Science.gov

Sample records for receptor inhibits progastrin-dependent

  1. Inhibition among olfactory receptor neurons

    PubMed Central

    Van der Goes van Naters, Wynand

    2013-01-01

    Often assumed to be epiphenomena of a cell’s activity, extracellular currents and resulting potential changes are increasingly recognized to influence the function of other cells in the vicinity. Experimental evidence shows that even small electric fields can modulate spike timing in neurons. Moreover, when neurons are brought close together experimentally or in pathological conditions, activity in one neuron can excite its neighbors. Inhibitory ephaptic mechanisms, however, may depend on more specialized coupling among cells. Recent studies in the Drosophila olfactory system have shown that excitation of a sensory neuron can inhibit its neighbor, and it was speculated that this interaction was ephaptic. Here we give an overview of ephaptic interactions that effect changes in spike timing, excitation or inhibition in diverse systems with potential relevance to human neuroscience. We examine the mechanism of the inhibitory interaction in the Drosophila system and that of the well-studied ephaptic inhibition of the Mauthner cell in more detail. We note that both current towards and current away from the local extracellular environment of a neuron can inhibit it, but the mechanism depends on the specific architecture of each system. PMID:24167484

  2. AMPA receptor inhibition by synaptically released zinc

    PubMed Central

    Kalappa, Bopanna I.; Anderson, Charles T.; Lippard, Stephen J.; Tzounopoulos, Thanos

    2015-01-01

    The vast amount of fast excitatory neurotransmission in the mammalian central nervous system is mediated by AMPA-subtype glutamate receptors (AMPARs). As a result, AMPAR-mediated synaptic transmission is implicated in nearly all aspects of brain development, function, and plasticity. Despite the central role of AMPARs in neurobiology, the fine-tuning of synaptic AMPA responses by endogenous modulators remains poorly understood. Here we provide evidence that endogenous zinc, released by single presynaptic action potentials, inhibits synaptic AMPA currents in the dorsal cochlear nucleus (DCN) and hippocampus. Exposure to loud sound reduces presynaptic zinc levels in the DCN and abolishes zinc inhibition, implicating zinc in experience-dependent AMPAR synaptic plasticity. Our results establish zinc as an activity-dependent, endogenous modulator of AMPARs that tunes fast excitatory neurotransmission and plasticity in glutamatergic synapses. PMID:26647187

  3. Combined Angiotensin Receptor Antagonism and Neprilysin Inhibition

    PubMed Central

    Hubers, Scott A.; Brown, Nancy J.

    2016-01-01

    Heart failure affects approximately 5.7 million people in the United States alone. Angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, beta-blockers, and aldosterone antagonists have improved mortality in patients with heart failure and reduced ejection fraction, but mortality remains high. In July 2015, the FDA approved the first of a new class of drugs for the treatment of heart failure; valsartan/sacubitril (formerly known as LCZ696 and currently marketed by Novartis as Entresto) combines the angiotensin receptor blocker valsartan and the neprilysin inhibitor prodrug sacubitril in a 1:1 ratio in a sodium supramolecular complex. Sacubitril is converted by esterases to LBQ657, which inhibits neprilysin, the enzyme responsible for the degradation of the natriuretic peptides and many other vasoactive peptides. Thus, this combined angiotensin receptor antagonist and neprilysin inhibitor addresses two of the pathophysiologic mechanisms of heart failure - activation of the renin-angiotensin-aldosterone system and decreased sensitivity to natriuretic peptides. In the Prospective comparison of ARNI with ACEI to Determine Impact on Global Mortality and morbidity in Heart Failure (PARADIGM-HF) trial, valsartan/sacubitril significantly reduced mortality and hospitalization for heart failure, as well as blood pressure, compared to enalapril in patients with heart failure, reduced ejection fraction, and an elevated circulating level of brain natriuretic peptide or N-terminal pro-brain natriuretic peptide. Ongoing clinical trials are evaluating the role of valsartan/sacubitril in the treatment of heart failure with preserved ejection fraction and hypertension. We review here the mechanisms of action of valsartan/sacubitril, the pharmacologic properties of the drug, and its efficacy and safety in the treatment of heart failure and hypertension. PMID:26976916

  4. Combined Angiotensin Receptor Antagonism and Neprilysin Inhibition.

    PubMed

    Hubers, Scott A; Brown, Nancy J

    2016-03-15

    Heart failure affects ≈5.7 million people in the United States alone. Angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, β-blockers, and aldosterone antagonists have improved mortality in patients with heart failure and reduced ejection fraction, but mortality remains high. In July 2015, the US Food and Drug Administration approved the first of a new class of drugs for the treatment of heart failure: Valsartan/sacubitril (formerly known as LCZ696 and currently marketed by Novartis as Entresto) combines the angiotensin receptor blocker valsartan and the neprilysin inhibitor prodrug sacubitril in a 1:1 ratio in a sodium supramolecular complex. Sacubitril is converted by esterases to LBQ657, which inhibits neprilysin, the enzyme responsible for the degradation of the natriuretic peptides and many other vasoactive peptides. Thus, this combined angiotensin receptor antagonist and neprilysin inhibitor addresses 2 of the pathophysiological mechanisms of heart failure: activation of the renin-angiotensin-aldosterone system and decreased sensitivity to natriuretic peptides. In the Prospective Comparison of ARNI With ACEI to Determine Impact on Global Mortality and Morbidity in Heart Failure (PARADIGM-HF) trial, valsartan/sacubitril significantly reduced mortality and hospitalization for heart failure, as well as blood pressure, compared with enalapril in patients with heart failure, reduced ejection fraction, and an elevated circulating level of brain natriuretic peptide or N-terminal pro-brain natriuretic peptide. Ongoing clinical trials are evaluating the role of valsartan/sacubitril in the treatment of heart failure with preserved ejection fraction and hypertension. We review here the mechanisms of action of valsartan/sacubitril, the pharmacological properties of the drug, and its efficacy and safety in the treatment of heart failure and hypertension.

  5. pH-Dependent Inhibition of Kainate Receptors by Zinc

    PubMed Central

    Mott, David D.; Benveniste, Morris; Dingledine, Raymond J.

    2014-01-01

    Kainate receptors contribute to synaptic plasticity and rhythmic oscillatory firing of neurons in corticolimbic circuits including hippocampal area CA3. We use zinc chelators and mice deficient in zinc transporters to show that synaptically released zinc inhibits postsynaptic kainate receptors at mossy fiber synapses and limits frequency facilitation of kainate, but not AMPA EPSCs during thetapattern stimulation. Exogenous zinc also inhibits the facilitatory modulation of mossy fiber axon excitability by kainate but does not suppress the depressive effect of kainate on CA3 axons. Recombinant kainate receptors are inhibited in a subunit-dependent manner by physiologically relevant concentrations of zinc, with receptors containing the KA1 subunit being sensitive to submicromolar concentrations of zinc. Zinc inhibition does not alter receptor desensitization nor apparent agonist affinity and is only weakly voltage dependent, which points to an allosteric mechanism. Zinc inhibition is reduced at acidic pH. Thus, in the presence of zinc, a fall in pH potentiates kainate receptors by relieving zinc inhibition. Acidification of the extracellular space, as occurs during repetitive activity, may therefore serve to unmask kainate receptor neurotransmission. We conclude that zinc modulation of kainate receptors serves an important role in shaping kainate neurotransmission in the CA3 region. PMID:18272686

  6. Glycinergic inhibition in thalamus revealed by synaptic receptor blockade.

    PubMed

    Ghavanini, Ahmad A; Mathers, David A; Puil, Ernest

    2005-09-01

    Using juvenile rat brain slices, we examined the possibility that strychnine-sensitive receptors for glycine-like amino acids contributed to synaptic inhibition in ventrobasal thalamus, where gamma-aminobutyrate (GABA) is the prevalent inhibitory transmitter. Ventrobasal nuclei showed staining for antibodies against alpha1 and alpha2 subunits of the glycine receptor. Exogenously applied glycine, taurine and beta-alanine increased membrane conductance, effects antagonized by strychnine, indicative of functional glycine receptors. Using glutamate receptor antagonists, we isolated inhibitory postsynaptic potentials and currents (IPSPs and IPSCs) evoked by high-threshold stimulation of medial lemniscus. Like the responses to glycine agonists, these synaptic responses reversed near E(Cl). In comparative tests with GABA receptor antagonists, strychnine attenuated inhibition in a majority of neurons, but did not alter slow, GABA(B) inhibition. For complete blockade, the majority of fast IPSPs required co-application of strychnine with bicuculline or gabazine, GABA(A) receptor antagonists. Strychnine acting with an IC50 approximately = 33 nM, eliminated residual fast inhibition during selective GABA(A) receptor blockade with gabazine. The latency of onset for IPSPs was compatible with polysynaptic pathways or prolonged axonal propagation time. Strychnine lacked effects on monosynaptic, GABAergic IPSPs from zona incerta. The specific actions of strychnine implicated a glycine receptor contribution to fast inhibition in somatosensory thalamus.

  7. SIGIRR inhibits interleukin-1 receptor- and toll-like receptor 4-mediated signaling through different mechanisms.

    PubMed

    Qin, Jinzhong; Qian, Youcun; Yao, Jianhong; Grace, Cui; Li, Xiaoxia

    2005-07-01

    The Toll-interleukin-1 receptor (TIR) domain-containing orphan receptor SIGIRR (single immunoglobulin interleukin-1 receptor-related protein) acts as a negative regulator of interleukin (IL)-1 and lipopolysaccharide (LPS) signaling. Endogenous SIGIRR transiently interacted with IL-1 receptor and the receptor-proximal signaling components (MyD88, IRAK, and tumor necrosis factor receptor-associated factor 6) upon IL-1 stimulation, indicating that SIGIRR interacts with the IL-1 receptor complex in a ligand-dependent manner. Similar interaction was also observed between SIGIRR and Toll-like receptor 4 receptor complex upon LPS stimulation. To identify the domains of SIGIRR required for its interaction with the Toll-like receptor 4 and IL-1 receptor complexes, several SIGIRR deletion mutants were generated, including DeltaN (lacking the extracellular immunoglobulin (Ig) domain with deletion of amino acids 1-119), DeltaC (lacking the C-terminal domain with deletion of amino acids 313-410), and DeltaTIR (lacking the TIR domain with deletion of amino acids 161-313). Whereas both the extracellular Ig domain and the intracellular TIR domains are important for SIGIRR to inhibit IL-1 signaling, only the TIR domain is necessary for SIGIRR to inhibit LPS signaling. The extracellular Ig domain exerts its inhibitory role in IL-1 signaling by interfering with the heterodimerization of IL-1 receptor and IL-1RAcP, whereas the intracellular TIR domain inhibits both IL-1 and LPS signaling by attenuating the recruitment of receptor-proximal signaling components to the receptor. These results indicate that SIGIRR inhibits IL-1 and LPS signaling pathways through differential mechanisms.

  8. Cannabinoid receptors and cholecystokinin in feeding inhibition.

    PubMed

    Alén, Francisco; Ramírez-López, M Teresa; Gómez de Heras, Raquel; Rodríguez de Fonseca, Fernando; Orio, Laura

    2013-01-01

    The endocannabinoid system functions as a potent regulator of feeding behavior and energy balance through complex central and peripheral mechanisms. Recent findings have demonstrated the existence of cooperation between peripheral cannabinoid CB1 receptors and the satiety hormone cholecystokinin (CCK). The two systems have opposing actions in the modulation of feeding: while endocannabinoids such as anandamide promote feeding, CCK controls gastrointestinal motility and appetite suppression. In this review, we examine the individual contribution of endocannabinoids and CCK in the modulation of appetite and explore the interaction between the two systems. We also highlight the potential benefits of simultaneously targeting peripheral CB1 and CCK1 receptors to design new therapies to fight obesity. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Menthol Binding and Inhibition of α7-Nicotinic Acetylcholine Receptors

    PubMed Central

    Ashoor, Abrar; Nordman, Jacob C.; Veltri, Daniel; Yang, Keun-Hang Susan; Al Kury, Lina; Shuba, Yaroslav; Mahgoub, Mohamed; Howarth, Frank C.; Sadek, Bassem; Shehu, Amarda; Kabbani, Nadine; Oz, Murat

    2013-01-01

    Menthol is a common compound in pharmaceutical and commercial products and a popular additive to cigarettes. The molecular targets of menthol remain poorly defined. In this study we show an effect of menthol on the α7 subunit of the nicotinic acetylcholine (nACh) receptor function. Using a two-electrode voltage-clamp technique, menthol was found to reversibly inhibit α7-nACh receptors heterologously expressed in Xenopus oocytes. Inhibition by menthol was not dependent on the membrane potential and did not involve endogenous Ca2+-dependent Cl− channels, since menthol inhibition remained unchanged by intracellular injection of the Ca2+ chelator BAPTA and perfusion with Ca2+-free bathing solution containing Ba2+. Furthermore, increasing ACh concentrations did not reverse menthol inhibition and the specific binding of [125I] α-bungarotoxin was not attenuated by menthol. Studies of α7- nACh receptors endogenously expressed in neural cells demonstrate that menthol attenuates α7 mediated Ca2+ transients in the cell body and neurite. In conclusion, our results suggest that menthol inhibits α7-nACh receptors in a noncompetitive manner. PMID:23935840

  10. Ketamine's antidepressant action: beyond NMDA receptor inhibition.

    PubMed

    Hashimoto, Kenji

    2016-11-01

    The N-methyl-D-aspartate (NMDA) receptor antagonist ketamine is one of the most attractive antidepressants since this drug causes rapid-onset and sustained antidepressant effects in treatment resistant patients with depression. There are unanswered questions about how ketamine induces its rapid and sustained antidepressant actions. This key article suggests that (2R,6R)-HNK (hydroxynorketamine), a major metabolite of (R)-ketamine, shows antidepressant effects in rodent models of depression, indicating that the metabolism of (R)-ketamine to (2R,6R)-HNK is pivotal in its antidepressant action. Here these findings are put into context and their significance is discussed.

  11. Cocaine Inhibits Dopamine D2 Receptor Signaling via Sigma-1-D2 Receptor Heteromers

    PubMed Central

    Navarro, Gemma; Moreno, Estefania; Bonaventura, Jordi; Brugarolas, Marc; Farré, Daniel; Aguinaga, David; Mallol, Josefa; Cortés, Antoni; Casadó, Vicent; Lluís, Carmen; Ferre, Sergi

    2013-01-01

    Under normal conditions the brain maintains a delicate balance between inputs of reward seeking controlled by neurons containing the D1-like family of dopamine receptors and inputs of aversion coming from neurons containing the D2-like family of dopamine receptors. Cocaine is able to subvert these balanced inputs by altering the cell signaling of these two pathways such that D1 reward seeking pathway dominates. Here, we provide an explanation at the cellular and biochemical level how cocaine may achieve this. Exploring the effect of cocaine on dopamine D2 receptors function, we present evidence of σ1 receptor molecular and functional interaction with dopamine D2 receptors. Using biophysical, biochemical, and cell biology approaches, we discovered that D2 receptors (the long isoform of the D2 receptor) can complex with σ1 receptors, a result that is specific to D2 receptors, as D3 and D4 receptors did not form heteromers. We demonstrate that the σ1-D2 receptor heteromers consist of higher order oligomers, are found in mouse striatum and that cocaine, by binding to σ1 -D2 receptor heteromers, inhibits downstream signaling in both cultured cells and in mouse striatum. In contrast, in striatum from σ1 knockout animals these complexes are not found and this inhibition is not seen. Taken together, these data illuminate the mechanism by which the initial exposure to cocaine can inhibit signaling via D2 receptor containing neurons, destabilizing the delicate signaling balance influencing drug seeking that emanates from the D1 and D2 receptor containing neurons in the brain. PMID:23637801

  12. Inhibition of adenylyl cyclase by neuronal P2Y receptors

    PubMed Central

    Unterberger, Ursula; Moskvina, Eugenia; Scholze, Thomas; Freissmuth, Michael; Boehm, Stefan

    2002-01-01

    P2Y receptors inhibiting adenylyl cyclase have been found in blood platelets, glioma cells, and endothelial cells. In platelets and glioma cells, these receptors were identified as P2Y12. Here, we have used PC12 cells to search for adenylyl cyclase inhibiting P2Y receptors in a neuronal cellular environment.ADP and ATP (0.1 – 100 μM) left basal cyclic AMP accumulation unaltered, but reduced cyclic AMP synthesis stimulated by activation of endogenous A2A or recombinant β2 receptors. Forskolin-dependent cyclic AMP production was reduced by ⩽1 μM and enhanced by 10 – 100 μM ADP; this latter effect was turned into an inhibition when A2A receptors were blocked.The nucleotide inhibition of cyclic AMP synthesis was not altered when P2X receptors were blocked, but abolished by pertussis toxin.The rank order of agonist potencies for the reduction of cyclic AMP was (IC50 values): 2-methylthio-ADP (0.12 nM)=2-methylthio-ATP (0.13 nM)>ADPβS (71 nM)>ATP (164 nM)=ADP (244 nM). The inhibition by ADP was not antagonized by suramin, pyridoxal-phosphate-6-azophenyl-2′,4′-disulphonic acid, or adenosine-3′-phosphate-5′-phosphate, but attenuated by reactive blue 2, ATPαS, and 2-methylthio-AMP.RT – PCR demonstrated the expression of P2Y2, P2Y4, P2Y6, and P2Y12, but not P2Y1, receptors in PC12 cells. In Northern blots, only P2Y2 and P2Y12 were detectable. Differentiation with NGF did not alter these hybridization signals and left the nucleotide inhibition of adenylyl cyclase unchanged.We conclude that P2Y12 receptors are expressed in neuronal cells and inhibit adenylyl cyclase activity. PMID:11834615

  13. Oxidation inhibits PTH receptor signaling and trafficking.

    PubMed

    Ardura, Juan A; Alonso, Verónica; Esbrit, Pedro; Friedman, Peter A

    2017-01-22

    Reactive Oxygen Species (ROS) increase during aging, potentially affecting many tissues including brain, heart, and bone. ROS alter signaling pathways and constitute potential therapeutic targets to limit oxidative damaging effects in aging-associated diseases. Parathyroid hormone receptors (PTHR) are widely expressed and PTH is the only anabolic therapy for osteoporosis. The effects of oxidative stress on PTHR signaling and trafficking have not been elucidated. Here, we used Fluorescence Resonance Energy Transfer (FRET)-based cAMP, ERK, and calcium fluorescent biosensors to analyze the effects of ROS on PTHR signaling and trafficking by live-cell imaging. PTHR internalization and recycling were measured in HEK-293 cells stably transfected with HA-PTHR. PTH increased cAMP production, ERK phosphorylation, and elevated intracellular calcium. Pre-incubation with H2O2 reduced all PTH-dependent signaling pathways. These inhibitory effects were not a result of PTH oxidation since PTH incubated with H2O2 triggered similar responses. PTH promoted internalization and recycling of the PTHR. Both events were significantly reduced by H2O2 pre-incubation. These findings highlight the role of oxidation on PTHR signaling and trafficking, and suggest the relevance of ROS as a putative target in diseases associated with oxidative stress such as age-related osteoporosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Menthol inhibits 5-HT3 receptor-mediated currents.

    PubMed

    Ashoor, Abrar; Nordman, Jacob C; Veltri, Daniel; Yang, Keun-Hang Susan; Shuba, Yaroslav; Al Kury, Lina; Sadek, Bassem; Howarth, Frank C; Shehu, Amarda; Kabbani, Nadine; Oz, Murat

    2013-11-01

    The effects of alcohol monoterpene menthol, a major active ingredient of the peppermint plant, were tested on the function of human 5-hydroxytryptamine type 3 (5-HT3) receptors expressed in Xenopus laevis oocytes. 5-HT (1 μM)-evoked currents recorded by two-electrode voltage-clamp technique were reversibly inhibited by menthol in a concentration-dependent (IC50 = 163 μM) manner. The effects of menthol developed gradually, reaching a steady-state level within 10-15 minutes and did not involve G-proteins, since GTPγS activity remained unaltered and the effect of menthol was not sensitive to pertussis toxin pretreatment. The actions of menthol were not stereoselective as (-), (+), and racemic menthol inhibited 5-HT3 receptor-mediated currents to the same extent. Menthol inhibition was not altered by intracellular 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid injections and transmembrane potential changes. The maximum inhibition observed for menthol was not reversed by increasing concentrations of 5-HT. Furthermore, specific binding of the 5-HT3 antagonist [(3)H]GR65630 was not altered in the presence of menthol (up to 1 mM), indicating that menthol acts as a noncompetitive antagonist of the 5-HT3 receptor. Finally, 5-HT3 receptor-mediated currents in acutely dissociated nodose ganglion neurons were also inhibited by menthol (100 μM). These data demonstrate that menthol, at pharmacologically relevant concentrations, is an allosteric inhibitor of 5-HT3 receptors.

  15. Mechanism of TGFbeta receptor inhibition by FKBP12.

    PubMed Central

    Chen, Y G; Liu, F; Massague, J

    1997-01-01

    Transforming growth factor-beta (TGFbeta) signaling requires phosphorylation of the type I receptor TbetaR-I by TbetaR-II. Although TGFbeta promotes the association of TbetaR-I with TbetaR-II, these receptor components have affinity for each other which can lead to their ligand-independent activation. The immunophilin FKBP12 binds to TbetaR-I and inhibits its signaling function. We investigated the mechanism and functional significance of this effect. FKBP12 binding to TbetaR-I involves the rapamycin/Leu-Pro binding pocket of FKBP12 and a Leu-Pro sequence located next to the activating phosphorylation sites in TbetaR-I. Mutations in the binding sites of FKBP12 or TbetaR-I abolish the interaction between these proteins, leading to receptor activation in the absence of added ligand. FKBP12 does not inhibit TbetaR-I association with TbetaR-II, but inhibits TbetaR-I phosphorylation by TbetaR-II. Rapamycin, which blocks FKBP12 binding to TbetaR-I, reverses the inhibitory effect of FKBP12 on TbetaR-I phosphorylation. By impeding the activation of TGFbeta receptor complexes formed in the absence of ligand, FKBP12 may provide a safeguard against leaky signaling resulting from the innate tendency of TbetaR-I and TbetaR-II to interact with each other. PMID:9233797

  16. Melatonin inhibits glucocorticoid receptor nuclear translocation in mouse thymocytes.

    PubMed

    Presman, Diego M; Hoijman, Esteban; Ceballos, Nora R; Galigniana, Mario D; Pecci, Adali

    2006-11-01

    The antiapoptotic effect of melatonin (MEL) has been described in several systems. In particular, MEL inhibits glucocorticoid-mediated apoptosis. Our group previously demonstrated that in the thymus, MEL inhibits the release of Cytochrome C from mitochondria and the dexamethasone-dependent increase of bax mRNA levels. In this study we analyzed the ability of MEL to regulate the activation of the glucocorticoid receptor (GR) in mouse thymocytes. We found that even though the methoxyindole does not affect the ligand binding capacity of the receptor, it impairs the steroid-dependent nuclear translocation of the GR and also prevents transformation by blocking the dissociation of the 90-kDa heat shock protein. Coincubation of the methoxyindole with dexamethasone did not affect the expression of a reporter gene in GR-transfected Cos-7 cells or HC11 and L929 mouse cell lines that express Mel-1a and retinoid-related orphan receptor-alpha (RORalpha) receptors. Therefore, the antagonistic effect of MEL seems to be specific for thymocytes, in a Mel 1a- and RORalpha-independent manner. In summary, the present results suggest a novel mechanism for the antagonistic action of MEL on GR-mediated effects, which involves the inhibition of 90-kDa heat shock protein dissociation and the cytoplasmic retention of the GR.

  17. Gβ promotes pheromone receptor polarization and yeast chemotropism by inhibiting receptor phosphorylation

    PubMed Central

    Ismael, Amber; Tian, Wei; Waszczak, Nicholas; Wang, Xin; Cao, Youfang; Suchkov, Dmitry; Bar, Eli; Metodiev, Metodi V.; Liang, Jie; Arkowitz, Robert; Stone, David E.

    2016-01-01

    Gradient-directed cell migration (chemotaxis) and growth (chemotropism) are universal processes, which are essential to the development and life cycles of all species. Cells use surface receptors to sense the shallow chemical gradients that elicit chemotaxis and chemotropism. Slight asymmetries in receptor activation are amplified by downstream signaling systems, which ultimately induce dynamic reorganization of the cytoskeleton. During the mating response of budding yeast, a model chemotropic system, the pheromone receptor on the plasma membrane polarizes to the side of the cell closest to the stimulus. Although receptor polarization occurs before and independently of actin-cable dependent vesicle delivery (directed secretion), it requires receptor internalization. Phosphorylation of pheromone receptors by yeast casein kinase 1 or 2 (Yck1/2) stimulates their internalization. We showed that the pheromone-responsive Gβγ dimer promotes the polarization of the pheromone receptor by interacting with Yck1/2 and locally inhibiting receptor phosphorylation. We also found that receptor phosphorylation is essential for chemotropism, independent of its role in inducing receptor internalization. A mathematical model supports the idea that the interaction between Gβγ and Yck1/2 results in differential phosphorylation and internalization of the pheromone receptor and accounts for its polarization before the initiation of directed secretion. PMID:27072657

  18. Gβ promotes pheromone receptor polarization and yeast chemotropism by inhibiting receptor phosphorylation.

    PubMed

    Ismael, Amber; Tian, Wei; Waszczak, Nicholas; Wang, Xin; Cao, Youfang; Suchkov, Dmitry; Bar, Eli; Metodiev, Metodi V; Liang, Jie; Arkowitz, Robert A; Stone, David E

    2016-04-12

    Gradient-directed cell migration (chemotaxis) and growth (chemotropism) are processes that are essential to the development and life cycles of all species. Cells use surface receptors to sense the shallow chemical gradients that elicit chemotaxis and chemotropism. Slight asymmetries in receptor activation are amplified by downstream signaling systems, which ultimately induce dynamic reorganization of the cytoskeleton. During the mating response of budding yeast, a model chemotropic system, the pheromone receptors on the plasma membrane polarize to the side of the cell closest to the stimulus. Although receptor polarization occurs before and independently of actin cable-dependent delivery of vesicles to the plasma membrane (directed secretion), it requires receptor internalization. Phosphorylation of pheromone receptors by yeast casein kinase 1 or 2 (Yck1/2) stimulates their internalization. We showed that the pheromone-responsive Gβγ dimer promotes the polarization of the pheromone receptor by interacting with Yck1/2 and locally inhibiting receptor phosphorylation. We also found that receptor phosphorylation is essential for chemotropism, independently of its role in inducing receptor internalization. A mathematical model supports the idea that the interaction between Gβγ and Yck1/2 results in differential phosphorylation and internalization of the pheromone receptor and accounts for its polarization before the initiation of directed secretion.

  19. Caffeine inhibits antinociception by acetaminophen in the formalin test by inhibiting spinal adenosine A₁ receptors.

    PubMed

    Sawynok, Jana; Reid, Allison R

    2012-01-15

    The present study examined effects of caffeine on antinociception by acetaminophen in the formalin test in mice. It demonstrates that caffeine 10mg/kg inhibits antinociception produced by acetaminophen 300 mg/kg i.p. against phase 2 flinches. Chronic administration of caffeine in the drinking water (0.1, 0.3g/l) for 8 days also inhibits the action of acetaminophen. The selective adenosine A(1) receptor antagonist DPCPX 1mg/kg i.p. mimics the action of caffeine, but the selective adenosine A(2A) receptor antagonist SCH58261 3mg/kg i.p. does not. While acetaminophen produced the same effect in mice that were +/+, +/- and -/- for adenosine A(1) receptors, inhibition of antinociception by caffeine was seen only in +/+ and +/- mice. A higher dose of caffeine, 40 mg/kg, produced an intrinsic antinociception against formalin-evoked flinches, an effect also seen when caffeine was administered intrathecally. SCH58261 30 nmol, but not DPCPX 10 nmol, also produced antinociception when administered intrathecally indicating involvement of adenosine A(2A) receptors in spinal antinociception. Caffeine reversal of acetaminophen results from actions in the spinal cord, as intrathecal DPCPX 10 nmol inhibited antinociception by systemic acetaminophen; this was also observed in +/+ but not in -/- adenosine A(1) receptor mice. We propose that spinal adenosine A(1) receptors contribute to the action of acetaminophen secondarily to involvement of descending serotonin pathways and release of adenosine within the spinal cord. Inhibition of acetaminophen antinociception by doses of caffeine relevant to dietary human intake levels suggests a more detailed consideration of acetaminophen-caffeine interactions in humans is warranted. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Targeting fibroblast growth factor receptor signaling inhibits prostate cancer progression

    PubMed Central

    Feng, Shu; Shao, Longjiang; Yu, Wendong; Gavine, Paul; Ittmann, Michael

    2015-01-01

    Purpose Extensive correlative studies in human prostate cancer (PCa) as well as studies in vitro and in mouse models indicate that FGF receptor (FGFR) signaling plays an important role in PCa progression. In this study, we employed a probe compound for an FGFR inhibitor which potently inhibits FGFR1-3 and significantly inhibits FGFR-4. The purpose of this study is to determine if targeting FGFR signaling from all four FGFRs will have in vitro activities consistent with inhibition of tumor progression and will inhibit tumor progression in vivo. Experimental Design Effects of AZ8010 on FGFR signaling and invasion were analyzed using immortalized normal prostate epithelial (PNT1a) cells and PNT1a overexpressing FGFR-1 or FGFR-4. The effect of AZ8010 on invasion and proliferation in vitro was also evaluated in PCa cell lines. Finally, the impact of AZ8010 on tumor progression in vivo was evaluated using a VCaP xenograft model. Results AZ8010 completely inhibits FGFR-1 and significantly inhibits FGFR-4 signaling at 100 nM, which is an achievable in vivo concentration. These results in marked inhibition of ERK phosphorylation and invasion in PNT1a cells expressing FGFR-1 and FGFR-4 and all PCa cell lines tested. Treatment in vivo completely inhibited VCaP tumor growth and significantly inhibited angiogenesis and proliferation and increased cell death in treated tumors. This was associated with marked inhibition of ERK phosphorylation in treated tumors. Conclusions Targeting FGFR signaling is a promising new approach to treating aggressive PCa. PMID:22573348

  1. Colloidal Aggregation Causes Inhibition of G Protein-Coupled Receptors

    PubMed Central

    2013-01-01

    Colloidal aggregation is the dominant mechanism for artifactual inhibition of soluble proteins, and controls against it are now widely deployed. Conversely, investigating this mechanism for membrane-bound receptors has proven difficult. Here we investigate the activity of four well-characterized aggregators against three G protein-coupled receptors (GPCRs) recognizing peptide and protein ligands. Each of the aggregators was active at micromolar concentrations against the three GPCRs in cell-based assays. This activity could be attenuated by either centrifugation of the inhibitor stock solution or by addition of Tween-80 detergent. In the absence of agonist, the aggregators acted as inverse agonists, consistent with a direct receptor interaction. Meanwhile, several literature GPCR ligands that resemble aggregators themselves formed colloids, by both physical and enzymological tests. These observations suggest that some GPCRs may be artifactually antagonized by colloidal aggregates, an effect that merits the attention of investigators in this field. PMID:23437772

  2. Ethanol inhibits neuritogenesis induced by astrocyte muscarinic receptors.

    PubMed

    Guizzetti, Marina; Moore, Nadia H; Giordano, Gennaro; VanDeMark, Kathryn L; Costa, Lucio G

    2010-09-01

    In utero alcohol exposure can lead to fetal alcohol spectrum disorders, characterized by cognitive and behavioral deficits. In vivo and in vitro studies have shown that ethanol alters neuronal development. We have recently shown that stimulation of M(3) muscarinic receptors in astrocytes increases the synthesis and release of fibronectin, laminin, and plasminogen activator inhibitor-1, causing neurite outgrowth in hippocampal neurons. As M(3) muscarinic receptor signaling in astroglial cells is strongly inhibited by ethanol, we hypothesized that ethanol may also inhibit neuritogenesis in hippocampal neurons induced by carbachol-stimulated astrocytes. In the present study, we report that the effect of carbachol-stimulated astrocytes on hippocampal neuron neurite outgrowth was inhibited in a concentration-dependent manner (25-100 mM) by ethanol. This effect was because of the inhibition of the release of fibronectin, laminin, and plasminogen activator inhibitor-1. Similar effects on neuritogenesis and on the release of astrocyte extracellular proteins were observed after the incubation of astrocytes with carbachol in the presence of 1-butanol, another short-chain alcohol, which like ethanol is a competitive substrate for phospholipase D, but not by tert-butanol, its analog that is not a substrate for this enzyme. This study identifies a potential novel mechanism involved in the developmental effects of ethanol mediated by the interaction of ethanol with cell signaling in astrocytes, leading to an impairment in neuron-astrocyte communication.

  3. Lead inhibition of NMDA channels in native and recombinant receptors.

    PubMed

    Gavazzo, P; Gazzoli, A; Mazzolini, M; Marchetti, C

    2001-10-08

    NMDA channels are key targets for lead (Pb2+) neurotoxicity and Pb2+-induced inhibition of NMDA current is age- and subunit-dependent. In rat cerebellar granule cells maintained in high KCl, glycine affinity as well as sensitivity to ifenprodil change significantly with the days in vitro, indicating a reduction of NR2B subunit expression. Pb2+ blocked NMDA current with IC50 approximately 4 microM and this effect decreased significantly during the second week in vitro. In Xenopus laevis oocytes expressing recombinant NR1-NR2A, NR1-NR2B or NR1-NR2C receptors, Pb2+ inhibited glutamate-activated currents with IC50 of 3.3, 2.5 and 4.7 microM respectively. These data indicate that Pb2+ action is dependent on subunit composition and suggest that down-regulation of the NR2B subunit is correlated to a diminished sensitivity to Pb2+ inhibition.

  4. Inhibition of oxytocin receptor function by direct binding of progesterone.

    PubMed

    Grazzini, E; Guillon, G; Mouillac, B; Zingg, H H

    1998-04-02

    The steroid hormone progesterone (P4) is essential for establishing and maintaining pregnancy in mammals. One of its functions includes maintenance of uterine quiescence by decreasing uterine sensitivity to the uterotonic peptide hormone oxytocin. Although it is generally held that steroid hormones such as P4 act at a genomic level by binding to nuclear receptors and modulating the expression of specific target genes, we show here that the effect of P4 on uterine sensitivity to oxytocin involves direct, non-genomic action of P4 on the uterine oxytocin receptor (OTR), a member of the G-protein-coupled receptor family. P4 inhibits oxytocin binding to OTR-containing membranes in vitro, binds with high affinity to recombinant rat OTR expressed in CHO cells, and suppresses oxytocin-induced inositol phosphate production and calcium mobilization. These effects are highly steroid- and receptor-specific, because binding and signalling functions of the closely related human OTR are not affected by P4 itself but by the P4 metabolite 5beta-dihydroprogesterone. Our findings provide the first evidence for a direct interaction between a steroid hormone and a G-protein-coupled receptor and define a new level of crosstalk between the peptide- and steroid-hormone signalling pathways.

  5. IGF-1 receptor inhibition by picropodophyllin in medulloblastoma

    SciTech Connect

    Ohshima-Hosoyama, Sachiko; Hosoyama, Tohru; Nelon, Laura D.; Keller, Charles

    2010-09-03

    Research highlights: {yields} Igf1r is overexpressed and activated in a Sonic Hedgehog driven model of medulloblastoma. {yields} Picropodophyllin targets and abrogates IGF signaling in medulloblastoma. {yields} Picropodophyllin inhibits medulloblastoma tumor cell growth by induction of apoptosis. -- Abstract: The insulin-like growth factor-1 receptor (Igf1r) is a multifunctional membrane-associated tyrosine kinase associated with regulation of transformation, proliferation, differentiation and apoptosis. Increased IGF pathway activity has been reported in human and murine medulloblastoma. Tumors from our genetically-engineered medulloblastoma mouse model over-express Igf1r, and thus this mouse model is a good platform with which to study the role of Igf1r in tumor progression. We hypothesize that inhibition of IGF pathway in medulloblastoma can slow or inhibit tumor growth and metastasis. To test our hypothesis, we tested the role of IGF in tumor growth in vitro by treatment with the tyrosine kinase small molecule inhibitor, picropodophyllin (PPP), which strongly inhibits the IGF pathway. Our results demonstrate that PPP-mediated downregulation of the IGF pathway inhibits mouse tumor cell growth and induces apoptotic cell death in vitro in primary medulloblastoma cultures that are most reflective of tumor cell behavior in vivo.

  6. [MET receptor inhibition: Hope against resistance to targeted therapies?

    PubMed

    Hochart, Audrey; Leblond, Pierre; Le Bourhis, Xuefen; Meignan, Samuel; Tulasne, David

    2017-02-01

    Overcoming the drug resistance remains a crucial issue in cancer treatment. For refractory patients, the use of MET receptor tyrosine kinase inhibitors seems to be hopeful. Indeed, important mechanisms underlying drug resistance argue for association of MET inhibitors with targeted therapies, both on first-line to prevent a primary resistance and on the second line to overcoming acquired resistance. Indeed, met gene amplification is the second most common alteration involved in acquired resistance to anti-epidermal growth factor receptor (EGFR) therapies in non-small cells lung cancer (NSCLC). Hypoxia, for its part, can activate MET transcription and amplifies HGF signaling resulting in MET activation, which could be involved in vascular endothelial growth factor (VEGF) inhibitors escape. In HER2 positive breast cancers, MET amplification may also induce tumor cells a hatch escape, resulting in secondary resistance. Finally, some patients with BRAF mutated melanoma exhibit primary resistance to BRAF inhibition by stromal HGF (ligand of MET) secretion resulting in MET receptor activation. Experimental data highlight the role of MET in primary and secondary resistance and encourage combined treatments including MET inhibitors. In this context, several promising clinical trials are in progress in numerous cancers (NSCLC, melanoma, breast cancer, glioblastoma…) using combination of anti-MET and other specific therapies targeting EGFR, BRAF, VEGF or HER2. This review summarizes the potential benefits that MET inhibition should provide to patients with cancer refractory to targeted therapies.

  7. Intramuscular ketorolac inhibits activation of rat peripheral NMDA receptors.

    PubMed

    Cairns, Brian E; Dong, Xu-Dong; Wong, Hayes; Svensson, Peter

    2012-06-01

    The nonsteroidal anti-inflammatory drug (NSAID) diclofenac has local anesthetic-like and peripheral N-methyl-d-aspartate (NMDA) receptor antagonist characteristics when administered at higher concentrations to masticatory muscle. It is not known if the ability to inhibit NMDA receptors is unique to diclofenac or shared by other NSAIDs. This study was undertaken to determine whether intramuscular injection of ketorolac or naproxen at concentrations that do not induce local anesthetic-like effects could attenuate jaw-closer muscle nociceptor discharge in anesthetized Sprague-Dawley rats. It was found that ketorolac (5 mM) inhibited hypertonic saline-evoked nociceptor discharge, which suggests that at this concentration, ketorolac has local anesthetic-like properties. A lower concentration of ketorolac (0.5 mM), which did not affect hypertonic saline-evoked discharge, did inhibit nociceptor discharge evoked by NMDA. In contrast, naproxen (5 mM) did not alter hypertonic saline- or NMDA-evoked nociceptor discharge. Subsequent experiments revealed that ketorolac (0.5 mM) had no effect on nociceptor discharge evoked by αβ-methylene ATP, 5-hydroxytryptamine, or AMPA. The inhibitory effect of ketorolac did not appear to be related to cyclooxygenase inhibition, because the concentration of prostaglandin E(2) in the masticatory muscles 10 min after injection of either NSAID was not significantly decreased. The present study indicates that in vivo, ketorolac, but not naproxen, can antagonize NMDA-evoked nociceptor discharge similarly to diclofenac. We speculate that structural similarities between ketorolac and diclofenac could account for the ability of these NSAIDs to inhibit NMDA-evoked nociceptor discharge. These properties may partly explain the analgesic effect of intramuscularly injected ketorolac in the clinic.

  8. Reflex inhibition of canine inspiratory intercostals by diaphragmatic tension receptors

    PubMed Central

    De Troyer, André; Brunko, Eric; Leduc, Dimitri; Jammes, Yves

    1999-01-01

    Electrical stimulation of phrenic afferent fibres in the dog elicits a reflex inhibition of efferent activity to the inspiratory intercostal muscles. However, electrical stimulation has a poor selectivity, so the sensory receptors responsible for this inhibition were not identified.In the present studies, cranial forces were applied during spontaneous inspiration to the abdominal surface of the central, tendinous portion of the canine diaphragm to activate tension mechanoreceptors in the muscle. Vagal afferent inputs were eliminated by vagotomy.The application of force to the central tendon caused a graded, reflex reduction in inspiratory intercostal activity, especially in external intercostal activity. This reduction was commonly associated with a decrease in inspiratory duration and was invariably attenuated after section of the cervical dorsal roots.In contrast, no change in inspiratory intercostal activity was seen when high frequency mechanical vibration was applied to the central tendon to stimulate diaphragmatic muscle spindles.These observations provide strong evidence that tension receptors in the diaphragm, but not muscle spindles, induce reflex inhibition of inspiratory intercostal activity. The expression of this reflex probably involves supraspinal structures. PMID:9831731

  9. GABAA receptor inhibition triggers a nicotinic neuroprotective mechanism

    PubMed Central

    Ferchmin, P. A; Pérez, Dinely; Alvarez, William Castro; Penzo, Mario A.; Maldonado, Héctor M.; Eterovic, Vesna A.

    2014-01-01

    Nicotinic acetylcholine receptor (nAChR)-mediated neuroprotection has been implicated in the treatment of neurodegenerative disorders such as Alzheimer’s, Parkinson’s and hypoxic ischemic events, as well as other diseases hallmarked by excitotoxic and apoptotic neuronal death. Several modalities of nicotinic neuroprotection have been reported. However, although this process generally involves α4β2 and α7 subtypes, the underlying mechanisms are largely unknown. Interestingly, both activation and inhibition of α7 nAChRs have been reported to be neuroprotective. We have shown that inhibition of α7 nAChRs protects the function of acute hippocampal slices against excitotoxicity in a α4β2-dependent manner. Neuroprotection was assessed as the prevention of the NMDA-dependent loss of the area of population spikes (PSs) in the CA1 area of acute hippocampal slices. Our results support a model in which α7 AChRs control the release of GABA. Blocking either α7 or GABAA receptors reduces the inhibitory tone on cholinergic terminals, thereby promoting α4β2 activation, which in turn mediates neuroprotection. These results shed light on how α7 nAChR inhibition can be neuroprotective through a mechanism mediated by activation of α4β2 nAChRs. PMID:23280428

  10. Alpha-2 adrenergic receptor-mediated inhibition of thermogenesis

    PubMed Central

    Madden, Christopher J.; Tupone, Domenico; Cano, Georgina; Morrison, Shaun F.

    2013-01-01

    Alpha2-adrenergic receptor (α2-AR) agonists have been use as anti-hypertensive agents, in the management of drug withdrawal, and as sedative analgesics. Since α2-AR agonists also influence the regulation of body temperature, we explored their potential as antipyretic agents. This study delineates the central neural substrate for the inhibition of rat brown adipose tissue (BAT) and shivering thermogenesis by α2-AR agonists. Nanoinjection of the α2-AR agonist, clonidine (1.2 nmol), into the rostral raphe pallidus (rRPa) inhibited BAT sympathetic nerve activity (SNA) and BAT thermogenesis. Subsequent nanoinjection of the α2-AR antagonist, idazoxan (6nmol) into the rRPa reversed the clonidine-evoked inhibition of BAT SNA and BAT thermogenesis. Systemic administration of the α2-AR agonists, dexmedetomidine (25ug/kg, iv) or clonidine (100ug/kg, iv) inhibited shivering EMGs, BAT SNA and BAT thermogenesis effects that were reversed by nanoinjection of idazoxan (6nmol) into the rRPa. Dexmedetomidine (100µg/kg, ip) prevented and reversed lipopolysaccharide (10µg/kg ip)-evoked thermogenesis in free-behaving rats. Cholera toxin subunit b retrograde tracing from rRPa and pseudorabies virus transynaptic retrograde tracing from BAT combined with immunohistochemistry for catecholaminergic biosynthetic enzymes revealed the ventrolateral medulla as the source of catecholaminergic input to the rRPa and demonstrated that these catecholaminergic neurons are synaptically connected to BAT. Photostimulation of VLM neurons expressing of the PRSx8-ChR2-mCherry lentiviral vector inhibited BAT SNA via activation of α2-ARs in the rRPa. These results indicate a potent inhibition of BAT and shivering thermogenesis by α2-AR activation in the rRPa, and suggest a therapeutic potential of α2-AR agonists for reducing potentially-lethal elevations in body temperature during excessive fever. PMID:23365239

  11. B-cell receptor activation inhibits AID expression through calmodulin inhibition of E-proteins.

    PubMed

    Hauser, Jannek; Sveshnikova, Natalia; Wallenius, Anders; Baradaran, Sanna; Saarikettu, Juha; Grundström, Thomas

    2008-01-29

    Upon encountering antigens, B-lymphocytes can adapt to produce a highly specific and potent antibody response. Somatic hypermutation, which introduces point mutations in the variable regions of antibody genes, can increase the affinity for antigen, and antibody effector functions can be altered by class switch recombination (CSR), which changes the expressed constant region exons. Activation-induced cytidine deaminase (AID) is the mutagenic antibody diversification enzyme that is essential for both somatic hypermutation and CSR. The mutagenic AID enzyme has to be tightly controlled. Here, we show that engagement of the membrane-bound antibodies of the B-cell receptor (BCR), which signals that good antibody affinity has been reached, inhibits AID gene expression and that calcium (Ca(2+)) signaling is essential for this inhibition. Moreover, we show that overexpression of the Ca(2+) sensor protein calmodulin inhibits AID gene expression, and that the transcription factor E2A is required for regulation of the AID gene by the BCR. E2A mutated in the binding site for calmodulin, and thus showing calmodulin-resistant DNA binding, makes AID expression resistant to the inhibition through BCR activation. Thus, BCR activation inhibits AID gene expression through Ca(2+)/calmodulin inhibition of E2A.

  12. Dopamine D1 receptor involvement in latent inhibition and overshadowing.

    PubMed

    Nelson, Andrew J D; Thur, Karen E; Cassaday, Helen J

    2012-11-01

    Latent inhibition (LI) manifests as poorer conditioning to a stimulus that has previously been experienced without consequence. There is good evidence of dopaminergic modulation of LI, as the effect is reliably disrupted by the indirect dopamine (DA) agonist amphetamine. The disruptive effects of amphetamine on LI are reversed by both typical and atypical antipsychotics, which on their own are able to facilitate LI. However, the contribution of different DA receptors to these effects is poorly understood. Amphetamine effects on another stimulus selection procedure, overshadowing, have been suggested to be D1-mediated. Thus, in the current experiments, we systematically investigated the role of D1 receptors in LI. First, we tested the ability of the full D1 agonist SKF 81297 to abolish LI and compared the effects of this drug on LI and overshadowing. Subsequently, we examined whether the D1 antagonist SCH 23390 can lead to the emergence of LI under conditions that do not produce the effect in normal animals (weak pre-exposure). Finally, we tested the ability of SCH 23390 to block amphetamine-induced disruption of LI. We found little evidence that direct stimulation of D1 receptors abolishes LI (although there was some attenuation of LI at 0.4 mg/kg SKF 81297). Similarly, SCH 23390 failed to enhance LI. However, SCH 23390 did block amphetamine-induced disruption of LI. These data indicate that, while LI may be unaffected by selective manipulation of activity at D1 receptors, the effects of amphetamine on LI are to some extent dependent on actions at D1 receptors.

  13. Muscarinic receptor binding and muscarinic receptor-mediated inhibition of adenylate cyclase in rat brain myelin

    SciTech Connect

    Larocca, J.N.; Ledeen, R.W.; Dvorkin, B.; Makman, M.H.

    1987-12-01

    High-affinity muscarinic cholinergic receptors were detected in myelin purified from rat brain stem with use of the radioligands /sup 3/H-N-methylscopolamine (/sup 3/H-NMS), /sup 3/H-quinuclidinyl benzilate (/sup 3/H-QNB), and /sup 3/H-pirenzepine. /sup 3/H-NMS binding was also present in myelin isolated from corpus callosum. In contrast, several other receptor types, including alpha 1- and alpha 2-adrenergic receptors, present in the starting brain stem, were not detected in myelin. Based on Bmax values from Scatchard analyses, /sup 3/H-pirenzepine, a putative M1 selective ligand, bound to about 25% of the sites in myelin labeled by /sup 3/H-NMS, a nonselective ligand that binds to both M1 and M2 receptor subtypes. Agonist affinity for /sup 3/H-NMS binding sites in myelin was markedly decreased by Gpp(NH)p, indicating that a major portion of these receptors may be linked to a second messenger system via a guanine-nucleotide regulatory protein. Purified myelin also contained adenylate cyclase activity; this activity was stimulated several fold by forskolin and to small but significant extents by prostaglandin E1 and the beta-adrenergic agonist isoproterenol. Myelin adenylate cyclase activity was inhibited by carbachol and other muscarinic agonists; this inhibition was blocked by the antagonist atropine. Levels in myelin of muscarinic receptors were 20-25% and those of forskolin-stimulated adenylate cyclase 10% of the values for total particulate fraction of whole brain stem. These levels in myelin are appreciably greater than would be predicted on the basis of contamination. Also, additional receptors and adenylate cyclase, added by mixing nonmyelin tissue with whole brain stem, were quantitatively removed during the purification procedure.

  14. Discoidin domain receptor 2 inhibits fibrillogenesis of collagen type 1.

    PubMed

    Mihai, Cosmin; Iscru, Daniel F; Druhan, Lawrence J; Elton, Terry S; Agarwal, Gunjan

    2006-09-01

    Discoidin domain receptors (DDR1 and DDR2) are widely expressed cell-surface receptors, which bind to and are activated by collagens, including collagen type 1. Activation of DDRs and the resulting downstream signaling is known to regulate the extracellular matrix. However, little is known about how DDRs interact with collagen and its direct impact on collagen regulation. Here, we have established that by binding to collagen, the extracellular domain (ECD) of DDR2 inhibits collagen fibrillogenesis and alters the morphology of collagen type 1 fibers. Our in vitro assays utilized DDR2-Fc fusion proteins, which contain only the ECD of DDR2. Using surface plasmon resonance, we confirmed that further oligomerization of DDR2-Fc (by means of anti-Fc antibody) greatly enhances its binding to immobilized collagen type 1. Collagen turbidity measurements and biochemical assays indicated that DDR2 delays the formation of collagen fibrils. Atomic force microscopy of soluble collagen revealed that a predominately monomeric state of collagen was present with DDR2, while control solutions had an abundance of polymeric collagen. Transmission electron microscopy of collagen fibers, showed that the native periodic banded structure of collagen fibers was weakened and nearly absent in the presence of DDR2. Further, using a cell-based assay we demonstrate that overexpression of full length DDR2 inhibits fibrillogenesis of collagen type 1. Our results demonstrate a novel and important functional role of the DDR2 ECD that may contribute to collagen regulation via modulation of fibrillogenesis.

  15. Argos inhibits epidermal growth factor receptor signalling by ligand sequestration.

    PubMed

    Klein, Daryl E; Nappi, Valerie M; Reeves, Gregory T; Shvartsman, Stanislav Y; Lemmon, Mark A

    2004-08-26

    The epidermal growth factor receptor (EGFR) has critical functions in development and in many human cancers. During development, the spatial extent of EGFR signalling is regulated by feedback loops comprising both well-understood activators and less well-characterized inhibitors. In Drosophila melanogaster the secreted protein Argos functions as the only known extracellular inhibitor of EGFR, with clearly identified roles in multiple stages of development. Argos is only expressed when the Drosophila EGFR (DER) is activated at high levels, and downregulates further DER signalling. Although there is ample genetic evidence that Argos inhibits DER activation, the biochemical mechanism has not been established. Here we show that Argos inhibits DER signalling without interacting directly with the receptor, but instead by sequestering the DER-activating ligand Spitz. Argos binds tightly to the EGF motif of Spitz and forms a 1:1 (Spitz:Argos) complex that does not bind DER in vitro or at the cell surface. Our results provide an insight into the mechanism of Argos function, and suggest new strategies for EGFR inhibitor design.

  16. Multiple Modes of Ryanodine Receptor 2 Inhibition by Flecainide

    PubMed Central

    Mehra, D.; Imtiaz, M. S.; van Helden, D. F.; Knollmann, B. C.

    2014-01-01

    Catecholaminergic polymorphic ventricular tachycardia (CPVT) causes sudden cardiac death due to mutations in cardiac ryanodine receptors (RyR2), calsequestrin, or calmodulin. Flecainide, a class I antiarrhythmic drug, inhibits Na+ and RyR2 channels and prevents CPVT. The purpose of this study is to identify inhibitory mechanisms of flecainide on RyR2. RyR2 were isolated from sheep heart, incorporated into lipid bilayers, and investigated by single-channel recording under various activating conditions, including the presence of cytoplasmic ATP (2 mM) and a range of cytoplasmic [Ca2+], [Mg2+], pH, and [caffeine]. Flecainide applied to either the cytoplasmic or luminal sides of the membrane inhibited RyR2 by two distinct modes: 1) a fast block consisting of brief substate and closed events with a mean duration of ∼1 ms, and 2) a slow block consisting of closed events with a mean duration of ∼1 second. Both inhibition modes were alleviated by increasing cytoplasmic pH from 7.4 to 9.5 but were unaffected by luminal pH. The slow block was potentiated in RyR2 channels that had relatively low open probability, whereas the fast block was unaffected by RyR2 activation. These results show that these two modes are independent mechanisms for RyR2 inhibition, both having a cytoplasmic site of action. The slow mode is a closed-channel block, whereas the fast mode blocks RyR2 in the open state. At diastolic cytoplasmic [Ca2+] (100 nM), flecainide possesses an additional inhibitory mechanism that reduces RyR2 burst duration. Hence, multiple modes of action underlie RyR2 inhibition by flecainide. PMID:25274603

  17. Inhibition of vitamin d receptor translocation by cigarette smoking extracts.

    PubMed

    Uh, Soo-Taek; Koo, So-My; Kim, Yang Ki; Kim, Ki Up; Park, Sung Woo; Jang, An Soo; Kim, Do Jin; Kim, Yong Hoon; Park, Choon Sik

    2012-11-01

    Vitamin D can translocate a vitamin D receptor (VDR) from the nucleus to the cell membranes. The meaning of this translocation is not elucidated in terms of a role in pathogenesis of chronic obstructive pulmonary disease (COPD) till now. VDR deficient mice are prone to develop emphysema, suggesting that abnormal function of VDR might influence a generation of COPD. The blood levels of vitamin D have known to be well correlated with that of lung function in patients with COPD, and smoking is the most important risk factor in development of COPD. This study was performed to investigate whether cigarette smoke extracts (CSE) can inhibit the translocation of VDR and whether mitogen activated protein kinases (MAPKs) are involved in this inhibition. Human alveolar basal epithelial cell line (A549) was used in this study. 1,25-(OH(2))D(3) and/or MAPKs inhibitors and antioxidants were pre-incubated before stimulation with 10% CSE, and then nucleus and microsomal proteins were extracted for a Western blot of VDR. Five minutes treatment of 1,25-(OH(2))D(3) induced translocation of VDR from nucleus to microsomes by a dose-dependent manner. CSE inhibited 1,25-(OH(2))D(3)-induced translocation of VDR in both concentrations of 10% and 20%. All MAPKs inhibitors did not suppress the inhibitory effects of CSE on the 1,25-(OH(2))D(3)-induced translocation of VDR. Quercetin suppressed the inhibitory effects of CSE on the 1,25-(OH(2))D(3)-induced translocation of VDR, but not in n-acetylcysteine. CSE has an ability to inhibit vitamin D-induced VDR translocation, but MAPKs are not involved in this inhibition.

  18. Inhibition of D4 Dopamine Receptors on Insulin Receptor Expression and Effect in Renal Proximal Tubule Cells.

    PubMed

    Zhang, Ye; Ren, Hongmei; Lu, Xi; He, Duofen; Han, Yu; Wang, Hongyong; Zeng, Chunyu; Shi, Weibin

    2016-04-22

    Ion transport in the renal proximal tubule (RPT), which is increased in essential hypertension, is regulated by numerous hormones and humoral factors, including insulin and dopamine. Activation of dopamine receptor inhibits sodium reabsorption, whereas activation of insulin receptor increases sodium reabsorption in RPTs, and hyperinsulinemic animals and patients have defective renal dopaminergic system. We presume that there is an inhibition of D4 receptor on insulin receptor expression and effect, and the regulation is lost in spontaneously hypertensive rats (SHRs). Insulin receptor expression was determined by immunoblotting, and Na(+)-K(+)-ATPase activity was detected in both Wistar-Kyoto (WKY) and SHR RPT cells. Stimulation of D4 receptor with PD168077 decreased expression of insulin receptors, which was blocked in the presence of the calcium-channel blocker, nicardipine (10(-6) mol/L per 24 hours), in cell culture medium without calcium or in the presence of inositol 1,4,5-trisphosphate (IP3) receptor blocker (2-aminoethyl diphenylborinate [2-ADB]; 10(-6) mol/L per 24 hours), indicating that extracellular calcium entry and calcium release from the endoplasmic reticulum were involved in the signal pathway. Stimulation of the insulin receptor stimulated Na(+)-K(+)-ATPase activity, whereas pretreatment with PD168077 for 24 hours decreased the inhibitory effects of insulin receptor on Na(+)-K(+)-ATPase activity in WKY cells. However, in SHR cells, inhibition of D4 receptor on insulin receptor expression and effect were lost. Activation of D4 receptor inhibits insulin receptor expression in RPT cells from WKY rats. The aberrant inhibition of D4 receptor on insulin receptor expression and effect might be involved in the pathogenesis of essential hypertension. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  19. Inhibition of Rotavirus Infectivity by a Neoglycolipid Receptor Mimetic

    PubMed Central

    Bergner, Daniel W.; Kuhlenschmidt, Theresa B.; Hanafin, William P.; Firkins, Lawrence D.; Kuhlenschmidt, Mark S.

    2011-01-01

    Group A rotaviruses are a major cause of diarrhea in the young of many mammalian species. In rotavirus infected piglets mortality can be as high as 60%. Previous research in this laboratory has identified a porcine intestinal GM3 ganglioside receptor that is required for sialic acid-dependent rotavirus recognition of host cells. In addition, we previously demonstrated exogenously added GM3 can competitively inhibit porcine rotavirus binding and infectivity of host cells in vitro. Sialyllactose, the carbohydrate moiety of GM3, is approximately 3 orders of magnitude less effective than GM3 at inhibiting rotavirus binding to cells. Furthermore, production of therapeutic quantities of GM3 ganglioside for use as an oral carbomimetic in swine is cost prohibitive. In an effort to circumvent these problems, a sialyllactose-containing neoglycolipid was synthesized and evaluated for its ability to inhibit rotavirus binding and infectivity of host cells. Sialyllactose was coupled to dipalmitoylphosphatidylethanolamine (PE) by reductive amination and the product (SLPE) purified by HPLC. Characterization of the product showed a single primulin (lipid) and resorcinol (sialic acid) positive band by thin layer chromatography and quantification of phosphate and sialic acid yielded a 1:1 molar ratio. Mass spectroscopy confirmed a molecular weight coinciding with SLPE. Concentration-dependent binding of rotavirus to SLPE was demonstrated using a thin-layer overlay assay. Using concentrations comparable to GM3, SLPE was also shown to inhibit rotavirus binding to host cells by 80%. Furthermore, SLPE was shown to decrease rotavirus infection of host cells by over 90%. Finally, preliminary results of in vivo animal challenge studies using newborn piglets in their natural environment, demonstrated SLPE afforded complete protection from rotavirus disease. The efficacy of SLPE in inhibiting rotavirus binding and infection in vitro and in vivo, coupled with its relatively low-cost, large

  20. Psychotropic and Nonpsychotropic Cannabis Derivatives Inhibit Human 5-HT3A receptors through a Receptor Desensitization-Dependent Mechanism

    PubMed Central

    Xiong, Wei; Koo, Bon-Nyeo; Morton, Russell; Zhang, Li

    2011-01-01

    Δ9 tetrahydrocannabinol (THC) and cannabidiol (CBD) are the principal psychoactive and non-psychoactive components of cannabis. While most THC-induced behavioral effects are thought to depend on endogenous cannabinoid 1 (CB1) receptors, the molecular targets for CBD remain unclear. Here, we report that CBD and THC inhibited the function of human 5-HT3A receptors (h5-HT3ARs) expressed in HEK 293 cells. The magnitude of THC and CBD inhibition was maximal 5 min after a continuous incubation with cannabinoids. The EC50 values for CBD and THC-induced inhibition were 110 nM and 322 nM respectively in HEK 293 cells expressing h5-HT3ARs. In these cells, CBD and THC did not stimulate specific [35S]-GTP-γs binding in membranes, suggesting that the inhibition by cannabinoids is unlikely mediated by a G-protein dependent mechanism. On the other hand, both CBD and THC accelerated receptor desensitization kinetics without significantly changing activation time. The extent of cannabinoid inhibition appeared to depend on receptor desensitization. Reducing receptor desensitization by nocodazole, 5-hydroxyindole and a point-mutation in the large cytoplasmic domain of the receptor significantly decreased CBD-induced inhibition. Similarly, the magnitude of THC and CBD-induced inhibition varied with the apparent desensitization rate of h5-HT3ARs expressed in Xenopus oocytes. For instance, with increasing amount of h5-HT3AR cRNA injected into the oocytes, the receptor desensitization rate at steady state decreased. THC and CBD-induced inhibition was correlated with the change in the receptor desensitization rate. Thus, CBD and THC inhibit h5-HT3A receptors through a mechanism that is dependent on receptor desensitization. PMID:21477640

  1. Histamine H3 receptor-mediated inhibition of noradrenaline release in the human brain.

    PubMed

    Schlicker, E; Werthwein, S; Zentner, J

    1999-01-01

    Stimulation-evoked 3H-noradrenaline release in human cerebrocortical slices was inhibited by histamine (in a manner sensitive to clobenpropit) and by imetit, suggesting H3 receptor-mediated inhibition of noradrenaline release in human brain.

  2. Quercetin suppresses insulin receptor signaling through inhibition of the insulin ligand–receptor binding and therefore impairs cancer cell proliferation

    SciTech Connect

    Wang, Feng; Yang, Yong

    2014-10-03

    Graphical abstract: - Highlights: • Quercetin inhibits insulin ligand–receptor interactions. • Quercetin reduces downstream insulin receptor signaling. • Quercetin blocks insulin induced glucose uptake. • Quercetin suppresses insulin stimulated cancer cell proliferation and tumor growth. - Abstract: Although the flavonoid quercetin is known to inhibit activation of insulin receptor signaling, the inhibitory mechanism is largely unknown. In this study, we demonstrate that quercetin suppresses insulin induced dimerization of the insulin receptor (IR) through interfering with ligand–receptor interactions, which reduces the phosphorylation of IR and Akt. This inhibitory effect further inhibits insulin stimulated glucose uptake due to decreased cell membrane translocation of glucose transporter 4 (GLUT4), resulting in impaired cancer cell proliferation. The effect of quercetin in inhibiting tumor growth was also evident in an in vivo model, indicating a potential future application for quercetin in the treatment of cancers.

  3. Hereditary Angioedema Therapy: Kallikrein Inhibition and Bradykinin Receptor Antagonism

    PubMed Central

    2010-01-01

    Current strategies for the treatment of hereditary angioedema (HAE) include targeted inhibition or antagonism of the contact system, which is dysregulated in HAE patients by a C1 esterase inhibitor deficiency. Ecallantide, a plasma kallikrein inhibitor, and icatibant, a selective bradykinin-2 receptor antagonist, have recently been evaluated in clinical studies for the treatment of acute HAE attacks. Both drugs have demonstrated evidence of efficacy and safety in treating acute HAE episodes, with ecallantide approved for use in the United States and icatibant approved for use in Europe. As therapeutic options for HAE expand for both for prophylactic and acute treatment strategies, a number of patient-specific and drug-specific factors have emerged as important considerations when developing individualized HAE management plans. Optimization of HAE therapy will require further integration of new therapies into the current treatment paradigm. PMID:23282868

  4. The Orphan Nuclear Receptor SHP Inhibits Hepatocyte Nuclear Factor 4 and Retinoid X Receptor Transactivation: Two Mechanisms for Repression

    PubMed Central

    Lee, Yoon-Kwang; Dell, Helen; Dowhan, Dennis H.; Hadzopoulou-Cladaras, Margarita; Moore, David D.

    2000-01-01

    The orphan nuclear hormone receptor SHP interacts with a number of other nuclear hormone receptors and inhibits their transcriptional activity. Several mechanisms have been suggested to account for this inhibition. Here we show that SHP inhibits transactivation by the orphan receptor hepatocyte nuclear factor 4 (HNF-4) and the retinoid X receptor (RXR) by at least two mechanisms. SHP interacts with the same HNF-4 surface recognized by transcriptional coactivators and competes with them for binding in vivo. The minimal SHP sequences previously found to be required for interaction with other receptors are sufficient for interaction with HNF-4, although deletion results indicate that additional C-terminal sequences are necessary for full binding and coactivator competition. These additional sequences include those associated with direct transcriptional repressor activity of SHP. SHP also competes with coactivators for binding to ligand-activated RXR, and based on the ligand-dependent interaction with other nuclear receptors, it is likely that coactivator competition is a general feature of SHP-mediated repression. The minimal receptor interaction domain of SHP is sufficient for full interaction with RXR, as previously described. This domain is also sufficient for full coactivator competition. Functionally, however, full inhibition of RXR transactivation requires the presence of the C-terminal repressor domain, with only weak inhibition associated with this receptor interaction domain. Overall, these results suggest that SHP represses nuclear hormone receptor-mediated transactivation via two separate steps: first by competition with coactivators and then by direct effects of its transcriptional repressor function. PMID:10594021

  5. Morphine inhibits an alpha9-acetylcholine nicotinic receptor-mediated response by a mechanism which does not involve opioid receptors.

    PubMed

    Lioudyno, M I; Verbitsky, M; Holt, J C; Elgoyhen, A B; Guth, P S

    2000-11-01

    Nicotinic acetylcholine (nACh) receptors are known to be targets for modulation by a number of substances, including the opiates. It is known that acetylcholine (ACh) coexists with opioid peptides in cochlear efferent neurons, and such a colocalization has been proposed for the vestibular system. In the present study we test the hypothesis that morphine, an opioid receptor agonist with a broad spectrum of selectivity, modulates alpha9nACh receptor-mediated responses in frog vestibular hair cells. Morphine dose-dependently and reversibly inhibited ACh-induced currents as recorded by the perforated patch-clamp method. In the presence of morphine the ACh dose-response curve was shifted to the right in a parallel fashion, suggesting a competitive interaction. However, naloxone did not antagonize the inhibition produced by morphine. To test the hypothesis that morphine could interact with the alpha9nACh receptor without the involvement of opioid receptors, experiments were performed using Xenopus laevis oocytes injected with the alpha9nACh receptor cRNA. The currents activated by ACh in Xenopus oocytes, a system that lacks opioid receptors, were also dose-dependently inhibited by morphine. We conclude that morphine inhibits the alpha9nACh receptor-mediated response in hair cells and Xenopus oocytes through a mechanism which does not involve opioid receptors but may be a direct block of the alpha9nACh receptor.

  6. Human Diversity in a Cell Surface Receptor that Inhibits Autophagy.

    PubMed

    Chaudhary, Anu; Leite, Mara; Kulasekara, Bridget R; Altura, Melissa A; Ogahara, Cassandra; Weiss, Eli; Fu, Wenqing; Blanc, Marie-Pierre; O'Keeffe, Michael; Terhorst, Cox; Akey, Joshua M; Miller, Samuel I

    2016-07-25

    Mutations in genes encoding autophagy proteins have been associated with human autoimmune diseases, suggesting that diversity in autophagy responses could be associated with disease susceptibility or severity. A cellular genome-wide association study (GWAS) screen was performed to explore normal human diversity in responses to rapamycin, a microbial product that induces autophagy. Cells from several human populations demonstrated variability in expression of a cell surface receptor, CD244 (SlamF4, 2B4), that correlated with changes in rapamycin-induced autophagy. High expression of CD244 and receptor activation with its endogenous ligand CD48 inhibited starvation- and rapamycin-induced autophagy by promoting association of CD244 with the autophagy complex proteins Vps34 and Beclin-1. The association of CD244 with this complex reduced Vps34 lipid kinase activity. Lack of CD244 is associated with auto-antibody production in mice, and lower expression of human CD244 has previously been implicated in severity of human rheumatoid arthritis and systemic lupus erythematosus, indicating that increased autophagy as a result of low levels of CD244 may alter disease outcomes.

  7. Solubilized placental membrane protein inhibits insulin receptor tyrosine kinase activity

    SciTech Connect

    Strout, H.V. Jr.; Slater, E.E.

    1987-05-01

    Regulation of insulin receptor (IR) tyrosine kinase (TK) activity may be important in modulating insulin action. Utilizing an assay which measures IR phosphorylation of angiotensin II (AII), the authors investigated whether fractions of TX-100 solubilized human placental membranes inhibited IR dependent AII phosphorylation. Autophosphorylated IR was incubated with membrane fractions before the addition of AII, and kinase inhibition measured by the loss of TSP incorporated in AII. An inhibitory activity was detected which was dose, time, and temperature dependent. The inhibitor was purified 200-fold by sequential chromatography on wheat germ agglutinin, DEAE, and hydroxyapatite. This inhibitory activity was found to correlate with an 80 KD protein which was electroeluted from preparative slab gels and rabbit antiserum raised. Incubation of membrane fractions with antiserum before the IRTK assay immunoprecipitated the inhibitor. Protein immunoblots of crude or purified fractions revealed only the 80 KD protein. Since IR autophosphorylation is crucial to IRTK activity, the authors investigated the state of IR autophosphorylation after treatment with inhibitor; no change was detected by phosphoamino acid analysis.

  8. Receptor tyrosine kinase inhibition by regorafenib/sorafenib inhibits growth and invasion of meningioma cells.

    PubMed

    Tuchen, Marcus; Wilisch-Neumann, Annette; Daniel, Evelyn A; Baldauf, Lisa; Pachow, Doreen; Scholz, Johannes; Angenstein, Frank; Stork, Oliver; Kirches, Elmar; Mawrin, Christian

    2017-03-01

    Systemic chemotherapeutic treatment for unresectable and/or aggressive meningiomas is still unsatisfying. PDGF receptor (PDGFR)-mediated activation of mitogenic signalling has been shown to be active in meningiomas. Therefore, we evaluate in vitro and in vivo the effects of inhibiting PDGFR using the clinically well-characterised tyrosine kinase inhibitors sorafenib or regorafenib in meningioma models. IOMM-Lee meningioma cells were used to assess cytotoxic effects, inhibition of proliferation, induction of apoptosis, as well as inhibition of migration and motility by sorafenib and regorafenib. Using an orthotopic mouse xenograft model, growth inhibition as monitored by magnetic resonance imaging, and overall survival of sorafenib- or regorafenib-treated mice compared with control animals was determined. Treatment of malignant IOMM-Lee cells resulted in significantly reduced cell survival and induction of apoptosis following regorafenib and sorafenib treatment. Western blots showed that both drugs target phosphorylation of p44/42 ERK via downregulation of the PDGFR. Both drugs additionally showed significant inhibition of cell motility and invasion. In vivo, mice with orthotopic meningioma xenografts showed a reduced volume (n.s.) of signal enhancement in MRI (mainly tumour) following sorafenib and regorafenib treatment. This was translated in a significantly increased overall survival time (p ≤ 0.05) for regorafenib-treated mice. Analyses of in vivo-grown tumours demonstrated again reduced PDGFR expression and expression/phosphorylation of p44/42. Sorafenib and regorafenib show antitumour activity in vitro and in vivo by targeting PDGFR and p44/42 ERK signalling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Trace amines inhibit insect odorant receptor function through antagonism of the co-receptor subunit

    PubMed Central

    Chen, Sisi; Luetje, Charles W.

    2014-01-01

    Many insect behaviors are driven by olfaction, making insect olfactory receptors (ORs) appealing targets for insect control.  Insect ORs are odorant-gated ion channels, with each receptor thought to be composed of a representative from a large, variable family of odorant binding subunits and a highly conserved co-receptor subunit (Orco), assembled in an unknown stoichiometry.  Synthetic Orco directed agonists and antagonists have recently been identified.  Several Orco antagonists have been shown to act via an allosteric mechanism to inhibit OR activation by odorants.  The high degree of conservation of Orco across insect species results in Orco antagonists having broad activity at ORs from a variety of insect species and suggests that the binding site for Orco ligands may serve as a modulatory site for compounds endogenous to insects or may be a target of exogenous compounds, such as those produced by plants.  To test this idea, we screened a series of biogenic and trace amines, identifying several as Orco antagonists.  Of particular interest were tryptamine, a plant-produced amine, and tyramine, an amine endogenous to the insect nervous system.  Tryptamine was found to be a potent antagonist of Orco, able to block Orco activation by an Orco agonist and to allosterically inhibit activation of ORs by odorants.  Tyramine had effects similar to those of tryptamine, but was less potent.  Importantly, both tryptamine and tyramine displayed broad activity, inhibiting odorant activation of ORs of species from three different insect orders (Diptera, Lepidoptera and Coleoptera), as well as odorant activation of six diverse ORs from a single species (the human malaria vector mosquito, Anopheles gambiae).  Our results suggest that endogenous and exogenous natural compounds serve as Orco ligands modulating insect olfaction and that Orco can be an important target for the development of novel insect repellants. PMID:25075297

  10. 5-hydroxytryptamine2C receptor activation inhibits 5-hydroxytryptamine1B-like receptor function via arachidonic acid metabolism.

    PubMed

    Berg, K A; Maayani, S; Clarke, W P

    1996-10-01

    We previously reported that in Chinese hamster ovary (CHO) cells, 5-hydroxytryptamine (5-HT)1B-like (CHO/5-HT1B) receptor-mediated inhibition of forskolin-stimulated cAMP accumulation is inhibited by activation of transfected human 5-HT2C receptors but not 5-HT2A receptors. In the current study, we investigated the mechanism involved in the regulation of receptor-mediated inhibition of adenylyl cyclase as a means to further elucidate differences between the signal transduction cascades of the 5-HT2A and 5-HT2C receptor subtypes. Activation of 5-HT2C receptors with 5-HT or (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane increased release of arachidonic acid via a phospholipase A2 (PLA2)-dependent mechanism. Incubation with (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (1 microM) abolished 5-carboxamidotryptamine (5 nM)-mediated inhibition of forskolin-stimulated cAMP accumulation, which was blocked by the PLA2 inhibitor mepacrine (100 microM) and the cyclooxygenase inhibitor indomethacin (2 microM). Furthermore, purinergic receptor-mediated PLA2 activation as well as direct activation of PLA2 with melittin reduced CHO/5-HT1B responsiveness. These data indicate that activation of the PLA2/arachidonic acid signaling cascade mediates 5-HT2C receptor regulation of the CHO/5-HT1B receptor pathway. Consistent with our previous report and in contrast to activation of 5-HT2C or purinergic receptors, activation of 5-HT2A receptors had no effect on CHO/5-HT1B receptor function, although 5-HT2A receptor-mediated activation of PLA2 was measured. Interestingly, purinergic receptor-mediated inhibition of CHO/5-HT1B receptor function was blocked when 5-HT2A receptors were activated simultaneously. These data suggest that the lack of 5-HT2A mediated regulation of CHO/5-HT1B receptors may be due to activation of a third pathway (in addition to PLC and PLA2 pathways), which results in the inhibition of the production or the actions of a cyclooxygenase-dependent arachidonic

  11. A1 adenosine receptors inhibit chloride transport in the shark rectal gland. Dissociation of inhibition and cyclic AMP.

    PubMed Central

    Kelley, G G; Poeschla, E M; Barron, H V; Forrest, J N

    1990-01-01

    In the in vitro perfused rectal gland of the dogfish shark (Squalus acanthias), the adenosine analogue 2-chloroadenosine (2Clado) completely and reversibly inhibited forskolin-stimulated chloride secretion with an IC50 of 5 nM. Other A1 receptor agonists including cyclohexyladenosine (CHA), N-ethylcarboxamideadenosine (NECA) and R-phenylisopropyl-adenosine (R-PIA) also completely inhibited forskolin stimulated chloride secretion. The "S" stereoisomer of PIA (S-PIA) was a less potent inhibitor of forskolin stimulated chloride secretion, consistent with the affinity profile of PIA stereoisomers for an A1 receptor. The adenosine receptor antagonists 8-phenyltheophylline and 8-cyclopentyltheophylline completely blocked the effect of 2Clado to inhibit forskolin-stimulated chloride secretion. When chloride secretion and tissue cyclic (c)AMP content were determined simultaneously in perfused glands, 2Clado completely inhibited secretion but only inhibited forskolin stimulated cAMP accumulation by 34-40%, indicating that the mechanism of inhibition of secretion by 2Clado is at least partially cAMP independent. Consistent with these results, A1 receptor agonists only modestly inhibited (9-15%) forskolin stimulated adenylate cyclase activity and 2Clado markedly inhibited chloride secretion stimulated by a permeant cAMP analogue, 8-chlorophenylthio cAMP (8CPT cAMP). These findings provide the first evidence for a high affinity A1 adenosine receptor that inhibits hormone stimulated ion transport in a model epithelia. A major portion of this inhibition occurs by a mechanism that is independent of the cAMP messenger system. PMID:1970583

  12. Honokiol inhibits androgen receptor activity in prostate cancer cells.

    PubMed

    Hahm, Eun-Ryeong; Karlsson, A Isabella; Bonner, Michael Y; Arbiser, Jack L; Singh, Shivendra V

    2014-04-01

    We have shown previously that honokiol (HNK), a bioactive component of the medicinal plant Magnolia officinalis, inhibits growth of human prostate cancer cells in vitro and in vivo. However, the effect of HNK on androgen receptor (AR) signaling has not been studied. LNCaP, C4-2, and TRAMP-C1 cells were used for various assays. Trypan blue dye exclusion assay or clonogenic assay was performed for determination of cell viability. The effects of HNK and/or its analogs on protein levels of AR and its target gene product prostate specific antigen (PSA) were determined by western blotting. RNA interference of p53 was achieved by transient transfection. Reverse transcription-polymerase chain reaction was performed for mRNA expression of AR. Nuclear level of AR was visualized by microscopy. Apoptosis was quantified by DNA fragmentation assay or flow cytometry after Annexin V-propidium iodide staining. HNK and its dichloroacetate analog (HDCA) were relatively more effective in suppressing cell viability and AR protein level than honokiol epoxide or biseugenol. Nuclear translocation of AR stimulated by a synthetic androgen (R1881) was markedly suppressed in the presence of HNK. Downregulation of AR protein resulting from HNK exposure was attributable to transcriptional repression as well as proteasomal degradation. HNK-mediated suppression of AR protein was maintained in LNCaP cells after knockdown of p53 protein. HNK-induced apoptosis was not affected by R1881 treatment. The present study demonstrates, for the first time, that HNK inhibits activity of AR in prostate cancer cells regardless of the p53 status. © 2013 Wiley Periodicals, Inc.

  13. Lysophosphatidic Acid (LPA) Receptor 5 Inhibits B Cell Antigen Receptor Signaling and Antibody Response1

    PubMed Central

    Shotts, Kristin; Donovan, Erin E.; Strauch, Pamela; Pujanauski, Lindsey M.; Victorino, Francisco; Al-Shami, Amin; Fujiwara, Yuko; Tigyi, Gabor; Oravecz, Tamas; Pelanda, Roberta; Torres, Raul M.

    2014-01-01

    Lysophospholipids have emerged as biologically important chemoattractants capable of directing lymphocyte development, trafficking and localization. Lysophosphatidic acid (LPA) is a major lysophospholipid found systemically and whose levels are elevated in certain pathological settings such as cancer and infections. Here, we demonstrate that BCR signal transduction by mature murine B cells is inhibited upon LPA engagement of the LPA5 (GPR92) receptor via a Gα12/13 – Arhgef1 pathway. The inhibition of BCR signaling by LPA5 manifests by impaired intracellular calcium store release and most likely by interfering with inositol 1,4,5-trisphosphate receptor activity. We further show that LPA5 also limits antigen-specific induction of CD69 and CD86 expression and that LPA5-deficient B cells display enhanced antibody responses. Thus, these data show that LPA5 negatively regulates BCR signaling, B cell activation and immune response. Our findings extend the influence of lysophospholipids on immune function and suggest that alterations in LPA levels likely influence adaptive humoral immunity. PMID:24890721

  14. Tumor Necrosis Factor Inhibits Glucocorticoid Receptor Function in Mice

    PubMed Central

    Van Bogaert, Tom; Vandevyver, Sofie; Dejager, Lien; Van Hauwermeiren, Filip; Pinheiro, Iris; Petta, Ioanna; Engblom, David; Kleyman, Anna; Schütz, Günther; Tuckermann, Jan; Libert, Claude

    2011-01-01

    As glucocorticoid resistance (GCR) and the concomitant burden pose a worldwide problem, there is an urgent need for a more effective glucocorticoid therapy, for which insights into the molecular mechanisms of GCR are essential. In this study, we addressed the hypothesis that TNFα, a strong pro-inflammatory mediator in numerous inflammatory diseases, compromises the protective function of the glucocorticoid receptor (GR) against TNFα-induced lethal inflammation. Indeed, protection of mice by dexamethasone against TNFα lethality was completely abolished when it was administered after TNFα stimulation, indicating compromised GR function upon TNFα challenge. TNFα-induced GCR was further demonstrated by impaired GR-dependent gene expression in the liver. Furthermore, TNFα down-regulates the levels of both GR mRNA and protein. However, this down-regulation seems to occur independently of GC production, as TNFα also resulted in down-regulation of GR levels in adrenalectomized mice. These findings suggest that the decreased amount of GR determines the GR response and outcome of TNFα-induced shock, as supported by our studies with GR heterozygous mice. We propose that by inducing GCR, TNFα inhibits a major brake on inflammation and thereby amplifies the pro-inflammatory response. Our findings might prove helpful in understanding GCR in inflammatory diseases in which TNFα is intimately involved. PMID:21646349

  15. Cinnamaldehyde suppresses toll-like receptor 4 activation mediated through the inhibition of receptor oligomerization.

    PubMed

    Youn, Hyung S; Lee, Jun K; Choi, Yong J; Saitoh, Shin I; Miyake, Kensuke; Hwang, Daniel H; Lee, Joo Y

    2008-01-15

    Toll-like receptors (TLRs) play a critical role in induction of innate immune and inflammatory responses by recognizing invading pathogens or non-microbial endogenous molecules. TLRs have two major downstream signaling pathways, MyD88- and TRIF-dependent pathways leading to the activation of NFkappaB and IRF3 and the expression of inflammatory mediators. Deregulation of TLR activation is known to be closely linked to the increased risk of many chronic diseases. Cinnamaldehyde (3-phenyl-2-propenal) has been reported to inhibit NFkappaB activation induced by pro-inflammatory stimuli and to exert anti-inflammatory and anti-bacterial effects. However, the underlying mechanism has not been clearly identified. Our results showed that cinnamaldehyde suppressed the activation of NFkappaB and IRF3 induced by LPS, a TLR4 agonist, leading to the decreased expression of target genes such as COX-2 and IFNbeta in macrophages (RAW264.7). Cinnamaldehyde did not inhibit the activation of NFkappaB or IRF3 induced by MyD88-dependent (MyD88, IKKbeta) or TRIF-dependent (TRIF, TBK1) downstream signaling components. However, oligomerization of TLR4 induced by LPS was suppressed by cinnamaldehyde resulting in the downregulation of NFkappaB activation. Further, cinnamaldehyde inhibited ligand-independent NFkappaB activation induced by constitutively active TLR4 or wild-type TLR4. Our results demonstrated that the molecular target of cinnamaldehyde in TLR4 signaling is oligomerization process of receptor, but not downstream signaling molecules suggesting a novel mechanism for anti-inflammatory activity of cinnamaldehyde.

  16. Science Signaling Podcast for 20 December 2016: Trans-inhibition by Fc receptors.

    PubMed

    Daëron, Marc; VanHook, Annalisa M

    2016-12-20

    This Podcast features an interview with Marc Daëron, author of a Research Article that appears in the 20 December 2016 issue of Science Signaling, about a mechanism by which an Fc receptor can inhibit signaling by other receptors without aggregating with those other receptors. Engagement of Fc receptors on basophils and mast cells can either activate these cells, which promotes autoimmune and allergic inflammation, or prevent these cells from being activated. Whether these cells are activated depends upon which Fc receptors are present in clusters, because some Fc receptors can inhibit signaling by other Fc receptors that are present in the same signalosome, a phenomenon known as cis-inhibition. Malbec et al. identified a mechanism whereby inhibitory Fc receptors limit signaling by activating Fc receptors without being present in the same signalosome. This mechanism of trans-inhibition also allowed inhibitory Fc receptors to limit signaling by growth factor receptors in mast cells and oncogene-induced proliferation in mastocytoma cells.Listen to Podcast. Copyright © 2016, American Association for the Advancement of Science.

  17. Minimal RNA aptamer sequences that can inhibit or alleviate noncompetitive inhibition of the muscle-type nicotinic acetylcholine receptor.

    PubMed

    Sivaprakasam, Kannan; Pagán, Oné R; Hess, George P

    2010-02-01

    Combinatorially synthesized nucleotide polymers have been used during the last decade to find ligands that bind to specific sites on biological molecules, including membrane-bound proteins such as the nicotinic acetylcholine receptors (nAChRs). The neurotransmitter receptors belong to a group of four structurally related proteins that regulate signal transmission between ~10(11) neurons of the mammalian nervous system. The nAChRs are inhibited by compounds such as the anticonvulsant MK-801 [(+)-dizocilpine] and abused drugs such as cocaine. Based on predictions arising from the mechanism of receptor inhibition by MK-801 and cocaine, we developed two classes of RNA aptamers: class I members, which inhibit the nAChR, and class II members, which alleviate inhibition of the receptor by MK-801 and cocaine. The systematic evolution of ligands by the exponential enrichment (SELEX) method was used to obtain these compounds. Here, we report that we have truncated RNA aptamers in each class to determine the minimal nucleic acid sequence that retains the characteristic function for which the aptamer was originally selected. We demonstrate that a truncated class I aptamer containing a sequence of seven nucleotides inhibits the nAChR and that a truncated class II aptamer containing a sequence of only four nucleotides can alleviate MK-801 inhibition.

  18. Influence of cadmium on isolated peritoneal macrophage populations: cadmium inhibits Fc receptor internalization

    SciTech Connect

    Cook, G.B.

    1985-01-01

    In vitro experiments were performed to examine the effect of cadmium on adherent phagocytic cell populations. The authors were able to demonstrate, in vitro, a phagocytic defect that was originally observed in an in vivo system. Using in vitro methodologies, cadmium was found to inhibit opsonin-dependent but not opsonin-independent phagocytosis in two different populations of macrophages. The receptors through which the opsonized /sup 51/Cr-ElgG were internalized were characterized as Fc receptors. They were able to demonstrate that cadmium could reversibly inhibit internalization of Fc receptors. This mechanism, rather than an alteration of the receptors' binding capabilities, was responsible for the observed inhibition of Fc mediated (opsonin-dependent) phagocytosis in both populations of macrophages tested. The defect was not specific for cadmium per se. Zinc treatment caused a similar inhibition of Fc receptor mediated phagocytosis.

  19. Phenobarbital indirectly activates the constitutive active androstane receptor (CAR) by inhibition of epidermal growth factor receptor signaling

    PubMed Central

    Mutoh, Shingo; Sobhany, Mack; Moore, Rick; Perera, Lalith; Pedersen, Lee; Sueyoshi, Tatsuya; Negishi, Masahiko

    2017-01-01

    Phenobarbital is a central nervous system depressant that also indirectly activates nuclear receptor constitutive active androstane receptor (CAR), which promotes drug and energy metabolism, as well as cell growth (and death), in the liver. We found that phenobarbital activated CAR by inhibiting epidermal growth factor receptor (EGFR) signaling. Phenobarbital bound to EGFR and potently inhibited the binding of EGF, which prevented the activation of EGFR. This abrogation of EGFR signaling induced the dephosphorylation of receptor for activated C kinase 1 (RACK1) at Tyr52, which then promoted the dephosphorylation of CAR at Thr38 by the catalytic core subunit of protein phosphatase 2A. The findings demonstrated that the phenobarbital-induced mechanism of CAR dephosphorylation and activation is mediated through its direct interaction with and inhibition of EGFR. PMID:23652203

  20. Phenobarbital indirectly activates the constitutive active androstane receptor (CAR) by inhibition of epidermal growth factor receptor signaling.

    PubMed

    Mutoh, Shingo; Sobhany, Mack; Moore, Rick; Perera, Lalith; Pedersen, Lee; Sueyoshi, Tatsuya; Negishi, Masahiko

    2013-05-07

    Phenobarbital is a central nervous system depressant that also indirectly activates nuclear receptor constitutive active androstane receptor (CAR), which promotes drug and energy metabolism, as well as cell growth (and death), in the liver. We found that phenobarbital activated CAR by inhibiting epidermal growth factor receptor (EGFR) signaling. Phenobarbital bound to EGFR and potently inhibited the binding of EGF, which prevented the activation of EGFR. This abrogation of EGFR signaling induced the dephosphorylation of receptor for activated C kinase 1 (RACK1) at Tyr(52), which then promoted the dephosphorylation of CAR at Thr(38) by the catalytic core subunit of protein phosphatase 2A. The findings demonstrated that the phenobarbital-induced mechanism of CAR dephosphorylation and activation is mediated through its direct interaction with and inhibition of EGFR.

  1. Inhibition of angiogenesis by selective estrogen receptor modulators through blockade of cholesterol trafficking rather than estrogen receptor antagonism.

    PubMed

    Shim, Joong Sup; Li, Ruo-Jing; Lv, Junfang; Head, Sarah A; Yang, Eun Ju; Liu, Jun O

    2015-06-28

    Selective estrogen receptor modulators (SERM) including tamoxifen are known to inhibit angiogenesis. However, the underlying mechanism, which is independent of their action on the estrogen receptor (ER), has remained largely unknown. In the present study, we found that tamoxifen and other SERM inhibited cholesterol trafficking in endothelial cells, causing a hyper-accumulation of cholesterol in late endosomes/lysosomes. Inhibition of cholesterol trafficking by tamoxifen was accompanied by abnormal subcellular distribution of vascular endothelial growth factor receptor-2 (VEGFR2) and inhibition of the terminal glycosylation of the receptor. Tamoxifen also caused perinuclear positioning of lysosomes, which in turn trapped the mammalian target of rapamycin (mTOR) in the perinuclear region of endothelial cells. Abnormal distribution of VEGFR2 and mTOR and inhibition of VEGFR2 and mTOR activities by tamoxifen were significantly reversed by addition of cholesterol-cyclodextrin complex to the culture media of endothelial cells. Moreover, high concentrations of tamoxifen inhibited endothelial and breast cancer cell proliferation in a cholesterol-dependent, but ER-independent, manner. Together, these results unraveled a previously unrecognized mechanism of angiogenesis inhibition by tamoxifen and other SERM, implicating cholesterol trafficking as an attractive therapeutic target for cancer treatment.

  2. Effect of dopamine and serotonin receptor antagonists on fencamfamine-induced abolition of latent inhibition.

    PubMed

    de Aguiar, Cilene Rejane Ramos Alves; de Aguiar, Marlison José Lima; DeLucia, Roberto; Silva, Maria Teresa Araujo

    2013-01-05

    The purpose of this investigation was to verify the role of dopamine and serotonin receptors in the effect of fencamfamine (FCF) on latent inhibition. FCF is a psychomotor stimulant with an indirect dopaminergic action. Latent inhibition is a model of attention. Latent inhibition is blocked by dopaminergic agents and facilitated by dopamine receptor agonists. FCF has been shown to abolish latent inhibition. The serotonergic system may also participate in the neurochemical mediation of latent inhibition. The selective dopamine D(1) receptor antagonist SCH 23390 (7-chloro-3-methyl-1-phenyl-1,2,4,5-tetrahydro-3-benzazepin-8-ol), D(2) receptor antagonists pimozide (PIM) and methoclopramide (METH), and serotonin 5-HT(2A/C) receptor antagonist ritanserin (RIT) were used in the present study. Latent inhibition was evaluated using a conditioned emotional response procedure. Male Wistar rats that were water-restricted were subjected to a three-phase procedure: preexposure to a tone, tone-shock conditioning, and a test of the effect of the tone on licking frequency. All of the drugs were administered before the preexposure and conditioning phases. The results showed that FCF abolished latent inhibition, and this effect was clearly antagonized by PIM and METH and moderately attenuated by SCH 23390. At the doses used in the present study, RIT pretreatment did not affect latent inhibition and did not eliminate the effect of FCF, suggesting that the FCF-induced abolition of latent inhibition is not mediated by serotonin 5-HT(2A/C) receptors. These results suggest that the effect of FCF on latent inhibition is predominantly related to dopamine D(2) receptors and that dopamine D(2) receptors participate in attention processes.

  3. The aryl hydrocarbon receptor inhibits prostate carcinogenesis in TRAMP mice.

    PubMed

    Fritz, Wayne A; Lin, Tien-Min; Cardiff, Robert D; Peterson, Richard E

    2007-02-01

    The aryl hydrocarbon receptor (AhR) is a transcription factor that mediates the inhibitory effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on prostate growth and also modulates normal prostate development. This is evidenced by AhR null mice (Ahr-/-) having smaller dorsolateral and anterior prostates, even though all prostate lobes remain histologically normal. To test the hypothesis that loss of the AhR increases the rate of prostate carcinogenesis, the incidence of macroscopic prostate tumors was determined in Ahr+/+, Ahr+/- and Ahr-/- C57BL/6J transgenic adenocarcinoma of the mouse prostate (TRAMP) mice at 35, 70, 105, 140, 175 and 210 days of age. From 140 days, prostate tumor incidence was greater in Ahr-/- (60%) and Ahr+/- (43%) mice than in Ahr+/+ mice (16%). Allele quantification did not indicate a loss of the wild-type Ahr allele in heterozygous TRAMP tumors, suggesting that tumor formation in these mice was not due to a loss of Ahr heterozygosity. Prostatic SV40 large T antigen mRNA expression and protein localization were comparable in TRAMP mice of each Ahr genotype. Prostates from all mice of each Ahr genotype were histologically indistinguishable, exhibiting diffuse epithelial hyperplasia by 105 days of age. mRNA expression and protein localization for molecular markers of neuroendocrine differentiation, including chromogranin A and neuropilin-1, were elevated in prostate tumors compared to tumor-free ventral prostates, regardless of Ahr genotype or age. Taken together, these results demonstrate that the Ahr inhibits prostate carcinogenesis in C57BL/6J TRAMP mice by interfering with neuroendocrine differentiation.

  4. Metabotropic glutamate receptors differentially regulate GABAergic inhibition in thalamus.

    PubMed

    Govindaiah, G; Cox, Charles L

    2006-12-27

    Thalamic interneurons and thalamic reticular nucleus (TRN) neurons provide inhibitory innervation of thalamocortical cells that significantly influence thalamic gating. The local interneurons in the dorsal lateral geniculate nucleus (dLGN) give rise to two distinct synaptic outputs: classical axonal and dendrodendritic. Activation of metabotropic glutamate receptors (mGluRs) by agonists or optic tract stimulation increases the output of these presynaptic dendrites leading to increased inhibition of thalamocortical neurons. The present study was aimed to evaluate the actions of specific mGluRs on inhibitory GABA-mediated signaling. We found that the group I mGluR (mGluR(1,5)) agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) or optic tract stimulation produced a robust increase in spontaneous IPSCs (sIPSCs) in thalamocortical neurons that was attenuated by the selective mGluR(5) antagonist 2-methyl-6-(phenylethynyl)pyridine hydrochloride (MPEP). In contrast, the group II mGluR (mGluR(2,3)) agonists (2R, 4R)-4-aminopyrrolidine-2,4-dicarboxylate (APDC) or (2S,2'R,3'R)-2-(2'3'-dicarboxycyclopropyl)glycine (DCG-IV) suppressed the frequency of sIPSCs. In addition, mGluR(1,5) agonist DHPG produced depolarizations and mGluR(2/3) agonists APDC or L-CCG-I [(2S,1'S,2'S)-2-(carboxycyclopropyl)glycine] produced hyperpolarizations in dLGN interneurons. Furthermore, the enhanced sIPSC activity by optic tract stimulation was reduced when paired with corticothalamic fiber stimulation. The present data indicate that activation of specific mGluR subtypes differentially regulates inhibitory activity via different synaptic pathways. Our results suggest that activation of specific mGluR subtypes can upregulate or downregulate inhibitory activity in thalamic relay neurons, and these actions likely shape excitatory synaptic integration and thus regulate information transfer through thalamocortical circuits.

  5. One aptamer, two functions: the full-length aptamer inhibits AMPA receptors, while the short one inhibits both AMPA and kainate receptors

    PubMed Central

    Jaremko, William J.; Huang, Zhen; Wen, Wei; Wu, Andrew; Karl, Nicholas; Niu, Li

    2017-01-01

    AMPA and kainate receptors, along with NMDA receptors, are distinct subtypes of glutamate ion channels. Excessive activity of AMPA and kainate receptors has been implicated in neurological diseases, such as epilepsy and neuropathic pain. Antagonists that block their activities are therefore potential drug candidates. In a recent article in the Journal of Biological Chemistry by Jaremko et al. 2017, we have reported on the discovery and molecular characterization of an RNA aptamer of a dual functionality: the full-length RNA (101 nucleotide) inhibits AMPA receptors while the truncated or the short (55 nucleotide) RNA inhibits both the AMPA and kainate receptors. The full-length RNA aptamer was isolated through a specially designed, systematic evolution of ligands by exponential enrichment (SELEX) using only a single type of AMPA receptors expressed in HEK-293 cells. The design feature and the results of our recent article are highlighted here, as they demonstrate the utility of the SELEX approach and the potential of using a single AMPA receptor type to develop potent, novel RNA aptamers targeting multiple subunits and AMPA/kainate receptor subtypes with length-dependent functionalities. PMID:28804757

  6. Add-on angiotensin receptor blockade with maximized ACE inhibition.

    PubMed

    Agarwal, R

    2001-06-01

    Prolonged angiotensin-converting enzyme (ACE) inhibitor therapy leads to angiotensin I (Ang I) accumulation, which may "escape" ACE inhibition, generate Ang II, stimulate the Ang II subtype 1 (AT1) receptor, and exert deleterious renal effects in patients with chronic renal diseases. We tested the hypothesis that losartan therapy added to a background of chronic (>3 months) maximal ACE inhibitor therapy (lisinopril 40 mg q.d.) will result in additional Ang II antagonism in patients with proteinuric chronic renal failure with hypertension. Sixteen patients with proteinuric moderately advanced chronic renal failure completed a two-period, crossover, randomized controlled trial. Each period was one month with a two-week washout between periods. In one period, patients received lisinopril 40 mg q.d. along with other antihypertensive therapy, and in the other, losartan 50 mg q.d. was added to the previously mentioned regimen. Hemodynamic measurements included ambulatory blood pressure monitoring (ABP; Spacelabs 90207), glomerular filtration rate (GFR) with iothalamate clearances and cardiac outputs by acetylene helium rebreathing technique. Supine plasma renin activity and plasma aldosterone and 24-hour urine protein were measured in all patients. Twelve patients had diabetic nephropathy, and four had chronic glomerulonephritis. The mean age (+/- SD) was 53 +/- 9 years. The body mass index was 38 +/- 5.7 kg/m(2), and all except two patients were males. Seated cuff blood pressure was 156 +/- 18/88 +/- 12 mm Hg. The pulse rate was 77 +/- 11 per min, and the cardiac index was 2.9 +/- 0.5 L/min/m(2). Mean log 24-hour protein excretion/g creatinine or overall ABPs did not change. Mean placebo subtracted, losartan-attributable change in protein excretion was +1% (95% CI, -20% to 28%, P = 0.89). Similarly, the change in systolic ambulatory blood pressure (ABP) was 4.6 mm Hg (-5.7 to 14.9, P = 0.95), and diastolic ABP was 1.5 mm Hg (-4.5 to 7.6, P = 0.59). No change was seen in

  7. Methylene blue inhibits GABAA receptors by interaction with GABA binding site.

    PubMed

    Chen, Zhenglan; Liu, Ran; Yang, Shao-Hua; Dillon, Glenn H; Huang, Renqi

    2017-06-01

    Methylene blue (MB) is commonly used in diagnostic procedures and is also used to treat various medical conditions. Neurological effects of MB have been reported in clinical observations and experimental studies. Thus the modulation of GABAA receptor function by MB was investigated. Whole-cell GABA-activated currents were recorded from HEK293 cells expressing various GABAA receptor subunit configurations. MB inhibition of GABA currents was apparent at 3 μM, and it had an IC50 of 31 μM in human α1β2γ2 receptors. The MB action was rapid and reversible. MB inhibition was not mediated via the picrotoxin site, as a mutation (T6'F of the β2 subunit) known to confer resistance to picrotoxin had no effect on MB-induced inhibition. Blockade of GABAA receptors by MB was demonstrated across a range of receptors expressing varying subunits, including those expressed at extrasynaptic sites. The sensitivity of α1β2 receptors to MB was similar to that observed in α1β2γ2 receptors, indicating that MB's action via the benzodiazepine or Zn(2+) site is unlikely. MB-induced inhibition of GABA response was competitive with respect to GABA. Furthermore, mutation of α1 F64 to A and β2 Y205 to F in the extracellular N-terminus, both residues which are known to comprise GABA binding pocket, remarkably diminished MB inhibition of GABA currents. These data suggest that MB inhibits GABAA receptor function by direct or allosteric interaction with the GABA binding site. Finally, in mouse hippocampal CA1 pyramidal neurons, MB inhibited GABA-activated currents as well as GABAergic IPSCs. We demonstrate that MB directly inhibits GABAA receptor function, which may underlie some of the effects of MB on the CNS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Transcriptional Corepressor SMILE Recruits SIRT1 to Inhibit Nuclear Receptor Estrogen Receptor-related Receptor γ Transactivation*

    PubMed Central

    Xie, Yuan-Bin; Park, Jeong-Hoh; Kim, Don-Kyu; Hwang, Jung Hwan; Oh, Sangmi; Park, Seung Bum; Shong, Minho; Lee, In-Kyu; Choi, Hueng-Sik

    2009-01-01

    SMILE (small heterodimer partner interacting leucine zipper protein) has been identified as a corepressor of the glucocorticoid receptor, constitutive androstane receptor, and hepatocyte nuclear factor 4α. Here we show that SMILE also represses estrogen receptor-related receptor γ (ERRγ) transactivation. Knockdown of SMILE gene expression increases ERRγ activity. SMILE directly interacts with ERRγ in vitro and in vivo. Domain mapping analysis showed that SMILE binds to the AF2 domain of ERRγ. SMILE represses ERRγ transactivation partially through competition with coactivators PGC-1α, PGC-1β, and GRIP1. Interestingly, the repression of SMILE on ERRγ is released by SIRT1 inhibitors, a catalytically inactive SIRT1 mutant, and SIRT1 small interfering RNA but not by histone protein deacetylase inhibitor. In vivo glutathione S-transferase pulldown and coimmunoprecipitation assays validated that SMILE physically interacts with SIRT1. Furthermore, the ERRγ inverse agonist GSK5182 enhances the interaction of SMILE with ERRγ and SMILE-mediated repression. Knockdown of SMILE or SIRT1 blocks the repressive effect of GSK5182. Moreover, chromatin immunoprecipitation assays revealed that GSK5182 augments the association of SMILE and SIRT1 on the promoter of the ERRγ target PDK4. GSK5182 and adenoviral overexpression of SMILE cooperate to repress ERRγ-induced PDK4 gene expression, and this repression is released by overexpression of a catalytically defective SIRT1 mutant. Finally, we demonstrated that ERRγ regulates SMILE gene expression, which in turn inhibits ERRγ. Overall, these findings implicate SMILE as a novel corepressor of ERRγ and recruitment of SIRT1 as a novel repressive mechanism for SMILE and ERRγ inverse agonist. PMID:19690166

  9. Inhibition of the NMDA and AMPA receptor channels by antidepressants and antipsychotics.

    PubMed

    Barygin, Oleg I; Nagaeva, Elina I; Tikhonov, Denis B; Belinskaya, Darya A; Vanchakova, Nina P; Shestakova, Natalia N

    2017-04-01

    It is known that some antidepressants and antipsychotics directly inhibit NMDA-type ionotropic glutamate receptors. In this study we systematically studied action of seven drugs (Fluoxetine, Citalopram, Desipramine, Amitriptyline, Atomoxetine, Chlorpromazine, and Clozapine) on NMDA receptors and Ca(2+)-permeable and -impermeable AMPA receptors in rat brain neurons by whole-cell patch-clamp technique. Except for weak effect of fluoxetine, all drugs were virtually inactive against Ca(2+)-impermeable AMPA receptors. Fluoxetine and desipramine significantly inhibited Ca(2+)-permeable AMPA receptors (IC50=43±7 and 105±12µM, respectively). Desipramine, atomoxetine and chlorpromazine inhibited NMDA receptors in clinically relevant low micromolar concentrations, while citalopram had only weak effect. All tested medicines have been clustered into two groups by their action on NMDA receptors: desipramine, amitriptyline, chlorpromazine, and atomoxetine display voltage- and magnesium-dependent open channel blocking mechanism. Action of fluoxetine and clozapine was found to be voltage- and magnesium-independent. All voltage-dependent compounds could be trapped in closed NMDA receptor channels. Possible contribution of NMDA receptor inhibition by certain antidepressants and antipsychotics to their analgesic effects in neuropathic pain is discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Competitive inhibition of (TH)dexamethasone binding to mammary glucocorticoid receptor by leupeptin

    SciTech Connect

    Hsieh, L.C.C.; Su, C.; Markland, F.S. Jr.

    1987-03-01

    The inhibitory effect of leupeptin on (TH)dexamethasone binding to the glucocorticoid receptor from lactating goat mammary cytosol has been studied. Leupeptin (10 mM) caused a significant (about 35%) inhibition of (TH)dexamethasone binding to glucocorticoid receptor. Binding inhibition is further increased following filtration of unlabeled cytosolic receptor through a Bio-Gel A 0.5-m column. Binding inhibition was partially reversed by monothioglycerol at 10 mM concentration. A double reciprocal plot revealed that leupeptin appears to be a competitive inhibitor of (TH)dexamethasone binding to the glucocorticoid receptor. Low salt sucrose density gradient centrifugation revealed that the leupeptin-treated sample formed a slightly larger (approximately 9 S) receptor complex (leupeptin-free complex sediments at 8 S).

  11. Metformin (Glucophage) inhibits tyrosine phosphatase activity to stimulate the insulin receptor tyrosine kinase.

    PubMed

    Holland, William; Morrison, Thomas; Chang, Ying; Wiernsperger, Nicholas; Stith, Bradley J

    2004-06-01

    Metformin is a commonly used anti-diabetic but whether its mechanism involves action on the insulin receptor or on downstream events is still controversial. With a time course that was slow compared with insulin action, metformin increased tyrosine phosphorylation of the regulatory domain of the insulin receptor (specifically, tyrosine residues 1150 and 1151). In a direct action, therapeutic levels of metformin stimulated the tyrosine kinase activity of the soluble intracellular portion of the beta subunit of the human insulin receptor toward a substrate derived from the insulin receptor regulatory domain. However, metformin did not alter the order of substrate phosphorylation by the insulin receptor kinase. Using a Xenopus oocyte preparation, we simultaneously recorded tyrosine kinase and phosphatase activities that regulate the insulin receptor by measuring the tyrosine phosphorylation and dephosphorylation of peptides derived from the regulatory domain of the human insulin receptor. In an indirect stimulation of the insulin receptor, metformin inhibited endogenous tyrosine phosphatases and purified human protein tyrosine phosphatase 1B that dephosphorylate and inhibit the insulin receptor kinase. Thus, there was evidence that metformin acted directly upon the insulin receptor and indirectly through inhibition of tyrosine phosphatases.

  12. Appetite suppression based on selective inhibition of NPY receptors.

    PubMed

    Chamorro, S; Della-Zuana, O; Fauchère, J-L; Félétou, M; Galizzi, J-P; Levens, N

    2002-03-01

    The aim of this review is to critically assess available evidence that blockade of the actions of NPY at one of the five NPY receptor subtypes represents an attractive new drug discovery target for the development of an appetite suppressant drug. Blockade of the central actions of NPY using anti-NPY antibodies, antisense oligodeoxynucleotides against NPY and NPY receptor antagonists results in a decrease in food intake in energy-deprived animals. These results appear to show that endogenous NPY plays a role in the control of appetite. The fact that NPY receptors exist as at least five different subtypes raises the possibility that the actions of endogenous NPY on food intake can be adequately dissociated from other effects of the peptide. Current drug discovery has produced a number of highly selective NPY receptor antagonists which have been used to establish the NPY Y(1) receptor subtype as the most critical in regulating short-term food intake. However, additional studies are now needed to more clearly define the relative contribution of NPY acting through the NPY Y2 and NPY Y5 receptors in the complex sequence of physiological and behavioral events that underlie the long-term control of appetite. Blockade of the NPY receptor may produce appetite-suppressing drugs. However, it is too early to state with certainty whether a single subtype selective drug used alone or a combination of NPY receptor selective antagonists used in combination will be necessary to adequately influence appetite regulation.

  13. A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation

    USDA-ARS?s Scientific Manuscript database

    Perception of pathogen-associated molecular patterns (PAMPs) by surface-localised pattern-recognition receptors (PRRs) is a key component of plant innate immunity. Most known plant PRRs are receptor kinases and initiation of PAMP-triggered immunity (PTI) signalling requires phosphorylation of the PR...

  14. Structural determinants for activation or inhibition of ryanodine receptors by basic residues in the dihydropyridine receptor II-III loop.

    PubMed Central

    Casarotto, M G; Green, D; Pace, S M; Curtis, S M; Dulhunty, A F

    2001-01-01

    The structures of peptide A, and six other 7-20 amino acid peptides corresponding to sequences in the A region (Thr671- Leu690) of the skeletal muscle dihydropyridine receptor II-III loop have been examined, and are correlated with the ability of the peptides to activate or inhibit skeletal ryanodine receptor calcium release channels. The peptides adopted either random coil or nascent helix-like structures, which depended upon the polarity of the terminal residues as well as the presence and ionisation state of two glutamate residues. Enhanced activation of Ca2+ release from sarcoplasmic reticulum, and activation of current flow through single ryanodine receptor channels (at -40 mV), was seen with peptides containing the basic residues 681Arg Lys Arg Arg Lys685, and was strongest when the residues were a part of an alpha-helix. Inhibition of channels (at +40 mV) was also seen with peptides containing the five positively charged residues, but was not enhanced in helical peptides. These results confirm the hypothesis that activation of ryanodine receptor channels by the II-III loop peptides requires both the basic residues and their participation in helical structure, and show for the first time that inhibition requires the basic residues, but is not structure-dependent. These findings imply that activation and inhibition result from peptide binding to separate sites on the ryanodine receptor. PMID:11371447

  15. Insulin Action is Blocked by a Monoclonal Antibody That Inhibits the Insulin Receptor Kinase

    NASA Astrophysics Data System (ADS)

    Morgan, David O.; Ho, Lisa; Korn, Laurence J.; Roth, Richard A.

    1986-01-01

    Thirty-six monoclonal antibodies to the human insulin receptor were produced. Thirty-four bound the intracellular domain of the receptor β subunit, the domain containing the tyrosine-specific kinase activity. Of these 34 antibodies, 33 recognized the rat receptor and 1 was shown to precipitate the receptors from mice, chickens, and frogs with high affinity. Another of the antibodies inhibited the kinase activities of the human and frog receptors with equal potencies. This antibody inhibited the kinase activities of these receptors by more than 90%, whereas others had no effect on either kinase activity. Microinjection of the inhibiting antibody into Xenopus oocytes blocked the ability of insulin to stimulate oocyte maturation. In contrast, this inhibiting antibody did not block the ability of progesterone to stimulate the same response. Furthermore, control immunoglobulin and a noninhibiting antibody to the receptor β subunit did not block this response to insulin. These results strongly support a role for the tyrosine-specific kinase activity of the insulin receptor in mediating this biological effect of insulin.

  16. Insulin action is blocked by a monoclonal antibody that inhibits insulin receptor kinase

    SciTech Connect

    Morgan, D.O.; Ho, L.; Korn, L.J.; Roth, R.A.

    1986-01-01

    Thirty-six monoclonal antibodies to the human insulin receptor were produced. Thirty-four bound the intracellular domain of the receptor ..beta.. subunit, the domain containing the tyrosine-specific kinase activity. Of these 34 antibodies, 33 recognized the rat receptor and 1 was shown to precipitate the receptors from mice, chickens and frogs with high affinity. Another of the antibodies inhibited the kinase activities of the human and frog receptors with equal potencies. This antibody inhibited the kinase activities of these receptors by more than 90%, whereas others had no effect on either kinase activity. Microinjection of the inhibiting antibody into Xenopus oocytes blocked the ability of insulin to stimulate oocyte maturation. In contrast, this inhibiting antibody did not block the ability of progesterone to stimulate the same response. Furthermore, control immunoglobulin and a noninhibiting antibody to the receptor ..beta.. subunit did not block this response to insulin. These results strongly support a role for the tyrosine-specific kinase activity of the insulin receptor in mediating this biological effect of insulin.

  17. Nongenomic signaling of the retinoid X receptor through binding and inhibiting Gq in human platelets

    PubMed Central

    Moraes, Leonardo A.; Swales, Karen E.; Wray, Jessica A.; Damazo, Amilcar; Gibbins, Jonathan M.; Warner, Timothy D.

    2007-01-01

    Retinoid X receptors (RXRs) are important transcriptional nuclear hormone receptors, acting as either homodimers or the binding partner for at least one fourth of all the known human nuclear receptors. Functional nongenomic effects of nuclear receptors are poorly understood; however, recently peroxisome proliferator-activated receptor (PPAR) γ, PPARβ, and the glucocorticoid receptor have all been found active in human platelets. Human platelets express RXRα and RXRβ. RXR ligands inhibit platelet aggregation and TXA2 release to ADP and the TXA2 receptors, but only weakly to collagen. ADP and TXA2 both signal via the G protein, Gq. RXR rapidly binds Gq but not Gi/z/o/t/gust in a ligand-dependent manner and inhibits Gq-induced Rac activation and intracellular calcium release. We propose that RXR ligands may have beneficial clinical actions through inhibition of platelet activation. Furthermore, our results demonstrate a novel nongenomic mode for nuclear receptor action and a functional cross-talk between G-protein and nuclear receptor signaling families. PMID:17213293

  18. Prostaglandin E₂ inhibits human lung fibroblast chemotaxis through disparate actions on different E-prostanoid receptors.

    PubMed

    Li, Ying-Ji; Wang, Xing-Qi; Sato, Tadashi; Kanaji, Nobuhiro; Nakanishi, Masanori; Kim, Miok; Michalski, Joel; Nelson, Amy J; Sun, Jian-Hong; Farid, Maha; Basma, Hesham; Patil, Amol; Toews, Myron L; Liu, Xiangde; Rennard, Stephen I

    2011-01-01

    The migration of fibroblasts is believed to play a key role in both normal wound repair and abnormal tissue remodeling. Prostaglandin E (PGE)(2), a mediator that can inhibit many fibroblast functions including chemotaxis, was reported to be mediated by the E-prostanoid (EP) receptor EP2. PGE(2), however, can act on four receptors. This study was designed to determine if EP receptors, in addition to EP2, can modulate fibroblast chemotaxis. Using human fetal lung fibroblasts, the expression of all four EP receptors was demonstrated by Western blotting. EP2-selective and EP4-selective agonists inhibited both chemotaxis toward fibronectin in the blindwell assay and migration in a wound-closure assay. In contrast, EP1-selective and EP3-selective agonists stimulated cell migration in both assay systems. These results were confirmed using EP-selective antagonists. The role of both EP2 and EP4 receptors in mediating the PGE(2) inhibition of chemotaxis was also confirmed by small interfering RNA suppression. Furthermore, the role of EP receptors was confirmed by blocking the expected signaling pathways. Taken together, these results demonstrate that PGE(2) can act on multiple EP receptors in human lung fibroblasts, to exert disparate effects. Alterations in EP receptor expression may have the potential to alter PGE(2) action. Targeting specific EP receptors may offer therapeutic opportunities in conditions characterized by abnormal tissue repair and remodeling.

  19. Increased NMDA receptor inhibition at an increased Sevoflurane MAC

    PubMed Central

    2012-01-01

    Background Sevoflurane potently enhances glycine receptor currents and more modestly decreases NMDA receptor currents, each of which may contribute to immobility. This modest NMDA receptor antagonism by sevoflurane at a minimum alveolar concentration (MAC) could be reciprocally related to large potentiation of other inhibitory ion channels. If so, then reduced glycine receptor potency should increase NMDA receptor antagonism by sevoflurane at MAC. Methods Indwelling lumbar subarachnoid catheters were surgically placed in 14 anesthetized rats. Rats were anesthetized with sevoflurane the next day, and a pre-infusion sevoflurane MAC was measured in duplicate using a tail clamp method. Artificial CSF (aCSF) containing either 0 or 4 mg/mL strychnine was then infused intrathecally at 4 μL/min, and the post-infusion baseline sevoflurane MAC was measured. Finally, aCSF containing strychnine (either 0 or 4 mg/mL) plus 0.4 mg/mL dizocilpine (MK-801) was administered intrathecally at 4 μL/min, and the post-dizocilpine sevoflurane MAC was measured. Results Pre-infusion sevoflurane MAC was 2.26%. Intrathecal aCSF alone did not affect MAC, but intrathecal strychnine significantly increased sevoflurane requirement. Addition of dizocilpine significantly decreased MAC in all rats, but this decrease was two times larger in rats without intrathecal strychnine compared to rats with intrathecal strychnine, a statistically significant (P < 0.005) difference that is consistent with increased NMDA receptor antagonism by sevoflurane in rats receiving strychnine. Conclusions Glycine receptor antagonism increases NMDA receptor antagonism by sevoflurane at MAC. The magnitude of anesthetic effects on a given ion channel may therefore depend on the magnitude of its effects on other receptors that modulate neuronal excitability. PMID:22672766

  20. Increased NMDA receptor inhibition at an increased Sevoflurane MAC.

    PubMed

    Brosnan, Robert J; Thiesen, Roberto

    2012-06-06

    Sevoflurane potently enhances glycine receptor currents and more modestly decreases NMDA receptor currents, each of which may contribute to immobility. This modest NMDA receptor antagonism by sevoflurane at a minimum alveolar concentration (MAC) could be reciprocally related to large potentiation of other inhibitory ion channels. If so, then reduced glycine receptor potency should increase NMDA receptor antagonism by sevoflurane at MAC. Indwelling lumbar subarachnoid catheters were surgically placed in 14 anesthetized rats. Rats were anesthetized with sevoflurane the next day, and a pre-infusion sevoflurane MAC was measured in duplicate using a tail clamp method. Artificial CSF (aCSF) containing either 0 or 4 mg/mL strychnine was then infused intrathecally at 4 μL/min, and the post-infusion baseline sevoflurane MAC was measured. Finally, aCSF containing strychnine (either 0 or 4 mg/mL) plus 0.4 mg/mL dizocilpine (MK-801) was administered intrathecally at 4 μL/min, and the post-dizocilpine sevoflurane MAC was measured. Pre-infusion sevoflurane MAC was 2.26%. Intrathecal aCSF alone did not affect MAC, but intrathecal strychnine significantly increased sevoflurane requirement. Addition of dizocilpine significantly decreased MAC in all rats, but this decrease was two times larger in rats without intrathecal strychnine compared to rats with intrathecal strychnine, a statistically significant (P < 0.005) difference that is consistent with increased NMDA receptor antagonism by sevoflurane in rats receiving strychnine. Glycine receptor antagonism increases NMDA receptor antagonism by sevoflurane at MAC. The magnitude of anesthetic effects on a given ion channel may therefore depend on the magnitude of its effects on other receptors that modulate neuronal excitability.

  1. Inhibition of opioid release in the rat spinal cord by α2C adrenergic receptors

    PubMed Central

    Chen, Wenling; Song, Bingbing; Marvizón, Juan Carlos G.

    2008-01-01

    Neurotransmitter receptors that control the release of opioid peptides in the spinal cord may play an important role in pain modulation. Norepinephrine, released by a descending pathway originating in the brainstem, is a powerful inducer of analgesia in the spinal cord. Adrenergic α2C receptors are present in opioid-containing terminals in the dorsal horn, where they could modulate opioid release. The goal of this study was to investigate this possibility. Opioid release was evoked from rat spinal cord slices by incubating them with the sodium channel opener veratridine in the presence of peptidase inhibitors (actinonin, captopril and thiorphan), and was measured in situ through the internalization of μ-opioid receptors in dorsal horn neurons. Veratridine produced internalization in 70% of these neurons. The α2 receptor agonists clonidine, guanfacine, medetomidine and UK-14304 inhibited the evoked μ-opioid receptor internalization with IC50s of 1.7 μM, 248 nM, 0.3 nM and 22 nM, respectively. However, inhibition by medetomidine was only partial, and inhibition by UK-14304 reversed itself at concentrations higher than 50 nM. None of these agonists inhibited μ-opioid receptor internalization produced by endomorphin-2, showing that they inhibited opioid release and not the internalization itself. The inhibition produced by clonidine, guanfacine or UK-14304 was completely reversed by the selective α2C antagonist JP-1203. In contrast, inhibition by guanfacine was not prevented by the α2A antagonist BRL-44408. These results show that α2C receptors inhibit the release of opioids in the dorsal horn. This action may serve to shut down the opioid system when the adrenergic system is active. PMID:18343461

  2. Inhibition of IGF receptor signaling and hepatoma cell growth by an antibody to ligand oligopeptide of receptor.

    PubMed

    Kong, Jing; Diao, Zhenyu; Deng, Xiaozhao

    2008-02-01

    Research on insulin-like growth factor (IGF) system have shown it to be potent mitogen for hepatoma cells and made it an attractive therapeutic target. But little strategy has been reported to date on targeting and sequestrating IGF against hepatoma. This study is based on the capability of ligand oligopeptide (LOP) to recognize IGF receptor with high efficiency, which is over-expressed on some hepatoma cells. We have been hypothesizing that antibody to LOP would mimic the extracellular ligand-binding domain of IGF receptor and inhibit receptor signaling and cell proliferation. Gene encoding for LOP [E5 (EPFRSPDLALETYG)] of IGF receptor was inserted into HBc carrier for expression in Escherichia coli. The monoclonal antibody (mAb) specific LOP potently inhibited signal transduction mediated by the IGF-IR interaction with IGF-I. Furthermore, it exhibited 47% inhibitory rate of soft agar colony formation and also induced apoptosis. These results indicate an anti-hepatoma potential of the mAb to an LOP of IGF receptor could block the activation of receptor and downstream signaling pathways, and suppress the biological effects mediated by receptor.

  3. Inhibition of calcium channels by neurokinin receptor and signal transduction in hamster submandibular ganglion cells.

    PubMed

    Yamada, T; Endoh, T; Suzuki, T

    1999-04-16

    Both substance P (SP) and neurokinin A (NKA) are known as neurotransmitters of the submandibular ganglion (SMG) neurons. SP released from collaterals of the sensory nerves also regulates the excitability of SMG neurons. It has recently been shown that neurokinins (NK) inhibit calcium channels in various neurons. In this study, the effects of NK on voltage-dependent calcium channel current (I(Ca)) in SMG cells were investigated using the whole-cell patch-clamp recording method. NK-1 receptor agonist and SP caused inhibition of I(Ca) in SMG cells in a dose-dependent manner. NK-1 receptor agonist inhibited L-, N- and P/Q-type I(Ca) components. GDP-beta-S included in the pipette solution reduced the NK-1 receptor agonist-induced inhibition of I(Ca). In addition, NK-1 receptor agonist-induced inhibition of I(Ca) was reduced by stimulation of protein kinase C (PKC) but not cyclic AMP-dependent protein kinase (PKA). The results provided evidence for a signal transduction pathway in which calcium channel inhibition by NK receptors required activation of G-protein and PKC-affected step phosphorylation in SMG neurons.

  4. CysLT1 leukotriene receptor antagonists inhibit the effects of nucleotides acting at P2Y receptors

    PubMed Central

    Mamedova, Liaman; Capra, Valérie; Accomazzo, Maria Rosa; Gao, Zhan-Guo; Ferrario, Silvia; Fumagalli, Marta; Abbracchio, Maria P.; Rovati, G. Enrico; Jacobson, Kenneth A.

    2016-01-01

    Montelukast and pranlukast are orally active leukotriene receptor antagonists selective for the CysLT1 receptor. Conversely, the hP2Y1,2,4,6,11,12,13,14 receptors represent a large family of GPCRs responding to either adenine or uracil nucleotides, or to sugar-nucleotides. Montelukast and pranlukast were found to inhibit nucleotide-induced calcium mobilization in a human monocyte-macrophage like cell line, DMSO-differentiated U937 (dU937). Montelukast and pranlukast inhibited the effects of UTP with IC50 values of 7.7 and 4.3 μM, respectively, and inhibited the effects of UDP with IC50 values of 4.5 and 1.6 μM, respectively, in an insurmountable manner. Furthermore, ligand binding studies using [3H]LTD4 excluded the possibility of orthosteric nucleotide binding to the CysLT1 receptor. dU937 cells were shown to express P2Y2, P2Y4, P2Y6, P2Y11, P2Y13 and P2Y14 receptors. Therefore, these antagonists were studied functionally in a heterologous expression system for the human P2Y receptors. In 1321N1 astrocytoma cells stably expressing human P2Y1,2,4,6 receptors, CysLT1 antagonists inhibited both the P2Y agonist-induced activation of phospholipase C and intracellular Ca2+ mobilization. IC50 values at P2Y1 and P2Y6 receptors were <1 μM. In control astrocytoma cells expressing an endogenous M3 muscarinic receptor, 10 μM montelukast had no effect on the carbachol-induced rise in intracellular Ca2+. These data demonstrated that CysLT1 receptor antagonists interact functionally with signaling pathways of P2Y receptors, and this should foster the study of possible implications for the clinical use of these compounds in asthma or in other inflammatory conditions. PMID:16280122

  5. Activation of histamine H3 receptors in human nasal mucosa inhibits sympathetic vasoconstriction.

    PubMed

    Varty, LoriAnn M; Gustafson, Eric; Laverty, Maureen; Hey, John A

    2004-01-19

    The peripheral histamine H3 receptor is a presynaptic heterologous receptor located on postganglionic sympathetic nerve fibers innervating sympathetic effector systems such as blood vessels and the heart. An extensive body of evidence shows that activation of the histamine H3 receptor attenuates sympathetic tone by presynaptic inhibition of noradrenaline release. It is proposed that this sympathoinhibitory action, in vivo, leads to reduced vasoconstriction, thereby eliciting a vasodilatory effect. In humans, the peripheral histamine H3 receptor has also been shown to exert a sympathoinhibitory function on specific peripheral autonomic effector systems. For example, human saphenous vein and heart possess functional presynaptic histamine H3 receptors on the sympathetic nerve terminals that upon activation decrease the sympathetic tone to these respective organs. The present studies were conducted to define the role of histamine H3 receptors on neurogenic sympathetic vasoconstrictor responses in human nasal turbinate mucosa. Contractility studies were conducted to evaluate the effect of histamine H3 receptor activation on sympathetic vasoconstriction in surgically isolated human nasal turbinate mucosa. We found that the histamine H3 receptor agonist, (R)-alpha-methylhistamine (30 and 300 nM), inhibited electrical field stimulation-induced (neurogenic) sympathetic vasoconstriction in a concentration-dependent fashion. Pretreatment with the selective histamine H3 receptor antagonist, clobenpropit (100 nM), blocked the sympathoinhibitory effect of (R)-alpha-methylhistamine on the neurogenic sympathetic vasoconstriction. In addition, analysis of Taqman mRNA expression studies showed a specific, high level of distribution of the histamine H3 receptor localized in the human nasal mucosa. Taken together, these studies indicate that histamine H3 receptors modulate vascular contractile responses in human nasal mucosa most likely by inhibiting noradrenaline release from

  6. Cloned M1 muscarinic receptors mediate both adenylate cyclase inhibition and phosphoinositide turnover.

    PubMed Central

    Stein, R; Pinkas-Kramarski, R; Sokolovsky, M

    1988-01-01

    The rat M1 muscarinic receptor gene was cloned and expressed in a rat cell line lacking endogenous muscarinic receptors. Assignment of the cloned receptors to the M1 class was pharmacologically confirmed by their high affinity for the M1-selective muscarinic antagonist pirenzepine and low affinity for the M2-selective antagonist AF-DX-116. Guanylyl imidodiphosphate [Gpp(NH)p] converted agonist binding sites on the receptor, from high-affinity to the low-affinity state, thus indicating that the cloned receptors couple to endogenous G-proteins. The cloned receptors mediated both adenylate cyclase inhibition and phosphoinositide hydrolysis, but by different mechanisms. Pertussis toxin blocked the inhibition of adenylate cyclase (indicating coupling of the receptor to inhibitory G-protein), but did not affect phosphoinositide turnover. Furthermore, the stimulation of phosphoinositide hydrolysis was less efficient than the inhibition of adenylate cyclase. These findings demonstrate that cloned M1 receptors are capable of mediating multiple responses in the cell by coupling to different effectors, possibly to different G-proteins. Images PMID:2846274

  7. Structure and mechanism of activity-based inhibition of the EGF-Receptor by Mig6

    PubMed Central

    Ficarro, Scott B.; Zhang, Yi; Lee, Byung Il; Cho, Ahye; Kim, Kihong; Park, Angela K.J.; Park, Woong-Yang; Murray, Bradley; Meyerson, Matthew; Beroukhim, Rameen; Marto, Jarrod A.; Cho, Jeonghee; Eck, Michael J.

    2016-01-01

    Mig6 is a feedback inhibitor that directly binds, inhibits and drives internalization of ErbB-family receptors. Mig6 selectivity targets activated receptors. Here we find that the EGF receptor phosphorylates Mig6 on Tyr394, and that this phosphorylation is primed by prior phosphorylation of an adjacent residue, Tyr395, by Src. Crystal structures of human EGFR–Mig6 complexes reveal the structural basis for enhanced phosphorylation of primed Mig6 and show how Mig6 rearranges after phosphorylation by EGFR to effectively irreversibly inhibit the same receptor that catalyzed its phosphorylation. This dual phosphorylation site allows Mig6 to inactivate EGFR in a manner that requires activation of the target receptor and can be modulated by Src. Loss of Mig6 is a driving event in human cancer; analysis of 1057 gliomas reveals frequent focal deletions of ERRFI, the gene that encodes Mig6, in EGFR-amplified glioblastomas. PMID:26280531

  8. Stimulation and inhibition of adenylyl cyclase by distinct 5-hydroxytryptamine receptors.

    PubMed

    De Vivo, M; Maayani, S

    1990-10-01

    5-Hydroxytryptamine (serotonin, 5-HT) stimulates basal adenylyl cyclase activity in membranes from guinea pig or rat hippocampi, but 5-HT inhibits forskolin-stimulated adenylyl cyclase activity in these same membranes. The opposing effects of 5-HT on adenylyl cyclase activity indicate that distinct 5-HT receptors, positively and negatively coupled to adenylyl cyclase, are present in these membranes. Stimulation of adenylyl cyclase activity is mediated by two distinct 5-HT receptors. The receptor with lower affinity for 5-HT, designated as RL, is apparently homologous with a 5-HT receptor present in rat collicular membranes, but it is not homologous with the stimulatory receptor characterized in neuroblastoma hybrid cell (NCB-20) membranes. The receptor with higher affinity for 5-HT is homologous with the 5-HT1A binding site. The magnitude of stimulation by 5-HT1A receptors is variable with respect to stimulation by RL and is sometimes completely absent. Inhibition of forskolin-stimulated adenylyl cyclase activity, in membranes from either rat or guinea pig hippocampus or rat cortex, is a functional correlate of the 5-HT1A binding site. This inhibitory response was used to determine the pharmacological characteristics of drugs that reportedly have high affinity for 5-HT1A binding sites, such as 1-[2-(4-aminophenyl)ethyl]-4-(3-trifluoromethylphenyl)piperazine (PAPP) and (-)pindolol. PAPP inhibited adenylyl cyclase activity in guinea pig hippocampal membranes with an EC50 value of 27 +/- 3 nM. (-)Pindolol was a partial agonist in inhibiting adenylyl cyclase activity in guinea pig and rat hippocampal membranes. Because of the low intrinsic activity of (-)pindolol, it was tested as an antagonist of the inhibition produced by 5-HT1A receptor agonists in rat hippocampal membranes. The Kb of (-)pindolol was 40 nM as measured by a Schild plot. (-)Propranolol was a simple competitive antagonist at the rat hippocampal receptor with a Kb value of 550 nM. In summary, guinea pig

  9. CD44 Antibody Inhibition of Macrophage Phagocytosis Targets Fcγ Receptor- and Complement Receptor 3-Dependent Mechanisms.

    PubMed

    Amash, Alaa; Wang, Lin; Wang, Yawen; Bhakta, Varsha; Fairn, Gregory D; Hou, Ming; Peng, Jun; Sheffield, William P; Lazarus, Alan H

    2016-04-15

    Targeting CD44, a major leukocyte adhesion molecule, using specific Abs has been shown beneficial in several models of autoimmune and inflammatory diseases. The mechanisms contributing to the anti-inflammatory effects of CD44 Abs, however, remain poorly understood. Phagocytosis is a key component of immune system function and can play a pivotal role in autoimmune states where CD44 Abs have shown to be effective. In this study, we show that the well-known anti-inflammatory CD44 Ab IM7 can inhibit murine macrophage phagocytosis of RBCs. We assessed three selected macrophage phagocytic receptor systems: Fcγ receptors (FcγRs), complement receptor 3 (CR3), and dectin-1. Treatment of macrophages with IM7 resulted in significant inhibition of FcγR-mediated phagocytosis of IgG-opsonized RBCs. The inhibition of FcγR-mediated phagocytosis was at an early stage in the phagocytic process involving both inhibition of the binding of the target RBC to the macrophages and postbinding events. This CD44 Ab also inhibited CR3-mediated phagocytosis of C3bi-opsonized RBCs, but it did not affect the phagocytosis of zymosan particles, known to be mediated by the C-type lectin dectin-1. Other CD44 Abs known to have less broad anti-inflammatory activity, including KM114, KM81, and KM201, did not inhibit FcγR-mediated phagocytosis of RBCs. Taken together, these findings demonstrate selective inhibition of FcγR and CR3-mediated phagocytosis by IM7 and suggest that this broadly anti-inflammatory CD44 Ab inhibits these selected macrophage phagocytic pathways. The understanding of the immune-regulatory effects of CD44 Abs is important in the development and optimization of therapeutic strategies for the potential treatment of autoimmune conditions.

  10. A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation.

    PubMed

    Macho, Alberto P; Schwessinger, Benjamin; Ntoukakis, Vardis; Brutus, Alexandre; Segonzac, Cécile; Roy, Sonali; Kadota, Yasuhiro; Oh, Man-Ho; Sklenar, Jan; Derbyshire, Paul; Lozano-Durán, Rosa; Malinovsky, Frederikke Gro; Monaghan, Jacqueline; Menke, Frank L; Huber, Steven C; He, Sheng Yang; Zipfel, Cyril

    2014-03-28

    Innate immunity relies on the perception of pathogen-associated molecular patterns (PAMPs) by pattern-recognition receptors (PRRs) located on the host cell's surface. Many plant PRRs are kinases. Here, we report that the Arabidopsis receptor kinase EF-TU RECEPTOR (EFR), which perceives the elf18 peptide derived from bacterial elongation factor Tu, is activated upon ligand binding by phosphorylation on its tyrosine residues. Phosphorylation of a single tyrosine residue, Y836, is required for activation of EFR and downstream immunity to the phytopathogenic bacterium Pseudomonas syringae. A tyrosine phosphatase, HopAO1, secreted by P. syringae, reduces EFR phosphorylation and prevents subsequent immune responses. Thus, host and pathogen compete to take control of PRR tyrosine phosphorylation used to initiate antibacterial immunity.

  11. Two PTP receptors mediate CSPG inhibition by convergent and divergent signaling pathways in neurons

    PubMed Central

    Ohtake, Yosuke; Wong, Daniella; Abdul-Muneer, P. M.; Selzer, Michael E.; Li, Shuxin

    2016-01-01

    Receptor protein tyrosine phosphatase σ (PTPσ) and its subfamily member LAR act as transmembrane receptors that mediate growth inhibition of chondroitin sulfate proteoglycans (CSPGs). Inhibition of either receptor increases axon growth into and beyond scar tissues after CNS injury. However, it is unclear why neurons express two similar CSPG receptors, nor whether they use the same or different intracellular pathways. We have now studied the signaling pathways of these two receptors using N2A cells and primary neurons derived from knockout mice. We demonstrate that both receptors share certain signaling pathways (RhoA, Akt and Erk), but also use distinct signals to mediate CSPG actions. Activation of PTPσ by CSPGs selectively inactivated CRMP2, APC, S6 kinase and CREB. By contrast LAR activation inactivated PKCζ, cofilin and LKB1. For the first time, we propose a model of the signaling pathways downstream of these two CSPG receptors. We also demonstrate that deleting both receptors exhibits additive enhancement of axon growth in adult neuronal cultures in vitro. Our findings elucidate the novel downstream pathways of CSPGs and suggest potential synergy of blocking their two PTP receptors. PMID:27849007

  12. agr receptor mutants reveal distinct modes of inhibition by staphylococcal autoinducing peptides

    PubMed Central

    Geisinger, Edward; Muir, Tom W.; Novick, Richard P.

    2009-01-01

    Through the agr quorum-sensing system, staphylococci secrete unique autoinducing peptides (AIPs) and detect their concentration via the AgrC transmembrane receptor, coordinating local bacterial population density with global changes in gene expression. Unique AIP and AgrC variants exist within and between species, and although autologous interactions lead to agr activation, heterologous interactions usually lead to cross-inhibition, resulting in natural quorum-sensing interference. To gain insight into the mechanisms responsible for these phenomena at the level of the receptor, we used random mutagenesis to isolate variants of Staphylococcus aureus AgrC-I with constitutive activity. Constitutive mutations in the sensor domain of the receptor were localized to the last transmembrane helix, whereas those in the histidine kinase domain were mostly clustered to a region near the phosphorylation site histidine. Analysis of these mutants with a range of noncognate AIPs revealed that inhibition is manifested by inverse agonism in certain heterologous pairings and by neutral antagonism in others. In addition, we isolated and characterized an AgrC sensor domain mutant with dramatically broadened activation specificity and reduced sensitivity to inhibition, identifying a single amino acid as a critical determinant of ligand-mediated inhibition. These results suggest that certain noncognate AIPs stabilize an inhibitory receptor conformation that may be a critical feature of the ligand–receptor interaction not initially appreciated in previous analyses of agr inhibition. PMID:19147840

  13. Chemical Modification and Irreversible Inhibition of Striatal A2a Adenosine Receptors

    PubMed Central

    JACOBSON, KENNETH A.; STILES, GARY L.; JI, XIAO-DUO

    2012-01-01

    SUMMARY The ligand recognition site of A2a-adenosine receptors in rabbit striatal membranes was probed using non-site-directed labeling reagents and specific affinity labels. Exposure of membranes to diethylpyrocarbonate at a concentration of 2.5 mm, followed by washing, was found to inhibit the binding of [3H]CGS 21680 and [3H]xanthine amine congener to A2a receptors, by 86 and 30%, respectively. Protection from diethylpyrocarbonate inactivation by an adenosine receptor agonist, 5′-N-ethylcarboxamidoadenosine, and an antagonist, theophylline, suggested the presence of two histidyl residues on the receptor, one associated with agonist binding and the other with antagonist binding. Binding of [3H]CGS 21680 or [3H]xanthine amine congener was partially restored after incubation with 250 mm hydroxylamine, further supporting histidine as the modification site. Preincubation with disulfide-reactive reagents, dithiothreitol or sodium dithionite, at >5 mm inhibited radioligand binding, indicating the presence of essential disulfide bridges in A2a receptors, whereas the concentration of mercaptoethanol required to inhibit binding was >50 mm. A number of isothiocyanate-bearing affinity labels derived from the A2a-selective agonist 2-[(2-aminoethylamino)carbonylethylphenylethylamino]-5′-N-ethylcarboxamidoadenosine (APEC) were synthesized and found to inhibit A2a receptor binding in rabbit and bovine striatal membranes. Binding to rabbit A1 receptors was not inhibited. Preincubation with the affinity label 4-isothiocyanatophenylaminothiocarbonyl-APEC (100 nm) diminished the Bmax for [3H]CGS 21680 binding by 71%, and the Kd was unaffected, suggesting a direct modification of the ligand binding site. Reversal of 4-isothiocyanatophenylaminothiocarbonyl-APEC inhibition of [3H]CGS 21680 binding with hydroxylamine suggested that the site of modification by the isothiocyanate is a cysteine residue. A bromoacetyl derivative of APEC was ineffective as an affinity label at

  14. Allosteric modulation of sigma-1 receptors by SKF83959 inhibits microglia-mediated inflammation.

    PubMed

    Wu, Zhuang; Li, Linlang; Zheng, Long-Tai; Xu, Zhihong; Guo, Lin; Zhen, Xuechu

    2015-09-01

    Recent studies have shown that sigma-1 receptor orthodox agonists can inhibit neuroinflammation. SKF83959 (3-methyl-6-chloro-7,8-hydroxy-1-[3-methylphenyl]-2,3,4,5-tetrahydro-1H-3-benzazepine), an atypical dopamine receptor-1 agonist, has been recently identified as a potent allosteric modulator of sigma-1 receptor. Here, we investigated the anti-inflammatory effects of SKF83959 in lipopolysaccharide (LPS)-stimulated BV2 microglia. Our results indicated that SKF83959 significantly suppressed the expression/release of the pro-inflammatory mediators, such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), inducible nitric oxide synthase (iNOS), and inhibited the generation of reactive oxygen species. All of these responses were blocked by selective sigma-1 receptor antagonists (BD1047 or BD1063) and by ketoconazole (an inhibitor of enzyme cytochrome c17 to inhibit the synthesis of endogenous dehydroepiandrosterone, DHEA). Additionally, we found that SKF83959 promoted the binding activity of DHEA with sigma-1 receptors, and enhanced the inhibitory effects of DHEA on LPS-induced microglia activation in a synergic manner. Furthermore, in a microglia-conditioned media system, SKF83959 inhibited the cytotoxicity of conditioned medium generated by LPS-activated microglia toward HT-22 neuroblastoma cells. Taken together, our study provides the first evidence that allosteric modulation of sigma-1 receptors by SKF83959 inhibits microglia-mediated inflammation. SKF83959 is a potent allosteric modulator of sigma-1 receptor. Our results indicated that SKF83959 enhanced the activity of endogenous dehydroepiandrosterone (DHEA) in a synergic manner, and inhibited the activation of BV2 microglia and the expression/release of the pro-inflammatory mediators, such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), inducible nitric oxide synthase (iNOS).

  15. Pumpkin seed extract: Cell growth inhibition of hyperplastic and cancer cells, independent of steroid hormone receptors.

    PubMed

    Medjakovic, Svjetlana; Hobiger, Stefanie; Ardjomand-Woelkart, Karin; Bucar, Franz; Jungbauer, Alois

    2016-04-01

    Pumpkin seeds have been known in folk medicine as remedy for kidney, bladder and prostate disorders since centuries. Nevertheless, pumpkin research provides insufficient data to back up traditional beliefs of ethnomedical practice. The bioactivity of a hydro-ethanolic extract of pumpkin seeds from the Styrian pumpkin, Cucurbita pepo L. subsp. pepo var. styriaca, was investigated. As pumpkin seed extracts are standardized to cucurbitin, this compound was also tested. Transactivational activity was evaluated for human androgen receptor, estrogen receptor and progesterone receptor with in vitro yeast assays. Cell viability tests with prostate cancer cells, breast cancer cells, colorectal adenocarcinoma cells and a hyperplastic cell line from benign prostate hyperplasia tissue were performed. As model for non-hyperplastic cells, effects on cell viability were tested with a human dermal fibroblast cell line (HDF-5). No transactivational activity was found for human androgen receptor, estrogen receptor and progesterone receptor, for both, extract and cucurbitin. A cell growth inhibition of ~40-50% was observed for all cell lines, with the exception of HDF-5, which showed with ~20% much lower cell growth inhibition. Given the receptor status of some cell lines, a steroid-hormone receptor independent growth inhibiting effect can be assumed. The cell growth inhibition for fast growing cells together with the cell growth inhibition of prostate-, breast- and colon cancer cells corroborates the ethnomedical use of pumpkin seeds for a treatment of benign prostate hyperplasia. Moreover, due to the lack of androgenic activity, pumpkin seed applications can be regarded as safe for the prostate. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Azadirachtin interacts with retinoic acid receptors and inhibits retinoic acid-mediated biological responses.

    PubMed

    Thoh, Maikho; Babajan, Banaganapalli; Raghavendra, Pongali B; Sureshkumar, Chitta; Manna, Sunil K

    2011-02-11

    Considering the role of retinoids in regulation of more than 500 genes involved in cell cycle and growth arrest, a detailed understanding of the mechanism and its regulation is useful for therapy. The extract of the medicinal plant Neem (Azadirachta indica) is used against several ailments especially for anti-inflammatory, anti-itching, spermicidal, anticancer, and insecticidal activities. In this report we prove the detailed mechanism on the regulation of retinoic acid-mediated cell signaling by azadirachtin, active components of neem extract. Azadirachtin repressed all trans-retinoic acid (ATRA)-mediated nuclear transcription factor κB (NF-κB) activation, not the DNA binding but the NF-κB-dependent gene expression. It did not inhibit IκBα degradation, IκBα kinase activity, or p65 phosphorylation and its nuclear translocation but inhibited NF-κB-dependent reporter gene expression. Azadirachtin inhibited TRAF6-mediated, but not TRAF2-mediated NF-κB activation. It inhibited ATRA-induced Sp1 and CREB (cAMP-response element-binding protein) DNA binding. Azadirachtin inhibited ATRA binding with retinoid receptors, which is supported by biochemical and in silico evidences. Azadirachtin showed strong interaction with retinoid receptors. It suppressed ATRA-mediated removal of retinoid receptors, bound with DNA by inhibiting ATRA binding to its receptors. Overall, our data suggest that azadirachtin interacts with retinoic acid receptors and suppresses ATRA binding, inhibits falling off the receptors, and activates transcription factors like CREB, Sp1, NF-κB, etc. Thus, azadirachtin exerts anti-inflammatory and anti-metastatic responses by a novel pathway that would be beneficial for further anti-inflammatory and anti-cancer therapies.

  17. Potent and long-lasting inhibition of human P2X2 receptors by copper

    PubMed Central

    Punthambaker, Sukanya; Hume, Richard I.

    2013-01-01

    P2X receptors are ion channels gated by ATP. In rodents these channels are modulated by zinc and copper. Zinc is co-released with neurotransmitter at some synapses and can modulate neuronal activity, but the role of copper in the brain is unclear. Rat P2X2 receptors show potentiation by 2–100 µM zinc or copper in the presence of a submaximal concentration of ATP but are inhibited by zinc or copper at concentrations above 100 µM. In contrast, human P2X2 (hP2X2) receptors show no potentiation and are strongly inhibited by zinc over the range of 2–100 µM. The effect of copper on hP2X2 is of interest because there are human brain disorders in which copper concentration is altered. We found that hP2X2 receptors are potently inhibited by copper (IC50 = 40 nM). ATP responsiveness recovered extremely slowly after copper washout, with full recovery requiring over 1 h. ATP binding facilitated copper binding but not unbinding from this inhibitory site. A mutant receptor in which the first six extracellular cysteines were deleted, C(1–6)S, showed normal copper inhibition, however reducing agents dramatically accelerated recovery from copper inhibition in wild type hP2X2 and the C(1–6)S mutant, indicating that the final two disulfide bonds are required to maintain the high affinity copper binding site. Three histidine residues required for normal zinc inhibition were also required for normal copper inhibition. Humans with untreated Wilson’s disease have excess amounts of copper in the brain. The high copper sensitivity of hP2X2 receptors suggests that they are non-functional in these patients. PMID:24067922

  18. Relationship between muscarinic receptor occupancy and adenylate cyclase inhibition in the rabbit myocardium

    SciTech Connect

    Ehlert, F.J.

    1985-11-01

    The muscarinic receptor-binding properties of a series of muscarinic drugs were compared with their effects on adenylate cyclase in membranes of the rabbit myocardium. When measured by competitive inhibition of (TH)-N-methylscopolamine binding, the competition curves of the various agonists were adequately described by the ternary complex model. This model assumes that the receptor can bind reversibly with a guanine nucleotide binding protein in the membrane and that the affinity of the agonist for the receptor-guanine nucleotide-binding protein complex is higher than that for the free receptor. A satisfactory fit of the ternary complex model to the data could only be achieved assuming that very little receptor is precoupled with the guanine nucleotide-binding protein in the absence of agonist. There was good agreement between the efficacy of each agonist as measured by inhibition of adenylate cyclase and the estimate of the positive cooperativity between the binding of the agonist receptor complex and the guanine nucleotide-binding protein. Guanosine 5'-triphosphate (0.1 mM) had no significant effect on the binding of (TH)N-methylscopolamine but caused an increase in the concentration of the various agonists required for half-maximal receptor occupancy. There was good correlation between efficacy as measured by inhibition of adenylate cyclase and the influence of guanosine 5'-triphosphate on binding properties.

  19. Manipulation of receptor oligomerization as a strategy to inhibit signaling by TNF superfamily members.

    PubMed

    Warren, Julia T; Nelson, Christopher A; Decker, Corinne E; Zou, Wei; Fremont, Daved H; Teitelbaum, Steven L

    2014-08-19

    Signaling by receptor activator of nuclear factor κB (RANK) in response to its ligand RANKL, which is a member of the tumor necrosis factor (TNF) superfamily of cytokines, stimulates osteoclast formation and bone resorption. Thus, this ligand-receptor pair is a therapeutic target for various disorders, such as osteoporosis and metastasis of cancer to bone. RANKL exists as a physiological homotrimer, with each monomer recognizing a single molecule of RANK or the decoy receptor osteoprotegerin (OPG), which inhibits osteoclastogenesis. We engineered a RANKL protein in which all three monomers of RANKL were encoded as a single polypeptide chain, which enabled us to independently control receptor binding at each binding interface. To generate an effective RANK inhibitor, we used an unbiased forward genetic approach to identify mutations in RANKL that had a 500-fold increased affinity for RANK but had decreased affinity for the decoy receptor OPG. Incorporating mutations that blocked receptor binding into this high-affinity RANKL variant generated a mutant RANKL that completely inhibited wild-type RANKL-induced osteoclastogenesis in vitro and bone resorption in mice. Our approach may be generalized to enable the inhibition of other TNF receptor signaling systems, which are implicated in a wide range of pathological conditions.

  20. Heterogeneity of prejunctional NPY receptor-mediated inhibition of cardiac neurotransmission

    PubMed Central

    Serone, Adrian P; Wright, Christine E; Angus, James A

    1999-01-01

    Neuropeptide Y (NPY) has been proposed as the candidate inhibitory peptide mediating interactions between sympathetic and vagal neurotransmission in several species, including man. Here, we have defined the NPY receptors involved in modulation of cardiac autonomic neurotransmission using receptor-selective agonists and antagonists in the rabbit and guinea-pig isolated right atria.In isolated atrial preparations, sympathetically-mediated tachycardia (ST; with atropine 1 μM) or vagally-mediated bradycardia (VB; with propranolol 0.1–1 μM) in response to electrical field stimulation (EFS, 1–4 pulses) were tested 0–30 min after incubation with single concentrations of vehicle, NPY (0.01–10 μM), the Y2 receptor agonist N-Acetyl-[Leu28,31]NPY(24–36) (termed N-A[L]NPY(24–36)) or the Y1 receptor agonist [Leu31,Pro34]NPY (LP). The effect of NPY on the concentration-chronotropic response curves to isoprenaline and bethanechol were also assessed.Guinea-pig atria: NPY and N-A[L]NPY(24–36) caused concentration-dependent inhibition of VB and ST to EFS. Both peptides caused maximal inhibition of VB and ST within 10 min incubation and this remained constant. LP caused a concentration-dependent, transient inhibition of ST which was antagonized by the Y1-receptor antagonist GR231118 (0.3 μM), with apparent competitive kinetics. Rabbit atria: NPY (1 or 10 μM) had no effect on VB at any time point, but both NPY and LP caused a transient (∼10 min) inhibition of sympathetic tachycardia. This inhibition could be prevented by 0.3 μM GR231118. N-A[L]NPY(24–36) had no effect on ST. NPY had no effect on the response to β-adrenoceptor stimulation by isoprenaline nor muscarinic-receptor stimulation by bethanechol in either species.Thus, in the guinea-pig, NPY causes a stable inhibition of both VB and ST to EFS via Y2 receptors and transient inhibition of ST via Y1 receptors. In contrast in the rabbit, NPY has no effect on the cardiac vagus and

  1. Inhibiting the Epidermal Growth Factor Receptor | Center for Cancer Research

    Cancer.gov

    The Epidermal Growth Factor Receptor (EGFR) is a widely distributed cell surface receptor that responds to several extracellular signaling molecules through an intracellular tyrosine kinase, which phosphorylates target enzymes to trigger a downstream molecular cascade. Since the discovery that EGFR mutations and amplifications are critical in a number of cancers, efforts have been under way to develop and use targeted EGFR inhibitors. These efforts have met with some spectacular successes, but many patients have not responded as expected, have subsequently developed drug-resistant tumors, or have suffered serious side effects from the therapies to date. CCR Investigators are studying EGFR from multiple vantage points with the goal of developing even better strategies to defeat EGFR-related cancers.

  2. Use-dependent inhibition of P2X3 receptors by nanomolar agonist.

    PubMed

    Pratt, Emily B; Brink, Thaddeus S; Bergson, Pamela; Voigt, Mark M; Cook, Sean P

    2005-08-10

    P2X3 receptors desensitize within 100 ms of channel activation, yet recovery from desensitization requires several minutes. The molecular basis for this slow rate of recovery is unknown. We designed experiments to test the hypothesis that this slow recovery is attributable to the high affinity (< 1 nM) of desensitized P2X3 receptors for agonist. We found that agonist binding to the desensitized state provided a mechanism for potent inhibition of P2X3 current. Sustained applications of 0.5 nM ATP inhibited > 50% of current to repetitive applications of P2X3 agonist. Inhibition occurred at 1000-fold lower agonist concentrations than required for channel activation and showed strong use dependence. No inhibition occurred without previous activation and desensitization. Our data are consistent with a model whereby inhibition of P2X3 by nanomolar [agonist] occurs by the rebinding of agonist to desensitized channels before recovery from desensitization. For several ATP analogs, the concentration required to inhibit P2X3 current inversely correlated with the rate of recovery from desensitization. This indicates that the affinity of the desensitized state and recovery rate primarily depend on the rate of agonist unbinding. Consistent with this hypothesis, unbinding of [32P]ATP from desensitized P2X3 receptors mirrored the rate of recovery from desensitization. As expected, disruption of agonist binding by site-directed mutagenesis increased the IC50 for inhibition and increased the rate of recovery.

  3. Mapping a molecular link between allosteric inhibition and activation of the glycine receptor.

    PubMed

    Miller, Paul S; Topf, Maya; Smart, Trevor G

    2008-10-01

    Cys-loop ligand-gated ion channels mediate rapid neurotransmission throughout the central nervous system. They possess agonist recognition sites and allosteric sites where modulators regulate ion channel function. Using strychnine-sensitive glycine receptors, we identified a scaffold of hydrophobic residues enabling allosteric communication between glycine-agonist binding loops A and D, and the Zn(2+)-inhibition site. Mutating these hydrophobic residues disrupted Zn(2+) inhibition, generating novel Zn(2+)-activated receptors and spontaneous channel activity. Homology modeling and electrophysiology revealed that these phenomena are caused by disruption to three residues on the '-' loop face of the Zn(2+)-inhibition site, and to D84 and D86, on a neighboring beta3 strand, forming a Zn(2+)-activation site. We provide a new view for the activation of a Cys-loop receptor where, following agonist binding, the hydrophobic core and interfacial loops reorganize in a concerted fashion to induce downstream gating.

  4. Cannabinoid receptor type 1- and 2-mediated increase in cyclic AMP inhibits T cell receptor-triggered signaling.

    PubMed

    Börner, Christine; Smida, Michal; Höllt, Volker; Schraven, Burkhart; Kraus, Jürgen

    2009-12-18

    The aim of this study was to characterize inhibitory mechanisms on T cell receptor signaling mediated by the cannabinoid receptors CB1 and CB2. Both receptors are coupled to G(i/o) proteins, which are associated with inhibition of cyclic AMP formation. In human primary and Jurkat T lymphocytes, activation of CB1 by R(+)-methanandamide, CB2 by JWH015, and both by Delta9-tetrahydrocannabinol induced a short decrease in cyclic AMP lasting less than 1 h. However, this decrease was followed by a massive (up to 10-fold) and sustained (at least up to 48 h) increase in cyclic AMP. Mediated by the cyclic AMP-activated protein kinase A and C-terminal Src kinase, the cannabinoids induced a stable phosphorylation of the inhibitory Tyr-505 of the leukocyte-specific protein tyrosine kinase (Lck). By thus arresting Lck in its inhibited form, the cannabinoids prevented the dephosphorylation of Lck at Tyr-505 in response to T cell receptor activation, which is necessary for the subsequent initiation of T cell receptor signaling. In this way the cannabinoids inhibited the T cell receptor-triggered signaling, i.e. the activation of the zeta-chain-associated protein kinase of 70 kDa, the linker for activation of T cells, MAPK, the induction of interleukin-2, and T cell proliferation. All of the effects of the cannabinoids were blocked by the CB1 and CB2 antagonists AM281 and AM630. These findings help to better understand the immunosuppressive effects of cannabinoids and explain the beneficial effects of these drugs in the treatment of T cell-mediated autoimmune disorders like multiple sclerosis.

  5. Opiate receptor blockade on human granulosa cells inhibits VEGF release.

    PubMed

    Lunger, Fabian; Vehmas, Anni P; Fürnrohr, Barbara G; Sopper, Sieghart; Wildt, Ludwig; Seeber, Beata

    2016-03-01

    The objectives of this study were to determine whether the main opioid receptor (OPRM1) is present on human granulosa cells and if exogenous opiates and their antagonists can influence granulosa cell vascular endothelial growth factor (VEGF) production via OPRM1. Granulosa cells were isolated from women undergoing oocyte retrieval for IVF. Complementary to the primary cells, experiments were conducted using COV434, a well-characterized human granulosa cell line. Identification and localization of opiate receptor subtypes was carried out using Western blot and flow cytometry. The effect of opiate antagonist on granulosa cell VEGF secretion was assessed by enzyme-linked immunosorbent assay. For the first time, the presence of OPRM1 on human granulosa cells is reported. Blocking of opiate signalling using naloxone, a specific OPRM1 antagonist, significantly reduced granulosa cell-derived VEGF levels in both COV434 and granulosa-luteal cells (P < 0.01). The presence of opiate receptors and opiate signalling in granulosa cells suggest a possible role in VEGF production. Targeting this signalling pathway could prove promising as a new clinical option in the prevention and treatment of ovarian hyperstimulation syndrome.

  6. Nuclear receptor TLX inhibits TGF-β signaling in glioblastoma.

    PubMed

    Johansson, Erik; Zhai, Qiwei; Zeng, Zhao-Jun; Yoshida, Takeshi; Funa, Keiko

    2016-05-01

    TLX (also called NR2E1) is an orphan nuclear receptor that maintains stemness of neuronal stem cells. TLX is highly expressed in the most malignant form of glioma, glioblastoma multiforme (GBM), and is important for the proliferation and maintenance of the stem/progenitor cells of the tumor. Transforming Growth Factor-β (TGF-β) is a cytokine regulating many different cellular processes such as differentiation, migration, adhesion, cell death and proliferation. TGF-β has an important function in cancer where it can work as either a tumor suppressor or oncogene, depending on the cancer type and stage of tumor development. Since glioblastoma often have dysfunctional TGF-β signaling we wanted to find out if there is any interaction between TLX and TGF-β in glioblastoma cells. We demonstrate that knockdown of TLX enhances the canonical TGF-β signaling response in glioblastoma cell lines. TLX physically interacts with and stabilizes Smurf1, which can ubiquitinate and target TGF-β receptor II for degradation, whereas knockdown of TLX leads to stabilization of TGF-β receptor II, increased nuclear translocation of Smad2/3 and enhanced expression of TGF-β target genes. The interaction between TLX and TGF-β may play an important role in the regulation of proliferation and tumor-initiating properties of glioblastoma cells. Copyright © 2016. Published by Elsevier Inc.

  7. Cannabidiol inhibits human glioma cell migration through a cannabinoid receptor-independent mechanism

    PubMed Central

    Vaccani, Angelo; Massi, Paola; Colombo, Arianna; Rubino, Tiziana; Parolaro, Daniela

    2005-01-01

    We evaluated the ability of cannabidiol (CBD) to impair the migration of tumor cells stimulated by conditioned medium. CBD caused concentration-dependent inhibition of the migration of U87 glioma cells, quantified in a Boyden chamber. Since these cells express both cannabinoid CB1 and CB2 receptors in the membrane, we also evaluated their engagement in the antimigratory effect of CBD. The inhibition of cell was not antagonized either by the selective cannabinoid receptor antagonists SR141716 (CB1) and SR144528 (CB2) or by pretreatment with pertussis toxin, indicating no involvement of classical cannabinoid receptors and/or receptors coupled to Gi/o proteins. These results reinforce the evidence of antitumoral properties of CBD, demonstrating its ability to limit tumor invasion, although the mechanism of its pharmacological effects remains to be clarified. PMID:15700028

  8. Hydrophobic interactions drive ligand-receptor recognition for activation and inhibition of staphylococcal quorum sensing.

    PubMed

    Wright, Jesse S; Lyon, Gholson J; George, Elizabeth A; Muir, Tom W; Novick, Richard P

    2004-11-16

    Two-component systems represent the most widely used signaling paradigm in living organisms. Encoding the prototypical two-component system in Gram-positive bacteria, the staphylococcal agr (accessory gene regulator) operon uses a polytopic receptor, AgrC, activated by an autoinducing peptide (AIP), to coordinate quorum sensing with the global synthesis of virulence factors. The agr locus has undergone evolutionary divergence, resulting in the formation of several distinct inter- and intraspecies specificity groups, such that most cross-group AIP-receptor interactions are mutually inhibitory. We have exploited this natural diversity by constructing and analyzing AgrC chimeras generated by exchange of intradomain segments between receptors of different agr groups. Functional chimeras fell into three general classes: receptors with broadened specificity, receptors with tightened specificity, and receptors that lack activation specificity. Testing of these chimeric receptors against a battery of AIP analogs localized the primary ligand recognition site to the receptor distal subdomain and revealed that the AIPs bind primarily to a putative hydrophobic pocket in the receptor. This binding is mediated by a highly conserved hydrophobic patch on the AIPs and is an absolute requirement for interactions in self-activation and cross-inhibition of the receptors. It is suggested that this recognition scheme provides the fundamental basis for agr activation and interference.

  9. Cannabinoids induce pancreatic β-cell death by directly inhibiting insulin receptor activation.

    PubMed

    Kim, Wook; Lao, Qizong; Shin, Yu-Kyong; Carlson, Olga D; Lee, Eun Kyung; Gorospe, Myriam; Kulkarni, Rohit N; Egan, Josephine M

    2012-03-20

    Cannabinoid 1 (CB1) receptors have been previously detected in pancreatic β cells, where they attenuate insulin action. We now report that CB1 receptors form a heteromeric complex with insulin receptors and the heterotrimeric guanosine triphosphate-binding protein α subunit Gα(i). Gα(i) inhibited the kinase activity of the insulin receptor in β cells by directly binding to the activation loop in the tyrosine kinase domain of the receptor. Consequently, phosphorylation of proapoptotic protein Bad was reduced and its apoptotic activity was stimulated, leading to β-cell death. Pharmacological blockade or genetic deficiency of CB1 receptors enhanced insulin receptor signaling after injury, leading to reduced blood glucose concentrations and activation of Bad, which increased β-cell survival. These findings provide direct evidence of physical and functional interactions between CB1 and insulin receptors and suggest a mechanism whereby peripherally acting CB1 receptor antagonists improve insulin action in insulin-sensitive tissues independent of the other metabolic effects of CB1 receptors.

  10. Dopamine inhibits somatolactin gene expression in tilapia pituitary cells through the dopamine D2 receptors.

    PubMed

    Jiang, Quan; Lian, Anji; He, Qi

    2016-07-01

    Dopamine (DA) is an important neurotransmitter in the central nervous system of vertebrates and possesses key hypophysiotropic functions. Early studies have shown that DA has a potent inhibitory effect on somatolactin (SL) release in fish. However, the mechanisms responsible for DA inhibition of SL gene expression are largely unknown. To this end, tilapia DA type-1 (D1) and type-2 (D2) receptor transcripts were examined in the neurointermediate lobe (NIL) of the tilapia pituitary by real-time PCR. In tilapia, DA not only was effective in inhibiting SL mRNA levels in vivo and in vitro, but also could abolish pituitary adenylate cyclase-activating polypeptide (PACAP)- and salmon gonadotropin-releasing hormone (sGnRH)-stimulated SL gene expression at the pituitary level. In parallel studies, the specific D2 receptor agonists quinpirole and bromocriptine could mimic the DA-inhibited SL gene expression. Furthermore, the D2 receptor antagonists domperidone and (-)-sulpiride could abolish the SL response to DA or the D2 agonist quinpirole, whereas D1 receptor antagonists SCH23390 and SKF83566 were not effective in this respect. In primary cultures of tilapia NIL cells, D2 agonist quinpirole-inhibited cAMP production could be blocked by co-treatment with the D2 antagonist domperidone and the ability of forskolin to increase cAMP production was also inhibited by quinpirole. Using a pharmacological approach, the AC/cAMP pathway was shown to be involved in quinpirole-inhibited SL mRNA expression. These results provide evidence that DA can directly inhibit SL gene expression at the tilapia pituitary level via D2 receptor through the AC/cAMP-dependent mechanism. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Tyrosine Phosphorylation of GABAA Receptor γ2-Subunit Regulates Tonic and Phasic Inhibition in the Thalamus

    PubMed Central

    Nani, Francesca; Bright, Damian P.; Revilla-Sanchez, Raquel; Tretter, Verena; Moss, Stephen J.

    2013-01-01

    GABA-mediated tonic and phasic inhibition of thalamic relay neurons of the dorsal lateral geniculate nucleus (dLGN) was studied after ablating tyrosine (Y) phosphorylation of receptor γ2-subunits. As phosphorylation of γ2 Y365 and Y367 reduces receptor internalization, to understand their importance for inhibition we created a knock-in mouse in which these residues are replaced by phenylalanines. On comparing wild-type (WT) and γ2Y365/367F+/− (HT) animals (homozygotes are not viable in utero), the expression levels of GABAA receptor α4-subunits were increased in the thalamus of female, but not male mice. Raised δ-subunit expression levels were also observed in female γ2Y365/367F +/− thalamus. Electrophysiological analyses revealed no difference in the level of inhibition in male WT and HT dLGN, while both the spontaneous inhibitory postsynaptic activity and the tonic current were significantly augmented in female HT relay cells. The sensitivity of tonic currents to the δ-subunit superagonist THIP, and the blocker Zn2+, were higher in female HT relay cells. This is consistent with upregulation of extrasynaptic GABAA receptors containing α4- and δ-subunits to enhance tonic inhibition. In contrast, the sensitivity of GABAA receptors mediating inhibition in the female γ2Y356/367F +/− to neurosteroids was markedly reduced compared with WT. We conclude that disrupting tyrosine phosphorylation of the γ2-subunit activates a sex-specific increase in tonic inhibition, and this most likely reflects a genomic-based compensation mechanism for the reduced neurosteroid sensitivity of inhibition measured in female HT relay neurons. PMID:23904608

  12. Tyrosine phosphorylation of GABAA receptor γ2-subunit regulates tonic and phasic inhibition in the thalamus.

    PubMed

    Nani, Francesca; Bright, Damian P; Revilla-Sanchez, Raquel; Tretter, Verena; Moss, Stephen J; Smart, Trevor G

    2013-07-31

    GABA-mediated tonic and phasic inhibition of thalamic relay neurons of the dorsal lateral geniculate nucleus (dLGN) was studied after ablating tyrosine (Y) phosphorylation of receptor γ2-subunits. As phosphorylation of γ2 Y365 and Y367 reduces receptor internalization, to understand their importance for inhibition we created a knock-in mouse in which these residues are replaced by phenylalanines. On comparing wild-type (WT) and γ2(Y365/367F)+/- (HT) animals (homozygotes are not viable in utero), the expression levels of GABAA receptor α4-subunits were increased in the thalamus of female, but not male mice. Raised δ-subunit expression levels were also observed in female γ2(Y365/367F) +/- thalamus. Electrophysiological analyses revealed no difference in the level of inhibition in male WT and HT dLGN, while both the spontaneous inhibitory postsynaptic activity and the tonic current were significantly augmented in female HT relay cells. The sensitivity of tonic currents to the δ-subunit superagonist THIP, and the blocker Zn(2+), were higher in female HT relay cells. This is consistent with upregulation of extrasynaptic GABAA receptors containing α4- and δ-subunits to enhance tonic inhibition. In contrast, the sensitivity of GABAA receptors mediating inhibition in the female γ2(Y356/367F) +/- to neurosteroids was markedly reduced compared with WT. We conclude that disrupting tyrosine phosphorylation of the γ2-subunit activates a sex-specific increase in tonic inhibition, and this most likely reflects a genomic-based compensation mechanism for the reduced neurosteroid sensitivity of inhibition measured in female HT relay neurons.

  13. Lidocaine preferentially inhibits the function of purinergic P2X7 receptors expressed in Xenopus oocytes.

    PubMed

    Okura, Dan; Horishita, Takafumi; Ueno, Susumu; Yanagihara, Nobuyuki; Sudo, Yuka; Uezono, Yasuhito; Minami, Tomoko; Kawasaki, Takashi; Sata, Takeyoshi

    2015-03-01

    Lidocaine has been widely used to relieve acute pain and chronic refractory pain effectively by both systemic and local administration. Numerous studies reported that lidocaine affects several pain signaling pathways as well as voltage-gated sodium channels, suggesting the existence of multiple mechanisms underlying pain relief by lidocaine. Some extracellular adenosine triphosphate (ATP) receptor subunits are thought to play a role in chronic pain mechanisms, but there have been few studies on the effects of lidocaine on ATP receptors. We studied the effects of lidocaine on purinergic P2X3, P2X4, and P2X7 receptors to explore the mechanisms underlying pain-relieving effects of lidocaine. We investigated the effects of lidocaine on ATP-induced currents in ATP receptor subunits, P2X3, P2X4, and P2X7 expressed in Xenopus oocytes, by using whole-cell, two-electrode, voltage-clamp techniques. Lidocaine inhibited ATP-induced currents in P2X7, but not in P2X3 or P2X4 subunits, in a concentration-dependent manner. The half maximal inhibitory concentration for lidocaine inhibition was 282 ± 45 μmol/L. By contrast, mepivacaine, ropivacaine, and bupivacaine exerted only limited effects on the P2X7 receptor. Lidocaine inhibited the ATP concentration-response curve for the P2X7 receptor via noncompetitive inhibition. Intracellular and extracellular N-(2,6-dimethylphenylcarbamoylmethyl) triethylammonium bromide (QX-314) and benzocaine suppressed ATP-induced currents in the P2X7 receptor in a concentration-dependent manner. In addition, repetitive ATP treatments at 5-minute intervals in the continuous presence of lidocaine revealed that lidocaine inhibition was use-dependent. Finally, the selective P2X7 receptor antagonists Brilliant Blue G and AZ11645373 did not affect the inhibitory actions of lidocaine on the P2X7 receptor. Lidocaine selectively inhibited the function of the P2X7 receptor expressed in Xenopus oocytes. This effect may be caused by acting on sites in the ion

  14. Model for capping derived from inhibition of surface receptor capping by free fatty acids.

    PubMed Central

    Klausner, R D; Bhalla, D K; Dragsten, P; Hoover, R L; Karnovsky, M J

    1980-01-01

    When low concentrations (2-5 mole %) of cis unsaturated free fatty acids (group A) are intercalated into lymphocyte plasma membrane, capping is inhibited. No effect is seen with trans unsaturated or saturated fatty acids (group B). The capping inhibition is reversible with increasing doses of extracellular calcium. Fluorescence photobleaching recovery has shown that the group A free fatty acids do not inhibit the receptor immobilization associated with patch formation, but inhibit the final energy-dependent movement of the patched receptors into a cap. We have also shown that the group A free fatty acids cause a shift in membrane-bound calcium to the lipid phase from probable protein-associated sites. We have incorporated these findings into a model for capping and membrane-cytoskeletal interactions. Images PMID:6928636

  15. Hepatocyte insulin receptor is a calmodulin binding protein and is functionally inhibited by calmidazolium

    SciTech Connect

    Arnold, T.P.; Pollet, R.J.

    1986-05-01

    Insulin-induced autophosphorylation of the insulin receptor and changes in intracellular Ca/sup + +/ have been proposed as possible mediators of insulin action in target tissues. The authors have investigated the association of the 17kD calcium binding protein calmodulin with the insulin receptor solubilized from rat liver plasma membranes. Insulin receptors solubilized in 0.1% Triton X-100 exhibited strong binding to calmodulin-agarose affinity columns in the presence of 100..mu..M calcium and could be eluded with 100..mu..M ethelene glycol-bis (amino ethel ether) Tetra Acetic Acid (EGTA) with an 80% yield in insulin binding activity. In addition, /sup 125/I-Calmodulin was shown to bind to wheat germ agglutinin purified solubilized receptors, was specifically inhibited by EGTA (100 ..mu..M) and/or calmidazolium (10 ..mu..M) and was found to be insulin-dependent (max 10/sup -10/ M insulin). SDS-polyacrylamide gel electrophoresis data suggests that /sup 125/I-calmodulin may be associated with the 92 kD beta-subunit of the insulin receptor, consistent with the cytoplasmic domain of this subunit. While they have confirmed previous reports that the addition of calcium and calmodulin to solubilized insulin receptors preparations produces no demonstrable change in receptor phosphorylation, the addition of the calmodulin inhibitor calmidazolium did show more than 50% inhibition of insulin stimulated receptor phosphorylation, suggesting that a domain of the calmodulin molecule may be very tightly associated with the insulin receptor. These results indicate that calmodulin binds tightly and specifically to the insulin receptor of the hepatocyte and is insulin dependent. The findings also suggest that this interaction may be functionally significant in mediating insulin-induced receptor phosphorylation as well as other insulin actions. Thus, calmodulin may play a major role as an intracellular contributor to insulin action.

  16. Prejunctional inhibition of sympathetically evoked pupillary dilation in cats by activation of histamine H3 receptors.

    PubMed

    Koss, M C; Hey, J A

    1993-08-01

    Frequency-dependent pupillary dilations were evoked by electrical stimulation of the pre- or post-ganglionic cervical sympathetic nerve (sympatho-excitation) or the hypothalamus (parasympatho-inhibition) in sympathectomized anesthetized cats. Systemic administration of the selective histamine H3 receptor agonist (R)-alpha-methylhistamine (R alpha MeHA) produced a dose-dependent depression of mydriasis due to direct neural sympathetic activation but had no effect on responses elicited by parasympathetic withdrawal. The histamine H2 receptor agonist, dimaprit, was inactive. R alpha MeHA was much more effective in depressing sympathetic responses obtained at lower frequencies when compared to higher frequencies of stimulation. Responses evoked both pre- and postganglionically were inhibited by R alpha MeHA. This peripheral sympatho-inhibitory action of R alpha MeHA was antagonized by the histamine H3 receptor blocker thioperamide but not by intravenous pretreatment with the histamine H1 receptor antagonist chlorpheniramine. Histamine H2 receptor blockers cimetidine and ranitidine were also without effect. R alpha MeHA did not depress pupillary responses elicited by i.v. (-)-adrenaline. The results demonstrate that histamine H3 receptors modulate sympathetic activation of the iris at a site proximal to the iris dilator muscle. The predominant mechanism of action appears to the prejunctional inhibition of noradrenaline release from postganglionic sympathetic nerve endings. However, a concomitant ganglionic inhibitory action cannot be excluded.

  17. Lamotrigine, an antiepileptic drug, inhibits 5-HT3 receptor currents in NCB-20 neuroblastoma cells

    PubMed Central

    Kim, Ki Jung; Jeun, Seung Hyun

    2017-01-01

    Lamotrigine is an antiepileptic drug widely used to treat epileptic seizures. Using whole-cell voltage clamp recordings in combination with a fast drug application approach, we investigated the effects of lamotrigine on 5-hydroxytryptamine (5-HT)3 receptors in NCB-20 neuroblastoma cells. Co-application of lamotrigine (1~300 µM) resulted in a concentration-dependent reduction in peak amplitude of currents induced by 3 µM of 5-HT for an IC50 value of 28.2±3.6 µM with a Hill coefficient of 1.2±0.1. These peak amplitude decreases were accompanied by the rise slope reduction. In addition, 5-HT3-mediated currents evoked by 1 mM dopamine, a partial 5-HT3 receptor agonist, were inhibited by lamotrigine co-application. The EC50 of 5-HT for 5-HT3 receptor currents were shifted to the right by co-application of lamotrigine without a significant change of maximal effect. Currents activated by 5-HT and lamotrigine co-application in the presence of 1 min pretreatment of lamotrigine were similar to those activated by 5-HT and lamotrigine co-application alone. Moreover, subsequent application of lamotrigine in the presence of 5-HT and 5-hydroxyindole, known to attenuate 5-HT3 receptor desensitization, inhibited 5-HT3 receptor currents in a concentration-dependent manner. The deactivation of 5-HT3 receptor was delayed by washing with an external solution containing lamotrigine. Lamotrigine accelerated the desensitization process of 5-HT3 receptors. There was no voltage-dependency in the inhibitory effects of lamotrigine on the 5-HT3 receptor currents. These results indicate that lamotrigine inhibits 5-HT3-activated currents in a competitive manner by binding to the open state of the channels and blocking channel activation or accelerating receptor desensitization. PMID:28280410

  18. Salicylate, an aspirin metabolite, specifically inhibits the current mediated by glycine receptors containing α1-subunits

    PubMed Central

    Lu, Y-G; Tang, Z-Q; Ye, Z-Y; Wang, H-T; Huang, Y-N; Zhou, K-Q; Zhang, M; Xu, T-L; Chen, L

    2009-01-01

    Background and purpose: Aspirin or its metabolite sodium salicylate is widely prescribed and has many side effects. Previous studies suggest that targeting neuronal receptors/ion channels is one of the pathways by which salicylate causes side effects in the nervous system. The present study aimed to investigate the functional action of salicylate on glycine receptors at a molecular level. Experimental approach: Whole-cell patch-clamp and site-directed mutagenesis were deployed to examine the effects of salicylate on the currents mediated by native glycine receptors in cultured neurones of rat inferior colliculus and by glycine receptors expressed in HEK293T cells. Key results: Salicylate effectively inhibited the maximal current mediated by native glycine receptors without altering the EC50 and the Hill coefficient, demonstrating a non-competitive action of salicylate. Only when applied simultaneously with glycine and extracellularly, could salicylate produce this antagonism. In HEK293T cells transfected with either α1-, α2-, α3-, α1β-, α2β- or α3β-glycine receptors, salicylate only inhibited the current mediated by those receptors that contained the α1-subunit. A single site mutation of I240V in the α1-subunit abolished inhibition by salicylate. Conclusions and implications: Salicylate is a non-competitive antagonist specifically on glycine receptors containing α1-subunits. This action critically involves the isoleucine-240 in the first transmembrane segment of the α1-subunit. Our findings may increase our understanding of the receptors involved in the side effects of salicylate on the central nervous system, such as seizures and tinnitus. PMID:19594751

  19. Lamotrigine, an antiepileptic drug, inhibits 5-HT3 receptor currents in NCB-20 neuroblastoma cells.

    PubMed

    Kim, Ki Jung; Jeun, Seung Hyun; Sung, Ki-Wug

    2017-03-01

    Lamotrigine is an antiepileptic drug widely used to treat epileptic seizures. Using whole-cell voltage clamp recordings in combination with a fast drug application approach, we investigated the effects of lamotrigine on 5-hydroxytryptamine (5-HT)3 receptors in NCB-20 neuroblastoma cells. Co-application of lamotrigine (1~300 µM) resulted in a concentration-dependent reduction in peak amplitude of currents induced by 3 µM of 5-HT for an IC50 value of 28.2±3.6 µM with a Hill coefficient of 1.2±0.1. These peak amplitude decreases were accompanied by the rise slope reduction. In addition, 5-HT3-mediated currents evoked by 1 mM dopamine, a partial 5-HT3 receptor agonist, were inhibited by lamotrigine co-application. The EC50 of 5-HT for 5-HT3 receptor currents were shifted to the right by co-application of lamotrigine without a significant change of maximal effect. Currents activated by 5-HT and lamotrigine co-application in the presence of 1 min pretreatment of lamotrigine were similar to those activated by 5-HT and lamotrigine co-application alone. Moreover, subsequent application of lamotrigine in the presence of 5-HT and 5-hydroxyindole, known to attenuate 5-HT3 receptor desensitization, inhibited 5-HT3 receptor currents in a concentration-dependent manner. The deactivation of 5-HT3 receptor was delayed by washing with an external solution containing lamotrigine. Lamotrigine accelerated the desensitization process of 5-HT3 receptors. There was no voltage-dependency in the inhibitory effects of lamotrigine on the 5-HT3 receptor currents. These results indicate that lamotrigine inhibits 5-HT3-activated currents in a competitive manner by binding to the open state of the channels and blocking channel activation or accelerating receptor desensitization.

  20. Inhibition of radiation-induced polyuria by histamine receptor antagonists

    SciTech Connect

    Donlon, M.A.; Melia, J.A.; Helgeson, E.A.; Wolfe, W.W.

    1986-03-01

    In previous studies the authors have demonstrated that gamma radiation results in polyuria, which is preceded by polydypsia. This suggests that the increased thirst elicited by radiation causes increased urinary volume (UV). Histamine, which is released following radiation exposure, also elicits drinking by nonirradiated rats when administered exogenously. In this study the authors have investigated both the role of water deprivation and the effect of histamine receptor antagonists (HRA) on radiation-induced polyuria. Sprague-Dawley rats were housed individually in metabolic cages. Water was allowed ad libitum except in deprivation experiments where water was removed for 24 hr immediately following radiation. Cimetidine (CIM), an H2 HRA, and dexbromopheniramine (DXB), an H1 HRA, were administered i.p. (16 and 1 mg/kg, respectively) 30 min prior to irradiation (950 rads from a cobalt source). UV was determined at 24-hr intervals for 3 days preceding irradiation and 24 hr postirradiation. UV in DXB treated rats was significantly reduced 24 hr postirradiation (CON = 427 +/- 54%; DXB = 247 +/- 39% of preirradiated CON) compared to postirradiation control values. CIM did not affect postirradiation UV. These data suggest that radiation-induced polyuria is caused by polydypsia which is, in part, mediated by histamine induced by an H1 receptor.

  1. Antisense Inhibition of the Nr Gene Restores Normal Ripening to the Tomato Never-ripe Mutant, Consistent with the Ethylene Receptor- Inhibition Model1

    PubMed Central

    Hackett, Rachel M.; Ho, Chin-Wen; Lin, Zhefeng; Foote, Humphrey C.C.; Fray, Rupert G.; Grierson, Don

    2000-01-01

    The hormone ethylene regulates many aspects of plant growth and development, including fruit ripening. In transgenic tomato (Lycopersicon esculentum) plants, antisense inhibition of ethylene biosynthetic genes results in inhibited or delayed ripening. The dominant tomato mutant, Never-ripe (Nr), is insensitive to ethylene and fruit fail to ripen. The Nr phenotype results from mutation of the ethylene receptor encoded by the NR gene, such that it can no longer bind the hormone. NR has homology to the Arabidopsis ethylene receptors. Studies on ethylene perception in Arabidopsis have demonstrated that receptors operate by a “receptor inhibition” mode of action, in which they actively repress ethylene responses in the absence of the hormone, and are inactive when bound to ethylene. In ripening tomato fruit, expression of NR is highly regulated, increasing in expression at the onset of ripening, coincident with increased ethylene production. This expression suggests a requirement for the NR gene product during the ripening process, and implies that ethylene signaling via the tomato NR receptor might not operate by receptor inhibition. We used antisense inhibition to investigate the role of NR in ripening tomato fruit and determine its mode of action. We demonstrate restoration of normal ripening in Nr fruit by inhibition of the mutant Nr gene, indicating that this receptor is not required for normal ripening, and confirming receptor inhibition as the mode of action of the NR protein. PMID:11080285

  2. M2muscarinic receptors inhibit cell proliferation and migration in urothelial bladder cancer cells

    PubMed Central

    Pacini, Luca; De Falco, Elena; Di Bari, Maria; Coccia, Andrea; Siciliano, Camilla; Ponti, Donatella; Pastore, Antonio Luigi; Petrozza, Vincenzo; Carbone, Antonio; Tata, Ada Maria; Calogero, Antonella

    2014-01-01

    The role of muscarinic receptors in several diseases including cancer has recently emerged. To evaluate the hypothesis that muscarinic acetylcholine receptors may play a role in bladder cancer as well as in other tumor types, we investigated their expression in bladder tumor specimens. All examined samples expressed the M1, M2 and M3 receptor subtypes. We also found that the level of M2 transcripts, but not those of M1 or M3, significantly increased with the tumor histologic grade. In view of these results, we proceeded to investigate whether the M2 agonist Arecaidine had any effect on in vitro cell growth and migration of T24 cells, a bladder tumor cell line expressing the muscarinic receptors, including the M2 subtype. We observed that Arecaidine significantly reduced T24 and 5637 cell proliferation and migration in a concentration dependent manner. The silencing of M2 receptor by siRNA in T24 and 5637 cell lines showed the inability of Arecaidine (100 μM) to inhibit cell proliferation after 48 hours, whereas the use of M1 and M3 antagonists in T24 appeared not to counteract the Arecaidine effect, suggesting that the inhibition of cell proliferation was directly dependent on M2 receptor activation. These data suggest that M2 muscarinic receptors may play a relevant role in bladder cancer and represent a new attractive therapeutic target. PMID:25482946

  3. A novel role for calmodulin: Ca2+-independent inhibition of type-1 inositol trisphosphate receptors.

    PubMed Central

    Cardy, T J; Taylor, C W

    1998-01-01

    Calmodulin inhibits both inositol 1,4,5-trisphosphate (IP3) binding to, and IP3-evoked Ca2+ release by, cerebellar IP3 receptors [Patel, Morris, Adkins, O'Beirne and Taylor (1997) Proc. Natl. Acad. Sci. U. S.A. 94, 11627-11632]. In the present study, full-length rat type-1 and -3 IP3 receptors were expressed at high levels in insect Spodoptera frugiperda 9 cells and the effects of calmodulin were examined. In the absence of Ca2+, calmodulin caused a concentration-dependent and reversible inhibition of [3H]IP3 binding to type-1 IP3 receptors by decreasing their apparent affinity for IP3. The effect was not reproduced by high concentrations of troponin C, parvalbumin or S-100. Increasing the medium free [Ca2+] ([Ca2+]m) inhibited [3H]IP3 binding to type-1 receptors, but the further inhibition caused by a submaximal concentration of calmodulin was similar at each [Ca2+]m. In the absence of Ca2+, 125I-calmodulin bound to a single site on each type-1 receptor subunit and to an additional site in the presence of Ca2+. There was no detectable binding of 125I-calmodulin to type-3 receptors and binding of [3H]IP3 was insensitive to calmodulin at all [Ca2+]m. Both peptide and conventional Ca2+-calmodulin antagonists affected neither [3H]IP3 binding directly nor the inhibitory effect of calmodulin in the absence of Ca2+, but each caused a [Ca2+]m-dependent reversal of the inhibition of [3H]IP3 binding caused by calmodulin. Camstatin, a peptide that binds to calmodulin equally well in the presence or absence of Ca2+, reversed the inhibitory effects of calmodulin on [3H]IP3 binding at all [Ca2+]m. We conclude that calmodulin specifically inhibits [3H]IP3 binding to type-1 IP3 receptors: the first example of a protein regulated by calmodulin in an entirely Ca2+-independent manner. Inhibition of type-1 IP3 receptors by calmodulin may dynamically regulate their sensitivity to IP3 in response to the changes in cytosolic free calmodulin concentration thought to accompany stimulation

  4. AMPA-Kainate Receptor Inhibition Promotes Neurologic Recovery in Premature Rabbits with Intraventricular Hemorrhage

    PubMed Central

    Dohare, Preeti; Zia, Muhammad T.; Ahmed, Ehsan; Ahmed, Asad; Yadala, Vivek; Schober, Alexandra L.; Ortega, Juan Alberto; Kayton, Robert; Ungvari, Zoltan; Mongin, Alexander A.

    2016-01-01

    Intraventricular hemorrhage (IVH) in preterm infants leads to cerebral inflammation, reduced myelination of the white matter, and neurological deficits. No therapeutic strategy exists against the IVH-induced white matter injury. AMPA-kainate receptor induced excitotoxicity contributes to oligodendrocyte precursor cell (OPC) damage and hypomyelination in both neonatal and adult models of brain injury. Here, we hypothesized that IVH damages white matter via AMPA receptor activation, and that AMPA-kainate receptor inhibition suppresses inflammation and restores OPC maturation, myelination, and neurologic recovery in preterm newborns with IVH. We tested these hypotheses in a rabbit model of glycerol-induced IVH and evaluated the expression of AMPA receptors in autopsy samples from human preterm infants. GluR1-GluR4 expressions were comparable between preterm humans and rabbits with and without IVH. However, GluR1 and GluR2 levels were significantly lower in the embryonic white matter and germinal matrix relative to the neocortex in both infants with and without IVH. Pharmacological blockade of AMPA-kainate receptors with systemic NBQX, or selective AMPA receptor inhibition by intramuscular perampanel restored myelination and neurologic recovery in rabbits with IVH. NBQX administration also reduced the population of apoptotic OPCs, levels of several cytokines (TNFα, IL-β, IL-6, LIF), and the density of Iba1+ microglia in pups with IVH. Additionally, NBQX treatment inhibited STAT-3 phosphorylation, but not astrogliosis or transcription factors regulating gliosis. Our data suggest that AMPA-kainate receptor inhibition alleviates OPC loss and IVH-induced inflammation and restores myelination and neurologic recovery in preterm rabbits with IVH. Therapeutic use of FDA-approved perampanel treatment might enhance neurologic outcome in premature infants with IVH. SIGNIFICANCE STATEMENT Intraventricular hemorrhage (IVH) is a major complication of prematurity and a large number

  5. AMPA-Kainate Receptor Inhibition Promotes Neurologic Recovery in Premature Rabbits with Intraventricular Hemorrhage.

    PubMed

    Dohare, Preeti; Zia, Muhammad T; Ahmed, Ehsan; Ahmed, Asad; Yadala, Vivek; Schober, Alexandra L; Ortega, Juan Alberto; Kayton, Robert; Ungvari, Zoltan; Mongin, Alexander A; Ballabh, Praveen

    2016-03-16

    Intraventricular hemorrhage (IVH) in preterm infants leads to cerebral inflammation, reduced myelination of the white matter, and neurological deficits. No therapeutic strategy exists against the IVH-induced white matter injury. AMPA-kainate receptor induced excitotoxicity contributes to oligodendrocyte precursor cell (OPC) damage and hypomyelination in both neonatal and adult models of brain injury. Here, we hypothesized that IVH damages white matter via AMPA receptor activation, and that AMPA-kainate receptor inhibition suppresses inflammation and restores OPC maturation, myelination, and neurologic recovery in preterm newborns with IVH. We tested these hypotheses in a rabbit model of glycerol-induced IVH and evaluated the expression of AMPA receptors in autopsy samples from human preterm infants. GluR1-GluR4 expressions were comparable between preterm humans and rabbits with and without IVH. However, GluR1 and GluR2 levels were significantly lower in the embryonic white matter and germinal matrix relative to the neocortex in both infants with and without IVH. Pharmacological blockade of AMPA-kainate receptors with systemic NBQX, or selective AMPA receptor inhibition by intramuscular perampanel restored myelination and neurologic recovery in rabbits with IVH. NBQX administration also reduced the population of apoptotic OPCs, levels of several cytokines (TNFα, IL-β, IL-6, LIF), and the density of Iba1(+) microglia in pups with IVH. Additionally, NBQX treatment inhibited STAT-3 phosphorylation, but not astrogliosis or transcription factors regulating gliosis. Our data suggest that AMPA-kainate receptor inhibition alleviates OPC loss and IVH-induced inflammation and restores myelination and neurologic recovery in preterm rabbits with IVH. Therapeutic use of FDA-approved perampanel treatment might enhance neurologic outcome in premature infants with IVH. Intraventricular hemorrhage (IVH) is a major complication of prematurity and a large number of survivors with

  6. Presynaptic Inhibition at Inhibitory Nerve Terminals. A New Synapse in the Crayfish Stretch Receptor

    PubMed Central

    Nakajima, Yasuko; Tisdale, Ann D.; Henkart, Maryanna P.

    1973-01-01

    Previous physiological evidence has shown that the receptor neuron of the slowly adapting stretch receptor organ of crayfish receives synapses from three inhibitory axons, while the receptor muscle is innervated by both excitatory and inhibitory axons. Fine structural studies have indicated that after certain preparative procedures synaptic vesicles in the inhibitory terminals on dendrites of the receptor neuron appear small and elongate, while those in the excitatory terminals on the receptor muscle are round and larger. This study describes a new synapse between two inhibitory nerve endings on the receptor neuron. One axon, containing small elongate vesicles, forms a presynaptic chemical contact with another morphologically similar axon that, itself, presumably releases inhibitory transmitter onto the receptor neuron. A second type of presynaptic axo-axonic synapse, analogous to one previously described in another crustacean muscle, was also found between presumed inhibitory and excitatory nerve terminals on the receptor muscle. Thus, the stretch receptor has a relatively complex organization with a morphological basis for two types of presynaptic inhibition: one on excitatory terminals and the other on inhibitory terminals. Images PMID:4365382

  7. Ca2+-dependent inhibition of G protein-coupled receptor kinase 2 by calmodulin.

    PubMed

    Haga, K; Tsuga, H; Haga, T

    1997-02-11

    Agonist- or light-dependent phosphorylation of muscarinic acetylcholine receptor m2 subtypes (m2 receptors) or rhodopsin by G protein-coupled receptor kinase 2 (GRK2) was found to be inhibited by calmodulin in a Ca2+-dependent manner. The phosphorylation was fully inhibited in the absence of G protein betagamma subunits and partially inhibited in the presence of betagamma subunits. The dose-response curve for stimulation by betagamma subunits of the m2 and rhodopsin phosphorylation was shifted to the higher concentration of betagamma subunits by addition of Ca2+-calmodulin. The phosphorylation by GRK2 of a glutathione S-transferase fusion protein containing a peptide corresponding to the central part of the third intracellular loop of m2 receptors (I3-GST) was not affected by Ca2+-calmodulin in the presence or absence of betagamma subunits, but the agonist-dependent stimulation of I3-GST phosphorylation by an I3-deleted m2 receptor mutant in the presence of betagamma subunits was suppressed by Ca2+-calmodulin. These results indicate that Ca2+-calmodulin does not directly interact with the catalytic site of GRK2 but inhibits the kinase activity of GRK2 by interfering with the activation of GRK2 by agonist-bound m2 receptors and G protein betagamma subunits. In agreement with the assumption that GRK2 activity is suppressed by the increase in intracellular Ca2+, the sequestration of m2 receptors expressed in Chinese hamster ovary cells was found to be attenuated by the treatment with a Ca2+ ionophore, A23187.

  8. Pre-synaptic adenosine A2A receptors control cannabinoid CB1 receptor-mediated inhibition of striatal glutamatergic neurotransmission.

    PubMed

    Martire, Alberto; Tebano, Maria Teresa; Chiodi, Valentina; Ferreira, Samira G; Cunha, Rodrigo A; Köfalvi, Attila; Popoli, Patrizia

    2011-01-01

    An interaction between adenosine A(2A) receptors (A(2A) Rs) and cannabinoid CB(1) receptors (CB(1) Rs) has been consistently reported to occur in the striatum, although the precise mechanisms are not completely understood. As both receptors control striatal glutamatergic transmission, we now probed the putative interaction between pre-synaptic CB(1) R and A(2A) R in the striatum. In extracellular field potentials recordings in corticostriatal slices from Wistar rats, A(2A) R activation by CGS21680 inhibited CB(1) R-mediated effects (depression of synaptic response and increase in paired-pulse facilitation). Moreover, in superfused rat striatal nerve terminals, A(2A) R activation prevented, while A(2A) R inhibition facilitated, the CB(1) R-mediated inhibition of 4-aminopyridine-evoked glutamate release. In summary, the present study provides converging neurochemical and electrophysiological support for the occurrence of a tight control of CB(1) R function by A(2A) Rs in glutamatergic terminals of the striatum. In view of the key role of glutamate to trigger the recruitment of striatal circuits, this pre-synaptic interaction between CB(1) R and A(2A) R may be of relevance for the pathogenesis and the treatment of neuropsychiatric disorders affecting the basal ganglia.

  9. Voltage-dependent inhibition of recombinant NMDA receptor-mediated currents by 5-hydroxytryptamine

    PubMed Central

    Kloda, Anna; Adams, David J

    2005-01-01

    The effect of 5-HT and related indolealkylamines on heteromeric recombinant NMDA receptors expressed in Xenopus oocytes was investigated using the two-electrode voltage-clamp recording technique. In the absence of external Mg2+ ions, 5-HT inhibited NMDA receptor-mediated currents in a concentration-dependent manner. The inhibitory effect of 5-HT was independent of the NR1a and NR2 subunit combination. The inhibition of glutamate-evoked currents by 5-HT was use- and voltage-dependent. The voltage sensitivity of inhibition for NR1a+NR2 subunit combinations by 5-HT was similar, exhibiting an e-fold change per ∼20 mV, indicating that 5-HT binds to a site deep within the membrane electric field. The inhibition of the open NMDA receptor by external Mg2+ and 5-HT was not additive, suggesting competition between Mg2+ and 5-HT for a binding site in the NMDA receptor channel. The concentration-dependence curves for 5-HT and 5-methoxytryptamine (5-MeOT) inhibition of NMDA receptor-mediated currents are shifted to the right in the presence of external Mg2+. The related indolealkylamines inhibited glutamate-evoked currents with the following order of inhibitory potency: 5-MeOT=5-methyltryptamine>tryptamine>7-methyltryptamine>5-HT≫tryptophan=melatonin. Taken together, these data suggest that 5-HT and related compounds can attenuate glutamate-mediated excitatory synaptic responses and may provide a basis for drug treatment of excitoxic neurodegeneration. PMID:15655527

  10. Cannabinoids Inhibit Insulin Receptor Signaling in Pancreatic β-Cells

    PubMed Central

    Kim, Wook; Doyle, Máire E.; Liu, Zhuo; Lao, Qizong; Shin, Yu-Kyong; Carlson, Olga D.; Kim, Hee Seung; Thomas, Sam; Napora, Joshua K.; Lee, Eun Kyung; Moaddel, Ruin; Wang, Yan; Maudsley, Stuart; Martin, Bronwen; Kulkarni, Rohit N.; Egan, Josephine M.

    2011-01-01

    OBJECTIVE Optimal glucose homeostasis requires exquisitely precise adaptation of the number of insulin-secreting β-cells in the islets of Langerhans. Insulin itself positively regulates β-cell proliferation in an autocrine manner through the insulin receptor (IR) signaling pathway. It is now coming to light that cannabinoid 1 receptor (CB1R) agonism/antagonism influences insulin action in insulin-sensitive tissues. However, the cells on which the CB1Rs are expressed and their function in islets have not been firmly established. We undertook the current study to investigate if intraislet endogenous cannabinoids (ECs) regulate β-cell proliferation and if they influence insulin action. RESEARCH DESIGN AND METHODS We measured EC production in isolated human and mouse islets and β-cell line in response to glucose and KCl. We evaluated human and mouse islets, several β-cell lines, and CB1R-null (CB1R−/−) mice for the presence of a fully functioning EC system. We investigated if ECs influence β-cell physiology through regulating insulin action and demonstrated the therapeutic potential of manipulation of the EC system in diabetic (db/db) mice. RESULTS ECs are generated within β-cells, which also express CB1Rs that are fully functioning when activated by ligands. Genetic and pharmacologic blockade of CB1R results in enhanced IR signaling through the insulin receptor substrate 2-AKT pathway in β-cells and leads to increased β-cell proliferation and mass. CB1R antagonism in db/db mice results in reduced blood glucose and increased β-cell proliferation and mass, coupled with enhanced IR signaling in β-cells. Furthermore, CB1R activation impedes insulin-stimulated IR autophosphorylation on β-cells in a Gαi-dependent manner. CONCLUSIONS These findings provide direct evidence for a functional interaction between CB1R and IR signaling involved in the regulation of β-cell proliferation and will serve as a basis for developing new therapeutic interventions to

  11. Isolated dorsal root ganglion neurones inhibit receptor-dependent adenylyl cyclase activity in associated glial cells

    PubMed Central

    Ng, KY; Yeung, BHS; Wong, YH; Wise, H

    2013-01-01

    Background and Purpose Hyper-nociceptive PGE2 EP4 receptors and prostacyclin (IP) receptors are present in adult rat dorsal root ganglion (DRG) neurones and glial cells in culture. The present study has investigated the cell-specific expression of two other Gs-protein coupled hyper-nociceptive receptor systems: β-adrenoceptors and calcitonin gene-related peptide (CGRP) receptors in isolated DRG cells and has examined the influence of neurone–glial cell interactions in regulating adenylyl cyclase (AC) activity. Experimental Approach Agonist-stimulated AC activity was determined in mixed DRG cell cultures from adult rats and compared with activity in DRG neurone-enriched cell cultures and pure DRG glial cell cultures. Key Results Pharmacological analysis showed the presence of Gs-coupled β2-adrenoceptors and CGRP receptors, but not β1-adrenoceptors, in all three DRG cell preparations. Agonist-stimulated AC activity was weakest in DRG neurone-enriched cell cultures. DRG neurones inhibited IP receptor-stimulated glial cell AC activity by a process dependent on both cell–cell contact and neurone-derived soluble factors, but this is unlikely to involve purine or glutamine receptor activation. Conclusions and Implications Gs-coupled hyper-nociceptive receptors are readily expressed on DRG glial cells in isolated cell cultures and the activity of CGRP, EP4 and IP receptors, but not β2-adrenoceptors, in glial cells is inhibited by DRG neurones. Studies using isolated DRG cells should be aware that hyper-nociceptive ligands may stimulate receptors on glial cells in addition to neurones, and that variable numbers of neurones and glial cells will influence absolute measures of AC activity and affect downstream functional responses. PMID:22924655

  12. Noradrenaline release-inhibiting receptors on PC12 cells devoid of alpha(2(-)) and CB(1) receptors: similarities to presynaptic imidazoline and edg receptors.

    PubMed

    Molderings, G J; Bönisch, H; Hammermann, R; Göthert, M; Brüss, M

    2002-02-01

    The aim of the present study was to classify release-inhibiting receptors on rat pheochromocytoma PC12 cells. Veratridine-evoked [3H]noradrenaline release from PC12 cells was inhibited by micromolar concentrations of the imidazoline and guanidine derivatives cirazoline, clonidine, aganodine, 1,3-di(2-tolyl)guanidine, BDF6143 and agmatine, and of the cannabinoid receptor agonist WIN55,212-2 (R(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo-[1,2,3-de]-1,4-benzoxazin-yl](1-naphthalenyl)methanone mesylate), but not by noradrenaline. The inhibitory effect of clonidine was antagonized by micromolar concentrations of rauwolscine and SR141716A (N-[piperidin-1-yl]-5-[4-chlorophenyl]-1-[2,4-dichlorophenyl]-4-methyl-1H-pyrazole-3-carboxamide). The potencies of the agonists and antagonists were compatible with an action at previously characterized presynaptic imidazoline receptors. 1-Oleoyl-lysophosphatidic acid, but not sphingosine-1-phosphate, produced an inhibition of release that was antagonized by 30 microM rauwolscine, 1 microM SR141716A and 10 microM LY320135 as well as by pretreatment of the cells with 100 microM clonidine for 72 h. Polymerase chain reaction (PCR) experiments on cDNA from PC12 mRNA suggest mRNA expression of lysophospholipid receptors encoded by the genes edg2, edg3, edg5 and edg7, but not of receptors encoded by edg1, edg4, edg6 and edg8, and not of alpha(2A(-))nd CB(1) receptors. In conclusion, PC12 cells are not endowed with alpha(2)-adrenoceptors and CB(1) cannabinoid receptors, but with an inhibitory receptor recognizing imidazolines, guanidines and WIN55,212-2 similar to that on sympathetic nerves. The PCR results and the ability of 1-oleoyl-LPA to mimic these drugs (also with respect to their susceptibility to antagonists) suggest that the release-inhibiting receptor may be an edg-encoded lysophospholipid receptor.

  13. Inhibition of neuronal nicotinic acetylcholine receptors by the abused solvent, toluene

    PubMed Central

    Bale, Ambuja S; Smothers, Corigan T; Woodward, John J

    2002-01-01

    Toluene is a representative example of a class of industrial solvents that are voluntarily inhaled as drugs of abuse. Previous data from this lab and others has shown that toluene modulates the function of N-methyl-D-aspartate (NMDA), γ-aminobutyric acid (GABA) and glycine receptors at concentrations that do not affect non-NMDA receptors. We utilized two-electrode voltage-clamp and whole cell patch-clamp techniques to assess the effects of toluene on neuronal nicotinic acetylcholine receptors expressed in oocytes and cultured hippocampal neurons. Toluene (50 μM to 10 mM) produced a reversible, concentration-dependent inhibition of acetylcholine-induced current in Xenopus oocytes expressing various nicotinic receptor subtypes. The α4β2 and α3β2 subunit combinations were significantly more sensitive to toluene inhibition than the α4β4, α3β4 and α7 receptors. Receptors composed of α4 and β2(V253F) subunits showed α4β4-like toluene sensitivity while those containing α4 and β4(F255V) subunits showed α4β2-like sensitivity. In hippocampal neurons, toluene (50 μM to 10 mM) dose-dependently inhibited ACh-mediated responses with an IC50 of 1.1 mM. Taken together, these results suggest that nicotinic receptors, like NMDA receptors, show a subunit-dependent sensitivity to toluene and may represent an important site of action for some of the neurobehavioural effects of toluene. PMID:12237258

  14. Molecular determinants of glycine receptor αβ subunit sensitivities to Zn2+-mediated inhibition

    PubMed Central

    Miller, Paul S; Beato, Marco; Harvey, Robert J; Smart, Trevor G

    2005-01-01

    Glycine receptors exhibit a biphasic sensitivity profile in response to Zn2+-mediated modulation, with low Zn2+ concentrations potentiating (< 10 μm), and higher Zn2+ concentrations inhibiting submaximal responses to glycine. Here, a substantial 30-fold increase in sensitivity to Zn2+-mediated inhibition was apparent for the homomeric glycine receptor (GlyR) α1 subunit compared to either GlyR α2 or α3 subtypes. Swapping the divergent histidine (H107) residue in GlyR α1, which together with the conserved H109 forms part of an intersubunit Zn2+-binding site, for the equivalent asparagine residue present in GlyR α2 and α3, reversed this phenotype. Co-expression of heteromeric GlyR α1 or α2 with the ancillary β subunit yielded receptors that maintained their distinctive sensitivities to Zn2+ inhibition. However, GlyR α2β heteromers were consistently 2-fold more sensitive to inhibition compared to the GlyR α2 homomer. Comparative studies to elucidate the specific residue in the β subunit responsible for this differential sensitivity revealed instead threonine 133 in the α1 subunit as a new vital component for Zn2+-mediated inhibition. Further studies on heteromeric receptors demonstrated that a mutated β subunit could indeed affect Zn2+-mediated inhibition but only from one side of the intersubunit Zn2+-binding site, equivalent to the GlyR α1 H107 face. This strongly suggests that the α subunit is responsible for Zn2+-mediated inhibition and that this is effectively transduced, asymmetrically, from the side of the Zn2+-binding site where H109 and T133 are located. PMID:15905212

  15. Atypical effect of dopamine in modulating the functional inhibition of NMDA receptors of cultured retina cells.

    PubMed

    Do Nascimento, J L; Kubrusly, R C; Reis, R A; De Mello, M C; De Mello, F G

    1998-02-05

    Cultured retina cells released accumulated [3H]GABA (gamma-aminobutyric acid) when stimulated by L-glutamate, N-methyl-D-aspartate (NMDA) and kainate. In the absence of Mg2+, dopamine at 200 microM (IC50 60 microM), inhibited in more than 50% the release of [3H]GABA induced by L-glutamate and NMDA, but not by kainate. This effect was not blocked by the D1-like dopamine receptor antagonist, R-(+)-7-chloro-8-hydroxy-3-methyl- -phenyl-2,3,4,5-tetrahydro- H-3-benzazepine hydrochloride (SCH 23390), neither by haloperidol nor spiroperidol (dopamine D2-like receptor antagonists). The dopamine D1-like receptor agonist R(+)-1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,diol hydrochloride (SKF 38393) at 50 microM, but not its enantiomer, also inhibited the release of [3H]GABA induced by NMDA, but not by kainate; an effect that was not prevented by the antagonists mentioned above. (+/-)-6-Chloro-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepin e hydrobromide (SKF 812497) had no effect. Neither 8BrcAMP (5 mM) nor forskolin (10 microM) inhibited the release of [3H]GABA. Our results suggest that dopamine and (+)-SKF 38393 inhibit the glutamate and NMDA-evoked [3H]GABA release through mechanisms that seem not to involve known dopaminergic receptor systems.

  16. Garlic (Allium sativum) Extracts Inhibits Lipopolysaccharide-Induced Toll-Like Receptor 4 Dimerization

    USDA-ARS?s Scientific Manuscript database

    Garlic has been used as a folk medicine for a long history. Numerous studies demonstrated that garlic extracts and its sulfur-containing compounds inhibit nuclear factor-kappa B (NF-kB) activation induced by various receptor agonist including lipopolysaccharide (LPS). These effects suggest that garl...

  17. Rapid auxin-induced root growth inhibition requires the TIR and AFB auxin receptors.

    PubMed

    Scheitz, Katharina; Lüthen, Hartwig; Schenck, Daniel

    2013-12-01

    We investigated the relation between auxin-induced gene expression and the rapid auxin-induced growth inhibition in Arabidopsis thaliana roots. The natural auxin indole-3-acetic acid (IAA) induced a strong activation of gene expression as visualized by the DR5rev::GFP reporter gene technique. This effect was specific for active auxins and was abolished in knockout mutants of the F-box auxin receptors. We measured the IAA-induced growth inhibition at high time resolution and show that the F-box auxin receptor mutants failed to display this effect. We conclude that the F-box auxin receptors are needed for the response. In hypocotyls, auxin induces an increase in elongation growth, and this effect has been earlier shown to be independent of the F-box receptors. Based on these findings, we discuss differences in the growth control modes in roots and shoots. We demonstrate that the rapid auxin-induced root growth inhibition, unlike the induction of growth in hypocotyls, requires the presence of the F-box auxin receptors.

  18. Tamoxifen and its active metabolites inhibit dopamine transporter function independently of the estrogen receptors.

    PubMed

    Mikelman, Sarah R; Guptaroy, Bipasha; Gnegy, Margaret E

    2017-04-01

    As one of the primary mechanisms by which dopamine signaling is regulated, the dopamine transporter (DAT) is an attractive pharmacological target for the treatment of diseases based in dopaminergic dysfunction. In this work we demonstrate for the first time that the commonly prescribed breast cancer therapeutic tamoxifen and its major metabolites, 4-hydroxytamoxifen and endoxifen, inhibit DAT function. Tamoxifen inhibits [(3) H]dopamine uptake into human DAT (hDAT)-N2A cells via an uncompetitive or mixed mechanism. Endoxifen, an active metabolite of tamoxifen, asymmetrically inhibits DAT function in hDAT-N2A cells, showing a preference for the inhibition of amphetamine-stimulated dopamine efflux as compared to dopamine uptake. Importantly, we demonstrate that the effects of tamoxifen and its metabolites on the DAT occur independently of its activity as selective estrogen receptor modulators. This work suggests that tamoxifen is inhibiting DAT function through a previously unidentified mechanism. © 2017 International Society for Neurochemistry.

  19. Activation and inhibition of erythropoietin receptor function: role of receptor dimerization.

    PubMed Central

    Watowich, S S; Hilton, D J; Lodish, H F

    1994-01-01

    Members of the cytokine receptor superfamily have structurally similar extracellular ligand-binding domains yet diverse cytoplasmic regions lacking any obvious catalytic domains. Many of these receptors form ligand-induced oligomers which are likely to participate in transmembrane signaling. A constitutively active (factor-independent) mutant of the erythropoietin receptor (EPO-R), R129C in the exoplasmic domain, forms disulfide-linked homodimers, suggesting that the wild-type EPO-R is activated by ligand-induced homodimerization. Here, we have taken two approaches to probe the role EPO-R dimerization plays in signal transduction. First, on the basis of the crystal structure of the ligand-bound, homodimeric growth hormone receptor (GH-R) and sequence alignment between the GH-R and EPO-R, we identified residues of the EPO-R which may be involved in intersubunit contacts in an EPO-R homodimer. Residue 129 of the EPO-R corresponds to a residue localized to the GH-R dimer interface region. Alanine or cysteine substitutions were introduced at four other residues of the EPO-R predicted to be in the dimer interface region. Substitution of residue E-132 or E-133 with cysteine renders the EPO-R constitutively active. Like the arginine-to-cysteine mutation at position 129 in the exoplasmic domain (R129C), E132C and E133C form disulfide-linked homodimers, suggesting that constitutive activity is due to covalent dimerization. In the second approach, we have coexpressed the wild-type EPO-R with inactive mutants of the receptor missing all or part of the cytosolic domain. These truncated receptors have a dominant inhibitory effect on the proliferative action of the wild-type receptor. Taken together, these results strengthen the hypothesis that an initial step in EPO- and EPO-R-mediated signal transduction is ligand-induced receptor dimerization. Images PMID:8196600

  20. Helicobacter pylori lipopolysaccharide inhibition of gastric mucosal laminin receptor: effect of sulglycotide.

    PubMed

    Piotrowski, J; Czajkowski, A; Yotsumoto, F; Slomiany, A; Slomiany, B L

    1993-11-01

    1. The effect of cell-wall lipopolysaccharide from Helicobacter pylori, a bacterium implicated in the etiology of gastric disease, on the gastric mucosal laminin-receptor was investigated. 2. The receptor, isolated from gastric epithelial cell membrane by affinity chromatography on laminin-coupled Sepharose, was radioiodinated and incorporated into liposomes which exhibited specific affinity towards laminin-coated surface. 3. The binding of liposomal receptor to laminin-coated surface was inhibited by H. pylori lipopolysaccharide, which at 50 micrograms/ml caused a nearly complete (97%) inhibition in binding. 4. The inhibitory effect of the lipopolysaccharide was prevented by a cytoprotective agent, sulglycotide, that evoked a 92% restoration in binding at 40 micrograms/ml. 5. The results demonstrate that through its lipopolysaccharide H. pylori is capable of disrupting the gastric mucosal integrity and that this detrimental effect could be successfully countered by sulglycotide.

  1. Activation of GABA(A) receptors in subthalamic neurons in vitro: properties of native receptors and inhibition mechanisms.

    PubMed

    Baufreton, J; Garret, M; Dovero, S; Dufy, B; Bioulac, B; Taupignon, A

    2001-07-01

    all intact neurons. In neurons held in whole cell configuration, membrane potential hyperpolarized by -10 mV whilst input resistance decreased by 50%, indicating powerful membrane shunting. Muscimol never induced burst firing, even in neurons that exhibited the capacity of switching from regular- to burst-firing mode. These molecular and functional data indicate that native subthalamic GABA(A) receptors do not contain the epsilon protein and activation of GABA(A) receptors induces membrane shunting, which is essential for firing inhibition but prevents switching to burst-firing. They suggest that the STN, like many other parts of the brain, has the physiological and structural features of the widely expressed GABA(A) receptors consisting of alphabetagamma subunits.

  2. Muscarinic inhibition of hippocampal and striatal adenylyl cyclase is mainly due to the M(4) receptor.

    PubMed

    Sánchez, Gonzalo; Colettis, Natalia; Vázquez, Pablo; Cerveñansky, Carlos; Aguirre, Alejandra; Quillfeldt, Jorge A; Jerusalinsky, Diana; Kornisiuk, Edgar

    2009-08-01

    The five muscarinic acetylcholine receptors (M(1)-M(5)) are differentially expressed in the brain. M(2) and M(4) are coupled to inhibition of stimulated adenylyl cyclase, while M(1), M(3) and M(5) are mainly coupled to the phosphoinositide pathway. We studied the muscarinic receptor regulation of adenylyl cyclase activity in the rat hippocampus, compared to the striatum and amygdala. Basal and forskolin-stimulated adenylyl cyclase activity was higher in the striatum but the muscarinic inhibition was much lower. Highly selective muscarinic toxins MT1 and MT2-affinity order M(1) > or = M(4) > others-and MT3-highly selective M(4) antagonist-did not show significant effects on basal or forskolin-stimulated cyclic AMP production but, like scopolamine, counteracted oxotremorine inhibition. Since MTs have negligible affinity for M(2), M(4) would be the main subtype responsible for muscarinic inhibition of forskolin-stimulated enzyme. Dopamine stimulated a small fraction of the enzyme (3.1% in striatum, 1.3% in the hippocampus). Since MT3 fully blocked muscarinic inhibition of dopamine-stimulated enzyme, M(4) receptor would be responsible for this regulation.

  3. Tumor necrosis factor-alpha inhibits pre-osteoblast differentiation through its type-1 receptor.

    PubMed

    Abbas, Sabiha; Zhang, Yan-Hong; Clohisy, John C; Abu-Amer, Yousef

    2003-04-01

    Tumor necrosis factor-alpha (TNF) is a pro-inflammatory cytokine with a profound role in many skeletal diseases. The cytokine has been described as a mediator of bone loss in osteolysis and other inflammatory bone diseases. In addition to its known bone resorptive action, TNF reduces bone formation by inhibiting osteoblast differentiation. Using primary and transformed osteoblastic cells, we first document that TNF inhibits expression of alkaline phosphatase and matrix deposition, both considered markers of osteoblast differentiation. The effects are dose- and time-dependent. Core-binding factor A1 (cbfa1) is a transcription factor critical for osteoblast differentiation, and we show here that it is activated by the osteoblast differentiation agent, beta-glycerophosphate. Therefore, we investigated whether the inhibitory effects of TNF were associated with altered activity of this transcription factor. Using retardation assays, we show that TNF significantly inhibits cbfal activation by beta-glycerophosphate, manifested by reduced DNA-binding activity. Next, we turned to determine the signaling pathway by which TNF inhibits osteoblast differentiation. Utilizing animals lacking individual TNF receptors, we document that TNFr1 is required for transmitting the cytokine's inhibitory effect. In the absence of this receptor, TNF failed to impact all osteoblast differentiation markers tested. In summary, TNF blocks expression of osteoblast differentiation markers and inhibits beta-glycerophosphate-induced activation of the osteoblast differentiation factor cbfa1. Importantly, these effects are mediated via a mechanism requiring the TNF type-1 receptor.

  4. Protein kinase C regulates tonic GABAA receptor-mediated inhibition in the hippocampus and thalamus

    PubMed Central

    Bright, Damian P; Smart, Trevor G

    2013-01-01

    Tonic inhibition mediated by extrasynaptic GABAA receptors (GABAARs) is an important regulator of neuronal excitability. Phosphorylation by protein kinase C (PKC) provides a key mode of regulation for synaptic GABAARs underlying phasic inhibition; however, less attention has been focused on the plasticity of tonic inhibition and whether this can also be modulated by receptor phosphorylation. To address this issue, we used whole-cell patch clamp recording in acute murine brain slices at both room and physiological temperatures to examine the effects of PKC-mediated phosphorylation on tonic inhibition. Recordings from dentate gyrus granule cells in the hippocampus and dorsal lateral geniculate relay neurons in the thalamus demonstrated that PKC activation caused downregulation of tonic GABAAR-mediated inhibition. Conversely, inhibition of PKC resulted in an increase in tonic GABAAR activity. These findings were corroborated by experiments on human embryonic kidney 293 cells expressing recombinant α4β2δ GABAARs, which represent a key extrasynaptic GABAAR isoform in the hippocampus and thalamus. Using bath application of low GABA concentrations to mimic activation by ambient neurotransmitter, we demonstrated a similar inhibition of receptor function following PKC activation at physiological temperature. Live cell imaging revealed that this was correlated with a loss of cell surface GABAARs. The inhibitory effects of PKC activation on α4β2δ GABAAR activity appeared to be mediated by direct phosphorylation at a previously identified site on the β2 subunit, serine 410. These results indicate that PKC-mediated phosphorylation can be an important physiological regulator of tonic GABAAR-mediated inhibition. PMID:24102973

  5. Histamine H3A receptor-mediated inhibition of noradrenaline release in the mouse brain cortex.

    PubMed

    Schlicker, E; Behling, A; Lümmen, G; Göthert, M

    1992-04-01

    Mouse brain cortex slices preincubated with 3H-noradrenaline were superfused with physiological salt solution containing desipramine plus a drug with alpha 2-adrenoceptor antagonist properties, and the effects of histamine receptor ligands on the electrically (0.3 Hz) evoked tritium overflow were studied. The evoked overflow (from slices superfused with phentolamine) was inhibited by histamine (pIC35 6.53), the H3 receptor agonist R-(-)-alpha-methylhistamine (7.47) and its S-(+)-enantiomer (5.82) but not influenced by the H1 receptor agonist 2-(2-thiazolyl)-ethylamine 3.2 mumol/l and the H2 receptor agonist dimaprit 10 mumol/l. The inhibitory effect of histamine was not affected by the H1 receptor antagonist dimetindene 1 mumol/l and the H2 receptor antagonist ranitidine 10 mumol/l. The concentration-response curve of histamine (determined in the presence of rauwolscine) was shifted to the right by the H3 receptor antagonists thioperamide (apparent pA2 8.67), impromidine (7.30) and burimamide (6.82) as well as by dimaprit (6.16). The pA2 values of the four drugs were compared with their affinities for H3A and H3B binding sites in rat brain membranes (West et al. 1990 Mol Pharmacol 38:610); a significant correlation was obtained for the H3A, but not for the H3B sites. The results suggest that noradrenaline release in the mouse brain cortex is inhibited by histamine via H3A receptors and that dimaprit is an H3 receptor antagonist of moderate potency.

  6. Angiotensin II AT1 receptor antagonists inhibit platelet adhesion and aggregation by nitric oxide release.

    PubMed

    Kalinowski, Leszek; Matys, Tomasz; Chabielska, Ewa; Buczko, Włodzimierz; Malinski, Tadeusz

    2002-10-01

    This study investigated the process of nitric oxide (NO) release from platelets after stimulation with different angiotensin II type 1 (AT1)-receptor antagonists and its effect on platelet adhesion and aggregation. Angiotensin II AT1-receptor antagonist-stimulated NO release in platelets was compared with that in human umbilical vein endothelial cells by using a highly sensitive porphyrinic microsensor. In vitro and ex vivo effects of angiotensin II AT1-receptor antagonists on platelet adhesion to collagen and thromboxane A2 analog U46619-induced aggregation were evaluated. Losartan, EXP3174, and valsartan alone caused NO release from platelets and endothelial cells in a dose-dependent manner in the range of 0.01 to 100 micro mol/L, which was attenuated by NO synthase inhibitor N(G)-nitro-L-arginine methyl ester. The angiotensin II AT1-receptor antagonists had more than 70% greater potency in NO release in platelets than in endothelial cells. The degree of inhibition of platelet adhesion (collagen-stimulated) and aggregation (U46619-stimulated) elicited by losartan, EXP3174, and valsartan, either in vitro or ex vivo, closely correlated with the NO levels produced by each of these drugs alone. The inhibiting effects of angiotensin II AT1-receptor antagonists on collagen-stimulated adhesion and U46619-stimulated aggregation of platelets were significantly reduced by pretreatment with N(G)-nitro-L-arginine methyl ester. Neither the AT2 receptor antagonist PD123319, the cyclooxygenase synthase inhibitor indomethacin, nor the selective thromboxane A2/prostaglandin H2 receptor antagonist SQ29,548 had any effect on angiotensin II AT1-receptor antagonist-stimulated NO release in platelets and endothelial cells. The presented studies clearly indicate a crucial role of NO in the arterial antithrombotic effects of angiotensin II AT1-receptor antagonists.

  7. Angiotensin receptor blockers and the kidney: possible advantages over ACE inhibition?

    PubMed

    Cooper, M E; Webb, R L; de Gasparo, M

    2001-01-01

    This review deals with similarities and differences between the effects of ACE inhibitors and AT1-receptor blockers in the kidney. Specific receptor blockade has demonstrated that the beneficial effects of AT1 blockers arise from two mechanisms: the reduction of the AT1 receptor mediated response and the increase in plasma levels of Ang II through the AT1-receptor blockade, which leads to increased stimulation of the AT2 receptor (the so-called yin-yang effect). Both ACE inhibition and AT1-receptor blockade provide significant renal protection in the majority of experimental animal models of kidney diseases. AT1 receptor blockade may offer additional clinical benefits over ACE inhibitor treatment, particularly in the kidney, where AT1-receptor blockade does not cause the fall in glomerular filtration rate seen with ACE inhibitor treatment. A number of long-term clinical studies currently running should show the real value of this new class of compounds in the management of hypertension and associated cardiorenal diseases.

  8. Heterologous desensitization of opioid receptors by chemokines inhibits chemotaxis and enhances the perception of pain.

    PubMed

    Szabo, Imre; Chen, Xiao-Hong; Xin, Li; Adler, Martin W; Howard, O M Z; Oppenheim, Joost J; Rogers, Thomas J

    2002-08-06

    The chemokines use G protein-coupled receptors to regulate the migratory and proadhesive responses of leukocytes. Based on observations that G protein-coupled receptors undergo heterologous desensitization, we have examined the ability of chemokines to also influence the perception of pain by cross-desensitizing opioid G protein-coupled receptors function in vitro and in vivo. We find that the chemotactic activities of both mu- and delta-opioid receptors are desensitized following activation of the chemokine receptors CCR5, CCR2, CCR7, and CXCR4 but not of the CXCR1 or CXCR2 receptors. Furthermore, we also find that pretreatment with RANTES/CCL5, the ligand for CCR1, and CCR5 or SDF-1alpha/CXCL12, the ligand for CXCR4, followed by opioid administration into the periaqueductal gray matter of the brain results in an increased rat tail flick response to a painful stimulus. Because chemokine administration into the periaqueductal gray matter inhibits opioid-induced analgesia, we propose that the activation of proinflammatory chemokine receptors down-regulates the analgesic functions of opioid receptors, and this enhances the perception of pain at inflammatory sites.

  9. Pre-synaptic GABA receptors inhibit glutamate release through GIRK channels in rat cerebral cortex.

    PubMed

    Ladera, Carolina; del Carmen Godino, María; José Cabañero, María; Torres, Magdalena; Watanabe, Masahiko; Luján, Rafael; Sánchez-Prieto, José

    2008-12-01

    Neuronal G protein-gated inwardly rectifying potassium (GIRK) channels mediate the slow inhibitory effects of many neurotransmitters post-synaptically. However, no evidence exists that supports that GIRK channels play any role in the inhibition of glutamate release by GABA(B) receptors. In this study, we show for the first time that GABA(B) receptors operate through two mechanisms in nerve terminals from the cerebral cortex. As shown previously, GABA(B) receptors reduces glutamate release and the Ca(2+) influx mediated by N-type Ca(2+) channels in a mode insensitive to the GIRK channel blocker tertiapin-Q and consistent with direct inhibition of this voltage-gated Ca(2+) channel. However, by means of weak stimulation protocols, we reveal that GABA(B) receptors also reduce glutamate release mediated by P/Q-type Ca(2+) channels, and that these responses are reversed by the GIRK channel blocker tertiapin-Q. Consistent with the functional interaction between GABA(B) receptors and GIRK channels at nerve terminals we demonstrate by immunogold electron immunohistochemistry that pre-synaptic boutons of asymmetric synapses co-express GABA(B) receptors and GIRK channels, thus suggesting that the functional interaction of these two proteins, found at the post-synaptic level, also occurs at glutamatergic nerve terminals.

  10. Activation of Gi-coupled receptors releases a tonic state of inhibited platelet aggregation.

    PubMed

    Maayani, S; Schwarz, T; Martinez, R; Tagliente, T M

    2001-03-01

    Single-receptor pharmacology does not satisfactorily explain the physiology of the ADP-induced platelet aggregation response. It has been shown that, in addition to Gq-coupled receptor activation, one Gi-coupled receptor, either the ADP P2T or the alpha2-adrenoceptor, is required for elicitation of aggregation. The underlying mechanism of this action, however, has not been elucidated. By systematically assaying the entire time course of the aggregation and its fade using two methods of aggregometry, we have investigated the role of graded activation of these two Gi-coupled receptors. We demonstrate that constant activation of either of two Gq-coupled receptors, the ADP P2Y1 or the 5-HT2A, and incremental activation of either of the two Gi-coupled receptors, tightly regulates the aggregation response in vitro, through the apparent release of a tonic inhibition of platelet aggregation. This tightly regulated release of inhibition, which appears analogous to the phenomena of disinhibition observed in the central nervous system, may be instrumental for the continuous adaptation of the aggregation response to variable physiological conditions.

  11. Manganese inhibits NMDA receptor channel function: implications to psychiatric and cognitive effects.

    PubMed

    Guilarte, Tomás R; Chen, Ming-Kai

    2007-11-01

    Humans exposed to excess levels of manganese (Mn(2+)) express psychiatric problems and deficits in attention and learning and memory. However, there is a paucity of knowledge on molecular mechanisms by which Mn(2+) produces such effects. We now report that Mn(2+) is a potent inhibitor of [(3)H]-MK-801 binding to the NMDA receptor channel in rat neuronal membrane preparations. The inhibition of [(3)H]-MK-801 to the NMDA receptor channel by Mn(2+) was activity-dependent since Mn(2+) was a more potent inhibitor in the presence of the NMDA receptor co-agonists glutamate and glycine (K(i)=35.9+/-3.1 microM) than in their absence (K(i)=157.1+/-6.5 microM). We also show that Mn(2+) is a NMDA receptor channel blocker since its inhibition of [(3)H]-MK-801 binding to the NMDA receptor channel is competitive in nature. That is, Mn(2+) significantly increased the affinity constant (K(d)) with no significant effect on the maximal number of [(3)H]-MK-801 binding sites (B(max)). Under stimulating conditions, Mn(2+) was equipotent in inhibiting [(3)H]-MK-801 binding to NMDA receptors expressed in neuronal membrane preparations from different brain regions. However, under basal, non-stimulated conditions, Mn(2+) was more potent in inhibiting NMDA receptors in the cerebellum than other brain regions. We have previously shown that chronic Mn(2+) exposure in non-human primates increases Cu(2+), but not zinc or iron concentrations in the basal ganglia [Guilarte TR, Chen M-K, McGlothan JL, Verina T, Wong DF, Zhou Y, Alexander M, Rohde CA, Syversen T, Decamp E, Koser AJ, Fritz S, Gonczi H, Anderson DW, Schneider JS. Nigrostriatal dopamine system dysfunction and subtle motor deficits in manganese-exposed non-human primates. Exp Neurol 2006a;202:381-90]. Therefore, we also tested the inhibitory effects of Cu(2+) on [(3)H]-MK-801 binding to the NMDA receptor channel. The data shows that Cu(2+) in the presence of glutamate and glycine is a more potent inhibitor of the NMDA receptor than Mn(2

  12. Histamine H3 receptor activation inhibits neurogenic sympathetic vasoconstriction in porcine nasal mucosa.

    PubMed

    Varty, LoriAnn M; Hey, John A

    2002-10-11

    Histamine release from mast cells is a primary mediator of rhinorrhea, nasal mucosal swelling, increased secretion, sneezing, pruritus and congestion that occur in allergic rhinitis. It is well known that histamine H(1) receptor antagonists inhibit the itch and rhinorhea, but do not block the allergic nasal congestion. A growing body of evidence shows that in addition to histamine H(1) receptors, activation of H(3) receptors may contribute to the procongestant nasal actions of histamine. Activation of the prejunctional histamine H(3) receptor modulates sympathetic control of nasal vascular tone and resistance. The present study was conducted to further characterize the role of histamine H(3) receptors on neurogenic sympathetic vascular contractile responses in isolated porcine nasal turbinate mucosa. We presently found that the histamine H(3) receptor agonist, (R)-alpha-methylhistamine (10-1000 nM), inhibited electrical field stimulation-induced sympathetic vasomotor contractions in a concentration-dependent fashion. Pretreatment with either of the selective histamine H(3) receptor antagonists, thioperamide and clobenpropit, blocked the sympathoinhibitory effect of (R)-alpha-methylhistamine in porcine turbinate mucosa. The effect of compound 48/80, an agent that elicits the release of endogenous histamine from mast cells on nasal sympathetic contractile responses, was also tested. The action of compound 48/80 to release mast cell-derived histamine in the nose mimics many of the nasal responses associated with allergic rhinitis, extravascular leakage and decreased nasal patency. We presently found that compound 48/80 also inhibited the electrical field stimulation-induced sympathetic response. Pretreatment with the H(3) receptor antagonist clobenpropit blocked the sympathoinhibitory action of compound 48/80 on sympathetic contractile responses in nasal mucosa. Taken together, these studies indicate that histamine H(3) receptors modulate vascular contractile

  13. Feed-forward inhibition of androgen receptor activity by glucocorticoid action in human adipocytes.

    PubMed

    Hartig, Sean M; He, Bin; Newberg, Justin Y; Ochsner, Scott A; Loose, David S; Lanz, Rainer B; McKenna, Neil J; Buehrer, Benjamin M; McGuire, Sean E; Marcelli, Marco; Mancini, Michael A

    2012-09-21

    We compared transcriptomes of terminally differentiated mouse 3T3-L1 and human adipocytes to identify cell-specific differences. Gene expression and high content analysis (HCA) data identified the androgen receptor (AR) as both expressed and functional, exclusively during early human adipocyte differentiation. The AR agonist dihydrotestosterone (DHT) inhibited human adipocyte maturation by downregulation of adipocyte marker genes, but not in 3T3-L1. It is interesting that AR induction corresponded with dexamethasone activation of the glucocorticoid receptor (GR); however, when exposed to the differentiation cocktail required for adipocyte maturation, AR adopted an antagonist conformation and was transcriptionally repressed. To further explore effectors within the cocktail, we applied an image-based support vector machine (SVM) classification scheme to show that adipocyte differentiation components inhibit AR action. The results demonstrate human adipocyte differentiation, via GR activation, upregulates AR but also inhibits AR transcriptional activity.

  14. Macroautophagy inhibition maintains fragmented mitochondria to foster T cell receptor-dependent apoptosis.

    PubMed

    Corrado, Mauro; Mariotti, Francesca R; Trapani, Laura; Taraborrelli, Lucia; Nazio, Francesca; Cianfanelli, Valentina; Soriano, Maria Eugenia; Schrepfer, Emilie; Cecconi, Francesco; Scorrano, Luca; Campello, Silvia

    2016-08-15

    Mitochondrial dynamics and functionality are linked to the autophagic degradative pathway under several stress conditions. However, the interplay between mitochondria and autophagy upon cell death signalling remains unclear. The T-cell receptor pathway signals the so-called activation-induced cell death (AICD) essential for immune tolerance regulation. Here, we show that this apoptotic pathway requires the inhibition of macroautophagy. Protein kinase-A activation downstream of T-cell receptor signalling inhibits macroautophagy upon AICD induction. This leads to the accumulation of damaged mitochondria, which are fragmented, display remodelled cristae and release cytochrome c, thereby driving apoptosis. Autophagy-forced reactivation that clears the Parkin-decorated mitochondria is as effective in inhibiting apoptosis as genetic interference with cristae remodelling and cytochrome c release. Thus, upon AICD induction regulation of macroautophagy, rather than selective mitophagy, ensures apoptotic progression. © 2016 The Authors.

  15. Orphan Nuclear Receptor DAX-1 Acts as a Novel Corepressor of Liver X Receptor α and Inhibits Hepatic Lipogenesis*

    PubMed Central

    Nedumaran, Balachandar; Kim, Gwang Sik; Hong, Sungpyo; Yoon, Young-Sil; Kim, Yong-Hoon; Lee, Chul-Ho; Lee, Young Chul; Koo, Seung-Hoi; Choi, Hueng-Sik

    2010-01-01

    DAX-1 (dosage-sensitive sex reversal adrenal hypoplasia congenital critical region on X chromosome, gene 1) is a member of the nuclear receptor superfamily that can repress diverse nuclear receptors and has a key role in adreno-gonadal development. Our previous report has demonstrated that DAX-1 can inhibit hepatocyte nuclear factor 4α transactivity and negatively regulate gluconeogenic gene expression (Nedumaran, B., Hong, S., Xie, Y. B., Kim, Y. H., Seo, W. Y., Lee, M. W., Lee, C. H., Koo, S. H., and Choi, H. S. (2009) J. Biol. Chem. 284, 27511–27523). Here, we further expand the role of DAX-1 in hepatic energy metabolism. Transfection assays have demonstrated that DAX-1 can inhibit the transcriptional activity of nuclear receptor liver X receptor α (LXRα). Physical interaction between DAX-1 and LXRα was confirmed Immunofluorescent staining in mouse liver shows that LXRα and DAX-1 are colocalized in the nucleus. Domain mapping analysis shows that the entire region of DAX-1 is involved in the interaction with the ligand binding domain region of LXRα. Competition analyses demonstrate that DAX-1 competes with the coactivator SRC-1 for repressing LXRα transactivity. Chromatin immunoprecipitation assay showed that endogenous DAX-1 recruitment on the SREBP-1c gene promoter was decreased in the presence of LXRα agonist. Overexpression of DAX-1 inhibits T7-induced LXRα target gene expression, whereas knockdown of endogenous DAX-1 significantly increases T7-induced LXRα target gene expression in HepG2 cells. Finally, overexpression of DAX-1 in mouse liver decreases T7-induced LXRα target gene expression, liver triglyceride level, and lipid accumulation. Overall, this study suggests that DAX-1, a novel corepressor of LXRα, functions as a negative regulator of lipogenic enzyme gene expression in liver. PMID:20080977

  16. Sigma receptor ligand N,N'-di-(ortho-tolyl)guanidine inhibits release of acetylcholine in the guinea pig ileum.

    PubMed

    Cambell, B G; Keana, J F; Weber, E

    1991-11-26

    The inhibition of stimulated contractions of the guinea pig ileum longitudinal muscle/myenteric plexus preparation by sigma receptor ligands has been previously described. In this study, the stimulated release of [3H]acetylcholine from cholinergic nerve terminals in this same preparation was monitored in the presence and absence of sigma receptor ligands. N,N'-Di-(orthotolyl)guanidine (DTG) and other compounds selective for the sigma receptor inhibited stimulated [3H]acetylcholine release. These results suggest that their inhibition of stimulated contractions in this preparation was mediated by inhibition of acetylcholine release.

  17. Inhibition of glycine receptor function of native neurons by aliphatic n-alcohols

    PubMed Central

    Tao, Liang; Ye, Jiang Hong

    2002-01-01

    The inhibitory effects of n-alcohols (methanol to dodecanol) on glycine-activated currents were studied in neurons freshly dissociated from the ventral tegmental area of neonatal rats using whole-cell patch-clamp recording technique.Ethanol enhanced and depressed glycine-activated currents in 35% and 45%, respectively, of neurons of ventral tegmental area of neonatal rats. In this report, we extended our focus of ethanol-induced inhibition of glycine currents to other straight-chain alcohols.Aliphatic n-alcohols, which have carbon numbers less than nine, suppressed glycine currents in 45% (71/158) of the neurons. All results from this study are obtained from the 45% of cells displaying inhibition; the other 55% of the neurons were not studied.Alcohol potency increased as the number of carbon atoms increased from one to five, and was at a maximal plateau from five to nine; alcohols with 10 or more carbons did not inhibit glycine-activated currents. Thus, a ‘cutoff' point in their potency for inhibition of glycine receptor function occurred at about decanol.A coapplication of dodecanol with ethanol eliminated the inhibition resulting from ethanol. Thus, dodecanol may bind to the receptor silently and compete with ethanol.These observations indicate that straight-chain n-alcohols exhibit a ‘cutoff' point in their potency for inhibition of the glycine receptor function between nine and 10 carbon atoms. The inability of longer alcohols to change the activation properties of the receptors may contribute to the cutoff effect. PMID:12055142

  18. Nitric oxide reversibly inhibits the epidermal growth factor receptor tyrosine kinase.

    PubMed Central

    Estrada, C; Gómez, C; Martín-Nieto, J; De Frutos, T; Jiménez, A; Villalobo, A

    1997-01-01

    Although it has been demonstrated that NO inhibits the proliferation of different cell types, the mechanisms of its anti-mitotic action are not well understood. In this work we have studied the possible interaction of NO with the epidermal growth factor receptor (EGFR), using transfected fibroblasts which overexpress the human EGFR. The NO donors S-nitroso-N-acetylpenicillamine (SNAP), 1,1-diethyl-2-hydroxy-2-nitrosohydrazine (DEA-NO) and N-¿4-[1-(3-aminopropyl)-2-hydroxy-2-nitrosohydrazino]butyl¿propane -1, 3-diamine (DETA-NO) inhibited DNA synthesis of fibroblasts growing in the presence of fetal calf serum, epidermal growth factor (EGF) or EGF plus insulin, as assessed by [methyl-3H]thymidine incorporation. Neither 8-bromo-cGMP nor the cGMP-phosphodiesterase inhibitor zaprinast mimicked this effect, suggesting that NO is unlikely to inhibit cell proliferation via a cGMP-dependent pathway. SNAP, DEA-NO and DETA-NO also inhibited the transphosphorylation of the EGFR and its tyrosine kinase activity toward the exogenous substrate poly-l-(Glu-Tyr), as measured in permeabilized cells using [gamma-32P]ATP as phosphate donor. In contrast, 3-[morpholinosydnonimine hydrochloride] (SIN-1), a peroxynitrite-forming compound, did not significantly inhibit either DNA synthesis or the EGFR tyrosine kinase activity. The inhibitory action of DEA-NO on the EGFR tyrosine kinase was prevented by haemoglobin, an NO scavenger, but not by superoxide dismutase, and was reversed by dithiothreitol. The binding of EGF to its receptor was unaffected by DEA-NO. The inhibitory action of DEA-NO on the EGF-dependent transphosphorylation of the receptor was also demonstrated in intact cells by immunoblot analysis using an anti-phosphotyrosine antibody. Taken together, these results suggest that NO, but not peroxynitrite, inhibits in a reversible manner the EGFR tyrosine kinase activity by S-nitrosylation of the receptor. PMID:9291107

  19. Sigma receptor activation inhibits voltage-gated sodium channels in rat intracardiac ganglion neurons

    PubMed Central

    Zhang, Hongling; Katnik, Christopher; Cuevas, Javier

    2010-01-01

    Sigma (σ) receptors have been shown to regulate multiple ion channel types in intracardiac ganglion neurons, including voltage-gated calcium and potassium channels. However, the inhibition of these channels alone cannot fully account for σ receptor-induced changes in neuronal excitability previously reported. Whole-cell patch clamp experiments were conducted under current-clamp mode in isolated intracardiac neurons from neonatal rats to assess the effects of σ receptor activation on the active membrane properties of these cells. Bath application of the pan-selective σ receptor agonist, 1,3-Di-o-tolylguanidine (DTG), and the σ-1-selective agonist, (+)-pentazocine, significantly increased the action potential latency and decreased action potential overshoot in response to depolarizing current ramps, which suggests inhibition of voltage-gated sodium channels. Whole-cell voltage clamp experiments showed that these σ agonists reversibly decrease depolarization-activated Na+ currents in these cells at all potentials tested. The peak currents generated by membrane depolarizations were decreased in a dose dependent manner with IC50 values for DTG and (+)-pentazocine of 32 μM and 49 μM, respectively. The σ-1 receptor-selective antagonist, BD 1063 (100 nM), inhibited DTG (30 μM) block of Na+ currents by ∼ 50%, suggesting that the effects are mediated by activation of σ-1 receptors. DTG also shifted the steady-state inactivation curve of Na+ channels to more negative potentials, with the membrane potential of half-activation shifting from -49 mV to -63 mV in the absence and presence of 30 μM DTG, respectively. Taken together, these results suggest that σ-1 receptor activation decreases intracardiac ganglion neuron excitability by modulating voltage-gated Na+ channels. PMID:21383893

  20. The melanocortin MC1 receptor agonist BMS-470539 inhibits leucocyte trafficking in the inflamed vasculature

    PubMed Central

    Leoni, G; Voisin, M-B; Carlson, K; Getting, SJ; Nourshargh, S; Perretti, M

    2010-01-01

    Background and purpose: Over three decades of research evaluating the biology of melanocortin (MC) hormones and synthetic peptides, activation of the MC type 1 (MC1) receptor has been identified as a viable target for the development of novel anti-inflammatory therapeutic agents. Here, we have tested a recently described selective agonist of MC1 receptors, BMS-470539, on leucocyte/post-capillary venule interactions in murine microvascular beds. Experimental approach: Intravital microscopy of two murine microcirculations were utilized, applying two distinct modes of promoting inflammation. The specificity of the effects of BMS-470539 was assessed using mice bearing mutant inactive MC1 receptors (the recessive yellow e/e colony). Key results: BMS-470539, given before an ischaemia–reperfusion protocol, inhibited cell adhesion and emigration with no effect on cell rolling, as assessed 90 min into the reperfusion phase. These properties were paralleled by inhibition of tissue expression of both CXCL1 and CCL2. Confocal investigations of inflamed post-capillary venules revealed immunostaining for MC1 receptors on adherent and emigrated leucocytes. Congruently, the anti-inflammatory properties of BMS-470539 were lost in mesenteries of mice bearing the inactive mutant MC1 receptors. Therapeutic administration of BMS-470539 stopped cell emigration, but did not affect cell adhesion in the cremasteric microcirculation inflamed by superfusion with platelet-activating factor. Conclusions and implications: Activation of MC1 receptors inhibited leucocyte adhesion and emigration. Development of new chemical entities directed at MC1 receptors could be a viable approach in the development of novel anti-inflammatory therapeutic agents with potential application to post-ischaemic conditions. PMID:20331604

  1. Ca2+ channel inhibition by endomorphins via the cloned mu-opioid receptor expressed in NG108-15 cells.

    PubMed

    Mima, H; Morikawa, H; Fukuda, K; Kato, S; Shoda, T; Mori, K

    1997-12-11

    Endomorphin-1 and -2, recently isolated endogenous peptides specific for the mu-opioid receptor, inhibited Ca2+ channel currents with EC50 of 6 and 9 nM, respectively, in NG108-15 cells transformed to express the cloned rat mu-opioid receptor. On the other hand, they elicited no response in nontransfected NG108-15 cells. It is concluded that endomorphin-1 and -2 induce Ca2+ channel inhibition by selectively activating the mu-opioid receptor.

  2. Prostacyclin receptor-independent inhibition of phospholipase C activity by non-prostanoid prostacyclin mimetics

    PubMed Central

    Chow, Kevin B S; Wong, Yung H; Wise, Helen

    2001-01-01

    Chinese hamster ovary (CHO) cells were transiently transfected with the mouse prostacyclin (mIP) receptor to examine IP agonist-mediated stimulation of [3H]-cyclic AMP and [3H]-inositol phosphate production.The prostacyclin analogues, cicaprost, iloprost, carbacyclin and prostaglandin E1, stimulated adenylyl cyclase activity with EC50 values of 5, 6, 25 and 95 nM, respectively. These IP agonists also stimulated the phospholipase C pathway with 10 – 40 fold lower potency than stimulation of adenylyl cyclase.The non-prostanoid prostacyclin mimetics, octimibate, BMY 42393 and BMY 45778, also stimulated adenylyl cyclase activity, with EC50 values of 219, 166 and 398 nM, respectively, but failed to stimulate [3H]-inositol phosphate production.Octimibate, BMY 42393 and BMY 45778 inhibited iloprost-stimulated [3H]-inositol phosphate production in a non-competitive manner.Activation of the endogenously-expressed P2 purinergic receptor by ATP led to an increase in [3H]-inositol phosphate production which was inhibited by the non-prostanoid prostacyclin mimetics in non-transfected CHO cells. Prostacyclin analogues and other prostanoid receptor ligands failed to inhibit ATP-stimulated [3H]-inositol phosphate production.A comparison between the IP receptor-specific non-prostanoid ONO-1310 and the structurally-related EP3 receptor-specific agonist ONO-AP-324, indicated that the inhibitory effect of non-prostanoids was specific for those compounds known to activate IP receptors.The non-prostanoid prostacyclin mimetics also inhibited phospholipase C activity when stimulated by constitutively-active mutant GαqRC, Gα14RC and Gα16QL transiently expressed in CHO cells. These drugs did not inhibit adenylyl cyclase activity when stimulated by the constitutively-active mutant GαsQL.These results suggest that non-prostanoid prostacyclin mimetics can specifically inhibit [3H]-inositol phosphate production by targeting Gq/11 and/or phospholipase C in CHO cells, and

  3. Ethanol-Induced Motor Impairment Mediated by Inhibition of α7 Nicotinic Receptors

    PubMed Central

    McDaid, John; Abburi, Chandrika; Wolfman, Shannon L.; Gallagher, Keith

    2016-01-01

    Nicotine and ethanol (EtOH) are among the most widely co-abused substances, and nicotinic acetylcholine receptors (nAChRs) contribute to the behavioral effects of both drugs. Along with their role in addiction, nAChRs also contribute to motor control circuitry. The α7 nAChR subtype is highly expressed in the laterodorsal tegmental nucleus (LDTg), a brainstem cholinergic center that contributes to motor performance through its projections to thalamic motor relay centers, including the mediodorsal thalamus. We demonstrate that EtOH concentrations just above the legal limits for intoxication in humans can inhibit α7 nAChRs in LDTg neurons from rats. This EtOH-induced inhibition is mediated by a decrease in cAMP/PKA signaling. The α7 nAChR-positive allosteric modulator PNU120596 [N-(5-chloro-2,4-dimethoxyphenyl)-N′-(5-methyl-3-isoxazolyl)-urea], which interferes with receptor desensitization, completely eliminated EtOH modulation of these receptors. These data suggest that EtOH inhibits α7 responses through a PKA-dependent enhancement of receptor desensitization. EtOH also inhibited the effects of nicotine at presynaptic α7 nAChRs on glutamate terminals in the mediodorsal thalamus. In vivo administration of PNU120596 either into the cerebral ventricles or directly into the mediodorsal thalamus attenuated EtOH-induced motor impairment. Thus, α7 nAChRs are likely important mediators of the motor impairing effects of moderate EtOH consumption. SIGNIFICANCE STATEMENT The motor-impairing effects of ethanol contribute to intoxication-related injury and death. Here we explore the cellular and neural circuit mechanisms underlying ethanol-induced motor impairment. Physiologically relevant concentrations of ethanol inhibit activity of a nicotinic receptor subtype that is expressed in brain areas associated with motor control. That receptor inhibition is mediated by decreased receptor phosphorylation, suggesting an indirect modulation of cell signaling pathways to achieve

  4. The endogenous cannabinoid anandamide inhibits alpha7 nicotinic acetylcholine receptor-mediated responses in Xenopus oocytes.

    PubMed

    Oz, Murat; Ravindran, Arippa; Diaz-Ruiz, Oscar; Zhang, Li; Morales, Marisela

    2003-09-01

    The effect of the endogenous cannabinoid ligand anandamide on the function of the cloned alpha7 subunit of the nicotinic acetylcholine (ACh) receptor expressed in Xenopus oocytes was investigated by using the two-electrode voltage-clamp technique. Anandamide reversibly inhibited nicotine (10 microM) induced-currents in a concentration-dependent manner (10 nM to 30 microM), with an IC50 value of 229.7 +/- 20.4 nM. The effect of anandamide was neither dependent on the membrane potential nor meditated by endogenous Ca2+ dependent Cl- channels since it was unaffected by intracellularly injected BAPTA and perfusion with Ca2+-free bathing solution containing 2 mM Ba2+. Anandamide decreased the maximal nicotine-induced responses without significantly affecting its potency, indicating that it acts as a noncompetitive antagonist on nicotinic acetylcholine (nACh) alpha7 receptors. This effect was not mediated by CB1 or CB2 receptors, as neither the selective CB1 receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboximide hydrochloride (SR 141716A) nor CB2 receptor antagonist N-((1S)-endo-1,3,3-trimethyl-bicyclo-heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide (SR 144528) reduced the inhibition by anandamide. In addition, inhibition of nicotinic responses by anandamide was not sensitive to either pertussis toxin treatment or to the membrane permeable cAMP analog 8-Br-cAMP (0.2 mM). Inhibitors of enzymes involved in anandamide metabolism including phenylmethylsulfonyl fluoride, superoxide dismutase, and indomethacin, or the anandamide transport inhibitor AM404 did not prevent anandamide inhibition of nicotinic responses, suggesting that anandamide itself acted on nicotinic receptors. In conclusion, these results demonstrate that the endogenous cannabinoid anandamide inhibits the function of nACh alpha7 receptors expressed in Xenopus oocytes in a cannabinoid receptor-independent and

  5. P2X1 Receptor Antagonists Inhibit HIV-1 Fusion by Blocking Virus-Coreceptor Interactions

    PubMed Central

    Giroud, Charline; Marin, Mariana; Hammonds, Jason; Spearman, Paul

    2015-01-01

    ABSTRACT HIV-1 Env glycoprotein-mediated fusion is initiated upon sequential binding of Env to CD4 and the coreceptor CXCR4 or CCR5. Whereas these interactions are thought to be necessary and sufficient to promote HIV-1 fusion, other host factors can modulate this process. Previous studies reported potent inhibition of HIV-1 fusion by selective P2X1 receptor antagonists, including NF279, and suggested that these receptors play a role in HIV-1 entry. Here we investigated the mechanism of antiviral activity of NF279 and found that this compound does not inhibit HIV-1 fusion by preventing the activation of P2X1 channels but effectively blocks the binding of the virus to CXCR4 or CCR5. The notion of an off-target effect of NF279 on HIV-1 fusion is supported by the lack of detectable expression of P2X1 receptors in cells used in fusion experiments and by the fact that the addition of ATP or the enzymatic depletion of ATP in culture medium does not modulate viral fusion. Importantly, NF279 fails to inhibit HIV-1 fusion with cell lines and primary macrophages when added at an intermediate stage downstream of Env-CD4-coreceptor engagement. Conversely, in the presence of NF279, HIV-1 fusion is arrested downstream of CD4 binding but prior to coreceptor engagement. NF279 also antagonizes the signaling function of CCR5, CXCR4, and another chemokine receptor, as evidenced by the suppression of calcium responses elicited by specific ligands and by recombinant gp120. Collectively, our results demonstrate that NF279 is a dual HIV-1 coreceptor inhibitor that interferes with the functional engagement of CCR5 and CXCR4 by Env. IMPORTANCE Inhibition of P2X receptor activity suppresses HIV-1 fusion and replication, suggesting that P2X signaling is involved in HIV-1 entry. However, mechanistic experiments conducted in this study imply that P2X1 receptor is not expressed in target cells or involved in viral fusion. Instead, we found that inhibition of HIV-1 fusion by a specific P2X1

  6. Receptor kinase complex transmits RALF peptide signal to inhibit root growth in Arabidopsis

    PubMed Central

    Du, Changqing; Li, Xiushan; Chen, Jia; Chen, Weijun; Li, Bin; Li, Chiyu; Wang, Long; Li, Jianglin; Zhao, Xiaoying; Lin, Jianzhong; Liu, Xuanming; Luan, Sheng; Yu, Feng

    2016-01-01

    A number of hormones work together to control plant cell growth. Rapid Alkalinization Factor 1 (RALF1), a plant-derived small regulatory peptide, inhibits cell elongation through suppression of rhizosphere acidification in plants. Although a receptor-like kinase, FERONIA (FER), has been shown to act as a receptor for RALF1, the signaling mechanism remains unknown. In this study, we identified a receptor-like cytoplasmic kinase (RPM1-induced protein kinase, RIPK), a plasma membrane-associated member of the RLCK-VII subfamily, that is recruited to the receptor complex through interacting with FER in response to RALF1. RALF1 triggers the phosphorylation of both FER and RIPK in a mutually dependent manner. Genetic analysis of the fer-4 and ripk mutants reveals RIPK, as well as FER, to be required for RALF1 response in roots. The RALF1–FER–RIPK interactions may thus represent a mechanism for peptide signaling in plants. PMID:27930296

  7. TGF-beta receptor mediated telomerase inhibition, telomere shortening and breast cancer cell senescence.

    PubMed

    Cassar, Lucy; Nicholls, Craig; Pinto, Alex R; Chen, Ruping; Wang, Lihui; Li, He; Liu, Jun-Ping

    2017-01-01

    Human telomerase reverse transcriptase (hTERT) plays a central role in telomere lengthening for continuous cell proliferation, but it remains unclear how extracellular cues regulate telomerase lengthening of telomeres. Here we report that the cytokine bone morphogenetic protein-7 (BMP7) induces the hTERT gene repression in a BMPRII receptor- and Smad3-dependent manner in human breast cancer cells. Chonic exposure of human breast cancer cells to BMP7 results in short telomeres, cell senescence and apoptosis. Mutation of the BMPRII receptor, but not TGFbRII, ACTRIIA or ACTRIIB receptor, inhibits BMP7-induced repression of the hTERT gene promoter activity, leading to increased telomerase activity, lengthened telomeres and continued cell proliferation. Expression of hTERT prevents BMP7-induced breast cancer cell senescence and apoptosis. Thus, our data suggest that BMP7 induces breast cancer cell aging by a mechanism involving BMPRII receptor- and Smad3-mediated repression of the hTERT gene.

  8. Epidermal growth factor receptor endocytic traffic perturbation by phosphatidate phosphohydrolase inhibition: new strategy against cancer.

    PubMed

    Shaughnessy, Ronan; Retamal, Claudio; Oyanadel, Claudia; Norambuena, Andrés; López, Alejandro; Bravo-Zehnder, Marcela; Montecino, Fabian J; Metz, Claudia; Soza, Andrea; González, Alfonso

    2014-05-01

    Epidermal growth factor receptor (EGFR) exaggerated (oncogenic) function is currently targeted in cancer treatment with drugs that block receptor ligand binding or tyrosine kinase activity. Because endocytic trafficking is a crucial regulator of EGFR function, its pharmacological perturbation might provide a new anti-tumoral strategy. Inhibition of phosphatidic acid (PA) phosphohydrolase (PAP) activity has been shown to trigger PA signaling towards type 4 phosphodiesterase (PDE4) activation and protein kinase A inhibition, leading to internalization of empty/inactive EGFR. Here, we used propranolol, its l- and d- isomers and desipramine as PAP inhibitors to further explore the effects of PAP inhibition on EGFR endocytic trafficking and its consequences on EGFR-dependent cancer cell line models. PAP inhibition not only made EGFR inaccessible to stimuli but also prolonged the signaling lifetime of ligand-activated EGFR in recycling endosomes. Strikingly, such endocytic perturbations applied in acute/intermittent PAP inhibitor treatments selectively impaired cell proliferation/viability sustained by an exaggerated EGFR function. Phospholipase D inhibition with FIPI (5-fluoro-2-indolyl des-chlorohalopemide) and PDE4 inhibition with rolipram abrogated both the anti-tumoral and endocytic effects of PAP inhibition. Prolonged treatments with a low concentration of PAP inhibitors, although without detectable endocytic effects, still counteracted cell proliferation, induced apoptosis and decreased anchorage-independent growth of cells bearing EGFR oncogenic influences. Overall, our results show that PAP inhibitors can counteract EGFR oncogenic traits, including receptor overexpression or activating mutations resistant to current tyrosine kinase inhibitors, perturbing EGFR endocytic trafficking and perhaps other as yet unknown processes, depending on treatment conditions. This puts PAP activity forward as a new suitable target against EGFR-driven malignancy.

  9. Potentiation of morphine-induced mechanical antinociception by σ₁ receptor inhibition: role of peripheral σ₁ receptors.

    PubMed

    Sánchez-Fernández, Cristina; Nieto, Francisco Rafael; González-Cano, Rafael; Artacho-Cordón, Antonia; Romero, Lucía; Montilla-García, Ángeles; Zamanillo, Daniel; Baeyens, José Manuel; Entrena, José Manuel; Cobos, Enrique José

    2013-07-01

    We studied the modulation of morphine-induced mechanical antinociception and side effects by σ₁ receptor inhibition. Both wild-type (WT) and σ₁ receptor knockout (σ₁-KO) mice showed similar responses to paw pressure (100-600 g). The systemic (subcutaneous) or local (intraplantar) administration of σ₁ antagonists (BD-1063, BD-1047, NE-100 and S1RA) was devoid of antinociceptive effects in WT mice. However, σ₁-KO mice exhibited an enhanced mechanical antinociception in response to systemic morphine (1-16 mg/kg). Similarly, systemic treatment of WT mice with σ₁ antagonists markedly potentiated morphine-induced antinociception, and its effects were reversed by the selective σ₁ agonist PRE-084. Although the local administration of morphine (50-200 μg) was devoid of antinociceptive effects in WT mice, it induced dose-dependent antinociception in σ₁-KO mice. This effect was limited to the injected paw. Enhancement of peripheral morphine antinociception was replicated in WT mice locally co-administered with σ₁ antagonists and the opioid. None of the σ₁ antagonists tested enhanced morphine-antinociception in σ₁-KO mice, confirming a σ₁-mediated action. Morphine-induced side-effects (hyperlocomotion and inhibition of gastrointestinal transit) were unaltered in σ₁-KO mice. These results cannot be explained by a direct interaction of σ₁ ligands with μ-opioid receptors or adaptive changes of μ-receptors in σ₁-KO mice, given that [(3)H]DAMGO binding in forebrain, spinal cord, and hind-paw skin membranes was unaltered in mutant mice, and none of the σ₁ drugs tested bound to μ-opioid receptors. These results show that σ₁ receptor inhibition potentiates morphine-induced mechanical analgesia but not its acute side effects, and that this enhanced analgesia can be induced at peripheral level.

  10. RETRACTED: Quercetin suppresses insulin receptor signaling through inhibition of the insulin ligand-receptor binding and therefore impairs cancer cell proliferation.

    PubMed

    Wang, Feng; Yang, Yong

    2014-10-03

    Although the flavonoid quercetin is known to inhibit activation of insulin receptor signaling, the inhibitory mechanism is largely unknown. In this study, we demonstrate that quercetin suppresses insulin induced dimerization of the insulin receptor (IR) through interfering with ligand-receptor interactions, which reduces the phosphorylation of IR and Akt. This inhibitory effect further inhibits insulin stimulated glucose uptake due to decreased cell membrane translocation of glucose transporter 4 (GLUT4), resulting in impaired cancer cell proliferation. The effect of quercetin in inhibiting tumor growth was also evident in an in vivo model, indicating a potential future application for quercetin in the treatment of cancers. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Inhibition of cortical acetylcholine release and cognitive performance by histamine H3 receptor activation in rats.

    PubMed Central

    Blandina, P.; Giorgetti, M.; Bartolini, L.; Cecchi, M.; Timmerman, H.; Leurs, R.; Pepeu, G.; Giovannini, M. G.

    1996-01-01

    1. The effects of histamine and agents at histamine receptors on spontaneous and 100 mM K(+)-evoked release of acetylcholine, measured by microdialysis from the cortex of freely moving, rats, and on cognitive tests are described. 2. Local administration of histamine (0.1-100 microM) failed to affect spontaneous but inhibited 100 mM K(+)-stimulated release of acetylcholine up to about 50%. The H3 receptor agonists (R)-alpha-methylhistamine (RAMH) (0.1-10 microM), imetit (0.01-10 microM) and immepip (0.01-10 microM) mimicked the effect of histamine. 3. Neither 2-thiazolylethylamine (TEA), an agonist showing some selectivity for H1 receptors, nor the H2 receptor agonist, dimaprit, modified 100 mM K(+)-evoked release of acetylcholine. 4. The inhibitory effect of 100 microM histamine was completely prevented by the highly selective histamine H3 receptor antagonist, clobenpropit but was resistant to antagonism by triprolidine and cimetidine, antagonists at histamine H1 and H2 but not H3 receptors. 5. The H3 receptor-induced inhibition of K(+)-evoked release of acetylcholine was fully sensitive to tetrodotoxin (TTX). 6. The effects of intraperitoneal (i.p.) injection of imetit (5 mg kg-1) and RAMH (5 mg kg-1) were tested on acetylcholine release and short term memory paradigms. Both drugs reduced 100 mM K(+)-evoked release of cortical acetylcholine, and impaired object recognition and a passive avoidance response. 7. These observations provide the first evidence of a regulatory role of histamine H3 receptors on cortical acetylcholine release in vivo. Moreover, they suggest a role for histamine in learning and memory and may have implications for the treatment of degenerative disorders associated with impaired cholinergic function. PMID:8982515

  12. Inhibition of lysophosphatidic acid receptors 1 and 3 attenuates atherosclerosis development in LDL-receptor deficient mice

    PubMed Central

    Kritikou, Eva; van Puijvelde, Gijs H. M.; van der Heijden, Thomas; van Santbrink, Peter J.; Swart, Maarten; Schaftenaar, Frank H.; Kröner, Mara J.; Kuiper, Johan; Bot, Ilze

    2016-01-01

    Lysophosphatidic acid (LPA) is a natural lysophospholipid present at high concentrations within lipid-rich atherosclerotic plaques. Upon local accumulation in the damaged vessels, LPA can act as a potent activator for various types of immune cells through its specific membrane receptors LPA1/3. LPA elicits chemotactic, pro-inflammatory and apoptotic effects that lead to atherosclerotic plaque progression. In this study we aimed to inhibit LPA signaling by means of LPA1/3 antagonism using the small molecule Ki16425. We show that LPA1/3 inhibition significantly impaired atherosclerosis progression. Treatment with Ki16425 also resulted in reduced CCL2 production and secretion, which led to less monocyte and neutrophil infiltration. Furthermore, we provide evidence that LPA1/3 blockade enhanced the percentage of non-inflammatory, Ly6Clow monocytes and CD4+ CD25+ FoxP3+ T-regulatory cells. Finally, we demonstrate that LPA1/3 antagonism mildly reduced plasma LDL cholesterol levels. Therefore, pharmacological inhibition of LPA1/3 receptors may prove a promising approach to diminish atherosclerosis development. PMID:27883026

  13. Hispolon inhibits the growth of estrogen receptor positive human breast cancer cells through modulation of estrogen receptor alpha

    SciTech Connect

    Jang, Eun Hyang; Jang, Soon Young; Cho, In-Hye; Hong, Darong; Jung, Bom; Park, Min-Ju; Kim, Jong-Ho

    2015-08-07

    Human estrogen receptor α (ERα) is a nuclear transcription factor that is a major therapeutic target in breast cancer. The transcriptional activity of ERα is regulated by certain estrogen-receptor modulators. Hispolon, isolated from Phellinus linteus, a traditional medicinal mushroom called Sanghwang in Korea, has been used to treat various pathologies, such as inflammation, gastroenteric disorders, lymphatic diseases, and cancers. In this latter context, Hispolon has been reported to exhibit therapeutic efficacy against various cancer cells, including melanoma, leukemia, hepatocarcinoma, bladder cancer, and gastric cancer cells. However, ERα regulation by Hispolon has not been reported. In this study, we investigated the effects of Hispolon on the growth of breast cancer cells. We found that Hispolon decreased expression of ERα at both mRNA and the protein levels in MCF7 and T47D human breast cancer cells. Luciferase reporter assays showed that Hispolon decreased the transcriptional activity of ERα. Hispolon treatment also inhibited expression of the ERα target gene pS2. We propose that Hispolon, an anticancer drug extracted from natural sources, inhibits cell growth through modulation of ERα in estrogen-positive breast cancer cells and is a candidate for use in human breast cancer chemotherapy. - Highlights: • Hispolon decreased ERα expression at both mRNA and protein levels. • Hispolon decreased ERα transcriptional activity. • Hispolon treatment inhibited expression of ERα target gene pS2. • Shikonin is a candidate chemotherapeutic target in the treatment of human breast cancer.

  14. Inhibition of lysophosphatidic acid receptors 1 and 3 attenuates atherosclerosis development in LDL-receptor deficient mice.

    PubMed

    Kritikou, Eva; van Puijvelde, Gijs H M; van der Heijden, Thomas; van Santbrink, Peter J; Swart, Maarten; Schaftenaar, Frank H; Kröner, Mara J; Kuiper, Johan; Bot, Ilze

    2016-11-24

    Lysophosphatidic acid (LPA) is a natural lysophospholipid present at high concentrations within lipid-rich atherosclerotic plaques. Upon local accumulation in the damaged vessels, LPA can act as a potent activator for various types of immune cells through its specific membrane receptors LPA1/3. LPA elicits chemotactic, pro-inflammatory and apoptotic effects that lead to atherosclerotic plaque progression. In this study we aimed to inhibit LPA signaling by means of LPA1/3 antagonism using the small molecule Ki16425. We show that LPA1/3 inhibition significantly impaired atherosclerosis progression. Treatment with Ki16425 also resulted in reduced CCL2 production and secretion, which led to less monocyte and neutrophil infiltration. Furthermore, we provide evidence that LPA1/3 blockade enhanced the percentage of non-inflammatory, Ly6C(low) monocytes and CD4(+) CD25(+) FoxP3(+) T-regulatory cells. Finally, we demonstrate that LPA1/3 antagonism mildly reduced plasma LDL cholesterol levels. Therefore, pharmacological inhibition of LPA1/3 receptors may prove a promising approach to diminish atherosclerosis development.

  15. Pyridophens: binary pyridostigmine-aprophen prodrugs with differential inhibition of acetylcholinesterase, butyrylcholinesterase, and muscarinic receptors.

    PubMed

    Leader, Haim; Wolfe, Alan David; Chiang, Peter K; Gordon, Richard K

    2002-02-14

    A series of "binary prodrugs" called carbaphens,(1) carbamylated derivatives on one or both of the aromatic rings of the muscarinic receptor antagonist aprophen [(N,N-diethylamino)ethyl 2,2-diphenylpropionate], were synthesized to develop binary prophylactic agents against organophosphorus intoxication. As a group, the carbaphens retained the muscarinic receptor antagonist properties of aprophen but also preferentially inhibited butyrylcholinesterase (BChE) in contrast to acetylcholinesterase (AChE). Therefore, a new series of compounds named pyridophens were designed and synthesized to achieve binary prodrugs to preferentially inhibit AChE over BChE, while still retaining the muscarinic receptor antagonism of aprophen. The pyridophens consist of the basic pyridostigmine skeleton combined with the 2,2-diphenylpropionate portion of aprophen by replacement of the diethylamino group. Three compounds, 9 (a tertiary pyridine), 10 (a quaternary pyridine), and 12 (a tertiary tetrahydropyridine), were found to be effective inhibitors of both BChE and AChE. However, 10, N-methyl-3-[[(dimethylamino)carbonyl]oxy]-2-(2'2'-diphenylpropionoxy-methyl)pyridinium iodide, inhibited AChE selectively over BChE, with a bimolecular rate constant similar to pyridostigmine. In contrast to their potent cholinesterase inhibitory activity, all of the pyridophen analogues were less potent antagonists of the muscarinic receptor than aprophen.

  16. Antipsychotic clozapine inhibits the function of alpha7-nicotinic acetylcholine receptors.

    PubMed

    Singhal, Sachin K; Zhang, Li; Morales, Marisela; Oz, Murat

    2007-02-01

    The effects of the antipsychotic clozapine on the function of the cloned alpha(7) subunit of the nicotinic acetylcholine (nACh) receptor expressed in Xenopus oocytes was investigated by using the two-electrode voltage-clamp technique. Clozapine reversibly inhibited nicotine (10 microM)-induced currents in a concentration-dependent manner (300 nM to 90 microM), with an IC(50) value of 3.2+/-0.4 microM. The effect of clozapine was not dependent on the membrane potential. Clozapine did not affect the activity of endogenous Ca(2+)-dependent Cl(-) channels since the inhibition by clozapine was unaltered by the intracellularly injected Ca(2+) chelator BAPTA and perfusion with Ca(2+)-free bathing solution containing 2mM Ba(2+). Clozapine decreased the maximal nicotine-induced responses without significantly affecting its potency, indicating that it acts as a noncompetitive antagonist on alpha(7)-nACh receptors. In hippocampal slices, the whole-cell recordings from CA1 pyramidal neurons indicated that the increases in the frequency and amplitudes of the GABA-mediated spontaneous inhibitory postsynaptic currents induced by bath application of 2 mM choline, a specific agonist for alpha(7)-nACh receptors, were abolished after 10 min application of 5 microM clozapine. In conclusion, these results demonstrate that clozapine inhibits the function of alpha(7)-nACh receptors expressed in Xenopus oocytes and in hippocampal neurons.

  17. Reversal of gastric somatostatin receptor inhibition by Helicobacter pylori lipopolysaccharide with ebrotidine and sulglycotide.

    PubMed

    Piotrowski, J; Skrodzka, D; Slomiany, A; Slomiany, B L

    1997-05-01

    1. Among the consequences of H. pylori infection is an increase in gastric acid secretion due to the impairement in feedback inhibition by somatostatin. Here, we show that lipopolysaccharide from H. pylori inhibits the binding of somatostatin to gastric mucosal receptor, and that antiulcer agents, ebrotidine and sulglycotide, are capable of countering this effect. 2. The somatostatin receptor was prepared from the solubilized gastric mucosal epithelial cell membranes by affinity chromatography on Affi-Gel-bound [D-Tryp8] SRIF-14 and used in the binding assays for 125I-labeled somatostatin in the presence of H. pylori lipopolysaccharide and antiulcer agents. 3. The assays revealed a dose-dependent inhibition in the receptor-somatostatin binding by the lipopolysaccharide which reached a maximum of 94.1%. The effect of H. pylori lipopolysaccharide was countered by ebrotidine and sulglycotide, which at their optimal doses produced 94.9% and 84% restoration in somatostatin-receptor binding, respectively. 4. The results demonstrate that the antiulcer agents, ebrotidine and sulglycotide, possess the ability to counteract the H. pylori interference with somatostatin regulatory effect on gastric acid secretion.

  18. Tissue plasminogen activator inhibits NMDA-receptor-mediated increases in calcium levels in cultured hippocampal neurons

    PubMed Central

    Robinson, Samuel D.; Lee, Tet Woo; Christie, David L.; Birch, Nigel P.

    2015-01-01

    NMDA receptors (NMDARs) play a critical role in neurotransmission, acting as essential mediators of many forms of synaptic plasticity, and also modulating aspects of development, synaptic transmission and cell death. NMDAR-induced responses are dependent on a range of factors including subunit composition and receptor location. Tissue-type plasminogen activator (tPA) is a serine protease that has been reported to interact with NMDARs and modulate NMDAR activity. In this study we report that tPA inhibits NMDAR-mediated changes in intracellular calcium levels in cultures of primary hippocampal neurons stimulated by low (5 μM) but not high (50 μM) concentrations of NMDA. tPA also inhibited changes in calcium levels stimulated by presynaptic release of glutamate following treatment with bicucculine/4-aminopyridine (4-AP). Inhibition was dependent on the proteolytic activity of tPA but was unaffected by α2-antiplasmin, an inhibitor of the tPA substrate plasmin, and receptor-associated protein (RAP), a pan-ligand blocker of the low-density lipoprotein receptor, two proteins previously reported to modulate NMDAR activity. These findings suggest that tPA can modulate changes in intracellular calcium levels in a subset of NMDARs expressed in cultured embryonic hippocampal neurons through a mechanism that involves the proteolytic activity of tPA and synaptic NMDARs. PMID:26500501

  19. Cell-permeable iron inhibits vascular endothelial growth factor receptor-2 signaling and tumor angiogenesis

    PubMed Central

    Kir, Devika; Saluja, Manju; Modi, Shrey; Venkatachalam, Annapoorna; Schnettler, Erica; Roy, Sabita; Ramakrishnan, Sundaram

    2016-01-01

    Angiogenesis is important for tumor growth and metastasis. Hypoxia in tumors drives this angiogenic response by stabilizing Hypoxia Inducible Factors (HIF) and target genes like Vascular Endothelial Growth Factor (VEGF). HIF stability is regulated by Prolylhydroxylases (PHD)-mediated modification. Iron is an important cofactor in regulating the enzymatic activity of PHDs. Reducing intracellular iron, for instance, mimics hypoxia and induces a pro-angiogenic response. It is hypothesized that increasing the intracellular iron levels will have an opposite, anti-angiogenic effect. We tested this hypothesis by perturbing iron homeostasis in endothelial cells using a unique form of iron, Ferric Ammonium Citrate (FAC). FAC is a cell-permeable form of iron, which can passively enter into cells bypassing the transferrin receptor mediated uptake of transferrin-bound iron. Our studies show that FAC does not decrease the levels of HIF-1α and HIF-2α in endothelial cells but inhibits the autocrine stimulation of VEGF-Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2) system by blocking receptor tyrosine kinase phosphorylation. FAC inhibits VEGF-induced endothelial cell proliferation, migration, tube formation and sprouting. Finally, systemic administration of FAC inhibits VEGF and tumor cell-induced angiogenesis in vivo. In conclusion, our studies show that cell-permeable iron attenuates VEGFR-2 mediated signaling and inhibits tumor angiogenesis. PMID:27589831

  20. The Selective Estrogen Receptor Modulator Raloxifene Inhibits Neutrophil Extracellular Trap Formation

    PubMed Central

    Flores, Roxana; Döhrmann, Simon; Schaal, Christina; Hakkim, Abdul; Nizet, Victor; Corriden, Ross

    2016-01-01

    Raloxifene is a selective estrogen receptor modulator typically prescribed for the prevention/treatment of osteoporosis in postmenopausal women. Although raloxifene is known to have anti-inflammatory properties, its effects on human neutrophils, the primary phagocytic leukocytes of the immune system, remain poorly understood. Here, through a screen of pharmacologically active small molecules, we find that raloxifene prevents neutrophil cell death in response to the classical activator phorbol 12-myristate 13-acetate (PMA), a compound known to induce formation of DNA-based neutrophil extracellular traps (NETs). Inhibition of PMA-induced NET production by raloxifene was confirmed using quantitative and imaging-based assays. Human neutrophils from both male and female donors express the nuclear estrogen receptors ERα and ERβ, known targets of raloxifene. Similar to raloxifene, selective antagonists of these receptors inhibit PMA-induced NET production. Furthermore, raloxifene inhibited PMA-induced ERK phosphorylation, but not reactive oxygen species production, pathways known to be key modulators of NET production. Finally, we found that raloxifene inhibited PMA-induced, NET-based killing of the leading human bacterial pathogen, methicillin-resistant Staphylococcus aureus. Our results reveal that raloxifene is a potent modulator of neutrophil function and NET production. PMID:28003814

  1. Cell-permeable iron inhibits vascular endothelial growth factor receptor-2 signaling and tumor angiogenesis.

    PubMed

    Kir, Devika; Saluja, Manju; Modi, Shrey; Venkatachalam, Annapoorna; Schnettler, Erica; Roy, Sabita; Ramakrishnan, Sundaram

    2016-10-04

    Angiogenesis is important for tumor growth and metastasis. Hypoxia in tumors drives this angiogenic response by stabilizing Hypoxia Inducible Factors (HIF) and target genes like Vascular Endothelial Growth Factor (VEGF). HIF stability is regulated by Prolylhydroxylases (PHD)-mediated modification. Iron is an important cofactor in regulating the enzymatic activity of PHDs. Reducing intracellular iron, for instance, mimics hypoxia and induces a pro-angiogenic response. It is hypothesized that increasing the intracellular iron levels will have an opposite, anti-angiogenic effect. We tested this hypothesis by perturbing iron homeostasis in endothelial cells using a unique form of iron, Ferric Ammonium Citrate (FAC). FAC is a cell-permeable form of iron, which can passively enter into cells bypassing the transferrin receptor mediated uptake of transferrin-bound iron. Our studies show that FAC does not decrease the levels of HIF-1α and HIF-2α in endothelial cells but inhibits the autocrine stimulation of VEGF-Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2) system by blocking receptor tyrosine kinase phosphorylation. FAC inhibits VEGF-induced endothelial cell proliferation, migration, tube formation and sprouting. Finally, systemic administration of FAC inhibits VEGF and tumor cell-induced angiogenesis in vivo. In conclusion, our studies show that cell-permeable iron attenuates VEGFR-2 mediated signaling and inhibits tumor angiogenesis.

  2. Modafinil inhibits rat midbrain dopaminergic neurons through D2-like receptors.

    PubMed

    Korotkova, T M; Klyuch, B P; Ponomarenko, A A; Lin, J S; Haas, H L; Sergeeva, O A

    2007-02-01

    Modafinil is a well-tolerated medication for excessive sleepiness, attention-deficit disorder, cocaine dependence and as an adjunct to antidepressants with low propensity for abuse. We investigated the modafinil action on identified dopaminergic and GABAergic neurons in the ventral tegmental area (VTA) and substantia nigra (SN) of rat brain slices. Modafinil (20 microM) inhibited the firing of dopaminergic, but not GABAergic neurons. This inhibition was maintained in the presence of tetrodotoxin and was accompanied by hyperpolarization. Sulpiride (10 microM), a D2-receptor antagonist, but not prazosine (20 microM, an alpha1-adrenoreceptor blocker) abolished the modafinil action. Inhibition of dopamine reuptake with a low dose of nomifensine (1 microM) reduced the firing of DA neurons in a sulpiride-dependent manner and blunted the effect of modafinil. On acutely isolated neurons, modafinil evoked D2-receptor-mediated outward currents in tyrosine-hydroxylase positive cells, identified by single-cell RT-PCR, which reversed polarity near the K(+) equilibrium potential and were unchanged in the presence of nomifensine. Thus modafinil directly inhibits DA neurons through D2 receptors.

  3. Possible intermolecular interaction between quinolones and biphenylacetic acid inhibits gamma-aminobutyric acid receptor sites.

    PubMed Central

    Akahane, K; Kimura, Y; Tsutomi, Y; Hayakawa, I

    1994-01-01

    The combination of some new quinolone antibacterial agents with 4-biphenylacetic acid (BPAA), a metabolite of fenbufen, is known to specifically induce functional blockade of the gamma-aminobutyric acid (GABA) receptors. The mechanisms of these drug interactions were further examined. Scatchard analysis of [3H]muscimol binding to rat brain plasma membranes in the presence of enoxacin and BPAA revealed that a significant decrease in the number of muscimol binding sites was produced without affecting the affinity of binding to the receptors. In the presence of norfloxacin, BPAA inhibited muscimol binding the most potently of the six BPAA-related compounds tested. Fenbufen and 9,10-dihydro-gamma-oxo-2-phenanthrenebutyric acid also inhibited the binding, and 4-biphenylcarboxylic acid and methyl 4-biphenylacetate inhibited it slightly, but 3-benzoylpropionic acid exhibited no competitive inhibition. Accordingly, hybrid molecules of norfloxacin and BPAA were synthesized for stereochemical analysis of these drug interactions. A hybrid with a -CONH(CH2)3- chain between norfloxacin and BPAA (flexible structure) inhibited muscimol binding, and intracisternal injection of this hybrid caused clonic convulsions in mice more potently than the combination of norfloxacin and BPAA did. In contrast, a hybrid linked by -CONH- (stretched structure) showed almost no such inhibitory effect. 1H NMR analysis indicated the presence of intramolecular attraction at the quinoline ring of the hybrid exhibiting the antagonistic activity. These results suggest the possibility that quinolones and BPAA interact with the GABA receptor at nearby sites and that the binding affinity of quinolones to the GABA receptors is largely enhanced by the intermolecular interaction with BPAA. PMID:7840564

  4. Aggregation of macrophages and fibroblasts is inhibited by a monoclonal antibody to the hyaluronate receptor

    SciTech Connect

    Green, S.J.; Underhill, C.B. ); Tarone, G. )

    1988-10-01

    To examine the role of the hyaluronate receptor in cell to cell adhesion, the authors have employed the K-3 monoclonal antibody (MAb) which specifically binds to the hyaluronate receptor and blocks its ability to interact with hyaluronate. In the first set of experiments, they investigated the spontaneous aggregation of SV-3T3 cells, which involves two distinct mechanisms, one of which is dependent upon the presence of divalent cation and the other is independent. The divalent cation-independent aggregation was found to be completely inhibited by both intact and Fab fragments of the K-3 MAb. In contrast, the K-3 MAb had no effect on the divalent cation-dependent aggregation of cells. In a second set of experiments, we examined alveolar macrophages. The presence of hyaluronate receptors on alveolar macrophages was demonstrated by the fact that detergent extracts of these cells could bind ({sup 3})hyaluronate, and this binding was blocked by the K-3 MAb. Immunoblot analysis of alveolar macrophages showed that the hyaluronate receptor had a M{sub r} of 99,500, which is considerably larger than the 85,000 M{sub r} for that on BHK cells. When hyaluronate was added to suspensions of alveolar macrophages, the cells were induced to aggregate. This effect was inhibited by the K-3 MAb, suggesting that the hyaluronate-induced aggregation was mediated by the receptor.

  5. Oral administration of protease inhibits enterotoxigenic Escherichia coli receptor activity in piglet small intestine.

    PubMed Central

    Mynott, T L; Luke, R K; Chandler, D S

    1996-01-01

    The virulence of enterotoxigenic Escherichia coli (ETEC) is attributed to their ability to adhere via fimbrial adhesins to specific receptors located on the intestinal mucosa. A novel approach to preventing ETEC induced diarrhoea would be to prevent attachment of ETEC to intestine by proteolytically modifying the receptor attachment sites. This study aimed to examine the effect of bromelain, a proteolytic extract obtained from pineapple stems, on ETEC receptor activity in porcine small intestine. Bromelain was administered orally to piglets and K88+ ETEC attachment to small intestine was measured at 50 cm intervals using an enzyme immunoassay. K88+ ETEC attachment to intestinal sections that were not treated with bromelain varied appreciably between sampling sites. Variability in receptor activity along the intestinal surface is though to be caused by the localised effects of endogenous proteases. Oral administration of exogenous protease inhibited K88+ ETEC attachment to pig small intestine in a dose dependent manner (p < 0.05). Attachment of K88+ ETEC was negligible after treatment, resembling the levels of attachment of K88 to piglets of the genetically determined non-adhesive phenotype, which are resistant to K88+ ETEC infection. Serum biochemical analysis and histopathological examination of treated piglets showed no adverse effects of the bromelain treatment. It is concluded that administration of bromelain can inhibit ETEC receptor activity in vivo and may therefore be useful for prevention of K88+ ETEC induced diarrhoea. PMID:8566855

  6. Buprenorphine is a weak partial agonist that inhibits opioid receptor desensitization

    PubMed Central

    Virk, Michael S.; Arttamangkul, Seksiri; Birdsong, William T.; Williams, John T.

    2009-01-01

    Buprenorphine is a weak partial agonist at mu-opioid receptors that is used for treatment of pain and addiction. Intracellular and whole cell recordings were made from locus coeruleus (LC) neurons in rat brain slices to characterize the actions of buprenorphine. Acute application of buprenorphine caused a hyperpolarization that was prevented by previous treatment of slices with the irreversible opioid antagonist, β-chlornaltrexamine (β-CNA), but was not reversed by a saturating concentration of naloxone. As expected for a partial agonist, sub-saturating concentrations of buprenorphine decreased the [Met]5 enkephalin (ME) induced hyperpolarization or outward current. When the ME induced current was decreased below a critical value, desensitization and internalization of μ-opioid receptors (MOR) was eliminated. The inhibition of desensitization by buprenorphine was not the result of prior desensitization, slow dissociation from the receptor, or elimination of receptor reserve. Treatment of slices with sub-saturating concentrations of etorphine, methadone, oxymorphone or β-CNA also reduced the current induced by ME but did not block ME-induced desensitization. Treatment of animals with buprenorphine for a week resulted in the inhibition of the current induced by ME and a block of desensitization that was not different from the acute application of buprenorphine to brain slices. These observations show the unique characteristics of buprenorphine and further demonstrate the range of agonist selective actions that are possible through G-protein coupled receptors. PMID:19494155

  7. N alpha-methylhistamine inhibits intestinal transit in mice by central histamine H1 receptor activation.

    PubMed

    Oishi, R; Adachi, N; Saeki, K

    1993-06-24

    The effects of (R)alpha-methylhistamine and N alpha-methylhistamine on intestinal transit were examined in mice. The passage of a charcoal meal in the gastrointestinal tract was dose dependently inhibited by N alpha-methylhistamine (1-20 mg/kg i.p.), but not by a selective H3 receptor agonist (R)alpha-methyl-histamine (1-50 mg/kg i.p.). The inhibitory effect of N alpha-methylhistamine (20 mg/kg) was attenuated by pretreatment with H1 receptor antagonists (mepyramine 5 mg/kg i.p. or 5 micrograms i.c.v. and triprolidine 5 mg/kg i.p.), but not by cimetidine (10 mg/kg i.p.), zolantidine (5 mg/kg i.p.), a brain-penetrating H2 receptor antagonist, or thioperamide (5 mg/kg i.p.), a selective H3 receptor antagonist. The effect of N alpha-methylhistamine was also attenuated by combined treatment with phentolamine and propranolol (5 and 15 mg/kg s.c., respectively) and by pretreatment with 6-hydroxydopamine (20 mg/kg i.p., 2 days before). N alpha-Methylhistamine markedly decreased histamine turnover in the mouse brain. These findings suggest that intestinal transit is inhibited by N alpha-methylhistamine via stimulation of central H1 but not H3 receptors and that stimulation of the sympathetic system is involved in this effect.

  8. Cannabinoids inhibit cholinergic contraction in human airways through prejunctional CB1 receptors

    PubMed Central

    Grassin-Delyle, S; Naline, E; Buenestado, A; Faisy, C; Alvarez, J-C; Salvator, H; Abrial, C; Advenier, C; Zemoura, L; Devillier, P

    2014-01-01

    Background and Purpose Marijuana smoking is widespread in many countries, and the use of smoked synthetic cannabinoids is increasing. Smoking a marijuana joint leads to bronchodilation in both healthy subjects and asthmatics. The effects of Δ9-tetrahydrocannabinol and synthetic cannabinoids on human bronchus reactivity have not previously been investigated. Here, we sought to assess the effects of natural and synthetic cannabinoids on cholinergic bronchial contraction. Experimental Approach Human bronchi isolated from 88 patients were suspended in an organ bath and contracted by electrical field stimulation (EFS) in the presence of the phytocannabinoid Δ9-tetrahydrocannabinol, the endogenous 2-arachidonoylglycerol, the synthetic dual CB1 and CB2 receptor agonists WIN55,212-2 and CP55,940, the synthetic, CB2-receptor-selective agonist JWH-133 or the selective GPR55 agonist O-1602. The receptors involved in the response were characterized by using selective CB1 and CB2 receptor antagonists (SR141716 and SR144528 respectively). Key Results Δ9-tetrahydrocannabinol, WIN55,212-2 and CP55,940 induced concentration-dependent inhibition of cholinergic contractions, with maximum inhibitions of 39, 76 and 77% respectively. JWH-133 only had an effect at high concentrations. 2-Arachidonoylglycerol and O-1602 were devoid of any effect. Only CB1 receptors were involved in the response because the effects of cannabinoids were antagonized by SR141716, but not by SR144528. The cannabinoids did not alter basal tone or contractions induced by exogenous Ach. Conclusions and Implications Activation of prejunctional CB1 receptors mediates the inhibition of EFS-evoked cholinergic contraction in human bronchus. This mechanism may explain the acute bronchodilation produced by marijuana smoking. PMID:24467410

  9. Inhibition of Adult Rat Retinal Ganglion Cells by D1-type Dopamine Receptor Activation

    PubMed Central

    Hayashida, Yuki; Rodríguez, Carolina Varela; Ogata, Genki; Partida, Gloria J.; Oi, Hanako; Stradleigh, Tyler W.; Lee, Sherwin C.; Colado, Anselmo Felipe; Ishida, Andrew T.

    2011-01-01

    The spike output of neural pathways can be regulated by modulating output neuron excitability and/or their synaptic inputs. Dopaminergic interneurons synapse onto cells that route signals to mammalian retinal ganglion cells, but it is unknown whether dopamine can activate receptors in these ganglion cells and, if it does, how this affects their excitability. Here, we show D1a-receptor-like immunoreactivity in ganglion cells identified in adult rats by retrogradely transported dextran, and that dopamine, D1-type receptor agonists, and cAMP analogs inhibit spiking in ganglion cells dissociated from adult rats. These ligands curtailed repetitive spiking during constant current injections, and reduced the number and rate of rise of spikes elicited by fluctuating current injections without significantly altering the timing of the remaining spikes. Consistent with mediation by D1-type receptors, SCH-23390 reversed the effects of dopamine on spikes. Contrary to a recent report, spike inhibition by dopamine was not precluded by blocking Ih. Consistent with the reduced rate of spike rise, dopamine reduced voltage-gated Na+ current (INa) amplitude and tetrodotoxin, at doses that reduced INa as moderately as dopamine, also inhibited spiking. These results provide the first direct evidence that D1-type dopamine receptor activation can alter mammalian retinal ganglion cell excitability, and demonstrate that dopamine can modulate spikes in these cells by a mechanism different from the pre- and postsynaptic means proposed by previous studies. To our knowledge, our results also provide the first evidence that dopamine receptor activation can reduce excitability without altering the temporal precision of spike firing. PMID:19940196

  10. Cannabinoids inhibit cholinergic contraction in human airways through prejunctional CB1 receptors.

    PubMed

    Grassin-Delyle, S; Naline, E; Buenestado, A; Faisy, C; Alvarez, J-C; Salvator, H; Abrial, C; Advenier, C; Zemoura, L; Devillier, P

    2014-06-01

    Marijuana smoking is widespread in many countries, and the use of smoked synthetic cannabinoids is increasing. Smoking a marijuana joint leads to bronchodilation in both healthy subjects and asthmatics. The effects of Δ(9) -tetrahydrocannabinol and synthetic cannabinoids on human bronchus reactivity have not previously been investigated. Here, we sought to assess the effects of natural and synthetic cannabinoids on cholinergic bronchial contraction. Human bronchi isolated from 88 patients were suspended in an organ bath and contracted by electrical field stimulation (EFS) in the presence of the phytocannabinoid Δ(9) -tetrahydrocannabinol, the endogenous 2-arachidonoylglycerol, the synthetic dual CB1 and CB2 receptor agonists WIN55,212-2 and CP55,940, the synthetic, CB2 -receptor-selective agonist JWH-133 or the selective GPR55 agonist O-1602. The receptors involved in the response were characterized by using selective CB1 and CB2 receptor antagonists (SR141716 and SR144528 respectively). Δ(9) -tetrahydrocannabinol, WIN55,212-2 and CP55,940 induced concentration-dependent inhibition of cholinergic contractions, with maximum inhibitions of 39, 76 and 77% respectively. JWH-133 only had an effect at high concentrations. 2-Arachidonoylglycerol and O-1602 were devoid of any effect. Only CB1 receptors were involved in the response because the effects of cannabinoids were antagonized by SR141716, but not by SR144528. The cannabinoids did not alter basal tone or contractions induced by exogenous Ach. Activation of prejunctional CB1 receptors mediates the inhibition of EFS-evoked cholinergic contraction in human bronchus. This mechanism may explain the acute bronchodilation produced by marijuana smoking. © 2014 The British Pharmacological Society.

  11. Electroacupuncture Inhibition of Hyperalgesia in Rats with Adjuvant Arthritis: Involvement of Cannabinoid Receptor 1 and Dopamine Receptor Subtypes in Striatum

    PubMed Central

    Shou, Yin; Yang, Yang; Xu, Ming-Shu; Zhao, Ying-Qian; Ge, Lin-Bao; Zhang, Bi-Meng

    2013-01-01

    Electroacupuncture (EA) has been regarded as an alternative treatment for inflammatory pain for several decades. However, the molecular mechanisms underlying the antinociceptive effect of EA have not been thoroughly clarified. Previous studies have shown that cannabinoid CB1 receptors are related to pain relief. Accumulating evidence has shown that the CB1 and dopamine systems sometimes interact and may operate synergistically in rat striatum. To our knowledge, dopamine D1/D2 receptors are involved in EA analgesia. In this study, we found that repeated EA at Zusanli (ST36) and Kunlun (BL60) acupoints resulted in marked improvements in thermal hyperalgesia. Both western blot assays and FQ-PCR analysis results showed that the levels of CB1 expression in the repeated-EA group were much higher than those in any other group (P = 0.001). The CB1-selective antagonist AM251 inhibited the effects of repeated EA by attenuating the increases in CB1 expression. The two kinds of dopamine receptors imparted different actions on the EA-induced CB1 upregulation in AA rat model. These results suggested that the strong activation of the CB1 receptor after repeated EA resulted in the concomitant phenomenon of the upregulation of D1 and D2 levels of gene expression. PMID:23762129

  12. Deletion of striatal adenosine A(2A) receptor spares latent inhibition and prepulse inhibition but impairs active avoidance learning.

    PubMed

    Singer, Philipp; Wei, Catherine J; Chen, Jiang-Fan; Boison, Detlev; Yee, Benjamin K

    2013-04-01

    Following early clinical leads, the adenosine A(2A)R receptor (A(2A)R) has continued to attract attention as a potential novel target for treating schizophrenia, especially against the negative and cognitive symptoms of the disease because of A(2A)R's unique modulatory action over glutamatergic in addition to dopaminergic signaling. Through (i) the antagonistic interaction with the dopamine D(2) receptor, and (ii) the regulation of glutamate release and N-methyl-d-aspartate receptor function, striatal A(2A)R is ideally positioned to fine-tune the dopamine-glutamate balance, the disturbance of which is implicated in the pathophysiology of schizophrenia. However, the precise function of striatal A(2A)Rs in the regulation of schizophrenia-relevant behavior is poorly understood. Here, we tested the impact of conditional striatum-specific A(2A)R knockout (st-A(2A)R-KO) on latent inhibition (LI) and prepulse inhibition (PPI) - behavior that is tightly regulated by striatal dopamine and glutamate. These are two common cross-species translational tests for the assessment of selective attention and sensorimotor gating deficits reported in schizophrenia patients; and enhanced performance in these tests is associated with antipsychotic drug action. We found that neither LI nor PPI was significantly affected in st-A(2A)R-KO mice, although a deficit in active avoidance learning was identified in these animals. The latter phenotype, however, was not replicated in another form of aversive conditioning - namely, conditioned taste aversion. Hence, the present study shows that neither learned inattention (as measured by LI) nor sensory gating (as indexed by PPI) requires the integrity of striatal A(2A)Rs - a finding that may undermine the hypothesized importance of A(2A)R in the genesis and/or treatment of schizophrenia.

  13. Presynaptic inhibition of transient receptor potential vanilloid type 1 (TRPV1) receptors by noradrenaline in nociceptive neurons.

    PubMed

    Chakraborty, Saikat; Elvezio, Vincent; Kaczocha, Martin; Rebecchi, Mario; Puopolo, Michelino

    2017-04-15

    The transient receptor potential vanilloid type 1 (TRPV1) receptor is a polymodal molecular integrator in the pain pathway expressed in Aδ- and C-fibre nociceptors and is responsible for the thermal hyperalgesia associated with inflammatory pain. Noradrenaline strongly inhibited the activity of TRPV1 channels in dorsal root ganglia neurons. The effect of noradrenaline was reproduced by clonidine and antagonized by yohimbine, consistent with contribution of α2 adrenergic receptors. The inhibitory effect of noradrenaline on TRPV1 channels was dependent on calcium influx and linked to calcium/calmodulin-dependent protein kinase II. In spinal cord slices, clonidine reduced the frequency of capsaicin-induced miniature EPSCs in the presence of tetrodotoxin and ω-conotoxin-MVIIC, consistent with inhibition of presynaptic TRPV1 channels by α2 adrenergic receptors. We suggest that modulation of presynaptic TRPV1 channels in nociceptive neurons by descending noradrenergic inputs may constitute a mechanism for noradrenaline to modulate incoming noxious stimuli in the dorsal horn of the spinal cord. The transient receptor potential vanilloid type 1 (TRPV1) receptor is a well-known contributor to nociceptor excitability. To address whether noradrenaline can down-regulate TRPV1 channel activity in nociceptors and reduce their synaptic transmission, the effects of noradrenaline and clonidine were tested on the capsaicin-activated current recorded from acutely dissociated small diameter (<27 μm) dorsal root ganglia (DRG) neurons and on miniature (m)EPSCs recorded from large lamina I neurons in horizontal spinal cord slices. Noradrenaline or clonidine inhibited the capsaicin-activated current by ∼60%, and the effect was reversed by yohimbine, confirming that it was mediated by activation of α2 adrenergic receptors. Similarly, clonidine reduced the frequency of capsaicin-induced mEPSCs by ∼60%. Inhibition of capsaicin-activated current by noradrenaline was mediated by GTP

  14. Inhibition of the receptor-mediated virion attachment to a lipid membrane

    NASA Astrophysics Data System (ADS)

    Zhdanov, Vladimir P.

    2012-10-01

    The forefront of the anti-viral defence is sometimes aimed at virion attachment to a host membrane. This step or, more specifically, virion contacts with cellular membrane receptors (or, e.g., glycolipids) can be inhibited by antibodies (or specially chosen or designed compounds) via their association with virions. In this case, the full-scale attachment of virions to a host membrane occurs via a subtle interplay of the formation and rupture of multiple virion-inhibitor and virion-receptor bonds. We present a kinetic model describing this interplay and illustrating general trends in the process under consideration.

  15. Novel triple neurokinin receptor antagonist CS-003 inhibits respiratory disease models in guinea pigs.

    PubMed

    Tsuchida, Hiroshi; Takahashi, Sakiko; Nosaka, Emi; Kuraya, Takako; Yamashita, Makoto; Morimoto, Kiyoshi

    2008-10-31

    Neurokinins are known to induce neurogenic inflammation related to respiratory diseases. The effects of CS-003 ([1-{2-[(2R)-(3,4-dichlorophenyl)-4-(3,4,5-trimethoxybenzoyl)morpholin-2-yl]ethyl}spiro[benzo[c]thiophene-1(3H),4'-piperidine]-(2S)-oxide hydrochloride]), a novel triple neurokinin receptor antagonist, on several respiratory disease models were evaluated in guinea pigs. As we have already shown that CS-003 is intravenously effective, we first determined if CS-003 was orally effective. CS-003 dose-dependently inhibited substance P-induced tracheal vascular hyperpermeability, neurokinin A- and neurokinin B-induced bronchoconstriction with ID(50) values of 3.6, 1.3 and 0.89 mg/kg (p.o.), respectively. CS-003 (10 mg/kg, p.o.) inhibited the number of coughs induced by capsaicin aerosol (P<0.01) and the antitussive effect was comparable to that of codeine. CS-003 (10 mg/kg, p.o.) also inhibited airway hyperresponsiveness to methacholine chloride in ovalbumin-induced asthma models (P<0.01), a milder one and a severer one. On the other hand, montelukast (10 mg/kg, p.o.), a leukotriene receptor antagonist, significantly inhibited the hyperresponsiveness only in the milder model (P<0.05). In an ovalbumin-induced rhinitis model, oral administration of CS-003 inhibited nasal blockade in a dose-dependent manner and the inhibitory effect was comparable to that of dexamethasone (10 mg/kg, p.o.). CS-003 (i.v.) also dose-dependently inhibited cigarette smoke-induced bronchoconstriction, tracheal vascular hyperpermeability and mucus secretion. These data show that CS-003, a potent orally active triple neurokinin receptor antagonist, may be useful for the treatment of respiratory diseases associated with neurokinins, such as allergic asthma, allergic rhinitis, chronic obstructive pulmonary disease and cough.

  16. Rapid Glucocorticoid Feedback Inhibition of ACTH Secretion Involves Ligand-Dependent Membrane Association of Glucocorticoid Receptors

    PubMed Central

    Deng, Qiong; Riquelme, Denise; Trinh, Loc; Low, Malcolm J.; Tomić, Melanija; Stojilkovic, Stanko

    2015-01-01

    The hypothesis that rapid glucocorticoid inhibition of pituitary ACTH secretion mediates a feedforward/feedback mechanism responsible for the hourly glucocorticoid pulsatility was tested in cultured pituitary cells. Perifusion with 30 pM CRH caused sustained the elevation of ACTH secretion. Superimposed corticosterone pulses inhibited CRH-stimulated ACTH release, depending on prior glucocorticoid clearance. When CRH perifusion started after 2 hours of glucocorticoid-free medium, corticosterone levels in the stress range (1 μM) caused a delayed (25 min) and prolonged inhibition of CRH-stimulated ACTH secretion, up to 60 minutes after corticosterone withdrawal. In contrast, after 6 hours of glucocorticoid-free medium, basal corticosterone levels inhibited CRH-stimulated ACTH within 5 minutes, after rapid recovery 5 minutes after corticosterone withdrawal. The latter effect was insensitive to actinomycin D but was prevented by the glucocorticoid receptor antagonist, RU486, suggesting nongenomic effects of the classical glucocorticoid receptor. In hypothalamic-derived 4B cells, 10 nM corticosterone increased immunoreactive glucocorticoid receptor content in membrane fractions, with association and clearance rates paralleling the effects on ACTH secretion from corticotrophs. Corticosterone did not affect CRH-stimulated calcium influx, but in AtT-20 cells, it had biphasic effects on CRH-stimulated Src phosphorylation, with early inhibition and late stimulation, suggesting a role for Src phosphorylation on the rapid glucocorticoid feedback. The data suggest that the nongenomic/membrane effects of classical GR mediate rapid and reversible glucocorticoid feedback inhibition at the pituitary corticotrophs downstream of calcium influx. The sensitivity and kinetics of these effects is consistent with the hypothesis that pituitary glucocorticoid feedback is part of the mechanism for adrenocortical ultradian pulse generation. PMID:26121342

  17. Farnesyl pyrophosphate inhibits epithelialization and wound healing through the glucocorticoid receptor.

    PubMed

    Vukelic, Sasa; Stojadinovic, Olivera; Pastar, Irena; Vouthounis, Constantinos; Krzyzanowska, Agata; Das, Sharmistha; Samuels, Herbert H; Tomic-Canic, Marjana

    2010-01-15

    Farnesyl pyrophosphate (FPP), a key intermediate in the mevalonate pathway and protein farnesylation, can act as an agonist for several nuclear hormone receptors. Here we show a novel mechanism by which FPP inhibits wound healing acting as an agonist for glucocorticoid receptor (GR). Elevation of endogenous FPP by the squalene synthetase inhibitor zaragozic acid A (ZGA) or addition of FPP to the cell culture medium results in activation and nuclear translocation of the GR, a known wound healing inhibitor. We used functional studies to evaluate the effects of FPP on wound healing. Both FPP and ZGA inhibited keratinocyte migration and epithelialization in vitro and ex vivo. These effects were independent of farnesylation and indicate that modulation of FPP levels in skin may be beneficial for wound healing. FPP inhibition of keratinocyte migration and wound healing proceeds, in part, by repression of the keratin 6 gene. Furthermore, we show that the 3-hydroxy-3-methylglutaryl-CoA-reductase inhibitor mevastatin, which blocks FPP formation, not only promotes epithelialization in acute wounds but also reverses the effect of ZGA on activation of the GR and inhibition of epithelialization. We conclude that FPP inhibits wound healing by acting as a GR agonist. Of special interest is that FPP is naturally present in cells prior to glucocorticoid synthesis and that FPP levels can be further altered by the statins. Therefore, our findings may provide a better understanding of the pleiotropic effects of statins as well as molecular mechanisms by which they may accelerate wound healing.

  18. EphA4 Receptor Forward Signaling Inhibits Glucagon Secretion From α-Cells

    PubMed Central

    Hutchens, Troy

    2015-01-01

    The loss of inhibition of glucagon secretion exacerbates hyperglycemia in type 1 and 2 diabetes. However, the molecular mechanisms that regulate glucagon secretion in unaffected and diabetic states remain relatively unexplained. We present evidence supporting a new model of juxtacrine-mediated regulation of glucagon secretion where neighboring islet cells negatively regulate glucagon secretion through tonic stimulation of α-cell EphA receptors. Primarily through EphA4 receptors, this stimulation correlates with maintenance of a dense F-actin network. In islets, additional stimulation and inhibition of endogenous EphA forward signaling result in inhibition and enhancement, respectively, of glucagon secretion, accompanied by an increase and decrease, respectively, in α-cell F-actin density. Sorted α-cells lack endogenous stimulation of EphA forward signaling from neighboring cells, resulting in enhanced basal glucagon secretion as compared with islets and the elimination of glucose inhibition of glucagon secretion. Restoration of EphA forward signaling in sorted α-cells recapitulates both normal basal glucagon secretion and glucose inhibition of glucagon secretion. Additionally, α-cell–specific EphA4−/− mice exhibit abnormal glucagon dynamics, and EphA4−/− α-cells contain less dense F-actin networks than EphA4+/+ α-cells. This juxtacrine-mediated model provides insight into the functional and dysfunctional regulation of glucagon secretion and opens up new therapeutic strategies for the clinical management of diabetes. PMID:26251403

  19. Neurites regrowth of cortical neurons by GSK3beta inhibition independently of Nogo receptor 1.

    PubMed

    Seira, Oscar; Gavín, Rosalina; Gil, Vanessa; Llorens, Franc; Rangel, Alejandra; Soriano, Eduardo; del Río, José Antonio

    2010-06-01

    Lesioned axons do not regenerate in the adult mammalian CNS, owing to the over-expression of inhibitory molecules such as myelin-derived proteins or chondroitin sulphate proteoglycans. In order to overcome axon inhibition, strategies based on extrinsic and intrinsic treatments have been developed. For myelin-associated inhibition, blockage with NEP1-40, receptor bodies or IN-1 antibodies has been used. In addition, endogenous blockage of cell signalling mechanisms induced by myelin-associated proteins is a potential tool for overcoming axon inhibitory signals. We examined the participation of glycogen synthase kinase 3beta (GSK3beta) and extracellular-related kinase (ERK) 1/2 in axon regeneration failure in lesioned cortical neurons. We also investigated whether pharmacological blockage of GSK3beta and ERK1/2 activities facilitates regeneration after myelin-directed inhibition in two models: (i) cerebellar granule cells and (ii) lesioned entorhino-hippocampal pathway in slice cultures, and whether the regenerative effects are mediated by Nogo Receptor 1 (NgR1). We demonstrate that, in contrast to ERK1/2 inhibition, the pharmacological treatment of GSK3beta inhibition strongly facilitated regrowth of cerebellar granule neurons over myelin independently of NgR1. Finally, these regenerative effects were corroborated in the lesioned entorhino-hippocampal pathway in NgR1-/- mutant mice. These results provide new findings for the development of new assays and strategies to enhance axon regeneration in injured cortical connections.

  20. Inhibition of noradrenaline release in the rat brain cortex via presynaptic H3 receptors.

    PubMed

    Schlicker, E; Fink, K; Hinterthaner, M; Göthert, M

    1989-12-01

    The effects of histamine and related drugs on the evoked tritium overflow from superfused rat brain cortex slices preincubated with 3H-noradrenaline were determined. Tritium overflow was stimulated electrically (3 Hz; slices superfused with normal physiological salt solution) or by introduction of CaCl2 1.3 mmol/l (slices superfused with Ca2(+)-free medium containing K+ 20 mmol/l). Histamine slightly decreased the electrically evoked 3H overflow in slices superfused in the presence of desipramine. The degree of inhibition obtained with histamine was doubled when both desipramine and phentolamine were present in the superfusion medium (pIC15 6.46). Under the latter condition, the evoked overflow was inhibited by the H3 receptor agonist R-(-)-alpha-methylhistamine and its S-(+) enantiomer (pIC15 7.36 and 5.09, respectively), but was not affected by the H2 receptor agonist dimaprit and the H1 receptor agonist 2-thiazolylethylamine (both at up to 32 mumols/l). The concentration-response curve of histamine was shifted to the right by the H3 receptor antagonists thioperamide, impromidine and burimamide (apparent pA2 8.37, 6.86 and 7.05, respectively), by the H2 receptor antagonist ranitidine (apparent pA2 4.27) and was not affected by the H1 receptor antagonist dimetindene (32 mumols/l). The inhibitory effect of R-(-)-alpha-methylhistamine on the evoked overflow was also counteracted by thioperamide. Given alone, none of the five histamine receptor antagonists affected the evoked overflow. In the absence of desipramine plus phentolamine, impromidine and burimamide facilitated the electrically evoked 3H overflow whereas thioperamide had no effect. The facilitatory effects of impromidine and burimamide were abolished by phentolamine, but not affected by desipramine.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Extracellular nucleotides inhibit growth of human oesophageal cancer cells via P2Y2-receptors

    PubMed Central

    Maaser, K; Höpfner, M; Kap, H; Sutter, A P; Barthel, B; von Lampe, B; Zeitz, M; Scherübl, H

    2002-01-01

    Extracellular ATP is known to inhibit growth of various tumours by activating specific purinergic receptors (P2-receptors). Since the therapy of advanced oesophageal cancer is unsatisfying, new therapeutic approaches are mandatory. Here, we investigated the functional expression and potential antiproliferative effects of P2-purinergic receptors in human oesophageal cancer cells. Prolonged incubation of primary cell cultures of human oesophageal cancers as well as of the squamous oesophageal cancer cell line Kyse-140 with ATP or its stable analogue ATPγS dose-dependently inhibited cell proliferation. This was due to both an induction of apoptosis and cell cycle arrest. The expression of P2-receptors was examined by RT-PCR, immunocytochemistry, and [Ca2+]i-imaging. Application of various extracellular nucleotides dose-dependently increased [Ca2+]i. The rank order of potency was ATP=UTP>ATPγS>ADP=UDP. 2-methylthio-ATP and α,β-methylene-ATP had no effects on [Ca2+]i. Complete cross-desensitization between ATP and UTP was observed. Moreover, the phospholipase C inhibitor U73122 dose-dependently reduced the ATP triggered [Ca2+]i signal. The pharmacological features strongly suggest the functional expression of G-protein coupled P2Y2-receptors in oesophageal squamous cancer cells. P2Y2-receptors are involved in the antiproliferative actions of extracellular nucleotides. Thus, P2Y2-receptors are promising target proteins for innovative approaches in oesophageal cancer therapy. British Journal of Cancer (2002) 86, 636–644. DOI: 10.1038/sj/bjc/6600100 www.bjcancer.com © 2002 Cancer Research UK PMID:11870549

  2. Inhibition of forskolin-stimulated adenylate cyclase activity by 5-HT receptor agonists.

    PubMed

    Devivo, M; Maayani, S

    1985-12-17

    We measured the inhibition of forskolin-stimulated adenylate cyclase activity in guinea pig hippocampal membranes by 5-HT, 5-carboxamidotryptamine (CAT) and 8-hydroxy-2-(di-n-propylamino) tetralin (PAT). Low concentrations of these agonists inhibited forskolin-stimulated adenylate cyclase activity in a concentration-dependent and saturable manner. The antagonist spiperone shifted the concentration-response curve to CAT to the right in a parallel manner. The EC50 values of CAT, PAT and 5-HT and the KB of spiperone suggest that this receptor may correspond to the 5-HT1A binding site.

  3. Diterpenes from Cryptomeria japonica inhibit androgen receptor transcriptional activity in prostate cancer cells.

    PubMed

    Tu, Wei-Chun; Wang, Sheng-Yang; Chien, Shih-Chang; Lin, Feng-Min; Chen, Li-Ru; Chiu, Chih-Yang; Hsiao, Pei-Wen

    2007-10-01

    We identified eight diterpenes from Cryptomeria japonica (Taxodiaceae), which inhibit the activity of the androgen receptor (AR) in human prostate cancer (PCa) 22Rv1-derived 103E cells. The compounds 6,12-dihydroxyabieta-5,8,11,13-tetraen-7-one ( 2), sugiol ( 3), ferruginol ( 4), and 5-epixanthoperol ( 7) have near 100 % AR inhibition efficacy at concentrations of 10, 5, 25, and 25 microM, respectively. Because these compounds have very similar structures, analysis of their differential activity may aid in the design of inhibitors for PCa treatment.

  4. Activation of Adenosine A2A Receptors Inhibits Neutrophil Transuroepithelial Migration ▿

    PubMed Central

    Säve, Susanne; Mohlin, Camilla; Vumma, Ravi; Persson, Katarina

    2011-01-01

    Adenosine has been identified as a significant inhibitor of inflammation by acting on adenosine A2A receptors. In this study, we examined the role of adenosine and A2A receptors in the transmigration of human neutrophils across an in vitro model of the transitional bladder urothelium. Human uroepithelial cells (UROtsa) were grown on transwell inserts; uropathogenic Escherichia coli (UPEC) and neutrophils were added to the transwell system; and the number of migrating neutrophils was evaluated. Reverse transcription-PCR (RT-PCR), immunohistochemistry, and flow cytometry were used to investigate the expression of adenosine receptors, the epithelial adhesion molecule ICAM-1, and the neutrophil integrin CD11b. Levels of proinflammatory interleukin-8 (IL-8) and phosphorylated IκBα were measured by enzyme-linked immunosorbent assays (ELISA) and Luminex assays, respectively. The neutrophils expressed all four adenosine receptor subtypes (A1, A2A, A2B, and A3 receptors), but A3 receptors were not expressed by UROtsa cells. UPEC stimulated neutrophil transuroepithelial migration, which was significantly decreased in response to the specific A2A receptor agonist CGS 21680. The inhibitory effect of CGS 21680 on neutrophil migration was reversed by the A2A receptor antagonist SCH 58261. The production of chemotactic IL-8 and the expression of the adhesion molecule ICAM-1 or CD11b were not significantly affected by CGS 21680. However, a significant decrease in the level of phosporylated IκBα was revealed in response to CGS 21680. In conclusion, UPEC infection in vitro evoked neutrophil migration through a multilayered human uroepithelium. The UPEC-evoked neutrophil transmigration decreased in response to A2A receptor activation, possibly through inhibition of NF-κB signaling pathways. PMID:21646447

  5. Rivastigmine improves isolation rearing-induced prepulse inhibition deficits via muscarinic acetylcholine receptors in mice.

    PubMed

    Higashino, Kosuke; Ago, Yukio; Umeki, Takahiro; Hasebe, Shigeru; Onaka, Yusuke; Hashimoto, Hitoshi; Takuma, Kazuhiro; Matsuda, Toshio

    2016-02-01

    The acetylcholinesterase inhibitors donepezil, galantamine, and rivastigmine are used for the treatment of Alzheimer's disease. We previously demonstrated that donepezil and galantamine differentially affect isolation rearing-induced prepulse inhibition (PPI) deficits and that this might be due to differential effects on brain muscarinic acetylcholine (mACh) receptor function in mice. We examined the effects of rivastigmine on isolation rearing-induced PPI deficits, brain ACh levels, and mACh receptor function in mice. Acoustic startle responses were measured in a startle chamber. Microdialysis was performed, and the levels of dopamine and ACh in the prefrontal cortex were measured. Rivastigmine (0.3 mg/kg) improved PPI deficits, and this improvement was antagonized by the mACh receptor antagonist telenzepine but not by the nicotinic ACh receptor antagonist mecamylamine. Rivastigmine increased extracellular ACh levels by approximately 2-3-fold, less than the increase produced by galantamine. Rivastigmine enhanced the effect of the mACh receptor agonist N-desmethylclozapine on prefrontal dopamine release, a marker of mACh receptor function, and this increase was blocked by telenzepine. In contrast, galantamine did not affect N-desmethylclozapine-induced dopamine release. Furthermore, rivastigmine did not affect cortical dopamine release induced by the serotonin1A receptor agonist osemozotan, suggesting that the effect of rivastigmine has specificity for mACh receptors. Taken together with our previous finding that marked increases in ACh levels are required for the PPI deficit improvement induced by galantamine, our present results suggest that rivastigmine improves isolation rearing-induced PPI deficits by increasing ACh levels and by concomitantly enhancing mACh receptor function.

  6. Evidence for inhibition mediated by coassembly of GABAA and GABAC receptor subunits in native central neurons.

    PubMed

    Milligan, Carol J; Buckley, Noel J; Garret, Maurice; Deuchars, Jim; Deuchars, Susan A

    2004-08-18

    Fast inhibition in the nervous system is commonly mediated by GABA(A) receptors comprised of 2alpha/2beta/1gamma subunits. In contrast, GABA(C) receptors containing only rho subunits (rho1-rho3) have been predominantly detected in the retina. However, here using reverse transcription-PCR and in situ hybridization we show that mRNA encoding the rho1 subunit is highly expressed in brainstem neurons. Immunohistochemistry localized the rho1 subunit to neurons at light and electron microscopic levels, where it was detected at synaptic junctions. Application of the GABA(C) receptor agonist cis-4-aminocrotonic acid (100-800 microM) requires the rho1 subunit to elicit responses, which surprisingly are blocked independently by antagonists to GABA(A) (bicuculline, 10 microM) and GABA(C) [(1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA); 40-160 microM] receptors. Responses to GABA(C) agonists were also enhanced by the GABA(A) receptor modulator pentobarbitone (300 microM). Spontaneous and evoked IPSPs were reduced in amplitude but never abolished by TPMPA, but were completely blocked by bicuculline. We therefore tested the hypothesis that GABA(A) and GABA(C) subunits formed a heteromeric receptor. Immunohistochemistry indicated that rho1 and alpha1 subunits were colocalized at light and electron microscopic levels. Electrophysiology revealed that responses to GABA(C) receptor agonists were enhanced by the GABA(A) receptor modulator zolpidem (500 nm), which acts on the alpha1 subunit when the gamma2 subunit is also present. Finally, coimmunoprecipitation indicated that the rho1 subunit formed complexes that also containedalpha1 and gamma2 subunits. Taken together these separate lines of evidence suggest that the effects of GABA in central neurons can be mediated by heteromeric complexes of GABA(A) and GABA(C) receptor subunits.

  7. CH5137291, an androgen receptor nuclear translocation-inhibiting compound, inhibits the growth of castration-resistant prostate cancer cells.

    PubMed

    Ishikura, Nobuyuki; Kawata, Hiromitsu; Nishimoto, Ayako; Nakamura, Ryo; Tsunenari, Toshiaki; Watanabe, Miho; Tachibana, Kazutaka; Shiraishi, Takuya; Yoshino, Hitoshi; Honma, Akie; Emura, Takashi; Ohta, Masateru; Nakagawa, Toshito; Houjo, Takao; Corey, Eva; Vessella, Robert L; Aoki, Yuko; Sato, Haruhiko

    2015-04-01

    Resistance of prostate cancer to castration is currently an unavoidable problem. The major mechanisms underlying such resistance are androgen receptor (AR) overexpression, androgen-independent activation of AR, and AR mutation. To address this problem, we developed an AR pure antagonist, CH5137291, with AR nuclear translocation-inhibiting activity, and compared its activity and characteristics with that of bicalutamide. Cell lines corresponding to the mechanisms of castration resistance were used: LNCaP-BC2 having AR overexpression and LNCaP-CS10 having androgen-independent AR activation. VCaP and LNCaP were used as hormone-sensitive prostate cancer cells. In vitro functional assay clearly showed that CH5137291 inhibited the nuclear translocation of wild-type ARs as well as W741C- and T877A-mutant ARs. In addition, it acted as a pure antagonist on the transcriptional activity of these types of ARs. In contrast, bicalutamide did not inhibit the nuclear translocation of these ARs, and showed a partial/full agonistic effect on the transcriptional activity. CH5137291 inhibited cell growth more strongly than bicalutamide in VCaP and LNCaP cells as well as in LNCaP-BC2 and LNCaP-CS10 cells in vitro. In xenograft models, CH5137291 strongly inhibited the tumor growth of LNCaP, LNCaP-BC2, and LNCaP-CS10, whereas bicalutamide showed a weaker effect in LNCaP and almost no effect in LNCaP-BC2 and LNCaP-CS10 xenografts. Levels of prostate-specific antigen (PSA) in plasma correlated well with the antitumor effect of both agents. CH5137291 inhibited the growth of LNCaP tumors that had become resistant to bicalutamide treatment. A docking model suggested that CH5137291 intensively collided with the M895 residue of helix 12, and therefore strongly inhibited the folding of helix 12, a cause of AR agonist activity, in wild-type and W741C-mutant ARs. In cynomolgus monkeys, the serum concentration of CH5137291 increased dose-dependently and PSA level decreased 80% at 100 mg/kg. CH

  8. Neurosteroid interactions with synaptic and extrasynaptic GABAa receptors: regulation of subunit plasticity, phasic and tonic inhibition, and neuronal network excitability

    PubMed Central

    Chase Matthew, Carver; Doodipala Samba, Reddy

    2013-01-01

    Rationale Neurosteroids are steroids synthesized within the brain with rapid effects on neuronal excitability. Allopregnanolone, allotetrahydrodeoxycorticosterone, and androstanediol are three widely explored prototype endogenous neurosteroids. They have very different targets and functions compared to conventional steroid hormones. Neuronal GABAa receptors are one of the prime molecular targets of neurosteroids. Objective This review provides a critical appraisal of recent advances in the pharmacology of endogenous neurosteroids that interact with GABAa receptors in the brain. Neurosteroids possess distinct, characteristic effects on the membrane potential and current conductance of the neuron, mainly via potentiation of GABAa receptors at low concentrations and direct activation of receptor chloride channel at higher concentrations. The GABAa receptor mediates two types of inhibition, now characterized as synaptic (phasic) and extrasynaptic (tonic) inhibition. Synaptic release of GABA results in the activation of low-affinity γ2-containing synaptic receptors, while high-affinity δ-containing extrasynaptic receptors are persistently activated by the ambient GABA present in the extracellular fluid. Neurosteroids are potent positive allosteric modulators of synaptic and extrasynaptic GABAa receptors and therefore enhance both phasic and tonic inhibition. Tonic inhibition is specifically more sensitive to neurosteroids. The resulting tonic conductance generates a form of shunting inhibition that controls neuronal network excitability, seizure susceptibility, and behavior. Conclusion The growing understanding of the mechanisms of neurosteroid regulation of the structure and function of the synaptic and extrasynaptic GABAa receptors provide many opportunities to create improved therapies for sleep, anxiety, stress, epilepsy, and other neuropsychiatric conditions. PMID:24071826

  9. Highly chlorinated PCBs inhibit the human xenobiotic response mediated by the steroid and xenobiotic receptor (SXR).

    PubMed Central

    Tabb, Michelle M; Kholodovych, Vladyslav; Grün, Felix; Zhou, Changcheng; Welsh, William J; Blumberg, Bruce

    2004-01-01

    Polychlorinated biphenyls (PCBs) are a family of persistent organic contaminants suspected to cause adverse effects in wildlife and humans. In rodents, PCBs bind to the aryl hydrocarbon (AhR) and pregnane X receptors (PXR) inducing the expression of catabolic cytochrome p450 enzymes of the CYP1A and 3A families. We found that certain highly chlorinated PCBs are potent activators of rodent PXR but antagonize its human ortholog, the steroid and xenobiotic receptor (SXR), inhibiting target gene induction. Thus, exposure to PCBs may blunt the human xenobiotic response, inhibiting the detoxification of steroids, bioactive dietary compounds, and xenobiotics normally mediated by SXR. The antagonistic PCBs are among the most stable and abundant in human tissues. These findings have important implications for understanding the biologic effects of PCB exposure and the use of animal models to predict the attendant risk. PMID:14754570

  10. Highly chlorinated PCBs inhibit the human xenobiotic response mediated by the steroid and xenobiotic receptor (SXR).

    PubMed

    Tabb, Michelle M; Kholodovych, Vladyslav; Grün, Felix; Zhou, Changcheng; Welsh, William J; Blumberg, Bruce

    2004-02-01

    Polychlorinated biphenyls (PCBs) are a family of persistent organic contaminants suspected to cause adverse effects in wildlife and humans. In rodents, PCBs bind to the aryl hydrocarbon (AhR) and pregnane X receptors (PXR) inducing the expression of catabolic cytochrome p450 enzymes of the CYP1A and 3A families. We found that certain highly chlorinated PCBs are potent activators of rodent PXR but antagonize its human ortholog, the steroid and xenobiotic receptor (SXR), inhibiting target gene induction. Thus, exposure to PCBs may blunt the human xenobiotic response, inhibiting the detoxification of steroids, bioactive dietary compounds, and xenobiotics normally mediated by SXR. The antagonistic PCBs are among the most stable and abundant in human tissues. These findings have important implications for understanding the biologic effects of PCB exposure and the use of animal models to predict the attendant risk.

  11. The P2Y6 Receptor Inhibits Effector T Cell Activation in Allergic Pulmonary Inflammation1

    PubMed Central

    Giannattasio, Giorgio; Ohta, Shin; Boyce, Joshua R.; Xing, Wei; Balestrieri, Barbara; Boyce, Joshua A.

    2011-01-01

    We show that the P2Y6 receptor, a G-protein-coupled receptor with high affinity for the nucleotide uridine diphosphate, is an important endogenous inhibitor of T cell function in allergic pulmonary inflammation. Mice conditionally deficient in P2Y6 receptors [p2ry6 (flox/flox);cre/+ mice] exhibited severe airway and tissue pathology relative to P2Y6-sufficient [p2ry6 (flox/flox)] littermates (+/+ mice) when treated intranasally with an extract (Df) of the dust mite Dermatophagoides farinae. P2Y6 receptors were inducibly expressed by lung, lymph node and splenic CD4+ and CD8+ T cells of Df-treated +/+ mice. Df-restimulated P2Y6-deficient lymph node cells produced higher levels of Th1 and Th2 cytokines, and polyclonally-stimulated P2Y6-deficient CD4+ T cells proliferated faster than comparably stimulated P2Y6-sufficient cells. The absence of P2Y6 receptors on CD4+ cells, but not antigen presenting cells, was sufficient to amplify cytokine generation. Thus, P2Y6 receptors protect the lung against exuberant allergen-induced pulmonary inflammation by inhibiting the activation of effector T cells. PMID:21724990

  12. Inhibition of gastric mucosal mucin receptor by Helicobacter pylori lipopolysaccharide: effect of sulglycotide.

    PubMed

    Piotrowski, J; Majka, J; Murty, V L; Czajkowski, A; Slomiany, A; Slomiany, B L

    1994-09-01

    1. A receptor for mucin was isolated from the solubilized gastric epithelial cell membrane by affinity chromatography on Sepharose-bound wheat germ agglutinin. 2. The receptor protein displayed a molecular weight of 97 kDa and exhibited specific affinity towards mucin-coated surfaces. The optimum for mucin binding occurred at 60-100 micrograms/ml, while the values for the receptor were 2.0-3.1 micrograms/ml. 3. The mucin binding to the receptor was susceptible to Helicobacter pylori lipopolysaccharide which caused maximum inhibition of 91% at 30 mu/ml. This inhibitory effect of the lipopolysaccharide was abolished by a gastroprotective agent, sulglycotide. 4. The effect of sulglycotide was dose dependent and at 50 micrograms/ml produced a 94% restoration in receptor-mucin binding. Furthermore, sulglycotide was also capable of enhancing (97%) the mucin binding to its receptor in the absence of the lipopolysaccharide. 5. The results demonstrate that H. pylori through its lipopolysaccharide interferes in the interaction of mucin with gastric epithelial surfaces and that a gastroprotective agent, sulglycotide, counteracts this effect, and hence is capable of preventing the loss of mucin coat continuity occurring with H. pylori infection.

  13. Glycine Transporter-1 Inhibition Promotes Striatal Axon Sprouting via NMDA Receptors in Dopamine Neurons

    PubMed Central

    Castagna, Candace; Mrejeru, Ana; Lizardi-Ortiz, José E.; Klein, Zoe; Lindsley, Craig W.

    2013-01-01

    NMDA receptor activity is involved in shaping synaptic connections throughout development and adulthood. We recently reported that brief activation of NMDA receptors on cultured ventral midbrain dopamine neurons enhanced their axon growth rate and induced axonal branching. To test whether this mechanism was relevant to axon regrowth in adult animals, we examined the reinnervation of dorsal striatum following nigral dopamine neuron loss induced by unilateral intrastriatal injections of the toxin 6-hydroxydopamine. We used a pharmacological approach to enhance NMDA receptor-dependent signaling by treatment with an inhibitor of glycine transporter-1 that elevates levels of extracellular glycine, a coagonist required for NMDA receptor activation. All mice displayed sprouting of dopaminergic axons from spared fibers in the ventral striatum to the denervated dorsal striatum at 7 weeks post-lesion, but the reinnervation in mice treated for 4 weeks with glycine uptake inhibitor was approximately twice as dense as in untreated mice. The treated mice also displayed higher levels of striatal dopamine and a complete recovery from lateralization in a test of sensorimotor behavior. We confirmed that the actions of glycine uptake inhibition on reinnervation and behavioral recovery required NMDA receptors in dopamine neurons using targeted deletion of the NR1 NMDA receptor subunit in dopamine neurons. Glycine transport inhibitors promote functionally relevant sprouting of surviving dopamine axons and could provide clinical treatment for disorders such as Parkinson's disease. PMID:24133278

  14. The G Protein-Coupled Estrogen Receptor Agonist G-1 Inhibits Nuclear Estrogen Receptor Activity and Stimulates Novel Phosphoproteomic Signatures

    PubMed Central

    Smith, L. Cody; Ralston-Hooper, Kimberly J.; Ferguson, P. Lee; Sabo-Attwood, Tara

    2016-01-01

    Estrogen exerts cellular effects through both nuclear (ESR1 and ESR2) and membrane-bound estrogen receptors (G-protein coupled estrogen receptor, GPER); however, it is unclear if they act independently or engage in crosstalk to influence hormonal responses. To investigate each receptor’s role in proliferation, transcriptional activation, and protein phosphorylation in breast cancer cells (MCF-7), we employed selective agonists for ESR1 propyl-pyrazole-triol (PPT), ESR2 diarylpropionitrile (DPN), and GPER (G-1) and also determined the impact of xenoestrogens bisphenol-A (BPA) and genistein on these effects. As anticipated, 17β-estradiol (E2), PPT, DPN, BPA, and genistein each enhanced proliferation and activation of an ERE-driven reporter gene whereas G-1 had no significant impact. However, G-1 significantly reduced E2-, PPT-, DPN-, BPA-, and genistein-induced proliferation and ERE activation at doses greater than 500 nM indicating that G-1 mediated inhibition is not ESR isotype specific. As membrane receptors initiate cascades of phosphorylation events, we performed a global phosphoproteomic analysis on cells exposed to E2 or G-1 to identify potential targets of receptor crosstalk via downstream protein phosphorylation targets. Of the 211 phosphorylated proteins identified, 40 and 13 phosphoproteins were specifically modified by E2 and G-1, respectively. Subnetwork enrichment analysis revealed several processes related to cell cycle were specifically enriched by G-1 compared with E2. Further there existed a number of newly identified proteins that were specifically phosphorylated by G-1. These phosphorylation networks highlight specific proteins that may modulate the inhibitory effects of G-1 and suggest a novel role for interference with nuclear receptor activity driven by E2 and xenoestrogens. PMID:27026707

  15. Molecular Determinants for Competitive Inhibition of α4β2 Nicotinic Acetylcholine Receptors

    PubMed Central

    Carbone, Annalisa; García-Beltrán, Olimpo; Livingstone, Phil D.; Biggin, Philip C.; Cassels, Bruce K.; Wonnacott, Susan; Zapata-Torres, Gerald; Bermudez, Isabel

    2010-01-01

    The Erythrina alkaloids erysodine and dihydro-β-erythroidine (DHβE) are potent and selective competitive inhibitors of α4β2 nicotinic acetylcholine receptors (nAChRs), but little is known about the molecular determinants of the sensitivity of this receptor subtype to inhibition by this class of antagonists. We addressed this issue by examining the effects of DHβE and a range of aromatic Erythrina alkaloids on [3H]cytisine binding and receptor function in conjunction with homology models of the α4β2 nAChR, mutagenesis, and functional assays. The lactone group of DHβE and a hydroxyl group at position C-16 in aromatic Erythrina alkaloids were identified as major determinants of potency, which was decreased when the conserved residue Tyr126 in loop A of the α4 subunit was substituted by alanine. Sensitivity to inhibition was also decreased by substituting the conserved aromatic residues α4Trp182 (loop B), α4Tyr230 (loop C), and β2Trp82 (loop D) and the nonconserved β2Thr84; however, only α4Trp182 was predicted to contact bound antagonist, suggesting α4Tyr230, β2Trp82, and β2Thr84 contribute allosterically to the closed state elicited by bound antagonist. In addition, homology modeling predicted strong ionic interactions between the ammonium center of the Erythrina alkaloids and β2Asp196, leading to the uncapping of loop C. Consistent with this, β2D196A abolished sensitivity to inhibition by DHβE or erysodine but not by epierythratidine, which is not predicted to form ionic bonds with β2Asp196. This residue is not conserved in subunits that comprise nAChRs with low sensitivity to inhibition by DHβE or erysodine, which highlights β2Asp196 as a major determinant of the receptor selectivity of Erythrina alkaloids. PMID:20547737

  16. Ligand-independent and tissue-selective androgen receptor inhibition by pyrvinium

    PubMed Central

    Lim, Minyoung; Otto-Duessel, Maya; He, Miaoling; Su, Leila; Nguyen, Dan; Chin, Emily; Alliston, Tamara; Jones, Jeremy O.

    2014-01-01

    Pyrvinium pamoate (PP) is a potent non-competitive inhibitor of the androgen receptor (AR). Using a novel method of target identification, we demonstrate that AR is a direct target of PP in prostate cancer cells. We demonstrate that PP inhibits AR activity via the highly conserved DNA binding domain (DBD), the only AR inhibitor that functions via this domain. Furthermore, computational modeling predicts that pyrvinium binds at the interface of the DBD dimer and the minor groove of the AR response element. Because PP acts through the DBD, PP is able to inhibit the constitutive activity of AR splice variants, which are thought to contribute to the growth of castration resistant prostate cancer (CRPC). PP also inhibits androgen-independent AR activation by HER2 kinase. The anti-androgen activity of pyrvinium manifests in the ability to inhibit the in vivo growth of CRPC xenografts that express AR splice variants. Interestingly, PP was most potent in cells with endogenous AR expression derived from prostate or bone. PP was able to inhibit several other hormone nuclear receptors (NRs), but not structurally unrelated transcription factors. PP inhibition of other NRs was similarly cell-type selective. Using dual-energy X-ray absorptiometry, we demonstrate that the cell-type specificity of PP manifests in tissue-selective inhibition of AR activity in mice, as PP decreases prostate weight and bone mineral density, but does not affect lean body mass. Our results suggest that the non-competitive AR inhibitor pyrvinium has significant potential to treat CRPC, including cancers driven by ligand-independent AR signaling. PMID:24354286

  17. Ligand-independent and tissue-selective androgen receptor inhibition by pyrvinium.

    PubMed

    Lim, Minyoung; Otto-Duessel, Maya; He, Miaoling; Su, Leila; Nguyen, Dan; Chin, Emily; Alliston, Tamara; Jones, Jeremy O

    2014-03-21

    Pyrvinium pamoate (PP) is a potent noncompetitive inhibitor of the androgen receptor (AR). Using a novel method of target identification, we demonstrate that AR is a direct target of PP in prostate cancer cells. We demonstrate that PP inhibits AR activity via the highly conserved DNA binding domain (DBD), the only AR inhibitor that functions via this domain. Furthermore, computational modeling predicts that pyrvinium binds at the interface of the DBD dimer and the minor groove of the AR response element. Because PP acts through the DBD, PP is able to inhibit the constitutive activity of AR splice variants, which are thought to contribute to the growth of castration resistant prostate cancer (CRPC). PP also inhibits androgen-independent AR activation by HER2 kinase. The antiandrogen activity of pyrvinium manifests in the ability to inhibit the in vivo growth of CRPC xenografts that express AR splice variants. Interestingly, PP was most potent in cells with endogenous AR expression derived from prostate or bone. PP was able to inhibit several other hormone nuclear receptors (NRs) but not structurally unrelated transcription factors. PP inhibition of other NRs was similarly cell-type selective. Using dual-energy X-ray absorptiometry, we demonstrate that the cell-type specificity of PP manifests in tissue-selective inhibition of AR activity in mice, as PP decreases prostate weight and bone mineral density but does not affect lean body mass. Our results suggest that the noncompetitive AR inhibitor pyrvinium has significant potential to treat CRPC, including cancers driven by ligand-independent AR signaling.

  18. A selective, high affinity 5-HT 2B receptor antagonist inhibits visceral hypersensitivity in rats.

    PubMed

    Ohashi-Doi, K; Himaki, D; Nagao, K; Kawai, M; Gale, J D; Furness, J B; Kurebayashi, Y

    2010-02-01

    RS-127445 is a selective, high affinity 5-HT(2B)receptor antagonist. We investigated whether 5-HT(2B)receptor antagonists can reduce colonic visceral hypersensitivity caused by restraint stress or by proximal colonic inflammation. Visceral hypersensitivity was induced in rats by either restraint stress or injection of 2, 4, 6-trinitrobenzene sulfonic acid (TNBS) into the proximal colon. Restraint stress produced a significant increase in numbers of abdominal contractions evoked by colorectal distension (CRD), measured as a quantitative index of visceral nociception in rats. Seven days after TNBS injection, the pain threshold to CRD at the non-inflamed distal colon, that was determined as the minimum pressure required to evoke abdominal cramp, was significantly decreased. The effect of RS-127445 on visceral hypersensitivity was assessed in either naïve or TNBS-treated rats. Oral administration of a selective, high affinity 5-HT(2B)receptor antagonist, RS-127445, significantly inhibited visceral hypersensitivity provoked by restraint stress (35 to 74% inhibition at 1 to 10 mg kg(-1)). Oral RS-127445 produced a significant suppression of TNBS-induced visceral hypersensitivity (15 to 62% inhibition at 3 to 30 mg kg(-1)), although it was without significant effect on the visceral nociceptive threshold of naïve rats. RS-127445 (1 to 30 mg kg(-1), p.o.) also dose-dependently reduced the restraint stress-induced defecation in naïve and TNBS-treated rats. These results suggest that 5-HT(2B)receptors are involved in signaling from the colon in rats in which there is visceral hypersensitivity and that a selective 5-HT(2B)receptor antagonist could have therapeutic potential for the treatment of gut disorders characterized by visceral hypersensitivity.

  19. D1-like receptors inhibit insulin-induced vascular smooth muscle cell proliferation via down-regulation of insulin receptor expression

    PubMed Central

    Zeng, Chunyu; Han, Yu; Huang, Hefei; Yu, Changqing; Ren, Hongmei; Shi, Weibin; He, Duofen; Huang, Lan; Yang, Chengming; Wang, Xukai; Zhou, Lin; Jose, Pedro A.

    2013-01-01

    Objective Vascular smooth muscle cell (VSMC) proliferation is central to the development of vascular diseases, including hypertension, which is regulated by numerous hormones and humoral factors. Our previous study showed that the stimulatory effect of norepinephrine on VSMC proliferation is inhibited by D1-like receptors and the D3 dopamine receptor, a member of the D2-like receptor family. Insulin is a proliferative hormone but it is not known if there is any interaction between insulin and D1-like receptors. We hypothesized that Dl-like receptors may have an inhibitory effect on the insulin-induced VSMC proliferation; aberrant insulin and Dl-like receptor functions could be involved in the pathogenesis of essential hypertension. Methods VSMC proliferation was determined by [3H]-thymidine incorporation; insulin receptor mRNA and protein expressions were determined by RT-PCR, immunoblotting, and immunohistochemistry. Results Insulin increased VSMC proliferation in immortalized aortic A10 cells, determined by [3H]-thymidine incorporation. Although the D1-like receptor, by itself, had no effect on VSMC proliferation, stimulation with fenoldopam, a D1-like receptor agonist, inhibited the stimulatory effect of insulin. The inhibitory effect of fenoldopam on insulin-mediated VSMC proliferation was receptor specific, because its effect could be blocked by SCH23390, a D1-like receptor antagonist. Fenoldopam also inhibited insulin receptor mRNA and protein expression, which was time dependent and concentration dependent. A PKC or MAP kinase inhibitor blocked the inhibitory effect of fenoldopam on insulin receptor expression, indicating that PKC and MAP kinase were involved in the signaling pathway. Conclusion The inhibitory effect of D1-like receptors on insulin-mediated VSMC proliferation may play an important role in the regulation of blood pressure. PMID:19293728

  20. Inhibition of human α7 nicotinic acetylcholine receptors by cyclic monoterpene carveol.

    PubMed

    Lozon, Yosra; Sultan, Ahmed; Lansdell, Stuart J; Prytkova, Tatiana; Sadek, Bassem; Yang, Keun-Hang Susan; Howarth, Frank Christopher; Millar, Neil S; Oz, Murat

    2016-04-05

    Cyclic monoterpenes are a group of phytochemicals with antinociceptive, local anesthetic, and anti-inflammatory actions. Effects of cyclic monoterpenes including vanilin, pulegone, eugenole, carvone, carvacrol, carveol, thymol, thymoquinone, menthone, and limonene were investigated on the functional properties of the cloned α7 subunit of the human nicotinic acetylcholine receptor expressed in Xenopus oocytes. Monoterpenes inhibited the α7 nicotinic acetylcholine receptor in the order carveol>thymoquinone>carvacrol>menthone>thymol>limonene>eugenole>pulegone≥carvone≥vanilin. Among the monoterpenes, carveol showed the highest potency on acetylcholine-induced responses, with IC50 of 8.3µM. Carveol-induced inhibition was independent of the membrane potential and could not be reversed by increasing the concentration of acetylcholine. In line with functional experiments, docking studies indicated that cyclic monoterpenes such as carveol may interact with an allosteric site located in the α7 transmembrane domain. Our results indicate that cyclic monoterpenes inhibit the function of human α7 nicotinic acetylcholine receptors, with varying potencies.

  1. The Cellular Prion Protein Prevents Copper-Induced Inhibition of P2X4 Receptors

    PubMed Central

    Lorca, Ramón A.; Varela-Nallar, Lorena; Inestrosa, Nibaldo C.; Huidobro-Toro, J. Pablo

    2011-01-01

    Although the physiological function of the cellular prion protein (PrPC) remains unknown, several evidences support the notion of its role in copper homeostasis. PrPC binds Cu2+ through a domain composed by four to five repeats of eight amino acids. Previously, we have shown that the perfusion of this domain prevents and reverses the inhibition by Cu2+ of the adenosine triphosphate (ATP)-evoked currents in the P2X4 receptor subtype, highlighting a modulatory role for PrPC in synaptic transmission through regulation of Cu2+ levels. Here, we study the effect of full-length PrPC in Cu2+ inhibition of P2X4 receptor when both are coexpressed. PrPC expression does not significantly change the ATP concentration-response curve in oocytes expressing P2X4 receptors. However, the presence of PrPC reduces the inhibition by Cu2+ of the ATP-elicited currents in these oocytes, confirming our previous observations with the Cu2+ binding domain. Thus, our observations suggest a role for PrPC in modulating synaptic activity through binding of extracellular Cu2+. PMID:22114745

  2. 5-HT2 presynaptic receptors mediate inhibition of glutamate release from cerebellar mossy fibre terminals.

    PubMed

    Maura, G; Carbone, R; Guido, M; Pestarino, M; Raiteri, M

    1991-09-17

    'Giant' synaptosomes originating from mossy fibre terminals and having sedimentation properties different from those of standard synaptosomes were obtained from rat cerebellum. Exposure of superfused giant synaptosomes to 15 mM KCl caused the release of endogenous glutamate in a largely (about 80%) calcium-dependent manner. The K(+)-evoked overflow of glutamate was inhibited in a concentration-dependent manner by 5-hydroxytryptamine (5-HT) and by the 5-HT2 receptor agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane HCl (DOI), but not by the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT). The effects of 5-HT and DOI were quite potent, already reaching significant inhibition (about 25%) at 10 nM. The 5-HT2 receptor antagonist ketanserin counteracted the inhibitory effect of 5-HT. In cerebellar slices, ketanserin increased on its own the calcium-dependent K(+)-evoked release of glutamate and this effect was not prevented by tetrodotoxin (TTX). The results support the idea that cerebellar mossy fibres use glutamate as a transmitter and show that the release of glutamate can be inhibited via presynaptic heteroreceptors of the 5-HT2 type probably localized on the mossy fibre terminals.

  3. Structural Basis for Inhibition of the Insulin Receptor by the Adaptor Protein Grb14

    SciTech Connect

    Depetris,R.; Hu, J.; Gimpelevich, I.; Holt, L.; Daly, R.; Hubbard, S.

    2005-01-01

    Grb14, a member of the Grb7 adaptor protein family, possesses a pleckstrin homology (PH) domain, a C-terminal Src homology-2 (SH2) domain, and an intervening stretch of {approx}45 residues known as the BPS region, which is unique to this adaptor family. Previous studies have demonstrated that Grb14 is a tissue-specific negative regulator of insulin receptor signaling and that inhibition is mediated by the BPS region. We have determined the crystal structure of the Grb14 BPS region in complex with the tyrosine kinase domain of the insulin receptor. The structure reveals that the N-terminal portion of the BPS region binds as a pseudosubstrate inhibitor in the substrate peptide binding groove of the kinase. Together with the crystal structure of the SH2 domain, we present a model for the interaction of Grb14 with the insulin receptor, which indicates how Grb14 functions as a selective protein inhibitor of insulin signaling.

  4. Saturated fatty acids inhibit hepatic insulin action by modulating insulin receptor expression and post-receptor signalling.

    PubMed

    Ruddock, Mark W; Stein, Andrew; Landaker, Edwin; Park, Jun; Cooksey, Robert C; McClain, Donald; Patti, Mary-Elizabeth

    2008-11-01

    Free fatty acids (FFAs) are proposed to play a pathogenic role in both peripheral and hepatic insulin resistance. We have examined the effect of saturated FFA on insulin signalling (100 nM) in two hepatocyte cell lines. Fao hepatoma cells were treated with physiological concentrations of sodium palmitate (0.25 mM) (16:0) for 0.25-48 h. Palmitate decreased insulin receptor (IR) protein and mRNA expression in a dose- and time-dependent manner (35% decrease at 12 h). Palmitate also reduced insulin-stimulated IR and IRS-2 tyrosine phosphorylation, IRS-2-associated PI 3-kinase activity, and phosphorylation of Akt, p70 S6 kinase, GSK-3 and FOXO1A. Palmitate also inhibited insulin action in hepatocytes derived from wild-type IR (+/+) mice, but was ineffective in IR-deficient (-/-) cells. The effects of palmitate were reversed by triacsin C, an inhibitor of fatty acyl CoA synthases, indicating that palmitoyl CoA ester formation is critical. Neither the non-metabolized bromopalmitate alone nor the medium chain fatty acid octanoate (8:0) produced similar effects. However, the CPT-1 inhibitor (+/-)-etomoxir and bromopalmitate (in molar excess) reversed the effects of palmitate. Thus, the inhibition of insulin signalling by palmitate in hepatoma cells is dependent upon oxidation of fatty acyl-CoA species and requires intact insulin receptor expression.

  5. Hispolon inhibits the growth of estrogen receptor positive human breast cancer cells through modulation of estrogen receptor alpha.

    PubMed

    Jang, Eun Hyang; Jang, Soon Young; Cho, In-Hye; Hong, Darong; Jung, Bom; Park, Min-Ju; Kim, Jong-Ho

    2015-08-07

    Human estrogen receptor α (ERα) is a nuclear transcription factor that is a major therapeutic target in breast cancer. The transcriptional activity of ERα is regulated by certain estrogen-receptor modulators. Hispolon, isolated from Phellinus linteus, a traditional medicinal mushroom called Sanghwang in Korea, has been used to treat various pathologies, such as inflammation, gastroenteric disorders, lymphatic diseases, and cancers. In this latter context, Hispolon has been reported to exhibit therapeutic efficacy against various cancer cells, including melanoma, leukemia, hepatocarcinoma, bladder cancer, and gastric cancer cells. However, ERα regulation by Hispolon has not been reported. In this study, we investigated the effects of Hispolon on the growth of breast cancer cells. We found that Hispolon decreased expression of ERα at both mRNA and the protein levels in MCF7 and T47D human breast cancer cells. Luciferase reporter assays showed that Hispolon decreased the transcriptional activity of ERα. Hispolon treatment also inhibited expression of the ERα target gene pS2. We propose that Hispolon, an anticancer drug extracted from natural sources, inhibits cell growth through modulation of ERα in estrogen-positive breast cancer cells and is a candidate for use in human breast cancer chemotherapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Role of spinal GABAA receptors in pudendal inhibition of nociceptive and nonnociceptive bladder reflexes in cats.

    PubMed

    Xiao, Zhiying; Reese, Jeremy; Schwen, Zeyad; Shen, Bing; Wang, Jicheng; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2014-04-01

    Picrotoxin, an antagonist for γ-aminobutyric acid receptor subtype A (GABAA), was used to investigate the role of GABAA receptors in nociceptive and nonnociceptive reflex bladder activities and pudendal inhibition of these activities in cats under α-chloralose anesthesia. Acetic acid (AA; 0.25%) was used to irritate the bladder and induce nociceptive bladder overactivity, while saline was used to distend the bladder and induce nonnociceptive bladder activity. To modulate the bladder reflex, pudendal nerve stimulation (PNS) was applied at multiple threshold (T) intensities for inducing anal sphincter twitching. AA irritation significantly (P < 0.01) reduced bladder capacity to 34.3 ± 7.1% of the saline control capacity, while PNS at 2T and 4T significantly (P < 0.01) increased AA bladder capacity to 84.0 ± 7.8 and 93.2 ± 15.0%, respectively, of the saline control. Picrotoxin (0.4 mg it) did not change AA bladder capacity but completely removed PNS inhibition of AA-induced bladder overactivity. Picrotoxin (iv) only increased AA bladder capacity at a high dose (0.3 mg/kg) but significantly (P < 0.05) reduced 2T PNS inhibition at low doses (0.01-0.1 mg/kg). During saline cystometry, PNS significantly (P < 0.01) increased bladder capacity to 147.0 ± 7.6% at 2T and 172.7 ± 8.9% at 4T of control capacity, and picrotoxin (0.4 mg it or 0.03-0.3 mg/kg iv) also significantly (P < 0.05) increased bladder capacity. However, picrotoxin treatment did not alter PNS inhibition during saline infusion. These results indicate that spinal GABAA receptors have different roles in controlling nociceptive and nonnociceptive reflex bladder activities and in PNS inhibition of these activities.

  7. Role of spinal GABAA receptors in pudendal inhibition of nociceptive and nonnociceptive bladder reflexes in cats

    PubMed Central

    Xiao, Zhiying; Reese, Jeremy; Schwen, Zeyad; Shen, Bing; Wang, Jicheng; Roppolo, James R.; de Groat, William C.

    2014-01-01

    Picrotoxin, an antagonist for γ-aminobutyric acid receptor subtype A (GABAA), was used to investigate the role of GABAA receptors in nociceptive and nonnociceptive reflex bladder activities and pudendal inhibition of these activities in cats under α-chloralose anesthesia. Acetic acid (AA; 0.25%) was used to irritate the bladder and induce nociceptive bladder overactivity, while saline was used to distend the bladder and induce nonnociceptive bladder activity. To modulate the bladder reflex, pudendal nerve stimulation (PNS) was applied at multiple threshold (T) intensities for inducing anal sphincter twitching. AA irritation significantly (P < 0.01) reduced bladder capacity to 34.3 ± 7.1% of the saline control capacity, while PNS at 2T and 4T significantly (P < 0.01) increased AA bladder capacity to 84.0 ± 7.8 and 93.2 ± 15.0%, respectively, of the saline control. Picrotoxin (0.4 mg it) did not change AA bladder capacity but completely removed PNS inhibition of AA-induced bladder overactivity. Picrotoxin (iv) only increased AA bladder capacity at a high dose (0.3 mg/kg) but significantly (P < 0.05) reduced 2T PNS inhibition at low doses (0.01–0.1 mg/kg). During saline cystometry, PNS significantly (P < 0.01) increased bladder capacity to 147.0 ± 7.6% at 2T and 172.7 ± 8.9% at 4T of control capacity, and picrotoxin (0.4 mg it or 0.03–0.3 mg/kg iv) also significantly (P < 0.05) increased bladder capacity. However, picrotoxin treatment did not alter PNS inhibition during saline infusion. These results indicate that spinal GABAA receptors have different roles in controlling nociceptive and nonnociceptive reflex bladder activities and in PNS inhibition of these activities. PMID:24523385

  8. A non-peptide NK1-receptor antagonist, RP 67580, inhibits neurogenic inflammation postsynaptically.

    PubMed Central

    Moussaoui, S. M.; Montier, F.; Carruette, A.; Blanchard, J. C.; Laduron, P. M.; Garret, C.

    1993-01-01

    1. The non-peptide neurokinin NK1-receptor antagonist, RP 67580 (3aR, 7aR), a perhydroisoindolone derivative, powerfully reduced plasma extravasation in rat hind paw skin induced by local application of xylene (ID50 = 0.03 mg kg-1, i.v.) or capsaicin (ID50 = 0.06 mg kg-1, i.v.), or by i.v. injection of exogenous substance P (SP) or septide ([pGlu6,Pro9]SP(6-11)) (ID50 = 0.04-0.05 mg kg-1, i.v.). RP 67580 (1 mg kg-1, i.v.) also abolished capsaicin-induced nasal fluid hypersecretion (by 82 +/- 5%). These effects were found to be stereospecific, the enantiomer, RP 68651 (3aS, 7aS), being inactive at 1 mg kg-1, i.v. 2. In rats neonatally treated with capsaicin (50 mg kg-1, s.c.), plasma extravasation induced by SP was significantly increased (by 43 +/- 7%). RP 67580 (1 mg kg-1, i.v.) completely inhibited the SP-induced plasma extravasation in capsaicin neonatally treated-animals, as it did in control animals. This result suggests that RP 67580 acts at the postsynaptic level for the inhibition of plasma extravasation. 3. Opioid receptor agonists, mu-(morphine) and kappa-(PD-117302) at 10 mg kg-1, s.c., in contrast to NK1-receptor antagonists, did not inhibit plasma extravasation induced by exogenous SP. They were, however, partially effective against plasma extravasation induced by electrical nerve stimulation (74 +/- 4% and 48 +/- 9% inhibition at 10 mg kg-1, s.c. of morphine and PD-117302, respectively, compared to 90 +/- 3% inhibition obtained with RP 67580, 3 mg kg-1, s.c.).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7684305

  9. Anandamide inhibits nuclear factor-kappaB activation through a cannabinoid receptor-independent pathway.

    PubMed

    Sancho, Rocío; Calzado, Marco A; Di Marzo, Vincenzo; Appendino, Giovanni; Muñoz, Eduardo

    2003-02-01

    Anandamide (arachidonoylethanolamine, AEA), an endogenous agonist for both the cannabinoid CB(1) receptor and the vanilloid VR1 receptor, elicits neurobehavioral, anti-inflammatory, immunomodulatory, and proapoptotic effects. Because of the central role of nuclear factor-kappaB (NF-kappaB) in the inflammatory process and the immune response, we postulated that AEA might owe some of its effects to the suppression of NF-kappaB. This study shows that AEA inhibits tumor necrosis factor-alpha (TNFalpha)-induced NF-kappaB activation by direct inhibition of the IkappaB kinase (IKK)beta and, to a lesser extent, the IKKalpha subunits of kappaB inhibitor (IkappaB) kinase complex, and that IKKs inhibition by AEA correlates with inhibition of IkappaBalpha degradation, NF-kappaB binding to DNA, and NF-kappaB-dependent transcription in TNFalpha-stimulated cells. AEA also prevents NF-kappaB-dependent reporter gene expression induced by mitogen-activated protein kinase kinase kinase and NF-kappaB-inducing kinase. The NF-kappaB inhibitory activity of AEA was independent of CB(1) and CB(2) activation in TNFalpha-stimulated 5.1 and A549 cell lines, which do not express vanilloid receptor 1, and was not mediated by hydrolytic products formed through the activity of the enzyme fatty acid amide hydrolase. Chemical modification markedly affected AEA inhibitory activity on NF-kappaB, suggesting rather narrow structure-activity relationships and the specific interaction with a molecular target. Substitution of the alkyl moiety with less saturated fatty acids generally reduced or abolished activity. However, replacement of the ethanolamine "head" with a vanillyl group led to potent inhibition of TNFalpha-induced NF-kappaB-dependent transcription. These findings provide new mechanistic insights into the anti-inflammatory and proapoptotic activities of AEA, and should foster the synthesis of improved analogs amenable to pharmaceutical development as anti-inflammatory agents.

  10. The Wedelolactone Derivative Inhibits Estrogen Receptor-Mediated Breast, Endometrial, and Ovarian Cancer Cells Growth

    PubMed Central

    Xu, Defeng; Lin, Tzu-Hua; Cheng, Max A.; Chen, Lu-Min; Chang, Chawnshang; Yeh, Shuyuan

    2014-01-01

    Estrogen and estrogen receptor (ER)-mediated signaling pathways play important roles in the etiology and progression of human breast, endometrial, and ovarian cancers. Attenuating ER activities by natural products and their derivatives is a relatively practical strategy to control and reduce breast, endometrial, and ovarian cancer risk. Here, we found 3-butoxy-1,8,9-trihydroxy-6H-benzofuro[3,2-c]benzopyran-6-one (BTB), a new derivative of wedelolactone, could effectively inhibit the 17-estradiol (E2)-induced ER transactivation and suppress the growth of breast cancer as well as endometrial and ovarian cancer cells. Our results indicate that 2.5 μM BTB effectively suppresses ER-positive, but not ER-negative, breast, endometrial, and ovarian cancer cells. Furthermore, our data indicate that BTB can modulate ER transactivation and suppress the expression of E2-mediated ER target genes (Cyclin D1, E2F1, and TERT) in the ER-positive MCF-7, Ishikawa, and SKOV-3 cells. Importantly, this BTB mediated inhibition of ER activity is selective since BTB does not suppress the activities of other nuclear receptors, including glucocorticoid receptor and progesterone receptor, suggesting that BTB functions as a selective ER signaling inhibitor with the potential to treat breast, endometrial, and ovarian cancers. PMID:25221777

  11. Inhibition of Sphingosine-1-phosphate receptors in ischemia reperfusion injured autoimmunity-prone mice.

    PubMed

    Edison, Jess; Frattalone, Sharon; Tracy, Christopher; Woodard, Geoffrey E; Butts, Melissa; Moratz, C M

    2017-01-01

    B6.MRL/lpr mice, an autoimmune strain, have an accelerated injury time course, increased intensity of tissue damage, and increased CD4+ T cell infiltration in the mesenteric ischemia/reperfusion injury model. In this study, the mechanism by which CD4+ T cells were recruited into injured tissue was addressed. Fingolimod (FTY720) was utilized to assess the role of infiltrating CD4+ T cells. FTY720 treatment was more effective in attenuating injury in B6.MRL/lpr mice then in control mice. Reduced CD4+ cell infiltration and tissue injury correlated with decreased neutrophil infiltration and pro-inflammatory cytokine generation. Inhibiting downstream Sphingosine-1-phosphate (S1P) receptor signaling, specifically GαI mediated signaling, did not inhibit injury, suggesting differential utilization of the S1P receptors between control and MRL/lpr strains. Analysis of S1P receptor expression exposed a predominance of S1P2 in the B6.MRL/lpr strain. Reliance on alternate S1P receptors in the autoimmune strain will alter the progress of inflammation and tissue injury.

  12. Inhibition of RNA synthesis by bradykinin involves both the B1 and B2 receptor subtypes.

    PubMed

    Yau, L; Pinsk, M; Zahradka, P

    1996-04-01

    The efficacy of angiotensin converting enzyme inhibitors in the treatment of heart disease is due in part to the accumulation of bradykinin (BK). Since BK can exert its effect by influencing cell proliferation, we chose to study the effect of BK on the growth of A10 vascular smooth muscle cells. Ligand binding studies to determine which BK receptor subtypes are present on A10 cells showed that both B1 and B2 receptors were present in approximately equal numbers. Examination of RNA synthesis demonstrated that BK inhibits uridine incorporation in a dose-dependent manner. This decrease in RNA synthesis was blocked by both B1 and B2 receptor antagonists, as well as by addition of indomethacin, a cyclooxygenase inhibitor. The latter result suggested that prostaglandins mediate the biological actions of BK. Consequently, we examined the direct effect of two prostaglandins, PGE2 and PGI2 (prostacyclin), on A10 cells. PGE2 caused a decrease in RNA synthesis, thus mimicking the effect of BK, while PGI2 did not. Therefore, the inhibition of RNA synthesis in A10 vascular smooth muscle cells by BK requires both B1 and B2 receptor subtypes and this action of BK is apparently mediated by de novo synthesis of prostaglandins.

  13. Estrogen receptor alpha inhibits RLR-mediated immune response via ubiquitinating TRAF3.

    PubMed

    Wang, Changxing; Huang, Yue; Sheng, Jianzhong; Huang, Hefeng; Zhou, Jun

    2015-10-01

    RIG-I-like receptors (RLRs) function as key sentinel receptor for invading viruses. Moderate activation of RLR signaling is critical for efficient viral clearance without harmful immunopathology. Estrogen receptor alpha (ERα) is a member of the nuclear receptor superfamily of ligand-activated transcription factors and is involved in the regulation of innate immune responses. However, the effects of ERα on RLR signaling and the molecular mechanisms are poorly understood. In this study, we identify ERα as a negative regulator of RLR-triggered antiviral immune responses. The expression level of ERα is upregulated following RLR activation in macrophages. In the absence of ligand, VSV infection phosphorylates ERα at serine 167. ERα inhibits VSV-induced IRF3 activation. We further demonstrate that ERα directly interacts with TRAF3 and promotes K48-linked proteasomal degradation of TRAF3. Consistently, ERα inhibits VSV-triggered IFN-β production in macrophages in a ligand independent mechanism. Thus, ERα functions as a negative feedback regulator of RLR-triggered antiviral immune responses. These findings also provide the insights that separate the immune effects of ERα from its ligand-induced hormonal effects.

  14. Neuropeptide Y inhibits the trigeminovascular pathway through NPY Y1 receptor: implications for migraine

    PubMed Central

    Oliveira, Margarida-Martins; Akerman, Simon; Tavares, Isaura; Goadsby, Peter J.

    2016-01-01

    Abstract Migraine is a painful neurologic disorder with premonitory symptomatology that can include disturbed appetite. Migraine pathophysiology involves abnormal activation of trigeminocervical complex (TCC) neurons. Neuropeptide Y (NPY) is synthesized in the brain and is involved in pain modulation. NPY receptors are present in trigeminal ganglia and trigeminal nucleus caudalis suggesting a role in migraine pathophysiology. The present study aimed to determine the effect of systemic administration of NPY on TCC neuronal activity in response to dural nociceptive trigeminovascular activation. We performed in vivo electrophysiology in anesthetized rats, administered NPY (10, 30, and 100 µg·kg−1), and investigated the receptors involved by studying NPY Y1 (30 µg·kg−1), Y2 (30 µg·kg−1), and Y5 receptor agonists (100·µg·kg−1), and NPY Y1 receptor antagonist (30 µg·kg−1). NPY (30 and 100 µg·kg−1) significantly reduced TCC neuronal firing in response to dural-evoked trigeminovascular activation, but only NPY (30 µg·kg−1) significantly reduced spontaneous trigeminal firing. NPY Y1 receptor agonist also significantly reduced dural-evoked and spontaneous TCC neuronal firing. NPY (10 µg·kg−1), NPY Y2, and Y5 receptor agonists, and the NPY Y1 receptor antagonist had no significant effects on nociceptive dural-evoked neuronal firing in the TCC or spontaneous trigeminal firing. This study demonstrates that NPY dose dependently inhibits dural-evoked trigeminal activity, through NPY Y1 receptor activation, indicating antinociceptive actions of NPY in a migraine animal model. Based on the role of NPY in appetite regulation, it is possible that disruption of the NPY system might explain changes of appetite in migraineurs. PMID:27023421

  15. GABA-B receptor activation inhibits the in vitro migration of malignant hepatocytes.

    PubMed

    Lodewyks, Carly; Rodriguez, Jose; Yan, Jing; Lerner, Betty; Lipschitz, Jeremy; Nfon, Charles; Rempel, Julia Darlene; Uhanova, Julia; Minuk, Gerald Yosel

    2011-06-01

    There are conflicting data regarding whether activation of γ-aminobutyric acid-B (GABA-B) receptors results in inhibition of tumor growth and invasion. The objectives of this study were to document the effects of the GABA-B receptor agonist baclofen on malignant hepatocyte proliferation and migration. We also sought to determine whether any effects on cell migration were mediated by changes in cyclic adenosine monophosphate (cAMP) signaling or matrix metalloproteinase (MMP) expression. Finally, GABA-B(1) and -B(2) receptor expression was documented in 2 malignant hepatocyte cell lines (PLC/PRF/5 and Huh-7) and 12 sets of human hepatocellular carcinoma and adjacent nontumor tissues. Cell proliferative activity was documented by WST-1 absorbance, migration by wound healing assays, cAMP levels by enzyme-linked immunoassay (ELISA), MMP by immunohistochemistry and ELISA, and GABA-B receptor expression by flow cytometry and reverse transcriptase - polymerase chain reaction. Although baclofen had no effect on cell proliferation, wound healing was delayed, an effect that was reversed by the GABA-B receptor antagonist CGP. cAMP levels were decreased in Huh-7 but not PLC cells exposed to baclofen. MMP expression remained unaltered in both cell lines. Finally, GABA-B(1) receptor expression was present and consistently expressed, but GABA-B(2) expression was limited and varied with the number of cell passages and (or) duration of culture. In conclusion, activation of GABA-B receptors has no effect on malignant hepatocyte proliferation but does decrease cell migration. This inhibitory effect may involve cAMP signaling but not MMP expression. GABA-B(2) receptor expression is limited and variable, which may help to explain discrepancies with previously published results.

  16. Lenalidomide Stabilizes the Erythropoietin Receptor by Inhibiting the E3 Ubiquitin Ligase RNF41.

    PubMed

    Basiorka, Ashley A; McGraw, Kathy L; De Ceuninck, Leentje; Griner, Lori N; Zhang, Ling; Clark, Justine A; Caceres, Gisela; Sokol, Lubomir; Komrokji, Rami S; Reuther, Gary W; Wei, Sheng; Tavernier, Jan; List, Alan F

    2016-06-15

    In a subset of patients with non-del(5q) myelodysplastic syndrome (MDS), lenalidomide promotes erythroid lineage competence and effective erythropoiesis. To determine the mechanism by which lenalidomide promotes erythropoiesis, we investigated its action on erythropoietin receptor (EpoR) cellular dynamics. Lenalidomide upregulated expression and stability of JAK2-associated EpoR in UT7 erythroid cells and primary CD71+ erythroid progenitors. The effects of lenalidomide on receptor turnover were Type I cytokine receptor specific, as evidenced by coregulation of the IL3-Rα receptor but not c-Kit. To elucidate this mechanism, we investigated the effects of lenalidomide on the E3 ubiquitin ligase RNF41. Lenalidomide promoted EpoR/RNF41 association and inhibited RNF41 auto-ubiquitination, accompanied by a reduction in EpoR ubiquitination. To confirm that RNF41 is the principal target responsible for EpoR stabilization, HEK293T cells were transfected with EpoR and/or RNF41 gene expression vectors. Steady-state EpoR expression was reduced in EpoR/RNF41 cells, whereas EpoR upregulation by lenalidomide was abrogated, indicating that cellular RNF41 is a critical determinant of drug-induced receptor modulation. Notably, shRNA suppression of CRBN gene expression failed to alter EpoR upregulation, indicating that drug-induced receptor modulation is independent of cereblon. Immunohistochemical staining showed that RNF41 expression decreased in primary erythroid cells of lenalidomide-responding patients, suggesting that cellular RNF41 expression merits investigation as a biomarker for lenalidomide response. Our findings indicate that lenalidomide has E3 ubiquitin ligase inhibitory effects that extend to RNF41 and that inhibition of RNF41 auto-ubiquitination promotes membrane accumulation of signaling competent JAK2/EpoR complexes that augment Epo responsiveness. Cancer Res; 76(12); 3531-40. ©2016 AACR.

  17. Tumor necrosis factor inhibits ligand-stimulated EGF receptor activation through a TNF receptor 1-dependent mechanism

    PubMed Central

    McElroy, Steven J.; Frey, Mark R.; Yan, Fang; Edelblum, Karen L.; Goettel, Jeremy A.; John, Sutha; Polk, D. Brent

    2008-01-01

    Tumor necrosis factor (TNF) and epidermal growth factor (EGF) are key regulators in the intricate balance maintaining intestinal homeostasis. Previous work from our laboratory shows that TNF attenuates ligand-driven EGF receptor (EGFR) phosphorylation in intestinal epithelial cells. To identify the mechanisms underlying this effect, we examined EGFR phosphorylation in cells lacking individual TNF receptors. TNF attenuated EGF-stimulated EGFR phosphorylation in wild-type and TNFR2−/−, but not TNFR1−/−, mouse colon epithelial (MCE) cells. Reexpression of wild-type TNFR1 in TNFR1−/− MCE cells rescued TNF-induced EGFR inhibition, but expression of TNFR1 deletion mutant constructs lacking the death domain (DD) of TNFR1 did not, implicating this domain in EGFR downregulation. Blockade of p38 MAPK, but not MEK, activation of ERK rescued EGF-stimulated phosphorylation in the presence of TNF, consistent with the ability of TNFR1 to stimulate p38 phosphorylation. TNF promoted p38-dependent EGFR internalization in MCE cells, suggesting that desensitization is achieved by reducing receptor accessible to ligand. Taken together, these data indicate that TNF activates TNFR1 by DD- and p38-dependent mechanisms to promote EGFR internalization, with potential impact on EGF-induced proliferation and migration key processes that promote healing in inflammatory intestinal diseases. PMID:18467504

  18. Thiocolchicoside inhibits the activity of various subtypes of recombinant GABA(A) receptors expressed in Xenopus laevis oocytes.

    PubMed

    Mascia, Maria Paola; Bachis, Elisabetta; Obili, Nicola; Maciocco, Elisabetta; Cocco, Giovanni Antonio; Sechi, Gian Pietro; Biggio, Giovanni

    2007-03-08

    Thiocolchicoside is a myorelaxant drug with anti-inflammatory and analgesic properties as well as pronounced convulsant activity. To characterize the mechanisms of action of this drug at the molecular level, we examined its effects on the function of various recombinant neurotransmitter receptors expressed in Xenopus oocytes. Electrophysiological recordings from recombinant human gamma-aminobutyric acid type A (GABA(A)) receptors consisting of alpha1beta1gamma2L, alpha1beta2gamma2L, or alpha2beta2gamma2L subunit combinations revealed that thiocolchicoside inhibited GABA-evoked Cl(-) currents with similar potencies (median inhibitory concentrations of 0.13 to 0.2 microM) and in a competitive manner. Consistent with previous observations, thiocolchicoside also inhibited the binding of GABA to rat cerebral cortical membranes. Thiocolchicoside inhibited the function of recombinant human strychnine-sensitive glycine receptors composed of the alpha1 subunit with a potency (median inhibitory concentration of 47 microM) lower than that apparent with recombinant GABA(A) receptors. It also inhibited the function of human nicotinic acetylcholine receptors composed of the alpha4 and beta2 subunits, but this effect was only partial and apparent at high concentrations. In contrast, thiocolchicoside had no effect on the function of 5-HT(3A) serotonin receptors. Our results thus provide molecular evidence that the epileptogenic activity of thiocolchicoside might be due to inhibition of the function of inhibitory receptors in the central nervous system, especially that of GABA(A) receptors.

  19. Effects of protease-activated receptor 1 inhibition on anxiety and fear following status epilepticus.

    PubMed

    Bogovyk, Ruslan; Lunko, Oleksii; Fedoriuk, Mihail; Isaev, Dmytro; Krishtal, Oleg; Holmes, Gregory L; Isaeva, Elena

    2017-02-01

    Protease-activated receptor 1 (PAR1) is an important contributor to the pathogenesis of a variety of brain disorders associated with a risk of epilepsy development. Using the lithium-pilocarpine model of temporal lobe epilepsy (TLE), we recently showed that inhibition of this receptor during the first ten days after pilocarpine-induced status epilepticus (SE) results in substantial anti-epileptogenic and neuroprotective effects. As PAR1 is expressed in the central nervous system regions of importance for processing emotional reactions, including amygdala and hippocampus, and TLE is frequently associated with a chronic alteration of the functions of these regions, we tested the hypothesis that PAR1 inhibition could modulate emotionally driven behavioral responses of rats experiencing SE. We showed that SE induces a chronic decrease in the animals' anxiety-related behavior and an increase of locomotor activity. PAR1 inhibition after SE abolished the alteration of the anxiety level but does not affect the increase of locomotor activity in the open field and elevated plus maze tests. Moreover, while PAR1 inhibition produces an impairment of memory recall in the context fear conditioning paradigm in the control group, it substantially improves contextual and cued fear learning in rats experiencing SE. These data suggest that PAR1-dependent signaling is involved in the mechanisms underlying emotional disorders in epilepsy. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Free fatty acid receptor (FFAR) agonists inhibit proliferation of human ovarian cancer cells.

    PubMed

    Hopkins, Mandi M; Meier, Kathryn E

    2017-07-01

    Many cellular actions of omega-3 fatty acids are mediated by two G protein-coupled receptors, FFA1 and FFA4, free fatty acid receptor (FFAR) family members that are activated by these dietary constituents. FFAR agonists inhibit proliferation of human prostate and breast cancer cells. Since omega-3 fatty acids can inhibit ovarian cancer cell growth, the current study tested the potential role of FFARs in the response. OVCAR3 and SKOV3 human ovarian cancer cell lines express mRNA for FFA1; FFA4 mRNA was detected at low levels in SKOV3 but not OVCAR3. Lysophosphatidic acid (LPA) and epidermal growth factor (EGF) stimulated proliferation of both cell lines; these responses were inhibited by eicosopentaneoic acid (EPA) and by GW9508, a synthetic FFAR agonist. The LPA antagonist Ki16425 also inhibited LPA- and EGF-induced proliferation; FFAR agonists had no further effect when added with Ki16425. The results suggest that FFARs are potential targets for ovarian cancer therapy. Copyright © 2017. Published by Elsevier Ltd.

  1. Phorbol ester stimulates secretory activity while inhibiting receptor-activated aminopyrine uptake by gastric glands

    SciTech Connect

    Brown, M.R.; Chew, C.S.

    1986-03-05

    Both cyclic AMP-dependent and -independent secretagogues stimulate pepsinogen release, respiration and H/sup +/ secretory activity (AP uptake) in rabbit gastric glands. 12-O-tetradecanoylphorbol-13-acetate (T), a diacyglycerol analog, activates protein kinase C (PKC) and stimulates secretion in many systems. T stimulated respiration and pepsinogen release by glands and increased AP uptake by both glands and purified parietal cells. However, T reduced AP uptake by glands stimulated with carbachol (C) or histamine (H) with an apparent IC/sub 50/ of 1 nM. Preincubation with T for 30 min produced maximum inhibition which was not reversed by removal of T. T accelerated the decline of the transient C peak while the late steady state response to H was most inhibited. H-stimulated AP uptake was also inhibited by 50 ..mu..g/ml 1-oleoyl-2-acetyl-glycerol, a reported PKC activator, but not by the inactive phorbol, 4..cap alpha..-phorbol-12,13-didecanoate. In contrast, T potentiated AP uptake by glands stimulated with submaximal doses of dibutyryl cyclic AMP. These results suggest inhibition by T is a specific effect of PKC activators. The differing effects of T on secretion indicators may result from a dual action of T on receptor and post-receptor intracellular events.

  2. Delayed Gelatinase Inhibition Induces Reticulon 4 Receptor Expression in the Peri-Infarct Cortex.

    PubMed

    Nardai, Sándor; Dobolyi, Arpád; Skopál, Judit; Lakatos, Kinga; Merkely, Béla; Nagy, Zoltán

    2016-04-01

    Matrix metalloproteinase (MMP) inhibition can potentially prevent hemorrhagic transformation following cerebral infarction; however, delayed-phase MMP activity is also necessary for functional recovery after experimental stroke. We sought to identify potential mechanisms responsible for the impaired recovery associated with subacute MMP inhibition in a transient middle cerebral artery occlusion model of focal ischemia in CD rats. Gelatinase inhibition was achieved by intracerebral injection of the Fn-439 MMP inhibitor 7 days after stroke. Treatment efficacy was determined on day 9 by in situ gelatin zymography. The peri-infarct cortex was identified by triphenyl tetrazolium chloride staining, and tissue samples were dissected for TaqMan array gene-expression study. Of 84 genes known to influence poststroke regeneration, we found upregulation of mRNA for the reticulon 4 receptor (Rtn4r), a major inhibitor of regenerative nerve growth in the adult CNS, and borderline expression changes for 3 additional genes (DCC, Jun, and Ngfr). Western blot confirmed increased Rtn4r protein in the peri-infarct cortex of treated animals, and double immunolabeling showed colocalization primarily with the S100 astrocyte marker. These data suggest that increased Rtn4 receptor expression in the perilesional cortex may contribute to the impaired regeneration associated with MMP inhibition in the subacute phase of cerebral infarction. © 2016 American Association of Neuropathologists, Inc. All rights reserved.

  3. Role of Nicotinic Acetylcholine Receptor on Efferent Inhibition in Cochlear Hair Cell

    PubMed Central

    2012-01-01

    The α9α10 nicotinic acetylcholine receptors (nAChRs) mediates efferent inhibition of hair cell function within the auditory sensory organ. Gating of the nAChRs leads to activation of calcium-dependent potassium channels to hyperpolarize the hair cell. In efferent system, main calcium providers to SK channel are nAChR and synaptic cistern, which contribution to efferent inhibition is different between avian and mammalian species. Calcium permeation is more effective in nAChRs of mammalian cochlea than avian cochlea, and mammalian calcium permeability of nAChRs is about 3 times more than avian hair cell. Thus, mammalian nAChRs is a main component of efferent inhibition in cochlear hair cell system. PMID:24653883

  4. Bispecific designed ankyrin repeat proteins (DARPins) targeting epidermal growth factor receptor inhibit A431 cell proliferation and receptor recycling.

    PubMed

    Boersma, Ykelien L; Chao, Ginger; Steiner, Daniel; Wittrup, K Dane; Plückthun, Andreas

    2011-12-02

    The EGF receptor (EGFR) has been implicated in the development and progression of many tumors. Although monoclonal antibodies directed against EGFR have been approved for the treatment of cancer in combination with chemotherapy, there are limitations in their clinical efficacy, necessitating the search for robust targeting molecules that can be equipped with new effector functions or show a new mechanism of action. Designed ankyrin repeat proteins (DARPins) may provide the targeting component for such novel reagents. Previously, four DARPins were selected against EGFR with (sub)nanomolar affinity. As any targeting module should preferably be able to inhibit EGFR-mediated signaling, their effect on A431 cells overexpressing EGFR was examined: three of them were shown to inhibit proliferation by inducing G(1) arrest, as seen for the Food and Drug Administration-approved antibody cetuximab. To understand this inhibitory mechanism, we mapped the epitopes of the DARPins using yeast surface display. The epitopes for the biologically active DARPins overlapped with the EGF-binding site, whereas the fourth DARPin bound to a different domain, explaining the lack of a biological effect. To optimize the biological activity of the DARPins, we combined two DARPins binding to different epitopes with a flexible linker or with a leucine zipper, leading to a homodimer. The latter DARPin was able to reduce surface EGFR by inhibiting receptor recycling, leading to a dramatic decrease in cell viability. These results indicate that multispecific EGFR-specific DARPins are superior to cetuximab and may form the basis of new opportunities in tumor targeting and tumor therapy.

  5. Mechanisms of anabolic androgenic steroid inhibition of mammalian ɛ-subunit-containing GABAA receptors

    PubMed Central

    Jones, Brian L; Whiting, Paul J; Henderson, Leslie P

    2006-01-01

    GABAergic transmission regulates the activity of gonadotrophin-releasing hormone (GnRH) neurons in the preoptic area/hypothalamus that control the onset of puberty and the expression of reproductive behaviours. One of the hallmarks of illicit use of anabolic androgenic steroids (AAS) is disruption of behaviours under neuroendocrine control. GnRH neurons are among a limited population of cells that express high levels of the ɛ-subunit of the GABAA receptor. To better understand the actions of AAS on neuroendocrine mechanisms, we have characterized modulation of GABAA receptor-mediated currents in mouse native GnRH neurons and in heterologous cells expressing recombinant α2β3ɛ-receptors. GnRH neurons exhibited robust currents in response to millimolar concentrations of GABA and a picrotoxin (PTX)-sensitive, bicuculline-insensitive current that probably arises from spontaneous openings of GABAA receptors. The AAS 17α-methyltestosterone (17α-MeT) inhibited spontaneous and GABA-evoked currents in GnRH neurons. For recombinant α2β3ɛ-receptors, 17α-MeT inhibited phasic and tonic GABA-elicited responses, accelerated desensitization and slowed paired pulse response recovery. Single channel analysis indicated that GABA-evoked events could be described by three open dwell components and that 17α-MeT enhanced residence in the intermediate dwell state. This AAS also inhibited a PTX-sensitive, spontaneous current (open probability, ∼0.15–0.2) in a concentration-dependent fashion (IC50 ≈ 9 μm). Kinetic modelling indicated that the inhibition induced by 17α-MeT occurs by an allosteric block in which the AAS interacts preferentially with a closed state and promotes accumulation in that state. Finally, studies with a G302S mutant ɛ-subunit suggest that this residue within the transmembrane domain TM2 plays a role in mediating AAS binding and modulation. In sum, our results indicate that inclusion of the ɛ-subunit significantly alters the profile of AAS

  6. Activation and inhibition of rat neuronal nicotinic receptors by ABT-418

    PubMed Central

    Papke, Roger L; Thinschmidt, Jeffrey S; Moulton, Becky A; Meyer, Edwin M; Poirier, Amy

    1997-01-01

    ABT-418 appeared to function as a relatively broad spectrum activator of neuronal nicotinic receptors, expressed in Xenopus oocytes, with little cross reactivity to the mammalian muscle receptor subtype. However, the relative potencies of ABT-418 at the various subtypes differed from those acetylcholine (ACh). For example, ACh was most potent at α3β2 (EC50≈30 μM) and least potent at α2β2 (EC50≈500 μM). ABT-418 was most potent at α4β2 and α2β2 (EC50≈6 μM and 11 μM, respectively) and least potent at α3β4 (EC50≈188 μM).In addition to activating neuronal receptors, ABT-418 exhibited complex properties, including the inhibition of ACh responses.The current responses elicited by relatively high concentrations of ABT-418 on the α4β2 receptor subtype were protracted beyond the application interval. The coapplication of ABT-418 with either of the use-dependent inhibitors bis(1,2,2,6,6-tetramethyl-4-pipendimyl)sebacate (BTMPS) or tetramethyl-pipenidine (TMP) eliminated the late protracted phase of the currents with only small effects on the initial activation phase. When the reversible inhibitor TMP was washed from the bath, the previously inhibited late current reappeared, suggesting that the observed mixed agonist-antagonist effects of ABT-418 and (±)-epibatidine on α4β2 were due to a concentration-dependent noncompetitive inhibition, an effect similar to that obtained for (−)-nicotine.The inhibition of α4β2 receptors by ABT-418 was voltage-dependent. When high concentrations of ABT-418 were applied under depolarizing conditions, additional late currents could be observed under conditions which suggested that a build up of ABT-418 in an unstirred layer over the surface of the oocyte was occurring. This may have been due to the dissociation of the drug from channel blocking sites on the receptors themselves, or alternatively, from the plasma membrane of the cells. PMID:9031746

  7. Yops of Yersinia enterocolitica Inhibit Receptor-Dependent Superoxide Anion Production by Human Granulocytes

    PubMed Central

    Visser, L. G.; Seijmonsbergen, E.; Nibbering, P. H.; van den Broek, P. J.; van Furth, R.

    1999-01-01

    The virulence plasmid-borne genes encoding Yersinia adhesin A (YadA) and several Yersinia secreted proteins (Yops) are involved in the inhibition of phagocytosis and killing of Yersinia enterocolitica by human granulocytes. One of these Yops, YopH, dephosphorylates multiple tyrosine-phosphorylated proteins in eukaryotic cells and is involved in the inhibition of phagocytosis of Y. enterocolitica by human granulocytes. We investigated whether antibody- and complement-opsonized plasmid-bearing (pYV+) Y. enterocolitica inhibits O2− production by human granulocytes in response to various stimuli and whether YopH is involved. Granulocytes were preincubated with mutant strains unable to express YadA or to secrete Yops or YopH. O2− production by granulocytes during stimulation was assessed by measuring the reduction of ferricytochrome c. PYV+ Y. enterocolitica inhibited O2− production by granulocytes incubated with opsonized Y. enterocolitica or N-formyl-Met-Leu-Phe (f-MLP). This inhibitory effect mediated by pYV did not affect receptor-independent O2− production by granulocytes in response to phorbol myristate acetate, indicating that NADPH activity remained unaffected after activation of protein kinase C. The inhibition of f-MLP-induced O2− production by granulocytes depends on the secretion of Yops and not on the expression of YadA. Insertional inactivation of the yopH gene abrogated the inhibition of phagocytosis of antibody- and complement-opsonized Y. enterocolitica by human granulocytes but not of the f-MLP-induced O2− production by granulocytes or tyrosine phosphorylation of granulocyte proteins. These findings suggest that the specific targets for YopH are not present in f-MLP receptor-linked signal transduction and that other Yop-mediated mechanisms are involved. PMID:10024567

  8. Yops of Yersinia enterocolitica inhibit receptor-dependent superoxide anion production by human granulocytes.

    PubMed

    Visser, L G; Seijmonsbergen, E; Nibbering, P H; van den Broek, P J; van Furth, R

    1999-03-01

    The virulence plasmid-borne genes encoding Yersinia adhesin A (YadA) and several Yersinia secreted proteins (Yops) are involved in the inhibition of phagocytosis and killing of Yersinia enterocolitica by human granulocytes. One of these Yops, YopH, dephosphorylates multiple tyrosine-phosphorylated proteins in eukaryotic cells and is involved in the inhibition of phagocytosis of Y. enterocolitica by human granulocytes. We investigated whether antibody- and complement-opsonized plasmid-bearing (pYV+) Y. enterocolitica inhibits O2- production by human granulocytes in response to various stimuli and whether YopH is involved. Granulocytes were preincubated with mutant strains unable to express YadA or to secrete Yops or YopH. O2- production by granulocytes during stimulation was assessed by measuring the reduction of ferricytochrome c. PYV+ Y. enterocolitica inhibited O2- production by granulocytes incubated with opsonized Y. enterocolitica or N-formyl-Met-Leu-Phe (f-MLP). This inhibitory effect mediated by pYV did not affect receptor-independent O2- production by granulocytes in response to phorbol myristate acetate, indicating that NADPH activity remained unaffected after activation of protein kinase C. The inhibition of f-MLP-induced O2- production by granulocytes depends on the secretion of Yops and not on the expression of YadA. Insertional inactivation of the yopH gene abrogated the inhibition of phagocytosis of antibody- and complement-opsonized Y. enterocolitica by human granulocytes but not of the f-MLP-induced O2- production by granulocytes or tyrosine phosphorylation of granulocyte proteins. These findings suggest that the specific targets for YopH are not present in f-MLP receptor-linked signal transduction and that other Yop-mediated mechanisms are involved.

  9. The activation of liver X receptors inhibits toll-like receptor-9-induced foam cell formation.

    PubMed

    Sorrentino, Rosalinda; Morello, Silvana; Chen, Shuang; Bonavita, Eduardo; Pinto, Aldo

    2010-04-01

    Toll-like receptors (TLRs) are related to foam cell formation (FCF), key event in the establishment/progression of atherosclerosis. The activation of TLR2 and TLR4 can increase FCF. The aim of this study was to evaluate the role of TLR9 in FCF. Murine macrophages were treated with CpG-ODN, TLR9 agonist, and oxidized particles of LDL (Paz-PC) and FCF was analyzed by means of Oil Red O staining. The administration of CpG-ODN plus Paz-PC onto macrophages increased the amount of lipid droplets, correlated to increased levels of tumor necrosis factor (TNF)-alpha, IFNbeta, and IP-10. The underlying mechanism by which TLR9 ligation influenced Paz-PC in the FCF was NF-kappaB- and IRF7-dependent, as observed by higher levels of phosphorylated IkappaBalpha, increased nuclear translocation of the p65 subunit, lower levels of the total IKKalpha protein and higher release of interferon-dependent cytokines, such as IP-10. Liver X receptors (LXRs) regulate lipid cellular transport and negatively modulate TLR-dependent signaling pathways. Indeed, the addition of GW3965, synthetic LXRs agonist, significantly reduced FCF after CpG-ODN plus Paz-PC stimulation. In this condition, we observed decreased levels of the nuclear translocation of the p65 subunit, related to the higher presence of LXRalpha into the nucleus. TNF-alpha, IP-10, and IFNbeta levels were reduced by the administration of GW3965 following CpG-ODN and Paz-PC treatment. In conclusion, the activation of TLR9 facilitates the formation of foam cells in an NF-kappaB- and IRF7-dependent manner, countered by the activation of LXRs. This study further support LXRs as potential anti-atherosclerotic target.

  10. 5-HT2B Receptor Antagonists Inhibit Fibrosis and Protect from RV Heart Failure

    PubMed Central

    Janssen, Wiebke; Schymura, Yves; Novoyatleva, Tatyana; Luitel, Himal; Tretyn, Aleksandra; Pullamsetti, Soni Savai; Weissmann, Norbert; Seeger, Werner; Ghofrani, Hossein Ardeschir; Schermuly, Ralph Theo

    2015-01-01

    Objective. The serotonin (5-HT) pathway was shown to play a role in pulmonary hypertension (PH), but its functions in right ventricular failure (RVF) remain poorly understood. The aim of the current study was to investigate the effects of Terguride (5-HT2A and 2B receptor antagonist) or SB204741 (5-HT2B receptor antagonist) on right heart function and structure upon pulmonary artery banding (PAB) in mice. Methods. Seven days after PAB, mice were treated for 14 days with Terguride (0.2 mg/kg bid) or SB204741 (5 mg/kg day). Right heart function and remodeling were assessed by right heart catheterization, magnetic resonance imaging (MRI), and histomorphometric methods. Total secreted collagen content was determined in mouse cardiac fibroblasts isolated from RV tissues. Results. Chronic treatment with Terguride or SB204741 reduced right ventricular fibrosis and showed improved heart function in mice after PAB. Moreover, 5-HT2B receptor antagonists diminished TGF-beta1 induced collagen synthesis of RV cardiac fibroblasts in vitro. Conclusion. 5-HT2B receptor antagonists reduce collagen deposition, thereby inhibiting right ventricular fibrosis. Chronic treatment prevented the development and progression of pressure overload-induced RVF in mice. Thus, 5-HT2B receptor antagonists represent a valuable novel therapeutic approach for RVF. PMID:25667920

  11. Caffeine reverses antinociception by oxcarbazepine by inhibition of adenosine A1 receptors: insights using knockout mice.

    PubMed

    Sawynok, Jana; Reid, Allison R; Fredholm, Bertil B

    2010-04-12

    Oxcarbazepine is an anticonvulsant drug that has been explored as a novel therapeutic agent to treat neuropathic pain in humans. It produces antinociception in several preclinical models of pain, and these actions are blocked by methylxanthine adenosine receptor antagonists which implicates adenosine it its actions. In this study, the antinociceptive effect of oxcarbazepine, and the ability of caffeine to reverse its actions, were examined using the formalin test (2%) in wild-type mice and in mice lacking adenosine A(1) receptors by way of further exploring the involvement of adenosine in its actions. Oxcarbazepine produced dose-related suppression of formalin-evoked flinching responses in wild-type mice following both systemic and intraplantar administration, and this action was reversed by systemic and intraplantar administration of caffeine, respectively. The ability of oxcarbazepine to inhibit flinching after systemic and intraplantar administration was unaltered in homozygous (-/-) and heterozygous (+/-) adenosine A(1) receptor knockout mice. However, caffeine no longer reversed this antinociception. Our results indicate that, while adenosine A(1) receptors are not required for oxcarbazepine to produce antinociception in knockout mice, such receptors are essential in order to see caffeine reversal of this antinociceptive effect. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  12. Ethanol inhibits excitatory neurotransmission in the nucleus accumbens of adolescent mice through GABAA and GABAB receptors.

    PubMed

    Mishra, Devesh; Chergui, Karima

    2013-07-01

    Age-related differences in various acute physiological and behavioral effects of alcohol have been demonstrated in humans and in other species. Adolescents are more sensitive to positive reinforcing properties of alcohol than adults, but the cellular mechanisms that underlie such a difference are not clearly established. We, therefore, assessed age differences in the ability of ethanol to modulate glutamatergic synaptic transmission in the mouse nucleus accumbens (NAc), a brain region importantly involved in reward mechanisms. We measured field excitatory postsynaptic potentials/population spikes (fEPSP/PS) in NAc slices from adolescent (22-30 days old) and adult (5-8 months old) male mice. We found that 50mM ethanol applied in the perfusion solution inhibits glutamatergic neurotransmission in the NAc of adolescent, but not adult, mice. This effect is blocked by the gamma-aminobutyric acid (GABA)A receptor antagonist bicuculline and by the GABAB receptor antagonist CGP 55845. Furthermore, bicuculline applied alone produces a stronger increase in the fEPSP/PS amplitude in adult mice than in adolescent mice. Activation of GABAA receptors with muscimol produces a stronger and longer lasting depression of neurotransmission in adolescent mice as compared with adult mice. Activation of GABAB receptors with SKF 97541 also depresses neurotransmission more strongly in adolescent than in adult mice. These results demonstrate that an increased GABA receptor function associated with a reduced inhibitory tone underlies the depressant action of ethanol on glutamatergic neurotransmission in the NAc of adolescent mice.

  13. Inhibition of kinin B1 receptors attenuates pulmonary hypertension and vascular remodeling.

    PubMed

    Murugesan, Priya; Hildebrandt, Tobias; Bernlöhr, Christian; Lee, Dongwon; Khang, Gilson; Doods, Henri; Wu, Dongmei

    2015-10-01

    This study examined whether the kinin B1 receptor is involved in the pathogenesis of pulmonary hypertension, and whether its inhibition could reduce inflammation, pulmonary hypertension, vascular remodeling, and right heart dysfunction. Male Wistar rats underwent left pneumonectomy. Seven days later, the rats were injected subcutaneously with monocrotaline (60 mg/kg). The rats were then randomly assigned to receive treatment with vehicle or with BI113823 (a selective B1 receptor antagonist, 30 mg/kg, twice per day) via oral gavage from the day of monocrotaline injection to day 28. By day 28, BI113823-treated rats had significantly lower mean pulmonary artery pressure, less right ventricular hypertrophy, and pulmonary arterial neointimal formation than that of the vehicle-treated rats. Real-time polymerase chain reaction revealed that there was a significant increase in mRNA expression of B1 receptors in the lungs of monocrotaline-challenged pneumonectomized rats. Treatment with BI113823 significantly reduced macrophage recruitment, as measured via bronchoalveolar lavage. It also markedly reduced CD-68 positive macrophages and proliferating cell nuclear antigen positive cells in the perivascular areas, reduced expression of inducible nitric oxide synthase, matrix metalloproteinase 2 and 9, and B1 receptors compared with measurements in vehicle-treated rats. These findings demonstrate that kinin B1 receptors represent a novel therapeutic target for pulmonary arterial hypertension.

  14. Prenatal protein deprivation in rats induces changes in prepulse inhibition and NMDA receptor binding.

    PubMed

    Palmer, Abraham A; Printz, David J; Butler, Pamela D; Dulawa, Stephanie C; Printz, Morton P

    2004-01-23

    Epidemiological studies suggest that prenatal malnutrition increases the risk of developing schizophrenia. Animal models indicate that prenatal protein deprivation (PPD) affects many aspects of adult brain function. We tested the hypothesis that PPD in rats would alter prepulse inhibition (PPI), which is an operational measure of sensorimotor gating that is deficient in schizophrenia patients. Additionally, we examined dopaminergic and glutaminergic receptor binding in the striatum and hippocampus, which have been suggested to play a role in the etiology of schizophrenia. Rat dams were fed normal (25%) or low (6%) protein diets beginning 5 weeks prior to, and throughout pregnancy. The pups were tested at postnatal days (PND) 35 and 56 for PPI. Striatal and hippocampal NMDA receptor, and striatal dopamine receptor binding were quantified post-mortem in a subset of these rats. Female rats exposed to PPD had reduced levels of PPI at PND 56, but not PND 35, suggesting the emergence of a sensorimotor gating deficit in early adulthood. Striatal NMDA receptor binding was increased in PPD females. A decrease in initial startle response (SR) was also observed in all PPD rats relative to control rats. These results suggest that PPD causes age- and sex-dependent decreases in PPI and increases in NMDA receptor binding. This animal model may be useful for the investigation of neurodevelopmental changes that are associated with schizophrenia in humans.

  15. GABA(A) receptor activation is involved in noncontingent shock inhibition of instrumental conditioning in spinal rats.

    PubMed

    Ferguson, Adam R; Washburn, Stephanie N; Crown, Eric D; Grau, James W

    2003-08-01

    Previous work has demonstrated that the spinal cord, isolated from higher neural structures, can support a simple form of instrumental learning. Furthermore, preexposure to uncontrollable (noncontingent) shock to the leg or tail inhibits this form of learning. The present study explores the role of GABA(A) receptor modulation on this inhibitory effect in spinal cord-transected rats. Intrathecal administration of the GABA(A) receptor antagonist bicuculline blocked induction and expression of the inhibition. The GABA(A) receptor agonist muscimol inhibited learning in a dose-dependent manner. However, this effect was transient and showed no additivity with shock. The findings suggest that GABA(A) receptor activation may work like a pharmacological switch that is activated by noncontingent shock to inhibit instrumental conditioning within the spinal cord.

  16. MiR-34a inhibits colon cancer proliferation and metastasis by inhibiting platelet-derived growth factor receptor α.

    PubMed

    Li, Chunyan; Wang, Yulin; Lu, Shuming; Zhang, Zhuqing; Meng, Hua; Liang, Lina; Zhang, Yan; Song, Bo

    2015-11-01

    The microRNA (miRNA), miR‑34a is significant in colon cancer progression. In the present study, the role of miR‑34a in colon cancer cell proliferation and metastasis was investigated. It was found that the expression of miR‑34a in colon cancer tissues and cell lines was lower when compared with that of normal tissues and cells. Further research demonstrated that miR‑34a inhibited cell proliferation, induced G1 phase arrest, and suppressed metastasis and epithelial mesenchymal transition in colon cancer cells. Bioinformatic prediction indicated that platelet‑derived growth factor receptor α (PDGFRA) was a potential target gene of miR‑34a and a luciferase assay identified that PDGFRA was a novel direct target gene of miR‑34a. In addition, assays of western blot analyses and quantitative reverse‑transcription polymerase chain reaction confirmed that miR‑34a decreased PDGFRA mRNA expression and protein levels in colon cancer cells. Assessment of cellular function indicated that miR‑34a inhibited colon cancer progression via PDGFRA. These findings demonstrate that miR‑34a may act as a negative regulator in colon cancer by targeting PDGFRA.

  17. Bispyridinium Compounds Inhibit Both Muscle and Neuronal Nicotinic Acetylcholine Receptors in Human Cell Lines

    PubMed Central

    Ring, Avi; Strom, Bjorn Oddvar; Turner, Simon R.; Timperley, Christopher M.; Bird, Michael; Green, A. Christopher; Chad, John E.; Worek, Franz; Tattersall, John E. H.

    2015-01-01

    Standard treatment of poisoning by organophosphorus anticholinesterases uses atropine to reduce the muscarinic effects of acetylcholine accumulation and oximes to reactivate acetylcholinesterase (the effectiveness of which depends on the specific anticholinesterase), but does not directly address the nicotinic effects of poisoning. Bispyridinium molecules which act as noncompetitive antagonists at nicotinic acetylcholine receptors have been identified as promising compounds and one has been shown to improve survival following organophosphorus poisoning in guinea-pigs. Here, we have investigated the structural requirements for antagonism and compared inhibitory potency of these compounds at muscle and neuronal nicotinic receptors and acetylcholinesterase. A series of compounds was synthesised, in which the length of the polymethylene linker between the two pyridinium moieties was increased sequentially from one to ten carbon atoms. Their effects on nicotinic receptor-mediated calcium responses were tested in muscle-derived (CN21) and neuronal (SH-SY5Y) cells. Their ability to inhibit acetylcholinesterase activity was tested using human erythrocyte ghosts. In both cell lines, the nicotinic response was inhibited in a dose-dependent manner and the inhibitory potency of the compounds increased with greater linker length between the two pyridinium moieties, as did their inhibitory potency for human acetylcholinesterase activity in vitro. These results demonstrate that bispyridinium compounds inhibit both neuronal and muscle nicotinic receptors and that their potency depends on the length of the hydrocarbon chain linking the two pyridinium moieties. Knowledge of structure-activity relationships will aid the optimisation of molecular structures for therapeutic use against the nicotinic effects of organophosphorus poisoning. PMID:26274808

  18. Direct inhibition of the N-methyl-D-aspartate receptor channel by dopamine and (+)-SKF38393.

    PubMed

    Castro, N G; de Mello, M C; de Mello, F G; Aracava, Y

    1999-04-01

    1. Dopamine is known to modulate glutamatergic synaptic transmission in the retina and in several brain regions by activating specific G-protein-coupled receptors. We have examined the possibility of a different type of mechanism for this modulation, one involving direct interaction of dopamine with ionotropic glutamate receptors. 2. Ionic currents induced by fast application of N-methyl-D-aspartate (NMDA) were recorded under whole-cell patch-clamp in cultured striatal, thalamic and hippocampal neurons of the rat and in retinal neurons of the chick. Dopamine at concentrations above 100 microM inhibited the NMDA response in all four neuron types, exhibiting an IC50 of 1.2 mM in hippocampal neurons. The time course of this inhibition was fast, developing in less than 100 ms. 3. The D1 receptor agonist (+)-SKF38393 mimicked the effect of dopamine, with an IC50 of 58.9 microM on the NMDA response, while the enantiomer (-)-SKF38393 was ineffective at 50 microM. However, the D1 antagonist R(+)-SCH23390 did not prevent the inhibitory effect of (+)-SKF38393. 4. The degree of inhibition by dopamine and (+)-SKF38393 depended on transmembrane voltage, increasing 2.7 times with a hyperpolarization of about 80 mV. The voltage-dependent block by dopamine was also observed in the presence of MgCl2 1 mM. 5. Single-channel recordings showed that the open times of NMDA-gated channels were shortened by (+)-SKF38393. 6. These data suggested that the site to which the drugs bound to produce the inhibitory effect was distinct from the classical D1-type dopamine receptor sites, possibly being located inside the NMDA channel pore. It is concluded that dopamine and (+)-SKF38393 are NMDA channel ligands.

  19. Direct inhibition of the N-methyl-D-aspartate receptor channel by dopamine and (+)-SKF38393

    PubMed Central

    Castro, Newton G; de Mello, Maria Christina F; de Mello, Fernando G; Aracava, Yasco

    1999-01-01

    Dopamine is known to modulate glutamatergic synaptic transmission in the retina and in several brain regions by activating specific G-protein-coupled receptors. We have examined the possibility of a different type of mechanism for this modulation, one involving direct interaction of dopamine with ionotropic glutamate receptors.Ionic currents induced by fast application of N-methyl-D-aspartate (NMDA) were recorded under whole-cell patch-clamp in cultured striatal, thalamic and hippocampal neurons of the rat and in retinal neurons of the chick. Dopamine at concentrations above 100 μM inhibited the NMDA response in all four neuron types, exhibiting an IC50 of 1.2 mM in hippocampal neurons. The time course of this inhibition was fast, developing in less than 100 ms.The D1 receptor agonist (+)-SKF38393 mimicked the effect of dopamine, with an IC50 of 58.9 μM on the NMDA response, while the enantiomer (−)-SKF38393 was ineffective at 50 μM. However, the D1 antagonist R(+)-SCH23390 did not prevent the inhibitory effect of (+)-SKF38393.The degree of inhibition by dopamine and (+)-SKF38393 depended on transmembrane voltage, increasing 2.7 times with a hyperpolarization of about 80 mV. The voltage-dependent block by dopamine was also observed in the presence of MgCl2 1 mM.Single-channel recordings showed that the open times of NMDA-gated channels were shortened by (+)-SKF38393.These data suggested that the site to which the drugs bound to produce the inhibitory effect was distinct from the classical D1-type dopamine receptor sites, possibly being located inside the NMDA channel pore. It is concluded that dopamine and (+)-SKF38393 are NMDA channel ligands. PMID:10372829

  20. The immunosuppressant FTY720 inhibits tumor angiogenesis via the sphingosine 1-phosphate receptor 1.

    PubMed

    Schmid, Gerald; Guba, Markus; Ischenko, Ivan; Papyan, Armine; Joka, Mareile; Schrepfer, Sabine; Bruns, Christiane J; Jauch, Karl-Walter; Heeschen, Christopher; Graeb, Christian

    2007-05-01

    FTY720, a sphingosine 1-phosphate (S1P) analog, acts as an immunosuppressant through trapping of T cells in secondary lymphoid tissues. FTY720 was also shown to prevent tumor growth and to inhibit vascular permeability. The MTT proliferation assay illustrated that endothelial cells are more susceptible to the anti-proliferative effect of FTY720 than Lewis lung carcinoma (LLC1) cells. In a spheroid angiogenesis model, FTY720 potently inhibited the sprouting activity of VEGF-A-stimulated endothelial cells even at concentrations that apparently had no anti-proliferative effect. Mechanistically, the anti-angiogenic effect of the general S1P receptor agonist FTY720 was mimicked by the specific S1P1 receptor agonist SEW2871. Moreover, the anti-angiogenic effect of FTY720 was abrogated in the presence of CXCR4-neutralizing antibodies. This indicates that the effect was at least in part mediated by the S1P1 receptor and involved transactivation of the CXCR4 chemokine receptor. Additionally, we could illustrate in a coculture spheroid model, employing endothelial and smooth muscle cells (SMCs), that the latter confer a strong protective effect regarding the action of FTY720 upon the endothelial cells. In a subcutaneous LLC1 tumor model, the anti-angiogenic capacity translated into a reduced tumor size in syngeneic C57BL/6 mice. Consistently, in the Matrigel plug in vivo assay, 10 mg/kg/d FTY720 resulted in a strong inhibition of angiogenesis as demonstrated by a reduced capillary density. Thus, in organ transplant patients, FTY720 may prove efficacious in preventing graft rejection as well as tumor development.

  1. Modulation of NMDA receptor function by inhibition of D-amino acid oxidase in rodent brain.

    PubMed

    Strick, Christine A; Li, Cheryl; Scott, Liam; Harvey, Brian; Hajós, Mihály; Steyn, Stefanus J; Piotrowski, Mary A; James, Larry C; Downs, James T; Rago, Brian; Becker, Stacey L; El-Kattan, Ayman; Xu, Youfen; Ganong, Alan H; Tingley, F David; Ramirez, Andres D; Seymour, Patricia A; Guanowsky, Victor; Majchrzak, Mark J; Fox, Carol B; Schmidt, Christopher J; Duplantier, Allen J

    2011-01-01

    Observations that N-Methyl-D-Aspartate (NMDA) antagonists produce symptoms in humans that are similar to those seen in schizophrenia have led to the current hypothesis that schizophrenia might result from NMDA receptor hypofunction. Inhibition of D-amino acid oxidase (DAAO), the enzyme responsible for degradation of D-serine, should lead to increased levels of this co-agonist at the NMDA receptor, and thereby provide a therapeutic approach to schizophrenia. We have profiled some of the preclinical biochemical, electrophysiological, and behavioral consequences of administering potent and selective inhibitors of DAAO to rodents to begin to test this hypothesis. Inhibition of DAAO activity resulted in a significant dose and time dependent increase in D-serine only in the cerebellum, although a time delay was observed between peak plasma or brain drug concentration and cerebellum D-serine response. Pharmacokinetic/pharmacodynamic (PK/PD) modeling employing a mechanism-based indirect response model was used to characterize the correlation between free brain drug concentration and D-serine accumulation. DAAO inhibitors had little or no activity in rodent models considered predictive for antipsychotic activity. The inhibitors did, however, affect cortical activity in the Mescaline-Induced Scratching model, produced a modest but significant increase in NMDA receptor-mediated synaptic currents in primary neuronal cultures from rat hippocampus, and resulted in a significant increase in evoked hippocampal theta rhythm, an in vivo electrophysiological model of hippocampal activity. These findings demonstrate that although DAAO inhibition did not cause a measurable increase in D-serine in forebrain, it did affect hippocampal and cortical activity, possibly through augmentation of NMDA receptor-mediated currents.

  2. Propofol attenuates pancreatic cancer malignant potential via inhibition of NMDA receptor.

    PubMed

    Chen, Xiangyuan; Wu, Qichao; You, Li; Chen, Sisi; Zhu, Minmin; Miao, Changhong

    2017-01-15

    Propofol is a commonly used intravenous anesthetic, and could attenuate cancer cells malignant potential via inhibiting hypoxia-inducible factor-1α (HIF-1α) expression. However, the mechanism is still inclusive. In the present study, we mainly focus on the mechanism by which propofol down-regulated HIF-1α expression and malignant potential in pancreatic cancer cells. Human pancreatic cancer cells (Miapaca-2 and Panc-1) in vitro and murine pancreatic cancer cell (Panc02) in vivo were used to assess the effect of propofol on vascular endothelial growth factor (VEGF) expression and migration of pancreatic cancer cells. Propofol inhibited cells migration, expression of VEGF and HIF-1α, phosphorylation of extracellular regulated protein kinases (ERK), AKT, Ca(2+)/calmodulin dependent protein kinases II (CaMK II), and Ca(2+) concentration in a concentration-dependent manner (5, 25, 50, 100μM). Furthermore, MK801, an inhibitor of NMDA receptor, and KN93, an inhibitor of CaMK II, could inhibit the expression of VEGF, HIF-1a, p-AKT, p-ERK, p-CaMK II in vitro, growth of tumor and VEGF expression in vivo, which were similar to the effect of propofol. In addition, the anti-tumor effect of propofol could be counteracted by rapastinel, an activator of NMDA receptor. Our study indicated that propofol suppressed VEGF expression and migration ability of pancreatic cancer cells in vitro and in vivo, probably via inhibiting NMDA receptor. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Grape seed extract inhibits angiogenesis via suppression of the vascular endothelial growth factor receptor signaling pathway.

    PubMed

    Wen, Wei; Lu, Jianming; Zhang, Keqiang; Chen, Shiuan

    2008-12-01

    Blockade of angiogenesis is an important approach for cancer treatment and prevention. Vascular endothelial growth factor (VEGF) is one of the most critical factors that induce angiogenesis and has thus become an attractive target for antiangiogenesis treatment. However, most current anti-VEGF agents often cause some side effects when given chronically. Identification of naturally occurring VEGF inhibitors derived from diet would be one alternative approach with an advantage of known safety. Grape seed extract (GSE), a widely used dietary supplement, is known to have antitumor activity. In this study, we have explored the activity of GSE on VEGF receptor and angiogenesis. We found that GSE could directly inhibit the kinase activity of purified VEGF receptor 2, a novel activity of GSE that has not been characterized. GSE could also inhibit the VEGF receptor/mitogen-activated protein kinase-mediated signaling pathway in endothelial cells. As a result, GSE could inhibit VEGF-induced endothelial cell proliferation and migration as well as sprout formation from aorta ring. In vivo assay further showed that GSE could inhibit tumor growth and tumor angiogenesis of MDA-MB-231 breast cancer cells in mice. Consistent with the in vitro data, GSE treatment of tumor-bearing mice led to concomitant reduction of blood vessel density and phosphorylation of mitogen-activated protein kinase. Depletion of polyphenol with polyvinylpyrrolidone abolished the antiangiogenic activity of GSE, suggesting a water-soluble fraction of polyphenol in GSE is responsible for the antiangiogenic activity. Taken together, this study indicates that GSE is a well-tolerated and inexpensive natural VEGF inhibitor and could potentially be useful in cancer prevention or treatment.

  4. Uridine Triphosphate Thio Analogues Inhibit Platelet P2Y12 Receptor and Aggregation

    PubMed Central

    Gündüz, Dursun; Tanislav, Christian; Sedding, Daniel; Parahuleva, Mariana; Santoso, Sentot; Troidl, Christian; Hamm, Christian W.; Aslam, Muhammad

    2017-01-01

    Platelet P2Y12 is an important adenosine diphosphate (ADP) receptor that is involved in agonist-induced platelet aggregation and is a valuable target for the development of anti-platelet drugs. Here we characterise the effects of thio analogues of uridine triphosphate (UTP) on ADP-induced platelet aggregation. Using human platelet-rich plasma, we demonstrate that UTP inhibits P2Y12 but not P2Y1 receptors and antagonises 10 µM ADP-induced platelet aggregation in a concentration-dependent manner with an IC50 value of ~250 µM. An eight-fold higher platelet inhibitory activity was observed with a 2-thio analogue of UTP (2S-UTP), with an IC50 of 30 µM. The 4-thio analogue (4S-UTP) with an IC50 of 7.5 µM was 33-fold more effective. A three-fold decrease in inhibitory activity, however, was observed by introducing an isobutyl group at the 4S- position. A complete loss of inhibition was observed with thio-modification of the γ phosphate of the sugar moiety, which yields an enzymatically stable analogue. The interaction of UTP analogues with P2Y12 receptor was verified by P2Y12 receptor binding and cyclic AMP (cAMP) assays. These novel data demonstrate for the first time that 2- and 4-thio analogues of UTP are potent P2Y12 receptor antagonists that may be useful for therapeutic intervention. PMID:28146050

  5. Presynaptic Inhibition of Glutamate Transmission by Alpha-2 Receptors in the VTA

    PubMed Central

    Jiménez-Rivera, Carlos A.; Figueroa, Johnny; Vázquez, Rafael; Vélez, María; Schwarz, David; Velásquez-Martinez, María C.; Arencibia-Albite, Francisco

    2013-01-01

    The ventral tegmental area (VTA) forms part of the mesocorticolimbic system and plays a pivotal role in reward and reinforcing actions of drugs of abuse. Glutamate transmission within the VTA controls important aspects of goal-directed behavior and motivation. Noradrenergic receptors also present in the VTA have important functions in the modulation of neuronal activity. Here we studied the effects of alpha-2 noradrenergic receptor activation in the alteration of glutamate neurotransmission in VTA dopaminergic neurons from male Sprague-Dawley rats. We used whole cell patch clamp recordings from putative VTA dopaminergic neurons and measured excitatory postsynaptic currents. Clonidine (40 μM) and UK 13,408 (40 μM), both alpha-2 receptor agonists, reduced (~ 40%) the amplitude of glutamate-induced excitatory postsynaptic currents. After clonidine administration, there was a dose-dependent reduction over the concentration range of 15–40 μM. Using yohimbine (20μM) and two other alpha-2 adrenergic receptor antagonists, idaxozan (40 μM) and atipemazole (20μM), we demonstrated that the inhibitory action is specifically mediated by alpha-2 receptors. Moreover, by inhibiting protein kinases with H-7 (75 μM), Rp-adenosine 3′,5′-cyclic (11 μM) and chelerythrine (1 μM) it was shown that the clonidine-induced inhibition seems to involve a selective activation of the protein kinase C intracellular pathway. An increased paired-pulse ratios and changes in spontaneous and miniature excitatory postsynaptic currents frequencies but not amplitudes indicated that the alpha-2 agonist’s effect was presynaptically mediated. It is suggested that the suppression of glutamate excitatory inputs onto VTA dopaminergic neurons might be relevant in the regulation of reward and drug seeking behaviors. PMID:22564071

  6. Selective inhibition of beta(2)-adrenergic receptor-mediated cAMP generation by activation of the P2Y(2) receptor in mouse pineal gland tumor cells.

    PubMed

    Suh, B C; Kim, J S; Namgung, U; Han, S; Kim, K T

    2001-06-01

    Rhythmic noradrenergic signaling from the hypothalamic clock in the suprachiasmatic nucleus to the pineal gland causes an increase in intracellular cAMP which regulates the circadian fluctuation of melatonin synthesis. The activation of phospholipase C (PLC)-coupled P2Y(2) receptors upon treatment with ATP and UTP exclusively inhibited the isoproterenol-stimulated cAMP production in mouse pineal gland tumor cells. However, the activation of other PLC-coupled receptors including P2Y(1) and bombesin receptors had little or no effect on the isoproterenol-stimulated cAMP production. Also, ATP did not inhibit cAMP production caused by forskolin, prostaglandin E(2), or the adenosine analog NECA. These results suggest a selective coupling between signalings of P2Y(2) and beta(2)-adrenergic receptors. The binding of [(3)H]CGP12177 to beta(2)-adrenergic receptors was not effected by the presence of ATP or UTP. Ionomycin decreased the isoproterenol-stimulated cAMP production, whereas phorbol 12-myristate 13-acetate slightly potentiated the isoproterenol response. Chelation of intracellular Ca(2+), however, had little effect on the ATP-induced inhibition of cAMP production, while it completely reversed the ionomycin-induced inhibition. Treatment of cells with pertussis toxin almost completely blocked the inhibitory effect of nucleotides. Pertussis toxin also inhibited the nucleotide-induced increase in intracellular Ca(2+) and inositol 1,4,5-trisphosphate production by 30-40%, suggesting that the ATP-mediated inhibition of the cAMP generation and the partial activation of PLC are mediated by pertussis toxin-sensitive G(i)-protein. We conclude that one of the functions of P2Y(2) receptors on the pineal gland is the selective inhibition of beta-adrenergic receptor-mediated signaling pathways via the inhibitory G-proteins.

  7. Activation of histamine H3-receptors inhibits carrier-mediated norepinephrine release during protracted myocardial ischemia. Comparison with adenosine A1-receptors and alpha2-adrenoceptors.

    PubMed

    Imamura, M; Lander, H M; Levi, R

    1996-03-01

    We previously showed that prejunctional histamine H3-receptors downregulate norepinephrine exocytosis, which is markedly enhanced in early myocardial ischemia. In the present study, we investigated whether H3-receptors modulate nonexocytotic norepinephrine release during protracted myocardial ischemia. In this setting, decreased pH(i) in sympathetic nerve endings sequentially leads to a compensatory activation of the Na+-H+ antiporter (NHE), accumulation of intracellular Na+, reversal of the neuronal uptake of norepinephrine, and thus carrier-mediated release of norepinephrine. Accordingly, norepinephrine overflow from isolated guinea pig hearts undergoing 20-minute global ischemia and 45-minute reperfusion was attenuated approximately 80% by desipramine (10 nmol/L) and 70% by 5-(N-ethyl-N-isopropyl)-amiloride (EIPA, 10 micromol/L), inhibitors of norepinephrine uptake and NHE, respectively. The H3-receptor agonist imetit (0.1 micromol/L) decreased carrier-mediated norepinephrine release by approximately 50%. This effect was blocked by the H3-receptor antagonist thioperamide (0.3 micromol/L), indicating that H-receptor activation inhibits carrier-mediated norepinephrine release. At lower concentrations, imetit (10 nmol/L) or EIPA (3 micromol/L) did not inhibit carrier-mediated norepinephrine release. However, a 25% inhibition occurred with imetit (10 nmol/L) and EIPA (3 micromol/L) combined. This synergism suggests an association between H-receptors and NHE. Conceivably, activation of H-receptors may lead to inhibition of NHE. In fact, alpha2-adrenoceptor activation, which is known to stimulate NHE, enhanced norepinephrine release, whereas alpha2-adrenoceptor blockade attenuated it. Furthermore, activation of adenosine A1-receptors markedly attenuated norepinephrine release, whereas their inhibition potentiated it. Because norepinephrine directly correlated with the severity of reperfusion arrhythmia and imetit reduced the incidence of ventricular fibrillation by 50

  8. Melatonin inhibits tachykinin NK₂ receptor-triggered 5-HT release from guinea pig isolated colonic mucosa.

    PubMed

    Kojima, Shu-ichi; Tohei, Atsushi; Ikeda, Masashi

    2011-03-01

    Melatonin is involved in the regulation of colonic motility, and sensation, but little is known about the influence of melatonin on 5-hydroxytryptamine (5-HT) release from colonic mucosa. A tachykinin NK₂ receptor-selective agonist, [β-Ala⁸]-neurokinin A(4-10) [βAla-NKA-(4-10)] can induce 5-HT release from guinea pig colonic mucosa via NK₂ receptors on the mucosal layer. The present study was designed to determine the influence of melatonin on 5-HT release from guinea pig colonic mucosa, evoked by the NK₂ receptor agonist, βAla-NKA-(4-10). The effect of melatonin was investigated on the outflow of 5-HT and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) from muscle layer-free mucosal preparations of guinea pig colon, using high-performance liquid chromatography with electrochemical detection. Melatonin caused a sustained decline in the βAla-NKA-(4-10)-evoked 5-HT outflow from the muscle layer-free mucosal preparations, but failed to affect its metabolite 5-HIAA outflow. The specific MT₃ receptor agonist, 5-methoxycarbonylamino-N-acetyltryptamine mimicked the inhibitory effect of melatonin on βAla-NKA-(4-10)-evoked 5-HT outflow. A MT₃ receptor antagonist prazosin shifted the concentration-response curve of melatonin to the right in a concentration-dependent manner and depressed the maximum effect, but neither a combined MT₁/MT₂ receptor antagonist luzindole, nor a MT₂ receptor antagonist N-pentanoyl-2-benzyltryptamine modified the concentration-response curve to melatonin. Melatonin inhibits NK₂ receptor-triggered 5-HT release from guinea pig colonic mucosa by acting at a MT₃ melatonin receptor located directly on the mucosal layer, without affecting 5-HT degradation processes. Possible contributions of MT₁/MT₂ melatonin receptors to the inhibitory effect of melatonin appear to be negligible. Melatonin may act as a modulator of excess 5-HT release from colonic mucosa. © 2011 The Authors. British Journal of Pharmacology © 2011 The

  9. Error correction in latent inhibition and its disruption by opioid receptor blockade with naloxone.

    PubMed

    Leung, Hiu T; Killcross, A S; Westbrook, R Frederick

    2013-11-01

    Latent inhibition refers to the retardation in the development of conditioned responding when a pre-exposed stimulus is used to signal an unconditioned stimulus. This effect is described by error-correction models as an attentional deficit and is commonly used as an animal model of schizophrenia. A series of experiments studied the role of error-correction mechanism in latent inhibition and its interaction with the endogenous opioid system. Systemic administration of the competitive opioid receptor antagonist naloxone before rats were pre-exposed to a target stimulus prevented latent inhibition of its subsequent fear conditioning; it was without effect on a non-pre-exposed stimulus and did not produce state-dependent learning (Experiments 1a and 1b). Naloxone did not reverse the latent inhibitory effect already accrued to a pre-exposed target. However, it did prevent the enhancement of latent inhibition by a long retention interval interpolated between its initial exposure and re-exposure (Experiment 2) or by a novel stimulus compounded with the pre-exposed target during re-exposure (Experiment 3). These results provide evidence that attentional loss in latent inhibition is instructed by an opioid-mediated error signal which diminishes with repeated stimulus exposures but recovers with the passage of time or reintroduction of novelty.

  10. Error Correction in Latent Inhibition and its Disruption by Opioid Receptor Blockade with Naloxone

    PubMed Central

    Leung, Hiu T; Killcross, A S; Westbrook, R Frederick

    2013-01-01

    Latent inhibition refers to the retardation in the development of conditioned responding when a pre-exposed stimulus is used to signal an unconditioned stimulus. This effect is described by error-correction models as an attentional deficit and is commonly used as an animal model of schizophrenia. A series of experiments studied the role of error-correction mechanism in latent inhibition and its interaction with the endogenous opioid system. Systemic administration of the competitive opioid receptor antagonist naloxone before rats were pre-exposed to a target stimulus prevented latent inhibition of its subsequent fear conditioning; it was without effect on a non-pre-exposed stimulus and did not produce state-dependent learning (Experiments 1a and 1b). Naloxone did not reverse the latent inhibitory effect already accrued to a pre-exposed target. However, it did prevent the enhancement of latent inhibition by a long retention interval interpolated between its initial exposure and re-exposure (Experiment 2) or by a novel stimulus compounded with the pre-exposed target during re-exposure (Experiment 3). These results provide evidence that attentional loss in latent inhibition is instructed by an opioid-mediated error signal which diminishes with repeated stimulus exposures but recovers with the passage of time or reintroduction of novelty. PMID:23748224

  11. The novel VEGF receptor 2 inhibitor YLL545 inhibits angiogenesis and growth in breast cancer

    PubMed Central

    Zhang, Jianbo; Liu, Chen; Shi, Wen; Yang, Lingling; Zhang, Quansheng; Cui, Jianlin; Fang, Yangwu; Li, Yuhao; Ren, Guosheng; Yang, Shuang; Xiang, Rong

    2016-01-01

    Their antiangiogenic effects make vascular endothelial growth factor receptor 2 (VEGFR2) inhibitors useful for cancer treatment. However, most of these drugs have unexpected adverse side effects. Here, we show that the novel VEGFR2 inhibitor YLL545 suppressed tumor angiogenesis and growth in triple-negative breast cancer without adverse effects. YLL545 treatment also markedly inhibited proliferation, migration, invasion, and tube formation by human umbilical vascular endothelial cells (HUVECs) in vitro. These effects of YLL545 were equal to or greater than those seen with sorafenib. In addition, YLL545 inhibited VEGF-induced phosphorylation of VEGFR2 and activation of downstream signaling regulators, such as phospho-STAT3 and phospho-ERK1/2, in HUVECs. Embryonic angiogenesis assays in zebrafish and Matrigel plug assays in mice demonstrated that YLL545 inhibits angiogenesis in vivo. YLL545 also inhibited proliferation and induced apoptosis in MDA-MB-231 breast cancer cells both in vitro and in vivo, and 50 mg/kg/d YLL545 inhibited human tumor xenograft growth by more than 50% in BALB/c nude mice. These observations suggest YLL545 is a potentially useful anticancer drug candidate. PMID:27203384

  12. Inhibition of prolyl hydroxylase domain-containing protein downregulates vascular angiotensin II type 1 receptor.

    PubMed

    Matsuura, Hirohide; Ichiki, Toshihiro; Ikeda, Jiro; Takeda, Kotaro; Miyazaki, Ryohei; Hashimoto, Toru; Narabayashi, Eriko; Kitamoto, Shiro; Tokunou, Tomotake; Sunagawa, Kenji

    2011-09-01

    Inhibition of prolyl hydroxylase domain-containing protein (PHD) by hypoxia stabilizes hypoxia-inducible factor 1 and increases the expression of target genes, such as vascular endothelial growth factor. Although the systemic renin-angiotensin system is activated by hypoxia, the role of PHD in the regulation of the renin-angiotensin system remains unknown. We examined the effect of PHD inhibition on the expression of angiotensin II type 1 receptor (AT(1)R). Hypoxia, cobalt chloride, and dimethyloxalylglycine, all known to inhibit PHD, reduced AT(1)R expression in vascular smooth muscle cells. Knockdown of PHD2, a major isoform of PHDs, by RNA interference also reduced AT(1)R expression. Cobalt chloride diminished angiotensin II-induced extracellular signal-regulated kinase phosphorylation. Cobalt chloride decreased AT(1)R mRNA through transcriptional and posttranscriptional mechanisms. Oral administration of cobalt chloride (14 mg/kg per day) to C57BL/6J mice receiving angiotensin II infusion (490 ng/kg per minute) for 4 weeks significantly attenuated perivascular fibrosis of the coronary arteries without affecting blood pressure level. These data suggest that PHD inhibition may be beneficial for the treatment of cardiovascular diseases by inhibiting renin-angiotensin system via AT(1)R downregulation.

  13. The Aryl Hydrocarbon Receptor Ligand ITE Inhibits TGFβ1-Induced Human Myofibroblast Differentiation

    PubMed Central

    Lehmann, Geniece M.; Xi, Xia; Kulkarni, Ajit A.; Olsen, Keith C.; Pollock, Stephen J.; Baglole, Carolyn J.; Gupta, Shikha; Casey, Ann E.; Huxlin, Krystel R.; Sime, Patricia J.; Feldon, Steven E.; Phipps, Richard P.

    2011-01-01

    Fibrosis can occur in any human tissue when the normal wound healing response is amplified. Such amplification results in fibroblast proliferation, myofibroblast differentiation, and excessive extracellular matrix deposition. Occurrence of these sequelae in organs such as the eye or lung can result in severe consequences to health. Unfortunately, medical treatment of fibrosis is limited by a lack of safe and effective therapies. These therapies may be developed by identifying agents that inhibit critical steps in fibrotic progression; one such step is myofibroblast differentiation triggered by transforming growth factor-β1 (TGFβ1). In this study, we demonstrate that TGFβ1-induced myofibroblast differentiation is blocked in human fibroblasts by a candidate endogenous aryl hydrocarbon receptor (AhR) ligand 2-(1′H-indole-3′-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE). Our data show that ITE disrupts TGFβ1 signaling by inhibiting the nuclear translocation of Smad2/3/4. Although ITE functions as an AhR agonist, and biologically persistent AhR agonists, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin, cause severe toxic effects, ITE exhibits no toxicity. Interestingly, ITE effectively inhibits TGFβ1-driven myofibroblast differentiation in AhR−/− fibroblasts: Its ability to inhibit TGFβ1 signaling is AhR independent. As supported by the results of this study, the small molecule ITE inhibits myofibroblast differentiation and may be useful clinically as an antiscarring agent. PMID:21406171

  14. Soluble human complement receptor type 1 inhibits complement-mediated host defense.

    PubMed

    Swift, A J; Collins, T S; Bugelski, P; Winkelstein, J A

    1994-09-01

    Soluble complement receptor type 1 (sCR1) is a powerful inhibitor of complement activation. Because of this ability, sCR1 may prove to be an important therapeutic agent that can be used to block the immunopathologic effects of uncontrolled complement activation in a variety of clinically significant disorders. Although several previous studies have examined the ability of sCR1 to inhibit complemented-mediated immunopathologic damage, there is no information on its ability to interfere with the host's defense against infection. In the current experiments sCR1 exerted a concentration-dependent inhibitory effect on the phagocytosis of Streptococcus pneumoniae by human polymorphonuclear leukocytes in vitro. Not only di sCR1 inhibit complement-dependent opsonization of the pneumococcus but at higher concentrations it also inhibited the ingestion of bacteria which had been previously opsonized. Furthermore, when rats were injected with sCR1, it inhibited both their serum hemolytic activity and serum opsonic activity in a dose-dependent fashion. Finally, for rats treated with sCR1, the 50% lethal dose was S. pneumoniae and Pseudomonas aeruginosa. These data demonstrate that sCR1 significantly inhibits complement-mediated host against bacterial infection.

  15. Anterior cingulate serotonin 1B receptor binding is associated with emotional response inhibition.

    PubMed

    da Cunha-Bang, Sofi; Hjordt, Liv Vadskjær; Dam, Vibeke Høyrup; Stenbæk, Dea Siggaard; Sestoft, Dorte; Knudsen, Gitte M

    2017-09-01

    Serotonin has a well-established role in emotional processing and is a key neurotransmitter in impulsive aggression, presumably by facilitating response inhibition and regulating subcortical reactivity to aversive stimuli. In this study 44 men, of whom 19 were violent offenders and 25 were non-offender controls, completed an emotional Go/NoGo task requiring inhibition of prepotent motor responses to emotional facial expressions. We also measured cerebral serotonin 1B receptor (5-HT1BR) binding with [(11)C]AZ10419369 positron emission tomography within regions of the frontal cortex. We hypothesized that 5-HT1BR would be positively associated with false alarms (failures to inhibit nogo responses) in the context of aversive (angry and fearful) facial expressions. Across groups, we found that frontal cortex 5-HT1BR binding was positively correlated with false alarms when angry faces were go stimuli and neutral faces were nogo stimuli (p = 0.05, corrected alpha = 0.0125), but not with false alarms for non-emotional stimuli (failures to inhibit geometric figures). A posthoc analysis revealed the strongest association in anterior cingulate cortex (p = 0.006). In summary, 5-HT1BRs in the anterior cingulate are involved in withholding a prepotent response in the context of angry faces. Our findings suggest that serotonin modulates response inhibition in the context of certain emotional stimuli. Copyright © 2017. Published by Elsevier Ltd.

  16. Structure-Activity Relationship of Indole-Tethered Pyrimidine Derivatives that Concurrently Inhibit Epidermal Growth Factor Receptor and Other Angiokinases.

    PubMed

    Song, Jiho; Yoo, Jakyung; Kwon, Ara; Kim, Doran; Nguyen, Hong Khanh; Lee, Bong-Yong; Suh, Wonhee; Min, Kyung Hoon

    2015-01-01

    Antiangiogenic agents have been widely investigated in combination with standard chemotherapy or targeted cancer agents for better management of advanced cancers. Therapeutic agents that concurrently inhibit epidermal growth factor receptor and other angiokinases could be useful alternatives to combination therapies for epidermal growth factor receptor-dependent cancers. Here, we report the synthesis of an indole derivative of pazopanib using a bioisosteric replacement strategy, which was designated MKP101. MKP101 inhibited not only the epidermal growth factor receptor with an IC50 value of 43 nM but also inhibited angiokinases as potently as pazopanib. In addition, MKP101 effectively inhibited vascular endothelial growth factor-induced endothelial proliferation, tube formation, migration of human umbilical vein endothelial cells and proliferation of HCC827, an epidermal growth factor receptor-addicted cancer cell line. A docking model of MKP101 and the kinase domain of the epidermal growth factor receptor was generated to predict its binding mode, and validated by synthesizing and evaluating MKP101 derivatives. Additionally, a study of structure-activity relationships of indolylamino or indolyloxy pyrimidine analogues derived from MKP101 demonstrated that selectivity for epidermal growth factor receptor and other angiokinases, especially vascular endothelial growth factor receptor 2 depends on the position of substituents on pyrimidine and the type of link between pyrimidine and the indole moiety. We believe that this study could provide a basis for developing angiokinase inhibitors having high affinity for the epidermal growth factor receptor, from the pyrimidine scaffold.

  17. Structure-Activity Relationship of Indole-Tethered Pyrimidine Derivatives that Concurrently Inhibit Epidermal Growth Factor Receptor and Other Angiokinases

    PubMed Central

    Song, Jiho; Yoo, Jakyung; Kwon, Ara; Kim, Doran; Nguyen, Hong Khanh; Lee, Bong-Yong; Suh, Wonhee; Min, Kyung Hoon

    2015-01-01

    Antiangiogenic agents have been widely investigated in combination with standard chemotherapy or targeted cancer agents for better management of advanced cancers. Therapeutic agents that concurrently inhibit epidermal growth factor receptor and other angiokinases could be useful alternatives to combination therapies for epidermal growth factor receptor-dependent cancers. Here, we report the synthesis of an indole derivative of pazopanib using a bioisosteric replacement strategy, which was designated MKP101. MKP101 inhibited not only the epidermal growth factor receptor with an IC50 value of 43 nM but also inhibited angiokinases as potently as pazopanib. In addition, MKP101 effectively inhibited vascular endothelial growth factor-induced endothelial proliferation, tube formation, migration of human umbilical vein endothelial cells and proliferation of HCC827, an epidermal growth factor receptor-addicted cancer cell line. A docking model of MKP101 and the kinase domain of the epidermal growth factor receptor was generated to predict its binding mode, and validated by synthesizing and evaluating MKP101 derivatives. Additionally, a study of structure-activity relationships of indolylamino or indolyloxy pyrimidine analogues derived from MKP101 demonstrated that selectivity for epidermal growth factor receptor and other angiokinases, especially vascular endothelial growth factor receptor 2 depends on the position of substituents on pyrimidine and the type of link between pyrimidine and the indole moiety. We believe that this study could provide a basis for developing angiokinase inhibitors having high affinity for the epidermal growth factor receptor, from the pyrimidine scaffold. PMID:26401847

  18. Characterization of prejunctional 5-HT receptors mediating inhibition of sympathetic vasopressor responses in the pithed rat.

    PubMed Central

    Villalón, C. M.; Contreras, J.; Ramírez-San Juan, E.; Castillo, C.; Perusquía, M.; Terrón, J. A.

    1995-01-01

    1. It has recently been shown that continuous infusions of 5-hydroxytryptamine (5-HT) are able to inhibit, in a dose-dependent manner, the pressor responses induced by preganglionic (T7-T9) sympathetic stimulation in pithed rats pretreated with desipramine (50 micrograms kg-1, i.v.). This inhibitory effect, besides being significantly more pronounced at lower frequencies of stimulation (0.03-I Hz) and devoid of tachyphylaxis, is reversible after interrupting the infusions of 5-HT (up to 5.6 micrograms kg-1 min-1). In the present study we have characterized the pharmacological profile of the receptors mediating the above inhibitory effect of 5-HT. 2. The inhibition induced by 5.6 micrograms kg-1 min-1 of 5-HT on sympathetically-induced pressor responses was not blocked after i.v. treatment with physiological saline (1 ml kg-1), ritanserin (0.1 mg kg-1), MDL 72222 (0.15 mg kg-1) or tropisetron (3 mg kg-1), which did not modify the sympathetically-induced pressor responses per se, but was significantly antagonized by the 5-HT1-like and 5-HT2 receptor antagonist, methysergide (0.3 mg kg-1), which also produced a slight attenuation of the pressor responses to 0.03 and 0.1 Hz per se. 3. Unexpectedly and contrasting with methysergide, the 5-HT1-like and 5-HT2 receptor antagonists, methiothepin (0.01, 0.03 and 0.1 mg kg-1) and metergoline (1 and 3 mg kg-1), apparently failed to block the above 5-HT-induced inhibition. Nevertheless, it is noteworthy that these antagonists also blocked the electrically-induced pressor responses per se, presumably by blockade of vascular alpha 1-adrenoceptors and, indeed, this property might have masked their potential antagonism at the inhibitory 5-HT1-like receptors. 4. Consistent with the above findings, 5-carboxamidotryptamine (5-CT, a potent 5-HT1-like receptor agonist), metergoline and methysergide mimicked the inhibitory action of 5-HT with the following rank order of agonist potency: 5CT > > 5-HT > metergoline > or = methysergide. 5

  19. A3 adenosine receptor inhibition improves the efficacy of hypertonic saline resuscitation

    PubMed Central

    Inoue, Yoshiaki; Tanaka, Hiroshi; Sumi, Yuka; Woehrle, Tobias; Chen, Yu; Hirsh, Mark I.; Junger, Wolfgang G.

    2011-01-01

    We reported previously that hypertonic saline (HS) treatment can prevent or upregulate the function of polymorphonuclear neutrophils (PMN) via A2a adenosine receptors (A2aR) or A3 adenosine receptors (A3R), respectively. A3R translocate to the cell surface upon PMN stimulation and thus HS promotes PMN responses under conditions of delayed HS treatment. Here we investigated if inhibition of A3R improves the protective effects of HS resuscitation in a mouse sepsis model. We found that HS nearly triples extracellular adenosine concentrations in whole blood and that inhibition of A3R with the selective antagonist MRS-1191 dose-dependently improves the inhibitory effect of HS. MRS-1191 at a concentration of 1 nM enhanced the inhibitory effect of HS and reduced stimulatory effects of delayed HS treatment. Using a mouse model of cecal ligation and puncture (CLP)-induced sepsis, we found that MRS-1191 reduces acute lung injury and PMN accumulation in lung tissue. While delayed HS treatment (4 ml/kg of 7.5 % NaCl) of mice 1 h after CLP aggravated PMN accumulation, lung tissue damage, and mortality 24 h after CLP, infusion of MRS-1191 (2 ng/kg body weight) combined with HS reduced these detrimental effects of delayed HS treatment. Our data thus show that A3 receptor antagonists can strengthen the beneficial effects of HS resuscitation by avoiding stimulatory side effects that result from delayed HS administration. PMID:20661181

  20. Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity.

    PubMed

    Li, Fei; Jiang, Changtao; Krausz, Kristopher W; Li, Yunfei; Albert, Istvan; Hao, Haiping; Fabre, Kristin M; Mitchell, James B; Patterson, Andrew D; Gonzalez, Frank J

    2013-01-01

    The antioxidant tempol reduces obesity in mice. Here we show that tempol alters the gut microbiome by preferentially reducing the genus Lactobacillus and its bile salt hydrolase (BSH) activity leading to the accumulation of intestinal tauro-β-muricholic acid (T-β-MCA). T-β-MCA is an farnesoid X receptor (FXR) nuclear receptor antagonist, which is involved in the regulation of bile acid, lipid and glucose metabolism. Its increased levels during tempol treatment inhibit FXR signalling in the intestine. High-fat diet-fed intestine-specific Fxr-null (Fxr(ΔIE)) mice show lower diet-induced obesity, similar to tempol-treated wild-type mice. Further, tempol treatment does not decrease weight gain in Fxr(ΔIE) mice, suggesting that the intestinal FXR mediates the anti-obesity effects of tempol. These studies demonstrate a biochemical link between the microbiome, nuclear receptor signalling and metabolic disorders, and suggest that inhibition of FXR in the intestine could be a target for anti-obesity drugs.

  1. Clozapine inhibits strychnine-sensitive glycine receptors in rat hippocampal neurons.

    PubMed

    Liu, Yong; Hu, Changping; Tang, Yamei; Chen, Jindong; Dong, Min; Song, Tao; Zhang, Xianghui; Zhao, Jingping

    2009-06-30

    Seizure is one kind of severe side effects during clozapine (Clo) treatment. However, the mechanism of seizure associated with Clo therapy is not completely clear. Strychnine-sensitive glycine receptors (GlyRs) play an important role in regulating the excitability in the hippocampus. In the present study, we investigated the effect of Clo on GlyRs in cultured hippocampal neurons of rats. Clo reversibly inhibited the glycine-induced chloride currents (I(Gly)) in a concentration-dependent manner. The half-maximal effect concentration (EC(50)) for glycine alone was 25.6+/-0.7 microM with the Hill coefficient 1.5+/-0.1; in the presence of Clo, the EC(50) and the Hill coefficient were 28.9+/-6.3 microM and 1.2+/-0.3 respectively, which were not significantly affected by Clo. In addition, Clo inhibition of I(Gly) was not influenced by blocking D(1) and D(2) dopamine receptors with haloperidol (Hal). Taken together, these results suggest that Clo is a non-competitive antagonist of GlyR independent of its activation of dopamine receptors, which may contribute to seizure associated with Clo therapy.

  2. Angiotensin II type 1 receptor blocker inhibits arterial calcification in a pre-clinical model.

    PubMed

    Armstrong, Zachary B; Boughner, Derek R; Drangova, Maria; Rogers, Kem A

    2011-04-01

    Arterial calcification is a common complication of several disorders and is a strong predictor of mortality. The mechanism underlying arterial calcification is not fully understood and as such, no pharmaceutical therapies are currently available which impede its progression. The aim of this study was to investigate the effects of an angiotensin II (AngII) type 1 receptor blocker (ARB) on arterial calcification. Male New Zealand White rabbits were fed an atherogenic diet to induce atherosclerosis and arterial calcification over a period of 12 weeks, with an ARB administered in the final 4 weeks. Using clinically relevant micro-computed tomography, we found that animals fed the atherogenic diet displayed extensive arterial calcification when compared with control. In contrast, administration of the ARB completely inhibited calcification (2.80 ± 1.17 vs. 0.01 ± 0.01% calcified tissue in cholesterol and ARB-treated, respectively; n = 6 and 5; P < 0.05). Calcified regions were characterized by up-regulation of bone morphogenetic protein 2, osteocalcin, and the AngII type 1 receptor and concomitant down-regulation of α-smooth muscle actin, consistent with a phenotypic switch from vascular to osteoblast-like cells. These data provide the first evidence that angiotensin receptor blockade can inhibit arterial calcification by disrupting vascular osteogenesis and suggest that ARBs may be a novel treatment option for patients suffering from vascular calcification.

  3. A Drosophila gustatory receptor essential for aversive taste and inhibiting male-to-male courtship.

    PubMed

    Moon, Seok Jun; Lee, Youngseok; Jiao, Yuchen; Montell, Craig

    2009-10-13

    Contact chemosensation is required for several behaviors that promote insect survival. These include evasive behaviors such as suppression of feeding on repellent compounds, known as antifeedants, and inhibition of male-to-male courtship. However, the gustatory receptors (GRs) required for responding to nonvolatile avoidance chemicals are largely unknown. Exceptions include Drosophila GR66a and GR93a, which are required to prevent ingestion of caffeine, and GR32a, which is necessary for inhibiting male-to-male courtship. However, GR32a is dispensable for normal taste. Thus, distinct GRs may function in sensing avoidance pheromones and antifeedants. Here, we describe the requirements for GR33a, which is expressed widely in gustatory receptor neurons (GRNs) that respond to aversive chemicals. Gr33a mutant flies were impaired in avoiding all nonvolatile repellents tested, ranging from quinine to denatonium, lobeline, and caffeine. Gr33a mutant males also displayed increased male-to-male courtship, implying that it functioned in the detection of a repulsive male pheromone. In contrast to the broadly required olfactory receptor (OR) OR83b, which is essential for trafficking other ORs, GR66a and GR93a are localized normally in Gr33a mutant GRNs. Thus, rather than regulating GR trafficking, GR33a may be a coreceptor required for sensing all nonvolatile repulsive chemicals, including tastants and pheromones.

  4. EphA4 Receptor Forward Signaling Inhibits Glucagon Secretion From α-Cells.

    PubMed

    Hutchens, Troy; Piston, David W

    2015-11-01

    The loss of inhibition of glucagon secretion exacerbates hyperglycemia in type 1 and 2 diabetes. However, the molecular mechanisms that regulate glucagon secretion in unaffected and diabetic states remain relatively unexplained. We present evidence supporting a new model of juxtacrine-mediated regulation of glucagon secretion where neighboring islet cells negatively regulate glucagon secretion through tonic stimulation of α-cell EphA receptors. Primarily through EphA4 receptors, this stimulation correlates with maintenance of a dense F-actin network. In islets, additional stimulation and inhibition of endogenous EphA forward signaling result in inhibition and enhancement, respectively, of glucagon secretion, accompanied by an increase and decrease, respectively, in α-cell F-actin density. Sorted α-cells lack endogenous stimulation of EphA forward signaling from neighboring cells, resulting in enhanced basal glucagon secretion as compared with islets and the elimination of glucose inhibition of glucagon secretion. Restoration of EphA forward signaling in sorted α-cells recapitulates both normal basal glucagon secretion and glucose inhibition of glucagon secretion. Additionally, α-cell-specific EphA4(-/-) mice exhibit abnormal glucagon dynamics, and EphA4(-/-) α-cells contain less dense F-actin networks than EphA4(+/+) α-cells. This juxtacrine-mediated model provides insight into the functional and dysfunctional regulation of glucagon secretion and opens up new therapeutic strategies for the clinical management of diabetes. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  5. Clopidogrel inhibits angiogenesis of gastric ulcer healing via downregulation of vascular endothelial growth factor receptor 2.

    PubMed

    Luo, Jiing-Chyuan; Peng, Yen-Ling; Chen, Tseng-Shing; Huo, Teh-Ia; Hou, Ming-Chih; Huang, Hui-Chun; Lin, Han-Chieh; Lee, Fa-Yauh

    2016-09-01

    Although clopidogrel does not cause gastric mucosal injury, it does not prevent peptic ulcer recurrence in high-risk patients. We explored whether clopidogrel delays gastric ulcer healing via inhibiting angiogenesis and to elucidate the possible mechanisms. Gastric ulcers were induced in Sprague Dawley rats, and ulcer healing and angiogenesis of ulcer margin were compared between clopidogrel-treated rats and controls. The expressions of the proangiogenic growth factors and their receptors including basic fibroblast growth factor (bFGF), bFGF receptor (FGFR), vascular endothelial growth factor (VEGF), VEGFR1, VEGFR2, platelet-derived growth factor (PDGF)A, PDGFB, PDGFR A, PDGFR B, and phosphorylated form of mitogenic activated protein kinase pathways over the ulcer margin were compared via western blot and reverse transcription polymerase chain reaction. In vitro, human umbilical vein endothelial cells (HUVECs) were used to elucidate how clopidogrel inhibited growth factors-stimulated HUVEC proliferation. The ulcer sizes were significantly larger and the angiogenesis of ulcer margin was significantly diminished in the clopidogrel (2 and 10 mg/kg/d) treated groups. Ulcer induction markedly increased the expression of phosphorylated form of extracellular signal-regulated kinase (pERK), FGFR2, VEGF, VEGFR2, and PDGFRA when compared with those of normal mucosa. Clopidogrel treatment significantly decreased pERK, FGFR2, VEGF, VEGFR2, and PDGFRA expression at the ulcer margin when compared with those of the respective control group. In vitro, clopidogrel (10(-6)M) inhibited VEGF-stimulated (20 ng/mL) HUVEC proliferation, at least, via downregulation of VEGFR2 and pERK. Clopidogrel inhibits the angiogenesis of gastric ulcer healing at least partially by the inhibition of the VEGF-VEGFR2-ERK signal transduction pathway. Copyright © 2015. Published by Elsevier B.V.

  6. Melanocortin 4 receptor activation inhibits presynaptic N-type calcium channels in amygdaloid complex neurons.

    PubMed

    Agosti, Francina; López Soto, Eduardo J; Cabral, Agustina; Castrogiovanni, Daniel; Schioth, Helgi B; Perelló, Mario; Raingo, Jesica

    2014-09-01

    The melanocortin 4 receptor (MC4R) is a G protein-coupled receptor involved in food intake and energy expenditure regulation. MC4R activation modifies neuronal activity but the molecular mechanisms by which this regulation occurs remain unclear. Here, we tested the hypothesis that MC4R activation regulates the activity of voltage-gated calcium channels and, as a consequence, synaptic activity. We also tested whether the proposed effect occurs in the amygdala, a brain area known to mediate the anorexigenic actions of MC4R signaling. Using the patch-clamp technique, we found that the activation of MC4R with its agonist melanotan II specifically inhibited 34.5 ± 1.5% of N-type calcium currents in transiently transfected HEK293 cells. This inhibition was concentration-dependent, voltage-independent and occluded by the Gαs pathway inhibitor cholera toxin. Moreover, we found that melanotan II specifically inhibited 25.9 ± 2.0% of native N-type calcium currents and 55.4 ± 14.4% of evoked inhibitory postsynaptic currents in mouse cultured amygdala neurons. In vivo, we found that the MC4R agonist RO27-3225 increased the marker of cellular activity c-Fos in several components of the amygdala, whereas the N-type channel blocker ω conotoxin GVIA increased c-Fos expression exclusively in the central subdivision of the amygdala. Thus, MC4R specifically inhibited the presynaptic N-type channel subtype, and this inhibition may be important for the effects of melanocortin in the central subdivision of the amygdala.

  7. MiR-125a TNF receptor-associated factor 6 to inhibit osteoclastogenesis

    SciTech Connect

    Guo, Li-Juan; Liao, Lan; Yang, Li; Li, Yu; Jiang, Tie-Jian

    2014-02-15

    MicroRNAs (miRNAs) play important roles in osteoclastogenesis and bone resorption. In the present study, we found that miR-125a was dramatically down-regulated during macrophage colony stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL) induced osteoclastogenesis of circulating CD14+ peripheral blood mononuclear cells (PBMCs). Overexpression of miR-125a in CD14+ PBMCs inhibited osteoclastogenesis, while inhibition of miR-125a promoted osteoclastogenesis. TNF receptor-associated factor 6 (TRAF6), a transduction factor for RANKL/RANK/NFATc1 signal, was confirmed to be a target of miR-125a. EMSA and ChIP assays confirmed that NFATc1 bound to the promoter of the miR-125a. Overexpression of NFATc1 inhibited miR-125a transcription, and block of NFATc1 expression attenuated RANKL-regulated miR-125a transcription. Here, we reported that miR-125a played a biological function in osteoclastogenesis through a novel TRAF6/ NFATc1/miR-125a regulatory feedback loop. It suggests that regulation of miR-125a expression may be a potential strategy for ameliorating metabolic disease. - Highlights: • MiR-125a was significantly down-regulated in osteoclastogenesis of CD14+ PBMCs. • MiR-125a inhibited osteoclast differentiation by targeting TRAF6. • NFATc1 inhibited miR-125a transciption by binding to the promoter of miR-125a. • TRAF6/NFATc1 and miR-125a form a regulatory feedback loop in osteoclastogenesis.

  8. The interaction between the Drosophila secreted protein argos and the epidermal growth factor receptor inhibits dimerization of the receptor and binding of secreted spitz to the receptor.

    PubMed

    Jin, M H; Sawamoto, K; Ito, M; Okano, H

    2000-03-01

    Drosophila Argos (Aos), a secreted protein with an epidermal growth factor (EGF)-like domain, has been shown to inhibit the activation of the Drosophila EGF receptor (DER). However, it has not been determined whether Aos binds directly to DER or whether regulation of the DER activation occurs through some other mechanism. Using DER-expressing cells (DER/S2) and a recombinant DER extracellular domain-Fc fusion protein (DER-Fc), we have shown that Aos binds directly to the extracellular domain of DER with its carboxyl-terminal region, including the EGF-like domain. Furthermore, Aos can block the binding of secreted Spitz (sSpi), a transforming growth factor alpha-like ligand of DER, to the extracellular domain of DER. We observed that sSpi stimulates the dimerization of both the soluble DER extracellular domain (sDER) and the intact DER in the DER/S2 cells and that Aos can block the sSpi-induced dimerization of both sDER and intact DER. Moreover, we have shown that, by directly interacting with DER, Aos and SpiAos (a chimeric protein that is composed of the N-terminal region of Spi and the C-terminal region of Aos) inhibit the dimerization and phosphorylation of DER that are induced by DER's overexpression in the absence of sSpi. These results indicate that Aos exerts its inhibitory function through dual molecular mechanisms: by blocking both the receptor dimerization and the binding of activating ligand to the receptor. This is the first description of this novel inhibitory mechanism for receptor tyrosine kinases.

  9. Effects of macromolecular crowding on the inhibition of virus assembly and virus-cell receptor recognition.

    PubMed

    Rincón, Verónica; Bocanegra, Rebeca; Rodríguez-Huete, Alicia; Rivas, Germán; Mateu, Mauricio G

    2011-02-02

    Biological fluids contain a very high total concentration of macromolecules that leads to volume exclusion by one molecule to another. Theory and experiment have shown that this condition, termed macromolecular crowding, can have significant effects on molecular recognition. However, the influence of molecular crowding on recognition events involving virus particles, and their inhibition by antiviral compounds, is virtually unexplored. Among these processes, capsid self-assembly during viral morphogenesis and capsid-cell receptor recognition during virus entry into cells are receiving increasing attention as targets for the development of new antiviral drugs. In this study, we have analyzed the effect of macromolecular crowding on the inhibition of these two processes by peptides. Macromolecular crowding led to a significant reduction in the inhibitory activity of: 1), a capsid-binding peptide and a small capsid protein domain that interfere with assembly of the human immunodeficiency virus capsid, and 2), a RGD-containing peptide able to block the interaction between foot-and-mouth disease virus and receptor molecules on the host cell membrane (in this case, the effect was dependent on the conditions used). The results, discussed in the light of macromolecular crowding theory, are relevant for a quantitative understanding of molecular recognition processes during virus infection and its inhibition.

  10. The phenolic monoterpenoid carvacrol inhibits the binding of nicotine to the housefly nicotinic acetylcholine receptor.

    PubMed

    Tong, Fan; Gross, Aaron D; Dolan, Marc C; Coats, Joel R

    2013-07-01

    The phenolic monoterpenoid carvacrol, which is found in many plant essential oils (thyme, oregano and Alaska yellow cedar), is highly active against pest arthropods, but its mechanisms of action are not fully understood. Here, carvacrol is shown to bind in a membrane preparation containing insect nicotinic acetylcholine receptors (nAChRs). [(14) C]-Nicotine binding assays with Musca domestica (housefly) nAChRs were used in this study to demonstrate carvacrol's binding to nAChRs, thereby acting as a modulator of the receptors. Carvacrol showed a concentration-dependent inhibition of [(14) C]-nicotine binding in a membrane preparation of housefly heads containing nAChRs, with IC50 = 1.4 μM, in a non-competitive pattern. Binding studies with neonicotinoid insecticides revealed that imidacloprid and thiamethoxam did not inhibit the binding of [(14) C]-nicotine, while dinotefuran, from the guanidine subclass of neonicotinoids, inhibited nicotine binding like carvacrol. Carvacrol binds to housefly nAChRs at a binding site distinct from nicotine and acetylcholine, and the nAChRs are a possible target of carvacrol for its insecticidal activity. © 2012 Society of Chemical Industry.

  11. Prostaglandin D2 inhibits wound-induced hair follicle neogenesis through the receptor, Gpr44.

    PubMed

    Nelson, Amanda M; Loy, Dorothy E; Lawson, John A; Katseff, Adiya S; Fitzgerald, Garret A; Garza, Luis A

    2013-04-01

    Prostaglandins (PGs) are key inflammatory mediators involved in wound healing and regulating hair growth; however, their role in skin regeneration after injury is unknown. Using wound-induced hair follicle neogenesis (WIHN) as a marker of skin regeneration, we hypothesized that PGD2 decreases follicle neogenesis. PGE2 and PGD2 were elevated early and late, respectively, during wound healing. The levels of WIHN, lipocalin-type prostaglandin D2 synthase (Ptgds), and its product PGD2 each varied significantly among background strains of mice after wounding, and all correlated such that the highest Ptgds and PGD2 levels were associated with the lowest amount of regeneration. In addition, an alternatively spliced transcript variant of Ptgds missing exon 3 correlated with high regeneration in mice. Exogenous application of PGD2 decreased WIHN in wild-type mice, and PGD2 receptor Gpr44-null mice showed increased WIHN compared with strain-matched control mice. Furthermore, Gpr44-null mice were resistant to PGD2-induced inhibition of follicle neogenesis. In all, these findings demonstrate that PGD2 inhibits hair follicle regeneration through the Gpr44 receptor and imply that inhibition of PGD2 production or Gpr44 signaling will promote skin regeneration.

  12. Prostaglandin D2 inhibits wound-induced hair follicle neogenesis through the receptor, Gpr44

    PubMed Central

    Nelson, Amanda M.; Loy, Dorothy E.; Lawson, John A.; Katseff, Adiya S.; FitzGerald, Garret A.; Garza, Luis A.

    2012-01-01

    Prostaglandins (PGs) are key inflammatory mediators involved in wound healing and regulating hair growth; however, their role in skin regeneration after injury is unknown. Using wound-induced hair follicle neogenesis (WIHN) as a marker of skin regeneration, we hypothesized that PGD2 decreases follicle neogenesis. PGE2 and PGD2 were elevated early and late respectively during wound healing. The levels of WIHN, lipocalin-type prostaglandin D2 synthase (Ptgds) and its product PGD2 each varied significantly among background strains of mice after wounding and all correlated such that the highest Ptgds and PGD2 levels were associated with the lowest amount of regeneration. Additionally, an alternatively spliced transcript variant of Ptgds missing exon 3 correlated with high regeneration in mice. Exogenous application of PGD2 decreased WIHN in wild type mice and PGD2 receptor Gpr44 null mice showed increased WIHN compared to strain-matched control mice. Furthermore, Gpr44 null mice were resistant to PGD2-induced inhibition of follicle neogenesis. In all, these findings demonstrate that PGD2 inhibits hair follicle regeneration through the Gpr44 receptor and imply that inhibition of PGD2 production or Gpr44 signaling will promote skin regeneration. PMID:23190891

  13. JMV641: a potent bombesin receptor antagonist that inhibits Swiss 3T3 cell proliferation.

    PubMed

    Azay, J; Gagne, D; Devin, C; Llinares, M; Fehrentz, J A; Martinez, J

    1996-08-27

    The peptides of the bombesin family are involved in stimulation of mitogenesis in various cell lines, including cancerous cell lines. Bombesin receptor antagonists are of great interest to inhibit this proliferation. We have synthesized a potent bombesin receptor antagonist, e.g., compound JMV641 [H-DPhe-Gln-Trp-Ala-Val-Gly-His-NH-*CH[CH2-CH(CH3)2]-**CHOH- (CH2)3-CH3 [*(S); **92% of (S) isomer], in which a pseudopeptide bond mimicking the transition state analogue replaced the peptide bond between the two C-terminal residues. This compound was highly potent to dose-dependently inhibit binding of 125I-GRP to Swiss 3T3 cells (IC50 = 0.85 +/- 0.15 nM) and bombesin-stimulated Swiss 3T3 proliferation (pA2 = 8.78). However, compound JMV641 can inhibit bombesin-induced AP-1 regulated genes that are nuclear messengers mediating the actions of signal transduction pathways stimulated by growth factors.

  14. Cyclin D1 represses peroxisome proliferator-activated receptor alpha and inhibits fatty acid oxidation

    PubMed Central

    Hanse, Eric A.; Mashek, Douglas G.; Mashek, Mara T.; Hendrickson, Anna M.; Mullany, Lisa K.; Albrecht, Jeffrey H.

    2016-01-01

    Cyclin D1 is a cell cycle protein that promotes proliferation by mediating progression through key checkpoints in G1 phase. It is also a proto-oncogene that is commonly overexpressed in human cancers. In addition to its canonical role in controlling cell cycle progression, cyclin D1 affects other aspects of cell physiology, in part through transcriptional regulation. In this study, we find that cyclin D1 inhibits the activity of a key metabolic transcription factor, peroxisome proliferator-activated receptor α (PPARα), a member of nuclear receptor family that induces fatty acid oxidation and may play an anti-neoplastic role. In primary hepatocytes, cyclin D1 inhibits PPARα transcriptional activity and target gene expression in a cdk4-independent manner. In liver and breast cancer cells, knockdown of cyclin D1 leads to increased PPARα transcriptional activity, expression of PPARα target genes, and fatty acid oxidation. Similarly, cyclin D1 depletion enhances binding of PPARα to target sequences by chromatin immunoprecipitation. In proliferating hepatocytes and regenerating liver in vivo, induction of endogenous cyclin D1 is associated with diminished PPARα activity. Cyclin D1 expression is both necessary and sufficient for growth factor-mediated repression of fatty acid oxidation in proliferating hepatocytes. These studies indicate that in addition to playing a pivotal role in cell cycle progression, cyclin D1 represses PPARα activity and inhibits fatty acid oxidation. Our findings establish a new link between cyclin D1 and metabolism in both tumor cells and physiologic hepatocyte proliferation. PMID:27351284

  15. Cyclin D1 represses peroxisome proliferator-activated receptor alpha and inhibits fatty acid oxidation.

    PubMed

    Kamarajugadda, Sushama; Becker, Jennifer R; Hanse, Eric A; Mashek, Douglas G; Mashek, Mara T; Hendrickson, Anna M; Mullany, Lisa K; Albrecht, Jeffrey H

    2016-07-26

    Cyclin D1 is a cell cycle protein that promotes proliferation by mediating progression through key checkpoints in G1 phase. It is also a proto-oncogene that is commonly overexpressed in human cancers. In addition to its canonical role in controlling cell cycle progression, cyclin D1 affects other aspects of cell physiology, in part through transcriptional regulation. In this study, we find that cyclin D1 inhibits the activity of a key metabolic transcription factor, peroxisome proliferator-activated receptor α (PPARα), a member of nuclear receptor family that induces fatty acid oxidation and may play an anti-neoplastic role. In primary hepatocytes, cyclin D1 inhibits PPARα transcriptional activity and target gene expression in a cdk4-independent manner. In liver and breast cancer cells, knockdown of cyclin D1 leads to increased PPARα transcriptional activity, expression of PPARα target genes, and fatty acid oxidation. Similarly, cyclin D1 depletion enhances binding of PPARα to target sequences by chromatin immunoprecipitation. In proliferating hepatocytes and regenerating liver in vivo, induction of endogenous cyclin D1 is associated with diminished PPARα activity. Cyclin D1 expression is both necessary and sufficient for growth factor-mediated repression of fatty acid oxidation in proliferating hepatocytes. These studies indicate that in addition to playing a pivotal role in cell cycle progression, cyclin D1 represses PPARα activity and inhibits fatty acid oxidation. Our findings establish a new link between cyclin D1 and metabolism in both tumor cells and physiologic hepatocyte proliferation.

  16. Inhibition of cancer cell proliferation by midazolam by targeting transient receptor potential melastatin 7.

    PubMed

    Dou, Yunling; Li, Yuan; Chen, Jingkao; Wu, Sihan; Xiao, Xiao; Xie, Shanshan; Tang, Lipeng; Yan, Min; Wang, Youqiong; Lin, Jun; Zhu, Wenbo; Yan, Guangmei

    2013-03-01

    Transient receptor potential melastatin 7 (TRPM7), a Ca(2+)-permeable channel, has been demonstrated to be present in cancer cells and involved in their growth and proliferation. The present study used midazolam, a benzodiazepine class anesthesic, to pharmacologically intervene in the expression of TRPM7 and to inhibit cancer cell proliferation. Midazolam significantly inhibited the growth and proliferation of FaDu human hypopharyngeal squamous cell carcinoma cells, concurring with the induction of G(0)/G(1) cell cycle arrest and blockage of Rb activation. Central-type and peripheral-type benzodiazepine receptor antagonists did not abrogate proliferation inhibition by midazolam, while the specific TRPM7 agonist bradykinin reversed this effect. In addition, other benzodiazepines, diazepam and clonazepam also exhibited anti-proliferative activities. The inhibitory activity on cancer cell growth and proliferation, combined with the TRPM-dependent mechanism, reveals the anticancer potential of midazolam as a TRPM7 inhibitor and supports the suggestion that TRPM7 is a valuable target for pharmaceutical intervention.

  17. Methamphetamine Inhibits Toll-Like Receptor 9-Mediated Anti-HIV Activity in Macrophages

    PubMed Central

    Cen, Ping; Ye, Li; Su, Qi-Jian; Wang, Xu; Li, Jie-Liang; Lin, Xin-Qin

    2013-01-01

    Abstract Toll-like receptor 9 (TLR9) is one of the key sensors that recognize viral infection/replication in the host cells. Studies have demonstrated that methamphetamine (METH) dysregulated host cell innate immunity and facilitated HIV infection of macrophages. In this study, we present new evidence that METH suppressed TLR9-mediated anti-HIV activity in macrophages. Activation of TLR9 by its agonist CpG-ODN 2216 inhibits HIV replication, which was demonstrated by increased expression of TLR9, interferon (IFN)-α, IFN regulatory factor-7 (IRF-7), myeloid differentiation factor 88 (MyD88), and myxovirus resistance gene A (MxA) in macrophages. However, METH treatment of macrophages greatly compromised the TLR9 signaling-mediated anti-HIV effect and inhibited the expression of TLR9 downstream signaling factors. Dopamine D1 receptor (D1R) antagonists (SCH23390) could block METH-mediated inhibition of anti-HIV activity of TLR9 signaling. Investigation of the underlying mechanisms of the METH action showed that METH treatment selectively down-regulated the expression of TLR9 on macrophages, whereas it had little effect on the expression of other TLRs. Collectively, our results provide further evidence that METH suppresses host cell innate immunity against HIV infection by down-regulating TLR9 expression and its signaling-mediated antiviral effect in macrophages. PMID:23751096

  18. Activation of peroxisome proliferator-activated receptor γ inhibits vascular calcification by upregulating Klotho

    PubMed Central

    Cheng, Lijuan; Zhang, Lei; Yang, Jun; Hao, Lirong

    2017-01-01

    Cardiovascular diseases are common in patients with chronic kidney disease. One of the key symptoms is the calcification of the vascular smooth muscle cells (VSMCs), which is induced by dysregulated mineral metabolism with high circulating levels of inorganic phosphate (Pi) and calcium. Klotho, which was originally identified as an aging suppressor gene, has been shown to be associated with vascular calcification. Since Klotho was recently identified as a target for nuclear receptor peroxisome proliferator-activated receptor (PPAR) γ, the present study aimed to determine whether PPARγ regulates VSMC calcification through modulating the expression levels of Klotho. It was demonstrated that the expression of PPARγ was downregulated during Pi-induced VSMC calcification. In addition, treatment with PPARγ agonists inhibited the calcification and enhanced the expression of Klotho in VSMCs in a PPARγ-dependent manner. Of note, loss of Klotho expression by RNA interference abolished the ability of PPARγ activation to inhibit VSMC calcification. Furthermore, activation of Klotho as well as PPARγ inhibited the expression of Pi transporter 1/2 and reduced Pi influx into VSMCs. To the best of our knowledge, the present study was the first to demonstrate that PPARγ regulates VSMC calcification through activating Klotho.

  19. Generation and characterization of small single domain antibodies inhibiting human tumor necrosis factor receptor 1.

    PubMed

    Steeland, Sophie; Puimège, Leen; Vandenbroucke, Roosmarijn E; Van Hauwermeiren, Filip; Haustraete, Jurgen; Devoogdt, Nick; Hulpiau, Paco; Leroux-Roels, Geert; Laukens, Debby; Meuleman, Philip; De Vos, Martine; Libert, Claude

    2015-02-13

    The cytokine TNF is a well known drug target for several inflammatory diseases such as Crohn disease. Despite the great success of TNF blockers, therapy could be improved because of high costs and side effects. Selective inhibition of TNF receptor (TNFR) 1 signaling holds the potential to greatly reduce the pro-inflammatory activity of TNF, thereby preserving the advantageous immunomodulatory signals mediated by TNFR2. We generated a selective human TNFR1 inhibitor based on Nanobody (Nb) technology. Two anti-human TNFR1 Nbs were linked with an anti-albumin Nb to generate Nb Alb-70-96 named "TNF Receptor-One Silencer" (TROS). TROS selectively binds and inhibits TNF/TNFR1 and lymphotoxin-α/TNFR1 signaling with good affinity and IC50 values, both of which are in the nanomolar range. Surface plasmon resonance analysis reveals that TROS competes with TNF for binding to human TNFR1. In HEK293T cells, TROS strongly reduces TNF-induced gene expression, like IL8 and TNF, in a dose-dependent manner; and in ex vivo cultured colon biopsies of CD patients, TROS inhibits inflammation. Finally, in liver chimeric humanized mice, TROS antagonizes inflammation in a model of acute TNF-induced liver inflammation, reflected in reduced human IL8 expression in liver and reduced IL6 levels in serum. These results demonstrate the considerable potential of TROS and justify the evaluation of TROS in relevant disease animal models of both acute and chronic inflammation and eventually in patients.

  20. Tributyltin and triphenyltin inhibit osteoclast differentiation through a retinoic acid receptor-dependent signaling pathway

    SciTech Connect

    Yonezawa, Takayuki; Hasegawa, Shin-ichi; Ahn, Jae-Yong; Cha, Byung-Yoon; Teruya, Toshiaki; Hagiwara, Hiromi; Nagai, Kazuo; Woo, Je-Tae; E-mail: jwoo@isc.chubu.ac.jp

    2007-03-30

    Organotin compounds, such as tributyltin (TBT) and triphenyltin (TPT), have been widely used in agriculture and industry. Although these compounds are known to have many toxic effects, including endocrine-disrupting effects, their effects on bone resorption are unknown. In this study, we investigated the effects of organotin compounds, such as monobutyltin (MBT), dibutyltin (DBT), TBT, and TPT, on osteoclast differentiation using mouse monocytic RAW264.7 cells. MBT and DBT had no effects, whereas TBT and TPT dose-dependently inhibited osteoclast differentiation at concentrations of 3-30 nM. Treatment with a retinoic acid receptor (RAR)-specific antagonist, Ro41-5253, restored the inhibition of osteoclastogenesis by TBT and TPT. TBT and TPT reduced receptor activator of nuclear factor-{kappa}B ligand (RANKL) induced nuclear factor of activated T cells (NFAT) c1 expression, and the reduction in NFATc1 expression was recovered by Ro41-5253. Our results suggest that TBT and TPT suppress osteoclastogenesis by inhibiting RANKL-induced NFATc1 expression via an RAR-dependent signaling pathway.

  1. A Gsα mutant designed to inhibit receptor signaling through Gs

    PubMed Central

    Iiri, Taroh; Bell, Sean M.; Baranski, Thomas J.; Fujita, Toshiro; Bourne, Henry R.

    1999-01-01

    Hormonal signals activate trimeric G proteins by substituting GTP for GDP bound to the G protein α subunit (Gα), thereby generating two potential signaling molecules, Gα–GTP and free Gβγ. The usefulness of dominant negative mutations for investigating Ras and other monomeric G proteins inspired us to create a functionally analogous dominant negative Gα mutation. Here we describe a mutant α subunit designed to inhibit receptor-mediated hormonal activation of Gs, the stimulatory regulator of adenylyl cyclase. To construct this mutant, we introduced into the α subunit (αs) of Gs three separate mutations chosen because they impair αs function in complementary ways: the A366S mutant reduces affinity of αs for binding GDP, whereas the G226A and E268A mutations impair the protein’s ability to bind GTP and to assume an active conformation. The triple mutant robustly inhibits (by up to 80%) Gs-dependent hormonal stimulation of adenylyl cyclase in cultured cells. Inhibition is selective in that it does not affect cellular responses to expression of a constitutively active αs mutant (αs–R201C) or to agonists for receptors that activate Gq or Gi. This αs triple mutant and cognate Gα mutants should provide specific tools for dissection of G protein-mediated signals in cultured cells and transgenic animals. PMID:9892662

  2. Inhibition of cancer cell proliferation by midazolam by targeting transient receptor potential melastatin 7

    PubMed Central

    DOU, YUNLING; LI, YUAN; CHEN, JINGKAO; WU, SIHAN; XIAO, XIAO; XIE, SHANSHAN; TANG, LIPENG; YAN, MIN; WANG, YOUQIONG; LIN, JUN; ZHU, WENBO; YAN, GUANGMEI

    2013-01-01

    Transient receptor potential melastatin 7 (TRPM7), a Ca2+-permeable channel, has been demonstrated to be present in cancer cells and involved in their growth and proliferation. The present study used midazolam, a benzodiazepine class anesthesic, to pharmacologically intervene in the expression of TRPM7 and to inhibit cancer cell proliferation. Midazolam significantly inhibited the growth and proliferation of FaDu human hypopharyngeal squamous cell carcinoma cells, concurring with the induction of G0/G1 cell cycle arrest and blockage of Rb activation. Central-type and peripheral-type benzodiazepine receptor antagonists did not abrogate proliferation inhibition by midazolam, while the specific TRPM7 agonist bradykinin reversed this effect. In addition, other benzodiazepines, diazepam and clonazepam also exhibited anti-proliferative activities. The inhibitory activity on cancer cell growth and proliferation, combined with the TRPM-dependent mechanism, reveals the anticancer potential of midazolam as a TRPM7 inhibitor and supports the suggestion that TRPM7 is a valuable target for pharmaceutical intervention. PMID:23426784

  3. Tricyclic analogs cyclobenzaprine, amitriptyline and cyproheptadine inhibit the spinal reflex transmission through 5-HT(2) receptors.

    PubMed

    Honda, Motoko; Nishida, Takashi; Ono, Hideki

    2003-01-01

    The centrally acting muscle relaxant cyclobenzaprine decreases the amplitude of monosynaptic reflex potentials by inhibiting the facilitatory descending serotonergic influences in the spinal cord. Interestingly, the structure of cyclobenzaprine is much similar to those of amitriptyline and cyproheptadine. In the present study, we attempted to elucidate the relationship between 5-HT(2) receptor antagonistic and inhibitory effects of cyclobenzaprine, amitriptyline, cyproheptadine and ketanserin on the spinal reflexes. Cyclobenzaprine, amitriptyline, cyproheptadine, and ketanserin significantly inhibited facilitatory effects of 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) on flexor reflexes and mono- and polysynaptic spinal reflex potentials in spinalized rats. In intact rats, these drugs significantly reduced the mono- and polysynaptic reflex potentials. 5-HT depletion significantly prevented the depression of the spinal reflex potentials induced by these drugs. These results suggest that the inhibitory effects of cyclobenzaprine, amitriptyline, and cyproheptadine on mono- and polysynaptic reflex potentials are due to the inhibition of descending serotonergic systems through 5-HT(2) receptors in the spinal cord.

  4. Porphyrin derivatives inhibit the interaction between receptor activator of NF-κB and its ligand.

    PubMed

    Chypre, Melanie; Madel, Maria-Bernadette; Chaloin, Olivier; Blin-Wakkach, Chlaudine; Morice, Christophe; Mueller, Christopher G

    2017-09-08

    Receptor Activator of NF-κB (RANK), a member of the TNF-receptor superfamily, plays an important role in bone resorption and stimulates immune and epithelial cell activation. Denosumab, a human monoclonal antibody blocking RANK ligand (RANKL), is approved for the treatment of osteoporosis and bone metastasis. However, a small molecule inhibiting RANK-RANKL interaction would be beneficial to reduce costs and to facilitate treatments with orally available therapeutic agents. Here, we report the discovery of the first non-peptidic inhibitors of RANK-RANKL interactions. By screening a chemical library using a competitive ELISA assay, the porphyrin verteporfin was identified as a hit. Derivatives were screened and the chlorin-macrocycle-containing pheophorbide A and purpurin 18 were found to bind recombinant RANKL, to inhibit RANK-RANKL interaction in the ELISA assay, to suppress the RANKL-dependent activation of model cells and the differentiation of RANK-expressing precursors into osteoclasts. This discovery of a family of small molecules inhibiting RANK-activation presents a first basis for further development of non-peptidic therapeutic agents targeting the interaction between RANK and RANKL. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Compensatory Activation of Cannabinoid CB2 Receptor Inhibition of GABA Release in the Rostral Ventromedial Medulla in Inflammatory Pain.

    PubMed

    Li, Ming-Hua; Suchland, Katherine L; Ingram, Susan L

    2017-01-18

    The rostral ventromedial medulla (RVM) is a relay in the descending pain modulatory system and an important site of endocannabinoid modulation of pain. Endocannabinoids inhibit GABA release in the RVM, but it is not known whether this effect persists in chronic pain states. In the present studies, persistent inflammation induced by complete Freund's adjuvant (CFA) increased GABAergic miniature IPSCs (mIPSCs). Endocannabinoid activation of cannabinoid (CB1) receptors known to inhibit presynaptic GABA release was significantly reduced in the RVM of CFA-treated rats compared with naive rats. The reduction in CFA-treated rats correlated with decreased CB1 receptor protein expression and function in the RVM. Paradoxically, the nonselective CB1/CB2 receptor agonist WIN55212 inhibited GABAergic mIPSCs in both naive and CFA-treated rats. However, WIN55212 inhibition was reversed by the CB1 receptor antagonist rimonabant in naive rats but not in CFA-treated rats. WIN55212-mediated inhibition in CFA-treated rats was blocked by the CB2 receptor-selective antagonist SR144528, indicating that CB2 receptor function in the RVM is increased during persistent inflammation. Consistent with these results, CB2 receptor agonists AM1241 and GW405833 inhibited GABAergic mIPSC frequency only in CFA-treated rats, and the inhibition was reversed with SR144528. When administered alone, SR144528 and another CB2 receptor-selective antagonist AM630 increased mIPSC frequency in the RVM of CFA-treated rats, indicating that CB2 receptors are tonically activated by endocannabinoids. Our data provide evidence that CB2 receptor function emerges in the RVM in persistent inflammation and that selective CB2 receptor agonists may be useful for treatment of persistent inflammatory pain. These studies demonstrate that endocannabinoid signaling to CB1 and CB2 receptors in adult rostral ventromedial medulla is altered in persistent inflammation. The emergence of CB2 receptor function in the rostral

  6. Zinc finger protein 131 inhibits estrogen signaling by suppressing estrogen receptor {alpha} homo-dimerization

    SciTech Connect

    Oh, Yohan; Chung, Kwang Chul

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer ZNF131 directly interacts with ER{alpha}. Black-Right-Pointing-Pointer The binding affinity of ZNF131 to ER{alpha} increases upon E2 stimulation. Black-Right-Pointing-Pointer ZNF131 inhibits ER{alpha}-mediated trans-activation by suppressing its homo-dimerization. Black-Right-Pointing-Pointer ZNF131 inhibits ER{alpha}-dimerization and E2-induced breast cancer cell proliferation. Black-Right-Pointing-Pointer ZNF131 inhibits estrogen signaling by acting as an ER{alpha}-co-repressor. -- Abstract: Steroid hormone estrogen elicits various physiological functions, many of which are mediated through two structurally and functionally distinct estrogen receptors, ER{alpha} and ER{beta}. The functional role of zinc finger protein 131 (ZNF131) is poorly understood, but it is assumed to possess transcriptional regulation activity due to the presence of a DNA binding motif. A few recent reports, including ours, revealed that ZNF131 acts as a negative regulator of ER{alpha} and that SUMO modification potentiates the negative effect of ZNF131 on estrogen signaling. However, its molecular mechanism for ER{alpha} inhibition has not been elucidated in detail. Here, we demonstrate that ZNF131 directly interacts with ER{alpha}, which consequently inhibits ER{alpha}-mediated trans-activation by suppressing its homo-dimerization. Moreover, we show that the C-terminal region of ZNF131 containing the SUMOylation site is necessary for its inhibition of estrogen signaling. Taken together, these data suggest that ZNF131 inhibits estrogen signaling by acting as an ER{alpha}-co-repressor.

  7. Inhibition of peroxisome-proliferator-activated receptor (PPAR)alpha by MK886.

    PubMed Central

    Kehrer, J P; Biswal, S S; La, E; Thuillier, P; Datta, K; Fischer, S M; Vanden Heuvel, J P

    2001-01-01

    Although MK886 was originally identified as an inhibitor of 5-lipoxygenase activating protein (FLAP), recent data demonstrate that this activity does not underlie its ability to induce apoptosis [Datta, Biswal and Kehrer (1999) Biochem. J. 340, 371--375]. Since FLAP is a fatty-acid binding protein, it is conceivable that MK886 may affect other such proteins. A family of nuclear receptors that are activated by fatty acids and their metabolites, the peroxisome-proliferator-activated receptors (PPARs), have been implicated in apoptosis and may represent a target for MK886. The ability of MK886 to inhibit PPAR-alpha, -beta and -gamma activity was assessed using reporter assay systems (peroxisome-proliferator response element--luciferase). Using a transient transfection system in monkey kidney fibroblast CV-1 cells, mouse keratinocyte 308 cells and human lung adenocarcinoma A549 cells, 10--20 microM MK886 inhibited Wy14,643 activation of PPAR alpha by approximately 80%. Similar inhibition of PPAR alpha by MK886 was observed with a stable transfection reporter system in CV-1 cells. Only minimal inhibitory effects were seen on PPAR beta and PPAR gamma. MK886 inhibited PPAR alpha by a non-competitive mechanism as shown by its effects on the binding of arachidonic acid to PPAR alpha protein, and a dose-response study using a transient transfection reporter assay in COS-1 cells. An assay assessing PPAR ligand-receptor interactions showed that MK886 prevents the conformational change necessary for active-complex formation. The expression of keratin-1, a protein encoded by a PPAR alpha-responsive gene, was reduced by MK886 in a culture of mouse primary keratinocytes, suggesting that PPAR inhibition has functional consequences in normal cells. Although Jurkat cells express all PPAR isoforms, various PPAR alpha and PPAR gamma agonists were unable to prevent MK886-induced apoptosis. This is consistent with MK886 functioning as a non-competitive inhibitor of PPAR alpha, but may

  8. Sigma-1 receptor activation inhibits osmotic swelling of rat retinal glial (Müller) cells by transactivation of glutamatergic and purinergic receptors.

    PubMed

    Vogler, Stefanie; Winters, Helge; Pannicke, Thomas; Wiedemann, Peter; Reichenbach, Andreas; Bringmann, Andreas

    2016-01-01

    Water accumulation in retinal glial (Müller) and neuronal cells resulting in cellular swelling contributes to the development of retinal edema and neurodegeneration. Sigma (σ) receptor activation is known to have neuroprotective effects in the retina. Here, we show that the nonselective σ receptor agonist ditolylguanidine, and the selective σ1 receptor agonist PRE-084, inhibit the osmotic swelling of Müller cell somata induced by superfusion of rat retinal slices with a hypoosmotic solution containing barium ions. In contrast, PRE-084 did not inhibit the osmotic swelling of bipolar cell somata. The effects of σ receptor agonists on the Müller cell swelling were abrogated in the presence of blockers of metabotropic glutamate and purinergic P2Y1 receptors, respectively, suggesting that σ receptor activation triggers activation of a glutamatergic-purinergic signaling cascade which is known to prevent the osmotic Müller cell swelling. The swelling-inhibitory effect of 17β-estradiol was prevented by the σ1 receptor antagonist BD1047, suggesting that the effect is mediated by σ1 receptor activation. The data may suggest that the neuroprotective effect of σ receptor activation in the retina is in part mediated by prevention of the cytotoxic swelling of retinal glial cells.

  9. NR2B receptor blockade inhibits pain-related sensitization of amygdala neurons.

    PubMed

    Ji, Guangchen; Horváth, Csilla; Neugebauer, Volker

    2009-04-28

    Pain-related sensitization and synaptic plasticity in the central nucleus of the amygdala (CeA) depend on the endogenous activation of NMDA receptors and phosphorylation of the NR1 subunit through a PKA-dependent mechanism. Functional NMDA receptors are heteromeric assemblies of NR1 with NR2A-D or NR3A, B subunits. NMDA receptors composed of NR1 and NR2B subunits have been implicated in neuroplasticity and are present in the CeA. Here we used a selective NR2B antagonist (Ro-256981) to determine the contribution of NR2B-containing NMDA receptors to pain-related sensitization of CeA neurons. Extracellular single-unit recordings were made from CeA neurons in anesthetized adult male rats before and during the development of an acute arthritis. Arthritis was induced in one knee joint by intraarticular injections of kaolin and carrageenan. Brief (15 s) mechanical stimuli of innocuous (100-500 g/30 mm2) and noxious (1000-2000 g/30 mm2) intensity were applied to the knee and other parts of the body. In agreement with our previous studies, all CeA neurons developed increased background and evoked activity after arthritis induction. Ro-256981 (1, 10 and 100 muM; 15 min each) was administered into the CeA by microdialysis 5-6 h postinduction of arthritis. Ro-256981 concentration-dependently decreased evoked responses, but not background activity. This pattern of effect is different from that of an NMDA receptor antagonist (AP5) in our previous studies. AP5 (100 microM - 5 mM) inhibited background activity and evoked responses. The differential effects of AP5 and Ro-256981 may suggest that NMDA receptors containing the NR2B subunit are important but not sole contributors to pain-related changes of CeA neurons.

  10. Exposure to D2-like dopamine receptor agonists inhibits swimming in Daphnia magna.

    PubMed

    Barrozo, Enrico R; Fowler, David A; Beckman, Matthew L

    2015-10-01

    Daphnia are freshwater crustaceans that have been used for decades in ecotoxicology research. Despite the important role that Daphnia have played in environmental toxicology studies, very little is known about the neurobiology of Daphnia. Although many studies have investigated the swimming movements of these "water fleas", few studies have examined the underlying neurochemical basis for these movements. To characterize the locomotor effect of drugs in Daphnia, a two-dimensional video imaging tool was developed and animal tracking was performed with freely available software, CTRAX. Due to the central role that dopamine plays in the movement of animals, we sought to determine the role of dopamine receptor signaling in Daphnia movement by characterizing the effect of ten drugs that are agonists or antagonists of dopamine receptors. At 1, 2, and 6h of treatment with a 10μM drug, several dopamine receptor agonists with documented effects on the D2-like class of receptors decreased the movement. Further, we determined behavioral inhibition values (IC50) at 1h of treatment for (1R,3S)-1-(aminomethyl)-3-phenyl-3,4-dihydro-1H-isochromene-5,6-diol (A68930) to be 1.4μM and for bromocriptine to be 6.6μM. This study describes a new method to study Daphnia swimming and establishes this organism as a useful model for studies of dopaminergic signaling. Specifically, this study shows that a dopamine receptor signaling pathway, mediated by putative D2-like receptors, is involved in the control of Daphnia swimming behavior. Due to its ease of use and its rich motor program we propose that Daphnia should be considered for future studies of dopamine neuron toxicity and protection. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Muscarinic Acetylcholine Receptor M3 Modulates Odorant Receptor Activity via Inhibition of β-Arrestin-2 Recruitment

    PubMed Central

    Jiang, Yue; Li, Yun Rose; Tian, Huikai; Ma, Minghong; Matsunami, Hiroaki

    2015-01-01

    The olfactory system in rodents serves a critical function in social, reproductive, and survival behaviors. Processing of chemosensory signals in the brain is dynamically regulated in part by an animal's physiological state. We previously reported that type 3 muscarinic acetylcholine receptors (M3-Rs) physically interact with odorant receptors (ORs) to promote odor-induced responses in a heterologous expression system. However, it is not known how M3-Rs affect the ability of olfactory sensory neurons (OSNs) to respond to odors. Here, we show that an M3-R antagonist attenuates odor-induced responses in OSNs from wild-type, but not M3-R-null mice. Using a novel molecular assay, we demonstrate that the activation of M3-Rs inhibits the recruitment of β-arrestin-2 to ORs, resulting in a potentiation of odor-induced response in OSNs. These results suggest a role for acetylcholine in modulating olfactory processing at the initial stages of signal transduction in the olfactory system. PMID:25800153

  12. Oleanolic Acid-Mediated Inhibition of Pregnane X Receptor and Constitutive Androstane Receptor Attenuates Rifampin-Isoniazid Cytotoxicity.

    PubMed

    Lin, Yen-Ning; Chen, Chao-Jung; Chang, Hsiao-Yun; Cheng, Wai-Kok; Lee, Ying-Ray; Chen, Jih-Jung; Lim, Yun-Ping

    2017-09-25

    Interactions between transcriptional inducers of cytochrome P450 (CYP450) and pharmacological agents might decrease drug efficacy and induce side effects. Such interactions could be prevented using an antagonist of the pregnane X receptor (PXR) and constitutive androstane receptor (CAR). Here, we aimed to determine the antagonistic effect of oleanolic acid (OA) on PXR and CAR. OA attenuated the promoter activities, expressions, and enzyme catalytic activities of CYP3A4 and CYP2B6 mediated by rifampin (RIF) and CITCO. Moreover, OA displayed species specificity for rodent PXR. Interaction of coregulators with PXR and transcriptional complexes on the CYP3A4 promoter was disrupted by OA. Additionally, OA reversed the cytotoxic effects of isoniazid induced by RIF. These data demonstrate that OA inhibited the transactivation of PXR and CAR, reduced the expression and function of CYP3A4 and CYP2B6, and may therefore serve as an effective agent for reducing probability adverse interactions between transcriptional inducers of CYP450 and therapeutic drugs.

  13. GABA type a receptor trafficking and the architecture of synaptic inhibition.

    PubMed

    Lorenz-Guertin, Joshua M; Jacob, Tija C

    2017-09-13

    Ubiquitous expression of GABA type A receptors (GABAA R) in the central nervous system establishes their central role in coordinating most aspects of neural function and development. Dysregulation of GABAergic neurotransmission manifests in a number of human health disorders and conditions that in certain cases can be alleviated by drugs targeting these receptors. Precise changes in the quantity or activity of GABAA Rs localized at the cell surface and at GABAergic postsynaptic sites directly impact the strength of inhibition. The molecular mechanisms constituting receptor trafficking to and from these compartments therefore dictate the efficacy of GABAA R function. Here we review the current understanding of how GABAA Rs traffic through biogenesis, plasma membrane transport, and degradation. Emphasis is placed on discussing novel GABAergic synaptic proteins, receptor and scaffolding post-translational modifications, activity-dependent changes in GABAA R confinement, and neuropeptide and neurosteroid mediated changes. We further highlight modern techniques currently advancing the knowledge of GABAA R trafficking and clinically relevant neurodevelopmental diseases connected to GABAergic dysfunction. © 2017 Wiley Periodicals, Inc. Develop Neurobiol, 2017. © 2017 Wiley Periodicals, Inc.

  14. Cannabidiol inhibits synaptic transmission in rat hippocampal cultures and slices via multiple receptor pathways

    PubMed Central

    Ledgerwood, CJ; Greenwood, SM; Brett, RR; Pratt, JA; Bushell, TJ

    2011-01-01

    BACKGROUND AND PURPOSE Cannabidiol (CBD) has emerged as an interesting compound with therapeutic potential in several CNS disorders. However, whether it can modulate synaptic activity in the CNS remains unclear. Here, we have investigated whether CBD modulates synaptic transmission in rat hippocampal cultures and acute slices. EXPERIMENTAL APPROACH The effect of CBD on synaptic transmission was examined in rat hippocampal cultures and acute slices using whole cell patch clamp and standard extracellular recordings respectively. KEY RESULTS Cannabidiol decreased synaptic activity in hippocampal cultures in a concentration-dependent and Pertussis toxin-sensitive manner. The effects of CBD in culture were significantly reduced in the presence of the cannabinoid receptor (CB1) inverse agonist, LY320135 but were unaffected by the 5-HT1A receptor antagonist, WAY100135. In hippocampal slices, CBD inhibited basal synaptic transmission, an effect that was abolished by the proposed CB1 receptor antagonist, AM251, in addition to LY320135 and WAY100135. CONCLUSIONS AND IMPLICATIONS Cannabidiol reduces synaptic transmission in hippocampal in vitro preparations and we propose a role for both 5-HT1A and CB1 receptors in these CBD-mediated effects. These data offer some mechanistic insights into the effects of CBD and emphasize that further investigations into the actions of CBD in the CNS are required in order to elucidate the full therapeutic potential of CBD. PMID:20825410

  15. The MYND domain-containing protein BRAM1 inhibits lymphotoxin beta receptor-mediated signaling through affecting receptor oligomerization.

    PubMed

    Liu, Hao-Ping; Chung, Pei-Jung; Liang, Chih-Lung; Chang, Yu-Sun

    2011-01-01

    MYND (myeloid-Nervy-DEAF-1) domains exist in a large number of proteins that are functionally important in development or associated with cancers. We have previously demonstrated that a MYND domain-containing protein, the bone morphogenesis protein receptor-associated molecule 1 (BRAM1), is able to interact with Epstein-Barr virus-encoded latent membrane protein 1 (LMP1), which acts as a constitutively activated tumor necrosis factor receptor (TNFR). Herein we further demonstrated that BRAM1 additionally associates with the TNFR-superfamily member, the lymphotoxin beta receptor (LTβR), and hence inhibits LTβR-mediated function. Using the yeast two-hybrid assay, we demonstrated that BRAM1 interacts with LTβR mainly through the self-association domain of LTβR (aa 336-398). The co-immunoprecipitation experiment further revealed that BRAM1 as well as MYND domain-containing proteins, MTG8 and DEAF-1, interacts with LTβR via their MYND domains. The BRAM1-LTβR interaction impedes the self-association of LTβR and the recruitment of TNFR-associated factors 2 and 3 (TRAF2 and TRAF3), leading to abolishment of LTβR-induced NF-κB signaling, JNK activation, and caspase-dependent cell death. In sum, our data demonstrate that the MYND-containing protein BRAM1 abrogates LTβR function through a protein-protein interaction. These findings may provide a direction for the treatment of dysregulation of LTβR-mediated signaling.

  16. Cranberries inhibit LDL oxidation and induce LDL receptor expression in hepatocytes.

    PubMed

    Chu, Yi-Fang; Liu, Rui Hai

    2005-08-26

    Cardiovascular disease (CVD) is the leading cause of death in most industrialized countries. Cranberries were evaluated for their potential roles in dietary prevention of CVD. Cranberry extracts were found to have potent antioxidant capacity preventing in vitro LDL oxidation with increasing delay and suppression of LDL oxidation in a dose-dependent manner. The antioxidant activity of 100 g cranberries against LDL oxidation was equivalent to 1000 mg vitamin C or 3700 mg vitamin E. Cranberry extracts also significantly induced expression of hepatic LDL receptors and increased intracellular uptake of cholesterol in HepG2 cells in vitro in a dose-dependent manner. This suggests that cranberries could enhance clearance of excessive plasma cholesterol in circulation. We propose that additive or synergistic effects of phytochemicals in cranberries are responsible for the inhibition of LDL oxidation, the induced expression of LDL receptors, and the increased uptake of cholesterol in hepatocytes.

  17. Inhibiting androgen receptor nuclear entry in castration-resistant prostate cancer

    PubMed Central

    Pollock, Julie A.; Wardell, Suzanne E.; Parent, Alexander A.; Stagg, David B.; Ellison, Stephanie J.; Alley, Holly M.; Chao, Christina A.; Lawrence, Scott A.; Stice, James P.; Spasojevic, Ivan; Baker, Jennifer G.; Kim, Sung Hoon; McDonnell, Donald P.; Katzenellenbogen, John A.; Norris, John D.

    2016-01-01

    Clinical resistance to the second-generation antiandrogen enzalutamide in castration resistant prostate cancer (CRPC), despite persistent androgen receptor (AR) activity in tumors, highlights the unmet medical need for next generation antagonists. We have identified and characterized tetra-aryl cyclobutanes (CBs) as a new class of competitive AR antagonists that exhibit a unique mechanism of action. These CBs are structurally distinct from current antiandrogens (hydroxyflutamide, bicalutamide, and enzalutamide), and inhibit AR-mediated gene expression, cell proliferation, and tumor growth in several models of CRPC. Conformational profiling revealed that CBs stabilize an AR conformation resembling an unliganded receptor. Using a variety of techniques, it was determined that the AR:CB complex was not recruited to AR-regulated promoters and, like apo AR, remains sequestered in the cytoplasm bound to heat shock proteins. Thus, we have identified third generation AR antagonists whose unique mechanism of action suggests that they may have therapeutic potential in CRPC. PMID:27501397

  18. Benzodiazepine-receptor mediated inhibition of isolation-induced aggression in mice.

    PubMed

    Skolnick, P; Reed, G F; Paul, S M

    1985-07-01

    The effects of a benzodiazepine receptor agonist (diazepam), antagonist (Ro 15-1788), and an "active" antagonist [inverse agonist] (3-carboethoxy-beta-carboline) were examined in an isolation-induced model of aggression. Diazepam (4 mg/kg) and 3-carboethoxy-beta-carboline (10 mg/kg), but not Ro 15-1788, significantly inhibited aggressive behavior in this model. Ro 15-1788 (10 mg/kg) reduced the anti-aggressive actions of both diazepam and 3-carboethoxy-beta-carboline, while mice treated with a combination of diazepam and 3-carboethoxy-beta-carboline had aggression scores increased to values not significantly different from vehicle treated mice. These findings suggest that both diazepam and 3-carboethoxy-beta-carboline have anti-aggressive properties in the isolation-induced model of aggression which are mediated through CNS benzodiazepine receptors.

  19. Adenosine A1 receptors mediate inhibition of cAMP formation in vitro in the pontine, REM sleep induction zone.

    PubMed

    Marks, Gerald A; Birabil, Christian G; Speciale, Samuel G

    2005-11-09

    Microinjection of adenosine A1 receptor agonist or an inhibitor of adenylyl cyclase into the caudal, oral pontine reticular formation (PnOc) of the rat induces a long-lasting increase in REM sleep. Here, we report significant inhibition of forskolin-stimulated cAMP in dissected pontine tissue slices containing the PnOc incubated with the A1 receptor agonist, cyclohexaladenosine (10(-8) M). These data are consistent with adenosine A1 receptor agonist actions on REM sleep mediated through inhibition of cAMP.

  20. Peroxisome Proliferator-Activated Receptor (PPAR)γ Can Inhibit Chronic Renal Allograft Damage

    PubMed Central

    Kiss, Eva; Popovic, Zoran V.; Bedke, Jens; Adams, Judith; Bonrouhi, Mahnaz; Babelova, Andrea; Schmidt, Claudia; Edenhofer, Frank; Zschiedrich, Inka; Domhan, Sophie; Abdollahi, Amir; Schäfer, Liliana; Gretz, Norbert; Porubsky, Stefan; Gröne, Hermann-Josef

    2010-01-01

    Chronic inflammation and fibrosis are the leading causes of chronic allograft failure. The nuclear receptor peroxisome proliferator-activated receptor (PPAR)γ is a transcription factor known to have antidiabetogenic and immune effects, and PPARγ forms obligate heterodimers with the retinoid X receptor (RXR). We have reported that a retinoic acid (RAR)/RXR-agonist can potently influence the course of renal chronic allograft dysfunction. In this study, in a Fischer to Lewis rat renal transplantation model, administration of the PPARγ-agonist, rosiglitazone, independent of dose (3 or 30 mg/kgBW/day), lowered serum creatinine, albuminuria, and chronic allograft damage with a chronic vascular damage score as follows: 35.0 ± 5.8 (controls) vs. 8.1 ± 2.4 (low dose-Rosi; P < 0.05); chronic tubulointerstitial damage score: 13.6 ± 1.8 (controls) vs. 2.6 ± 0.4 (low dose-Rosi; P < 0.01). The deposition of extracellular matrix proteins (collagen, fibronectin, decorin) was strikingly lower. The expression of transforming growth factor-β1 was inhibited, whereas that of bone morphogenic protein-7 (BMP-7) was increased. Intragraft mononuclear cells and activated fibroblast numbers were reduced by 50%. In addition, the migratory and proliferative activity of these cells was significantly inhibited in vitro. PPARγ activation diminished the number of cells expressing the proinflammatory and fibrogenic proteoglycan biglycan. In macrophages its secretion was blocked by rosiglitazone in a predominantly PPARγ-dependent manner. The combination of PPARγ- and RAR/RXR-agonists resulted in additive effects in the inhibition of fibrosis. In summary, PPARγ activation was potently immunosuppressive and antifibrotic in kidney allografts, and these effects were enhanced by a RAR/RXR-agonist. PMID:20363918

  1. Peroxisome proliferator-activated receptor (PPAR)gamma can inhibit chronic renal allograft damage.

    PubMed

    Kiss, Eva; Popovic, Zoran V; Bedke, Jens; Adams, Judith; Bonrouhi, Mahnaz; Babelova, Andrea; Schmidt, Claudia; Edenhofer, Frank; Zschiedrich, Inka; Domhan, Sophie; Abdollahi, Amir; Schäfer, Liliana; Gretz, Norbert; Porubsky, Stefan; Gröne, Hermann-Josef

    2010-05-01

    Chronic inflammation and fibrosis are the leading causes of chronic allograft failure. The nuclear receptor peroxisome proliferator-activated receptor (PPAR)gamma is a transcription factor known to have antidiabetogenic and immune effects, and PPARgamma forms obligate heterodimers with the retinoid X receptor (RXR). We have reported that a retinoic acid (RAR)/RXR-agonist can potently influence the course of renal chronic allograft dysfunction. In this study, in a Fischer to Lewis rat renal transplantation model, administration of the PPARgamma-agonist, rosiglitazone, independent of dose (3 or 30 mg/kgBW/day), lowered serum creatinine, albuminuria, and chronic allograft damage with a chronic vascular damage score as follows: 35.0 +/- 5.8 (controls) vs. 8.1 +/- 2.4 (low dose-Rosi; P < 0.05); chronic tubulointerstitial damage score: 13.6 +/- 1.8 (controls) vs. 2.6 +/- 0.4 (low dose-Rosi; P < 0.01). The deposition of extracellular matrix proteins (collagen, fibronectin, decorin) was strikingly lower. The expression of transforming growth factor-beta1 was inhibited, whereas that of bone morphogenic protein-7 (BMP-7) was increased. Intragraft mononuclear cells and activated fibroblast numbers were reduced by 50%. In addition, the migratory and proliferative activity of these cells was significantly inhibited in vitro. PPARgamma activation diminished the number of cells expressing the proinflammatory and fibrogenic proteoglycan biglycan. In macrophages its secretion was blocked by rosiglitazone in a predominantly PPARgamma-dependent manner. The combination of PPARgamma- and RAR/RXR-agonists resulted in additive effects in the inhibition of fibrosis. In summary, PPARgamma activation was potently immunosuppressive and antifibrotic in kidney allografts, and these effects were enhanced by a RAR/RXR-agonist.

  2. Inhibition of T-cell antigen receptor-mediated transmembrane signaling by protein kinase C activation.

    PubMed Central

    Abraham, R T; Ho, S N; Barna, T J; Rusovick, K M; McKean, D J

    1988-01-01

    The murine T-lymphoma cell line LBRM-33 is known to require synergistic signals delivered through the antigen receptor (Ti-CD3) complex, together with interleukin 1 (IL-1), for activation of IL-2 gene expression and IL-2 production. Although 12-O-tetradecanoylphorbol-13-acetate (TPA) was capable of replacing IL-1 as an activating stimulus under certain conditions, biologic studies indicated that TPA failed to synergize with Ti-CD3-dependent stimuli under conditions in which IL-1 was clearly active. Acute exposure to TPA and other active phorbol esters resulted in a concentration-dependent inhibition of the increases in phosphoinositide hydrolysis and intracellular free Ca2+ concentration stimulated by phytohemagglutinin or anti-Ti antibodies. TPA treatment induced no direct alteration of phospholipase C enzymatic activities in LBRM-33 cells. In contrast, both Ti-CD3 cross-linkage and TPA rapidly stimulated the phosphorylation of identical CD3 complex polypeptides, presumably via activation of protein kinase C. Exposure of LBRM-33 cells to TPA resulted in a time-dependent, partial down-regulation of surface Ti-CD3 expression. Thus, TPA treatment inhibited the responsiveness of LBRM-33 cells to Ti-CD3-dependent stimuli by inducing an early desensitization of Ti-CD3 receptors, followed by a decrease in membrane receptor expression. These studies indicate that phorbol esters deliver bidirectional signals that both inhibit Ti-CD3-dependent phosphoinositide hydrolysis and augment IL-2 production in LBRM-33 cells. Images PMID:2977423

  3. Targeting receptor for advanced glycation end products (RAGE) expression induces apoptosis and inhibits prostate tumor growth

    SciTech Connect

    Elangovan, Indira; Thirugnanam, Sivasakthivel; Chen, Aoshuang; Zheng, Guoxing; Bosland, Maarten C.; Kajdacsy-Balla, Andre; Gnanasekar, Munirathinam

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer Targeting RAGE by RNAi induces apoptosis in prostate cancer cells. Black-Right-Pointing-Pointer Silencing RAGE expression abrogates rHMGB1 mediated cell proliferation. Black-Right-Pointing-Pointer Down regulation of RAGE by RNAi inhibits PSA secretion of prostate cancer cells. Black-Right-Pointing-Pointer Knock down of RAGE abrogates prostate tumor growth in vivo. Black-Right-Pointing-Pointer Disruption of RAGE expression in prostate tumor activates death receptors. -- Abstract: Expression of receptor for advanced glycation end products (RAGE) plays a key role in the progression of prostate cancer. However, the therapeutic potential of targeting RAGE expression in prostate cancer is not yet evaluated. Therefore in this study, we have investigated the effects of silencing the expression of RAGE by RNAi approach both in vitro and in vivo. The results of this study showed that down regulation of RAGE expression by RNAi inhibited the cell proliferation of androgen-dependent (LNCaP) and androgen-independent (DU-145) prostate cancer cells. Furthermore, targeting RAGE expression resulted in apoptotic elimination of these prostate cancer cells by activation of caspase-8 and caspase-3 death signaling. Of note, the levels of prostate specific antigen (PSA) were also reduced in LNCaP cells transfected with RAGE RNAi constructs. Importantly, the RAGE RNAi constructs when administered in nude mice bearing prostate tumors, inhibited the tumor growth by targeting the expression of RAGE, and its physiological ligand, HMGB1 and by up regulating death receptors DR4 and DR5 expression. Collectively, the results of this study for the first time show that targeting RAGE by RNAi may be a promising alternative therapeutic strategy for treating prostate cancer.

  4. Blocking Fibroblast Growth Factor Receptor Signaling Inhibits Tumor Growth, Lymphangiogenesis, and Metastasis

    PubMed Central

    Larrieu-Lahargue, Frédéric; Welm, Alana L.; Bouchecareilh, Marion; Alitalo, Kari; Li, Dean Y.; Bikfalvi, Andreas; Auguste, Patrick

    2012-01-01

    Fibroblast Growth Factor receptor (FGFR) activity plays crucial roles in tumor growth and patient survival. However, FGF (Fibroblast Growth Factor) signaling as a target for cancer therapy has been under-investigated compared to other receptor tyrosine kinases. Here, we studied the effect of FGFR signaling inhibition on tumor growth, metastasis and lymphangiogenesis by expressing a dominant negative FGFR (FGFR-2DN) in an orthotopic mouse mammary 66c14 carcinoma model. We show that FGFR-2DN-expressing 66c14 cells proliferate in vitro slower than controls. 66c14 tumor outgrowth and lung metastatic foci are reduced in mice implanted with FGFR-2DN-expressing cells, which also exhibited better overall survival. We found 66c14 cells in the lumen of tumor lymphatic vessels and in lymph nodes. FGFR-2DN-expressing tumors exhibited a decrease in VEGFR-3 (Vascular Endothelial Growth Factor Receptor-3) or podoplanin-positive lymphatic vessels, an increase in isolated intratumoral lymphatic endothelial cells and a reduction in VEGF-C (Vascular Endothelial Growth Factor-C) mRNA expression. FGFs may act in an autocrine manner as the inhibition of FGFR signaling in tumor cells suppresses VEGF-C expression in a COX-2 (cyclooxygenase-2) or HIF1-α (hypoxia-inducible factor-1 α) independent manner. FGFs may also act in a paracrine manner on tumor lymphatics by inducing expression of pro-lymphangiogenic molecules such as VEGFR-3, integrin α9, prox1 and netrin-1. Finally, in vitro lymphangiogenesis is impeded in the presence of FGFR-2DN 66c14 cells. These data confirm that both FGF and VEGF signaling are necessary for the maintenance of vascular morphogenesis and provide evidence that targeting FGFR signaling may be an interesting approach to inhibit tumor lymphangiogenesis and metastatic spread. PMID:22761819

  5. Control of Inhibition by the Direct Action of Cannabinoids on GABAA Receptors.

    PubMed

    Golovko, Tatiana; Min, Rogier; Lozovaya, Natalia; Falconer, Caroline; Yatsenko, Natalia; Tsintsadze, Timur; Tsintsadze, Vera; Ledent, Catherine; Harvey, Robert J; Belelli, Delia; Lambert, Jeremy J; Rozov, Andrei; Burnashev, Nail

    2015-09-01

    Cannabinoids are known to regulate inhibitory synaptic transmission via activation of presynaptic G protein-coupled cannabinoid CB1 receptors (CB1Rs). Additionally, recent studies suggest that cannabinoids can also directly interact with recombinant GABAA receptors (GABAARs), potentiating currents activated by micromolar concentrations of γ-aminobutyric acid (GABA). However, the impact of this direct interaction on GABAergic inhibition in central nervous system is unknown. Here we report that currents mediated by recombinant GABAARs activated by high (synaptic) concentrations of GABA as well as GABAergic inhibitory postsynaptic currents (IPSCs) at neocortical fast spiking (FS) interneuron to pyramidal neuron synapses are suppressed by exogenous and endogenous cannabinoids in a CB1R-independent manner. This IPSC suppression may account for disruption of inhibitory control of pyramidal neurons by FS interneurons. At FS interneuron to pyramidal neuron synapses, endocannabinoids induce synaptic low-pass filtering of GABAAR-mediated currents evoked by high-frequency stimulation. The CB1R-independent suppression of inhibition is synapse specific. It does not occur in CB1R containing hippocampal cholecystokinin-positive interneuron to pyramidal neuron synapses. Furthermore, in contrast to synaptic receptors, the activity of extrasynaptic GABAARs in neocortical pyramidal neurons is enhanced by cannabinoids in a CB1R-independent manner. Thus, cannabinoids directly interact differentially with synaptic and extrasynaptic GABAARs, providing a potent novel context-dependent mechanism for regulation of inhibition. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Glucocorticoid Receptor Activation Inhibits Chemotherapy-induced Cell Death in High-grade Serous Ovarian Carcinoma

    PubMed Central

    Stringer-Reasor, Erica M.; Baker, Gabrielle M.; Skor, Maxwell N.; Kocherginsky, Masha; Lengyel, Ernst; Fleming, Gini F.; Conzen, Suzanne D.

    2015-01-01

    Objectives To test the hypothesis that glucocorticoid receptor (GR) activation increases resistance to chemotherapy in high-grade serous ovarian cancer (HGS-OvCa) and that treatment with a GR antagonist will improve sensitivity to chemotherapy. Methods GR expression was assessed in OvCa cell lines by qRT-PCR and Western blot analysis and in xenografts and primary human tumors using immunohistochemistry (IHC). We also examined the effect of GR activation versus inhibition on chemotherapy-induced cytotoxicity in OvCa cell lines and in a xenograft model. Results With the exception of IGROV-1 cells, all OvCa cell lines tested had detectable GR expression by Western blot and qRT-PCR analysis. Twenty-five out of the 27 human primary HGS-OvCas examined expressed GR by IHC. No cell line expressed detectable progesterone receptor (PR) or androgen receptor (AR) by Western blot analysis. In vitro assays showed that in GR-positive HeyA8 and SKOV3 cells, dexamethasone (100 nM) treatment upregulated the pro-survival genes SGK1 and MKP1/DUSP1 and inhibited carboplatin/gemcitabine-induced cell death. Concurrent treatment with two GR antagonists, either mifepristone (100 nM) or CORT125134 (100 nM), partially reversed these effects. There was no anti-apoptotic effect of dexamethasone on chemotherapy-induced cell death in IGROV-1 cells, which did not have detectable GR protein. Mifepristone treatment alone was not cytotoxic in any cell line. HeyA8 OvCa xenograft studies demonstrated that adding mifepristone to carboplatin/gemcitabine increased tumor shrinkage by 48% compared to carboplatin/gemcitabine treatment alone (P=0.0004). Conclusions These results suggest that GR antagonism sensitizes GR+ OvCa to chemotherapy-induced cell death through inhibition of GR-mediated cell survival pathways. PMID:26115975

  7. Targeting colorectal cancer via its microenvironment by inhibiting IGF-1 Receptor-insulin receptor substrate and STAT3 signaling

    PubMed Central

    Sanchez-Lopez, Elsa; Flashner-Abramson, Efrat; Shalapour, Shabnam; Zhong, Zhenyu; Taniguchi, Koji; Levitzki, Alexander; Karin, Michael

    2015-01-01

    The tumor microenvironment (TME) exerts critical pro-tumorigenic effects through cytokines and growth factors that support cancer cell proliferation, survival, motility and invasion. Insulin-like growth factor-1 (IGF-1) and Signal transducer and activator of transcription 3 (STAT3) stimulate colorectal cancer (CRC) development and progression via cell autonomous and microenvironmental effects. Using a unique inhibitor, NT157, which targets both IGF-1 receptor (IGF-1R) and STAT3, we show that these pathways regulate many TME functions associated with sporadic colonic tumorigenesis in CPC-APC mice, in which cancer development is driven by loss of the Apc tumor suppressor gene. NT157 causes a substantial reduction in tumor burden by affecting cancer cells, cancer-associated fibroblasts (CAF) and myeloid cells. Decreased cancer cell proliferation and increased apoptosis were accompanied by inhibition of CAF activation and decreased inflammation. Furthermore, NT157 inhibited expression of pro-tumorigenic cytokines, chemokines and growth factors, including IL-6, IL-11 and IL-23 as well as CCL2, CCL5, CXCL7, CXCL5, ICAM1 and TGFβ; decreased cancer cell migratory activity and reduced their proliferation in the liver. NT157 represents a new class of anti-cancer drugs that affect both the malignant cell and its supportive microenvironment. PMID:26364612

  8. 5-HT(1A)-like receptor activation inhibits abstinence-induced methamphetamine withdrawal in planarians.

    PubMed

    Rawls, Scott M; Shah, Hardik; Ayoub, George; Raffa, Robert B

    2010-10-29

    No pharmacological therapy is approved to treat methamphetamine physical dependence, but it has been hypothesized that serotonin (5-HT)-enhancing drugs might limit the severity of withdrawal symptoms. To test this hypothesis, we used a planarian model of physical dependence that quantifies withdrawal as a reduction in planarian movement. Planarians exposed to methamphetamine (10 μM) for 60 min, and then placed (tested) into drug-free water for 5 min, displayed less movement (i.e., withdrawal) than either methamphetamine-naïve planarians tested in water or methamphetamine-exposed planarians tested in methamphetamine. A concentration-related inhibition of withdrawal was observed when methamphetamine-exposed planarians were placed into a solution containing either methamphetamine and 5-HT (0.1-100 μM) or methamphetamine and the 5-HT(1A) receptor agonist 8-hydroxy-N,N-dipropyl-2-aminotetralin (8-OH-DPAT) (10, 20 μM). Planarians with prior methamphetamine exposure displayed enhanced withdrawal when tested in a solution of the 5-HT(1A) receptor antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridyl)cyclohexanecarboxamide (WAY 100635) (1 μM). Methamphetamine-induced withdrawal was not affected by the 5-HT(2B/2C) receptor agonist meta-chlorophenylpiperazine (m-CPZ) (0.1-20 μM). These results provide pharmacological evidence that serotonin-enhancing drugs inhibit expression of methamphetamine physical dependence in an invertebrate model of withdrawal, possibly through a 5-HT(1A)-like receptor-dependent mechanism.

  9. 5-HT1A-like receptor activation inhibits abstinence-induced methamphetamine withdrawal in planarians

    PubMed Central

    Rawls, Scott M.; Shah, Hardik; Ayoub, George; Raffa, Robert B.

    2010-01-01

    No pharmacological therapy is approved to treat methamphetamine physical dependence, but it has been hypothesized that serotonin (5-HT)-enhancing drugs might limit the severity of withdrawal symptoms. To test this hypothesis, we used a planarian model of physical dependence that quantifies withdrawal as a reduction in planarian movement. Planarians exposed to methamphetamine (10 µM) for 60 min, and then placed (tested) into drug-free water for 5 min, displayed less movement (i.e., withdrawal) than either methamphetamine-naïve planarians tested in water or methamphetamine-exposed planarians tested in methamphetamine. A concentration-related inhibition of withdrawal was observed when methamphetamine-exposed planarians were placed into a solution containing either methamphetamine and 5-HT (0.1 – 100 µM) or methamphetamine and the 5-HT1A receptor agonist 8-Hydroxy-N,N-dipropyl-2-aminotetralin (8-OH-DPAT) (10, 20 µM). Planarians with prior methamphetamine exposure displayed enhanced withdrawal when tested in a solution of the 5-HT1A receptor antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]- N-(2-pyridyl)cyclohexanecarboxamide (WAY 100635) (1 µM). Methamphetamine-induced withdrawal was not affected by the 5-HT2B/2C receptor agonist meta-chlorophenylpiperazine (m-CPZ) (0.1 – 20 µM). These results provide pharmacological evidence that serotonin-enhancing drugs inhibit expression of methamphetamine physical dependence in an invertebrate model of withdrawal, possibly through a 5-HT1A-like receptor-dependent mechanism. PMID:20709144

  10. Adenosine A1 receptors mediate inhibition of tachykinin release from perifused enteric nerve endings.

    PubMed

    Broad, R M; McDonald, T J; Brodin, E; Cook, M A

    1992-03-01

    A perifused preparation of guinea pig myenteric nerve varicosities (synaptosomes) was used to determine the characteristics of evoked tachykinin release and the inhibition of such release by adenosine analogues. Release of substance P-like immunoreactivity (SP-LI) and neurokinin A-like immunoreactivity (NKA-LI) was evoked by elevated extracellular [K+] in a reversible and repeatable manner. This release was completely abolished in the absence of extracellular Ca2+. Perifusion in the presence of 5'-N-ethylcarboxamidoadenosine (NECA), a nonselective A1/A2 adenosine receptor agonist, decreased K(+)-evoked release of SP-LI and NKA-LI compared with that in the absence of the nucleoside. Similar decrements in peptide release were obtained with N6-cyclopentyl adenosine (CPA), a selective A1 agonist, and 2-[p-(2-carboxyethyl)]phenethylamino-5'-N-ethyl-carboxamidoadenosi ne (CGS 21680), a selective A2 agonist. Response to all nucleosides was graded. Potency order of adenosine analogues was CPA greater than NECA much greater than CGS 21680. Inhibition due to the nucleosides was diminished in the presence of the highly selective A1-receptor antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX) while perifusion in the presence of DPCPX alone did not alter evoked release of either peptide. These findings provide direct measurements of inhibitory effects of adenine nucleosides on the release, from enteric nerve endings, of endogenous neuromediators SP and NKA. The findings also directly demonstrate the presence of functional adenosine receptors of the A1 subtype on enteric nerve endings coupled negatively to release of tachykinins. The presence of A2 receptors on enteric nerve endings is neither supported nor excluded.

  11. Phenoxy herbicides and fibrates potently inhibit the human chemosensory receptor subunit T1R3

    PubMed Central

    Maillet, Emeline L.; Margolskee, Robert F.; Mosinger, Bedrich

    2009-01-01

    We show that phenoxy-auxin herbicides and lipid-lowering fibrates inhibit human but not rodent T1R3. T1R3 as a co-receptor in taste cells responds to sweet compounds and amino-acids; in endocrine cells of gut and pancreas T1R3 contributes to glucose sensing. Thus, certain effects of fibrates in treating hyperlipidemia and type II diabetes may be via actions on T1R3. Likewise, phenoxy-herbicides may have adverse metabolic effects in humans that would have gone undetected in studies on rodents. PMID:19817384

  12. H3 receptor-mediated inhibition of the neurogenic vasopressor response in pithed rats.

    PubMed

    Malinowska, B; Schlicker, E

    1991-12-03

    In pithed rats, the H3 agonist R-(-)-alpha-methylhistamine (R alpha MeHA) inhibited the electrically induced increase in blood pressure without affecting the vasopressor response to exogenous noradrenaline. The effect of R alpha MeHA was not affected by the H1 and H2 antagonists dimetindene and ranitidine, but attenuated by the H3 antagonist thioperamide. At higher doses, R alpha MeHA itself increased basal blood pressure; this effect was not affected by the H1, H2 and H3 antagonists. In conclusion, the neurogenic vasopressor response can be modulated via H3 receptors, probably located presynaptically on postganglionic sympathetic nerve fibres.

  13. Morphinans and isoquinolines: acetylcholinesterase inhibition, pharmacophore modeling, and interaction with opioid receptors.

    PubMed

    Schuster, Daniela; Spetea, Mariana; Music, Melisa; Rief, Silvia; Fink, Monika; Kirchmair, Johannes; Schütz, Johannes; Wolber, Gerhard; Langer, Thierry; Stuppner, Hermann; Schmidhammer, Helmut; Rollinger, Judith M

    2010-07-15

    Following indications from pharmacophore-based virtual screening of natural product databases, morphinan and isoquinoline compounds were tested in vitro for acetylcholinesterase (AChE) inhibition. After the first screen, active and inactive compounds were used to build a ligand-based pharmacophore model in order to prioritize compounds for biological testing. Among the virtual hits tested, the enrichment of actives was significantly higher than in a random selection of test compounds. The most active compounds were biochemically tested for their activity on mu, delta, and kappa opioid receptors.

  14. Bipartite inhibition of Drosophila epidermal growth factor receptor by the extracellular and transmembrane domains of Kekkon1.

    PubMed Central

    Alvarado, Diego; Rice, Amy H; Duffy, Joseph B

    2004-01-01

    In Drosophila, signaling by the epidermal growth factor receptor (EGFR) is required for a diverse array of developmental decisions. Essential to these decisions is the precise regulation of the receptor's activity by both stimulatory and inhibitory molecules. To better understand the regulation of EGFR activity we investigated inhibition of EGFR by the transmembrane protein Kekkon1 (Kek1). Kek1 encodes a molecule containing leucine-rich repeats (LRR) and an immunoglobulin (Ig) domain and is the founding member of the Drosophila Kekkon family. Here we demonstrate with a series of Kek1-Kek2 chimeras that while the LRRs suffice for EGFR binding, inhibition in vivo requires the Kek1 juxta/transmembrane region. We demonstrate directly, and using a series of Kek1-EGFR chimeras, that Kek1 is not a phosphorylation substrate for the receptor in vivo. In addition, we show that EGFR inhibition is unique to Kek1 among Kek family members and that this function is not ligand or tissue specific. Finally, we have identified a unique class of EGFR alleles that specifically disrupt Kek1 binding and inhibition, but preserve receptor activation. Interestingly, these alleles map to domain V of the Drosophila EGFR, a region absent from the vertebrate receptors. Together, our results support a model in which the LRRs of Kek1 in conjunction with its juxta/transmembrane region direct association and inhibition of the Drosophila EGFR through interactions with receptor domain V. PMID:15166146

  15. Src potentiation of NMDA receptors in hippocampal and spinal neurons is not mediated by reducing zinc inhibition.

    PubMed

    Xiong, Z G; Pelkey, K A; Lu, W Y; Lu, Y M; Roder, J C; MacDonald, J F; Salter, M W

    1999-11-01

    The protein-tyrosine kinase Src is known to potentiate the function of NMDA receptors, which is necessary for the induction of long-term potentiation in the hippocampus. With recombinant receptors composed of NR1-1a/NR2A or NR1-1a/2B subunits, Src reduces voltage-independent inhibition by the divalent cation Zn2+. Thereby the function of recombinant NMDA receptors is potentiated by Src only when the Zn2+ level is sufficient to cause tonic inhibition. Here we investigated whether the Src-induced potentiation of NMDA receptor function in neurons is caused by reducing voltage-independent Zn2+ inhibition. Whereas chelating extracellular Zn2+ blocked the Src-induced potentiation of NR1-1a/2A receptors, we found that Zn2+ chelation did not affect the potentiation of NMDA receptor (NMDAR) currents by Src applied into hippocampal CA1 or CA3 neurons. Moreover, Src did not alter the Zn2+ concentration-inhibition relationship for NMDAR currents in CA1 or CA3 neurons. Also, chelating extracellular Zn2+ did not prevent the upregulation of NMDA single-channel activity by endogenous Src in membrane patches from spinal dorsal horn neurons. Taking these results together we conclude that Src-induced potentiation of NMDAR currents is not mediated by reducing Zn2+ inhibition in hippocampal and dorsal horn neurons.

  16. Inhibition of T cell receptor signaling by cholesterol sulfate, a naturally occurring derivative of membrane cholesterol

    PubMed Central

    Wang, Feng; Beck-García, Katharina; Zorzin, Carina; Schamel, Wolfgang W. A.; Davis, Mark M.

    2016-01-01

    Most adaptive immune responses require the activation of specific T cells through the T cell antigen receptor–CD3 complex (TCR). Here we show that cholesterol sulfate (CS), a naturally occurring analog of cholesterol, inhibits CD3 ITAM phosphorylation, a crucial first step in T cell activation. Biochemical studies show that CS disrupted TCR multimers, apparently by displacing cholesterol, known to bind TCRβ. Moreover, CS-deficient mice displayed a heightened sensitivity to a self-antigen, whereas increasing CS content by intrathymic injection inhibited thymic selection, indicating that this molecule is an intrinsic regulator of thymocyte development. These results reveal a regulatory role for CS in TCR signaling and thymic selection, highlighting the importance of the membrane microenvironment in modulating cell surface receptor activation. PMID:27213689

  17. Inhibition of Dopamine Receptor D4 Impedes Autophagic Flux, Proliferation, and Survival of Glioblastoma Stem Cells.

    PubMed

    Dolma, Sonam; Selvadurai, Hayden J; Lan, Xiaoyang; Lee, Lilian; Kushida, Michelle; Voisin, Veronique; Whetstone, Heather; So, Milly; Aviv, Tzvi; Park, Nicole; Zhu, Xueming; Xu, ChangJiang; Head, Renee; Rowland, Katherine J; Bernstein, Mark; Clarke, Ian D; Bader, Gary; Harrington, Lea; Brumell, John H; Tyers, Mike; Dirks, Peter B

    2016-06-13

    Glioblastomas (GBM) grow in a rich neurochemical milieu, but the impact of neurochemicals on GBM growth is largely unexplored. We interrogated 680 neurochemical compounds in patient-derived GBM neural stem cells (GNS) to determine the effects on proliferation and survival. Compounds that modulate dopaminergic, serotonergic, and cholinergic signaling pathways selectively affected GNS growth. In particular, dopamine receptor D4 (DRD4) antagonists selectively inhibited GNS growth and promoted differentiation of normal neural stem cells. DRD4 antagonists inhibited the downstream effectors PDGFRβ, ERK1/2, and mTOR and disrupted the autophagy-lysosomal pathway, leading to accumulation of autophagic vacuoles followed by G0/G1 arrest and apoptosis. These results demonstrate a role for neurochemical pathways in governing GBM stem cell proliferation and suggest therapeutic approaches for GBM. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. A review of PCSK9 inhibition and its effects beyond LDL receptors.

    PubMed

    Dixon, Dave L; Trankle, Cory; Buckley, Leo; Parod, Eric; Carbone, Salvatore; Van Tassell, Benjamin W; Abbate, Antonio

    2016-01-01

    Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays an integral role in the degradation of low-density lipoprotein receptors (LDL-R), making it an intriguing target for emerging pharmacotherapy. Two PCSK9 inhibitors, alirocumab and evolocumab, have been approved and are available in the United States and European Union. However, much of the PCSK9 story remains to be told. The pipeline for additional pharmacotherapy options is rich with several compounds under development, using alternative strategies for inhibiting PCSK9. Perhaps, more intriguing is the interaction between PCSK9 and non-LDL-R targets, including mediators of inflammation and immunological processes, which remain under intense investigation. This review will discuss the currently available PCSK9 inhibitors, the development of novel approaches to PCSK9 modulation, and the potential non-LDL-R-mediated effects of PCSK9 inhibition.

  19. Methods for recording and measuring tonic GABAA receptor-mediated inhibition.

    PubMed

    Bright, Damian P; Smart, Trevor G

    2013-12-05

    Tonic inhibitory conductances mediated by GABAA receptors have now been identified and characterized in many different brain regions. Most experimental studies of tonic GABAergic inhibition have been carried out using acute brain slice preparations but tonic currents have been recorded under a variety of different conditions. This diversity of recording conditions is likely to impact upon many of the factors responsible for controlling tonic inhibition and can make comparison between different studies difficult. In this review, we will firstly consider how various experimental conditions, including age of animal, recording temperature and solution composition, are likely to influence tonic GABAA conductances. We will then consider some technical considerations related to how the tonic conductance is measured and subsequently analyzed, including how the use of current noise may provide a complementary and reliable method for quantifying changes in tonic current.

  20. Methods for recording and measuring tonic GABAA receptor-mediated inhibition

    PubMed Central

    Bright, Damian P.; Smart, Trevor G.

    2013-01-01

    Tonic inhibitory conductances mediated by GABAA receptors have now been identified and characterized in many different brain regions. Most experimental studies of tonic GABAergic inhibition have been carried out using acute brain slice preparations but tonic currents have been recorded under a variety of different conditions. This diversity of recording conditions is likely to impact upon many of the factors responsible for controlling tonic inhibition and can make comparison between different studies difficult. In this review, we will firstly consider how various experimental conditions, including age of animal, recording temperature and solution composition, are likely to influence tonic GABAA conductances. We will then consider some technical considerations related to how the tonic conductance is measured and subsequently analyzed, including how the use of current noise may provide a complementary and reliable method for quantifying changes in tonic current. PMID:24367296

  1. Blocking the tropomyosin receptor kinase A (TrkA) receptor inhibits pain behaviour in two rat models of osteoarthritis.

    PubMed

    Nwosu, Lilian N; Mapp, Paul I; Chapman, Victoria; Walsh, David A

    2016-06-01

    Tropomyosin receptor kinase A (TrkA) mediates nociceptor sensitisation by nerve growth factor (NGF), but it is unknown whether selective TrkA inhibition will be an effective strategy for treating osteoarthritis (OA) pain. We determined the effects of a TrkA inhibitor (AR786) on pain behaviour, synovitis and joint pathology in two rat OA models. Knee OA was induced in rats by intra-articular monosodium-iodoacetate (MIA) injection or meniscal transection (MNX) and compared with saline-injected or sham-operated controls. Pain behaviour was assessed as weight-bearing asymmetry and paw withdrawal threshold to punctate stimulation. Oral doses (30 mg/kg) of AR786 or vehicle were administered twice daily in either preventive (day -1 to -27) or treatment (day 14-28) protocols. Effect maintenance was evaluated for 2 weeks after treatment discontinuation. Alterations in knee structure (cartilage, subchondral bone and synovium) were examined by macroscopic visualisation of articular surfaces and histopathology. Preventive AR786 treatment inhibited pain behaviour development and therapeutic treatment attenuated established pain behaviour. Weight-bearing asymmetry increased 1 week after treatment discontinuation, but remained less than in vehicle-treated arthritic rats, whereas paw withdrawal thresholds returned to levels of untreated rats within 5 days of treatment discontinuation. AR786 treatment reduced MIA-induced synovitis and did not significantly affect osteochondral pathology in either model. Blocking NGF activity by inhibiting TrkA reduced pain behaviour in two rat models of OA. Analgesia was observed both using preventive and treatment protocols, and was sustained after treatment discontinuation. Selective inhibitors of TrkA therefore hold potential for OA pain relief. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  2. Blocking the tropomyosin receptor kinase A (TrkA) receptor inhibits pain behaviour in two rat models of osteoarthritis

    PubMed Central

    Nwosu, Lilian N; Mapp, Paul I; Chapman, Victoria; Walsh, David A

    2016-01-01

    Objectives Tropomyosin receptor kinase A (TrkA) mediates nociceptor sensitisation by nerve growth factor (NGF), but it is unknown whether selective TrkA inhibition will be an effective strategy for treating osteoarthritis (OA) pain. We determined the effects of a TrkA inhibitor (AR786) on pain behaviour, synovitis and joint pathology in two rat OA models. Methods Knee OA was induced in rats by intra-articular monosodium-iodoacetate (MIA) injection or meniscal transection (MNX) and compared with saline-injected or sham-operated controls. Pain behaviour was assessed as weight-bearing asymmetry and paw withdrawal threshold to punctate stimulation. Oral doses (30 mg/kg) of AR786 or vehicle were administered twice daily in either preventive (day −1 to –27) or treatment (day 14–28) protocols. Effect maintenance was evaluated for 2 weeks after treatment discontinuation. Alterations in knee structure (cartilage, subchondral bone and synovium) were examined by macroscopic visualisation of articular surfaces and histopathology. Results Preventive AR786 treatment inhibited pain behaviour development and therapeutic treatment attenuated established pain behaviour. Weight-bearing asymmetry increased 1 week after treatment discontinuation, but remained less than in vehicle-treated arthritic rats, whereas paw withdrawal thresholds returned to levels of untreated rats within 5 days of treatment discontinuation. AR786 treatment reduced MIA-induced synovitis and did not significantly affect osteochondral pathology in either model. Conclusions Blocking NGF activity by inhibiting TrkA reduced pain behaviour in two rat models of OA. Analgesia was observed both using preventive and treatment protocols, and was sustained after treatment discontinuation. Selective inhibitors of TrkA therefore hold potential for OA pain relief. PMID:26286016

  3. Antipsychotic drugs inhibit prolactin release from rat anterior pituitary cells in culture by a mechanism not involving the dopamine receptor.

    PubMed

    West, B; Dannies, P S

    1979-04-01

    Bromocriptine, a dopamine agonist, inhibited secretion of PRL and did not affect GH release from rat anterior pituitary cells in culture. The reversal of this inhibition of PRL release by butaclamol, a dopamine antagonist, was stereospecific; 10 nM d-butaclamol completely reversed the inhibition caused by 10 nM bromocriptine, while l-butaclamol had no effect at concentrations up to 10 microM. However, both enantiomers at 10 microM inhibited PRL release to 30% and GH release to 91% of control values. Two other dopamine antagonists also inhibited hormone release. Haloperidol (10 microM) inhibited PRL release to 23% of control values and did not affect GH release; 3.3 microM pimozide inhibited PRL and GH release to 18% and 38% of control values, respectively. These data indicate that, the inhibition of PRL by antipsychotic drugs is not mediated through the dopamine receptor.

  4. Cobaltous chloride and hypoxia inhibit aryl hydrocarbon receptor-mediated responses in breast cancer cells

    SciTech Connect

    Khan, Shaheen; Liu Shengxi; Stoner, Matthew; Safe, Stephen

    2007-08-15

    The aryl hydrocarbon receptor (AhR) is expressed in estrogen receptor (ER)-positive ZR-75 breast cancer cells. Treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces CYP1A1 protein and mRNA levels and also activates inhibitory AhR-ER{alpha} crosstalk associated with hormone-induced reporter gene expression. In ZR-75 cells grown under hypoxia, induction of these AhR-mediated responses by TCDD was significantly inhibited. This was not accompanied by decreased nuclear AhR levels or decreased interaction of the AhR complex with the CYP1A1 gene promoter as determined in a chromatin immunoprecipitation assay. Hypoxia-induced loss of Ah-responsiveness was not associated with induction of hypoxia-inducible factor-1{alpha} or other factors that sequester the AhR nuclear translocation (Arnt) protein, and overexpression of Arnt under hypoxia did not restore Ah-responsiveness. The p65 subunit of NF{kappa}B which inhibits AhR-mediated transactivation was not induced by hypoxia and was primarily cytosolic in ZR-75 cells grown under hypoxic and normoxic conditions. In ZR-75 cells maintained under hypoxic conditions for 24 h, BRCA1 (an enhancer of AhR-mediated transactivation in breast cancer cells) was significantly decreased and this contributed to loss of Ah-responsiveness. In cells grown under hypoxia for 6 h, BRCA1 was not decreased, but induction of CYP1A1 by TCDD was significantly decreased. Cotreatment of ZR-75 cells with TCDD plus the protein synthesis inhibitor cycloheximide for 6 h enhanced CYP1A1 expression in cells grown under hypoxia and normoxia. These results suggest that hypoxia rapidly induces protein(s) that inhibit Ah-responsiveness and these may be similar to constitutively expressed inhibitors of Ah-responsiveness (under normoxia) that are also inhibited by cycloheximide.

  5. Cobaltous chloride and hypoxia inhibit aryl hydrocarbon receptor-mediated responses in breast cancer cells.

    PubMed

    Khan, Shaheen; Liu, Shengxi; Stoner, Matthew; Safe, Stephen

    2007-08-15

    The aryl hydrocarbon receptor (AhR) is expressed in estrogen receptor (ER)-positive ZR-75 breast cancer cells. Treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces CYP1A1 protein and mRNA levels and also activates inhibitory AhR-ERalpha crosstalk associated with hormone-induced reporter gene expression. In ZR-75 cells grown under hypoxia, induction of these AhR-mediated responses by TCDD was significantly inhibited. This was not accompanied by decreased nuclear AhR levels or decreased interaction of the AhR complex with the CYP1A1 gene promoter as determined in a chromatin immunoprecipitation assay. Hypoxia-induced loss of Ah-responsiveness was not associated with induction of hypoxia-inducible factor-1alpha or other factors that sequester the AhR nuclear translocation (Arnt) protein, and overexpression of Arnt under hypoxia did not restore Ah-responsiveness. The p65 subunit of NFkappaB which inhibits AhR-mediated transactivation was not induced by hypoxia and was primarily cytosolic in ZR-75 cells grown under hypoxic and normoxic conditions. In ZR-75 cells maintained under hypoxic conditions for 24 h, BRCA1 (an enhancer of AhR-mediated transactivation in breast cancer cells) was significantly decreased and this contributed to loss of Ah-responsiveness. In cells grown under hypoxia for 6 h, BRCA1 was not decreased, but induction of CYP1A1 by TCDD was significantly decreased. Cotreatment of ZR-75 cells with TCDD plus the protein synthesis inhibitor cycloheximide for 6 h enhanced CYP1A1 expression in cells grown under hypoxia and normoxia. These results suggest that hypoxia rapidly induces protein(s) that inhibit Ah-responsiveness and these may be similar to constitutively expressed inhibitors of Ah-responsiveness (under normoxia) that are also inhibited by cycloheximide.

  6. COBALTOUS CHLORIDE AND HYPOXIA INHIBIT ARYL HYDROCARBON RECEPTOR-MEDIATED RESPONSES IN BREAST CANCER CELLS

    PubMed Central

    Khan, Shaheen; Liu, Shengxi; Stoner, Matthew; Safe, Stephen

    2007-01-01

    The aryl hydrocarbon receptor (AhR) is expressed in estrogen receptor (ER)-positive ZR-75 breast cancer cells. Treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces CYP1A1 protein and mRNA levels and also activates inhibitory AhR-Erα crosstalk associated with hormone-induced reporter gene expression. In ZR-75 cells grown under hypoxia, induction of these AhR-mediated responses by TCDD was significantly inhibited. This was not accompanied by decreased nuclear AhR levels or decreased interaction of the AhR complex with the CYP1A1 gene promoter as determined in a chromatin immunoprecipitation assay. Hypoxia-induced loss of Ah-responsiveness was not associated with induction of hypoxia-inducible factor-1α or other factors that sequester the AhR nuclear translocation (Arnt) protein, and overexpression of Arnt under hypoxia did not restore Ah-responsiveness. The p65 subunit of NFκB which inhibits AhR-mediated transactivation was not induced by hypoxia and was primarily cytosolic in ZR-75 cells grown under hypoxic and normoxic conditions. In ZR-75 cells maintained under hypoxic conditions for 24 hr, BRCA1 (an enhancer of AhR-mediated transactivation in breast cancer cells) was significantly decreased and this contributed to loss of Ah-responsiveness. In cells grown under hypoxia for 6 hr, BRCA1 was not decreased, but induction of CYP1A1 by TCDD was significantly decreased. Cotreatment of ZR-75 cells with TCDD plus the protein synthesis inhibitor cycloheximide for 6 hr enhanced CYP1A1 expression in cells grown under hypoxia and normoxia. These results suggest that hypoxia rapidly induces protein(s) that inhibit Ah-responsiveness and these may be similar to constitutively expressed inhibitors of Ah-responsiveness (under normoxia) that are also inhibited by cycloheximide. PMID:17599377

  7. The TM2 6′ Position of GABAA Receptors Mediates Alcohol Inhibition

    PubMed Central

    Howard, Rebecca J.; Trudell, James R.; Harris, R. Adron

    2012-01-01

    Ionotropic GABAA receptors (GABAARs), which mediate inhibitory neurotransmission in the central nervous system, are implicated in the behavioral effects of alcohol and alcoholism. Site-directed mutagenesis studies support the presence of discrete molecular sites involved in alcohol enhancement and, more recently, inhibition of GABAARs. We used Xenopus laevis oocytes to investigate the 6′ position in the second transmembrane region of GABAARs as a site influencing alcohol inhibition. We asked whether modification of the 6′ position by substitution with larger residues or methanethiol labeling [using methyl methanethiosulfonate (MMTS)] of a substituted cysteine, reduced GABA action and/or blocked further inhibition by alcohols. Labeling of the 6′ position in either α2 or β2 subunits reduced responses to GABA. In addition, methanol and ethanol potentiation increased after MMTS labeling or substitution with tryptophan or methionine, consistent with elimination of an inhibitory site for these alcohols. Specific alcohols, but not the anesthetic etomidate, competed with MMTS labeling at the 6′ position. We verified a role for the 6′ position in previously tested α2β2 as well as more physiologically relevant α2β2γ2s GABAARs. Finally, we built a novel molecular model based on the invertebrate glutamate-gated chloride channel receptor, a GABAAR homolog, revealing that the 6′ position residue faces the channel pore, and modification of this residue alters volume and polarity of the pore-facing cavity in this region. These results indicate that the 6′ positions in both α2 and β2 GABAAR subunits mediate inhibition by short-chain alcohols, which is consistent with the presence of multiple counteracting sites of action for alcohols on ligand-gated ion channels. PMID:22072732

  8. Melanocortin 4 receptor constitutive activity inhibits L-type voltage-gated calcium channels in neurons.

    PubMed

    Agosti, F; Cordisco Gonzalez, S; Martinez Damonte, V; Tolosa, M J; Di Siervi, N; Schioth, H B; Davio, C; Perello, M; Raingo, J

    2017-03-27

    The melanocortin 4 receptor (MC4R) is a G protein-coupled receptor (GPCR) that is expressed in several brain nuclei playing a crucial role in the regulation of energy balance controlling the homeostasis of the organism. It displays both agonist-evoked and constitutive activity, and moreover, it can couple to different G proteins. Most of the research on MC4R has been focused on agonist-induced activity, while the molecular and cellular basis of MC4R constitutive activity remains scarcely studied. We have previously shown that neuronal N-type voltage-gated calcium channels (CaV2.2) are inhibited by MC4R agonist-dependent activation, while the CaV subtypes that carry L- and P/Q-type current are not. Here, we tested the hypothesis that MC4R constitutive activity can affect CaV, with focus on the channel subtypes that can control transcriptional activity coupled to depolarization (L-type, CaV1.2/1.3) and neurotransmitter release (N- and P/Q-type, CaV2.2 and CaV2.1). We found that MC4R constitutive activity inhibits specifically CaV1.2/1.3 and CaV2.1 subtypes of CaV. We also explored the signaling pathways mediating this inhibition, and thus propose that agonist-dependent and basal MC4R activation modes signal differentially through Gs and Gi/o pathways to impact on different CaV subtypes. In addition, we found that chronic incubation with MC4R endogenous inverse agonist, agouti and agouti-related peptide (AgRP), occludes CaV inhibition in a cell line and in amygdaloid complex cultured neurons as well. Thus, we define new mechanisms of control of the main mediators of depolarization-induced calcium entry into neurons by a GPCR that displays constitutive activity.

  9. The TM2 6' position of GABA(A) receptors mediates alcohol inhibition.

    PubMed

    Johnson, W David; Howard, Rebecca J; Trudell, James R; Harris, R Adron

    2012-02-01

    Ionotropic GABA(A) receptors (GABA(A)Rs), which mediate inhibitory neurotransmission in the central nervous system, are implicated in the behavioral effects of alcohol and alcoholism. Site-directed mutagenesis studies support the presence of discrete molecular sites involved in alcohol enhancement and, more recently, inhibition of GABA(A)Rs. We used Xenopus laevis oocytes to investigate the 6' position in the second transmembrane region of GABA(A)Rs as a site influencing alcohol inhibition. We asked whether modification of the 6' position by substitution with larger residues or methanethiol labeling [using methyl methanethiosulfonate (MMTS)] of a substituted cysteine, reduced GABA action and/or blocked further inhibition by alcohols. Labeling of the 6' position in either α2 or β2 subunits reduced responses to GABA. In addition, methanol and ethanol potentiation increased after MMTS labeling or substitution with tryptophan or methionine, consistent with elimination of an inhibitory site for these alcohols. Specific alcohols, but not the anesthetic etomidate, competed with MMTS labeling at the 6' position. We verified a role for the 6' position in previously tested α2β2 as well as more physiologically relevant α2β2γ2s GABA(A)Rs. Finally, we built a novel molecular model based on the invertebrate glutamate-gated chloride channel receptor, a GABA(A)R homolog, revealing that the 6' position residue faces the channel pore, and modification of this residue alters volume and polarity of the pore-facing cavity in this region. These results indicate that the 6' positions in both α2 and β2 GABA(A)R subunits mediate inhibition by short-chain alcohols, which is consistent with the presence of multiple counteracting sites of action for alcohols on ligand-gated ion channels.

  10. Anti-MUC1 antibody inhibits EGF receptor signaling in cancer cells

    SciTech Connect

    Hisatsune, Akinori; Nakayama, Hideki; Kawasaki, Mitsuru; Horie, Ichiro; Miyata, Takeshi; Isohama, Yoichiro; Kim, Kwang Chul; Katsuki, Hiroshi

    2011-02-18

    Research highlights: {yields} We identified changes in the expression and function of EGFR by anti-MUC1 antibody. {yields} An anti-MUC1 antibody GP1.4 decreased EGFR from cell surface by internalization. {yields} GP1.4 specifically inhibited ERK signaling triggered EGF-EGFR signaling pathway. {yields} Internalization of EGFR was dependent on the presence of MUC1 on cell surface. {yields} GP1.4 significantly inhibited EGF-dependent cancer cell proliferation and migration. -- Abstract: MUC1 is a type I transmembrane glycoprotein aberrantly overexpressed in various cancer cells. High expression of MUC1 is closely associated with cancer progression and metastasis, leading to poor prognosis. We previously reported that MUC1 is internalized by the binding of the anti-MUC1 antibody, from the cell surface to the intracellular region via the macropinocytotic pathway. Since MUC1 is closely associated with ErbBs, such as EGF receptor (EGFR) in cancer cells, we examined the effect of the anti-MUC1 antibody on EGFR trafficking. Our results show that: (1) anti-MUC1 antibody GP1.4, but not another anti-MUC1 antibody C595, triggered the internalization of EGFR in pancreatic cancer cells; (2) internalization of EGFR by GP1.4 resulted in the inhibition of ERK phosphorylation by EGF stimulation, in a MUC1 dependent manner; (3) inhibition of ERK phosphorylation by GP1.4 resulted in the suppression of proliferation and migration of pancreatic cancer cells. We conclude that the internalization of EGFR by anti-MUC1 antibody GP1.4 inhibits the progression of cancer cells via the inhibition of EGFR signaling.

  11. Phosphatidylinositol 3-kinase inhibition broadly sensitizes glioblastoma cells to death receptor- and drug-induced apoptosis.

    PubMed

    Opel, Daniela; Westhoff, Mike-Andrew; Bender, Ariane; Braun, Veit; Debatin, Klaus-Michael; Fulda, Simone

    2008-08-01

    The aberrant activity of the phosphatidylinositol 3-kinase (PI3K) pathway has been reported to correlate with adverse clinical outcome in human glioblastoma in vivo. However, the question of how this survival network can be successfully targeted to restore the sensitivity of glioblastoma to apoptosis induction has not yet been answered. Here, we report that inhibition of PI3K by LY294002 broadly sensitizes wild-type and mutant PTEN glioblastoma cells to both death receptor- and chemotherapy-induced apoptosis, whereas mammalian target of rapamycin (mTOR) inhibition is not sufficient to restore apoptosis sensitivity. LY294002 significantly enhances apoptosis triggered by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), agonistic anti-CD95 antibodies, or several anticancer drugs (i.e., doxorubicin, etoposide, and vincristine) in a highly synergistic manner. In addition, LY294002 cooperates with TRAIL or doxorubicin to suppress colony formation, thus also showing a strong effect on long-term survival. Similarly, genetic knockdown of PI3K subunits p110alpha and/or p110beta by RNA interference (RNAi) primes glioblastoma cells for TRAIL- or doxorubicin-mediated apoptosis. In contrast to PI3K inhibition, pharmacologic or genetic blockade of mTOR by RAD001 (everolimus), rapamycin, or RNAi fails to enhance TRAIL- or doxorubicin-induced apoptosis. Analysis of apoptosis pathways reveals that PI3K inhibition acts in concert with TRAIL or doxorubicin to trigger mitochondrial membrane permeabilization, caspase activation, and caspase-dependent apoptosis, which are abolished by the caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone. Most importantly, PI3K inhibition by LY294002 sensitizes primary cultured glioblastoma cells obtained from surgical specimens to TRAIL- or chemotherapy-induced cell death. By showing that PI3K inhibition broadly primes glioblastoma cells for apoptosis, our findings provide the rationale for using PI3K inhibitors in

  12. δ-Tocopherol inhibits receptor tyrosine kinase-induced AKT activation in prostate cancer cells.

    PubMed

    Wang, Hong; Hong, Jungil; Yang, Chung S

    2016-11-01

    The cancer preventive activity of vitamin E is suggested by epidemiological studies and supported by animal studies with vitamin E forms, γ-tocopherol and δ-tocopherol (δ-T). Several recent large-scale cancer prevention trials with high dose of α-tocopherol, however, yielded disappointing results. Whether vitamin E prevents or promotes cancer is a serious concern. A better understanding of the molecular mechanisms of action of the different forms of tocopherols would enhance our understanding of this topic. In this study, we demonstrated that δ-T was the most effective tocopherol form in inhibiting prostate cancer cell growth, by inducing cell cycle arrest and apoptosis. By profiling the effects of δ-T on the cell signaling using the phospho-kinase array, we found that the most inhibited target was the phosphorylation of AKT on T308. Further study on the activation of AKT by EGFR and IGFR revealed that δ-T attenuated the EGF/IGF-induced activation of AKT (via the phosphorylation of AKT on T308 induced by the activation of PIK3). Expression of dominant active PIK3 and AKT in prostate cancer cell line DU145 in which PIK3, AKT, and PTEN are wild type caused the cells to be reflectory to the inhibition of δ-T, supporting that δ-T inhibits the PIK3-mediated activation of AKT. Our data also suggest that δ-T interferes with the EGF-induced EGFR internalization, which leads to the inhibition of the receptor tyrosine kinase-dependent activation of AKT. In summary, our results revealed a novel mechanism of δ-T in inhibiting prostate cancer cell growth, supporting the cancer preventive activity δ-T. © 2015 Wiley Periodicals, Inc.

  13. Presynaptic inhibition of synaptic transmission in the rat hippocampus by activation of muscarinic receptors: involvement of presynaptic calcium influx

    PubMed Central

    Qian, Jing; Saggau, Peter

    1997-01-01

    Modulation of presynaptic voltage-dependent calcium channels (VDCCs) by muscarinic receptors at the CA3–CA1 synapse of rat hippocampal slices was investigated by using the calcium indicator fura-2. Stimulation-evoked presynaptic calcium transients ([Capre]t) and field excitatory postsynaptic potentials (fe.p.s.ps) were simultaneously recorded. The relationship between presynaptic calcium influx and synaptic transmission was studied. Activation of muscarinic receptors inhibited [Capre]t, thereby reducing synaptic transmission. Carbachol (CCh, 10 μM) inhibited [Capre]t by 35% and reduced fe.p.s.p. by 85%. The inhibition was completely antagonized by 1 μM atropine. An approximate 4th power relationship was found between presynaptic calcium influx and postsynaptic responses. Application of the N-type VDCC-blocking peptide toxin ω-conotoxin GVIA (ω-CTx GVIA, 1 μM) inhibited [Capre]t and fe.p.s.ps by 21% and 49%, respectively, while the P/Q-type VDCC blocker ω-agatoxin IVA (ω-Aga IVA, 1 μM) reduced [Capre]t and fe.p.s.ps by 35% and 85%, respectively. Muscarinic receptor activation differentially inhibited distinct presynaptic VDCCs. ω-CTx GVIA-sensitive calcium channels were inhibited by muscarinic receptors, while ω-Aga IVA-sensitive channels were not. The percentage inhibition of ω-CTx GVIA-sensitive [Capre]t was about 63%. Muscarinic receptors inhibited presynaptic VDCCs in a way similar to adenosine (Ad) receptors. The percentage inhibition of ω-CTx GVIA-sensitive [Capre]t by Ad (100 μM) was about 59%. There was no significant inhibition of ω-Aga IVA-sensitive channels by Ad. The inhibitions of [Capre]t by CCh and Ad were mutually occlusive. These results indicate that inhibition of synaptic transmission by muscarinic receptors is mainly the consequence of a reduction of the [Capre]t due to inhibition of presynaptic VDCCs. PMID:9351508

  14. Inhibition of the apelin/apelin receptor axis decreases cholangiocarcinoma growth.

    PubMed

    Hall, Chad; Ehrlich, Laurent; Venter, Julie; O'Brien, April; White, Tori; Zhou, Tianhao; Dang, Tien; Meng, Fanyin; Invernizzi, Pietro; Bernuzzi, Francesca; Alpini, Gianfranco; Lairmore, Terry C; Glaser, Shannon

    2017-02-01

    Cholangiocarcinoma (CCA) is a malignancy of the biliary epithelium that is associated with low five-year survival. The apelin receptor (APLNR), which is activated by the apelin peptide, has not been studied in CCA. The purpose of this study is to determine if inhibition of the apelin/APLNR axis can inhibit CCA growth. Immunohistochemistry, rtPCR, immunofluorescence, flow cytometry, and ELISA was used to measure APLNR expression in human CCA cells and tissues. Mz-ChA-1 cells were treated with increasing concentrations of apelin and ML221, an APLNR antagonist. Expression of proliferative and angiogenic genes were measured via rtPCR. In vivo, Mz-ChA-1 cells were injected into the flanks of nu/nu mice, which were treated with ML221 (150 μg/kg) via tail vein injection. Expression of the apelin/APLNR axis was increased in CCA. In vitro, CCA proliferation and angiogenesis was inhibited by ML221 treatment. ML221 treatment significantly decreased tumor growth in nu/nu mice. The apelin/APLNR axis regulates CCA proliferation and angiogenesis. Inhibition of the apelin/APLNR axis decreases tumor growth in our xenograft model. Targeting APLNR signaling has the potential to serve as a novel, tumor directed therapy for CCA. Copyright © 2016. Published by Elsevier Ireland Ltd.

  15. Blockage of transient receptor potential vanilloid 4 inhibits brain edema in middle cerebral artery occlusion mice.

    PubMed

    Jie, Pinghui; Tian, Yujing; Hong, Zhiwen; Li, Lin; Zhou, Libin; Chen, Lei; Chen, Ling

    2015-01-01

    Brain edema is an important pathological process during stroke. Activation of transient receptor potential vanilloid 4 (TRPV4) causes an up-regulation of matrix metalloproteinases (MMPs) in lung tissue. MMP can digest the endothelial basal lamina to destroy blood brain barrier, leading to vasogenic brain edema. Herein, we tested whether TRPV4-blockage could inhibit brain edema through inhibiting MMPs in middle cerebral artery occlusion (MCAO) mice. We found that the brain water content and Evans blue extravasation at 48 h post-MCAO were reduced by a TRPV4 antagonist HC-067047. The increased MMP-2/9 protein expression in hippocampi of MCAO mice was attenuated by HC-067046, but only the increased MMP-9 activity was blocked by HC-067047. The loss of zonula occludens-1 (ZO-1) and occludin protein in MCAO mice was also attenuated by HC-067047. Moreover, MMP-2/9 protein expression increased in mice treated with a TRPV4 agonist GSK1016790A, but only MMP-9 activity was increased by GSK1016790A. Finally, ZO-1 and occludin protein expression was decreased by GSK1016790A, which was reversed by an MMP-9 inhibitor. We conclude that blockage of TRPV4 may inhibit brain edema in cerebral ischemia through inhibiting MMP-9 activation and the loss of tight junction protein.

  16. Retinoic-acid-orphan-receptor-C inhibition suppresses Th17 cells and induces thymic aberrations

    PubMed Central

    Guntermann, Christine; Piaia, Alessandro; Hamel, Marie-Laure; Theil, Diethilde; Rubic-Schneider, Tina; del Rio-Espinola, Alberto; Dong, Linda; Billich, Andreas; Kaupmann, Klemens; Dawson, Janet; Hoegenauer, Klemens; Orain, David; Hintermann, Samuel; Stringer, Rowan; Patel, Dhavalkumar D.; Doelemeyer, Arno; Deurinck, Mark

    2017-01-01

    Retinoic-acid-orphan-receptor-C (RORC) is a master regulator of Th17 cells, which are pathogenic in several autoimmune diseases. Genetic Rorc deficiency in mice, while preventing autoimmunity, causes early lethality due to metastatic thymic T cell lymphomas. We sought to determine whether pharmacological RORC inhibition could be an effective and safe therapy for autoimmune diseases by evaluating its effects on Th17 cell functions and intrathymic T cell development. RORC inhibitors effectively inhibited Th17 differentiation and IL-17A production, and delayed-type hypersensitivity reactions. In vitro, RORC inhibitors induced apoptosis, as well as Bcl2l1 and BCL2L1 mRNA downregulation, in mouse and nonhuman primate thymocytes, respectively. Chronic, 13-week RORC inhibitor treatment in rats caused progressive thymic alterations in all analyzed rats similar to those in Rorc-deficient mice prior to T cell lymphoma development. One rat developed thymic cortical hyperplasia with neoplastic features, including increased mitosis and reduced IKAROS expression, albeit without skewed T cell clonality. In summary, pharmacological inhibition of RORC not only blocks Th17 cell development and related cytokine production, but also recapitulates thymic aberrations seen in Rorc-deficient mice. While RORC inhibition may offer an effective therapeutic principle for Th17-mediated diseases, T cell lymphoma with chronic therapy remains an apparent risk. PMID:28289717

  17. mTOR inhibition improves fibroblast growth factor receptor targeting in hepatocellular carcinoma

    PubMed Central

    Scheller, T; Hellerbrand, C; Moser, C; Schmidt, K; Kroemer, A; Brunner, S M; Schlitt, H J; Geissler, E K; Lang, S A

    2015-01-01

    Background: Systemic therapy has proven only marginal effects in hepatocellular carcinoma (HCC) so far. The aim of this study was to evaluate the effect of targeting fibroblast growth factor receptor (FGFR) on tumour and stromal cells in HCC models. Methods: Human and murine HCC cells, endothelial cells (ECs), vascular smooth muscle cells (VSMCs), hepatic stellate cells (HSCs), human HCC samples, FGFR inhibitor BGJ398 and mammalian target of rapamycin (mTOR) inhibitor rapamycin were used. Effects on growth, motility, signalling and angiogenic markers were determined. In vivo subcutaneous and syngeneic orthotopic tumour models were used. Results: In tumour cells and ECs, targeting FGFR showed significant inhibitory effects on signalling and motility. Minor effects of FGFR inhibition were observed on VSMCs and HSCs, which were significantly enhanced by combining FGFR and mTOR blockade. In vivo daily (5 mg kg−1) treatment with BGJ398 led to a significant growth inhibition in subcutaneous tumour models, but only a combination of FGFR and mTOR blockade impaired tumour growth in the orthotopic model. This was paralleled by reduced tumour cell proliferation, vascularisation, pericytes and increased apoptosis. Conclusions: Targeting FGFR with BGJ398 affects tumour cells and ECs, whereas only a combination with mTOR inhibition impairs recruitment of VSMCs and HSCs. Therefore, this study provides evidence for combined FGFR/mTOR inhibition in HCC. PMID:25688743

  18. YQA14: a novel dopamine D3 receptor antagonist that inhibits cocaine self-administration in rats and mice, but not in D3 receptor-knockout mice

    PubMed Central

    Song, Rui; Yang, Ri-Fang; Wu, Ning; Su, Rui-Bin; Li, Jin; Peng, Xiao-Qing; Li, Xia; Gaál, József; Xi, Zheng-Xiong; Gardner, Eliot L.

    2017-01-01

    The dopamine (DA) D3 receptor is posited to be importantly involved in drug reward and addiction, and D3 receptor antagonists have shown extraordinary promise as potential anti-addiction pharmacotherapeutic agents in animal models of drug addiction. SB-277011A is the best characterized D3 receptor antagonist in such models. However, the potential use of SB-277011A in humans is precluded by pharmacokinetic and toxicity problems. We here report a novel D3 receptor antagonist YQA14 that shows similar pharmacological properties as SB-277011A. In vitro receptor binding assays suggest that YQA14 has two binding sites on human cloned D3 receptors with Ki-High (0.68 × 10−4 nM) and Ki-Low (2.11 nM), and displays > 150-fold selectivity for D3 over D2 receptors and > 1000-fold selectivity for D3 over other DA receptors. Systemic administration of YQA14 (6.25–25 mg/kg) or SB-277011A (12.5–25 mg/kg) significantly and dose-dependently reduced intravenous cocaine self-administration under both low fixed-ratio and progressive-ratio reinforcement conditions in rats, while failing to alter oral sucrose self-administration and locomotor activity, suggesting a selective inhibition of drug reward. However, when the drug dose was increased to 50 mg/kg, YQA14 and SB-277011A significantly inhibited basal and cocaine-enhanced locomotion in rats. Finally, both D3 antagonists dose-dependently inhibited intravenous cocaine self-administration in wild-type mice, but not in D3 receptor-knockout mice, suggesting that their action is mediated by D3 receptor blockade. These findings suggest that YQA14 has a similar anti-addiction profile as SB-277011A, and deserves further study and development. PMID:21507153

  19. Losartan, a selective inhibitor of subtype AT1 receptors for angiotensin II, inhibits the binding of N-formylmethionyl-leucyl-phenylalanine to neutrophil receptors.

    PubMed

    Raiden, S; Giordano, M; Andonegui, G; Trevani, A S; López, D H; Nahmod, V; Geffner, J R

    1997-05-01

    Losartan, a selective antagonist of AT1 receptors for angiotensin II, is widely used clinically to manage hypertension. We report here that losartan markedly inhibits neutrophil shape change, adherence and chemiluminescence responses triggered by N-formylmethionyl-leucyl-phenylalanine (fMLP), without affecting responses induced by immune complexes, zymosan or concanavalin A. Neither saralasin, another antagonist of angiotensin II receptors, nor captopril, an angiotensin-converting enzyme inhibitor, reproduced the effects of losartan. It was also observed that neutrophil responses triggered by fMLP were not affected by exogenously added angiotensin II. The effect of losartan on the binding of fMLP was measured using [3H]fMLP. It was found that losartan inhibits the binding of [3H]fMLP to neutrophil receptors. As observed for neutrophils, studies performed with monocytes showed that losartan inhibits chemiluminescence emission triggered by fMLP, without affecting chemiluminescence responses triggered by immune complexes, zymosan or concanavalin A.

  20. Histamine H3 receptor-mediated inhibition of excitatory synaptic transmission in the rat dentate gyrus in vivo.

    PubMed

    Chang, M; Saito, H; Abe, K

    1998-07-01

    We investigated the effects of histamine H3-receptor ligands on hippocampal synaptic transmission by using anesthetized rats in vivo. The medial perforant path was stimulated, and the population excitatory postsynaptic potential (pEPSP) and population spike were recorded from the granule cell layer of the dentate gyrus. Intracerebroventricular injection of the H3-receptor agonist (R)-alpha-methylhistamine decreased both the pEPSP and population spike, while H3-receptor antagonists, clobenpropit and thioperamide, increased both the pEPSP and population spike. These results suggest that the histaminergic system plays a role in inhibition of hippocampal synaptic excitation via the H3 receptor.

  1. Halothane inhibits the cholinergic-receptor-mediated influx of calcium in primary culture of bovine adrenal medulla cells

    SciTech Connect

    Yashima, N.; Wada, A.; Izumi, F.

    1986-04-01

    Adrenal medulla cells are cholinoceptive cells. Stimulation of the acetylcholine receptor causes the influx of Ca to the cells, and Ca acts as the coupler of the stimulus-secretion coupling. In this study, the authors investigated the effects of halothane on the receptor-mediated influx of /sup 45/Ca using cultured bovine adrenal medulla cells. Halothane at clinical concentrations (0.5-2%) inhibited the influx of /sup 45/Ca caused by carbachol, with simultaneous inhibition of catecholamine secretion. The influx of /sup 45/Ca and the secretion of catecholamines caused by K depolarization were inhibited by a large concentration of Mg, which competes with Ca at Ca channels, but not inhibited by halothane. Inhibition of the /sup 45/Ca influx by halothane was not overcome by increase in the carbachol concentration. Inhibition of the /sup 45/Ca influx by halothane was examined in comparison with that caused by a large concentration of Mg by the application of Scatchard analysis as the function of the external Ca concentration. Halothane decreased the maximal influx of /sup 45/Ca without altering the apparent kinetic constant of Ca to Ca channels. On the contrary, a large concentration of Mg increased the apparent kinetic constant without altering the maximal influx of /sup 45/Ca. Based on these findings, the authors suggest that inhibition of the /sup 45/Ca influx by halothane was not due to the direct competitive inhibition of Ca channels, nor to the competitive antagonism of agonist-receptor interaction. As a possibility, halothane seems to inhibit the receptor-mediated activation of Ca channels through the interference of coupling between the receptor and Ca channels.

  2. Bacterial Lipopolysaccharide Rapidly Inhibits Expression of C–C Chemokine Receptors in Human Monocytes

    PubMed Central

    Sica, Antonio; Saccani, Alessandra; Borsatti, Alessandro; Power, Christine A.; Wells, Timothy N.C.; Luini, Walter; Polentarutti, Nadia; Sozzani, Silvano; Mantovani, Alberto

    1997-01-01

    The present study was designed to investigate the effect of bacterial lipopolysaccharide (LPS) on C–C chemokine receptors (CCR) expressed in human mononuclear phagocytes. LPS caused a rapid and drastic reduction of CCR2 mRNA levels, which binds MCP-1 and -3. CCR1 and CCR5 mRNAs were also reduced, though to a lesser extent, whereas CXCR2 was unaffected. The rate of nuclear transcription of CCR2 was not affected by LPS, whereas the mRNA half life was reduced from 1.5 h to 45 min. As expected, LPS-induced inhibition of CCR2 mRNA expression was associated with a reduction of both MCP-1 binding and chemotactic responsiveness. The capacity to inhibit CCR2 expression in monocytes was shared by other microbial agents and cytokines (inactivated Streptococci, Propionibacterium acnes, and to a lesser extent, IL-1 and TNF-α). In contrast, IL-2 augmented CCR2 expression and MCP-1 itself had no effect. These results suggest that, regulation of receptor expression in addition to agonist production is likely a crucial point in the regulation of the chemokine system. PMID:9120403

  3. Lipopolysaccharide Inhibits the Channel Activity of the P2X7 Receptor

    PubMed Central

    Leiva-Salcedo, Elias; Coddou, Claudio; Rodríguez, Felipe E.; Penna, Antonello; Lopez, Ximena; Neira, Tanya; Fernández, Ricardo; Imarai, Mónica; Rios, Miguel; Escobar, Jorge; Montoya, Margarita; Huidobro-Toro, J. Pablo; Escobar, Alejandro; Acuña-Castillo, Claudio

    2011-01-01

    The purinergic P2X7 receptor (P2X7R) plays an important role during the immune response, participating in several events such as cytokine release, apoptosis, and necrosis. The bacterial endotoxin lipopolysaccharide (LPS) is one of the strongest stimuli of the immune response, and it has been shown that P2X7R activation can modulate LPS-induced responses. Moreover, a C-terminal binding site for LPS has been proposed. In order to evaluate if LPS can directly modulate the activity of the P2X7R, we tested several signaling pathways associated with P2X7R activation in HEK293 cells that do not express the TLR-4 receptor. We found that LPS alone was unable to induce any P2X7R-related activity, suggesting that the P2X7R is not directly activated by the endotoxin. On the other hand, preapplication of LPS inhibited ATP-induced currents, intracellular calcium increase, and ethidium bromide uptake and had no effect on ERK activation in HEK293 cells. In splenocytes-derived T-regulatory cells, in which ATP-induced apoptosis is driven by the P2X7R, LPS inhibited ATP-induced apoptosis. Altogether, these results demonstrate that LPS modulates the activity of the P2X7R and suggest that this effect could be of physiological relevance. PMID:21941410

  4. Fisetin inhibits liver cancer growth in a mouse model: Relation to dopamine receptor.

    PubMed

    Liu, Xiang-Feng; Long, Hai-Jiao; Miao, Xiong-Ying; Liu, Guo-Li; Yao, Hong-Liang

    2017-07-01

    Fisetin (3,3',4',7-tetrahydroxyflavone), a natural abundant flavonoid, is produced in different vegetables and fruits. Fisetin has been reported to relate to various positive biological effects, including anti-proliferative, anticancer, anti-oxidative and neuroprotective effects. Dopamine receptors (DRs) belonging to G protein‑coupled receptor family, are known as the target of ~50% of all modern medicinal drugs. DRs consist of various proteins, functioning as transduction of intracellular signals for extracellular stimuli. We found that fisetin performed as DR2 agonist to suppress liver cancer cells proliferation, migration and invasion. Caspase-3 signaling was activated to induce apoptosis for fisetin administration. Furthermore, TGF‑β1 was also inhibited in fisetin-treated liver cancer cells, reducing epithelial-mesenchymal transition (EMT). Additionally, fisetin downregulated VEGFR1, p-ERK1/2, p38 and pJNK, ameliorating liver cancer progression. In vivo, the orthotopically implanted tumors from mice were inhibited by fisetin adminisatration accompanied by prolonged survival rate and higher levels of dopamine. Together, the results indicated a novel therapeutic strategy to suppress liver cancer progression associated with DR2 regulation, indicating that dopamine might be of importance in liver cancer progression.

  5. Inhibition of fibroblast growth factor receptor 3-dependent lung adenocarcinoma with a human monoclonal antibody

    PubMed Central

    Yin, Yongjun; Ren, Xiaodi; Smith, Craig; Guo, Qianxu; Malabunga, Maria; Guernah, Ilhem; Zhang, Yiwei; Shen, Juqun; Sun, Haijun; Chehab, Nabil; Loizos, Nick; Ludwig, Dale L.; Ornitz, David M.

    2016-01-01

    ABSTRACT Activating mutations in fibroblast growth factor receptor 3 (FGFR3) have been identified in multiple types of human cancer and in congenital birth defects. In human lung cancer, fibroblast growth factor 9 (FGF9), a high-affinity ligand for FGFR3, is overexpressed in 10% of primary resected non-small cell lung cancer (NSCLC) specimens. Furthermore, in a mouse model where FGF9 can be induced in lung epithelial cells, epithelial proliferation and ensuing tumorigenesis is dependent on FGFR3. To develop new customized therapies for cancers that are dependent on FGFR3 activation, we have used this mouse model to evaluate a human monoclonal antibody (D11) with specificity for the extracellular ligand-binding domain of FGFR3, that recognizes both human and mouse forms of the receptor. Here, we show that D11 effectively inhibits signaling through FGFR3 in vitro, inhibits the growth of FGFR3-dependent FGF9-induced lung adenocarcinoma in mice, and reduces tumor-associated morbidity. Given the potency of FGF9 in this mouse model and the absolute requirement for signaling through FGFR3, this study validates the D11 antibody as a potentially useful and effective reagent for treating human cancers or other pathologies that are dependent on activation of FGFR3. PMID:27056048

  6. The vascular endothelial growth factor receptor inhibitor PTK787/ZK222584 inhibits aromatase.

    PubMed

    Banerjee, Susana; Zvelebil, Marketa; Furet, Pascal; Mueller-Vieira, Ursula; Evans, Dean B; Dowsett, Mitch; Martin, Lesley-Ann

    2009-06-01

    Endocrine therapy is well established for the treatment of breast cancer, and antiangiogenic agents are showing considerable promise. Targeting the vascular endothelial growth factor (VEGF) and estrogen receptor (ER) signaling pathways concomitantly may provide enhanced therapeutic benefit in ER-positive breast cancer. Therefore, the effects of the VEGF receptor (VEGFR) tyrosine kinase inhibitor PTK787/ZK222584 (PTK/ZK) were investigated using human breast cancer cell lines engineered to express aromatase. As expected in this system, estrogen (E2) or androstenedione induced a proliferative response and increased ER-mediated transcription in ER-positive cell lines expressing aromatase. However, surprisingly, in the presence of androstenedione, PTK/ZK suppressed both the androstenedione-stimulated proliferation and ER-mediated transcription. PTK/ZK alone and in the presence of E2 had no observable effect on proliferation or ER-mediated transcription. These effects result from PTK/ZK having previously unrecognized antiaromatase activity and PTK/ZK being a competitive aromatase inhibitor. Computer-assisted molecular modeling showed that PTK/ZK could potentially bind directly to aromatase. The demonstration that PTK/ZK inhibits aromatase and VEGFR indicates that agents cross-inhibiting two important classes of targets in breast cancer could be developed.

  7. Phosphorylation of Jak2 on Ser523 Inhibits Jak2-Dependent Leptin Receptor Signaling†

    PubMed Central

    Ishida-Takahashi, Ryoko; Rosario, Felicia; Gong, Yusong; Kopp, Keely; Stancheva, Zlatina; Chen, Xiaohong; Feener, Edward P.; Myers, Martin G.

    2006-01-01

    The leptin receptor, LRb, and other cytokine receptors are devoid of intrinsic enzymatic activity and rely upon the activity of constitutively associated Jak family tyrosine kinases to mediate intracellular signaling. In order to clarify mechanisms by which Jak2, the cognate LRb-associated Jak kinase, is regulated and mediates downstream signaling, we employed tandem mass spectroscopic analysis to identify phosphorylation sites on Jak2. We identified Ser523 as the first-described site of Jak2 serine phosphorylation and demonstrated that this site is phosphorylated on Jak2 from intact cells and mouse spleen. Ser523 was highly phosphorylated in HEK293 cells independently of LRb-Jak2 activation, suggesting a potential role for the phosphorylation of Ser523 in the regulation of LRb by other pathways. Indeed, mutation of Ser523 sensitized and prolonged signaling by Jak2 following activation by the intracellular domain of LRb. The effect of Ser523 on Jak2 function was independent of Tyr570-mediated inhibition. Thus, the phosphorylation of Jak2 on Ser523 inhibits Jak2 activity and represents a novel mechanism for the regulation of Jak2-dependent cytokine signaling. PMID:16705160

  8. Farnesoid X Receptor Inhibits the Transcriptional Activity of Carbohydrate Response Element Binding Protein in Human Hepatocytes

    PubMed Central

    Caron, Sandrine; Huaman Samanez, Carolina; Dehondt, Hélène; Ploton, Maheul; Briand, Olivier; Lien, Fleur; Dorchies, Emilie; Dumont, Julie; Postic, Catherine; Cariou, Bertrand; Lefebvre, Philippe

    2013-01-01

    The glucose-activated transcription factor carbohydrate response element binding protein (ChREBP) induces the expression of hepatic glycolytic and lipogenic genes. The farnesoid X receptor (FXR) is a nuclear bile acid receptor controlling bile acid, lipid, and glucose homeostasis. FXR negatively regulates hepatic glycolysis and lipogenesis in mouse liver. The aim of this study was to determine whether FXR regulates the transcriptional activity of ChREBP in human hepatocytes and to unravel the underlying molecular mechanisms. Agonist-activated FXR inhibits glucose-induced transcription of several glycolytic genes, including the liver-type pyruvate kinase gene (L-PK), in the immortalized human hepatocyte (IHH) and HepaRG cell lines. This inhibition requires the L4L3 region of the L-PK promoter, known to bind the transcription factors ChREBP and hepatocyte nuclear factor 4α (HNF4α). FXR interacts directly with ChREBP and HNF4α proteins. Analysis of the protein complex bound to the L4L3 region reveals the presence of ChREBP, HNF4α, FXR, and the transcriptional coactivators p300 and CBP at high glucose concentrations. FXR activation does not affect either FXR or HNF4α binding to the L4L3 region but does result in the concomitant release of ChREBP, p300, and CBP and in the recruitment of the transcriptional corepressor SMRT. Thus, FXR transrepresses the expression of genes involved in glycolysis in human hepatocytes. PMID:23530060

  9. Inhibition of androgen receptor by decoy molecules delays progression to castration-recurrent prostate cancer

    PubMed Central

    Myung, Jae-Kyung; Wang, Gang; Chiu, Helen H. L.; Wang, Jun; Mawji, Nasrin R.; Sadar, Marianne D.

    2017-01-01

    Androgen receptor (AR) is a member of the steroid receptor family and a therapeutic target for all stages of prostate cancer. AR is activated by ligand binding within its C-terminus ligand-binding domain (LBD). Here we show that overexpression of the AR NTD to generate decoy molecules inhibited both the growth and progression of prostate cancer in castrated hosts. Specifically, it was shown that lentivirus delivery of decoys delayed hormonal progression in castrated hosts as indicated by increased doubling time of tumor volume, prolonged time to achieve pre-castrate levels of serum prostate-specific antigen (PSA) and PSA nadir. These clinical parameters are indicative of delayed hormonal progression and improved therapeutic response and prognosis. Decoys reduced the expression of androgen-regulated genes that correlated with reduced in situ interaction of the AR with androgen response elements. Decoys did not reduce levels of AR protein or prevent nuclear localization of the AR. Nor did decoys interact directly with the AR. Thus decoys did not inhibit AR transactivation by a dominant negative mechanism. This work provides evidence that the AR NTD plays an important role in the hormonal progression of prostate cancer and supports the development of AR antagonists that target the AR NTD. PMID:28306720

  10. Non-competitive androgen receptor inhibition in vitro and in vivo.

    PubMed

    Jones, Jeremy O; Bolton, Eric C; Huang, Yong; Feau, Clementine; Guy, R Kiplin; Yamamoto, Keith R; Hann, Byron; Diamond, Marc I

    2009-04-28

    Androgen receptor (AR) inhibitors are used to treat multiple human diseases, including hirsutism, benign prostatic hypertrophy, and prostate cancer, but all available anti-androgens target only ligand binding, either by reduction of available hormone or by competitive antagonism. New strategies are needed, and could have an important impact on therapy. One approach could be to target other cellular mechanisms required for receptor activation. In prior work, we used a cell-based assay of AR conformation change to identify non-ligand inhibitors of AR activity. Here, we characterize 2 compounds identified in this screen: pyrvinium pamoate, a Food and Drug Administration-approved drug, and harmol hydrochloride, a natural product. Each compound functions by a unique, non-competitive mechanism and synergizes with competitive antagonists to disrupt AR activity. Harmol blocks DNA occupancy by AR, whereas pyrvinium does not. Pyrvinium inhibits AR-dependent gene expression in the prostate gland in vivo, and induces prostate atrophy. These results highlight new therapeutic strategies to inhibit AR activity.

  11. Peroxisome proliferator-activated receptor gamma activation inhibits progesterone-stimulated human MUC1 expression.

    PubMed

    Wang, Peng; Dharmaraj, Neeraja; Brayman, Melissa J; Carson, Daniel D

    2010-07-01

    Mucin 1 (MUC1) is a type I transmembrane glycoprotein abundantly expressed on nearly all epithelial tissues and overexpressed by many cancer cells. Previous studies from our lab showed that progesterone receptor (PR)B is a strong stimulator of MUC1 gene expression. It is reported that liganded peroxisome proliferator-activated receptor gamma (PPARgamma) stimulates Muc1 expression in murine trophoblast. Here, we demonstrate that although the PPARgamma ligand, rosiglitazone, stimulates the murine Muc1 promoter in HEC1A, a human uterine epithelial cell line, rosiglitazone alone, has no significant effect on basal human MUC1 promoter activity. In fact, rosiglitazone treatment antagonizes progesterone-stimulated human MUC1 promoter activity and protein expression in two human uterine epithelial cell lines and T47D human breast cancer cells. This response is antagonized by the PPARgamma antagonist, GW9662, as well as a dominant-negative form of PPARgamma, demonstrating the response is mediated by PPARgamma. Additional studies indicate that PPARgamma activation does not change PR binding to the MUC1 promoter but generally antagonizes progesterone activity by stimulating PRB degradation and inhibiting progesterone-induced PRB phosphorylation. Collectively, these studies indicate that PPARgamma activation inhibits PRB activity through both acute (phosphorylation) and long-term (PRB degradation) pathways.

  12. Breast milk protects against the development of necrotizing enterocolitis through inhibition of Toll Like Receptor 4 in the intestinal epithelium via activation of the epidermal growth factor receptor

    PubMed Central

    Good, Misty; Sodhi, Chhinder P.; Egan, Charlotte E.; Afrazi, Amin; Jia, Hongpeng; Yamaguchi, Yukihiro; Lu, Peng; Branca, Maria F.; Ma, Congrong; Prindle, Thomas; Mielo, Samantha; Pompa, Anthony; Hodzic, Zerina; Ozolek, John A.; Hackam, David J.

    2015-01-01

    Breast milk is the most effective strategy to protect infants against necrotizing enterocolitis (NEC), a devastating disease which is characterized by severe intestinal necrosis. Previous studies have demonstrated that the lipopolysaccharide receptor toll-like receptor 4 (TLR4) plays a critical role in NEC development via deleterious effects on mucosal injury and repair. We now hypothesize that breast milk protects against NEC by inhibiting TLR4 within the intestinal epithelium, and sought to determine the mechanisms involved. Breast milk protected against NEC and reduced TLR4 signaling in wild-type neonatal mice, but not in mice lacking the epidermal growth factor receptor (EGFR), while selective removal of EGF from breast milk reduced its protective properties, indicating that breast milk inhibits NEC and attenuates TLR4 signaling via EGF/EGFR activation. Over-expression of TLR4 in the intestinal epithelium reversed the protective effects of breast milk. The protective effects of breast milk occurred via inhibition of enterocyte apoptosis and restoration of enterocyte proliferation. Importantly, in IEC-6 enterocytes, breast milk inhibited TLR4 signaling via inhibition of GSK3β. Taken together, these findings offer mechanistic insights into the protective role for breast milk in NEC, and support a link between growth factor and innate immune receptors in NEC pathogenesis. PMID:25899687

  13. The inhibition of release by mGlu7 receptors is independent of the Ca2+ channel type but associated to GABAB and adenosine A1 receptors.

    PubMed

    Martín, Ricardo; Ladera, Carolina; Bartolomé-Martín, David; Torres, Magdalena; Sánchez-Prieto, José

    2008-09-01

    Neurotransmitter release is inhibited by G-protein coupled receptors (GPCRs) through signalling pathways that are negatively coupled to Ca2+ channels and adenylyl cyclase. Through Ca2+ imaging and immunocytochemistry, we have recently shown that adenosine A1, GABAB and the metabotropic glutamate type 7 receptors coexist in a subset of cerebrocortical nerve terminals. As these receptors inhibit glutamate release through common intracellular signalling pathways, their co-activation occluded each other responses. Here we have addressed whether the occlusion of receptor responses is restricted to the glutamate release mediated by N-type Ca2+ channels by analysing this process in nerve terminals from mice lacking the alpha1B subunit (Cav 2.2) of these channels. We found that glutamate release from cerebrocortical nerve terminals without these channels, in which release relies exclusively on P/Q type Ca2+ channels, is not modulated by mGlu7 receptors. Furthermore, there is no occlusion of the release inhibition by GABAB and adenosine A1. Hence, in the cerebrocortical preparation, these three receptors only appear to coexist in N-type channel containing nerve terminals. In contrast, in hippocampal nerve terminals lacking this subunit, where mGlu7 receptors modulate glutamate release via P/Q type channels, the occlusion of inhibitory responses by co-stimulation of adenosine A1, GABAB and mGlu7 receptors was observed. Thus, occlusion of the responses by the three GPCRs is independent of the Ca2+ channel type but rather, it is associated to functional mGlu7 receptors.

  14. TRA-418, a thromboxane A2 receptor antagonist and prostacyclin receptor agonist, inhibits platelet-leukocyte interaction in human whole blood.

    PubMed

    Miyamoto, Mitsuko; Ohno, Michihiro; Yamada, Naohiro; Ohtake, Atsushi; Matsushita, Teruo

    2010-10-01

    TRA-418, a compound with both thromboxane A2 receptor (TP receptor) antagonistic and prostacyclin receptor (IP receptor) agonistic activities, was synthesised in our laboratory as a new antithrombotic agent. In this study, we examined the effects of TRA-418 on platelet-leukocyte interactions in human whole blood. Platelet-leukocyte interactions were induced by U-46619 in the presence of epinephrine (U-46619 + epinephrine) or with thrombin receptor agonist peptide 1-6 (TRAP). Platelet-leukocyte interactions were assessed by flow cytometry, with examination of both platelet-neutrophil and platelet-monocyte complexes. In a control experiment, the TP receptor antagonist SQ-29548 significantly inhibited the induction of platelet-leukocyte complexes by the combination of U-46619 and epinephrine, but not TRAP-induced formation of platelet-leukocyte complexes. Conversely, the IP receptor agonist beraprost sodium inhibited platelet-leukocyte complex formation induced by both methods, although the IC50 values of beraprost sodium for U-46619 + epinephrine were at least 10-fold greater than for TRAP. Under such conditions, TRA-418 inhibited both U-46619 + epinephrine-induced and TRAP-induced platelet-leukocyte complex formation in a concentration-dependent manner, in a similar range. These results suggest that TRA-418 exerts its inhibitory effects on platelet-leukocyte interactions by acting as a TP receptor antagonist as well as an IP receptor agonist in an additive or synergistic manner. These inhibitory effects of TRA-418 on formation of platelet-leukocyte complexes suggest the compound is beneficial effects as an antithrombotic agent.

  15. Inhibition of Androgen Receptor Transcriptional Activity as a Novel Mechanism of Action of Arsenic

    PubMed Central

    Rosenblatt, Adena E.; Burnstein, Kerry L.

    2009-01-01

    Environmental sodium arsenite is a toxin that is associated with male infertility due to decreased and abnormal sperm production. Arsenic trioxide (ATO), another inorganic trivalent semimetal, is an effective therapy for acute promyelocytic leukemia, and there is investigation of its possible efficacy in prostate cancer. However, the mechanism of arsenic action in male urogenital tract tissues is not clear. Because the androgen receptor (AR) plays an important role in spermatogenesis and prostate cancer, we explored the possibility that trivalent arsenic regulates AR function. We found that arsenic inhibited AR transcriptional activity in prostate cancer and Sertoli cells using reporter gene assays testing several androgen response element-containing regions and by assessing native target gene expression. Arsenic inhibition of AR activity was not due to down-regulation of AR protein levels, decreased hormone binding to AR, disruption of AR nuclear translocation, or interference with AR-DNA binding in vitro. However, chromatin immunoprecipitation studies revealed that arsenic inhibited AR recruitment to an AR target gene enhancer in vivo. Consistent with a deficiency in AR-chromatin binding, arsenic disrupted AR amino and carboxyl termini interaction. Furthermore, ATO caused a significant decrease in prostate cancer cell proliferation that was more pronounced in cells expressing AR compared with cells depleted of AR. In addition, inhibition of AR activity by ATO and by the AR antagonist, bicalutamide, was additive. Thus, arsenic-induced male infertility may be due to inhibition of AR activity. Further, because AR is an important target in prostate cancer therapy, arsenic may serve as an effective therapeutic option. PMID:19131511

  16. Inhibition of carbonic anhydrase augments GABAA receptor-mediated analgesia via a spinal mechanism of action

    PubMed Central

    Asiedu, Marina N.; Mejia, Galo L.; Hübner, Christian A.; Kaila, Kai; Price, Theodore J.

    2014-01-01

    Peripheral nerve injury negatively influences spinal GABAergic networks via a reduction in the neuron-specific K+-Cl- cotransporter KCC2. This process has been linked to the emergence of neuropathic allodynia. In vivo pharmacological and modeling studies show that a loss of KCC2 function results in a decrease in the efficacy of GABAA -mediated spinal inhibition. One potential strategy to mitigate this effect entails inhibition of carbonic anhydrase activity to reduce HCO3- -dependent depolarization via GABAA receptors when KCC2 function is compromised. We have tested this hypothesis here. Our results show that, similarly to when KCC2 is pharmacologically blocked, peripheral nerve injury causes a loss of analgesic effect for neurosteroid GABAA allosteric modulators at maximally effective doses in naïve mice in the tail flick test. Remarkably, inhibition of carbonic anhydrase activity with intrathecal acetazolamide rapidly restores an analgesic effect for these compounds suggesting an important role of carbonic anhydrase activity in regulating GABAA -mediated analgesia after peripheral nerve injury. Moreover, spinal acetazolamide administration leads to a profound reduction in the mouse formalin pain test indicating that spinal carbonic anhydrase inhibition produces analgesia when primary afferent activity is driven by chemical mediators. Finally, we demonstrate that systemic administration of acetazolamide to rats with peripheral nerve injury produces an anti-allodynia effect by itself and an enhancement of the peak analgesic effect with a change in the shape of the dose response curve of the α1-sparing benzodiazepine L-838,417. Thus, carbonic anhydrase inhibition mitigates the negative effects of loss of KCC2 function after nerve injury in multiple species and through multiple administration routes resulting in an enhancement of analgesic effects for several GABAA allosteric modulators. We suggest that carbonic anhydrase inhibitors, many of which are clinically

  17. FOXO1 Binds to the TAU5 Motif and Inhibits Constitutively Active Androgen Receptor Splice Variants

    PubMed Central

    Bohrer, Laura R.; Liu, Ping; Zhong, Jian; Pan, Yunqian; Angstman, James; Brand, Lucas J.; Dehm, Scott M.; Huang, Haojie

    2014-01-01

    BACKGROUND Aberrant activation of the androgen receptor (AR) is a major factor highly relevant to castration-resistant progression of prostate cancer (PCa). FOXO1, a key downstream effector of PTEN, inhibits androgen-independent activation of the AR. However, the underlying mechanism remains elusive. METHODS The inhibitory effect of FOXO1 on full-length and constitutively active splice variants of the AR was examined by luciferase reporter assays and real-time reverse transcription polymerase chain reaction (RT-qPCR). In vitro protein binding assays and western blot analyses were used to determine the regions in FOXO1 and AR responsible for their interaction. RESULTS We found that a putative transcription repression domain in the NH2-terminus of FOXO1 is dispensable for FOXO1 inhibition of the AR. In vitro protein binding assays showed that FOXO1 binds to the transcription activation unit 5 (TAU5) motif in the AR NH2-terminal domain (NTD), a region required for recruitment of p160 activators including SRC-1. Ectopic expression of SRC-1 augmented transcriptional activity of some, but not all AR splice variants examined. Forced expression of FOXO1 blocked the effect of SRC-1 on AR variants’ transcriptional activity by decreasing the binding of SRC-1 to the AR NTD. Ectopic expression of FOXO1 inhibited expression of endogenous genes activated primarily by alternatively spliced AR variants in human castration-resistant PCa 22Rv1 cells. CONCLUSIONS FOXO1 binds to the TAU5 motif in the AR NTD and inhibits ligand-independent activation of AR splice variants, suggesting the PTEN/FOXO1 pathway as a potential therapeutic target for inhibition of aberrant AR activation and castration-resistant PCa growth. PMID:23389878

  18. P2Y2 receptor inhibits EGF-induced MAPK pathway to stabilise keratinocyte hemidesmosomes.

    PubMed

    Faure, Emilie; Garrouste, Françoise; Parat, Fabrice; Monferran, Sylvie; Leloup, Ludovic; Pommier, Gilbert; Kovacic, Hervé; Lehmann, Maxime

    2012-09-15

    α6β4 integrin is the main component of hemidesmosomes (HD) that stably anchor the epithelium to the underlying basement membrane. Epithelial cell migration requires HD remodelling, which can be promoted by epidermal growth factor (EGF). We previously showed that extracellular nucleotides inhibit growth factor-induced keratinocyte migration. Here, we investigate the effect of extracellular nucleotides on α6β4 integrin localisation in HD during EGF-induced cell migration. Using a combination of pharmacological inhibition and gene silencing approaches, we found that UTP activates the P2Y2 purinergic receptor and Gαq protein to inhibit EGF/ERK1/2-induced cell migration in keratinocytes. Using a keratinocyte cell line expressing an inducible form of the Raf kinase, we show that UTP inhibits the EGF-induced ERK1/2 pathway activation downstream of Raf. Moreover, we established that ERK1/2 activation by EGF leads to the mobilisation of α6β4 integrin from HD. Importantly, activation of P2Y2R and Gαq by UTP promotes HD formation and protects these structures from EGF-triggered dissolution as revealed by confocal analysis of the distribution of α6β4 integrin, plectin, BPAG1, BPAG2 and CD151 in keratinocytes. Finally, we demonstrated that the activation of p90RSK, downstream of ERK1/2, is sufficient to promote EGF-mediated HD dismantling and that UTP does not stabilise HD in cells expressing an activated form of p90RSK. Our data underline an unexpected role of P2Y2R and Gαq in the inhibition of the ERK1/2 signalling pathway and in the modulation of hemidesmosome dynamics and keratinocyte migration.

  19. Diallyl trisulfide inhibits estrogen receptor-α activity in human breast cancer cells

    PubMed Central

    Hahm, Eun-Ryeong; Singh, Shivendra V.

    2014-01-01

    Organosulfur compounds from garlic effectively inhibit growth of transplanted as well as spontaneous cancers in preclinical animal models without any adverse side effects. However, the mechanisms underlying anticancer effect of this class of compounds are not fully understood. This study reports, for the first time, that garlic organosulfide diallyl trisulfide (DATS) inhibits estrogen receptor-α (ER-β) activity in human breast cancer cells. Exposure of MCF-7 and T47D cells to DATS resulted in downregulation of ER-α protein, which peaked between 12- and 24-h post-treatment. DATS was relatively more effective in suppressing ER-α protein expression compared with its mono and disulfide analogs. The 17β-estradiol (E2)-induced expression of pS2 and cyclin D1, ER-α target gene products, was also decreased in the presence of DATS. Downregulation of ER-α protein expression resulting from DATS treatment was accompanied by a decrease in nuclear levels of ER-α protein, ER-α mRNA suppression, and inhibition of ERE2e1bluciferase reporter activity. DATS-mediated inhibition of cell viability and apoptosis induction were not affected in the presence of E2. In agreement with these results, ectopic expression of ER-α in MDA-MB-231 cell line failed to confer any protection against cell proliferation inhibition or apoptosis induction resulting from DATS exposure. DATS treatment caused a decrease in protein levels of peptidylprolyl cis–trans isomerase (Pin1), and overexpression of Pin1 partially attenuated ER-α downregulation by DATS. DATS-induced apoptosis was modestly but significantly augmented by overexpression of Pin1. In conclusion, this study identifies ER-α as a novel target of DATS in mammary cancer cells. PMID:24487688

  20. Omeprazole Inhibits Pancreatic Cancer Cell Invasion through a Nongenomic Aryl Hydrocarbon Receptor Pathway.

    PubMed

    Jin, Un-Ho; Kim, Sang-Bae; Safe, Stephen

    2015-05-18

    Omeprazole and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) are aryl hydrocarbon receptor (AhR) agonists that inhibit the invasion of breast cancer cells through inhibition of CXCR4 transcription. Treatment of highly invasive Panc1 pancreatic cancer cells with TCDD, omeprazole, and seven other AhR-active pharmaceuticals showed that only omeprazole and tranilast, but not TCDD, inhibited invasion in a Boyden chamber assay. Similar results were observed in MiaPaCa2 cells, another quasimensenchymal pancreatic ductal adenocarcinoma (QM-PDA) pancreatic cancer cell line, whereas invasion was not observed with BxPC3 or L3.6pL cells, which are classified as classical (less invasive) pancreatic cancer cells. It was also observed in QM-PDA cells that TCDD, omeprazole, and tranilast did not induce CYP1A1 or CXCR4 and that treatment with these compounds did not result in nuclear uptake of AhR. In contrast, treatment of BxPC3 and L3.6pL cells with these AhR ligands resulted in induction of CYP1A1 (by TCDD) and nuclear uptake of AhR, which was similar to that observed for Ah-responsive MDA-MB-468 breast and HepG2 liver cancer cell lines. Results of AhR and AhR nuclear translocator (Arnt) knockdown experiments in Panc1 and MiaPaCa2 cells demonstrated that omeprazole- and tranilast-mediated inhibition of invasion was AhR-dependent but Arnt-independent. These results demonstrate that in the most highly invasive subtype of pancreatic cancer cells (QM-PDA) the selective AhR modulators omeprazole and tranilast inhibit invasion through a nongenomic AhR pathway.

  1. Valerian extract Ze 911 inhibits postsynaptic potentials by activation of adenosine A1 receptors in rat cortical neurons.

    PubMed

    Vissiennon, Z; Sichardt, K; Koetter, U; Brattström, A; Nieber, K

    2006-06-01

    In this study we evaluated the adenosine A1 receptor-mediated effect of valerian extract (Ze 911) on postsynaptic potentials (PSPs) in pyramidal cells of the rat cingulate cortex in a slice preparation. We first observed that N6-cyclopentyladenosine (CPA, 0.01 - 10 microM), an adenosine A1 receptor agonist, inhibited PSPs in a concentration-dependent manner. The CPA (10 microM)-induced inhibition was antagonized by 1,3-dipropyl-8-cyclopentylxanthine (DPCPX, 0.1 microM), an adenosine A1 receptor antagonist. Ze 911 concentration dependently (0.1 - 15 mg/mL) inhibited PSPs in the presence of the adenosine A2A receptor antagonist 1,3,7-trimethyl-8-(3-chlorostyryl)xanthine (CSC, 0.2 microM) and adenosine deaminase (1 U/mL). The maximal inhibition induced by 10 mg/mL was completely antagonised by DPCPX (0.1 microM), an A1 receptor blocker. The data suggest that activation of adenosine A1 receptors is involved in the pharmacological effects of the valerian extract Ze 911.

  2. NMDA receptor activation inhibits alpha-secretase and promotes neuronal amyloid-beta production.

    PubMed

    Lesné, Sylvain; Ali, Carine; Gabriel, Cecília; Croci, Nicole; MacKenzie, Eric T; Glabe, Charles G; Plotkine, Michel; Marchand-Verrecchia, Catherine; Vivien, Denis; Buisson, Alain

    2005-10-12

    Acute brain injuries have been identified as a risk factor for developing Alzheimer's disease (AD). Because glutamate plays a pivotal role in these pathologies, we studied the influence of glutamate receptor activation on amyloid-beta (Abeta) production in primary cultures of cortical neurons. We found that sublethal NMDA receptor activation increased the production and secretion of Abeta. This effect was preceded by an increased expression of neuronal Kunitz protease inhibitory domain (KPI) containing amyloid-beta precursor protein (KPI-APP) followed by a shift from alpha-secretase to beta-secretase-mediated APP processing. This shift is a result of the inhibition of the alpha-secretase candidate tumor necrosis factor-alpha converting enzyme (TACE) when associated with neuronal KPI-APPs. This KPI-APP/TACE interaction was also present in AD brains. Thus, our findings reveal a cellular mechanism linking NMDA receptor activation to neuronal Abeta secretion. These results suggest that even mild deregulation of the glutamatergic neurotransmission may increase Abeta production and represent a causal risk factor for developing AD.

  3. Amphetamine decreases behavioral inhibition by stimulation of dopamine D2, but not D3, receptors.

    PubMed

    van Gaalen, Marcel M; Unger, Liliane; Jongen-Rêlo, Ana-Lucia; Schoemaker, Hans; Gross, Gerhard

    2009-09-01

    Behavioral disinhibition is a manifestation of impulsive behavior that is prominent in the psychopathology of various psychiatric disorders such as addiction, attention-deficit hyperactivity disorder, mania, and personality disorders. Impulsivity may be studied by measuring anticipatory responses made before the presentation of a food-predictive, brief light stimulus in a two-choice serial reaction time task. In such serial reaction time tasks, amphetamine has been shown to produce dose-dependent increases in premature responding in a manner dependent on dopamine D(2)-like receptor stimulation. So far, it is unknown whether it is the D(2) or D(3) receptor that is involved in this form of impulsivity. In this study, rats were trained in a two-choice serial reaction time task until baseline performance was stable. Next, effects of the dopamine D(2) preferring antagonist L-741,626 and selective D(3) antagonist SB-277011 were assessed alone and in the presence of amphetamine. Neither L-741,626 nor SB-277011 affected behavioral inhibition, although the latter significantly increased reaction time at 10 mg/kg. Amphetamine dose-dependently increased impulsivity. The effect of amphetamine was attenuated by L-741,626 (3 mg/kg), whereas SB-277011 (3 mg/kg) had no effect. Therefore, amphetamine-induced behavioral disinhibition depends on D(2), but not D(3), receptor stimulation.

  4. FDA-Approved Selective Estrogen Receptor Modulators Inhibit Ebola Virus Infection

    PubMed Central

    Johansen, Lisa M.; Brannan, Jennifer M.; Delos, Sue E.; Shoemaker, Charles J.; Stossel, Andrea; Lear, Calli; Hoffstrom, Benjamin G.; DeWald, Lisa Evans; Schornberg, Kathryn L.; Scully, Corinne; Lehár, Joseph; Hensley, Lisa E.; White, Judith M.; Olinger, Gene G.

    2014-01-01

    Ebola viruses remain a substantial threat to both civilian and military populations as bioweapons, during sporadic outbreaks, and from the possibility of accidental importation from endemic regions by infected individuals. Currently, no approved therapeutics exist to treat or prevent infection by Ebola viruses. Therefore, we performed an in vitro screen of Food and Drug Administration (FDA)– and ex–US-approved drugs and selected molecular probes to identify drugs with antiviral activity against the type species Zaire ebolavirus (EBOV). From this screen, we identified a set of selective estrogen receptor modulators (SERMs), including clomiphene and toremifene, which act as potent inhibitors of EBOV infection. Anti-EBOV activity was confirmed for both of these SERMs in an in vivo mouse infection model. This anti-EBOV activity occurred even in the absence of detectable estrogen receptor expression, and both SERMs inhibited virus entry after internalization, suggesting that clomiphene and toremifene are not working through classical pathways associated with the estrogen receptor. Instead, the response appeared to be an off-target effect where the compounds interfere with a step late in viral entry and likely affect the triggering of fusion. These data support the screening of readily available approved drugs to identify therapeutics for the Ebola viruses and other infectious diseases. The SERM compounds described in this report are an immediately actionable class of approved drugs that can be repurposed for treatment of filovirus infections. PMID:23785035

  5. Phosphorylation inhibits DNA-binding of alternatively spliced aryl hydrocarbon receptor nuclear translocator

    SciTech Connect

    Kewley, Robyn J. . E-mail: rkewley@csu.edu.au; Whitelaw, Murray L.

    2005-12-09

    The basic helix-loop-helix/PER-ARNT-SIM homology (bHLH/PAS) transcription factor ARNT (aryl hydrocarbon receptor nuclear translocator) is a key component of various pathways which induce the transcription of cytochrome P450 and hypoxia response genes. ARNT can be alternatively spliced to express Alt ARNT, containing an additional 15 amino acids immediately N-terminal to the DNA-binding basic region. Here, we show that ARNT and Alt ARNT proteins are differentially phosphorylated by protein kinase CKII in vitro. Phosphorylation had an inhibitory effect on DNA-binding to an E-box probe by Alt ARNT, but not ARNT, homodimers. This inhibitory phosphorylation occurs through Ser77. Moreover, a point mutant, Alt ARNT S77A, shows increased activity on an E-box reporter gene, consistent with Ser77 being a regulatory site in vivo. In contrast, DNA binding by an Alt ARNT/dioxin receptor heterodimer to the xenobiotic response element is not inhibited by phosphorylation with CKII, nor does Alt ARNT S77A behave differently from wild type Alt ARNT in the context of a dioxin receptor heterodimer.

  6. Inhibition of epidermal growth factor receptor attenuates atherosclerosis via decreasing inflammation and oxidative stress

    PubMed Central

    Wang, Lintao; Huang, Zhouqing; Huang, Weijian; Chen, Xuemei; Shan, Peiren; Zhong, Peng; Khan, Zia; Wang, Jingying; Fang, Qilu; Liang, Guang; Wang, Yi

    2017-01-01

    Atherosclerosis is a progressive disease leading to loss of vascular homeostasis and entails fibrosis, macrophage foam cell formation, and smooth muscle cell proliferation. Recent studies have reported that epidermal growth factor receptor (EGFR) is involved vascular pathophysiology and in the regulation of oxidative stress in macrophages. Although, oxidative stress and inflammation play a critical role in the development of atherosclerosis, the underlying mechanisms are complex and not completely understood. In the present study, we have elucidated the role of EGFR in high-fat diet-induced atherosclerosis in apolipoprotein E null mice. We show increased EGFR phosphorylation and activity in atherosclerotic lesion development. EGFR inhibition prevented oxidative stress, macrophage infiltration, induction of pro-inflammatory cytokines, and SMC proliferation within the lesions. We further show that EGFR is activated through toll-like receptor 4. Disruption of toll-like receptor 4 or the EGFR pathway led to reduced inflammatory activity and foam cell formation. These studies provide evidence that EGFR plays a key role on the pathogenesis of atherosclerosis, and suggests that EGFR may be a potential therapeutic target in the prevention of atherosclerosis development. PMID:28374780

  7. ApoC-III inhibits clearance of triglyceride-rich lipoproteins through LDL family receptors

    PubMed Central

    Gordts, Philip L.S.M.; Son, Ni-Huiping; Ramms, Bastian; Lew, Irene; Gonzales, Jon C.; Thacker, Bryan E.; Basu, Debapriya; Lee, Richard G.; Mullick, Adam E.; Graham, Mark J.; Goldberg, Ira J.; Crooke, Rosanne M.; Witztum, Joseph L.

    2016-01-01

    Hypertriglyceridemia is an independent risk factor for cardiovascular disease, and plasma triglycerides (TGs) correlate strongly with plasma apolipoprotein C-III (ApoC-III) levels. Antisense oligonucleotides (ASOs) for ApoC-III reduce plasma TGs in primates and mice, but the underlying mechanism of action remains controversial. We determined that a murine-specific ApoC-III–targeting ASO reduces fasting TG levels through a mechanism that is dependent on low-density lipoprotein receptors (LDLRs) and LDLR-related protein 1 (LRP1). ApoC-III ASO treatment lowered plasma TGs in mice lacking lipoprotein lipase (LPL), hepatic heparan sulfate proteoglycan (HSPG) receptors, LDLR, or LRP1 and in animals with combined deletion of the genes encoding HSPG receptors and LDLRs or LRP1. However, the ApoC-III ASO did not lower TG levels in mice lacking both LDLR and LRP1. LDLR and LRP1 were also required for ApoC-III ASO–induced reduction of plasma TGs in mice fed a high-fat diet, in postprandial clearance studies, and when ApoC-III–rich or ApoC-III–depleted lipoproteins were injected into mice. ASO reduction of ApoC-III had no effect on VLDL secretion, heparin-induced TG reduction, or uptake of lipids into heart and skeletal muscle. Our data indicate that ApoC-III inhibits turnover of TG-rich lipoproteins primarily through a hepatic clearance mechanism mediated by the LDLR/LRP1 axis. PMID:27400128

  8. Inhibition of the Androgen Receptor by Antiandrogens in Spinobulbar Muscle Atrophy.

    PubMed

    Baniahmad, Aria

    2016-03-01

    Spinal-bulbar muscle atrophy (SBMA) or also named Kennedy's Disease is caused by a polyglutamine expansion (PolyQ) of the coding region of the androgen receptor (AR). The AR is a ligand-controlled transcription factor and member of the nuclear hormone receptor superfamily. The central characteristics of the SBMA pathogenicity are muscle weakness, the loss of motoneurons and the occurrence of AR-containing protein aggregates that are observed in spinal cord motoneurons and skeletal muscles induced by the AR-PolyQ expansion in the presence of androgens. The PolyQ triggers a misfolding in the AR-PolyQ and leads to protein aggregation in spinal cord motoneurons and muscle cells. The AR-PolyQ toxicity is activated by the AR ligand testosterone and dihydrotestosterone that activate the receptor and triggers nuclear toxicity by inducing AR nuclear translocation. In line with this, androgen treatment of SBMA patients worsened the SBMA symptoms. SBMA has been modeled in AR-overexpressing and AR-PolyQ-knock-in animals, but precisely how the PolyQ expansion leads to neurodegeneration is unclear. The androgen-induced toxicity and androgen-dependent nuclear accumulation of AR-PolyQ protein seems to be central to the pathogenesis. Therefore, the inhibition of the androgen-activated AR-PolyQ might be a therapeutic option. Here the use of AR antagonists for treatment option of SBMA will be reviewed and discussed.

  9. SKF-83566, a D1-dopamine receptor antagonist, inhibits the dopamine transporter.

    PubMed

    Stouffer, Melissa A; Ali, Solav; Reith, Maarten E A; Patel, Jyoti C; Sarti, Federica; Carr, Kenneth D; Rice, Margaret E

    2011-09-01

    Dopamine (DA) is an important transmitter in both motor and limbic pathways. We sought to investigate the role of D(1)-receptor activation in axonal DA release regulation in dorsal striatum using a D(1)-receptor antagonist, SKF-83566. Evoked DA release was monitored in rat striatal slices using fast-scan cyclic voltammetry. SKF-83566 caused a concentration-dependent increase in peak single-pulse evoked extracellular DA concentration, with a maximum increase of ∼ 65% in 5 μM SKF-83566. This was accompanied by a concentration-dependent increase in extracellular DA concentration clearance time. Both effects were occluded by nomifensine (1 μM), a dopamine transporter (DAT) inhibitor, suggesting that SKF-83566 acted via the DAT. We tested this by examining [(3)H]DA uptake into LLc-PK cells expressing rat DAT, and confirmed that SKF-83566 is a competitive DAT inhibitor with an IC(50) of 5.7 μM. Binding studies with [(3)H]CFT, a cocaine analog, showed even more potent action of SKF-83566 at the DAT cocaine binding site (IC(50) = 0.51 μM). Thus, data obtained using SKF-83566 as a D(1) DA-receptor antagonist may be confounded by concurrent DAT inhibition. More positively, however, SKF-83566 might be a candidate to attenuate cocaine effects in vivo because of the greater potency of this drug at the cocaine versus DA binding site of the DAT.

  10. Blockade of NMDA receptors in the amygdala prevents latent inhibition of fear-conditioning.

    PubMed

    Schauz, C; Koch, M

    2000-01-01

    The association between a conditioned stimulus (CS) and an unconditioned stimulus (US) in fear-conditioning depends on N-methyl-D-aspartate (NMDA) receptors in the basolateral amygdala complex (BLA). Latent inhibition (LI) is the retardation in learning due to nonreinforced presentation of the prospective CS before conditioning. Disruption of LI in rats is an animal model of schizophrenia, reflecting the deficits of schizophrenic patients in neglecting irrelevant information. We investigated whether the BLA is involved in LI of fear-potentiated startle. Infusions of the NMDA receptor antagonist D,L-2-amino-5-phosphonopentanoic acid (AP-5; 12.5 nmoles) into the BLA before preexposure of rats to the neutral stimulus prevent LI of fear-conditioning. We also demonstrated by the same method that a complex of thalamic nuclei, comprising the medial part of the medial geniculate nucleus, the posterior intralaminar nucleus, and the suprageniculate nucleus, is involved in fear-conditioning, but not in LI. This suggests that the presentation of an innocuous stimulus during preexposure leads to an NMDA receptor-dependent change of neurotransmission in the BLA, but not in the thalamus. Our data show that the BLA but not the thalamus regulates in LI of fear-potentiated startle. Furthermore, it supports the hypothesis that the inability of schizophrenic patients to ignore irrelevant stimuli may be caused by hypofunction of the glutamatergic transmission in the brain and suggests an involvement of the amygdala in the neuropathology of schizophrenia.

  11. Dopamine and Angiotensin Type 2 Receptors Cooperatively Inhibit Sodium Transport in Human Renal Proximal Tubule Cells

    PubMed Central

    Gildea, John J.; Wang, Xiaoli; Shah, Neema; Tran, Hanh; Spinosa, Michael; Van Sciver, Robert; Sasaki, Midori; Yatabe, Junichi; Carey, Robert M.; Jose, Pedro A.; Felder, Robin A.

    2012-01-01

    Little is known regarding how the kidney shifts from a sodium and water reclaiming state (antinatriuresis) to a state where sodium and water are eliminated (natriuresis). In human renal proximal tubule cells (RPTCs), sodium reabsorption is decreased by the dopamine D1-like receptors (D1R/D5R) and the angiotensin type 2 receptor (AT2R), while the angiotensin type 1 receptor increases sodium reabsorption. Aberrant control of these opposing systems is thought to lead to sodium retention and subsequently hypertension. We show that D1R/D5R stimulation increased plasma membrane AT2R 4-fold via a D1R-mediated, cAMP-coupled, and PP2A-dependent specific signaling pathway. D1R/D5R stimulation also reduced the ability of angiotensin II to stimulate phospho-ERK, an effect that was partially reversed by an AT2R antagonist. Fenoldopam did not increase AT2R recruitment in RPTCs with D1Rs uncoupled from adenylyl cyclase, suggesting a role of cAMP in mediating these events. D1Rs and AT2Rs heterodimerized and cooperatively increased cAMP and cGMP production, PP2A activation, sodium-potassium-ATPase internalization and sodium transport inhibition. These studies shed new light on the regulation of renal sodium transport by the dopaminergic and angiotensin systems and potential new therapeutic targets for selectively treating hypertension. PMID:22710646

  12. Dopamine and angiotensin type 2 receptors cooperatively inhibit sodium transport in human renal proximal tubule cells.

    PubMed

    Gildea, John J; Wang, Xiaoli; Shah, Neema; Tran, Hanh; Spinosa, Michael; Van Sciver, Robert; Sasaki, Midori; Yatabe, Junichi; Carey, Robert M; Jose, Pedro A; Felder, Robin A

    2012-08-01

    Little is known regarding how the kidney shifts from a sodium and water reclaiming state (antinatriuresis) to a state where sodium and water are eliminated (natriuresis). In human renal proximal tubule cells, sodium reabsorption is decreased by the dopamine D(1)-like receptors (D(1)R/D(5)R) and the angiotensin type 2 receptor (AT(2)R), whereas the angiotensin type 1 receptor increases sodium reabsorption. Aberrant control of these opposing systems is thought to lead to sodium retention and, subsequently, hypertension. We show that D(1)R/D(5)R stimulation increased plasma membrane AT(2)R 4-fold via a D(1)R-mediated, cAMP-coupled, and protein phosphatase 2A-dependent specific signaling pathway. D(1)R/D(5)R stimulation also reduced the ability of angiotensin II to stimulate phospho-extracellular signal-regulated kinase, an effect that was partially reversed by an AT(2)R antagonist. Fenoldopam did not increase AT(2)R recruitment in renal proximal tubule cells with D(1)Rs uncoupled from adenylyl cyclase, suggesting a role of cAMP in mediating these events. D(1)Rs and AT(2)Rs heterodimerized and cooperatively increased cAMP and cGMP production, protein phosphatase 2A activation, sodium-potassium-ATPase internalization, and sodium transport inhibition. These studies shed new light on the regulation of renal sodium transport by the dopaminergic and angiotensin systems and potential new therapeutic targets for selectively treating hypertension.

  13. EP3 receptors inhibit antidiuretic-hormone-dependent sodium transport across frog skin epithelium.

    PubMed

    Rytved, K A; Nielsen, R

    1999-01-01

    We examined the effect of prostaglandin E2 (PGE2) on antidiuretic hormone (ADH)-dependent Na+ transport and cAMP production in isolated frog skin epithelium. ADH caused an increase in transepithelial Na+ transport and a decrease in cellular potential, indicating an increase in apical Na+ permeability. Subsequent addition of PGE2 decreased Na+ transport and repolarised the cells. The PGE2 receptor EP1/3-selective analogue sulprostone and the PGE2 receptor EP2/3-selective analogue misoprostol were able to mimic the effect of PGE2. ADH increased cellular cAMP levels, whereas PGE2, sulprostone and misoprostol were able to reduce the ADH-dependent cAMP production. Measurements of intracellular Ca2+ concentration ([Ca2+]i) revealed that it was unaffected by both PGE2 and sulprostone. The inhibitory effect of PGE2 on ADH-dependent Na+ transport was also observed in Ca2+-depleted epithelia. We conclude that ADH stimulates transepithelial Na+ transport by increasing cellular cAMP levels, whereas PGE2 inhibits ADH-dependent Na+ transport by activating EP3-type receptors, which decrease cellular cAMP levels. We have found no evidence that [Ca2+]i is involved in the regulation of ADH-dependent Na+ transport by PGE2.

  14. Histamine H3-receptors inhibit sympathetic neurotransmission in guinea pig myocardium.

    PubMed

    Luo, X X; Tan, Y H; Sheng, B H

    1991-11-12

    The histamine H3 agonist, (R)-alpha-methylhistamine (alpha-MeHA, 10(-10) to 10(-5) M), caused a concentration-dependent inhibition of the sympathetic contractile response to electrical field stimulation of guinea pig isolated atria, but alpha-MeHA did not alter the basal tension or the contraction induced by exogenously applied norepinephrine. Blockade of H1 and H2 histamine receptors, and alpha- and beta-adrenoceptors failed to prevent the inhibitory effect of alpha-MeHA, whereas the specific H3 receptor antagonist, thioperamide, concentration dependently reversed the inhibitory effect of alpha-MeHA. At the concentration of 10(-7) M, which was effective for antagonizing the action of alpha-MeHA, thioperamide did not modify the sympathetic responses facilitated by the beta 2-adrenoceptor agonist, clenbuterol, or attenuated by the alpha 2-adrenoceptor agonist, clonidine. Our results suggest that H3 receptors exist on the cardiac sympathetic terminals, which may modulate adrenergic neurotransmission in guinea pig myocardium.

  15. Inhibition of epidermal growth factor receptor attenuates atherosclerosis via decreasing inflammation and oxidative stress.

    PubMed

    Wang, Lintao; Huang, Zhouqing; Huang, Weijian; Chen, Xuemei; Shan, Peiren; Zhong, Peng; Khan, Zia; Wang, Jingying; Fang, Qilu; Liang, Guang; Wang, Yi

    2017-04-04

    Atherosclerosis is a progressive disease leading to loss of vascular homeostasis and entails fibrosis, macrophage foam cell formation, and smooth muscle cell proliferation. Recent studies have reported that epidermal growth factor receptor (EGFR) is involved vascular pathophysiology and in the regulation of oxidative stress in macrophages. Although, oxidative stress and inflammation play a critical role in the development of atherosclerosis, the underlying mechanisms are complex and not completely understood. In the present study, we have elucidated the role of EGFR in high-fat diet-induced atherosclerosis in apolipoprotein E null mice. We show increased EGFR phosphorylation and activity in atherosclerotic lesion development. EGFR inhibition prevented oxidative stress, macrophage infiltration, induction of pro-inflammatory cytokines, and SMC proliferation within the lesions. We further show that EGFR is activated through toll-like receptor 4. Disruption of toll-like receptor 4 or the EGFR pathway led to reduced inflammatory activity and foam cell formation. These studies provide evidence that EGFR plays a key role on the pathogenesis of atherosclerosis, and suggests that EGFR may be a potential therapeutic target in the prevention of atherosclerosis development.

  16. THE SELECTIVE INHIBITION OF MACROPHAGE PHAGOCYTIC RECEPTORS BY ANTI-MEMBRANE ANTIBODIES

    PubMed Central

    Holland, Phillip; Holland, Nancy H; Cohn, Zanvil A.

    1972-01-01

    Rabbit antibodies were prepared against purified mouse macrophages, erythrocytes, and liver lysosomes. In the presence of complement each of these reagents was capable of lysing mouse erythrocytes and macrophages. In the absence of complement, all antisera agglutinated mouse erythrocytes and at high concentration produced a cytotoxic effect on macrophages. At IgG concentrations of 100 µg/ml, no morphological evidence of cytotoxicity was evident. These data suggest the presence of common antigens on the erythrocyte and macrophage plasma membrane. Anti-macrophage, anti-erythrocyte, and anti-lysosomal γ-globulins and IgG, employed at subtoxic concentrations, all inhibited the attachment and ingestion of opsonized erythrocytes and mycoplasma. This occurred without significant reduction in the phagocytosis of polystyrene particles, formalinized erythrocytes, and yeast cell walls. Each of the anti-membrane IgG antibodies was capable of blocking the Fc receptor on the macrophage plasma membrane. Attachment to the macrophage membrane occurred by means of the Fab region. However, a role for the Fc portion of the molecule was suggested since pepsin-digested IgG was unable to block the receptor. Each of the IgG antibodies produced a partial blockade of the complement receptor and reduced the ingestion of EAC1,4,2,3 by approximately 50%. PMID:4550767

  17. Blockade of NMDA Receptors in the Amygdala Prevents Latent Inhibition of Fear-Conditioning

    PubMed Central

    Schauz, Cornelia; Koch, Michael

    2000-01-01

    The association between a conditioned stimulus (CS) and an unconditioned stimulus (US) in fear-conditioning depends on N-methyl-d-aspartate (NMDA) receptors in the basolateral amygdala complex (BLA). Latent inhibition (LI) is the retardation in learning due to nonreinforced presentation of the prospective CS before conditioning. Disruption of LI in rats is an animal model of schizophrenia, reflecting the deficits of schizophrenic patients in neglecting irrelevant information. We investigated whether the BLA is involved in LI of fear-potentiated startle. Infusions of the NMDA receptor antagonist d,l-2-amino-5-phosphonopentanoic acid (AP-5; 12.5 nmoles) into the BLA before preexposure of rats to the neutral stimulus prevent LI of fear-conditioning. We also demonstrated by the same method that a complex of thalamic nuclei, comprising the medial part of the medial geniculate nucleus, the posterior intralaminar nucleus, and the suprageniculate nucleus, is involved in fear-conditioning, but not in LI. This suggests that the presentation of an innocuous stimulus during preexposure leads to an NMDA receptor-dependent change of neurotransmission in the BLA, but not in the thalamus. Our data show that the BLA but not the thalamus regulates in LI of fear-potentiated startle. Furthermore, it supports the hypothesis that the inability of schizophrenic patients to ignore irrelevant stimuli may be caused by hypofunction of the glutamatergic transmission in the brain and suggests an involvement of the amygdala in the neuropathology of schizophrenia. PMID:11112798

  18. Histamine H3 receptor in primary mouse microglia inhibits chemotaxis, phagocytosis, and cytokine secretion.

    PubMed

    Iida, Tomomitsu; Yoshikawa, Takeo; Matsuzawa, Takuro; Naganuma, Fumito; Nakamura, Tadaho; Miura, Yamato; Mohsen, Attayeb S; Harada, Ryuichi; Iwata, Ren; Yanai, Kazuhiko

    2015-07-01

    Histamine is a physiological amine which initiates a multitude of physiological responses by binding to four known G-protein coupled histamine receptor subtypes as follows: histamine H1 receptor (H1 R), H2 R, H3 R, and H4 R. Brain histamine elicits neuronal excitation and regulates a variety of physiological processes such as learning and memory, sleep-awake cycle and appetite regulation. Microglia, the resident macrophages in the brain, express histamine receptors; however, the effects of histamine on critical microglial functions such as chemotaxis, phagocytosis, and cytokine secretion have not been examined in primary cells. We demonstrated that mouse primary microglia express H2 R, H3 R, histidine decarboxylase, a histamine synthase, and histamine N-methyltransferase, a histamine metabolizing enzyme. Both forskolin-induced cAMP accumulation and ATP-induced intracellular Ca(2+) transients were reduced by the H3 R agonist imetit but not the H2 R agonist amthamine. H3 R activation on two ubiquitous second messenger signalling pathways suggests that H3 R can regulate various microglial functions. In fact, histamine and imetit dose-dependently inhibited microglial chemotaxis, phagocytosis, and lipopolysaccharide (LPS)-induced cytokine production. Furthermore, we confirmed that microglia produced histamine in the presence of LPS, suggesting that H3 R activation regulate microglial function by autocrine and/or paracrine signalling. In conclusion, we demonstrate the involvement of histamine in primary microglial functions, providing the novel insight into physiological roles of brain histamine.

  19. Inverse Agonist of Nuclear Receptor ERRγ Mediates Antidiabetic Effect Through Inhibition of Hepatic Gluconeogenesis

    PubMed Central

    Kim, Don-Kyu; Gang, Gil-Tae; Ryu, Dongryeol; Koh, Minseob; Kim, Yo-Na; Kim, Su Sung; Park, Jinyoung; Kim, Yong-Hoon; Sim, Taebo; Lee, In-Kyu; Choi, Cheol Soo; Park, Seung Bum; Lee, Chul-Ho; Koo, Seung-Hoi; Choi, Hueng-Sik

    2013-01-01

    Type 2 diabetes mellitus (T2DM) is a progressive metabolic disorder with diverse pathological manifestations and is often associated with abnormal regulation of hepatic glucose production. Many nuclear receptors known to control the hepatic gluconeogenic program are potential targets for the treatment of T2DM and its complications. Nevertheless, the therapeutic potential of the estrogen-related receptor γ (ERRγ) in T2DM remains unknown. In this study, we show that the nuclear receptor ERRγ is a major contributor to hyperglycemia under diabetic conditions by controlling hepatic glucose production. Hepatic ERRγ expression induced by fasting and diabetic conditions resulted in elevated levels of gluconeogenic gene expression and blood glucose in wild-type mice. Conversely, ablation of hepatic ERRγ gene expression reduced the expression of gluconeogenic genes and normalized blood glucose levels in mouse models of T2DM: db/db and diet-induced obesity (DIO) mice. In addition, a hyperinsulinemic-euglycemic clamp study and long-term studies of the antidiabetic effects of GSK5182, the ERRγ-specific inverse agonist, in db/db and DIO mice demonstrated that GSK5182 normalizes hyperglycemia mainly through inhibition of hepatic glucose production. Our findings suggest that the ability of GSK5182 to control hepatic glucose production can be used as a novel therapeutic approach for the treatment of T2DM. PMID:23775767

  20. Inhibition of insulin/IGF-1 receptor signaling protects from mitochondria-mediated kidney failure.

    PubMed

    Ising, Christina; Koehler, Sybille; Brähler, Sebastian; Merkwirth, Carsten; Höhne, Martin; Baris, Olivier R; Hagmann, Henning; Kann, Martin; Fabretti, Francesca; Dafinger, Claudia; Bloch, Wilhelm; Schermer, Bernhard; Linkermann, Andreas; Brüning, Jens C; Kurschat, Christine E; Müller, Roman-Ulrich; Wiesner, Rudolf J; Langer, Thomas; Benzing, Thomas; Brinkkoetter, Paul Thomas

    2015-03-01

    Mitochondrial dysfunction and alterations in energy metabolism have been implicated in a variety of human diseases. Mitochondrial fusion is essential for maintenance of mitochondrial function and requires the prohibitin ring complex subunit prohibitin-2 (PHB2) at the mitochondrial inner membrane. Here, we provide a link between PHB2 deficiency and hyperactive insulin/IGF-1 signaling. Deletion of PHB2 in podocytes of mice, terminally differentiated cells at the kidney filtration barrier, caused progressive proteinuria, kidney failure, and death of the animals and resulted in hyperphosphorylation of S6 ribosomal protein (S6RP), a known mediator of the mTOR signaling pathway. Inhibition of the insulin/IGF-1 signaling system through genetic deletion of the insulin receptor alone or in combination with the IGF-1 receptor or treatment with rapamycin prevented hyperphosphorylation of S6RP without affecting the mitochondrial structural defect, alleviated renal disease, and delayed the onset of kidney failure in PHB2-deficient animals. Evidently, perturbation of insulin/IGF-1 receptor signaling contributes to tissue damage in mitochondrial disease, which may allow therapeutic intervention against a wide spectrum of diseases. © 2015 The Authors. Published under the terms of the CC BY 4.0 license.

  1. ApoC-III inhibits clearance of triglyceride-rich lipoproteins through LDL family receptors.

    PubMed

    Gordts, Philip L S M; Nock, Ryan; Son, Ni-Huiping; Ramms, Bastian; Lew, Irene; Gonzales, Jon C; Thacker, Bryan E; Basu, Debapriya; Lee, Richard G; Mullick, Adam E; Graham, Mark J; Goldberg, Ira J; Crooke, Rosanne M; Witztum, Joseph L; Esko, Jeffrey D

    2016-08-01

    Hypertriglyceridemia is an independent risk factor for cardiovascular disease, and plasma triglycerides (TGs) correlate strongly with plasma apolipoprotein C-III (ApoC-III) levels. Antisense oligonucleotides (ASOs) for ApoC-III reduce plasma TGs in primates and mice, but the underlying mechanism of action remains controversial. We determined that a murine-specific ApoC-III-targeting ASO reduces fasting TG levels through a mechanism that is dependent on low-density lipoprotein receptors (LDLRs) and LDLR-related protein 1 (LRP1). ApoC-III ASO treatment lowered plasma TGs in mice lacking lipoprotein lipase (LPL), hepatic heparan sulfate proteoglycan (HSPG) receptors, LDLR, or LRP1 and in animals with combined deletion of the genes encoding HSPG receptors and LDLRs or LRP1. However, the ApoC-III ASO did not lower TG levels in mice lacking both LDLR and LRP1. LDLR and LRP1 were also required for ApoC-III ASO-induced reduction of plasma TGs in mice fed a high-fat diet, in postprandial clearance studies, and when ApoC-III-rich or ApoC-III-depleted lipoproteins were injected into mice. ASO reduction of ApoC-III had no effect on VLDL secretion, heparin-induced TG reduction, or uptake of lipids into heart and skeletal muscle. Our data indicate that ApoC-III inhibits turnover of TG-rich lipoproteins primarily through a hepatic clearance mechanism mediated by the LDLR/LRP1 axis.

  2. Diurnal inhibition of NMDA-EPSCs at rat hippocampal mossy fibre synapses through orexin-2 receptors.

    PubMed

    Perin, Martina; Longordo, Fabio; Massonnet, Christine; Welker, Egbert; Lüthi, Anita

    2014-10-01

    Diurnal release of the orexin neuropeptides orexin-A (Ox-A, hypocretin-1) and orexin-B (Ox-B, hypocretin-2) stabilises arousal, regulates energy homeostasis and contributes to cognition and learning. However, whether cellular correlates of brain plasticity are regulated through orexins, and whether they do so in a time-of-day-dependent manner, has never been assessed. Immunohistochemically we found sparse but widespread innervation of hippocampal subfields through Ox-A- and Ox-B-containing fibres in young adult rats. The actions of Ox-A were studied on NMDA receptor (NMDAR)-mediated excitatory synaptic transmission in acute hippocampal slices prepared around the trough (Zeitgeber time (ZT) 4-8, corresponding to 4-8 h into the resting phase) and peak (ZT 23) of intracerebroventricular orexin levels. At ZT 4-8, exogenous Ox-A (100 nm in bath) inhibited NMDA receptor-mediated excitatory postsynaptic currents (NMDA-EPSCs) at mossy fibre (MF)-CA3 (to 55.6 ± 6.8% of control, P = 0.0003) and at Schaffer collateral-CA1 synapses (70.8 ± 6.3%, P = 0.013), whereas it remained ineffective at non-MF excitatory synapses in CA3. Ox-A actions were mediated postsynaptically and blocked by the orexin-2 receptor (OX2R) antagonist JNJ10397049 (1 μm), but not by orexin-1 receptor inhibition (SB334867, 1 μm) or by adrenergic and cholinergic antagonists. At ZT 23, inhibitory effects of exogenous Ox-A were absent (97.6 ± 2.9%, P = 0.42), but reinstated (87.2 ± 3.3%, P = 0.002) when endogenous orexin signalling was attenuated for 5 h through i.p. injections of almorexant (100 mg kg(-1)), a dual orexin receptor antagonist. In conclusion, endogenous orexins modulate hippocampal NMDAR function in a time-of-day-dependent manner, suggesting that they may influence cellular plasticity and consequent variations in memory performance across the sleep-wake cycle.

  3. Diurnal inhibition of NMDA-EPSCs at rat hippocampal mossy fibre synapses through orexin-2 receptors

    PubMed Central

    Perin, Martina; Longordo, Fabio; Massonnet, Christine; Welker, Egbert; Lüthi, Anita

    2014-01-01

    Diurnal release of the orexin neuropeptides orexin-A (Ox-A, hypocretin-1) and orexin-B (Ox-B, hypocretin-2) stabilises arousal, regulates energy homeostasis and contributes to cognition and learning. However, whether cellular correlates of brain plasticity are regulated through orexins, and whether they do so in a time-of-day-dependent manner, has never been assessed. Immunohistochemically we found sparse but widespread innervation of hippocampal subfields through Ox-A- and Ox-B-containing fibres in young adult rats. The actions of Ox-A were studied on NMDA receptor (NMDAR)-mediated excitatory synaptic transmission in acute hippocampal slices prepared around the trough (Zeitgeber time (ZT) 4–8, corresponding to 4–8 h into the resting phase) and peak (ZT 23) of intracerebroventricular orexin levels. At ZT 4–8, exogenous Ox-A (100 nm in bath) inhibited NMDA receptor-mediated excitatory postsynaptic currents (NMDA-EPSCs) at mossy fibre (MF)–CA3 (to 55.6 ± 6.8% of control, P = 0.0003) and at Schaffer collateral–CA1 synapses (70.8 ± 6.3%, P = 0.013), whereas it remained ineffective at non-MF excitatory synapses in CA3. Ox-A actions were mediated postsynaptically and blocked by the orexin-2 receptor (OX2R) antagonist JNJ10397049 (1 μm), but not by orexin-1 receptor inhibition (SB334867, 1 μm) or by adrenergic and cholinergic antagonists. At ZT 23, inhibitory effects of exogenous Ox-A were absent (97.6 ± 2.9%, P = 0.42), but reinstated (87.2 ± 3.3%, P = 0.002) when endogenous orexin signalling was attenuated for 5 h through i.p. injections of almorexant (100 mg kg−1), a dual orexin receptor antagonist. In conclusion, endogenous orexins modulate hippocampal NMDAR function in a time-of-day-dependent manner, suggesting that they may influence cellular plasticity and consequent variations in memory performance across the sleep–wake cycle. PMID:25085886

  4. Fulvestrant-mediated inhibition of estrogen receptor signaling slows lung cancer progression.

    PubMed

    Tang, Hexiao; Liao, Yongde; Zhang, Chao; Chen, Guang; Xu, Liqiang; Liu, Zhaoguo; Fu, Shengling; Yu, Li; Zhou, Sheng

    2014-01-01

    Estrogens are key signaling molecules that regulate various physiological processes such as cell growth, development, and differentiation. They also play a major role in many pathological conditions, such as hormone-dependent cancer. The importance of inhibiting estrogen receptor signaling in diseases of estrogen target tissues, such as breast cancer, is well documented. However, the role of estrogen signaling in diseases of nontarget tissues, such as lung cancer, is not well characterized. The aim of the current study is to examine the expression of estrogen receptor β (ERβ) and the roles of estradiol (E2) and fulvestrant on the progression of lung cancer. Tissue microarray (TMA) and immunohistochemistry (IHC) analyses were used to detect the expression of aromatase, ERα, and ERβ in 198 patients. We performed analyses to determine if there was any correlation among these three proteins. A mouse model of urethane-induced lung adenocarcinoma was used in the study. Mice were divided into three treatment groups: blank control, E2 alone, and E2 + fulvestrant (ERβ antagonist). Western blot analysis and fluorescence quantitative PCR (FQ-PCR) were used to measure expression of ERβ protein and mRNA levels, respectively. ERβ, but not ERα, was overexpressed in NSCLC samples. Lung cancer progression in mice treated with E2 was significantly increased compared to either the control group or the E2 + fulvestrant group. Mice in the E2 treatment group had significantly increased expression of ERβ at both the mRNA and protein levels compared to mice treated with E2 + fulvestrant or control. Our data suggest that ERβ promotes lung cancer progression in mice and that this progression can be inhibited with fulvestrant. These findings may help elucidate the role of ERβ in lung cancer and suggest that estrogen receptor antagonists, such as fulvestrant, may be therapeutically beneficial for the treatment of the disease.

  5. LINGO-1 receptor promotes neuronal apoptosis by inhibiting WNK3 kinase activity.

    PubMed

    Zhang, Zhaohuan; Xu, Xiaohui; Xiang, Zhenghua; Yu, Zhongwang; Feng, Jifeng; He, Cheng

    2013-04-26

    LINGO-1 is a functional component of the Nogo receptor 1 · p75(NTR) · LINGO-1 and Nogo receptor 1 · TAJ (TNFRSF19/TROY)·LINGO-1 signaling complexes. It has recently been shown that LINGO-1 antagonists significantly improve neuronal survival after neural injury. However, the mechanism by which LINGO-1 signaling influences susceptibility to apoptosis remains unknown. In an effort to better understand how LINGO-1 regulates these signaling pathways, we used an established model of serum deprivation (SD) to induce neuronal apoptosis. We demonstrate that treatment either with a construct containing the intracellular domain of LINGO-1 or with Nogo66, a LINGO-1 receptor complex agonist, resulted in an enhanced rate of apoptosis in primary cultured cortical neurons under SD. Reducing the expression levels of the serine/threonine kinase WNK3 using shRNA or inhibiting its kinase activity had similar effects on the survival of serum-deprived neurons. Consistent with these observations, we found that LINGO-1 and WNK3 co-localized and co-precipitated in cultured cortical neurons and brain tissue. Significantly, this co-association was enhanced by Nogo66 treatment. Binding of WNK3 to the intracellular domain of LINGO-1 led to a reduction in WNK3 kinase activity, as did Nogo66 stimulation. Moreover, in vitro and in vivo evidence indicates that endogenous WNK3 suppresses SD-induced neuronal apoptosis in a kinase-dependent manner, as the expression of either a WNK3 RNAi construct or a kinase-dead N-terminal fragment of WNK3 led to increased apoptosis. Taken together, our results show that LINGO-1 potentiates neuronal apoptosis, likely by inhibiting WNK3 kinase activity.

  6. Inhibition of Biosynthesis of Human Endothelin B Receptor by the Cyclodepsipeptide Cotransin*

    PubMed Central

    Westendorf, Carolin; Schmidt, Antje; Coin, Irene; Furkert, Jens; Ridelis, Ingrid; Zampatis, Dimitris; Rutz, Claudia; Wiesner, Burkhard; Rosenthal, Walter; Beyermann, Michael; Schülein, Ralf

    2011-01-01

    The specific inhibition of the biosynthesis of target proteins is a relatively novel strategy in pharmacology and is based mainly on antisense approaches (e.g. antisense oligonucleotides or RNA interference). Recently, a novel class of substances was described acting at a later step of protein biosynthesis. The cyclic heptadepsipeptides CAM741 and cotransin were shown to inhibit selectively the biosynthesis of a small subset of secretory proteins by preventing stable insertion of the nascent chains into the Sec61 translocon complex at the endoplasmic reticulum membrane (Besemer, J., Harant, H., Wang, S., Oberhauser, B., Marquardt, K., Foster, C. A., Schreiner, E. P., de Vries, J. E., Dascher-Nadel, C., and Lindley, I. J. (2005) Nature 436, 290–293; Garrison, J. L., Kunkel, E. J., Hegde, R. S., and Taunton, J. (2005) Nature 436, 285–289). These peptides act in a signal sequence-discriminatory manner, which explains their selectivity. Here, we have analyzed the cotransin sensitivity of various G protein-coupled receptors in transfected HEK 293 cells. We show that the biosynthesis of the human endothelin B receptor (ETBR) is highly sensitive to cotransin, in contrast to that of the other G protein-coupled receptors analyzed. Using a novel biosynthesis assay based on fusions with the photoconvertible Kaede protein, we show that the IC50 value of cotransin action on ETBR biosynthesis is 5.4 μm and that ETBR signaling could be completely blocked by treating cells with 30 μm cotransin. Taken together, our data add an integral membrane protein, namely the ETBR, to the small group of cotransin-sensitive proteins. PMID:21808059

  7. CB1 cannabinoid receptor inhibits synaptic release of glutamate in rat dorsolateral striatum.

    PubMed

    Gerdeman, G; Lovinger, D M

    2001-01-01

    CB1 cannabinoid receptors in the neostriatum mediate profound motor deficits induced when cannabinoid drugs are administered to rodents. Because the CB1 receptor has been shown to inhibit neurotransmitter release in various brain areas, we investigated the effects of CB1 activation on glutamatergic synaptic transmission in the dorsolateral striatum of the rat where the CB1 receptor is highly expressed. We performed whole cell voltage-clamp experiments in striatal brain slices and applied the CB1 agonists HU-210 or WIN 55,212-2 during measurement of synaptic transmission. Excitatory postsynaptic currents (EPSCs), evoked by electrical stimulation of afferent fibers, were significantly reduced in a dose-dependent manner by CB1 agonist application. EPSC inhibition was accompanied by an increase in two separate indices of presynaptic release, the paired-pulse response ratio and the coefficient of variation, suggesting a decrease in neurotransmitter release. These effects were prevented by application of the CB1 antagonist SR141716A. When Sr(2+) was substituted for Ca(2+) in the extracellular solution, application of HU-210 (1 microM) significantly reduced the frequency, but not amplitude, of evoked, asynchronous quantal release events. Spontaneous release events were similarly decreased in frequency with no change in amplitude. These findings further support the interpretation that CB1 activation leads to a decrease of glutamate release from afferent terminals in the striatum. These results reveal a novel potential role for cannabinoids in regulating striatal function and thus basal ganglia output and may suggest CB1-targeted drugs as potential therapeutic agents in the treatment of Parkinson's disease and other basal ganglia disorders.

  8. Purinergic receptor activation inhibits osmotic glial cell swelling in the diabetic rat retina.

    PubMed

    Wurm, Antje; Iandiev, Ianors; Hollborn, Margrit; Wiedemann, Peter; Reichenbach, Andreas; Zimmermann, Herbert; Bringmann, Andreas; Pannicke, Thomas

    2008-10-01

    The anti-inflammatory glucocorticoid, triamcinolone acetonide, is used clinically for the rapid resolution of diabetic macular edema. Osmotic swelling of glial cells may contribute to the development of retinal edema. Triamcinolone inhibits the swelling of retinal glial cells of diabetic rats. Here, we determined whether the effect of triamcinolone is mediated by a receptor-dependent mechanism. Hyperglycemia was induced in rats with streptozotocin injection. After 6-10 months, the swelling properties of glial cells in retinal slices upon hypotonic challenge were determined. Nucleotide-degrading ecto-enzymes were immunostained in retinal slices and glial cells. Hypotonic challenge did not change the size of glial cell bodies from control retinas but induced swelling of cells from diabetic animals. Triamcinolone inhibited glial cell swelling; this effect was prevented by a selective antagonist of adenosine A1 receptors, an inhibitor of nucleoside transporters, inhibitors of adenylyl cyclase and protein kinase A activation, and inhibitors of potassium and chloride channels. In diabetic (but not control) retinas, the effect of triamcinolone apparently involves extracellular nucleotide degradation. Glial cells from diabetic retinas displayed immunolabeling against nucleoside triphosphate diphosphohydrolase-1 (NTPDase1) which was not observed in control retinas. The mRNA expression for NTPDase1 was significantly increased in the retina of diabetic rats. It is suggested that triamcinolone induces the release and formation of endogenous adenosine that subsequently activates A1 receptors resulting in ion efflux through potassium and chloride channels and prevention of osmotic swelling. Whereas adenosine is liberated via facilitated transport in control retinas, an extracellular formation of adenosine contributes to the effect of triamcinolone in diabetic retinas.

  9. Inhibition of solid tumor growth by gene transfer of VEGF receptor-1 mutants.

    PubMed

    Heidenreich, Regina; Machein, Marcia; Nicolaus, Anke; Hilbig, Andreas; Wild, Carola; Clauss, Matthias; Plate, Karl H; Breier, Georg

    2004-09-01

    Vascular endothelial growth factor (VEGF) and the high-affinity VEGF receptor Flk-1/KDR (VEGFR-2) are key regulators of tumor angiogenesis. Strategies to block VEGF/VEGFR-2 signaling were successfully used to inhibit experimental tumor growth and indicated that VEGFR-2 is the main signaling VEGF receptor in proliferating tumor endothelium. Here, we investigated the role of the VEGF receptor-1 (VEGFR-1/Flt-1) in the vascularization of 2 different experimental tumors in vivo. VEGFR-1 mutants were generated that lack the intracellular tyrosine kinase domain. Retrovirus-mediated gene transfer of the VEGFR-1 mutants led to a strong reduction of tumor growth and angiogenesis in xenografted C6 glioma and in syngeneic BFS-1 fibrosarcoma. Histological analysis of the inhibited fibrosarcoma revealed reduced vascular density, decreased tumor cell proliferation as well as increased tumor cell apoptosis and the formation of necrosis. The retroviral gene transfer of the full length VEGFR-1 also caused a significant reduction of tumor growth in both models. The inhibitory effects of the VEGFR-1 mutants and the full length VEGFR-1 in BFS-1 fibrosarcoma were mediated through host tumor endothelial cells because the BFS-1 fibrosarcoma cells were not infected by the retrovirus. The formation of heterodimers between VEGFR-2 and full length or truncated VEGFR-1 was observed in vitro and might contribute to the growth inhibitory effect by modulating distinct signal transduction pathways. The results of our study underline the central role of the VEGF/VEGFR-1 signaling system in tumor angiogenesis and demonstrate that VEGFR-1 can serve as a target for anti-angiogenic gene therapy.

  10. Inhibition of the production of endothelium-derived hyperpolarizing factor by cannabinoid receptor agonists

    PubMed Central

    Fleming, I; Schermer, B; Popp, R; Busse, R

    1999-01-01

    The endogenous cannabinoid, anandamide, has been reported to induce an 'endothelium-derived hyperpolarizing factor (EDHF)-like' relaxation in vitro. We therefore investigated the effects of cannabinoid CB1 receptor agonists; HU 210, Δ9-tetrahydrocannabinol (Δ9-THC) and anandamide, and a CB1 antagonist/inverse agonist, SR 141716A, on nitric oxide (NO) and EDHF-mediated relaxation in precontracted rings of porcine coronary, rabbit carotid and mesenteric arteries. In rings of mesenteric artery HU 210 and Δ9-THC induced endothelium- and cyclo-oxygenase-independent relaxations which were sensitive to SR 141716A. Anandamide (0.03–30 μM) induced a slowly developing, endothelium-independent relaxation which was abolished by diclofenac and was therefore mediated by cyclo-oxygenase product(s). None of the CB1 agonists tested affected the tone of precontracted rings of rabbit carotid or porcine coronary artery. In endothelium-intact segments, HU 210, Δ9-THC and anandamide did not affect NO-mediated responses but under conditions of continuous NO synthase/cyclo-oxygenase blockade, significantly inhibited acetylcholine and bradykinin-induced relaxations which are attributed to the production of EDHF. The effects of HU 210 and Δ9-THC were not observed when experiments were performed in the presence of SR 141716A suggesting the involvement of the CB1 receptor. In a patch clamp bioassay of EDHF production, HU 210 decreased the EDHF-mediated hyperpolarization of detector smooth muscle cells when applied to the donor segment but was without effect on the membrane potential of detector cells. The inhibition of EDHF production was unrelated to alterations in Ca2+-signalling or cytochrome P450 activity. These results suggest that the activation of endothelial CB1 receptors appears to be negatively coupled to the production of EDHF. PMID:10193775

  11. Cyclothiazide Selectively Inhibits mGluR1 Receptors Interacting with a Common Allosteric Site for Non-competitive Antagonists

    PubMed Central

    Surin, Alexander; Pshenichkin, Sergey; Grajkowska, Ewa; Surina, Elena; Wroblewski., Jarda T.

    2007-01-01

    Metabotropic glutamate receptors mGluR1 and mGluR5 stimulate phospholipase C, leading to an increased inositol triphosphate level and to Ca2+ release from intracellular stores. Cyclothiazide (CTZ), known as a blocker of AMPA receptor desensitization, produced a non-competitive inhibition of [Ca2+]i increases induced by mGluR agonists in HEK 293 cells transfected with rat mGluR1a but had no effect on the [Ca2+]i signals in cells expressing rat mGluR5a. In cells expressing mGluR1, CTZ also inhibited phoshoinositide hydrolysis, as well as cAMP accumulation and arachidonic acid release induced by mGluR1 agonists, indicating a direct inhibition of the receptor and not of a particular signal transduction system. However, CTZ failed to antagonize cAMP inhibition stimulated by rat mGluR2, -3, -4, -6, -7 and -8 receptors confirming its selectivity for mGluR1. The use of chimeric receptors with substituted N-terminal domains showed that CTZ did not interact with the N-terminal mGluR1a domain. Instead, mutation analysis revealed that CTZ interacts with the Thr-815 and Ala-818 residues, located at the 7th transmembrane domain, similarly as the mGluR1-selective antagonist CPCCOEt. In primary cultures of cerebellar granule neurons, expressing native metabotropic and ionotropic glutamate receptors, the final outcome of CTZ effects depended on its combined ability to potentiate AMPA receptors and inhibit mGluR1a receptors. PMID:17095021

  12. PKCɛ mediates substance P inhibition of GABAA receptors-mediated current in rat dorsal root ganglion.

    PubMed

    Li, Li; Zhao, Lei; Wang, Yang; Ma, Ke-tao; Shi, Wen-yan; Wang, Ying-zi; Si, Jun-qiang

    2015-02-01

    The mechanism underlying the modulatory effect of substance P (SP) on GABA-activated response in rat dorsal root ganglion (DRG) neurons was investigated. In freshly dissociated rat DRG neurons, whole-cell patch-clamp technique was used to record GABA-activated current and sharp electrode intracellular recording technique was used to record GABA-induced membrane depolarization. Application of GABA (1-1000 μmol/L) induced an inward current in a concentration-dependent manner in 114 out of 127 DRG neurons (89.8 %) examined with whole-cell patch-clamp recordings. Bath application of GABA (1-1000 μmol/L) evoked a depolarizing response in 236 out of 257 (91.8%) DRG neurons examined with intracellular recordings. Application of SP (0.001-1 μmol/L) suppressed the GABA-activated inward current and membrane depolarization. The inhibitory effects were concentration-dependent and could be blocked by the selective neurokinin 1 (NK1) receptors antagonist spantide but not by L659187 and SR142801 (1 μmol/L, n=7), selective antagonists of NK2 and NK3. The inhibitory effect of SP was significantly reduced by the calcium chelator BAPTA-AM, phospholipase C (PLC) inhibitor U73122, and PKC inhibitor chelerythrine, respectively. The PKA inhibitor H-89 did not affect the SP effect. Remarkably, the inhibitory effect of SP on GABA-activated current was nearly completely removed by a selective PKCε inhibitor epilon-V1-2 but not by safingol and LY333531, selective inhibitors of PKCα and PKCβ. Our results suggest that NK1 receptor mediates SP-induced inhibition of GABA-activated current and membrane depolarization by activating intracellular PLC-Ca²⁺-PKCε cascade. SP might regulate the excitability of peripheral nociceptors through inhibition of the "pre-synaptic inhibition" evoked by GABA, which may explain its role in pain and neurogenic inflammation.

  13. Ligand-mediated cytoplasmic retention of the Ah receptor inhibits macrophage-mediated acute inflammatory responses.

    PubMed

    Muku, Gulsum E; Lahoti, Tejas S; Murray, Iain A; Podolsky, Michael A; Smith, Kayla J; Hubbard, Troy D; Kuzu, Guray; Gowda, Krishne; Amin, Shantu G; Perdew, Gary H

    2017-09-11

    The Ah receptor (AHR) has been shown to exhibit both inflammatory and anti-inflammatory activity in a context-specific manner. In vivo macrophage-driven acute inflammation models were utilized here to test whether the selective Ah receptor modulator 1-allyl-7-trifluoromethyl-1H-indazol-3-yl]-4-methoxyphenol (SGA360) would reduce inflammation. Exposure to SGA360 was capable of significantly inhibiting lipopolysaccharide (LPS)-mediated endotoxic shock in a mouse model, both in terms of lethality and attenuating inflammatory signaling in tissues. Topical exposure to SGA360 was also able to mitigate joint edema in a monosodium urate (MSU) crystal gout mouse model. Inhibition was dependent on the expression of the high-affinity allelic AHR variant in both acute inflammation models. Upon peritoneal MSU crystal exposure SGA360 pretreatment inhibited neutrophil and macrophage migration into the peritoneum. RNA-seq analysis revealed that SGA360 attenuated the expression of numerous inflammatory genes and genes known to be directly regulated by AHR in thioglycolate-elicited primary peritoneal macrophages treated with LPS. In addition, expression of the high-affinity allelic AHR variant in cultured macrophages was necessary for SGA360-mediated repression of inflammatory gene expression. Mechanistic studies revealed that SGA360 failed to induce nuclear translocation of the AHR and actually enhanced cytoplasmic localization. LPS treatment of macrophages enhanced the occupancy of the AHR and p65 to the Ptgs2 promoter, whereas SGA360 attenuated occupancy. AHR ligand activity was detected in peritoneal exudates isolated from MSU-treated mice, thus suggesting that the anti-inflammatory activity of SGA360 is mediated at least in part through AHR antagonism of endogenous agonist activity. These results underscore an important role of the AHR in participating in acute inflammatory signaling and warrants further investigations into possible clinical applications

  14. Inhibition of androgen receptor binding by natural and synthetic steroids in cultured human genital skin fibroblasts.

    PubMed

    Breiner, M; Romalo, G; Schweikert, H U

    1986-08-15

    The ability of various natural and synthetic steroids (some of which are widely used in clinical practice) to compete with dihydrotestosterone receptor binding in human genital skin fibroblasts was studied. Binding was assessed in fibroblast monolayers after incubation for 1 h at 37 degrees C with 2 nM 3H-dihydrotestosterone in the presence or absence of increasing concentrations of the steroid to be tested. Inhibition constants (Ki) were determined as the concentration of competitor-required for 50% inhibition of 3H-dihydrotestosterone binding. In addition, relative binding activity (RBA) of each test compound was calculated. Each competitor was tested in at least two different cell strains. The concentrations of unlabeled methyltrienolone (a synthetic nonmetabolizable androgen) and dihydrotestosterone for 50% inhibition of 3H-dihydrotestosterone binding were in the same order of magnitude, namely, 2 nM (2.2 respectively, 2.4 nM), whereas the affinity of testosterone was approximately one-fifth that of dihydrotestosterone. Other potent competitors for dihydrotestosterone binding were three progestins (norgestrel, gestoden, and medroxyprogesterone acetate) which have Ki values similar to testosterone. An order of magnitude lower Ki values (around 10(-7) M) were found for the androgen 17 alpha-propylmesterolone, the antiandrogen cyproterone acetate, and the progestin norethisterone acetate. Binding affinities of all other steroids to the androgen receptor were markedly lower and showed the following order of potency: estrogens (estradiol, ethinyl estradiol, diethylstilbestrol) greater than glucocorticoids as well as aromatase inhibitors and potassium canrenoate.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Inhibition of Protease-activated Receptor 1 Ameliorates Intestinal Radiation Mucositis in a Preclinical Rat Model

    SciTech Connect

    Wang, Junru; Kulkarni, Ashwini; Chintala, Madhu; Fink, Louis M.; Hauer-Jensen, Martin

    2013-01-01

    Purpose: To determine, using a specific small-molecule inhibitor of protease-activated receptor 1 (PAR1) signaling, whether the beneficial effect of thrombin inhibition on radiation enteropathy development is due to inhibition of blood clotting or to cellular (PAR1-mediated) thrombin effects. Methods and Materials: Rats underwent fractionated X-irradiation (5 Gy Multiplication-Sign 9) of a 4-cm small-bowel segment. Early radiation toxicity was evaluated in rats receiving PAR1 inhibitor (SCH602539, 0, 10, or 15 mg/kg/d) from 1 day before to 2 weeks after the end of irradiation. The effect of PAR1 inhibition on development of chronic intestinal radiation fibrosis was evaluated in animals receiving SCH602539 (0, 15, or 30 mg/kg/d) until 2 weeks after irradiation, or continuously until termination of the experiment 26 weeks after irradiation. Results: Blockade of PAR1 ameliorated early intestinal toxicity, with reduced overall intestinal radiation injury (P=.002), number of myeloperoxidase-positive (P=.03) and proliferating cell nuclear antigen-positive (P=.04) cells, and collagen III accumulation (P=.005). In contrast, there was no difference in delayed radiation enteropathy in either the 2- or 26-week administration groups. Conclusion: Pharmacological blockade of PAR1 seems to reduce early radiation mucositis but does not affect the level of delayed intestinal radiation fibrosis. Early radiation enteropathy is related to activation of cellular thrombin receptors, whereas platelet activation or fibrin formation may play a greater role in the development of delayed toxicity. Because of the favorable side-effect profile, PAR1 blockade should be further explored as a method to ameliorate acute intestinal radiation toxicity in patients undergoing radiotherapy for cancer and to protect first responders and rescue personnel in radiologic/nuclear emergencies.

  16. Inhibition of Nicotinamide Phosphoribosyltransferase Induces Apoptosis in Estrogen Receptor-Positive MCF-7 Breast Cancer Cells

    PubMed Central

    Alaee, Mohammad; Khaghani, Shahnaz; Behroozfar, Kiarash; Hesari, Zahra; Ghorbanhosseini, Seyedeh Sara

    2017-01-01

    Purpose Tumor cells have increased turnover of nicotinamide adenine dinucleotide (NAD+), the main coenzyme in processes including adenosine diphosphate-ribosylation, deacetylation, and calcium mobilization. NAD+ is predominantly synthesized in human cells via the salvage pathway, with the first component being nicotinamide. Nicotinamide phosphoribosyltransferase (NAMPT) is the key enzyme in this pathway, and its chemical inhibition by FK866 has elicited antitumor effects in several preclinical models of solid and hematologic cancers. However, its efficacy in estrogen receptor (ER)-positive and human epidermal growth factor receptor 2-positive breast cancer cells has not been previously investigated. In this study, we aimed to deplete the NAD+ content of MCF-7 cells, a model cell line for ER-positive breast cancer, by inhibiting NAMPT in order to evaluate downstream effects on p53 and its acetylation, p21 and Bcl-2-associated X protein (BAX) expression, and finally, apoptosis in MCF-7 breast cancer cells. Methods MCF-7 cells were cultured and treated with FK866. NAD+ levels in cells were determined colorimetrically. Levels of p53 and its acetylated form were determined by Western blotting. Expression of p21 and BAX was determined by real-time polymerase chain reaction. Finally, levels of apoptosis were assessed by flow cytometry using markers for annexin V and propidium iodide. Results FK866 treatment was able to increase p53 levels and acetylation, upregulate BAX and p21 expression, and induce apoptosis in MCF-7 cells. Addition of exogenous NAD+ to cells reversed these effects, suggesting that FK866 exerted its effects by depleting NAD+ leve