culture was stimulated by pulsing the cells with nanomolar levels of cAMP, a condition that mimics the in vivo pulsing during normal aggregation. Expression was inhibited by caffeine or by continuous levels of cAMP, a condition found later in development when in vivo expression of these genes decreased. The inhibition of caffeine could be overcome by pulsing cells with cAMP. These results suggest that the expression is mediated via the cell surface cAMP receptor, but does not require a rise in intracellular cAMP. mRNA from a gene of the second class was induced upon starvation, peaked by 2.5 h of development, and then declined. In contrast to the other genes, its expression was maintained by continuous levels of cAMP and repressed by cAMP pulses. These and other results on a number of classes of developmentally regulated genes indicates that changing levels of cAMP, acting via the cell surface cAMP receptor, are involved in controlling these groups of genes. We also examined the structure and partial sequence of the cAMP pulse-induced genes. The two tandemly duplicated M3 genes were almost continuously homologous over the sequenced portion of the protein-coding region except for a region near the N-terminal end. The two M3 genes had regions of homology in the 5' flanking sequence and showed slight homology to the same regions in gene D2, another cAMP pulse-induced gene. D2 showed extremely significant homology over its entire sequenced length to an acetylcholinesterase. The results presented here and by others suggest that

  11. Glucocorticoid receptor gene haplotype structure and steroid therapy outcome in IBD patients

    PubMed Central

    Mwinyi, Jessica; Wenger, Christa; Eloranta, Jyrki J; Kullak-Ublick, Gerd A

    2010-01-01

    AIM: To study whether the glucocorticoid receptor (GR/NR3C1) gene haplotypes influence the steroid therapy outcome in inflammatory bowel disease (IBD). METHODS: We sequenced all coding exons and flanking intronic sequences of the NR3C1 gene in 181 IBD patients, determined the single nucleotide polymorphisms, and predicted the NR3C1 haplotypes. Furthermore, we investigated whether certain NR3C1 haplotypes are significantly associated with steroid therapy outcomes. RESULTS: We detected 13 NR3C1 variants, which led to the formation of 17 different haplotypes with a certainty of > 95% in 173 individuals. The three most commonly occurring haplotypes were included in the association analysis of the influence of haplotype on steroid therapy outcome or IBD activity. None of the NR3C1 haplotypes showed statistically significant association with glucocorticoid therapy success. CONCLUSION: NR3C1 haplotypes are not related to steroid therapy outcome. PMID:20712049

  12. Endocrine parameters and phenotypes of the growth hormone receptor gene disrupted (GHR-/-) mouse.

    PubMed

    List, Edward O; Sackmann-Sala, Lucila; Berryman, Darlene E; Funk, Kevin; Kelder, Bruce; Gosney, Elahu S; Okada, Shigeru; Ding, Juan; Cruz-Topete, Diana; Kopchick, John J

    2011-06-01

    Disruption of the GH receptor (GHR) gene eliminates GH-induced intracellular signaling and, thus, its biological actions. Therefore, the GHR gene disrupted mouse (GHR-/-) has been and is a valuable tool for helping to define various parameters of GH physiology. Since its creation in 1995, this mouse strain has been used by our laboratory and others for numerous studies ranging from growth to aging. Some of the most notable discoveries are their extreme insulin sensitivity in the presence of obesity. Also, the animals have an extended lifespan, which has generated a large number of investigations into the roles of GH and IGF-I in the aging process. This review summarizes the many results derived from the GHR-/- mice. We have attempted to present the findings in the context of current knowledge regarding GH action and, where applicable, to discuss how these mice compare to GH insensitivity syndrome in humans. PMID:21123740

  13. Endocrine Parameters and Phenotypes of the Growth Hormone Receptor Gene Disrupted (GHR−/−) Mouse

    PubMed Central

    List, Edward O.; Sackmann-Sala, Lucila; Berryman, Darlene E.; Funk, Kevin; Kelder, Bruce; Gosney, Elahu S.; Okada, Shigeru; Ding, Juan; Cruz-Topete, Diana

    2011-01-01

    Disruption of the GH receptor (GHR) gene eliminates GH-induced intracellular signaling and, thus, its biological actions. Therefore, the GHR gene disrupted mouse (GHR−/−) has been and is a valuable tool for helping to define various parameters of GH physiology. Since its creation in 1995, this mouse strain has been used by our laboratory and others for numerous studies ranging from growth to aging. Some of the most notable discoveries are their extreme insulin sensitivity in the presence of obesity. Also, the animals have an extended lifespan, which has generated a large number of investigations into the roles of GH and IGF-I in the aging process. This review summarizes the many results derived from the GHR−/− mice. We have attempted to present the findings in the context of current knowledge regarding GH action and, where applicable, to discuss how these mice compare to GH insensitivity syndrome in humans. PMID:21123740

  14. Hydroxytyrosol Inhibits Cannabinoid CB1 Receptor Gene Expression in 3T3-L1 Preadipocyte Cell Line.

    PubMed

    Tutino, Valeria; Orlando, Antonella; Russo, Francesco; Notarnicola, Maria

    2016-02-01

    The 3T3-L1 preadipocyte cell line is a well characterized cell model for studying the adipocyte status and the molecular mechanisms involved in differentiation of these cells. 3T3-L1 preadipocytes have the ability to synthesize and degrade endocannabinoid anandamide (AEA) and their differentiation into adipocytes increases the expression of cannabinoid (CB1) and PPAR-γ receptors. Clinically, the blocking stimulation of the endocannabinoid pathway has been one of the first approaches proposed to counteract the obesity and obesity-associated diseases (such as diabetes, metabolic syndrome and cancer). In this connection, here we studied in cultured 3T3-L1 pre-adipocytes the effects of n-3-PUFA, α-Linolenic acid (OM-3), n-6-PUFA, Linoleic acid (OM-6), and hydroxytyrosol (HT) on the expression of CB1 receptor gene and the adipogenesis-related genes PPAR-γ, Fatty Acid Synthase (FAS) and Lipoprotein Lipase (LPL). HT was able to inhibit 3T3-L1 cell differentiation by down-regulating cell proliferation and CB1 receptor gene expression. HT exhibited anti-adipogenic effects, whereas OM-3 and OM-6 exerted an inhibitory action on cell proliferation associated with an induction of the preadipocytes differentiation and CB1 receptor gene expression. Moreover, the expression of FAS and LPL genes resulted increased after treatment with both HT and OM-3 and OM-6. The present study points out that the intake of molecules such as HT, contained in extra virgin olive oil, may be considered also in view of antiobesity and antineoplastic properties by acting directly on the adipose tissue and modulating CB1 receptor gene transcription.

  15. Mutation Analysis of the LH Receptor Gene in Leydig Cell Adenoma and Hyperplasia and Functional and Biochemical Studies of Activating Mutations of the LH Receptor Gene

    PubMed Central

    Lumbroso, Serge; Verhoef-Post, Miriam; Richter-Unruh, Annette; Looijenga, Leendert H. J.; Funaro, Ada; Beishuizen, Auke; van Marle, André; Drop, Stenvert L. S.; Themmen, Axel P. N.

    2011-01-01

    Context: Germline and somatic activating mutations in the LH receptor (LHR) gene have been reported. Objective: Our objective was to perform mutation analysis of the LHR gene of patients with Leydig cell adenoma or hyperplasia. Functional studies were conducted to compare the D578H-LHR mutant with the wild-type (WT)-LHR and the D578G-LHR mutant, a classic cause of testotoxicosis. The three main signal transduction pathways in which LHR is involved were studied. Patients: We describe eight male patients with gonadotropin-independent precocious puberty due to Leydig cell adenoma or hyperplasia. Results: The D578H-LHR mutation was found in the adenoma or nodule with hyperplasia in all but two patients. D578H-LHR displayed a constitutively increased but noninducible production of cAMP, led to a very high production of inositol phosphates, and induced a slight phosphorylation of p44/42 MAPK in the absence of human chorionic gonadotropin. The D578G-LHR showed a response intermediate between WT-LHR and the D578H-LHR. Subcellular localization studies showed that the WT-LHR was almost exclusively located at the cell membrane, whereas the D578H-LHR showed signs of internalization. D578H-LHR was the only receptor to colocalize with early endosomes in the absence of human chorionic gonadotropin. Conclusions: Although several LHR mutations have been reported in testotoxicosis, the D578H-LHR mutation, which has been found only as a somatic mutation, appears up until now to be specifically responsible for Leydig cell adenomas. This is reflected by the different activation of the signal transduction pathways, when compared with the WT-LHR or D578G-LHR, which may explain the tumorigenesis in the D578H mutant. PMID:21490077

  16. Association analysis of peroxisome proliferator-activated receptors gamma gene polymorphisms with asprin hypersensitivity in asthmatics

    PubMed Central

    Oh, Sun-Hee; Park, Se-Min; Park, Jong-Sook; Jang, An-Soo; Lee, Yong-Mok; Uh, Soo-Taek; Kim, Young Hoon; Choi, In-Seon; Kim, Mi-Kyeong; Park, Byeong Lae

    2009-01-01

    Purpose Peroxisome proliferator-activated receptors (PPARs) are transcriptional factors activated by ligands of the nuclear hormone receptor superfamily. The activation of PPARγ regulates inflammation by downregulating the production of Th2 type cytokines and eosinophil function. In addition, a range of natural substances, including arachidonate pathway metabolites such as 15-hydroxyeicosatetranoic acid (15-HETE), strongly promote PPARG expression. Therefore, genetic variants of the PPARG gene may be associated with the development of aspirin-intolerant asthma (AIA). We investigated the relationship between single nucleotide polymorphism (SNP) of the PPARG gene and AIA. Methods Based on the results of an oral aspirin challenge, asthmatics (n=403) were categorized into two groups: those with a decrease in FEV1 of 15% or greater (AIA) or less than 15% (aspirin-tolerant asthma, ATA). We genotyped two single nucleotide polymorphisms in the PPARG gene from Korean asthmatics and normal controls (n=449): +34C>G (Pro12Ala) and +82466C>T (His449His). Results Logistic regression analysis showed that +82466C>T and haplotype 1 (CC) were associated with the development of aspirin hypersensitivity in asthmatics (P=0.04). The frequency of the rare allele of +82466C>T was significantly higher in AIA patients than in ATA patients in the recessive model [P=0.04, OR=3.97 (1.08-14.53)]. In addition, the frequency of PPARG haplotype 1 was significantly lower in AIA patients than in ATA patients in the dominant model (OR=0.25, P=0.04). Conclusions The +82466C>T polymorphism and haplotype 1 of the PPARG gene may be linked to increased risk for aspirin hypersensitivity in asthma. PMID:20224667

  17. Vitamin D receptor gene FokI polymorphisms and tuberculosis susceptibility: a meta-analysis

    PubMed Central

    Cao, Yan; Cao, Zhihong; Cheng, Xiaoxing

    2016-01-01

    Introduction The association between FokI polymorphism of vitamin D receptor (VDR) and tuberculosis (TB) susceptibility has been investigated previously; however, the results were inconsistent and conflicting. In the present study, a meta-analysis was performed to assess the relationship between VDR FokI gene polymorphism and the risk of TB. Material and methods Databases including PubMed and Embase were searched for genetic association studies of FokI polymorphism of vitamin D receptor (VDR) and TB. Data were extracted by two independent authors and the pooled odds ratio (OR) with 95% confidence interval (CI) was calculated to assess the strength of the association between VDR FokI gene polymorphism and TB risk. Meta-regression and subgroup analyses were performed to identify the source of heterogeneity. Results Thirty-four studies with a total of 5669 cases and 6525 controls were reviewed in the present meta-analysis. A statistically significant correlation was found between VDR FokI gene polymorphism and increased TB risk in two comparison models: the homozygote model (ff vs. FF: OR = 1.37, 95% CI: 1.17–1.60; Pheterogeneity = 0.001) and the recessive model (ff vs. Ff + FF: OR = 1.32, 95% CI: 1.14–1.52; Pheterogeneity = 0.006). Meta-regression found no source contributing to heterogeneity. However, sub-group analyses revealed that there was a statistically increased TB risk in the East and Southeast Asian population. Conclusions Synthesis of the available studies suggests that homozygosity for the FokI polymorphism of the VDR gene might be associated with an increased TB risk, especially in the East and Southeast Asian population. Additional well-designed, larger-scale epidemiological studies among different ethnicities are needed. PMID:27695504

  18. Vitamin D receptor gene FokI polymorphisms and tuberculosis susceptibility: a meta-analysis

    PubMed Central

    Cao, Yan; Cao, Zhihong; Cheng, Xiaoxing

    2016-01-01

    Introduction The association between FokI polymorphism of vitamin D receptor (VDR) and tuberculosis (TB) susceptibility has been investigated previously; however, the results were inconsistent and conflicting. In the present study, a meta-analysis was performed to assess the relationship between VDR FokI gene polymorphism and the risk of TB. Material and methods Databases including PubMed and Embase were searched for genetic association studies of FokI polymorphism of vitamin D receptor (VDR) and TB. Data were extracted by two independent authors and the pooled odds ratio (OR) with 95% confidence interval (CI) was calculated to assess the strength of the association between VDR FokI gene polymorphism and TB risk. Meta-regression and subgroup analyses were performed to identify the source of heterogeneity. Results Thirty-four studies with a total of 5669 cases and 6525 controls were reviewed in the present meta-analysis. A statistically significant correlation was found between VDR FokI gene polymorphism and increased TB risk in two comparison models: the homozygote model (ff vs. FF: OR = 1.37, 95% CI: 1.17–1.60; Pheterogeneity = 0.001) and the recessive model (ff vs. Ff + FF: OR = 1.32, 95% CI: 1.14–1.52; Pheterogeneity = 0.006). Meta-regression found no source contributing to heterogeneity. However, sub-group analyses revealed that there was a statistically increased TB risk in the East and Southeast Asian population. Conclusions Synthesis of the available studies suggests that homozygosity for the FokI polymorphism of the VDR gene might be associated with an increased TB risk, especially in the East and Southeast Asian population. Additional well-designed, larger-scale epidemiological studies among different ethnicities are needed.

  19. Regulation of bradykinin receptor gene expression in human lung fibroblasts.

    PubMed

    Phagoo, S B; Yaqoob, M; Herrera-Martinez, E; McIntyre, P; Jones, C; Burgess, G M

    2000-06-01

    In WI-38 human fibroblasts, interleukin-1 beta and tumour necrosis factor-alpha (TNF-alpha) increased bradykinin B(1) receptor mRNA, which peaked between 2 and 4 h, remaining elevated for 20 h. Binding of the bradykinin B(1) receptor selective ligand [3H]des-Arg(10)-kallidin, also increased, peaking at 4 h and remaining elevated for 20 h. The B(max) value for [3H]des-Arg(10)-kallidin rose from 280+/-102 fmol/mg (n=3) to 701+/-147 fmol/mg (n=3), but the K(D) value remained unaltered (control, 1.04+/-0.33 nM (n=3); interleukin-1 beta, 0.88+/-0.41 nM (n=3)). The interleukin-1 beta-induced [3H]des-Arg(10)-kallidin binding sites were functional receptors, as bradykinin B(1) receptor agonist-induced responses increased in treated cells. Bradykinin B(2) receptor mRNA and [3H]bradykinin binding were upregulated by interleukin-1 beta, but not TNF-alpha. The effect of interleukin-1 beta on bradykinin B(2) receptors was smaller than for bradykinin B(1) receptors. Cycloheximide prevented interleukin-1 beta-mediated increases in B(1) and B(2) binding, but not mRNA suggesting that de novo synthesis of a transcriptional activator was unnecessary.

  20. Gene Interaction Network Suggests Dioxin Induces a Significant Linkage between Aryl Hydrocarbon Receptor and Retinoic Acid Receptor Beta

    PubMed Central

    Toyoshiba, Hiroyoshi; Yamanaka, Takeharu; Sone, Hideko; Parham, Frederick M.; Walker, Nigel J.; Martinez, Jeanelle; Portier, Christopher J.

    2004-01-01

    Gene expression arrays (gene chips) have enabled researchers to roughly quantify the level of mRNA expression for a large number of genes in a single sample. Several methods have been developed for the analysis of gene array data including clustering, outlier detection, and correlation studies. Most of these analyses are aimed at a qualitative identification of what is different between two samples and/or the relationship between two genes. We propose a quantitative, statistically sound methodology for the analysis of gene regulatory networks using gene expression data sets. The method is based on Bayesian networks for direct quantification of gene expression networks. Using the gene expression changes in HPL1A lung airway epithelial cells after exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin at levels of 0.1, 1.0, and 10.0 nM for 24 hr, a gene expression network was hypothesized and analyzed. The method clearly demonstrates support for the assumed network and the hypothesis linking the usual dioxin expression changes to the retinoic acid receptor system. Simulation studies demonstrated the method works well, even for small samples. PMID:15345368

  1. [Severe type A insulin resistance syndrome due to a mutation in the insulin receptor gene].

    PubMed

    Ros, P; Colino-Alcol, E; Grasso, V; Barbetti, F; Argente, J

    2015-01-01

    Insulin resistance syndromes without lipodystrophy are an infrequent and heterogeneous group of disorders with variable clinical phenotypes, associated with hyperglycemia and hyperinsulinemia. The three conditions related to mutations in the insulin receptor gene are leprechaunism or Donohue syndrome, Rabson-Mendenhall syndrome, and Type A syndrome. A case is presented on a patient diagnosed with type A insulin resistance, defined by the triad of extreme insulin resistance, acanthosis nigricans, and hyperandrogenism, carrying a heterozygous mutation in exon 19 of the insulin receptor gene coding for its tyrosine kinase domain that is crucial for the catalytic activity of the receptor. The molecular basis of the syndrome is reviewed, focusing on the structure-function relationships of the insulin receptor, knowing that the criteria for survival are linked to residual insulin receptor function. It is also pointed out that, although type A insulin resistance appears to represent a somewhat less severe condition, these patients have a high morbidity and their treatment is still unsatisfactory.

  2. Scavenger receptor A gene regulatory elements target gene expression to macrophages and to foam cells of atherosclerotic lesions.

    PubMed Central

    Horvai, A; Palinski, W; Wu, H; Moulton, K S; Kalla, K; Glass, C K

    1995-01-01

    Transcription of the macrophage scavenger receptor A gene is markedly upregulated during monocyte to macrophage differentiation. In these studies, we demonstrate that 291 bp of the proximal scavenger receptor promoter, in concert with a 400-bp upstream enhancer element, is sufficient to direct macrophage-specific expression of a human growth hormone reporter in transgenic mice. These regulatory elements, which contain binding sites for PU.1, AP-1, and cooperating ets-domain transcription factors, are also sufficient to mediate regulation of transgene expression during the in vitro differentiation of bone marrow progenitor cells in response to macrophage colony-stimulating factor. Mutation of the PU.1 binding site within the scavenger receptor promoter severely impairs transgene expression, consistent with a crucial role of PU.1 in regulating the expression of the scavenger receptor gene. The ability of the scavenger receptor promoter and enhancer to target gene expression to macrophages in vivo, including foam cells of atherosclerotic lesions, suggests that these regulatory elements will be of general utility in the study of macrophage differentiation and function by permitting specific modifications of macrophage gene expression. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:7777517

  3. Lineage-Specific Loss of Function of Bitter Taste Receptor Genes in Humans and Nonhuman Primates

    PubMed Central

    Go, Yasuhiro; Satta, Yoko; Takenaka, Osamu; Takahata, Naoyuki

    2005-01-01

    Since the process of becoming dead genes or pseudogenes (pseudogenization) is irreversible and can occur rather rapidly under certain environmental circumstances, it is one plausible determinant for characterizing species specificity. To test this evolutionary hypothesis, we analyzed the tempo and mode of duplication and pseudogenization of bitter taste receptor (T2R) genes in humans as well as in 12 nonhuman primates. The results show that primates have accumulated more pseudogenes than mice after their separation from the common ancestor and that lineage-specific pseudogenization becomes more conspicuous in humans than in nonhuman primates. Although positive selection has operated on some amino acids in extracellular domains, functional constraints against T2R genes are more relaxed in primates than in mice and this trend has culminated in the rapid deterioration of the bitter-tasting capability in humans. Since T2R molecules play an important role in avoiding generally bitter toxic and harmful substances, substantial modification of the T2R gene repertoire is likely to reflect different responses to changes in the environment and to result from species-specific food preference during primate evolution. PMID:15744053

  4. The D4 receptor gene and mood disorders: An association study

    SciTech Connect

    Macciardi, F.; Cavalini, M.C.; Petronis, A.

    1994-09-01

    The problem of a gene-disease association is of major relevance in the current research of Psychiatric Disorders, mostly because of the lack of unequivocal results obtained with the linkage approach. However, some points of an association study must also be carefully considered, namely the statistical methodology and the strategy to select a gene to be tested. The gene coding for the D4 receptor (DRD4) might be theoretically relevant as a component of the genetic susceptibility for mood disorders. We now know that DRD4 has at least 2 functional polymorphisms in the coding regions of the gene, in exon 3 and exon 1, thus conferring etiologic relevance to a potentially positive association. In our work, we investigated the DRD4 genotypes of the 3rd and 1st exon for 93 patients with bipolar disorder and 57 patients with major depression, recurrent disorder. Patients have been diagnosed either by traditional DSMIII-R criteria or by clustering their lifetime psychopathological symptomatology. A random control group consisted of 151 subjects. A significant association has been found with DRD4 exon 3 genotypes, revealing an increase of genotypes 2-4 in Bipolar patients (chi-square=23.07, df=12, p=0.02). Even though a definitive confirmation of our finding requires an independent replication of the study, this result emphasizes the importance of DRD4 in mood disorders.

  5. The β3 subunit of the nicotinic acetylcholine receptor: Modulation of gene expression and nicotine consumption.

    PubMed

    Kamens, Helen M; Miyamoto, Jill; Powers, Matthew S; Ro, Kasey; Soto, Marissa; Cox, Ryan; Stitzel, Jerry A; Ehringer, Marissa A

    2015-12-01

    Genetic factors explain approximately half of the variance in smoking behaviors, but the molecular mechanism by which genetic variation influences behavior is poorly understood. SNPs in the putative promoter region of CHRNB3, the gene that encodes the β3 subunit of the nicotinic acetylcholine receptor (nAChR), have been repeatedly associated with nicotine behaviors. In this work we sought to identify putative function of three SNPs in the promoter region of CHRNB3 on in vitro gene expression. Additionally, we used β3 null mutant mice as a model of reduced gene expression to assess the effects on nicotine behaviors. The effect of rs13277254, rs6474413, and rs4950 on reporter gene expression was examined using a luciferase reporter assay. A major and minor parent haplotype served as the background on which alleles at the three SNPs were flipped onto different backgrounds (e.g. minor allele on major haplotype background). Constructs were tested in three human cell lines: BE(2)-C, SH-SY5Y and HEK293T. In all cell types the major haplotype led to greater reporter gene expression compared to the minor haplotype, and results indicate that this effect is driven by rs6474413. Moreover, mice lacking the β3 subunit showed reduced voluntary nicotine consumption compared that of wildtype animals. These data provide evidence that the protective genetic variant at rs6474413 identified in human genetic studies reduces gene expression and that decreased β3 gene expression in mice reduces nicotine intake. This work contributes to our understanding of the molecular mechanisms that contribute to the human genetic associations of tobacco behaviors.

  6. Differential gene body methylation and reduced expression of cell adhesion and neurotransmitter receptor genes in adverse maternal environment.

    PubMed

    Oh, J-E; Chambwe, N; Klein, S; Gal, J; Andrews, S; Gleason, G; Shaknovich, R; Melnick, A; Campagne, F; Toth, M

    2013-01-22

    Early life adversity, including adverse gestational and postpartum maternal environment, is a contributing factor in the development of autism, attention deficit hyperactivity disorder (ADHD), anxiety and depression but little is known about the underlying molecular mechanism. In a model of gestational maternal adversity that leads to innate anxiety, increased stress reactivity and impaired vocal communication in the offspring, we asked if a specific DNA methylation signature is associated with the emergence of the behavioral phenotype. Genome-wide DNA methylation analyses identified 2.3% of CpGs as differentially methylated (that is, differentially methylated sites, DMSs) by the adverse environment in ventral-hippocampal granule cells, neurons that can be linked to the anxiety phenotype. DMSs were typically clustered and these clusters were preferentially located at gene bodies. Although CpGs are typically either highly methylated or unmethylated, DMSs had an intermediate (20-80%) methylation level that may contribute to their sensitivity to environmental adversity. The adverse maternal environment resulted in either hyper or hypomethylation at DMSs. Clusters of DMSs were enriched in genes that encode cell adhesion molecules and neurotransmitter receptors; some of which were also downregulated, indicating multiple functional deficits at the synapse in adversity. Pharmacological and genetic evidence links many of these genes to anxiety.

  7. Differential gene body methylation and reduced expression of cell adhesion and neurotransmitter receptor genes in adverse maternal environment

    PubMed Central

    Oh, J-e; Chambwe, N; Klein, S; Gal, J; Andrews, S; Gleason, G; Shaknovich, R; Melnick, A; Campagne, F; Toth, M

    2013-01-01

    Early life adversity, including adverse gestational and postpartum maternal environment, is a contributing factor in the development of autism, attention deficit hyperactivity disorder (ADHD), anxiety and depression but little is known about the underlying molecular mechanism. In a model of gestational maternal adversity that leads to innate anxiety, increased stress reactivity and impaired vocal communication in the offspring, we asked if a specific DNA methylation signature is associated with the emergence of the behavioral phenotype. Genome-wide DNA methylation analyses identified 2.3% of CpGs as differentially methylated (that is, differentially methylated sites, DMSs) by the adverse environment in ventral-hippocampal granule cells, neurons that can be linked to the anxiety phenotype. DMSs were typically clustered and these clusters were preferentially located at gene bodies. Although CpGs are typically either highly methylated or unmethylated, DMSs had an intermediate (20–80%) methylation level that may contribute to their sensitivity to environmental adversity. The adverse maternal environment resulted in either hyper or hypomethylation at DMSs. Clusters of DMSs were enriched in genes that encode cell adhesion molecules and neurotransmitter receptors; some of which were also downregulated, indicating multiple functional deficits at the synapse in adversity. Pharmacological and genetic evidence links many of these genes to anxiety. PMID:23340501

  8. Functional analysis of duplicated Symbiosis Receptor Kinase (SymRK) genes during nodulation and mycorrhizal infection in soybean (Glycine max).

    PubMed

    Indrasumunar, Arief; Wilde, Julia; Hayashi, Satomi; Li, Dongxue; Gresshoff, Peter M

    2015-03-15

    Association between legumes and rhizobia results in the formation of root nodules, where symbiotic nitrogen fixation occurs. The early stages of this association involve a complex of signalling events between the host and microsymbiont. Several genes dealing with early signal transduction have been cloned, and one of them encodes the leucine-rich repeat (LRR) receptor kinase (SymRK; also termed NORK). The Symbiosis Receptor Kinase gene is required by legumes to establish a root endosymbiosis with Rhizobium bacteria as well as mycorrhizal fungi. Using degenerate primer and BAC sequencing, we cloned duplicated SymRK homeologues in soybean called GmSymRKα and GmSymRKβ. These duplicated genes have high similarity of nucleotide (96%) and amino acid sequence (95%). Sequence analysis predicted a malectin-like domain within the extracellular domain of both genes. Several putative cis-acting elements were found in promoter regions of GmSymRKα and GmSymRKβ, suggesting a participation in lateral root development, cell division and peribacteroid membrane formation. The mutant of SymRK genes is not available in soybean; therefore, to know the functions of these genes, RNA interference (RNAi) of these duplicated genes was performed. For this purpose, RNAi construct of each gene was generated and introduced into the soybean genome by Agrobacterium rhizogenes-mediated hairy root transformation. RNAi of GmSymRKβ gene resulted in an increased reduction of nodulation and mycorrhizal infection than RNAi of GmSymRKα, suggesting it has the major activity of the duplicated gene pair. The results from the important crop legume soybean confirm the joint phenotypic action of GmSymRK genes in both mycorrhizal and rhizobial infection seen in model legumes.

  9. Localization of the A{sub 3} adenosine receptor gene (ADORA3) to human chromosome 1p

    SciTech Connect

    Monitto, C.L.; Levitt, R.C.; Holroyd, K.J.

    1995-04-10

    Adenosine modulates important physiologic functions involving the cardiovascular system, brain, kidneys, lungs, GI tract, and immune system. To date four adenosine receptors have been identified: A{sub 1}, A{sub 2a}, A{sub 2b}, and A{sub 3}. Activation of these receptors results in inhibition (A{sub 1} and A{sub 3}) or stimulation (A{sub 2a} and A{sub 2b}) of intracellular adenyl cyclase activity, stimulation of K{sup +} flux, inhibition of Ca{sup 2+} flux, and modulation of inositol phospholipid turnover. A{sub 3} receptors have been identified and sequenced in the testes, brain, lung, liver, kidney, and heart of various species, including the rat, mouse, and human. A{sub 3} receptor activation is responsible for release of inflammatory mediators from mast cells, which can cause allergic bronchoconstriction. In addition, they can produce systemic vasodilation and locomotor depression via activation of A{sub 3} receptors in the brain. Given the potential importance of A{sub 3} receptor activity in the pathogenesis of pulmonary, cardiovascular, and central nervous system disease states, we set out to localize the human A{sub 3} adenosine receptor gene (ADORA3). 9 refs., 1 fig.

  10. Role of CCK/gastrin receptors in gastrointestinal/metabolic diseases and results of human studies using gastrin/CCK receptor agonists/antagonists in these diseases

    PubMed Central

    Berna, Marc J.; Jensen, Robert T.

    2009-01-01

    In this paper, the estabished and possible roles of CCK1 and CCK2 receptors in gastrointestinal (GI) and metabolic diseases are reviewed and available results from human agonist/antagonist studies are discussed. While there is evidence for the involvement of CCK1R in numerous diseases including pancreatic disorders, motility disorders, tumor growth, regulation of satiety and a number of CCK-deficient states, the role of CCK1R in these conditions is not clearly defined. There are encouraging data from several clinical studies of CCK1R antagonists in some of these conditions, but their role as therapeutic agents remains unclear. The role of CCK2R in physiological (atrophic gastritis, pernicious anemia) and pathological (Zollinger-Ellison syndrome) hypergastrinemic states, its effects on the gastric mucosa (ECL cell hyperplasia, carcinoids, parietal cell mass) and its role in acid-peptic disorders are clearly defined. Furthermore, recent studies point to a possible role for CCK2R in a number of GI malignancies. Current data from human studies of CCK2R antagonists are presented and their potential role in the treatment of these conditions reviewed. Furthermore, the role of CCK2 receptors as targets for medical imaging is discussed. Even though cholecystokinin (CCK) and gastrin were among the first gastrointestinal hormones discovered [1,2], both their physiological roles as well as their roles in clinically relevant gastrointestinal diseases remain unclear and even controversial in many cases [3–6]. The structural characterization of CCK and gastrin [7,8], pharmacological identification [9–13] and cloning [14,15] of CCK and gastrin receptors (CCK1R, CCK2R), characterization of receptor location, peptide and receptor genes, development of receptor antagonists and receptor/agonist knockout animals [16–21] have led to important advancements in our understanding of the physiological and pathophysiological role of CCK and gastrin signaling [3]. Most of these topics

  11. Odorant receptor gene expression changes during the parr-smolt transformation in Atlantic salmon.

    PubMed

    Dukes, J P; Deaville, R; Bruford, M W; Youngson, A F; Jordan, W C

    2004-09-01

    The ability of salmon to home accurately to their natal stream to spawn has long intrigued biologists and has important consequences for the maintenance of population structure in these species. It is known that olfaction is crucial to homing, and that the transition from the freshwater to the marine environment (the parr-smolt transformation; PST) is a period of increased olfactory sensitivity and learning, resulting in a permanent memory of natal site odours that is retained, at least in part, in peripheral sensory neurones. These odours are then used as cues by sexually maturing fish on their homeward migration. We used quantitative polymerase chain reaction techniques to demonstrate transient increases in expression of odorant receptor transcripts (of up to fifty-fold over pre-PST levels) coincident with PST. Both olfactory (SORB) and vomeronasal receptors (SVRA and SVRC) are involved, which suggests that the fish learn both environmental odours and semiochemicals (pheromones). Receptor expression varies between families and changes over time indicating both genetic differences in odour stimuli and multiple periods of olfactory sensitivity. We suggest that changes in OR gene expression may have a role in homing behaviour and thus the maintenance of population structure in Atlantic salmon.

  12. Differential gene expression of the three natriuretic peptides and natriuretic peptide receptor subtypes in human liver.

    PubMed Central

    Vollmar, A M; Paumgartner, G; Gerbes, A L

    1997-01-01

    BACKGROUND: Various effects of atrial natriuretic peptide (ANP) on the liver have been observed. However, there is limited information about the types of receptors for natriuretic peptides expressed by the human liver. AIM: To investigate gene expression of the three NP receptor types (NPR) as well as of the NP in human liver. METHODS: Presence of mRNA coding for all three NPR and for ANP, brain and C-type natriuretic peptide (BNP, CNP) was investigated by reverse transcription-polymerase chain reaction (RT-PCR). Human liver tissues and hepatocellular carcinoma tissues were examined. RESULTS: Specific PCR products for all three NPR, namely NPR-A, B, and C, could be detected. Moreover, ANP and CNP, but not BNP mRNA was detectable. The concentration of ANP transcripts was up to fivefold higher in hepatocellular carcinoma compared with non-tumorous liver tissue of the same subjects. No difference in the expression of NP receptors relative to GAPDH mRNA of tumorous and non-tumorous tissue was observed except of slightly increased NPR-A transcripts. CONCLUSION: These data show that NPR transcripts are coexpressed with ANP and CNP mRNA in the human liver. This provides evidence for a local NP system in the human liver. Images PMID:9155593

  13. Hotfoot mouse mutations affect the delta 2 glutamate receptor gene and are allelic to lurcher.

    PubMed

    Lalouette, A; Guénet, J L; Vriz, S

    1998-05-15

    Hotfoot (ho) is a recessive mouse mutation characterized by cerebellar ataxia associated with relatively mild abnormalities of the cerebellum. It has been previously mapped to Chromosome 6, and at least eight independent alleles have been reported. Here we show that the hotfoot phenotype is associated with mutations in the glutamate receptor ionotropic delta2 gene (Grid2). We have identified a 510-bp deletion in the Grid2 coding sequence in the ho4J allele, resulting in a deletion of 170 amino acids of the extracellular domain of the receptor. Analysis of a second allele, hoTgN37INRA, revealed a 4-kb deletion in the Grid2 transcript. The GRID2 protein in these hotfoot mutants probably has a reduced (or null) activity since the phenotype of hotfoot bears similarities with the previously described phenotype of Grid2 knockout mice. The exceptionally high number of independent alleles at the ho locus is an invaluable tool for investigating the function of the glutamate receptor ionotropic delta2 protein, which so far remains largely unknown.

  14. Identification of Gene Markers for Activation of the Nuclear Receptor Pregnane X Receptor

    EPA Science Inventory

    Many environmentally-relevant chemicals and drugs activate the nuclear receptor pregnane X receptor (PXR). Activation of PXR in the mouse liver can lead to increases in liver weight in part through increased hepatocyte replication similar to chemicals that activate other nuclear ...

  15. LH-Receptor Gene Expression in Human Granulosa and Cumulus Cells from Antral and Preovulatory Follicles

    PubMed Central

    Jeppesen, Janni Vikkelsø; Kristensen, Stine Gry; Nielsen, Maria Eilsø; Humaidan, Peter; Dal Canto, Maria; Fadini, Rubens; Schmidt, Kirsten T.; Ernst, Erik

    2012-01-01

    Context: Human granulosa cells (GC) acquire LH receptor (LHR) expression during the follicular phase of the menstrual cycle. Currently, the precise follicular stage is unknown, and specific roles of LH in the follicular development are not fully understood. Objective: Our objective was to measure LHR gene expression on GC and cumulus cells (CC) from normal human follicles with diameters form 3–20 mm. Design, Setting, and Patients: At a university hospital, GC, CC, and the corresponding follicular fluid (FF) were collected from patients undergoing fertility preservation by having one ovary frozen and patients undergoing infertility treatment. Interventions: Cells and fluids were isolated from surgically excised ovaries or from aspirated preovulatory follicles. Main Outcome Measures: We evaluated gene expression of LHR, FSHR, androgen receptor (AR), aromatase (CYP19a1), and AMHR2 normalized to the GAPDH expression and associated with FF levels of anti-Mullerian hormone, inhibin-B, and steroids. Results: LHR expression was maximal in GC from preovulatory follicles before ovulation induction. A majority of 150 antral follicles (3–10 mm in diameter) showed LHR expression at approximately 10% of the maximum, and LHR expression showed significant associations with FSHR, AR, CYP19a1, and AMHR2 and with FF estradiol and progesterone. Levels of FSHR continued to decline in GC as the follicular diameter increased. Conclusions: The LHR gene is expressed in GC of human antral follicles throughout the follicular phase and is significantly associated with expression of the CYP19a1 gene and with the corresponding FF concentrations of estradiol and progesterone. LH appears to affect human follicular development during most the follicular phase in normal women. PMID:22659248

  16. Acute Overactive Endocannabinoid Signaling Induces Glucose Intolerance, Hepatic Steatosis, and Novel Cannabinoid Receptor 1 Responsive Genes

    PubMed Central

    Ruby, Maxwell A.; Nomura, Daniel K.; Hudak, Carolyn S. S.; Barber, Anne; Casida, John E.; Krauss, Ronald M.

    2011-01-01

    Endocannabinoids regulate energy balance and lipid metabolism by stimulating the cannabinoid receptor type 1 (CB1). Genetic deletion and pharmacological antagonism have shown that CB1 signaling is necessary for the development of obesity and related metabolic disturbances. However, the sufficiency of endogenously produced endocannabinoids to cause hepatic lipid accumulation and insulin resistance, independent of food intake, has not been demonstrated. Here, we show that a single administration of isopropyl dodecylfluorophosphonate (IDFP), perhaps the most potent pharmacological inhibitor of endocannabinoid degradation, increases hepatic triglycerides (TG) and induces insulin resistance in mice. These effects involve increased CB1 signaling, as they are mitigated by pre-administration of a CB1 antagonist (AM251) and in CB1 knockout mice. Despite the strong physiological effects of CB1 on hepatic lipid and glucose metabolism, little is known about the downstream targets responsible for these effects. To elucidate transcriptional targets of CB1 signaling, we performed microarrays on hepatic RNA isolated from DMSO (control), IDFP and AM251/IDFP-treated mice. The gene for the secreted glycoprotein lipocalin 2 (lcn2), which has been implicated in obesity and insulin resistance, was among those most responsive to alterations in CB1 signaling. The expression pattern of IDFP mice segregated from DMSO mice in hierarchal cluster analysis and AM251 pre-administration reduced (>50%) the majority (303 of 533) of the IDFP induced alterations. Pathway analysis revealed that IDFP altered expression of genes involved in lipid, fatty acid and steroid metabolism, the acute phase response, and amino acid metabolism in a CB1-dependent manner. PCR confirmed array results of key target genes in multiple independent experiments. Overall, we show that acute IDFP treatment induces hepatic TG accumulation and insulin resistance, at least in part through the CB1 receptor, and identify novel

  17. Molecular characterization, expression profile, and polymorphism of goose dopamine D1 receptor gene.

    PubMed

    Wang, Cui; Liu, Yi; Wang, Huiying; Wu, Huali; Gong, Shaoming; He, Daqian

    2014-05-01

    Dopamine D1 receptor (DRD1) is one of the dopamine receptors with seven transmembrane domains that are coupled to the G protein. In the present study, we cloned the full coding region of DRD1 gene by the reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends from the goose hypothalamus tissues. Results showed that the goose DRD1 cDNA (GenBank: KF156790) contained a 1,356 bp open reading frame encoding a protein 452 amino acid with a molecular weight of 50.52 kDa and a isoelectric point of 6.96. Bioinformatics analysis indicated that the deduced amino acid sequence was 71-98% identical to the DRD1 protein of other species, contained seven transmembrane domains and four N-glycosylation sites. A phylogenetic tree analysis revealed that the deduced goose DRD1 protein had a close genetic relationship and evolutional distance with that of duck, chicken, and zebra finch. The semi-quantitative RT-PCR analysis displayed goose DRD1 gene was widely expressed in all detected tissues, including heart, lung, liver, spleen, kidney, breast muscle, duodenum, sebum, pituitary, hypothalamus, ovary and oviduct. Eighteen single nucleotide polymorphisms were indentified in 3,169 bp length of this gene. For G90A mutation, the genotyping analysis of PCR-TspRI-RFLP showed the allele G was in dominance in all detected goose breeds, and the allele frequencies of this polymorphism were significantly different between Chinese goose breeds and foreign breeds (P<0.01). These findings will help us understand the functions of the DRD1 gene and the molecular breeding in geese.

  18. Nuclear receptors for retinoic acid and thyroid hormone regulate transcription of keratin genes.

    PubMed Central

    Tomic, M; Jiang, C K; Epstein, H S; Freedberg, I M; Samuels, H H; Blumenberg, M

    1990-01-01

    In the epidermis, retinoids regulate the expression of keratins, the intermediate filament proteins of epithelial cells. We have cloned the 5' regulatory regions of four human epidermal keratin genes, K#5, K#6, K#10, and K#14, and engineered constructs in which these regions drive the expression of the CAT reporter gene. By co-transfecting the constructs into epithelial cells along with the vectors expressing nuclear receptors for retinoic acid (RA) and thyroid hormone, we have demonstrated that the receptors can suppress the promoters of keratin genes. The suppression is ligand dependent; it is evident both in established cell lines and in primary cultures of epithelial cells. The three RA receptors have similar effects on keratin gene transcription. Our data indicate that the nuclear receptors for RA and thyroid hormone regulate keratin synthesis by binding to negative recognition elements in the upstream DNA sequences of the keratin genes. RA thus has a twofold effect on epidermal keratin expression: qualitatively, it regulates the regulators that effect the switch from basal cell-specific keratins to differentiation-specific ones; and quantitatively, it determines the level of keratin synthesis within the cell by direct interaction of its receptors with the keratin gene promoters. Images PMID:1712634

  19. Effects of spironolactone on human blood mononuclear cells: mineralocorticoid receptor independent effects on gene expression and late apoptosis induction.

    PubMed

    Sønder, Søren Ulrik Salling; Mikkelsen, Marianne; Rieneck, Klaus; Hedegaard, Chris Juul; Bendtzen, Klaus

    2006-05-01

    1 Spironolactone (SPIR) binds to cytoplasmic mineralocorticoid receptors (MR) and functions as an aldosterone antagonist. Recently, the drug was shown to have an early suppressive effect on several immunoactive and proinflammatory cytokines. 2 To elucidate the mechanism behind this, the four MR-binding steroids SPIR, canrenone, 7alpha-thiomethyl-spironolactone and aldosterone (ALDO) were investigated for effects on lipopolysaccharide- and phytohemagglutinin-A-activated human blood mononuclear cells. Gene expression was examined after 4 h using microarrays, and SPIR affected 1018 transcripts of the (=) 22,000 probed. In contrast, the SPIR-related steroids affected 17 or fewer transcripts. Combining SPIR and ALDO resulted in 940 affected transcripts, indicating that SPIR has an early gene-regulatory effect independent of MR. 3 The affected genes encode a large number of signalling proteins and receptors, including immunoinflammatory response genes and apoptosis and antiapoptosis genes. Apoptosis was evident in CD3-, CD14- and CD19-positive cells, but only after 18 h of exposure to SPIR. 4 The transcriptional network involving the differentially regulated genes was examined and the results indicate that SPIR affects genes controlled by the transcription factors NF-kappaB, CEBPbeta and MYC. 5 These observations provide new insight into the non-MR-mediated effects of SPIR. PMID:16520746

  20. Effects of spironolactone on human blood mononuclear cells: mineralocorticoid receptor independent effects on gene expression and late apoptosis induction

    PubMed Central

    Sønder, Søren Ulrik Salling; Mikkelsen, Marianne; Rieneck, Klaus; Hedegaard, Chris Juul; Bendtzen, Klaus

    2006-01-01

    Spironolactone (SPIR) binds to cytoplasmic mineralocorticoid receptors (MR) and functions as an aldosterone antagonist. Recently, the drug was shown to have an early suppressive effect on several immunoactive and proinflammatory cytokines. To elucidate the mechanism behind this, the four MR-binding steroids SPIR, canrenone, 7α-thiomethyl-spironolactone and aldosterone (ALDO) were investigated for effects on lipopolysaccharide- and phytohemagglutinin-A-activated human blood mononuclear cells. Gene expression was examined after 4 h using microarrays, and SPIR affected 1018 transcripts of the (=) 22,000 probed. In contrast, the SPIR-related steroids affected 17 or fewer transcripts. Combining SPIR and ALDO resulted in 940 affected transcripts, indicating that SPIR has an early gene-regulatory effect independent of MR. The affected genes encode a large number of signalling proteins and receptors, including immunoinflammatory response genes and apoptosis and antiapoptosis genes. Apoptosis was evident in CD3-, CD14- and CD19-positive cells, but only after 18 h of exposure to SPIR. The transcriptional network involving the differentially regulated genes was examined and the results indicate that SPIR affects genes controlled by the transcription factors NF-κB, CEBPβ and MYC. These observations provide new insight into the non-MR-mediated effects of SPIR. PMID:16520746

  1. [Novel therapy for malignant lymphoma: adoptive immuno-gene therapy using chimeric antigen receptor(CAR)-expressing T lymphocytes].

    PubMed

    Ozawa, Keiya

    2014-03-01

    Adoptive T-cell therapy using chimeric antigen receptor (CAR) technology is a novel approach to cancer immuno-gene therapy. CARs are hybrid proteins consisting of target-antigen-specific single-chain antibody fragment fused to intracellular T-cell activation domains (CD28 or CD137/CD3 zeta receptor). CAR-expressing engineered T lymphocytes can directly recognize and kill tumor cells in an HLA independent manner. In the United States, promising results have been obtained in the clinical trials of adoptive immuno-gene therapy using CD19-CAR-T lymphocytes for the treatment of refractory B-cell malignancies, including chronic lymphocytic leukemia (CLL) and acute lymphoblastic leukemia (ALL). In this review article, CD19-CAR-T gene therapy for refractory B-cell non-Hodgkin lymphoma is discussed.

  2. RNA Editing of Androgen Receptor Gene Transcripts in Prostate Cancer Cells*S⃞

    PubMed Central

    Martinez, Harryl D.; Jasavala, Rohini J.; Hinkson, Izumi; Fitzgerald, Latricia D.; Trimmer, James S.; Kung, Hsing-Jien; Wright, Michael E.

    2008-01-01

    Reactivation of the androgen receptor (AR) signaling pathway represents a critical step in the growth and survival of androgen-independent (AI) prostate cancer (CaP). In this study we show the DU145 and PC3 AI human CaP cell lines respond to androgens and require AR expression for optimal proliferation in vitro. Interestingly, AR gene transcripts in DU145 and PC3 cells harbored a large number of single base pair nucleotide transitions that resulted in missense mutations in selected AR codons. The most notable lesion detected in AR gene transcripts included the oncogenic codon 877T→A gain-of-function mutation. Surprisingly, AR gene transcript nucleotide transitions were not genome-encoded substitutions, but instead the mutations co-localized to putative A-to-I, U-to-C, C-to-U, and G-to-A RNA editing sites, suggesting the lesions were mediated through RNA editing mechanisms. Higher levels of mRNA encoding the A-to-I RNA editing enzymes ADAR1 and ADARB1 were observed in DU145 and PC3 cells relative to the androgen-responsive LNCaP and 22Rv1 human CaP cell lines, which correlated with higher levels of AR gene transcript A-to-I editing detected in DU145 and PC3 cells. Our results suggest that AR gene transcripts are targeted by different RNA editing enzymes in DU145 and PC3 cells. Thus RNA editing of AR gene transcripts may contribute to the etiology of hormone-refractory phenotypes in advanced stage AI CaP. PMID:18708348

  3. Mutations of lysophosphatidic acid receptor-1 gene during progression of lung tumors in rats

    SciTech Connect

    Yamada, Takanori; Obo, Yumi; Furukawa, Mami; Hotta, Mayuko; Yamasaki, Ayako; Honoki, Kanya; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2009-01-16

    Lysophosphatidic acid (LPA) is a bioactive phospholipid that stimulates cell proliferation, migration, and protects cells from apoptosis. It interacts with specific G protein-coupled transmembrane receptors. In this study, mutations of lysophosphatidic acid receptor-1 (LPA1) gene were investigated to clarify the possible molecular mechanisms underlying the development of lung tumors induced by N-nitrosobis(2-hydroxypropyl)amine (BHP) in rats. Male Wistar rats, 6 weeks of age, were given 2000 ppm BHP in their drinking water for 12 weeks and then maintained without further treatment until sacrifice at 25 weeks. Genomic DNAs were extracted from paraffin-embedded tissues and exons 2-4 were examined for mutations, using polymerase chain reaction (PCR)-single strand conformation polymorphism (SSCP) analysis. No LPA1 mutations were detected in 15 hyperplasias, but 2 out of 12 adenomas (16.7%) and 7 out of 17 adenocarcinomas (41.2%). These results suggest that mutations of LPA1 gene may be involved in the acquisition of growth advantage from adenomas to adenocarcinomas in lung carcinogenesis induced in rats by BHP.

  4. Odorant receptors can mediate axonal identity and gene choice via cAMP-independent mechanisms

    PubMed Central

    Grosmaitre, Xavier; Feinstein, Paul

    2016-01-01

    Odorant receptors (ORs) control several aspects of cell fate in olfactory sensory neurons (OSNs), including singular gene choice and axonal identity. The mechanisms of OR-induced axon guidance have been suggested to principally rely on G-protein signalling. Here, we report that for a subset of OSNs, deleting G proteins or altering their levels of signalling does not affect axonal identity. Signalling-deficient ORs or surrogate receptors that are unable to couple to Gs/Golf still provide axons with distinct identities and the anterior–posterior targeting of axons does not correlate with the levels of cAMP produced by genetic modifications. In addition, we refine the models of negative feedback by showing that ectopic ORs can be robustly expressed without suppressing endogenous gene choice. In conclusion, our results uncover a new feature of ORs, showing that they can instruct axonal identity and regulate olfactory map formation independent of canonical G-protein signalling and cAMP production. PMID:27466441

  5. Polymorphisms in gene encoding TRPV1-receptor involved in pain perception are unrelated to chronic pancreatitis

    PubMed Central

    2009-01-01

    Background The major clinical feature in chronic pancreatitis is pain, but the genetic basis of pancreatic pain in chronic pancreatitis is poorly understood. The transient receptor potential vanilloid receptor 1 (TRPV1) gene has been associated with pain perception, and genetic variations in TRPV1 may modify the presence and phenotype of chronic pancreatitis. The aim of our study was to investigate the genetic variation of TRPV1 in Dutch patients with chronic pancreatitis and healthy controls. Methods We genotyped 4 SNPs (rs222749, rs222747, rs224534 and rs8065080) in 228 chronic pancreatitis-patients and 207 healthy controls by PCR, followed by restriction-fragment-length-polymorphism analysis and DNA sequencing. We generated 27 diplotypes and compared prevalence between patients and controls. Results There was no significant difference in allele frequency of the 4 TRPV1 gene SNPs in patients with chronic pancreatitis and healthy controls. Distribution of diplotypes was not statistically significantly different between patients and controls. Conclusion TRPV1 diplotypes are not associated with chronic pancreatitis. PMID:20034385

  6. Odorant receptors can mediate axonal identity and gene choice via cAMP-independent mechanisms.

    PubMed

    Movahedi, Kiavash; Grosmaitre, Xavier; Feinstein, Paul

    2016-07-01

    Odorant receptors (ORs) control several aspects of cell fate in olfactory sensory neurons (OSNs), including singular gene choice and axonal identity. The mechanisms of OR-induced axon guidance have been suggested to principally rely on G-protein signalling. Here, we report that for a subset of OSNs, deleting G proteins or altering their levels of signalling does not affect axonal identity. Signalling-deficient ORs or surrogate receptors that are unable to couple to Gs/Golf still provide axons with distinct identities and the anterior-posterior targeting of axons does not correlate with the levels of cAMP produced by genetic modifications. In addition, we refine the models of negative feedback by showing that ectopic ORs can be robustly expressed without suppressing endogenous gene choice. In conclusion, our results uncover a new feature of ORs, showing that they can instruct axonal identity and regulate olfactory map formation independent of canonical G-protein signalling and cAMP production. PMID:27466441

  7. Association between interleukin 8 receptor α gene (CXCR1) and mastitis in dairy cattle

    PubMed Central

    Pawlik, Adrianna; Kapera, Magdalena; Korwin-Kossakowska, Agnieszka

    2015-01-01

    The innate immune response plays an important role in the course of bacterial infections. Innate immunity effectiveness relies on the expression of many genes, connected, among others, to the activity of neutrophils. Interleukin 8 (IL-8) receptor α, coded by the CXCR1 gene, is present on the neutrophil surface and binds pro-inflammatory IL-8 with high affinity. This is why the bovine CXCR1 gene carries a potential for use as a dairy cattle mastitis marker. To date, several studies on the CXCR1 polymorphism brought out contradictory results. The aim of this study was to analyse the association between two SNPs of the CXCR1 gene, which is potentially important for the protein function and animal phenotype for mastitis susceptibility. A total of 554 Polish Holsteins were genotyped, and 140 among them were bacteriologically tested. The differences between animals carrying different genotypes and haplotypes of CXCR1 in test day somatic cell count (SCC) and Staphylococcus aureus mastitis susceptibility were estimated. We found that test day SCC was significantly related to CXCR1+472 SNP but not to CXCR1+735 SNP. No statistically significant association between CXCR1 polymorphism and susceptibility to S. aureus mastitis was found in the studied herd. PMID:26557028

  8. Screening of FSH receptor gene in Argentine women with premature ovarian failure (POF).

    PubMed

    Sundblad, Victoria; Chiauzzi, Violeta A; Escobar, Maria Eugenia; Dain, Liliana; Charreau, Eduardo H

    2004-07-30

    Diverse mutations in FSH-receptor (FSHR) gene have been described as possible cause of premature ovarian failure (POF). To investigate the presence of mutations and/or polymorphisms in FSHR gene, DNA from 20 POF, 5 of which were diagnosed as resistant ovary syndrome (ROS), and from 44 controls was isolated from peripheral lymphocytes. The complete coding sequence was analysed by PCR followed by SSCP, direct sequencing or restriction enzyme analysis. No mutations in FSHR gene were identified in the patients studied. The two already described polymorphisms in exon 10, A919G and A2039G, cosegregated in all the homozygous individuals, indicating that FSHR presents two isoforms: Ala307-Ser680 and Thr307-Asn680. OR results suggest that the 919G-2039G allelic variant or the homozygous genotype is not associated to disease risk. In addition, a heterozygous substitution T1022C (Val341Ala) was found in two control subjects. We suggest that mutations in FSHR gene are rare in women with POF in Argentine. Presence of a particular FSHR isoform does not appear to be associated with this disease.

  9. Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells.

    PubMed

    Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe; Deng, Haohua; Sun, Li; Hu, Xuemei; Zhou, Feng; Xu, Yancheng

    Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLX increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes.

  10. Mutational analysis of the androgen receptor gene in two Chinese families with complete androgen insensitivity syndrome

    PubMed Central

    WANG, SONG; XU, HAIKUN; AN, WEI; ZHU, DECHUN; LI, DEJUN

    2016-01-01

    Androgens are essential for normal male sex differentiation and are responsible for the normal development of male secondary sexual characteristics at puberty. The physiological effects of androgens are mediated by the androgen receptor (AR). Mutations in the AR gene are the most common cause of androgen insensitivity syndrome. The present study undertook a genetic analysis of the AR gene in two unrelated families affected by complete androgen insensitivity syndrome (CAIS) in China. In family 1, a previously reported nonsense mutation (G-to-A; p.W751X) was identified in exon 5 of the AR gene. In addition, a novel missense mutation was detected in exon 6 of the AR gene from family 2; this mutation resulted in a predicted amino acid change from phenylalanine to serine at codon 804 (T-to-C; p.F804S) in the ligand-binding domain (LBD) of AR. Computer simulation of the structural changes generated by the p.F804S substitution revealed marked conformational alterations in the hydrophobic core responsible for the stability and function of the AR-LBD. In conclusion, the present study identified two mutations from two unrelated Chinese families affected by CAIS. The novel mutation (p.F804S) may provide insights into the molecular mechanism underlying CAIS. Furthermore, it expands on the number of mutational hot spots in the international AR mutation database, which may be useful in the future for prenatal diagnosis and genetic counseling. PMID:27284311

  11. PET/CT imaging of human somatostatin receptor 2 (hsstr2) as reporter gene for gene therapy

    NASA Astrophysics Data System (ADS)

    Hofmann, M.; Gazdhar, A.; Weitzel, T.; Schmid, R.; Krause, T.

    2006-12-01

    Localized information on region-selective gene expression in small animals is widely obtained by use of reporter genes inducing light emission. Using these reporter genes for imaging deep inside the human body fluorescent probes are hindered by attenuation, scattering and possible fluorescence quenching. This can be overcome by use of radio-peptide receptors as reporter genes. Therefore, the feasibility of the somatostatin receptor 2 expression vector system for expression imaging was checked against a control vector containing luciferase gene. For in vivo transduction of vector DNA into the rat forelimb muscles the in vivo electroporation technique was chosen because of its high regio-selectivity. The gene expression was imaged by high-sensitive CCD camera (luciferase activity) and by PET/CT using a Ga-68-DOTATOC as radio peptide probe. The relative sstr2 expression was enhanced by gene transduction at maximum to a factor of 15. The PET/CT images could be fully quantified. The above demonstrated feasibility of radio-peptide PET/CT reporter gene imaging may serve in the future as a tool for full quantitative understanding of regional gene expression, especially in large animals and humans.

  12. The high-affinity interleukin 8 receptor gene (IL8RA) maps to the 2q33-q36 region of the human genome: Cloning of a pseudogene (IL8RBP) for the low-affinity receptor

    SciTech Connect

    Mollereau, C. Laboratoire de Pharmacologie et Toxicologie Fondamentale du CNRS, Toulouse ); Muscatelli, F.; Mattei, M.G. ); Vassart, G. Universite libre de Bruxelles ); Parmentier, M. )

    1993-04-01

    The selective amplification by polymerase chain reaction (PCR) of gene fragments corresponding to new G-protein-coupled receptors resulted in the cloning of 18 orphan members of this gene family. Of these, three human clones amplified from genomic DNA (HGMP03, HGMP04, and HGMP05) were shown to be structurally related. Genomic clones corresponding to HGMP03 and HGMP05 were isolated and their putative coding region sequenced. Following the characterization of two interleukin 8 (IL-8) receptors, HGMP03 appeared to encode the high-affinity IL-8 receptor, whereas the partial clone HGMP04 encodes the low-affinity IL-8 receptor. Comparison with the cDNA sequence suggests that the high-affinity receptor gene is split by an intron in the 5[prime] untranslated region. The high-affinity receptor gene was mapped by in situ hybridization to the 2q33-q36 region of the human genome. The HGMP05 locus turned out to be a pseudogene for the low-affinity IL-8 receptor (87% identity), with multiple frameshifts and point mutations introducing stop codons. Southern blotting on genomic DNA did not allow the further detection of related loci in the human genome. 12 refs., 2 figs.

  13. [Cloning and regulation of pig estrogen related receptor β gene (ESRRB) promoter].

    PubMed

    Yang, Yang; Wang, Yaxian; Du, Lixia; Wang, Huayan

    2015-04-01

    The estrogen related receptor family member Esrrb (Estrogen related receptor β) is a gene that expresses in the early stage of embryo and plays an important role in the core pluripotent network. Its function has been analyzed in human and mouse, although no report so far related to pig. Therefore, to explore its mechanism of transcriptional regulation and expression pattern, we cloned a 3.3 kb pig ESRRB promoter by PCR and constructed the green fluorescence protein (GFP) reporter vector pE3.3. We used these vectors to study the ESRRB expression pattern in 293T, Hela and C2C12. Sequence was analyzed for regulatory elements that share homology to known transcription factor binding sites by TFSEARCH and JASPER program. Some pluripotency related genes such as SMAD, STAT3, MYC, KLF4 and ESRRB have been found within the 3.3 kb sequence by co-transfected pig ESRRB promoter and these potential regulators. We found that ESRRB only expressed in 293T and SMAD could activate ESRRB expression obviously. To determine the core promoter region, a series of ESRRB promoter fragments with gradually truncated 5'-end were produced by PCR and inserted into pGL3-Basic vector. After transient transfection into 293T, dual luciferase assay was used to measure these promoter activities. The result suggested that the core promoter of pig ESRRB located within -25 bp to -269 bp region. These results suggest that these transcription factor binding sites and the core promoter region may be essential for transcriptional regulation of pig ESRRB gene. PMID:26380406

  14. Developing in vitro reporter gene assays to assess the hormone receptor activities of chemicals frequently detected in drinking water.

    PubMed

    Sun, Hong; Si, Chaozong; Bian, Qian; Chen, Xiaodong; Chen, Liansheng; Wang, Xinru

    2012-08-01

    The present study intended to develop receptor-mediated luciferase reporter gene assays to evaluate and compare the estrogen receptor (ER), androgen receptor (AR) and thyroid hormone receptor (TR) activities of target chemicals. Di-2-ethylhexyl-phthalate (DEHP), chlorpyrifos (CPF), 2,4-dichlorophenoxyacetic acid (2,4-D) and bisphenol A (BPA) are some of the most common contaminants in drinking water and are frequently detected in China and worldwide. The chemicals were tested at concentrations of 0.1, 1, 10 and 100 times their maximum contaminant level in drinking water. The results showed that BPA possessed various activities on ER, AR and TR. DEHP and CPF could suppress 17β-estradiol or testosterone activity with different potencies, and DEHP possessed weaker anti-thyroid hormone activity. 2,4-D showed no agonist or antagonist activity against these hormone receptors, but it significantly enhanced the activity of testosterone through AR. Furthermore, the mixture of DEHP and CPF exhibited stronger ER and AR antagonist activities than each single component alone, but their combined effects were less than the expected effects based on the additive model. These results implied that the transcription activation mediated by hormone receptors was the potential endocrine-disrupting mechanism of the test chemicals. Our study also provided useful tools for evaluation of their endocrine disrupting activity.

  15. Functional analysis of a proline to serine mutation in codon 453 of the thyroid hormone receptor {beta}1 gene

    SciTech Connect

    Ozata, M.; Suzuki, Satoru; Takeda, Teiji

    1995-10-01

    Mutations in the gene encoding human thyroid hormone receptor {beta}(hTR{beta}) have been associated with generalized resistance to thyroid hormone (GRTH). This disorder is associated with significant behavoral abnormalities. We examined the hTR{beta} gene in a family with members who manifest inappropriately normal TSH, elevated free T{sub 4}, and free and total T{sub 3}. Sequence analysis showed a cytosine to thymine transition at nucleotide 1642 in one allele of the index patient`s genomic DNA. This altered proline to serine at codon 453. The resulting mutant receptor when expressed in vitro bound DNA with high affinity, but the T{sub 3} affinity of the receptor was impaired. The mutant TR demonstrated a dominant negative effect when cotransfected with two isoforms of wild-type receptor and also in the presence of TR variant {alpha}2 in COS-1 cells. Mutations of codon 453 occur more frequently than at other sites, and four different amino acid substitutions have been reported. Significant differences in phenotype occur among affected individuals, varying from normality to moderately severe GRTH. There is no clear correlation between K{sub a} or in vitro function of the mutant receptor, and phenotype. This study extends the association between GRTH and illness, and indicates that early diagnosis and counseling are needed in families with TR{beta}1 abnormalities. 34 refs., 5 figs., 2 tabs.

  16. Meta-Analysis of Associations of IL1 Receptor Antagonist and Estrogen Receptor Gene Polymorphisms with Systemic Lupus Erythematosus Susceptibility

    PubMed Central

    Xue, Xing-xin; Wang, Zhi-gang; Wang, Jia-jia; Tang, Shai-di; Tang, Shao-wen; Wang, Jie; Zhang, Yun; Xia, Xian

    2014-01-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease that affects a number of different organs and tissues. Interleukin-1 (IL1) and estrogen are considered potential elements in the pathology of SLE. Recently, the variable number of tandem repeats (VNTR) polymorphism in the IL1 receptor antagonist gene (IL1-RN) and PvuII (rs2234693) and XbaI (rs9340799) polymorphisms in the estrogen receptor 1 gene (ESR1) have been associated with a predisposition to SLE. However, the evidence for these associations is inconclusive. We therefore conducted a meta-analysis to validate the roles of these polymorphisms in SLE susceptibility. We searched four databases and identified a total of 17 eligible articles comprising 24 studies. The Newcastle-Ottawa quality assessment scale was used to assess the qualities of the selected studies. We assessed the strengths of the associations using odds ratios (ORs) with 95% confidence intervals (95% CIs). Regarding the IL-1RN VNTR, the 2 allele significantly increased SLE susceptibility (2 vs. L: OR = 1.34, 95% CI = 1.03–1.73, P = 0.03). The ESR1 PvuII CC/CT genotype was also associated with SLE susceptibility (CC/CT vs. TT: OR = 1.25, 95% CI = 1.06–1.47, P = 0.01), and the difference was especially pronounced among Asians (CC/CT vs. TT: OR = 1.33, 95% CI = 1.04–1.69, P = 0.02). No significant association between the ESR1 XbaI polymorphism and SLE susceptibility was observed in the overall analysis. However, a marginally significant association between the GG/GA genotype was found in individuals of Asian descent (GG/GA vs. AA: OR = 1.30, 95% CI = 1.01–1.67, P = 0.04). These results indicate that the IL1-RN VNTR 2 allele, ESR1 PvuII CC/CT genotype and ESR1 XbaI GG/GA genotype may increase SLE susceptibility, especially in Asian individuals. PMID:25286391

  17. Identification of four novel phosphorylation sites in estrogen receptor α: impact on receptor-dependent gene expression and phosphorylation by protein kinase CK2

    PubMed Central

    2009-01-01

    Background Estrogen receptor α (ERα) phosphorylation is important for estrogen-dependent transcription of ER-dependent genes, ligand-independent receptor activation and endocrine therapy response in breast cancer. However ERα phosphorylation at the previously identified sites does not fully account for these receptor functions. To determine if additional ERα phosphorylation sites exist, COS-1 cells expressing human ERα were labeled with [32P]H3PO4 in vivo and ERα tryptic phosphopeptides were isolated to identify phosphorylation sites. Results Previously uncharacterized phosphorylation sites at serines 46/47, 282, 294, and 559 were identified by manual Edman degradation and phosphoamino acid analysis and confirmed by mutagenesis and phospho-specific antibodies. Antibodies detected phosphorylation of endogenous ERα in MCF-7, MCF-7-LCC2, and Ishikawa cancer cell lines by immunoblot. Mutation of Ser-282 and Ser-559 to alanine (S282A, S559A) resulted in ligand independent activation of ERα as determined by both ERE-driven reporter gene assays and endogenous pS2 gene expression in transiently transfected HeLa cells. Mutation of Ser-46/47 or Ser-294 to alanine markedly reduced estradiol dependent reporter activation. Additionally protein kinase CK2 was identified as a kinase that phosphorylated ERα at S282 and S559 using motif analysis, in vitro kinase assays, and incubation of cells with CK2 kinase inhibitor. Conclusion These novel ERα phosphorylation sites represent new means for modulation of ERα activity. S559 represents the first phosphorylation site identified in the extreme C-terminus (F domain) of a steroid receptor. PMID:20043841

  18. Single nucleotide polymorphism variants within tva and tvb receptor genes in Chinese chickens.

    PubMed

    Liao, C T; Chen, S Y; Chen, W G; Liu, Y; Sun, B L; Li, H X; Zhang, H M; Qu, H; Wang, J; Shu, D M; Xie, Q M

    2014-10-01

    Avian leukosis is an immunosuppressive neoplastic disease caused by avian leukosis viruses (ALV), which causes tremendous economic losses in the worldwide poultry industry. The susceptibility or resistance of chicken cells to subgroup A ALV and subgroup B, D, and E ALV are determined by the receptor genes tumor virus locus A (tva) and tumor virus locus B (tvb), respectively. Four genetic resistant loci (tva(r1), tva(r2), tva(r3), and tva(r4)) in tva receptor gene and a genetic resistant locus tvb(r) in the tvb receptor gene have been identified in inbred lines of White Leghorn. To evaluate the genetic resistance to subgroup A, B, D, and E ALV, genetic variations within resistant loci in tva and tvb genes were screened in Chinese local chicken breeds and commercial broiler lines. Here, the heterozygote tva(s1/r1) and the resistant genotype tva(r2/r2), tva(r3/r3), and tva(r4/r4) were detected in Chinese chickens by direct sequencing. The heterozygote tva(s1/r1) was detected in Huiyang Bearded chicken (HYBC), Rizhaoma chicken, and commercial broiler line 13 to 15 (CB13 to CB15), with the frequencies at 0.08, 0.18, 0.17, 0.25, and 0.15, respectively. The resistant genotype tva(r2/r2) was detected in Jiningbairi chicken (JNBRC), HYBC, and CB15, with the frequencies at 0.03, 0.08, and 0.06, respectively, whereas tva(r3/r3) and tva(r4/r4) were detected in 19 and 17 of the 25 Chinese chickens tested, with the average frequencies at 0.13 and 0.20, respectively. Furthermore, the resistant genotype tvb(r/r) was detected in JNBRC, CB07, CB12, CB14, and CB15 by pyrosequencing assay, with the frequencies at 0.03, 0.03, 0.11, 0.09, and 0.15, respectively. These results demonstrated that the potential for genetic improvement of resistance to subgroup A, B, D, and E ALV were great both in Chinese local chickens and commercial broilers. This study provides valuable insight into the selective breeding for chickens genetically resistant to ALV.

  19. Toll-like receptor 3 gene polymorphisms in South African Blacks with type 1 diabetes.

    PubMed

    Pirie, F J; Pegoraro, R; Motala, A A; Rauff, S; Rom, L; Govender, T; Esterhuizen, T M

    2005-08-01

    Type 1 diabetes is the consequence of exposure of genetically susceptible individuals to specific environmental precipitants. The innate immune system provides the initial response to exogenous antigen and links with the adaptive immune system. The aim of this study was to assess the role of polymorphisms occurring in the cytoplasmic region of toll-like receptor (TLR) 3 gene and immediate 5' sequence, in subjects of Zulu descent with type 1 diabetes in KwaZulu-Natal, South Africa. Seventy-nine subjects with type 1 diabetes and 74 healthy normal glucose tolerant gender-matched control subjects were studied. Parts of exon 4 and exon 3/intron 3 of the TLR3 gene were studied by polymerase chain reaction, direct sequencing and restriction enzyme digestion with Bts 1. Of the nine polymorphisms studied, a significant association with type 1 diabetes was found for the major allele in the 2593 C/T polymorphism and for the minor alleles in the 2642 C/A and 2690 A/G polymorphisms, which were found to be in complete linkage disequilibrium. Correction of the P-values for the number of alleles studied, however, rendered the results no longer significant. These results suggest that polymorphisms in the TLR3 gene, which is part of the innate immune system, may be associated with type 1 diabetes in this population. PMID:16029432

  20. Characterization of promoter sequence of toll-like receptor genes in Vechur cattle

    PubMed Central

    Lakshmi, R.; Jayavardhanan, K. K.; Aravindakshan, T. V.

    2016-01-01

    Aim: To analyze the promoter sequence of toll-like receptor (TLR) genes in Vechur cattle, an indigenous breed of Kerala with the sequence of Bos taurus and access the differences that could be attributed to innate immune responses against bovine mastitis. Materials and Methods: Blood samples were collected from Jugular vein of Vechur cattle, maintained at Vechur cattle conservation center of Kerala Veterinary and Animal Sciences University, using an acid-citrate-dextrose anticoagulant. The genomic DNA was extracted, and polymerase chain reaction was carried out to amplify the promoter region of TLRs. The amplified product of TLR2, 4, and 9 promoter regions was sequenced by Sanger enzymatic DNA sequencing technique. Results: The sequence of promoter region of TLR2 of Vechur cattle with the B. taurus sequence present in GenBank showed 98% similarity and revealed variants for four sequence motifs. The sequence of the promoter region of TLR4 of Vechur cattle revealed 99% similarity with that of B. taurus sequence but not reveals significant variant in motifregions. However, two heterozygous loci were observed from the chromatogram. Promoter sequence of TLR9 gene also showed 99% similarity to B. taurus sequence and revealed variants for four sequence motifs. Conclusion: The results of this study indicate that significant variation in the promoter of TLR2 and 9 genes in Vechur cattle breed and may potentially link the influence the innate immunity response against mastitis diseases. PMID:27397987

  1. [Analyses of the rearrangement of T-cell receptor- and immunoglobulin genes in the diagnosis of lymphoproliferative disorders].

    PubMed

    Griesser, D H

    1995-01-01

    Rearrangements are developmentally regulated genetic recombinations in T and B cells which generate functional T cell receptor (TcR) and immunoglobulin genes, respectively. Different variable, sometimes diversity, and joining gene segments which are discontinuously spread out within their chromosomal location in germline configuration, are randomly assembled in individual lymphocytes. These rearrangements can be detected by Southern Blot analysis if more than 5% of a total lymphocyte population in a biopsy specimen carries the same clonal rearrangement. We analyzed DNA from 324 snap-frozen biopsy specimens from lympho-proliferative disorders. None of the 20 reactive lesions and four malignant myelomonocytic tumors had a clonal antigen receptor gene rearrangement. All 117 malignant B cell lymphomas of different subtypes and 95 of 97 malignant T cell lymphomas showed a clonal gene rearrangement. Only two angioimmunoblastic lymphadenopathy(AILD)-type T cell lymphomas did not have immune receptor gene rearrangements. They were morphologically indistinguishable from the other 47 T/AILD lymphomas with clonal rearrangement patterns. In most cases TcR beta and immunoglobulin heavy chain (IgH) gene probes were sufficient for lineage assignment of the clonal T or B lymphocyte population. In 18% of B lymphomas, however, a cross-lineage rearrangement of TcR beta genes, and in 20% of the T cell lymphomas a clonal IgH gene rearrangement was detected. After exclusion of centrocytic, large cell anaplastic lymphomas (LCAL) of B-type, and T/AILD lymphomas which are overrepresented in our study, only 10% of the remaining 147 T and B cell lymphomas had aberrant rearrangements. TcR rearrangements other than those of the beta chain genes were extremely rare in B cell lymphomas, as were Ig kappa rearrangements in T lymphomas. Only two T/AILD lymphomas had IgH and Ig kappa rearrangement in addition to their clonal T cell receptor gene rearrangements. Both samples likely contain a clonal B

  2. Organization, structure, chromosomal assignment, and expression of the gene encoding the human endothelin-A receptor.

    PubMed

    Hosoda, K; Nakao, K; Tamura, N; Arai, H; Ogawa, Y; Suga, S; Nakanishi, S; Imura, H

    1992-09-15

    We have isolated and characterized the gene for the human endothelin-A receptor. Southern blot analyses demonstrated a single copy gene for the receptor. The gene spans more than 40 kilobases and contains eight exons and seven introns. Intron 1 exists in the 5'-noncoding region, and introns 2-7 occur in the coding region. The locations of introns 2-7 exist before or after the regions encoding the membrane-spanning domains. The transcription start site, determined by primer extension experiments, is 502 base pairs upstream of the methionine initiation codon. The 5'-flanking region lacks a typical TATA box but contains a potential SP-1-binding site 27 base pairs upstream of the transcription start site. Using human-rodent somatic hybrid cell DNA, the gene was assigned to human chromosome 4. Northern blot analyses revealed a 4.3-kilobase mRNA in a wide variety of human tissues, at the highest level in the aorta and at a substantial level in the cultured human mesangial cells. This is the first report of cloning of a gene for a member of the endothelin receptor family. The present study should give a clue to the discovery of possible disorders of the endothelin-A receptor, as well as facilitate the elucidation of the mechanisms by which the gene expression is regulated.

  3. Selection in the dopamine receptor 2 gene: a candidate SNP study

    PubMed Central

    Fieder, Martin

    2015-01-01

    Dopamine is a major neurotransmitter in the human brain and is associated with various diseases. Schizophrenia, for example, is treated by blocking the dopamine receptors type 2. Shaner, Miller & Mintz (2004) stated that schizophrenia was the low fitness variant of a highly variable mental trait. We therefore explore whether the dopamine receptor 2 gene (DRD2) underwent any selection processes. We acquired genotype data of the 1,000 Genomes project (phase I), which contains 1,093 individuals from 14 populations. We included single nucleotide polymorphisms (SNPs) with two minor allele frequencies (MAFs) in the analysis: MAF over 0.05 and over 0.01. This is equivalent to 151 SNPs (MAF > 0.05) and 246 SNPs (MAF > 0.01) for DRD2. We used two different approaches (an outlier approach and a Bayesian approach) to detect loci under selection. The combined results of both approaches yielded nine (MAF > 0.05) and two candidate SNPs (MAF > 0.01), under balancing selection. We also found weak signs for directional selection on DRD2, but in our opinion these were too weak to draw any final conclusions on directional selection in DRD2. All candidates for balancing selection are in the intronic region of the gene and only one (rs12574471) has been mentioned in the literature. Two of our candidate SNPs are located in specific regions of the gene: rs80215768 lies within a promoter flanking region and rs74751335 lies within a transcription factor binding site. We strongly encourage research on our candidate SNPs and their possible effects. PMID:26290802

  4. Ecdysone Receptor-Based Gene Switches for Applications in Plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are a number of circumstances in which it is advantageous to use an inducible gene regulation system, the most obvious being when introducing transgenes whose constitutive expression is detrimental or even lethal to the host plants. The selective induction of gene expression is typically accom...

  5. A cluster of novel serotonin receptor 3-like genes on human chromosome 3.

    PubMed

    Karnovsky, Alla M; Gotow, Lisa F; McKinley, Denise D; Piechan, Julie L; Ruble, Cara L; Mills, Cynthia J; Schellin, Kathleen A B; Slightom, Jerry L; Fitzgerald, Laura R; Benjamin, Christopher W; Roberds, Steven L

    2003-11-13

    The ligand-gated ion channel family includes receptors for serotonin (5-hydroxytryptamine, 5-HT), acetylcholine, GABA, and glutamate. Drugs targeting subtypes of these receptors have proven useful for the treatment of various neuropsychiatric and neurological disorders. To identify new ligand-gated ion channels as potential therapeutic targets, drafts of human genome sequence were interrogated. Portions of four novel genes homologous to 5-HT(3A) and 5-HT(3B) receptors were identified within human sequence databases. We named the genes 5-HT(3C1)-5-HT(3C4). Radiation hybrid (RH) mapping localized these genes to chromosome 3q27-28. All four genes shared similar intron-exon organizations and predicted protein secondary structure with 5-HT(3A) and 5-HT(3B). Orthologous genes were detected by Southern blotting in several species including dog, cow, and chicken, but not in rodents, suggesting that these novel genes are not present in rodents or are very poorly conserved. Two of the novel genes are predicted to be pseudogenes, but two other genes are transcribed and spliced to form appropriate open reading frames. The 5-HT(3C1) transcript is expressed almost exclusively in small intestine and colon, suggesting a possible role in the serotonin-responsiveness of the gut.

  6. Unravelling the Evolution of the Allatostatin-Type A, KISS and Galanin Peptide-Receptor Gene Families in Bilaterians: Insights from Anopheles Mosquitoes

    PubMed Central

    Felix, Rute C.; Trindade, Marlene; Pires, Isa R. P.; Fonseca, Vera G.; Martins, Rute S.; Silveira, Henrique; Power, Deborah M.; Cardoso, João C. R.

    2015-01-01

    Allatostatin type A receptors (AST-ARs) are a group of G-protein coupled receptors activated by members of the FGL-amide (AST-A) peptide family that inhibit food intake and development in arthropods. Despite their physiological importance the evolution of the AST-A system is poorly described and relatively few receptors have been isolated and functionally characterised in insects. The present study provides a comprehensive analysis of the origin and comparative evolution of the AST-A system. To determine how evolution and feeding modified the function of AST-AR the duplicate receptors in Anopheles mosquitoes, were characterised. Phylogeny and gene synteny suggested that invertebrate AST-A receptors and peptide genes shared a common evolutionary origin with KISS/GAL receptors and ligands. AST-ARs and KISSR emerged from a common gene ancestor after the divergence of GALRs in the bilaterian genome. In arthropods, the AST-A system evolved through lineage-specific events and the maintenance of two receptors in the flies and mosquitoes (Diptera) was the result of a gene duplication event. Speciation of Anopheles mosquitoes affected receptor gene organisation and characterisation of AST-AR duplicates (GPRALS1 and 2) revealed that in common with other insects, the mosquito receptors were activated by insect AST-A peptides and the iCa2+-signalling pathway was stimulated. GPRALS1 and 2 were expressed mainly in mosquito midgut and ovaries and transcript abundance of both receptors was modified by feeding. A blood meal strongly up-regulated expression of both GPRALS in the midgut (p < 0.05) compared to glucose fed females. Based on the results we hypothesise that the AST-A system in insects shared a common origin with the vertebrate KISS system and may also share a common function as an integrator of metabolism and reproduction. Highlights: AST-A and KISS/GAL receptors and ligands shared common ancestry prior to the protostome-deuterostome divergence. Phylogeny and gene

  7. Targeted disruption of a single sex pheromone receptor gene completely abolishes in vivo pheromone response in the silkmoth

    PubMed Central

    Sakurai, Takeshi; Mitsuno, Hidefumi; Mikami, Akihisa; Uchino, Keiro; Tabuchi, Masashi; Zhang, Feng; Sezutsu, Hideki; Kanzaki, Ryohei

    2015-01-01

    Male moths use species-specific sex pheromones to identify and orientate toward conspecific females. Odorant receptors (ORs) for sex pheromone substances have been identified as sex pheromone receptors in various moth species. However, direct in vivo evidence linking the functional role of these ORs with behavioural responses is lacking. In the silkmoth, Bombyx mori, female moths emit two sex pheromone components, bombykol and bombykal, but only bombykol elicits sexual behaviour in male moths. A sex pheromone receptor BmOR1 is specifically tuned to bombykol and is expressed in specialized olfactory receptor neurons (ORNs) in the pheromone sensitive long sensilla trichodea of male silkmoth antennae. Here, we show that disruption of the BmOR1 gene, mediated by transcription activator-like effector nucleases (TALENs), completely removes ORN sensitivity to bombykol and corresponding pheromone-source searching behaviour in male moths. Furthermore, transgenic rescue of BmOR1 restored normal behavioural responses to bombykol. Our results demonstrate that BmOR1 is required for the physiological and behavioural response to bombykol, demonstrating that it is the receptor that mediates sex pheromone responses in male silkmoths. This study provides the first direct evidence that a member of the sex pheromone receptor family in moth species mediates conspecific sex pheromone information for sexual behaviour. PMID:26047360

  8. Mineralocorticoid receptor interaction with SP1 generates a new response element for pathophysiologically relevant gene expression

    PubMed Central

    Meinel, Sandra; Ruhs, Stefanie; Schumann, Katja; Strätz, Nicole; Trenkmann, Kay; Schreier, Barbara; Grosse, Ivo; Keilwagen, Jens; Gekle, Michael; Grossmann, Claudia

    2013-01-01

    The mineralocorticoid receptor (MR) is a ligand-induced transcription factor belonging to the steroid receptor family and involved in water-electrolyte homeostasis, blood pressure regulation, inflammation and fibrosis in the renocardiovascular system. The MR shares a common hormone-response-element with the glucocorticoid receptor but nevertheless elicits MR-specific effects including enhanced epidermal growth factor receptor (EGFR) expression via unknown mechanisms. The EGFR is a receptor tyrosine kinase that leads to activation of MAP kinases, but that can also function as a signal transducer for other signaling pathways. In the present study, we mechanistically investigate the interaction between a newly discovered MR- but not glucocorticoid receptor- responsive-element (=MRE1) of the EGFR promoter, specificity protein 1 (SP1) and MR to gain general insights into MR-specificity. Biological relevance of the interaction for EGFR expression and consequently for different signaling pathways in general is demonstrated in human, rat and murine vascular smooth muscle cells and cells of EGFR knockout mice. A genome-wide promoter search for identical binding regions followed by quantitative PCR validation suggests that the identified MR-SP1–MRE1 interaction might be applicable to other genes. Overall, a novel principle of MR-specific gene expression is explored that applies to the pathophysiologically relevant expression of the EGFR and potentially also to other genes. PMID:23821666

  9. Genetic mapping of the beta 1 GABA receptor gene to human chromosome 4, using a tetranucleotide repeat polymorphism.

    PubMed Central

    Dean, M; Lucas-Derse, S; Bolos, A; O'Brien, S J; Kirkness, E F; Fraser, C M; Goldman, D

    1991-01-01

    As more coding loci for functional human genes are described, there is a growing need to identify DNA polymorphisms in specific genes. By examining DNA sequences within the introns of the beta 1 subunit of the gamma-aminobutyric acid receptor gene, GABARB1, we found a tetranucleotide repeat sequence (GATA). Amplification of this region by using PCR revealed seven alleles and a high degree of polymorphism (PIC = .75) in human populations. DNAs from the CEPH families were typed for the GABARB1 intron polymorphism and were analyzed with respect to 20 linked markers on chromosome 4. The results permit placement of GABARB1 on the linkage map of chromosome 4, between D4S104 and ALB. These results affirm that sequence analysis of noncoding segments included within or adjacent to functional genes has value as a strategy to detect highly informative polymorphisms. Images Figure 2 PMID:1652891

  10. Knockdown of a Zebrafish Aryl Hydrocarbon Receptor Repressor (AHRRa) Affects Expression of Genes Related to Photoreceptor Development and Hematopoiesis

    PubMed Central

    Aluru, Neelakanteswar; Jenny, Matthew J.; Hahn, Mark E.

    2014-01-01

    The aryl hydrocarbon receptor repressor (AHRR) is a transcriptional repressor of aryl hydrocarbon receptor (AHR) and hypoxia-inducible factor (HIF) and is regulated by an AHR-dependent mechanism. Zebrafish (Danio rerio) possess two AHRR paralogs; AHRRa regulates constitutive AHR signaling during development, whereas AHRRb regulates polyaromatic hydrocarbon-induced gene expression. However, little is known about the endogenous roles and targets of AHRRs. The objective of this study was to elucidate the role of AHRRs during zebrafish development using a loss-of-function approach followed by gene expression analysis. Zebrafish embryos were microinjected with morpholino oligonucleotides against AHRRa or AHRRb to knockdown AHRR protein expression. At 72 h postfertilization (hpf), microarray analysis revealed that the expression of 279 and 116 genes was altered by knockdown of AHRRa and AHRRb, respectively. In AHRRa-morphant embryos, 97 genes were up-regulated and 182 genes were down-regulated. Among the down-regulated genes were several related to photoreceptor function, including cone-specific genes such as several opsins (opn1sw1, opn1sw2, opn1mw1, and opn1lw2), phosphodiesterases (pde6H and pde6C), retinol binding protein (rbp4l), phosducin, and arrestins. Down-regulation was confirmed by RT-PCR and with samples from an independent experiment. The four genes tested (opn1sw1, pde6H, pde6C, and arr3b) were not inducible by 2,3,7,8-tetrachlorodibenzo-p-dioxin. AHRRa knockdown also caused up-regulation of embryonic hemoglobin (hbbe3), suggesting a role for AHRR in regulating hematopoiesis. Knockdown of AHRRb caused up-regulation of 31 genes and down-regulation of 85 genes, without enrichment for any specific biological process. Overall, these results suggest that AHRRs may have important roles in development, in addition to their roles in regulating xenobiotic signaling. PMID:24675095

  11. Sequence variation in the androgen receptor gene is not a common determinant of male sexual orientation

    SciTech Connect

    Macke, J.P.; Nathans, J.; King, V.L. ); Hu, N.; Hu, S.; Hamer, D.; Bailey, M. ); Brown, T. )

    1993-10-01

    To test the hypothesis that DNA sequence variation in the androgen receptor gene plays a causal role in the development of male sexual orientation, the authors have (1) measured the degree of concordance of androgen receptor alleles in 36 pairs of homosexual brothers, (2) compared the lengths of polyglutamine and polyglycine tracts in the amino-terminal domain of the androgen receptor in a sample of 197 homosexual males and 213 unselected subjects, and (3) screened the entire androgen receptor coding region for sequence variation by PCR and denaturing gradient-gel electrophoresis (DGGE) and/or single-strand conformation polymorphism analysis in 20 homosexual males with homosexual or bisexual brothers and one homosexual male with no homosexual brothers, and screened the amino-terminal domain of the receptor for sequence variation in an additional 44 homosexual males, 37 of whom had one or more first- or second-degree male relatives who were either homosexual or bisexual. These analyses show that (1) homosexual brothers are as likely to be discordant as concordant for androgen receptor alleles; (2) there are no large-scale differences between the distributions of polyglycine or polyglutamine tract lengths in the homosexual and control groups; and (3) coding region sequence variation is not commonly found within the androgen receptor gene of homosexual men. The DGGE screen identified two rare amino acid substitutions, ser[sup 205] -to-arg and glu[sup 793]-to-asp, the biological significance of which is unknown. 32 refs., 2 figs., 2 tabs.

  12. [Receptor tyrosine kinase KIT may regulate expression of genes involved in spontaneous regression of neuroblastoma].

    PubMed

    Lebedev, T D; Spirin, P V; Suntsova, M V; Ivanova, A V; Buzdin, A A; Prokofjeva, M M; Rubtsov, P M; Prassolov, V S

    2015-01-01

    Hallmark of neuroblastoma is an ability of this malignant tumor to undergo spontaneous regression or differentiation into benign tumor during any stage of the disease, but it is little known about mechanisms of these phenomena. We studied effect of receptor tyrosine kinase receptor KIT on expression of genes, which may be involved in tumor spontaneous regression. Downregulation of KIT expression by RNA interference in SH-SY5Y cells causes suppression of neurotrophin receptor NGFR expression that may promote the loss of sensibility of cells to nerve growth factors, also it causes upregulation of TrkA receptor expression which can stimulate cell differentiation or apoptosis in NGF dependent manner. Furthermore there is an upregulation of genes which stimulate malignant cell detection by immune system, such as genes of major histocompatibility complex HLA class I HLA-B and HLA-C, and interferon-γ receptors IFNGR1 and IFNGR2 genes. Thus KIT can mediate neuroblastoma cell sensibility to neurotrophins and immune system components--two factors directly contributing to spontaneous regression of neuroblastoma.

  13. Adoptive Immunotherapy for Hematological Malignancies Using T Cells Gene-Modified to Express Tumor Antigen-Specific Receptors

    PubMed Central

    Fujiwara, Hiroshi

    2014-01-01

    Accumulating clinical evidence suggests that adoptive T-cell immunotherapy could be a promising option for control of cancer; evident examples include the graft-vs-leukemia effect mediated by donor lymphocyte infusion (DLI) and therapeutic infusion of ex vivo-expanded tumor-infiltrating lymphocytes (TIL) for melanoma. Currently, along with advances in synthetic immunology, gene-modified T cells retargeted to defined tumor antigens have been introduced as “cellular drugs”. As the functional properties of the adoptive immune response mediated by T lymphocytes are decisively regulated by their T-cell receptors (TCRs), transfer of genes encoding target antigen-specific receptors should enable polyclonal T cells to be uniformly redirected toward cancer cells. Clinically, anticancer adoptive immunotherapy using genetically engineered T cells has an impressive track record. Notable examples include the dramatic benefit of chimeric antigen receptor (CAR) gene-modified T cells redirected towards CD19 in patients with B-cell malignancy, and the encouraging results obtained with TCR gene-modified T cells redirected towards NY-ESO-1, a cancer-testis antigen, in patients with advanced melanoma and synovial cell sarcoma. This article overviews the current status of this treatment option, and discusses challenging issues that still restrain the full effectiveness of this strategy, especially in the context of hematological malignancy. PMID:25517545

  14. Involvement of aberrant DNA methylation on reduced expression of lysophosphatidic acid receptor-1 gene in rat tumor cell lines

    SciTech Connect

    Tsujiuchi, Toshifumi . E-mail: ttujiuch@life.kindai.ac.jp; Shimizu, Kyoko; Onishi, Mariko; Sugata, Eriko; Fujii, Hiromasa; Mori, Toshio; Honoki, Kanya; Fukushima, Nobuyuki

    2006-10-27

    Lysophosphatidic acid (LPA) is a bioactive phospholipid that stimulates cell proliferation, migration, and protects cells from apoptosis. It interacts with specific G protein-coupled transmembrane receptors. Recently, it has been reported that alterations of LPA receptor expression might be important in the malignant transformation of tumor cells. Therefore, to assess an involvement of DNA methylation in reduced expression of the LPA receptor-1 (lpa1) gene, we investigated the expression of the lpa1 gene and its DNA methylation patterns in rat tumor cell lines. Both rat brain-derived neuroblastoma B103 and liver-derived hepatoma RH7777 cells used in this study indicated no expression of lpa1. For the analysis of methylation status, bisulfite sequencing was performed with B103 and RH7777 cells, comparing with other lpa1 expressed cells and normal tissues of brain and liver. The lpa1 expressed cells and tissues were all unmethylated in this region of lpa1. In contrast, both B103 and RH7777 cells were highly methylated, correlating with reduced expression of the lpa1. Treatment with 5-aza 2'-deoxycytidine induced expression of lpa1 gene in B103 and RH7777 cells after 24 h. In RH7777 cells treated with 5-aza 2'-deoxycytidine, stress fiber formation was also observed in response to LPA in RH7777 cells, but not in untreated RH7777 cells. These results suggest that aberrant DNA methylation of the lpa1 gene may be involved in its reduced expression in rat tumor cells.

  15. Transcriptional regulation of receptor-like protein genes by environmental stresses and hormones and their overexpression activities in Arabidopsis thaliana

    PubMed Central

    Wu, Jinbin; Liu, Zhijun; Zhang, Zhao; Lv, Yanting; Yang, Nan; Zhang, Guohua; Wu, Menyao; Lv, Shuo; Pan, Lixia; Joosten, Matthieu H. A. J.; Wang, Guodong

    2016-01-01

    Receptor-like proteins (RLPs) have been implicated in multiple biological processes, including plant development and immunity to microbial infection. Fifty-seven AtRLP genes have been identified in Arabidopsis, whereas only a few have been functionally characterized. This is due to the lack of suitable physiological screening conditions and the high degree of functional redundancy among AtRLP genes. To overcome the functional redundancy and further understand the role of AtRLP genes, we studied the evolution of AtRLP genes and compiled a comprehensive profile of the transcriptional regulation of AtRLP genes upon exposure to a range of environmental stresses and different hormones. These results indicate that the majority of AtRLP genes are differentially expressed under various conditions that were tested, an observation that will help to select certain AtRLP genes involved in a specific biological process for further experimental studies to eventually dissect their function. A large number of AtRLP genes were found to respond to more than one treatment, suggesting that one single AtRLP gene may be involved in multiple physiological processes. In addition, we performed a genome-wide cloning of the AtRLP genes, and generated and characterized transgenic Arabidopsis plants overexpressing the individual AtRLP genes, presenting new insight into the roles of AtRLP genes, as exemplified by AtRLP3, AtRLP11 and AtRLP28. Our study provides an overview of biological processes in which AtRLP genes may be involved, and presents valuable resources for future investigations into the function of these genes. PMID:27099374

  16. Cell line differences in replication timing of human glutamate receptor genes and other large genes associated with neural disease

    PubMed Central

    Watanabe, Yoshihisa; Shibata, Kiyoshi; Maekawa, Masato

    2014-01-01

    There is considerable current interest in the function of epigenetic mechanisms in neuroplasticity with regard to learning and memory formation and to a range of neural diseases. Previously, we described replication timing on human chromosome 21q in the THP-1 human cell line (2n = 46, XY) and showed that several genes associated with neural diseases, such as the neuronal glutamate receptor subunit GluR-5 (GRIK1) and amyloid precursor protein (APP), were located in regions where replication timing transitioned from early to late S phase. Here, we compared replication timing of all known human glutamate receptor genes (26 genes in total) and APP in 6 different human cell lines including human neuron-related cell lines. Replication timings were obtained by integrating our previously reported data with new data generated here and information from the online database ReplicationDomain. We found that many of the glutamate receptor genes were clearly located in replication timing transition zones in neural precursor cells, but this relationship was less clear in embryonic stem cells before neural differentiation; in the latter, the genes were often located in later replication timing zones that displayed DNA hypermethylation. Analysis of selected large glutamate receptor genes (>200 kb), and of APP, showed that their precise replication timing patterns differed among the cell lines. We propose that the transition zones of DNA replication timing are altered by epigenetic mechanisms, and that these changes may affect the neuroplasticity that is important to memory and learning, and may also have a role in the development of neural diseases. PMID:25437050

  17. Direct transcriptional control of the plasminogen activator gene of Yersinia pestis by the cyclic AMP receptor protein.

    PubMed

    Kim, Tae-Jong; Chauhan, Sadhana; Motin, Vladimir L; Goh, Ee-Been; Igo, Michele M; Young, Glenn M

    2007-12-01

    Horizontal gene transfer events followed by proper regulatory integration of a gene drive rapid evolution of bacterial pathogens. A key event in the evolution of the highly virulent plague bacterium Yersinia pestis was the acquisition of plasmid pPCP1, which carries the plasminogen activator gene, pla. This promoted the bubonic form of the disease by increasing bacterial dissemination from flea bite sites and incidentally enhanced replication in respiratory airways during pneumonic infection. We determined that expression of pla is controlled by the global regulator cyclic AMP (cAMP) receptor protein (Crp). This transcription factor is well conserved among distantly related bacteria, where it acts as a soluble receptor for the ubiquitous signaling molecule cAMP and controls a global network of metabolic and stress-protective genes. Crp has a similar physiological role in Y. pestis since loss of its function resulted in an inability to metabolize a variety of nonglucose substrates. Activation of pla expression requires a transcription activation element of the pla promoter that serves as a Crp binding site. Crp interaction with this site was demonstrated to occur only in the presence of cAMP. Alteration of the Crp binding site nucleotide sequence prevented in vitro formation of Crp-DNA complexes and inhibited in vivo expression of pla. The placement of pla under direct regulatory control of Crp highlights how highly adapted pathogens integrate laterally acquired genes to coordinate virulence factor expression with global gene networks to maintain homeostasis through the infectious life cycle.

  18. The influence of T cell receptor and cytokine genes on sarcoidosis susceptibility in African Americans.

    PubMed

    Rybicki, B A; Maliarik, M J; Malvitz, E; Sheffer, R G; Major, M; Popovich, J; Iannuzzi, M C

    1999-09-01

    The pathogenesis of sarcoidosis, a multisystem granulomatous disorder, is mediated through immunoregulatory pathways. While sarcoidosis clusters in families, inherited risk factors remain undefined. In search of possible sarcoidosis susceptibility genes, we examined anonymous polymorphic genetic markers tightly linked to six different candidate gene regions on chromosomes 2q13, 5q31, 6p23-25, 7p14-15, 14q11 and 22q11. These candidate regions contain T cell receptor, interleukin (IL) and interferon regulatory factor (IRF) genes. Our study population consisted of 105 African-American sarcoidosis cases and 95 unrelated healthy controls. The allelic frequency distribution of two out of the six markers, IL-1 alpha marker (p = 0.010) on 2q13 and the F13A marker (p = 0.0006) on 6p23-25, was statistically significantly different in cases compared with controls. The two alleles most strongly associated with sarcoidosis were IL-1 alpha*137 (Odds Ratio (OR) = 2.60; 95% confidence interval (CI) = 1.36-4.98) and F13A*188 (OR = 2.42; 95% CI = 1.37-4.30). Individuals that had both of these alleles were at a six-fold increased risk for sarcoidosis (OR = 6.19; 95% CI = 2.54-15.10). Restricting the analysis to cases with at least one first or second-degree relative affected with sarcoidosis increased the OR to 15.38. IL-1 levels are elevated in sarcoidosis and the F13A marker is tightly linked to a gene that codes for a newly identified interferon regulatory factor protein (IRF-4), which is thought to play a role in T cell effector functions. Our results suggest genetic susceptibility to sarcoidosis may be conferred by more than one immune-related gene that act synergistically on disease risk.

  19. Mutations in Melanocortin-3 Receptor Gene and Human Obesity.

    PubMed

    Yang, Z; Tao, Y-X

    2016-01-01

    The prevalence of obesity calls for novel therapeutic targets. The melanocortin-3 receptor (MC3R) has been increasingly recognized as an important regulator of energy homeostasis and MC3R has been intensively analyzed in molecular genetic studies for obesity-related traits. Twenty-seven MC3R mutations and two common polymorphic variants have been identified so far in different cohorts. The mutant MC3Rs demonstrate multiple defects in functional analysis and can be cataloged into different classes according to receptor life cycle based classification system. Although the pathogenic role of MC3R in human obesity remains controversial, recent findings in the noncanonical signaling pathway of MC3R mutants have provided new insights. Potential therapeutic strategies for obesity related to MC3R mutations are highlighted. PMID:27288827

  20. β-2 Adrenergic receptor gene polymorphism and response to propranolol in cirrhosis

    PubMed Central

    Kong, De-Run; Wang, Jin-Guang; Sun, Bin; Wang, Ming-Quan; Chen, Chen; Yu, Fang-Fang; Xu, Jian-Ming

    2015-01-01

    AIM: To evaluate the association of β-2 adrenergic receptor (β2-AR) gene polymorphism with response of variceal pressure to propranolol in cirrhosis. METHODS: Sixty-four non-related cirrhotic patients participated in this study and accepted variceal pressure measurement before and after propranolol administration. Polymorphism of the β2-AR gene was determined by directly sequencing of the polymerase chain reaction products from the DNA samples that were prepared from the patients. RESULTS: The prevalence of Gly16-Glu/Gln27 and Arg16-Gln27 homozygotes, and compound heterozygotes was 29.7%, 10.9%, and 59.4%, respectively. Patients with cirrhosis with Gly16-Glu/Gln27 homozygotes had a greater decrease of variceal pressure after propranolol administration than those with Arg16-Gln27 homozygotes or with compound heterozygotes (22.4% ± 2.1%, 13.1% ± 2.7% and 12.5% ± 3.1%, respectively, P < 0.01). CONCLUSION: The variceal pressure response to propranolol was associated with polymorphism of β2-AR gene. Patients with the Gly16-Glu/Gln27 homozygotes probably benefit from propranolol therapy. PMID:26109805

  1. Dopamine D3 receptor gene locus: Association with schizophrenia, as well age of onset

    SciTech Connect

    Nimgsonkar, V.L.; Zhang, X.R.; Brar, J.S.

    1994-09-01

    Genetic factors are clearly involved in the etiology of schizophrenia, but their specific nature is unknown. If the genetic etiology is multifactorial or polygenic, the role of specific genes as susceptibility factors can be directly evaluated by examining allelic variation at these loci among cases in comparison with controls. Two studies have independently demonstrated an association of schizophrenia with homozygosity at the dopamine D3 receptor gene (D3RG) locus, using a biallelic polymorphism in the first exon of D3RG. These results are important because D3RG is a favored candidate gene. Three other studies have identified associations among sub-groups of patients, but the majority were negative. The present study involved patients with schizophrenia (DSM-III-R criteria) of Caucasian or African-American ethnicity (n=130). Two groups of controls, matched for ethnicity, were used: adults screened for schizophrenia (n=128) and unselected neonates (n=160). Multivariate analysis revealed an association between allele no. 1 homozygosity and schizophrenia in comparison with adult, but not neonatal controls. The association was most marked among Caucasian patients with a family history of schizophrenia (odds ratio 13.7, C.I. 1.8, 104.3). An association of the D3RG locus with age of onset (AOO) was also noted. The discrepancies in earlier studies may due to variations in control groups, differencies in mean AOO among different cohorts, or ethnic variations in susceptibility attributable to D3RG.

  2. Missense mutation of the cholecystokinin B receptor gene: Lack of association with panic disorder

    SciTech Connect

    Kato, Tadafumi; Wang, Zhe Wu; Crowe, R.R.; Zoega, T.

    1996-07-26

    Cholecystokinin tetrapeptide (CCK{sub 4}) is known to induce panic attacks in patients with panic disorder at a lower dose than in normal controls. Therefore, the cholecystokinin B (CCK{sub B}) receptor gene is a candidate gene for panic disorder. We searched for mutations in the CCK{sub B} gene in 22 probands of panic disorder pedigrees, using single-strand conformation polymorphism (SSCP) analysis. Two polymorphisms were detected. A polymorphism in an intron (2491 C{yields}A) between exons 4 and 5 was observed in 10 of 22 probands. A missense mutation in the extracellular loop of exon 2 (1550 G{yields}A, Val{sup 125}{yields}Ile) was found in only one proband. This mutation was also examined in additional 34 unrelated patients with panic disorder and 112 controls. The prevalence rate of this mutation was 8.8% in patients with panic disorder (3/34) and 4.4% in controls (5/112). The mutation did not segregate with panic disorder in two families where this could be tested. These results suggest no pathophysiological significance of this mutation in panic disorder. 21 refs., 4 figs., 1 tab.

  3. Estrogen receptor alpha gene amplification in breast cancer: 25 years of debate

    PubMed Central

    Holst, Frederik

    2016-01-01

    Twenty-five years ago, Nembrot and colleagues reported amplification of the estrogen receptor alpha gene (ESR1) in breast cancer, initiating a broad and still ongoing scientific debate on the prevalence and clinical significance of this genetic aberration, which affects one of the most important genes in breast cancer. Since then, a multitude of studies on this topic has been published, covering a wide range of divergent results and arguments. The reported prevalence of this alteration in breast cancer ranges from 0% to 75%, suggesting that ESR1 copy number analysis is hampered by technical and interpreter issues. To date, two major issues related to ESR1 amplification remain to be conclusively addressed: (1) The extent to which abundant amounts of messenger RNA can mimic amplification in standard fluorescence in situ hybridization assays in the analysis of strongly expressed genes like ESR1, and (2) the clinical relevance of ESR1 amplification: Such relevance is strongly disputed, with data showing predictive value for response as well as for resistance of the cancer to anti-estrogen therapies, or for subsequent development of cancers in the case of precursor lesions that display amplification of ESR1. This review provides a comprehensive summary of the various views on ESR1 amplification, and highlights explanations for the contradictions and conflicting data that could inform future ESR1 research. PMID:27081639

  4. Characterization of two putative ethylene receptor genes expressed during peach fruit development and abscission.

    PubMed

    Rasori, Angela; Ruperti, Benedetto; Bonghi, Claudio; Tonutti, Pietro; Ramina, Angelo

    2002-12-01

    Two peach genes homologous to the Arabidopsis ethylene receptor genes ETR1 and ERS1, named Pp-ETR1 and Pp-ERS1 respectively, have been isolated and characterized. Pp-ETR1 and Pp-ERS1 are conserved in terms of exon numbers and intron positions, although the first and fifth introns of Pp-ETR1 have an unusual length. In addition, two putative polyadenylation sites, that may cause an incomplete splicing at the 3' terminus, are present in the fifth intron. A motif of 28 nt, which shows high homology with ethylene responsive elements found in promoters of genes up-regulated by ethylene, is present in the promoter region of Pp-ERS1. Expression analysis, carried out by quantitative RT-PCR, was performed during fruit development and ripening, and leaf and fruitlet abscission. The level of Pp-ETR1 transcripts remained unchanged in all the tissues and developmental stages examined, whereas Pp-ERS1 mRNA abundance increased in ripening mesocarp, in leaf and fruitlet activated abscission zones, and following propylene application. 1-methylcyclopropene (1-MCP), an inhibitor of ethylene action, did not affect Pp-ETR1 transcription, while it down-regulated Pp-ERS1. A rise in ethylene evolution, accompanied by an increase of Pp-ERS1 transcript accumulation occurred within 24 h from the end of 1-MCP treatment. These results indicate that Pp-ERS1 might play a role in abscission and ripening.

  5. Methylation of the oxytocin receptor gene and oxytocin blood levels in the development of psychopathy.

    PubMed

    Dadds, Mark R; Moul, Caroline; Cauchi, Avril; Dobson-Stone, Carol; Hawes, David J; Brennan, John; Ebstein, Richard E

    2014-02-01

    Child conduct problems (CPs) are a robust predictor of adult mental health; the concurrence of callous-unemotional (CU) traits confers specific risk for psychopathy. Psychopathy may be related to disturbances in the oxytocin (OXT) system. Evidence suggests that epigenetic changes in the OXT receptor gene (OXTR) are associated with lower circulating OXT and social-cognitive difficulties. We tested methylation levels of OXTR in 4- to 16-year-old males who met DSM criteria for a diagnosis of oppositional-defiant or conduct disorder and were stratified by CU traits and age. Measures were DNA methylation levels of six CpG sites in the promoter region of the OXTR gene (where a CpG site is a cytosine nucleotide occurs next to a guanine nucleotide in the linear sequence of bases along its lenth, linked together by phosphate binding), and OXT blood levels. High CU traits were associated with greater methylation of the OXTR gene for two cytosine nucleotide and guanine nucleotide phosphate linked sites and lower circulating OXT in older males. Higher methylation correlated with lower OXT levels. We conclude that greater methylation of OXTR characterizes adolescent males with high levels of CU and CPs, and this methylation is associated with lower circulating OXT and functional impairment in interpersonal empathy. The results add genetic evidence that high CU traits specify a distinct subgroup within CP children, and they suggest models of psychopathy may be informed by further identification of these epigenetic processes and their functional significance. PMID:24059811

  6. Investigation on estrogen receptor alpha gene polymorphisms in Iranian women with recurrent pregnancy loss

    PubMed Central

    Mahdavipour, Marzieh; Idali, Farah; Zarei, Saeed; Talebi, Saeed; Fatemi, Ramina; Jeddi-Tehrani, Mahmood; Pahlavan, Somayeh; Rajaei, Farzad

    2014-01-01

    Background: Recurrent pregnancy loss (RPL) is a multifactorial disorder. Environmental factors and genetics can affect pregnancy outcomes. Objective: Conflicting data suggest an association between estrogen receptor alpha (ESR1) gene polymorphisms and RPL. In this study, such association was investigated in Iranian women with RPL. Materials and Methods: In this case control study, blood samples were collected from 244 women with a history of three or more consecutive pregnancy losses and 104 healthy women with at least two live births. Using polymerase chain reaction- restriction fragment length polymorphism (PCR-RFLP), we studied -397C/T and -351A/G polymorphisms on ESR1 gene in case and control subjects. Results: The genotypic frequencies of -397C/T and -351A/G polymorphisms on ESR1were not significantly different between RPL and control groups (p=0.20 and p=0.09, respectively). A significantly negative correlation was observed between -397C/T and -351A/G (r=-0.852, p<0.001) in RPL women and complete linkage disequilibrium between the investigated polymorphisms was found (D’: 0.959; r-square= 0.758, p<0.001). Conclusion: This investigation suggests that the analyzed polymorphisms on ESR1gene are not associated with an increased risk of RPL in the studied population. PMID:25071847

  7. GLUTAMATE RECEPTOR-LIKE genes mediate leaf-to-leaf wound signalling.

    PubMed

    Mousavi, Seyed A R; Chauvin, Adeline; Pascaud, François; Kellenberger, Stephan; Farmer, Edward E

    2013-08-22

    Wounded leaves communicate their damage status to one another through a poorly understood process of long-distance signalling. This stimulates the distal production of jasmonates, potent regulators of defence responses. Using non-invasive electrodes we mapped surface potential changes in Arabidopsis thaliana after wounding leaf eight and found that membrane depolarizations correlated with jasmonate signalling domains in undamaged leaves. Furthermore, current injection elicited jasmonoyl-isoleucine accumulation, resulting in a transcriptome enriched in RNAs encoding key jasmonate signalling regulators. From among 34 screened membrane protein mutant lines, mutations in several clade 3 GLUTAMATE RECEPTOR-LIKE genes (GLRs 3.2, 3.3 and 3.6) attenuated wound-induced surface potential changes. Jasmonate-response gene expression in leaves distal to wounds was reduced in a glr3.3 glr3.6 double mutant. This work provides a genetic basis for investigating mechanisms of long-distance wound signalling in plants and indicates that plant genes related to those important for synaptic activity in animals function in organ-to-organ wound signalling.

  8. ACVR1B (ALK4, activin receptor type 1B) gene mutations in pancreatic carcinoma

    PubMed Central

    Su, Gloria H.; Bansal, Ravi; Murphy, Kathleen M.; Montgomery, Elizabeth; Yeo, Charles J.; Hruban, Ralph H.; Kern, Scott E.

    2001-01-01

    DPC4 is known to mediate signals initiated by type β transforming growth factor (TGFβ) as well as by other TGFβ superfamily ligands such as activin and BMP (bone morphogenic proteins), but mutational surveys of such non-TGFβ receptors have been negative to date. Here we describe the gene structure and novel somatic mutations of the activin type I receptor, ACVR1B, in pancreatic cancer. ACVR1B has not been described previously as a mutated tumor-suppressor gene. PMID:11248065

  9. Involvement of second messengers in regulation of the low-density lipoprotein receptor gene

    SciTech Connect

    Auwerx, J.H. . ECHEM Labs.); Chait, A.; Wolfbauer, G.; Deeb, S.S. . Dept. of Medicine)

    1989-06-01

    Transcription of the low-density lipoprotein receptor (LDL-R) gene in the human monocytic leukemic cell line THP-1 and in the human hepatocarcinoma cell line Hep-G2 is regulated by second messengers of the diacylglycerol-protein kinase C (DAG-PKC), inositol 1,4,5-triphosphate-Ca/sup 2+/, and cyclic AMP pathways. Exogeneous phospholipase C (which releases DAG and inositol 1,4,5-triphosphate), PKC activators (phorbol esters and DAG), Ca/sup 2+/ ionophores, and a cyclic AMP analog all transiently induced accumulation of LDL-R mRNA. The effects of these three signal-transducing pathways were to a large extend additive. Furthermore, PKC stimulation effected an increase in LDL binding, which suggested that the increase in LDL-R mRNA resulted in an increase in functional cell surface receptor activity. These results suggest that uptake of cholesterol by these cells is under control of both intracellular cholesterol levels and external signals.

  10. Gene conversion from SLG to SRK resulting in self-compatibility in Brassica rapa.

    PubMed

    Fujimoto, Ryo; Sugimura, Tetsu; Nishio, Takeshi

    2006-01-23

    Self-compatible S-54 homozygotic plants were found in progenies of an F(1) hybrid cultivar in Chinese cabbage. Pollination tests revealed that this self-compatibility is controlled by the S locus and caused by the loss of the recognition function of the stigma. SRK, the gene for the recognition molecule in the stigma, was normally transcribed and translated in the self-compatible plants. The 1034-bp region in the receptor domain of SRK in the self-compatible plants was 100% identical to SLG in S-54, while that in self-incompatible S-54 homozygotic plants was 95.1% identical. These results suggest that the self-compatibility of the S-54 homozygotes is due to amino-acid changes caused by gene conversion from SLG to SRK.

  11. The Dopamine D2 Receptor Gene in Lamprey, Its Expression in the Striatum and Cellular Effects of D2 Receptor Activation

    PubMed Central

    Robertson, Brita; Huerta-Ocampo, Icnelia; Ericsson, Jesper; Stephenson-Jones, Marcus; Pérez-Fernández, Juan; Bolam, J. Paul; Diaz-Heijtz, Rochellys; Grillner, Sten

    2012-01-01

    All basal ganglia subnuclei have recently been identified in lampreys, the phylogenetically oldest group of vertebrates. Furthermore, the interconnectivity of these nuclei is similar to mammals and tyrosine hydroxylase-positive (dopaminergic) fibers have been detected within the input layer, the striatum. Striatal processing is critically dependent on the interplay with the dopamine system, and we explore here whether D2 receptors are expressed in the lamprey striatum and their potential role. We have identified a cDNA encoding the dopamine D2 receptor from the lamprey brain and the deduced protein sequence showed close phylogenetic relationship with other vertebrate D2 receptors, and an almost 100% identity within the transmembrane domains containing the amino acids essential for dopamine binding. There was a strong and distinct expression of D2 receptor mRNA in a subpopulation of striatal neurons, and in the same region tyrosine hydroxylase-immunoreactive synaptic terminals were identified at the ultrastructural level. The synaptic incidence of tyrosine hydroxylase-immunoreactive boutons was highest in a region ventrolateral to the compact layer of striatal neurons, a region where most striatal dendrites arborise. Application of a D2 receptor agonist modulates striatal neurons by causing a reduced spike discharge and a diminished post-inhibitory rebound. We conclude that the D2 receptor gene had already evolved in the earliest group of vertebrates, cyclostomes, when they diverged from the main vertebrate line of evolution (560 mya), and that it is expressed in striatum where it exerts similar cellular effects to that in other vertebrates. These results together with our previous published data (Stephenson-Jones et al. 2011, 2012) further emphasize the high degree of conservation of the basal ganglia, also with regard to the indirect loop, and its role as a basic mechanism for action selection in all vertebrates. PMID:22563388

  12. Molecular Characterization of RXR (Retinoid X Receptor) Gene Isoforms from the Bivalve Species Chlamys farreri

    PubMed Central

    Bao, Zhenmin; Guo, Huihui; Zhang, Yueyue; Jiao, Wenqian; Zhang, Lingling; Wang, Shi; He, Yan; Hu, Xiaoli

    2013-01-01

    Background Bivalves are among the oldest classes of invertebrates, and they exhibit diverse types of sexual patterning. However, our current understanding of the mechanisms of sex determination and differentiation in bivalves remains very limited. The retinoid X receptors (RXRs), which are members of the nuclear receptor family, are involved in sex differentiation in many organisms. Results In the present study, four full-length RXR-encoding cDNAs (CfRXRs) named CfRXRa, CfRXRb, CfRXRc and CfRXRd were retrieved from Zhikong scallop (Chlamys farreri). The four RXRs exhibited the conserved five-domain structure of nuclear receptor superfamily members and differed from each other only in the T-box of the C domain. The three variants, designated T (+4), T (+20) and T (+24), contained insertions of 4, 20 and 24 amino acids, respectively. The entire CfRXR gene is composed of eight exons and seven introns, and the four isoforms are generated via alternative mRNA splicing. Expression analysis showed that all four isoforms were expressed in both the testis and the ovary during the differentiation stage, whereas no expression was detected in the growth, mature or resting stages. This result suggests that CfRXRs are involved in germ cell differentiation in both sexes. The expression of the four isoforms was also detected in other tissues examined, including mantle, gill, digestive gland, and adductor muscle of sexually mature male and female Zhikong scallops, implying the multiple biological functions of CfRXRs. Conclusion Our study presents the first report of RXR isoforms in bivalves. Further investigation of the functional roles of different RXR isoforms may provide deep insights into the regulatory mechanism of sex differentiation in C. farreri. PMID:24066133

  13. The Aryl Hydrocarbon Receptor Complex and the Control of Gene Expression

    PubMed Central

    Beischlag, Timothy V.; Morales, J. Luis; Hollingshead, Brett D.; Perdew, Gary H.

    2008-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that controls the expression of a diverse set of genes. The toxicity of the potent AhR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin is almost exclusively mediated through this receptor. However, the key alterations in gene expression that mediate toxicity are poorly understood. It has been established through characterization of AhR-null mice that the AhR has a required physiological function, yet how endogenous mediators regulate this orphan receptor remains to be established. A picture as to how the AhR/ARNT heterodimer actually mediates gene transcription is starting to emerge. The AhR/ARNT complex can alter transcription both by binding to its cognate response element and through tethering to other transcription factors. In addition, many of the coregulatory proteins necessary for AhR-mediated transcription have been identified. Cross talk between the estrogen receptor and the AhR at the promoter of target genes appears to be an important mode of regulation. Inflammatory signaling pathways and the AhR also appear to be another important site of cross talk at the level of transcription. A major focus of this review is to highlight experimental efforts to characterize nonclassical mechanisms of AhR-mediated modulation of gene transcription. PMID:18540824

  14. Individual Differences in Childhood Behavior Disorders Associated With Epigenetic Modulation of the Cortisol Receptor Gene.

    PubMed

    Dadds, Mark R; Moul, Caroline; Hawes, David J; Mendoza Diaz, Antonio; Brennan, John

    2015-01-01

    Behavioral/emotional difficulties in children are the first sign of mental health problems. These problems are however, heterogeneous. A domain that may identify homogenous subgroups is hypothalamic-pituitary-adrenal function. This study tested whether epigenetic regulation of glucocorticoid receptor gene could explain the co-occurrence of anxiety problems in children with behavior problems. Four- to 16-year-old clinically referred children (N = 241) were measured for psychiatric symptoms, methylation of target CpG sites in blood or saliva, and morning cortisol levels in those who gave blood. Increased methylation of promoter 1F CpG sites was associated with higher vulnerability to co-occurring internalizing symptoms and morning cortisol. The results support increasing optimism that epigenetic regulation of key neuroendocrine systems might help explain hitherto unfathomable individual differences in susceptibility to psychiatric symptom profiles. PMID:26152664

  15. Serotonin 5-HT2A receptor gene variants influence antidepressant response to repeated total sleep deprivation in bipolar depression.

    PubMed

    Benedetti, Francesco; Barbini, Barbara; Bernasconi, Alessandro; Fulgosi, Mara Cigala; Colombo, Cristina; Dallaspezia, Sara; Gavinelli, Chiara; Marino, Elena; Pirovano, Adele; Radaelli, Daniele; Smeraldi, Enrico

    2008-12-12

    5-HT2A receptor density in prefrontal cortex was associated with depression and suicide. 5-HT2A receptor gene polymorphism rs6313 was associated with 5-HT2A receptor binding potential, with the ability of individuals to use environmental support in order to prevent depression, and with sleep improvement after antidepressant treatment with mirtazapine. Studies on response to antidepressant drugs gave inconsistent results. Here we studied the effect of rs6313 on response to repeated total sleep deprivation (TSD) in 80 bipolar depressed inpatients treated with three consecutive TSD cycles (each one made of 36 h awake followed by a night of undisturbed sleep). All genotype groups showed comparable acute effects of the first TSD, but patients homozygotes for the T variant had better perceived and observed benefits from treatment than carriers of the C allele. These effects became significant after the first recovery night and during the following days, leading to a 36% higher final response rate (Hamilton depression rating<8). The higher density of postsynaptic excitatory 5-HT2A receptors in T/T homozygotes could have led to higher behavioural effects of increased 5-HT neurotransmission due to repeated TSD. Other possible mechanisms involve allostatic/homeostatic adaptation to sleep loss, and a different effect of the allele variants on epigenetic influences. Results confirm the interest for individual gene variants of the serotonin pathway in shaping clinical characteristics of depression and antidepressant response.

  16. Extraction and characterization of the rhesus macaque T cell receptor β-chain genes

    PubMed Central

    Greenaway, Hui Yee; Kurniawan, Monica; Price, David A; Douek, Daniel C; Davenport, Miles P; Venturi, Vanessa

    2009-01-01

    Rhesus macaque models have been instrumental for the development and testing of vaccines prior to human studies and have provided fundamental insights into the determinants of immune efficacy in a variety of infectious diseases. However, the characterization of antigen-specific T cell receptor (TCR) repertoires during adaptive immune responses in these models has previously relied on human TCR gene assignments. Here, we extracted and characterized TCR β-chain (TRB) genes from the recently sequenced rhesus macaque genome that are homologous to the human TRB genes. Comparison of the rhesus macaque TRB genes with the human TRB genes revealed an average best-match similarity of 92.9%. Furthermore, we confirmed the usage of most rhesus macaque TRB genes by expressed TCRβ sequences within epitope-specific TCR repertoires. This primary description of the rhesus macaque TRB genes will provide a standardized nomenclature and enable better characterization of TCR usage in studies that utilize this species. PMID:19506572

  17. Dissecting the functional significance of endothelin A receptors in peripheral nociceptors in vivo via conditional gene deletion.

    PubMed

    Stösser, Sebastian; Agarwal, Nitin; Tappe-Theodor, Anke; Yanagisawa, Masashi; Kuner, Rohini

    2010-02-01

    The peptide endothelin-1 (ET1), which was originally identified as a vasoconstrictor, has emerged as a critical regulator of a number of painful conditions, including inflammatory pain and tumor-associated pain. There is considerable pharmacological evidence supporting a role for endothelin A receptors (ET(A)) in mediating ET1-induced pro-algesic functions. ET(A) receptors are expressed in small-diameter nociceptive neurons, but also found in a variety of other cell types in peripheral tissues, including immune cells, keratinocytes, endothelial cells, which have the potential to modulate nociception. To elucidate the functional contribution of ET(A) receptors expressed in sensory neurons towards the functions of the ET1 axis in pathological pain states, we undertook a conditional gene deletion approach to selectively deplete expression of ET(A) in sensory nerves, preserving expression in non-neural peripheral tissues; the expression of ET(B) remained unchanged. Behavioural and pharmacological experiments showed that only late nociceptive hypersensitivity caused by ET1 is abrogated upon a loss of ET(A) receptors on nociceptors and further suggest that ET1-induced early nociceptive hypersensitivity involves activation of ET(A) as well as ET(B) receptors in non-neural peripheral cells. Furthermore, in the context of alleviation of cancer pain and chronic inflammatory pain by ET(A) receptor antagonists, we observed in corresponding mouse models that the contribution of ET(A) receptors expressed in nociceptors is most significant. These results help understand the role of ET(A) receptors in complex biological processes and peripheral cell-cell interactions involved in inflammatory and tumor-associated pain.

  18. Potential mechanisms underlying estrogen-induced expression of the molluscan estrogen receptor (ER) gene.

    PubMed

    Tran, Thi Kim Anh; MacFarlane, Geoff R; Kong, Richard Yuen Chong; O'Connor, Wayne A; Yu, Richard Man Kit

    2016-10-01

    In vertebrates, estrogens and estrogen mimicking chemicals modulate gene expression mainly through a genomic pathway mediated by the estrogen receptors (ERs). Although the existence of an ER orthologue in the mollusc genome has been known for some time, its role in estrogen signalling has yet to be deciphered. This is largely due to its constitutive (ligand-independent) activation and a limited mechanistic understanding of its regulation. To fill this knowledge gap, we cloned and characterised an ER cDNA (sgER) and the 5'-flanking region of the gene from the Sydney rock oyster Saccostrea glomerata. The sgER cDNA is predicted to encode a 477-amino acid protein that contains a DNA-binding domain (DBD) and a ligand-binding domain (LBD) typically conserved among both vertebrate and invertebrate ERs. A comparison of the sgER LBD sequence with those of other ligand-dependent ERs revealed that the sgER LBD is variable at several conserved residues known to be critical for ligand binding and receptor activation. Ligand binding assays using fluorescent-labelled E2 and purified sgER protein confirmed that sgER is devoid of estrogen binding. In silico analysis of the sgER 5'-flanking sequence indicated the presence of three putative estrogen responsive element (ERE) half-sites and several putative sites for ER-interacting transcription factors, suggesting that the sgER promoter may be autoregulated by its own gene product. sgER mRNA is ubiquitously expressed in adult oyster tissues, with the highest expression found in the ovary. Ovarian expression of sgER mRNA was significantly upregulated following in vitro and in vivo exposure to 17β-estradiol (E2). Notably, the activation of sgER expression by E2 in vitro was abolished by the specific ER antagonist ICI 182, 780. To determine whether sgER expression is epigenetically regulated, the in vivo DNA methylation status of the putative proximal promoter in ovarian tissues was assessed using bisulfite genomic sequencing. The

  19. Urokinase receptor is a multifunctional protein: influence of receptor occupancy on macrophage gene expression.

    PubMed Central

    Rao, N K; Shi, G P; Chapman, H A

    1995-01-01

    Binding of urokinase to the glycolipid-anchored urokinase receptor (uPAR) has been implicated in macrophage differentiation. However, no biochemical markers of differentiation have yet been directly linked to uPAR occupancy. As extensive changes in proteolytic profile characterize monocytic differentiation, we have examined the role of uPAR occupancy on protease expression by differentiating phagocytes. Antibodies to either urokinase or to uPAR that prevent receptor binding inhibited induction of cathepsin B in cultured monocytes and both cathepsin B and 92-kD gelatinase mRNA and protein in phorbol diester-stimulated myeloid cells. Mannosamine, an inhibitor of glycolipid anchor assembly, also blocked protease expression. Anti-catalytic urokinase antibodies, excess inactive urokinase, or aprotinin had no effect, indicating that receptor occupancy per se regulated protease expression. Antibodies to the integrins CD11a and CD29 or to the glycolipid-anchored proteins CD14 and CD55 also had no effect. Protease induction was independent of matrix attachment. Antibodies to urokinase or uPAR affected neither the decrease in cathepsin G nor the increase in tumor necrosis factor-alpha in phorbol ester-stimulated cells. These data establish that uPAR is a multifunctional receptor, not only promoting pericellular proteolysis and matrix attachment, but also effecting cysteine- and metallo-protease expression during macrophage differentiation. Images PMID:7615819

  20. Oxytocin and Vasopressin Receptor Gene Polymorphisms: Role in Social and Psychiatric Traits.

    PubMed

    Aspé-Sánchez, Mauricio; Moreno, Macarena; Rivera, Maria Ignacia; Rossi, Alejandra; Ewer, John

    2015-01-01

    Oxytocin (OXT) and arginine-vasopressin (AVP) are two phylogenetically conserved neuropeptides that have been implicated in a wide range of social behaviors. Although a large body of research, ranging from rodents to humans, has reported on the effects of OXT and AVP administration on affiliative and trust behaviors, and has highlighted the genetic contributions of OXT and AVP receptor polymorphisms to both social behaviors and to diseases related to social deficits, the consequences of peptide administration on psychiatric symptoms, and the impact of receptor polymorphisms on receptor function, are still unclear. Despite the exciting advances that these reports have brought to social neuroscience, they remain preliminary and suffer from the problems that are inherent to monogenetic linkage and association studies. As an alternative, some studies are using polygenic approaches, and consider the contributions of other genes and pathways, including those involving DA, 5-HT, and reelin, in addition to OXT and AVP; a handful of report are also using genome-wide association studies. This review summarizes findings on the associations between OXT and AVP receptor polymorphism, social behavior, and psychiatric diseases. In addition, we discuss reports on the interactions of OXT and AVP receptor genes and genes involved in other pathways (such as those of dopamine, serotonin, and reelin), as well as research that has shed some light on the impact of gene polymorphisms on the volume, connectivity, and activation of specific neural structures, differential receptor expression, and plasma levels of the OXT and AVP peptides. We hope that this effort will be helpful for understanding the studies performed so far, and for encouraging the inclusion of other candidate genes not explored to date. PMID:26858594

  1. Oxytocin and Vasopressin Receptor Gene Polymorphisms: Role in Social and Psychiatric Traits

    PubMed Central

    Aspé-Sánchez, Mauricio; Moreno, Macarena; Rivera, Maria Ignacia; Rossi, Alejandra; Ewer, John

    2016-01-01

    Oxytocin (OXT) and arginine-vasopressin (AVP) are two phylogenetically conserved neuropeptides that have been implicated in a wide range of social behaviors. Although a large body of research, ranging from rodents to humans, has reported on the effects of OXT and AVP administration on affiliative and trust behaviors, and has highlighted the genetic contributions of OXT and AVP receptor polymorphisms to both social behaviors and to diseases related to social deficits, the consequences of peptide administration on psychiatric symptoms, and the impact of receptor polymorphisms on receptor function, are still unclear. Despite the exciting advances that these reports have brought to social neuroscience, they remain preliminary and suffer from the problems that are inherent to monogenetic linkage and association studies. As an alternative, some studies are using polygenic approaches, and consider the contributions of other genes and pathways, including those involving DA, 5-HT, and reelin, in addition to OXT and AVP; a handful of report are also using genome-wide association studies. This review summarizes findings on the associations between OXT and AVP receptor polymorphism, social behavior, and psychiatric diseases. In addition, we discuss reports on the interactions of OXT and AVP receptor genes and genes involved in other pathways (such as those of dopamine, serotonin, and reelin), as well as research that has shed some light on the impact of gene polymorphisms on the volume, connectivity, and activation of specific neural structures, differential receptor expression, and plasma levels of the OXT and AVP peptides. We hope that this effort will be helpful for understanding the studies performed so far, and for encouraging the inclusion of other candidate genes not explored to date. PMID:26858594

  2. Inactivation of the Neurospora Crassa Gene Encoding the Mitochondrial Protein Import Receptor Mom19 by the Technique of ``sheltered Rip''

    PubMed Central

    Harkness, TAA.; Metzenberg, R. L.; Schneider, H.; Lill, R.; Neupert, W.; Nargang, F. E.

    1994-01-01

    We have used a technique referred to as ``sheltered RIP'' (repeat induced point mutation) to create mutants of the mom-19 gene of Neurospora crassa, which encodes an import receptor for nuclear encoded mitochondrial precursor proteins. Sheltered RIP permits the isolation of a mutant gene in one nucleus, even if that gene is essential for the survival of the organism, by sheltering the nucleus carrying the mutant gene in a heterokaryon with an unaffected nucleus. Furthermore, the nucleus harboring the RIPed gene contains a selectable marker so that it is possible to shift nuclear ratios in the heterokaryons to a state in which the nucleus containing the RIPed gene predominates in cultures grown under selective conditions. This results in a condition where the target gene product should be present at very suboptimal levels and allows the study of the mutant phenotype. One allele of mom-19 generated by this method contains 44 transitions resulting in 18 amino acid substitutions. When the heterokaryon containing this allele was grown under conditions favoring the RIPed nucleus, no MOM19 protein was detectable in the mitochondria of the strain. Homokaryotic strains containing the RIPed allele exhibit a complex and extremely slow growth phenotype suggesting that the product of the mom-19 gene is important in N. crassa. PMID:8138148

  3. Postnatal epigenetic modification of glucocorticoid receptor gene in preterm infants: a prospective cohort study

    PubMed Central

    Kantake, Masato; Yoshitake, Hiroshi; Ishikawa, Hitoshi; Araki, Yoshihiko; Shimizu, Toshiaki

    2014-01-01

    Objective To examine the environmental effects on cytosine methylation of preterm infant's DNA, because early life experiences are considered to influence the physiological and mental health of an individual through epigenetic modification of DNA. Design A prospective cohort study, comparison of epigenetic differences in the glucocorticoid receptor (GR) gene between healthy term and preterm infants. Setting Neonatal Intensive Care Unit in a Japanese University Hospital. Participants A cohort of 40 (20 term and 20 preterm) infants was recruited on the day of birth, and peripheral blood was obtained from each infant at birth and on postnatal day 4. Main outcome measures The methylation rates in the 1-F promoter region of the GR gene using the Mquant method. Results The methylation rate increased significantly between postnatal days 0 and 4 in preterm infants but remained stable in term infants. Thus, the methylation rate was significantly higher in preterm than in term infants at postnatal day 4. Several perinatal parameters were significantly correlated with this change in the methylation rate. Logistic regression analysis revealed that methylation rates at postnatal day 4 predicted the occurrence of later complications that required glucocorticoid administration during the neonatal period. No gene polymorphism was detected within the GR promoter region analysed. Conclusions Although further large-scale studies are needed to detect the environmental factors that explain the difference in epigenetic modification among infants after birth, our data show that the postnatal environment influences epigenetic programming of GR expression through methylation of the GR gene promoter in premature infants, which may result in relative glucocorticoid insufficiency during the postnatal period. PMID:25023132

  4. Polymorphisms in Toll-like receptor genes are associated with vitiligo

    PubMed Central

    Traks, Tanel; Keermann, Maris; Karelson, Maire; Rätsep, Ranno; Reimann, Ene; Silm, Helgi; Vasar, Eero; Kõks, Sulev; Kingo, Külli

    2015-01-01

    Background: The members of Toll-like receptor (TLR) family are responsible for recognizing various molecular patterns associated with pathogens. Their expression is not confined to immune cells and have been detected in skin cells such as keratinocytes and melanocytes. As part of a generated response to pathogens, TLRs are involved in inducing inflammatory mediators to combat these threats. It is therefore not surprising that TLRs have been implicated in inflammatory skin diseases, including atopic dermatitis and psoriasis. Likewise, as key players in autoimmunity, they have been associated with a number of autoimmune diseases. Based on this, the role of TLRs in vitiligo could be suspected, but is yet to be clearly established. Methods: In order to conduct a genetic association analysis, 30 SNPs were selected from TLR1-TLR8 and TLR10 regions to be genotyped in Estonian case-control cohort consisting of 139 vitiligo patients and 307 healthy control individuals. The patients were further analyzed in subgroups based on sex, age of onset, occurrence of vitiligo among relatives, extent of depigmented areas, vitiligo progression activity, appearance of Köbner's phenomenon, existence of halo naevi, and incidence of spontaneous repigmentation. Results: The most notable finding came with SNP rs179020 situated in TLR7 gene, that was associated in entire vitiligo (Padj = 0.0065) and also several subgroup analyses. Other single marker and haplotype analyses pointed to TLR3, TLR4, and TLR10 genes. Conclusions: This study investigated the genetic regions of nine TLR genes in relation to vitiligo susceptibility. The main results were the associations of TLR7 SNPs with vitiligo, while several other associations were obtained from the remaining TLR gene regions. This suggests that in addition to other inflammatory skin diseases, TLRs affect the development of vitiligo, thus making them interesting targets for future research. PMID:26442097

  5. Differential expression of olfactory genes in the southern house mosquito and insights into unique odorant receptor gene isoforms

    PubMed Central

    Leal, Walter S.; Choo, Young-Moo; Xu, Pingxi; da Silva, Cherre S. B.; Ueira-Vieira, Carlos

    2013-01-01

    The southern house mosquito, Culex quinquefasciatus, has one of the most acute and eclectic olfactory systems of all mosquito species hitherto studied. Here, we used Illumina sequencing to identify olfactory genes expressed predominantly in antenna, mosquito’s main olfactory organ. Less than 50% of the trimmed reads generated by high-quality libraries aligned to a transcript, but approximately 70% of them aligned to the genome. Differential expression analysis, which was validated by quantitative real-time PCR on a subset of genes, showed that approximately half of the 48 odorant-binding protein genes were enriched in antennae, with the other half being predominantly expressed in legs. Similar patterns were observed with chemosensory proteins, “plus-C” odorant-binding proteins, and sensory neuron membrane proteins. Transcripts for as many as 43 ionotropic receptors were enriched in female antennae, thus making the ionotropic receptor family the largest of antennae-rich olfactory genes, second only to odorant receptor (OR) genes. As many as 177 OR genes have been identified, including 36 unique transcripts. The unique OR genes differed from previously annotated ORs in internal sequences, splice variants, and extended N or C terminus. One of the previously unknown transcripts was validated by cloning and functional expression. When challenged with a large panel of physiologically relevant compounds, CquiOR95b responded in a dose-dependent manner to ethyl 2-phenylacteate, which was demonstrated to repel Culex mosquitoes, and secondarily to citronellal, a known insect repellent. This transcriptome study led to identification of key molecular components and a repellent for the southern house mosquito. PMID:24167245

  6. Differential expression of olfactory genes in the southern house mosquito and insights into unique odorant receptor gene isoforms.

    PubMed

    Leal, Walter S; Choo, Young-Moo; Xu, Pingxi; da Silva, Cherre S B; Ueira-Vieira, Carlos

    2013-11-12

    The southern house mosquito, Culex quinquefasciatus, has one of the most acute and eclectic olfactory systems of all mosquito species hitherto studied. Here, we used Illumina sequencing to identify olfactory genes expressed predominantly in antenna, mosquito's main olfactory organ. Less than 50% of the trimmed reads generated by high-quality libraries aligned to a transcript, but approximately 70% of them aligned to the genome. Differential expression analysis, which was validated by quantitative real-time PCR on a subset of genes, showed that approximately half of the 48 odorant-binding protein genes were enriched in antennae, with the other half being predominantly expressed in legs. Similar patterns were observed with chemosensory proteins, "plus-C" odorant-binding proteins, and sensory neuron membrane proteins. Transcripts for as many as 43 ionotropic receptors were enriched in female antennae, thus making the ionotropic receptor family the largest of antennae-rich olfactory genes, second only to odorant receptor (OR) genes. As many as 177 OR genes have been identified, including 36 unique transcripts. The unique OR genes differed from previously annotated ORs in internal sequences, splice variants, and extended N or C terminus. One of the previously unknown transcripts was validated by cloning and functional expression. When challenged with a large panel of physiologically relevant compounds, CquiOR95b responded in a dose-dependent manner to ethyl 2-phenylacteate, which was demonstrated to repel Culex mosquitoes, and secondarily to citronellal, a known insect repellent. This transcriptome study led to identification of key molecular components and a repellent for the southern house mosquito.

  7. Rearrangement and expression of T cell antigen receptor and gamma genes during thymic development

    PubMed Central

    1986-01-01

    Rearrangement and expression of the T cell antigen receptor and the gamma genes during T cell ontogeny is a regulated process; the gamma genes are rearranged and expressed first, followed by the beta and then the alpha genes. Expression of both functional alpha and beta gene RNA first occurs at day 17 of gestation, along with the expression of T3 delta chain RNA. T cell antigen receptor gene rearrangements occur primarily or exclusively in the thymus, although some gamma gene rearrangements occur outside the thymus in fetal liver cells that may be committed T cell progenitors. There is no gross difference in the extent of beta and gamma gene rearrangements in the adult thymocyte subpopulations that were analyzed, despite the fact that some of these populations cannot respond to antigen and never emigrate from the thymus. Quantitative analysis of rearrangements in total adult thymocyte DNA shows that beta gene rearrangements generally occur on both chromosomal homologs, and that rearrangements occur preferentially to the J beta 2 gene segment cluster. PMID:3487610

  8. Receptor tyrosine phosphatase psi is required for Delta/Notch signalling and cyclic gene expression in the presomitic mesoderm.

    PubMed

    Aerne, Birgit; Ish-Horowicz, David

    2004-07-01

    Segmentation in vertebrate embryos is controlled by a biochemical oscillator ('segmentation clock') intrinsic to the cells in the unsegmented presomitic mesoderm, and is manifested in cyclic transcription of genes involved in establishing somite polarity and boundaries. We show that the receptor protein tyrosine phosphatase psi (RPTPpsi) gene is essential for normal functioning of the somitogenesis clock in zebrafish. We show that reduction of RPTPpsi activity using morpholino antisense oligonucleotides results in severe disruption of the segmental pattern of the embryo, and loss of cyclic gene expression in the presomitic mesoderm. Analysis of cyclic genes in RPTPpsi morphant embryos indicates an important requirement for RPTPpsi in the control of the somitogenesis clock upstream of or in parallel with Delta/Notch signalling. Impairing RPTPpsi activity also interferes with convergent extension during gastrulation. We discuss this dual requirement for RPTPpsi in terms of potential functions in Notch and Wnt signalling. PMID:15226256

  9. A hormone receptor-based transactivator bridges different binary systems to precisely control spatial-temporal gene expression in Drosophila.

    PubMed

    Kuo, Shu-Yun; Tu, Chiao-Hui; Hsu, Ya-Ting; Wang, Horng-Dar; Wen, Rong-Kun; Lin, Chen-Ta; Wu, Chia-Lin; Huang, Yu-Ting; Huang, Guan-Shieng; Lan, Tsuo-Hung; Fu, Tsai-Feng

    2012-01-01

    The GAL4/UAS gene expression system is a precise means of targeted gene expression employed to study biological phenomena in Drosophila. A modified GAL4/UAS system can be conditionally regulated using a temporal and regional gene expression targeting (TARGET) system that responds to heat shock induction. However heat shock-related temperature shifts sometimes cause unexpected physiological responses that confound behavioral analyses. We describe here the construction of a drug-inducible version of this system that takes advantage of tissue-specific GAL4 driver lines to yield either RU486-activated LexA-progesterone receptor chimeras (LexPR) or β-estradiol-activated LexA-estrogen receptor chimeras (XVE). Upon induction, these chimeras bind to a LexA operator (LexAop) and activate transgene expression. Using GFP expression as a marker for induction in fly brain cells, both approaches are capable of tightly and precisely modulating transgene expression in a temporal and dosage-dependent manner. Additionally, tissue-specific GAL4 drivers resulted in target gene expression that was restricted to those specific tissues. Constitutive expression of the active PKA catalytic subunit using these systems altered the sleep pattern of flies, demonstrating that both systems can regulate transgene expression that precisely mimics regulation that was previously engineered using the GeneSwitch/UAS system. Unlike the limited number of GeneSwitch drivers, this approach allows for the usage of the multitudinous, tissue-specific GAL4 lines for studying temporal gene regulation and tissue-specific gene expression. Together, these new inducible systems provide additional, highly valuable tools available to study gene function in Drosophila. PMID:23239992

  10. Estrogen-related receptor {alpha} is essential for the expression of antioxidant protection genes and mitochondrial function

    SciTech Connect

    Rangwala, Shamina M. . E-mail: shamina.rangwala@novartis.com; Li, Xiaoyan; Lindsley, Loren; Wang, Xiaomei; Shaughnessy, Stacey; Daniels, Thomas G.; Szustakowski, Joseph; Nirmala, N.R.; Wu, Zhidan; Stevenson, Susan C.

    2007-05-25

    Estrogen-related receptor {alpha} (ERR{alpha}) is an important mediator of mitochondrial biogenesis and function. To investigate the transcriptional network controlling these phenomena, we investigated mitochondrial gene expression in embryonic fibroblasts isolated from ERR{alpha} null mice. Peroxisome proliferator-activated receptor {gamma} coactivator-1{alpha} (PGC-1{alpha}) stimulated mitochondrial gene expression program in control cells, but not in the ERR{alpha} null cells. Interestingly, the induction of levels of mitochondrial oxidative stress protection genes in response to increased PGC-1{alpha} levels was dependent on ERR{alpha}. Furthermore, we found that the PGC-1{alpha}-mediated induction of estrogen-related receptor {gamma} and nuclear respiratory factor 2 (NRF-2), was dependent on the presence of ERR{alpha}. Basal levels of NRF-2 were decreased in the absence of ERR{alpha}. The absence of ERR{alpha} resulted in a decrease in citrate synthase enzyme activity in response to PGC-1{alpha} overexpression. Our results indicate an essential role for ERR{alpha} as a key regulator of oxidative metabolism.

  11. Interleukin-1 receptor antagonist gene polymorphism and mortality in patients with severe sepsis.

    PubMed

    Arnalich, F; López-Maderuelo, D; Codoceo, R; Lopez, J; Solis-Garrido, L M; Capiscol, C; Fernandez-Capitán, C; Madero, R; Montiel, C

    2002-02-01

    This study aims to determine the influence of the polymorphism within the intron 2 of the interleukin-1 receptor antagonist gene (IL-1RN*) on the outcome of severe sepsis, and to assess its functional significance by correlating this polymorphism with the total production of interleukin-1 receptor antagonist (IL-1Ra) protein determined in stimulated peripheral blood mononuclear cells (PBMC). A group of 78 patients with severe sepsis (51 survivors and 27 nonsurvivors) was compared with a healthy control group of 130 blood donors, and 56 patients with uncomplicated pneumonia. We found a significant association between IL-1RN* polymorphism and survival. Thus, after adjusting for age and APACHE II score, multiple logistic regression analysis showed that patients homozygotes for the allele *2 had a 6.47-fold increased risk of death (95% CI 1.01--41.47, P = 0.04). Besides, compared with patients homozygous or heterozygous for the allele *1, IL-1RN*2 homozygotes produced significantly lower levels of IL-1Ra from their PBMC. Our results suggest that insufficient production of this cytokine might contribute, among other factors, to the higher mortality rate found in severe sepsis patients with the IL-1RN*2 homozygous genotype.

  12. Associations of the Estrogen Receptors 1 and 2 Gene Polymorphisms With the Metabolic Syndrome in Women

    PubMed Central

    Zee, Robert Y.L.; Pradhan, Aruna; Rexrode, Kathryn M.

    2009-01-01

    Abstract Background Genetic variation of the estrogen receptor α (ESR1) and β (ESR2) has been associated with components of the metabolic syndrome. Methods The relationships of two ESR1 (rs2234693 and rs9340799) and three ESR2 (rs1271572, rs1256049, and rs4986938) polymorphisms with the metabolic syndrome were examined in 532 Caucasian female participants (median age 63.1 years) in the Women's Health Study. Most women (99.1%) were postmenopausal. The associations between ESR1 and ESR2 genotypes and haplotypes with the metabolic syndrome were evaluated. Effect modification by hormone therapy was also assessed. Results Genotype and haplotype distributions were similar between women with and without metabolic syndrome. We found no consistent associations between the genotypes and haplotypes tested and the metabolic syndrome, or its components, in logistic regression models. No effect modification by hormone therapy use was noted. Conclusions No association between these genetic variants in ESR1 and ESR2 and the metabolic syndrome was observed among these Caucasian women. Further investigation regarding the potential involvement of estrogen receptor genes and the metabolic syndrome may be warranted in other ethnic groups. PMID:19032032

  13. Activities of calcitonin gene-related peptide (CGRP) and related peptides at the CGRP receptor

    SciTech Connect

    Maton, P.N.; Pradhan, T.; Zhou, Z.C.; Gardner, J.D.; Jensen, R.T. )

    1990-05-01

    In guinea pig pancreatic acini rat calcitonin gene-related peptide (CGRP) increased amylase release 2-fold, salmon calcitonin had an efficacy of only 44% of that of CGRP and (Tyr0)CGRP(28-37) and human calcitonin had no actions. (Tyr0)CGRP(28-37), but not human calcitonin, antagonized the actions of CGRP in pancreatic acini with an IC50 of 3 microM. (Tyr0)CGRP(28-37) produced a parallel rightward shift in the dose-response curve for CGRP-stimulated amylase secretion. The inhibition was specific for CGRP and was reversible. Studies with 125I-CGRP demonstrated that CGRP, salmon calcitonin and (Tyr0)CGRP, but not human calcitonin, interacted with CGRP receptors on pancreatic acini. These results indicate that various CGRP-related peptides demonstrate different relationships between their abilities to occupy the CGRP receptor and to affect biologic activity, with CGRP itself being a full agonist, salmon calcitonin a partial agonist, (Tyr0)CGRP(28-37) a competitive antagonist, and human calcitonin having no actions.

  14. Interleukin-1 receptor antagonist gene polymorphism and mortality in patients with severe sepsis

    PubMed Central

    ARNALICH, F; LÓPEZ-MADERUELO, D; CODOCEO, R; LOPEZ, J; SOLIS-GARRIDO, L M; CAPISCOL, C; FERNANDEZ-CAPITÁN, C; MADERO, R; MONTIEL, C

    2002-01-01

    This study aims to determine the influence of the polymorphism within the intron 2 of the interleukin-1 receptor antagonist gene (IL-1RN*) on the outcome of severe sepsis, and to assess its functional significance by correlating this polymorphism with the total production of interleukin-1 receptor antagonist (IL-1Ra) protein determined in stimulated peripheral blood mononuclear cells (PBMC). A group of 78 patients with severe sepsis (51 survivors and 27 nonsurvivors) was compared with a healthy control group of 130 blood donors, and 56 patients with uncomplicated pneumonia. We found a significant association between IL-1RN* polymorphism and survival. Thus, after adjusting for age and APACHE II score, multiple logistic regression analysis showed that patients homozygotes for the allele *2 had a 6·47-fold increased risk of death (95% CI 1·01–41·47, P = 0·04). Besides, compared with patients homozygous or heterozygous for the allele *1, IL-1RN*2 homozygotes produced significantly lower levels of IL-1Ra from their PBMC. Our results suggest that insufficient production of this cytokine might contribute, among other factors, to the higher mortality rate found in severe sepsis patients with the IL-1RN*2 homozygous genotype. PMID:11876758

  15. Gene expression profiling of potential peroxisome proliferator-activated receptor (PPAR) target genes in human hepatoblastoma cell lines inducibly expressing different PPAR isoforms

    PubMed Central

    Tachibana, Keisuke; Kobayashi, Yumi; Tanaka, Toshiya; Tagami, Masayuki; Sugiyama, Akira; Katayama, Tatsuya; Ueda, Chihiro; Yamasaki, Daisuke; Ishimoto, Kenji; Sumitomo, Mikako; Uchiyama, Yasutoshi; Kohro, Takahide; Sakai, Juro; Hamakubo, Takao; Kodama, Tatsuhiko; Doi, Takefumi

    2005-01-01

    Background Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors and commonly play an important role in the regulation of lipid homeostasis. To identify human PPARs-responsive genes, we established tetracycline-regulated human hepatoblastoma cell lines that can be induced to express each human PPAR and investigated the gene expression profiles of these cells. Results The expression of each introduced PPAR gene was investigated using the various concentrations of doxycycline in the culture media. We found that the expression of each PPAR subtype was tightly controlled by the concentration of doxycycline in these established cell lines. DNA microarray analyses using these cell lines were performed with or without adding each subtype ligand and provided much important information on the PPAR target genes involved in lipid metabolism, transport, storage and other activities. Interestingly, it was noted that while ligand-activated PPARδ induced target gene expression, unliganded PPARδ repressed these genes. The real-time RT-PCR was used to verify the altered expression of selected genes by PPARs and we found that these genes were induced to express in the same pattern as detected in the microarray analyses. Furthermore, we analysed the 5'-flanking region of the human adipose differentiation-related protein (adrp) gene that responded to all subtypes of PPARs. From the detailed analyses by reporter assays, the EMSAs, and ChIP assays, we determined the functional PPRE of the human adrp gene. Conclusion The results suggest that these cell lines are important tools used to identify the human PPARs-responsive genes. PMID:16197558

  16. Improvement of a Monopartite Ecdysone Receptor Gene Switch and Demonstration of its Utility in Regulation of Transgene Expression in Plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chemical inducible gene regulation systems provide essential tools for the precise regulation of transgene expression in plants and animals. We have recent developed a two-hybrid ecdysone receptor (EcR) gene regulation system that works in conjunction with the retinoid X receptor of Locusta migrato...

  17. Each Sensory Nerve Arising From the Geniculate Ganglion Expresses a Unique Fingerprint of Neurotrophin and Neurotrophin Receptor Genes

    PubMed Central

    Farbman, Albert I.; Guagliardo, Nick; Sollars, Suzanne I.; Hill, David L.

    2009-01-01

    Neurons in the geniculate ganglion, like those in other sensory ganglia, are dependent on neurotrophins for survival. Most geniculate ganglion neurons innervate taste buds in two regions of the tongue and two regions of the palate; the rest are cutaneous nerves to the skin of the ear. We investigated the expression of four neurotrophins, nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT-3), and NT-4, and five neurotrophin receptors, trkA, trkB, trkC, p75, and truncated trkB (Trn-B) in single sensory neurons of the adult rat geniculate ganglion associated with the five innervation fields. For fungiform papillae, a glass pipette containing biotinylated dextran was placed over the target papilla and the tracer was iontophoresed into the target papilla. For the other target fields, Fluoro-Gold was microinjected. After 3 days, geniculate ganglia were harvested, sectioned, and treated histochemically (for biotinylated dextran) or immunohistochemically (for Fluoro-Gold) to reveal the neurons containing the tracer. Single labeled neurons were harvested from the slides and subjected to RNA amplification and RT-PCR to reveal the neurotrophin or neurotrophin receptor genes that were expressed. Neurons projecting from the geniculate ganglion to each of the five target fields had a unique expression profile of neurotrophin and neurotrophic receptor genes. Several individual neurons expressed more than one neurotrophin receptor or more than one neurotrophin gene. Although BDNF is significantly expressed in taste buds, its primary high affinity receptor, trkB, was not prominently expressed in the neurons. The results are consistent with the interpretation that at least some, perhaps most, of the trophic influence on the sensory neurons is derived from the neuronal somata, and the trophic effect is paracrine or autocrine, rather than target derived. The BDNF in the taste bud may also act in a paracrine or autocrine manner on the trkB expressed

  18. Novel mutations in the V2 vasopressin receptor gene in two pedigrees with congenital nephrogenic diabetes insipidus

    SciTech Connect

    Yuasa, Hiromitsu; Ito, Masafumi; Oiso, Yutaka; Kurokawa, Masaei; Saito, Hidehiko; Watanabe, Tohru; Oda, Yoshihiko; Ishizuka, Toshie; Tani, Nagayuki; Ito, Seiki; Shibata, Akira

    1994-08-01

    Novel mutations in the V2 vasopressin receptor gene were identified in two Japanese pedigrees with X-linked congenital nephrogenic diabetes insipidus. The V2 receptor belongs to the family of G-protein-coupled receptors that contain seven distinct transmembrane domains, and the V2 receptor gene is encoded by three exons. The coding regions amplified by polymerase chain reaction were directly sequenced. In a pedigree, one of four consecutive guanine sequences (nucleotides 528-531) in the second exon was deleted (528delG). This deletion mutation results in a frame shift beginning at codon 154 in the second intracellular domain and a premature termination at codon 161. In another pedigree, a missense mutation (A{yields}G) was identified at nucleotide position 310 in the second exon. This point mutation, H80R, changes a histidine at codon 80 in the second transmembrane domain to an arginine that is more positively charged than histidine under the neutral environment. Each mutation cosegregated with the phenotype of diabetes insipidus and supposed to be a cause for resistance to arginine vasopressin. 35 refs., 4 figs., 2 tabs.

  19. Lack of association between alcohol-dependence and D3 dopamine receptor gene in three independent samples

    SciTech Connect

    Gorwood, P.; Feingold, J.; Ades, J.

    1995-12-18

    Numerous studies on the involvement of dopamine receptors in the genetics of alcoholism focused on associations between a polymorphism of the D2 dopamine receptor (DRD2) gene and alcohol dependence. However, the results of these studies are conflicting. Another receptor, the D3 dopamine receptor (DRD3), may be of additional interest since it is specifically located in the limbic area, and in particular in the nucleus accumbens which plays a significant role in the reward process of addiction behavior. We thus tested the association in three independent samples of alcoholic patients, with different origins and various inclusion criteria. No difference in the DRD3 gene polymorphism emerged between controls and alcoholic patients, regardless of their origin, inclusion criteria, or presence or absence of the DRD2 TaqI A1-allele. Despite the fact that more information could have been considered and that association studies provide limited information, there is good evidence that this DRD3 polymorphism does not play a major role in the genetic component of alcoholism. 17 refs., 2 tabs.

  20. FRAG1, a gene that potently activates fibroblast growth factor receptor by C-terminal fusion through chromosomal rearrangement.

    PubMed Central

    Lorenzi, M V; Horii, Y; Yamanaka, R; Sakaguchi, K; Miki, T

    1996-01-01

    A constitutively active form of fibroblast growth factor 2 (FGFR2) was identified in rat osteosarcoma (ROS) cells by an expression cloning strategy. Unlike other tyrosine kinase receptors activated by N-terminal truncation in tumors, this receptor, FGFR2-ROS, contains an altered C terminus generated from chromosomal rearrangement with a novel gene, designated FGFR activating gene 1 (FRAG1). While the removal of the C terminus slightly activates FGFR2, the presence of the FRAG1 sequence drastically stimulates the transforming activity and autophosphorylation of the receptor. FGFR2-ROS is expressed as a unusually large protein and is highly phosphorylated in NIH 3T3 transfectants. FRAG1 is ubiquitously expressed and encodes a predicted protein of 28 kDa lacking significant structural similarity to known proteins. Epitope-tagged FRAG1 protein showed a perinuclear localization by immunofluorescence staining. The highly activated state of FGFR2-ROS appears to be attributed to constitutive dimer formation and higher phosphorylation level as well as possibly altered subcellular localization. These results indicate a unique mechanism of receptor activation by a C terminus alteration through a chromosomal fusion with FRAG1. Images Fig. 1 Fig. 2 Fig. 3 Fig. 5 Fig. 6 PMID:8799135

  1. Association of peroxisome proliferator-activated receptor-gamma gene polymorphisms and gene-gene interaction with asthma risk in a Chinese adults population

    PubMed Central

    Li, Wancheng; Dai, Wenjing; Sun, Jian; Zhang, Wei; Jiang, Yi; Ma, Chunlan; Wang, Chunmao; He, Jie

    2015-01-01

    Aims: To investigate the association between single nucleotide polymorphism (SNP) of peroxisome proliferator-activated receptors γ (PPAR γ) and additional gene-gene interactions on asthma risk. Methods: A total of 882 subjects (602 males, 280 females), with a mean age of 61.3±14.8 years old, including 430 asthma patients and 452 normal subjects were selected in this study, including the genotyping of polymorphisms. Logistic regression was performed to investigate association between SNP and asthma. Generalized MDR (GMDR) was used to analysis the interaction among four SNP. Results: Asthma risk was significantly lower in carriers of Ala allele of the rs1805192 polymorphism than those with Pro/Pro (Pro/Ala+ Ala/Ala versus Pro/Pro, adjusted OR (95% CI)=0.70 (0.51-0.94). In addition, we also found a significant association between rs10865710 and asthma, asthma risk was significantly lower in carriers of G allele of the rs10865710 polymorphism than those with CC (CG+ GG versus CC, adjusted OR (95% CI)=0.68 (0.55-0.95). There was a significant three-locus model (P=0.0107) involving rs1805192, rs10865710 and rs709158, indicating a potential gene-gene interaction among rs1805192, rs10865710 and rs709158. Overall, the three-locus models had a cross-validation consistency of 10 of 10, and had the testing accuracy of 60.72% after covariates adjustment. Conclusions: Our results support an important association of rs1805192 and rs10865710 with asthma, and additional interaction among rs1805192, rs10865710 and rs709158. PMID:26770574

  2. Association of Retinoid X Receptor Alpha Gene Polymorphism with Clinical Course of Chronic Glomerulonephritis

    PubMed Central

    Grzegorzewska, Alicja E.; Ostromecki, Grzegorz; Zielińska, Paulina; Mostowska, Adrianna; Niemir, Zofia; Polcyn-Adamczak, Magdalena; Pawlik, Magdalena; Sowińska, Anna; Jagodziński, Paweł P.

    2015-01-01

    Background Vitamin D (VD), VD binding protein, VD receptor (VDR), and retinoids are involved in pathogenesis of chronic glomerulonephritis (ChGN). We aimed to compare distribution of VD pathway gene polymorphisms in ChGN patients showing glomerular filtration rate (GFR) category 1–3, GFR category 5D, and healthy controls in order to elucidate the role of VD-related polymorphisms in the course of ChGN. Material/Methods GFR category 1–3 ChGN patients (n=195), GFR category 5D ChGN patients (n=178), and controls (n=751) underwent testing for polymorphisms of genes encoding VD binding protein (GC, rs2298849, rs7041, rs1155563), VDR (VDR, rs2228570, rs1544410), and retinoid X receptor alpha (RXRA, rs10776909, rs10881578, rs749759). Results Among GFR 1–3 subjects possessing TT genotype of RXRA rs10776909, 75% of patients had nephrotic syndrome, and 37.5% had glomerular hyperfiltration defined as GFR >140 ml/min/1.73 m2, and, consequently, serum creatinine was lower in these patients compared to the remaining subjects (0.67±0.26 vs. 0.94±0.34, P=0.014). In GFR category 5D ChGN patients, frequencies of RXRA rs10776909 allele T (25% vs. 19%) and CT+TT (46% vs. 34%) were higher compared to frequencies of respective variants in controls (Ptrend=0.004, Pgenotype=0.008). Conclusions RXRA rs10776909 allele T is specifically involved in the pathogenesis of ChGN. This risk allele may be also associated with worse clinical course of ChGN. PMID:26610845

  3. Caffeine interaction with glutamate receptor gene GRIN2A: Parkinson's disease in Swedish population.

    PubMed

    Yamada-Fowler, Naomi; Fredrikson, Mats; Söderkvist, Peter

    2014-01-01

    A complex interplay between genetic and environmental factors is thought to be involved in the etiology of Parkinson's disease (PD). A recent genome-wide association and interaction study (GWAIS) identified GRIN2A, which encodes an NMDA-glutamate-receptor subunit involved in brain's excitatory neurotransmission, as a PD genetic modifier in inverse association with caffeine intake. Here in, we attempted to replicate the reported association of a single nucleotide polymorphism, GRIN2A_rs4998386, and its interaction with caffeine intake with PD in patient-control study in an ethnically homogenous population in southeastern Sweden, as consistent and independent genetic association studies are the gold standard for the validation of genome-wide association studies. All the subjects (193 sporadic PD patients and 377 controls) were genotyped, and the caffeine intake data was obtained by questionnaire. We observed an association between rs4998386 and PD with odds ratio (OR) of 0.61, 95% confidence intervals (CI) of 0.39-0.96, p = 0.03, under a model excluding rare TT allele. There was also a strong significance in joint effects of gene and caffeine on PD risk (TC heavy caffeine vs. CC light caffeine: OR = 0.38, 95%CI = [0.20-0.70], p = 0.002) and gene-caffeine interaction (OR = 0.998, 95%CI = [0.991-0.999], p<0.001). Overall, our results are in support of the findings of the GWAIS and provided additional evidence indicating PD protective effects of coffee drinking/caffeine intake as well as the interaction with glutamate receptor genotypes.

  4. Genetic diversity of bitter taste receptor gene family in Sichuan domestic and Tibetan chicken populations.

    PubMed

    Su, Yuan; Li, Diyan; Gaur, Uma; Wang, Yan; Wu, Nan; Chen, Binlong; Xu, Zhongxian; Yin, Huadong; Hu, Yaodong; Zhu, Qing

    2016-09-01

    The sense of bitter taste plays a critical role in animals as it can help them to avoid intake of toxic and harmful substances. Previous research had revealed that chicken has only three bitter taste receptor genes (Tas2r1, Tas2r2 and Tas2r7). To better understand the genetic polymorphisms and importance of bitter taste receptor genes (Tas2rs) in chicken, here, we sequenced Tas2rs of 30 Sichuan domestic chickens and 30 Tibetan chickens. Thirteen single-nucleotide polymorphisms (SNPs) including three nonsynonymous mutations (m.359G>C, m.503C>A and m.583A>G) were detected in Tas2r1 (m. is the abbreviation for mutation); three SNPs were detected in Tas2r2, but none of them were missense mutation; eight SNPs were detected in Tas2r7 including six nonsynonymous substitutions (m.178G>A, m.421A>C, m.787C>T, m.832G>T, m.907A>T and m.943G>A). Tajima's D neutral test indicates that there is no population expansion in both populations, and the size of the population is relatively stable. All the three networks indicate that red jungle fowls share haplotypes with domestic chickens. In addition, we found that haplotypes H1 and HE1 were positively associated with high-altitude adaptation, whereas haplotypes H4 and HE4 showed a negative correlation with high-altitude adaptation in Tas2rs. Although, chicken has only three Tas2rs, our results showed that both Sichuan domestic chickens and Tibetan chickens have abundant haplotypes in Tas2rs, especially in Tas2r7, which might help chickens to recognize a wide variety of bitter-tasting compounds. PMID:27659339

  5. Exposure of K562 cells to anti-receptor monoclonal antibody OKT9 results in rapid redistribution and enhanced degradation of the transferrin receptor

    PubMed Central

    1986-01-01

    When the human erythroleukemia cell line K562 is treated with OKT9, a monoclonal antibody against the transferrin receptor, effects on receptor dynamics and degradation ensue. The apparent half-life of the receptor is decreased by greater than 50% as a result of OKT9 treatment. The transferrin receptor is also rapidly redistributed in response to OKT9 such that a lower percentage of the cellular receptors are displayed on the cell surface. OKT9 treatment also leads to a decrease in the total number of receptors participating in the transferrin cycle for cellular iron uptake. The reduction in iron uptake that results from the loss of receptors from the cycle leads to enhanced biosynthesis of the receptor. Receptors with bound OKT9 continue to participate in multiple cycles of iron uptake. However, OKT9 treatment appears to result in a relatively small increase per cycle in the departure of receptors from participation in iron uptake to a pathway leading to receptor degradation. Radiolabeled OKT9 is itself degraded by K562 cells and this degradation is inhibitable by leupeptin or chloroquine. In the presence of leupeptin, OKT9 treatment results in the enhanced intracellular accumulation of transferrin. Because the time involved in the transferrin cycle is shorter (12.5 min) than the normal half-life of the receptor (8 h), a small change in recycling efficiency caused by OKT9 treatment could account for the marked decrease in receptor half-life. In this paper the implications of these findings are discussed as they relate to systems in which receptor number is regulated by ligand. PMID:3005341

  6. [Gene polymorphism of the vitamin D receptor, vitamin D-binding protein and calcium-sensing receptor in respect of calcium-phosphate disturbances in chronic dialysis patients].

    PubMed

    Grzegorzewska, Alicja E; Ostromecki, Grzegorz

    2013-01-01

    Dialysed patients suffering from chronic kidney disease (CKD) show varied levels of concentration of parathyroid hormone (PTH) in the blood. One of the factors in charge of regulating levels of PTH concentration is 1,25-dihydroxycholecalciferol [1,25-(OH)2D3]. Its deficiency in advanced stages of CKD is common. Vitamin D supplementation is not always effective in reaching levels of PTH concentration recommended by KDIGO for the dialysed patients. That suggests, among other things, disturbances in 1,25-(OH)2D3, reaching its place of target effect and having the desired final result. Disturbances of vitamin D target pathway can be genetically conditioned, hence the aim of this paper is to describe the distribution of polymorphic variants of vitamin D-binding protein gene (VDBP), vitamin D receptor gene (VDR) and gene of the calcium-sensing receptor (CaSR) with respect to PTH concentrations in serum and response to cinacalcet treatment in patients with secondary hyperparathyroidism in view of the differences in demographical, clinical and laboratory data of the dialysed patients. PMID:24455835

  7. Association of a nicotinic receptor gene polymorphism with spontaneous eyeblink rates

    PubMed Central

    Nakano, Tamami; Kuriyama, Chiho; Himichi, Toshiyuki; Nomura, Michio

    2015-01-01

    Spontaneous eyeblink rates greatly vary among individuals from several blinks to a few dozen blinks per minute. Because dopamine agonists immediately increase the blink rate, individual differences in blink rate are used as a behavioral index of central dopamine functioning. However, an association of the blink rate with polymorphisms in dopamine-related genes has yet not been found. In this study, we demonstrated that a genetic variation of the nicotinic acetylcholine receptor CHRNA4 (rs1044396) increased the blink rate while watching a video. A receiver operating characteristic analysis revealed that the blink rate predicts a genetic variation in the nicotinic receptor gene with a significant discrimination level (0.66, p < 0.004). The present study suggests that differences in sensitivity to acetylcholine because of the genetic variation of the nicotinic receptor are associated with individual differences in spontaneous eye blink rate. PMID:25729002

  8. Comparison of synganglion neuropeptides, neuropeptide receptors and neurotransmitter receptors and their gene expression in response to feeding in Ixodes scapularis (Ixodidae) vs. Ornithodoros turicata (Argasidae).

    PubMed

    Egekwu, N; Sonenshine, D E; Garman, H; Barshis, D J; Cox, N; Bissinger, B W; Zhu, J; M Roe, R

    2016-02-01

    Illumina GAII high-throughput sequencing was used to compare expressed genes for female synganglion neuropeptides, neuropeptide receptors and neurotransmitter receptors of the soft tick Ornithodoros turicata with the hard tick Ixodes scapularis. Gene ontology molecular level three mapping revealed no significant differences amongst the same categories represented in O. turicata and I. scapularis. Transcripts predicting 22 neuropeptides or their receptors in the O. turicata synganglion were similar to annotations for 23 neuropeptides or receptors previously identified from I scapularis, with minor exceptions. A transcript predicting ecdysis triggering hormone receptor was identified in O. turicata; transcripts encoding for proprotein convertase and glycoprotein B were identified in both species. Transcripts predicting the same neurotransmitter receptors were found in the synganglion of both species. Gene expression of the transcripts showed numerous differences in response to feeding. Major differences were observed in expression of genes believed important in regulating slow vs. rapid feeding, blood water elimination, cuticle synthesis plasticity and in signalling reproductive activity. Although the glutamate receptor was strongly upregulated in both species, the gamma aminobutyric acid receptor, which inhibits glutamate, was upregulated significantly only in I. scapularis. These differences are consistent with the slow vs. rapid action of the pharyngeal pump in the two species.

  9. Comparison of synganglion neuropeptides, neuropeptide receptors and neurotransmitter receptors and their gene expression in response to feeding in Ixodes scapularis (Ixodidae) vs. Ornithodoros turicata (Argasidae).

    PubMed

    Egekwu, N; Sonenshine, D E; Garman, H; Barshis, D J; Cox, N; Bissinger, B W; Zhu, J; M Roe, R

    2016-02-01

    Illumina GAII high-throughput sequencing was used to compare expressed genes for female synganglion neuropeptides, neuropeptide receptors and neurotransmitter receptors of the soft tick Ornithodoros turicata with the hard tick Ixodes scapularis. Gene ontology molecular level three mapping revealed no significant differences amongst the same categories represented in O. turicata and I. scapularis. Transcripts predicting 22 neuropeptides or their receptors in the O. turicata synganglion were similar to annotations for 23 neuropeptides or receptors previously identified from I scapularis, with minor exceptions. A transcript predicting ecdysis triggering hormone receptor was identified in O. turicata; transcripts encoding for proprotein convertase and glycoprotein B were identified in both species. Transcripts predicting the same neurotransmitter receptors were found in the synganglion of both species. Gene expression of the transcripts showed numerous differences in response to feeding. Major differences were observed in expression of genes believed important in regulating slow vs. rapid feeding, blood water elimination, cuticle synthesis plasticity and in signalling reproductive activity. Although the glutamate receptor was strongly upregulated in both species, the gamma aminobutyric acid receptor, which inhibits glutamate, was upregulated significantly only in I. scapularis. These differences are consistent with the slow vs. rapid action of the pharyngeal pump in the two species. PMID:26783017

  10. Association of Vitamin D Receptor Gene Polymorphisms with Colorectal Cancer in a Saudi Arabian Population

    PubMed Central

    Alkhayal, Khayal A.; Awadalia, Zainab H.; Vaali-Mohammed, Mansoor-Ali; Al Obeed, Omar A.; Al Wesaimer, Alanoud; Halwani, Rabih; Zubaidi, Ahmed M.

    2016-01-01

    Background Vitamin D, causally implicated in bone diseases and human malignancies, exerts its effects through binding to the vitamin D receptor (VDR). VDR is a transcription factor modulating the expression of several genes in different pathways. Genetic variants in the VDR gene have been associated with several cancers in different population including colorectal cancer. Objective To assess the association of VDR gene polymorphisms in relation with colorectal cancer (CRC) in a Saudi population. Methods The polymorphisms of VDR gene (BsmI, FokI, ApaI and TaqI) were analyzed by the polymerase chain reaction amplification of segments of interest followed by Sanger sequencing. One hundred diagnosed CRC patients and 100 healthy control subjects that were age and gender matched were recruited. Results We did not observe significant association of any of the four VDR polymorphisms with colorectal cancer risk in the overall analysis. Although not statistically significant, the AA genotype of BsmI conferred about two-fold protection against CRCs compared to the GG genotype. Stratification of the study subjects based on age and gender suggests statistically significant association of CRC with the ‘C’ allele of ApaI in patients >57 years of age at disease diagnosis and BsmI polymorphism in females. In addition, statistically significant differences were observed for the genotypic distributions of VDR-BsmI, ApaI and TaqI SNPs between Saudi Arabian population and several of the International HapMap project populations. Conclusion Despite the absence of correlation of the examined VDR polymorphisms with CRCs in the combined analysis, ApaI and BsmI loci are statistically significantly associated with CRC in elderly and female patients, respectively. These findings need further validation in larger cohorts prior to utilizing these SNPs as potential screening markers for colorectal cancers in Saudi population. PMID:27309378

  11. LncRNA-Dependent Mechanisms of Androgen Receptor-regulated Gene Activation Programs

    PubMed Central

    Jin, Chunyu; Yang, Joy C.; Tanasa, Bogdan; Li, Wenbo; Merkurjev, Daria; Ohgi, Kenneth A.; Meng, Da; Zhang, Jie; Evans, Christopher P.; Rosenfeld, Michael G.

    2014-01-01

    While recent studies indicated roles of long non-coding RNAs (lncRNAs) in physiologic aspects of cell-type determination and tissue homeostasis1 yet their potential involvement in regulated gene transcription programs remain rather poorly understood. Androgen receptor (AR) regulates a large repertoire of genes central to the identity and behavior of prostate cancer cells2, and functions in a ligand-independent fashion in many prostate cancers when they become hormone refractory after initial androgen deprivation therapy3. Here, we report that two lncRNAs highly overexpressed in aggressive prostate cancer, PRNCR1 and PCGEM1, bind successively to the AR and strongly enhance both ligand-dependent and ligand-independent AR-mediated gene activation programs and proliferation in prostate cancer cells. Binding of PRNCR1 to the C-terminally acetylated AR on enhancers and its association with DOT1L appear to be required for recruitment of the second lncRNA, PCGEM1, to the DOT1L-mediated methylated AR N-terminus. Unexpectedly, recognition of specific protein marks by PCGEM1-recruited Pygopus2 PHD domain proves to enhance selective looping of AR-bound enhancers to target gene promoters in these cells. In “resistant” prostate cancer cells, these overexpressed lncRNAs can interact with, and are required for, the robust activation of both truncated and full length AR, causing ligand-independent activation of the AR transcriptional program and cell proliferation. Conditionally-expressed short hairpin RNA (shRNA) targeting of these lncRNAs in castration-resistant prostate cancer (CRPC) cell lines strongly suppressed tumor xenograft growth in vivo. Together, these results suggest that these overexpressed lncRNAs can potentially serve as a required component of castration-resistance in prostatic tumors. PMID:23945587

  12. Leptin Receptor Gene Polymorphism may Affect Subclinical Atherosclerosis in Patients with Acromegaly

    PubMed Central

    Turgut, Sebahat; Topsakal, Senay; Ata, Melek Tunç; Herek, Duygu; Akın, Fulya; Özkan, Şeyma; Turgut, Günfer

    2016-01-01

    Background: Acromegaly is associated with increased morbidity and mortality related to cardiovascular diseases. Leptin (LEP) and Leptin Receptor (LEPR) gene polymorphisms can increase cardiovascular risks. The aim of this study was to investigate association between the frequencies of LEP and LEPR gene polymorphisms and subclinical atherosclerosis in acromegalic patients. Methods: Forty-four acromegalic patients and 30 controls were admitted to study. The polymorphisms were identified by using polymerase chain reaction from peripheral blood samples. The levels of systolic and diastolic blood pressure, BMI, fasting plasma glucose, fasting insulin, IGF-I, GH, IGFBP3, leptin, triglyceride, carotid Intima Media Thickness (cIMT) and HDL and LDL cholesterol concentrations were evaluated. Results: There was statistically significant difference between the LEPR genotypes of acromegalic patients (GG 11.4%, GA 52.3%, and AA 36.4%) and controls (GG 33.3%, GA 50%, and AA 16.7%) although their LEP genotype distribution was similar. In addition, the prevalence of the LEPR gene G and A alleles was significantly different between patients and controls. No significant difference was found among the G(-2548) A leptin genotypes of groups in terms of the clinical parameters. cIMT significantly increased homozygote LEPR GG genotype group compared to AA subjects in patients. But the other parameters were not different between LEPR genotypes groups of patients and controls. Conclusion: It can be said that the LEPR gene polymorphism may affect cIMT in patients. The reason is that LEPR GG genotype carriers may have more risk than other genotypes in the development of subclinical atherosclerosis in acromegaly. PMID:27563428

  13. Methylation of the Glucocorticoid Receptor Gene Promoter in Preschoolers: Links with Internalizing Behavior Problems

    ERIC Educational Resources Information Center

    Parade, Stephanie H.; Ridout, Kathryn K.; Seifer, Ronald; Armstrong, David A.; Marsit, Carmen J.; McWilliams, Melissa A.; Tyrka, Audrey R.

    2016-01-01

    Accumulating evidence suggests that early adversity is linked to methylation of the glucocorticoid receptor (GR) gene, "NR3C1," which is a key regulator of the hypothalamic-pituitary-adrenal axis. Yet no prior work has considered the contribution of methylation of "NR3C1" to emerging behavior problems and psychopathology in…

  14. Assessing the Dynamics of Nuclear Glucocorticoid-Receptor Complex: Adding Flexibility to Gene Expression Modeling1

    PubMed Central

    Hazra, Anasuya; DuBois, Debra C.; Almon, Richard R.; Jusko, William J.

    2014-01-01

    A retrospective analysis was performed to modify our fourth-generation pharmacodynamic model for glucocorticoid receptor (GR) dynamics with incorporation of more physiological features. This modified model was developed by integrating previously reported free cytosolic GR and GR mRNA data following single (10, 50 mg/kg) and dual (50 mg/kg at 0 and 24 hr) intravenous doses of methylprednisolone (MPL) in adrenalectomized (ADX) male Wistar rats with several in vitro studies describing real-time kinetics of the transfer of rat steroid-receptor complex from the cell cytosol to the nucleus. Additionally, free hepatic cytosolic GR and its mRNA data from a chronic infusion dosing study of MPL (0.1 and 0.3 mg/kg/hr) in male ADX Wistar rats were used to verify the predictability of the model. Incorporation of information regarding in vitro receptor kinetics allowed us to describe the receptor-mediated pharmacogenomic effects of MPL for a larger variety of genes in rat liver from microarray studies. These included early responsive gene like CCAAT/enhancer binding protein-β (CEBP-β), a transcription factor, as well as the later responsive gene for tyrosine aminotransferase (TAT), a classical biomarker of glucocorticoid (GC) genomic effects. This more mechanistic model of GR dynamics can be applied to characterize profiles for a greater number of genes in liver. PMID:17285360

  15. Expression of somatostatin receptor genes and acetylcholine receptor development in rat skeletal muscle during postnatal development.

    PubMed

    Peng, M; Conforti, L; Millhorn, D E

    1998-05-01

    Our laboratory reported previously that somatostatin (SST) is transiently expressed in rat motoneurons during the first 14 days after birth. We investigated the possibility that the SST receptor (SSTR) is expressed in skeletal muscle. We found that two of the five subtypes of SSTR (SSTR3 and SSTR4) are expressed in skeletal muscle with a time course that correlates with the transient expression of SST in motoneurons. In addition, SSTR2A is expressed from birth to adulthood in skeletal muscle. Both SSTR2A and SSTR4 are also expressed in L6 cells, a skeletal muscle cell line. Somatostatin acting through its receptors has been shown to stimulate tyrosine phosphatase activity in a number of different tissues. We found that several proteins (50, 65, 90, 140, 180 and 200 kDa) exhibited a reduced degree of tyrosine phosphorylation following SST treatment. Inhibition of tyrosine phosphatase activity with sodium orthovanadate increased expression of the nicotinic acetyl-choline receptor (nAChR) epsilon subunit mRNA by three fold. Somatostatin reversed the elevated epsilon mRNA following orthovanadate treatment. These findings show that SSTR is expressed in skeletal muscle and that SST acting via the SSTR regulates tyrosine phosphorylation and expression of the epsilon subunit of the AChR in the rat skeletal muscle. PMID:9852305

  16. An Association Study of Interleukin 18 Receptor Genes (IL18R1 and IL18RAP) in Lumbar Disc Degeneration

    PubMed Central

    Omair, Ahmad; Lie, Benedicte Alexandra; Reikeras, Olav; Brox, Jens Ivar

    2012-01-01

    Objectives: To examine association of candidate genetic variants in structural, inflammatory, matrix modifying, vitamin D receptor genes and variants associated with osteoarthritis, with surgical candidates and surgical patients with lumbar disc degeneration (LDD), in light of their previously reported susceptibility for LDD. Methods: Genotyping of 146 Norwegian LDD patients and 188 Norwegian controls was performed for 20 single-nucleotide polymorphisms (SNPs) from collagen, aggrecan, interleukin, VDR, MMP3 and COX2 genes and 7 SNPs from osteoarthritic genes. Results: The neighboring genes IL18R1 and IL18RAP polymorphisms (rs2287037 and rs1420100), showed a statistically non-significant risk for developing LDD (OR 1.36 [95 % CI 0.99 – 1.87]; p=0.06 and OR 1.33 [95 % CI 0.98-1.81]; p=0.07). Homozygosity of these risk alleles was associated with LDD (p=0.023 and p=0.027). The non-risk alleles at these SNPs were situated on a haplotype negatively associated with LDD (p=0.008). Carriage of at least one non-risk allele at both loci also reduces the risk of developing LDD (OR 0.51 [95 % CI 0.33-0.80]; p=0.003). Conclusion: Our findings support the polygenic nature of LDD and suggest that variation in interleukin 18 receptor genes could affect the risk of severe LDD and associated low back pain. PMID:22550553

  17. Automatic gene collection system for genome-scale overview of G-protein coupled receptors in eukaryotes.

    PubMed

    Ono, Yukiteru; Fujibuchi, Wataru; Suwa, Makiko

    2005-12-30

    We have developed an automatic system for identifying GPCR (G-protein coupled receptor) genes from various kinds of genomes, which is finally deposited in the SEVENS database (http://sevens.cbrc.jp/), by integrating such software as a gene finder, a sequence alignment tool, a motif and domain assignment tool, and a transmembrane helix predictor. SEVENS enables us to perform a genome-scale overview of the "GPCR universe" using sequences that are identified with high accuracy (99.4% sensitivity and 96.6% specificity). Using this system, we surveyed the complete genomes of 7 eukaryotes and 224 prokaryotes, and found that there are 4 to 1016 GPCR genes in the 7 eukaryotes, and only a total of 16 GPCR genes in all the prokaryotes. Our preliminary results indicate that 11 subfamilies of the Class A family, the Class 2(B) family, the Class 3(C) family and the fz/smo family are commonly found among human, fly, and nematode genomes. We also analyzed the chromosomal locations of the GPCR genes with the Kolmogorov-Smirnov test, and found that species-specific families, such as olfactory, taste, and chemokine receptors in human and nematode chemoreceptor in worm, tend to form clusters extensively, whereas no significant clusters were detected in fly and plant genomes.

  18. Ultrasound-targeted microbubble destruction improves the low density lipoprotein receptor gene expression in HepG{sub 2} cells

    SciTech Connect

    Guo Dongping; Li Xiaoyu; Sun, Ping; Tang Yibo; Chen Xiuying; Chen Qi; Fan Leming . E-mail: lmfan@njmu.edu.cn; Zang Bin; Shao Lizheng; Li Xiaorong

    2006-05-05

    Ultrasound-targeted microbubble destruction had been employed in gene delivery and promised great potential. Liver has unique features that make it attractive for gene therapy. However, it poses formidable obstacles to hepatocyte-specific gene delivery. This study was designed to test the efficiency of therapeutic gene transfer and expression mediated by ultrasound/microbubble strategy in HepG{sub 2} cell line. Air-filled albumin microbubbles were prepared and mixed with plasmid DNA encoding low density lipoprotein receptor (LDLR) and green fluorescent protein. The mixture of the DNA and microbubbles was administer to cultured HepG{sub 2} cells under variable ultrasound conditions. Transfection rate of the transferred gene and cell viability were assessed by FACS analysis, confocal laser scanning microscopy, Western blot analysis and Trypan blue staining. The result demonstrated that microbubbles with ultrasound irradiation can significantly elevate exogenous LDLR gene expression and the expressed LDLRs were functional and active to uptake their ligands. We conclude that ultrasound-targeted microbubble destruction has the potential to promote safe and efficient LDLR gene transfer into hepatocytes. With further refinement, it may represent an effective nonviral avenue of gene therapy for liver-involved genetic diseases.

  19. An evolutionarily mobile antigen receptor variable region gene: doubly rearranging NAR-TcR genes in sharks.

    PubMed

    Criscitiello, Michael F; Saltis, Mark; Flajnik, Martin F

    2006-03-28

    Distinctive Ig and T cell receptor (TcR) chains define the two major lineages of vertebrate lymphocyte yet similarly recognize antigen with a single, membrane-distal variable (V) domain. Here we describe the first antigen receptor chain that employs two V domains, which are generated by separate VDJ gene rearrangement events. These molecules have specialized "supportive" TcRdeltaV domains membrane-proximal to domains with most similarity to IgNAR V. The ancestral NAR V gene encoding this domain is hypothesized to have recombined with the TRD locus in a cartilaginous fish ancestor >200 million years ago and encodes the first V domain shown to be used in both Igs and TcRs. Furthermore, these data support the view that gamma/delta TcRs have for long used structural conformations recognizing free antigen.

  20. An evolutionarily mobile antigen receptor variable region gene: Doubly rearranging NAR-TcR genes in sharks

    PubMed Central

    Criscitiello, Michael F.; Saltis, Mark; Flajnik, Martin F.

    2006-01-01

    Distinctive Ig and T cell receptor (TcR) chains define the two major lineages of vertebrate lymphocyte yet similarly recognize antigen with a single, membrane-distal variable (V) domain. Here we describe the first antigen receptor chain that employs two V domains, which are generated by separate VDJ gene rearrangement events. These molecules have specialized “supportive” TcRδV domains membrane-proximal to domains with most similarity to IgNAR V. The ancestral NAR V gene encoding this domain is hypothesized to have recombined with the TRD locus in a cartilaginous fish ancestor >200 million years ago and encodes the first V domain shown to be used in both Igs and TcRs. Furthermore, these data support the view that γ/δ TcRs have for long used structural conformations recognizing free antigen. PMID:16549799

  1. Identification of a Bitter-Taste Receptor Gene Repertoire in Different Lagomorphs Species

    PubMed Central

    Ferreira, Ana M.; Marques, Andreia T.; Fontanesi, Luca; Thulin, Carl-Gustaf; Sales-Baptista, Elvira; Araújo, Susana S.; Almeida, André M.

    2016-01-01

    The repertoires of bitter-taste receptor (T2R) gene have been described for several animal species, but these data are still scarce for Lagomorphs. The aim of the present work is to identify potential repertoires of T2R in several Lagomorph species, covering a wide geographical distribution. We studied these genes in Lepus timidus, L. europaeus, Oryctolagus cuniculus algirus, Romerolagus diazi, and Sylvilagus floridanus, using O. cuniculus cuniculus as control species for PCR and DNA sequencing. We studied the identities of the DNA sequences and built the corresponding phylogenetic tree. Sequencing was successful for both subspecies of O. cuniculus for all T2R genes studied, for five genes in Lepus, and for three genes in R. diazi and S. floridanus. We describe for the first time the partial repertoires of T2R genes for Lagomorphs species, other than the common rabbit. Our phylogenetic analyses indicate that sequence proximity levels follow the established taxonomic classification. PMID:27092177

  2. Identification of a Bitter-Taste Receptor Gene Repertoire in Different Lagomorphs Species.

    PubMed

    Ferreira, Ana M; Marques, Andreia T; Fontanesi, Luca; Thulin, Carl-Gustaf; Sales-Baptista, Elvira; Araújo, Susana S; Almeida, André M

    2016-01-01

    The repertoires of bitter-taste receptor (T2R) gene have been described for several animal species, but these data are still scarce for Lagomorphs. The aim of the present work is to identify potential repertoires of T2R in several Lagomorph species, covering a wide geographical distribution. We studied these genes in Lepus timidus, L. europaeus, Oryctolagus cuniculus algirus, Romerolagus diazi, and Sylvilagus floridanus, using O. cuniculus cuniculus as control species for PCR and DNA sequencing. We studied the identities of the DNA sequences and built the corresponding phylogenetic tree. Sequencing was successful for both subspecies of O. cuniculus for all T2R genes studied, for five genes in Lepus, and for three genes in R. diazi and S. floridanus. We describe for the first time the partial repertoires of T2R genes for Lagomorphs species, other than the common rabbit. Our phylogenetic analyses indicate that sequence proximity levels follow the established taxonomic classification. PMID:27092177

  3. The human insulin receptor substrate-1 gene (IRS1) is localized on 2q36

    SciTech Connect

    Nishiyama, Masaki; Matsufuji, Senya; Hayashi, Shin-ichi; Furusaka, Akihiro; Tanaka, Teruji ); Inazawa, J.; Nakamura, Yusuke ); Ariyama, Takeshi ); Wands, J.R. )

    1994-03-01

    The chromosomal localization of some of the genes participating in the insulin signaling pathway is known. The insulin and insulin receptor genes have been mapped to chromosomes 11 and 19, respectively. To identify the chromosomal localization of the human IRS1 gene, the fluorescence in situ hybridization technique was employed with Genomic Clone B-10. A total of 50 metaphase cells exhibiting either single or double spots of hybridization signals were examined. Among them, 32 showed the specific signals on 2q36. Therefore, the authors assigned the human IRS1 gene to 2q36. The genes for homeobox sequence (HOX4), fibronectin 1, alkaline phosphatase (intestinal), transition protein 1, villin 1, collagen (type IV), Waardenburg syndrome (type 1), alanine-glyoxylate aminotransferase, and glucagon have been localized in the vicinity of the IRS1 gene.

  4. Mapping toll-like receptor signaling pathway genes of Zhikong scallop ( Chlamys farreri) with FISH

    NASA Astrophysics Data System (ADS)

    Zhao, Bosong; Zhao, Liang; Liao, Huan; Cheng, Jie; Lian, Shanshan; Li, Xuan; Huang, Xiaoting; Bao, Zhenmin

    2015-12-01

    Toll-like receptor (TLR) signaling pathway plays a pivotal role in the innate immune system. Studies on TLR signaling pathway genes in Zhikong scallop ( Chlamys farreri) have mainly focused on sequence analysis and expression profiling, no research has been carried out on their localization. The chromosomal position of TLR signaling pathway genes can be valuable for assemblying scallop genome and analysizing gene regulatory networks. In the present study, five key TLR signaling pathway genes ( CfTLR, CfMyd88, CfTRAF6, CfNFκB, and CfIκB) containing bacterial artificial chromosomes (BACs) were isolated and physically mapped through fluorescence in situ hybridization on five non-homologous chromosome pairs, showing a similar distribution to another five model species. The isolation and mapping of these key immune genes of C. farreri will aid to the research on innate immunity, assignment of interested genes to chromosomes, and integration of physical, linkage and cytogenetic maps of this species.

  5. The leukemia inhibitory factor receptor (LIFR) gene is located within a cluster of cytokine receptor loci on mouse chromosome 15 and human chromosome 5p12-p13

    SciTech Connect

    Gearing, D.P. ); Druck, T.; Huebner, K. ); Overhauser, J. ); Gilbert, D.J.; Copeland, N.G.; Jenkins, N.A. )

    1993-10-01

    The leukemia inhibitory factor receptor (LIFR) gene was localized to human chromosome 5p12-p13 by somatic cell hybrid analysis. Interspecific backcross analysis revealed that the murine locus was on chromosome 15 in a region of homology with human chromosome 5p. In both human and mouse genomes, the LIFR locus was linked to the genes encoding the receptors for interleukin-7, prolactin, and growth hormone. 13 refs., 1 fig.

  6. Mutational analysis of the extracellular Ca{sup 2+}-sensing receptor gene in human parathyroid tumors

    SciTech Connect

    Hosokawa, Yoshitaka; Arnold, A.; Pollak, M.R.; Brown, E.M.

    1995-10-01

    Despite recent progress, such as the identification of PRAD1/cyclin D1 as a parathyroid oncogene, it is likely that many genes involved in the molecular pathogenesis of parathyroid tumors remain unknown. Individuals heterozygous for inherited mutations in the extracellular Ca{sup 2+}-sensing receptor gene that reduce its biological activity exhibit a disorder termed familial hypocalciuric hypercalcemia or familial benign hypercalcemia, which is characterized by reduced responsiveness of parathyroid and kidney to calcium and by PTH-dependent hypercalcemia. Those who are homozygous for such mutations present with neonatal severe hyperparathyroidism and have marked parathroid hypercellularity. Thus, the Ca{sup 2+}-sensing receptor gene is a candidate parathyroid tumor suppressor gene, with inactivating mutations plausibly explaining set-point abnormalities in the regulation of both parathyroid cellular proliferation and PTH secretion by extracellular Ca{sup 2+} similar to those seen in hyperparathyroidism. Using a ribonuclease A protection assay that has detected multiple mutations in the Ca{sup 2+}-sensing receptor gene in familial hypocalciuric hypercalcemia and covers more than 90% of its coding region, we sought somatic mutations in this gene in a total of 44 human parathyroid tumors (23 adenomas, 4 carcinomas, 5 primary hyperplasias, and 12 secondary hyperplasias). No such mutations were detected in these 44 tumors. Thus, our studies suggest that somatic mutation of the Ca{sup 2+}-sensing receptor gene does not commonly contribute to the pathogenesis of sporadic parathyroid tumors. As such, PTH set-point dysfunction in parathroid tumors may well be secondary to other clonal proliferative defects and/or mutations in other components of the extracellular Ca{sup 2+}-sensing pathway. 29 refs., 2 figs.

  7. The T cell receptor beta genes of Xenopus.

    PubMed

    Chretien, I; Marcuz, A; Fellah, J; Charlemagne, J; Du Pasquier, L

    1997-03-01

    cDNA of the T cell receptor beta (TCRB) have been isolated from the anuran amphibian Xenopus and they show strong structural homology to TCRB sequences of other vertebrates. Ten BV families, two D segments, ten J segments, and a single C region have been defined so far. Each V family consists of one to two members per haploid genome. A unique feature of the Xenopus TCRB constant region is the lack of N-linked carbohydrate glycosylation sites. The recombination signal sequences suggest that the mechanism of rearrangements are identical to those of mammals. The locus is inherited in a diploid manner despite the pseudotetraploidy of the Xenopus laevis and X. gilli used in this study. PMID:9079820

  8. Structure-Activity Relationship of PEGylated Polylysine Peptides as Scavenger Receptor Inhibitors for Non-Viral Gene Delivery.

    PubMed

    Baumhover, Nicholas J; Duskey, Jason T; Khargharia, Sanjib; White, Christopher W; Crowley, Samuel T; Allen, Rondine J; Rice, Kevin G

    2015-12-01

    PEGylated polylysine peptides of the general structure PEG30 kDa-Cys-Trp-LysN (N = 10 to 30) were used to form fully condensed plasmid DNA (pGL3) polyplexes at a ratio of 1 nmol of peptide per μg of DNA (ranging from N:P 3:1 to 10:1 depending on Lys repeat). Co-administration of 5 to 80 nmols of excess PEG-peptide with fully formed polyplexes inhibited the liver uptake of (125)I-pGL3-polyplexes. The percent inhibition was dependent on the PEG-peptide dose and was saturable, consistent with inhibition of scavenger receptors. The scavenger receptor inhibition potency of PEG-peptides was dependent on the length of the Lys repeat, which increased 10-fold when comparing PEG30 kDa-Cys-Trp-Lys10 (IC50 of 20.2 μM) with PEG30 kDa-Cys-Trp-Lys25 (IC50 of 2.1 μM). We hypothesize that PEG-peptides inhibit scavenger receptors by spontaneously forming small 40 to 60 nm albumin nanoparticles that bind to and saturate the receptor. Scavenger receptor inhibition delayed the metabolism of pGL3-polyplexes, resulting in efficient gene expression in liver hepatocytes following delayed hydrodynamic dosing. PEG-peptides represent a new class of scavenger inhibitors that will likely have broad utility in blocking unwanted liver uptake and metabolism of a variety of nanoparticles.

  9. Repeated ketamine administration alters N-methyl-D-aspartic acid receptor subunit gene expression: implication of genetic vulnerability for ketamine abuse and ketamine psychosis in humans.

    PubMed

    Xu, Ke; Lipsky, Robert H

    2015-02-01

    For more than 40 years following its approval by the Food and Drug Administration (FDA) as an anesthetic, ketamine, a non-competitive N-methyl-D-aspartic acid (NMDA) receptor antagonist, has been used as a tool of psychiatric research. As a psychedelic drug, ketamine induces psychotic symptoms, cognitive impairment, and mood elevation, which resemble some symptoms of schizophrenia. Recreational use of ketamine has been increasing in recent years. However, little is known of the underlying molecular mechanisms responsible for ketamine-associated psychosis. Recent animal studies have shown that repeated ketamine administration significantly increases NMDA receptor subunit gene expression, in particular subunit 1 (NR1 or GluN1) levels. This results in neurodegeneration, supporting a potential mechanism where up-regulation of NMDA receptors could produce cognitive deficits in chronic ketamine abuse patients. In other studies, NMDA receptor gene variants are associated with addictive behavior. Here, we focus on the roles of NMDA receptor gene subunits in ketamine abuse and ketamine psychosis and propose that full sequencing of NMDA receptor genes may help explain individual vulnerability to ketamine abuse and ketamine-associated psychosis.

  10. Variation in the human cannabinoid receptor CNR1 gene modulates gaze duration for happy faces

    PubMed Central

    2011-01-01

    Background From an early age, humans look longer at preferred stimuli and also typically look longer at facial expressions of emotion, particularly happy faces. Atypical gaze patterns towards social stimuli are common in autism spectrum conditions (ASC). However, it is unknown whether gaze fixation patterns have any genetic basis. In this study, we tested whether variations in the cannabinoid receptor 1 (CNR1) gene are associated with gaze duration towards happy faces. This gene was selected because CNR1 is a key component of the endocannabinoid system, which is involved in processing reward, and in our previous functional magnetic resonance imaging (fMRI) study, we found that variations in CNR1 modulate the striatal response to happy (but not disgust) faces. The striatum is involved in guiding gaze to rewarding aspects of a visual scene. We aimed to validate and extend this result in another sample using a different technique (gaze tracking). Methods A total of 30 volunteers (13 males and 17 females) from the general population observed dynamic emotional expressions on a screen while their eye movements were recorded. They were genotyped for the identical four single-nucleotide polymorphisms (SNPs) in the CNR1 gene tested in our earlier fMRI study. Results Two SNPs (rs806377 and rs806380) were associated with differential gaze duration for happy (but not disgust) faces. Importantly, the allelic groups associated with a greater striatal response to happy faces in the fMRI study were associated with longer gaze duration at happy faces. Conclusions These results suggest that CNR1 variations modulate the striatal function that underlies the perception of signals of social reward, such as happy faces. This suggests that CNR1 is a key element in the molecular architecture of perception of certain basic emotions. This may have implications for understanding neurodevelopmental conditions marked by atypical eye contact and facial emotion processing, such as ASC. PMID

  11. Gene transfer and disruption strategies to elucidate hepatic lipoprotein receptor functions.

    PubMed

    Herz, J; Willnow, T E

    1995-12-01

    Recent technological advances have enabled us to manipulate specific genes in laboratory animals in a specific predetermined manner. This has opened new areas of research on physiological processes not previously accessible to such precise experimental manipulation. Over-expression of genes by traditional transgenic techniques has recently been complemented by methods that allow the efficient transfer of exogenous genes into various somatic tissues of adult animals. The development of homologous recombination technology in embryonic stem cells (ESC) and the application of this technology to specifically disrupt a given gene of interest in the germline of a mouse has been particularly useful to determine the physiologically relevant processes in which these genes participate in vivo. Rather than introducing random mutations into the genome by chemical mutagenesis or by retroviral insertion, techniques that have been employed in the past, gene targeting not only allows us to disrupt any cloned gene, but also to specifically introduce single nucleotide changes into its genomic sequence. The past few years have witnessed an explosion of research reports in all areas of biological research that have employed these ground-breaking tools of modern genetics to study the physiological roles of a plethora of different genes in neurobiology immunology, endocrinology, development, etc. Our laboratory has also extensively used these new approaches to study the function of several genes that are involved in the metabolism of lipoproteins on the systemic as well as on the cellular level. In this article, we will review the various approaches we have used to define the roles of the low density lipoprotein (LDL) receptor, the LDL receptor-related protein (LRP) and the receptor-associated protein (RAP) in hepatic lipoprotein metabolism.

  12. Identification of Modulators of the Nuclear Receptor Peroxisome Proliferator-Activated Receptor α (PPARα) in a Mouse Liver Gene Expression Compendium

    PubMed Central

    Oshida, Keiyu; Vasani, Naresh; Thomas, Russell S.; Applegate, Dawn; Rosen, Mitch; Abbott, Barbara; Lau, Christopher; Guo, Grace; Aleksunes, Lauren M.; Klaassen, Curtis; Corton, J. Christopher

    2015-01-01

    The nuclear receptor family member peroxisome proliferator-activated receptor α (PPARα) is activated by therapeutic hypolipidemic drugs and environmentally-relevant chemicals to regulate genes involved in lipid transport and catabolism. Chronic activation of PPARα in rodents increases liver cancer incidence, whereas suppression of PPARα activity leads to hepatocellular steatosis. Analytical approaches were developed to identify biosets (i.e., gene expression differences between two conditions) in a genomic database in which PPARα activity was altered. A gene expression signature of 131 PPARα-dependent genes was built using microarray profiles from the livers of wild-type and PPARα-null mice after exposure to three structurally diverse PPARα activators (WY-14,643, fenofibrate and perfluorohexane sulfonate). A fold-change rank-based test (Running Fisher’s test (p-value ≤ 10-4)) was used to evaluate the similarity between the PPARα signature and a test set of 48 and 31 biosets positive or negative, respectively for PPARα activation; the test resulted in a balanced accuracy of 98%. The signature was then used to identify factors that activate or suppress PPARα in an annotated mouse liver/primary hepatocyte gene expression compendium of ~1850 biosets. In addition to the expected activation of PPARα by fibrate drugs, di(2-ethylhexyl) phthalate, and perfluorinated compounds, PPARα was activated by benzofuran, galactosamine, and TCDD and suppressed by hepatotoxins acetaminophen, lipopolysaccharide, silicon dioxide nanoparticles, and trovafloxacin. Additional factors that activate (fasting, caloric restriction) or suppress (infections) PPARα were also identified. This study 1) developed methods useful for future screening of environmental chemicals, 2) identified chemicals that activate or suppress PPARα, and 3) identified factors including diets and infections that modulate PPARα activity and would be hypothesized to affect chemical-induced PPAR

  13. Neuronal-type alpha-bungarotoxin receptors and the alpha 5-nicotinic receptor subunit gene are expressed in neuronal and nonneuronal human cell lines.

    PubMed Central

    Chini, B; Clementi, F; Hukovic, N; Sher, E

    1992-01-01

    alpha-Bungarotoxin (alpha Bgtx) is a toxin known to interact with muscle nicotinic receptors and with some neuronal nicotinic receptors. We show that alpha Bgtx binding sites are also expressed in nonmuscle and nonneuronal human cells, including small cell lung carcinoma and several epithelial cell lines. These receptors are immunologically related to the alpha Bgtx receptors of unknown function described in the nervous system and in the IMR32 neuroblastoma cell line and are distinct from muscle nicotinic receptors. We have also cloned from IMR32 cells the human alpha 5-nicotinic receptor subunit, which is supposed to participate in the formation of alpha Bgtx receptors. Transcripts corresponding to the alpha 5-subunit gene were found not only in neuroblastoma cells but also in all the cell lines expressing alpha Bgtx receptors, with the exception of the TE671 cell line, whose nicotinic receptor subunits are of the muscle type. We conclude that both alpha Bgtx receptors and the alpha 5-nicotinic subunit gene are not neuron-specific, as previously thought, but are expressed in a number of human cell lines of various origin. Images PMID:1542648

  14. A network of autism linked genes stabilizes two pools of synaptic GABAA receptors

    PubMed Central

    Tong, Xia-Jing; Hu, Zhitao; Liu, Yu; Anderson, Dorian; Kaplan, Joshua M

    2015-01-01

    Changing receptor abundance at synapses is an important mechanism for regulating synaptic strength. Synapses contain two pools of receptors, immobilized and diffusing receptors, both of which are confined to post-synaptic elements. Here we show that immobile and diffusing GABAA receptors are stabilized by distinct synaptic scaffolds at C. elegans neuromuscular junctions. Immobilized GABAA receptors are stabilized by binding to FRM-3/EPB4.1 and LIN-2A/CASK. Diffusing GABAA receptors are stabilized by the synaptic adhesion molecules Neurexin and Neuroligin. Inhibitory post-synaptic currents are eliminated in double mutants lacking both scaffolds. Neurexin, Neuroligin, and CASK mutations are all linked to Autism Spectrum Disorders (ASD). Our results suggest that these mutations may directly alter inhibitory transmission, which could contribute to the developmental and cognitive deficits observed in ASD. DOI: http://dx.doi.org/10.7554/eLife.09648.001 PMID:26575289

  15. Interleukin 17 receptor gene polymorphism in periimplantitis and chronic periodontitis.

    PubMed

    Kadkhodazadeh, Mahdi; Ebadian, Ahmad Reza; Amid, Reza; Youssefi, Navid; Mehdizadeh, Amir Reza

    2013-01-01

    Gene polymorphism of cytokines influencing their function has been known as a contributing factor in the pathogenesis of inflammatory diseases of the tooth and implant supporting tissues. The aim of this study was to investigate the association of IL-17R gene polymorphism (rs879576) with chronic periodontitis and periimplantitis in an Iranian population. 73 patients with chronic periodontitis, 37 patients with periimplantitis and 83 periodontally healthy patients were enrolled in this study. 5cc blood was obtained from each subject's arm vein and transferred to tubes containing EDTA. Genomic DNA was extracted using Miller's Salting Out technique. The DNA was transferred into 96 division plates, transported to Kbioscience Institute in United Kingdom and analyzed using the Kbioscience Competitive Allele Specific PCR (KASP) technique. Chi-square and Kruskal Wallis tests were used to analyze differences in the expression of genotypes and frequency of alleles in disease and control groups (P-Value less than 0.05 was considered statistically significant). There were no significant differences between periodontitis, periimplantitis with AA, GG, GA genotype of IL-17R gene (P=0.8239). Also comparison of frequency of alleles in SNP rs879576 of IL-17R gene between the chronic periodontitis group and periimplantitis group did not revealed statistically significant differences (P=0.8239). The enigma of IL-17 and its polymorphism-role in periodontitis and periimplantitis is yet to be investigated more carefully throughout further research but this article demonstrates that polymorphism of IL-17R plays no significant role in incidence of chronic periodontitis and Periimplantitis. PMID:23852838

  16. Structure and linkage of the D2 dopamine receptor and neural cell adhesion molecule genes on human chromosome 11q23

    SciTech Connect

    Eubanks, J.H.; Djabali, M.; Selleri, L.; McElligott, D.L.; Evans, G.A. ); Grandy, D.K.; Civelli, O. )

    1992-12-01

    The gene encoding the D2 dopamine receptor (DRD2) is located on human chromosome 11q23 and has been circumstantially associated with a number of human disorders including Parkinson's disease, schizophrenia, and susceptibility to alcoholism. To determine the physical structure of the DRD2 gene, the authors utilized cosmid cloning, isolation of yeast artificial chromosomes (YACs), and pulsed-field gel electrophoresis to construct a long-range physical map of human chromosome 11q23 linking the genes for the DRD2 and neural cell adhesion molecule (NCAM). The D2 dopamine receptor gene extends over 270 kb and includes an intron of approximately 250 kb separating the putative first exon from the exons encoding the receptor protein. The resulting physical map spans more than 1.5 mb of chromosome band 11q23 and links the DRD2 gene with the gene encoding the NCAM located 150 kb 3[prime] of the DRD2 gene and transcribed from the same DNA strand. They additionally located the sites of at least four hypomethylated HTF islands within the physical map, which potentially indicate the sites of additional genes. High-resolution fluorescent in situ suppression hybridization using cosmid and YAC clones localized this gene cluster between the ApoAI and STMY loci at the interface of bands 11q22.3 and 11q23.1. 40 refs., 6 figs., 2 tabs.

  17. Gene cloning, homology comparison and analysis of the main functional structure domains of beta estrogen receptor in Jining Gray goat.

    PubMed

    Liu, Hai-gang; Li, Hong-mei; Wang, Shu-ying; Huang, Li-bo; Guo, Hui-jun

    2014-08-01

    To clarify the molecular evolution and characteristic of beta estrogen receptor (ERβ) gene in Jining Gray goat in China, the entire ERβ gene from Jining Gray goat ovary was amplified, identified and sequenced, and the gene sequences were compared with those of other animals. Functional structural domains and variations in DNA binding domains (DBD) and ligand binding domains (LBD) between Jining Gray goat and Boer goat were analyzed. The results indicate that the ERβ gene in Jining Gray goat includes a 1584bp sequence with a complete open-reading-frame (ORF), encoding a 527 amino acid (aa) receptor protein. Compared to other species, the nucleotide homology is 73.9-98.9% and the amino acid homology is 79.5-98.5%. The main antigenic structural domains lie from the 97th aa to the 286th aa and from the 403rd aa to the 527th aa. The hydrophilicity and the surface probability of the structural domains are distributed throughout a range of amino acids. There are two different amino acids in the DBD and three different amino acids in the LBD between Jining Gray and Boer goats, resulting in dramatically different spatial structures for ERβ protein. These differences may explain the different biological activities of ERβ between the two goat species. This study firstly acquired the whole ERβ gene sequence of Jining Gray goat with a complete open reading frame, and analyzed its gene evolutionary relationship and predicted its mainly functional structural domains, which may very help for further understanding the genome evolution and gene diversity of goat ERβ.

  18. NMDA receptor gene variations as modifiers in Huntington disease: a replication study.

    PubMed

    Saft, Carsten; Epplen, Jörg T; Wieczorek, Stefan; Landwehrmeyer, G Bernhard; Roos, Raymund A C; de Yebenes, Justo Garcia; Dose, Matthias; Tabrizi, Sarah J; Craufurd, David; Arning, Larissa

    2011-10-04

    Several candidate modifier genes which, in addition to the pathogenic CAG repeat expansion, influence the age at onset (AO) in Huntington disease (HD) have already been described. The aim of this study was to replicate association of variations in the N-methyl D-aspartate receptor subtype genes GRIN2A and GRIN2B in the "REGISTRY" cohort from the European Huntington Disease Network (EHDN). The analyses did replicate the association reported between the GRIN2A rs2650427 variation and AO in the entire cohort. Yet, when subjects were stratified by AO subtypes, we found nominally significant evidence for an association of the GRIN2A rs1969060 variation and the GRIN2B rs1806201 variation. These findings further implicate the N-methyl D-aspartate receptor subtype genes as loci containing variation associated with AO in HD.

  19. Glucocorticoid receptor gene methylation and HPA-axis regulation in adolescents. The TRAILS study.

    PubMed

    van der Knaap, Lisette J; Oldehinkel, Albertine J; Verhulst, Frank C; van Oort, Floor V A; Riese, Harriëtte

    2015-08-01

    Early life adversity and psychopathology are thought to be linked through HPA-axis deregulation. Changes in methylation levels of stress reactivity genes such as the glucocorticoid receptor gene (NR3C1) can be induced by adversity. Higher NR3C1 methylation levels have been associated with a reduced NR3C1 expression, possibly leading to impaired negative feedback regulation of the HPA-axis. In this study we tested whether methylation levels of NR3C1 were associated with HPA-axis regulation, operationalized as cortisol responses. In 361 adolescents (mean age 16.1, SD=0.6), salivary cortisol samples were collected before, during, and after a social stress task, from which response measures (cortisol activation and recovery) were calculated. Higher NR3C1 methylation levels were associated with a flattened cortisol recovery slope, indicating a delayed recovery time. Cortisol response activation was not associated with NR3C1 methylation. These results suggest that methylation of NR3C1 may impair negative feedback of the HPA-axis in adolescents.

  20. Beta2-Adrenergic Receptor Gene Polymorphisms as Systemic Determinants of Healthy Aging in an Evolutionary Context

    PubMed Central

    Kulminski, Alexander M.; Culminskaya, Irina V.; Ukraintseva, Svetlana V.; Arbeev, Konstantin G.; Land, Kenneth C.; Yashin, Anatoli I.

    2010-01-01

    The Gln27Glu polymorphism but not the Arg16Gly polymorphism of the beta2-adrenergic receptor (ADRB2) gene appears to be associated with a broad range of aging-associated phenotypes, including cancers at different sites, myocardial infarction (MI), intermittent claudication (IC), and overall/healthy longevity in the Framingham Heart Study Offspring cohort. The Gln27Gln genotype increases risks of cancer, MI and IC, whereas the Glu27 allele or, equivalently, the Gly16Glu27 haplotype tends to be protective against these diseases. Genetic associations with longevity are of opposite nature at young-old and oldest-old ages highlighting the phenomenon of antagonistic pleiotropy. The mechanism of antagonistic pleiotropy is associated with an evolutionary-driven advantage of carriers of a derived Gln27 allele at younger ages and their survival disadvantage at older ages as a result of increased risks of cancer, MI and IC. The ADRB2 gene can play an important systemic role in healthy aging in evolutionary context that warrants exploration in other populations. PMID:20399803