Science.gov

Sample records for receptor potential gene

  1. Activation of transforming potential of the human insulin receptor gene

    SciTech Connect

    Wang, L.H.; Lin, B.; Jong, S.M.J.; Dixon, D.; Ellis, L.; Roth, R.A.; Rutter, W.J.

    1987-08-01

    A retrovirus containing part of the human insulin receptor (hIR) gene was constructed by replacing ros sequences in the avian sarcoma virus UR2 with hIR cDNA sequences coding for 46 amino acids of the extracellular domain and the entire transmembrane and cytoplasmic domains of the ..beta.. subunit of hIR. The resulting virus, named UIR, contains the hIR sequence fused to the 5' portion of the UR2 gag gene coding for p19. UIR is capable of transforming chicken embryo fibroblasts and promoting formation of colonies in soft agar; however, it does not form tumors in vivo. A variant that arose from the parental UIR is capable of efficiently inducing sarcomas in vivo. UIR-transformed cells exhibit higher rates of glucose uptake and growth than normal cells. The 4-kilobase UIR genome codes for a membrane-associated, glycosylated gag-hIR fusion protein of 75 kDa designated P75/sup gag-hir/. P75/sup gag-hir/ contains a protein tyrosine kinase activity that is capable of undergoing autophosphorylation and of phosphorylating foreign substrates in vitro; it is phosphorylated at both serine and tyrosine residues in vivo

  2. Fluoxetine potentiation of methylphenidate-induced gene regulation in striatal output pathways: potential role for 5-HT1B receptor.

    PubMed

    Van Waes, Vincent; Ehrlich, Sarah; Beverley, Joel A; Steiner, Heinz

    2015-02-01

    Drug combinations that include the psychostimulant methylphenidate plus a selective serotonin reuptake inhibitor (SSRI) such as fluoxetine are increasingly used in children and adolescents. For example, this combination is indicated in the treatment of attention-deficit/hyperactivity disorder and depression comorbidity and other mental disorders. Such co-exposure also occurs in patients on SSRIs who use methylphenidate as a cognitive enhancer. The neurobiological consequences of these drug combinations are poorly understood. Methylphenidate alone can produce gene regulation effects that mimic addiction-related gene regulation by cocaine, consistent with its moderate addiction liability. We have previously shown that combining SSRIs with methylphenidate potentiates methylphenidate-induced gene regulation in the striatum. The present study investigated which striatal output pathways are affected by the methylphenidate + fluoxetine combination, by assessing effects on pathway-specific neuropeptide markers, and which serotonin receptor subtypes may mediate these effects. Our results demonstrate that a 5-day repeated treatment with fluoxetine (5 mg/kg) potentiates methylphenidate (5 mg/kg)-induced expression of both dynorphin (direct pathway marker) and enkephalin (indirect pathway). These changes were accompanied by correlated increases in the expression of the 5-HT1B, but not 5-HT2C, serotonin receptor in the same striatal regions. A further study showed that the 5-HT1B receptor agonist CP94253 (3-10 mg/kg) mimics the fluoxetine potentiation of methylphenidate-induced gene regulation. These findings suggest a role for the 5-HT1B receptor in the fluoxetine effects on striatal gene regulation. Given that 5-HT1B receptors are known to facilitate addiction-related gene regulation and behavior, our results suggest that SSRIs may enhance the addiction liability of methylphenidate by increasing 5-HT1B receptor signaling.

  3. Fluoxetine potentiation of methylphenidate-induced gene regulation in striatal output pathways: Potential role for 5-HT1B receptor

    PubMed Central

    Van Waes, Vincent; Ehrlich, Sarah; Beverley, Joel A.; Steiner, Heinz

    2014-01-01

    Drug combinations that include the psychostimulant methylphenidate plus a selective serotonin reuptake inhibitor (SSRI) such as fluoxetine are increasingly used in children and adolescents. For example, this combination is indicated in the treatment of attention-deficit/hyperactivity disorder and depression comorbidity and other mental disorders. Such co-exposure also occurs in patients on SSRIs that use methylphenidate as a cognitive enhancer. The neurobiological consequences of these drug combinations are poorly understood. Methylphenidate alone can produce gene regulation effects that mimic addiction-related gene regulation by cocaine, consistent with its moderate addiction liability. We have previously shown that combining SSRIs with methylphenidate potentiates methylphenidate-induced gene regulation in the striatum. The present study investigated which striatal output pathways are affected by the methylphenidate+fluoxetine combination, by assessing effects on pathway-specific neuropeptide markers, and which serotonin receptor subtypes may mediate these effects. Our results demonstrate that a 5-day repeated treatment with fluoxetine (5 mg/kg) potentiates methylphenidate (5 mg/kg)-induced expression of both dynorphin (direct pathway marker) and enkephalin (indirect pathway). These changes were accompanied by correlated increases in the expression of the 5-HT1B, but not 5-HT2C, serotonin receptor in the same striatal regions. A further study showed that the 5-HT1B receptor agonist CP94253 (3-10 mg/kg) mimics the fluoxetine potentiation of methylphenidate-induced gene regulation. These findings suggest a role for the 5-HT1B receptor in the fluoxetine effects on striatal gene regulation. Given that 5-HT1B receptors are known to facilitate addiction-related gene regulation and behavior, our results suggest that SSRIs may enhance the addiction liability of methylphenidate by increasing 5-HT1B receptor signaling. PMID:25218038

  4. Cholinergic muscarinic M4 receptor gene polymorphisms: a potential risk factor and pharmacogenomic marker for schizophrenia.

    PubMed

    Scarr, Elizabeth; Um, Jung Yoon; Cowie, Tiffany Frances; Dean, Brian

    2013-05-01

    Although schizophrenia is a widespread disorder of unknown aetiology, we have previously shown that muscarinic M4 receptor (CHRM4) expression is decreased in the hippocampus and caudate-putamen from subjects with the disorder, implicating the receptor in its pathophysiology. These findings led us to determine whether variation in the CHRM4 gene sequence was associated with an altered risk of schizophrenia by sequencing the CHRM4 gene from the brains of 76 people with the disorder and 74 people with no history of psychiatric disorders. In addition, because the CHRM4 is a potential target for antipsychotic drug development, we investigated whether variations in CHRM4 sequence were associated with final recorded doses of, and life-time exposure to, antipsychotic drugs. Gene sequencing identified two single nucleotide polymorphisms (SNPs; rs2067482 and rs72910092) in the CHRM4 gene. For rs2067482, our data suggested that both genotype (1341C/C; p = 0.05) and allele (C; p = 0.03) were associated with an increased risk of schizophrenia. In addition, there was a strong trend (p = 0.08) towards an association between CHRM4 sequence and increased lifetime exposure to antipsychotic drugs. Furthermore, there was a trend for people with the C allele to be prescribed benzodiazepines more frequently (p = 0.06) than those with the T allele. These data, albeit on small cohorts, are consistent with genetic variance at rs2067482 contributing to an altered risk of developing schizophrenia which requires more forceful pharmacotherapy to achieve a clinical response.

  5. Transient receptor potential genes, smoking, occupational exposures and cough in adults

    PubMed Central

    2012-01-01

    Background Transient receptor potential (TRP) vanilloid and ankyrin cation channels are activated by various noxious chemicals and may play an important role in the pathogenesis of cough. The aim was to study the influence of single nucleotide polymorphisms (SNPs) in TRP genes and irritant exposures on cough. Methods Nocturnal, usual, and chronic cough, smoking, and job history were obtained by questionnaire in 844 asthmatic and 2046 non-asthmatic adults from the Epidemiological study on the Genetics and Environment of Asthma (EGEA) and the European Community Respiratory Health Survey (ECRHS). Occupational exposures to vapors, gases, dusts, and/or fumes were assessed by a job-exposure matrix. Fifty-eight tagging SNPs in TRPV1, TRPV4, and TRPA1 were tested under an additive model. Results Statistically significant associations of 6 TRPV1 SNPs with cough symptoms were found in non-asthmatics after correction for multiple comparisons. Results were consistent across the eight countries examined. Haplotype-based association analysis confirmed the single SNP analyses for nocturnal cough (7-SNP haplotype: p-global = 4.8 × 10-6) and usual cough (9-SNP haplotype: p-global = 4.5 × 10-6). Cough symptoms were associated with exposure to irritants such as cigarette smoke and occupational exposures (p < 0.05). Four polymorphisms in TRPV1 further increased the risk of cough symptoms from irritant exposures in asthmatics and non-asthmatics (interaction p < 0.05). Conclusions TRPV1 SNPs were associated with cough among subjects without asthma from two independent studies in eight European countries. TRPV1 SNPs may enhance susceptibility to cough in current smokers and in subjects with a history of workplace exposures. PMID:22443337

  6. Dominant mutations in the cation channel gene transient receptor potential vanilloid 4 cause an unusual spectrum of neuropathies

    PubMed Central

    Zimoń, Magdalena; Baets, Jonathan; Auer-Grumbach, Michaela; Berciano, José; Garcia, Antonio; Lopez-Laso, Eduardo; Merlini, Luciano; Hilton-Jones, David; McEntagart, Meriel; Crosby, Andrew H.; Barisic, Nina; Boltshauser, Eugen; Shaw, Christopher E.; Landouré, Guida; Ludlow, Christy L.; Gaudet, Rachelle; Houlden, Henry; Reilly, Mary M.; Fischbeck, Kenneth H.; Sumner, Charlotte J.; Timmerman, Vincent; Jordanova, Albena

    2010-01-01

    Hereditary neuropathies form a heterogeneous group of disorders for which over 40 causal genes have been identified to date. Recently, dominant mutations in the transient receptor potential vanilloid 4 gene were found to be associated with three distinct neuromuscular phenotypes: hereditary motor and sensory neuropathy 2C, scapuloperoneal spinal muscular atrophy and congenital distal spinal muscular atrophy. Transient receptor potential vanilloid 4 encodes a cation channel previously implicated in several types of dominantly inherited bone dysplasia syndromes. We performed DNA sequencing of the coding regions of transient receptor potential vanilloid 4 in a cohort of 145 patients with various types of hereditary neuropathy and identified five different heterozygous missense mutations in eight unrelated families. One mutation arose de novo in an isolated patient, and the remainder segregated in families. Two of the mutations were recurrent in unrelated families. Four mutations in transient receptor potential vanilloid 4 targeted conserved arginine residues in the ankyrin repeat domain, which is believed to be important in protein–protein interactions. Striking phenotypic variability between and within families was observed. The majority of patients displayed a predominantly, or pure, motor neuropathy with axonal characteristics observed on electrophysiological testing. The age of onset varied widely, ranging from congenital to late adulthood onset. Various combinations of additional features were present in most patients including vocal fold paralysis, scapular weakness, contractures and hearing loss. We identified six asymptomatic mutation carriers, indicating reduced penetrance of the transient receptor potential vanilloid 4 defects. This finding is relatively unusual in the context of hereditary neuropathies and has important implications for diagnostic testing and genetic counselling. PMID:20460441

  7. Gene expression of growth factors and growth factor receptors for potential targeted therapy of canine hepatocellular carcinoma.

    PubMed

    Iida, Gentoku; Asano, Kazushi; Seki, Mamiko; Sakai, Manabu; Kutara, Kenji; Ishigaki, Kumiko; Kagawa, Yumiko; Yoshida, Orie; Teshima, Kenji; Edamura, Kazuya; Watari, Toshihiro

    2014-03-01

    The purpose of this study was to evaluate the gene expression of growth factors and growth factor receptors of primary hepatic masses, including hepatocellular carcinoma (HCC) and nodular hyperplasia (NH), in dogs. Quantitative real-time reverse transcriptase-polymerase chain reaction was performed to measure the expression of 18 genes in 18 HCCs, 10 NHs, 11 surrounding non-cancerous liver tissues and 4 healthy control liver tissues. Platelet-derived growth factor-B (PDGF-B), transforming growth factor-α, epidermal growth factor receptor, epidermal growth factor and hepatocyte growth factor were found to be differentially expressed in HCC compared with NH and the surrounding non-cancerous and healthy control liver tissues. PDGF-B is suggested to have the potential to become a valuable ancillary target for the treatment of canine HCC.

  8. Studies of the potential role of the dopamine D1 receptor gene in addictive behaviors.

    PubMed

    Comings, D E; Gade, R; Wu, S; Chiu, C; Dietz, G; Muhleman, D; Saucier, G; Ferry, L; Rosenthal, R J; Lesieur, H R; Rugle, L J; MacMurray, P

    1997-01-01

    Abnormalities in the dopaminergic reward pathways have frequently been implicated in substance abuse and addictive behaviors. Recent studies by Self and coworkers have suggested an important interaction between the dopamine D1 and D2 receptors in cocaine abuse. To test the hypothesis that the DRD1 gene might play a role in addictive behaviors we examined the alleles of the Dde I polymorphism in three independent groups of subjects with varying types of compulsive, addictive behaviors-Tourette syndrome probands, smokers and pathological gamblers. In all three groups there was a significant in the frequency of homozygosity for the DRD1 Dde I 1 or 2 alleles in subjects with addictive behaviors. The DRD1 11 or 22 genotype was present in 41.3% of 63 controls and 57.3% of 227 TS probands (P = 0.024). When 23 quantitative traits were examined by ANOVA those carrying the 11 genotype consistently had the highest scores. Based on these results, we examined the prevalence of the 11 genotype in controls, TS probands without a specific behavior, and TS probands with a specific behavior. There was a progressive, linear increase, significant at alpha < or = 0.005 for scores for gambling, alcohol use and compulsive shopping. Problems with three additional behaviors, drug use, compulsive eating and smoking were significant at alpha < or = 0.05. All six variables were related to addictive behaviors. In a totally separate group of controls and individuals attending a smoking cessation clinic, and smoking at least one pack per day, 39.3% of the controls versus 66.1% of the smokers carried the 11 or 22 genotype (P = 0.0002). In a third independent group of pathological gamblers, 55.8% carried the 11 or 22 genotype (P = 0.009 vs the combined controls). In the TS group and smokers there was a significant additive effect of the DRD1 and DRD2 genes. The results for both the DRD1 and DRD2 genes, which have opposing effects on cyclic AMP, were consistent with negative and positive heterosis

  9. Potential role of killer immunoglobulin receptor genes among individuals vaccinated against hepatitis B virus in Lebanon

    PubMed Central

    Melhem, Nada M; Mahfouz, Rami A; Kreidieh, Khalil; Abdul-Khalik, Rabab; El-Khatib, Rolla; Talhouk, Reem; Musharrafieh, Umayya; Hamadeh, Ghassan

    2016-01-01

    AIM To explore the role of killer immunoglobulin receptor (KIR) genes in responsiveness or non-responsiveness to vaccination against hepatitis B virus. METHODS We recruited 101 voluntary participants between March 2010 and December 2011. Sera samples from vaccinated and non-vaccinated participants were tested for the presence of anti-HBs antibodies as a measure of protection against hepatitis B, hepatitis B surface antigen and hepatitis B core antibody as indicators of infection by enzyme-linked immunosorbent assay. KIR gene frequencies were determined by polymerase chain reaction. RESULTS Sera samples from 99 participants were tested for the levels of anti-HBs as an indicator of protection (≥ 10 mIU/mL) following vaccination as defined by the World Health Organization international reference standard. Among the vaccinated participants, 47% (35/74) had anti-HBs titers above 100 mIU/mL, 22% (16/74) had anti-HBs ranging between 10-100 mIU/mL, and 20% (15/74) had values of less than 10 mIU/mL. We report the lack of significant association between the number of vaccine dosages and the titer of antibodies among our vaccinated participants. The inhibitory KIR2DL1, KIR2DL4, KIR3DL1, KIR3DL2, and KIR3DL were detected in more than 95%, whereas KIR2DL2, KIR2DL3, KIR2DL5 (KR2DL5A and KIR2DL5B) were expressed in 56%, 84% and 42% (25% and 29%) of participants, respectively. The observed frequency of the activating KIR genes ranged between 35% and 55% except for KIR2DS4, detected in 95% of the study participants (40.6% 2DS4*001/002; 82.2% 2DS4*003/007). KIR2DP1 pseudogene was detected in 99% of our participants, whereas KIR3DP*001/02/04 and KIR3DP1*003 had frequencies of 17% and 100%, respectively. No association between the frequency of KIR genes and anti-HBs antibodies was detected. When we compared the frequency of KIR genes between vaccinated individuals with protective antibodies titers and those who lost their protective antibody levels, we did not detect a significant

  10. The transient receptor potential channel TRPA1: from gene to pathophysiology.

    PubMed

    Nilius, Bernd; Appendino, Giovanni; Owsianik, Grzegorz

    2012-11-01

    The Transient Receptor Potential Ankyrin 1 channel (TRPA1), is a member of the large TRP family of ion channels, and functions as a Ca(2+) permeable non-selective cation channel in many different cell processes, ranging from sensory to homeostatic tasks. TRPA1 is highly conserved across the animal kingdom. The only mammalian TRPA subfamily member, TRPA1, is widely expressed in neuronal (e.g. sensory dorsal root and trigeminal ganglia neurons)- and in non-neuronal cells (e.g. epithelial cells, hair cells). It exhibits 14-19 amino-(N-)terminal ankyrin repeats, an unusual structural feature. The TRPA1 channel is activated by noxious cold (<17 °C) as well as by a plethora of chemical compounds that includes not only electrophilic compounds and oxidants that can modify, in an alkylative or oxidative fashion, nucleophilic cysteine residues in the channel's N-terminus, but also compounds that do not covalently bind to the channel proteins (e.g. menthol, nifedipin). Based on localization and functional properties, TRPA1 is considered a key player in acute and chronic (neuropathic) pain and inflammation. Moreover, its role in the (patho)physiology of nearly all organ systems is anticipated, and will be discussed along with the potential of TRPA1 as a drug target for the management of various pathological conditions.

  11. Single nucleotide polymorphisms and genotypes of transient receptor potential ion channel and acetylcholine receptor genes from isolated B lymphocytes in myalgic encephalomyelitis/chronic fatigue syndrome patients.

    PubMed

    Marshall-Gradisnik, Sonya; Johnston, Samantha; Chacko, Anu; Nguyen, Thao; Smith, Peter; Staines, Donald

    2016-12-01

    Objective The pathomechanism of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is unknown; however, a small subgroup of patients has shown muscarinic antibody positivity and reduced symptom presentation following anti-CD20 intervention. Given the important roles of calcium (Ca(2+)) and acetylcholine (ACh) signalling in B cell activation and potential antibody development, we aimed to identify relevant single nucleotide polymorphisms (SNPs) and genotypes in isolated B cells from CFS/ME patients. Methods A total of 11 CFS/ME patients (aged 31.82 ± 5.50 years) and 11 non-fatigued controls (aged 33.91 ± 5.06 years) were included. Flow cytometric protocols were used to determine B cell purity, followed by SNP and genotype analysis for 21 mammalian TRP ion channel genes and nine mammalian ACh receptor genes. SNP association and genotyping analysis were performed using ANOVA and PLINK analysis software. Results Seventy-eight SNPs were identified in nicotinic and muscarinic acetylcholine receptor genes in the CFS/ME group, of which 35 were in mAChM3. The remaining SNPs were identified in nAChR delta (n = 12), nAChR alpha 9 (n = 5), TRPV2 (n = 7), TRPM3 (n = 4), TRPM4 (n = 1) mAChRM3 2 (n = 2), and mAChRM5 (n = 3) genes. Nine genotypes were identified from SNPs in TRPM3 (n = 1), TRPC6 (n = 1), mAChRM3 (n = 2), nAChR alpha 4 (n = 1), and nAChR beta 1 (n = 4) genes, and were located in introns and 3' untranslated regions. Odds ratios for these specific genotypes ranged between 7.11 and 26.67 for CFS/ME compared with the non-fatigued control group. Conclusion This preliminary investigation identified a number of SNPs and genotypes in genes encoding TRP ion channels and AChRs from B cells in patients with CFS/ME. These may be involved in B cell functional changes, and suggest a role for Ca(2+) dysregulation in AChR and TRP ion channel signalling in the pathomechanism of CFS/ME.

  12. The potentiating effect of calcitonin gene-related peptide on transient receptor potential vanilloid-1 activity and the electrophysiological responses of rat trigeminal neurons to nociceptive stimuli.

    PubMed

    Chatchaisak, Duangthip; Connor, Mark; Srikiatkhachorn, Anan; Chetsawang, Banthit

    2017-02-15

    Growing evidence suggests that calcitonin gene-related peptide (CGRP) participates in trigeminal nociceptive responses. However, the role of CGRP in sensitization or desensitization of nociceptive transduction remains poorly understood. In this study, we sought to further investigate the CGRP-induced up-regulation of transient receptor potential vanilloid-1 (TRPV1) and the responses of trigeminal neurons to nociceptive stimuli. Rat trigeminal ganglion (TG) organ cultures and isolated trigeminal neurons were incubated with CGRP. An increase in TRPV1 levels was observed in CGRP-incubated TG organ cultures. CGRP potentiated capsaicin-induced increase in phosphorylated CaMKII levels in the TG organ cultures. The incubation of the trigeminal neurons with CGRP significantly increased the inward currents in response to capsaicin challenge, and this effect was inhibited by co-incubation with the CGRP receptor antagonist, BIBN4068BS or the inhibitor of protein kinase A, H-89. These findings reveal that CGRP acting on trigeminal neurons may play a significant role in facilitating cellular events that contribute to the peripheral sensitization of the TG in nociceptive transmission.

  13. Evaluation of TRPM (transient receptor potential melastatin) genes expressions in myocardial ischemia and reperfusion.

    PubMed

    Demir, Tuncer; Yumrutas, Onder; Cengiz, Beyhan; Demiryurek, Seniz; Unverdi, Hatice; Kaplan, Davut Sinan; Bayraktar, Recep; Ozkul, Nadide; Bagcı, Cahit

    2014-05-01

    In the present study, the expression levels of TRPM1, TRPM2, TRPM3, TRPM4, TRPM5, TRPM6, TRPM7, and TRPM8 genes were evaluated in heart tissues after ischemia/reperfusion (IR). For this study, 30 albino male Wistar rats were equally divided into three groups as follows: Group 1: control group (n:10), Group II: ischemia group (ischemia for 60 min) (n:10) and Group III: IR (reperfusion 48 h after ischemia for 60 min and reperfusion for 48 h). The expression levels of the TRPM genes were analyzed by semi-quantitative reverse transcriptase-PCR. When compared to the ischemia control, the expression levels of TRPM2, TRPM4, and TRPM6 did not change, whereas that of TRPM7 increased. However, TRPM1, TRPM3, TRPM5, and TRPM8 were not expressed in heart tissue. Histopathological analysis of the myocardial tissues showed that the structures that were most damaged were those exposed to IR. The findings showed that there is a positive relationship between TRPM7 expression and myocardial IR injury.

  14. Targeted Deletion of the Mouse α2 Nicotinic Acetylcholine Receptor Subunit Gene (Chrna2) Potentiates Nicotine-Modulated Behaviors

    PubMed Central

    Lotfipour, Shahrdad; Byun, Janet S.; Leach, Prescott; Fowler, Christie D.; Murphy, Niall P.; Kenny, Paul J.; Gould, Thomas J.; Boulter, Jim

    2013-01-01

    Baseline and nicotine-modulated behaviors were assessed in mice harboring a null mutant allele of the nicotinic acetylcholine receptor (nAChR) subunit gene α2 (Chrna2). Homozygous Chrna2−/− mice are viable, show expected sex and Mendelian genotype ratios, and exhibit no gross neuroanatomical abnormalities. A broad range of behavioral tests designed to assess genotype-dependent effects on anxiety (elevated plus maze and light/dark box), motor coordination (narrow bean traverse and gait), and locomotor activity revealed no significant differences between mutant mice and age-matched wild-type littermates. Furthermore, a panel of tests measuring traits, such as body position, spontaneous activity, respiration, tremors, body tone, and startle response, revealed normal responses for Chrna2-null mutant mice. However, Chrna2−/− mice do exhibit a mild motor or coordination phenotype (a decreased latency to fall during the accelerating rotarod test) and possess an increased sensitivity to nicotine-induced analgesia in the hotplate assay. Relative to wild-type, Chrna2−/− mice show potentiated nicotine self-administration and withdrawal behaviors and exhibit a sex-dependent enhancement of nicotine-facilitated cued, but not trace or contextual, fear conditioning. Overall, our results suggest that loss of the mouse nAChR α2 subunit has very limited effects on baseline behavior but does lead to the potentiation of several nicotine-modulated behaviors. PMID:23637165

  15. Gene Expression Analysis of CL-20-induced Reversible Neurotoxicity Reveals GABAA Receptors as Potential Target in the Earthworm Eisenia fetida

    PubMed Central

    Gong, Ping; Guan, Xin; Pirooznia, Mehdi; Liang, Chun; Perkins, Edward J.

    2012-01-01

    The earthworm Eisenia fetida is one of the most used species in standardized soil ecotoxicity tests. Endpoints such as survival, growth and reproduction are eco-toxicologically relevant but provide little mechanistic insight into toxicity pathways, especially at the molecular level. Here we applied a toxicogenomic approach to investigate the mode of action underlying the reversible neurotoxicity of hexanitrohexaazaisowurtzitane (CL-20), a cyclic nitroamine explosives compound. We developed an E. fetida-specific shotgun microarray targeting 15119 unique E. fetida transcripts. Using this array we profiled gene expression in E. fetida in response to exposure to CL-20. Eighteen earthworms were exposed for 6 days to 0.2 μg/cm2 of CL-20 on filter paper, half of which were allowed to recover in a clean environment for 7 days. Nine vehicle control earthworms were sacrificed at day 6 and 13, separately. Electrophysiological measurements indicated that the conduction velocity of earthworm medial giant nerve fiber decreased significantly after 6-day exposure to CL-20, but was restored after 7 days of recovery. Total RNA was isolated from the four treatment groups including 6-day control, 6-day exposed, 13-day control and 13-day exposed (i.e. 6-day exposure followed by 7-day recovery), and was hybridized to the 15K shot-gun oligo array. Statistical and bioinformatic analyses suggest that CL-20 initiated neurotoxicity by non-competitively blocking the ligand-gated GABAA receptor ion channel, leading to altered expression of genes involved in GABAergic, cholinergic, and Agrin-MuSK pathways. In the recovery phase, expression of affected genes returned to normality, possibly as a result of autophagy and CL-20 dissociation/metabolism. This study provides significant insights into potential mechanisms of CL-20-induced neurotoxicity and the recovery of earthworms from transient neurotoxicity stress. PMID:22191394

  16. Transient receptor potential melastatin 8 gene polymorphism is associated with cold-induced airway hyperresponsiveness in bronchial asthma.

    PubMed

    Naumov, Denis E; Perelman, Juliy M; Kolosov, Victor P; Potapova, Tatyana A; Maksimov, Vladimir N; Zhou, Xiangdong

    2015-11-01

    Cold-induced airway hyperresponsiveness (CAH) is common in bronchial asthma (BA) patients and represents a problem for those living in cold climate. Transient receptor potential melastatin 8 (TRPM8) channel is the main cold temperature sensor in humans that could mediate cold response in asthmatics with CAH. No associations between TRPM8 gene polymorphisms and CAH have been reported. The present study involved 123 BA patients. CAH was assessed by 3-min isocapnic (5% CO2 ) cold air (-20°C) hyperventilation challenge. The c.750G > C (rs11562975), c.1256G > A (rs7593557), c.3048C > T (rs11563208) and c.3174C > G (rs11563071) polymorphisms of TRPM8 gene were genotyped by allele-specific polymerase chain reaction (PCR) and PCR with subsequent restriction fragment length polymorphism analysis. GC genotype and C allele carriers of the c.750G > C (rs11562975) polymorphism were more frequently observed to exhibit CAH. The estimated odds ratio for the GC genotype was 3.73 95%CI (1.48; 9.37), P = 0.005. Furthermore, GC heterozygotes had a prominent decrease in forced expiratory volume in 1 s after the challenge as compared to GG homozygotes (-12% (-16; -8.1) vs -6.45% (-11; -2.1), P < 0.001). GC carriers also had a marked reduction in other spirometric parameters. The GC variant of the TRPM8:c.750G > C (rs11562975) polymorphism is associated with CAH in patients with BA, which suggests a potential role of TRPM8 in CAH development. © 2015 Asian Pacific Society of Respirology.

  17. Gene expression profiling in hearts of diabetic mice uncovers a potential role of estrogen-related receptor γ in diabetic cardiomyopathy.

    PubMed

    Lasheras, Jaime; Vilà, Maria; Zamora, Mònica; Riu, Efrén; Pardo, Rosario; Poncelas, Marcos; Cases, Ildefonso; Ruiz-Meana, Marisol; Hernández, Cristina; Feliu, Juan E; Simó, Rafael; García-Dorado, David; Villena, Josep A

    2016-07-15

    Diabetic cardiomyopathy is characterized by an abnormal oxidative metabolism, but the underlying mechanisms remain to be defined. To uncover potential mechanisms involved in the pathophysiology of diabetic cardiomyopathy, we performed a gene expression profiling study in hearts of diabetic db/db mice. Diabetic hearts showed a gene expression pattern characterized by the up-regulation of genes involved in lipid oxidation, together with an abnormal expression of genes related to the cardiac contractile function. A screening for potential regulators of the genes differentially expressed in diabetic mice found that estrogen-related receptor γ (ERRγ) was increased in heart of db/db mice. Overexpression of ERRγ in cultured cardiomyocytes was sufficient to promote the expression of genes involved in lipid oxidation, increase palmitate oxidation and induce cardiomyocyte hypertrophy. Our findings strongly support a role for ERRγ in the metabolic alterations that underlie the development of diabetic cardiomyopathy.

  18. Taste Receptor Genes

    PubMed Central

    Bachmanov, Alexander A.; Beauchamp, Gary K.

    2009-01-01

    In the past several years, tremendous progress has been achieved with the discovery and characterization of vertebrate taste receptors from the T1R and T2R families, which are involved in recognition of bitter, sweet, and umami taste stimuli. Individual differences in taste, at least in some cases, can be attributed to allelic variants of the T1R and T2R genes. Progress with understanding how T1R and T2R receptors interact with taste stimuli and with identifying their patterns of expression in taste cells sheds light on coding of taste information by the nervous system. Candidate mechanisms for detection of salts, acids, fat, complex carbohydrates, and water have also been proposed, but further studies are needed to prove their identity. PMID:17444812

  19. The autoimmunity-associated gene PTPN22 potentiates toll-like receptor-driven, type 1 interferon-dependent immunity.

    PubMed

    Wang, Yaya; Shaked, Iftach; Stanford, Stephanie M; Zhou, Wenbo; Curtsinger, Julie M; Mikulski, Zbigniew; Shaheen, Zachary R; Cheng, Genhong; Sawatzke, Kristy; Campbell, Amanda M; Auger, Jennifer L; Bilgic, Hatice; Shoyama, Fernanda M; Schmeling, David O; Balfour, Henry H; Hasegawa, Kiminori; Chan, Andrew C; Corbett, John A; Binstadt, Bryce A; Mescher, Matthew F; Ley, Klaus; Bottini, Nunzio; Peterson, Erik J

    2013-07-25

    Immune cells sense microbial products through Toll-like receptors (TLR), which trigger host defense responses including type 1 interferons (IFNs) secretion. A coding polymorphism in the protein tyrosine phosphatase nonreceptor type 22 (PTPN22) gene is a susceptibility allele for human autoimmune and infectious disease. We report that Ptpn22 selectively regulated type 1 IFN production after TLR engagement in myeloid cells. Ptpn22 promoted host antiviral responses and was critical for TLR agonist-induced, type 1 IFN-dependent suppression of inflammation in colitis and arthritis. PTPN22 directly associated with TNF receptor-associated factor 3 (TRAF3) and promotes TRAF3 lysine 63-linked ubiquitination. The disease-associated PTPN22W variant failed to promote TRAF3 ubiquitination, type 1 IFN upregulation, and type 1 IFN-dependent suppression of arthritis. The findings establish a candidate innate immune mechanism of action for a human autoimmunity "risk" gene in the regulation of host defense and inflammation.

  20. Paired box gene 2 is associated with estrogen receptor α in ovarian serous tumors: Potential theory basis for targeted therapy.

    PubMed

    Wang, Min; Ma, Haifen

    2016-08-01

    It has been suggested that Paired box gene (PAX)2 is activated by estradiol via estrogen receptor (ER)α in breast and endometrial cancer. The expression of PAX2 was restricted to ovarian serous tumors and only one case was positive in borderline mucinous tumor in our previous study. In the present study, immunohistochemistry was performed to assess the expression of ERα in 58 cases of ovarian serous tumors, including 30 serous cystadenomas, 16 borderline serous cystadenomas, 12 serous carcinomas and 67 cases of ovarian mucinous tumors, including 29 mucinous cystadenoma, 23 borderline mucinous cystadenoma and 15 mucinous carcinoma, which were the same specimens with detection of PAX2 expression. The results demonstrated that ERα was expressed in 10% (3/30) of serous cystadenomas, 62.5% (10/16) borderline serous cystadenomas and 66.7% (8/12) serous carcinomas. The expression of ERα in borderline serous cystadenomas and serous carcinomas were significantly higher compared with that in serous cystadenomas (P<0.01). ERα was detected in 3.4% (1/29) mucinous cystadenoma, 26.1% (6/23) borderline mucinous cystadenoma and only 6.7% (1/15) mucinous carcinoma. Furthermore, a scatter plot of the expression of PAX2 and ERα revealed a linear correlation between them in ovarian serous tumors (P<0.0001). With few positive results, no correlation was determined in ovarian mucinous tumors. It was demonstrated that PAX2 is associated with ERα in ovarian serous tumors, and this may become a potential theory basis for targeted therapy for ovarian serous tumors. Further research is required to determine how PAX2 and ERα work together, and the role of targeted therapy in ovarian serous tumors.

  1. Potential role of melastatin-related transient receptor potential cation channel subfamily M gene expression in the pathogenesis of urinary bladder cancer

    PubMed Central

    Ceylan, Gülay Güleç; Önalan, Ebru Etem; Kuloğlu, Tuncay; Aydoğ, Gülten; Keleş, İbrahim; Tonyali, Şenol; Ceylan, Cavit

    2016-01-01

    Urinary bladder cancer is one of the most common malignancies of the urinary tract. Ion channels and calcium homeostasis are involved in almost all basic cellular mechanisms. The transient receptor potential cation channel subfamily M (TRPM) takes its name from the melastatin protein, which is classified as potential tumor suppressor. To the best of our knowledge, there have been no previous studies in the literature investigating the role of these ion channels in bladder cancer. The present study aimed to determine whether bladder cancer is associated with mRNA expression levels of TRPM ion channel genes, and whether there is the potential to conduct further studies to establish novel treatment modalities. The present study included a total of 47 subjects, of whom 40 were bladder cancer patients and 7 were controls. Following the histopathological evaluation for bladder carcinoma, the mRNA and protein expression of TRPM were examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry in tumor and normal tissues, in order to determine whether there is a difference in the expression of these channels in tumor and normal tissues. Immunoreactivity for TRPM2, TRPM4, TRPM7 and TRPM8 was observed in epithelial bladder cells in the two groups. RT-qPCR revealed a significant increase in TRPM7 expression in bladder cancer tissue compared to the controls (healthy bladder tissue), whereas no differences in TRPM2 or TRPM4 expression levels were observed. There were significant reductions in the expression levels of TRPM5 and TRPM8 in bladder cancer tissues. In the present study, the effects of TRP ion channels on the formation of bladder cancer was investigated. This study is instructive for TRPM2, TRPM4, TRPM5, TRPM7 and TRPM8 and their therapeutic role in bladder cancer. The results support the fact that these gens can be novel targets and can also be tested for during the treatment of bladder cancer. PMID:28101241

  2. GnRH receptor gene expression in the developing rat hippocampus: transcriptional regulation and potential roles in neuronal plasticity.

    PubMed

    Schang, Anne-Laure; Ngô-Muller, Valérie; Bleux, Christian; Granger, Anne; Chenut, Marie-Claude; Loudes, Catherine; Magre, Solange; Counis, Raymond; Cohen-Tannoudji, Joëlle; Laverrière, Jean-Noël

    2011-02-01

    In the pituitary of mammals, the GnRH receptor (GnRHR) plays a primary role in the control of reproductive function. It is further expressed in the hippocampus, where its function, however, is not well defined. By quantitative RT-PCR analyses, we demonstrate herein that the onset of GnRHR gene (Gnrhr) expression in the rat hippocampus was unexpectedly delayed as compared to the pituitary and only occurred after birth. Using a previously described transgenic mouse model bearing the human placental alkaline phosphatase reporter gene under the control of the rat Gnrhr promoter, we established a positive correlation between the temporal pattern of Gnrhr mRNA levels and promoter activity in the hippocampal formation. The gradual appearance of human placental alkaline phosphatase transgene expression occurred simultaneously in the hippocampus and interconnected structures such as the lateral septum and the amygdala, coinciding with the establishment of hippocampo-septal projections. Analysis of transcription factors together with transient transfection assays in hippocampal neurons indicated that the combinatorial code governing the hippocampus-specific expression of the Gnrhr is distinct from the pituitary, likely involving transactivating factors such as NUR77, cyclic AMP response element binding protein, and Finkel-Biskis-Jinkins murine osteosarcoma virus oncogene homolog. A silencing transcription factor acting via the -3255/-1135 promoter region of the Gnrhr may be responsible for the transcriptional repression observed around birth. Finally, GnRH directly stimulated via activation of its receptor the expression of several marker genes of neuronal plasticity such as Egr1, synaptophysin, and spinophilin in hippocampal primary cultures, suggesting a role for GnRHR in neuronal plasticity. Further characterization of these mechanisms may help unravel important functions of GnRH/GnRHR signaling in the brain.

  3. The W546X mutation of the thyrotropin receptor gene: potential major contributor to thyroid dysfunction in a Caucasian population.

    PubMed

    Jordan, N; Williams, N; Gregory, J W; Evans, C; Owen, M; Ludgate, M

    2003-03-01

    Congenital hypothyroidism (CH) occurs in approximately 1 in 3000 births and can be caused by mutations in 9 known genes, including that encoding the TSH receptor (TSHR). We report on two Welsh siblings, detected by neonatal screening, who had normal sized and placed glands but negative isotope uptake. Genomic DNA was obtained from both siblings and parents, the TSHR amplified using pairs of intronic and/or overlapping exonic primers and the PCR products sequenced automatically. Both siblings were homozygous for a previously described G to A transition producing a missense mutation, W546X, in the fourth membrane spanning region of the TSHR, rendering it unresponsive to TSH. Both parents were heterozygous and unrelated; furthermore, the W546X has been described in three further families (one of which is Welsh), suggesting that it may be a relatively common mutation. We genotyped 368 euthyroid Welsh individuals using single nucleotide primer extension, and found 366 homozygous wild-type (G:G) and 2 heterozygous (G:A) for the mutation. In conclusion, CH in the siblings is due to the missense mutation, W546X, in their TSHR gene. The W546X allele was detected in approximately 1 in 180 individuals and may be a major contributor to hypothyroidism in the Welsh population.

  4. Activation of gene transcription via CIM0216, a synthetic ligand of transient receptor potential melastatin-3 (TRPM3) channels.

    PubMed

    Rubil, Sandra; Thiel, Gerald

    2017-01-02

    Several compounds have been proposed to stimulate TRPM3 Ca(2+) channels. We recently showed that stimulation of TRPM3 channels with pregnenolone sulfate activated the transcription factor AP-1, while other proposed TRPM3 ligands (nifedipine, D-erythro-sphingosine) exhibited either no or TRPM3-independent effects on gene transcription. Here, we have analyzed the transcriptional activity of CIM0216, a synthetic TRPM3 ligand proposed to have a higher potency and affinity for TRPM3 than pregnenolone sulfate. The results show that CIM0216 treatment of HEK293 cells expressing TRPM3 channels activated AP-1 and stimulated the transcriptional activation potential of c-Jun and c-Fos, 2 basic region leucine zipper transcription factors that constitute AP-1. CIM0216-induced gene transcription was attenuated by knock-down of TRPM3 or treatment with mefenamic acid, a TRPM3 inhibitor. CIM0216 was similarly or less capable in activating TRPM3-mediated gene transcription, suggesting that pregnenolone sulfate is still the ligand of choice for changing the gene expression pattern via TRPM3.

  5. Clinical potential of GABAB receptor modulators.

    PubMed

    Ong, Jennifer; Kerr, David I B

    2005-01-01

    Metabotropic gamma-aminobutyric acid(B) (GABAB) receptors for the major inhibitory transmitter GABA, together with metabotropic glutamate (mGLuRs) receptors, the extracellular calcium-sensing receptors (CaSRs), some V2R pheromone receptors and T1R taste receptors, belong to the family of 3 G-protein-coupled receptors (GPCRs). GABAB receptors are known to control neuronal excitability and modulate synaptic neurotransmission, playing a very important role in many physiological activities. These receptors are widely expressed and distributed in the nervous system and have been implicated in a variety of neurodegenerative and pathophysiological disorders including epilepsy, spasticity, chronic pain, depression, schizophrenia and drug addiction. To form a functional receptor entity, GABAB receptors must exist as a heterodimer consisting of GABAB1 and GABAB2 receptor subtypes with two 7-transmembrane proteins, and these subunits arise from distinct genes. The GABAB1 subunit binds the endogenous ligand within its extracellular N-terminus, whilst the GABAB2 subunit is not only essential for the correct trafficking of the GABAB1 subunit to the cell surface, but is also responsible for the interaction of the receptor with its cognate G-protein. Allosteric modulation has recently been recognized as an alternative pharmacological approach to gain selectivity in drug action. It is now generally accepted that modulators acting at the allosteric sites provide a novel perspective for the development of subtype-selective agents acting at GPCRs. These agents interact with allosteric binding sites quite separate from the highly conserved agonist binding region. In this review, we present a new class of phenylalkylamines, based on the lead compound fendiline, that are potent positive potentiators of GABAB receptor-mediated function and discuss their putative clinical applications. It is proposed that these new modulators may have therapeutic value in GABAB receptor pharmacology and

  6. The phenome analysis of mutant alleles in Leucine-Rich Repeat Receptor-Like Kinase genes in rice reveals new potential targets for stress tolerant cereals.

    PubMed

    Dievart, Anne; Perin, Christophe; Hirsch, Judith; Bettembourg, Mathilde; Lanau, Nadège; Artus, Florence; Bureau, Charlotte; Noel, Nicolas; Droc, Gaétan; Peyramard, Matthieu; Pereira, Serge; Courtois, Brigitte; Morel, Jean-Benoit; Guiderdoni, Emmanuel

    2016-01-01

    Plants are constantly exposed to a variety of biotic and abiotic stresses that reduce their fitness and performance. At the molecular level, the perception of extracellular stimuli and the subsequent activation of defense responses require a complex interplay of signaling cascades, in which protein phosphorylation plays a central role. Several studies have shown that some members of the Leucine-Rich Repeat Receptor-Like Kinase (LRR-RLK) family are involved in stress and developmental pathways. We report here a systematic analysis of the role of the members of this gene family by mutant phenotyping in the monocotyledon model plant rice, Oryza sativa. We have then targeted 176 of the ∼320 LRR-RLK genes (55.7%) and genotyped 288 mutant lines. Position of the insertion was confirmed in 128 lines corresponding to 100 LRR-RLK genes (31.6% of the entire family). All mutant lines harboring homozygous insertions have been screened for phenotypes under normal conditions and under various abiotic stresses. Mutant plants have been observed at several stages of growth, from seedlings in Petri dishes to flowering and grain filling under greenhouse conditions. Our results show that 37 of the LRR-RLK rice genes are potential targets for improvement especially in the generation of abiotic stress tolerant cereals.

  7. Gene expression analysis of CL-20-induced reversible neurotoxicity reveals GABA(A) receptors as potential targets in the earthworm Eisenia fetida.

    PubMed

    Gong, Ping; Guan, Xin; Pirooznia, Mehdi; Liang, Chun; Perkins, Edward J

    2012-01-17

    The earthworm Eisenia fetida is one of the most used species in standardized soil ecotoxicity tests. End points such as survival, growth, and reproduction are eco-toxicologically relevant but provide little mechanistic insight into toxicity pathways, especially at the molecular level. Here we apply a toxicogenomic approach to investigate the mode of action underlying the reversible neurotoxicity of hexanitrohexaazaisowurtzitane (CL-20), a cyclic nitroamine explosives compound. We developed an E. fetida-specific shotgun microarray targeting 15119 unique E. fetida transcripts. Using this array we profiled gene expression in E. fetida in response to exposure to CL-20. Eighteen earthworms were exposed for 6 days to 0.2 μg/cm(2) of CL-20 on filter paper, half of which were allowed to recover in a clean environment for 7 days. Nine vehicle control earthworms were sacrificed at days 6 and 13, separately. Electrophysiological measurements indicated that the conduction velocity of earthworm medial giant nerve fiber decreased significantly after 6-day exposure to CL-20, but was restored after 7 days of recovery. Total RNA was isolated from the four treatment groups including 6-day control, 6-day exposed, 13-day control, and 13-day exposed (i.e., 6-day exposure followed by 7-day recovery), and was hybridized to the 15K shotgun oligo array. Statistical and bioinformatic analyses suggest that CL-20 initiated neurotoxicity by noncompetitively blocking the ligand-gated GABA(A) receptor ion channel, leading to altered expression of genes involved in GABAergic, cholinergic, and Agrin-MuSK pathways. In the recovery phase, expression of affected genes returned to normality, possibly as a result of autophagy and CL-20 dissociation/metabolism. This study provides significant insights into potential mechanisms of CL-20-induced neurotoxicity and the recovery of earthworms from transient neurotoxicity stress.

  8. Social regulation of cortisol receptor gene expression

    PubMed Central

    Korzan, Wayne J.; Grone, Brian P.; Fernald, Russell D.

    2014-01-01

    In many social species, individuals influence the reproductive capacity of conspecifics. In a well-studied African cichlid fish species, Astatotilapia burtoni, males are either dominant (D) and reproductively competent or non-dominant (ND) and reproductively suppressed as evidenced by reduced gonadotropin releasing hormone (GnRH1) release, regressed gonads, lower levels of androgens and elevated levels of cortisol. Here, we asked whether androgen and cortisol levels might regulate this reproductive suppression. Astatotilapia burtoni has four glucocorticoid receptors (GR1a, GR1b, GR2 and MR), encoded by three genes, and two androgen receptors (ARα and ARβ), encoded by two genes. We previously showed that ARα and ARβ are expressed in GnRH1 neurons in the preoptic area (POA), which regulates reproduction, and that the mRNA levels of these receptors are regulated by social status. Here, we show that GR1, GR2 and MR mRNAs are also expressed in GnRH1 neurons in the POA, revealing potential mechanisms for both androgens and cortisol to influence reproductive capacity. We measured AR, MR and GR mRNA expression levels in a microdissected region of the POA containing GnRH1 neurons, comparing D and ND males. Using quantitative PCR (qPCR), we found D males had higher mRNA levels of ARα, MR, total GR1a and GR2 in the POA compared with ND males. In contrast, ND males had significantly higher levels of GR1b mRNA, a receptor subtype with a reduced transcriptional response to cortisol. Through this novel regulation of receptor type, neurons in the POA of an ND male will be less affected by the higher levels of cortisol typical of low status, suggesting GR receptor type change as a potential adaptive mechanism to mediate high cortisol levels during social suppression. PMID:25013108

  9. Cloning and characterization of microsomal triglyceride transfer protein gene and its potential connection with peroxisome proliferator-activated receptor (PPAR) in blunt snout bream (Megalobrama amblycephala).

    PubMed

    Li, Jun-Yi; Zhang, Ding-Dong; Jiang, Guang-Zhen; Li, Xiang-Fei; Zhang, Chun-Nuan; Zhou, Man; Liu, Wen-Bin; Xu, Wei-Na

    2015-11-01

    Microsomal triglyceride transfer protein (MTTP), a major intracellular protein capable of transferring neutral lipids, plays a pivotal role in the assembly and secretion of apolipoprotein B-containing lipoproteins. In this study, MTTP cDNA was firstly cloned from the liver of blunt snout bream (Megalobrama amblycephala), the full-length cDNA covered 3457-bp with an open reading frame of 2661-bp, which encodes 886 amino acids, including a putative signal peptide of 24 amino acids long. After the feeding trial, a graded tissue-specific expression pattern of MTTP was observed and high expression abundance in the liver and intestine indicated its major function in lipid transport in this fish species. In addition, expression of genes encoding MTTP as well as peroxisome proliferator-activated receptor (PPAR), which are transcription factors and serve as key regulators in lipid homoeostasis, was all affected by dietary lipid and choline supplementations. Elevated dietary lipid levels significantly increased the liver, intestinal and muscle MTTP mRNA abundance. Additionally, the down-regulation of MTTP expression in the liver and muscle was observed when fish were fed with inadequate choline supplementation in high-fat diet, yet up-regulated as supplementing extra choline in diet. Expressions of PPARα and PPARβ in the liver and muscle showed similar trend of MTTP expression. The results suggested the potential connection of MTTP and PPAR in response to different dietary nutritional factors. Furthermore, extra choline supplementations could promote lipid transfer and enhance fatty acid oxidation, which indicated a molecular mechanism of choline on diminishing fat accumulation in blunt snout bream. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Pituitary tumor transforming gene and insulin-like growth factor 1 receptor expression and immunohistochemical measurement of Ki-67 as potential prognostic markers of pituitary tumors aggressiveness.

    PubMed

    Sánchez-Tejada, Laura; Sánchez-Ortiga, Ruth; Moreno-Pérez, Oscar; Montañana, Carmen Fajardo; Niveiro, Maria; Tritos, Nicholas A; Alfonso, Antonio M Picó

    2013-01-01

    The ability to predict recurrence of pituitary adenoma (PA) after surgery may be helpful to determine follow-up frequency and the need for adjuvant treatment. The purpose of this study was to assess the prognostic capacity of pituitary tumor transforming gene (PTTG), insulin-like growth factor 1 receptor (IGF1R), and Ki-67. In this retrospective study, the normalized copy number (NCN) of PTIG and IGF1R mRNA was measured using RT-PCR, and the Ki-67 index was measured by immunohistochemistry in 46 PA samples. Clinical data, histological subtype, and radiographic characteristics were collected to assess associations between variables and tumor behavior. Progression of tumor remnants and its association to markers was also studied in 14 patients with no adjuvant treatment after surgery followed up for 46±36 months. Extrasellar tumors had a lower PTTG expression as compared to sellar tumors (0.065 [1st-3rd quartile: 0.000-0.089] NCN vs. 0.135 [0.105-0.159] NCN, p=0.04). IGF1R expression changed depending on histological subtype (p=0.014), and was greater in tumor with remnant growth greater than 20% during follow-up (10.69±3.84 NCN vs. 5.44±3.55 NCN, p=0.014). Our results suggest that the IGF1R is a more helpful molecular marker than PTTG in PA management. Ki-67 showed no association to tumor behavior. However, the potential of these markers should be established in future studies with standardized methods and on larger samples. Copyright © 2012 SEEN. Published by Elsevier Espana. All rights reserved.

  11. Genetic knockout of the α7 nicotinic acetylcholine receptor gene alters hippocampal long-term potentiation in a background strain-dependent manner

    PubMed Central

    Freund, Ronald K.; Graw, Sharon; Choo, Kevin S.; Stevens, Karen E.; Leonard, Sherry; Dell’Acqua, Mark A.

    2016-01-01

    Reduced α7 nicotinic acetylcholine receptor (nAChR) function is linked to impaired hippocampal-dependent sensory processing and learning and memory in schizophrenia. While knockout of the Chrna7 gene encoding the α7nAChR on a C57/Bl6 background results in changes in cognitive measures, prior studies found little impact on hippocampal synaptic plasticity in these mice. However, schizophrenia is a multi-genic disorder where complex interactions between specific genetic mutations and overall genetic background may play a prominent role in determining phenotypic penetrance. Thus, we compared the consequences of knocking out the α7nAChR on synaptic plasticity in C57/Bl6 and C3H mice, which differ in their basal α7nAChR expression levels. Homozygous α7 deletion in C3H mice, which normally express higher α7nAChR levels, resulted in impaired long-term potentiation (LTP) at hippocampal CA1 synapses, while C3H α7 heterozygous mice maintained robust LTP. In contrast, homozygous α7 deletion in C57 mice, which normally express lower α7nAChR levels, did not alter LTP, as had been previously reported for this strain. Thus, the threshold of Chrna7 expression required for LTP may be different in the two strains. Measurements of auditory gating, a hippocampal-dependent behavioral paradigm used to identify schizophrenia-associated sensory processing deficits, was abnormal in C3H α7 knockout mice confirming that auditory gating also requires α7nAChR expression. Our studies highlight the importance of genetic background on the regulation of synaptic plasticity and could be relevant for understanding genetic and cognitive heterogeneity in human studies of α7nAChR dysfunction in mental disorders. PMID:27233215

  12. Over-expression of dopamine D2 receptor and inwardly rectifying potassium channel genes in drug-naive schizophrenic peripheral blood lymphocytes as potential diagnostic markers.

    PubMed

    Zvara, Agnes; Szekeres, György; Janka, Zoltán; Kelemen, János Z; Cimmer, Csongor; Sántha, Miklós; Puskás, László G

    2005-01-01

    Schizophrenia is one of the most common neuropsychiatric disorders affecting nearly 1% of the human population. Current diagnosis of schizophrenia is based on complex clinical symptoms. The use of easily detectable peripheral molecular markers could substantially help the diagnosis of psychiatric disorders. Recent studies showed that peripheral blood lymphocytes (PBL) express subtypes of D1 and D2 subclasses of dopamine receptors. Recently, dopamine receptor D3 (DRD3) was found to be over-expressed in schizophrenic PBL and proposed to be a diagnostic and follow-up marker for schizophrenia. In this study we screened PBL of 13 drug-naive/drug-free schizophrenic patients to identify additional markers of schizophrenia. One of the benefits of our study is the use of blood samples of non-medicated, drug-naive patients. This excludes the possibility that changes detected in gene expression levels might be attributed to the medication rather than to the disorder itself. Among others, genes for dopamine receptor D2 (DRD2) and the inwardly rectifying potassium channel (Kir2.3) were found to be over-expressed in microarray analysis. Increased mRNA levels were confirmed by quantitative real-time PCR (QRT-PCR) using the SybrGreen method and dual labeled TaqMan probes. The use of both molecular markers allows a more rapid and precise prediction of schizophrenia and might help find the optimal medication for schizophrenic patients.

  13. The potential of interleukin 12 receptor beta 2 (IL12RB2) and tumor necrosis factor receptor superfamily member 8 (TNFRSF8) gene as diagnostic biomarkers of oral lichen planus (OLP).

    PubMed

    Jeon, Seung-Ho; Jeon, Eun-Hyoung; Lee, Jin-Yong; Kim, Yeon-Sun; Yoon, Hye-Jung; Hong, Sam-Pyo; Lee, Jong-Ho

    2015-01-01

    This study evaluated the potential of interleukin 12 receptor beta 2 and tumor necrosis factor receptor superfamily member 8 as diagnostic biomarkers of oral lichen planus (OLP). The mRNA expression of IL12RB2 and TNFRSF8 in FFPE OLP samples (OLP group, n = 38) were investigated with quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) analysis and compared to those of chronic non-specific mucositis (Non-OLP group, n = 25) and normal mucosa (Normal group, n = 18). Predictive modeling of the expression of IL12RB2 and TNFRSF8 was constructed using support vector machine (SVM), random forest (RF), linear discriminant analysis (LDA), neural network (NN) and naive Bayes (NB) methods. Normalized expression of IL12RB2 in the OLP group (3.78 ± 1.67) was significantly higher than the Normal group (1.97 ± 1.12), but lower than the Non-OLP group (6.86 ± 1.67). TNFRSF8 gene expression in the OLP group (7.46 ± 1.51) was significantly higher than the Normal group (2.90 ± 1.61), but no significant difference was found between the OLP and Non-OLP groups. The ratio of IL12RB2/TNFRSF8 in the OLP group (0.52 ± 0.23) was significantly lower than the Normal group (0.74 ± 0.39) and the Non-OLP group (1.07 ± 0.38). In the predictive modeling, the area under receiver operating characteristic (ROC) curves (AUC) ranged from 0.83-0.92 and their accuracy was higher than 0.75 in all methods. The IL12RB2/TNFRSF8 ratio can be a useful diagnostic tool for OLP.

  14. Dynamics of nuclear receptor gene expression during Pacific oyster development.

    PubMed

    Vogeler, Susanne; Bean, Tim P; Lyons, Brett P; Galloway, Tamara S

    2016-09-29

    Nuclear receptors are a highly conserved set of ligand binding transcription factors, with essential roles regulating aspects of vertebrate and invertebrate biology alike. Current understanding of nuclear receptor regulated gene expression in invertebrates remains sparse, limiting our ability to elucidate gene function and the conservation of developmental processes across phyla. Here, we studied nuclear receptor expression in the early life stages of the Pacific oyster, Crassostrea gigas, to identify at which specific key stages nuclear receptors are expressed RESULTS: We used quantitative RT-PCR to determine the expression profiles of 34 nuclear receptors, revealing three developmental key stages, during which nuclear receptor expression is dynamically regulated: embryogenesis, mid development from gastrulation to trochophore larva, and late larval development prior to metamorphosis. Clustering of nuclear receptor expression patterns demonstrated that transcriptional regulation was not directly related to gene phylogeny, suggesting closely related genes may have distinct functions. Expression of gene homologs of vertebrate retinoid receptors suggests participation in organogenesis and shell-formation, as they are highly expressed at the gastrulation and trochophore larval initial shell formation stages. The ecdysone receptor homolog showed high expression just before larval settlement, suggesting a potential role in metamorphosis. Throughout early oyster development nuclear receptors exhibited highly dynamic expression profiles, which were not confined by gene phylogeny. These results provide fundamental information on the presence of nuclear receptors during key developmental stages, which aids elucidation of their function in the developmental process. This understanding is essential as ligand sensing nuclear receptors can be disrupted by xenobiotics, a mode of action through which anthropogenic environmental pollutants have been found to mediate effects.

  15. Widespread ectopic expression of olfactory receptor genes

    PubMed Central

    Feldmesser, Ester; Olender, Tsviya; Khen, Miriam; Yanai, Itai; Ophir, Ron; Lancet, Doron

    2006-01-01

    Background Olfactory receptors (ORs) are the largest gene family in the human genome. Although they are expected to be expressed specifically in olfactory tissues, some ectopic expression has been reported, with special emphasis on sperm and testis. The present study systematically explores the expression patterns of OR genes in a large number of tissues and assesses the potential functional implication of such ectopic expression. Results We analyzed the expression of hundreds of human and mouse OR transcripts, via EST and microarray data, in several dozens of human and mouse tissues. Different tissues had specific, relatively small OR gene subsets which had particularly high expression levels. In testis, average expression was not particularly high, and very few highly expressed genes were found, none corresponding to ORs previously implicated in sperm chemotaxis. Higher expression levels were more common for genes with a non-OR genomic neighbor. Importantly, no correlation in expression levels was detected for human-mouse orthologous pairs. Also, no significant difference in expression levels was seen between intact and pseudogenized ORs, except for the pseudogenes of subfamily 7E which has undergone a human-specific expansion. Conclusion The OR superfamily as a whole, show widespread, locus-dependent and heterogeneous expression, in agreement with a neutral or near neutral evolutionary model for transcription control. These results cannot reject the possibility that small OR subsets might play functional roles in different tissues, however considerable care should be exerted when offering a functional interpretation for ectopic OR expression based only on transcription information. PMID:16716209

  16. Dopamine receptor genes: new tools for molecular psychiatry.

    PubMed Central

    Niznik, H B; Van Tol, H H

    1992-01-01

    For over a decade it has been generally assumed that all the pharmacological and biochemical actions of dopamine within the central nervous system and periphery were mediated by two distinct dopamine receptors. These receptors, termed D1 and D2, were defined as those coupled to the stimulation or inhibition of adenylate cyclase, respectively, and by their selectivity and avidity for various drugs and compounds. The concept that two dopamine receptors were sufficient to account for all the effects mediated by dopamine was an oversimplification. Recent molecular biological studies have identified five distinct genes which encode at least eight functional dopamine receptors. The members of the expanded dopamine receptor family, however, can still be codifed by way of the original D1 and D2 receptor dichotomy. These include two genes encoding dopamine D1-like receptors (D1 [D1A]/D5 [D1B]) and three genes encoding D2-like receptors (D2/D3/D4). We review here our recent work on the cloning and characterization of some of the members of the dopamine receptor gene family (D1, D2, D4, D5), their relationship to neuropsychiatric disorders and their potential role in antipsychotic drug action. Images Fig. 1 PMID:1450188

  17. Cloning of a balanced translocation breakpoint in the DiGeorge syndrome critical region and isolation of a novel potential adhesion receptor gene in its vicinity.

    PubMed

    Demczuk, S; Aledo, R; Zucman, J; Delattre, O; Desmaze, C; Dauphinot, L; Jalbert, P; Rouleau, G A; Thomas, G; Aurias, A

    1995-04-01

    Deletions of the 22q11.2 have been associated with a wide range of developmental defects (notably DiGeorge syndrome, velocardiofacial syndrome, conotruncal anomaly face syndrome and isolated conotruncal cardiac defects) classified under the acronym CATCH 22. A DiGeorge syndrome patient bearing a balanced translocation whose breakpoint maps within the critical region has been previously described. We report the construction of a cosmid contig spanning the translocation breakpoint and the isolation of a gene mapping 10 kb telomeric to the breakpoint. This gene encodes a novel putative adhesion receptor protein, which could play a role in neural crest cells migration, a process which has been proposed to be altered in DiGeorge syndrome.

  18. Melatonin Attenuates Memory Impairment Induced by Klotho Gene Deficiency Via Interactive Signaling Between MT2 Receptor, ERK, and Nrf2-Related Antioxidant Potential

    PubMed Central

    Shin, Eun-Joo; Chung, Yoon Hee; Le, Hoang-Lan Thi; Jeong, Ji Hoon; Dang, Duy-Khanh; Nam, Yunsung; Wie, Myung Bok; Nah, Seung-Yeol; Nabeshima, Yo-Ichi; Nabeshima, Toshitaka; Kim, Hyoung-Chun

    2015-01-01

    Background: We demonstrated that oxidative stress plays a crucial role in cognitive impairment in klotho mutant mice, a genetic model of aging. Since down-regulation of melatonin due to aging is well documented, we used this genetic model to determine whether the antioxidant property of melatonin affects memory impairment. Methods: First, we examined the effects of melatonin on hippocampal oxidative parameters and the glutathione/oxidized glutathione (GSH/GSSG) ratio and memory dysfunction of klotho mutant mice. Second, we investigated whether a specific melatonin receptor is involved in the melatonin-mediated pharmacological response by application with melatonin receptor antagonists. Third, we examined phospho-extracellular-signal-regulated kinase (ERK) expression, nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation, Nrf2 DNA binding activity, and glutamate-cysteine ligase (GCL) mRNA expression. Finally, we examined effects of the ERK inhibitor SL327 in response to antioxidant efficacy and memory enhancement mediated by melatonin. Results: Treatment with melatonin resulted in significant attenuations of oxidative damage, a decrease in the GSH/GSSG ratio, and a significant amelioration of memory impairment in this aging model. These effects of melatonin were significantly counteracted by the selective MT2 receptor antagonist 4-P-PDOT. Importantly, 4-P-PDOT or SL327 also counteracted melatonin-mediated attenuation in response to the decreases in phospho-ERK expression, Nrf2 nuclear translocation, Nrf2 DNA-binding activity, and GCL mRNA expression in the hippocampi of klotho mutant mice. SL327 also counteracted the up-regulation of the GSH/GSSG ratio and the memory enhancement mediated by melatonin in klotho mutant mice. Conclusions: Melatonin attenuates oxidative stress and the associated memory impairment induced by klotho deficiency via signaling interaction between the MT2 receptor and ERK- and Nrf2-related antioxidant potential. PMID

  19. The human T cell receptor alpha variable (TRAV) genes.

    PubMed

    Scaviner, D; Lefranc, M P

    2000-01-01

    'Human T Cell Receptor Alpha Variable (TRAV) Genes', the eighth report of the 'IMGT Locus in Focus' section, comprises four tables: (1) 'Number of human germline TRAV genes at 14q11 and potential repertoire'; (2) 'Human germline TRAV genes at 14q11'; (3) 'Human TRAV allele table', and (4) 'Correspondence between the different human TRAV gene nomenclatures'. These tables are available at the IMGT Marie-Paule page of IMGT, the international ImMunoGeneTics database (http://imgt.cines.fr:8104) created by Marie-Paule Lefranc, Université Montpellier II, CNRS, France. Copyright 2000 S. Karger AG, Basel

  20. Discovery Of An Orexin Receptor Positive Potentiator

    PubMed Central

    Lee, Jiyong; Reddy, M. Muralidhar

    2013-01-01

    The orexin neurohormones control a variety of important physiological processes by signaling through two related G protein-coupled receptors, including appetite and feeding, wakefulness and energy homeostasis. Pharmacological manipulation of orexin signaling is an important goal. Here we describe the isolation of orexin receptor ligands from a library of microarray-displayed peptoids via a novel two-color, cell-based screen. Functional analysis of derivatives of these “hits” resulted in the development of moderate potency, low molecular weight receptor antagonists. Moreover, further optimization efforts resulted in the fortuitous discovery of a compound that positively potentiates the activity of the receptor. This compound is the first small molecule reported to up-regulate orexin signaling. PMID:24409338

  1. Arresting a Transient Receptor Potential (TRP) Channel

    PubMed Central

    Shukla, Arun K.; Kim, Jihee; Ahn, Seungkirl; Xiao, Kunhong; Shenoy, Sudha K.; Liedtke, Wolfgang; Lefkowitz, Robert J.

    2010-01-01

    β-Arrestins, originally discovered to desensitize activated G protein-coupled receptors, (aka seven-transmembrane receptors, 7TMRs) also mediate 7TMR internalization and G protein-independent signaling via these receptors. More recently, several regulatory roles of β-arrestins for atypical 7TMRs and non-7TM receptors have emerged. Here, we uncover an entirely novel regulatory role of β-arrestins in cross-talk between the angiotensin receptor (AT1aR) and a member of the transient receptor potential (TRP) ion channel family, TRPV4. AT1aR and TRPV4 form a constitutive complex in the plasma membrane, and angiotensin stimulation leads to recruitment of β-arrestin 1 to this complex. Surprisingly, angiotensin stimulation results in ubiquitination of TRPV4, a process that requires β-arrestin 1, and subsequently to internalization and functional down-regulation of TRPV4. β-Arrestin 1 interacts with, and acts as an adaptor for AIP4, an E3 ubiquitin ligase responsible for TRPV4 ubiquitination. Thus, our data provide the first evidence of a functional link between β-arrestins and TRPV4 and uncovers an entirely novel mechanism to maintain appropriate intracellular Ca2+ concentration to avoid excessive Ca2+ signaling. PMID:20650893

  2. Transient Receptor Potential Vanilloid 1 Gene Deficiency Ameliorates Hepatic Injury in a Mouse Model of Chronic Binge Alcohol-Induced Alcoholic Liver Disease

    PubMed Central

    Liu, Huilin; Beier, Juliane I.; Arteel, Gavin E.; Ramsden, Christopher E.; Feldstein, Ariel E.; McClain, Craig J.; Kirpich, Irina A.

    2016-01-01

    Experimental alcohol-induced liver injury is exacerbated by a high polyunsaturated fat diet rich in linoleic acid. We postulated that bioactive oxidized linoleic acid metabolites (OXLAMs) play a critical role in the development/progression of alcohol-mediated hepatic inflammation and injury. OXLAMs are endogenous ligands for transient receptor potential vanilloid 1 (TRPV1). Herein, we evaluated the role of signaling through TRPV1 in an experimental animal model of alcoholic liver disease (ALD). Chronic binge alcohol administration increased plasma OXLAM levels, specifically 9- and 13-hydroxy-octadecadienoic acids. This effect was associated with up-regulation of hepatic TRPV1. Exposure of hepatocytes to these OXLAMs in vitro resulted in activation of TRPV1 signal transduction with increased intracellular Ca2+ levels. Genetic depletion of TRPV1 did not blunt hepatic steatosis caused by ethanol, but prevented hepatic injury. TRPV1 deficiency protected from hepatocyte death and prevented the increase in proinflammatory cytokine and chemokine expression, including tumor necrosis factor-α, IL-6, macrophage inflammatory protein-2, and monocyte chemotactic protein 1. TRPV1 depletion markedly blunted ethanol-mediated induction of plasminogen activator inhibitor-1, an important alcohol-induced hepatic inflammation mediator, via fibrin accumulation. This study indicates, for the first time, that TRPV1 receptor pathway may be involved in hepatic inflammatory response in an experimental animal model of ALD. TRPV1-OXLAM interactions appear to play a significant role in hepatic inflammation/injury, further supporting an important role for dietary lipids in ALD. PMID:25447051

  3. Amplification of the Insulin-Like Growth Factor 1 Receptor Gene Is a Rare Event in Adrenocortical Adenocarcinomas: Searching for Potential Mechanisms of Overexpression

    PubMed Central

    Ribeiro, Tamaya Castro; Jorge, Alexander Augusto; Almeida, Madson Q.; Mariani, Beatriz Marinho de Paula; Nishi, Mirian Yumi; Mendonca, Berenice Bilharinho; Fragoso, Maria Candida Barisson Villares

    2014-01-01

    Context. IGF1R overexpression appears to be a prognostic biomarker of metastatic pediatric adrenocortical tumors. However, the molecular mechanisms that are implicated in its upregulation remain unknown. Aim. To investigate the potential mechanisms involved in IGF1R overexpression. Patients and Methods. We studied 64 adrenocortical tumors. IGF1R copy number variation was determined in all patients using MLPA and confirmed using real time PCR. In a subgroup of 32 patients, automatic sequencing was used to identify IGF1R allelic variants and the expression of microRNAs involved in IGF1R regulation by real time PCR. Results. IGF1R amplification was detected in an adrenocortical carcinoma that was diagnosed in a 46-year-old woman with Cushing's syndrome and virilization. IGF1R overexpression was demonstrated in this case. In addition, gene amplification of other loci was identified in this adrenocortical malignant tumor, but no IGF1R copy number variation was evidenced in the remaining cases. Automatic sequencing revealed three known polymorphisms but they did not correlate with its expression. Expression of miR-100, miR-145, miR-375, and miR-126 did not correlate with IGF1R expression. Conclusion. We demonstrated amplification and overexpression of IGF1R gene in only one adrenocortical carcinoma, suggesting that these combined events are uncommon. In addition, IGF1R polymorphisms and abnormal microRNA expression did not correlate with IGF1R upregulation in adrenocortical tumors. PMID:25110710

  4. Potential role of purinergic signaling in urinary concentration in inner medulla: insights from P2Y2 receptor gene knockout mice.

    PubMed

    Zhang, Yue; Sands, Jeff M; Kohan, Donald E; Nelson, Raoul D; Martin, Christopher F; Carlson, Noel G; Kamerath, Craig D; Ge, Yuqiang; Klein, Janet D; Kishore, Bellamkonda K

    2008-12-01

    Osmotic reabsorption of water through aquaporin-2 (AQP2) in the inner medulla is largely dependent on the urea concentration gradients generated by urea transporter (UT) isoforms. Vasopressin (AVP) increases expression of both AQP2 and UT-A isoforms. Activation of the P2Y2 receptor (P2Y2-R) in the medullary collecting duct inhibits AVP-induced water flow. To gain further insights into the overarching effect of purinergic signaling on urinary concentration, we compared the protein abundances of AQP2 and UT-A isoforms between P2Y2-R knockout (KO) and wild-type (WT) mice under basal conditions and following AVP administration. Under basal conditions (a gel diet for 10 days), KO mice concentrated urine to a significantly higher degree, with 1.8-, 1.66-, and 1.29-fold higher protein abundances of AQP2, UT-A1, and UT-A2, respectively, compared with WT, despite comparable circulating AVP levels in both groups. Infusion of 1-desamino-8-d-arginine vasopressin (dDAVP; desmopressin; 1 ng/h sc) for 5 days resulted in 2.14-, 2.6-, and 2.22-fold higher protein abundances of AQP2, AQP3, and UT-A1, respectively, in the inner medullas of KO mice compared with WT mice. In response to acute (45 min) stimulation by AVP (0.2 unit/mouse sc), UT-A1 protein increased by 1.39- and 1.54-fold in WT and KO mice, respectively. These data suggest that genetic deletion of P2Y2-R results in increased abundances of key proteins involved in urinary concentration in the inner medulla, both under basal conditions and following AVP administration. Thus purinergic regulation may play a potential overarching role in balancing the effect of AVP on the urinary concentration mechanism.

  5. Loss of coxsackie and adenovirus receptor expression in human colorectal cancer: A potential impact on the efficacy of adenovirus-mediated gene therapy in Chinese Han population.

    PubMed

    Ma, Ying-Yu; Wang, Xiao-Jun; Han, Yong; Li, Gang; Wang, Hui-Ju; Wang, Shi-Bing; Chen, Xiao-Yi; Liu, Fan-Long; He, Xiang-Lei; Tong, Xiang-Min; Mou, Xiao-Zhou

    2016-09-01

    The coxsackie and adenovirus receptor (CAR) is considered a tumor suppressor and critical factor for the efficacy of therapeutic strategies that employ the adenovirus. However, data on CAR expression levels in colorectal cancer are conflicting and its clinical relevance remains to be elucidated. Immunohistochemistry was performed on tissue microarrays containing 251 pairs of colon cancer and adjacent normal tissue samples from Chinese Han patients to assess the expression levels of CAR. Compared with healthy mucosa, decreased CAR expression (40.6% vs. 95.6%; P<0.001) was observed in colorectal cancer samples. The CAR immunopositivity in tumor tissues was not significantly associated with gender, age, tumor size, differentiation, TNM stage, lymph node metastasis or distant metastasis in patients with colon cancer. However, expression of CAR is present in 83.3% of the tumor tissues from patient with colorectal liver metastasis, which was significantly higher than those without liver metastasis (39.6%; P=0.042). At the plasma membrane, CAR was observed in 29.5% normal mucosa samples, which was significantly higher than in colorectal cancer samples (4.0%; P<0.001). In addition, the survival analysis demonstrated that the expression level of CAR has no association with the prognosis of colorectal cancer. CAR expression was observed to be downregulated in colorectal cancer, and it exerts complex effects during colorectal carcinogenesis, potentially depending on the stage of the cancer development and progression. High CAR expression may promote liver metastasis. With regard to oncolytic therapy, CAR expression analysis should be performed prior to adenoviral oncolytic treatment to stratify Chinese Han patients for treatment.

  6. Loss of coxsackie and adenovirus receptor expression in human colorectal cancer: A potential impact on the efficacy of adenovirus-mediated gene therapy in Chinese Han population

    PubMed Central

    Ma, Ying-Yu; Wang, Xiao-Jun; Han, Yong; Li, Gang; Wang, Hui-Ju; Wang, Shi-Bing; Chen, Xiao-Yi; Liu, Fan-Long; He, Xiang-Lei; Tong, Xiang-Min; Mou, Xiao-Zhou

    2016-01-01

    The coxsackie and adenovirus receptor (CAR) is considered a tumor suppressor and critical factor for the efficacy of therapeutic strategies that employ the adenovirus. However, data on CAR expression levels in colorectal cancer are conflicting and its clinical relevance remains to be elucidated. Immunohistochemistry was performed on tissue microarrays containing 251 pairs of colon cancer and adjacent normal tissue samples from Chinese Han patients to assess the expression levels of CAR. Compared with healthy mucosa, decreased CAR expression (40.6% vs. 95.6%; P<0.001) was observed in colorectal cancer samples. The CAR immunopositivity in tumor tissues was not significantly associated with gender, age, tumor size, differentiation, TNM stage, lymph node metastasis or distant metastasis in patients with colon cancer. However, expression of CAR is present in 83.3% of the tumor tissues from patient with colorectal liver metastasis, which was significantly higher than those without liver metastasis (39.6%; P=0.042). At the plasma membrane, CAR was observed in 29.5% normal mucosa samples, which was significantly higher than in colorectal cancer samples (4.0%; P<0.001). In addition, the survival analysis demonstrated that the expression level of CAR has no association with the prognosis of colorectal cancer. CAR expression was observed to be downregulated in colorectal cancer, and it exerts complex effects during colorectal carcinogenesis, potentially depending on the stage of the cancer development and progression. High CAR expression may promote liver metastasis. With regard to oncolytic therapy, CAR expression analysis should be performed prior to adenoviral oncolytic treatment to stratify Chinese Han patients for treatment. PMID:27485384

  7. Receptor-mediated regulation of neuropeptide gene expression in astrocytes.

    PubMed

    Schwartz, J P; Nishiyama, N; Wilson, D; Taniwaki, T

    1994-06-01

    One of the functions of glial receptors is to regulate synthesis and release of a variety of neuropeptides and growth factor peptides, which in turn act on neurons or other glia. Because of the potential importance of these interactions in injured brain, we have examined the role of two different receptors in the regulation of astrocyte neuropeptide synthesis. Stimulation of beta-adrenergic receptors on type 1 astrocytes resulted in increased mRNA and protein for the proenkephalin (PE) and somatostatin genes. This receptor also increased expression of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF). The potential role of opiate receptors was examined in several ways. Treatment of newborn rats for 7 days with the opiate antagonist naltrexone, prior to preparation of astrocytes, had no effect on PE mRNA or met-enkephalin content but resulted in a significant increase in NGF content. However, treatment of astrocytes in culture with met-enkephalin, morphine, or naltrexone had no effect on any of these parameters. No opiate binding could be detected, using either etorphine or bremazocine, to membranes of astrocytes prepared from cortex, cerebellum, striatum, or hippocampus of 1-day, 7-day, or 14-day postnatal rats. Thus we conclude that type 1 astrocytes do not express opiate receptors and that the in vivo effects of naltrexone are mediated indirectly via some other cell type/receptor.

  8. A role for BMP-induced homeobox gene MIXL1 in acute myelogenous leukemia and identification of type I BMP receptor as a potential target for therapy

    PubMed Central

    Raymond, Aaron; Liu, Bin; Liang, Hong; Wei, Ciamaio; Guindani, Michele; Lu, Yue; Liang, Shoudan; St. John, Lisa S.; Molldrem, Jeff; Nagarajan, Lalitha

    2014-01-01

    Mesoderm Inducer in Xenopus Like1 (MIXL1), a paired-type homeobox transcription factor induced by TGF-β family of ligands is required for early embryonic specification of mesoderm and endoderm. Retrovirally transduced Mixl1 is reported to induce acute myelogenous leukemia (AML) with a high penetrance. But the mechanistic underpinnings of MIXL1 mediated leukemogenesis are unknown. Here, we establish the protooncogene c-REL to be a transcriptional target of MIXL1 by genome wide chromatin immune precipitation. Accordingly, expression of c-REL and its downstream targets BCL2L1 and BCL2A2 are elevated in MIXL1 expressing cells. Notably, MIXL1 regulates c-REL through a zinc finger binding motif, potentially by a MIXL1–Zinc finger protein transcriptional complex. Furthermore, MIXL1 expression is detected in the cancer genome atlas (TCGA) AML samples in a pattern mutually exclusive from that of HOXA9, CDX2 and HLX suggesting the existence of a core, yet distinct HOX transcriptional program. Finally, we demonstrate MIXL1 to be induced by BMP4 and not TGF-β in primary human hematopoietic stem and progenitor cells. Consequently, MIXL1 expressing AML cells are preferentially sensitive to the BMPR1 kinase inhibitor LDN-193189. These findings support the existence of a novel MIXL1-c REL mediated survival axis in AML that can be targeted by BMPR1 inhibitors. (MIXL1- human gene, Mixl1- mouse ortholog, MIXL1- protein) PMID:25544748

  9. The androgen receptor gene mutations database.

    PubMed

    Patterson, M N; Hughes, I A; Gottlieb, B; Pinsky, L

    1994-09-01

    The androgen receptor gene mutations database is a comprehensive listing of mutations published in journals and meetings proceedings. The majority of mutations are point mutations identified in patients with androgen insensitivity syndrome. Information is included regarding the phenotype, the nature and location of the mutations, as well as the effects of the mutations on the androgen binding activity of the receptor. The current version of the database contains 149 entries, of which 114 are unique mutations. The database is available from EMBL (NetServ@EMBL-Heidelberg.DE) or as a Macintosh Filemaker file (mc33001@musica.mcgill.ca).

  10. The repertoire of bitter taste receptor genes in canids.

    PubMed

    Shang, Shuai; Wu, Xiaoyang; Chen, Jun; Zhang, Huanxin; Zhong, Huaming; Wei, Qinguo; Yan, Jiakuo; Li, Haotian; Liu, Guangshuai; Sha, Weilai; Zhang, Honghai

    2017-07-01

    Bitter taste receptors (Tas2rs) play important roles in mammalian defense mechanisms by helping animals detect and avoid toxins in food. Although Tas2r genes have been widely studied in several mammals, minimal research has been performed in canids. To analyze the genetic basis of Tas2r genes in canids, we first identified Tas2r genes in the wolf, maned wolf, red fox, corsac fox, Tibetan fox, fennec fox, dhole and African hunting dog. A total of 183 Tas2r genes, consisting of 118 intact genes, 6 partial genes and 59 pseudogenes, were detected. Differences in the pseudogenes were observed among nine canid species. For example, Tas2r4 was a pseudogene in the dog but might play a functional role in other canid species. The Tas2r42 and Tas2r10 genes were pseudogenes in the maned wolf and dhole, respectively, and the Tas2r5 and Tas2r34 genes were pseudogenes in the African hunting dog; however, these genes were intact genes in other canid species. The differences in Tas2r pseudogenes among canids might suggest that the loss of intact Tas2r genes in canid species is species-dependent. We further compared the 183 Tas2r genes identified in this study with Tas2r genes from ten additional carnivorous species to evaluate the potential influence of diet on the evolution of the Tas2r gene repertoire. Phylogenetic analysis revealed that most of the Tas2r genes from the 18 species intermingled across the tree, suggesting that Tas2r genes are conserved among carnivores. Within canids, we found that some Tas2r genes corresponded to the traditional taxonomic groupings, while some did not. PIC analysis showed that the number of Tas2r genes in carnivores exhibited no positive correlation with diet composition, which might be due to the limited number of carnivores included in our study.

  11. Transient receptor potential (TRP) channels and taste sensation.

    PubMed

    Ishimaru, Y; Matsunami, H

    2009-03-01

    Humans have 5 basic taste sensations: sweet, bitter, sour, salty, and umami (taste of 1-amino acids). Among 33 genes related to transient receptor potential (TRP) channels, 3--including TRP-melastatin 5 (TRPM5), polycystic kidney disease-1-like 3 (PKD1L3), and polycystic kidney disease-2-like 1 (PKD2L1)--are specifically and abundantly expressed in taste receptor cells. TRP-melastatin 5 is co-expressed with taste receptors T1Rs and T2Rs, and functions as a common downstream component in sweet, bitter, and umami taste signal transduction. In contrast, polycystic kidney disease-1-like 3 and polycystic kidney disease-2-like 1 are co-expressed in distinct subsets of taste receptor cells not expressing TRP-melastatin 5. In the heterologous expression system, cells expressing both polycystic kidney disease-1-like 3 and polycystic kidney disease-2-like 1 responded to sour stimuli, showing a unique "off-response" property. Genetic ablation of poly-cystic kidney disease-2-like 1-expressing cells resulted in elimination of gustatory nerve response to sour stimuli, indicating that cells expressing polycystic kidney disease-2-like 1 function as sour taste detectors. These results suggest that polycystic kidney disease-1-like 3/polycystic kidney disease-2-like 1 may play a significant role, possibly as taste receptors, in sour taste sensation.

  12. Cardiac gene expression data and in silico analysis provide novel insights into human and mouse taste receptor gene regulation.

    PubMed

    Foster, Simon R; Porrello, Enzo R; Stefani, Maurizio; Smith, Nicola J; Molenaar, Peter; dos Remedios, Cristobal G; Thomas, Walter G; Ramialison, Mirana

    2015-10-01

    G protein-coupled receptors are the principal mediators of the sweet, umami, bitter, and fat taste qualities in mammals. Intriguingly, the taste receptors are also expressed outside of the oral cavity, including in the gut, airways, brain, and heart, where they have additional functions and contribute to disease. However, there is little known about the mechanisms governing the transcriptional regulation of taste receptor genes. Following our recent delineation of taste receptors in the heart, we investigated the genomic loci encoding for taste receptors to gain insight into the regulatory mechanisms that drive their expression in the heart. Gene expression analyses of healthy and diseased human and mouse hearts showed coordinated expression for a subset of chromosomally clustered taste receptors. This chromosomal clustering mirrored the cardiac expression profile, suggesting that a common gene regulatory block may control the taste receptor locus. We identified unique domains with strong regulatory potential in the vicinity of taste receptor genes. We also performed de novo motif enrichment in the proximal promoter regions and found several overrepresented DNA motifs in cardiac taste receptor gene promoters corresponding to ubiquitous and cardiac-specific transcription factor binding sites. Thus, combining cardiac gene expression data with bioinformatic analyses, this study has provided insights into the noncoding regulatory landscape for taste GPCRs. These findings also have broader relevance for the study of taste GPCRs outside of the classical gustatory system, where understanding the mechanisms controlling the expression of these receptors may have implications for future therapeutic development.

  13. Transient receptor potential vanilloid 1 and xenobiotics.

    PubMed

    Cuypers, E; Dabrowski, M; Horoszok, L; Terp, G E; Tytgat, J

    2008-04-01

    Over the last couple of years, transient receptor potential vanilloid 1(TRPV1) channels have been a hot topic in ion channel research. Since this research field is still rather new, there is not much known about the working mechanism of TRPV1 and its ligands. Nevertheless, the important physiological role and therapeutic potential are promising. Therefore, extensive research is going on and a lot of natural as well as synthetic compounds are already described. In this review, we briefly give an overview of capsaicin's history and the current knowledge of its working mechanism and physiological role. We discuss the best known plant molecules acting on TRPV1 and highlight the latest discovery in TRPV1 research: animal venoms and toxins acting on TRPV1 channels. In an effort to give the complete image of TRPV1 ligands known today, the most promising synthetic compounds are presented. Finally, we present a novel pharmacophore model describing putative ligand binding domains.

  14. Targeting melanocortin receptors as potential novel therapeutics.

    PubMed

    Getting, Stephen J

    2006-07-01

    Adrenocorticotrophic hormone (ACTH(1-39)) and the melanocortins (alpha, beta and gamma-melanocyte-stimulating hormone [MSH]) are derived from a larger precursor molecule known as the pro-opiomelanocortin (POMC) protein. They exert their numerous biological effects by activating 7 transmembrane G-protein coupled receptors (GPCR), leading to adenylyl cyclase activation and subsequent cAMP accumulation within the target cell. To date, 5 melanocortin receptors (MCR) have been identified and termed MC1R to MC5R, they have been shown to have a wide and varied distribution throughout the body, being found in the central nervous system (CNS), periphery and immune cells. Melanocortins have a multitude of actions including: (i) modulating disease pathologies including arthritis, asthma, obesity; (ii) affecting functions, for example erectile dysfunction, skin tanning; and (iii) organ systems, for example cardiovascular system. Recently a mechanistic approach has been identified with alpha-MSH preventing NF-kappaB activation via the preservation and expression of IkappaBalphaprotein. This leads to a reduction of pro-inflammatory mediators including cytokines and inhibition of adhesion molecule expression, with subsequent reduction in leukocyte emigration. Development of selective ligands with an appropriate pharmacokinetic profile will enable a pharmacological evaluation of the potential beneficial effects of the melanocortins. In this review I have discussed the potential mechanistic action for the melanocortins and some of the disease pathologies shown to be modulated. This review proposes targeting the MCR with the ultimate aim of controlling many of the diseases that we face today.

  15. Chronic SSRI stimulation of astrocytic 5-HT2B receptors change multiple gene expressions/editings and metabolism of glutamate, glucose and glycogen: a potential paradigm shift

    PubMed Central

    Hertz, Leif; Rothman, Douglas L.; Li, Baoman; Peng, Liang

    2015-01-01

    It is firmly believed that the mechanism of action of SSRIs in major depression is to inhibit the serotonin transporter, SERT, and increase extracellular concentration of serotonin. However, this undisputed observation does not prove that SERT inhibition is the mechanism, let alone the only mechanism, by which SSRI’s exert their therapeutic effects. It has recently been demonstrated that 5-HT2B receptor stimulation is needed for the antidepressant effect of fluoxetine in vivo. The ability of all five currently used SSRIs to stimulate the 5-HT2B receptor equipotentially in cultured astrocytes has been known for several years, and increasing evidence has shown the importance of astrocytes and astrocyte-neuronal interactions for neuroplasticity and complex brain activity. This paper reviews acute and chronic effects of 5-HT2B receptor stimulation in cultured astrocytes and in astrocytes freshly isolated from brains of mice treated with fluoxetine for 14 days together with effects of anti-depressant therapy on turnover of glutamate and GABA and metabolism of glucose and glycogen. It is suggested that these events are causally related to the mechanism of action of SSRIs and of interest for development of newer antidepressant drugs. PMID:25750618

  16. Folate receptor gene variants and neural tube defect occurrence

    SciTech Connect

    Finnell, R.; Greer, K.; Lammer, E.

    1994-09-01

    Recent epidemiological evidence shows that periconceptional use of folic acid supplements may prevent 40-50% of neural tube defects (NTDs). The FDA has subsequently recommended folic acid supplementation of all women of childbearing potential, even though the mechanism by which folic acid prevents NTDs is unknown. We investigated genetic variation of a candidate gene, the 5-methyltetrahydrofolate (5-MeTHF) receptor, that may mediate this preventive effect. The receptor concentrates folate within cells and we have localized its mRNA to neuroepithelial cells during neurulation. Our hypothesis is that dysfunctional 5-MeTHF receptors inadequately concentrate folate intracellularly, predisposing infants to NTDs. We have completed SSCP analysis on 3 of the 4 coding exons of the 5-MeTHF receptor gene of 474 infants participating in a large population-based epidemiological case-control study of NTDs in California; genotyping of another 500 infants is ongoing. Genomic DNA was extracted from residual blood spots from newborn screening samples of cases and controls. Genotyping was done blinded to case status. Polymorphisms have been detected for exons 4 and 5; fourteen percent of the infants have exon 5 polymorphisms. Data will be presented on the prevalence of 5-MeTHF receptor polymorphisms among cases and controls. Relationships among the polymorphisms and NTD occurrence may shed light on how folic acid supplementation prevents NTDs.

  17. The Evolution of Mammalian Olfactory Receptor Genes

    PubMed Central

    Issel-Tarver, L.; Rine, J.

    1997-01-01

    We performed a comparative study of four subfamilies of olfactory receptor genes first identified in the dog to assess changes in the gene family during mammalian evolution, and to begin linking the dog genetic map to that of humans. The human subfamilies were localized to chromosomes 7, 11, and 19. The two subfamilies that were tightly linked in the dog genome were also tightly linked in the human genome. The four subfamilies were compared in human (primate), horse (perissodactyl), and a variety of artiodactyls and carnivores. Some changes in gene number were detected, but overall subfamily size appeared to have been established before the divergence of these mammals 60-100 million years ago. PMID:9017400

  18. Transient Receptor Potential Channels in the Vasculature

    PubMed Central

    Earley, Scott; Brayden, Joseph E.

    2015-01-01

    The mammalian genome encodes 28 distinct members of the transient receptor potential (TRP) superfamily of cation channels, which exhibit varying degrees of selectivity for different ionic species. Multiple TRP channels are present in all cells and are involved in diverse aspects of cellular function, including sensory perception and signal transduction. Notably, TRP channels are involved in regulating vascular function and pathophysiology, the focus of this review. TRP channels in vascular smooth muscle cells participate in regulating contractility and proliferation, whereas endothelial TRP channel activity is an important contributor to endothelium-dependent vasodilation, vascular wall permeability, and angiogenesis. TRP channels are also present in perivascular sensory neurons and astrocytic endfeet proximal to cerebral arterioles, where they participate in the regulation of vascular tone. Almost all of these functions are mediated by changes in global intracellular Ca2+ levels or subcellular Ca2+ signaling events. In addition to directly mediating Ca2+ entry, TRP channels influence intracellular Ca2+ dynamics through membrane depolarization associated with the influx of cations or through receptor- or store-operated mechanisms. Dysregulation of TRP channels is associated with vascular-related pathologies, including hypertension, neointimal injury, ischemia-reperfusion injury, pulmonary edema, and neurogenic inflammation. In this review, we briefly consider general aspects of TRP channel biology and provide an in-depth discussion of the functions of TRP channels in vascular smooth muscle cells, endothelial cells, and perivascular cells under normal and pathophysiological conditions. PMID:25834234

  19. Engineering AAV receptor footprints for gene therapy.

    PubMed

    Madigan, Victoria J; Asokan, Aravind

    2016-06-01

    Adeno-associated viruses (AAV) are currently at the forefront of human gene therapy clinical trials as recombinant vectors. Significant progress has been made in elucidating the structure, biology and tropisms of different naturally occurring AAV isolates in the past decade. In particular, a spectrum of AAV capsid interactions with host receptors have been identified and characterized. These studies have enabled a better understanding of key determinants of AAV cell recognition and entry in different hosts. This knowledge is now being applied toward engineering new, lab-derived AAV capsids with favorable transduction profiles. The current review conveys a structural perspective of capsid-glycan interactions and provides a roadmap for generating synthetic strains by engineering AAV receptor footprints.

  20. Parallel evolution of domesticated Caenorhabditis species targets pheromone receptor genes.

    PubMed

    McGrath, Patrick T; Xu, Yifan; Ailion, Michael; Garrison, Jennifer L; Butcher, Rebecca A; Bargmann, Cornelia I

    2011-08-17

    Evolution can follow predictable genetic trajectories, indicating that discrete environmental shifts can select for reproducible genetic changes. Conspecific individuals are an important feature of an animal's environment, and a potential source of selective pressures. Here we show that adaptation of two Caenorhabditis species to growth at high density, a feature common to domestic environments, occurs by reproducible genetic changes to pheromone receptor genes. Chemical communication through pheromones that accumulate during high-density growth causes young nematode larvae to enter the long-lived but non-reproductive dauer stage. Two strains of Caenorhabditis elegans grown at high density have independently acquired multigenic resistance to pheromone-induced dauer formation. In each strain, resistance to the pheromone ascaroside C3 results from a deletion that disrupts the adjacent chemoreceptor genes serpentine receptor class g (srg)-36 and -37. Through misexpression experiments, we show that these genes encode redundant G-protein-coupled receptors for ascaroside C3. Multigenic resistance to dauer formation has also arisen in high-density cultures of a different nematode species, Caenorhabditis briggsae, resulting in part from deletion of an srg gene paralogous to srg-36 and srg-37. These results demonstrate rapid remodelling of the chemoreceptor repertoire as an adaptation to specific environments, and indicate that parallel changes to a common genetic substrate can affect life-history traits across species.

  1. Alpha 2A adrenergic receptor gene and suicide.

    PubMed

    Sequeira, Adolfo; Mamdani, Firoza; Lalovic, Aleksandra; Anguelova, Milena; Lesage, Alain; Seguin, Monique; Chawky, Nadia; Desautels, Alex; Turecki, Gustavo

    2004-02-15

    Suicide is a complex trait resulting from the interaction of several predisposing factors, among which genes seem to play an important role. Alterations in the noradrenergic system have been observed in postmortem brain studies of suicide victims when compared to controls. The purpose of this study was to test the hypothesis that genetic variants of the alpha(2A) adrenergic receptor gene are implicated in suicide and/or have a modulatory effect on personality traits that are believed to mediate suicidal behavior. We studied a sample of suicides (N=110) and control subjects (N=130) for genetic variation at four loci, including three in the promoter region (g-1800t, c-1291 g and the g-261a) of the alpha(2A) adrenergic receptor gene, and a potentially functional locus, N251K, which leads to an amino acid change (asparagine to lysine). No significant differences were observed at the promoter loci in terms of allelic or genotypic distribution between suicides and controls. However, analysis of the functional polymorphism N251K revealed that the 251 K allele was only present among suicides, though only three suicide cases had this allele, two of which were homozygous. These results are preliminary. If confirmed, they suggest that variation at the alpha(2A) adrenergic receptor gene may play a role in a small proportion of suicide cases.

  2. Identification of potential glucocorticoid receptor therapeutic targets in multiple myeloma.

    PubMed

    Thomas, Alexandra L; Coarfa, Cristian; Qian, Jun; Wilkerson, Joseph J; Rajapakshe, Kimal; Krett, Nancy L; Gunaratne, Preethi H; Rosen, Steven T

    2015-01-01

    Glucocorticoids (GC) are a cornerstone of combination therapies for multiple myeloma. However, patients ultimately develop resistance to GCs frequently based on decreased glucocorticoid receptor (GR) expression. An understanding of the direct targets of GC actions, which induce cell death, is expected to culminate in potential therapeutic strategies for inducing cell death by regulating downstream targets in the absence of a functional GR. The specific goal of our research is to identify primary GR targets that contribute to GC-induced cell death, with the ultimate goal of developing novel therapeutics around these targets that can be used to overcome resistance to GCs in the absence of GR. Using the MM.1S glucocorticoid-sensitive human myeloma cell line, we began with the broad platform of gene expression profiling to identify glucocorticoid-regulated genes further refined by combination treatment with phosphatidylinositol-3'-kinase inhibition (PI3Ki). To further refine the search to distinguish direct and indirect targets of GR that respond to the combination GC and PI3Ki treatment of MM.1S cells, we integrated 1) gene expression profiles of combination GC treatment with PI3Ki, which induces synergistic cell death; 2) negative correlation between genes inhibited by combination treatment in MM.1S cells and genes over-expressed in myeloma patients to establish clinical relevance and 3) GR chromatin immunoprecipitation with massively parallel sequencing (ChIP-Seq) in myeloma cells to identify global chromatin binding for the glucocorticoid receptor (GR). Using established bioinformatics platforms, we have integrated these data sets to identify a subset of candidate genes that may form the basis for a comprehensive picture of glucocorticoid actions in multiple myeloma. As a proof of principle, we have verified two targets, namely RRM2 and BCL2L1, as primary functional targets of GR involved in GC-induced cell death.

  3. Identification of potential glucocorticoid receptor therapeutic targets in multiple myeloma

    PubMed Central

    Thomas, Alexandra L.; Coarfa, Cristian; Qian, Jun; Wilkerson, Joseph J.; Rajapakshe, Kimal; Krett, Nancy L.; Gunaratne, Preethi H.; Rosen, Steven T.

    2015-01-01

    Glucocorticoids (GC) are a cornerstone of combination therapies for multiple myeloma. However, patients ultimately develop resistance to GCs frequently based on decreased glucocorticoid receptor (GR) expression. An understanding of the direct targets of GC actions, which induce cell death, is expected to culminate in potential therapeutic strategies for inducing cell death by regulating downstream targets in the absence of a functional GR. The specific goal of our research is to identify primary GR targets that contribute to GC-induced cell death, with the ultimate goal of developing novel therapeutics around these targets that can be used to overcome resistance to GCs in the absence of GR. Using the MM.1S glucocorticoid-sensitive human myeloma cell line, we began with the broad platform of gene expression profiling to identify glucocorticoid-regulated genes further refined by combination treatment with phosphatidylinositol-3’-kinase inhibition (PI3Ki). To further refine the search to distinguish direct and indirect targets of GR that respond to the combination GC and PI3Ki treatment of MM.1S cells, we integrated 1) gene expression profiles of combination GC treatment with PI3Ki, which induces synergistic cell death; 2) negative correlation between genes inhibited by combination treatment in MM.1S cells and genes over-expressed in myeloma patients to establish clinical relevance and 3) GR chromatin immunoprecipitation with massively parallel sequencing (ChIP-Seq) in myeloma cells to identify global chromatin binding for the glucocorticoid receptor (GR). Using established bioinformatics platforms, we have integrated these data sets to identify a subset of candidate genes that may form the basis for a comprehensive picture of glucocorticoid actions in multiple myeloma. As a proof of principle, we have verified two targets, namely RRM2 and BCL2L1, as primary functional targets of GR involved in GC-induced cell death. PMID:26715915

  4. Crosstalk Between Leptin Receptor and IGF-IR in Breast Cancer: A Potential Mediator of Chemoresistance

    DTIC Science & Technology

    2011-04-01

    the connection between obesity and breast cancer (5). Leptin , a product of the obese (ob) gene, is an adipocytokine that regulates appetite , bone... Leptin Receptor and IGF-IR in Breast Cancer: A Potential Mediator of Chemoresistance Dr. Rita Nahta Emory University Atlanta, GA 30322 Obesity...hormones IGF-I and leptin and their receptors, IGF-IR and leptin receptor (Ob-R), are elevated in breast cancer. Co-immunoprecipitation and

  5. Human specific loss of olfactory receptor genes

    PubMed Central

    Gilad, Yoav; Man, Orna; Pääbo, Svante; Lancet, Doron

    2003-01-01

    Olfactory receptor (OR) genes constitute the basis for the sense of smell and are encoded by the largest mammalian gene superfamily of >1,000 genes. In humans, >60% of these are pseudogenes. In contrast, the mouse OR repertoire, although of roughly equal size, contains only ≈20% pseudogenes. We asked whether the high fraction of nonfunctional OR genes is specific to humans or is a common feature of all primates. To this end, we have compared the sequences of 50 human OR coding regions, regardless of their functional annotations, to those of their putative orthologs in chimpanzees, gorillas, orangutans, and rhesus macaques. We found that humans have accumulated mutations that disrupt OR coding regions roughly 4-fold faster than any other species sampled. As a consequence, the fraction of OR pseudogenes in humans is almost twice as high as in the non-human primates, suggesting a human-specific process of OR gene disruption, likely due to a reduced chemosensory dependence relative to apes. PMID:12612342

  6. The Androgen Receptor Gene Mutations Database.

    PubMed

    Gottlieb, B; Lehvaslaiho, H; Beitel, L K; Lumbroso, R; Pinsky, L; Trifiro, M

    1998-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. The total number of reported mutations has risen from 272 to 309 in the past year. We have expanded the database: (i) by giving each entry an accession number; (ii) by adding information on the length of polymorphic polyglutamine (polyGln) and polyglycine (polyGly) tracts in exon 1; (iii) by adding information on large gene deletions; (iv) by providing a direct link with a completely searchable database (courtesy EMBL-European Bioinformatics Institute). The addition of the exon 1 polymorphisms is discussed in light of their possible relevance as markers for predisposition to prostate or breast cancer. The database is also available on the internet (http://www.mcgill. ca/androgendb/ ), from EMBL-European Bioinformatics Institute (ftp. ebi.ac.uk/pub/databases/androgen ), or as a Macintosh FilemakerPro or Word file (MC33@musica.mcgill.ca).

  7. The Androgen Receptor Gene Mutations Database.

    PubMed Central

    Gottlieb, B; Lehvaslaiho, H; Beitel, L K; Lumbroso, R; Pinsky, L; Trifiro, M

    1998-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. The total number of reported mutations has risen from 272 to 309 in the past year. We have expanded the database: (i) by giving each entry an accession number; (ii) by adding information on the length of polymorphic polyglutamine (polyGln) and polyglycine (polyGly) tracts in exon 1; (iii) by adding information on large gene deletions; (iv) by providing a direct link with a completely searchable database (courtesy EMBL-European Bioinformatics Institute). The addition of the exon 1 polymorphisms is discussed in light of their possible relevance as markers for predisposition to prostate or breast cancer. The database is also available on the internet (http://www.mcgill. ca/androgendb/ ), from EMBL-European Bioinformatics Institute (ftp. ebi.ac.uk/pub/databases/androgen ), or as a Macintosh FilemakerPro or Word file (MC33@musica.mcgill.ca). PMID:9399843

  8. Comparison of the canine and human olfactory receptor gene repertoires

    PubMed Central

    Quignon, Pascale; Kirkness, Ewen; Cadieu, Edouard; Touleimat, Nizar; Guyon, Richard; Renier, Corinne; Hitte, Christophe; André, Catherine; Fraser, Claire; Galibert, Francis

    2003-01-01

    Background Olfactory receptors (ORs), the first dedicated molecules with which odorants physically interact to arouse an olfactory sensation, constitute the largest gene family in vertebrates, including around 900 genes in human and 1,500 in the mouse. Whereas dogs, like many other mammals, have a much keener olfactory potential than humans, only 21 canine OR genes have been described to date. Results In this study, 817 novel canine OR sequences were identified, and 640 have been characterized. Of the 661 characterized OR sequences, representing half of the canine repertoire, 18% are predicted to be pseudogenes, compared with 63% in human and 20% in mouse. Phylogenetic analysis of 403 canine OR sequences identified 51 families, and radiation-hybrid mapping of 562 showed that they are distributed on 24 dog chromosomes, in 37 distinct regions. Most of these regions constitute clusters of 2 to 124 closely linked genes. The two largest clusters (124 and 109 OR genes) are located on canine chromosomes 18 and 21. They are orthologous to human clusters located on human chromosomes 11q11-q13 and HSA11p15, containing 174 and 115 ORs respectively. Conclusions This study shows a strongly conserved genomic distribution of OR genes between dog and human, suggesting that OR genes evolved from a common mammalian ancestral repertoire by successive duplications. In addition, the dog repertoire appears to have expanded relative to that of humans, leading to the emergence of specific canine OR genes. PMID:14659017

  9. Replicated Risk Nicotinic Cholinergic Receptor Genes for Nicotine Dependence.

    PubMed

    Zuo, Lingjun; Garcia-Milian, Rolando; Guo, Xiaoyun; Zhong, Chunlong; Tan, Yunlong; Wang, Zhiren; Wang, Jijun; Wang, Xiaoping; Kang, Longli; Lu, Lu; Chen, Xiangning; Li, Chiang-Shan R; Luo, Xingguang

    2016-11-07

    It has been hypothesized that the nicotinic acetylcholine receptors (nAChRs) play important roles in nicotine dependence (ND) and influence the number of cigarettes smoked per day (CPD) in smokers. We compiled the associations between nicotinic cholinergic receptor genes (CHRNs) and ND/CPD that were replicated across different studies, reviewed the expression of these risk genes in human/mouse brains, and verified their expression using independent samples of both human and mouse brains. The potential functions of the replicated risk variants were examined using cis-eQTL analysis or predicted using a series of bioinformatics analyses. We found replicated and significant associations for ND/CPD at 19 SNPs in six genes in three genomic regions (CHRNB3-A6, CHRNA5-A3-B4 and CHRNA4). These six risk genes are expressed in at least 18 distinct areas of the human/mouse brain, with verification in our independent human and mouse brain samples. The risk variants might influence the transcription, expression and splicing of the risk genes, alter RNA secondary or protein structure. We conclude that the replicated associations between CHRNB3-A6, CHRNA5-A3-B4,CHRNA4 and ND/CPD are very robust. More research is needed to examine how these genetic variants contribute to the risk for ND/CPD.

  10. Replicated Risk Nicotinic Cholinergic Receptor Genes for Nicotine Dependence

    PubMed Central

    Zuo, Lingjun; Garcia-Milian, Rolando; Guo, Xiaoyun; Zhong, Chunlong; Tan, Yunlong; Wang, Zhiren; Wang, Jijun; Wang, Xiaoping; Kang, Longli; Lu, Lu; Chen, Xiangning; Li, Chiang-Shan R.; Luo, Xingguang

    2016-01-01

    It has been hypothesized that the nicotinic acetylcholine receptors (nAChRs) play important roles in nicotine dependence (ND) and influence the number of cigarettes smoked per day (CPD) in smokers. We compiled the associations between nicotinic cholinergic receptor genes (CHRNs) and ND/CPD that were replicated across different studies, reviewed the expression of these risk genes in human/mouse brains, and verified their expression using independent samples of both human and mouse brains. The potential functions of the replicated risk variants were examined using cis-eQTL analysis or predicted using a series of bioinformatics analyses. We found replicated and significant associations for ND/CPD at 19 SNPs in six genes in three genomic regions (CHRNB3-A6, CHRNA5-A3-B4 and CHRNA4). These six risk genes are expressed in at least 18 distinct areas of the human/mouse brain, with verification in our independent human and mouse brain samples. The risk variants might influence the transcription, expression and splicing of the risk genes, alter RNA secondary or protein structure. We conclude that the replicated associations between CHRNB3-A6, CHRNA5-A3-B4, CHRNA4 and ND/CPD are very robust. More research is needed to examine how these genetic variants contribute to the risk for ND/CPD. PMID:27827986

  11. Identification of a family of muscarinic acetylcholine receptor genes

    SciTech Connect

    Bonner, T.I.; Buckley, N.J.; Young, A.C.; Brann, M.R.

    1987-07-31

    Complementary DNAs for three different muscarinic acetylcholine receptors were isolated from a rat cerebral cortex library, and the cloned receptors were expressed in mammalian cells. Analysis of human and rat genomic clones indicates that there are at least four functional muscarinic receptor genes and that these genes lack introns in the coding sequence. This gene family provides a new basis for evaluating the diversity of muscarinic mechanisms in the nervous system.

  12. Changes in Gene Expression Patterns of Circadian-Clock, Transient Receptor Potential Vanilloid-1 and Nerve Growth Factor in Inflamed Human Esophagus.

    PubMed

    Yang, Shu-Chuan; Chen, Chien-Lin; Yi, Chih-Hsun; Liu, Tso-Tsai; Shieh, Kun-Ruey

    2015-09-04

    Circadian rhythm is driven by the molecular circadian-clock system and regulates many physiological functions. Diurnal rhythms in the gastrointestinal tract are known to be related to feeding pattern, but whether these rhythms are also related to the gastrointestinal damage or injuries; for example, gastroesophageal reflux disease (GERD), is unclear. This study was conducted to determine whether expression of circadian-clock genes or factors involved in vagal stimulation or sensitization were altered in the esophagus of GERD patients. Diurnal patterns of PER1, PER2, BMAL1, CRY2, TRPV1, and NGF mRNA expression were found in patient controls, and these patterns were altered and significantly correlated to the GERD severity in GERD patients. Although levels of CRY1, TIM, CB1, NHE3, GDNF, and TAC1 mRNA expression did not show diurnal patterns, they were elevated and also correlated with GERD severity in GERD patients. Finally, strong correlations among PER1, TRPV1, NGF and CRY2 mRNA expression, and among PER2, TRPV1 and CRY2 expression were found. Expression levels of CRY1 mRNA highly correlated with levels of TIM, CB1, NHE3, GDNF and TAC1. This study suggests that the circadian rhythm in the esophagus may be important for the mediation of and/or the response to erosive damage in GERD patients.

  13. Changes in Gene Expression Patterns of Circadian-Clock, Transient Receptor Potential Vanilloid-1 and Nerve Growth Factor in Inflamed Human Esophagus

    PubMed Central

    Yang, Shu-Chuan; Chen, Chien-Lin; Yi, Chih-Hsun; Liu, Tso-Tsai; Shieh, Kun-Ruey

    2015-01-01

    Circadian rhythm is driven by the molecular circadian-clock system and regulates many physiological functions. Diurnal rhythms in the gastrointestinal tract are known to be related to feeding pattern, but whether these rhythms are also related to the gastrointestinal damage or injuries; for example, gastroesophageal reflux disease (GERD), is unclear. This study was conducted to determine whether expression of circadian-clock genes or factors involved in vagal stimulation or sensitization were altered in the esophagus of GERD patients. Diurnal patterns of PER1, PER2, BMAL1, CRY2, TRPV1, and NGF mRNA expression were found in patient controls, and these patterns were altered and significantly correlated to the GERD severity in GERD patients. Although levels of CRY1, TIM, CB1, NHE3, GDNF, and TAC1 mRNA expression did not show diurnal patterns, they were elevated and also correlated with GERD severity in GERD patients. Finally, strong correlations among PER1, TRPV1, NGF and CRY2 mRNA expression, and among PER2, TRPV1 and CRY2 expression were found. Expression levels of CRY1 mRNA highly correlated with levels of TIM, CB1, NHE3, GDNF and TAC1. This study suggests that the circadian rhythm in the esophagus may be important for the mediation of and/or the response to erosive damage in GERD patients. PMID:26337663

  14. Identification of novel androgen receptor target genes in prostate cancer

    PubMed Central

    Jariwala, Unnati; Prescott, Jennifer; Jia, Li; Barski, Artem; Pregizer, Steve; Cogan, Jon P; Arasheben, Armin; Tilley, Wayne D; Scher, Howard I; Gerald, William L; Buchanan, Grant; Coetzee, Gerhard A; Frenkel, Baruch

    2007-01-01

    Background The androgen receptor (AR) plays critical roles in both androgen-dependent and castrate-resistant prostate cancer (PCa). However, little is known about AR target genes that mediate the receptor's roles in disease progression. Results Using Chromatin Immunoprecipitation (ChIP) Display, we discovered 19 novel loci occupied by the AR in castrate resistant C4-2B PCa cells. Only four of the 19 AR-occupied regions were within 10-kb 5'-flanking regulatory sequences. Three were located up to 4-kb 3' of the nearest gene, eight were intragenic and four were in gene deserts. Whereas the AR occupied the same loci in C4-2B (castrate resistant) and LNCaP (androgen-dependent) PCa cells, differences between the two cell lines were observed in the response of nearby genes to androgens. Among the genes strongly stimulated by DHT in C4-2B cells – D-dopachrome tautomerase (DDT), Protein kinase C delta (PRKCD), Glutathione S- transferase theta 2 (GSTT2), Transient receptor potential cation channel subfamily V member 3 (TRPV3), and Pyrroline-5-carboxylate reductase 1 (PYCR1) – most were less strongly or hardly stimulated in LNCaP cells. Another AR target gene, ornithine aminotransferase (OAT), was AR-stimulated in a ligand-independent manner, since it was repressed by AR siRNA knockdown, but not stimulated by DHT. We also present evidence for in vivo AR-mediated regulation of several genes identified by ChIP Display. For example, PRKCD and PYCR1, which may contribute to PCa cell growth and survival, are expressed in PCa biopsies from primary tumors before and after ablation and in metastatic lesions in a manner consistent with AR-mediated stimulation. Conclusion AR genomic occupancy is similar between LNCaP and C4-2B cells and is not biased towards 5' gene flanking sequences. The AR transcriptionally regulates less than half the genes nearby AR-occupied regions, usually but not always, in a ligand-dependent manner. Most are stimulated and a few are repressed. In general

  15. The prostaglandin EP1 receptor potentiates kainate receptor activation via a protein kinase C pathway and exacerbates status epilepticus

    PubMed Central

    Rojas, Asheebo; Gueorguieva, Paoula; Lelutiu, Nadia; Quan, Yi; Shaw, Renee; Dingledine, Raymond

    2014-01-01

    Prostaglandin E2 (PGE2) regulates membrane excitability, synaptic transmission, plasticity, and neuronal survival. The consequences of PGE2 release following seizures has been the subject of much study. Here we demonstrate that the prostaglandin E2 receptor 1 (EP1, or Ptger1) modulates native kainate receptors, a family of ionotropic glutamate receptors widely expressed throughout the central nervous system. Global ablation of the EP1 gene in mice (EP1-KO) had no effect on seizure threshold after kainate injection but reduced the likelihood to enter status epilepticus. EP1-KO mice that did experience typical status epilepticus had reduced hippocampal neurodegeneration and a blunted inflammatory response. Further studies with native prostanoid and kainate receptors in cultured cortical neurons, as well as with recombinant prostanoid and kainate receptors expressed in Xenopus oocytes, demonstrated that EP1 receptor activation potentiates heteromeric but not homomeric kainate receptors via a second messenger cascade involving phospholipase C, calcium and protein kinase C. Three critical GluK5 C-terminal serines underlie the potentiation of the GluK2/GluK5 receptor by EP1 activation. Taken together, these results indicate that EP1 receptor activation during seizures, through a protein kinase C pathway, increases the probability of kainic acid induced status epilepticus, and independently promotes hippocampal neurodegeneration and a broad inflammatory response. PMID:24952362

  16. Regulatory Features for Odorant Receptor Genes in the Mouse Genome.

    PubMed

    Degl'Innocenti, Andrea; D'Errico, Anna

    2017-01-01

    The odorant receptor genes, seven transmembrane receptor genes constituting the vastest mammalian gene multifamily, are expressed monogenically and monoallelicaly in each sensory neuron in the olfactory epithelium. This characteristic, often referred to as the one neuron-one receptor rule, is driven by mostly uncharacterized molecular dynamics, generally named odorant receptor gene choice. Much attention has been paid by the scientific community to the identification of sequences regulating the expression of odorant receptor genes within their loci, where related genes are usually arranged in genomic clusters. A number of studies identified transcription factor binding sites on odorant receptor promoter sequences. Similar binding sites were also found on a number of enhancers that regulate in cis their transcription, but have been proposed to form interchromosomal networks. Odorant receptor gene choice seems to occur via the local removal of strongly repressive epigenetic markings, put in place during the maturation of the sensory neuron on each odorant receptor locus. Here we review the fast-changing state of art for the study of regulatory features for odorant receptor genes.

  17. Regulatory Features for Odorant Receptor Genes in the Mouse Genome

    PubMed Central

    Degl’Innocenti, Andrea; D’Errico, Anna

    2017-01-01

    The odorant receptor genes, seven transmembrane receptor genes constituting the vastest mammalian gene multifamily, are expressed monogenically and monoallelicaly in each sensory neuron in the olfactory epithelium. This characteristic, often referred to as the one neuron–one receptor rule, is driven by mostly uncharacterized molecular dynamics, generally named odorant receptor gene choice. Much attention has been paid by the scientific community to the identification of sequences regulating the expression of odorant receptor genes within their loci, where related genes are usually arranged in genomic clusters. A number of studies identified transcription factor binding sites on odorant receptor promoter sequences. Similar binding sites were also found on a number of enhancers that regulate in cis their transcription, but have been proposed to form interchromosomal networks. Odorant receptor gene choice seems to occur via the local removal of strongly repressive epigenetic markings, put in place during the maturation of the sensory neuron on each odorant receptor locus. Here we review the fast-changing state of art for the study of regulatory features for odorant receptor genes. PMID:28270833

  18. Analysis of antigen receptor genes in Hodgkin's disease.

    PubMed Central

    Angel, C A; Pringle, J H; Naylor, J; West, K P; Lauder, I

    1993-01-01

    AIM--To analyse the configuration of the antigen receptor genes in Hodgkin's disease. METHODS--DNA extracted from 45 samples of Hodgkin's disease was analysed using Southern blotting and DNA hybridisation, using probes to the joining region of the immunoglobulin heavy chain gene, the constant region of kappa immunoglobulin light chain gene, and the constant region of the beta chain of the T cell receptor gene. RESULTS--A single case of nodular sclerosing disease showed clonal rearrangement of the immunoglobulin heavy and light chain genes, all other samples having germline immunoglobulin genes. The nature of the clonal population in the diseased tissue is uncertain, because the intensity of the rearranged bands did not correlate with the percentage of Reed-Sternberg cells present. The T cell receptor genes were in germline configuration in all the samples. CONCLUSIONS--Antigen receptor gene rearrangement is a rare finding in unselected cases of Hodgkin's disease. Images PMID:8388407

  19. Combined therapeutic potential of nuclear receptors with receptor tyrosine kinase inhibitors in lung cancer

    SciTech Connect

    Wairagu, Peninah M.; Park, Kwang Hwa; Kim, Jihye; Choi, Jong-Whan; Kim, Hyun-Won; Yeh, Byung-Il; Jung, Soon-Hee; Yong, Suk-Joong; Jeong, Yangsik

    2014-05-09

    Highlights: • The 48 NR genes and 48 biological anti-cancer targets are profiled in paired-cells. • Growth inhibition by NR ligands or TKIs is target receptor level-dependent. • T0901317 with gefitinib/PHA665752 shows additive growth inhibition in lung cells. - Abstract: Cancer heterogeneity is a big hurdle in achieving complete cancer treatment, which has led to the emergence of combinational therapy. In this study, we investigated the potential use of nuclear receptor (NR) ligands for combinational therapy with other anti-cancer drugs. We first profiled all 48 NRs and 48 biological anti-cancer targets in four pairs of lung cell lines, where each pair was obtained from the same patient. Two sets of cell lines were normal and the corresponding tumor cell lines while the other two sets consisted of primary versus metastatic tumor cell lines. Analysis of the expression profile revealed 11 NRs and 15 cancer targets from the two pairs of normal versus tumor cell lines, and 9 NRs and 9 cancer targets from the primary versus metastatic tumor cell lines had distinct expression patterns in each category. Finally, the evaluation of nuclear receptor ligand T0901317 for liver X receptor (LXR) demonstrated its combined therapeutic potential with tyrosine kinase inhibitors. The combined treatment of cMET inhibitor PHA665752 or EGFR inhibitor gefitinib with T0901317 showed additive growth inhibition in both H2073 and H1993 cells. Mechanistically, the combined treatment suppressed cell cycle progression by inhibiting cyclinD1 and cyclinB expression. Taken together, this study provides insight into the potential use of NR ligands in combined therapeutics with other biological anti-cancer drugs.

  20. The androgen receptor gene mutations database.

    PubMed

    Gottlieb, B; Trifiro, M; Lumbroso, R; Pinsky, L

    1997-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. The total number of reported mutations has risen from 212 to 272. We have expanded the database: (i) by adding a large amount of new data on somatic mutations in prostatic cancer tissue; (ii) by defining a new constitutional phenotype, mild androgen insensitivity (MAI); (iii) by placing additional relevant information on an internet site (http://www.mcgill.ca/androgendb/ ). The database has allowed us to examine the contribution of CpG sites to the multiplicity of reports of the same mutation in different families. The database is also available from EMBL (ftp.ebi.ac.uk/pub/databases/androgen) or as a Macintosh Filemaker Pro or Word file (MC33@musica,mcgill.ca)

  1. The androgen receptor gene mutations database.

    PubMed

    Gottlieb, B; Trifiro, M; Lumbroso, R; Vasiliou, D M; Pinsky, L

    1996-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. We have added (if available) data on the androgen binding phenotype of the mutant AR, the clinical phenotype of the affected persons, the family history and whether the pathogenicity of a mutation has been proven. Exonic mutations are now listed in 5'-->3' sequence regardless of type and single base pair changes are presented in codon context. Splice site and intronic mutations are listed separately. The database has allowed us to substantiate and amplify the observation of mutational hot spots within exons encoding the AR androgen binding domain. The database is available from EML (ftp://www.ebi.ac.uk/pub/databases/androgen) or as a Macintosh Filemaker file (MC33@musica.mcgill.ca).

  2. The androgen receptor gene mutations database.

    PubMed Central

    Gottlieb, B; Trifiro, M; Lumbroso, R; Pinsky, L

    1997-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. The total number of reported mutations has risen from 212 to 272. We have expanded the database: (i) by adding a large amount of new data on somatic mutations in prostatic cancer tissue; (ii) by defining a new constitutional phenotype, mild androgen insensitivity (MAI); (iii) by placing additional relevant information on an internet site (http://www.mcgill.ca/androgendb/ ). The database has allowed us to examine the contribution of CpG sites to the multiplicity of reports of the same mutation in different families. The database is also available from EMBL (ftp.ebi.ac.uk/pub/databases/androgen) or as a Macintosh Filemaker Pro or Word file (MC33@musica,mcgill.ca) PMID:9016528

  3. Quinoline derivatives: candidate drugs for a Class B G-protein coupled receptor, the Calcitonin gene-related peptide receptor, a cause of migraines

    PubMed Central

    Iftikhar, Hira; Ahmad, Iqra; Gan, Siew Hua; Shaik, Munvar Miya; Iftikhar, Naveed; Nawaz, Muhammad Sulaman; Greig, Nigel H.; Kamal, Mohammad A

    2016-01-01

    Class B G-protein coupled receptors are involved in a wide variety of diseases and are a major focus in drug design. Migraines are a common problem, and one of their major causative agents is class B G-protein coupled receptor, Calcitonin gene-related peptide (CGRP) receptor, a target for competitive drug discovery. The calcitonin receptor-like receptor generates complexes with a receptor activity-modifying protein, which determines the type of receptor protein formed. The CGRP receptor comprises a complex formed from the calcitonin receptor-like receptor and receptor activity-modifying protein 1. In this study, an in silico docking approach was used to target calcitonin receptor-like receptor in the bound form with receptor activity-modifying protein 1 (CGRP receptor), as well as in the unbound form. In both cases, the resulting inhibitors bound to the same cavity of the calcitonin receptor-like receptor. The twelve evaluated compounds were competitive inhibitors and showed efficient inhibitory activity against the CGRP receptor and Calcitonin receptor-like receptor. The two studied quinoline derivatives demonstrated potentially ideal inhibitory activity in terms of binding interactions and low range nano-molar inhibition constants. These compounds could prove helpful in designing drugs for the effective treatment of migraines. We propose that quinoline derivatives possess inhibitory activity by disturbing CGRP binding in the trigeminovascular system and may be considered for further preclinical appraisal for the treatment of migraines. PMID:25230231

  4. Behavioral meaningful opioidergic stimulation activates kappa receptor gene expression

    PubMed Central

    Teodorov, E.; Ferrari, M.F.R.; Fior-Chadi, D.R.; Camarini, R.; Felício, L.F.

    2012-01-01

    The periaqueductal gray (PAG) has been reported to be a location for opioid regulation of pain and a potential site for behavioral selection in females. Opioid-mediated behavioral and physiological responses differ according to the activity of opioid receptor subtypes. The present study investigated the effects of the peripheral injection of the kappa-opioid receptor agonist U69593 into the dorsal subcutaneous region of animals on maternal behavior and on Oprk1 gene activity in the PAG of female rats. Female Wistar rats weighing 200-250 g at the beginning of the study were randomly divided into 2 groups for maternal behavior and gene expression experiments. On day 5, pups were removed at 7:00 am and placed in another home cage that was distant from their mother. Thirty minutes after removing the pups, the dams were treated with U69593 (0.15 mg/kg, sc) or 0.9% saline (up to 1 mL/kg) and after 30 min were evaluated in the maternal behavior test. Latencies in seconds for pup retrieval, grouping, crouching, and full maternal behavior were scored. The results showed that U69593 administration inhibited maternal behavior (P < 0.05) because a lower percentage of U69593 group dams showed retrieval of first pup, retrieving all pups, grouping, crouching and displaying full maternal behavior compared to the saline group. Opioid gene expression was evaluated using real-time reverse-transcription polymerase chain reaction (RT-PCR). A single injection of U69593 increased Oprk1 PAG expression in both virgin (P < 0.05) and lactating female rats (P < 0.01), with no significant effect on Oprm1 or Oprd1 gene activity. Thus, the expression of kappa-opioid receptors in the PAG may be modulated by single opioid receptor stimulation and behavioral meaningful opioidergic transmission in the adult female might occur simultaneously to specific changes in gene expression of kappa-opioid receptor subtype. This is yet another alert for the complex role of the opioid system in female

  5. Prospects and limitations of T cell receptor gene therapy.

    PubMed

    Jorritsma, Annelies; Schotte, Remko; Coccoris, Miriam; de Witte, Moniek A; Schumacher, Ton N M

    2011-08-01

    Adoptive transfer of antigen-specific T cells is an attractive means to provide cancer patients with immune cells of a desired specificity and the efficacy of such adoptive transfers has been demonstrated in several clinical trials. Because the T cell receptor is the single specificity-determining molecule in T cell function, adoptive transfer of TCR genes into patient T cells may be used as an alternative approach for the transfer of tumor-specific T cell immunity. On theoretical grounds, TCR gene therapy has two substantial advantages over conventional cellular transfer. First, it circumvents the demanding process of in vitro generation of large numbers of specific immune cells. Second, it allows the use of a set of particularly effective TCR genes in large patient groups. Conversely, TCR gene therapy may be associated with a number of specific problems that are not confronted during classical cellular therapy. Here we review our current understanding of the potential and possible problems of TCR gene therapy, as based on in vitro experiments, mouse model systems and phase I clinical trials. Furthermore, we discuss the prospects of widespread clinical application of this gene therapy approach for the treatment of human cancer.

  6. On the origin of the olfactory receptor family: receptor genes of the jawless fish (Lampetra fluviatilis).

    PubMed

    Freitag, J; Beck, A; Ludwig, G; von Buchholtz, L; Breer, H

    1999-01-21

    In vertebrates, recognition of odorous compounds is based on a large repertoire of receptor subtypes encoded by a multigene family. Towards an understanding of the phylogenetic origin of the vertebrate olfactory receptor family, attempts have been made to identify related receptor genes in the river lampreys (Lampetra fluviatilis), which are descendants of the earliest craniates and living representatives of the most ancient vertebrates. Employing molecular cloning approaches led to the discovery of four genes encoding heptahelical receptors, which share only a rather low overall sequence identity but several of the characteristic structural hallmarks with vertebrate olfactory receptors. Furthermore, in situ hybridization studies demonstrated that the identified genes are expressed in chemosensory cells of the singular lamprey olfactory organ. Molecular phylogenetic analysis confirmed a close relationship of the lamprey receptors to vertebrate olfactory receptors and in addition demonstrated that olfactory genes of the agnathostomes diverged from the gnathostome receptor genes before those split into class I and class II receptors. The data indicate that the lamprey receptors represent the most ancient family of the hitherto identified vertebrate olfactory receptors.

  7. Estrogen receptor α can selectively repress dioxin receptor-mediated gene expression by targeting DNA methylation.

    PubMed

    Marques, Maud; Laflamme, Liette; Gaudreau, Luc

    2013-09-01

    Selective inhibitory crosstalk has been known to occur within the signaling pathways of the dioxin (AhR) and estrogen (ERα) receptors. More specifically, ERα represses a cytochrome P450-encoding gene (CYP1A1) that converts cellular estradiol into a metabolite that inhibits the cell cycle, while it has no effect on a P450-encoding gene (CYP1B1) that converts estrodiol into a genotoxic product. Here we show that ERα represses CYP1A1 by targeting the Dnmt3B DNA methyltransferase and concomitant DNA methylation of the promoter. We also find that histone H2A.Z can positively contribute to CYP1A1 gene expression, and its presence at that gene is inversely correlated with DNA methylation. Taken together, our results provide a framework for how ERα can repress transcription, and how that impinges on the production of an enzyme that generates genotoxic estradiol metabolites, and potential breast cancer progression. Finally, our results reveal a new mechanism for how H2A.Z can positively influence gene expression, which is by potentially competing with DNA methylation events in breast cancer cells.

  8. Transient receptor potential channel polymorphisms are associated with the somatosensory function in neuropathic pain patients.

    PubMed

    Binder, Andreas; May, Denisa; Baron, Ralf; Maier, Christoph; Tölle, Thomas R; Treede, Rolf-Detlef; Berthele, Achim; Faltraco, Frank; Flor, Herta; Gierthmühlen, Janne; Haenisch, Sierk; Huge, Volker; Magerl, Walter; Maihöfner, Christian; Richter, Helmut; Rolke, Roman; Scherens, Andrea; Uçeyler, Nurcan; Ufer, Mike; Wasner, Gunnar; Zhu, Jihong; Cascorbi, Ingolf

    2011-03-29

    Transient receptor potential channels are important mediators of thermal and mechanical stimuli and play an important role in neuropathic pain. The contribution of hereditary variants in the genes of transient receptor potential channels to neuropathic pain is unknown. We investigated the frequency of transient receptor potential ankyrin 1, transient receptor potential melastin 8 and transient receptor potential vanilloid 1 single nucleotide polymorphisms and their impact on somatosensory abnormalities in neuropathic pain patients. Within the German Research Network on Neuropathic Pain (Deutscher Forscbungsverbund Neuropathischer Schmerz) 371 neuropathic pain patients were phenotypically characterized using standardized quantitative sensory testing. Pyrosequencing was employed to determine a total of eleven single nucleotide polymorphisms in transient receptor potential channel genes of the neuropathic pain patients and a cohort of 253 German healthy volunteers. Associations of quantitative sensory testing parameters and single nucleotide polymorphisms between and within groups and subgroups, based on sensory phenotypes, were analyzed. Single nucleotide polymorphisms frequencies did not differ between both the cohorts. However, in neuropathic pain patients transient receptor potential ankyrin 1 710G>A (rs920829, E179K) was associated with the presence of paradoxical heat sensation (p = 0.03), and transient receptor potential vanilloid 1 1911A>G (rs8065080, I585V) with cold hypoalgesia (p = 0.0035). Two main subgroups characterized by preserved (1) and impaired (2) sensory function were identified. In subgroup 1 transient receptor potential vanilloid 1 1911A>G led to significantly less heat hyperalgesia, pinprick hyperalgesia and mechanical hypaesthesia (p = 0.006, p = 0.005 and p<0.001) and transient receptor potential vanilloid 1 1103C>G (rs222747, M315I) to cold hypaesthesia (p = 0.002), but there was absence of associations in subgroup 2. In

  9. Transient Receptor Potential Channel Polymorphisms Are Associated with the Somatosensory Function in Neuropathic Pain Patients

    PubMed Central

    Baron, Ralf; Maier, Christoph; Tölle, Thomas R.; Treede, Rolf-Detlef; Berthele, Achim; Faltraco, Frank; Flor, Herta; Gierthmühlen, Janne; Haenisch, Sierk; Huge, Volker; Magerl, Walter; Maihöfner, Christian; Richter, Helmut; Rolke, Roman; Scherens, Andrea; Üçeyler, Nurcan; Ufer, Mike; Wasner, Gunnar; Zhu, Jihong; Cascorbi, Ingolf

    2011-01-01

    Transient receptor potential channels are important mediators of thermal and mechanical stimuli and play an important role in neuropathic pain. The contribution of hereditary variants in the genes of transient receptor potential channels to neuropathic pain is unknown. We investigated the frequency of transient receptor potential ankyrin 1, transient receptor potential melastin 8 and transient receptor potential vanilloid 1 single nucleotide polymorphisms and their impact on somatosensory abnormalities in neuropathic pain patients. Within the German Research Network on Neuropathic Pain (Deutscher Forscbungsverbund Neuropathischer Schmerz) 371 neuropathic pain patients were phenotypically characterized using standardized quantitative sensory testing. Pyrosequencing was employed to determine a total of eleven single nucleotide polymorphisms in transient receptor potential channel genes of the neuropathic pain patients and a cohort of 253 German healthy volunteers. Associations of quantitative sensory testing parameters and single nucleotide polymorphisms between and within groups and subgroups, based on sensory phenotypes, were analyzed. Single nucleotide polymorphisms frequencies did not differ between both the cohorts. However, in neuropathic pain patients transient receptor potential ankyrin 1 710G>A (rs920829, E179K) was associated with the presence of paradoxical heat sensation (p = 0.03), and transient receptor potential vanilloid 1 1911A>G (rs8065080, I585V) with cold hypoalgesia (p = 0.0035). Two main subgroups characterized by preserved (1) and impaired (2) sensory function were identified. In subgroup 1 transient receptor potential vanilloid 1 1911A>G led to significantly less heat hyperalgesia, pinprick hyperalgesia and mechanical hypaesthesia (p = 0.006, p = 0.005 and p<0.001) and transient receptor potential vanilloid 1 1103C>G (rs222747, M315I) to cold hypaesthesia (p = 0.002), but there was absence of associations in subgroup 2. In

  10. Epidermal Growth Factor Receptor Transactivation by the Cannabinoid Receptor (CB1) and Transient Receptor Potential Vanilloid 1 (TRPV1) Induces Differential Responses in Corneal Epithelial Cells

    DTIC Science & Technology

    2010-01-01

    Epidermal growth factor receptor transactivation by the cannabinoid receptor (CB1) and transient receptor potential vanilloid 1 ( TRPV1 ) induces...Available online 7 July 2010 Keywords: cannabinoid receptor 1 (CB1) transient receptor potential vanilloid 1 ( TRPV1 ) epidermal growth factor receptor (EGFR...release of endogenous metabolites that are cannabinoid receptor 1 (CB1) and transient receptor potential vanilloid 1 ( TRPV1 ) agonists. We determined

  11. Increased AT(1) receptors in adrenal gland of AT(2) receptor gene-disrupted mice.

    PubMed

    Saavedra, J M; Armando, I; Terrón, J A; Falcón-Neri, A; Jöhren, O; Häuser, W; Inagami, T

    2001-10-15

    Angiotensin II (Ang II) AT(2) receptor-gene disrupted mice have increased systemic blood pressure and response to exogenous Angiotensin II. To clarify the mechanism of these changes, we studied adrenal AT(1) receptor expression and mRNA by receptor autoradiography and in situ hybridization in female AT(2) receptor-gene disrupted mice (agtr 2-/-) and wild-type controls (agtr 2+/+). We found high expression of AT(1) receptor binding and mRNA in adrenal zona glomerulosa of female wild-type mice. AT(2) receptors and mRNA were highly expressed in adrenal medulla of wild-type mice, but were not detected in zona glomerulosa. There was no AT(2) receptor binding or mRNA in adrenal glands of AT(2) receptor-gene disrupted mice. In these animals, AT(1) receptor binding and mRNA were increased in adrenal zona glomerulosa and AT(1) receptor mRNA was increased in the adrenal medulla when compared with wild-type animals.The present data support the hypothesis of an interaction or cross talk between AT(2) and AT(1) receptors in adrenal gland. The significant increase in AT(1) receptor expression in the absence of AT(2) receptor transcription may be partially responsible for the increased blood pressure and for the enhanced response to exogenously administered Angiotensin II in this model.

  12. Gene Transfer and Molecular Cloning of the Human NGF Receptor

    NASA Astrophysics Data System (ADS)

    Chao, Moses V.; Bothwell, Mark A.; Ross, Alonzo H.; Koprowski, Hilary; Lanahan, Anthony A.; Buck, C. Randall; Sehgal, Amita

    1986-04-01

    Nerve growth factor (NGF) and its receptor are important in the development of cells derived from the neural crest. Mouse L cell transformants have been generated that stably express the human NGF receptor gene transfer with total human DNA. Affinity cross-linking, metabolic labeling and immunoprecipitation, and equilibrium binding with 125I-labeled NGF revealed that this NGF receptor had the same size and binding characteristics as the receptor from human melanoma cells and rat PC12 cells. The sequences encoding the NGF receptor were molecularly cloned using the human Alu repetitive sequence as a probe. A cosmid clone that contained the human NGF receptor gene allowed efficient transfection and expression of the receptor.

  13. Colour dependence of the early receptor potential and late receptor potential in scallop distal photoreceptor.

    PubMed

    Cornwall, M C; Gorman, A L

    1983-07-01

    1. Intracellular voltage and current responses to short (blue) and long (red) wave-length lights were measured in the distal hyperpolarizing photoreceptor (;off receptor') of the isolated and perfused scallop (Pecten irradians) retina.2. The early receptor potential (e.r.p.) was isolated by holding membrane potential at the reversal potential for the late receptor potential (l.r.p.) or by working at temperatures (< 5.0 degrees C) that abolished the l.r.p.3. The e.r.p., measured using intense flashes of white light, consisted of a positive phase followed by a negative phase, but was converted to a monophasic, negative-going wave following pre-adaptation with red light and to a monophasic, positive-going wave following pre-adaptation with blue light.4. The spectral sensitivity curve for the negative e.r.p. was maximum at 500 nm, whereas the spectral sensitivity curve for the positive e.r.p. was maximum at 575 nm.5. The positive or negative e.r.p.s approached their maximum amplitude exponentially when tested with red or blue flashes of increasing intensity. The results suggest that the positive (or negative) e.r.p. is proportional to the number of photopigment molecules photo-isomerized.6. The photosensitivity maximum of rhodopsin calculated at 500 nm, using the exponential constant and the spectral sensitivity data, was estimated to be 2.1 x 10(-16) cm(2) photon(-1), whereas the photosensitivity maximum of metarhodopsin calculated at 575 nm was estimated to be 2.6 x 10(-16) cm(2) photon(-1).7. In cells pre-adapted with white light, stimulation with blue light caused a hyperpolarizing l.r.p. which was followed by a prolonged hyperpolarizing after-potential (p.h.a.). Stimulation with red light under similar conditions caused an initial hyperpolarization which was followed by a small depolarization during the stimulus, but no after-potential.8. The duration of the p.h.a. was increased by pre-adaptation with a red light, which caused the maximum net transfer of

  14. Potentiation of the ionotropic GABA receptor response by whiskey fragrance.

    PubMed

    Hossain, Sheikh Julfikar; Aoshima, Hitoshi; Koda, Hirofumi; Kiso, Yoshinobu

    2002-11-06

    It is well-known that the target of most mood-defining compounds is an ionotropic gamma-aminobutyric acid receptor (GABA(A) receptor). The potentiation of the response of these inhibitory neurotransmitter receptors induces anxiolytic, sedative, and anesthetic activity in the human brain. To study the effects of whiskey fragrance on the GABA(A) receptor-mediated response, GABA(A) receptors were expressed in Xenopus oocyte by injecting rat whole brain mRNA or cRNA prepared from the cloned cDNA for the alpha(1) and beta(1) subunits of the bovine receptors. Most whiskey components such as phenol, ethoxy, and lactone derivatives potentiated the electrical responses of GABA(A) receptors, especially ethyl phenylpropanoate (EPP), which strongly potentiated the response. When this compound was applied to mice through respiration, the convulsions induced by pentetrazole were delayed, suggesting that EPP was absorbed by the brain, where it could potentiate the GABA(A) receptor responses. The extract of other alcoholic drinks such as wine, sake, brandy, and shochu also potentiated the responses to varying degrees. Although these fragrant components are present in alcoholic drinks at low concentrations (extremely small quantities compared with ethanol), they may also modulate the mood or consciousness of the human through the potentiation of the GABA(A) receptor response after absorption into the brain, because these hydrophobic fragrant compounds are easily absorbed into the brain through the blood-brain barrier and are several thousands times as potent as ethanol in the potentiation of the GABA(A) receptor-mediated response.

  15. Regulation of cytochrome P450 (CYP) genes by nuclear receptors.

    PubMed Central

    Honkakoski, P; Negishi, M

    2000-01-01

    Members of the nuclear-receptor superfamily mediate crucial physiological functions by regulating the synthesis of their target genes. Nuclear receptors are usually activated by ligand binding. Cytochrome P450 (CYP) isoforms often catalyse both formation and degradation of these ligands. CYPs also metabolize many exogenous compounds, some of which may act as activators of nuclear receptors and disruptors of endocrine and cellular homoeostasis. This review summarizes recent findings that indicate that major classes of CYP genes are selectively regulated by certain ligand-activated nuclear receptors, thus creating tightly controlled networks. PMID:10749660

  16. Novel androgen receptor gene mutation in patient with complete androgen insensitivity syndrome.

    PubMed

    Ning, Ye; Zhang, Feng; Zhu, Yong; Chen, Huixing; Lu, Jianqi; Li, Zheng

    2012-07-01

    To present a rare case of a patient probably with complete androgen insensitivity syndrome (CAIS) and studied its potential genetic cause. A 24-year-old woman with a normal-appearing vulva and vagina presented to us because of primary amenorrhea. Imaging studies showed no uterus or ovary development but inguinal cryptorchism. Histopathologic examination revealed normal testicular structures. Sequencing the CAIS-associated androgen receptor gene revealed a novel missense mutation of T to G (F698L). A novel androgen receptor gene mutation in the ligand binding domain was detected in the present patient with CAIS, supporting the important role of an androgen receptor defect in the etiology of CAIS.

  17. Concurrent agonism of adenosine A2B and glucocorticoid receptors in human airway epithelial cells cooperatively induces genes with anti-inflammatory potential: a novel approach to treat chronic obstructive pulmonary disease.

    PubMed

    Greer, Stephanie; Page, Cara W; Joshi, Taruna; Yan, Dong; Newton, Robert; Giembycz, Mark A

    2013-09-01

    Chronic obstructive pulmonary disease (COPD) is a neutrophilic inflammatory disorder that is weakly responsive to glucocorticoids. Identification of ways to enhance the anti-inflammatory activity of glucocorticoids is, therefore, a major research objective. Adenosine receptor agonists that target the A2B-receptor subtype are efficacious in several cell-based assays and preclinical models of inflammation. Accordingly, the present study was designed to determine if a selective A2B-receptor agonist, 2-[6-amino-3,5-dicyano-4-[4-(cyclopropylmethoxy)phenyl]pyridin-2-ylsulphanyl]acetamide (Bay 60-6583), and a glucocorticoid, dexamethasone, in combination display putative anti-inflammatory activity that is superior to either drug alone. In BEAS-2B human airway epithelial cells stably transfected with cAMP-response element (CRE) and glucocorticoid response element (GRE) reporter constructs, Bay 60-6583 promoted CRE-dependent transcription and enhanced GRE-dependent transcription by an adenosine A2B-receptor-mediated mechanism that was associated with cAMP formation and abolished by an inhibitor of cAMP-dependent protein kinase. Analysis of the concentration-response relationship that described the enhancement of GRE-dependent transcription showed that Bay 60-6583 increased the magnitude of response without affecting the potency of dexamethasone. Bay 60-6583 and dexamethasone also induced a panel of genes that, collectively, could have benefit in COPD. These were categorized into genes that were induced in a positive cooperative manner (RGS2, p57(kip2)), an additive manner (TTP, BRL-1), or by Bay 60-6583 (CD200, CRISPLD2, SOCS3) or dexamethasone (GILZ) only. Thus, the gene induction "fingerprints" produced by Bay 60-6583 and dexamethasone, alone and in combination, were distinct. Collectively, through their actions on gene expression, an adenosine A2B-receptor agonist and a glucocorticoid administered together may have utility in the treatment of inflammatory disorders that

  18. AMPA receptor potentiators for the treatment of CNS disorders.

    PubMed

    O'Neill, Michael J; Bleakman, David; Zimmerman, Dennis M; Nisenbaum, Eric S

    2004-06-01

    Glutamate alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors mediate most of the excitatory neurotransmission in the mammalian central nervous system and also participate in forms of synaptic plasticity thought to underlie memory and learning, and the formation of neural networks during development. Molecular cloning techniques have shown that the AMPA receptor family is composed of four different subunits named GluR1-4 or GluRA-D (newly termed as Glu(A1)-Glu(A4)) and native AMPA receptors are most likely tetramers generated by the assembly of one or more of these subunits, yielding homomeric or heteromeric receptors. Additional complexity among AMPA receptors is conferred by alternative splicing of RNA for each subunit giving rise to flip and flop variants. Clinical and experimental data have suggested that positive modulation of AMPA receptors may be therapeutically effective in the treatment of cognitive deficits. Several classes of AMPA receptor potentiators have been reported, including pyrroliddones (piracetam, aniracetam), benzothiazides (cyclothiazide), benzylpiperidines (CX-516, CX-546) and more recently biarylpropylsulfonamides (LY392098, LY404187 and LY503430). These molecules enhance cognitive function in rodents, which appears to correlate with increased hippocampal activity. In addition, clinical studies have suggested that AMPA receptor modulators enhance cognitive function in elderly subjects, as well as patients suffering from neurological and psychiatric disorders. Several independent studies have suggested that AMPA receptors can increase BDNF expression by both calcium-dependent and independent pathways. For example, recent studies have shown that AMPA receptors interact with the protein tyrosine kinase, Lyn. Activation of Lyn can recruit the mitogen-activated protein kinase (MAPK) signalling pathway and increase the expression of BDNF. Therefore, in addition to directly enhancing glutamatergic synaptic transmission, AMPA

  19. Expression of histamine receptor genes Hrh3 and Hrh4 in rat brain endothelial cells.

    PubMed

    Karlstedt, K; Jin, C; Panula, P

    2013-09-01

    Brain vascular endothelial cells express histamine H1 and H2 receptors, which regulate brain capillary permeability. We investigated whether H3 and H4 receptors are also expressed in these cells and may thus play a role in permeability regulation. An immortalized rat brain endothelial cell line RBE4 was used to assess the presence of H3 and H4 receptors. Reverse transcription-PCR (RT-PCR) and sequencing were used to identify the receptor mRNAs. The receptors were stimulated with histamine and immepip, and specific inverse agonists/antagonists ciproxifan and JNJ 7777120 were used to block H3 and H4 receptors, respectively. RT-PCR of mRNA extracted from cultured immortalized RBE4 cells revealed two rat H4 receptor gene (Hrh4) transcripts, one full-length (coding sequence 1173 bp), and one with a 164 bp deletion. Also, two rat H3 receptor gene (Hrh3) isoform mRNAs were expressed in RBE4 cells, and sequencing showed they were the full-length H3 receptor and the 144 bp deletion form. Both histamine and immepip (H3 and H4 receptor agonists) activated the Erk1/2 MAPK pathway in the RBE4 cells and in vivo in brain blood vessels by activating H4 receptors, as the H4 receptor-specific inverse agonists/antagonist JNJ 7777120, but not ciproxifan, H3 receptor antagonist, dose-dependently blocked this effect in RBE4 cells. Both Hrh3 and Hrh4 receptors are expressed in rat brain endothelial cells, and activation of the histamine H4 receptor activates the Erk1/2 cascade. H3 and H4 receptors in endothelial cells are potentially important for regulation of blood-brain barrier permeability, including trafficking of immunocompetent cells. © 2013 The Authors. British Journal of Pharmacology © 2013 The British Pharmacological Society.

  20. Profiling of Olfactory Receptor Gene Expression in Whole Human Olfactory Mucosa

    PubMed Central

    Tarabichi, Maxime; Gregoire, Françoise; Dumont, Jacques E.; Chatelain, Pierre

    2014-01-01

    Olfactory perception is mediated by a large array of olfactory receptor genes. The human genome contains 851 olfactory receptor gene loci. More than 50% of the loci are annotated as nonfunctional due to frame-disrupting mutations. Furthermore haplotypic missense alleles can be nonfunctional resulting from substitution of key amino acids governing protein folding or interactions with signal transduction components. Beyond their role in odor recognition, functional olfactory receptors are also required for a proper targeting of olfactory neuron axons to their corresponding glomeruli in the olfactory bulb. Therefore, we anticipate that profiling of olfactory receptor gene expression in whole human olfactory mucosa and analysis in the human population of their expression should provide an opportunity to select the frequently expressed and potentially functional olfactory receptors in view of a systematic deorphanization. To address this issue, we designed a TaqMan Low Density Array (Applied Biosystems), containing probes for 356 predicted human olfactory receptor loci to investigate their expression in whole human olfactory mucosa tissues from 26 individuals (13 women, 13 men; aged from 39 to 81 years, with an average of 67±11 years for women and 63±12 years for men). Total RNA isolation, DNase treatment, RNA integrity evaluation and reverse transcription were performed for these 26 samples. Then 384 targeted genes (including endogenous control genes and reference genes specifically expressed in olfactory epithelium for normalization purpose) were analyzed using the same real-time reverse transcription PCR platform. On average, the expression of 273 human olfactory receptor genes was observed in the 26 selected whole human olfactory mucosa analyzed, of which 90 were expressed in all 26 individuals. Most of the olfactory receptors deorphanized to date on the basis of sensitivity to known odorant molecules, which are described in the literature, were found in the

  1. NPY signalling pathway in bone homeostasis: Y1 receptor as a potential drug target.

    PubMed

    Sousa, D M; Herzog, H; Lamghari, M

    2009-01-01

    Neuropeptide (NPY) is a neurotransmitter widely distributed in central and peripheral nervous system that has been implicated in several physiological processes through activation of five different Y receptors: Y1, Y2, Y4, Y5, and y6. NPY system has been extensively studied for the last decades due to its implications in a wide variety of physiological processes. For this purpose a diversity of sophisticated animal models and receptors agonists and antagonists has been developed to better understand its actions throughout body homeostasis. Consequently, NPY and its receptors have recently emerged as a potential regulator of bone homeostasis. This is supported by the demonstration of an increase of bone mass in mice lacking Y1 or Y2 receptor genes. Recent findings revealed Y1 receptor as a potential drug target candidate for prevention and treatment of bone loss. Indeed, it has been demonstrated that osteoblasts express Y1 receptor while no other Y receptor was detected in these cells, implicating Y1 receptor signalling in the local control of bone turnover. In this review, we have summarized the findings obtained from studies on NPY system in skeletogenesis focusing on Y1 receptor.

  2. Adenovirus receptors and their implications in gene delivery

    PubMed Central

    Sharma, Anurag; Li, Xiaoxin; Bangari, Dinesh S.; Mittal, Suresh K.

    2010-01-01

    Adenoviruses (Ads) have gained popularity as gene delivery vectors for therapeutic and prophylactic applications. Ad entry into host cells involves specific interactions between cell surface receptors and viral capsid proteins. Several cell surface molecules have been identified as receptors for Ad attachment and entry. Tissue tropism of Ad vectors is greatly influenced by their receptor usage. A variety of strategies have been investigated to modify Ad vector tropism by manipulating the receptor-interacting moieties. Many such strategies are aimed at targeting and/or detargeting of Ad vectors. In this review, we discuss the various cell surface molecules that are implicated as receptors for virus attachment and internalization. Special emphasis is given to Ad types that are utilized as gene delivery vectors. Various strategies to modify Ad tropism using the knowledge of Ad receptors are also discussed. PMID:19647886

  3. Pharmacology and therapeutic potential of sigma(1) receptor ligands.

    PubMed

    Cobos, E J; Entrena, J M; Nieto, F R; Cendán, C M; Del Pozo, E

    2008-12-01

    Sigma (sigma) receptors, initially described as a subtype of opioid receptors, are now considered unique receptors. Pharmacological studies have distinguished two types of sigma receptors, termed sigma(1) and sigma(2). Of these two subtypes, the sigma(1) receptor has been cloned in humans and rodents, and its amino acid sequence shows no homology with other mammalian proteins. Several psychoactive drugs show high to moderate affinity for sigma(1) receptors, including the antipsychotic haloperidol, the antidepressant drugs fluvoxamine and sertraline, and the psychostimulants cocaine and methamphetamine; in addition, the anticonvulsant drug phenytoin allosterically modulates sigma(1) receptors. Certain neurosteroids are known to interact with sigma(1) receptors, and have been proposed to be their endogenous ligands. These receptors are located in the plasma membrane and in subcellular membranes, particularly in the endoplasmic reticulum, where they play a modulatory role in intracellular Ca(2+) signaling. Sigma(1) receptors also play a modulatory role in the activity of some ion channels and in several neurotransmitter systems, mainly in glutamatergic neurotransmission. In accordance with their widespread modulatory role, sigma(1) receptor ligands have been proposed to be useful in several therapeutic fields such as amnesic and cognitive deficits, depression and anxiety, schizophrenia, analgesia, and against some effects of drugs of abuse (such as cocaine and methamphetamine). In this review we provide an overview of the present knowledge of sigma(1) receptors, focussing on sigma(1) ligand neuropharmacology and the role of sigma(1) receptors in behavioral animal studies, which have contributed greatly to the potential therapeutic applications of sigma(1) ligands.

  4. Analyses of the role of the glucocorticoid receptor gene polymorphism (rs41423247) as a potential moderator in the association between childhood overweight, psychopathology, and clinical outcomes in Eating Disorders patients: A 6 years follow up study.

    PubMed

    Castellini, Giovanni; Lelli, Lorenzo; Tedde, Andrea; Piaceri, Irene; Bagnoli, Silvia; Lucenteforte, Ersilia; Sorbi, Sandro; Monteleone, Alessio Maria; Hudziak, James J; Nacmias, Benedetta; Ricca, Valdo

    2016-09-30

    Childhood overweight and the SNP rs41423247 of the glucocorticoid receptor gene (GR) were reported to represent predisposing factors for Eating Disorders (EDs). The distribution of the polymorphism was evaluated in 202 EDs patients, and in 116 healthy subjects. The Structured Clinical Interview for the DSM-IV and self-reported questionnaires were administered at the admission to the clinic and at 3 time points (end of a cognitive behavioral therapy, 3 and 6 years follow up). G-allele was associated with childhood overweight, depressive disorder comorbidity, and diagnostic instability. G-allele carriers reporting childhood overweight showed greater frequency of subjective binge eating and emotional eating.

  5. Acoustic trauma triggers upregulation of serotonin receptor genes

    PubMed Central

    Smith, Adam R.; Kwon, Jae Hyun; Navarro, Marco; Hurley, Laura M.

    2014-01-01

    Hearing loss induces plasticity in excitatory and inhibitory neurotransmitter systems in auditory brain regions. Excitatory-inhibitory balance is also influenced by a range of neuromodulatory regulatory systems, but less is known about the effects of auditory damage on these networks. In this work, we studied the effects of acoustic trauma on neuromodulatory plasticity in the auditory midbrain of CBA/J mice. Quantitative PCR was used to measure the expression of serotonergic and GABAergic receptor genes in the inferior colliculus (IC) of mice that were unmanipulated, sham controls with no hearing loss, and experimental individuals with hearing loss induced by exposure to a 116 dB, 10 kHz pure tone for 3 hours. Acoustic trauma induced substantial hearing loss that was accompanied by selective upregulation of two serotonin receptor genes in the IC. The Htr1B receptor gene was upregulated tenfold following trauma relative to shams, while the Htr1A gene was upregulated threefold. In contrast, no plasticity in serotonin receptor gene expression was found in the hippocampus, a region also innervated by serotonergic projections. Analyses in the IC demonstrated that acoustic trauma also changed the coexpression of genes in relation to each other, leading to an overexpression of Htr1B compared to other genes.. These data suggest that acoustic trauma induces serotonergic plasticity in the auditory system, and that this plasticity may involve comodulation of functionally-linked receptor genes. PMID:24997228

  6. Estrogen receptor genes in gastropods: phylogenetic divergence and gene expression responses to a synthetic estrogen.

    PubMed

    Hultin, Cecilia L; Hallgren, Per; Hansson, Maria C

    2016-11-01

    Endocrine disrupting chemicals (EDCs) have the potential to affect development and reproduction in gastropods. However, one is today lacking basic understanding of the Molluscan endocrine system and one can therefore not fully explain these EDC-induced affects. Furthermore, only a few genes that potentially may be connected to the endocrine system have been sequenced in gastropods. An example is the estrogen receptor gene (er) that have been identified in a restricted number of freshwater and marine gastropods. Here, we have identified a new partial coding sequence of an estrogen receptor gene (er) in the European common heterobranch Radix balthica. The following phylogenetic analysis divided the ers of heterobranchs and ceanogastropods in two branches. Furthermore, exposure to the synthetic estrogen 17α-ethinylestradiol (EE2) showed that exposure could significantly affect er expression level in the heterobranch R. balthica. This paper is the first that phylogenetically compares gastropods' er, basal er expression profiles, and transcriptional estrogenic responses in gastropods from two different evolutionary groups.

  7. Transient Receptor Potential Channels in neuropathic pain.

    PubMed

    Basso, Lilian; Altier, Christophe

    2016-10-27

    Neuropathic pain caused by disease or dysfunction of the nervous system is one of the most difficult pain conditions to treat. Symptoms include a hypersensitivity to mechanical and thermal stimuli, processed by specialized nociceptors that constitute the first line of defence of the somatosensory system. The detection of these stimuli depends on the TRP ion channel family, which activates upon damaging pressure, extreme temperature, or toxic endogenous and exogenous chemicals. This review will summarize the current knowledge of the contribution of TRP channels, particularly the thermosensitive TRP, including TRPV1, TRPA1 and TRPM8 channels that play a central role in the sensitization of nociceptive transduction. We will discuss the pharmacology of these receptors and their relative success in preclinical and clinical studies.

  8. The GABAA receptor is an FMRP target with therapeutic potential in fragile X syndrome.

    PubMed

    Braat, Sien; D'Hulst, Charlotte; Heulens, Inge; De Rubeis, Silvia; Mientjes, Edwin; Nelson, David L; Willemsen, Rob; Bagni, Claudia; Van Dam, Debby; De Deyn, Peter P; Kooy, R Frank

    2015-01-01

    Previous research indicates that the GABAAergic system is involved in the pathophysiology of the fragile X syndrome, a frequent form of inherited intellectual disability and associated with autism spectrum disorder. However, the molecular mechanism underlying GABAAergic deficits has remained largely unknown. Here, we demonstrate reduced mRNA expression of GABAA receptor subunits in the cortex and cerebellum of young Fmr1 knockout mice. In addition, we show that the previously reported underexpression of specific subunits of the GABAA receptor can be corrected in YAC transgenic rescue mice, containing the full-length human FMR1 gene in an Fmr1 knockout background. Moreover, we demonstrate that FMRP directly binds several GABAA receptor mRNAs. Finally, positive allosteric modulation of GABAA receptors with the neurosteroid ganaxolone can modulate specific behaviors in Fmr1 knockout mice, emphasizing the therapeutic potential of the receptor.

  9. The GABAA receptor is an FMRP target with therapeutic potential in fragile X syndrome

    PubMed Central

    Braat, Sien; D'Hulst, Charlotte; Heulens, Inge; De Rubeis, Silvia; Mientjes, Edwin; Nelson, David L; Willemsen, Rob; Bagni, Claudia; Van Dam, Debby; De Deyn, Peter P; Kooy, R Frank

    2015-01-01

    Previous research indicates that the GABAAergic system is involved in the pathophysiology of the fragile X syndrome, a frequent form of inherited intellectual disability and associated with autism spectrum disorder. However, the molecular mechanism underlying GABAAergic deficits has remained largely unknown. Here, we demonstrate reduced mRNA expression of GABAA receptor subunits in the cortex and cerebellum of young Fmr1 knockout mice. In addition, we show that the previously reported underexpression of specific subunits of the GABAA receptor can be corrected in YAC transgenic rescue mice, containing the full-length human FMR1 gene in an Fmr1 knockout background. Moreover, we demonstrate that FMRP directly binds several GABAA receptor mRNAs. Finally, positive allosteric modulation of GABAA receptors with the neurosteroid ganaxolone can modulate specific behaviors in Fmr1 knockout mice, emphasizing the therapeutic potential of the receptor. PMID:25790165

  10. CB2 Cannabinoid Receptor As Potential Target against Alzheimer's Disease

    PubMed Central

    Aso, Ester; Ferrer, Isidro

    2016-01-01

    The CB2 receptor is one of the components of the endogenous cannabinoid system, a complex network of signaling molecules and receptors involved in the homeostatic control of several physiological functions. Accumulated evidence suggests a role for CB2 receptors in Alzheimer's disease (AD) and indicates their potential as a therapeutic target against this neurodegenerative disease. Levels of CB2 receptors are significantly increased in post-mortem AD brains, mainly in microglia surrounding senile plaques, and their expression levels correlate with the amounts of Aβ42 and β-amyloid plaque deposition. Moreover, several studies on animal models of AD have demonstrated that specific CB2 receptor agonists, which are devoid of psychoactive effects, reduce AD-like pathology, resulting in attenuation of the inflammation associated with the disease but also modulating Aβ and tau aberrant processing, among other effects. CB2 receptor activation also improves cognitive impairment in animal models of AD. This review discusses available data regarding the role of CB2 receptors in AD and the potential usefulness of specific agonists of these receptors against AD. PMID:27303261

  11. Anxious behavior induces elevated hippocampal Cb2 receptor gene expression.

    PubMed

    Robertson, James M; Achua, Justin K; Smith, Justin P; Prince, Melissa A; Staton, Clarissa D; Ronan, Patrick J; Summers, Tangi R; Summers, Cliff H

    2017-04-07

    Anxiety is differentially expressed across a continuum of stressful/fearful intensity, influenced endocannabinoid systems and receptors. The hippocampus plays important roles in the regulation of affective behavior, emotion, and anxiety, as well as memory. Location of Cb1/Cb2 receptor action could be important in determining emotional valence, because while the dorsal hippocampus is involved in spatial memory and cognition, the ventral hippocampus has projections to the PFC, BNST, amygdala, and HPA axis, and is important for emotional responses to stress. During repeated social defeat in a Stress-Alternatives Model arena (SAM; an oval open field with escape portals only large enough for smaller mice), smaller C57BL6/N mice are subject to fear conditioning (tone=CS), and attacked by novel larger aggressive CD1 mice (US) over four daily (5min) trials. Each SAM trial presents an opportunity for escape or submission, with stable behavioral responses established by the second day of interaction. Additional groups had access to a running wheel. Social aggression plus fear conditioning stimulates enhanced Cb2 receptor gene expression in the dorsal CA1, dorsal and ventral dentate gyrus subregions in animals displaying a submissive behavioral phenotype. Escape behavior is associated with reduced Cb2 expression in the dorsal CA1 region, with freezing and escape latency correlated with mRNA levels. Escaping and submitting animals with access to running wheels had increased Cb2 mRNA in dorsal DG/CA1. These results suggest that the Cb2 receptor system is rapidly induced during anxiogenic social interactions plus fear conditioning or exercise; with responses potentially adaptive for coping mechanisms.

  12. Impact of estrogen receptor α gene and oxytocin receptor gene polymorphisms on female sexuality

    PubMed Central

    Armeni, Anastasia K; Assimakopoulos, Konstantinos; Marioli, Dimitra; Koika, Vassiliki; Michaelidou, Euthychia; Mourtzi, Niki; Iconomou, Gregoris

    2017-01-01

    Over the past decades, research attention has increasingly been paid to the neurobiological component of sexual behavior. The aim of the present study was to investigate the correlation of estrogen receptor α (ERA) gene polymorphism (rs2234693-PvuII) (T→C substitution) and oxytocin receptor gene polymorphism (rs53576) (G→A substitution) with sexuality parameters of young, healthy women. One hundred thirty-three Greek heterosexual women, students in higher education institutions, 20–25 years of age, sexually active, with normal menstrual cycles (28–35 days), were recruited in the study. Exclusion criteria were chronic and/or major psychiatric diseases, use of oral contraceptive pills (OCs), polycystic ovary syndrome (PCOS), thyroid diseases as well as drugs that are implicated in hypothalamus–pituitary–gonadal axis. T allele (wildtype) of rs2234693 (PvuII) polymorphism of ERA gene was correlated with increased levels of arousal and lubrication, whereas A allele (polymorphic) of rs53576 (OXTR) polymorphism was correlated with increased arousal levels. The simultaneous presence of both T allele of rs2234693 (PvuII) and A allele of rs53576 (OXTR) polymorphisms (T + A group) was correlated with increased arousal, orgasm levels as well as female sexual function index full score. To our knowledge, this is the first study to investigate the interaction between ERA and OXTR with regard to sexual function in women. Female sexuality is a complex behavioral trait that encompasses both biological and psychological components. It seems that variability in female sexual response stems from genetic variability that characterizes endocrine, neurotransmitter and central nervous system influences. PMID:28069897

  13. Impact of estrogen receptor α gene and oxytocin receptor gene polymorphisms on female sexuality.

    PubMed

    Armeni, Anastasia K; Assimakopoulos, Konstantinos; Marioli, Dimitra; Koika, Vassiliki; Michaelidou, Euthychia; Mourtzi, Niki; Iconomou, Gregoris; Georgopoulos, Neoklis A

    2017-01-01

    Over the past decades, research attention has increasingly been paid to the neurobiological component of sexual behavior. The aim of the present study was to investigate the correlation of estrogen receptor α (ERA) gene polymorphism (rs2234693-PvuII) (T→C substitution) and oxytocin receptor gene polymorphism (rs53576) (G→A substitution) with sexuality parameters of young, healthy women. One hundred thirty-three Greek heterosexual women, students in higher education institutions, 20-25 years of age, sexually active, with normal menstrual cycles (28-35 days), were recruited in the study. Exclusion criteria were chronic and/or major psychiatric diseases, use of oral contraceptive pills (OCs), polycystic ovary syndrome (PCOS), thyroid diseases as well as drugs that are implicated in hypothalamus-pituitary-gonadal axis. T allele (wildtype) of rs2234693 (PvuII) polymorphism of ERA gene was correlated with increased levels of arousal and lubrication, whereas A allele (polymorphic) of rs53576 (OXTR) polymorphism was correlated with increased arousal levels. The simultaneous presence of both T allele of rs2234693 (PvuII) and A allele of rs53576 (OXTR) polymorphisms (T + A group) was correlated with increased arousal, orgasm levels as well as female sexual function index full score. To our knowledge, this is the first study to investigate the interaction between ERA and OXTR with regard to sexual function in women. Female sexuality is a complex behavioral trait that encompasses both biological and psychological components. It seems that variability in female sexual response stems from genetic variability that characterizes endocrine, neurotransmitter and central nervous system influences.

  14. Characterization of potential ABA receptors in Vitis vinifera.

    PubMed

    Boneh, Uri; Biton, Iris; Zheng, Chuanlin; Schwartz, Amnon; Ben-Ari, Giora

    2012-02-01

    Molecular control mechanisms for abiotic stress tolerance are based on the activation and regulation of specific stress-related genes. The phytohormone abscisic acid (ABA) is a key endogenous messenger in a plant's response to such stresses. A novel ABA binding mechanism which plays a key role in plant cell signaling cascades has recently been uncovered. In the absence of ABA, a type 2C protein phosphatase (PP2C) interacts and inhibits the kinase SnRK2. Binding of ABA to the PYR/PYLs receptors enables interaction between the ABA receptor and the PP2C protein, and abrogates the SnRK2 inactivation. The active SnRK2 is then free to activate the ABA-responsive element Binding Factors which target ABA-dependent gene expression. We used the grape as a model to study the ABA perception mechanism in fruit trees. The grape ABA signaling cascade consists of at least seven ABA receptors and six PP2Cs. We used a yeast two-hybrid system to examine physical interaction in vitro between the grape ABA receptors and their interacting partners, and found that twenty-two receptor-PP2C interactions can occur. Moreover, quantifying these affinities by the use of the LacZ reporter enables us to show that VvPP2C4 and VvPP2C9 are the major binding partners of the ABA receptor. We also tested in vivo the root and leaf gene expression of the various ABA receptors and PP2Cs in the presence of exogenic ABA and under different abiotic stresses such as high salt concentration, cold and drought, and found that many of these genes are regulated by such abiotic environmental factors. Our results indicate organ specificity in the ABA receptor genes and stress specificity in the VvPP2Cs. We suggest that VvPP2C4 is the major PP2C involved in ABA perception in leaves and roots, and VvRCAR6 and VvRCAR5 respectively, are the major receptors involved in ABA perception in these organs. Identification, characterization and manipulation of the central players in the ABA signaling cascades in fruit trees is

  15. Estrogen increases renal oxytocin receptor gene expression.

    PubMed

    Ostrowski, N L; Young, W S; Lolait, S J

    1995-04-01

    Estrogens have been implicated in the sodium and fluid imbalances associated with the menstrual cycle and late pregnancy. An estrogen-dependent role for renal oxytocin receptors in fluid homeostasis is suggested by the present findings which demonstrate that estradiol benzoate treatment increases the expression of the oxytocin receptor messenger ribonucleic acid and 125I-OTA binding to oxytocin receptors in the renal cortex and medullary collecting ducts of ovariectomized female rats. Moreover, estradiol induced high levels of oxytocin receptor expression in outer stripe proximal tubules of ovariectomized female and adrenalectomized male rats. Proximal tubule induction was inhibited in a dose-dependent manner by the antiestrogen tamoxifen, but cortical expression of oxytocin receptors in macula densa cells was unaffected by tamoxifen. These data demonstrate cell-specific regulation of oxytocin receptor expression in macula densa and proximal tubule cells, and suggest a important role for these receptors in mediating estrogen-induced alterations in renal fluid dynamics by possibly affecting glomerular filtration and water and solute reabsorption during high estrogen states.

  16. Genomic organization of the mouse T-cell receptor beta-chain gene family.

    PubMed Central

    Lai, E; Barth, R K; Hood, L

    1987-01-01

    We have combined three different methods, deletion mapping of T-cell lines, field-inversion gel electrophoresis, and the restriction mapping of a cosmid clone, to construct a physical map of the murine T-cell receptor beta-chain gene family. We have mapped 19 variable (V beta) gene segments and the two clusters of diversity (D beta) and joining (J beta) gene segments and constant (C beta) genes. These members of the beta-chain gene family span approximately equal to 450 kilobases of DNA, excluding one potential gap in the DNA fragment alignments. Images PMID:3035555

  17. Mutations in the human melanocortin-4 receptor gene associated with severe familial obesity disrupts receptor function through multiple molecular mechanisms.

    PubMed

    Yeo, Giles S H; Lank, Emma J; Farooqi, I Sadaf; Keogh, Julia; Challis, Benjamin G; O'Rahilly, Stephen

    2003-03-01

    Mutations in the melanocortin-4 receptor gene (MC4R) represent the commonest monogenic cause of human obesity. However, information regarding the precise effects of such mutations on receptor function is very limited. We examined the functional properties of 12 different mutations in human MC4R that result in severe, familial, early-onset obesity. Of the nine missense mutants studied, four were completely unable to generate cAMP in response to ligand and five were partially impaired. Four showed evidence of impaired cell surface expression and six of reduced binding affinity for ligand. One mutation in the C-terminal tail, I316S, showed reduced affinity for alpha-MSH but retained normal affinity for the antagonist AgRP. None of the mutations inhibited signaling through co-transfected wild-type receptors. Thus, in the most comprehensive study to date of the functional properties of naturally occurring MC4R mutations we have (1) established that defective expression on the cell surface is a common mechanism impairing receptor function, (2) identified mutations which specifically affect ligand binding affinity thus aiding the definition of receptor structure-function relationships, (3) provided evidence against the notion that these receptor mutants act as dominant-negatives, and (4) identified a potentially novel molecular mechanism of receptor dysfunction whereby a mutation alters the relative affinities of a receptor for its natural agonist versus antagonist.

  18. Computational Characterization of Modes of Transcriptional Regulation of Nuclear Receptor Genes

    PubMed Central

    Sharma, Yogita; Chilamakuri, Chandra Sekhar Reddy; Bakke, Marit; Lenhard, Boris

    2014-01-01

    Background Nuclear receptors are a large structural class of transcription factors that act with their co-regulators and repressors to maintain a variety of biological and physiological processes such as metabolism, development and reproduction. They are activated through the binding of small ligands, which can be replaced by drug molecules, making nuclear receptors promising drug targets. Transcriptional regulation of the genes that encode them is central to gaining a deeper understanding of the diversity of their biochemical and biophysical roles and their role in disease and therapy. Even though they share evolutionary history, nuclear receptor genes have fundamentally different expression patterns, ranging from ubiquitously expressed to tissue-specific and spatiotemporally complex. However, current understanding of regulation in nuclear receptor gene family is still nascent. Methodology/Principal Findings In this study, we investigate the relationship between long-range regulation of nuclear receptor family and their known functionality. Towards this goal, we identify the nuclear receptor genes that are potential targets based on counts of highly conserved non-coding elements. We validate our results using publicly available expression (RNA-seq) and histone modification (ChIP-seq) data from the ENCODE project. We find that nuclear receptor genes involved in developmental roles show strong evidence of long-range mechanism of transcription regulation with distinct cis-regulatory content they feature clusters of highly conserved non-coding elements distributed in regions spanning several Megabases, long and multiple CpG islands, bivalent promoter marks and statistically significant higher enrichment of enhancer mark around their gene loci. On the other hand nuclear receptor genes that are involved in tissue-specific roles lack these features, having simple transcriptional controls and a greater variety of mechanisms for producing paralogs. We further examine the

  19. Computational characterization of modes of transcriptional regulation of nuclear receptor genes.

    PubMed

    Sharma, Yogita; Chilamakuri, Chandra Sekhar Reddy; Bakke, Marit; Lenhard, Boris

    2014-01-01

    Nuclear receptors are a large structural class of transcription factors that act with their co-regulators and repressors to maintain a variety of biological and physiological processes such as metabolism, development and reproduction. They are activated through the binding of small ligands, which can be replaced by drug molecules, making nuclear receptors promising drug targets. Transcriptional regulation of the genes that encode them is central to gaining a deeper understanding of the diversity of their biochemical and biophysical roles and their role in disease and therapy. Even though they share evolutionary history, nuclear receptor genes have fundamentally different expression patterns, ranging from ubiquitously expressed to tissue-specific and spatiotemporally complex. However, current understanding of regulation in nuclear receptor gene family is still nascent. In this study, we investigate the relationship between long-range regulation of nuclear receptor family and their known functionality. Towards this goal, we identify the nuclear receptor genes that are potential targets based on counts of highly conserved non-coding elements. We validate our results using publicly available expression (RNA-seq) and histone modification (ChIP-seq) data from the ENCODE project. We find that nuclear receptor genes involved in developmental roles show strong evidence of long-range mechanism of transcription regulation with distinct cis-regulatory content they feature clusters of highly conserved non-coding elements distributed in regions spanning several Megabases, long and multiple CpG islands, bivalent promoter marks and statistically significant higher enrichment of enhancer mark around their gene loci. On the other hand nuclear receptor genes that are involved in tissue-specific roles lack these features, having simple transcriptional controls and a greater variety of mechanisms for producing paralogs. We further examine the combinatorial patterns of histone maps

  20. Characteristics of the mouse genomic histamine H1 receptor gene

    SciTech Connect

    Inoue, Isao; Taniuchi, Ichiro; Kitamura, Daisuke

    1996-08-15

    We report here the molecular cloning of a mouse histamine H1 receptor gene. The protein deduced from the nucleotide sequence is composed of 488 amino acid residues with characteristic properties of GTP binding protein-coupled receptors. Our results suggest that the mouse histamine H1 receptor gene is a single locus, and no related sequences were detected. Interspecific backcross analysis indicated that the mouse histamine H1 receptor gene (Hrh1) is located in the central region of mouse Chromosome 6 linked to microphthalmia (Mitfmi), ras-related fibrosarcoma oncogene 1 (Raf1), and ret proto-oncogene (Ret) in a region of homology with human chromosome 3p. 12 refs., 3 figs.

  1. Antidromic potential spread modulates the receptor responses in the stretch receptor neurons of the crayfish.

    PubMed

    Purali, Nuhan

    2011-12-01

    The effects of antidromic potential spread were investigated in the stretch receptor neurons of the crayfish. Current and potential responses to conductance changes were recorded in the dynamic clamp condition and compared to those obtained by using some conventional clamp methods and a compartmental neuron model. An analogue circuit was used for dynamic calculation of the injected receptor current as a function of the membrane potential and the given conductance change. Alternatively, receptor current responses to a mechanical stimulus were recorded and compared when the cell was voltage clamped to a previously recorded impulse wave form and the resting potential, respectively. Under dynamic clamp, the receptor current had an oscillating waveform which contrasts with the conventional recordings. Frequency, amplitude and sign of the oscillations were dependent on the applied conductance level, reversal potential and electrotonic attenuation. Mean current amplitude and frequency of the evoked impulse responses were smaller under dynamic clamp, especially for large conductance increases. However, firing frequency was larger if plotted against the mean current response. Recorded responses were similar to those calculated in the model. It was not possible to evoke any adaptation in the slowly adapting neuron by using the dynamic clamp. Evoked potential change served as a self limiting response, preventing the depolarization block. However, impulse duration was significantly shorter in the rapidly adapting neuron when the dynamic clamp was used. It was concluded that, in the stretch receptor neurons during a conductance increase, antidromic potential spread modulates the receptor responses and contributes to adaptation.

  2. Prolactin receptor and signal transduction to milk protein genes

    SciTech Connect

    Djiane, J.; Daniel, N.; Bignon, C.

    1994-06-01

    After cloning of the mammary gland prolactin (PRL) receptor cDNA, a functional assay was established using co-transfection of PRL receptor cDNA together with a milk protein promoter/chloramphenicol acetyl transferase (CAT) construct in Chinese hamster ovary (CHO) cells. Different mutants of the PRL receptor were tested in this CAT assay to delimit the domains in the receptor necessary for signal transduction to milk protein genes. In CHO cells stably transfected with PRL receptor cDNA, high numbers of PRL receptor are expressed. By metabolic labeling and immunoprecipitation, expressed PRL receptor was identified as a single species of 100 kDa. Using these cells, we analyzed the effects of PRL on intracellular free Ca{sup ++} concentration. PRL stimulates Ca{sup ++} entry and induces secondary Ca{sup ++} mobilization. The entry of Ca{sup ++} is a result of an increase in K{sup +} conductance that hyperpolarizes the membranes. We have also analyzed tyrosine phosphorylation induced by PRL. In CHO cells stably transfected with PRL receptor cDNA, PRL induced a very rapid and transient tyrosine phosphorylation of a 100-kDa protein which is most probably the PRL receptor. The same finding was obtained in mammary membranes after PRL injection to lactating rabbits. Whereas tyrosine kinase inhibitors genistein and lavendustin were without effect, PRL stimulation of milk protein gene promoters was partially inhibited by 2 {mu}M herbimycin in CHO cells co-transfected with PRL receptor cDNA and the {Beta} lactoglobulin CAT construct. Taken together these observations indicate that the cytoplasmic domain of the PRL receptor interacts with one or several tyrosine kinases, which may represent early postreceptor events necessary for PRL signal transduction to milk protein genes. 14 refs., 4 figs.

  3. Transient receptor potential (TRP) channels: a clinical perspective

    PubMed Central

    Kaneko, Yosuke; Szallasi, Arpad

    2014-01-01

    Transient receptor potential (TRP) channels are important mediators of sensory signals with marked effects on cellular functions and signalling pathways. Indeed, mutations in genes encoding TRP channels are the cause of several inherited diseases in humans (the so-called ‘TRP channelopathies’) that affect the cardiovascular, renal, skeletal and nervous systems. TRP channels are also promising targets for drug discovery. The initial focus of research was on TRP channels that are expressed on nociceptive neurons. Indeed, a number of potent, small-molecule TRPV1, TRPV3 and TRPA1 antagonists have already entered clinical trials as novel analgesic agents. There has been a recent upsurge in the amount of work that expands TRP channel drug discovery efforts into new disease areas such as asthma, cancer, anxiety, cardiac hypertrophy, as well as obesity and metabolic disorders. A better understanding of TRP channel functions in health and disease should lead to the discovery of first-in-class drugs for these intractable diseases. With this review, we hope to capture the current state of this rapidly expanding and changing field. LINKED ARTICLES This article is part of a themed section on the pharmacology of TRP channels. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-10 PMID:24102319

  4. Transient receptor potential (TRP) channel function in the reproductive axis.

    PubMed

    Götz, Viktoria; Qiao, Sen; Beck, Andreas; Boehm, Ulrich

    2017-05-03

    Transient receptor potential (TRP) channels play important functional roles in the signal transduction machinery of hormone-secreting cells and have recently been implicated in reproductive physiology. While expression studies have demonstrated TRP channel expression at all levels of the hypothalamic-pituitary-gonadal (hpg) axis, functional details about TRP channel action at the level of the individual cells controlling reproduction are just beginning to emerge. Canonical TRP (TRPC) channels are prominently expressed in the reproductive center of the neuroendocrine brain, i.e. in kisspeptin and gonadotropin-releasing hormone (GnRH) neurons. Kisspeptin neurons are depolarized by leptin via activation of TRPC channels and kisspeptin depolarizes GnRH neurons through TRPC4 activation. Recent studies have functionally identified TRPC channels also in gonadotrope cells in the anterior pituitary gland, which secrete gonadotropins in response to GnRH and thus regulate gonadal function. TRP channel expression in these cells exhibits remarkable plasticity and depends on the hormonal status of the animal. Subsequent functional analyses have demonstrated that TRPC5 in gonadotropes contributes to depolarization of the plasma membrane upon GnRH stimulation and increases the intracellular Ca(2+) concentration via its own Ca(2+) permeability and via the activation of voltage-gated Ca(2+) channels. However, conditional gene targeting experiments will be needed to unambiguously dissect the physiological role of TRPC channels in the different cell types of the reproductive axis in vivo. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Dopamine receptor gene expression by enkephalin neurons in rat forebrain

    SciTech Connect

    Le Moine, C.; Normand, E.; Guitteny, A.F.; Fouque, B.; Teoule, R.; Bloch, B. )

    1990-01-01

    In situ hybridization experiments were performed with brain sections from normal, control and haloperidol-treated rats to identify and map the cells expressing the D2 dopamine receptor gene. D2 receptor mRNA was detected with radioactive or biotinylated oligonucleotide probes. D2 receptor mRNA was present in glandular cells of the pituitary intermediate lobe and in neurons of the substantia nigra, ventral tegmental area, and forebrain, especially in caudate putamen, nucleus accumbens, olfactory tubercle, and piriform cortex. Hybridization with D2 and preproenkephalin A probes in adjacent sections, as well as combined hybridization with the two probes in the same sections, demonstrated that all detectable enkephalin neurons in the striatum contained the D2 receptor mRNA. Large neurons in caudate putamen, which were unlabeled with the preproenkephalin A probe and which may have been cholinergic, also expressed the D2 receptor gene. Haloperidol treatment (14 or 21 days) provoked an increase in mRNA content for D2 receptor and preproenkephalin A in the striatum. This suggests that the increase in D2 receptor number observed after haloperidol treatment is due to increased activity of the D2 gene. These results indicate that in the striatum, the enkephalin neurons are direct targets for dopamine liberated from mesostriatal neurons.

  6. Structure of the human histamine H1 receptor gene.

    PubMed Central

    De Backer, M D; Loonen, I; Verhasselt, P; Neefs, J M; Luyten, W H

    1998-01-01

    Histamine H1 receptor expression has been reported to change in disorders such as allergic rhinitis, autoimmune myocarditis, rheumatoid arthritis and atherosclerosis. Here we report the isolation and characterization of genomic clones containing the 5' flanking (regulatory) region of the human histamine H1 receptor gene. An intron of approx. 5.8 kb was identified in the 5' untranslated region, which suggests that an entire subfamily of G-protein-coupled receptors may contain an intron immediately upstream of the start codon. The transcription initiation site was mapped by 5' rapid amplification of cDNA ends to a region 6.2 kb upstream of the start codon. Immediately upstream of the transcription start site a fragment of 1.85 kb was identified that showed promoter activity when placed upstream of a luciferase reporter gene and transiently transfected into cells expressing the histamine H1 receptor. The promoter sequence shares a number of characteristics with the promoter sequences of other G-protein-coupled receptor encoding genes, including binding sites for several transcription factors, and the absence of TATA and CAAT sequences at the appropriate locations. The promoter sequence described here differs from that reported previously [Fukui, Fujimoto, Mizuguchi, Sakamoto, Horio, Takai, Yamada and Ito (1994) Biochem. Biophys. Res. Commun. 201, 894-901] because the reported genomic clone was chimaeric. Furthermore our study provides evidence that the 3' untranslated region of the H1 receptor mRNA is much longer than previously accepted. Together, these findings provide a complete view of the structure of the human histamine H1 receptor gene. Both the coding region of the H1 receptor gene and its promoter region were independently mapped to chromosome 3p25. PMID:9794809

  7. Sphingosine-1-Phosphate Receptor-2 Antagonists: Therapeutic Potential and Potential Risks

    PubMed Central

    Blankenbach, Kira V.; Schwalm, Stephanie; Pfeilschifter, Josef; Meyer zu Heringdorf, Dagmar

    2016-01-01

    The sphingosine-1-phosphate (S1P) signaling system with its specific G-protein-coupled S1P receptors, the enzymes of S1P metabolism and the S1P transporters, offers a multitude of promising targets for drug development. Until today, drug development in this area has nearly exclusively focused on (functional) antagonists at the S1P1 receptor, which cause a unique phenotype of immunomodulation. Accordingly, the first-in class S1P1 receptor modulator, fingolimod, has been approved for the treatment of relapsing-remitting multiple sclerosis, and novel S1P1 receptor (functional) antagonists are being developed for autoimmune and inflammatory diseases such as psoriasis, inflammatory bowel disease, lupus erythematodes, or polymyositis. Besides the S1P1 receptor, also S1P2 and S1P3 are widely expressed and regulate many diverse functions throughout the body. The S1P2 receptor, in particular, often exerts cellular functions which are opposed to the functions of the S1P1 receptor. As a consequence, antagonists at the S1P2 receptor have the potential to be useful in a contrasting context and different areas of indication compared to S1P1 antagonists. The present review will focus on the therapeutic potential of S1P2 receptor antagonists and discuss their opportunities as well as their potential risks. Open questions and areas which require further investigations will be emphasized in particular. PMID:27445808

  8. Discoidin Domain Receptors: Potential Actors and Targets in Cancer.

    PubMed

    Rammal, Hassan; Saby, Charles; Magnien, Kevin; Van-Gulick, Laurence; Garnotel, Roselyne; Buache, Emilie; El Btaouri, Hassan; Jeannesson, Pierre; Morjani, Hamid

    2016-01-01

    The extracellular matrix critically controls cancer cell behavior by inducing several signaling pathways through cell membrane receptors. Besides conferring structural properties to tissues around the tumor, the extracellular matrix is able to regulate cell proliferation, survival, migration, and invasion. Among these receptors, the integrins family constitutes a major class of receptors that mediate cell interactions with extracellular matrix components. Twenty years ago, a new class of extracellular matrix receptors has been discovered. These tyrosine kinase receptors are the two discoidin domain receptors DDR1 and DDR2. DDR1 was first identified in the Dictyostelium discoideum and was shown to mediate cell aggregation. DDR2 shares highly conserved sequences with DDR1. Both receptors are activated upon binding to collagen, one of the most abundant proteins in extracellular matrix. While DDR2 can only be activated by fibrillar collagen, particularly types I and III, DDR1 is mostly activated by type I and IV collagens. In contrast with classical growth factor tyrosine kinase receptors which display a rapid and transient activation, DDR1 and DDR2 are unique in that they exhibit delayed and sustained receptor phosphorylation upon binding to collagen. Recent studies have reported differential expression and mutations of DDR1 and DDR2 in several cancer types and indicate clearly that these receptors have to be taken into account as new players in the different aspects of tumor progression, from non-malignant to highly malignant and invasive stages. This review will discuss the current knowledge on the role of DDR1 and DDR2 in malignant transformation, cell proliferation, epithelial to mesenchymal transition, migratory, and invasive processes, and finally the modulation of the response to chemotherapy. These new insights suggest that DDR1 and DDR2 are new potential targets in cancer therapy.

  9. Discoidin Domain Receptors: Potential Actors and Targets in Cancer

    PubMed Central

    Rammal, Hassan; Saby, Charles; Magnien, Kevin; Van-Gulick, Laurence; Garnotel, Roselyne; Buache, Emilie; El Btaouri, Hassan; Jeannesson, Pierre; Morjani, Hamid

    2016-01-01

    The extracellular matrix critically controls cancer cell behavior by inducing several signaling pathways through cell membrane receptors. Besides conferring structural properties to tissues around the tumor, the extracellular matrix is able to regulate cell proliferation, survival, migration, and invasion. Among these receptors, the integrins family constitutes a major class of receptors that mediate cell interactions with extracellular matrix components. Twenty years ago, a new class of extracellular matrix receptors has been discovered. These tyrosine kinase receptors are the two discoidin domain receptors DDR1 and DDR2. DDR1 was first identified in the Dictyostelium discoideum and was shown to mediate cell aggregation. DDR2 shares highly conserved sequences with DDR1. Both receptors are activated upon binding to collagen, one of the most abundant proteins in extracellular matrix. While DDR2 can only be activated by fibrillar collagen, particularly types I and III, DDR1 is mostly activated by type I and IV collagens. In contrast with classical growth factor tyrosine kinase receptors which display a rapid and transient activation, DDR1 and DDR2 are unique in that they exhibit delayed and sustained receptor phosphorylation upon binding to collagen. Recent studies have reported differential expression and mutations of DDR1 and DDR2 in several cancer types and indicate clearly that these receptors have to be taken into account as new players in the different aspects of tumor progression, from non-malignant to highly malignant and invasive stages. This review will discuss the current knowledge on the role of DDR1 and DDR2 in malignant transformation, cell proliferation, epithelial to mesenchymal transition, migratory, and invasive processes, and finally the modulation of the response to chemotherapy. These new insights suggest that DDR1 and DDR2 are new potential targets in cancer therapy. PMID:27014069

  10. GSNO Reductase and β2 Adrenergic Receptor Gene-gene Interaction: Bronchodilator Responsiveness to Albuterol

    PubMed Central

    Choudhry, Shweta; Que, Loretta G.; Yang, Zhonghui; Liu, Limin; Eng, Celeste; Kim, Sung O.; Kumar, Gunjan; Thyne, Shannon; Chapela, Rocio; Rodriguez-Santana, Jose R.; Rodriguez-Cintron, William; Avila, Pedro C.; Stamler, Jonathan S.; Burchard, Esteban G.

    2010-01-01

    Background Short-acting inhaled β2-agonists such as albuterol are used for bronchodilation and are the mainstay of asthma treatment worldwide. There is significant variation in bronchodilator responsiveness to albuterol not only between individuals but also across racial/ethnic groups. The β2-adrenergic receptor (β2AR) is the target for β2-agonist drugs. The enzyme S-nitrosoglutathione reductase (GSNOR), which regulates levels of the endogenous bronchodilator S-nitrosoglutathione, has been shown to modulate the response to β2-agonists. Objective We hypothesized that there are pharmacogenetic interactions between GSNOR and β2AR gene variants which are associated with variable response to albuterol. Methods We performed family-based analyses to test for association between GSNOR gene variants and asthma and related phenotypes in 609 Puerto Rican and Mexican families with asthma. In addition, we tested these subjects for pharmacogenetic interaction between GSNOR and β2AR gene variants and responsiveness to albuterol using linear regression. Cell transfection experiments were performed to test the potential effect of the GSNOR gene variants. Results Among Puerto Ricans, several GSNOR SNPs and a haplotype in the 3′UTR were significantly associated with increased risk for asthma and lower bronchodilator responsiveness (p = 0.04 to 0.007). The GSNOR risk haplotype affects expression of GSNOR mRNA and protein, suggesting a gain of function. Furthermore, gene-gene interaction analysis provided evidence of pharmacogenetic interaction between GSNOR and β2AR gene variants and the response to albuterol in Puerto Rican (p = 0.03), Mexican (p = 0.15) and combined Puerto Rican and Mexican asthmatics (p = 0.003). Specifically, GSNOR+17059*β2AR+46 genotype combinations (TG+GG*AG and TG+GG*GG) were associated with lower bronchodilator response. Conclusion Genotyping of GSNOR and β2AR genes may be a useful in identifying Latino subjects, who might benefit from adjuvant

  11. Identification of a null mutation in the human dopamine D4 receptor gene

    SciTech Connect

    Noethen, M.M.; Cichon, S.; Hebebrand, J.

    1994-09-01

    Dopamine receptors belong to the family of G protein-coupled receptors. Five different dopamine receptor genes have thus far been identified. These receptors are classified into two main subfamilies: D1, which includes the D1 and D5 receptors, and D2, which includes the D2, D3, and D4 receptors. The dopamine D4 receptor is of great interest for research into neuropsychiatric disorders and psychopharmacology in light of the fact that it binds the antipsychotic medication clozapine with higher affinity than does any other dopamine receptor. In addition, among the dopamine receptors, the D4 receptor shows a uniquely high degree of genetic variation in the human population. We identified a new 13 bp deletion in exon 1 of the D4 gene. This frameshift creates a terminator codon at amino acid position 98. mRNA isolated from brain tissue of two heterozygous persons showed both alleles to be expressed. The deletion occurs with a frequency of 2% in the German population. One person was identified to be homozygous for the deletion. Interestingly, he has a normal intelligence and did not exhibit a major psychiatric disorder as defined by DSM III-R. The 13 bp deletion is the first mutation resulting in premature translation termination reported for a dopamine receptor gene so far. This mutation is a good candidate to test for potential effects on disease and/or individual response to pharmacotherapy. Association studies in patients with various psychiatric illnesses and differences in response to clozapine are underway.

  12. Sigma-2 Receptor as Potential Indicator of Stem Cell Differentiation

    PubMed Central

    Haller, Jodi L.; Panyutin, Irina; Chaudhry, Aneeka; Zeng, Chenbo; Mach, Robert H.; Frank, Joseph A.

    2011-01-01

    Purpose The sigma-2 (σ2) receptor is a potential biomarker of proliferative status of solid tumors. Specific synthetic probes using N-substituted-9-azabicyclo[3.3.1]nonan-3α-yl carbamate analogs have been designed and implemented for experimental cancer diagnosis and therapy. Procedures We employed the fluorescently-labeled σ2 receptor probe, SW120, to evaluate σ2 receptor expression in human stem cells (SC), including: bone marrow stromal (BMSC), neural progenitor (NPC), amniotic fluid (AFSC), hematopoetic (HSC) and embryonic stem cells (ESC). We concurrently evaluated the intensity of SW120 and 5-ethynyl-2′-deoxyuridine (EdU) relative to passage number and multipotency. Results We substantiated significantly higher σ2 receptor density among proliferating SC relative to lineage-restricted cell types. Additionally, cellular internalization of the σ2 receptor in SC was consistent with receptor-mediated endocytosis and confocal microscopy indicated SW120 specific co-localization with a fluorescent marker of lysosomes in all SC imaged. Conclusion These results suggest that σ2 receptors may serve to monitor stem cell differentiation in future experimental studies. PMID:21614680

  13. Transient Receptor Potential Ion Channels Control Thermoregulatory Behaviour in Reptiles

    PubMed Central

    Seebacher, Frank; Murray, Shauna A.

    2007-01-01

    Biological functions are governed by thermodynamics, and animals regulate their body temperature to optimise cellular performance and to avoid harmful extremes. The capacity to sense environmental and internal temperatures is a prerequisite for the evolution of thermoregulation. However, the mechanisms that enable ectothermic vertebrates to sense heat remain unknown. The recently discovered thermal characteristics of transient receptor potential ion channels (TRP) render these proteins suitable to act as temperature sensors. Here we test the hypothesis that TRPs are present in reptiles and function to control thermoregulatory behaviour. We show that the hot-sensing TRPV1 is expressed in a crocodile (Crocodylus porosus), an agamid (Amphibolurus muricatus) and a scincid (Pseudemoia entrecasteauxii) lizard, as well as in the quail and zebrafinch (Coturnix chinensis and Poephila guttata). The TRPV1 genes from all reptiles form a unique clade that is delineated from the mammalian and the ancestral Xenopus sequences by an insertion of two amino acids. TRPV1 and the cool-sensing TRPM8 are expressed in liver, muscle (transversospinalis complex), and heart tissues of the crocodile, and have the potential to act as internal thermometer and as external temperatures sensors. Inhibition of TRPV1 and TRPM8 in C. porosus abolishes the typically reptilian shuttling behaviour between cooling and heating environments, and leads to significantly altered body temperature patterns. Our results provide the proximate mechanism of thermal selection in terrestrial ectotherms, which heralds a fundamental change in interpretation, because TRPs provide the mechanism for a tissue-specific input into the animals' thermoregulatory response. PMID:17356692

  14. Optimizing T-cell receptor gene therapy for hematologic malignancies

    PubMed Central

    Morris, Emma C.

    2016-01-01

    Recent advances in genetic engineering have enabled the delivery of clinical trials using patient T cells redirected to recognize tumor-associated antigens. The most dramatic results have been seen with T cells engineered to express a chimeric antigen receptor (CAR) specific for CD19, a differentiation antigen expressed in B cells and B lineage malignancies. We propose that antigen expression in nonmalignant cells may contribute to the efficacy of T-cell therapy by maintaining effector function and promoting memory. Although CAR recognition is limited to cell surface structures, T-cell receptors (TCRs) can recognize intracellular proteins. This not only expands the range of tumor-associated self-antigens that are amenable for T-cell therapy, but also allows TCR targeting of the cancer mutagenome. We will highlight biological bottlenecks that potentially limit mutation-specific T-cell therapy and may require high-avidity TCRs that are capable of activating effector function when the concentrations of mutant peptides are low. Unexpectedly, modified TCRs with artificially high affinities function poorly in response to low concentration of cognate peptide but pose an increased safety risk as they may respond optimally to cross-reactive peptides. Recent gene-editing tools, such as transcription activator–like effector nucleases and clustered regularly interspaced short palindromic repeats, provide a platform to delete endogenous TCR and HLA genes, which removes alloreactivity and decreases immunogenicity of third-party T cells. This represents an important step toward generic off-the-shelf T-cell products that may be used in the future for the treatment of large numbers of patients. PMID:27207802

  15. The Mouse Solitary Odorant Receptor Gene Promoters as Models for the Study of Odorant Receptor Gene Choice

    PubMed Central

    Degl'Innocenti, Andrea

    2016-01-01

    Background In vertebrates, several anatomical regions located within the nasal cavity mediate olfaction. Among these, the main olfactory epithelium detects most conventional odorants. Olfactory sensory neurons, provided with cilia exposed to the air, detect volatile chemicals via an extremely large family of seven-transmembrane chemoreceptors named odorant receptors. Their genes are expressed in a monogenic and monoallelic fashion: a single allele of a single odorant receptor gene is transcribed in a given mature neuron, through a still uncharacterized molecular mechanism known as odorant receptor gene choice. Aim Odorant receptor genes are typically arranged in genomic clusters, but a few are isolated (we call them solitary) from the others within a region broader than 1 Mb upstream and downstream with respect to their transcript's coordinates. The study of clustered genes is problematic, because of redundancy and ambiguities in their regulatory elements: we propose to use the solitary genes as simplified models to understand odorant receptor gene choice. Procedures Here we define number and identity of the solitary genes in the mouse genome (C57BL/6J), and assess the conservation of the solitary status in some mammalian orthologs. Furthermore, we locate their putative promoters, predict their homeodomain binding sites (commonly present in the promoters of odorant receptor genes) and compare candidate promoter sequences with those of wild-caught mice. We also provide expression data from histological sections. Results In the mouse genome there are eight intact solitary genes: Olfr19 (M12), Olfr49, Olfr266, Olfr267, Olfr370, Olfr371, Olfr466, Olfr1402; five are conserved as solitary in rat. These genes are all expressed in the main olfactory epithelium of three-day-old mice. The C57BL/6J candidate promoter of Olfr370 has considerably varied compared to its wild-type counterpart. Within the putative promoter for Olfr266 a homeodomain binding site is predicted. As a

  16. Regulation of antigen-receptor gene assembly in hagfish.

    PubMed

    Kishishita, Natsuko; Matsuno, Tatsuya; Takahashi, Yoshimasa; Takaba, Hiroyuki; Nishizumi, Hirofumi; Nagawa, Fumikiyo

    2010-02-01

    Variable lymphocyte receptors (VLRs) are antigen receptors in the jawless vertebrates lamprey and hagfish. VLR genes are classified into VLRA and VLRB, and lymphocytes expressing VLRA are T-cell-like, whereas those expressing VLRB are B-cell-like in the sea lamprey. Diverse VLR genes are assembled somatically in lymphocytes; however, how the assembly is regulated is still largely unknown. Here, we analyse VLR gene assembly at the single-cell level in the inshore hagfish (Eptatretus burgeri). Each lymphocyte assembles and transcribes only one type of VLR gene, either VLRA or VLRB. In general, monoallelic assembly of VLR was observed, but diallelic assembly was found in some cases--in many of which, one allele was functional and the other was defective. In fact, all VLR-assembled lymphocytes contained at least one functional VLR gene. Together, these results indicate a feedback inhibition of VLR assembly and selection of VLR-positive lymphocytes.

  17. Regulation of antigen-receptor gene assembly in hagfish

    PubMed Central

    Kishishita, Natsuko; Matsuno, Tatsuya; Takahashi, Yoshimasa; Takaba, Hiroyuki; Nishizumi, Hirofumi; Nagawa, Fumikiyo

    2010-01-01

    Variable lymphocyte receptors (VLRs) are antigen receptors in the jawless vertebrates lamprey and hagfish. VLR genes are classified into VLRA and VLRB, and lymphocytes expressing VLRA are T-cell-like, whereas those expressing VLRB are B-cell-like in the sea lamprey. Diverse VLR genes are assembled somatically in lymphocytes; however, how the assembly is regulated is still largely unknown. Here, we analyse VLR gene assembly at the single-cell level in the inshore hagfish (Eptatretus burgeri). Each lymphocyte assembles and transcribes only one type of VLR gene, either VLRA or VLRB. In general, monoallelic assembly of VLR was observed, but diallelic assembly was found in some cases—in many of which, one allele was functional and the other was defective. In fact, all VLR-assembled lymphocytes contained at least one functional VLR gene. Together, these results indicate a feedback inhibition of VLR assembly and selection of VLR-positive lymphocytes. PMID:20075989

  18. Adenosine receptor modulation: potential implications in veterinary medicine.

    PubMed

    Dip, Ramiro G

    2009-01-01

    Adenosine is a purine nucleoside whose concentration increases during inflammation and hypoxia and the many roles of this molecule are becoming better understood. Increased reactivity to adenosine of the airways of asthmatic but not of normal subjects underlines the role of adenosine in airway inflammation. The identification and pharmacological characterisation of different adenosine receptors have stimulated the search for subtype-specific ligands able to modulate the effects of this molecule in a directed way. Several compounds of different chemical classes have been identified as having potential drawbacks, including side effects resulting from the broad distribution of the receptors across the organism, have prevented clinical application. In this article, the effects of adenosine's different receptors and the intracellular signalling pathways are reviewed. The potential of adenosine receptor modulation as a therapeutic target for chronic airway inflammation is considered, taking equine recurrent airway disease and feline asthma as examples of naturally occurring airway obstructive diseases. Other potential applications for adenosine receptor modulation are also discussed. As the intrinsic molecular events of adenosine's mechanism of action become uncovered, new concrete therapeutic approaches will become available for the treatment of various conditions in veterinary medicine.

  19. Expression of androgen receptor target genes in skeletal muscle.

    PubMed

    Rana, Kesha; Lee, Nicole K L; Zajac, Jeffrey D; MacLean, Helen E

    2014-01-01

    We aimed to determine the mechanisms of the anabolic actions of androgens in skeletal muscle by investigating potential androgen receptor (AR)-regulated genes in in vitro and in vivo models. The expression of the myogenic regulatory factor myogenin was significantly decreased in skeletal muscle from testosterone-treated orchidectomized male mice compared to control orchidectomized males, and was increased in muscle from male AR knockout mice that lacked DNA binding activity (AR(ΔZF2)) versus wildtype mice, demonstrating that myogenin is repressed by the androgen/AR pathway. The ubiquitin ligase Fbxo32 was repressed by 12 h dihydrotestosterone treatment in human skeletal muscle cell myoblasts, and c-Myc expression was decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle, and increased in AR(∆ZF2) muscle. The expression of a group of genes that regulate the transition from myoblast proliferation to differentiation, Tceal7 , p57(Kip2), Igf2 and calcineurin Aa, was increased in AR(∆ZF2) muscle, and the expression of all but p57(Kip2) was also decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle. We conclude that in males, androgens act via the AR in part to promote peak muscle mass by maintaining myoblasts in the proliferative state and delaying the transition to differentiation during muscle growth and development, and by suppressing ubiquitin ligase-mediated atrophy pathways to preserve muscle mass in adult muscle.

  20. Estradiol Sensitizes the Transient Receptor Potential Vanilloid 1 Receptor in Pain Responses.

    PubMed

    Payrits, Maja; Sághy, Éva; Cseko, Kata; Pohóczky, Krisztina; Bölcskei, Kata; Ernszt, Dávid; Barabás, Klaudia; Szolcsányi, János; Ábrahám, István M; Helyes, Zsuzsanna; Szoke, Éva

    2017-10-01

    Sex differences exist in chronic pain pathologies, and gonadal estradiol (E2) alters the pain sensation. The nocisensor transient receptor potential vanilloid 1 (TRPV1) receptor plays a critical role in triggering pain. Here we examined the impact of E2 on the function of TRPV1 receptor in mice sensory neurons in vitro and in vivo. Both mechano- and thermonociceptive thresholds of the plantar surface of the paw of female mice were significantly lower in proestrus compared with the estrus phase. These thresholds were higher in ovariectomized (OVX) mice and significantly lower in sham-operated mice in proestrus compared with the sham-operated mice in estrus phase. This difference was absent in TRPV1 receptor-deficient mice. Furthermore, E2 potentiated the TRPV1 receptor activation-induced mechanical hyperalgesia in OVX mice. Long pretreatment (14 hours) with E2 induced a significant increase in TRPV1 receptor messenger RNA expression and abolished the capsaicin-induced TRPV1 receptor desensitization in primary sensory neurons. The short E2 incubation (10 minutes) also prevented the desensitization, which reverted after coadministration of E2 and the tropomyosin-related kinase A (TrkA) receptor inhibitor. Our study provides in vivo and in vitro evidence for E2-induced TRPV1 receptor upregulation and sensitization mediated by TrkAR via E2-induced genomic and nongenomic mechanisms. The sensitization and upregulation of TRPV1 receptor by E2 in sensory neurons may explain the greater pain sensitivity in female mice. Copyright © 2017 Endocrine Society.

  1. Androgen receptor gene mutation, rearrangement, polymorphism

    PubMed Central

    Eisermann, Kurtis; Wang, Dan; Jing, Yifeng; Pascal, Laura E.

    2013-01-01

    Genetic aberrations of the androgen receptor (AR) caused by mutations, rearrangements, and polymorphisms result in a mutant receptor that has varied functions compared to wild type AR. To date, over 1,000 mutations have been reported in the AR with most of these being associated with androgen insensitivity syndrome (AIS). While mutations of AR associated with prostate cancer occur less often in early stage localized disease, mutations in castration-resistant prostate cancer (CRPC) patients treated with anti-androgens occur more frequently with 10-30% of these patients having some form of mutation in the AR. Resistance to anti-androgen therapy usually results from gain-of-function mutations in the LBD such as is seen with bicalutamide and more recently with enzalutamide (MDV3100). Thus, it is crucial to investigate these new AR mutations arising from drug resistance to anti-androgens and other small molecule pharmacological agents. PMID:25045626

  2. Mouse T-cell receptor variable gene segment families

    SciTech Connect

    Arden, B.; Kabelitz, D.; Clark, S.P.; Mak, T.W.

    1995-10-01

    All mouse T-cell receptor {alpha}/{delta}, {beta}, and {gamma} variable (Tcra/d-, b-, and g-V) gene segments were aligned to compare the sequences with one another, to group them into subfamilies, and to derive a name which complies with the standard nomenclature. it was necessary to change the names of some V gene segments because they conflicted with those of other segments. The traditional classification into subfamilies was re-evaluated using a much larger pool of sequences. In the mouse, most V gene segments can be grouped into subfamilies of closely related genes with significantly less similarity between different subfamilies. 118 refs., 11 figs., 4 tabs.

  3. From "junk" to gene: curriculum vitae of a primate receptor isoform gene.

    PubMed

    Singer, Silke S; Männel, Daniela N; Hehlgans, Thomas; Brosius, Jürgen; Schmitz, Jürgen

    2004-08-20

    Exonization of Alu retroposons awakens public opinion, particularly when causing genetic diseases. However, often neglected, alternative "Alu-exons" also carry the potential to greatly enhance genetic diversity by increasing the transcriptome of primates chiefly via alternative splicing.Here, we report a 5' exon generated from one of the two alternative transcripts in human tumor necrosis factor receptor gene type 2 (p75TNFR) that contains an ancient Alu-SINE, which provides an alternative N-terminal protein-coding domain. We follow the primate evolution over the past 63 million years to reconstruct the key events that gave rise to a novel receptor isoform. The Alu integration and start codon formation occurred between 58 and 40 million years ago (MYA) in the common ancestor of anthropoid primates. Yet a functional gene product could not be generated until a novel splice site and an open reading frame were introduced between 40 and 25 MYA on the catarrhine lineage (Old World monkeys including apes).

  4. Diversification of the ant odorant receptor gene family and positive selection on candidate cuticular hydrocarbon receptors.

    PubMed

    Engsontia, Patamarerk; Sangket, Unitsa; Robertson, Hugh M; Satasook, Chutamas

    2015-08-27

    Chemical communication plays important roles in the social behavior of ants making them one of the most successful groups of animals on earth. However, the molecular evolutionary process responsible for their chemosensory adaptation is still elusive. Recent advances in genomic studies have led to the identification of large odorant receptor (Or) gene repertoires from ant genomes providing fruitful materials for molecular evolution analysis. The aim of this study was to test the hypothesis that diversification of this gene family is involved in olfactory adaptation of each species. We annotated the Or genes from the genome sequences of two leaf-cutter ants, Acromyrmex echinatior and Atta cephalotes (385 and 376 putative functional genes, respectively). These were used, together with Or genes from Camponotus floridanus, Harpegnathos saltator, Pogonomyrmex barbatus, Linepithema humile, Cerapachys biroi, Solenopsis invicta and Apis mellifera, in molecular evolution analysis. Like the Or family in other insects, ant Or genes evolve by the birth-and-death model of gene family evolution. Large gene family expansions involving tandem gene duplications, and gene gains outnumbering losses, are observed. Codon analysis of genes in lineage-specific expansion clades revealed signatures of positive selection on the candidate cuticular hydrocarbon receptor genes (9-exon subfamily) of Cerapachys biroi, Camponotus floridanus, Acromyrmex echinatior and Atta cephalotes. Positively selected amino acid positions are primarily in transmembrane domains 3 and 6, which are hypothesized to contribute to the odor-binding pocket, presumably mediating changing ligand specificity. This study provides support for the hypothesis that some ant lineage-specific Or genes have evolved under positive selection. Newly duplicated genes particularly in the candidate cuticular hydrocarbon receptor clade that have evolved under positive selection may contribute to the highly sophisticated lineage

  5. The nuclear receptor gene family in the Pacific oyster, Crassostrea gigas, contains a novel subfamily group.

    PubMed

    Vogeler, Susanne; Galloway, Tamara S; Lyons, Brett P; Bean, Tim P

    2014-05-15

    Nuclear receptors are a superfamily of transcription factors important in key biological, developmental and reproductive processes. Several of these receptors are ligand- activated and through their ability to bind endogenous and exogenous ligands, are potentially vulnerable to xenobiotics. Molluscs are key ecological species in defining aquatic and terrestrial habitats and are sensitive to xenobiotic compounds in the environment. However, the understanding of nuclear receptor presence, function and xenobiotic disruption in the phylum Mollusca is limited. Here, forty-three nuclear receptor sequences were mined from the genome of the Pacific oyster, Crassostrea gigas. They include members of NR0-NR5 subfamilies, notably lacking any NR6 members. Phylogenetic analyses of the oyster nuclear receptors have been conducted showing the presence of a large novel subfamily group not previously reported, which is named NR1P. Homologues to all previous identified nuclear receptors in other mollusc species have also been determined including the putative heterodimer partner retinoid X receptor, estrogen receptor and estrogen related receptor. C. gigas contains a highly diverse set of nuclear receptors including a novel NR1 group, which provides important information on presence and evolution of this transcription factor superfamily in invertebrates. The Pacific oyster possesses two members of NR3, the sex steroid hormone receptor analogues, of which there are 9 in humans. This provides increasing evidence that steroid ligand specific expansion of this family is deuterostome specific. This new knowledge on divergence and emergence of nuclear receptors in C. gigas provides essential information for studying regulation of molluscan gene expression and the potential effects of xenobiotics.

  6. A novel olfactory receptor gene family in teleost fish.

    PubMed

    Saraiva, Luis R; Korsching, Sigrun I

    2007-10-01

    While for two of three mammalian olfactory receptor families (OR and V2R) ortholog teleost families have been identified, the third family (V1R) has been thought to be represented by a single, closely linked gene pair. We identified four further V1R-like genes in every teleost species analyzed (Danio rerio, Gasterosteus aculeatus, Oryzias latipes, Tetraodon nigroviridis, Takifugu rubripes). In the phylogenetic analysis these ora genes (olfactory receptor class A-related) form a single clade, which includes the entire mammalian V1R superfamily. Homologies are much lower in paralogs than in orthologs, indicating that all six family members are evolutionarily much older than the speciation events in the teleost lineage analyzed here. These ora genes are under strong negative selection, as evidenced by very small d(N)/d(S) values in comparisons between orthologs. A pairwise configuration in the phylogenetic tree suggests the existence of three ancestral Ora subclades, one of which has been lost in amphibia, and a further one in mammals. Unexpectedly, two ora genes exhibit a highly conserved multi-exonic structure and four ora genes are organized in closely linked gene pairs across all fish species studied. All ora genes are expressed specifically in the olfactory epithelium of zebrafish, in sparse cells within the sensory surface, consistent with the expectation for olfactory receptors. The ora gene repertoire is highly conserved across teleosts, in striking contrast to the frequent species-specific expansions observed in tetrapod, especially mammalian V1Rs, possibly reflecting a major shift in gene regulation as well as gene function upon the transition to tetrapods.

  7. Vestibular receptors contribute to cortical auditory evoked potentials.

    PubMed

    Todd, Neil P M; Paillard, Aurore C; Kluk, Karolina; Whittle, Elizabeth; Colebatch, James G

    2014-03-01

    Acoustic sensitivity of the vestibular apparatus is well-established, but the contribution of vestibular receptors to the late auditory evoked potentials of cortical origin is unknown. Evoked potentials from 500 Hz tone pips were recorded using 70 channel EEG at several intensities below and above the vestibular acoustic threshold, as determined by vestibular evoked myogenic potentials (VEMPs). In healthy subjects both auditory mid- and long-latency auditory evoked potentials (AEPs), consisting of Na, Pa, N1 and P2 waves, were observed in the sub-threshold conditions. However, in passing through the vestibular threshold, systematic changes were observed in the morphology of the potentials and in the intensity dependence of their amplitude and latency. These changes were absent in a patient without functioning vestibular receptors. In particular, for the healthy subjects there was a fronto-central negativity, which appeared at about 42 ms, referred to as an N42, prior to the AEP N1. Source analysis of both the N42 and N1 indicated involvement of cingulate cortex, as well as bilateral superior temporal cortex. Our findings are best explained by vestibular receptors contributing to what were hitherto considered as purely auditory evoked potentials and in addition tentatively identify a new component that appears to be primarily of vestibular origin.

  8. Natural Killer Cell Receptor Genes in the Family Equidae: Not only Ly49

    PubMed Central

    Futas, Jan; Horin, Petr

    2013-01-01

    Natural killer (NK) cells have important functions in immunity. NK recognition in mammals can be mediated through killer cell immunoglobulin-like receptors (KIR) and/or killer cell lectin-like Ly49 receptors. Genes encoding highly variable NK cell receptors (NKR) represent rapidly evolving genomic regions. No single conservative model of NKR genes was observed in mammals. Single-copy low polymorphic NKR genes present in one mammalian species may expand into highly polymorphic multigene families in other species. In contrast to other non-rodent mammals, multiple Ly49-like genes appear to exist in the horse, while no functional KIR genes were observed in this species. In this study, Ly49 and KIR were sought and their evolution was characterized in the entire family Equidae. Genomic sequences retrieved showed the presence of at least five highly conserved polymorphic Ly49 genes in horses, asses and zebras. These findings confirmed that the expansion of Ly49 occurred in the entire family. Several KIR-like sequences were also identified in the genome of Equids. Besides a previously identified non-functional KIR-Immunoglobulin-like transcript fusion gene (KIR-ILTA) and two putative pseudogenes, a KIR3DL-like sequence was analyzed. In contrast to previous observations made in the horse, the KIR3DL sequence, genomic organization and mRNA expression suggest that all Equids might produce a functional KIR receptor protein molecule with a single non-mutated immune tyrosine-based inhibition motif (ITIM) domain. No evidence for positive selection in the KIR3DL gene was found. Phylogenetic analysis including rhinoceros and tapir genomic DNA and deduced amino acid KIR-related sequences showed differences between families and even between species within the order Perissodactyla. The results suggest that the order Perissodactyla and its family Equidae with expanded Ly49 genes and with a potentially functional KIR gene may represent an interesting model for evolutionary biology of

  9. Natural killer cell receptor genes in the family Equidae: not only Ly49.

    PubMed

    Futas, Jan; Horin, Petr

    2013-01-01

    Natural killer (NK) cells have important functions in immunity. NK recognition in mammals can be mediated through killer cell immunoglobulin-like receptors (KIR) and/or killer cell lectin-like Ly49 receptors. Genes encoding highly variable NK cell receptors (NKR) represent rapidly evolving genomic regions. No single conservative model of NKR genes was observed in mammals. Single-copy low polymorphic NKR genes present in one mammalian species may expand into highly polymorphic multigene families in other species. In contrast to other non-rodent mammals, multiple Ly49-like genes appear to exist in the horse, while no functional KIR genes were observed in this species. In this study, Ly49 and KIR were sought and their evolution was characterized in the entire family Equidae. Genomic sequences retrieved showed the presence of at least five highly conserved polymorphic Ly49 genes in horses, asses and zebras. These findings confirmed that the expansion of Ly49 occurred in the entire family. Several KIR-like sequences were also identified in the genome of Equids. Besides a previously identified non-functional KIR-Immunoglobulin-like transcript fusion gene (KIR-ILTA) and two putative pseudogenes, a KIR3DL-like sequence was analyzed. In contrast to previous observations made in the horse, the KIR3DL sequence, genomic organization and mRNA expression suggest that all Equids might produce a functional KIR receptor protein molecule with a single non-mutated immune tyrosine-based inhibition motif (ITIM) domain. No evidence for positive selection in the KIR3DL gene was found. Phylogenetic analysis including rhinoceros and tapir genomic DNA and deduced amino acid KIR-related sequences showed differences between families and even between species within the order Perissodactyla. The results suggest that the order Perissodactyla and its family Equidae with expanded Ly49 genes and with a potentially functional KIR gene may represent an interesting model for evolutionary biology of

  10. Activation of Group I Metabotropic Glutamate Receptors Potentiates Heteromeric Kainate Receptors

    PubMed Central

    Wetherington, Jonathon; Shaw, Renee; Serrano, Geidy; Swanger, Sharon; Dingledine, Raymond

    2013-01-01

    Kainate receptors (KARs), a family of ionotropic glutamate receptors, are widely expressed in the central nervous system and are critically involved in synaptic transmission. KAR activation is influenced by metabotropic glutamate receptor (mGlu) signaling, but the underlying mechanisms are not understood. We undertook studies to examine how mGlu modulation affects activation of KARs. Confocal immunohistochemistry of rat hippocampus and cultured rat cortex revealed colocalization of the high-affinity KAR subunits with group I mGlu receptors. In hippocampal and cortical cultures, the calcium signal caused by activation of native KARs was potentiated by activation of group I mGlu receptors. In Xenopus laevis oocytes, activation of group I mGlu receptors potentiated heteromeric but not homomeric KAR-mediated currents, with no change in agonist potency. The potentiation of heteromeric KARs by mGlu1 activation was attenuated by GDPβS, blocked by an inhibitor of phospholipase C or the calcium chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA), prolonged by the phosphatase inhibitor okadaic acid, but unaffected by the tyrosine kinase inhibitor lavendustin A. Protein kinase C (PKC) inhibition reduced the potentiation by mGlu1 of GluK2/GluK5, and conversely, direct activation of PKC by phorbol 12-myristate,13-acetate potentiated GluK2/GluK5. Using site-directed mutagenesis, we identified three serines (Ser833, Ser836, and Ser840) within the membrane proximal region of the GluK5 C-terminal domain that, in combination, are required for mGlu1-mediated potentiation of KARs. Together, these data suggest that phosphorylation of key residues in the C-terminal domain changes the overall charge of this domain, resulting in potentiated agonist responses. PMID:23066089

  11. Peroxisome proliferator-activated receptor alpha target genes.

    PubMed

    Rakhshandehroo, Maryam; Knoch, Bianca; Müller, Michael; Kersten, Sander

    2010-01-01

    The peroxisome proliferator-activated receptor alpha (PPARα) is a ligand-activated transcription factor involved in the regulation of a variety of processes, ranging from inflammation and immunity to nutrient metabolism and energy homeostasis. PPARα serves as a molecular target for hypolipidemic fibrates drugs which bind the receptor with high affinity. Furthermore, PPARα binds and is activated by numerous fatty acids and fatty acid-derived compounds. PPARα governs biological processes by altering the expression of a large number of target genes. Accordingly, the specific role of PPARα is directly related to the biological function of its target genes. Here, we present an overview of the involvement of PPARα in lipid metabolism and other pathways through a detailed analysis of the different known or putative PPARα target genes. The emphasis is on gene regulation by PPARα in liver although many of the results likely apply to other organs and tissues as well.

  12. Peroxisome Proliferator-Activated Receptor Alpha Target Genes

    PubMed Central

    Rakhshandehroo, Maryam; Knoch, Bianca; Müller, Michael; Kersten, Sander

    2010-01-01

    The peroxisome proliferator-activated receptor alpha (PPARα) is a ligand-activated transcription factor involved in the regulation of a variety of processes, ranging from inflammation and immunity to nutrient metabolism and energy homeostasis. PPARα serves as a molecular target for hypolipidemic fibrates drugs which bind the receptor with high affinity. Furthermore, PPARα binds and is activated by numerous fatty acids and fatty acid-derived compounds. PPARα governs biological processes by altering the expression of a large number of target genes. Accordingly, the specific role of PPARα is directly related to the biological function of its target genes. Here, we present an overview of the involvement of PPARα in lipid metabolism and other pathways through a detailed analysis of the different known or putative PPARα target genes. The emphasis is on gene regulation by PPARα in liver although many of the results likely apply to other organs and tissues as well. PMID:20936127

  13. Human rhabdomyosarcoma cells express functional erythropoietin receptor: Potential therapeutic implications

    PubMed Central

    PONIEWIERSKA-BARAN, AGATA; SUSZYNSKA, MALWINA; SUN, WENYUE; ABDELBASET-ISMAIL, AHMED; SCHNEIDER, GABRIELA; BARR, FREDERIC G.; RATAJCZAK, MARIUSZ Z.

    2015-01-01

    The erythropoietin receptor (EpoR) is expressed by cells from the erythroid lineage; however, evidence has accumulated that it is also expressed by some solid tumors. This is an important observation, because recombinant erythropoietin (EPO) is employed in cancer patients to treat anemia related to chemo/radiotherapy. In our studies we employed eight rhabdomyosarcoma (RMS) cell lines (three alveolar-type RMS cell lines and five embrional-type RMS cell lines), and mRNA samples obtained from positive, PAX7-FOXO1-positive, and fusion-negative RMS patient samples. Expression of EpoR was evaluated by RT-PCR, gene array and FACS. The functionality of EpoR in RMS cell lines was evaluated by chemotaxis, adhesion, and direct cell proliferation assays. In some of the experiments, RMS cells were exposed to vincristine (VCR) in the presence or absence of EPO to test whether EPO may impair the therapeutic effect of VCR. We report for a first time that functional EpoR is expressed in human RMS cell lines as well as by primary tumors from RMS patients. Furthermore, EpoR is detectably expressed in both embryonal and alveolar RMS subtypes. At the functional level, several human RMS cell lines responded to EPO stimulation by enhanced proliferation, chemotaxis, cell adhesion, and phosphorylation of MAPKp42/44 and AKT. Moreover, RMS cells became more resistant to VCR treatment in the presence of EPO. Our findings have important potential clinical implications, indicating that EPO supplementation in RMS patients may have the unwanted side effect of tumor progression. PMID:26412593

  14. A cluster of novel serotonin receptor 3-like genes on human chromosome 3.

    PubMed

    Karnovsky, Alla M; Gotow, Lisa F; McKinley, Denise D; Piechan, Julie L; Ruble, Cara L; Mills, Cynthia J; Schellin, Kathleen A B; Slightom, Jerry L; Fitzgerald, Laura R; Benjamin, Christopher W; Roberds, Steven L

    2003-11-13

    The ligand-gated ion channel family includes receptors for serotonin (5-hydroxytryptamine, 5-HT), acetylcholine, GABA, and glutamate. Drugs targeting subtypes of these receptors have proven useful for the treatment of various neuropsychiatric and neurological disorders. To identify new ligand-gated ion channels as potential therapeutic targets, drafts of human genome sequence were interrogated. Portions of four novel genes homologous to 5-HT(3A) and 5-HT(3B) receptors were identified within human sequence databases. We named the genes 5-HT(3C1)-5-HT(3C4). Radiation hybrid (RH) mapping localized these genes to chromosome 3q27-28. All four genes shared similar intron-exon organizations and predicted protein secondary structure with 5-HT(3A) and 5-HT(3B). Orthologous genes were detected by Southern blotting in several species including dog, cow, and chicken, but not in rodents, suggesting that these novel genes are not present in rodents or are very poorly conserved. Two of the novel genes are predicted to be pseudogenes, but two other genes are transcribed and spliced to form appropriate open reading frames. The 5-HT(3C1) transcript is expressed almost exclusively in small intestine and colon, suggesting a possible role in the serotonin-responsiveness of the gut.

  15. β-Adrenergic receptor signaling and modulation of long-term potentiation in the mammalian hippocampus.

    PubMed

    O'Dell, Thomas J; Connor, Steven A; Guglietta, Ryan; Nguyen, Peter V

    2015-09-01

    Encoding new information in the brain requires changes in synaptic strength. Neuromodulatory transmitters can facilitate synaptic plasticity by modifying the actions and expression of specific signaling cascades, transmitter receptors and their associated signaling complexes, genes, and effector proteins. One critical neuromodulator in the mammalian brain is norepinephrine (NE), which regulates multiple brain functions such as attention, perception, arousal, sleep, learning, and memory. The mammalian hippocampus receives noradrenergic innervation and hippocampal neurons express β-adrenergic receptors, which are known to play important roles in gating the induction of long-lasting forms of synaptic potentiation. These forms of long-term potentiation (LTP) are believed to importantly contribute to long-term storage of spatial and contextual memories in the brain. In this review, we highlight the contributions of noradrenergic signaling in general and β-adrenergic receptors in particular, toward modulating hippocampal LTP. We focus on the roles of NE and β-adrenergic receptors in altering the efficacies of specific signaling molecules such as NMDA and AMPA receptors, protein phosphatases, and translation initiation factors. Also, the roles of β-adrenergic receptors in regulating synaptic "tagging" and "capture" of LTP within synaptic networks of the hippocampus are reviewed. Understanding the molecular and cellular bases of noradrenergic signaling will enrich our grasp of how the brain makes new, enduring memories, and may shed light on credible strategies for improving mental health through treatment of specific disorders linked to perturbed memory processing and dysfunctional noradrenergic synaptic transmission.

  16. Allelic association of the D2 dopamine receptor gene with receptor-binding characteristics in alcoholism

    SciTech Connect

    Noble, E.P.; Blum, K.; Ritchie, T.; Montgomery, A.; Sheridan, P.J. )

    1991-07-01

    The allelic association of the human D2 dopamine receptor gene with the binding characteristics of the D2 dopamine receptor was determined in 66 brains of alcoholic and non-alcoholic subjects. In a blinded experiment, DNA from the cerebral cortex was treated with the restriction endonuclease Taql and probed with a 1.5-kilobase (kb) digest of a clone (lambda hD2G1) of the human D2 dopamine receptor gene. The binding characteristics (Kd (binding affinity) and Bmax (number of binding sites)) of the D2 dopamine receptor were determined in the caudate nuclei of these brains using tritiated spiperone as the ligand. The adjusted Kd was significantly lower in alcoholic than in nonalcoholic subjects. In subjects with the A1 allele, in whom a high association with alcoholism was found, the Bmax was significantly reduced compared with the Bmax of subjects with the A2 allele. Moreover, a progressively reduced Bmax was found in subjects with A2/A2, A1/A2, and A1/A1 alleles, with subjects with A2/A2 having the highest mean values, and subjects with A1/A1, the lowest. The polymorphic pattern of the D2 dopamine receptor gene and its differential expression of receptors suggests the involvement of the dopaminergic system in conferring susceptibility to at least one subtype of severe alcoholism.

  17. Evolution of an expanded mannose receptor gene family.

    PubMed

    Staines, Karen; Hunt, Lawrence G; Young, John R; Butter, Colin

    2014-01-01

    Sequences of peptides from a protein specifically immunoprecipitated by an antibody, KUL01, that recognises chicken macrophages, identified a homologue of the mammalian mannose receptor, MRC1, which we called MRC1L-B. Inspection of the genomic environment of the chicken gene revealed an array of five paralogous genes, MRC1L-A to MRC1L-E, located between conserved flanking genes found either side of the single MRC1 gene in mammals. Transcripts of all five genes were detected in RNA from a macrophage cell line and other RNAs, whose sequences allowed the precise definition of spliced exons, confirming or correcting existing bioinformatic annotation. The confirmed gene structures were used to locate orthologues of all five genes in the genomes of two other avian species and of the painted turtle, all with intact coding sequences. The lizard genome had only three genes, one orthologue of MRC1L-A and two orthologues of the MRC1L-B antigen gene resulting from a recent duplication. The Xenopus genome, like that of most mammals, had only a single MRC1-like gene at the corresponding locus. MRC1L-A and MRC1L-B genes had similar cytoplasmic regions that may be indicative of similar subcellular migration and functions. Cytoplasmic regions of the other three genes were very divergent, possibly indicating the evolution of a new functional repertoire for this family of molecules, which might include novel interactions with pathogens.

  18. Therapeutic potential of endothelin receptor antagonism in kidney disease.

    PubMed

    Czopek, Alicja; Moorhouse, Rebecca; Webb, David J; Dhaun, Neeraj

    2016-03-01

    Our growing understanding of the role of the endothelin (ET) system in renal physiology and pathophysiology is from emerging studies of renal disease in animal models and humans. ET receptor antagonists reduce blood pressure and proteinuria in chronic kidney disease and cause regression of renal injury in animals. However, the therapeutic potential of ET receptor antagonism has not been fully explored and clinical studies have been largely limited to patients with diabetic nephropathy. There remains a need for more work in nondiabetic chronic kidney disease, end-stage renal disease (patients requiring maintenance dialysis and those with a functioning kidney transplant), ischemia reperfusion injury, and sickle cell disease. The current review summarizes the most recent advances in both preclinical and clinical studies of ET receptor antagonists in the field of kidney disease. Copyright © 2016 the American Physiological Society.

  19. Characterization of the "CCR5" Chemokine Receptor Gene

    ERIC Educational Resources Information Center

    Thomas, John C.

    2004-01-01

    The life cycle of retroviruses is an essential topic of modern cell biology instruction. Furthermore, the process of HIV viral entry into the cell is a question of great interest in basic and clinical biology. This paper describes how students can easily recover their own DNA, amplify a portion of the "CCR5" chemokine receptor gene, characterize…

  20. Characterization of the "CCR5" Chemokine Receptor Gene

    ERIC Educational Resources Information Center

    Thomas, John C.

    2004-01-01

    The life cycle of retroviruses is an essential topic of modern cell biology instruction. Furthermore, the process of HIV viral entry into the cell is a question of great interest in basic and clinical biology. This paper describes how students can easily recover their own DNA, amplify a portion of the "CCR5" chemokine receptor gene, characterize…

  1. Association of Dopamine D2 Receptor Gene with Creative Ideation

    ERIC Educational Resources Information Center

    Yu, Qi; Zhang, Shun; Zhang, Jinghuan H.

    2017-01-01

    Although several studies suggest that dopamine D2 receptor (DRD2) gene may contribute to creativity, the relationship between DRD2 and creativity still needs to be further validated. To further test the relevance of DRD2 and creativity, this study explored the association between DRD2 and creative ideation in 483 unrelated healthy Chinese…

  2. FK506-binding protein 52 phosphorylation: a potential mechanism for regulating steroid hormone receptor activity.

    PubMed

    Cox, Marc B; Riggs, Daniel L; Hessling, Martin; Schumacher, Felix; Buchner, Johannes; Smith, David F

    2007-12-01

    Functional maturation of steroid hormone receptors requires ordered assembly into a large multichaperone complex consisting of receptor monomer, an Hsp90 dimer, the p23 cochaperone, and an FK506-binding protein (FKBP) family member or alternate peptidylprolyl isomerase-related cochaperone. Previous cellular studies demonstrated that FKBP52 can potentiate receptor function. These results have been confirmed in fkbp4 gene knockout mice in which males are partially androgen insensitive and females display characteristics of progesterone insensitivity. Conversely, FKBP51, which has a high degree of similarity to FKBP52, antagonizes FKBP52-mediated potentiation. Both proteins consist of three domains: two FKBP12-like domains termed FK1 and FK2 and a tetratricopeptide repeat domain that targets binding to Hsp90. To help understand why the two FKBPs behave differently and to gain insight into FKBP52 potentiation activity, we have analyzed the loop structure that links FK1 and FK2. Within the FK linker of FKBP52 is the sequence TEEED, which forms a consensus casein kinase II phosphorylation site; the corresponding sequence in FKBP51 is FED. We demonstrate that the distinct FK linker sequences per se do not account for lack of potentiation activity by FKBP51. However, phosphorylation of the FK linker appears to be an important regulatory determinant of FKBP52-mediated potentiation of steroid receptor activity.

  3. The cannabinoid CB1 receptor antagonists rimonabant (SR141716) and AM251 directly potentiate GABAA receptors

    PubMed Central

    Baur, R; Gertsch, J; Sigel, E

    2012-01-01

    BACKGROUND AND PURPOSE Rimonabant (SR141716) and the structurally related AM251 are widely used in pharmacological experiments as selective cannabinoid receptor CB1 antagonists / inverse agonists. Concentrations of 0.5–10 µM are usually applied in in vitro experiments. We intended to show that these drugs did not act at GABAA receptors but found a significant positive allosteric modulation instead. EXPERIMENTAL APPROACH Recombinant GABAA receptors were expressed in Xenopus oocytes. Receptors were exposed to AM251 or rimonabant in the absence and presence of GABA. Standard electrophysiological techniques were used to monitor the elicited ionic currents. KEY RESULTS AM251 dose-dependently potentiated responses to 0.5 µM GABA at the recombinant α1β2γ2 GABAA receptor with an EC50 below 1 µM and a maximal potentiation of about eightfold. The Hill coefficient indicated that more than one binding site for AM251 was located in this receptor. Rimonabant had a lower affinity, but a fourfold higher efficacy. AM251 potentiated also currents mediated by α1β2, αxβ2γ2 (x = 2,3,5,6), α1β3γ2 and α4β2δ GABAA receptors, but not those mediated by α1β1γ2. Interestingly, the CB1 receptor antagonists LY320135 and O-2050 did not significantly affect α1β2γ2 GABAA receptor-mediated currents at concentrations of 1 µM. CONCLUSIONS AND IMPLICATIONS This study identified rimonabant and AM251 as positive allosteric modulators of GABAA receptors. Thus, potential GABAergic effects of commonly used concentrations of these compounds should be considered in in vitro experiments, especially at extrasynaptic sites where GABA concentrations are low. LINKED ARTICLES This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-8. To view Part I of Cannabinoids in Biology and Medicine visit http://dx.doi.org/10.1111/bph.2011.163.issue-7 PMID:21470203

  4. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases

    PubMed Central

    Shiu, Shin-Han; Bleecker, Anthony B.

    2001-01-01

    Plant receptor-like kinases (RLKs) are proteins with a predicted signal sequence, single transmembrane region, and cytoplasmic kinase domain. Receptor-like kinases belong to a large gene family with at least 610 members that represent nearly 2.5% of Arabidopsis protein coding genes. We have categorized members of this family into subfamilies based on both the identity of the extracellular domains and the phylogenetic relationships between the kinase domains of subfamily members. Surprisingly, this structurally defined group of genes is monophyletic with respect to kinase domains when compared with the other eukaryotic kinase families. In an extended analysis, animal receptor kinases, Raf kinases, plant RLKs, and animal receptor tyrosine kinases form a well supported group sharing a common origin within the superfamily of serine/threonine/tyrosine kinases. Among animal kinase sequences, Drosophila Pelle and related cytoplasmic kinases fall within the plant RLK clade, which we now define as the RLK/Pelle family. A survey of expressed sequence tag records for land plants reveals that mosses, ferns, conifers, and flowering plants have similar percentages of expressed sequence tags representing RLK/Pelle homologs, suggesting that the size of this gene family may have been close to the present-day level before the diversification of land plant lineages. The distribution pattern of four RLK subfamilies on Arabidopsis chromosomes indicates that the expansion of this gene family is partly a consequence of duplication and reshuffling of the Arabidopsis genome and of the generation of tandem repeats. PMID:11526204

  5. Orphan nuclear receptor ERRγ is a key regulator of human fibrinogen gene expression

    PubMed Central

    Zhang, Yaochen; Kim, Don-Kyu; Lu, Yan; Jung, Yoon Seok; Lee, Ji-min; Kim, Young-Hoon; Lee, Yong Soo; Kim, Jina; Dewidar, Bedair; Jeong, Won-IL; Lee, In-Kyu; Cho, Sung Jin; Dooley, Steven; Lee, Chul-Ho; Li, Xiaoying

    2017-01-01

    Fibrinogen, 1 of 13 coagulation factors responsible for normal blood clotting, is synthesized by hepatocytes. Detailed roles of the orphan nuclear receptors regulating fibrinogen gene expression have not yet been fully elucidated. Here, we identified estrogen-related receptor gamma (ERRγ) as a novel transcriptional regulator of human fibrinogen gene expression. Overexpression of ERRγ specially increased fibrinogen expression in human hepatoma cell line. Cannabinoid receptor types 1(CB1R) agonist arachidonyl-2'-chloroethylamide (ACEA) up-regulated transcription of fibrinogen via induction of ERRγ, whereas knockdown of ERRγ attenuated fibrinogen expression. Deletion analyses of the fibrinogen γ (FGG) gene promoter and ChIP assays revealed binding sites of ERRγ on human fibrinogen γ gene promoter. Moreover, overexpression of ERRγ was sufficient to increase fibrinogen gene expression, whereas treatment with GSK5182, a selective inverse agonist of ERRγ led to its attenuation in cell culture. Finally, fibrinogen and ERRγ gene expression were elevated in liver tissue of obese patients suggesting a conservation of this mechanism. Overall, this study elucidates a molecular mechanism linking CB1R signaling, ERRγ expression and fibrinogen gene transcription. GSK5182 may have therapeutic potential to treat hyperfibrinogenemia. PMID:28750085

  6. Identification of potential target genes of ROR-alpha in THP1 and HUVEC cell lines.

    PubMed

    Gulec, Cagri; Coban, Neslihan; Ozsait-Selcuk, Bilge; Sirma-Ekmekci, Sema; Yildirim, Ozlem; Erginel-Unaltuna, Nihan

    2017-04-01

    ROR-alpha is a nuclear receptor, activity of which can be modulated by natural or synthetic ligands. Due to its possible involvement in, and potential therapeutic target for atherosclerosis, we aimed to identify ROR-alpha target genes in monocytic and endothelial cell lines. We performed chromatin immunoprecipitation (ChIP) followed by tiling array (ChIP-on-chip) for ROR-alpha in monocytic cell line THP1 and endothelial cell line HUVEC. Following bioinformatic analysis of the array data, we tested four candidate genes in terms of dependence of their expression level on ligand-mediated ROR-alpha activity, and two of them in terms of promoter occupancy by ROR-alpha. Bioinformatic analyses of ChIP-on-chip data suggested that ROR-alpha binds to genomic regions near the transcription start site (TSS) of more than 3000 genes in THP1 and HUVEC. Potential ROR-alpha target genes in both cell types seem to be involved mainly in membrane receptor activity, signal transduction and ion transport. While SPP1 and IKBKA were shown to be direct target genes of ROR-alpha in THP1 monocytes, inflammation related gene HMOX1 and heat shock protein gene HSPA8 were shown to be potential target genes of ROR-alpha. Our results suggest that ROR-alpha may regulate signaling receptor activity, and transmembrane transport activity through its potential target genes. ROR-alpha seems also to play role in cellular sensitivity to environmental substances like arsenite and chloroprene. Although, the expression analyses have shown that synthetic ROR-alpha ligands can modulate some of potential ROR-alpha target genes, functional significance of ligand-dependent modulation of gene expression needs to be confirmed with further analyses. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Novel drugs that target the estrogen-related receptor alpha: their therapeutic potential in breast cancer

    PubMed Central

    May, Felicity EB

    2014-01-01

    The incidence of breast cancer continues to rise: 1.7 million women were diagnosed with and 521,000 women died from breast cancer in 2012. This review considers first current treatment options: surgery; radiotherapy; and systemic endocrine, anti-biological, and cytotoxic therapies. Clinical management includes prevention, early detection by screening, treatment with curative intent, management of chronic disease, and palliative control of advanced breast cancer. Next, the potential of novel drugs that target DNA repair, growth factor dependence, intracellular and intercellular signal transduction, and cell cycle are considered. Estrogen-related receptor alpha has attracted attention as a therapeutic target in triple-negative breast cancers with de novo resistance to, and in breast cancers with acquired resistance to, endocrine therapies such as antiestrogens and aromatase inhibitors. Estrogen-related receptor alpha is an orphan receptor and transcription factor. Its activity is regulated by coregulator proteins and posttranslational modification. It is an energy sensor that controls adaptation to energy demand and may facilitate glycolytic metabolism and mitochondrial oxidative respiration in breast cancer cells. Estrogen-related receptor alpha increases breast cancer cell migration, proliferation, and tumor development. It is expressed at high levels in estrogen receptor-negative tumors, and is proposed to activate estrogen-responsive genes in endocrine-resistant tumors. The structures and functions of the ligand-binding domains of estrogen receptor alpha and estrogen-related receptor alpha, their ability to bind estrogens, phytoestrogens, and synthetic ligands, and the effects of ligand agonists, antagonists, and inverse agonists on biological activity, are evaluated. Synthetic ligands of estrogen-related receptor alpha have activity in preclinical models of metabolic disorders, diabetes, osteoporosis, and oncology. The clinical settings in which these novel

  8. Interspecies variations in Bordetella catecholamine receptor gene regulation and function.

    PubMed

    Brickman, Timothy J; Suhadolc, Ryan J; Armstrong, Sandra K

    2015-12-01

    Bordetella bronchiseptica can use catecholamines to obtain iron from transferrin and lactoferrin via uptake pathways involving the BfrA, BfrD, and BfrE outer membrane receptor proteins, and although Bordetella pertussis has the bfrD and bfrE genes, the role of these genes in iron uptake has not been demonstrated. In this study, the bfrD and bfrE genes of B. pertussis were shown to be functional in B. bronchiseptica, but neither B. bronchiseptica bfrD nor bfrE imparted catecholamine utilization to B. pertussis. Gene fusion analyses found that expression of B. bronchiseptica bfrA was increased during iron starvation, as is common for iron receptor genes, but that expression of the bfrD and bfrE genes of both species was decreased during iron limitation. As shown previously for B. pertussis, bfrD expression in B. bronchiseptica was also dependent on the BvgAS virulence regulatory system; however, in contrast to the case in B. pertussis, the known modulators nicotinic acid and sulfate, which silence Bvg-activated genes, did not silence expression of bfrD in B. bronchiseptica. Further studies using a B. bronchiseptica bvgAS mutant expressing the B. pertussis bvgAS genes revealed that the interspecies differences in bfrD modulation are partly due to BvgAS differences. Mouse respiratory infection experiments determined that catecholamine utilization contributes to the in vivo fitness of B. bronchiseptica and B. pertussis. Additional evidence of the in vivo importance of the B. pertussis receptors was obtained from serologic studies demonstrating pertussis patient serum reactivity with the B. pertussis BfrD and BfrE proteins.

  9. Interspecies Variations in Bordetella Catecholamine Receptor Gene Regulation and Function

    PubMed Central

    Brickman, Timothy J.; Suhadolc, Ryan J.

    2015-01-01

    Bordetella bronchiseptica can use catecholamines to obtain iron from transferrin and lactoferrin via uptake pathways involving the BfrA, BfrD, and BfrE outer membrane receptor proteins, and although Bordetella pertussis has the bfrD and bfrE genes, the role of these genes in iron uptake has not been demonstrated. In this study, the bfrD and bfrE genes of B. pertussis were shown to be functional in B. bronchiseptica, but neither B. bronchiseptica bfrD nor bfrE imparted catecholamine utilization to B. pertussis. Gene fusion analyses found that expression of B. bronchiseptica bfrA was increased during iron starvation, as is common for iron receptor genes, but that expression of the bfrD and bfrE genes of both species was decreased during iron limitation. As shown previously for B. pertussis, bfrD expression in B. bronchiseptica was also dependent on the BvgAS virulence regulatory system; however, in contrast to the case in B. pertussis, the known modulators nicotinic acid and sulfate, which silence Bvg-activated genes, did not silence expression of bfrD in B. bronchiseptica. Further studies using a B. bronchiseptica bvgAS mutant expressing the B. pertussis bvgAS genes revealed that the interspecies differences in bfrD modulation are partly due to BvgAS differences. Mouse respiratory infection experiments determined that catecholamine utilization contributes to the in vivo fitness of B. bronchiseptica and B. pertussis. Additional evidence of the in vivo importance of the B. pertussis receptors was obtained from serologic studies demonstrating pertussis patient serum reactivity with the B. pertussis BfrD and BfrE proteins. PMID:26371128

  10. CRDB: Database of Chemosensory Receptor Gene Families in Vertebrate

    PubMed Central

    Wu, Xiaoli; Zhong, Yang

    2012-01-01

    Chemosensory receptors (CR) are crucial for animals to sense the environmental changes and survive on earth. The emergence of whole-genome sequences provides us an opportunity to identify the entire CR gene repertoires. To completely gain more insight into the evolution of CR genes in vertebrates, we identified the nearly all CR genes in 25 vertebrates using homology-based approaches. Among these CR gene repertoires, nearly half of them were identified for the first time in those previously uncharacterized species, such as the guinea pig, giant panda and elephant, etc. Consistent with previous findings, we found that the numbers of CR genes vary extensively among different species, suggesting an extreme form of ‘birth-and-death’ evolution. For the purpose of facilitating CR gene analysis, we constructed a database with the goals to provide a resource for CR genes annotation and a web tool for exploring their evolutionary patterns. Besides a search engine for the gene extraction from a specific chromosome region, an easy-to-use phylogenetic analysis tool was also provided to facilitate online phylogeny study of CR genes. Our work can provide a rigorous platform for further study on the evolution of CR genes in vertebrates. PMID:22393364

  11. A potentially novel nicotinic receptor in Aplysia neuroendocrine cells.

    PubMed

    White, Sean H; Carter, Christopher J; Magoski, Neil S

    2014-07-15

    Nicotinic receptors form a diverse group of ligand-gated ionotropic receptors with roles in both synaptic transmission and the control of excitability. In the bag cell neurons of Aplysia, acetylcholine activates an ionotropic receptor, which passes inward current to produce a long-lasting afterdischarge and hormone release, leading to reproduction. While testing the agonist profile of the cholinergic response, we observed a second current that appeared to be gated only by nicotine and not acetylcholine. The peak nicotine-evoked current was markedly smaller in magnitude than the acetylcholine-induced current, cooperative (Hill value of 2.7), had an EC50 near 500 μM, readily recovered from desensitization, showed Ca(2+) permeability, and was blocked by mecamylamine, dihydro-β-erythroidine, or strychnine, but not by α-conotoxin ImI, methyllycaconitine, or hexamethonium. Aplysia transcriptome analysis followed by PCR yielded 20 full-length potential nicotinic receptor subunits. Sixteen of these were predicted to be cation selective, and real-time PCR suggested that 15 of the 16 subunits were expressed to varying degrees in the bag cell neurons. The acetylcholine-induced current, but not the nicotine current, was reduced by double-strand RNA treatment targeted to both subunits ApAChR-C and -E. Conversely, the nicotine-evoked current, but not the acetylcholine current, was lessened by targeting both subunits ApAChR-H and -P. To the best of our knowledge, this is the first report suggesting that a nicotinic receptor is not gated by acetylcholine. Separate receptors may serve as a means to differentially trigger plasticity or safeguard propagation by assuring that only acetylcholine, the endogenous agonist, initiates large enough responses to trigger reproduction.

  12. Identification of a Bitter-Taste Receptor Gene Repertoire in Different Lagomorphs Species

    PubMed Central

    Ferreira, Ana M.; Marques, Andreia T.; Fontanesi, Luca; Thulin, Carl-Gustaf; Sales-Baptista, Elvira; Araújo, Susana S.; Almeida, André M.

    2016-01-01

    The repertoires of bitter-taste receptor (T2R) gene have been described for several animal species, but these data are still scarce for Lagomorphs. The aim of the present work is to identify potential repertoires of T2R in several Lagomorph species, covering a wide geographical distribution. We studied these genes in Lepus timidus, L. europaeus, Oryctolagus cuniculus algirus, Romerolagus diazi, and Sylvilagus floridanus, using O. cuniculus cuniculus as control species for PCR and DNA sequencing. We studied the identities of the DNA sequences and built the corresponding phylogenetic tree. Sequencing was successful for both subspecies of O. cuniculus for all T2R genes studied, for five genes in Lepus, and for three genes in R. diazi and S. floridanus. We describe for the first time the partial repertoires of T2R genes for Lagomorphs species, other than the common rabbit. Our phylogenetic analyses indicate that sequence proximity levels follow the established taxonomic classification. PMID:27092177

  13. Neuropeptide receptors as potential drug targets in the treatment of inflammatory conditions

    PubMed Central

    Pintér, Erika; Pozsgai, Gábor; Hajna, Zsófia; Helyes, Zsuzsanna; Szolcsányi, János

    2014-01-01

    Cross-talk between the nervous, endocrine and immune systems exists via regulator molecules, such as neuropeptides, hormones and cytokines. A number of neuropeptides have been implicated in the genesis of inflammation, such as tachykinins and calcitonin gene-related peptide. Development of their receptor antagonists could be a promising approach to anti-inflammatory pharmacotherapy. Anti-inflammatory neuropeptides, such as vasoactive intestinal peptide, pituitary adenylate cyclase-activating polypeptide, α-melanocyte-stimulating hormone, urocortin, adrenomedullin, somatostatin, cortistatin, ghrelin, galanin and opioid peptides, are also released and act on their own receptors on the neurons as well as on different inflammatory and immune cells. The aim of the present review is to summarize the most prominent data of preclinical animal studies concerning the main pharmacological effects of ligands acting on the neuropeptide receptors. Promising therapeutic impacts of these compounds as potential candidates for the development of novel types of anti-inflammatory drugs are also discussed. PMID:23432438

  14. Functional expression of purinergic P2 receptors and transient receptor potential channels by the human urothelium.

    PubMed

    Shabir, Saqib; Cross, William; Kirkwood, Lisa A; Pearson, Joanna F; Appleby, Peter A; Walker, Dawn; Eardley, Ian; Southgate, Jennifer

    2013-08-01

    In addition to its role as a physical barrier, the urothelium is considered to play an active role in mechanosensation. A key mechanism is the release of transient mediators that activate purinergic P2 receptors and transient receptor potential (TRP) channels to effect changes in intracellular Ca²⁺. Despite the implied importance of these receptors and channels in urothelial tissue homeostasis and dysfunctional bladder disease, little is known about their functional expression by the human urothelium. To evaluate the expression and function of P2X and P2Y receptors and TRP channels, the human ureter and bladder were used to separate urothelial and stromal tissues for RNA isolation and cell culture. RT-PCR using stringently designed primer sets was used to establish which P2 and TRP species were expressed at the transcript level, and selective agonists/antagonists were used to confirm functional expression by monitoring changes in intracellular Ca²⁺ and in a scratch repair assay. The results confirmed the functional expression of P2Y₄ receptors and excluded nonexpressed receptors/channels (P2X₁, P2X₃, P2X₆, P2Y₆, P2Y₁₁, TRPV5, and TRPM8), while a dearth of specific agonists confounded the functional validation of expressed P2X₂, P2X₄, P2Y₁, P2Y₂, TRPV2, TRPV3, TRPV6 and TRPM7 receptors/channels. Although a conventional response was elicited in control stromal-derived cells, the urothelial cell response to well-characterized TRPV1 and TRPV4 agonists/antagonists revealed unexpected anomalies. In addition, agonists that invoked an increase in intracellular Ca²⁺ promoted urothelial scratch repair, presumably through the release of ATP. The study raises important questions about the ligand selectivity of receptor/channel targets expressed by the urothelium. These pathways are important in urothelial tissue homeostasis, and this opens the possibility of selective drug targeting.

  15. Sigma-1 receptors: potential targets for the treatment of substance abuse.

    PubMed

    Robson, Matthew J; Noorbakhsh, Bahar; Seminerio, Michael J; Matsumoto, Rae R

    2012-01-01

    Drug abuse is currently a large economic and societal burden in countries around the globe. Many drugs of abuse currently lack adequate therapies aimed at treating both the addiction and negative complications often associated with their use. Sigma-1 receptors were discovered over 30 years ago and have recently become targets for the development of pharmacotherapies aimed at treating substance abuse and addiction. In vivo preclinical studies have revealed that sigma receptor ligands are able to ameliorate select behavioral effects of many drugs of abuse including cocaine, methamphetamine, ethanol and nicotine. In addition, recent studies have begun to elucidate the mechanisms by which sigma-1 receptors modulate the effects of these drugs on neurotransmission, gene regulation and neuroplasticity. Overall, these recent findings suggest that compounds targeting sigma-1 receptors may represent a potential new class of therapeutics aimed at treating drug abuse. Future studies involving clinical populations will be critical for validating the therapeutic potential of sigma-1 receptor ligands for the treatment of substance abuse.

  16. Selective prostacyclin receptor agonism augments glucocorticoid-induced gene expression in human bronchial epithelial cells.

    PubMed

    Wilson, Sylvia M; Shen, Pamela; Rider, Christopher F; Traves, Suzanne L; Proud, David; Newton, Robert; Giembycz, Mark A

    2009-11-15

    Prostacyclin receptor (IP-receptor) agonists display anti-inflammatory and antiviral activity in cell-based assays and in preclinical models of asthma and chronic obstructive pulmonary disease. In this study, we have extended these observations by demonstrating that IP-receptor activation also can enhance the ability of glucocorticoids to induce genes with anti-inflammatory activity. BEAS-2B bronchial epithelial cells stably transfected with a glucocorticoid response element (GRE) luciferase reporter were activated in a concentration-dependent manner by the glucocorticoid dexamethasone. An IP-receptor agonist, taprostene, increased cAMP in these cells and augmented luciferase expression at all concentrations of dexamethasone examined. Analysis of the concentration-response relationship that described this effect showed that taprostene increased the magnitude of transcription without affecting the potency of dexamethasone and was, thus, steroid-sparing in this simple system. RO3244794, an IP-receptor antagonist, and oligonucleotides that selectively silenced the IP-receptor gene, PTGIR, abolished these effects of taprostene. Infection of BEAS-2B GRE reporter cells with an adenovirus vector encoding a highly selective inhibitor of cAMP-dependent protein kinase (PKA) also prevented taprostene from enhancing GRE-dependent transcription. In BEAS-2B cells and primary cultures of human airway epithelial cells, taprostene and dexamethasone interacted either additively or cooperatively in the expression of three glucocorticoid-inducible genes (GILZ, MKP-1, and p57(kip2)) that have anti-inflammatory potential. Collectively, these data show that IP-receptor agonists can augment the ability of glucocorticoids to induce anti-inflammatory genes in human airway epithelial cells by activating a cAMP/PKA-dependent mechanism. This observation may have clinical relevance in the treatment of airway inflammatory diseases that are either refractory or respond suboptimally to

  17. Olfactory receptor gene expression in tiger salamander olfactory epithelium.

    PubMed

    Marchand, James E; Yang, Xinhai; Chikaraishi, Dona; Krieger, Jurgen; Breer, Heinz; Kauer, John S

    2004-06-28

    Physiological studies of odor-elicited responses from the olfactory epithelium and bulb in the tiger salamander, Ambystoma tigrinum, have elucidated a number of features of olfactory coding that appear to be conserved across several vertebrate species. This animal model has provided an accessible in vivo system for observing individual and ensemble olfactory responses to odorant stimulation using biochemical, neurophysiological, and behavioral assays. In this paper we have complemented these studies by characterizing 35 candidate odorant receptor genes. These receptor sequences are similar to those of the large families of olfactory receptors found in mammals and fish. In situ hybridization, using RNA probes to 20 of these sequences, demonstrates differential distributions of labeled cells across the extent and within the depth of the olfactory epithelium. The distributions of cells labeled with probes to different receptors show spatially restricted patterns that are generally localized to different degrees in medial-lateral and anterior-posterior directions. The patterns of receptor expression in the ventral olfactory epithelium (OE) are mirrored in the dorsal OE. We present a hypothesis as to how the sensory neuron populations expressing different receptor types responding to a particular odorant may relate to the distribution patterns of epithelial and bulbar responses previously characterized using single-unit and voltage-sensitive dye recording methods. Copyright 2004 Wiley-Liss, Inc.

  18. Diversity and Impact of Rare Variants in Genes Encoding the Platelet G Protein-Coupled Receptors

    PubMed Central

    Jones, Matthew L.; Norman, Jane E.; Morgan, Neil V.; Mundell, Stuart J.; Lordkipanidzé, Marie; Lowe, Gillian C.; Daly, Martina E.; Simpson, Michael A.; Drake, Sian; Watson, Steve P.

    2015-01-01

    Summary Platelet responses to activating agonists are influenced by common population variants within or near G protein-coupled receptor (GPCR) genes that affect receptor activity. However, the impact of rare GPCR gene variants is unknown. We describe the rare single nucleotide variants (SNVs) in the coding and splice regions of 18 GPCR genes in 7,595 exomes from the 1,000-genomes and Exome Sequencing Project databases and in 31 cases with inherited platelet function disorders (IPFDs). In the population databases, the GPCR gene target regions contained 740 SNVs (318 synonymous, 410 missense, 7 stop gain and 6 splice region) of which 70% had global minor allele frequency (MAF) < 0.05%. Functional annotation using six computational algorithms, experimental evidence and structural data identified 156/740 (21%) SNVs as potentially damaging to GPCR function, most commonly in regions encoding the transmembrane and C-terminal intracellular receptor domains. In 31 index cases with IPFDs (Gi-pathway defect n=15; secretion defect n=11; thromboxane pathway defect n=3 and complex defect n=2) there were 256 SNVs in the target regions of 15 stimulatory platelet GPCRs (34 unique; 12 with MAF<1% and 22 with MAF ≥ 1%). These included rare variants predicting R122H, P258T and V207A substitutions in the P2Y12 receptor that were annotated as potentially damaging, but only partially explained the platelet function defects in each case. Our data highlight that potentially damaging variants in platelet GPCR genes have low individual frequencies, but are collectively abundant in the population. Potentially damaging variants are also present in pedigrees with IPFDs and may contribute to complex laboratory phenotypes. PMID:25567036

  19. Diversity and impact of rare variants in genes encoding the platelet G protein-coupled receptors.

    PubMed

    Jones, Matthew L; Norman, Jane E; Morgan, Neil V; Mundell, Stuart J; Lordkipanidzé, Marie; Lowe, Gillian C; Daly, Martina E; Simpson, Michael A; Drake, Sian; Watson, Steve P; Mumford, Andrew D

    2015-04-01

    Platelet responses to activating agonists are influenced by common population variants within or near G protein-coupled receptor (GPCR) genes that affect receptor activity. However, the impact of rare GPCR gene variants is unknown. We describe the rare single nucleotide variants (SNVs) in the coding and splice regions of 18 GPCR genes in 7,595 exomes from the 1,000-genomes and Exome Sequencing Project databases and in 31 cases with inherited platelet function disorders (IPFDs). In the population databases, the GPCR gene target regions contained 740 SNVs (318 synonymous, 410 missense, 7 stop gain and 6 splice region) of which 70 % had global minor allele frequency (MAF) < 0.05 %. Functional annotation using six computational algorithms, experimental evidence and structural data identified 156/740 (21 %) SNVs as potentially damaging to GPCR function, most commonly in regions encoding the transmembrane and C-terminal intracellular receptor domains. In 31 index cases with IPFDs (Gi-pathway defect n=15; secretion defect n=11; thromboxane pathway defect n=3 and complex defect n=2) there were 256 SNVs in the target regions of 15 stimulatory platelet GPCRs (34 unique; 12 with MAF< 1 % and 22 with MAF≥ 1 %). These included rare variants predicting R122H, P258T and V207A substitutions in the P2Y12 receptor that were annotated as potentially damaging, but only partially explained the platelet function defects in each case. Our data highlight that potentially damaging variants in platelet GPCR genes have low individual frequencies, but are collectively abundant in the population. Potentially damaging variants are also present in pedigrees with IPFDs and may contribute to complex laboratory phenotypes.

  20. Identification of chemosensory receptor genes in Manduca sexta and knockdown by RNA interference

    PubMed Central

    2012-01-01

    Background Insects detect environmental chemicals via a large and rapidly evolving family of chemosensory receptor proteins. Although our understanding of the molecular genetic basis for Drosophila chemoreception has increased enormously in the last decade, similar understanding in other insects remains limited. The tobacco hornworm, Manduca sexta, has long been an important model for insect chemosensation, particularly from ecological, behavioral, and physiological standpoints. It is also a major agricultural pest on solanaceous crops. However, little sequence information and lack of genetic tools has prevented molecular genetic analysis in this species. The ability to connect molecular genetic mechanisms, including potential lineage-specific changes in chemosensory genes, to ecologically relevant behaviors and specializations in M. sexta would be greatly beneficial. Results Here, we sequenced transcriptomes from adult and larval chemosensory tissues and identified chemosensory genes based on sequence homology. We also used dsRNA feeding as a method to induce RNA interference in larval chemosensory tissues. Conclusions We report identification of new chemosensory receptor genes including 17 novel odorant receptors and one novel gustatory receptor. Further, we demonstrate that systemic RNA interference can be used in larval olfactory neurons to reduce expression of chemosensory receptor transcripts. Together, our results further the development of M. sexta as a model for functional analysis of insect chemosensation. PMID:22646846

  1. The oxytocin receptor gene and social perception.

    PubMed

    Melchers, Martin; Montag, Christian; Felten, Andrea; Reuter, Martin

    2015-08-01

    Social perception is an important prerequisite for successful social interaction, because it helps to gain information about behaviors, thoughts, and feelings of interaction partners. Previous pharmacological studies have emphasized the relevance of the oxytocin system for social perception abilities, while knowledge on genetic contributions is still scarce. In the endeavor to fill this gap in the literature, the current study searches for associations between participants' social perception abilities as measured by the interpersonal perception task (IPT) and the rs2268498 polymorphism on the OXTR-gene, which has repeatedly been linked to processes relevant to social functioning. N = 105 healthy participants were experimentally tested with the IPT and genotyped for the rs2268498 polymorphism. T-allele carriers (TT and TC genotypes) exhibited significantly better performance in the IPT than carriers of the CC-genotype. This difference was also significant for the subscales measuring the strength of social bonding (kinship and intimacy). As in previous studies, T-allele carriers exhibited better performance in measures of social processing indicating that the rs2268498 polymorphism is an important candidate for understanding the genetic basis of social functioning.

  2. Developmentally Regulated Expression of the Nerve Growth Factor Receptor Gene in the Periphery and Brain

    NASA Astrophysics Data System (ADS)

    Buck, C. R.; Martinez, Humberto J.; Black, Ira B.; Chao, Moses V.

    1987-05-01

    Nerve growth factor (NGF) regulates development and maintenance of function of peripheral sympathetic and sensory neurons. A potential role for the trophic factor in brain has been detected only recently. The ability of a cell to respond to NGF is due, in part, to expression of specific receptors on the cell surface. To study tissue-specific expression of the NGF receptor gene, we have used sensitive cRNA probes for detection of NGF receptor mRNA. Our studies indicate that the receptor gene is selectively and specifically expressed in sympathetic (superior cervical) and sensory (dorsal root) ganglia in the periphery, and by the septum-basal forebrain centrally, in the neonatal rat in vivo. Moreover, examination of tissues from neonatal and adult rats reveals a marked reduction in steady-state NGF receptor mRNA levels in sensory ganglia. In contrast, a 2- to 4-fold increase was observed in the basal forebrain and in the sympathetic ganglia over the same time period. Our observations suggest that NGF receptor mRNA expression is developmentally regulated in specific areas of the nervous system in a differential fashion.

  3. Identification of putative chemosensory receptor genes from yellow peach moth Conogethes punctiferalis (Guenée) antennae transcriptome

    PubMed Central

    Ge, Xing; Zhang, Tiantao; Wang, Zhenying; He, Kanglai; Bai, Shuxiong

    2016-01-01

    The yellow peach moth, Conogethes punctiferalis, is an extremely important polyphagous insect in Asia. The chemosensory systems of moth play an important role in detecting food, oviposition sites and mate attraction. Several antennal chemosensory receptors are involved in odor detection. Our study aims to identify chemosensory receptor genes for potential applications in behavioral responses of yellow peach moth. By transcriptomic analysis of male and female antennae, 83 candidate chemosensory receptors, including 62 odorant receptors, 11 ionotropic receptors and 10 gustatory receptors were identified. Through Blast and sequence alignment, the highly conserved co-receptor Orco was annotated, eight unigenes clustered into pheromone receptors, and two clustered as sugar receptor. Among the IRs, one unigenes was similar with co-receptors IR25a. Expression levels of 50 odorant receptors were further evaluated by quantitative real-time PCR in antennae. All the ORs tested were detected in antennae and some of which were associated with sex-biased expression. The chemosensory receptors identified in C. punctiferalis provide a foundational resource for further analysis on olfaction for behavior. The expression profiles of ORs in antennae indicated variant functions in olfactory recognition, and our results provided the possibility for the potential application of semiochemical to control this pest moth. PMID:27659493

  4. Computationally Discovered Potentiating Role of Glycans on NMDA Receptors

    PubMed Central

    Sinitskiy, Anton V.; Stanley, Nathaniel H.; Hackos, David H.; Hanson, Jesse E.; Sellers, Benjamin D.; Pande, Vijay S.

    2017-01-01

    N-methyl-D-aspartate receptors (NMDARs) are glycoproteins in the brain central to learning and memory. The effects of glycosylation on the structure and dynamics of NMDARs are largely unknown. In this work, we use extensive molecular dynamics simulations of GluN1 and GluN2B ligand binding domains (LBDs) of NMDARs to investigate these effects. Our simulations predict that intra-domain interactions involving the glycan attached to residue GluN1-N440 stabilize closed-clamshell conformations of the GluN1 LBD. The glycan on GluN2B-N688 shows a similar, though weaker, effect. Based on these results, and assuming the transferability of the results of LBD simulations to the full receptor, we predict that glycans at GluN1-N440 might play a potentiator role in NMDARs. To validate this prediction, we perform electrophysiological analysis of full-length NMDARs with a glycosylation-preventing GluN1-N440Q mutation, and demonstrate an increase in the glycine EC50 value. Overall, our results suggest an intramolecular potentiating role of glycans on NMDA receptors. PMID:28378791

  5. Computationally Discovered Potentiating Role of Glycans on NMDA Receptors

    NASA Astrophysics Data System (ADS)

    Sinitskiy, Anton V.; Stanley, Nathaniel H.; Hackos, David H.; Hanson, Jesse E.; Sellers, Benjamin D.; Pande, Vijay S.

    2017-04-01

    N-methyl-D-aspartate receptors (NMDARs) are glycoproteins in the brain central to learning and memory. The effects of glycosylation on the structure and dynamics of NMDARs are largely unknown. In this work, we use extensive molecular dynamics simulations of GluN1 and GluN2B ligand binding domains (LBDs) of NMDARs to investigate these effects. Our simulations predict that intra-domain interactions involving the glycan attached to residue GluN1-N440 stabilize closed-clamshell conformations of the GluN1 LBD. The glycan on GluN2B-N688 shows a similar, though weaker, effect. Based on these results, and assuming the transferability of the results of LBD simulations to the full receptor, we predict that glycans at GluN1-N440 might play a potentiator role in NMDARs. To validate this prediction, we perform electrophysiological analysis of full-length NMDARs with a glycosylation-preventing GluN1-N440Q mutation, and demonstrate an increase in the glycine EC50 value. Overall, our results suggest an intramolecular potentiating role of glycans on NMDA receptors.

  6. Transient receptor potential M3 channels are ionotropic steroid receptors in pancreatic beta cells.

    PubMed

    Wagner, Thomas F J; Loch, Sabine; Lambert, Sachar; Straub, Isabelle; Mannebach, Stefanie; Mathar, Ilka; Düfer, Martina; Lis, Annette; Flockerzi, Veit; Philipp, Stephan E; Oberwinkler, Johannes

    2008-12-01

    Transient receptor potential (TRP) cation channels are renowned for their ability to sense diverse chemical stimuli. Still, for many members of this large and heterogeneous protein family it is unclear how their activity is regulated and whether they are influenced by endogenous substances. On the other hand, steroidal compounds are increasingly recognized to have rapid effects on membrane surface receptors that often have not been identified at the molecular level. We show here that TRPM3, a divalent-permeable cation channel, is rapidly and reversibly activated by extracellular pregnenolone sulphate, a neuroactive steroid. We show that pregnenolone sulphate activates endogenous TRPM3 channels in insulin-producing beta cells. Application of pregnenolone sulphate led to a rapid calcium influx and enhanced insulin secretion from pancreatic islets. Our results establish that TRPM3 is an essential component of an ionotropic steroid receptor enabling unanticipated crosstalk between steroidal and insulin-signalling endocrine systems.

  7. The Role of Metabotropic Glutamate Receptor Genes in Schizophrenia

    PubMed Central

    Maj, Carlo; Minelli, Alessandra; Giacopuzzi, Edoardo; Sacchetti, Emilio; Gennarelli, Massimo

    2016-01-01

    Genomic studies revealed two main components in the genetic architecture of schizophrenia, one constituted by common variants determining a distributed polygenic effect and one represented by a large number of heterogeneous rare and highly disruptive mutations. These gene modifications often affect neural transmission and different studies proved an involvement of metabotropic glutamate receptors in schizophrenia phenotype. Through the combination of literature information with genomic data from public repositories, we analyzed the current knowledge on the involvement of genetic variations of the human metabotropic glutamate receptors in schizophrenia and related endophenotypes. Despite the analysis did not reveal a definitive connection, different suggestive associations have been identified and in particular a relevant role has emerged for GRM3 in affecting specific schizophrenia endophenotypes. This supports the hypothesis that these receptors are directly involved in schizophrenia disorder. PMID:27296644

  8. The Role of Metabotropic Glutamate Receptor Genes in Schizophrenia.

    PubMed

    Maj, Carlo; Minelli, Alessandra; Giacopuzzi, Edoardo; Sacchetti, Emilio; Gennarelli, Massimo

    2016-01-01

    Genomic studies revealed two main components in the genetic architecture of schizophrenia, one constituted by common variants determining a distributed polygenic effect and one represented by a large number of heterogeneous rare and highly disruptive mutations. These gene modifications often affect neural transmission and different studies proved an involvement of metabotropic glutamate receptors in schizophrenia phenotype. Through the combination of literature information with genomic data from public repositories, we analyzed the current knowledge on the involvement of genetic variations of the human metabotropic glutamate receptors in schizophrenia and related endophenotypes. Despite the analysis did not reveal a definitive connection, different suggestive associations have been identified and in particular a relevant role has emerged for GRM3 in affecting specific schizophrenia endophenotypes. This supports the hypothesis that these receptors are directly involved in schizophrenia disorder.

  9. Metabotropic glutamate receptor ligands as potential therapeutics for addiction

    PubMed Central

    Olive, M. F.

    2009-01-01

    There is now compelling evidence that the excitatory amino acid neurotransmitter glutamate plays a pivotal role in drug addiction and alcoholism. As a result, there has been increasing interest in developing glutamate-based therapies for the treatment of addictive disorders. Receptors for glutamate are primarily divided into two classes: ionotropic glutamate receptors (iGluRs) that mediate fast excitatory glutamate transmission, and metabotropic glutamate receptors (mGluRs), which are G-protein coupled receptors that mediate slower, modulatory glutamate transmission. Most iGluR antagonists, while showing some efficacy in animal models of addiction, exhibit serious side effects when tested in humans. mGluR ligands, on the other hand, which have been advanced to testing in clinical trials for various medical conditions, have demonstrated the ability to reduce drug reward, reinforcement, and relapse-like behaviors in animal studies. mGluR ligands that have been shown to be primarily effective are Group I (mGluR1 and mGluR5) negative allosteric modulators and Group II (mGluR2 and mGluR3) orthosteric presynaptic autoreceptor agonists. In this review, we will summarize findings from animal studies suggesting that these mGluR ligands may be of potential benefit in reducing on-going drug self-administration and may aid in the prevention of relapse. The neuroanatomical distribution of mGluR1, mGluR2/3, and mGluR5 receptors and the pharmacological properties of Group I negative allosteric modulators and Group II agonists will also be overviewed. Finally, we will discuss the current status of mGluR ligands in human clinical trials. PMID:19630739

  10. Metabotropic glutamate receptor ligands as potential therapeutics for addiction.

    PubMed

    Olive, M Foster

    2009-01-01

    There is now compelling evidence that the excitatory amino acid neurotransmitter glutamate plays a pivotal role in drug addiction and alcoholism. As a result, there has been increasing interest in developing glutamate-based therapies for the treatment of addictive disorders. Receptors for glutamate are primarily divided into two classes: ionotropic glutamate receptors (iGluRs) that mediate fast excitatory glutamate transmission, and metabotropic glutamate receptors (mGluRs), which are G-protein coupled receptors that mediate slower, modulatory glutamate transmission. Most iGluR antagonists, while showing some efficacy in animal models of addiction, exhibit serious side effects when tested in humans. mGluR ligands, on the other hand, which have been advanced to testing in clinical trials for various medical conditions, have demonstrated the ability to reduce drug reward, reinforcement, and relapse-like behaviors in animal studies. mGluR ligands that have been shown to be primarily effective are Group I (mGluR1 and mGluR5) negative allosteric modulators and Group II (mGluR2 and mGluR3) orthosteric presynaptic autoreceptor agonists. In this review, we will summarize findings from animal studies suggesting that these mGluR ligands may be of potential benefit in reducing on-going drug self-administration and may aid in the prevention of relapse. The neuroanatomical distribution of mGluR1, mGluR2/3, and mGluR5 receptors and the pharmacological properties of Group I negative allosteric modulators and Group II agonists will also be overviewed. Finally, we will discuss the current status of mGluR ligands in human clinical trials.

  11. Allosterism and Structure in Thermally Activated Transient Receptor Potential Channels.

    PubMed

    Diaz-Franulic, Ignacio; Poblete, Horacio; Miño-Galaz, Germán; González, Carlos; Latorre, Ramón

    2016-07-05

    The molecular sensors that mediate temperature changes in living organisms are a large family of proteins known as thermosensitive transient receptor potential (TRP) ion channels. These membrane proteins are polymodal receptors that can be activated by cold or hot temperatures, depending on the channel subtype, voltage, and ligands. The stimuli sensors are allosterically coupled to a pore domain, increasing the probability of finding the channel in its ion conductive conformation. In this review we first discuss the allosteric coupling between the temperature and voltage sensor modules and the pore domain, and then discuss the thermodynamic foundations of thermo-TRP channel activation. We provide a structural overview of the molecular determinants of temperature sensing. We also posit an anisotropic thermal diffusion model that may explain the large temperature sensitivity of TRP channels. Additionally, we examine the effect of several ligands on TRP channel function and the evidence regarding their mechanisms of action.

  12. G-protein-coupled receptors in aldosterone-producing adenomas: a potential cause of hyperaldosteronism.

    PubMed

    Ye, Ping; Mariniello, Barbara; Mantero, Franco; Shibata, Hirotaka; Rainey, William E

    2007-10-01

    The source of aldosterone in 30-40% of patients with primary hyperaldosteronism (PA) is unilateral aldosterone-producing adenoma (APA). The mechanisms causing elevated aldosterone production in APA are unknown. Herein, we examined the expression of G-protein-coupled receptors (GPCRs) in APA and demonstrated that when compared with normal adrenals, there is a general elevation of certain GPCR in many APA and/or ectopic expression of GPCR in others. RNA samples from normal adrenals (n = 5), APAs (n = 10), and cortisol-producing adenomas (CPAs; n = 13) were used on 15 genomic expression arrays, each of which included 223 GPCR transcripts presented in at least 1 out of 15 of the independent microarrays. The array results were confirmed using real-time RT-PCR (qPCR). Four GPCR transcripts exhibited a statistically significant increase that was greater than threefold when compared with normal adrenals, suggesting a general increase in expression when compared with normal adrenal glands. Four GPCR transcripts exhibited a > 15-fold increase of expression in one or more of the APA samples when compared with normal adrenals. qPCR analysis confirmed array data and found the receptors with the highest fold increase in APA expression to be LH receptor, serotonin receptor 4, GnRH receptor, glutamate receptor metabotropic 3, endothelin receptor type B-like protein, and ACTH receptor. There are also sporadic increased expressions of these genes in the CPAs. Together, these findings suggest a potential role of altered GPCR expression in many cases of PA and provide candidate GPCR for further study.

  13. The 5-HT7 receptor as a potential target for treating drug and alcohol abuse

    PubMed Central

    Hauser, Sheketha R.; Hedlund, Peter B.; Roberts, Amanda J.; Sari, Youssef; Bell, Richard L.; Engleman, Eric A.

    2015-01-01

    Alcohol and drug abuse take a large toll on society and affected individuals. However, very few effective treatments are currently available to treat alcohol and drug addiction. Basic and clinical research has begun to provide some insights into the underlying neurobiological systems involved in the addiction process. Several neurotransmitter pathways have been implicated and distinct reward neurocircuitry have been proposed—including the mesocorticolimbic dopamine (MCL-DA) system and the extended amygdala. The serotonin (5-HT) neurotransmitter system is of particular interest and multiple 5-HT receptors are thought to play significant roles in alcohol and drug self-administration and the development of drug dependence. Among the 5-HT receptors, the 5-HT7 receptor is currently undergoing characterization as a potential target for the treatment of several psychiatric disorders. Although this receptor has received only limited research regarding addictive behaviors, aspects of its neuroanatomical, biochemical, physiological, pharmacological, and behavioral profiles suggest that it could play a key role in the addiction process. For instance, genomic studies in humans have suggested a link between variants in the gene encoding the 5-HT7 receptor and alcoholism. Recent behavioral testing using high-affinity antagonists in mice and preliminary tests with alcohol-preferring rats suggest that this receptor could mediate alcohol consumption and/or reinforcement and play a role in seeking/craving behavior. Interest in the development of new and more selective pharmacological agents for this receptor will aid in examining the 5-HT7 receptor as a novel target for treating addiction. PMID:25628528

  14. The 5-HT7 receptor as a potential target for treating drug and alcohol abuse.

    PubMed

    Hauser, Sheketha R; Hedlund, Peter B; Roberts, Amanda J; Sari, Youssef; Bell, Richard L; Engleman, Eric A

    2014-01-01

    Alcohol and drug abuse take a large toll on society and affected individuals. However, very few effective treatments are currently available to treat alcohol and drug addiction. Basic and clinical research has begun to provide some insights into the underlying neurobiological systems involved in the addiction process. Several neurotransmitter pathways have been implicated and distinct reward neurocircuitry have been proposed-including the mesocorticolimbic dopamine (MCL-DA) system and the extended amygdala. The serotonin (5-HT) neurotransmitter system is of particular interest and multiple 5-HT receptors are thought to play significant roles in alcohol and drug self-administration and the development of drug dependence. Among the 5-HT receptors, the 5-HT7 receptor is currently undergoing characterization as a potential target for the treatment of several psychiatric disorders. Although this receptor has received only limited research regarding addictive behaviors, aspects of its neuroanatomical, biochemical, physiological, pharmacological, and behavioral profiles suggest that it could play a key role in the addiction process. For instance, genomic studies in humans have suggested a link between variants in the gene encoding the 5-HT7 receptor and alcoholism. Recent behavioral testing using high-affinity antagonists in mice and preliminary tests with alcohol-preferring rats suggest that this receptor could mediate alcohol consumption and/or reinforcement and play a role in seeking/craving behavior. Interest in the development of new and more selective pharmacological agents for this receptor will aid in examining the 5-HT7 receptor as a novel target for treating addiction.

  15. Molecular Characterization and Sex Distribution of Chemosensory Receptor Gene Family Based on Transcriptome Analysis of Scaeva pyrastri

    PubMed Central

    Li, Xiao-Ming; Zhu, Xiu-Yun; He, Peng; Xu, Lu; Sun, Liang; Chen, Li; Wang, Zhi-Qiang; Deng, Dao-Gui

    2016-01-01

    Chemosensory receptors play key roles in insect behavior. Thus, genes encoding these receptors have great potential for use in integrated pest management. The hover fly Scaeva pyrastri (L.) is an important pollinating insect and a natural enemy of aphids, mainly distributed in the Palearctic and Nearctic regions. However, a systematic identification of their chemosensory receptor genes in the antennae has not been reported. In the present study, we assembled the antennal transcriptome of S. pyrastri by using Illumina sequencing technology. Analysis of the transcriptome data identified 60 candidate chemosensory genes, including 38 for odorant receptors (ORs), 16 for ionotropic receptors (IRs), and 6 for gustatory receptors (GRs). The numbers are similar to those of other Diptera species, suggesting that we were able to successfully identify S. pyrastri chemosensory genes. We analyzed the expression patterns of all genes by using reverse transcriptase PCR (RT-PCR), and found that some genes exhibited sex-biased or sex-specific expression. These candidate chemosensory genes and their tissue expression profiles provide information for further studies aimed at fully understanding the molecular basis behind chemoreception-related behaviors in S. pyrastri. PMID:27171401

  16. Insulin receptor-like ectodomain genes and splice variants are found in both arthropods and human brain cDNA

    PubMed Central

    VÄSTERMARK, Åke; RASK-ANDERSEN, Mathias; SAWANT, Rahul S.; REITER, Jill L.; SCHIÖTH, Helgi B.; WILLIAMS, Michael J.

    2016-01-01

    Truncated receptor ectodomains have been described for several classes of cell surface receptors, including those that bind to growth factors, cytokines, immunoglobulins, and adhesion molecules. Soluble receptor isoforms are typically generated by proteolytic cleavage of the cell surface receptor or by alternative splicing of RNA transcripts arising from the same gene encoding the full-length receptor. Both the epidermal growth factor receptor (EGFR) and the insulin receptor (INSR) families produce soluble receptor splice variants in vertebrates and truncated forms of insulin receptor-like sequences have previously been described in Drosophila. The EGFR and INSR ectodomains share significant sequence homology with each other suggestive of a common evolutionary origin. We discovered novel truncated insulin receptor-like variants in several arthropod species. We performed a phylogenetic analysis of the conserved extracellular receptor L1 and L2 subdomains in invertebrate species. While the segregation of insulin receptor-like L1 and L2 domains indicated that an internal domain duplication had occurred only once, the generation of truncated insulin receptor-like sequences has occurred multiple times. The significance of this work is the previously unknown and widespread occurrence of truncated isoforms in arthropods, signifying that these isoforms play an important functional role, potentially related to such isoforms in mammals. PMID:27375681

  17. Mechanisms of oestrogen receptor (ER) gene regulation in breast cancer

    PubMed Central

    2016-01-01

    Most breast cancers are driven by a transcription factor called oestrogen receptor (ER). Understanding the mechanisms of ER activity in breast cancer has been a major research interest and recent genomic advances have revealed extraordinary insights into how ER mediates gene transcription and what occurs during endocrine resistance. This review discusses our current understanding on ER activity, with an emphasis on several evolving, but important areas of ER biology. PMID:26884552

  18. Complete structural characterisation of the human aryl hydrocarbon receptor gene

    PubMed Central

    Bennett, P; Ramsden, D B; Williams, A C

    1996-01-01

    Aims—To clone and characterise the complete structural gene for the human aryl hydrocarbon receptor (AhR). This gene, located on chromosome 7, encodes a cytosolic receptor protein which, upon activation by various xenobiotic ligands, translocates to the nucleus, where it acts as a specific transcription factor. Methods—Primers, based on the AhR cDNA sequence, were used in conjunction with recently developed long range PCR techniques to amplify contiguous sections of the cognate gene. The amplicons produced were then cloned and characterised. A cDNA probe was also used to screen a human P1 library. Results—Using the cDNA primers, DNA fragments which mapped the entire coding region of the gene were amplified and cloned. All but one of these fragments were amplified directly from human genomic DNA. The remaining fragment was amplified using DNA prepared from a P1 clone as the PCR template. This P1 clone, obtained by screening a human P1 library, also contained the entire Ah locus. Characterisation of amplified and cloned DNA fragments provided sufficient information for the construction of a complete structural map of the gene. This also included 150 base pairs of nucleotide sequence data at all intronic termini. Conclusions—These data indicate that the human AhR gene is about 50 kilobases long and contains 11 exons. The overall intron/exon structure of the human gene is homologous to that of the previously characterised mouse gene; however, it is probably some 20 kilobases larger. These results demonstrate the need for further characterisation and provide the data to facilitate this. Images PMID:16696038

  19. Transient receptor potential-like channels mediate metabotropic glutamate receptor EPSCs in rat dopamine neurones

    PubMed Central

    Bengtson, C Peter; Tozzi, Alessandro; Bernardi, Giorgio; Mercuri, Nicola B

    2004-01-01

    Transient receptor potential (TRP) channels form cationic channels activated by diverse factors including mechanical stimuli, changes in osmolarity, pH and temperature, as well as the exogenous irritant, capsaicin. Metabotropic glutamate receptors have also recently been linked to TRP channel activation in neurones of the substantia nigra, hippocampus and cerebellum, suggesting a novel role for such channels in synaptic communication via endogenous neurotransmitters. We tested this for dopamine neurones in rat brain slices by characterizing the current–voltage relationship and pharmacology of EPSCs mediated by group I metabotropic glutamate receptor subtype 1 (mGluR1). Slow inward currents (273 ± 35 pA peak amplitude, 381 ± 25 ms latency, holding potential (Vh) =−73 mV) representing evoked mGluR1 EPSCs were isolated in the presence of antagonists of AMPA, NMDA, GABAA, GABAB, muscarinic and glycine receptors. CPCCOEt (100 μm), an mGluR1 antagonist, blocked the residual EPSC in all recordings. mGluR1-activated EPSCs reversed polarity near −10 mV, consistent with the involvement of a cationic channel. Extracellular application of the non-selective TRP channel blockers SKF 96365, flufenamic acid and ruthenium red caused reversible inhibition of mGluR1-activated EPSCs. These characteristics parallel those of mGluR1 activation with an agonist and indicate the involvement of a TRP-like channel in mGluR1-mediated EPSCs. PMID:14724196

  20. Application potential of toll-like receptors in cancer immunotherapy

    PubMed Central

    Shi, Ming; Chen, Xi; Ye, Kangruo; Yao, Yuanfei; Li, Yu

    2016-01-01

    Abstract Toll-like receptors (TLRs), as the most important pattern recognition receptors in innate immunity, play a pivotal role in inducing immune response through recognition of microbial invaders or specific agonists. Recent studies have suggested that TLRs could serve as important regulators in the development of a variety of cancer. However, increasing evidences have shown that TLRs may display quite opposite outcomes in cancer development. Although several potential therapeutic Toll-like receptor ligands have been found, the mechanism and therapy prospect of TLRs in cancer development has to be further elucidated to accelerate the clinical application. By performing a systematic review of the present findings on TLRs in cancer immunology, we attempted to evaluate the therapeutic potential of TLRs in cancer therapy and elucidate the potential mechanism of cancer progress regulated by TLR signaling and the reported targets on TLRs for clinical application. An electronic databases search was conducted in PubMed, Chinese Scientific Journal Database, and Chinese Biomedical Literature Database from their inception to February 1, 2016. The following keywords were used to search the databases: Toll-like receptors, cancer therapy, therapeutic target, innate immunity. Of 244 studies that were identified, 97 nonrelevant studies were excluded. In total, 147 full-text articles were assessed, and from these, 54 were excluded as they did not provide complete key information. Thus, 93 studies were considered eligible and included in the analysis. According to the data from the included trials, 14 TLR ligands (77.8%) from 82 studies have been demonstrated to display antitumor property in various cancers, whereas 4 ligands (22.2%) from 11 studies promote tumors. Among them, only 3 TLR ligands have been approved for cancer therapy, and 9 ligands were in clinical trials. In addition, the potential mechanism of recently reported targets on TLRs for clinical application was also

  1. Methuselah/Methuselah-like G protein-coupled receptors constitute an ancient metazoan gene family

    PubMed Central

    de Mendoza, Alexandre; Jones, Jeffery W.; Friedrich, Markus

    2016-01-01

    Inconsistent conclusions have been drawn regarding the phylogenetic age of the Methuselah/Methuselah-like (Mth/Mthl) gene family of G protein-coupled receptors, the founding member of which regulates development and lifespan in Drosophila. Here we report the results from a targeted homolog search of 39 holozoan genomes and phylogenetic analysis of the conserved seven transmembrane domain. Our findings reveal that the Mth/Mthl gene family is ancient, has experienced numerous extinction and expansion events during metazoan evolution, and acquired the current definition of the Methuselah ectodomain during its exceptional expansion in arthropods. In addition, our findings identify Mthl1, Mthl5, Mthl14, and Mthl15 as the oldest Mth/Mthl gene family paralogs in Drosophila. Future studies of these genes have the potential to define ancestral functions of the Mth/Mthl gene family. PMID:26915348

  2. Characterization of leptin receptor gene in Bubalus bubalis and association analysis with body measurement traits.

    PubMed

    De Matteis, Giovanna; Scatà, Maria Carmela; Catillo, Gennaro; Terzano, Giuseppina Maria; Grandoni, Francesco; Napolitano, Francesco

    2015-06-01

    Leptin has a pleiotropic effect on regulating appetite, energy metabolism, growth, reproduction, body composition and immunity. This property supports leptin and its receptor as candidate genes for evaluating genetic polymorphisms to associate with growth, milk yield and other economic traits. The aim of this study is to characterize the leptin receptor gene in Bubalus bubalis, to identify single-nucleotide polymorphism (SNP) sites in different coding and non-coding regions and to analyse potential associations between SNPs identified and the body measurements traits of growing buffalo heifers. A group of 64 animals were genotyped by direct sequencing and twenty-eight SNPs were detected. A sequence analysis revealed the presence of nine interesting SNPs in gene sequence. The association analysis of polymorphisms with the body measurements traits of growing buffalo heifers shows significant statistical effects on chest depth and sacrum height. Therefore according to the results obtained from this study, the leptin receptor gene appears to have potential effects on the body measurement traits of Bubalus bubalis.

  3. Isolation and characterization of alternatively spliced variants of the mouse sigma1 receptor gene, Sigmar1

    PubMed Central

    Pan, Ling; Pasternak, David A.; Xu, Jin; Xu, Mingming; Lu, Zhigang; Pasternak, Gavril W.

    2017-01-01

    The sigma1 receptor acts as a chaperone at the endoplasmic reticulum, associates with multiple proteins in various cellular systems, and involves in a number of diseases, such as addiction, pain, cancer and psychiatric disorders. The sigma1 receptor is encoded by the single copy SIGMAR1 gene. The current study identifies five alternatively spliced variants of the mouse sigma1 receptor gene using a polymerase chain reaction cloning approach. All the splice variants are generated by exon skipping or alternative 3’ or 5’ splicing, producing the truncated sigma1 receptor. Similar alternative splicing has been observed in the human SIGMAR1 gene based on the molecular cloning or genome sequence prediction, suggesting conservation of alternative splicing of SIGMAR1 gene. Using quantitative polymerase chain reactions, we demonstrate differential expression of several splice variants in mouse tissues and brain regions. When expressed in HEK293 cells, all the splice variants fail to bind sigma ligands, implicating that each truncated region in these splice variants is important for ligand binding. However, co-immunoprecipitation (Co-IP) study in HEK293 cells co-transfected with tagged constructs reveals that all the splice variants maintain their ability to physically associate with a mu opioid receptor (mMOR-1), providing useful information to correlate the motifs/sequences necessary for their physical association. Furthermore, a competition Co-IP study showed that all the variants can disrupt in a dose-dependent manner the dimerization of the original sigma1 receptor with mMOR-1, suggesting a potential dominant negative function and providing significant insights into their function. PMID:28350844

  4. Gene number determination and genetic polymorphism of the gamma delta T cell co-receptor WC1 genes

    USDA-ARS?s Scientific Manuscript database

    Background WC1 co-receptors belong to the scavenger receptor cysteine-rich superfamily and are encoded by a multi-gene family. Expression of particular WC1 genes defines functional subpopulations of WC1+ '' T cells. Our previous study identified partial sequences for 13 different WC1 genes by annota...

  5. Distribution and Expression of Non-Neuronal Transient Receptor Potential (TRPV) Ion Channels in Rosacea

    PubMed Central

    Sulk, Mathias; Seeliger, Stephan; Aubert, Jerome; Schwab, Verena D.; Cevikbas, Ferda; Rivier, Michel; Nowak, Pawel; Voegel, Johannes J.; Buddenkotte, Jörg; Steinhoff, Martin

    2011-01-01

    Rosacea is a frequent chronic inflammatory skin disease of unknown etiology. Because early rosacea reveals all characteristics of neurogenic inflammation, a central role of sensory nerves in its pathophysiology has been discussed. Neuroinflammatory mediators and their receptors involved in rosacea are poorly defined. Good candidates may be transient receptor potential (TRP) ion channels of vanilloid type (TRPV), which can be activated by many trigger factors of rosacea. Interestingly, TRPV2, TRPV3, and TRPV4 are expressed by both neuronal and non-neuronal cells. Here, we analyzed the expression and distribution of TRPV receptors in the various subtypes of rosacea on non-neuronal cells using immunohistochemistry, morphometry, double immunoflourescence, and quantitative real-time PCR (qRT-PCR) as compared with healthy skin and lupus erythematosus. Our results show that dermal immunolabeling of TRPV2 and TRPV3 and gene expression of TRPV1 is significantly increased in erythematotelangiectatic rosacea (ETR). Papulopustular rosacea (PPR) displayed an enhanced immunoreactivity for TRPV2, TRPV4, and also of TRPV2 gene expression. In phymatous rosacea (PhR)-affected skin, dermal immunostaining of TRPV3 and TRPV4 and gene expression of TRPV1 and TRPV3 was enhanced, whereas epidermal TRPV2 staining was decreased. Thus, dysregulation of TRPV channels also expressed by non-neuronal cells may be critically involved in the initiation and/or development of rosacea. TRP ion channels may be targets for the treatment of rosacea. PMID:22189789

  6. AMPA receptor potentiation can prevent ethanol-induced intoxication.

    PubMed

    Jones, Nicholas; Messenger, Marcus J; O'Neill, Michael J; Oldershaw, Anna; Gilmour, Gary; Simmons, Rosa M A; Iyengar, Smriti; Libri, Vincenzo; Tricklebank, Mark; Williams, Steve C R

    2008-06-01

    We present a substantial series of behavioral and imaging experiments, which demonstrate, for the first time, that increasing AMPA receptor-mediated neurotransmission via administration of potent and selective biarylsulfonamide AMPA potentiators LY404187 and LY451395 reverses the central effects of an acutely intoxicating dose of ethanol in the rat. Using pharmacological magnetic resonance imaging (phMRI), we observed that LY404187 attenuated ethanol-induced reductions in blood oxygenation level dependent (BOLD) in the anesthetized rat brain. A similar attenuation was apparent when measuring local cerebral glucose utilization (LCGU) via C14-2-deoxyglucose autoradiography in freely moving conscious rats. Both LY404187 and LY451395 significantly and dose-dependently reversed ethanol-induced deficits in both motor coordination and disruptions in an operant task where animals were trained to press a lever for food reward. Both prophylactic and acute intervention treatment with LY404187 reversed ethanol-induced deficits in motor coordination. Given that LY451395 and related AMPA receptor potentiators/ampakines are tolerated in both healthy volunteers and elderly patients, these data suggest that such compounds may form a potential management strategy for acute alcohol intoxication.

  7. Transient receptor potential cation channels in visceral sensory pathways

    PubMed Central

    Blackshaw, L Ashley

    2014-01-01

    The extensive literature on this subject is in direct contrast to the limited range of clinical uses for ligands of the transient receptor potential cation channels (TRPs) in diseases of the viscera. TRPV1 is the most spectacular example of this imbalance, as it is in other systems, but it is nonetheless the only TRP target that is currently targeted clinically in bladder sensory dysfunction. It is not clear why this discrepancy exists, but a likely answer is in the promiscuity of TRPs as sensors and transducers for environmental mechanical and chemical stimuli. This review first describes the different sensory pathways from the viscera, and on which nociceptive and non-nociceptive neurones within these pathways TRPs are expressed. They not only fulfil roles as both mechano-and chemo-sensors on visceral afferents, but also form an effector mechanism for cell activation after activation of GPCR and cytokine receptors. Their role may be markedly changed in diseased states, including chronic pain and inflammation. Pain presents the most obvious potential for further development of therapeutic interventions targeted at TRPs, but forms of inflammation are emerging as likely to benefit also. However, despite much basic research, we are still at the beginning of exploring such potential in visceral sensory pathways. LINKED ARTICLES This article is part of a themed section on the pharmacology of TRP channels. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-10 PMID:24641218

  8. Variation in the oxytocin receptor gene (OXTR) is associated with differences in moral judgment

    PubMed Central

    Chaponis, Jonathan; Siburian, Richie; Gallagher, Patience; Ransohoff, Katherine; Wikler, Daniel; Perlis, Roy H.; Greene, Joshua D.

    2016-01-01

    Moral judgments are produced through the coordinated interaction of multiple neural systems, each of which relies on a characteristic set of neurotransmitters. Genes that produce or regulate these neurotransmitters may have distinctive influences on moral judgment. Two studies examined potential genetic influences on moral judgment using dilemmas that reliably elicit competing automatic and controlled responses, generated by dissociable neural systems. Study 1 (N = 228) examined 49 common variants (SNPs) within 10 candidate genes and identified a nominal association between a polymorphism (rs237889) of the oxytocin receptor gene (OXTR) and variation in deontological vs utilitarian moral judgment (that is, judgments favoring individual rights vs the greater good). An association was likewise observed for rs1042615 of the arginine vasopressin receptor gene (AVPR1A). Study 2 (N = 322) aimed to replicate these findings using the aforementioned dilemmas as well as a new set of structurally similar medical dilemmas. Study 2 failed to replicate the association with AVPR1A, but replicated the OXTR finding using both the original and new dilemmas. Together, these findings suggest that moral judgment is influenced by variation in the oxytocin receptor gene and, more generally, that single genetic polymorphisms can have a detectable effect on complex decision processes. PMID:27497314

  9. Variation in the oxytocin receptor gene (OXTR) is associated with differences in moral judgment.

    PubMed

    Bernhard, Regan M; Chaponis, Jonathan; Siburian, Richie; Gallagher, Patience; Ransohoff, Katherine; Wikler, Daniel; Perlis, Roy H; Greene, Joshua D

    2016-12-01

    Moral judgments are produced through the coordinated interaction of multiple neural systems, each of which relies on a characteristic set of neurotransmitters. Genes that produce or regulate these neurotransmitters may have distinctive influences on moral judgment. Two studies examined potential genetic influences on moral judgment using dilemmas that reliably elicit competing automatic and controlled responses, generated by dissociable neural systems. Study 1 (N = 228) examined 49 common variants (SNPs) within 10 candidate genes and identified a nominal association between a polymorphism (rs237889) of the oxytocin receptor gene (OXTR) and variation in deontological vs utilitarian moral judgment (that is, judgments favoring individual rights vs the greater good). An association was likewise observed for rs1042615 of the arginine vasopressin receptor gene (AVPR1A). Study 2 (N = 322) aimed to replicate these findings using the aforementioned dilemmas as well as a new set of structurally similar medical dilemmas. Study 2 failed to replicate the association with AVPR1A, but replicated the OXTR finding using both the original and new dilemmas. Together, these findings suggest that moral judgment is influenced by variation in the oxytocin receptor gene and, more generally, that single genetic polymorphisms can have a detectable effect on complex decision processes.

  10. Associations between Vocal Symptoms and Genetic Variants in the Oxytocin Receptor and Arginine Vasopressin 1A Receptor Gene

    ERIC Educational Resources Information Center

    Jämsen, Sofia Holmqvist; Johansson, Ada; Westberg, Lars; Santtila, Pekka; von der Pahlen, Bettina; Simberg, Susanna

    Purpose: Oxytocin and arginine vasopressin are associated with different aspects of the stress response. As stress is regarded as a risk factor for vocal symptoms, we wanted to explore the association between the oxytocin receptor gene ("OXTR") and arginine vasopressin 1A receptor gene ("AVPR1A") single-nucleotide polymorphisms…

  11. AT2 Receptors: Potential Therapeutic Targets for Hypertension.

    PubMed

    Carey, Robert M

    2017-04-01

    The renin-angiotensin system (RAS) is arguably the most important and best studied hormonal system in the control of blood pressure (BP) and the pathogenesis of hypertension. The RAS features its main effector angiotensin II (Ang II) acting via its 2 major receptors, angiotensin type-1(AT1R) and type-2 (AT2R). In general, AT2Rs oppose the detrimental actions of Ang II via AT1Rs. AT2R activation induces vasodilation and natriuresis, but its effects to lower BP in hypertension have not been as clear as anticipated. Recent studies, however, have demonstrated that acute and chronic AT2R stimulation can induce natriuresis and lower BP in the Ang II infusion model of experimental hypertension. AT2R activation induces receptor recruitment from intracellular sites to the apical plasma membranes of renal proximal tubule cells via a bradykinin, nitric oxide, and cyclic guanosine 3',5' monophosphate signaling pathway that results in internalization and inactivation of sodium (Na+) transporters Na+-H+ exchanger-3 and Na+/K+ATPase. These responses do not require the presence of concurrent AT1R blockade and are effective both in the prevention and reversal of hypertension. This review will address the role of AT2Rs in the control of BP and Na+ excretion and the case for these receptors as potential therapeutic targets for hypertension in humans. © American Journal of Hypertension, Ltd 2016. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Potential of the cannabinoid CB(2) receptor as a pharmacological target against inflammation in Parkinson's disease.

    PubMed

    Gómez-Gálvez, Yolanda; Palomo-Garo, Cristina; Fernández-Ruiz, Javier; García, Concepción

    2016-01-04

    Inflammation is an important pathogenic factor in Parkinson's disease (PD), so that it can contribute to kill dopaminergic neurons of the substantia nigra and to enhance the dopaminergic denervation of the striatum. The cannabinoid type-2 (CB2) receptor has been investigated as a potential anti-inflammatory and neuroprotective target in different neurodegenerative disorders, but still limited evidence has been collected in PD. Here, we show for the first time that CB2 receptors are elevated in microglial cells recruited and activated at lesioned sites in the substantia nigra of PD patients compared to control subjects. Parkinsonian inflammation can be reproduced experimentally in rodents by intrastriatal injections of lipopolysaccharide (LPS) which, through an intense activation of glial elements and peripheral infiltration, provokes a rapid deterioration of the striatum that may extend to the substantia nigra too. Using this experimental model, we recently described a much more intense deterioration of tyrosine hydroxylase (TH)-containing nigral neurons in CB2 receptor-deficient mice compared to wild-type animals, supporting a potential neuroprotective role for this receptor. In the present study, we further explored this issue. First, we found elevated levels of the CB2 receptor measured by qRT-PCR in the striatum and substantia nigra of LPS-lesioned mice, as well as an increase in the immunostaining for this receptor in the LPS-lesioned striatum. Second, we found a significant increase in CD68 immunostaining, which serve to identify activated microglia and also infiltrated peripheral macrophages, in these brain structures in response to LPS insult, which was much more intense in CB2 receptor-deficient mice in the case of the substantia nigra. Next, we observed that the activation of CB2 receptors with a selective agonist (HU-308) reversed LPS-induced elevation of CD68 immunostaining in the striatum and the parallel reduction in TH immunostaining. Lastly, we

  13. Constitutive androstane receptor activation evokes the expression of glycolytic genes.

    PubMed

    Yarushkin, Andrei A; Kazantseva, Yuliya A; Prokopyeva, Elena A; Markova, Diana N; Pustylnyak, Yuliya A; Pustylnyak, Vladimir O

    2016-09-23

    It is well-known that constitutive androstane receptor (CAR) activation by 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) increases the liver-to-body weight ratio. CAR-mediated liver growth is correlated with increased expression of the pleiotropic transcription factor cMyc, which stimulates cell cycle regulatory genes and drives proliferating cells into S phase. Because glycolysis supports cell proliferation and cMyc is essential for the activation of glycolytic genes, we hypothesized that CAR-mediated up-regulation of cMyc in mouse livers might play a role in inducing the expression of glycolytic genes. The aim of the present study was to examine the effect of long-term CAR activation on glycolytic genes in a mouse model not subjected to metabolic stress. We demonstrated that long-term CAR activation by TCPOBOP increases expression of cMyc, which was correlated with reduced expression of gluconeogenic genes and up-regulation of glucose transporter, glycolytic and mitochondrial pyruvate metabolising genes. These changes in gene expression after TCPOBOP treatment were strongly correlated with changes in levels of glycolytic intermediates in mouse livers. Moreover, we demonstrated a significant positive regulatory effect of TCPOBOP-activated CAR on both mRNA and protein levels of Pkm2, a master regulator of glucose metabolism and cell proliferation. Thus, our findings provide evidence to support the conclusion that CAR activation initiates a transcriptional program that facilitates the coordinated metabolic activities required for cell proliferation.

  14. Immunolocalization of cannabinoid receptor type 1 and CB2 cannabinoid receptors, and transient receptor potential vanilloid channels in pterygium.

    PubMed

    Assimakopoulou, Martha; Pagoulatos, Dionysios; Nterma, Pinelopi; Pharmakakis, Nikolaos

    2017-10-01

    Cannabinoids, as multi‑target mediators, activate cannabinoid receptors and transient receptor potential vanilloid (TRPV) channels. There is evidence to support a functional interaction of cannabinoid receptors and TRPV channels when they are coexpressed. Human conjunctiva demonstrates widespread cannabinoid receptor type 1 (CB1), CB2 and TRPV channel localization. The aim of the present study was to investigate the expression profile for cannabinoid receptors (CB1 and CB2) and TRPV channels in pterygium, an ocular surface lesion originating from the conjunctiva. Semi‑serial paraffin‑embedded sections from primary and recurrent pterygium samples were immunohistochemically examined with the use of specific antibodies. All of the epithelial layers in 94, 78, 96, 73 and 80% of pterygia cases, exhibited CB1, CB2, TRPV1, TRPV2 and TRPV3 cytoplasmic immunoreactivity, respectively. The epithelium of all pterygia cases (100%) showed strong, mainly nuclear, TRPV4 immunolocalization. In the pterygium stroma, scattered cells demonstrated intense CB2 immunoreactivity, whereas vascular endothelial cells were immunopositive for the cannabinoid receptors and all TRPV channels. Quantitative analyses of the immunohistochemical findings in epithelial cells demonstrated a significantly higher expression level in conjunctiva compared with primary pterygia (P=0.04) for CB1, but not for CB2 (P>0.05). Additionally, CB1 and CB2 were significantly highly expressed in primary pterygia (P=0.01), compared with recurrent pterygia. Furthermore, CB1 expression levels were significantly correlated with CB2 expression levels in primary pterygia (P=0.005), but not in recurrent pterygia (P>0.05). No significant difference was detected for all TRPV channel expression levels between pterygium (primary or recurrent) and conjunctival tissues (P>0.05). A significant correlation between the TRPV1 and TRPV3 expression levels (P<0.001) was detected independently of pterygium recurrence. Finally, TRPV

  15. Positive Evolutionary Selection On the RIG-I-Like Receptor Genes in Mammals

    PubMed Central

    Lemos de Matos, Ana; McFadden, Grant; Esteves, Pedro J.

    2013-01-01

    The mammalian RIG-I-like receptors, RIG-I, MDA5 and LGP2, are a family of DExD/H box RNA helicases responsible for the cytoplasmic detection of viral RNA. These receptors detect a variety of RNA viruses, or DNA viruses that express unusual RNA species, many of which are responsible for a great number of severe and lethal diseases. Host innate sentinel proteins involved in pathogen recognition must rapidly evolve in a dynamic arms race with pathogens, and thus are subjected to long-term positive selection pressures to avoid potential infections. Using six codon-based Maximum Likelihood methods, we were able to identify specific codons under positive selection in each of these three genes. The highest number of positively selected codons was detected in MDA5, but a great percentage of these codons were located outside of the currently defined protein domains for MDA5, which likely reflects the imposition of both functional and structural constraints. Additionally, our results support LGP2 as being the least prone to evolutionary change, since the lowest number of codons under selection was observed for this gene. On the other hand, the preponderance of positively selected codons for RIG-I were detected in known protein functional domains, suggesting that pressure has been imposed by the vast number of viruses that are recognized by this RNA helicase. Furthermore, the RIG-I repressor domain, the region responsible for recognizing and binding to its RNA substrates, exhibited the strongest evidence of selective pressures. Branch-site analyses were performed and several species branches on the three receptor gene trees showed evidence of episodic positive selection. In conclusion, by looking for evidence of positive evolutionary selection on mammalian RIG-I-like receptor genes, we propose that a multitude of viruses have crafted the receptors biological function in host defense, specifically for the RIG-I gene, contributing to the innate species-specific resistance

  16. A comparison of reptilian and avian olfactory receptor gene repertoires: Species-specific expansion of group γ genes in birds

    PubMed Central

    Steiger, Silke S; Kuryshev, Vladimir Y; Stensmyr, Marcus C; Kempenaers, Bart; Mueller, Jakob C

    2009-01-01

    Background The detection of odorants is mediated by olfactory receptors (ORs). ORs are G-protein coupled receptors that form a remarkably large protein superfamily in vertebrate genomes. We used data that became available through recent sequencing efforts of reptilian and avian genomes to identify the complete OR gene repertoires in a lizard, the green anole (Anolis carolinensis), and in two birds, the chicken (Gallus gallus) and the zebra finch (Taeniopygia guttata). Results We identified 156 green anole OR genes, including 42 pseudogenes. The OR gene repertoire of the two bird species was substantially larger with 479 and 553 OR gene homologs in the chicken and zebra finch, respectively (including 111 and 221 pseudogenes, respectively). We show that the green anole has a higher fraction of intact OR genes (~72%) compared with the chicken (~66%) and the zebra finch (~38%). We identified a larger number and a substantially higher proportion of intact OR gene homologs in the chicken genome than previously reported (214 versus 82 genes and 66% versus 15%, respectively). Phylogenetic analysis showed that lizard and bird OR gene repertoires consist of group α, θ and γ genes. Interestingly, the vast majority of the avian OR genes are confined to a large expansion of a single branch (the so called γ-c clade). An analysis of the selective pressure on the paralogous genes of each γ-c clade revealed that they have been subjected to adaptive evolution. This expansion appears to be bird-specific and not sauropsid-specific, as it is lacking from the lizard genome. The γ-c expansions of the two birds do not intermix, i.e., they are lineage-specific. Almost all (group γ-c) OR genes mapped to the unknown chromosome. The remaining OR genes mapped to six homologous chromosomes plus three to four additional chromosomes in the zebra finch and chicken. Conclusion We identified a surprisingly large number of potentially functional avian OR genes. Our data supports recent

  17. A comparison of reptilian and avian olfactory receptor gene repertoires: species-specific expansion of group gamma genes in birds.

    PubMed

    Steiger, Silke S; Kuryshev, Vladimir Y; Stensmyr, Marcus C; Kempenaers, Bart; Mueller, Jakob C

    2009-09-21

    The detection of odorants is mediated by olfactory receptors (ORs). ORs are G-protein coupled receptors that form a remarkably large protein superfamily in vertebrate genomes. We used data that became available through recent sequencing efforts of reptilian and avian genomes to identify the complete OR gene repertoires in a lizard, the green anole (Anolis carolinensis), and in two birds, the chicken (Gallus gallus) and the zebra finch (Taeniopygia guttata). We identified 156 green anole OR genes, including 42 pseudogenes. The OR gene repertoire of the two bird species was substantially larger with 479 and 553 OR gene homologs in the chicken and zebra finch, respectively (including 111 and 221 pseudogenes, respectively). We show that the green anole has a higher fraction of intact OR genes (approximately 72%) compared with the chicken (approximately 66%) and the zebra finch (approximately 38%). We identified a larger number and a substantially higher proportion of intact OR gene homologs in the chicken genome than previously reported (214 versus 82 genes and 66% versus 15%, respectively). Phylogenetic analysis showed that lizard and bird OR gene repertoires consist of group alpha, theta and gamma genes. Interestingly, the vast majority of the avian OR genes are confined to a large expansion of a single branch (the so called gamma-c clade). An analysis of the selective pressure on the paralogous genes of each gamma-c clade revealed that they have been subjected to adaptive evolution. This expansion appears to be bird-specific and not sauropsid-specific, as it is lacking from the lizard genome. The gamma-c expansions of the two birds do not intermix, i.e., they are lineage-specific. Almost all (group gamma-c) OR genes mapped to the unknown chromosome. The remaining OR genes mapped to six homologous chromosomes plus three to four additional chromosomes in the zebra finch and chicken. We identified a surprisingly large number of potentially functional avian OR genes

  18. Beta receptor-mediated modulation of the late positive potential in humans.

    PubMed

    de Rover, Mischa; Brown, Stephen B R E; Boot, Nathalie; Hajcak, Greg; van Noorden, Martijn S; van der Wee, Nic J A; Nieuwenhuis, Sander

    2012-02-01

    Electrophysiological studies have identified a scalp potential, the late positive potential (LPP), which is modulated by the emotional intensity of observed stimuli. Previous work has shown that the LPP reflects the modulation of activity in extrastriate visual cortical structures, but little is known about the source of that modulation. The present study investigated whether beta-adrenergic receptors are involved in the generation of the LPP. We used a genetic individual differences approach (experiment 1) and a pharmacological manipulation (experiment 2) to test the hypothesis that the LPP is modulated by the activation of β-adrenergic receptors. In experiment 1, we found that LPP amplitude depends on allelic variation in the β1-receptor gene polymorphism. In experiment 2, we found that LPP amplitude was modulated by the β-blocker propranolol in a direction dependent on subjects' level of trait anxiety: In participants with lower trait anxiety, propranolol led to a (nonsignificant) decrease in the LPP modulation; in participants with higher trait anxiety, propranolol increased the emotion-related LPP modulation. These results provide initial support for the hypothesis that the LPP reflects the downstream effects, in visual cortical areas, of β-receptor-mediated activation of the amygdala.

  19. Therapeutic potential of nuclear receptor agonists in Alzheimer's disease.

    PubMed

    Moutinho, Miguel; Landreth, Gary E

    2017-10-01

    Alzheimer's disease (AD) is characterized by an extensive accumulation of amyloid-β (Aβ) peptide, which triggers a set of deleterious processes, including synaptic dysfunction, inflammation, and neuronal injury, leading to neuronal loss and cognitive impairment. A large body of evidence supports that nuclear receptor (NR) activation could be a promising therapeutic approach for AD. NRs are ligand-activated transcription factors that regulate gene expression and have cell type-specific effects. In this review, we discuss the mechanisms that underlie the beneficial effects of NRs in AD. Moreover, we summarize studies reported in the last 10-15 years and their major outcomes arising from the pharmacological targeting of NRs in AD animal models. The dissection of the pathways regulated by NRs in the context of AD is of importance in identifying novel and effective therapeutic strategies. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  20. Smallest bitter taste receptor (T2Rs) gene repertoire in carnivores.

    PubMed

    Hu, Ling-Ling; Shi, Peng

    2013-06-01

    Bitter taste reception is presumably associated with dietary selection, preventing animals from ingesting potentially harmful compounds. Accordingly, carnivores, who encounter these toxic substances less often, should have fewer genes associated with bitter taste reception compared with herbivores and omnivores. To investigate the genetic basis of bitter taste reception, we confirmed bitter taste receptor (T2R) genes previously found in the genome sequences of two herbivores (cow and horse), two omnivores (mouse and rat) and one carnivore (dog). We also identified, for the first time, the T2R repertoire from the genome of other four carnivore species (ferret, giant panda, polar bear and cat) and detected 17-20 bitter receptor genes from the five carnivore genomes, including 12-16 intact genes, 0-1 partial but putatively functional genes, and 3-8 pseudogenes. Both the intact T2R genes and the total T2R gene number among carnivores were the smallest among the tested species, supporting earlier speculations that carnivores have fewer T2R genes, herbivores an intermediate number, and omnivores the largest T2R gene repertoire. To further explain the genetic basis for this disparity, we constructed a phylogenetic tree, which showed most of the T2R genes from the five carnivores were one-to-one orthologs across the tree, suggesting that carnivore T2Rs were conserved among mammals. Similarly, the small carnivore T2R family size was likely due to rare duplication events. Collectively, these results strengthen arguments for the connection between T2R gene family size, diet and habit.

  1. Largest vertebrate vomeronasal type 1 receptor gene repertoire in the semiaquatic platypus.

    PubMed

    Grus, Wendy E; Shi, Peng; Zhang, Jianzhi

    2007-10-01

    Vertebrate vomeronasal chemoreception plays important roles in many aspects of an organism's daily life, such as mating, territoriality, and foraging. Vomeronasal type 1 receptors (V1Rs) and vomeronasal type 2 receptors (V2Rs), 2 large families of G protein-coupled receptors, serve as vomeronasal receptors to bind to various pheromones and odorants. Contrary to the previous observations of reduced olfaction in aquatic and semiaquatic mammals, we here report the surprising finding that the platypus, a semiaquatic monotreme, has the largest V1R repertoire and nearly largest combined repertoire of V1Rs and V2Rs of all vertebrates surveyed, with 270 intact genes and 579 pseudogenes in the V1R family and 15 intact genes, 55 potentially intact genes, and 57 pseudogenes in the V2R family. Phylogenetic analysis shows a remarkable expansion of the V1R repertoire and a moderate expansion of the V2R repertoire in platypus since the separation of monotremes from placentals and marsupials. Our results challenge the view that olfaction is unimportant to aquatic mammals and call for further study into the role of vomeronasal reception in platypus physiology and behavior.

  2. Carbon dioxide receptor genes in cotton bollworm Helicoverpa armigera

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Anderson, Alisha

    2015-04-01

    Carbon dioxide (CO2) is important in insect ecology, eliciting a range of behaviours across different species. Interestingly, the numbers of CO2 gustatory receptors (GRs) vary among insect species. In the model organism Drosophila melanogaster, two GRs (DmelGR21a and DmelGR63a) have been shown to detect CO2. In the butterfly, moth, beetle and mosquito species studied so far, three CO2 GR genes have been identified, while in tsetse flies, four CO2 GR genes have been identified. In other species including honeybees, pea aphids, ants, locusts and wasps, no CO2 GR genes have been identified from the genome. These genomic differences may suggest different mechanisms for CO2 detection exist in different insects but, with the exception of Drosophila and mosquitoes, limited attention has been paid to the CO2 GRs in insects. Here, we cloned three putative CO2 GR genes from the cotton bollworm Helicoverpa armigera and performed phylogenetic and expression analysis. All three H. armigera CO2 GRs (HarmGR1, HarmGR2 and HarmGR3) are specifically expressed in labial palps, the CO2-sensing tissue of this moth. HarmGR3 is significantly activated by NaHCO3 when expressed in insect Sf9 cells but HarmGR1 and HarmGR2 are not. This is the first report characterizing the function of lepidopteran CO2 receptors, which contributes to our general understanding of the molecular mechanisms of insect CO2 gustatory receptors.

  3. Carbon dioxide receptor genes in cotton bollworm Helicoverpa armigera.

    PubMed

    Xu, Wei; Anderson, Alisha

    2015-04-01

    Carbon dioxide (CO2) is important in insect ecology, eliciting a range of behaviours across different species. Interestingly, the numbers of CO2 gustatory receptors (GRs) vary among insect species. In the model organism Drosophila melanogaster, two GRs (DmelGR21a and DmelGR63a) have been shown to detect CO2. In the butterfly, moth, beetle and mosquito species studied so far, three CO2 GR genes have been identified, while in tsetse flies, four CO2 GR genes have been identified. In other species including honeybees, pea aphids, ants, locusts and wasps, no CO2 GR genes have been identified from the genome. These genomic differences may suggest different mechanisms for CO2 detection exist in different insects but, with the exception of Drosophila and mosquitoes, limited attention has been paid to the CO2 GRs in insects. Here, we cloned three putative CO2 GR genes from the cotton bollworm Helicoverpa armigera and performed phylogenetic and expression analysis. All three H. armigera CO2 GRs (HarmGR1, HarmGR2 and HarmGR3) are specifically expressed in labial palps, the CO2-sensing tissue of this moth. HarmGR3 is significantly activated by NaHCO3 when expressed in insect Sf9 cells but HarmGR1 and HarmGR2 are not. This is the first report characterizing the function of lepidopteran CO2 receptors, which contributes to our general understanding of the molecular mechanisms of insect CO2 gustatory receptors.

  4. Dopamine Receptor Genes Modulate Associative Memory in Old Age.

    PubMed

    Papenberg, Goran; Becker, Nina; Ferencz, Beata; Naveh-Benjamin, Moshe; Laukka, Erika J; Bäckman, Lars; Brehmer, Yvonne

    2017-02-01

    Previous research shows that associative memory declines more than item memory in aging. Although the underlying mechanisms of this selective impairment remain poorly understood, animal and human data suggest that dopaminergic modulation may be particularly relevant for associative binding. We investigated the influence of dopamine (DA) receptor genes on item and associative memory in a population-based sample of older adults (n = 525, aged 60 years), assessed with a face-scene item associative memory task. The effects of single-nucleotide polymorphisms of DA D1 (DRD1; rs4532), D2 (DRD2/ANKK1/Taq1A; rs1800497), and D3 (DRD3/Ser9Gly; rs6280) receptor genes were examined and combined into a single genetic score. Individuals carrying more beneficial alleles, presumably associated with higher DA receptor efficacy (DRD1 C allele; DRD2 A2 allele; DRD3 T allele), performed better on associative memory than persons with less beneficial genotypes. There were no effects of these genes on item memory or other cognitive measures, such as working memory, executive functioning, fluency, and perceptual speed, indicating a selective association between DA genes and associative memory. By contrast, genetic risk for Alzheimer disease (AD) was associated with worse item and associative memory, indicating adverse effects of APOE ε4 and a genetic risk score for AD (PICALM, BIN1, CLU) on episodic memory in general. Taken together, our results suggest that DA may be particularly important for associative memory, whereas AD-related genetic variations may influence overall episodic memory in older adults without dementia.

  5. The rat growth hormone-releasing hormone receptor gene: structure, regulation, and generation of receptor isoforms with different signaling properties.

    PubMed

    Miller, T L; Godfrey, P A; Dealmeida, V I; Mayo, K E

    1999-09-01

    The interaction of GHRH with membrane-bound receptors on somatotroph cells of the anterior pituitary is an important step in the regulation of GH synthesis and secretion. The identification of a G protein-coupled receptor for GHRH has made it possible to investigate the pathway by which GHRH regulates pituitary somatotroph cell function. To initiate an analysis of the mechanisms regulating expression and function of the GHRH receptor, the structure of the gene and its promoter region were analyzed. The coding sequence of the rat GHRH receptor gene is contained within 14 exons spanning approximately 15 kb of genomic DNA. Four transcription start sites are located within 286 bp upstream of the initiation codon. The 5' flanking region of the GHRH receptor gene acts as a functional promoter in rat pituitary tumor GH3 cells, and basal promoter activity is enhanced in GH3 and COS7 cells by cotransfection of an expression construct encoding the pituitary-specific transcription factor Pit-1. The rat GHRH receptor gene is subject to at least 1 alternative RNA processing event that generates 2 receptor isoforms differing by 41 amino acids within the third intracellular loop (IL) of the protein. The short isoform of the GHRH receptor is predominant in pituitary cells. The MtT/S pituitary tumor cell line was found to express the GHRH receptor, and different populations of these cells produce predominantly the long or short isoforms of the receptor messenger RNA, suggesting that the alternative splicing can be regulated. Functional analysis of the two GHRH receptor isoforms demonstrates that both bind GHRH, but only the short isoform signals through a cAMP-mediated pathway. Neither receptor isoform is able to stimulate calcium mobilization from internal stores after GHRH treatment. Our findings indicate that the pituitary-specific transcription factor Pit-1 is involved in the somatotroph-specific expression of the GHRH receptor gene and that functionally distinct receptor

  6. Molecular biology of channel catfish gonadotropin receptors: 1. Cloning of a functional luteinizing hormone receptor and preovulatory induction of gene expression.

    PubMed

    Kumar, R S; Ijiri, S; Trant, J M

    2001-03-01

    There is little known about the molecular biology of piscine gonadotropin receptors, and information about gene expression during reproductive development is particularly lacking. We have cloned the LH receptor (LHR) in the channel catfish (cc), and examined its gene expression throughout a reproductive cycle. A cDNA encoding the receptor was isolated from the testis using reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends procedures. It encoded a 696-amino acid protein that showed the greatest homology (46-50% identity) with the known LHRs and lesser similarity with FSH receptors and thyroid-stimulating hormone receptors (44-47% and 42-44% identity, respectively). In addition, two characteristics unique to the LHRs were conserved in the cloned receptor and the encoding gene: presence of an intron corresponding to intron 10 in mammals and turkey and occurrence of a double cysteine residue in the cytoplasmic tail for potential palmitoylation. The ccLHR gene was well expressed in the gonads and kidney and merely detectable in the gills, muscle, and spleen. The isolated cDNA encoded an active ccLHR protein, as the recombinant receptor expressed in COS7 cells activated a cAMP response element-driven reporter gene (luciferase) upon exposure to hCG in a dose-dependent manner. Seasonal changes in the ovarian expression of the ccLHR gene, as examined by measuring the transcript abundance by quantitative real-time RT-PCR, remained rather low during most of the reproductive cycle but was acutely induced around the time of spawning. This pattern of expression correlates well with the reported expression of its ligand (LH) in fishes and concurs with the notion that LH is a key regulator of the periovulatory maturational events.

  7. Distinct, genome-wide, gene-specific selectivity patterns of four glucocorticoid receptor coregulators.

    PubMed

    Wu, Dai-Ying; Ou, Chen-Yin; Chodankar, Rajas; Siegmund, Kimberly D; Stallcup, Michael R

    2014-01-01

    Glucocorticoids are a class of steroid hormones that bind to and activate the glucocorticoid receptor (GR), which then positively or negatively regulates transcription of many genes that govern multiple important physiological pathways such as inflammation and metabolism of glucose, fat and bone. The remodeling of chromatin and regulated assembly or disassembly of active transcription complexes by GR and other DNA-binding transcription factors is mediated and modulated by several hundred transcriptional coregulator proteins. Previous studies focusing on single coregulators demonstrated that each coregulator is required for regulation of only a subset of all the genes regulated by a steroid hormone. We hypothesized that the gene-specific patterns of coregulators may correspond to specific physiological pathways such that different coregulators modulate the pathway-specificity of hormone action, thereby providing a mechanism for fine tuning of the hormone response. We tested this by direct comparison of multiple coregulators, using siRNA to deplete the products of four steroid hormone receptor coregulator genes (CCAR1, CCAR2, CALCOCO1 and ZNF282). Global analysis of glucocorticoid-regulated gene expression after siRNA mediated depletion of coregulators confirmed that each coregulator acted in a selective and gene-specific manner and demonstrated both positive and negative effects on glucocorticoid-regulated expression of different genes. We identified several classes of hormone-regulated genes based on the effects of coregulator depletion. Each coregulator supported hormonal regulation of some genes and opposed hormonal regulation of other genes (coregulator-modulated genes), blocked hormonal regulation of a second class of genes (coregulator-blocked genes), and had no effect on hormonal regulation of a third gene class (coregulator-independent genes). In spite of previously demonstrated physical and functional interactions among these four coregulators, the majority

  8. Trialkyltin Rexinoid-X Receptor Agonists Selectively Potentiate Thyroid Hormone Induced Programs of Xenopus laevis Metamorphosis.

    PubMed

    Mengeling, Brenda J; Murk, Albertinka J; Furlow, J David

    2016-07-01

    The trialkyltins tributyltin (TBT) and triphenyltin (TPT) can function as rexinoid-X receptor (RXR) agonists. We recently showed that RXR agonists can alter thyroid hormone (TH) signaling in a mammalian pituitary TH-responsive reporter cell line, GH3.TRE-Luc. The prevalence of TBT and TPT in the environment prompted us to test whether they could also affect TH signaling. Both trialkyltins induced the integrated luciferase reporter alone and potentiated TH activation at low doses. Trimethyltin, which is not an RXR agonist, did not. We turned to a simple, robust, and specific in vivo model system of TH action: metamorphosis of Xenopus laevis, the African clawed frog. Using a precocious metamorphosis assay, we found that 1nM TBT and TPT, but not trimethyltin, greatly potentiated the effect of TH treatment on resorption phenotypes of the tail, which is lost at metamorphosis, and in the head, which undergoes extensive remodeling including gill loss. Consistent with these responses, TH-induced caspase-3 activation in the tail was enhanced by cotreatment with TBT. Induction of a transgenic reporter gene and endogenous collagenase 3 (mmp13) and fibroblast-activating protein-α (fap) genes were not induced by TBT alone, but TH induction was significantly potentiated by TBT. However, induction of other TH receptor target genes such as TRβ and deiodinase 3 by TH were not affected by TBT cotreatment. These data indicate that trialkyltins that can function as RXR agonists can selectively potentiate gene expression and resultant morphological programs directed by TH signaling in vivo.

  9. Molecular characterization of the Aphis gossypii olfactory receptor gene families.

    PubMed

    Cao, Depan; Liu, Yang; Walker, William B; Li, Jianhong; Wang, Guirong

    2014-01-01

    The cotton aphid, Aphis gossypii Glover, is a polyphagous pest that inflicts great damage to cotton yields worldwide. Antennal olfaction, which is extremely important for insect survival, mediates key behaviors such as host preference, mate choice, and oviposition site selection. In insects, odor detection is mediated by odorant receptors (ORs) and ionotropic receptors (IRs), which ensure the specificity of the olfactory sensory neuron responses. In this study, our aim is to identify chemosensory receptors in the cotton aphid genome, as a means to uncover olfactory encoding of the polyphagous feeding habits as well as to aid the discovery of new targets for behavioral interference. We identified a total of 45 candidate ORs and 14 IRs in the cotton aphid genome. Among the candidate AgoORs, 9 are apparent pseudogenes, while 19 can be clustered with ORs from the pea aphid, forming 16 AgoOR/ApOR orthologous subgroups. Among the candidate IRs, we identified homologs of the two highly conserved co-receptors IR8a and IR25a; no AgoIR retain the complete glutamic acid binding domain, suggesting that putative AgoIRs bind different ligands. Our results provide the necessary information for functional characterization of the chemosensory receptors of A. gossypii, with potential for new or refined applications of semiochemicals-based control of this pest insect.

  10. Activation of the prolactin receptor gene by promoter insertion in a Moloney murine leukemia virus-induced rat thymoma.

    PubMed Central

    Barker, C S; Bear, S E; Keler, T; Copeland, N G; Gilbert, D J; Jenkins, N A; Yeung, R S; Tsichlis, P N

    1992-01-01

    The prolactin receptor (Prlr) and growth hormone receptor (Ghr) genes and the Moloney murine leukemia virus integration-2 (Mlvi-2) locus were mapped to mouse chromosome 15 and human chromosome 5 bands p12-p14. To examine the potential relationship between Mlvi-2 and the genes encoding the growth hormone receptor and the prolactin receptor, we determined the chromosomal location of all three loci in the rat, using a panel of rat-mouse somatic cell hybrids, and in the mouse, using a panel of (C57BL/6J x Mus spretus)F1 x C57BL/6J interspecific backcross mice. These analyses revealed that Ghr, Prlr, and Mlvi-2 map to chromosome 2 in the rat and to chromosome 15 in the mouse, in close proximity with each other. Pulsed-field gel electrophoresis of rat genomic DNA showed no overlaps between the gene encoding the prolactin receptor and the remaining loci. Moreover, expression of the prolactin receptor was not affected by provirus insertion in Mlvi-2. During these studies, however, we detected one T-cell lymphoma line (2779) in which the prolactin receptor gene was activated by provirus integration. Sequence analysis of polymerase chain reaction-derived cDNA clones showed that the prolactin receptor RNA message initiates at the 5' long terminal repeat and utilizes the splice donor site 5' of the gag gene to splice the viral sequences onto exon 1 of the prolactin receptor. This message is predicted to encode the intact prolactin receptor protein product. Exposure of the T-cell lymphoma line 2779 to prolactin promoted cellular proliferation. Images PMID:1404614

  11. Regulation of AMPA Receptor Function by the Human Memory-Associated Gene KIBRA

    PubMed Central

    Makuch, Lauren; Volk, Lenora; Anggono, Victor; Johnson, Richard C.; Yu, Yilin; Duning, Kerstin; Kremerskothen, Joachim; Xia, Jun; Takamiya, Kogo; Huganir, Richard L.

    2011-01-01

    KIBRA has recently been identified as a gene associated with human memory performance. Despite the elucidation of the role of KIBRA in several diverse processes in non-neuronal cells, the molecular function of KIBRA in neurons is unknown. We found that KIBRA directly binds to the protein interacting with C-kinase 1 (PICK1) and forms a complex with α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptors (AMPARs), the major excitatory neurotransmitter receptors in the brain. KIBRA knockdown accelerates the rate of AMPAR recycling following N-methyl-D-aspartate receptor induced internalization. Genetic deletion of KIBRA in mice impairs both long-term depression and long-term potentiation at hippocampal Schaffer collateral-CA1 synapses. Moreover, KIBRA knockout mice have severe deficits in contextual fear learning and memory. These results indicate that KIBRA regulates higher brain function by regulating AMPAR trafficking and synaptic plasticity. PMID:21943600

  12. Regulation of AMPA receptor function by the human memory-associated gene KIBRA.

    PubMed

    Makuch, Lauren; Volk, Lenora; Anggono, Victor; Johnson, Richard C; Yu, Yilin; Duning, Kerstin; Kremerskothen, Joachim; Xia, Jun; Takamiya, Kogo; Huganir, Richard L

    2011-09-22

    KIBRA has recently been identified as a gene associated with human memory performance. Despite the elucidation of the role of KIBRA in several diverse processes in nonneuronal cells, the molecular function of KIBRA in neurons is unknown. We found that KIBRA directly binds to the protein interacting with C-kinase 1 (PICK1) and forms a complex with α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptors (AMPARs), the major excitatory neurotransmitter receptors in the brain. KIBRA knockdown accelerates the rate of AMPAR recycling following N-methyl-D-aspartate receptor-induced internalization. Genetic deletion of KIBRA in mice impairs both long-term depression and long-term potentiation at hippocampal Schaffer collateral-CA1 synapses. Moreover, KIBRA knockout mice have severe deficits in contextual fear learning and memory. These results indicate that KIBRA regulates higher brain function by regulating AMPAR trafficking and synaptic plasticity.

  13. Glycine Potentiates AMPA Receptor Function through Metabotropic Activation of GluN2A-Containing NMDA Receptors

    PubMed Central

    Li, Li-Jun; Hu, Rong; Lujan, Brendan; Chen, Juan; Zhang, Jian-Jian; Nakano, Yasuko; Cui, Tian-Yuan; Liao, Ming-Xia; Chen, Jin-Cao; Man, Heng-Ye; Feng, Hua; Wan, Qi

    2016-01-01

    NMDA receptors are Ca2+-permeable ion channels. The activation of NMDA receptors requires agonist glutamate and co-agonist glycine. Recent evidence indicates that NMDA receptor also has metabotropic function. Here we report that in cultured mouse hippocampal neurons, glycine increases AMPA receptor-mediated currents independent of the channel activity of NMDA receptors and the activation of glycine receptors. The potentiation of AMPA receptor function by glycine is antagonized by the inhibition of ERK1/2. In the hippocampal neurons and in the HEK293 cells transfected with different combinations of NMDA receptors, glycine preferentially acts on GluN2A-containing NMDA receptors (GluN2ARs), but not GluN2B-containing NMDA receptors (GluN2BRs), to enhance ERK1/2 phosphorylation independent of the channel activity of GluN2ARs. Without requiring the channel activity of GluN2ARs, glycine increases AMPA receptor-mediated currents through GluN2ARs. Thus, these results reveal a metabotropic function of GluN2ARs in mediating glycine-induced potentiation of AMPA receptor function via ERK1/2 activation. PMID:27807405

  14. Ecdysone Receptor Gene Switch Technology for Inducible Gene Expression in Plants

    USDA-ARS?s Scientific Manuscript database

    Inducible gene regulation systems based on specific chemicals have many potential applications in agriculture and in the basic understanding of gene function. As a result several gene switches have been developed. However, the properties of the chemicals used in most of these switches make their use...

  15. Intracellular insulin-receptor dissociation and segregation in a rat fibroblast cell line transfected with a human insulin receptor gene

    SciTech Connect

    Levy, J.R.; Olefsky, J.M.

    1988-05-05

    The cellular processing of insulin and insulin receptors was studied using a rat fibroblast cell line that had been transfected with a normal human insulin receptor gene, expressing approximately 500 times the normal number of native fibroblasts insulin receptors. These cells bind and internalize insulin normally. Biochemically assays based on the selective precipitation by polyethylene glycol of intact insulin-receptor complexes but not of free intracellular insulin were developed to study the time course of intracellular insulin-receptor dissociation. Fibroblasts were incubated with radiolabeled insulin at 4/sup 0/C, and internalization of insulin-receptor complexes was initiated by warming the cells to 37/sup 0/C. Within 2 min, 90% of the internalized radioactivity was composed of intact insulin-receptor complexes. The dissociation of insulin from internalized insulin-receptor complexes was markedly inhibited by monensin and chloroquine. Furthermore, chloroquine markedly increased the number of cross-linkable intracellular insulin-receptor complexes, as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis autoradiography. These findings suggest that acidification of intracellular vesicles is responsible for insulin-receptor dissociation. Physical segregation of dissociated intracellular insulin from its receptor was monitored. The results are consistent with the view that segregation of insulin and receptor occurs 5-10 min after initiation of dissociation. These studies demonstrate the intracellular itinerary of insulin-receptor complexes, including internalization, dissociation of insulin from the internalized receptor within an acidified compartment, segregation of insulin from the receptor, and subsequent ligand degradation.

  16. Repurposed transcriptomic data facilitate discovery of innate immunity toll-like receptor (TLR) Genes across Lophotrochozoa.

    PubMed

    Halanych, Kenneth M; Kocot, Kevin M

    2014-10-01

    The growing volume of genomic data from across life represents opportunities for deriving valuable biological information from data that were initially collected for another purpose. Here, we use transcriptomes collected for phylogenomic studies to search for toll-like receptor (TLR) genes in poorly sampled lophotrochozoan clades (Annelida, Mollusca, Brachiopoda, Phoronida, and Entoprocta) and one ecdysozoan clade (Priapulida). TLR genes are involved in innate immunity across animals by recognizing potential microbial infection. They have an extracellular leucine-rich repeat (LRR) domain connected to a transmembrane domain and an intracellular toll/interleukin-1 receptor (TIR) domain. Consequently, these genes are important in initiating a signaling pathway to trigger defense. We found at least one TLR ortholog in all but two taxa examined, suggesting that a broad array of lophotrochozoans may have innate immune systems similar to those observed in vertebrates and arthropods. Comparison to the SMART database confirmed the presence of both the LRR and the TIR protein motifs characteristic of TLR genes. Because we looked at only one transcriptome per species, discovery of TLR genes was limited for most taxa. However, several TRL-like genes that vary in the number and placement of LRR domains were found in phoronids. Additionally, several contigs contained LRR domains but lacked TIR domains, suggesting they were not TLRs. Many of these LRR-containing contigs had other domains (e.g., immunoglobin) and are likely involved in innate immunity. © 2014 Marine Biological Laboratory.

  17. Isolation and characterization of a new chemokine receptor gene, the putative chicken CXCR1.

    PubMed

    Li, Q J; Lu, S; Ye, R D; Martins-Green, M

    2000-10-31

    This study delineates the isolation and characterization of a novel chemokine receptor gene, the putative chicken CXC receptor 1 (cCXCR1). Using a human CXCR1 probe, we isolated several positive clones from a chicken genomic library. One of the clones contained a fragment of approximately 5000bp that hybridized strongly with the hCXCR1 probe. This fragment was sequenced and subjected to a variety of computer analyses. The open reading frame for this gene predicts a seven transmembrane domain protein with all the characteristics of a chemokine receptor and with 67% sequence homology to hCXCR1, 65% to hCXCR2 and also with considerable sequence homology to other human chemokine receptors such as hCXCR4 (50%), hCCR2 (49%) and hCCR1 (49%). However, the homology to a previously isolated potential G-protein-coupled receptor for chickens (AvCRL1) is only 47%. Using 5' RACE, two transcription initiation sites were identified suggesting the potential for the expression of two protein isoforms (I and II) in vivo. The promoter for the putative cCXCR1 contains a variety of consensus transcription factor binding elements that can potentially be involved in the expression of this chicken receptor upon stimulation by stress-inducing agents. RT-PCR analysis was used to determine the pattern of expression of the larger isoform (I) of this receptor in a variety of tissues. This form of the receptor is expressed primarily in the organs of the gastrointestinal tract, tissues that are frequently exposed to stress-inducing agents, but not in the central nervous system, tissues that are protected from insult by the blood barrier. Using the same RT-PCR approach we show that stress-inducing agents, such as 'first-hand' and 'second-hand' cigarette smoke components, tumor promoters and thrombin, differentially stimulate the expression of the isoform I in primary fibroblasts. Thrombin is an enzyme that plays many important roles in thrombosis, angiogenesis and wound healing and exposure to

  18. Epigenetic regulation of the formyl peptide receptor 2 gene.

    PubMed

    Simiele, Felice; Recchiuti, Antonio; Patruno, Sara; Plebani, Roberto; Pierdomenico, Anna Maria; Codagnone, Marilina; Romano, Mario

    2016-10-01

    Lipoxin (LX) A4, a main stop signal of inflammation, exerts potent bioactions by activating a specific G protein-coupled receptor, termed formyl peptide receptor 2 and recently renamed ALX/FPR2. Knowledge of the regulatory mechanisms that drive ALX/FPR2 gene expression is key for the development of innovative anti-inflammatory pharmacology. Here, we examined chromatin patterns of the ALX/FPR2 gene. We report that in MDA-MB231 breast cancer cells, the ALX/FPR2 gene undergoes epigenetic silencing characterized by low acetylation at lysine 27 and trimethylation at lysine 4, associated with high methylation at lysine 27 of histone 3. This pattern, which is consistent with transcriptionally inaccessible chromatin leading to low ALX/FPR2 mRNA and protein expression, is reversed in polymorphonuclear leukocytes that express high ALX/FPR2 levels. Activation of p300 histone acetyltransferase and inhibition of DNA methyltransferase restored chromatin accessibility and significantly increased ALX/FPR2 mRNA transcription and protein levels in MDA-MB231 cells, as well as in pulmonary artery endothelial cells. In both cells types, changes in the histone acetylation/methylation status enhanced ALX/FPR2 signaling in response to LXA4. Collectively, these results uncover unappreciated epigenetic regulation of ALX/FPR2 expression that can be exploited for innovative approaches to inflammatory disorders. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Dissecting the regulation of yeast genes by the osmotin receptor

    PubMed Central

    Kupchak, Brian R.; Villa, Nancy Y.; Kulemina, Lidia; Lyons, Thomas J.

    2008-01-01

    The Izh2p protein from Saccharomyces cerevisiae is a receptor for the plant antifungal protein, osmotin. Since Izh2p is conserved in fungi, understanding its biochemical function could inspire novel strategies for the prevention of fungal growth. However, it has been difficult to determine the exact role of Izh2p because it has pleiotropic effects on cellular biochemistry. Herein, we demonstrate that Izh2p negatively regulates functionally divergent genes through a CCCTC promoter motif. Moreover, we show that Izh2p-dependent promoters containing this motif are regulated by the Nrg1p/Nrg2p and Msn2p/Msn4p transcription factors. The fact that Izh2p can regulate gene expression through this widely dispersed element presents a reasonable explanation of its pleiotropy. The involvement of Nrg1p/Nrgp2 in Izh2p-dependent gene regulation also suggests a role for this receptor in regulating fungal differentiation in response to stimuli produced by plants. PMID:18625204

  20. Perilipin, a critical regulator of fat storage and breakdown, is a target gene of estrogen receptor-related receptor {alpha}

    SciTech Connect

    Akter, Mst. Hasina; Yamaguchi, Tomohiro; Hirose, Fumiko; Osumi, Takashi

    2008-04-11

    Perilipin is a protein localized on lipid droplet surfaces in adipocytes and steroidogenic cells, playing a central role in regulated lipolysis. Expression of the perilipin gene is markedly induced during adipogenesis. We found that transcription from the perilipin gene promoter is activated by an orphan nuclear receptor, estrogen receptor-related receptor (ERR){alpha}. A response element to this receptor was identified in the promoter region by a gene reporter assay, the electrophoretic-gel mobility-shift assay and the chromatin immunoprecipitation assay. Peroxisome proliferator-activated receptor {gamma} coactivator (PGC)-1{alpha} enhanced, whereas small heterodimer partner (SHP) repressed, the transactivating function of ERR{alpha} on the promoter. Thus, the perilipin gene expression is regulated by a transcriptional network controlling energy metabolism, substantiating the functional importance of perilipin in the maintenance of body energy balance.

  1. Regulation of Clock Genes by Adrenergic Receptor Signaling in Osteoblasts.

    PubMed

    Hirai, Takao

    2017-07-27

    The clock system has been identified as one of the major mechanisms controlling cellular functions. Circadian clock gene oscillations also actively participate in the functions of various cell types including bone-related cells. Previous studies demonstrated that clock genes were expressed in bone tissue and also that their expression exhibited circadian rhythmicity. Recent findings have shown that sympathetic tone plays a central role in biological oscillations in bone. Adrenergic receptor (AR) signaling regulates the expression of clock genes in cancellous bone. Furthermore, α1-AR signaling in osteoblasts is known to negatively regulate the expression of bone morphogenetic protein-4 (Bmp4) by up-regulating nuclear factor IL-3 (Nfil3)/e4 promoter-binding protein 4 (E4BP4). The ablation of α1B-AR signaling also increases the expression of the Bmp4 gene in bone. The findings of transient overexpression and siRNA experiments have supported the involvement of the transcription factor CCAAT/enhancer-binding protein delta (C/EBPδ, Cebpd) in Nfil3 and Bmp4 expression in MC3T3-E1 cells. These findings suggest that the effects of Cebpd are due to the circadian regulation of Bmp4 expression, at least in part, by the up-regulated expression of the clock gene Nfil3 in response to α1B-AR signaling in osteoblasts. Therefore, AR signaling appears to modulate cellular functionality through the expression of clock genes that are circadian rhythm regulators in osteoblasts. The expression of clock genes regulated by the sympathetic nervous system and clock-controlled genes that affect bone metabolism are described herein.

  2. Functional characterization of ecdysone receptor gene switches in mammalian cells.

    PubMed

    Panguluri, Siva K; Kumar, Prasanna; Palli, Subba R

    2006-12-01

    Regulated expression of transgene is essential in basic research as well as for many therapeutic applications. The main purpose of the present study is to understand the functioning of the ecdysone receptor (EcR)-based gene switch in mammalian cells and to develop improved versions of EcR gene switches. We utilized EcR mutants to develop new EcR gene switches that showed higher ligand sensitivity and higher magnitude of induction of reporter gene expression in the presence of ligand. We also developed monopartite versions of EcR gene switches with reduced size of the components that are accommodated into viral vectors. Ligand binding assays revealed that EcR alone could not bind to the nonsteroidal ligand, RH-2485. The EcR's heterodimeric partner, ultraspiracle, is required for efficient binding of EcR to the ligand. The essential role of retinoid X receptor (RXR) or its insect homolog, ultraspiracle, in EcR function is shown by RXR knockdown experiments using RNAi. Chromatin immunoprecipitation assays demonstrated that VP16 (activation domain, AD):GAL4(DNA binding domain, DBD):EcR(ligand binding domain, LBD) or GAL4(DBD):EcR(LBD) fusion proteins can bind to GAL4 response elements in the absence of ligand. The VP16(AD) fusion protein of a chimera between human and locust RXR could heterodimerize with GAL4(DBD):EcR(LBD) in the absence of ligand but the VP16(AD) fusion protein of Homo sapiens RXR requires ligand for its heterodimerization with GAL4(DBD):EcR(LBD).

  3. Nuclear Receptor Corepressor Recruitment by Unliganded Thyroid Hormone Receptor in Gene Repression during Xenopus laevis Development

    PubMed Central

    Sachs, Laurent M.; Jones, Peter L.; Havis, Emmanuelle; Rouse, Nicole; Demeneix, Barbara A.; Shi, Yun-Bo

    2002-01-01

    Thyroid hormone receptors (TR) act as activators of transcription in the presence of the thyroid hormone (T3) and as repressors in its absence. While many in vitro approaches have been used to study the molecular mechanisms of TR action, their physiological relevance has not been addressed. Here we investigate how TR regulates gene expression during vertebrate postembryonic development by using T3-dependent amphibian metamorphosis as a model. Earlier studies suggest that TR acts as a repressor during premetamorphosis when T3 is absent. We hypothesize that corepressor complexes containing the nuclear receptor corepressor (N-CoR) are key factors in this TR-dependent gene repression, which is important for premetamorphic tadpole growth. To test this hypothesis, we isolated Xenopus laevis N-CoR (xN-CoR) and showed that it was present in pre- and metamorphic tadpoles. Using a chromatin immunoprecipitation assay, we demonstrated that xN-CoR was recruited to the promoters of T3 response genes during premetamorphosis and released upon T3 treatment, accompanied by a local increase in histone acetylation. Furthermore, overexpression of a dominant-negative N-CoR in tadpole tail muscle led to increased transcription from a T3-dependent promoter. Our data indicate that N-CoR is recruited by unliganded TR to repress target gene expression during premetamorphic animal growth, an important process that prepares the tadpole for metamorphosis. PMID:12446772

  4. Human T-cell receptor variable gene segment families

    SciTech Connect

    Arden, B.; Kabelitz, D.; Clark, S.P.; Mak, T.W.

    1995-10-01

    Multiple DNA and protein sequence alignments have been constructed for the human T-cell receptor {alpha}/{delta}, {beta}, and {gamma} (TCRA/D, B, and G) variable (V) gene segments. The traditional classification into subfamilies was confirmed using a much larger pool of sequences. For each sequence, a name was derived which complies with the standard nomenclature. The traditional numbering of V gene segments in the order of their discovery was continued and changed when in conflict with names of other segments. By discriminating between alleles at the same locus versus genes from different loci, we were able to reduce the number of more than 150 different TCRBV sequences in the database to a repertoire of only 47 functional TCRBV gene segments. An extension of this analysis to the over 100 TCRAV sequences results in a predicted repertoire of 42 functional TCRAV gene segments. Our alignment revealed two residues that distinguish between the highly homologous V{delta} and V{alpha}, one at a site that in V{sub H} contacts the constant region, the other at the interface between immunoglobulin V{sub H} and V{sub L}. This site may be responsible for restricted pairing between certain V{delta} and V{gamma} chains. On the other hand, V{beta} and V{gamma} appear to be related by the fact that their CDR2 length is increased by four residues as compared with that of V{alpha}/{delta} peptides. 150 refs., 12 figs., 5 tabs.

  5. Functional characterization of insulin receptor gene mutations contributing to Rabson-Mendenhall syndrome - phenotypic heterogeneity of insulin receptor gene mutations.

    PubMed

    Jiang, Shan; Fang, Qichen; Zhang, Feng; Wan, Hui; Zhang, Rong; Wang, Congrong; Bao, Yuqian; Zhang, Lei; Ma, Xiaojing; Lu, Junxi; Gao, Fei; Xiang, Kunsan; Jia, Weiping

    2011-01-01

    Rabson-Mendenhall syndrome (RMS) is a rare disorder that presents as severe insulin resistance as a result of mutations present in the insulin receptor (INSR). A Chinese girl with RMS presented with profound diabetes, hyperinsulinemia, acanthosis nigricans, hirsutism, and abnormalities of teeth and nails. Direct sequencing of the patient's INSR detected heterozygote mutations at Arg83Gln (R83Q) and Ala1028Val (A1028V), with the former representing a novel mutation. Functional studies of Chinese hamster ovary (CHO) cells transfected with wild-type (WT) and mutant forms of INSR were performed to evaluate the effects of these mutations on receptor expression and activation. Receptor expression, insulin binding activity, and phosphorylation of the R83Q variant were comparable to WT. In contrast, expression of the A1028V receptor was much lower than that of WT INSR, and impairment of insulin binding and autophosphorylation were nearly commensurate with the decrease in expression detected. Reductions in the phosphorylation of IRS-1, Akt, and Erk1/2 (60%, 40%, and 50% of WT, respectively) indicate that the A1028V receptor contributes to impaired signal transduction. In conclusion, INSR mutations associated with RMS were identified. Moreover, the A1028V mutation associated with a decrease in expression of INSR potentially accounts for loss of function of the INSR.

  6. Transient Receptor Potential Channels as Targets for Phytochemicals

    PubMed Central

    2015-01-01

    To date, 28 mammalian transient receptor potential (TRP) channels have been cloned and characterized. They are grouped into six subfamilies on the basis of their amino acid sequence homology: TRP Ankyrin (TRPA), TRP Canonical (TRPC), TRP Melastatin (TRPM), TRP Mucolipin (TRPML), TRP Polycystin (TRPP), and TRP Vanilloid (TRPV). Most of the TRP channels are nonselective cation channels expressed on the cell membrane and exhibit variable permeability ratios for Ca2+ versus Na+. They mediate sensory functions (such as vision, nociception, taste transduction, temperature sensation, and pheromone signaling) and homeostatic functions (such as divalent cation flux, hormone release, and osmoregulation). Significant progress has been made in our understanding of the specific roles of these TRP channels and their activation mechanisms. In this Review, the emphasis will be on the activation of TRP channels by phytochemicals that are claimed to exert health benefits. Recent findings complement the anecdotal evidence that some of these phytochemicals have specific receptors and the activation of which is responsible for the physiological effects. Now, the targets for these phytochemicals are being unveiled; a specific hypothesis can be proposed and tested experimentally to infer a scientific validity of the claims of the health benefits. The broader and pressing issues that have to be addressed are related to the quantities of the active ingredients in a given preparation, their bioavailability, metabolism, adverse effects, excretion, and systemic versus local effects. PMID:24926802

  7. Integration of transient receptor potential canonical channels with lipids

    PubMed Central

    Beech, D J

    2012-01-01

    Transient receptor potential canonical (TRPC) channels are the canonical (C) subset of the TRP proteins, which are widely expressed in mammalian cells. They are thought to be primarily involved in determining calcium and sodium entry and have wide-ranging functions that include regulation of cell proliferation, motility and contraction. The channels are modulated by a multiplicity of factors, putatively existing as integrators in the plasma membrane. This review considers the sensitivities of TRPC channels to lipids that include diacylglycerols, phosphatidylinositol bisphosphate, lysophospholipids, oxidized phospholipids, arachidonic acid and its metabolites, sphingosine-1-phosphate, cholesterol and some steroidal derivatives and other lipid factors such as gangliosides. Promiscuous and selective lipid sensing have been detected. There appear to be close working relationships with lipids of the phospholipase C and A2 enzyme systems, which may enable integration with receptor signalling and membrane stretch. There are differences in the properties of each TRPC channel that are further complicated by TRPC heteromultimerization. The lipids modulate activity of the channels or insertion in the plasma membrane. Lipid microenvironments and intermediate sensing proteins have been described that include caveolae, G protein signalling, SEC14-like and spectrin-type domains 1 (SESTD1) and podocin. The data suggest that lipid sensing is an important aspect of TRPC channel biology enabling integration with other signalling systems. PMID:21624095

  8. Vitamin D Receptor Gene as a Candidate Gene for Parkinson Disease

    PubMed Central

    BUTLER, MEGAN W.; BURT, AMBER; EDWARDS, TODD L.; ZUCHNER, STEPHAN; SCOTT, WILLIAM K.; MARTIN, EDEN R.; VANCE, JEFFERY M.; WANG, LIYONG

    2010-01-01

    Summary Vitamin D and vitamin D receptor (VDR) have been postulated as environmental and genetic factors in neurodegeneration disorders including multiple sclerosis (MS), Alzheimer disease (AD), and recently Parkinson disease (PD). Given the sparse data on PD and VDR, we conducted a two-stage study to evaluate the genetic effects of VDR in PD. In the discovery stage, 30 tagSNPs in VDR were tested for association with PD risk as a discrete trait and age-at-onset of PD as a quantitative trait in 770 Caucasian PD families. In the validation stage, 18 VDR SNPs were tested in an independent Caucasian cohort (267 cases and 267 controls) constructed from a genome-wide association study (GWAS). In the discovery dataset, SNPs in the 5′ end of VDR were associated with both risk and age-at-onset with more significant evidence of association with age-at-onset (nominal p=0.0008 for the most significant SNPs). These SNPs were also associated with AD in a recent GWAS. In the validation dataset, SNPs in the 3′ end of VDR were associated with age-at-onset (nominal p=0.003 for the most significant SNPs but not risk. The most significant 3′end SNP has been be associated with both MS and AD. Our findings suggest VDR as a potential susceptibility gene and support an essential role of vitamin D in PD. PMID:21309754

  9. Role of constitutive androstane receptor in Toll-like receptor-mediated regulation of gene expression of hepatic drug-metabolizing enzymes and transporters.

    PubMed

    Shah, Pranav; Guo, Tao; Moore, David D; Ghose, Romi

    2014-01-01

    Impairment of drug disposition in the liver during inflammation has been attributed to downregulation of gene expression of drug-metabolizing enzymes (DMEs) and drug transporters. Inflammatory responses in the liver are primarily mediated by Toll-like receptors (TLRs). We have recently shown that activation of TLR2 or TLR4 by lipoteichoic acid (LTA) and lipopolysaccharide (LPS), respectively, leads to the downregulation of gene expression of DMEs/transporters. However, the molecular mechanism underlying this downregulation is not fully understood. The xenobiotic nuclear receptors, pregnane X receptor (PXR) and constitutive androstane receptor (CAR), regulate the expression of DMEs/transporter genes. Downregulation of DMEs/transporters by LTA or LPS was associated with reduced expression of PXR and CAR genes. To determine the role of CAR, we injected CAR(+/+) and CAR(-/-) mice with LTA or LPS, which significantly downregulated (~40%-60%) RNA levels of the DMEs, cytochrome P450 (Cyp)3a11, Cyp2a4, Cyp2b10, uridine diphosphate glucuronosyltransferase 1a1, amine N-sulfotransferase, and the transporter, multidrug resistance-associated protein 2, in CAR(+/+) mice. Suppression of most of these genes was attenuated in LTA-treated CAR(-/-) mice. In contrast, LPS-mediated downregulation of these genes was not attenuated in CAR(-/-) mice. Induction of these genes by mouse CAR activator 1,4-bis-[2-(3,5-dichloropyridyloxy)]benzene was sustained in LTA- but not in LPS-treated mice. Similar observations were obtained in humanized CAR mice. We have replicated these results in primary hepatocytes as well. Thus, LPS can downregulate DME/transporter genes in the absence of CAR, whereas the effect of LTA on these genes is attenuated in the absence of CAR, indicating the potential involvement of CAR in LTA-mediated downregulation of DME/transporter genes.

  10. Role of Constitutive Androstane Receptor in Toll-Like Receptor-Mediated Regulation of Gene Expression of Hepatic Drug-Metabolizing Enzymes and Transporters

    PubMed Central

    Shah, Pranav; Guo, Tao; Moore, David D.

    2014-01-01

    Impairment of drug disposition in the liver during inflammation has been attributed to downregulation of gene expression of drug-metabolizing enzymes (DMEs) and drug transporters. Inflammatory responses in the liver are primarily mediated by Toll-like receptors (TLRs). We have recently shown that activation of TLR2 or TLR4 by lipoteichoic acid (LTA) and lipopolysaccharide (LPS), respectively, leads to the downregulation of gene expression of DMEs/transporters. However, the molecular mechanism underlying this downregulation is not fully understood. The xenobiotic nuclear receptors, pregnane X receptor (PXR) and constitutive androstane receptor (CAR), regulate the expression of DMEs/transporter genes. Downregulation of DMEs/transporters by LTA or LPS was associated with reduced expression of PXR and CAR genes. To determine the role of CAR, we injected CAR+/+ and CAR−/− mice with LTA or LPS, which significantly downregulated (∼40%–60%) RNA levels of the DMEs, cytochrome P450 (Cyp)3a11, Cyp2a4, Cyp2b10, uridine diphosphate glucuronosyltransferase 1a1, amine N-sulfotransferase, and the transporter, multidrug resistance-associated protein 2, in CAR+/+ mice. Suppression of most of these genes was attenuated in LTA-treated CAR−/− mice. In contrast, LPS-mediated downregulation of these genes was not attenuated in CAR−/− mice. Induction of these genes by mouse CAR activator 1,4-bis-[2-(3,5-dichloropyridyloxy)]benzene was sustained in LTA- but not in LPS-treated mice. Similar observations were obtained in humanized CAR mice. We have replicated these results in primary hepatocytes as well. Thus, LPS can downregulate DME/transporter genes in the absence of CAR, whereas the effect of LTA on these genes is attenuated in the absence of CAR, indicating the potential involvement of CAR in LTA-mediated downregulation of DME/transporter genes. PMID:24194512

  11. Avian olfactory receptor gene repertoires: evidence for a well-developed sense of smell in birds?

    PubMed Central

    Steiger, Silke S; Fidler, Andrew E; Valcu, Mihai; Kempenaers, Bart

    2008-01-01

    Among vertebrates, the sense of smell is mediated by olfactory receptors (ORs) expressed in sensory neurons within the olfactory epithelium. Comparative genomic studies suggest that the olfactory acuity of mammalian species correlates positively with both the total number and the proportion of functional OR genes encoded in their genomes. In contrast to mammals, avian olfaction is poorly understood, with birds widely regarded as relying primarily on visual and auditory inputs. Here, we show that in nine bird species from seven orders (blue tit, Cyanistes caeruleus; black coucal, Centropus grillii; brown kiwi, Apteryx australis; canary, Serinus canaria; galah, Eolophus roseicapillus; red jungle fowl, Gallus gallus; kakapo, Strigops habroptilus; mallard, Anas platyrhynchos; snow petrel, Pagodroma nivea), the majority of amplified OR sequences are predicted to be from potentially functional genes. This finding is somewhat surprising as one previous report suggested that the majority of OR genes in an avian (red jungle fowl) genomic sequence are non-functional pseudogenes. We also show that it is not the estimated proportion of potentially functional OR genes, but rather the estimated total number of OR genes that correlates positively with relative olfactory bulb size, an anatomical correlate of olfactory capability. We further demonstrate that all the nine bird genomes examined encode OR genes belonging to a large gene clade, termed γ-c, the expansion of which appears to be a shared characteristic of class Aves. In summary, our findings suggest that olfaction in birds may be a more important sense than generally believed. PMID:18628122

  12. Avian olfactory receptor gene repertoires: evidence for a well-developed sense of smell in birds?

    PubMed

    Steiger, Silke S; Fidler, Andrew E; Valcu, Mihai; Kempenaers, Bart

    2008-10-22

    Among vertebrates, the sense of smell is mediated by olfactory receptors (ORs) expressed in sensory neurons within the olfactory epithelium. Comparative genomic studies suggest that the olfactory acuity of mammalian species correlates positively with both the total number and the proportion of functional OR genes encoded in their genomes. In contrast to mammals, avian olfaction is poorly understood, with birds widely regarded as relying primarily on visual and auditory inputs. Here, we show that in nine bird species from seven orders (blue tit, Cyanistes caeruleus; black coucal, Centropus grillii; brown kiwi, Apteryx australis; canary, Serinus canaria; galah, Eolophus roseicapillus; red jungle fowl, Gallus gallus; kakapo, Strigops habroptilus; mallard, Anas platyrhynchos; snow petrel, Pagodroma nivea), the majority of amplified OR sequences are predicted to be from potentially functional genes. This finding is somewhat surprising as one previous report suggested that the majority of OR genes in an avian (red jungle fowl) genomic sequence are non-functional pseudogenes. We also show that it is not the estimated proportion of potentially functional OR genes, but rather the estimated total number of OR genes that correlates positively with relative olfactory bulb size, an anatomical correlate of olfactory capability. We further demonstrate that all the nine bird genomes examined encode OR genes belonging to a large gene clade, termed gamma-c, the expansion of which appears to be a shared characteristic of class Aves. In summary, our findings suggest that olfaction in birds may be a more important sense than generally believed.

  13. Regulation and localization of transient receptor potential melastatin 2 in rat uterus.

    PubMed

    Ahn, Changhwan; Yang, Hyun; Hong, Eui-Ju; Jeung, Eui-Bae

    2014-10-01

    The transient receptor potential channels are membrane-binding proteins that are nonselectively permeable for cations, such as Ca(2+) and Mg(2+), in numerous mammalian cells. The extracellular or intracellular ions play key roles in physiological functions including muscle contraction, cytokine production, insulin release, and apoptosis. Although transient receptor potential melastatin (TRPM) channels are implicated in nonreproductive tissues, the presence of TRPM2 has been reported in endometrium of uterus. To examine whether the expression of TRPM2 gene in uterus is due to gonadal steroid hormones or hormone-independent effect, the uterine TRPM2 gene was monitored in uterus of mature rat during estrous cycle and of immature rat after treatment with gonadal steroid estrogen (E2), progesterone (P4) with/without estrogen receptor antagonist Imperial Chemical Industries (ICI) 182780. We examined real-time polymerase chain reaction, Western blot, and immunohistochemistry to demonstrate the expression and localization of the uterine TRPM2 gene. The level of TRPM2 messenger RNA and protein are dramatically induced at proestrus, then dropped to base line levels at metestrus, and restored its level at diestrus. The results imply that uterine TRPM2 expression levels are regulated by gonadal steroid hormone E2. Moreover, the E2-induced TRPM2 expression is inhibited by cotreatment with ICI 182780 or P4. Furthermore, the immune-reactive TRPM2 is observed in myometrium and stromal cell of endometrium and also showed alterations in TRPM2 expression during estrus cycle. This study suggests that TRPM2 may be involved in calcium absorption or uterine contraction and the latter may be related to implantation or labor by endogenous sex steroid hormones.

  14. The Orphan Nuclear Receptor ERRγ Regulates Hepatic CB1 Receptor-Mediated Fibroblast Growth Factor 21 Gene Expression.

    PubMed

    Jung, Yoon Seok; Lee, Ji-Min; Kim, Don-Kyu; Lee, Yong-Soo; Kim, Ki-Sun; Kim, Yong-Hoon; Kim, Jina; Lee, Myung-Shik; Lee, In-Kyu; Kim, Seong Heon; Cho, Sung Jin; Jeong, Won-Il; Lee, Chul-Ho; Harris, Robert A; Choi, Hueng-Sik

    2016-01-01

    Fibroblast growth factor 21 (FGF21), a stress inducible hepatokine, is synthesized in the liver and plays important roles in glucose and lipid metabolism. However, the mechanism of hepatic cannabinoid type 1 (CB1) receptor-mediated induction of FGF21 gene expression is largely unknown. Activation of the hepatic CB1 receptor by arachidonyl-2'-chloroethylamide (ACEA), a CB1 receptor selective agonist, significantly increased FGF21 gene expression. Overexpression of estrogen-related receptor (ERR) γ increased FGF21 gene expression and secretion both in hepatocytes and mice, whereas knockdown of ERRγ decreased ACEA-mediated FGF21 gene expression and secretion. Moreover, ERRγ, but not ERRα and ERRβ, induced FGF21 gene promoter activity. In addition, deletion and mutation analysis of the FGF21 promoter identified a putative ERRγ-binding motif (AGGTGC, a near-consensus response element). A chromatin immunoprecipitation assay revealed direct binding of ERRγ to the FGF21 gene promoter. Finally, GSK5182, an ERRγ inverse agonist, significantly inhibited hepatic CB1 receptor-mediated FGF21 gene expression and secretion. Based on our data, we conclude that ERRγ plays a key role in hepatic CB1 receptor-mediated induction of FGF21 gene expression and secretion.

  15. The Orphan Nuclear Receptor ERRγ Regulates Hepatic CB1 Receptor-Mediated Fibroblast Growth Factor 21 Gene Expression

    PubMed Central

    Jung, Yoon Seok; Lee, Ji-Min; Kim, Don-Kyu; Lee, Yong-Soo; Kim, Ki-Sun; Kim, Yong-Hoon; Kim, Jina; Lee, Myung-Shik; Lee, In-Kyu; Kim, Seong Heon; Cho, Sung Jin; Jeong, Won-Il; Lee, Chul-Ho; Harris, Robert A.; Choi, Hueng-Sik

    2016-01-01

    Background Fibroblast growth factor 21 (FGF21), a stress inducible hepatokine, is synthesized in the liver and plays important roles in glucose and lipid metabolism. However, the mechanism of hepatic cannabinoid type 1 (CB1) receptor-mediated induction of FGF21 gene expression is largely unknown. Results Activation of the hepatic CB1 receptor by arachidonyl-2’-chloroethylamide (ACEA), a CB1 receptor selective agonist, significantly increased FGF21 gene expression. Overexpression of estrogen-related receptor (ERR) γ increased FGF21 gene expression and secretion both in hepatocytes and mice, whereas knockdown of ERRγ decreased ACEA-mediated FGF21 gene expression and secretion. Moreover, ERRγ, but not ERRα and ERRβ, induced FGF21 gene promoter activity. In addition, deletion and mutation analysis of the FGF21 promoter identified a putative ERRγ-binding motif (AGGTGC, a near-consensus response element). A chromatin immunoprecipitation assay revealed direct binding of ERRγ to the FGF21 gene promoter. Finally, GSK5182, an ERRγ inverse agonist, significantly inhibited hepatic CB1 receptor-mediated FGF21 gene expression and secretion. Conclusion Based on our data, we conclude that ERRγ plays a key role in hepatic CB1 receptor-mediated induction of FGF21 gene expression and secretion. PMID:27455076

  16. Cannabinoid receptor 2: potential role in immunomodulation and neuroinflammation.

    PubMed

    Rom, Slava; Persidsky, Yuri

    2013-06-01

    An accumulating body of evidence suggests that endocannabinoids and cannabinoid receptors type 1 and 2 (CB(1), CB(2)) play a significant role in physiologic and pathologic processes, including cognitive and immune functions. While the addictive properties of marijuana, an extract from the Cannabis plant, are well recognized, there is growing appreciation of the therapeutic potential of cannabinoids in multiple pathologic conditions involving chronic inflammation (inflammatory bowel disease, arthritis, autoimmune disorders, multiple sclerosis, HIV-1 infection, stroke, Alzheimer's disease to name a few), mainly mediated by CB(2) activation. Development of CB(2) agonists as therapeutic agents has been hampered by the complexity of their intracellular signaling, relative paucity of highly selective compounds and insufficient data regarding end effects in the target cells and organs. This review attempts to summarize recent advances in studies of CB(2) activation in the setting of neuroinflammation, immunomodulation and HIV-1 infection.

  17. Androgen receptor in human health: a potential therapeutic target.

    PubMed

    Siddique, Hifzur Rahman; Nanda, Sanjeev; Parray, Aijaz; Saleem, Mohammad

    2012-12-01

    Androgen is a key for the activation of Androgen Receptor (AR) in most of the disease conditions, however androgen-independent activation of AR is also found in aggressive type human malignancies. An intense search for the inhibitors of AR is underway to cure AR-dependent diseases. In addition to targeting various components of AR signaling pathway, compounds which directly target AR are under preclinical and clinical investigation. Various In vitro and preclinical animal studies suggest that different natural compounds have potential to act against AR. Some natural compounds have been found to be pharmacologically effective against AR irrespective of varying routs of administration viz; oral, intra-peritoneal and intravenous. This mini-review summarizes the studies conducted with different natural agents in determining their pharmacological utility against AR signaling.

  18. A reference gene set for chemosensory receptor genes of Manduca sexta.

    PubMed

    Koenig, Christopher; Hirsh, Ariana; Bucks, Sascha; Klinner, Christian; Vogel, Heiko; Shukla, Aditi; Mansfield, Jennifer H; Morton, Brian; Hansson, Bill S; Grosse-Wilde, Ewald

    2015-11-01

    The order of Lepidoptera has historically been crucial for chemosensory research, with many important advances coming from the analysis of species like Bombyx mori or the tobacco hornworm, Manduca sexta. Specifically M. sexta has long been a major model species in the field, especially regarding the importance of olfaction in an ecological context, mainly the interaction with its host plants. In recent years transcriptomic data has led to the discovery of members of all major chemosensory receptor families in the species, but the data was fragmentary and incomplete. Here we present the analysis of the newly available high-quality genome data for the species, supplemented by additional transcriptome data to generate a high quality reference gene set for the three major chemosensory receptor gene families, the gustatory (GR), olfactory (OR) and antennal ionotropic receptors (IR). Coupled with gene expression analysis our approach allows association of specific receptor types and behaviors, like pheromone and host detection. The dataset will provide valuable support for future analysis of these essential chemosensory modalities in this species and in Lepidoptera in general.

  19. Transient Receptor Potential Canonical 1 (TRPC1) Channels as Regulators of Sphingolipid and VEGF Receptor Expression

    PubMed Central

    Asghar, Muhammad Yasir; Magnusson, Melissa; Kemppainen, Kati; Sukumaran, Pramod; Löf, Christoffer; Pulli, Ilari; Kalhori, Veronica; Törnquist, Kid

    2015-01-01

    The identity of calcium channels in the thyroid is unclear. In human follicular thyroid ML-1 cancer cells, sphingolipid sphingosine 1-phosphate (S1P), through S1P receptors 1 and 3 (S1P1/S1P3), and VEGF receptor 2 (VEGFR2) stimulates migration. We show that human thyroid cells express several forms of transient receptor potential canonical (TRPC) channels, including TRPC1. In TRPC1 knockdown (TRPC1-KD) ML-1 cells, the basal and S1P-evoked invasion and migration was attenuated. Furthermore, the expression of S1P3 and VEGFR2 was significantly down-regulated. Transfecting wild-type ML-1 cells with a nonconducting TRPC1 mutant decreased S1P3 and VEGFR2 expression. In TRPC1-KD cells, receptor-operated calcium entry was decreased. To investigate whether the decreased receptor expression was due to attenuated calcium entry, cells were incubated with the calcium chelator BAPTA-AM (1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid). In these cells, and in cells where calmodulin and calmodulin-dependent kinase were blocked pharmacologically, S1P3 and VEGFR2 expression was decreased. In TRPC1-KD cells, both hypoxia-inducible factor 1α expression and the secretion and activity of MMP2 and MMP9 were attenuated, and proliferation was decreased in TRPC1-KD cells. This was due to a prolonged G1 phase of the cell cycle, a significant increase in the expression of the cyclin-dependent kinase inhibitors p21 and p27, and a decrease in the expression of cyclin D2, cyclin D3, and CDK6. Transfecting TRPC1 to TRPC1-KD cells rescued receptor expression, migration, and proliferation. Thus, the expression of S1P3 and VEGFR2 is mediated by a calcium-dependent mechanism. TRPC1 has a crucial role in this process. This regulation is important for the invasion, migration, and proliferation of thyroid cancer cells. PMID:25971967

  20. Phenotypic mutant library: potential for gene discovery

    USDA-ARS?s Scientific Manuscript database

    The rapid development of high throughput and affordable Next- Generation Sequencing (NGS) techniques has renewed interest in gene discovery using forward genetics. The conventional forward genetic approach starts with isolation of mutants with a phenotype of interest, mapping the mutation within a s...

  1. Behavioral analysis of Drosophila transformants expressing human taste receptor genes in the gustatory receptor neurons.

    PubMed

    Adachi, Ryota; Sasaki, Yuko; Morita, Hiromi; Komai, Michio; Shirakawa, Hitoshi; Goto, Tomoko; Furuyama, Akira; Isono, Kunio

    2012-06-01

    Transgenic Drosophila expressing human T2R4 and T2R38 bitter-taste receptors or PKD2L1 sour-taste receptor in the fly gustatory receptor neurons and other tissues were prepared using conventional Gal4/UAS binary system. Molecular analysis showed that the transgene mRNAs are expressed according to the tissue specificity of the Gal4 drivers. Transformants expressing the transgene taste receptors in the fly taste neurons were then studied by a behavioral assay to analyze whether transgene chemoreceptors are functional and coupled to the cell response. Since wild-type flies show strong aversion against the T2R ligands as in mammals, the authors analyzed the transformants where the transgenes are expressed in the fly sugar receptor neurons so that they promote feeding ligand-dependently if they are functional and activate the neurons. Although the feeding preference varied considerably among different strains and individuals, statistical analysis using large numbers of transformants indicated that transformants expressing T2R4 showed a small but significant increase in the preference for denatonium and quinine, the T2R4 ligands, as compared to the control flies, whereas transformants expressing T2R38 did not. Similarly, transformants expressing T2R38 and PKD2L1 also showed a similar preference increase for T2R38-specific ligand phenylthiocarbamide (PTC) and a sour-taste ligand, citric acid, respectively. Taken together, the transformants expressing mammalian taste receptors showed a small but significant increase in the feeding preference that is taste receptor and also ligand dependent. Although future improvements are required to attain performance comparable to the endogenous robust response, Drosophila taste neurons may serve as a potential in vivo heterologous expression system for analyzing chemoreceptor function.

  2. Short latency compound action potentials from mammalian gravity receptor organs

    NASA Technical Reports Server (NTRS)

    Jones, T. A.; Jones, S. M.

    1999-01-01

    Gravity receptor function was characterized in four mammalian species using far-field vestibular evoked potentials (VsEPs). VsEPs are compound action potentials of the vestibular nerve and central relays that are elicited by linear acceleration ramps applied to the cranium. Rats, mice, guinea pigs, and gerbils were studied. In all species, response onset occurred within 1.5 ms of the stimulus onset. Responses persisted during intense (116 dBSPL) wide-band (50 to 50 inverted question mark omitted inverted question mark000 Hz) forward masking, whereas auditory responses to intense clicks (112 dBpeSPL) were eliminated under the same conditions. VsEPs remained after cochlear extirpation but were eliminated following bilateral labyrinthectomy. Responses included a series of positive and negative peaks that occurred within 8 ms of stimulus onset (range of means at +6 dBre: 1.0 g/ms: P1=908 to 1062 micros, N1=1342 to 1475 micros, P2=1632 to 1952 micros, N2=2038 to 2387 micros). Mean response amplitudes at +6 dBre: 1.0 g/ms ranged from 0.14 to 0.99 microV. VsEP input/output functions revealed latency slopes that varied across peaks and species ranging from -19 to -51 micros/dB. Amplitude-intensity slopes also varied ranging from 0.04 to 0.08 microV/dB for rats and mice. Latency values were comparable to those of birds although amplitudes were substantially smaller in mammals. VsEP threshold values were considerably higher in mammals compared to birds and ranged from -8.1 to -10.5 dBre 1.0 g/ms across species. These results support the hypothesis that mammalian gravity receptors are less sensitive to dynamic stimuli than are those of birds.

  3. Short latency compound action potentials from mammalian gravity receptor organs

    NASA Technical Reports Server (NTRS)

    Jones, T. A.; Jones, S. M.

    1999-01-01

    Gravity receptor function was characterized in four mammalian species using far-field vestibular evoked potentials (VsEPs). VsEPs are compound action potentials of the vestibular nerve and central relays that are elicited by linear acceleration ramps applied to the cranium. Rats, mice, guinea pigs, and gerbils were studied. In all species, response onset occurred within 1.5 ms of the stimulus onset. Responses persisted during intense (116 dBSPL) wide-band (50 to 50 inverted question mark omitted inverted question mark000 Hz) forward masking, whereas auditory responses to intense clicks (112 dBpeSPL) were eliminated under the same conditions. VsEPs remained after cochlear extirpation but were eliminated following bilateral labyrinthectomy. Responses included a series of positive and negative peaks that occurred within 8 ms of stimulus onset (range of means at +6 dBre: 1.0 g/ms: P1=908 to 1062 micros, N1=1342 to 1475 micros, P2=1632 to 1952 micros, N2=2038 to 2387 micros). Mean response amplitudes at +6 dBre: 1.0 g/ms ranged from 0.14 to 0.99 microV. VsEP input/output functions revealed latency slopes that varied across peaks and species ranging from -19 to -51 micros/dB. Amplitude-intensity slopes also varied ranging from 0.04 to 0.08 microV/dB for rats and mice. Latency values were comparable to those of birds although amplitudes were substantially smaller in mammals. VsEP threshold values were considerably higher in mammals compared to birds and ranged from -8.1 to -10.5 dBre 1.0 g/ms across species. These results support the hypothesis that mammalian gravity receptors are less sensitive to dynamic stimuli than are those of birds.

  4. Variations in Opioid Receptor Genes in Neonatal Abstinence Syndrome*

    PubMed Central

    Wachman, Elisha M; Hayes, Marie J; Sherva, Richard; Brown, Mark S; Davis, Jonathan M; Farrer, Lindsay A; Nielsen, David A

    2015-01-01

    Background There is significant variability in the severity of neonatal abstinence syndrome (NAS) due to in-utero opioid exposure. We wanted to determine if single nucleotide polymorphisms (SNPs) in key candidate genes contribute to this variability. Methods Full-term opioid-exposed newborns and their mothers (n=86 pairs) were studied. DNA was genotyped for 80 SNPs from 14 genes utilizing a custom designed microarray. The association of each SNP with NAS outcomes was evaluated. Results SNPs in two opioid receptor genes in the infants were associated with worse NAS severity: 1) The PNOC rs732636 A allele (OR=3.8, p=0.004) for treatment with 2 medications and a longer hospital stay (LOS) of 5.8 days (p=0.01), and 2) The OPRK1 rs702764 C allele (OR=4.1, p=0.003) for treatment with 2 medications. The OPRM1 rs1799971 G allele (β= −6.9 days, p=0.02) and COMT rs740603 A allele (β= −5.3 days, p=0.01) were associated with shorter LOS. The OPRD1 rs204076 A allele in the mothers was associated with a longer LOS by 6.6 days (p=0.008). Results were significant point-wise but did not meet the experiment-wide significance level. Conclusions These findings suggest that SNPs in opioid receptor and the PNOC genes are associated with NAS severity. However, further testing in a large sample is warranted. This has important implications for prenatal prediction and personalized treatment regimens for infants at highest risk for severe NAS. PMID:26233486

  5. Variations in opioid receptor genes in neonatal abstinence syndrome.

    PubMed

    Wachman, Elisha M; Hayes, Marie J; Sherva, Richard; Brown, Mark S; Davis, Jonathan M; Farrer, Lindsay A; Nielsen, David A

    2015-10-01

    There is significant variability in the severity of neonatal abstinence syndrome (NAS) due to in-utero opioid exposure. We wanted to determine if single nucleotide polymorphisms (SNPs) in key candidate genes contribute to this variability. Full-term opioid-exposed newborns and their mothers (n=86 pairs) were studied. DNA was genotyped for 80 SNPs from 14 genes utilizing a custom designed microarray. The association of each SNP with NAS outcomes was evaluated. SNPs in two opioid receptor genes in the infants were associated with worse NAS severity: (1) The PNOC rs732636 A allele (OR=3.8, p=0.004) for treatment with 2 medications and a longer hospital stay (LOS) of 5.8 days (p=0.01), and (2) The OPRK1 rs702764 C allele (OR=4.1, p=0.003) for treatment with 2 medications. The OPRM1 rs1799971 G allele (β=-6.9 days, p=0.02) and COMT rs740603 A allele (β=-5.3 days, p=0.01) were associated with shorter LOS. The OPRD1 rs204076 A allele in the mothers was associated with a longer LOS by 6.6 days (p=0.008). Results were significant point-wise but did not meet the experiment-wide significance level. These findings suggest that SNPs in opioid receptor and the PNOC genes are associated with NAS severity. However, further testing in a large sample is warranted. This has important implications for prenatal prediction and personalized treatment regimens for infants at highest risk for severe NAS. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Sensing of blood pressure increase by transient receptor potential vanilloid 1 receptors on baroreceptors.

    PubMed

    Sun, Hao; Li, De-Pei; Chen, Shao-Rui; Hittelman, Walter N; Pan, Hui-Lin

    2009-12-01

    The arterial baroreceptor is critically involved in the autonomic regulation of homoeostasis. The transient receptor potential vanilloid 1 (TRPV1) receptor is expressed on both somatic and visceral sensory neurons. Here, we examined the TRPV1 innervation of baroreceptive pathways and its functional significance in the baroreflex. Resiniferatoxin (RTX), an ultrapotent analog of capsaicin, was used to ablate TRPV1-expressing afferent neurons and fibers in adult rats. Immunofluorescence labeling revealed that TRPV1 immunoreactivity was present on nerve fibers and terminals in the adventitia of the ascending aorta and aortic arch, the nodose ganglion neurons, and afferent fibers in the solitary tract of the brainstem. RTX treatment eliminated TRPV1 immunoreactivities in the aorta, nodose ganglion, and solitary tract. Renal sympathetic nerve activity, blood pressure, and heart rate were recorded in anesthetized rats. The baroreflex was triggered by lowering and raising blood pressure through intravenous infusion of sodium nitroprusside and phenylephrine, respectively. Inhibition of sympathetic nerve activity and heart rate by the phenylephrine-induced increase in blood pressure was largely impaired in RTX-treated rats. The maximum gain of the baroreflex function was significantly lower in RTX-treated than vehicle-treated rats. Furthermore, blocking of TRPV1 receptors significantly blunted the baroreflex and decreased the maximum gain of baroreflex function in the high blood pressure range. Our findings provide important new information that TRPV1 is expressed along the entire baroreceptive afferent pathway. TRPV1 receptors expressed on baroreceptive nerve endings can function as mechanoreceptors to detect the increase in blood pressure and maintain the homoeostasis.

  7. High-throughput mapping of the promoters of the mouse olfactory receptor genes reveals a new type of mammalian promoter and provides insight into olfactory receptor gene regulation

    PubMed Central

    Clowney, E. Josephine; Magklara, Angeliki; Colquitt, Bradley M.; Pathak, Nidhi; Lane, Robert P.; Lomvardas, Stavros

    2011-01-01

    The olfactory receptor (OR) genes are the largest mammalian gene family and are expressed in a monogenic and monoallelic fashion in olfactory neurons. Using a high-throughput approach, we mapped the transcription start sites of 1085 of the 1400 murine OR genes and performed computational analysis that revealed potential transcription factor binding sites shared by the majority of these promoters. Our analysis produced a hierarchical model for OR promoter recognition in which unusually high AT content, a unique epigenetic signature, and a stereotypically positioned O/E site distinguish OR promoters from the rest of the murine promoters. Our computations revealed an intriguing correlation between promoter AT content and evolutionary plasticity, as the most AT-rich promoters regulate rapidly evolving gene families. Within the AT-rich promoter category the position of the TATA-box does not correlate with the transcription start site. Instead, a spike in GC composition might define the exact location of the TSS, introducing the concept of “genomic contrast” in transcriptional regulation. Finally, our experiments show that genomic neighborhood rather than promoter sequence correlates with the probability of different OR genes to be expressed in the same olfactory cell. PMID:21705439

  8. Evolution of dopamine receptor genes of the D1 class in vertebrates.

    PubMed

    Yamamoto, Kei; Mirabeau, Olivier; Bureau, Charlotte; Blin, Maryline; Michon-Coudouel, Sophie; Demarque, Michaël; Vernier, Philippe

    2013-04-01

    The receptors of the dopamine neurotransmitter belong to two unrelated classes named D1 and D2. For the D1 receptor class, only two subtypes are found in mammals, the D1A and D1B, receptors, whereas additional subtypes, named D1C, D1D, and D1X, have been found in other vertebrate species. Here, we analyzed molecular phylogeny, gene synteny, and gene expression pattern of the D1 receptor subtypes in a large range of vertebrate species, which leads us to propose a new view of the evolution of D1 dopamine receptor genes. First, we show that D1C and D1D receptor sequences are encoded by orthologous genes. Second, the previously identified Cypriniform D1X sequence is a teleost-specific paralog of the D1B sequences found in all groups of jawed vertebrates. Third, zebrafish and several sauropsid species possess an additional D1-like gene, which is likely to form another orthology group of vertebrate ancestral genes, which we propose to name D1E. Ancestral jawed vertebrates are thus likely to have possessed four classes of D1 receptor genes-D1A, D1B(X), D1C(D), and D1E-which arose from large-scale gene duplications. The D1C receptor gene would have been secondarily lost in the mammalian lineage, whereas the D1E receptor gene would have been lost independently in several lineages of modern vertebrates. The D1A receptors are well conserved throughout jawed vertebrates, whereas sauropsid D1C receptors have rapidly diverged, to the point that they were misidentified as D1D. The functional significance of the D1C receptor loss is not known. It is possible that the function may have been substituted with D1A or D1B receptors in mammals, following the disappearance of D1C receptors in these species.

  9. Galanin receptor antagonists : a potential novel pharmacological treatment for mood disorders.

    PubMed

    Ogren, Sven Ove; Kuteeva, Eugenia; Hökfelt, Tomas; Kehr, Jan

    2006-01-01

    The pathophysiology of mood disorders involves several genetic and social predisposing factors, as well as a dysregulated response to chronic stress. Accumulated evidence during the last two decades has implicated disturbances in brain serotonin and/or noradrenaline (norepinephrine) neurotransmission in the aetiology of depression. In fact, current pharmacological treatment for mood disorders is based on the use of drugs that act mainly by enhancing brain serotonin and noradrenaline neurotransmission by blockade of the active reuptake mechanism for these neurotransmitters. However, current antidepressant drugs have a delayed onset of therapeutic action, and a substantial number of patients do not respond adequately to them. In addition, these drugs have a number of adverse effects that limit patient compliance. In view of this, there is an intense search to identify novel (receptor) targets for antidepressant therapy. Recent studies have indicated that several neuropeptides and their receptors are potential candidates for the development of novel antidepressant treatment. In this context, galanin is of particular interest, since it is co-localised with serotonin in the dorsal raphe nucleus and with noradrenaline in the locus coeruleus, nuclei known to play a major role in affective disorders and in the action of antidepressant drugs. The actions of galanin are mediated by three receptor subtypes (GAL1, GAL2 and GAL3), which are coupled to different intracellular effector systems. Studies in rats have shown that galanin administered intracerebroventricularly is a potent inhibitor of mesencephalic serotonergic neurotransmission, as indicated by a long-lasting reduction in the release of serotonin in the hippocampus. This inhibitory effect is related to activation of the galanin receptors located on the dorsal raphe neurons. Moreover, intracerebroventricular galanin alters the gene expression of serotonin 5-HT1A autoreceptors in the dorsal raphe and also changes their

  10. Measuring inotocin receptor gene expression in chronological order in ant queens.

    PubMed

    Chérasse, Sarah; Aron, Serge

    2017-09-24

    In vertebrates and invertebrates, oxytocin/vasopressin-like peptides modulate a variety of behaviors. The recent discovery of the gene and receptor sequences of inotocin, the insect ortholog of oxytocin/vasopressin, opens new opportunities for understanding the role of this peptide family in regulating behaviors in the most populated class of living animals. Ants live in highly organized colonies. Once a year, they produce future queens that soon leave the nest to mate and found new colonies. During the first months of their lives, ant queens display a sequence of behaviors ranging from copulation and social interactions to violent fighting. In order to investigate the potential roles of inotocin in shaping queen behavior, we measured gene expression of the inotocin receptor in the heads of Lasius niger ant queens at different points in time. The highest levels of expression occurred early in queen life when they experience crowded conditions in their mother nests and soon thereafter set out to mate. Inotocin could thus be involved in regulating social and reproductive behaviors as reported in other animals. While oxytocin and vasopressin are also involved in aggression in mammals, we found no direct link between these behaviors and inotocin receptor expression in L. niger. Our study provides a first glimpse into the roles the inotocin receptor might play in regulating important processes in ant physiology and behavior. Further studies are needed to understand the molecular function of this complex signaling system in more detail. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Oxytocin receptor gene variation predicts subjective responses to MDMA.

    PubMed

    Bershad, Anya K; Weafer, Jessica J; Kirkpatrick, Matthew G; Wardle, Margaret C; Miller, Melissa A; de Wit, Harriet

    2016-12-01

    3,4-Methylenedioxymethamphetamine (MDMA, "ecstasy") enhances desire to socialize and feelings of empathy, which are thought to be related to increased oxytocin levels. Thus, variation in the oxytocin receptor gene (OXTR) may influence responses to the drug. Here, we examined the influence of a single OXTR nucleotide polymorphism (SNP) on responses to MDMA in humans. Based on findings that carriers of the A allele at rs53576 exhibit reduced sensitivity to oxytocin-induced social behavior, we hypothesized that these individuals would show reduced subjective responses to MDMA, including sociability. In this three-session, double blind, within-subjects study, healthy volunteers with past MDMA experience (N = 68) received a MDMA (0, 0.75 mg/kg, and 1.5 mg/kg) and provided self-report ratings of sociability, anxiety, and drug effects. These responses were examined in relation to rs53576. MDMA (1.5 mg/kg) did not increase sociability in individuals with the A/A genotype as it did in G allele carriers. The genotypic groups did not differ in responses at the lower MDMA dose, or in cardiovascular or other subjective responses. These findings are consistent with the idea that MDMA-induced sociability is mediated by oxytocin, and that variation in the oxytocin receptor gene may influence responses to the drug.

  12. Thyrotropin receptor gene alterations in thyroid hyperfunctioning adenomas

    SciTech Connect

    Russo, D.; Arturi, F.; Filetti, S.

    1996-04-01

    Forty-four thyroid autonomously hyperfunctioning adenomas were analyzed to assess the frequency of mutations occurring in the TSH receptor (TSHR). PCR-amplified fragments encompassing the entire exon 10 of the TSHR gene were obtained from the genomic DNA extracted from the tumors and their adjacent normal tissues and were examined by direct nucleotide sequencing. Point mutations were found in 9 of 44 adenomas examined (20%). One mutation occurred in codon 619 (Asp to Gly), four in codon 623 (three were Ala to Ser, one Ala to substitution), two in codon 632 (both Thr to Ile), and two in codon 633 (Asp to Tyr or His). All the alterations were located in a part of the gene coding for an area including the third intracellular loop and the sixth transmembrane domain of the TSH receptor. All mutations were somatic and heterozygotic, and none was simultaneous with alterations of ras or gsp oncogenes. Thus, our data show that in our series of 44 hyperfunctioning thyroid adenomas, a somatic mutation of the TSHR, responsible for the constitutive activation of the cAMP pathway, occurs in 20% of the tumors. 28 refs., 2 tabs.

  13. Variability of the transferrin receptor 2 gene in AMD.

    PubMed

    Wysokinski, Daniel; Blasiak, Janusz; Dorecka, Mariola; Kowalska, Marta; Robaszkiewicz, Jacek; Pawlowska, Elzbieta; Szaflik, Jerzy; Szaflik, Jacek Pawel

    2014-01-01

    Oxidative stress is a major factor in the pathogenesis of age-related macular degeneration (AMD). Iron may catalyze the Fenton reaction resulting in overproduction of reactive oxygen species. Transferrin receptor 2 plays a critical role in iron homeostasis and variability in its gene may influence oxidative stress and AMD occurrence. To verify this hypothesis we assessed the association between polymorphisms of the TFR2 gene and AMD. A total of 493 AMD patients and 171 matched controls were genotyped for the two polymorphisms of the TFR2 gene: c.1892C>T (rs2075674) and c.-258+123T>C (rs4434553). We also assessed the modulation of some AMD risk factors by these polymorphisms. The CC and TT genotypes of the c.1892C>T were associated with AMD occurrence but the latter only in obese patients. The other polymorphism was not associated with AMD occurrence, but the CC genotype was correlated with an increasing AMD frequency in subjects with BMI < 26. The TT genotype and the T allele of this polymorphism decreased AMD occurrence in subjects above 72 years, whereas the TC genotype and the C allele increased occurrence of AMD in this group. The c.1892C>T and c.-258+123T>C polymorphisms of the TRF2 gene may be associated with AMD occurrence, either directly or by modulation of risk factors.

  14. Variability of the Transferrin Receptor 2 Gene in AMD

    PubMed Central

    Blasiak, Janusz; Dorecka, Mariola; Kowalska, Marta; Pawlowska, Elzbieta; Szaflik, Jerzy; Szaflik, Jacek Pawel

    2014-01-01

    Oxidative stress is a major factor in the pathogenesis of age-related macular degeneration (AMD). Iron may catalyze the Fenton reaction resulting in overproduction of reactive oxygen species. Transferrin receptor 2 plays a critical role in iron homeostasis and variability in its gene may influence oxidative stress and AMD occurrence. To verify this hypothesis we assessed the association between polymorphisms of the TFR2 gene and AMD. A total of 493 AMD patients and 171 matched controls were genotyped for the two polymorphisms of the TFR2 gene: c.1892C>T (rs2075674) and c.−258+123T>C (rs4434553). We also assessed the modulation of some AMD risk factors by these polymorphisms. The CC and TT genotypes of the c.1892C>T were associated with AMD occurrence but the latter only in obese patients. The other polymorphism was not associated with AMD occurrence, but the CC genotype was correlated with an increasing AMD frequency in subjects with BMI < 26. The TT genotype and the T allele of this polymorphism decreased AMD occurrence in subjects above 72 years, whereas the TC genotype and the C allele increased occurrence of AMD in this group. The c.1892C>T and c.−258+123T>C polymorphisms of the TRF2 gene may be associated with AMD occurrence, either directly or by modulation of risk factors. PMID:24648608

  15. Oligopyrrole Macrocycles: Receptors and Chemosensors for Potentially Hazardous Materials

    PubMed Central

    2011-01-01

    Oligopyrroles represent a diverse class of molecular receptors that have been utilized in a growing number of applications. Recently, these systems have attracted interest as receptors and chemosensors for hazardous materials, including harmful anionic species, high-valent actinide cations, and nitroaromatic explosives. These versatile molecular receptors have been used to develop rudimentary colorimetric and fluorimetric assays for hazardous materials. PMID:21465591

  16. Oxytocin receptor and vasopressin receptor 1a genes are respectively associated with emotional and cognitive empathy.

    PubMed

    Uzefovsky, F; Shalev, I; Israel, S; Edelman, S; Raz, Y; Mankuta, D; Knafo-Noam, A; Ebstein, R P

    2015-01-01

    Empathy is the ability to recognize and share in the emotions of others. It can be considered a multifaceted concept with cognitive and emotional aspects. Little is known regarding the underlying neurochemistry of empathy and in the current study we used a neurogenetic approach to explore possible brain neurotransmitter pathways contributing to cognitive and emotional empathy. Both the oxytocin receptor (OXTR) and the arginine vasopressin receptor 1a (AVPR1a) genes contribute to social cognition in both animals and humans and hence are prominent candidates for contributing to empathy. The following research examined the associations between polymorphisms in these two genes and individual differences in emotional and cognitive empathy in a sample of 367 young adults. Intriguingly, we found that emotional empathy was associated solely with OXTR, whereas cognitive empathy was associated solely with AVPR1a. Moreover, no interaction was observed between the two genes and measures of empathy. The current findings contribute to our understanding of the distinct neurogenetic pathways involved in cognitive and emotional empathy and underscore the pervasive role of both oxytocin and vasopressin in modulating human emotions. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Evolution of Dopamine Receptor Genes of the D1 Class in Vertebrates

    PubMed Central

    Yamamoto, Kei; Mirabeau, Olivier; Bureau, Charlotte; Blin, Maryline; Michon-Coudouel, Sophie; Demarque, Michaël; Vernier, Philippe

    2013-01-01

    The receptors of the dopamine neurotransmitter belong to two unrelated classes named D1 and D2. For the D1 receptor class, only two subtypes are found in mammals, the D1A and D1B, receptors, whereas additional subtypes, named D1C, D1D, and D1X, have been found in other vertebrate species. Here, we analyzed molecular phylogeny, gene synteny, and gene expression pattern of the D1 receptor subtypes in a large range of vertebrate species, which leads us to propose a new view of the evolution of D1 dopamine receptor genes. First, we show that D1C and D1D receptor sequences are encoded by orthologous genes. Second, the previously identified Cypriniform D1X sequence is a teleost-specific paralog of the D1B sequences found in all groups of jawed vertebrates. Third, zebrafish and several sauropsid species possess an additional D1-like gene, which is likely to form another orthology group of vertebrate ancestral genes, which we propose to name D1E. Ancestral jawed vertebrates are thus likely to have possessed four classes of D1 receptor genes—D1A, D1B(X), D1C(D), and D1E—which arose from large-scale gene duplications. The D1C receptor gene would have been secondarily lost in the mammalian lineage, whereas the D1E receptor gene would have been lost independently in several lineages of modern vertebrates. The D1A receptors are well conserved throughout jawed vertebrates, whereas sauropsid D1C receptors have rapidly diverged, to the point that they were misidentified as D1D. The functional significance of the D1C receptor loss is not known. It is possible that the function may have been substituted with D1A or D1B receptors in mammals, following the disappearance of D1C receptors in these species. PMID:23197594

  18. Selective regulation of gene expression by an orthogonal estrogen receptor-ligand pair created by polar-group exchange.

    PubMed

    Shi, Y; Koh, J T

    2001-05-01

    The nuclear and steroid hormone receptors function as ligand-dependent transcriptional regulators in eukaryotes. Hormone receptors have been engineered to selectively respond to synthetic ligands and used as remote regulators of gene expression for the study of gene function and as potential regulators of gene therapies. In this work, a new ligand-receptor engineering strategy called 'polar-group exchange' is used to create a mutant form of the estrogen receptor, ER(Glu353-->Ala), which lacks a carboxyl group critical for high-affinity binding of estradiol, but is able to transactivate in response to nanomolar concentrations of a carboxylate-functionalized estrogen analog, ES8. ES8 activates ER(Glu353-->Ala) at concentrations that do not appreciably activate the 'wild-type' receptor ER(wt). Two similar carboxylate-functionalized ligands, ES6 and ES7, do not induce transactivation function. Similar selectivities are observed in ligand-binding assays in vitro, which follow the trends predicted by molecular modeling. Polar-group exchange is an effective strategy for rationally engineering ligand-receptor pairs. The ER(E353A)/ES8 ligand-receptor pair should constitute a unique and functionally orthogonal ligand-dependent transcriptional regulator.

  19. Mutations in Melanocortin-3 Receptor Gene and Human Obesity.

    PubMed

    Yang, Z; Tao, Y-X

    2016-01-01

    The prevalence of obesity calls for novel therapeutic targets. The melanocortin-3 receptor (MC3R) has been increasingly recognized as an important regulator of energy homeostasis and MC3R has been intensively analyzed in molecular genetic studies for obesity-related traits. Twenty-seven MC3R mutations and two common polymorphic variants have been identified so far in different cohorts. The mutant MC3Rs demonstrate multiple defects in functional analysis and can be cataloged into different classes according to receptor life cycle based classification system. Although the pathogenic role of MC3R in human obesity remains controversial, recent findings in the noncanonical signaling pathway of MC3R mutants have provided new insights. Potential therapeutic strategies for obesity related to MC3R mutations are highlighted. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Thyroid hormone receptors bind to defined regions of the growth hormone and placental lactogen genes.

    PubMed Central

    Barlow, J W; Voz, M L; Eliard, P H; Mathy-Harter, M; De Nayer, P; Economidis, I V; Belayew, A; Martial, J A; Rousseau, G G

    1986-01-01

    The intracellular receptor for thyroid hormone is a protein found in chromatin. Since thyroid hormone stimulates transcription of the growth hormone gene through an unknown mechanism, the hypothesis that the thyroid hormone-receptor complex interacts with defined regions of this gene has been investigated in a cell-free system. Nuclear extracts from human lymphoblastoid IM-9 cells containing thyroid hormone receptors were incubated with L-3,5,3'-tri[125I]iodothyronine and calf thymus DNA-cellulose. Restriction fragments of the human growth hormone gene were added to determine their ability to inhibit labeled receptor binding to DNA-cellulose. These fragments encompassed nucleotide sequences from about three kilobase pairs upstream to about four kilobase pairs downstream from the transcription initiation site. The thyroid hormone-receptor complex bound preferentially to the 5'-flanking sequences of the growth hormone gene in a region between nucleotide coordinates -290 and -129. The receptor also bound to an analogous promoter region in the human placental lactogen gene, which has 92% nucleotide sequence homology with the growth hormone gene. These binding regions appear to be distinct from those that are recognized by the receptor for glucocorticoids, which stimulate growth hormone gene expression synergistically with thyroid hormone. The presence of thyroid hormone was required for binding of its receptor to the growth hormone gene promoter, suggesting that thyroid hormone renders the receptor capable of recognizing specific gene regions. PMID:3466175

  1. Thyroid hormone receptors bind to defined regions of the growth hormone and placental lactogen genes.

    PubMed

    Barlow, J W; Voz, M L; Eliard, P H; Mathy-Harter, M; De Nayer, P; Economidis, I V; Belayew, A; Martial, J A; Rousseau, G G

    1986-12-01

    The intracellular receptor for thyroid hormone is a protein found in chromatin. Since thyroid hormone stimulates transcription of the growth hormone gene through an unknown mechanism, the hypothesis that the thyroid hormone-receptor complex interacts with defined regions of this gene has been investigated in a cell-free system. Nuclear extracts from human lymphoblastoid IM-9 cells containing thyroid hormone receptors were incubated with L-3,5,3'-tri[125I]iodothyronine and calf thymus DNA-cellulose. Restriction fragments of the human growth hormone gene were added to determine their ability to inhibit labeled receptor binding to DNA-cellulose. These fragments encompassed nucleotide sequences from about three kilobase pairs upstream to about four kilobase pairs downstream from the transcription initiation site. The thyroid hormone-receptor complex bound preferentially to the 5'-flanking sequences of the growth hormone gene in a region between nucleotide coordinates -290 and -129. The receptor also bound to an analogous promoter region in the human placental lactogen gene, which has 92% nucleotide sequence homology with the growth hormone gene. These binding regions appear to be distinct from those that are recognized by the receptor for glucocorticoids, which stimulate growth hormone gene expression synergistically with thyroid hormone. The presence of thyroid hormone was required for binding of its receptor to the growth hormone gene promoter, suggesting that thyroid hormone renders the receptor capable of recognizing specific gene regions.

  2. Are AMPA Receptor Positive Allosteric Modulators Potential Pharmacotherapeutics for Addiction?

    PubMed Central

    Watterson, Lucas R.; Olive, M. Foster

    2013-01-01

    Positive allosteric modulators (PAMs) of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are a diverse class of compounds that increase fast excitatory transmission in the brain. AMPA PAMs have been shown to facilitate long-term potentiation, strengthen communication between various cortical and subcortical regions, and some of these compounds increase the production and release of brain-derived neurotrophic factor (BDNF) in an activity-dependent manner. Through these mechanisms, AMPA PAMs have shown promise as broad spectrum pharmacotherapeutics in preclinical and clinical studies for various neurodegenerative and psychiatric disorders. In recent years, a small collection of preclinical animal studies has also shown that AMPA PAMs may have potential as pharmacotherapeutic adjuncts to extinction-based or cue-exposure therapies for the treatment of drug addiction. The present paper will review this preclinical literature, discuss novel data collected in our laboratory, and recommend future research directions for the possible development of AMPA PAMs as anti-addiction medications. PMID:24380895

  3. Roles of transient receptor potential channels in pain

    PubMed Central

    Stucky, Cheryl L.; Dubin, Adrienne E.; Jeske, Nathaniel A.; Malin, Sacha A.; McKemy, David D.; Story, Gina M.

    2009-01-01

    Pain perception begins with the activation of primary sensory nociceptors. Over the past decade, flourishing research has revealed that members of the Transient Receptor Potential (TRP) ion channel family are fundamental molecules that detect noxious stimuli and transduce a diverse range of physical and chemical energy into action potentials in somatosensory nociceptors. Here we highlight the roles of TRP vanilloid 1 (TRPV1), TRP melastatin 8 (TRPM8) and TRP ankyrin 1 (TRPA1) in the activation of nociceptors by heat and cold environmental stimuli, mechanical force, and by chemicals including exogenous plant and environmental compounds as well as endogenous inflammatory molecules. The contribution of these channels to pain and somatosensation is discussed at levels ranging from whole animal behavior to molecular modulation by intracellular signaling proteins. An emerging theme is that TRP channels are not simple ion channel transducers of one or two stimuli, but instead serve multidimensional roles in signaling sensory stimuli that are exceptionally diverse in modality and in their environmental milieu. PMID:19203589

  4. Serotonin 5-HT7 receptor agents: structure-activity relationships and potential therapeutic applications in central nervous system disorders

    PubMed Central

    Leopoldo, Marcello; Lacivita, Enza; Berardi, Francesco; Perrone, Roberto; Hedlund, Peter B.

    2010-01-01

    Since its discovery in the 1940s in serum, the mammalian intestinal mucosa, and in the central nervous system, serotonin (5-HT) has been shown to be involved in virtually all cognitive and behavioral human functions, and alterations in its neurochemistry have been implicated in the etiology of a plethora of neuropsychiatric disorders. The cloning of 5-HT receptor subtypes has been of importance in enabling them to be classified as specific protein molecules encoded by specific genes. The 5-HT7 receptor is the most recently classified member of the serotonin receptor family. Since its identification, it has been the subject of intense research efforts driven by its presence in functionally relevant regions of the brain. The availability of some selective antagonists and agonists, in combination with genetically modified mice lacking the 5-HT7 receptor, has allowed for a better understanding of the pathophysiological role of this receptor. This paper reviews data on localization and pharmacological properties of the 5-HT7 receptor, and summarizes the results of structure-activity relationship studies aimed at the discovery of selective 5-HT7 receptor ligands. Additionally, an overview of the potential therapeutic applications of 5-HT7 receptor agonists and antagonists in central nervous system disorders is presented. PMID:20923682

  5. AT1 receptor A1166C and AT2 receptor -1332A/G gene polymorphisms: efficient genotyping by single-tube PCR.

    PubMed

    Zivković, Maja; Stanković, Aleksandra; Alavantić, Dragan

    2005-01-01

    Angiotensin II type 1 receptor (AT1) and angiotensin II type 2 receptor (AT2) genes have been investigated in recent years as potential etiologic candidates for cardiovascular and renal diseases. The pathogenic implications of AT1 A1166C and AT2 A-1332G gene polymorphisms have been shown. Here we describe a rapid and reliable method for detecting both AT1 and AT2 gene polymorphisms by a single-tube PCR, to reduce analysis time and simplify the genotyping procedure. In contrast to previously described methods, our method does not require hybridization, primer extension, or nested PCR for genotyping. In most previous studies concerning gene polymorphisms of RAS, both AT1 and AT2 receptor gene polymorphisms were investigated. The advantage of our method is that it makes it possible to detect both of these polymorphisms in a duplex PCR. The procedure described is convenient for routine laboratory use with manual sample processing, and offers the potential for further automation as well. Its simplicity makes it practical for large-scale screening of individuals and families at risk for cardiovascular or renal diseases.

  6. Differential gene expression of growth hormone (GH)-releasing hormone (GRH) and GRH receptor in various rat tissues.

    PubMed

    Matsubara, S; Sato, M; Mizobuchi, M; Niimi, M; Takahara, J

    1995-09-01

    Growth hormone (GH)-releasing hormone (GRH) acts on specific receptors in the anterior pituitary to stimulate the synthesis and release of GH. Recent reports suggest that GRH is also synthesized in extrahypothalamic tissues. To evaluate the potential roles of extrahypothalamic GRH, we studied the gene expression of GRH and GRH receptors in various rat tissues by reverse transcribed (RT)-polymerase chain reaction (PCR). Total RNA was extracted from twenty-three rat organs and RT-PCR was performed with GRH and GRH receptor primers. Highly-sensitive RT-PCR-Southern blotting showed that GRH and GRH receptor mRNA coexist in the widespread tissues (14 of 25 tissues). GRH mRNA was relatively abundant in the cerebral cortex, brain stem, testis, and placenta, while GRH receptor mRNA was abundant in renal medulla and renal pelvis. Northern blot hybridization using poly A+ RNA indicated that the transcript of GRH receptor gene found in the renal medulla was similar to the longer transcript (about 4 Kb) of pituitary GRH receptor in the size. These results suggest that GRH plays a potential role not only in the neuroendocrine axis, but also in the autocrine and paracrine systems in extrahypothalamic tissues.

  7. Fc-receptor and M-protein genes of group A streptococci are products of gene duplication.

    PubMed Central

    Heath, D G; Cleary, P P

    1989-01-01

    The partial nucleotide sequence for an Fc-receptor gene from an M-type 76 group A streptococcus was determined. DNA sequence analysis revealed considerable sequence similarity between the Fc-receptor and M-protein genes in their proposed promoter regions, signal sequences, and 3' termini. Additional analysis indicated that the deduced Fc-receptor protein contains a proline-rich region and membrane anchor region highly similar to that of M protein. In view of these results, we postulated that Fc-receptor and M-protein genes of group A streptococci are the products of gene duplication from a common ancestral gene. It is proposed that DNA sequence similarity between these two genes may allow for extragenic homologous recombination as a means of generating antigenic diversity in these two surface proteins. PMID:2660147

  8. Positive selection at reproductive ADAM genes with potential intercellular binding activity.

    PubMed

    Glassey, Barb; Civetta, Alberto

    2004-05-01

    Many genes with a role in reproduction, including those implicated in fertilization and spermatogenesis, have been shown to evolve at a faster rate relative to genes associated with other functions and tissues. These survey studies usually group a wide variety of genes with different characteristics and evolutionary histories as reproductive genes based on their site of expression or function. We have examined the molecular evolution of the ADAM (a disintegrin and metalloprotease) gene family, a structurally and functionally diverse group of genes expressed in reproductive and somatic tissue to test whether a variety of protein characteristics such as phylogenetic clusters, tissue of expression, and proteolytic and adhesive function can group fast evolving ADAM genes. We found that all genes were evolving under purifying selection (d(N)/d(S) < 1), although reproductive ADAMs, including those implicated in fertilization and spermatogenesis, evolved at the fastest rate. Genes with a role in binding to cell receptors in endogenous tissue appear to be evolving under purifying selection, regardless of the tissue of expression. In contrast, positive selection of codon sites in the disintegrin/cysteine-rich adhesion domains was detected exclusively in ADAMs 2 and 32, two genes expressed in the testis with a potential role in sperm-egg adhesion. Positive selection was detected in the transmembrane/cytosolic tail region of ADAM genes expressed in a variety of tissues.

  9. Thyroid hormone resistance: a novel mutation in thyroid hormone receptor beta (THRB) gene - case report.

    PubMed

    Işık, Emregül; Beck Peccoz, Paolo; Campi, Irene; Özön, Alev; Alikaşifoğlu, Ayfer; Gönç, Nazlı; Kandemir, Nurgün

    2013-01-01

    Thyroid hormone resistance (THR) is a dominantly inherited syndrome characterized by reduced sensitivity to thyroid hormones. It is usually caused by mutations in the thyroid hormone receptor beta (THRB) gene. In the present report, we describe the clinical and laboratory characteristics and genetic analysis of patients with a novel THRB gene mutation. The index patient had been misdiagnosed as hyperthyroidism and treated with antithyroid drugs since eight days of age. Thyroid hormone results showed that thyrotropin (thyroid-stimulating hormone, TSH) was never suppressed despite elevated thyroid hormone levels, and there was no symptom suggesting hyperthyroidism. A heterozygous mutation at codon 350 located in exon 9 of the THRB gene was detected in all the affected members of the family. It is important to consider thyroid hormone levels in association with TSH levels to prevent inappropriate treatment and the potential complications, such as clinical hypothyroidism or an increase in goiter size.

  10. Receptors and aging: structural selectivity of the rhamnose-receptor on fibroblasts as shown by Ca(2+)-mobilization and gene-expression profiles.

    PubMed

    Faury, G; Molinari, J; Rusova, E; Mariko, B; Raveaud, S; Huber, P; Velebny, V; Robert, A M; Robert, L

    2011-01-01

    Qualitative and quantitative modifications of receptors were shown to play a key role in cell and tissue aging. We recently described the properties of a rhamnose-recognizing receptor on fibroblasts involved in the mediation of age-dependent functions of these cells. Using Ca(2+)-mobilization and DNA-microarrays we could show in the presence of rhamnose-rich oligo- and polysaccharides (RROPs) Ca(2+)-mobilization and changes in gene regulation. Here, we compared the effects of several RROPs, differing in their carbohydrate sequence and molecular weights, in normal human dermal fibroblasts (NHDFs). It appeared that different structural features were required for maximal effects on Ca(2+)-mobilization and gene-expression profiles. Maximal effect on Ca(2+) influx and intracellular free calcium regulation was exhibited by RROP-1, a 50 kDa average molecular weight polysaccharide, and RROP-3, a 5 kDa average molecular weight oligosaccharide with a different carbohydrate sequence. Maximal effect on gene-expression profiles was obtained with RROP-3. These results suggest the possibility of several different transmission pathways from the rhamnose-receptor to intracellular targets, differentially affecting these two intracellular functions, with potential consequences on aging. Although of only relative specificity, this receptor site exhibits a high affinity for rhamnose, absent from vertebrate glycoconjugates. The rhamnose-receptor might well represent an evolutionary conserved conformation of a prokaryote lectin. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  11. Calcium-Sensing Receptor Gene: Regulation of Expression

    PubMed Central

    Hendy, Geoffrey N.; Canaff, Lucie

    2016-01-01

    The human calcium-sensing receptor gene (CASR) has 8 exons, and localizes to chromosome 3q. Exons 1A and 1B encode alternative 5′-untranslated regions (UTRs) that splice to exon 2 encoding the AUG initiation codon. Exons 2–7 encode the CaSR protein of 1078 amino acids. Promoter P1 has TATA and CCAAT boxes upstream of exon 1A, and promoter P2 has Sp1/3 motifs at the start site of exon 1B. Exon 1A transcripts from the P1 promoter are reduced in parathyroid tumors and colon carcinomas. Studies of colon carcinomas and neuroblastomas have emphasized the importance of epigenetic changes—promoter methylation of the GC-rich P2 promoter, histone acetylation—as well as involvement of microRNAs in bringing about CASR gene silencing and reduced CaSR expression. Functional cis-elements in the CASR promoters responsive to 1,25-dihydroxyvitamin D [1,25(OH)2D], proinflammatory cytokines, and the transcription factor glial cells missing-2 (GCM2) have been characterized. Reduced levels of CaSR and reduced responsiveness to active vitamin D in parathyroid neoplasia and colon carcinoma may blunt the “tumor suppressor” activity of the CaSR. The hypocalcemia of critically ill patients with burn injury or sepsis is associated with CASR gene upregulation by TNF-alpha and IL-1beta via kappaB elements, and by IL-6 via Stat1/3 and Sp1/3 elements in the CASR gene promoters, respectively. The CASR is transactivated by GCM2—the expression of which is essential for parathyroid gland development. Hyperactive forms of GCM2 may contribute to later parathyroid hyperactivity or tumorigenesis. The expression of the CaSR—the calciostat—is regulated physiologically and pathophysiologically at the gene level. PMID:27679579

  12. Transcriptional Characterization of Porcine Leptin and Leptin Receptor Genes.

    PubMed

    Pérez-Montarelo, Dafne; Fernández, Almudena; Barragán, Carmen; Noguera, Jose L; Folch, Josep M; Rodríguez, M Carmen; Ovilo, Cristina; Silió, Luis; Fernández, Ana I

    2013-01-01

    The leptin (LEP) and its receptor (LEPR) regulate food intake and energy balance through hypothalamic signaling. However, the LEP-LEPR axis seems to be more complex and its expression regulation has not been well described. In pigs, LEP and LEPR genes have been widely studied due to their relevance. Previous studies reported significant effects of SNPs located in both genes on growth and fatness traits. The aim of this study was to determine the expression profiles of LEP and LEPR across hypothalamic, adipose, hepatic and muscle tissues in Iberian x Landrace backcrossed pigs and to analyze the effects of gene variants on transcript abundance. To our knowledge, non porcine LEPR isoforms have been described rather than LEPRb. A short porcine LEPR isoform (LEPRa), that encodes a protein lacking the intracellular residues responsible of signal transduction, has been identified for the first time. The LEPRb isoform was only quantifiable in hypothalamus while LEPRa appeared widely expressed across tissues, but at higher levels in liver, suggesting that both isoforms would develop different roles. The unique LEP transcript showed expression in backfat and muscle. The effects of gene variants on transcript expression revealed interesting results. The LEPRc.1987C>T polymorphism showed opposite effects on LEPRb and LEPRa hypothalamic expression. In addition, one out of the 16 polymorphisms identified in the LEPR promoter region revealed high differential expression in hepatic LEPRa. These results suggest a LEPR isoform-specific regulation at tissue level. Conversely, non-differential expression of LEP conditional on the analyzed polymorphisms could be detected, indicating that its regulation is likely affected by other mechanisms rather than gene sequence variants. The present study has allowed a transcriptional characterization of LEP and LEPR isoforms on a range of tissues. Their expression patterns seem to indicate that both molecules develop peripheral roles apart from

  13. Toll-like receptors and microbial exposure: gene-gene and gene-environment interaction in the development of atopy.

    PubMed

    Reijmerink, N E; Kerkhof, M; Bottema, R W B; Gerritsen, J; Stelma, F F; Thijs, C; van Schayck, C P; Smit, H A; Brunekreef, B; Postma, D S; Koppelman, G H

    2011-10-01

    Environmental and genetic factors contribute to atopy development. High microbial exposure may confer a protective effect on atopy. Toll-like receptors (TLRs) bind microbial products and are important in activating the immune system. To assess whether interactions between microbial exposures and genes encoding TLRs (and related genes) result in atopy, genes, environmental factors and gene-environment interactions of 66 single-nucleotide polymorphisms (SNPs) of 12 genes (TLR 1-6, 9 and 10, CD14, MD2, lipopolysaccharide-binding protein (LBP) and Dectin-1), and six proxy parameters of microbial exposure (sibship size, pets (three different parameters), day-care and intrauterine and childhood tobacco smoke exposure) were analysed for association with atopic phenotypes in 3,062 Dutch children (the Allergenic study). The presence of two or more older siblings increased the risk of developing high total immunoglobulin (Ig)E levels at different ages. This risk increased further in children aged 1-2 yrs carrying the minor allele of TLR6 SNP rs1039559. Furthermore, novel two- and three-factor gene-gene and gene-environment interactions were found (e.g. between sibship size, day-care and LBP SNP rs2232596). Larger sibship size is associated with increased total IgE levels. Furthermore, complex two- and three-factor interactions exist between genes and the environment. The TLRs and related genes interact with proxy parameters of high microbial exposure in atopy development.

  14. Decreased glucocorticoid receptor activity following glucocorticoid receptor antisense RNA gene fragment transfection.

    PubMed Central

    Pepin, M C; Barden, N

    1991-01-01

    Depression is often characterized by increased cortisol secretion caused by hyperactivity of the hypothalamic-pituitary-adrenal axis and by nonsuppression of cortisol secretion following dexamethasone administration. This hyperactivity of the hypothalamic-pituitary-adrenal axis could result from a reduced glucocorticoid receptor (GR) activity in neurons involved in its control. To investigate the effect of reduced neuronal GR levels, we have blocked cellular GR mRNA processing and/or translation by introduction of a complementary GR antisense RNA strand. Two cell lines were transfected with a reporter plasmid carrying the chloramphenicol acetyltransferase (CAT) gene under control of the mouse mammary tumor virus long terminal repeat (a glucocorticoid-inducible promoter). This gene construction permitted assay of the sensitivity of the cells to glucocorticoid hormones. Cells were also cotransfected with a plasmid containing 1,815 bp of GR cDNA inserted in the reverse orientation downstream from either a neurofilament gene promoter element or the Rous sarcoma virus promoter element. Northern (RNA) blot analysis demonstrated formation of GR antisense RNA strands. Measurement of the sensitivity of CAT activity to exogeneous dexamethasone showed that although dexamethasone increased CAT activity by as much as 13-fold in control incubations, expression of GR antisense RNA caused a 2- to 4-fold decrease in the CAT response to dexamethasone. Stable transfectants bearing the GR antisense gene fragment construction demonstrated a 50 to 70% decrease of functional GR levels compared with normal cells, as evidenced by a ligand-binding assay with the type II glucocorticoid receptor-specific ligand [3H]RU 28362. These results validate the use of antisense RNA to GR to decrease cellular response to glucocorticoids. Images PMID:1996114

  15. Determinants of cell- and gene-specific transcriptional regulation by the glucocorticoid receptor.

    PubMed

    So, Alex Yick-Lun; Chaivorapol, Christina; Bolton, Eric C; Li, Hao; Yamamoto, Keith R

    2007-06-01

    The glucocorticoid receptor (GR) associates with glucocorticoid response elements (GREs) and regulates selective gene transcription in a cell-specific manner. Native GREs are typically thought to be composite elements that recruit GR as well as other regulatory factors into functional complexes. We assessed whether GR occupancy is commonly a limiting determinant of GRE function as well as the extent to which core GR binding sequences and GRE architecture are conserved at functional loci. We surveyed 100-kb regions surrounding each of 548 known or potentially glucocorticoid-responsive genes in A549 human lung cells for GR-occupied GREs. We found that GR was bound in A549 cells predominately near genes responsive to glucocorticoids in those cells and not at genes regulated by GR in other cells. The GREs were positionally conserved at each responsive gene but across the set of responsive genes were distributed equally upstream and downstream of the transcription start sites, with 63% of them >10 kb from those sites. Strikingly, although the core GR binding sequences across the set of GREs varied extensively around a consensus, the precise sequence at an individual GRE was conserved across four mammalian species. Similarly, sequences flanking the core GR binding sites also varied among GREs but were conserved at individual GREs. We conclude that GR occupancy is a primary determinant of glucocorticoid responsiveness in A549 cells and that core GR binding sequences as well as GRE architecture likely harbor gene-specific regulatory information.

  16. Determinants of Cell- and Gene-Specific Transcriptional Regulation by the Glucocorticoid Receptor

    PubMed Central

    So, Alex Yick-Lun; Chaivorapol, Christina; Bolton, Eric C; Li, Hao; Yamamoto, Keith R

    2007-01-01

    The glucocorticoid receptor (GR) associates with glucocorticoid response elements (GREs) and regulates selective gene transcription in a cell-specific manner. Native GREs are typically thought to be composite elements that recruit GR as well as other regulatory factors into functional complexes. We assessed whether GR occupancy is commonly a limiting determinant of GRE function as well as the extent to which core GR binding sequences and GRE architecture are conserved at functional loci. We surveyed 100-kb regions surrounding each of 548 known or potentially glucocorticoid-responsive genes in A549 human lung cells for GR-occupied GREs. We found that GR was bound in A549 cells predominately near genes responsive to glucocorticoids in those cells and not at genes regulated by GR in other cells. The GREs were positionally conserved at each responsive gene but across the set of responsive genes were distributed equally upstream and downstream of the transcription start sites, with 63% of them >10 kb from those sites. Strikingly, although the core GR binding sequences across the set of GREs varied extensively around a consensus, the precise sequence at an individual GRE was conserved across four mammalian species. Similarly, sequences flanking the core GR binding sites also varied among GREs but were conserved at individual GREs. We conclude that GR occupancy is a primary determinant of glucocorticoid responsiveness in A549 cells and that core GR binding sequences as well as GRE architecture likely harbor gene-specific regulatory information. PMID:17559307

  17. Receptor protein kinase gene encoded at the self-incompatibility locus

    DOEpatents

    Nasrallah, June B.; Nasrallah, Mikhail E.; Stein, Joshua

    1996-01-01

    Described herein is a S receptor kinase gene (SRK), derived from the S locus in Brassica oleracea, having a extracellular domain highly similar to the secreted product of the S-locus glycoprotein gene.

  18. Depression of gustatory receptor potential in frog taste cell by parasympathetic nerve-induced slow hyperpolarizing potential.

    PubMed

    Sato, Toshihide; Nishishita, Kazuhisa; Mineda, Takao; Okada, Yukio; Toda, Kazuo

    2007-01-01

    Parasympathetic nerve (PSN) innervates taste cells of the frog taste disk, and electrical stimulation of PSN elicited a slow hyperpolarizing potential (HP) in taste cells. Here we report that gustatory receptor potentials in frog taste cells are depressed by PSN-induced slow HPs. When PSN was stimulated at 30 Hz during generation of taste cell responses, the large amplitude of depolarizing receptor potential for 1 M NaCl and 1 mM acetic acid was depressed by approximately 40% by slow HPs, but the small amplitude of the depolarizing receptor potential for 10 mM quinine-HCl (Q-HCl) and 1 M sucrose was completely depressed by slow HPs and furthermore changed to the hyperpolarizing direction. The duration of the depolarizing receptor potentials depressed by slow HPs prolonged with increasing period of PSN stimulation. As tastant-induced depolarizing receptor potentials were increased, the amplitude of PSN-induced slow HPs inhibiting the receptor potentials gradually decreased. The mean reversal potentials of the slow HPs were approximately -1 mV under NaCl and acetic acid stimulations, but approximately -14 mV under Q-HCl and sucrose stimulations. This implies that when a slow HP was evoked on the same amplitude of depolarizing receptor potentials, the depression of the NaCl and acetic acid responses in taste cells was larger than that of Q-HCl and sucrose responses. It is concluded that slow HP-induced depression of gustatory depolarizing receptor potentials derives from the interaction between gustatory receptor current and slow hyperpolarizing current in frog taste cells and that the interaction is stronger for NaCl and acetic acid stimulations than for Q-HCl and sucrose stimulations.

  19. The growth hormone receptor gene-disrupted mouse fails to respond to an intermittent fasting diet.

    PubMed

    Arum, Oge; Bonkowski, Michael S; Rocha, Juliana S; Bartke, Andrzej

    2009-12-01

    The interaction of longevity-conferring genes with longevity-conferring diets is poorly understood. The growth hormone receptor gene-disrupted (GHR-KO) mouse is long lived; and this longevity is not responsive to 30% caloric restriction, in contrast to wild-type animals from the same strain. To determine whether this may have been limited to a particular level of dietary restriction, we subjected GHR-KO mice to a different dietary restriction regimen, an intermittent fasting diet. The intermittent fasting diet increased the survivorship and improved insulin sensitivity of normal males, but failed to affect either parameter in GHR-KO mice. From the results of two paradigms of dietary restriction, we postulate that GHR-KO mice would be resistant to any manner of dietary restriction; potentially due to their inability to further enhance insulin sensitivity. Insulin sensitivity may be a mechanism and/or a marker of the lifespan extending potential of an intervention.

  20. Intact Microtubules Preserve Transient Receptor Potential Vanilloid 1 (TRPV1) Functionality through Receptor Binding*

    PubMed Central

    Storti, Barbara; Bizzarri, Ranieri; Cardarelli, Francesco; Beltram, Fabio

    2012-01-01

    The transient receptor potential cation channel subfamily V member 1 (TRPV1) is a protein currently under scrutiny as a pharmacological target for pain management therapies. Recently, the role of TRPV1-microtubule interaction in transducing nociception stimuli to cells by cytoskeletal rearrangement was proposed. In this work, we investigate TRPV1-microtubule interaction in living cells under the resting or activated state of TRPV1, as well as in presence of structurally intact or depolymerized cytoskeletal microtubules. We combined a toolbox of high resolution/high sensitivity fluorescence imaging techniques (such as FRET, correlation spectroscopy, and fluorescence anisotropy) to monitor TRPV1 aggregation status, membrane mobility, and interaction with microtubules. We found that TRPV1 is a dimeric membrane protein characterized by two populations with different diffusion properties in basal condition. After stimulation with resiniferatoxin, TRPV1 dimers tetramerize. The tetramers and the slower population of TRPV1 dimers bind dynamically to intact microtubules but not to tubulin dimers. Upon microtubule disassembly, the interaction with TRPV1 is lost thereby inducing receptor self-aggregation with partial loss of functionality. Intact microtubules play an essential role in maintaining TRPV1 functionality toward activation stimuli. This previously undisclosed property mirrors the recently reported role of TRPV1 in modulating microtubule assembly/disassembly and suggests the participation of these two players in a feedback cycle linking nociception and cytoskeletal remodeling. PMID:22262838

  1. The potential role of dopamine D₃ receptor neurotransmission in cognition.

    PubMed

    Nakajima, Shinichiro; Gerretsen, Philip; Takeuchi, Hiroyoshi; Caravaggio, Fernando; Chow, Tiffany; Le Foll, Bernard; Mulsant, Benoit; Pollock, Bruce; Graff-Guerrero, Ariel

    2013-08-01

    Currently available treatments have limited pro-cognitive effects for neuropsychiatric disorders, such as schizophrenia, Parkinson's disease and Alzheimer's disease. The primary objective of this work is to review the literature on the role of dopamine D₃ receptors in cognition, and propose dopamine D₃ receptor antagonists as possible cognitive enhancers for neuropsychiatric disorders. A literature search was performed to identify animal and human studies on D₃ receptors and cognition using PubMed, MEDLINE and EMBASE. The search terms included "dopamine D₃ receptor" and "cognition". The literature search identified 164 articles. The results revealed: (1) D₃ receptors are associated with cognitive functioning in both healthy individuals and those with neuropsychiatric disorders; (2) D₃ receptor blockade appears to enhance while D₃ receptor agonism seems to impair cognitive function, including memory, attention, learning, processing speed, social recognition and executive function independent of age; and (3) D₃ receptor antagonists may exert their pro-cognitive effect by enhancing the release of acetylcholine in the prefrontal cortex, disinhibiting the activity of dopamine neurons projecting to the nucleus accumbens or prefrontal cortex, or activating CREB signaling in the hippocampus. These findings suggest that D₃ receptor blockade may enhance cognitive performance in healthy individuals and treat cognitive dysfunction in individuals with a neuropsychiatric disorder. Clinical trials are needed to confirm these effects.

  2. The dynamic nature of type 1 cannabinoid receptor (CB1) gene transcription

    PubMed Central

    Laprairie, RB; Kelly, MEM; Denovan-Wright, EM

    2012-01-01

    The type 1 cannabinoid receptor (CB1) is an integral component of the endocannabinoid system that modulates several functions in the CNS and periphery. The majority of our knowledge of the endocannabinoid system involves ligand–receptor binding, mechanisms of signal transduction, and protein–protein interactions. In contrast, comparatively little is known about regulation of CB1 gene expression. The levels and anatomical distribution of CB1 mRNA and protein are developmental stage-specific and are dysregulated in several pathological conditions. Moreover, exposure to a variety of drugs, including cannabinoids themselves, alters CB1 gene expression and mRNA levels. As such, alterations in CB1 gene expression are likely to affect the optimal response to cannabinoid-based therapies, which are being developed to treat a growing number of conditions. Here, we will examine the regulation of CB1 mRNA levels and the therapeutic potential inherent in manipulating expression of this gene. Linked Articles This article is part of a themed section on Cannabinoids. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.167.issue-8 PMID:22924606

  3. [Role of Transient Receptor Potential Channels in Paclitaxel- and Oxaliplatin-induced Peripheral Neuropathy].

    PubMed

    Taguchi, Kyoji

    2016-01-01

    Peripheral neuropathy is a common adverse effect of paclitaxel and oxaliplatin treatment. The major dose-limiting side effect of these drugs is peripheral sensory neuropathy. The symptoms of paclitaxel-induced neuropathy are mostly sensory and peripheral in nature, consisting of mechanical allodynia/hyperalgesia, tingling, and numbness. Oxaliplatin-induced neurotoxicity manifests as rapid-onset neuropathic symptoms that are exacerbated by cold exposure and as chronic neuropathy that develops after several treatment cycles. Although many basic and clinical researchers have studied anticancer drug-induced peripheral neuropathy, the mechanism is not well understood. In this review, we focus on (1) analysis of transient receptor potential vanilloid 1 (TRPV1) channel expression in the rat dorsal root ganglion (DRG) after paclitaxel treatment and (2) analysis of transient receptor potential ankyrin 1 (TRPA1) channel in the DRG after oxaliplatin treatment. This review describes that (1) paclitaxel-induced neuropathic pain may be the result of up-regulation of TRPV1 in small- and medium-diameter DRG neurons. In addition, paclitaxel treatment increases the release of substance P, but not calcitonin gene-related peptide, in the superficial layers of the spinal dorsal horn. (2) TRPA1 expression via activation of p38 mitogen-activated protein kinase in small-diameter DRG neurons, at least in part, contributes to the development of oxaliplatin-induced acute cold hyperalgesia. We suggest that TRPV1 or TRPA1 antagonists may be potential therapeutic lead compounds for treating anticancer drug-induced peripheral neuropathy.

  4. Transcription of prostanoid receptor genes and cyclooxygenase enzyme genes in cultivated human iridial melanocytes from eyes of different colours.

    PubMed

    Wentzel, Parri; Bergh, Kerstin; Wallin, Orjan; Niemelä, Pekka; Stjernschantz, Johan

    2003-02-01

    Several prostaglandin analogues used for glaucoma treatment have been shown to cause increased iridial pigmentation as side-effect. In the present study we identified the types of prostanoid receptors and cyclooxygenase (COX) enzymes that are expressed in human iridial melanocytes isolated from eyes of different colours. Iris specimens were obtained during trabeculectomy surgery, or from enucleated eyes, and the iridial melanocytes were isolated and cultivated. The transcription of the DP, EP1, EP2, EP3, EP4, FP, IP and TP prostanoid receptor genes as well as the COX-1 and COX-2 enzyme genes was investigated using reverse transcriptase-polymerase chain reaction (RT-PCR). Of the prostanoid receptors the FP receptor gene was found to be most consistently transcribed in the melanocytes isolated from both blue- and hazel-coloured eyes. No RNA of the DP, EP2 and TP receptor genes could be detected, whereas the EP1, EP3, EP4 and IP receptor genes were found to be transcribed in melanocytes from some eyes. The COX-2 gene was found to be transcribed, but the COX-1 gene less consistently. There was no difference in gene transcription pattern between melanocytes originating from eyes treated with latanoprost, and eyes not previously treated with the prostaglandin. These results indicate that the FP prostanoid receptor gene is transcribed in cultivated human iridial melanocytes of both blue and hazel eyes, whereas the other prostanoid receptor genes seem to be transcribed much less frequently, or not at all. Surprisingly, the COX-2 rather than the COX-1 gene, was found to be transcribed in the melanocytes.

  5. Lipid modulation of thermal transient receptor potential channels.

    PubMed

    Hernández-García, Enrique; Rosenbaum, Tamara

    2014-01-01

    There is a subgroup of transient receptor potential (TRP) ion channels that are responsive to temperature (thermo-TRP channels). These are important to a variety of sensory and physiological phenomena such as pain and taste perception. All thermo-TRP channels known to date are subject to modulation by lipidic molecules of many kinds, from the ubiquitous cholesterol to more specialized molecules such as prostaglandins. Although the mechanisms and sites of binding of lipids on thermo-TRPs are largely unknown, the explosion on research of lipids and ion channels has revealed previously unsuspected roles for them. Diacyl glycerol is a lipid produced by phospholipase C (PLC) and it was discovered to modulate TRP channels in the eye of the fly, and many mammal TRP channels have been found to interact with lipids. While most of the lipids acting on thermo-TRP channels have been found to activate them, there are a few capable of inhibition. Phosphatidylinositol 4,5-bisphosphate is even capable of both inhibition and activation on a couple of thermo-TRPs, depending on the cellular context. More data is required to assess the mechanism through which lipids affect thermo-TRP channel activity and the physiological importance of this interaction.

  6. Activation of transient receptor potential ankyrin 1 by eugenol.

    PubMed

    Chung, G; Im, S T; Kim, Y H; Jung, S J; Rhyu, M-R; Oh, S B

    2014-03-07

    Eugenol is a bioactive plant extract used as an analgesic agent in dentistry. The structural similarity of eugenol to cinnamaldehyde, an active ligand for transient receptor potential ankyrin 1 (TRPA1), suggests that eugenol might produce its effect via TRPA1, in addition to TRPV1 as we reported previously. In this study, we investigated the effect of eugenol on TRPA1, by fura-2-based calcium imaging and patch clamp recording in trigeminal ganglion neurons and in a heterologous expression system. As the result, eugenol induced robust calcium responses in rat trigeminal ganglion neurons that responded to a specific TRPA1 agonist, allyl isothiocyanate (AITC), and not to capsaicin. Capsazepine, a TRPV1 antagonist failed to inhibit eugenol-induced calcium responses in AITC-responding neurons. In addition, eugenol response was observed in trigeminal ganglion neurons from TRPV1 knockout mice and human embryonic kidney 293 cell lines that express human TRPA1, which was inhibited by TRPA1-specific antagonist HC-030031. Eugenol-evoked TRPA1 single channel activity and eugenol-induced TRPA1 currents were dose-dependent with EC50 of 261.5μM. In summary, these results demonstrate that the activation of TRPA1 might account for another molecular mechanism underlying the pharmacological action of eugenol.

  7. Chicken interferons, their receptors and interferon-stimulated genes.

    PubMed

    Goossens, Kate E; Ward, Alister C; Lowenthal, John W; Bean, Andrew G D

    2013-11-01

    The prevalence of pathogenic viruses is a serious issue as they pose a constant threat to both the poultry industry and to human health. To prevent these viral infections an understanding of the host-virus response is critical, especially for the development of novel therapeutics. One approach in the control of viral infections would be to boost the immune response through administration of cytokines, such as interferons. However, the innate immune response in chickens is poorly characterised, particularly concerning the interferon pathway. This review will provide an overview of our current understanding of the interferon system of chickens, including their cognate receptors and known interferon-stimulated gene products. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. The therapeutic potential of G-protein coupled receptors in Huntington's disease.

    PubMed

    Dowie, Megan J; Scotter, Emma L; Molinari, Emanuela; Glass, Michelle

    2010-11-01

    Huntington's disease is a late-onset autosomal dominant inherited neurodegenerative disease characterised by increased symptom severity over time and ultimately premature death. An expanded CAG repeat sequence in the huntingtin gene leads to a polyglutamine expansion in the expressed protein, resulting in complex dysfunctions including cellular excitotoxicity and transcriptional dysregulation. Symptoms include cognitive deficits, psychiatric changes and a movement disorder often referred to as Huntington's chorea, which involves characteristic involuntary dance-like writhing movements. Neuropathologically Huntington's disease is characterised by neuronal dysfunction and death in the striatum and cortex with an overall decrease in cerebral volume (Ho et al., 2001). Neuronal dysfunction begins prior to symptom presentation, and cells of particular vulnerability include the striatal medium spiny neurons. Huntington's is a devastating disease for patients and their families and there is currently no cure, or even an effective therapy for disease symptoms. G-protein coupled receptors are the most abundant receptor type in the central nervous system and are linked to complex downstream pathways, manipulation of which may have therapeutic application in many neurological diseases. This review will highlight the potential of G-protein coupled receptor drug targets as emerging therapies for Huntington's disease.

  9. Arsenite and insulin exhibit opposing effects on epidermal growth factor receptor and keratinocyte proliferative potential

    SciTech Connect

    Patterson, Timothy J.; Rice, Robert H. . E-mail: rhrice@ucdavis.edu

    2007-05-15

    Previous work has suggested that arsenic exposure contributes to skin carcinogenesis by preserving the proliferative potential of human epidermal keratinocytes, thereby slowing the exit of putative target stem cells into the differentiation pathway. To find a molecular basis for this action, present work has explored the influence of arsenite on keratinocyte responses to epidermal growth factor (EGF). The ability of cultured keratinocytes to found colonies upon passaging several days after confluence was preserved by arsenite and EGF in an additive fashion, but neither was effective when the receptor tyrosine kinase activity was inhibited. Arsenite prevented the loss of EGF receptor protein and phosphorylation of tyrosine 1173, preserving its capability to signal. The level of nuclear {beta}-catenin was higher in cells treated with arsenite and EGF in parallel to elevated colony forming ability, and expression of a dominant negative {beta}-catenin suppressed the increase in both colony forming ability and yield of putative stem cells induced by arsenite and EGF. As judged by expression of three genes regulated by {beta}-catenin, this transcription factor had substantially higher activity in the arsenite/EGF-treated cells. Trivalent antimony exhibited the same effects as arsenite. A novel finding is that insulin in the medium induced the loss of EGF receptor protein, which was largely prevented by arsenite exposure.

  10. Presynaptic kainate receptors impart an associative property to hippocampal mossy fiber long-term potentiation.

    PubMed

    Schmitz, Dietmar; Mellor, Jack; Breustedt, Joerg; Nicoll, Roger A

    2003-10-01

    Hippocampal mossy fiber synapses show an unusual form of long-term potentiation (LTP) that is independent of NMDA receptor activation and is expressed presynaptically. Using receptor antagonists, as well as receptor knockout mice, we found that presynaptic kainate receptors facilitate the induction of mossy fiber long-term potentiation (LTP), although they are not required for this form of LTP. Most importantly, these receptors impart an associativity to mossy fiber LTP such that activity in neighboring mossy fiber synapses, or even associational/commissural synapses, influences the threshold for inducing mossy fiber LTP. Such a mechanism greatly increases the computational power of this form of plasticity.

  11. Variants in the vitamin D receptor gene and asthma

    PubMed Central

    Wjst, Matthias

    2005-01-01

    Background Early lifetime exposure to dietary or supplementary vitamin D has been predicted to be a risk factor for later allergy. Twin studies suggest that response to vitamin D exposure might be influenced by genetic factors. As these effects are primarily mediated through the vitamin D receptor (VDR), single base variants in this gene may be risk factors for asthma or allergy. Results 951 individuals from 224 pedigrees with at least 2 asthmatic children were analyzed for 13 SNPs in the VDR. There was no preferential transmission to children with asthma. In their unaffected sibs, however, one allele in the 5' region was 0.5-fold undertransmitted (p = 0.049), while two other alleles in the 3' terminal region were 2-fold over-transmitted (p = 0.013 and 0.018). An association was also seen with bronchial hyperreactivity against methacholine and with specific immunoglobulin E serum levels. Conclusion The transmission disequilibrium in unaffected sibs of otherwise multiple-affected families seem to be a powerful statistical test. A preferential transmission of vitamin D receptor variants to children with asthma could not be confirmed but raises the possibility of a protective effect for unaffected children. PMID:15651992

  12. Liver X Receptor Genes Variants Modulate ALS Phenotype.

    PubMed

    Mouzat, Kevin; Molinari, Nicolas; Kantar, Jovana; Polge, Anne; Corcia, Philippe; Couratier, Philippe; Clavelou, Pierre; Juntas-Morales, Raul; Pageot, Nicolas; Lobaccaro, Jean -Marc A; Raoul, Cedric; Lumbroso, Serge; Camu, William

    2017-02-27

    Amyotrophic lateral sclerosis (ALS) is one of the most severe motor neuron (MN) disorders in adults. Phenotype of ALS patients is highly variable and may be influenced by modulators of energy metabolism. Recent works have implicated the liver X receptors α and β (LXRs), either in the propagation process of ALS or in the maintenance of MN survival. LXRs are nuclear receptors activated by oxysterols, modulating cholesterol levels, a suspected modulator of ALS severity. In a cohort of 438 ALS patients and 330 healthy controls, the influence of LXR genes on ALS risk and phenotype was studied using single nucleotide polymorphisms (SNPs). The two LXRα SNPs rs2279238 and rs7120118 were shown to be associated with age at onset in ALS patients. Consistently, homozygotes were twice more correlated than were heterozygotes to delayed onset. The onset was thus delayed by 3.9 years for rs2279238 C/T carriers and 7.8 years for T/T carriers. Similar results were obtained for rs7120118 (+2.1 years and +6.7 years for T/C and C/C genotypes, respectively). The LXRβ SNP rs2695121 was also shown to be associated with a 30% increase of ALS duration (p = 0.0055, FDR = 0.044). The tested genotypes were not associated with ALS risk. These findings add further evidence to the suspected implication of LXR genes in the disease process of ALS and might open new perspectives in ALS therapeutics.

  13. Transcriptional regulation of the bovine oxytocin receptor gene.

    PubMed

    Telgmann, Ralph; Bathgate, Ross A D; Jaeger, Stefanie; Tillmann, Gina; Ivell, Richard

    2003-03-01

    The oxytocin receptor (OTR) is expressed in the cow uterus at high levels at estrus and at term of pregnancy. This expression appears to be controlled mostly at the transcriptional level and correlates with increasing estrogen concentration and progesterone withdrawal. Approximately 3200 base pairs of the upstream region of the bovine OTR gene were cloned and analyzed using a combination of bioinformatic, electrophoretic mobility shift (EMSA), and transfection analyses. Using nuclear proteins from high- and low-expressing tissues, EMSA indicated no significant quantitative or qualitative changes in specific DNA-protein binding, suggesting that transcription is probably controlled by signalling systems targeting constitutive factors. Using various cell types, including primary and immortalized ruminant endometrial epithelial cells, as hosts for transfection of promoter-reporter constructs showed that endogenous activity resided only in the longest, i.e., 3.2-kb, construct but not in those shorter than 1.0 kb. While estrogen appears to be important in vivo, no effect of estradiol was found on any construct directly; only when the longest 3.2-kb construct was used in combination with some cotransfected steroid receptor cofactors, e.g., SRC1e, was an estradiol-dependent effect observed. A putative interferon-responsive element (IRE) was found at approximately -2,400 from the transcription start site. This element was shown to bind mouse IRF1 and IRF2 as well as similar proteins from bovine endometrial and myometrial nuclear extracts. This element also responded to these factors when cotransfected into various cell types. The bovine equivalents to IRF1 and IRF2 were molecularly cloned from endometrial tissue and shown to be expressed in a temporal fashion, supporting the role of interferon-tau in maternal recognition of pregnancy. Of many factors tested or analyzed, these components of the IFN system are the only ones found to significantly influence the transcription

  14. Pigmentation and behavior: potential association through pleiotropic genes in Drosophila.

    PubMed

    Takahashi, Aya

    2013-01-01

    The molecular basis of pigmentation variation within and among Drosophila species is largely attributed to genes in melanin biosynthesis pathway, which involves dopamine metabolism. Most of the genetic changes underlying pigmentation variations reported to date are changes at the expression levels of the structural genes in the pathway. Within D. melanogaster, changes in cis-regulatory regions of a gene, ebony, are responsible for the naturally occurring variation of the body pigmentation intensity. This gene is also known to be expressed in glia, and many visual and behavioral abnormalities of its mutants have been reported. This implies that the gene has pleiotropic functions in the nervous systems. In this review, current knowledge on pigmentation variation and melanin biosynthesis pathway are summarized, with some focus on pleiotropic features of ebony and other genes in the pathway. A potential association between pigmentation and behavior through such pleiotropic genes is discussed in light of cis-regulatory structure and pleiotropic mutations.

  15. Moderate concentrations of 4-O-methylhonokiol potentiate GABAA receptor currents stronger than honokiol.

    PubMed

    Baur, Roland; Schuehly, Wolfgang; Sigel, Erwin

    2014-10-01

    Magnolia bark preparations from Magnolia officinalis of Asian medicinal systems are known for their muscle relaxant effect and anticonvulsant activity. These CNS related effects are ascribed to the presence of the biphenyl-type neolignans honokiol and magnolol that exert a potentiating effect on GABAA receptors. 4-O-methylhonokiol isolated from seeds of the North-American M. grandiflora was compared to honokiol for its activity to potentiate GABAA receptors and its GABAA receptor subtype-specificity was established. Different recombinant GABAA receptors were functionally expressed in Xenopus oocytes and electrophysiological techniques were used determine to their modulation by 4-O-methylhonokiol. 3μM 4-O-methylhonokiol is shown here to potentiate responses of the α₁β₂γ₂ GABAA receptor about 20-fold stronger than the same concentration of honokiol. In the present study potentiation by 4-O-methylhonokiol is also detailed for 12 GABAA receptor subtypes to assess GABAA receptor subunits that are responsible for the potentiating effect. The much higher potentiation of GABAA receptors at identical concentrations of 4-O-methylhonokiol as compared to honokiol parallels previous observations made in other systems of potentiated pharmacological activity of 4-O-methylhonokiol over honokiol. The results point to the use of 4-O-methylhonokiol as a lead for GABAA receptor potentiation and corroborate the use of M. grandiflora seeds against convulsions in Mexican folk medicine. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Transient Receptor Potential Melastatin-3 (TRPM3) Mediates Nociceptive-Like Responses in Hydra vulgaris.

    PubMed

    Malafoglia, Valentina; Traversetti, Lorenzo; Del Grosso, Floriano; Scalici, Massimiliano; Lauro, Filomena; Russo, Valeria; Persichini, Tiziana; Salvemini, Daniela; Mollace, Vincenzo; Fini, Massimo; Raffaeli, William; Muscoli, Carolina; Colasanti, Marco

    2016-01-01

    The ability of mammals to feel noxious stimuli lies in a heterogeneous group of primary somatosensory neurons termed nociceptors, which express specific membrane receptors, such as the Transient Receptor Potential (TRP) family. Here, we show that one of the most important nociceptive-like pathways is conserved in the freshwater coelenterate Hydra vulgaris, the most primitive organism possessing a nervous system. In particular, we found that H. vulgaris expresses TRPM3, a nociceptor calcium channel involved in the detection of noxious heat in mammals. Furthermore, we detected that both heat shock and TRPM3 specific agonist (i.e., pregnenolone sulfate) induce the modulation of the heat shock protein 70 (HSP70) and the nitric oxide synthase (NOS), two genes activated by TRP-mediated heat painful stimuli in mammals. As expected, these effects are inhibited by a TRPM3 antagonist (i.e., mefenamic acid). Interestingly, the TRPM3 agonist and heat shock also induce the expression of nuclear transcription erythroid 2-related factor (Nrf2) and superoxide dismutase (SOD), known markers of oxidative stress; noteworthy gene expression was also inhibited by the TRPM3 antagonist. As a whole, our results demonstrate the presence of conserved molecular oxidative/nociceptive-like pathways at the primordial level of the animal kingdom.

  17. Transient Receptor Potential Melastatin-3 (TRPM3) Mediates Nociceptive-Like Responses in Hydra vulgaris

    PubMed Central

    Malafoglia, Valentina; Traversetti, Lorenzo; Del Grosso, Floriano; Scalici, Massimiliano; Lauro, Filomena; Russo, Valeria; Persichini, Tiziana; Salvemini, Daniela; Mollace, Vincenzo; Fini, Massimo; Raffaeli, William

    2016-01-01

    The ability of mammals to feel noxious stimuli lies in a heterogeneous group of primary somatosensory neurons termed nociceptors, which express specific membrane receptors, such as the Transient Receptor Potential (TRP) family. Here, we show that one of the most important nociceptive-like pathways is conserved in the freshwater coelenterate Hydra vulgaris, the most primitive organism possessing a nervous system. In particular, we found that H. vulgaris expresses TRPM3, a nociceptor calcium channel involved in the detection of noxious heat in mammals. Furthermore, we detected that both heat shock and TRPM3 specific agonist (i.e., pregnenolone sulfate) induce the modulation of the heat shock protein 70 (HSP70) and the nitric oxide synthase (NOS), two genes activated by TRP-mediated heat painful stimuli in mammals. As expected, these effects are inhibited by a TRPM3 antagonist (i.e., mefenamic acid). Interestingly, the TRPM3 agonist and heat shock also induce the expression of nuclear transcription erythroid 2-related factor (Nrf2) and superoxide dismutase (SOD), known markers of oxidative stress; noteworthy gene expression was also inhibited by the TRPM3 antagonist. As a whole, our results demonstrate the presence of conserved molecular oxidative/nociceptive-like pathways at the primordial level of the animal kingdom. PMID:26974325

  18. The Dopamine D2 Receptor Gene, Perceived Parental Support, and Adolescent Loneliness: Longitudinal Evidence for Gene-Environment Interactions

    ERIC Educational Resources Information Center

    van Roekel, Eeske; Goossens, Luc; Scholte, Ron H. J.; Engels, Rutger C. M. E.; Verhagen, Maaike

    2011-01-01

    Background: Loneliness is a common problem in adolescence. Earlier research focused on genes within the serotonin and oxytocin systems, but no studies have examined the role of dopamine-related genes in loneliness. In the present study, we focused on the dopamine D2 receptor gene (DRD2). Methods: Associations among the DRD2, sex, parental support,…

  19. The Dopamine D2 Receptor Gene, Perceived Parental Support, and Adolescent Loneliness: Longitudinal Evidence for Gene-Environment Interactions

    ERIC Educational Resources Information Center

    van Roekel, Eeske; Goossens, Luc; Scholte, Ron H. J.; Engels, Rutger C. M. E.; Verhagen, Maaike

    2011-01-01

    Background: Loneliness is a common problem in adolescence. Earlier research focused on genes within the serotonin and oxytocin systems, but no studies have examined the role of dopamine-related genes in loneliness. In the present study, we focused on the dopamine D2 receptor gene (DRD2). Methods: Associations among the DRD2, sex, parental support,…

  20. Impact of gene polymorphisms of gonadotropins and their receptors on human reproductive success.

    PubMed

    Casarini, Livio; Santi, Daniele; Marino, Marco

    2015-12-01

    Gonadotropins and their receptors' genes carry several single-nucleotide polymorphisms resulting in endocrine genotypes modulating reproductive parameters, diseases, and lifespan leading to important implications for reproductive success and potential relevance during human evolution. Here we illustrate common genotypes of the gonadotropins and gonadotropin receptors' genes and their clinical implications in phenotypes relevant for reproduction such as ovarian cycle length, age of menopause, testosterone levels, polycystic ovary syndrome, and cancer. We then discuss their possible role in human reproduction and adaptation to the environment. Gonadotropins and their receptors' variants are differently distributed among human populations. Some hints suggest that they may be the result of natural selection that occurred in ancient times, increasing the individual chance of successful mating, pregnancy, and effective post-natal parental cares. The gender-related differences in the regulation of the reproductive endocrine systems imply that many of these genotypes may lead to sex-dependent effects, increasing the chance of mating and reproductive success in one sex at the expenses of the other sex. Also, we suggest that sexual conflicts within the FSH and LH-choriogonadotropin receptor genes contributed to maintain genotypes linked to subfertility among humans. Because the distribution of polymorphic markers results in a defined geographical pattern due to human migrations rather than natural selection, these polymorphisms may have had only a weak impact on reproductive success. On the contrary, such genotypes could acquire relevant consequences in the modern, developed societies in which parenthood attempts often occur at a later age, during a short, suboptimal reproductive window, making clinical fertility treatments necessary.

  1. Therapeutic potential of neuropeptide Y (NPY) receptor ligands

    PubMed Central

    Brothers, Shaun P; Wahlestedt, Claes

    2010-01-01

    Neuropeptide Y (NPY) is widely distributed in the human body and contributes to a vast number of physiological processes. Since its discovery, NPY has been implicated in metabolic regulation and, although interest in its role in central mechanisms related to food intake and obesity has somewhat diminished, the topic remains a strong focus of research concerning NPY signalling. In addition, a number of other uses for modulators of NPY receptors have been implied in a range of diseases, although the development of NPY receptor ligands has been slow, with no clinically approved receptor therapeutics currently available. Nevertheless, several interesting small molecule compounds, notably Y2 receptor antagonists, have been published recently, fueling optimism in the field. Herein we review the role of NPY in the pathophysiology of a number of diseases and highlight instances where NPY receptor signalling systems are attractive therapeutic targets. PMID:20972986

  2. Dynamic evolution of the GnRH receptor gene family in vertebrates.

    PubMed

    Williams, Barry L; Akazome, Yasuhisa; Oka, Yoshitaka; Eisthen, Heather L

    2014-10-25

    Elucidating the mechanisms underlying coevolution of ligands and receptors is an important challenge in molecular evolutionary biology. Peptide hormones and their receptors are excellent models for such efforts, given the relative ease of examining evolutionary changes in genes encoding for both molecules. Most vertebrates possess multiple genes for both the decapeptide gonadotropin releasing hormone (GnRH) and for the GnRH receptor. The evolutionary history of the receptor family, including ancestral copy number and timing of duplications and deletions, has been the subject of controversy. We report here for the first time sequences of three distinct GnRH receptor genes in salamanders (axolotls, Ambystoma mexicanum), which are orthologous to three GnRH receptors from ranid frogs. To understand the origin of these genes within the larger evolutionary context of the gene family, we performed phylogenetic analyses and probabilistic protein homology searches of GnRH receptor genes in vertebrates and their near relatives. Our analyses revealed four points that alter previous views about the evolution of the GnRH receptor gene family. First, the "mammalian" pituitary type GnRH receptor, which is the sole GnRH receptor in humans and previously presumed to be highly derived because it lacks the cytoplasmic C-terminal domain typical of most G-protein coupled receptors, is actually an ancient gene that originated in the common ancestor of jawed vertebrates (Gnathostomata). Second, unlike previous studies, we classify vertebrate GnRH receptors into five subfamilies. Third, the order of subfamily origins is the inverse of previous proposed models. Fourth, the number of GnRH receptor genes has been dynamic in vertebrates and their ancestors, with multiple duplications and losses. Our results provide a novel evolutionary framework for generating hypotheses concerning the functional importance of structural characteristics of vertebrate GnRH receptors. We show that five

  3. High-throughput microarray detection of olfactory receptor gene expression in the mouse

    PubMed Central

    Zhang, Xinmin; Rogers, Matthew; Tian, Huikai; Zhang, Xiaohong; Zou, Dong-Jing; Liu, Jian; Ma, Minghong; Shepherd, Gordon M.; Firestein, Stuart J.

    2004-01-01

    The large number of olfactory receptor genes necessitates high throughput methods to analyze their expression patterns. We have therefore designed a high-density oligonucleotide array containing all known mouse olfactory receptor (OR) and V1R vomeronasal receptor genes. This custom array detected a large number of receptor genes, demonstrating specific expression in the olfactory sensory epithelium for ≈800 OR genes previously designated as ORs based solely on genomic sequences. The array also enabled us to monitor the spatial and temporal distribution of gene expression for the entire OR family. Interestingly, OR genes showing spatially segregated expression patterns were also segregated on the chromosomes. This correlation between genomic location and spatial expression provides unique insights about the regulation of this large family of genes. PMID:15377787

  4. ALK1 signalling analysis identifies angiogenesis related genes and reveals disparity between TGF-β and constitutively active receptor induced gene expression

    PubMed Central

    Lux, Andreas; Salway, Fiona; Dressman, Holly K; Kröner-Lux, Gabriele; Hafner, Mathias; Day, Philip JR; Marchuk, Douglas A; Garland, John

    2006-01-01

    Background TGF-β1 is an important angiogenic factor involved in the different aspects of angiogenesis and vessel maintenance. TGF-β signalling is mediated by the TβRII/ALK5 receptor complex activating the Smad2/Smad3 pathway. In endothelial cells TGF-β utilizes a second type I receptor, ALK1, activating the Smad1/Smad5 pathway. Consequently, a perturbance of ALK1, ALK5 or TβRII activity leads to vascular defects. Mutations in ALK1 cause the vascular disorder hereditary hemorrhagic telangiectasia (HHT). Methods The identification of ALK1 and not ALK5 regulated genes in endothelial cells, might help to better understand the development of HHT. Therefore, the human microvascular endothelial cell line HMEC-1 was infected with a recombinant constitutively active ALK1 adenovirus, and gene expression was studied by using gene arrays and quantitative real-time PCR analysis. Results After 24 hours, 34 genes were identified to be up-regulated by ALK1 signalling. Analysing ALK1 regulated gene expression after 4 hours revealed 13 genes to be up- and 2 to be down-regulated. Several of these genes, including IL-8, ET-1, ID1, HPTPη and TEAD4 are reported to be involved in angiogenesis. Evaluation of ALK1 regulated gene expression in different human endothelial cell types was not in complete agreement. Further on, disparity between constitutively active ALK1 and TGF-β1 induced gene expression in HMEC-1 cells and primary HUVECs was observed. Conclusion Gene array analysis identified 49 genes to be regulated by ALK1 signalling and at least 14 genes are reported to be involved in angiogenesis. There was substantial agreement between the gene array and quantitative real-time PCR data. The angiogenesis related genes might be potential HHT modifier genes. In addition, the results suggest endothelial cell type specific ALK1 and TGF-β signalling. PMID:16594992

  5. Mutations in the epidermal growth factor receptor gene are linked to smoking-independent, lung adenocarcinoma

    PubMed Central

    Sonobe, M; Manabe, T; Wada, H; Tanaka, F

    2005-01-01

    Epidermal growth factor receptor (EGFR) mutations are a potential predictor of the effectiveness of EGFR inhibitors for the treatment of lung cancer. Although EGFR mutations were reported to occur with high frequency in nonsmoking Japanese adenocarcinoma patients, the exact nature has not been fully elucidated. We examined EGFR gene mutations within exons 18–21 and their correlations to clinico-pathological factors and other genetic alterations in tumour specimens from 154 patients who underwent resection for lung cancer at Kyoto University Hospital. Epidermal growth factor receptor mutations were observed in 60 tumours (39.0%), all of which were adenocarcinoma. Among the patients with adenocarcinoma (n=108), EGFR mutations were more frequently observed in nonsmokers than former smokers or current smokers (83.0, 50.0, 15.2%, respectively), in women than men (76.3 vs 34.0%), in tumours with bronchio-alveolar component than those without bronchio-alveolar component (78.9 vs 42.9%), and in well or moderately differentiated tumours than poorly differentiated tumours (72.0, 64.4, 34.2%). No tumours with EGFR mutations had any K-ras codon 12 mutations, which were well-known smoking-related gene mutations. In conclusion, adenocarcinomas with EGFR mutation had a distinctive clinico-pathological feature unrelated to smoking. Epidermal growth factor receptor mutations may play a key role in the development of smoking-independent adenocarcinoma. PMID:16052218

  6. Epistatic interaction between beta2-adrenergic receptor and neuropeptide Y genes influences LDL-cholesterol in hypertension.

    PubMed

    Tomaszewski, Maciej; Charchar, Fadi J; Lacka, Beata; Pesonen, Ullamari; Wang, William Y S; Zukowska-Szczechowska, Ewa; Grzeszczak, Wladyslaw; Dominiczak, Anna F

    2004-11-01

    Beta2-adrenergic receptor gene and neuropeptide Y gene may potentially influence lipid metabolism and overall energy balance. Therefore, we examined associations of these genes with lipid fractions and obesity-related phenotypes in hypertensive subjects. A total of 638 white individuals from 212 Polish families with clustering of essential hypertension were phenotyped for cardiovascular risk determinants. Each subject was genotyped for functional polymorphisms of beta2-adrenergic receptor gene (Arg16Gly and Gln27Glu) and neuropeptide Y (Leu7Pro). Of 3 common haplotypes of beta2-adrenergic receptor gene, Arg16Gln27 was overtransmitted to offspring with elevated levels of total cholesterol (Z=2.2; P=0.026) and LDL-cholesterol (Z=3.2; P=0.002). Individually, Leu7Pro was not associated with any of the metabolic phenotypes in family-based tests or case-control analyses. However, in the presence of Arg allele of Arg16Gly and Gln allele of Gln27Glu, homozygosity for Leu variant of the Leu7Pro polymorphism was associated with 2.1-increased odds ratio (confidence interval, 1.10 to 3.81; P=0.024) of elevated LDL in hypertensive subjects, independent of age, gender, body mass index, adjusted blood pressures, antihypertensive therapy, and use of nonselective beta-blockers and diuretics. Consistently, there was a significant multilocus association among variants of Arg16Gly, Gln27Glu, and Leu7Pro in hypertensive probands with elevated LDL (cases; P=0.028) but not in hypertensive subjects with normal LDL (controls). This study revealed an association of LDL-cholesterol with beta2-adrenergic receptor gene haplotype and provided evidence for epistatic interaction between beta2-adrenergic receptor gene and neuropeptide Y gene in determination of LDL-cholesterol in patients with essential hypertension.

  7. RET is a potential tumor suppressor gene in colorectal cancer

    PubMed Central

    Luo, Yanxin; Tsuchiya, Karen D.; Park, Dong Il; Fausel, Rebecca; Kanngurn, Samornmas; Welcsh, Piri; Dzieciatkowski, Slavomir; Wang, Jianping; Grady, William M.

    2012-01-01

    Cancer arises as the consequence of mutations and epigenetic alterations that activate oncogenes and inactivate tumor suppressor genes. Through a genome-wide screen for methylated genes in colon neoplasms, we identified aberrantly methylated RET in colorectal cancer. RET, a transmembrane receptor tyrosine kinase and a receptor for the GDNF-family ligands, was one of the first oncogenes to be identified and has been shown to be an oncogene in thyroid cancer and pheochromocytoma. However, unexpectedly, we found RET is methylated in 27% of colon adenomas and in 63% of colorectal cancers, and now provide evidence that RET has tumor suppressor activity in colon cancer. The aberrant methylation of RET correlates with decreased RET expression, whereas the restoration of RET in colorectal cancer cell lines results in apoptosis. Furthermore, in support of a tumor suppressor function of RET, mutant RET has also been found in primary colorectal cancer. We now show that these mutations inactivate RET, which is consistent with RET being a tumor suppressor gene in the colon. These findings suggest that the aberrant methylation of RET and the mutational inactivation of RET promote colorectal cancer formation and that RET can serve as a tumor suppressor gene in the colon. Moreover, the increased frequency of methylated RET in colon cancers compared to adenomas suggests RET inactivation is involved in the progression of colon adenomas to cancer. PMID:22751117

  8. A potential role for lamellar insulin-like growth factor-1 receptor in the pathogenesis of hyperinsulinaemic laminitis.

    PubMed

    de Laat, Melody A; Pollitt, Christopher C; Kyaw-Tanner, Myat T; McGowan, Catherine M; Sillence, Martin N

    2013-08-01

    The reason why a sustained high concentration of insulin induces laminitis in horses remains unclear. Cell proliferation occurs in the lamellae during insulin-induced laminitis and in other species high concentrations of insulin can activate receptors for the powerful cell mitogen, insulin-like growth factor (IGF)-1. The first aim of this study was to determine if IGF-1 receptors (IGF-1R) are activated in the hoof during insulin-induced laminitis. Gene expression for IGF-1R and the insulin receptor (InsR) was measured using qRT-PCR, in lamellar tissue from control horses and from horses undergoing a prolonged euglycaemic, hyperinsulinaemic clamp (p-EHC), during the mid-developmental (24h) and acute (46 h) phases of insulin-induced laminitis. Gene expression for both receptors was decreased 13-32-fold (P<0.05) at both time-points in the insulin-treated horses. A second aim was to determine if the down-regulation of the receptor genes could be accounted for by an increase in circulating IGF-1. Serum IGF-1 was measured at 0, 10, 25 and 46 h post-treatment in horses given a p-EHC for approximately 46 h, and in matched controls administered a balanced, electrolyte solution. There was no increase in serum IGF-1 concentrations during the p-EHC, consistent with down-regulation of both receptors by insulin. Stimulation of the IGF-1R by insulin may lead to inappropriate lamellar epidermal cell proliferation and lamellar weakening, a potential mechanism for hyperinsulinaemic laminitis. Targeting this receptor may provide insights into the pathogenesis or identify a novel therapy for hyperinsulinaemic laminitis.

  9. NTRK3 Is a Potential Tumor Suppressor Gene Commonly Inactivated by Epigenetic Mechanisms in Colorectal Cancer

    PubMed Central

    Luo, Yanxin; Kaz, Andrew M.; Kanngurn, Samornmas; Welsch, Piri; Morris, Shelli M.; Wang, Jianping; Lutterbaugh, James D.; Markowitz, Sanford D.; Grady, William M.

    2013-01-01

    NTRK3 is a member of the neurotrophin receptor family and regulates cell survival. It appears to be a dependence receptor, and thus has the potential to act as an oncogene or as a tumor suppressor gene. NTRK3 is a receptor for NT-3 and when bound to NT-3 it induces cell survival, but when NT-3 free, it induces apoptosis. We identified aberrantly methylated NTRK3 in colorectal cancers through a genome-wide screen for hypermethylated genes. This discovery led us to assess whether NTRK3 could be a tumor suppressor gene in the colon. NTRK3 is methylated in 60% of colon adenomas and 67% of colon adenocarcinomas. NTRK3 methylation suppresses NTRK3 expression. Reconstitution of NTRK3 induces apoptosis in colorectal cancers, if NT-3 is absent. Furthermore, the loss of NTRK3 expression associates with neoplastic transformation in vitro and in vivo. We also found that a naturally occurring mutant NTRK3 found in human colorectal cancer inhibits the tumor suppressor activity of NTRK3. In summary, our findings suggest NTRK3 is a conditional tumor suppressor gene that is commonly inactivated in colorectal cancer by both epigenetic and genetic mechanisms whose function in the pathogenesis of colorectal cancer depends on the expression status of its ligand, NT-3. PMID:23874207

  10. Melanocortin-4 receptor gene mutations in obese Slovak children.

    PubMed

    Stanikova, D; Surova, M; Ticha, L; Petrasova, M; Virgova, D; Huckova, M; Skopkova, M; Lobotkova, D; Valentinova, L; Mokan, M; Stanik, J; Klimes, I; Gasperikova, D

    2015-01-01

    The most common etiology of non-syndromic monogenic obesity are mutations in gene for the Melanocortin-4 receptor (MC485) with variable prevalence in different countries (1.2-6.3 % of obese children). The aim of our study was 1) to search for MC4R mutations in obese children in Slovakia and compare their prevalence with other European countries, and 2) to describe the phenotype of the mutation carriers. DNA analysis by direct Sanger sequencing of the coding exons and intron/exon boundaries of the MC4R gene was performed in 268 unrelated Slovak children and adolescents with body mass index above the 97(th) percentile for age and sex and obesity onset up to 11 years (mean 4.3+/-2.8 years). Two different previously described heterozygous loss of function MC4R variants (i.e. p.Ser19Alafs*34, p.Ser127Leu) were identified in two obese probands, and one obese (p.Ser19Alafs*34), and one lean (p.Ser127Leu) adult family relatives. No loss of function variants were found in lean controls. The prevalence of loss-of-function MC4R variants in obese Slovak children was 0.7 %, what is one of the lowest frequencies in Europe.

  11. Vitamin D Receptor Gene Polymorphisms Associated with Childhood Autism.

    PubMed

    Cieślińska, Anna; Kostyra, Elżbieta; Chwała, Barbara; Moszyńska-Dumara, Małgorzata; Fiedorowicz, Ewa; Teodorowicz, Małgorzata; Savelkoul, Huub F J

    2017-09-09

    Autism spectrum disorder (ASD) is a group of heterogeneous, behaviorally defined disorders whereby currently no biological markers are common to all affected individuals. A deregulated immune response may be contributing to the etiology of ASD. The active metabolite of vitamin D₃ has an immunoregulatory role mediated by binding to the vitamin D receptor (VDR) in monocyte, macrophages, and lymphocytes. The effects of vitamin D and interaction with the VDR may be influenced by polymorphism in the VDR gene. Genetic association of four different VDR polymorphisms (Apa-I, Bsm-I, Taq-I, Fok-I) associated with susceptibility to the development of autism in children was investigated. We uniquely found an association between the presence of the T allele at position Taq-I and presence of the a allele at position Apa-I of the VDR gene with decreased ASD incidence. There was also an association between female gender and the presence of the T allele. We found no statistical significant correlation between VDR single nucleotide polymorphisms (SNPs) and vitamin D₃ concentration in serum of ASD children. Genetic polymorphism in two SNP in VDR may be correlated with development of ASD symptoms by influencing functionality of vitamin D₃ metabolism, while vitamin D₃ levels were not significantly different between ASD and non-ASD children.

  12. Update of the androgen receptor gene mutations database.

    PubMed

    Gottlieb, B; Beitel, L K; Lumbroso, R; Pinsky, L; Trifiro, M

    1999-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. The total number of reported mutations has risen from 309 to 374 during the past year. We have expanded the database by adding information on AR-interacting proteins; and we have improved the database by identifying those mutation entries that have been updated. Mutations of unknown significance have now been reported in both the 5' and 3' untranslated regions of the AR gene, and in individuals who are somatic mosaics constitutionally. In addition, single nucleotide polymorphisms, including silent mutations, have been discovered in normal individuals and in individuals with male infertility. A mutation hotspot associated with prostatic cancer has been identified in exon 5. The database is available on the internet (http://www.mcgill.ca/androgendb/), from EMBL-European Bioinformatics Institute (ftp.ebi.ac.uk/pub/databases/androgen), or as a Macintosh FilemakerPro or Word file (MC33@musica.mcgill.ca). Copyright 1999 Wiley-Liss, Inc.

  13. Anti-Epidermal Growth Factor Receptor Gene Therapy for Glioblastoma

    PubMed Central

    Hicks, Martin J.; Chiuchiolo, Maria J.; Ballon, Douglas; Dyke, Jonathan P.; Aronowitz, Eric; Funato, Kosuke; Tabar, Viviane; Havlicek, David; Fan, Fan; Sondhi, Dolan; Kaminsky, Stephen M.; Crystal, Ronald G.

    2016-01-01

    Glioblastoma multiforme (GBM) is the most common and aggressive primary intracranial brain tumor in adults with a mean survival of 14 to 15 months. Aberrant activation of the epidermal growth factor receptor (EGFR) plays a significant role in GBM progression, with amplification or overexpression of EGFR in 60% of GBM tumors. To target EGFR expressed by GBM, we have developed a strategy to deliver the coding sequence for cetuximab, an anti-EGFR antibody, directly to the CNS using an adeno-associated virus serotype rh.10 gene transfer vector. The data demonstrates that single, local delivery of an anti-EGFR antibody by an AAVrh.10 vector coding for cetuximab (AAVrh.10Cetmab) reduces GBM tumor growth and increases survival in xenograft mouse models of a human GBM EGFR-expressing cell line and patient-derived GBM. AAVrh10.CetMab-treated mice displayed a reduction in cachexia, a significant decrease in tumor volume and a prolonged survival following therapy. Adeno-associated-directed delivery of a gene encoding a therapeutic anti-EGFR monoclonal antibody may be an effective strategy to treat GBM. PMID:27711187

  14. Identifying potential cancer driver genes by genomic data integration

    PubMed Central

    Chen, Yong; Hao, Jingjing; Jiang, Wei; He, Tong; Zhang, Xuegong; Jiang, Tao; Jiang, Rui

    2013-01-01

    Cancer is a genomic disease associated with a plethora of gene mutations resulting in a loss of control over vital cellular functions. Among these mutated genes, driver genes are defined as being causally linked to oncogenesis, while passenger genes are thought to be irrelevant for cancer development. With increasing numbers of large-scale genomic datasets available, integrating these genomic data to identify driver genes from aberration regions of cancer genomes becomes an important goal of cancer genome analysis and investigations into mechanisms responsible for cancer development. A computational method, MAXDRIVER, is proposed here to identify potential driver genes on the basis of copy number aberration (CNA) regions of cancer genomes, by integrating publicly available human genomic data. MAXDRIVER employs several optimization strategies to construct a heterogeneous network, by means of combining a fused gene functional similarity network, gene-disease associations and a disease phenotypic similarity network. MAXDRIVER was validated to effectively recall known associations among genes and cancers. Previously identified as well as novel driver genes were detected by scanning CNAs of breast cancer, melanoma and liver carcinoma. Three predicted driver genes (CDKN2A, AKT1, RNF139) were found common in these three cancers by comparative analysis. PMID:24346768

  15. Identifying potential cancer driver genes by genomic data integration

    NASA Astrophysics Data System (ADS)

    Chen, Yong; Hao, Jingjing; Jiang, Wei; He, Tong; Zhang, Xuegong; Jiang, Tao; Jiang, Rui

    2013-12-01

    Cancer is a genomic disease associated with a plethora of gene mutations resulting in a loss of control over vital cellular functions. Among these mutated genes, driver genes are defined as being causally linked to oncogenesis, while passenger genes are thought to be irrelevant for cancer development. With increasing numbers of large-scale genomic datasets available, integrating these genomic data to identify driver genes from aberration regions of cancer genomes becomes an important goal of cancer genome analysis and investigations into mechanisms responsible for cancer development. A computational method, MAXDRIVER, is proposed here to identify potential driver genes on the basis of copy number aberration (CNA) regions of cancer genomes, by integrating publicly available human genomic data. MAXDRIVER employs several optimization strategies to construct a heterogeneous network, by means of combining a fused gene functional similarity network, gene-disease associations and a disease phenotypic similarity network. MAXDRIVER was validated to effectively recall known associations among genes and cancers. Previously identified as well as novel driver genes were detected by scanning CNAs of breast cancer, melanoma and liver carcinoma. Three predicted driver genes (CDKN2A, AKT1, RNF139) were found common in these three cancers by comparative analysis.

  16. Annotation of pseudogenic gene segments by massively parallel sequencing of rearranged lymphocyte receptor loci.

    PubMed

    Dean, Jared; Emerson, Ryan O; Vignali, Marissa; Sherwood, Anna M; Rieder, Mark J; Carlson, Christopher S; Robins, Harlan S

    2015-11-23

    volunteers to evaluate the use of functional and non-functional alleles of individual TCRβ V gene segments. With some modifications, our method has the potential to be extended to gene segments in the α, γ, and δ TCR loci, as well as the genes encoding for B-cell receptor chains.

  17. Novel Protein Interactions with Endoglin and Activin Receptor-like Kinase 1: Potential Role in Vascular Networks*

    PubMed Central

    Xu, Guoxiong; Barrios-Rodiles, Miriam; Jerkic, Mirjana; Turinsky, Andrei L.; Nadon, Robert; Vera, Sonia; Voulgaraki, Despina; Wrana, Jeffrey L.; Toporsian, Mourad; Letarte, Michelle

    2014-01-01

    Endoglin and activin receptor-like kinase 1 are specialized transforming growth factor-beta (TGF-β) superfamily receptors, primarily expressed in endothelial cells. Mutations in the corresponding ENG or ACVRL1 genes lead to hereditary hemorrhagic telangiectasia (HHT1 and HHT2 respectively). To discover proteins interacting with endoglin, ACVRL1 and TGF-β receptor type 2 and involved in TGF-β signaling, we applied LUMIER, a high-throughput mammalian interactome mapping technology. Using stringent criteria, we identified 181 novel unique and shared interactions with ACVRL1, TGF-β receptor type 2, and endoglin, defining potential novel important vascular networks. In particular, the regulatory subunit B-beta of the protein phosphatase PP2A (PPP2R2B) interacted with all three receptors. Interestingly, the PPP2R2B gene lies in an interval in linkage disequilibrium with HHT3, for which the gene remains unidentified. We show that PPP2R2B protein interacts with the ACVRL1/TGFBR2/endoglin complex and recruits PP2A to nitric oxide synthase 3 (NOS3). Endoglin overexpression in endothelial cells inhibits the association of PPP2R2B with NOS3, whereas endoglin-deficient cells show enhanced PP2A-NOS3 interaction and lower levels of endogenous NOS3 Serine 1177 phosphorylation. Our data suggest that endoglin regulates NOS3 activation status by regulating PPP2R2B access to NOS3, and that PPP2R2B might be the HHT3 gene. Furthermore, endoglin and ACVRL1 contribute to several novel networks, including TGF-β dependent and independent ones, critical for vascular function and potentially defective in HHT. PMID:24319055

  18. Arsenic as an endocrine disruptor: arsenic disrupts retinoic acid receptor-and thyroid hormone receptor-mediated gene regulation and thyroid hormone-mediated amphibian tail metamorphosis.

    PubMed

    Davey, Jennifer C; Nomikos, Athena P; Wungjiranirun, Manida; Sherman, Jenna R; Ingram, Liam; Batki, Cavus; Lariviere, Jean P; Hamilton, Joshua W

    2008-02-01

    Chronic exposure to excess arsenic in drinking water has been strongly associated with increased risks of multiple cancers, diabetes, heart disease, and reproductive and developmental problems in humans. We previously demonstrated that As, a potent endocrine disruptor at low, environmentally relevant levels, alters steroid signaling at the level of receptor-mediated gene regulation for all five steroid receptors. The goal of this study was to determine whether As can also disrupt gene regulation via the retinoic acid (RA) receptor (RAR) and/or the thyroid hormone (TH) receptor (TR) and whether these effects are similar to previously observed effects on steroid regulation. Human embryonic NT2 or rat pituitary GH3 cells were treated with 0.01-5 microM sodium arsenite for 24 hr, with or without RA or TH, respectively, to examine effects of As on receptor-mediated gene transcription. At low, noncytotoxic doses, As significantly altered RAR-dependent gene transcription of a transfected RAR response element-luciferase construct and the native RA-inducible cytochrome P450 CYP26A gene in NT2 cells. Likewise, low-dose As significantly altered expression of a transfected TR response element-luciferase construct and the endogenous TR-regulated type I deiodinase (DIO1) gene in a similar manner in GH3 cells. An amphibian ex vivo tail metamorphosis assay was used to examine whether endocrine disruption by low-dose As could have specific pathophysiologic consequences, because tail metamorphosis is tightly controlled by TH through TR. TH-dependent tail shrinkage was inhibited in a dose-dependent manner by 0.1- 4.0 microM As. As had similar effects on RAR- and TR-mediated gene regulation as those previously observed for the steroid receptors, suggesting a common mechanism or action. Arsenic also profoundly affected a TR-dependent developmental process in a model animal system at very low concentrations. Because RAR and TH are critical for both normal human development and adult

  19. A role for transient receptor potential vanilloid 4 in tonicity-induced neurogenic inflammation.

    PubMed

    Vergnolle, N; Cenac, N; Altier, C; Cellars, L; Chapman, K; Zamponi, G W; Materazzi, S; Nassini, R; Liedtke, W; Cattaruzza, F; Grady, E F; Geppetti, P; Bunnett, N W

    2010-03-01

    Changes in extracellular fluid osmolarity, which occur after tissue damage and disease, cause inflammation and maintain chronic inflammatory states by unknown mechanisms. Here, we investigated whether the osmosensitive channel, transient receptor potential vanilloid 4 (TRPV4), mediates inflammation to hypotonic stimuli by a neurogenic mechanism. TRPV4 was localized in dorsal root ganglia (DRG) by immunofluorescence. The effects of TRPV4 agonists on release of pro-inflammatory neuropeptides from peripheral tissues and on inflammation were examined. Immunoreactive TRPV4 was detected in DRG neurones innervating the mouse hindpaw, where it was co-expressed in some neurones with CGRP and substance P, mediators of neurogenic inflammation. Hypotonic solutions and 4alpha-phorbol 12,13-didecanoate, which activate TRPV4, stimulated neuropeptide release in urinary bladder and airways, sites of neurogenic inflammation. Intraplantar injection of hypotonic solutions and 4alpha-phorbol 12,13-didecanoate caused oedema and granulocyte recruitment. These effects were inhibited by a desensitizing dose of the neurotoxin capsaicin, antagonists of CGRP and substance P receptors, and TRPV4 gene knockdown or deletion. In contrast, antagonism of neuropeptide receptors and disruption of TRPV4 did not prevent this oedema. TRPV4 gene knockdown or deletion also markedly reduced oedema and granulocyte infiltration induced by intraplantar injection of formalin. Activation of TRPV4 stimulates neuropeptide release from afferent nerves and induces neurogenic inflammation. This mechanism may mediate the generation and maintenance of inflammation after injury and during diseases, in which there are changes in extracellular osmolarity. Antagonism of TRPV4 may offer a therapeutic approach for inflammatory hyperalgesia and chronic inflammation.

  20. Oligo/polynucleotide-based gene modification: strategies and therapeutic potential.

    PubMed

    Sargent, R Geoffrey; Kim, Soya; Gruenert, Dieter C

    2011-01-01

    Oligonucleotide- and polynucleotide-based gene modification strategies were developed as an alternative to transgene-based and classical gene targeting-based gene therapy approaches for treatment of genetic disorders. Unlike the transgene-based strategies, oligo/polynucleotide gene targeting approaches maintain gene integrity and the relationship between the protein coding and gene-specific regulatory sequences. Oligo/polynucleotide-based gene modification also has several advantages over classical vector-based homologous recombination approaches. These include essentially complete homology to the target sequence and the potential to rapidly engineer patient-specific oligo/polynucleotide gene modification reagents. Several oligo/polynucleotide-based approaches have been shown to successfully mediate sequence-specific modification of genomic DNA in mammalian cells. The strategies involve the use of polynucleotide small DNA fragments, triplex-forming oligonucleotides, and single-stranded oligodeoxynucleotides to mediate homologous exchange. The primary focus of this review will be on the mechanistic aspects of the small fragment homologous replacement, triplex-forming oligonucleotide-mediated, and single-stranded oligodeoxynucleotide-mediated gene modification strategies as it relates to their therapeutic potential.

  1. Oligo/Polynucleotide-Based Gene Modification: Strategies and Therapeutic Potential

    PubMed Central

    Sargent, R. Geoffrey; Kim, Soya

    2011-01-01

    Oligonucleotide- and polynucleotide-based gene modification strategies were developed as an alternative to transgene-based and classical gene targeting-based gene therapy approaches for treatment of genetic disorders. Unlike the transgene-based strategies, oligo/polynucleotide gene targeting approaches maintain gene integrity and the relationship between the protein coding and gene-specific regulatory sequences. Oligo/polynucleotide-based gene modification also has several advantages over classical vector-based homologous recombination approaches. These include essentially complete homology to the target sequence and the potential to rapidly engineer patient-specific oligo/polynucleotide gene modification reagents. Several oligo/polynucleotide-based approaches have been shown to successfully mediate sequence-specific modification of genomic DNA in mammalian cells. The strategies involve the use of polynucleotide small DNA fragments, triplex-forming oligonucleotides, and single-stranded oligodeoxynucleotides to mediate homologous exchange. The primary focus of this review will be on the mechanistic aspects of the small fragment homologous replacement, triplex-forming oligonucleotide-mediated, and single-stranded oligodeoxynucleotide-mediated gene modification strategies as it relates to their therapeutic potential. PMID:21417933

  2. Mannose receptor-mediated gene delivery into antigen presenting dendritic cells.

    PubMed

    Diebold, Sandra S; Plank, Christian; Cotten, Matt; Wagner, Ernst; Zenke, Martin

    2002-11-01

    Dendritic cells are professional antigen presenting cells and are unique in their ability to prime naïve T cells. Gene modification of dendritic cells is of particular interest for immunotherapy of diseases where the immune system has failed or is aberrantly regulated, such as in cancer or autoimmune disease, respectively. Dendritic cells abundantly express mannose receptor and mannose receptor-related receptors, and receptor-mediated gene transfer via mannose receptor offers a versatile tool for targeted gene delivery into these cells. Accordingly, mannose polyethylenimine DNA transfer complexes were generated and used for gene delivery into dendritic cells. Mannose receptor belongs to the group of scavenger receptors that allow dendritic cells to take up pathogenic material, which is directed for degradation and MHC class II presentation. Therefore, a limiting step of transgene expression by mannose receptor-mediated gene delivery is endosomal degradation of DNA. Several strategies have been explored to overcome this limitation including the addition of endosomolytic components to DNA transfer complexes like adenovirus particles and influenza peptides. Here, we review the current understanding of mannose receptor-mediated gene delivery into dendritic cells and discuss strategies to identify appropriate endosomolytic agents to improve DNA transfer efficacy.

  3. Genome Wide Identification and Expression Profiling of Ethylene Receptor Genes during Soybean Nodulation.

    PubMed

    Wang, Youning; Yuan, Jinhong; Yang, Wei; Zhu, Lin; Su, Chao; Wang, Xiaodi; Wu, Haiyan; Sun, Zhengxi; Li, Xia

    2017-01-01

    It has long been known that the gaseous plant hormone ethylene plays a key role in nodulation in legumes. The perception of ethylene by a family of five membrane-localized receptors is necessary to trigger the ethylene signaling pathway, which regulates various biological responses in Arabidopsis. However, a systematic analysis of the ethylene receptors in leguminous plants and their roles in nodule development is lacking. In this study, we performed a characterization of ethylene receptor genes based on the latest Glycine max genome sequence and a public microarray database. Eleven ethylene receptor family genes were identified in soybean through homology searches, and they were divided into two subgroups. Exon-intron analysis showed that the gene structures are highly conserved within each group. Further analysis of their expression patterns showed that these ethylene receptor genes are differentially expressed in various soybean tissues and organs, including functional nodules. Notably, the ethylene receptor genes showed different responses to rhizobial infection and Nod factors, suggesting a possible role for ethylene receptors and ethylene signaling in rhizobia-host cell interactions and nodulation in soybean. Together, these data indicate the functional divergence of ethylene receptor genes in soybean, and that some of these receptors mediate nodulation, including rhizobial infection, nodule development, and nodule functionality. These findings provide a foundation for further elucidation of the molecular mechanism by which the ethylene signaling pathway regulates nodulation in soybean, as well as other legumes.

  4. Orthologs of Human Disease Associated Genes and RNAi Analysis of Silencing Insulin Receptor Gene in Bombyx mori

    PubMed Central

    Zhang, Zan; Teng, Xiaolu; Chen, Maohua; Li, Fei

    2014-01-01

    The silkworm, Bombyx mori L., is an important economic insect that has been domesticated for thousands of years to produce silk. It is our great interest to investigate the possibility of developing the B. mori as human disease model. We searched the orthologs of human disease associated genes in the B. mori by bi-directional best hits of BLAST and confirmed by searching the OrthoDB. In total, 5006 genes corresponding to 1612 kinds of human diseases had orthologs in the B. mori, among which, there are 25 genes associated with diabetes mellitus. Of these, we selected the insulin receptor gene of the B. mori (Bm-INSR) to study its expression in different tissues and at different developmental stages and tissues. Quantitative PCR showed that Bm-INSR was highly expressed in the Malpighian tubules but expressed at low levels in the testis. It was highly expressed in the 3rd and 4th instar larvae, and adult. We knocked down Bm-INSR expression using RNA interference. The abundance of Bm-INSR transcripts were dramatically reduced to ~4% of the control level at 6 days after dsRNA injection and the RNAi-treated B. mori individuals showed apparent growth inhibition and malformation such as abnormal body color in black, which is the typical symptom of diabetic patients. Our results demonstrate that B. mori has potential use as an animal model for diabetic mellitus research. PMID:25302617

  5. Cloning, structural characterization, and chromosomal localization of the gene encoding the human prostaglandin E(2) receptor EP2 subtype.

    PubMed

    Smock, S L; Pan, L C; Castleberry, T A; Lu, B; Mather, R J; Owen, T A

    1999-09-17

    Northern blot analysis of human placental RNA using a probe to the 5' end of the human prostaglandin E(2) (PGE(2)) EP2 receptor subtype coding region revealed the existence of a high abundance, low molecular weight transcript. To investigate the origin of this transcript, and its possible relationship to the human EP2 mRNA, we have cloned and characterized the gene encoding the human PGE(2) EP2 receptor subtype, identified transcriptional initiation and termination sites in two tissues (spleen and thymus), and determined its chromosomal localization. The human EP2 gene consists of two exons separated by a large intron, utilizes a common initiation site in both spleen and thymus at 1113 bp upstream of the translation initiation site, and has 3' transcript termini at 1140 bp and 1149 bp downstream of the translation stop site in spleen and thymus respectively. Southern and fluorescence in situ hybridization analysis demonstrated the human EP2 gene to be a single copy gene located in band 22 of the long arm of chromosome 14 (14q22). Though our initial interest in this gene was to investigate potential differential splicing of the human EP2 gene in placenta, this work demonstrates that the atypical transcript observed in placenta probably arises from a distinct, yet related, gene. Knowledge of the sequence, structure, and transcription events associated with the human EP2 gene will enable a broader understanding of its regulation and potential role in normal physiology and disease.

  6. Olfactory Receptor Gene Polymorphisms and Nonallergic Vasomotor Rhinitis

    PubMed Central

    Bernstein, Jonathan A.; Zhang, Ge; Jin, Li; Abbott, Carol; Nebert, Daniel W.

    2009-01-01

    We sought a genotype-phenotype association: between single-nucleotide polymorphisms (SNPs) in olfactory receptor (OR) genes from the two largest OR gene clusters and odor-triggered nonallergic vasomotor rhinitis (nVMR). In the initial pedigree screen, using transmission disequilibrium test (TDT) analysis, six SNPs showed “significant” p-values between 0.0449 and 0.0043. In a second case-control population, the previously identified six SNPs did not re-emerge, whereas four new SNPs showed p-values between 0.0490 and 0.0001. Combining both studies, none of the SNPs in the TDT analysis survived the Bonferroni correction. In the population study, one SNP showed an empirical p-value of 0.0066 by shuffling cases and controls with 105 replicates; however, the p-value for this SNP was 0.83 in the pedigree study. This study emphasizes that underpowered studies having p-values between <0.05 and 0.0001 should be regarded as inconclusive and require further replication before concluding the study is “informative.” However, we believe that our hypothesis that an association between OR genotypes and the nVMR phenotype remains feasible. Future studies using either a genomewide association study of all OR gene-pseudogene regions throughout the genome—at the current recommended density of 2.5 to 5 kb per tag SNP—or studies incorporating microarray analyses of the entire “OR genome” in well-characterized nVMR patients are required. PMID:18446592

  7. Polymorphism of growth hormone receptor (GHR) gene in Nilagiri sheep.

    PubMed

    Sahu, Amiya Ranjan; Jeichitra, V; Rajendran, R; Raja, A

    2017-02-01

    The allelic variation in the regulatory sequence of growth hormone receptor (GHR) gene influences the growth traits of sheep. A study was carried out to find out the polymorphisms associated with exon 10 of GHR gene and its association with growth traits of Nilagiri sheep. The blood samples were collected from Nilagiri sheep (n = 103) reared at Sheep Breeding Research Station, Sandynallah, Tamil Nadu, India. DNA was isolated using the phenol-chloroform extraction procedure and eight samples having amplified product of part of exon 10 (895 bp) sequenced. The results indicated transitions of nucleotide G>A at loci G177624A and G177878A. The genotyping frequencies estimated using the tetra-primer amplification refractory mutation system-PCR for GG, GA and AA were 0.262, 0.544 and 0.194, and 0.349, 0.505 and 0.146, respectively. The estimated allele frequencies of G and A nucleotides were 0.5340 and 0.4660, and 0.6015 and 0.3985, respectively, at loci G177624A and G177878A. The effects of both the mutations on growth-related traits viz., birth, weaning (3 months) 6, 9 and 12 months weight in Nilagiri sheep were found to be non-significant. This can be a novel approach to assess growth of sheep using the mutation in GHR gene. Thus, this approach can be useful for further investigation as a molecular marker associated with genetic improvement.

  8. Adiponectin and Its Receptors in Diabetic Kidney Disease: Molecular Mechanisms and Clinical Potential.

    PubMed

    Zha, Dongqing; Wu, Xiaoyan; Gao, Ping

    2017-07-01

    Diabetic kidney disease (DKD) is a major complication for diabetic patients. Adiponectin is an insulin sensitizer and anti-inflammatory adipokine and is mainly secreted by adipocytes. Two types of adiponectin receptors, AdipoR1 and AdipoR2, have been identified. In both type 1 and type 2 diabetes (T2D) patients with DKD, elevated adiponectin serum levels have been observed, and adiponectin serum level is a prognostic factor of end-stage renal disease. Renal insufficiency and tubular injury possibly play a contributory role in increases in serum and urinary adiponectin levels in diabetic nephropathy by either increasing biodegradation or elimination of adiponectin in the kidneys, or enhancing production of adiponectin in adipose tissue. Increases in adiponectin levels resulted in amelioration of albuminuria, glomerular hypertrophy, and reduction of inflammatory response in kidney tissue. The renoprotection of adiponectin is associated with improvement of the endothelial dysfunction, reduction of oxidative stress, and upregulation of endothelial nitric oxide synthase expression through activation of adenosine 5'-monophosphate-activated protein kinase by AdipoR1 and activation of peroxisome proliferator-activated receptor (PPAR)-α signaling pathway by AdipoR2. Several single nucleotide polymorphisms in the AdipoQ gene, including the promoter, are associated with increased risk of the development of T2D and DKD. Renin-angiotensin-aldosterone system blockers, adiponectin receptor agonists, and PPAR agonists (e.g., tesaglitazar, thiazolidinediones, fenofibrate), which increase plasma adiponectin levels and adiponectin receptors expression, may be potential therapeutic drugs for the treatment of DKD.

  9. Androgen Activation of the Folate Receptor α Gene through Partial Tethering of the Androgen Receptor by C/EBPα○

    PubMed Central

    Sivakumaran, Suneethi; Zhang, Juan; Kelley, Karen M.M.; Gonit, Mesfin; Hao, Hong; Ratnam, Manohar

    2010-01-01

    The folate receptor α (FRα) is critical for normal embryonic and fetal development. The receptor has a relatively narrow tissue specificity which includes the visceral endoderm and the placenta and mediates delivery of folate, inadequacy of which results in termination of pregnancy or developmental defects. We have previously reported that the FRα gene is negatively and directly regulated by estrogen and positively but indirectly by progesterone and glucocorticoid. To further investigate hormonal control of this gene and in view of the growing evidence for the importance of the androgen receptor (AR) in endometrial and placental functions, we examined the response of the FRα gene to androgen. Here we demonstrate that the FRα gene is directly activated by androgen. The P4 promoter of the FRα gene is the target of hormone-dependent activation by the androgen receptor (AR) in a manner that is co-activator-dependent. The site of functional association of AR in the FRα gene maps to a 35bp region occurring ~1500bp upstream of the target promoter. The functional elements within this region are an androgen response element (ARE) half-site and a non-canonical C/EBP element that cooperate to recruit AR in a manner that is dependent on the DNA-bound C/EBPα. Since the placenta is rich in C/EBPα, the findings underscore the multiplicity of mechanisms by which the FRα gene is under the exquisite control of steroid hormones. PMID:20817090

  10. The Evolutionary Dynamics of the Odorant Receptor Gene Family in Corbiculate Bees.

    PubMed

    Brand, Philipp; Ramírez, Santiago R

    2017-08-01

    Insects rely on chemical information to locate food, choose mates, and detect potential predators. It has been hypothesized that adaptive changes in the olfactory system facilitated the diversification of numerous insect lineages. For instance, evolutionary changes of Odorant Receptor (OR) genes often occur in parallel with modifications in life history strategies. Corbiculate bees display a diverse array of behaviors that are controlled through olfaction, including varying degrees of social organization, and manifold associations with floral resources. Here we investigated the molecular mechanisms driving the evolution of the OR gene family in corbiculate bees in comparison to other chemosensory gene families. Our results indicate that the genomic organization of the OR gene family has remained highly conserved for ∼80 Myr, despite exhibiting major changes in repertoire size among bee lineages. Moreover, the evolution of OR genes appears to be driven mostly by lineage-specific gene duplications in few genomic regions that harbor large numbers of OR genes. A selection analysis revealed that OR genes evolve under positive selection, with the strongest signals detected in recently duplicated copies. Our results indicate that chromosomal translocations had a minimal impact on OR evolution, and instead local molecular mechanisms appear to be main drivers of OR repertoire size. Our results provide empirical support to the longstanding hypothesis that positive selection shaped the diversification of the OR gene family. Together, our results shed new light on the molecular mechanisms underlying the evolution of olfaction in insects. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  11. Characterization of the hormone responsive element involved in the regulation of the progesterone receptor gene.

    PubMed Central

    Savouret, J F; Bailly, A; Misrahi, M; Rauch, C; Redeuilh, G; Chauchereau, A; Milgrom, E

    1991-01-01

    The transcription of the progesterone receptor gene is induced by estrogens and decreased by progestins. Studies were performed to define the regions of the gene and the molecular mechanisms involved. No hormonal regulation could be observed using 5' flanking regions of the gene up to -2762 in front of a heterologous gene. Estrogen and progestin regulation could be observed only when using fragments of the gene extending down to +788. Progressive deletions from the 5' and 3' ends, site-directed mutagenesis and DNase protection experiments with purified estrogen receptor suggested that the biologically active estrogen responsive element (ERE) is present at +698/+723, overlapping the initiation of translation. An oligonucleotide was synthesized bearing this ERE and shown to impart estrogen inducibility to a heterologous gene. Its regulation by anti-estrogens corresponded to that of the in situ progesterone receptor gene since tamoxifen was a partial agonist whereas ICI 164384 was a full antagonist. This ERE also mediated down-regulation by progestins in the presence of the progesterone receptor, even though it has no progesterone receptor binding ability. DNase footprinting showed that this effect was not due to a decrease of estrogen receptor affinity for the ERE in the presence of progesterone receptor. Finally, use of deletion mutants of the progesterone receptor showed that the steroid binding and the DNA binding domains were necessary for down-regulation whereas deletions of various parts of the N-terminal domain were without effect. Images PMID:2050123

  12. Beyond classical benzodiazepines: Novel therapeutic potential of GABAA receptor subtypes

    PubMed Central

    Rudolph, Uwe; Knoflach, Frédéric

    2012-01-01

    GABAA receptors are a family of ligand-gated ion channels which are essential for the regulation of central nervous system function. Benzodiazepines – which target GABAA receptors containing the α1, α2, α3, or α5 subunits non-selectively – have been in clinical use for decades and are still among the most widely prescribed drugs for the treatment of insomnia and anxiety disorders. However, their use is limited by side effects and the risk of drug dependence. In the past decade, the identification of separable key functions of GABAA receptor subtypes suggests that receptor subtype-selective compounds could overcome the limitations of classical benzodiazepines and, furthermore, might be valuable for novel indications, such as analgesia, depression, schizophrenia, cognitive enhancement and stroke. PMID:21799515

  13. Developmental expression of the platelet-derived growth factor alpha-receptor gene in mammalian central nervous system.

    PubMed

    Yeh, H J; Silos-Santiago, I; Wang, Y X; George, R J; Snider, W D; Deuel, T F

    1993-03-01

    We recently reported that the platelet-derived growth factor (PDGF) A-chain gene is highly expressed in neurons of embryonic and adult mouse central nervous system and suggested that its secretion by neurons may support development and maintenance of glia. We have now analyzed the levels and sites of expression of the cognate PDGF alpha-receptor gene in brain and spinal cord of embryonic and adult mice by in situ hybridization. The predominant cell populations in both gray and white matter expressing transcripts of the PDGF alpha-receptor gene are glial cells or their precursors. Transcripts consistently were not detected in neurons. Expression of the PDGF alpha-receptor gene was first observed at embryonic day 15, increased through postnatal day 14, and fell to lower levels in adults. Expression of the alpha-receptor gene corresponds in temporal sequence to the developmental period of glial migration and proliferation and to the expression of PDGF A by neurons. The results indicate that glia but not neurons have the potential to respond to PDGF A and suggest that neurons influence glial cell development through paracrine regulation.

  14. Sigma receptors as potential therapeutic targets for neuroprotection.

    PubMed

    Nguyen, Linda; Kaushal, Nidhi; Robson, Matthew J; Matsumoto, Rae R

    2014-11-15

    Sigma receptors comprise a unique family of proteins that have been implicated in the pathophysiology and treatment of many central nervous system disorders, consistent with their high level of expression in the brain and spinal cord. Mounting evidence indicate that targeting sigma receptors may be particularly beneficial in a number of neurodegenerative conditions including Alzheimer׳s disease, Parkinson׳s disease, stroke, methamphetamine neurotoxicity, Huntington׳s disease, amyotrophic lateral sclerosis, and retinal degeneration. In this perspective, a brief overview is given on sigma receptors, followed by a focus on common mechanisms of neurodegeneration that appear amenable to modulation by sigma receptor ligands to convey neuroprotective effects and/or restorative functions. Within each of the major mechanisms discussed herein, the neuroprotective effects of sigma ligands are summarized, and when known, the specific sigma receptor subtype(s) involved are identified. Together, the literature suggests sigma receptors may provide a novel target for combatting neurodegenerative diseases through both neuronal and glial mechanisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. In Vitro Generation of Human NK cells Expressing Chimeric Antigen Receptor through Differentiation of Gene-Modified Hematopoietic Stem Cells

    PubMed Central

    Lowe, Emily; Truscott, Laurel C.; De Oliveira, Satiro N.

    2016-01-01

    Summary NK cells represent a very promising source for adoptive cellular approaches for cancer immunotherapy, and extensive research has been conducted, including clinical trials. Gene modification of NK cells can direct their specificity and enhance their function, but the efficiency of gene transfer techniques is very limited. Here we describe two protocols designed to generate mature human NK cells from gene-modified hematopoietic stem cells. These protocols use chimeric antigen receptor as the transgene, but could potentially be modified for the expression any particular transgene in human NK cells. PMID:27177671

  16. Olfactory receptor accessory proteins play crucial roles in receptor function and gene choice

    PubMed Central

    Sharma, Ruchira; Ishimaru, Yoshiro; Davison, Ian; Ikegami, Kentaro; Chien, Ming-Shan; You, Helena; Chi, Quiyi; Kubota, Momoka; Yohda, Masafumi; Ehlers, Michael; Matsunami, Hiroaki

    2017-01-01

    Each of the olfactory sensory neurons (OSNs) chooses to express a single G protein-coupled olfactory receptor (OR) from a pool of hundreds. Here, we show the receptor transporting protein (RTP) family members play a dual role in both normal OR trafficking and determining OR gene choice probabilities. Rtp1 and Rtp2 double knockout mice (RTP1,2DKO) show OR trafficking defects and decreased OSN activation. Surprisingly, we discovered a small subset of the ORs are expressed in larger numbers of OSNs despite the presence of fewer total OSNs in RTP1,2DKO. Unlike typical ORs, some overrepresented ORs show robust cell surface expression in heterologous cells without the co-expression of RTPs. We present a model in which developing OSNs exhibit unstable OR expression until they choose to express an OR that exits the ER or undergo cell death. Our study sheds light on the new link between OR protein trafficking and OR transcriptional regulation. DOI: http://dx.doi.org/10.7554/eLife.21895.001 PMID:28262096

  17. Computational design of a Zn2+ receptor that controls bacterial gene expression

    NASA Astrophysics Data System (ADS)

    Dwyer, M. A.; Looger, L. L.; Hellinga, H. W.

    2003-09-01

    The control of cellular physiology and gene expression in response to extracellular signals is a basic property of living systems. We have constructed a synthetic bacterial signal transduction pathway in which gene expression is controlled by extracellular Zn2+. In this system a computationally designed Zn2+-binding periplasmic receptor senses the extracellular solute and triggers a two-component signal transduction pathway via a chimeric transmembrane protein, resulting in transcriptional up-regulation of a -galactosidase reporter gene. The Zn2+-binding site in the designed receptor is based on a four-coordinate, tetrahedral primary coordination sphere consisting of histidines and glutamates. In addition, mutations were introduced in a secondary coordination sphere to satisfy the residual hydrogen-bonding potential of the histidines coordinated to the metal. The importance of the secondary shell interactions is demonstrated by their effect on metal affinity and selectivity, as well as protein stability. Three designed protein sequences, comprising two distinct metal-binding positions, were all shown to bind Zn2+ and to function in the cell-based assay, indicating the generality of the design methodology. These experiments demonstrate that biological systems can be manipulated with computationally designed proteins that have drastically altered ligand-binding specificities, thereby extending the repertoire of genetic control by extracellular signals.

  18. D4 dopamine receptor gene exon III polymorphism and obesity risk.

    PubMed

    Poston, W S; Ericsson, M; Linder, J; Haddock, C K; Hanis, C L; Nilsson, T; Aström, M; Foreyt, J P

    1998-06-01

    Many genes have been identified that may play a role in increasing individual susceptibility to obesity. Reduced dopamine function appears to play a role in dysfunctional eating patterns and may predispose some individuals to obesity. The long version of the D4 dopamine receptor gene (D4DR) has been shown to alter receptor function and reduce intracellular response to dopamine. It also has been associated with novelty-seeking-related personality traits that are found with greater frequency in obese individuals. We examined the association between the long alleles of the D4DR and obesity in a sample of 115 obese patients participating in a weight management program. No direct relationship was found between the D4DR and body mass or novelty-seeking-related personality traits. We constructed four models of increased obesity risk that included combinations of traditional risk factors (i.e., long-term history of obesity, parental obesity, a body mass index > 40) and elevations on the novelty-seeking-related scales of the Karolinska Scales of Personality. There was a significant increase in the frequency of the D4DR long alleles in individuals defined as high risk using the combination of novelty-seeking-related personality traits, severe obesity (i.e., BMI > 40), and any other traditional risk factor, but not with the traditional risk factors alone. These preliminary data suggest a potential role for the D4DR gene in increasing obesity susceptibility.

  19. Aging of whiskey increases the potentiation of GABA(A) receptor response.

    PubMed

    Koda, Hirofumi; Hossain, Sheikh Julfikar; Kiso, Yoshinobu; Aoshima, Hitoshi

    2003-08-27

    It is known that the target of most mood-defining compounds such as ethanol is an ionotropic gamma-aminobutyric acid receptor (GABA(A) receptor). The potentiation of the response of these inhibitory neurotransmitter receptors induces anxiolytic, sedative, and anesthetic activities in the human brain. Because both extracts of whiskey by pentane and fragrant components in whiskey potentiate the GABA(A) receptor-mediated response, GABA(A) receptors were expressed in Xenopus oocyte by injecting cRNAs prepared from the cloned cDNA for the alpha(1) and beta(1) subunits of the bovine receptors in order to study the effects of whiskey itself on the GABA(A) receptor-mediated response. Whiskey itself also potentiated the electrical responses of GABA(A) receptors generally more than ethanol at the same concentration as that of the whiskey. The potentiation of the GABA(A) receptor-mediated response increased with the aging period of the whiskey. Inhalation of whiskey to mice increased the sleeping time induced by pentobarbital more than that of the same concentration of ethanol as the whiskey. These results suggest that not only ethanol but also minor components in whiskey play an important role in the potentiation of GABA(A) receptor-mediated response and possibly the sedative effect of whiskey. Although the minor components are present in extremely small quantities compared with ethanol in alcoholic beverages, they may modulate the mood or consciousness of humans through the potentiation of the GABA(A) receptor response after absorption into the brain, because these hydrophobic compounds are easily absorbed into the brain across the blood-brain barrier and are several thousands times as potent as ethanol in the potentiation of the GABA(A) receptor-mediated response.

  20. The Sigma-2 Receptor and Progesterone Receptor Membrane Component 1 are Different Binding Sites Derived From Independent Genes

    PubMed Central

    Chu, Uyen B.; Mavlyutov, Timur A.; Chu, Ming-Liang; Yang, Huan; Schulman, Amanda; Mesangeau, Christophe; McCurdy, Christopher R.; Guo, Lian-Wang; Ruoho, Arnold E.

    2015-01-01

    The sigma-2 receptor (S2R) is a potential therapeutic target for cancer and neuronal diseases. However, the identity of the S2R has remained a matter of debate. Historically, the S2R has been defined as (1) a binding site with high affinity to 1,3-di-o-tolylguanidine (DTG) and haloperidol but not to the selective sigma-1 receptor ligand (+)-pentazocine, and (2) a protein of 18–21 kDa, as shown by specific photolabeling with [3H]-Azido-DTG and [125I]-iodoazido-fenpropimorph ([125I]-IAF). Recently, the progesterone receptor membrane component 1 (PGRMC1), a 25 kDa protein, was reported to be the S2R (Nature Communications, 2011, 2:380). To confirm this identification, we created PGRMC1 knockout NSC34 cell lines using the CRISPR/Cas9 technology. We found that in NSC34 cells devoid of or overexpressing PGRMC1, the maximum [3H]-DTG binding to the S2R (Bmax) as well as the DTG-protectable [125I]-IAF photolabeling of the S2R were similar to those of wild-type control cells. Furthermore, the affinities of DTG and haloperidol for PGRMC1 (KI = 472 μM and 350 μM, respectively), as determined in competition with [3H]-progesterone, were more than 3 orders of magnitude lower than those reported for the S2R (20–80 nM). These results clarify that PGRMC1 and the S2R are distinct binding sites expressed by different genes. PMID:26870805

  1. Modulation of FGF receptor signaling as an intervention and potential therapy for myelin breakdown in Alzheimer's disease.

    PubMed

    Li, Jia-Su; Yao, Zhong-Xiang

    2013-04-01

    Alzheimer's disease (AD) is the most common neurodegenerative disease and oligodendrocyte degeneration and white matter damage play a critical role in the pathogenesis of AD. FGF/FGF receptor signaling have been implicated in diverse cellular processes including cell apoptosis, survival, adhesion, migration, differentiation, and proliferation, as well as key regulators of the development of the central nervous system (including in axon guidance and synaptogenesis) via multiple signal pathways. It has been demonstrated that FGF infusion or gene transfer restores neurogenesis in subventricular zone and hippocampal functions in aged mice and mouse models of AD and has therapeutic implications for neurocognitive disorders. Besides, FGF receptor signaling in oligodendrocytes regulates myelin sheath thickness via Erk1/2 MAPK and PI3K/Akt/mTOR signaling, which sequentially regulates progression through distinct stages of oligodendrocyte differentiation. The effect could be effectively antagonized by the potent, selective tyrosine kinase inhibitor of FGF receptor activity. We therefore propose that modulation of FGF receptor signaling will suppress the development of oligodendrocyte degeneration and myelin breakdown or white matter damage in mouse models or patients of AD and improve or restore the pathological and clinical symptoms of cognitive decline, and FGF receptor signaling with its inhibitors and/or gene transfer would serve as an intervention and potential therapy for myelin breakdown and cognitive decline in AD.

  2. Potentiation of GABAA receptors expressed in Xenopus oocytes by perfume and phytoncid.

    PubMed

    Aoshima, H; Hamamoto, K

    1999-04-01

    To study the effects of perfume and phytoncid on GABAA receptors, ionotropic GABAA receptors were expressed in Xenopus oocytes by injecting mRNAs that had been prepared from rat whole brain. Essential oil, perfume and such phytoncid as leaf alcohol, hinokitiol, pinene, eugenol, citronellol and citronellal potentiated the response in the presence of GABA at low concentrations (10 and 30 microM), possibly because they bound to the potentiation-site in GABAA receptors and increased the affinity of GABA to the receptors. Since it is known that the potentiation of GABAA receptors by benzodiazepine, barbiturate, steroids and anesthetics induces the anxiolytic, anticonvulsant and sedative activity or anesthetic effect, these results suggest the possibility that the intake of perfume or phytoncid through the lungs, the skin or the intestines modulates the neural transmission in the brain through ionotropic GABAA receptors and changes the frame of the human mind, as alcohol or tobacco does.

  3. Mineralocorticoid receptors are present in skeletal muscle and represent a potential therapeutic target

    PubMed Central

    Chadwick, Jessica A.; Hauck, J. Spencer; Lowe, Jeovanna; Shaw, Jeremiah J.; Guttridge, Denis C.; Gomez-Sanchez, Celso E.; Gomez-Sanchez, Elise P.; Rafael-Fortney, Jill A.

    2015-01-01

    Early treatment with heart failure drugs lisinopril and spironolactone improves skeletal muscle pathology in Duchenne muscular dystrophy (DMD) mouse models. The angiotensin converting enzyme inhibitor lisinopril and mineralocorticoid receptor (MR) antagonist spironolactone indirectly and directly target MR. The presence and function of MR in skeletal muscle have not been explored. MR mRNA and protein are present in all tested skeletal muscles from both wild-type mice and DMD mouse models. MR expression is cell autonomous in both undifferentiated myoblasts and differentiated myotubes from mouse and human skeletal muscle cultures. To test for MR function in skeletal muscle, global gene expression analysis was conducted on human myotubes treated with MR agonist (aldosterone; EC50 1.3 nM) or antagonist (spironolactone; IC50 1.6 nM), and 53 gene expression differences were identified. Five differences were conserved in quadriceps muscles from dystrophic mice treated with spironolactone plus lisinopril (IC50 0.1 nM) compared with untreated controls. Genes down-regulated more than 2-fold by MR antagonism included FOS, ANKRD1, and GADD45B, with known roles in skeletal muscle, in addition to NPR3 and SERPINA3, bona fide targets of MR in other tissues. MR is a novel drug target in skeletal muscle and use of clinically safe antagonists may be beneficial for muscle diseases.—Chadwick, J. A., Hauck, J. S., Lowe, J. , Shaw, J. J., Guttridge, D. C., Gomez-Sanchez, C. E., Gomez-Sanchez, E. P., Rafael-Fortney, J. A. Mineralocorticoid receptors are present in skeletal muscle and represent a potential therapeutic target. PMID:26178166

  4. Functional Characterization of Soybean Glyma04g39610 as a Brassinosteroid Receptor Gene and Evolutionary Analysis of Soybean Brassinosteroid Receptors

    PubMed Central

    Peng, Suna; Tao, Ping; Xu, Feng; Wu, Aiping; Huo, Weige; Wang, Jinxiang

    2016-01-01

    Brassinosteroids (BR) play important roles in plant growth and development. Although BR receptors have been intensively studied in Arabidopsis, the BR receptors in soybean remain largely unknown. Here, in addition to the known receptor gene Glyma06g15270 (GmBRI1a), we identified five putative BR receptor genes in the soybean genome: GmBRI1b, GmBRL1a, GmBRL1b, GmBRL2a, and GmBRL2b. Analysis of their expression patterns by quantitative real-time PCR showed that they are ubiquitously expressed in primary roots, lateral roots, stems, leaves, and hypocotyls. We used rapid amplification of cDNA ends (RACE) to clone GmBRI1b (Glyma04g39160), and found that the predicted amino acid sequence of GmBRI1b showed high similarity to those of AtBRI1 and pea PsBRI1. Structural modeling of the ectodomain also demonstrated similarities between the BR receptors of soybean and Arabidopsis. GFP-fusion experiments verified that GmBRI1b localizes to the cell membrane. We also explored GmBRI1b function in Arabidopsis through complementation experiments. Ectopic over-expression of GmBRI1b in Arabidopsis BR receptor loss-of-function mutant (bri1-5 bak1-1D) restored hypocotyl growth in etiolated seedlings; increased the growth of stems, leaves, and siliques in light; and rescued the developmental defects in leaves of the bri1-6 mutant, and complemented the responses of BR biosynthesis-related genes in the bri1-5 bak1-D mutant grown in light. Bioinformatics analysis demonstrated that the six BR receptor genes in soybean resulted from three gene duplication events during evolution. Phylogenetic analysis classified the BR receptors in dicots and monocots into three subclades. Estimation of the synonymous (Ks) and the nonsynonymous substitution rate (Ka) and selection pressure (Ka/Ks) revealed that the Ka/Ks of BR receptor genes from dicots and monocots were less than 1.0, indicating that BR receptor genes in plants experienced purifying selection during evolution. PMID:27338344

  5. Functional expression of transient receptor potential vanilloid 4 in the mouse cochlea.

    PubMed

    Shen, Jing; Harada, Narinobu; Kubo, Nobuo; Liu, Bing; Mizuno, Atsuko; Suzuki, Makoto; Yamashita, Toshio

    2006-02-06

    Transient receptor potential vanilloid 4, the Ca2+-permeable cation channel has been proposed as an osmosensitive and a mechanosensitive channel. We investigated functional expression of transient receptor potential vanilloid 4 in inner hair cells, outer hair cells, and spiral ganglion neurons of the mouse cochlea. Transient receptor potential vanilloid 4 mRNA and protein were expressed in inner hair cells, outer hair cells, and spiral ganglion neurons on the basis of the findings of reverse transcriptase-polymerase chain reaction, single-cell reverse transcriptase-polymerase chain reaction, and immunohistochemistry, whereas they were negative in transient receptor potential vanilloid 4-/- mice cochleae. Hypotonic stimulation and 4-alpha-phorbol 12,13-didecanoate, a transient receptor potential vanilloid 4 synthetic activator, increased the intracellular Ca2+ concentrations in wild-type outer hair cells, whereas in transient receptor potential vanilloid 4-/- mice, outer hair cells failed to exhibit a Ca2+ response to both stimulations. In conclusion, transient receptor potential vanilloid 4 may function as an osmosensory and a mechanosensory receptor in the cochlea.

  6. Scavenger Receptors and Their Potential as Therapeutic Targets in the Treatment of Cardiovascular Disease

    PubMed Central

    Stephen, Sam L.; Freestone, Katie; Dunn, Sarah; Twigg, Michael W.; Homer-Vanniasinkam, Shervanthi; Walker, John H.; Wheatcroft, Stephen B.; Ponnambalam, Sreenivasan

    2010-01-01

    Scavenger receptors act as membrane-bound and soluble proteins that bind to macromolecular complexes and pathogens. This diverse supergroup of proteins mediates binding to modified lipoprotein particles which regulate the initiation and progression of atherosclerotic plaques. In vascular tissues, scavenger receptors are implicated in regulating intracellular signaling, lipid accumulation, foam cell development, and cellular apoptosis or necrosis linked to the pathophysiology of atherosclerosis. One approach is using gene therapy to modulate scavenger receptor function in atherosclerosis. Ectopic expression of membrane-bound scavenger receptors using viral vectors can modify lipid profiles and reduce the incidence of atherosclerosis. Alternatively, expression of soluble scavenger receptors can also block plaque initiation and progression. Inhibition of scavenger receptor expression using a combined gene therapy and RNA interference strategy also holds promise for long-term therapy. Here we review our current understanding of the gene delivery by viral vectors to cells and tissues in gene therapy strategies and its application to the modulation of scavenger receptor function in atherosclerosis. PMID:20981357

  7. Galanin-induced decreases in nucleus accumbens/striatum excitatory postsynaptic potentials and morphine conditioned place preference require both galanin receptor 1 and galanin receptor 2.

    PubMed

    Einstein, Emily B; Asaka, Yukiko; Yeckel, Mark F; Higley, Michael J; Picciotto, Marina R

    2013-05-01

    The neuropeptide galanin has been shown to alter the rewarding properties of morphine. To identify potential cellular mechanisms that might be involved in the ability of galanin to modulate opiate reward, we measured excitatory postsynaptic potentials (EPSPs), using both field and whole-cell recordings from striatal brain slices extracted from wild-type mice and mice lacking specific galanin receptor (GalR) subtypes. We found that galanin decreased the amplitude of EPSPs in both the dorsal striatum and nucleus accumbens. We then performed recordings in slices from knockout mice lacking either the GalR1 or GalR2 gene, and found that the ability of galanin to decrease EPSP amplitude was absent from both mouse lines, suggesting that both receptor subtypes are required for this effect. In order to determine whether behavioral responses to opiates were dependent on the same receptor subtypes, we tested GalR1 and GalR2 knockout mice for morphine conditioned place preference (CPP). Morphine CPP was significantly attenuated in both GalR1 and GalR2 knockout mice. These data suggest that mesolimbic excitatory signaling is significantly modulated by galanin in a GalR1-dependent and GalR2-dependent manner, and that morphine CPP is dependent on the same receptor subtypes.

  8. Human diabetes associated with defects in nuclear regulatory proteins for the insulin receptor gene.

    PubMed Central

    Brunetti, A; Brunetti, L; Foti, D; Accili, D; Goldfine, I D

    1996-01-01

    The control of gene transcription is mediated by sequence-specific DNA-binding proteins (trans-acting factors) that bind to upstream regulatory elements (cis elements). We have previously identified two DNA-binding proteins that specifically interact with two unique AT-rich sequences of the 5' regulatory region of the insulin receptor gene which have in vivo promoter activity. Herein we have investigated the expression of these DNA-binding proteins in cells from two unrelated patients with insulin resistance and non-insulin-dependent diabetes mellitus. In these patients, the insulin receptor gene was normal. In EBV-transformed lymphoblasts from both patients, insulin receptor mRNA levels and insulin receptor expression were decreased. The expression of nuclear-binding proteins for the 5' regulatory region of the insulin receptor gene was markedly reduced, and this defect paralleled the decrease in insulin receptor protein expression. These studies indicate that DNA-binding proteins to the regulatory region of the insulin receptor gene are important for expression of the insulin receptor. Further, they suggest that in affected individuals, defects in the expression of these proteins may cause decreased insulin receptor expression and insulin resistance. PMID:8550844

  9. Deletion of transient receptor potential vanilloid type 1 receptors exaggerates renal damage in deoxycorticosterone acetate-salt hypertension.

    PubMed

    Wang, Youping; Babánková, Dagmar; Huang, Jie; Swain, Greg M; Wang, Donna H

    2008-08-01

    To determine whether the transient receptor potential vanilloid type 1 (TRPV1) channel provides protection against hypertension-induced renal damage, hypertension was induced by uninephrectomy and by giving deoxycorticosterone acetate (DOCA)-salt in wild-type (WT) and TRPV1-null mutant (TRPV1-/-) mice. Mean arterial pressure, as determined by radiotelemetry, increased significantly and reached the peak 7 days after DOCA-salt treatment in both WT and TRPV1-/- mice. There was no difference in mean arterial pressure between the 2 strains at the baseline or at the peak that lasted for 4 treatment weeks. DOCA-salt treatment in both WT and TRPV1-/- mice led to increased urinary excretion of albumin and 8-isoprostane, glomerulosclerosis, renal cortical tubulointerstitial injury, tubulointerstitial fibrosis, increased number of tubular proliferating cell nuclear antigen-positive cells, and renal monocyte/macrophage infiltration, all of which were much more severe in DOCA-salt-treated TRPV1-/- compared with DOCA-salt-treated WT mice. Renal TRPV1 protein expression, but not the renal anandamide content, was elevated in DOCA-salt-treated WT compared with vehicle-treated WT mice. Renal anandamide levels were markedly elevated in DOCA-salt-treated TRPV1-/- but not in vehicle-treated TRPV1-/- mice. Thus, our data show that ablation of the TRPV1 gene exacerbates renal damage induced by DOCA-salt hypertension, indicating that TRPV1 may constitute a protective mechanism against end-organ damage induced by hypertension.

  10. Human coxsackie adenovirus receptor (CAR) expression in transgenic mouse prostate tumors enhances adenoviral delivery of genes.

    PubMed

    Bao, Yunhua; Peng, Weidan; Verbitsky, Amy; Chen, Jiping; Wu, Lily; Rauen, Katherine A; Sawicki, Janet A

    2005-09-01

    Transgenic mice that recapitulate the progression of human diseases are potentially useful models for testing the effectiveness of new therapeutic strategies. Their use in pre-clinical testing of adenovirally-delivered gene therapies, however, is limited because of restricted cell surface expression of Coxsackie adenovirus receptor (CAR) in mice. To develop a more suitable transgenic mouse model for testing adenoviral-based gene therapies for prostate cancer, we generated prostate specific antigen/human CAR (PSA/hCAR) transgenic mice in which a chimeric enhancer/promoter sequence of the human PSA gene drives expression of a functional hCAR coding sequence. Expression of an adenovirally-delivered luciferase reporter gene in prostate tumor cells in bigenic mice (PSA/hCAR + TRAMP) was enhanced compared to the level in tumor cells lacking the PSA/hCAR transgene. Breeding PSA/hCAR mice to existing transgenic mouse models for prostate cancer (e.g., TRAMP) results in improved mouse models for testing adenovirally-delivered therapeutic genes. Copyright 2005 Wiley-Liss, Inc.

  11. Receptor-mediated, tumor-targeted gene delivery using folate-terminated polyrotaxanes.

    PubMed

    Zhou, Yi; Wang, He; Wang, Chengxi; Li, Yueshan; Lu, Wenfeng; Chen, Shuifang; Luo, Jiandong; Jiang, Yongnan; Chen, Jianhai

    2012-05-07

    Safe and effective gene delivery is essential to the success of gene therapy. We synthesized and characterized a novel nonviral gene delivery system in which folate (FA) molecules were functioned as blockers on cationic polyrotaxanes (PR) composed of poly(ethylenimine) (PEI)(600)-grafted α-cyclodextrin rings linearized on polyethylene glycol to form FA-terminated PR-PEI(600) (FPP). The FA terminal caps of FPP target cell surfaces abundant in FA receptor (FR), a common feature of tumor cells. The structure of FPP was characterized by using (1)H nuclear magnetic resonance ((1)H NMR). The delivery particle was composed of chemically bonded PEG (4000), α-cyclodextrins (CD), and PEI (600 Da) at a molar ratio of 1:17:86.7, and the particle size and zeta potential of FPP/pDNA polyplexes were measured using dynamic light scattering. FPP/pDNA exhibited a lower cytotoxicity, strong specificity to FR, and high efficiency of delivering DNA to target cells in vitro and in vivo with the reporter genes. Furthermore, the FPP/DNA complex showed an enhanced antitumor effect in the nude mice compared with other delivery systems, such as PEI-25K. Together, these results suggest that FPP may be useful for gene therapy.

  12. Concomitant T-cell receptor alpha and delta gene rearrangements in individual T-cell precursors.

    PubMed Central

    Thompson, S D; Pelkonen, J; Hurwitz, J L

    1990-01-01

    A debate has recently surfaced concerning the degree of precommitment attained by alpha beta and gamma delta T-cell precursors prior to T-cell receptor (TCR) gene rearrangement. It has been suggested that precursors may be precommitted to rearrange either alpha or delta genes, but not both, thus giving rise to alpha beta- and gamma delta-producing T cells, respectively. Alternatively, the precursors may be flexible with regard to potential TCR gene rearrangements. To address this controversy, the gene rearrangements among a group of T-cell hybridomas from fetal, newborn, and early postnatal mouse thymi were examined. Six probes spanning the delta and alpha loci were used in Southern blot analyses to characterize the rearrangements which occurred on homologous chromosomes in each cell. Although homologous chromosomes often rearranged in synchrony within the alpha locus, a number of hybridomas were found which had retained a delta rearrangement on one chromosome and an alpha rearrangement on the second. Results show that a precommitment by T cells to rearrange delta or alpha genes in a mutually exclusive manner is not an absolute feature of mouse thymocyte development. Images PMID:2164690

  13. Ghrelin axis genes, peptides and receptors: recent findings and future challenges.

    PubMed

    Seim, Inge; Josh, Peter; Cunningham, Peter; Herington, Adrian; Chopin, Lisa

    2011-06-20

    The ghrelin axis consists of the gene products of the ghrelin gene (GHRL), and their receptors, including the classical ghrelin receptor GHSR. While it is well-known that the ghrelin gene encodes the 28 amino acid ghrelin peptide hormone, it is now also clear that the locus encodes a range of other bioactive molecules, including novel peptides and non-coding RNAs. For many of these molecules, the physiological functions and cognate receptor(s) remain to be determined. Emerging research techniques, including proteogenomics, are likely to reveal further ghrelin axis-derived molecules. Studies of the role of ghrelin axis genes, peptides and receptors, therefore, promises to be a fruitful area of basic and clinical research in years to come.

  14. Potentiation of Gamma Aminobutyric Acid Receptors (GABAAR) by Ethanol: How Are Inhibitory Receptors Affected?

    PubMed Central

    Förstera, Benjamin; Castro, Patricio A.; Moraga-Cid, Gustavo; Aguayo, Luis G.

    2016-01-01

    In recent years there has been an increase in the understanding of ethanol actions on the type A γ-aminobutyric acid chloride channel (GABAAR), a member of the pentameric ligand gated ion channels (pLGICs). However, the mechanism by which ethanol potentiates the complex is still not fully understood and a number of publications have shown contradictory results. Thus many questions still remain unresolved requiring further studies for a better comprehension of this effect. The present review concentrates on the involvement of GABAAR in the acute actions of ethanol and specifically focuses on the immediate, direct or indirect, synaptic and extra-synaptic modulatory effects. To elaborate on the immediate, direct modulation of GABAAR by acute ethanol exposure, electrophysiological studies investigating the importance of different subunits, and data from receptor mutants will be examined. We will also discuss the nature of the putative binding sites for ethanol based on structural data obtained from other members of the pLGICs family. Finally, we will briefly highlight the glycine gated chloride channel (GlyR), another member of the pLGIC family, as a suitable target for the development of new pharmacological tools. PMID:27199667

  15. Feline hypersomatotropism and acromegaly tumorigenesis: a potential role for the AIP gene.

    PubMed

    Scudder, C J; Niessen, S J; Catchpole, B; Fowkes, R C; Church, D B; Forcada, Y

    2017-04-01

    Acromegaly in humans is usually sporadic, however up to 20% of familial isolated pituitary adenomas are caused by germline sequence variants of the aryl-hydrocarbon-receptor interacting protein (AIP) gene. Feline acromegaly has similarities to human acromegalic families with AIP mutations. The aim of this study was to sequence the feline AIP gene, identify sequence variants and compare the AIP gene sequence between feline acromegalic and control cats, and in acromegalic siblings. The feline AIP gene was amplified through PCR using whole blood genomic DNA from 10 acromegalic and 10 control cats, and 3 sibling pairs affected by acromegaly. PCR products were sequenced and compared with the published predicted feline AIP gene. A single nonsynonymous SNP was identified in exon 1 (AIP:c.9T > G) of two acromegalic cats and none of the control cats, as well as both members of one sibling pair. The region of this SNP is considered essential for the interaction of the AIP protein with its receptor. This sequence variant has not previously been reported in humans. Two additional synonymous sequence variants were identified (AIP:c.481C > T and AIP:c.826C > T). This is the first molecular study to investigate a potential genetic cause of feline acromegaly and identified a nonsynonymous AIP single nucleotide polymorphism in 20% of the acromegalic cat population evaluated, as well as in one of the sibling pairs evaluated.

  16. Use of Membrane Potential to Achieve Transmembrane Modification with an Artificial Receptor.

    PubMed

    Hatanaka, Wataru; Kawaguchi, Miki; Sun, Xizheng; Nagao, Yusuke; Ohshima, Hiroyuki; Hashida, Mitsuru; Higuchi, Yuriko; Kishimura, Akihiro; Katayama, Yoshiki; Mori, Takeshi

    2017-02-15

    We developed a strategy to modify cell membranes with an artificial transmembrane receptor. Coulomb force on the receptor, caused by the membrane potential, was used to achieve membrane penetration. A hydrophobically modified cationic peptide was used as a membrane potential sensitive region that was connected to biotin through a transmembrane oligoethylene glycol (OEG) chain. This artificial receptor gradually disappeared from the cell membrane via penetration despite the presence of a hydrophilic OEG chain. However, when the receptor was bound to streptavidin (SA), it remained on the cell membrane because of the large and hydrophilic nature of SA.

  17. Transient receptor potential melastatin 4 channel contributes to migration of androgen-insensitive prostate cancer cells

    PubMed Central

    Kilch, Tatiana; Jochum, Marcus Martin; Urban, Sabine Katharina; Jung, Volker; Stöckle, Michael; Rother, Karen; Greiner, Markus; Peinelt, Christine

    2015-01-01

    Impaired Ca2+ signaling in prostate cancer contributes to several cancer hallmarks, such as enhanced proliferation and migration and a decreased ability to induce apoptosis. Na+ influx via transient receptor potential melastatin 4 channel (TRPM4) can reduce store-operated Ca2+ entry (SOCE) by decreasing the driving force for Ca2+. In patients with prostate cancer, gene expression of TRPM4 is elevated. Recently, TRPM4 was identified as a cancer driver gene in androgen-insensitive prostate cancer. We investigated TRPM4 protein expression in cancer tissue samples from 20 patients with prostate cancer. We found elevated TRPM4 protein levels in prostatic intraepithelial neoplasia (PIN) and prostate cancer tissue compared to healthy tissue. In primary human prostate epithelial cells (hPEC) from healthy tissue and in the androgen-insensitive prostate cancer cell lines DU145 and PC3, TRPM4 mediated large Na+ currents. We demonstrated significantly increased SOCE after siRNA targeting of TRPM4 in hPEC and DU145 cells. In addition, knockdown of TRPM4 reduced migration but not proliferation of DU145 and PC3 cells. Taken together, our data identify TRPM4 as a regulator of SOCE in hPEC and DU145 cells, demonstrate a role for TRPM4 in cancer cell migration and suggest that TRPM4 is a promising potential therapeutic target. PMID:26496025

  18. Leptin receptor gene polymorphisms and morbid obesity in Mexican patients.

    PubMed

    Rojano-Rodriguez, Martin Edgardo; Beristain-Hernandez, Jose Luis; Zavaleta-Villa, Beatriz; Maravilla, Pablo; Romero-Valdovinos, Mirza; Olivo-Diaz, Angelica

    2016-01-01

    Human obesity is due to a complex interaction among environmental, behavioral, developmental and genetic factors, including the interaction of leptin (LEP) and leptin receptor (LEPR). Several LEPR mutations and polymorphisms have been described in patients with early onset severe obesity and hyperphagic eating behavior; however, some contradictory findings have also been reported. In the present study we explored the association of six LEPR gene polymorphisms in patients with morbid obesity. Twenty eight patients with morbid obesity and 56 non-obese Mexican Mestizo individuals were included. Typing of rs1137100, rs1137101, rs1805134, Ser492Thr, rs1805094 and rs1805096 LEPR polymorphisms was performed by PCR and allele specific hybridization. The LEPR Ser492Thr polymorphism was monomorphic with the presence of only the Ser492Thr-G allele. Allele C and genotype T/C for rs1805134 polymorphism were associated with susceptibility to morbid obesity (p = 0.02 and p = 0.03, respectively). No association was observed with any haplotype. Linkage disequilibrium (LD) showed that five polymorphisms (rs1137100, rs1137101, rs1805134, rs1805094 and rs1805096) were in absolute (D' = 1) but none in perfect (r(2) = 1) LD. Our results suggest that rs1805134 polymorphism could be involved in the development of morbid obesity, whilst none of the alleles of the LEPR gene, rs1137100, rs1137101, rs1805094 and rs1805096 were associated as risk factors. However, more studies are necessary to confirm or reject this hypothesis.

  19. Detection of large deletions in the LDL receptor gene with quantitative PCR methods

    PubMed Central

    Damgaard, Dorte; Nissen, Peter H; Jensen, Lillian G; Nielsen, Gitte G; Stenderup, Anette; Larsen, Mogens L; Faergeman, Ole

    2005-01-01

    Background Familial Hypercholesterolemia (FH) is a common genetic disease and at the molecular level most often due to mutations in the LDL receptor gene. In genetically heterogeneous populations, major structural rearrangements account for about 5% of patients with LDL receptor gene mutations. Methods In this study we tested the ability of two different quantitative PCR methods, i.e. Real-Time PCR and Multiplex Ligation-Dependent Probe Amplification (MLPA), to detect deletions in the LDL receptor gene. We also reassessed the contribution of major structural rearrangements to the mutational spectrum of the LDL receptor gene in Denmark. Results With both methods it was possible to discriminate between one and two copies of the LDL receptor gene exon 5, but the MLPA method was cheaper, and it was far more accurate and precise than Real-Time PCR. In five of 318 patients with an FH phenotype, MLPA analysis revealed five different deletions in the LDL receptor gene. Conclusion The MLPA method was accurate, precise and at the same time effective in screening a large number of FH patients for large deletions in the LDL receptor gene. PMID:15842735

  20. Dopamine modulation of transient receptor potential vanilloid type 1 (TRPV1) receptor in dorsal root ganglia neurons

    PubMed Central

    Chakraborty, Saikat; Rebecchi, Mario; Kaczocha, Martin

    2016-01-01

    Key points Transient receptor potential vanilloid type 1 (TRPV1) receptors transduce noxious thermal stimuli and are responsible for the thermal hyperalgesia associated with inflammatory pain.A large population of dorsal root ganglia (DRG) neurons, including the C low threshold mechanoreceptors (C‐LTMRs), express tyrosine hydroxylase, and probably release dopamine.We found that dopamine and SKF 81297 (an agonist at D1/D5 receptors), but not quinpirole (an agonist at D2 receptors), downregulate the activity of TRPV1 channels in DRG neurons.The inhibitory effect of SKF 81297 on TRPV1 channels was strongly dependent on external calcium and preferentially linked to calcium–calmodulin‐dependent protein kinase II (CaMKII).We suggest that modulation of TRPV1 channels by dopamine in nociceptive neurons may represent a way for dopamine to modulate incoming noxious stimuli. Abstract The transient receptor potential vanilloid type 1 (TRPV1) receptor plays a key role in the modulation of nociceptor excitability. To address whether dopamine can modulate the activity of TRPV1 channels in nociceptive neurons, the effects of dopamine and dopamine receptor agonists were tested on the capsaicin‐activated current recorded from acutely dissociated small diameter (<27 μm) dorsal root ganglia (DRG) neurons. Dopamine or SKF 81297 (an agonist at D1/D5 receptors), caused inhibition of both inward and outward currents by ∼60% and ∼48%, respectively. The effect of SKF 81297 was reversed by SCH 23390 (an antagonist at D1/D5 receptors), confirming that it was mediated by activation of D1/D5 dopamine receptors. In contrast, quinpirole (an agonist at D2 receptors) had no significant effect on the capsaicin‐activated current. Inhibition of the capsaicin‐activated current by SKF 81297 was mediated by G protein coupled receptors (GPCRs), and highly dependent on external calcium. The inhibitory effect of SKF 81297 on the capsaicin‐activated current was not affected when

  1. Classification of Dopamine Receptor Genes in Vertebrates: Nine Subtypes in Osteichthyes.

    PubMed

    Yamamoto, Kei; Fontaine, Romain; Pasqualini, Catherine; Vernier, Philippe

    2015-01-01

    Dopamine neurotransmission regulates various brain functions, and its regulatory roles are mediated by two families of G protein-coupled receptors: the D1 and D2 receptor families. In mammals, the D1 family comprises two receptor subtypes (D1 and D5), while the D2 family comprises three receptor subtypes (D2, D3 and D4). Phylogenetic analyses of dopamine receptor genes strongly suggest that the common ancestor of Osteichthyes (bony jawed vertebrates) possessed four subtypes in the D1 family and five subtypes in the D2 family. Mammals have secondarily lost almost half of the ancestral dopamine receptor genes, whereas nonmammalian species kept many of them. Although the mammalian situation is an exception among Osteichthyes, the current classification and characterization of dopamine receptors are based on mammalian features, which have led to confusion in the identification of dopamine receptor subtypes in nonmammalian species. Here we begin by reviewing the history of the discovery of dopamine receptors in vertebrates. The recent genome sequencing of coelacanth, gar and elephant shark led to the proposal of a refined scenario of evolution of dopamine receptor genes. We also discuss a current problem of nomenclature of dopamine receptors. Following the official nomenclature of mammalian dopamine receptors from D1 to D5, we propose to name newly identified receptor subtypes from D6 to D9 in order to facilitate the use of an identical name for orthologous genes among different species. To promote a nomenclature change which allows distinguishing the two dopamine receptor families, a nomenclature consortium is needed. This comparative perspective is crucial to correctly interpret data obtained in animal studies on dopamine-related brain disorders, and more fundamentally, to understand the characteristics of dopamine neurotransmission in vertebrates.

  2. The heterodimeric sweet taste receptor has multiple potential ligand binding sites.

    PubMed

    Cui, Meng; Jiang, Peihua; Maillet, Emeline; Max, Marianna; Margolskee, Robert F; Osman, Roman

    2006-01-01

    The sweet taste receptor is a heterodimer of two G protein coupled receptors, T1R2 and T1R3. This discovery has increased our understanding at the molecular level of the mechanisms underlying sweet taste. Previous experimental studies using sweet receptor chimeras and mutants show that there are at least three potential binding sites in this heterodimeric receptor. Receptor activity toward the artificial sweeteners aspartame and neotame depends on residues in the amino terminal domain of human T1R2. In contrast, receptor activity toward the sweetener cyclamate and the sweet taste inhibitor lactisole depends on residues within the transmembrane domain of human T1R3. Furthermore, receptor activity toward the sweet protein brazzein depends on the cysteine rich domain of human T1R3. Although crystal structures are not available for the sweet taste receptor, useful homology models can be developed based on appropriate templates. The amino terminal domain, cysteine rich domain and transmembrane helix domain of T1R2 and T1R3 have been modeled based on the crystal structures of metabotropic glutamate receptor type 1, tumor necrosis factor receptor, and bovine rhodopsin, respectively. We have used homology models of the sweet taste receptors, molecular docking of sweet ligands to the receptors, and site-directed mutagenesis of the receptors to identify potential ligand binding sites of the sweet taste receptor. These studies have led to a better understanding of the structure and function of this heterodimeric receptor, and can act as a guide for rational structure-based design of novel non-caloric sweeteners, which can be used in the fighting against obesity and diabetes.

  3. Polymorphisms in the Vitamin A Receptor and Innate Immunity Genes Influence the Antibody Response to Rubella Vaccination

    PubMed Central

    Ovsyannikova, Inna G.; Haralambieva, Iana H.; Dhiman, Neelam; O’Byrne, Megan M.; Pankratz, V. Shane; Jacobson, Robert M.; Poland, Gregory A.

    2009-01-01

    Background Genetic polymorphisms play an important role in rubella vaccine-induced immunity. Methods We genotyped 714 healthy children after two age-appropriate doses of rubella-containing vaccine for 142 potential SNPs. Results Specific polymorphisms in the vitamin A receptor, RIG-I, TRIM5 and TRIM22 genes were significantly associated with rubella vaccine humoral immunity. The minor allele of the rs4416353 in the vitamin A receptor gene was associated with an allele dose-related decrease (P=.019) in rubella antibody response. The minor allele of rs6793694, in the vitamin A receptor gene, was associated with an allele dose-related antibody decrease (P=.039). The minor variant of nonsynonymous SNP rs10813831 (Arg7Cys) in the RIG-I gene was associated with an allele dose-related decrease in rubella antibody level from 37.4 IU/mL to 28.0 IU/mL (P=.035), while increased representation of the minor allele of the 5’UTR SNP (rs3824949, P=.015), in the antiretroviral TRIM5 gene, was associated with an allele dose-related increase in rubella antibody. It is of particular interest that the nonsynonymous SNP rs3740996 (His43Tyr) in the TRIM5 gene was associated with variations in rubella antibody response (P=.016) after having been previously found to have a significant functional role. Conclusions These findings further expand our immunogenetic understanding of mechanisms of rubella vaccine-induced immunity. PMID:20001730

  4. Further evidence of no linkage between schizophrenia and the dopamine D{sub 3} receptor gene locus

    SciTech Connect

    Nanko, S.; Fukuda, R.; Hattori, M.

    1994-09-15

    The dopamine hypothesis of schizophrenia proposed that dopaminergic pathways are involved in the etiology of the disease. In particular, interest among psychiatrists has focused on the D{sub 2} receptor because of its affinity to antipsychotic drugs. Recently a new dopamine receptor gene has been cloned and named the dopamine D{sub 3} receptor. The D{sub 3} receptor is a potential site for antipsychotic drug action and may be involved in the pathophysiology of schizophrenia. We have carried out a linkage study between the susceptibility gene for schizophrenia and polymorphism of the dopamine D{sub 3} receptor gene in two Japanese pedigrees. The LOD scores were negative for all genetic models and for all affective status at a recombination fraction {theta} = 0. Linkage of DRD{sub 3} has been excluded for the model 1 (dominant model) and the model 3 (recessive model). The LOD score was -3.43 at {theta} = 0 for model 1 (dominant model) and broad definition of affected status. These results were consistent with previous studies. 19 refs., 2 figs., 3 tabs.

  5. Insight into pattern of codon biasness and nucleotide base usage in serotonin receptor gene family from different mammalian species.

    PubMed

    Dass, J Febin Prabhu; Sudandiradoss, C

    2012-07-15

    5-HT (5-Hydroxy-tryptamine) or serotonin receptors are found both in central and peripheral nervous system as well as in non-neuronal tissues. In the animal and human nervous system, serotonin produces various functional effects through a variety of membrane bound receptors. In this study, we focus on 5-HT receptor family from different mammals and examined the factors that account for codon and nucleotide usage variation. A total of 110 homologous coding sequences from 11 different mammalian species were analyzed using relative synonymous codon usage (RSCU), correspondence analysis (COA) and hierarchical cluster analysis together with nucleotide base usage frequency of chemically similar amino acid codons. The mean effective number of codon (ENc) value of 37.06 for 5-HT(6) shows very high codon bias within the family and may be due to high selective translational efficiency. The COA and Spearman's rank correlation reveals that the nucleotide compositional mutation bias as the major factors influencing the codon usage in serotonin receptor genes. The hierarchical cluster analysis suggests that gene function is another dominant factor that affects the codon usage bias, while species is a minor factor. Nucleotide base usage was reported using Goldman, Engelman, Stietz (GES) scale reveals the presence of high uracil (>45%) content at functionally important hydrophobic regions. Our in silico approach will certainly help for further investigations on critical inference on evolution, structure, function and gene expression aspects of 5-HT receptors family which are potential antipsychotic drug targets.

  6. Heat Avoidance Is Regulated by Transient Receptor Potential (TRP) Channels and a Neuropeptide Signaling Pathway in Caenorhabditis elegans

    PubMed Central

    Glauser, Dominique A.; Chen, Will C.; Agin, Rebecca; MacInnis, Bronwyn L.; Hellman, Andrew B.; Garrity, Paul A.; Tan, Man-Wah; Goodman, Miriam B.

    2011-01-01

    The ability to avoid noxious extremes of hot and cold is critical for survival and depends on thermal nociception. The TRPV subset of transient receptor potential (TRP) channels is heat activated and proposed to be responsible for heat detection in vertebrates and fruit flies. To gain insight into the genetic and neural basis of thermal nociception, we developed assays that quantify noxious heat avoidance in the nematode Caenorhabditis elegans and used them to investigate the genetic basis of this behavior. First, we screened mutants for 18 TRP channel genes (including all TRPV orthologs) and found only minor defects in heat avoidance in single and selected double and triple mutants, indicating that other genes are involved. Next, we compared two wild isolates of C. elegans that diverge in their threshold for heat avoidance and linked this phenotypic variation to a polymorphism in the neuropeptide receptor gene npr-1. Further analysis revealed that loss of either the NPR-1 receptor or its ligand, FLP-21, increases the threshold for heat avoidance. Cell-specific rescue of npr-1 implicates the interneuron RMG in the circuit regulating heat avoidance. This neuropeptide signaling pathway operates independently of the TRPV genes, osm-9 and ocr-2, since mutants lacking npr-1 and both TRPV channels had more severe defects in heat avoidance than mutants lacking only npr-1 or both osm-9 and ocr-2. Our results show that TRPV channels and the FLP-21/NPR-1 neuropeptide signaling pathway determine the threshold for heat avoidance in C. elegans. PMID:21368276

  7. Functional characterization of bursicon receptor and genome-wide analysis for identification of genes affected by bursicon receptor RNAi

    PubMed Central

    Bai, Hua; Palli, Subba R.

    2010-01-01

    Bursicon is an insect neuropeptide hormone that is secreted from the central nervous system into the hemolymph and initiates cuticle tanning. The receptor for bursicon is encoded by the rickets (rk) gene and belongs to the G protein-coupled receptor (GPCR) superfamily. The bursicon and its receptor regulate cuticle tanning as well as wing expansion after adult eclosion. However, the molecular action of bursicon signaling remains unclear. We utilized RNA interference (RNAi) and microarray to study the function of the bursicon receptor (Tcrk) in the model insect, Tribolium castaneum. The data included here showed that in addition to cuticle tanning and wing expansion reported previously, Tcrk is also required for development and expansion of integumentary structures and adult eclosion. Using custom microarrays, we identified 24 genes that are differentially expressed between Tcrk RNAi and control insects. Knockdown in the expression of one of these genes, TC004091, resulted in the arrest of adult eclosion. Identification of genes that are involved in bursicon receptor mediated biological processes will provide tools for future studies on mechanisms of bursicon action. PMID:20457145

  8. Methylated genes as potential biomarkers in prostate cancer.

    PubMed

    Phé, Veronique; Cussenot, Olivier; Rouprêt, Morgan

    2010-05-01

    Prostate cancer is the most common malignancy of the urogenital tract. Although controversial, prostate-specific antigen (PSA) testing is widely used for screening and follow-up of prostate cancer, but because of its limited specificity and sensitivity, PSA is not an ideal test. We currently lack the necessary tools to differentiate between latent disease with little likelihood of clinical manifestation and aggressive tumours that are likely to metastasize and lead to potentially lethal disease. DNA methylation is an important epigenetic mechanism of gene regulation and plays essential roles in tumour initiation and progression. Currently, aberrant promoter hypermethylation has been investigated in specific genes from the following groups: tumour-suppressor genes, proto-oncogenes, genes involved in cell adhesion, and genes involved in cell-cycle regulation. Glutathione S-transferase P1 (GSTP1) has been shown to be a biomarker for prostate cancer. Other genes, e.g. CD44, PTGS2, E-cadherin, CDH13, and cyclin D2 have been found to be prognostic markers for prostate cancer. In cell samples derived from the urine, the presence of the hypermethylation of either GSTP1 or RASS1a has been shown to be both sensitive and specific for detecting prostate cancer. Several studies have found that analysis of hypermethylation using a panel of tumour-suppressor genes yielded better results for detecting prostate cancer than the analysis of single-gene methylation. Hence, these different panels (e.g. GSTP1, APC, PTGS2, T1G1 and EDNRB) are of interest for detecting prostate cancer. Also, the methylation profile of multiple regulatory genes might be altered at the time of cancer relapse. Thus, preliminary results on the use of the methylation status of specific genes as potential tumour biomarkers for the early diagnosis and the risk stratification of patients with prostate cancer are promising.

  9. Allelic association of human dopamine D sub 2 receptor gene in alcoholism

    SciTech Connect

    Blum, K.; Sheridan, P.J.; Montgomery, A.; Jagadeeswaran, P.; Nogami, H.; Briggs, A.H. ); Noble, E.P.; Ritchie, T.; Cohn, J.B. )

    1990-04-18

    In a blinded experiment, the authors report the first allelic association of the dopamine D{sub 2} receptor gene in alcoholism. From 70 brain samples of alcoholics and nonalcoholics, DNA was digested with restriction endonucleases and probed with a clone that contained the entire 3{prime} coding exon, the polyadenylation signal, and approximately 16.4 kilobases of noncoding 3{prime} sequence of the human dopamine D{sub 2} receptor gene ({lambda}hD2G1). In the present samples, the presence of A1 allele of the dopamine D{sub 2} receptor gene correctly classified 77% of alcoholics, and its absence classified 72% of nonalcoholics. The polymorphic pattern of this receptor gene suggests that a gene that confers susceptibility to at least one form of alcoholism is located on the q22-q23 region of chromosome 11.

  10. Penguins reduced olfactory receptor genes common to other waterbirds

    PubMed Central

    Lu, Qin; Wang, Kai; Lei, Fumin; Yu, Dan; Zhao, Huabin

    2016-01-01

    The sense of smell, or olfaction, is fundamental in the life of animals. However, penguins (Aves: Sphenisciformes) possess relatively small olfactory bulbs compared with most other waterbirds such as Procellariiformes and Gaviiformes. To test whether penguins have a reduced reliance on olfaction, we analyzed the draft genome sequences of the two penguins, which diverged at the origin of the order Sphenisciformes; we also examined six closely related species with available genomes, and identified 29 one-to-one orthologous olfactory receptor genes (i.e. ORs) that are putatively functionally conserved and important across the eight birds. To survey the 29 one-to-one orthologous ORs in penguins and their relatives, we newly generated 34 sequences that are missing from the draft genomes. Through the analysis of totaling 378 OR sequences, we found that, of these functionally important ORs common to other waterbirds, penguins have a significantly greater percentage of OR pseudogenes than other waterbirds, suggesting a reduction of olfactory capability. The penguin-specific reduction of olfactory capability arose in the common ancestor of penguins between 23 and 60 Ma, which may have resulted from the aquatic specializations for underwater vision. Our study provides genetic evidence for a possible reduction of reliance on olfaction in penguins. PMID:27527385

  11. Association study of dopamine D3 receptor gene and schizophrenia

    SciTech Connect

    Kennedy, J.L.; Billett, E.A.; Macciardi, F.M.

    1995-12-18

    Several groups have reported an association between schizophrenia and the MscI polymorphism in the first exon of the dopamine D3 receptor gene (DRD3). We studied this polymorphism using a North American sample (117 patients plus 188 controls) and an Italian sample (97 patients plus 64 controls). In the first part of the study, we compared allele frequencies of schizophrenia patients and unmatched controls and observed a significant difference in the total sample (P = 0.01). The second part of the study involved a case control approach in which each schizophrenia patient was matched to a control of the same sex, and of similar age and ethnic background. The DRD3 allele frequencies of patients and controls revealed no significant difference between the two groups in the Italian (N = 53) or the North American (N = 54) matched populations; however, when these two matched samples were combined, a significant difference was observed (P = 0.026). Our results suggest that the MscI polymorphism may be associated with schizophrenia in the populations studied. 32 refs., 2 tabs.

  12. Association of interleukin 1 gene cluster and interleukin 1 receptor gene polymorphisms with ischemic heart failure.

    PubMed

    Mahmoudi, M J; Taghvaei, M; Harsini, S; Amirzargar, A A; Hedayat, M; Mahmoudi, M; Nematipour, E; Farhadi, E; Esfahanian, N; Sadr, M; Nourijelyani, K; Rezaei, N

    Proinflammatory cytokines have been known to play a considerable part in the pathomechanisms of chronic heart failure (CHF). Given the importance of proinflammatory cytokines in the context of the failing heart, we assessed whether the polymorphisms of interleukin (IL)-1 gene cluster, including IL-1α, IL-1β, and IL-1 receptor antagonist (IL-1RA) and IL-1R gene are predictors of CHF due to ischemic heart disease. Forty- three patients with ischemic heart failure were recruited in this study as patients group and compared with 140 healthy unrelated control subjects. Using polymerase chain reaction with sequence-specific primers method, the allele and genotype frequency of 5 single nucleotide polymorphisms (SNPs) within the IL-1α (-889), IL-1β (-511, +3962), IL-1R (psti 1970), and IL-1RA (mspa1 11100) genes were determined. The frequency of the IL-1β -511/C allele was significantly higher in the patient group compared to that in the control group (p = 0.031). The IL-1β (-511) C/C genotype was significantly overrepresented in patients compared to controls (p = 0.022). Particular allele and genotype in IL-1β gene were overrepresented in patients with ischemic heart failure, possibly affecting the individual susceptibility to this disease (Tab. 1, Ref. 27).

  13. Identification of Androgen Receptor and Beta-Catenin Target Genes in Prostate and Prostate Cancer

    DTIC Science & Technology

    2013-10-01

    Transdisciplinary Research in Epigenetics and Cancer Journal Clubs and Transdisciplinary Science Meetings, biweekly and monthly 3. To gain expertise...Target Genes in Prostate and Prostate Cancer PRINCIPAL INVESTIGATOR: Laura Lamb CONTRACTING ORGANIZATION: Washington University...TITLE AND SUBTITLE Identification of Androgen Receptor and Beta-Catenin Target Genes in Prostate and Prostate Cancer 5a. CONTRACT NUMBER Genes in

  14. Central nicotinic receptors: structure, function, ligands, and therapeutic potential.

    PubMed

    Romanelli, M Novella; Gratteri, Paola; Guandalini, Luca; Martini, Elisabetta; Bonaccini, Claudia; Gualtieri, Fulvio

    2007-06-01

    The growing interest in nicotinic receptors, because of their wide expression in neuronal and non-neuronal tissues and their involvement in several important CNS pathologies, has stimulated the synthesis of a high number of ligands able to modulate their function. These membrane proteins appear to be highly heterogeneous, and still only incomplete information is available on their structure, subunit composition, and stoichiometry. This is due to the lack of selective ligands to study the role of nAChR under physiological or pathological conditions; so far, only compounds showing selectivity between alpha4beta2 and alpha7 receptors have been obtained. The nicotinic receptor ligands have been designed starting from lead compounds from natural sources such as nicotine, cytisine, or epibatidine, and, more recently, through the high-throughput screening of chemical libraries. This review focuses on the structure of the new agonists, antagonists, and allosteric ligands of nicotinic receptors, it highlights the current knowledge on the binding site models as a molecular modeling approach to design new compounds, and it discusses the nAChR modulators which have entered clinical trials.

  15. Pharmacology and therapeutic potential of pattern recognition receptors.

    PubMed

    Paul-Clark, M J; George, P M; Gatheral, T; Parzych, K; Wright, W R; Crawford, D; Bailey, L K; Reed, D M; Mitchell, J A

    2012-08-01

    Pharmacologists have used pathogen-associated molecular patterns (PAMPs), such as lipopolysaccharide (LPS) for decades as a stimulus for studying mediators involved in inflammation and for the screening of anti-inflammatory compounds. However, in the view of immunologists, LPS was too non-specific for studying the mechanisms of immune signalling in infection and inflammation, as no receptors had been identified. This changed in the late 1990s with the discovery of the Toll-like receptors. These 'pattern recognition receptors' (PRRs) were able to recognise highly conserved sequences, the so called pathogen associated molecular patterns (PAMPs) present in or on pathogens. This specificity of particular PAMPs and their newly defined receptors provided a common ground between pharmacologists and immunologists for the study of inflammation. PRRs also recognise endogenous agonists, the so called danger-associated molecular patterns (DAMPs), which can result in sterile inflammation. The signalling pathways and ligands of many PRRs have now been characterised and there is no doubt that this rich vein of research will aid the discovery of new therapeutics for infectious conditions and chronic inflammatory disease.

  16. Identification of Modulators of the Nuclear Receptor Peroxisome Proliferator-Activated Receptor α (PPARα) in a Mouse Liver Gene Expression Compendium

    EPA Science Inventory

    The nuclear receptor family member peroxisome proliferator-activated receptor α (PPARα) is activated by therapeutic hypolipidemic drugs and environmentally-relevant chemicals to regulate genes involved in lipid transport and catabolism. Chronic activation of PPARα in rodents inc...

  17. Identification of Modulators of the Nuclear Receptor Peroxisome Proliferator-Activated Receptor α (PPARα) in a Mouse Liver Gene Expression Compendium

    EPA Science Inventory

    The nuclear receptor family member peroxisome proliferator-activated receptor α (PPARα) is activated by therapeutic hypolipidemic drugs and environmentally-relevant chemicals to regulate genes involved in lipid transport and catabolism. Chronic activation of PPARα in rodents inc...

  18. Differential regulation of interleukin-8 gene transcription by death receptor 3 (DR3) and type I TNF receptor (TNFRI).

    PubMed

    Su, Wenlynn B; Chang, Ying-Hsin; Lin, Wan-Wan; Hsieh, Shie-Liang

    2006-02-01

    TL1A induces interleukin-8 (IL-8) secretion in human peripheral blood monocyte-derived macrophage in a dose- and time-dependent manner. Overexpression of its cognate receptor DR3 can induce a higher amount of IL-8 protein secretion than that induced by TNFRI even though both receptors activate IL-8 gene transcription in a similar fashion. The underlying mechanism for the regulation of the IL-8 gene transcription by DR3 has not been investigated yet. Here, we used HEK293 cells as a model system to dissect the possible signaling components that are involved in the regulation of DR3-mediated IL-8 gene expression. Although both DR3 and TNFRI activated TRAF2 and NF-kappaB to induce IL-8 gene transcription, the kinase cascades that transduce signals for DR3- and TNFRI-induced IL-8 gene transcription are different. The axis TAK1/ASK1-MKK4/MKK7-JNK2 is responsible for DR3-mediated IL-8 gene expression whereas the axis ASK1-MKK4-JNK1/JNK2/p38MAPK is the choice for TNFRI-mediated activation of IL-8 gene expression. This indicates that the downstream signaling pathways of DR3 and TNFRI for IL-8 secretion are divergent even though both receptors contain death-domain and induce IL-8 secretion via TRAF2.

  19. Gene expression profiling of craniofacial fibrous dysplasia reveals ADAMTS2 overexpression as a potential marker.

    PubMed

    Zhou, Shang-Hui; Yang, Wen-Jun; Liu, Sheng-Wen; Li, Jiang; Zhang, Chun-Ye; Zhu, Yun; Zhang, Chen-Ping

    2014-01-01

    Fibrous dysplasia (FD) as an abnormal bone growth is one of the common fibro-osseous leasions (FOL) in oral and maxillofacial region, however, its etiology still remains unclear. Here, we performed gene expression profiling of FD using microarray analysis to explore the key molecule events in FD development, and develop potential diagnostic markers or therapeutic targets for FD. We found that 1,881 genes exhibited differential expression with more than two-fold changes in FD compared to normal bone tissues, including 1,200 upregulated genes and 681 downregulated genes. Pathway analysis indicated that obviously activated pathways are Ribosome and ECM-receptor interaction pathways; downregulated pathways are "Hepatitis C" and "cancer" signaling pathways. We further validated the expression of ADAMTS2, one of most differentiated expressed genes, by Immunohistochemistry (IHC) in 40 of FD cases. Results showed that ADAMTS2 was significantly overexpressed in FD tissues, but rarely expressed in normal bone tissues, suggesting that ADAMTS2 could be a potential biomarker for FD. Thus, this study uncovered differentially expressed candidate genes in FD, which provides pilot data for understanding FD pathogenesis, and developing novel biomarkers for diagnosis and targeting of FD.

  20. Positive association between a DNA sequence variant in the serotonin 2A receptor gene and schizophrenia

    SciTech Connect

    Inayama, Y.; Yoneda, H.; Sakai, T.

    1996-02-16

    Sixty-two patients with schizophrenia and 96 normal controls were investigated for genetic association with restriction fragment length polymorphisms (RFLPs) in the serotonin receptor genes. A positive association between the serotonin 2A receptor gene (HTR2A) and schizophrenia was found, but not between schizophrenia and the serotonin 1A receptor gene. The positive association we report here would suggest that the DNA region with susceptibility to schizophrenia lies in the HTR2A on the long arm of chromosome 13. 15 refs., 2 tabs.

  1. The distribution of transient receptor potential melastatin-8 in the rat soft palate, epiglottis, and pharynx.

    PubMed

    Sato, Tadasu; Fujita, Masatoshi; Kano, Mitsuhiro; Hosokawa, Hiroshi; Kondo, Teruyoshi; Suzuki, Toshihiko; Kasahara, Eriko; Shoji, Noriaki; Sasano, Takashi; Ichikawa, Hiroyuki

    2013-03-01

    Immunohistochemistry for transient receptor potential melastatin-8 (TRPM8), the cold and menthol receptor, was performed on the rat soft palate, epiglottis and pharynx. TRPM8-immunoreactive (IR) nerve fibers were located beneath the mucous epithelium, and occasionally penetrated the epithelium. These nerve fibers were abundant in the posterior portion of the soft palate and at the border region of naso-oral and laryngeal parts of the pharynx. The epiglottis was free from such nerve fibers. The double immunofluorescence method demonstrated that TRPM8-IR nerve fibers in the pharynx and soft palate were mostly devoid of calcitonin gene-related peptide-immunoreactivity (CGRP-IR). The retrograde tracing method also demonstrated that 30.1 and 8.7 % of sensory neurons in the jugular and petrosal ganglia innervating the pharynx contained TRPM8-IR, respectively. Among these neurons, the co-expression of TRPM8 and CGRP-IR was very rare. In the nodose ganglion, however, pharyngeal neurons were devoid of TRPM8-IR. Taste bud-like structures in the soft palate and pharynx contained 4-9 TRPM8-IR cells. In the epiglottis, the mucous epithelium on the laryngeal side had numerous TRPM8-IR cells. The present study suggests that TRPM8 can respond to cold stimulation when food and drinks pass through oral and pharyngeal cavities.

  2. Isolation of Drosophila genes encoding G protein-coupled receptor kinases.

    PubMed Central

    Cassill, J A; Whitney, M; Joazeiro, C A; Becker, A; Zuker, C S

    1991-01-01

    G protein-coupled receptors are regulated via phosphorylation by a variety of protein kinases. Recently, termination of the active state of two such receptors, the beta-adrenergic receptor and rhodopsin, has been shown to be mediated by agonist- or light-dependent phosphorylation of the receptor by members of a family of protein-serine/threonine kinases (here referred to as G protein-coupled receptor kinases). We now report the isolation of a family of genes encoding a set of Drosophila protein kinases that appear to code for G protein-coupled receptor kinases. These proteins share a high degree of sequence homology with the bovine beta-adrenergic receptor kinase. The presence of a conserved family of G protein-coupled receptor kinases in vertebrates and invertebrates points to the central role of these kinases in signal transduction cascades. Images PMID:1662381

  3. Epigenetic regulation of olfactory receptor gene expression by the Myb–MuvB/dREAM complex

    PubMed Central

    Sim, Choon Kiat; Perry, Sarah; Tharadra, Sana Khalid; Lipsick, Joseph S.; Ray, Anandasankar

    2012-01-01

    In both mammals and insects, an olfactory neuron will usually select a single olfactory receptor and repress remaining members of large receptor families. Here we show that a conserved multiprotein complex, Myb–MuvB (MMB)/dREAM, plays an important role in mediating neuron-specific expression of the carbon dioxide (CO2) receptor genes (Gr63a/Gr21a) in Drosophila. Activity of Myb in the complex is required for expression of Gr63a/Gr21a and acts in opposition to the histone methyltransferase Su(var)3-9. Consistent with this, we observed repressive dimethylated H3K9 modifications at the receptor gene loci, suggesting a mechanism for silencing receptor gene expression. Conversely, other complex members, Mip120 (Myb-interacting protein 120) and E2F2, are required for repression of Gr63a in inappropriate neurons. Misexpression in mutants is accompanied by an increase in the H3K4me3 mark of active chromatin at the receptor gene locus. Nuclei of CO2 receptor-expressing neurons contain reduced levels of the repressive subunit Mip120 compared with surrounding neurons and increased levels of Myb, suggesting that activity of the complex can be regulated in a cell-specific manner. Our evidence suggests a model in which olfactory receptors are regulated epigenetically and the MMB/dREAM complex plays a critical role in specifying, maintaining, and modulating the receptor-to-neuron map. PMID:23105004

  4. Epigenetic regulation of olfactory receptor gene expression by the Myb-MuvB/dREAM complex.

    PubMed

    Sim, Choon Kiat; Perry, Sarah; Tharadra, Sana Khalid; Lipsick, Joseph S; Ray, Anandasankar

    2012-11-15

    In both mammals and insects, an olfactory neuron will usually select a single olfactory receptor and repress remaining members of large receptor families. Here we show that a conserved multiprotein complex, Myb-MuvB (MMB)/dREAM, plays an important role in mediating neuron-specific expression of the carbon dioxide (CO(2)) receptor genes (Gr63a/Gr21a) in Drosophila. Activity of Myb in the complex is required for expression of Gr63a/Gr21a and acts in opposition to the histone methyltransferase Su(var)3-9. Consistent with this, we observed repressive dimethylated H3K9 modifications at the receptor gene loci, suggesting a mechanism for silencing receptor gene expression. Conversely, other complex members, Mip120 (Myb-interacting protein 120) and E2F2, are required for repression of Gr63a in inappropriate neurons. Misexpression in mutants is accompanied by an increase in the H3K4me3 mark of active chromatin at the receptor gene locus. Nuclei of CO(2) receptor-expressing neurons contain reduced levels of the repressive subunit Mip120 compared with surrounding neurons and increased levels of Myb, suggesting that activity of the complex can be regulated in a cell-specific manner. Our evidence suggests a model in which olfactory receptors are regulated epigenetically and the MMB/dREAM complex plays a critical role in specifying, maintaining, and modulating the receptor-to-neuron map.

  5. Sigma-1 receptor ligands: potential in the treatment of neuropsychiatric disorders.

    PubMed

    Hayashi, Teruo; Su, Tsung-Ping

    2004-01-01

    The sigma receptor was originally proposed to be a subtype of the opioid receptor. However, it is now clear that sigma receptors are unique non-opioid, non-phencyclidine brain proteins. Two types of sigma receptor exist, the sigma-1 receptor and the sigma-2 receptor. sigma-1 receptors have been cloned and their distribution, physiological functions and roles in signal transduction were recently characterised. Certain sex hormones in the brain (neurosteroids) are known to interact with sigma-1 receptors. sigma-1 receptors regulate glutamate NMDA receptor function and the release of neurotransmitters such as dopamine. They are thus proposed to be involved in learning and memory as well as in certain neuropsychiatric disorders. Selective sigma-1 receptor ligands have been suggested to represent a new class of therapeutic agents for neuropsychiatric disorders, although none have yet been introduced into therapeutic use. Early studies showed that psychotomimetic benzomorphans, as well as several antipsychotics, can bind to sigma-1 receptors. As a result of these findings, sigma-1 receptor ligands have been proposed as being of potential use in the treatment of schizophrenia. Nevertheless, the relationship of sigma-1 receptors to the underlying pathogenesis of schizophrenia is still unclear. sigma-1 receptor ligands have failed to improve acute psychotic symptoms of schizophrenia in clinical trials, but, interestingly, a few studies have shown an improvement in negative symptoms in schizophrenic patients. A number of preclinical studies have shown that selective agonists of sigma-1 receptors affect higher-ordered brain functions such as learning and memory, cognition and mood. These studies indicate that sigma-1 receptor agonists may exert therapeutic effects in depression and senile dementia. Indeed, the sigma-1 receptor agonist igmesine, has been shown to improve depression in a clinical trial. The most distinctive feature of the action of sigma-1 receptor ligands is

  6. Transient Receptor Potential Vanilloid 1 Regulates Mitochondrial Membrane Potential and Myocardial Reperfusion Injury.

    PubMed

    Hurt, Carl M; Lu, Yao; Stary, Creed M; Piplani, Honit; Small, Bryce A; Urban, Travis J; Qvit, Nir; Gross, Garrett J; Mochly-Rosen, Daria; Gross, Eric R

    2016-09-26

    The transient receptor potential vanilloid 1 (TRPV1) mediates cellular responses to pain, heat, or noxious stimuli by calcium influx; however, the cellular localization and function of TRPV1 in the cardiomyocyte is largely unknown. We studied whether myocardial injury is regulated by TRPV1 and whether we could mitigate reperfusion injury by limiting the calcineurin interaction with TRPV1. In primary cardiomyocytes, confocal and electron microscopy demonstrates that TRPV1 is localized to the mitochondria. Capsaicin, the specific TRPV1 agonist, dose-dependently reduced mitochondrial membrane potential and was blocked by the TRPV1 antagonist capsazepine or the calcineurin inhibitor cyclosporine. Using in silico analysis, we discovered an interaction site for TRPV1 with calcineurin. We synthesized a peptide, V1-cal, to inhibit the interaction between TRPV1 and calcineurin. In an in vivo rat myocardial infarction model, V1-cal given just prior to reperfusion substantially mitigated myocardial infarct size compared with vehicle, capsaicin, or cyclosporine (24±3% versus 61±2%, 45±1%, and 49±2%, respectively; n=6 per group; P<0.01 versus all groups). Infarct size reduction by V1-cal was also not seen in TRPV1 knockout rats. TRPV1 is localized at the mitochondria in cardiomyocytes and regulates mitochondrial membrane potential through an interaction with calcineurin. We developed a novel therapeutic, V1-cal, that substantially reduces reperfusion injury by inhibiting the interaction of calcineurin with TRPV1. These data suggest that TRPV1 is an end-effector of cardioprotection and that modulating the TRPV1 protein interaction with calcineurin limits reperfusion injury. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  7. The cannabinoid CB1 receptor antagonists rimonabant (SR141716) and AM251 directly potentiate GABA(A) receptors.

    PubMed

    Baur, R; Gertsch, J; Sigel, E

    2012-04-01

    Rimonabant (SR141716) and the structurally related AM251 are widely used in pharmacological experiments as selective cannabinoid receptor CB(1) antagonists / inverse agonists. Concentrations of 0.5-10 µM are usually applied in in vitro experiments. We intended to show that these drugs did not act at GABA(A) receptors but found a significant positive allosteric modulation instead. Recombinant GABA(A) receptors were expressed in Xenopus oocytes. Receptors were exposed to AM251 or rimonabant in the absence and presence of GABA. Standard electrophysiological techniques were used to monitor the elicited ionic currents. AM251 dose-dependently potentiated responses to 0.5 µM GABA at the recombinant α(1) β(2) γ(2) GABA(A) receptor with an EC(50) below 1 µM and a maximal potentiation of about eightfold. The Hill coefficient indicated that more than one binding site for AM251 was located in this receptor. Rimonabant had a lower affinity, but a fourfold higher efficacy. AM251 potentiated also currents mediated by α(1) β(2) , α(x) β(2) γ(2) (x = 2,3,5,6), α(1) β(3) γ(2) and α(4) β(2) δ GABA(A) receptors, but not those mediated by α(1) β(1) γ(2) . Interestingly, the CB(1) receptor antagonists LY320135 and O-2050 did not significantly affect α(1) β(2) γ(2) GABA(A) receptor-mediated currents at concentrations of 1 µM. This study identified rimonabant and AM251 as positive allosteric modulators of GABA(A) receptors. Thus, potential GABAergic effects of commonly used concentrations of these compounds should be considered in in vitro experiments, especially at extrasynaptic sites where GABA concentrations are low. This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-8. To view Part I of Cannabinoids in Biology and Medicine visit http://dx.doi.org/10.1111/bph.2011.163.issue-7. © 2011 The Authors. British Journal of Pharmacology

  8. Gene discovery at the human T-cell receptor alpha/delta locus.

    PubMed

    Haynes, Marsha R; Wu, Gillian E

    2007-02-01

    The human T-cell receptor (TCR) alpha/delta variable loci are interspersed on the chromosome 14q11 and consist of 57 intergenic spaces ranging from 4 to 100 kb in length. To elucidate the evolutionary history of this locus, we searched the intergenic spaces of all TCR alpha/delta variable (TRAV/DV) genes for pseudogenes and potential protein-coding genes. We applied direct open reading frame (ORF) searches, an exon-finding algorithm and comparative genomics. Two TRAV/DV pseudogenes were discovered bearing 80 and 65% sequence similarity to TRAV14DV4 and TRAV9-1/9-2 genes, respectively. A gene bearing 85% sequence identity to B lymphocyte activation-related protein, BC-1514, upstream of TRAV26-2 was also discovered. This ORF (BC-1514tcra) is a member of a gene family whose evolutionary history and function are not known. In total, 36 analogs of this gene exist in the human, the chimpanzee, the Rhesus monkey, the frog and the zebrafish. Phylogenetic analyses show convergent evolution of these genes. Assays for the expression of BC-1514tcra revealed transcripts in the bone marrow, thymus, spleen, and small intestine. These assays also showed the expression of another analog to BC-1514, found on chromosome 5 in the bone marrow and thymus RNA. The existence of at least 17 analogs at various locations in the human genome and in nonsyntenic chromosomes of the chimpanzee suggest that BC-1514tcra, along with its analogs may be transposable elements with evolved function(s). The identification of conserved putative serine phosphorylation sites provide evidence of their possible role(s) in signal transduction events involved in B cell development and differentiation.

  9. Family structure and phylogenetic analysis of odorant receptor genes in the large yellow croaker (Larimichthys crocea)

    PubMed Central

    2011-01-01

    Background Chemosensory receptors, which are all G-protein-coupled receptors (GPCRs), come in four types: odorant receptors (ORs), vomeronasal receptors, trace-amine associated receptors and formyl peptide receptor-like proteins. The ORs are the most important receptors for detecting a wide range of environmental chemicals in daily life. Most fish OR genes have been identified from genome databases following the completion of the genome sequencing projects of many fishes. However, it remains unclear whether these OR genes from the genome databases are actually expressed in the fish olfactory epithelium. Thus, it is necessary to clone the OR mRNAs directly from the olfactory epithelium and to examine their expression status. Results Eighty-nine full-length and 22 partial OR cDNA sequences were isolated from the olfactory epithelium of the large yellow croaker, Larimichthys crocea. Bayesian phylogenetic analysis classified the vertebrate OR genes into two types, with several clades within each type, and showed that the L. crocea OR genes of each type are more closely related to those of fugu, pufferfish and stickleback than they are to those of medaka, zebrafish and frog. The reconciled tree showed 178 duplications and 129 losses. The evolutionary relationships among OR genes in these fishes accords with their evolutionary history. The fish OR genes have experienced functional divergence, and the different clades of OR genes have evolved different functions. The result of real-time PCR shows that different clades of ORs have distinct expression levels. Conclusion We have shown about 100 OR genes to be expressed in the olfactory epithelial tissues of L. crocea. The OR genes of modern fishes duplicated from their common ancestor, and were expanded over evolutionary time. The OR genes of L. crocea are closely related to those of fugu, pufferfish and stickleback, which is consistent with its evolutionary position. The different expression levels of OR genes of large

  10. Macrophage mannose receptor-specific gene delivery vehicle for macrophage engineering.

    PubMed

    Ruan, Gui-Xin; Chen, Yu-Zhe; Yao, Xing-Lei; Du, Anariwa; Tang, Gu-Ping; Shen, You-Qing; Tabata, Yasuhiko; Gao, Jian-Qing

    2014-05-01

    Macrophages are the most plastic cells in the hematopoietic system and they exhibit great functional diversity. They have been extensively applied in anti-inflammatory, anti-fibrotic and anti-cancer therapies. However, the application of macrophages is limited by the efficiency of their engineering. The macrophage mannose receptor (MMR, CD206), a C-type lectin receptor, is ubiquitously expressed on macrophages and has a high affinity for mannose oligosaccharides. In the present study, we developed a novel non-viral vehicle with specific affinity for MMR. Mannan was cationized with spermine at a grafted ratio of ∼12% to deliver DNA and was characterized as a stable system for delivery. This spermine-mannan (SM)-based delivery system was evaluated as a biocompatible vehicle with superior transfection efficiency on murine macrophages, up to 28.5-fold higher than spermine-pullulan, 11.5-fold higher than polyethylenimine and 3.0-fold higher than Lipofectamine™ 2000. We confirmed that the SM-based delivery system for macrophages transfection was MMR-specific and we described the intracellular transport of the delivery system. To our knowledge, this is the first study using SM to demonstrate a mannose receptor-specific gene delivery system, thereby highlighting the potential of a novel specific non-viral delivery vehicle for macrophage engineering.

  11. Triphenyl phosphate-induced developmental toxicity in zebrafish: Potential role of the retinoic acid receptor

    PubMed Central

    Isales, Gregory M.; Hipszer, Rachel A.; Raftery, Tara D.; Chen, Albert; Stapleton, Heather M.; Volz, David C.

    2015-01-01

    Using zebrafish as a model, we previously reported that developmental exposure to triphenyl phosphate (TPP) – a high-production volume organophosphate-based flame retardant – results in dioxin-like cardiac looping impairments that are independent of the aryl hydrocarbon receptor. Using a pharmacologic approach, the objective of this study was to investigate the potential role of retinoic acid receptor (RAR) – a nuclear receptor that regulates vertebrate heart morphogenesis – in mediating TPP-induced developmental toxicity in zebrafish. We first revealed that static exposure of zebrafish from 5-72 hours post-fertilization (hpf) to TPP in the presence of non-toxic concentrations of an RAR antagonist (BMS493) significantly enhanced TPP-induced toxicity (relative to TPP alone), even though identical non-toxic BMS493 concentrations mitigated retinoic acid (RA)-induced toxicity. BMS493-mediated enhancement of TPP toxicity was not a result of differential TPP uptake or metabolism, as internal embryonic doses of TPP and diphenyl phosphate (DPP) – a primary TPP metabolite - were not different in the presence or absence of BMS493. Using real-time PCR, we then quantified the relative change in expression of cytochrome P450 26a1 (cyp26a1) – a major target gene for RA-induced RAR activation in zebrafish – and found that RA and TPP exposure resulted in a ∼5-fold increase and decrease in cyp26a1 expression, respectively, relative to vehicle-exposed embryos. To address whether TPP may interact with human RARs, we then exposed Chinese hamster ovary cells stably transfected with chimeric human RARα-, RARβ-, or RARγ to TPP in the presence of RA, and found that TPP significantly inhibited RA-induced luciferase activity in a concentration-dependent manner. Overall, our findings suggest that zebrafish RARs may be involved in mediating TPP-induced developmental toxicity, a mechanism of action that may have relevance to humans. PMID:25725299

  12. Role of transient receptor potential and acid-sensing ion channels in peripheral inflammatory pain.

    PubMed

    White, John P M; Cibelli, Mario; Rei Fidalgo, Antonio; Paule, Cleoper C; Noormohamed, Faruq; Urban, Laszlo; Maze, Mervyn; Nagy, Istvan

    2010-03-01

    Pain originating in inflammation is the most common pathologic pain condition encountered by the anesthesiologist whether in the context of surgery, its aftermath, or in the practice of pain medicine. Inflammatory agents, released as components of the body's response to peripheral tissue damage or disease, are now known to be collectively capable of activating transient receptor potential vanilloid type 1, transient receptor potential vanilloid type 4, transient receptor potential ankyrin type 1, and acid-sensing ion channels, whereas individual agents may activate only certain of these ion channels. These ionotropic receptors serve many physiologic functions-as, indeed, do many of the inflammagens released in the inflammatory process. Here, we introduce the reader to the role of these ionotropic receptors in mediating peripheral pain in response to inflammation.

  13. Localization of the A{sub 3} adenosine receptor gene (ADORA3) to human chromosome 1p

    SciTech Connect

    Monitto, C.L.; Levitt, R.C.; Holroyd, K.J.

    1995-04-10

    Adenosine modulates important physiologic functions involving the cardiovascular system, brain, kidneys, lungs, GI tract, and immune system. To date four adenosine receptors have been identified: A{sub 1}, A{sub 2a}, A{sub 2b}, and A{sub 3}. Activation of these receptors results in inhibition (A{sub 1} and A{sub 3}) or stimulation (A{sub 2a} and A{sub 2b}) of intracellular adenyl cyclase activity, stimulation of K{sup +} flux, inhibition of Ca{sup 2+} flux, and modulation of inositol phospholipid turnover. A{sub 3} receptors have been identified and sequenced in the testes, brain, lung, liver, kidney, and heart of various species, including the rat, mouse, and human. A{sub 3} receptor activation is responsible for release of inflammatory mediators from mast cells, which can cause allergic bronchoconstriction. In addition, they can produce systemic vasodilation and locomotor depression via activation of A{sub 3} receptors in the brain. Given the potential importance of A{sub 3} receptor activity in the pathogenesis of pulmonary, cardiovascular, and central nervous system disease states, we set out to localize the human A{sub 3} adenosine receptor gene (ADORA3). 9 refs., 1 fig.

  14. Analysis of gene expression profile identifies potential biomarkers for atherosclerosis

    PubMed Central

    Liu, Luran; Liu, Yan; Liu, Chang; Zhang, Zhuobo; Du, Yaojun; Zhao, Hao

    2016-01-01

    The present study aimed to identify potential biomarkers for atherosclerosis via analysis of gene expression profiles. The microarray dataset no. GSE20129 was downloaded from the Gene Expression Omnibus database. A total of 118 samples from the peripheral blood of female patients was used, including 47 atherosclerotic and 71 non-atherosclerotic patients. The differentially expressed genes (DEGs) in the atherosclerosis samples were identified using the Limma package. Gene ontology term and Kyoto Encyclopedia of Genes and Genomes pathway analyses for DEGs were performed using the Database for Annotation, Visualization and Integrated Discovery tool. The recursive feature elimination (RFE) algorithm was applied for feature selection via iterative classification, and support vector machine classifier was used for the validation of prediction accuracy. A total of 430 DEGs in the atherosclerosis samples were identified, including 149 up- and 281 downregulated genes. Subsequently, the RFE algorithm was used to identify 11 biomarkers, whose receiver operating characteristic curves had an area under curve of 0.92, indicating that the identified 11 biomarkers were representative. The present study indicated that APH1B, JAM3, FBLN2, CSAD and PSTPIP2 may have important roles in the progression of atherosclerosis in females and may be potential biomarkers for early diagnosis and prognosis as well as treatment targets for this disease. PMID:27573188

  15. GABA(B) receptors, schizophrenia and sleep dysfunction: a review of the relationship and its potential clinical and therapeutic implications.

    PubMed

    Kantrowitz, Joshua; Citrome, Leslie; Javitt, Daniel

    2009-08-01

    Evidence for an intrinsic relationship between sleep, cognition and the symptomatic manifestations of schizophrenia is accumulating. This review presents evidence for the possible utility of GABA(B) receptor agonists for the treatment of subjective and objective sleep abnormalities related to schizophrenia. At the phenotypic level, sleep disturbance occurs in 16-30% of patients with schizophrenia and is related to reduced quality of life and poor coping skills. On the neurophysiological level, studies suggest that sleep deficits reflect a core component of schizophrenia. Specifically, slow-wave sleep deficits, which are inversely correlated with cognition scores, are seen. Moreover, sleep plays an increasingly well documented role in memory consolidation in schizophrenia. Correlations of slow-wave sleep deficits with impaired reaction time and declarative memory have also been reported. Thus, both behavioural insomnia and sleep architecture are critical therapeutic targets in patients with schizophrenia. However, long-term treatment with antipsychotics often results in residual sleep dysfunction and does not improve slow-wave sleep, and adjunctive GABA(A) receptor modulators, such as benzodiazepines and zolpidem, can impair sleep architecture and cognition in schizophrenia. GABA(B) receptor agonists have therapeutic potential in schizophrenia. These agents have minimal effect on rapid eye movement sleep while increasing slow-wave sleep. Preclinical associations with increased expression of genes related to slow-wave sleep production and circadian rhythm function have also been reported. GABA(B) receptor deficits result in a sustained hyperdopaminergic state and can be reversed by a GABA(B) receptor agonist. Genetic, postmortem and electrophysiological studies also associate GABA(B) receptors with schizophrenia. While studies thus far have not shown significant effects, prior focus on the use of GABA(B) receptor agonists has been on the positive symptoms of

  16. A novel human gene encoding a G-protein-coupled receptor (GPR15) is located on chromosome 3

    SciTech Connect

    Heiber, M.; Marchese, A.; O`Dowd, B.F.

    1996-03-05

    We used sequence similarities among G-protein-coupled receptor genes to discover a novel receptor gene. Using primers based on conserved regions of the opioid-related receptors, we isolated a PCR product that was used to locate the full-length coding region of a novel human receptor gene, which we have named GPR15. A comparison of the amino acid sequence of the receptor gene, which we have named GPR15. A comparison of the amino acid sequence of the receptor encoded by GPR15 with other receptors revealed that it shared sequence identity with the angiotensin II AT1 and AT2 receptors, the interleukin 8b receptor, and the orphan receptors GPR1 and AGTL1. GPR15 was mapped to human chromosome 3q11.2-q13.1. 12 refs., 2 figs.

  17. SAMP8 mice have altered hippocampal gene expression in long term potentiation, phosphatidylinositol signaling, and endocytosis pathways.

    PubMed

    Armbrecht, Harvey J; Siddiqui, Akbar M; Green, Michael; Farr, Susan A; Kumar, Vijaya B; Banks, William A; Patrick, Ping; Shah, Gul N; Morley, John E

    2014-01-01

    The senescence-accelerated mouse (SAMP8) strain exhibits decreased learning and memory and increased amyloid beta (Aβ) peptide accumulation at 12 months. To detect differences in gene expression in SAMP8 mice, we used a control mouse that was a 50% cross between SAMP8 and CD-1 mice and which showed no memory deficits (50% SAMs). We then compared gene expression in the hippocampus of 4- and 12-month-old SAMP8 and control mice using Affymetrix gene arrays. At 12 months, but not at 4 months, pathway analysis revealed significant differences in the long term potentiation (6 genes), phosphatidylinositol signaling (6 genes), and endocytosis (10 genes) pathways. The changes in long term potentiation included mitogen-activated protein kinase (MAPK) signaling (N-ras, cAMP responsive element binding protein [CREB], protein phosphatase inhibitor 1) and Ca-dependent signaling (inositol triphosphate [ITP] receptors 1 and 2 and phospholipase C). Changes in phosphatidylinositol signaling genes suggested altered signaling through phosphatidylinositol-3-kinase, and Western blotting revealed phosphorylation changes in serine/threonine protein kinase AKT and 70S6K. Changes in the endocytosis pathway involved genes related to clathrin-mediated endocytosis (dynamin and clathrin). Endocytosis is required for receptor recycling, is involved in Aβ metabolism, and is regulated by phosphatidylinositol signaling. In summary, these studies demonstrate altered gene expression in 3 SAMP8 hippocampal pathways associated with memory formation and consolidation. These pathways might provide new therapeutic targets in addition to targeting Aβ metabolism itself.

  18. Transient receptor potential vanilloid 1 expression and function in splenic dendritic cells: a potential role in immune homeostasis.

    PubMed

    Assas, Bakri M; Wakid, Majed H; Zakai, Haytham A; Miyan, Jaleel A; Pennock, Joanne L

    2016-03-01

    Neuro-immune interactions, particularly those driven by neuropeptides, are increasingly implicated in immune responses. For instance, triggering calcium-channel transient receptor potential vanilloid 1 (TRPV1) on sensory nerves induces the release of calcitonin-gene-related peptide (CGRP), a neuropeptide known to moderate dendritic cell activation and T helper cell type 1 polarization. Despite observations that CGRP is not confined to the nervous system, few studies have addressed the possibility that immune cells can respond to well-documented 'neural' ligands independently of peripheral nerves. Here we have identified functionally relevant TRPV1 on primary antigen-presenting cells of the spleen and have demonstrated both calcium influx and CGRP release in three separate strains of mice using natural agonists. Furthermore, we have shown down-regulation of activation markers CD80/86 on dendritic cells, and up-regulation of interleukin-6 and interleukin-10 in response to CGRP treatment. We suggest that dendritic cell responses to neural ligands can amplify neuropeptide release, but more importantly that variability in CGRP release across individuals may have important implications for immune cell homeostasis.

  19. AMPA RECEPTOR POTENTIATORS: FROM DRUG DESIGN TO COGNITIVE ENHANCEMENT

    PubMed Central

    PARTIN, KATHRYN M.

    2014-01-01

    Positive allosteric modulators of ionotropic glutamate receptors have emerged as a target for treating cognitive impairment and neurodegeneration, but also mental illnesses such as major depressive disorder. The possibility of creating a new class of pharmaceutical agent to treat refractive mental health issues has compelled researchers to redouble their efforts to develop a safe, effective treatment for memory and cognition impairments. Coupled with the more robust research methodologies that have emerged, including more sophisticated high-throughput-screens, higher resolution structural biology techniques, and more focused assessment on pharmacokinetics, the development of positive modulators of AMPA receptors holds great promise. We describe recent approaches that improve our understanding of the basic physiology underlying memory and cognition, and their application towards promoting human health. PMID:25462292

  20. AMPA receptor potentiators: from drug design to cognitive enhancement.

    PubMed

    Partin, Kathryn M

    2015-02-01

    Positive allosteric modulators of ionotropic glutamate receptors have emerged as a target for treating cognitive impairment and neurodegeneration, but also mental illnesses such as major depressive disorder. The possibility of creating a new class of pharmaceutical agent to treat refractive mental health issues has compelled researchers to redouble their efforts to develop a safe, effective treatment for memory and cognition impairments. Coupled with the more robust research methodologies that have emerged, including more sophisticated high-throughput-screens, higher resolution structural biology techniques, and more focused assessment on pharmacokinetics, the development of positive modulators of AMPA receptors holds great promise. We describe recent approaches that improve our understanding of the basic physiology underlying memory and cognition, and their application toward promoting human health.

  1. A nonsense mutation in the LDL receptor gene leads to familial hypercholesterolemia in the Druze sect

    SciTech Connect

    Landsberger, D.; Meiner, V.; Reshef, A.; Leitersdorf, E. ); Levy, Yishai ); Westhytzen, D.R. van der; Coetzee, G.A. )

    1992-02-01

    Familial hypercholesterolemia (FH) is an autosomal dominant disease caused by mutations in the LDL receptor gene. Here the authors characterize and LDL receptor mutation that is associated with a distinct haplotype and causes FH in the Druze, a small Middle Eastern Islamic sect with a high degree of inbreeding. The mutation was found in FH families from two distinct Druze villages from the Golan Heights (northern Israel). It was not found either in another Druze FH family residing in a different geographical area nor in eight Arab and four Jewish FH heterozygote index cases whose hypercholesterolemia cosegregates with an identical LDL receptor gene haplotype. The mutation, a single-base substitution, results in a termination codon in exon 4 of the LDL receptor gene that encodes for the fourth repeat of the binding domain of the mature receptor. It can be diagnosed by allele-specific oligonucleotide hybridization of PCR-amplified DNA from FH patients.

  2. Birds Generally Carry a Small Repertoire of Bitter Taste Receptor Genes

    PubMed Central

    Wang, Kai; Zhao, Huabin

    2015-01-01

    As they belong to the most species-rich class of tetrapod vertebrates, birds have long been believed to possess an inferior taste system. However, the bitter taste is fundamental in birds to recognize dietary toxins (which are typically bitter) in potential food sources. To characterize the evolution of avian bitter taste receptor genes (Tas2rs) and to test whether dietary toxins have shaped the repertoire size of avian Tas2rs, we examined 48 genomes representing all but 3 avian orders. The total number of Tas2r genes was found to range from 1 in the domestic pigeon to 12 in the bar-tailed trogon, with an average of 4, which suggested that a much smaller Tas2r gene repertoire exists in birds than in other vertebrates. Furthermore, we uncovered a positive correlation between the number of putatively functional Tas2rs and the abundance of potential toxins in avian diets. Because plant products contain more toxins than animal tissues and insects release poisonous defensive secretions, we hypothesized that herbivorous and insectivorous birds may demand more functional Tas2rs than carnivorous birds feeding on noninsect animals. Our analyses appear to support this hypothesis and highlight the critical role of taste perception in birds. PMID:26342138

  3. Birds Generally Carry a Small Repertoire of Bitter Taste Receptor Genes.

    PubMed

    Wang, Kai; Zhao, Huabin

    2015-09-04

    As they belong to the most species-rich class of tetrapod vertebrates, birds have long been believed to possess an inferior taste system. However, the bitter taste is fundamental in birds to recognize dietary toxins (which are typically bitter) in potential food sources. To characterize the evolution of avian bitter taste receptor genes (Tas2rs) and to test whether dietary toxins have shaped the repertoire size of avian Tas2rs, we examined 48 genomes representing all but 3 avian orders. The total number of Tas2r genes was found to range from 1 in the domestic pigeon to 12 in the bar-tailed trogon, with an average of 4, which suggested that a much smaller Tas2r gene repertoire exists in birds than in other vertebrates. Furthermore, we uncovered a positive correlation between the number of putatively functional Tas2rs and the abundance of potential toxins in avian diets. Because plant products contain more toxins than animal tissues and insects release poisonous defensive secretions, we hypothesized that herbivorous and insectivorous birds may demand more functional Tas2rs than carnivorous birds feeding on noninsect animals. Our analyses appear to support this hypothesis and highlight the critical role of taste perception in birds. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  4. Cannabinoid receptor 1 (CNR1) gene variant moderates neural index of cognitive disruption during nicotine withdrawal.

    PubMed

    Evans, D E; Sutton, S K; Jentink, K G; Lin, H-Y; Park, J Y; Drobes, D J

    2016-09-01

    Nicotine withdrawal-related disruption of cognitive control may contribute to the reinforcement of tobacco use. Identification of gene variants that predict this withdrawal phenotype may lead to tailored pharmacotherapy for smoking cessation. Variation on the cannabinoid receptor 1 gene (CNR1) has been related to nicotine dependence, and CNR1 antagonists may increase attention and memory functioning. We targeted CNR1 variants as moderators of a validated neural marker of nicotine withdrawal-related cognitive disruption. CNR1 polymorphisms comprising the 'TAG' haplotype (rs806379, rs1535255 and rs2023239) were tested independently, as no participants in this sample possessed this haplotype. Nicotine withdrawal-related cognitive disruption was indexed as increased resting electroencephalogram (EEG) alpha-1 power density across 17 electrodes. Seventy-three Caucasian Non-Hispanic smokers (≥15 cigarettes per day) visited the laboratory on two occasions following overnight smoking/nicotine deprivation. Either two nicotine or two placebo cigarettes were smoked prior to collecting EEG data at each session. Analyses showed that rs806379 moderated the effects of nicotine deprivation increasing slow wave EEG (P = 0.004). Smokers homozygous for the major allele exhibited greater nicotine withdrawal-related cognitive disruption. The current findings suggest potential efficacy of cannabinoid receptor antagonism as a pharmacotherapy approach for smoking cessation among individuals who exhibit greater nicotine withdrawal-related cognitive disruption. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  5. Curcumin induces human cathelicidin antimicrobial peptide gene expression through a vitamin D receptor-independent pathway

    PubMed Central

    Guo, Chunxiao; Rosoha, Elena; Lowry, Malcolm B.; Borregaard, Niels; Gombart, Adrian F.

    2012-01-01

    The vitamin D receptor (VDR) mediates the pleiotropic biologic effects of 1α,25 dihydroxy-vitamin D3. Recent in vitro studies suggested that curcumin and poly-unsaturated fatty acids (PUFAs) also