Science.gov

Sample records for receptor potential gene

  1. Potential of GRID2 receptor gene for preventing TNF-induced neurodegeneration in autism.

    PubMed

    Kalkan, Zeynep; Durasi, İlknur Melis; Sezerman, Ugur; Atasever-Arslan, Belkis

    2016-05-01

    Autism is one of the most common subtypes of autism spectrum disorder (ASD). Recent studies suggested a relationship between immune-dependent coding genes and ASD, indicating that long term neuroimmunological anomalies affect brain development and synaptic transmission among neural networks. Furthermore, various studies focused on biomarker potential of TNF-α in autism. Ionotropic receptors are also studied as potential marker for autism since altered gene expression levels are observed in autistic patients. GRID2 is a candidate ionotropic receptor which is involved glutamate transfer. In this study, to propose TNF-α dependent cellular processes involved in autism aetiology in relation to GRID2 we performed a bioinformatic network analysis and identified potential pathways and genes that are involved in TNF-α induced changes at GRID2 receptor levels. As a result, we ascertained the GRID2 receptor gene as a candidate gene and further studied the association between GRID2 expression levels and TNF-induced neurodegeneration. Our bioinformatic analyses and experimental results revealed that TNF-α regulates GRID2 gene expression by activating Cdc42 and GOPC genes. Moreover, increased TNF-α levels leads to increase of caspase-3 protein levels triggering neuronal apoptosis leading to neuronal deficiency, which is one of the major symptoms of autism. The study is the first to show the role of TNF-α in regulation of GRID2 gene expression and its signalling pathway. As a result, GRID2 gene can be a suppressor in TNF-induced neurodegeneration which may help to understand the main factors leading to autism.

  2. Fluoxetine potentiation of methylphenidate-induced gene regulation in striatal output pathways: potential role for 5-HT1B receptor.

    PubMed

    Van Waes, Vincent; Ehrlich, Sarah; Beverley, Joel A; Steiner, Heinz

    2015-02-01

    Drug combinations that include the psychostimulant methylphenidate plus a selective serotonin reuptake inhibitor (SSRI) such as fluoxetine are increasingly used in children and adolescents. For example, this combination is indicated in the treatment of attention-deficit/hyperactivity disorder and depression comorbidity and other mental disorders. Such co-exposure also occurs in patients on SSRIs who use methylphenidate as a cognitive enhancer. The neurobiological consequences of these drug combinations are poorly understood. Methylphenidate alone can produce gene regulation effects that mimic addiction-related gene regulation by cocaine, consistent with its moderate addiction liability. We have previously shown that combining SSRIs with methylphenidate potentiates methylphenidate-induced gene regulation in the striatum. The present study investigated which striatal output pathways are affected by the methylphenidate + fluoxetine combination, by assessing effects on pathway-specific neuropeptide markers, and which serotonin receptor subtypes may mediate these effects. Our results demonstrate that a 5-day repeated treatment with fluoxetine (5 mg/kg) potentiates methylphenidate (5 mg/kg)-induced expression of both dynorphin (direct pathway marker) and enkephalin (indirect pathway). These changes were accompanied by correlated increases in the expression of the 5-HT1B, but not 5-HT2C, serotonin receptor in the same striatal regions. A further study showed that the 5-HT1B receptor agonist CP94253 (3-10 mg/kg) mimics the fluoxetine potentiation of methylphenidate-induced gene regulation. These findings suggest a role for the 5-HT1B receptor in the fluoxetine effects on striatal gene regulation. Given that 5-HT1B receptors are known to facilitate addiction-related gene regulation and behavior, our results suggest that SSRIs may enhance the addiction liability of methylphenidate by increasing 5-HT1B receptor signaling.

  3. A Novel Homozygous Mutation in the Transient Receptor Potential Melastatin 6 Gene: A Case Report

    PubMed Central

    Altıncık, Ayça; Schlingmann, Karl Peter; Tosun, Mahya Sultan

    2016-01-01

    Hereditary hypomagnesemia with secondary hypocalcemia (HSH) is a rare autosomal recessive disease caused by mutations in the transient receptor potential melastatin 6 (TRPM6) gene. Affected individuals present in early infancy with seizures caused by the severe hypocalcemia and hypomagnesemia. By presenting this case report, we also aimed to highlight the need for molecular genetic analysis in inbred or familial cases with hypomagnesemia. A Turkish inbred girl, now aged six years, had presented to another hospital at age two months with seizures diagnosed to be due to hypomagnesemia. She was on magnesium replacement therapy when she was admitted to our clinic with complaints of chronic diarrhea at age 3.6 years. During her follow-up in our clinic, she showed an age-appropriate physical and neurological development. In molecular genetic analysis, a novel homozygous frame-shift mutation (c.3447delT>p.F1149fs) was identified in the TRPM6 gene. This mutation leads to a truncation of the TRPM6 protein, thereby complete loss of function. We present the clinical follow-up findings of a pediatric HSH case due to a novel mutation in the TRPM6 gene and highlight the need for molecular genetic analysis in inbred or familial cases with hypomagnesemia. PMID:26759217

  4. Gene Expression of Growth Factors and Growth Factor Receptors for Potential Targeted Therapy of Canine Hepatocellular Carcinoma

    PubMed Central

    IIDA, Gentoku; ASANO, Kazushi; SEKI, Mamiko; SAKAI, Manabu; KUTARA, Kenji; ISHIGAKI, Kumiko; KAGAWA, Yumiko; YOSHIDA, Orie; TESHIMA, Kenji; EDAMURA, Kazuya; WATARI, Toshihiro

    2013-01-01

    ABSTRACT The purpose of this study was to evaluate the gene expression of growth factors and growth factor receptors of primary hepatic masses, including hepatocellular carcinoma (HCC) and nodular hyperplasia (NH), in dogs. Quantitative real-time reverse transcriptase-polymerase chain reaction was performed to measure the expression of 18 genes in 18 HCCs, 10 NHs, 11 surrounding non-cancerous liver tissues and 4 healthy control liver tissues. Platelet-derived growth factor-B (PDGF-B), transforming growth factor-α, epidermal growth factor receptor, epidermal growth factor and hepatocyte growth factor were found to be differentially expressed in HCC compared with NH and the surrounding non-cancerous and healthy control liver tissues. PDGF-B is suggested to have the potential to become a valuable ancillary target for the treatment of canine HCC. PMID:24189579

  5. Potential mechanisms underlying estrogen-induced expression of the molluscan estrogen receptor (ER) gene.

    PubMed

    Tran, Thi Kim Anh; MacFarlane, Geoff R; Kong, Richard Yuen Chong; O'Connor, Wayne A; Yu, Richard Man Kit

    2016-10-01

    In vertebrates, estrogens and estrogen mimicking chemicals modulate gene expression mainly through a genomic pathway mediated by the estrogen receptors (ERs). Although the existence of an ER orthologue in the mollusc genome has been known for some time, its role in estrogen signalling has yet to be deciphered. This is largely due to its constitutive (ligand-independent) activation and a limited mechanistic understanding of its regulation. To fill this knowledge gap, we cloned and characterised an ER cDNA (sgER) and the 5'-flanking region of the gene from the Sydney rock oyster Saccostrea glomerata. The sgER cDNA is predicted to encode a 477-amino acid protein that contains a DNA-binding domain (DBD) and a ligand-binding domain (LBD) typically conserved among both vertebrate and invertebrate ERs. A comparison of the sgER LBD sequence with those of other ligand-dependent ERs revealed that the sgER LBD is variable at several conserved residues known to be critical for ligand binding and receptor activation. Ligand binding assays using fluorescent-labelled E2 and purified sgER protein confirmed that sgER is devoid of estrogen binding. In silico analysis of the sgER 5'-flanking sequence indicated the presence of three putative estrogen responsive element (ERE) half-sites and several putative sites for ER-interacting transcription factors, suggesting that the sgER promoter may be autoregulated by its own gene product. sgER mRNA is ubiquitously expressed in adult oyster tissues, with the highest expression found in the ovary. Ovarian expression of sgER mRNA was significantly upregulated following in vitro and in vivo exposure to 17β-estradiol (E2). Notably, the activation of sgER expression by E2 in vitro was abolished by the specific ER antagonist ICI 182, 780. To determine whether sgER expression is epigenetically regulated, the in vivo DNA methylation status of the putative proximal promoter in ovarian tissues was assessed using bisulfite genomic sequencing. The

  6. Potential role of killer immunoglobulin receptor genes among individuals vaccinated against hepatitis B virus in Lebanon

    PubMed Central

    Melhem, Nada M; Mahfouz, Rami A; Kreidieh, Khalil; Abdul-Khalik, Rabab; El-Khatib, Rolla; Talhouk, Reem; Musharrafieh, Umayya; Hamadeh, Ghassan

    2016-01-01

    AIM To explore the role of killer immunoglobulin receptor (KIR) genes in responsiveness or non-responsiveness to vaccination against hepatitis B virus. METHODS We recruited 101 voluntary participants between March 2010 and December 2011. Sera samples from vaccinated and non-vaccinated participants were tested for the presence of anti-HBs antibodies as a measure of protection against hepatitis B, hepatitis B surface antigen and hepatitis B core antibody as indicators of infection by enzyme-linked immunosorbent assay. KIR gene frequencies were determined by polymerase chain reaction. RESULTS Sera samples from 99 participants were tested for the levels of anti-HBs as an indicator of protection (≥ 10 mIU/mL) following vaccination as defined by the World Health Organization international reference standard. Among the vaccinated participants, 47% (35/74) had anti-HBs titers above 100 mIU/mL, 22% (16/74) had anti-HBs ranging between 10-100 mIU/mL, and 20% (15/74) had values of less than 10 mIU/mL. We report the lack of significant association between the number of vaccine dosages and the titer of antibodies among our vaccinated participants. The inhibitory KIR2DL1, KIR2DL4, KIR3DL1, KIR3DL2, and KIR3DL were detected in more than 95%, whereas KIR2DL2, KIR2DL3, KIR2DL5 (KR2DL5A and KIR2DL5B) were expressed in 56%, 84% and 42% (25% and 29%) of participants, respectively. The observed frequency of the activating KIR genes ranged between 35% and 55% except for KIR2DS4, detected in 95% of the study participants (40.6% 2DS4*001/002; 82.2% 2DS4*003/007). KIR2DP1 pseudogene was detected in 99% of our participants, whereas KIR3DP*001/02/04 and KIR3DP1*003 had frequencies of 17% and 100%, respectively. No association between the frequency of KIR genes and anti-HBs antibodies was detected. When we compared the frequency of KIR genes between vaccinated individuals with protective antibodies titers and those who lost their protective antibody levels, we did not detect a significant

  7. Alterations Associated with Androgen Receptor Gene Activation in Salivary Duct Carcinoma (SDC) of Both Sexes: Potential Therapeutic Ramifications

    PubMed Central

    Mitani, Yoshitsugu; Rao, Pulivarthi H.; Maity, Sankar N.; Lee, Yu-Chen; Ferrarotto, Renata; Post, Julian C.; Licitra, Lisa; Lippman, Scott M.; Kies, Merrill S.; Weber, Randal S.; Caulin, Carlos; Lin, Sue-Hwa; El-Naggar, Adel K.

    2014-01-01

    Purpose To investigate the molecular events associated with the activation of androgen receptor (AR) as a potential therapeutic target in patients with salivary duct carcinoma (SDC). Experimental Design Comprehensive molecular and expression analysis of the AR gene in 35 tumor specimens (20 males and 15 females) and cell lines derived from SDC using Western blotting and RT-PCR, FISH analysis, and DNA sequencing were conducted. In vitro and in vivo animal studies were also performed. Results AR expression was detected in 70% of the tumors and was mainly nuclear and homogenous in both male and female SDCs, although variable cytoplasmic and/or nuclear localization was also found. We report the identification of Ligand-independent AR splice variants, mutations and extra AR gene copy in primary untreated SDC tumors. In contrast to prostate cancer, no AR gene amplification was observed. In vitro knockdown of AR in a female derived SDC cell line revealed marked growth inhibition in culture and in vivo androgen independent tumor growth. Conclusions Our study provides new detailed information on the molecular and structural alterations associated with AR gene activation in SDC and shed more light on the putative functional role of AR in SDC cells. Based on these data, we propose that patients with SDC (male and female) can be stratified for hormone-based therapy in future clinical trials. PMID:25316813

  8. Targeted deletion of the mouse α2 nicotinic acetylcholine receptor subunit gene (Chrna2) potentiates nicotine-modulated behaviors.

    PubMed

    Lotfipour, Shahrdad; Byun, Janet S; Leach, Prescott; Fowler, Christie D; Murphy, Niall P; Kenny, Paul J; Gould, Thomas J; Boulter, Jim

    2013-05-01

    Baseline and nicotine-modulated behaviors were assessed in mice harboring a null mutant allele of the nicotinic acetylcholine receptor (nAChR) subunit gene α2 (Chrna2). Homozygous Chrna2(-/-) mice are viable, show expected sex and Mendelian genotype ratios, and exhibit no gross neuroanatomical abnormalities. A broad range of behavioral tests designed to assess genotype-dependent effects on anxiety (elevated plus maze and light/dark box), motor coordination (narrow bean traverse and gait), and locomotor activity revealed no significant differences between mutant mice and age-matched wild-type littermates. Furthermore, a panel of tests measuring traits, such as body position, spontaneous activity, respiration, tremors, body tone, and startle response, revealed normal responses for Chrna2-null mutant mice. However, Chrna2(-/-) mice do exhibit a mild motor or coordination phenotype (a decreased latency to fall during the accelerating rotarod test) and possess an increased sensitivity to nicotine-induced analgesia in the hotplate assay. Relative to wild-type, Chrna2(-/-) mice show potentiated nicotine self-administration and withdrawal behaviors and exhibit a sex-dependent enhancement of nicotine-facilitated cued, but not trace or contextual, fear conditioning. Overall, our results suggest that loss of the mouse nAChR α2 subunit has very limited effects on baseline behavior but does lead to the potentiation of several nicotine-modulated behaviors.

  9. Targeted Deletion of the Mouse α2 Nicotinic Acetylcholine Receptor Subunit Gene (Chrna2) Potentiates Nicotine-Modulated Behaviors

    PubMed Central

    Lotfipour, Shahrdad; Byun, Janet S.; Leach, Prescott; Fowler, Christie D.; Murphy, Niall P.; Kenny, Paul J.; Gould, Thomas J.; Boulter, Jim

    2013-01-01

    Baseline and nicotine-modulated behaviors were assessed in mice harboring a null mutant allele of the nicotinic acetylcholine receptor (nAChR) subunit gene α2 (Chrna2). Homozygous Chrna2−/− mice are viable, show expected sex and Mendelian genotype ratios, and exhibit no gross neuroanatomical abnormalities. A broad range of behavioral tests designed to assess genotype-dependent effects on anxiety (elevated plus maze and light/dark box), motor coordination (narrow bean traverse and gait), and locomotor activity revealed no significant differences between mutant mice and age-matched wild-type littermates. Furthermore, a panel of tests measuring traits, such as body position, spontaneous activity, respiration, tremors, body tone, and startle response, revealed normal responses for Chrna2-null mutant mice. However, Chrna2−/− mice do exhibit a mild motor or coordination phenotype (a decreased latency to fall during the accelerating rotarod test) and possess an increased sensitivity to nicotine-induced analgesia in the hotplate assay. Relative to wild-type, Chrna2−/− mice show potentiated nicotine self-administration and withdrawal behaviors and exhibit a sex-dependent enhancement of nicotine-facilitated cued, but not trace or contextual, fear conditioning. Overall, our results suggest that loss of the mouse nAChR α2 subunit has very limited effects on baseline behavior but does lead to the potentiation of several nicotine-modulated behaviors. PMID:23637165

  10. Gene Expression Analysis of CL-20-induced Reversible Neurotoxicity Reveals GABAA Receptors as Potential Target in the Earthworm Eisenia fetida

    PubMed Central

    Gong, Ping; Guan, Xin; Pirooznia, Mehdi; Liang, Chun; Perkins, Edward J.

    2012-01-01

    The earthworm Eisenia fetida is one of the most used species in standardized soil ecotoxicity tests. Endpoints such as survival, growth and reproduction are eco-toxicologically relevant but provide little mechanistic insight into toxicity pathways, especially at the molecular level. Here we applied a toxicogenomic approach to investigate the mode of action underlying the reversible neurotoxicity of hexanitrohexaazaisowurtzitane (CL-20), a cyclic nitroamine explosives compound. We developed an E. fetida-specific shotgun microarray targeting 15119 unique E. fetida transcripts. Using this array we profiled gene expression in E. fetida in response to exposure to CL-20. Eighteen earthworms were exposed for 6 days to 0.2 μg/cm2 of CL-20 on filter paper, half of which were allowed to recover in a clean environment for 7 days. Nine vehicle control earthworms were sacrificed at day 6 and 13, separately. Electrophysiological measurements indicated that the conduction velocity of earthworm medial giant nerve fiber decreased significantly after 6-day exposure to CL-20, but was restored after 7 days of recovery. Total RNA was isolated from the four treatment groups including 6-day control, 6-day exposed, 13-day control and 13-day exposed (i.e. 6-day exposure followed by 7-day recovery), and was hybridized to the 15K shot-gun oligo array. Statistical and bioinformatic analyses suggest that CL-20 initiated neurotoxicity by non-competitively blocking the ligand-gated GABAA receptor ion channel, leading to altered expression of genes involved in GABAergic, cholinergic, and Agrin-MuSK pathways. In the recovery phase, expression of affected genes returned to normality, possibly as a result of autophagy and CL-20 dissociation/metabolism. This study provides significant insights into potential mechanisms of CL-20-induced neurotoxicity and the recovery of earthworms from transient neurotoxicity stress. PMID:22191394

  11. Taste Receptor Genes

    PubMed Central

    Bachmanov, Alexander A.; Beauchamp, Gary K.

    2009-01-01

    In the past several years, tremendous progress has been achieved with the discovery and characterization of vertebrate taste receptors from the T1R and T2R families, which are involved in recognition of bitter, sweet, and umami taste stimuli. Individual differences in taste, at least in some cases, can be attributed to allelic variants of the T1R and T2R genes. Progress with understanding how T1R and T2R receptors interact with taste stimuli and with identifying their patterns of expression in taste cells sheds light on coding of taste information by the nervous system. Candidate mechanisms for detection of salts, acids, fat, complex carbohydrates, and water have also been proposed, but further studies are needed to prove their identity. PMID:17444812

  12. Gene expression profiling in hearts of diabetic mice uncovers a potential role of estrogen-related receptor γ in diabetic cardiomyopathy.

    PubMed

    Lasheras, Jaime; Vilà, Maria; Zamora, Mònica; Riu, Efrén; Pardo, Rosario; Poncelas, Marcos; Cases, Ildefonso; Ruiz-Meana, Marisol; Hernández, Cristina; Feliu, Juan E; Simó, Rafael; García-Dorado, David; Villena, Josep A

    2016-07-15

    Diabetic cardiomyopathy is characterized by an abnormal oxidative metabolism, but the underlying mechanisms remain to be defined. To uncover potential mechanisms involved in the pathophysiology of diabetic cardiomyopathy, we performed a gene expression profiling study in hearts of diabetic db/db mice. Diabetic hearts showed a gene expression pattern characterized by the up-regulation of genes involved in lipid oxidation, together with an abnormal expression of genes related to the cardiac contractile function. A screening for potential regulators of the genes differentially expressed in diabetic mice found that estrogen-related receptor γ (ERRγ) was increased in heart of db/db mice. Overexpression of ERRγ in cultured cardiomyocytes was sufficient to promote the expression of genes involved in lipid oxidation, increase palmitate oxidation and induce cardiomyocyte hypertrophy. Our findings strongly support a role for ERRγ in the metabolic alterations that underlie the development of diabetic cardiomyopathy. PMID:27062900

  13. The autoimmunity-associated gene PTPN22 potentiates toll-like receptor-driven, type 1 interferon-dependent immunity.

    PubMed

    Wang, Yaya; Shaked, Iftach; Stanford, Stephanie M; Zhou, Wenbo; Curtsinger, Julie M; Mikulski, Zbigniew; Shaheen, Zachary R; Cheng, Genhong; Sawatzke, Kristy; Campbell, Amanda M; Auger, Jennifer L; Bilgic, Hatice; Shoyama, Fernanda M; Schmeling, David O; Balfour, Henry H; Hasegawa, Kiminori; Chan, Andrew C; Corbett, John A; Binstadt, Bryce A; Mescher, Matthew F; Ley, Klaus; Bottini, Nunzio; Peterson, Erik J

    2013-07-25

    Immune cells sense microbial products through Toll-like receptors (TLR), which trigger host defense responses including type 1 interferons (IFNs) secretion. A coding polymorphism in the protein tyrosine phosphatase nonreceptor type 22 (PTPN22) gene is a susceptibility allele for human autoimmune and infectious disease. We report that Ptpn22 selectively regulated type 1 IFN production after TLR engagement in myeloid cells. Ptpn22 promoted host antiviral responses and was critical for TLR agonist-induced, type 1 IFN-dependent suppression of inflammation in colitis and arthritis. PTPN22 directly associated with TNF receptor-associated factor 3 (TRAF3) and promotes TRAF3 lysine 63-linked ubiquitination. The disease-associated PTPN22W variant failed to promote TRAF3 ubiquitination, type 1 IFN upregulation, and type 1 IFN-dependent suppression of arthritis. The findings establish a candidate innate immune mechanism of action for a human autoimmunity "risk" gene in the regulation of host defense and inflammation.

  14. Paired box gene 2 is associated with estrogen receptor α in ovarian serous tumors: Potential theory basis for targeted therapy

    PubMed Central

    Wang, Min; Ma, Haifen

    2016-01-01

    It has been suggested that Paired box gene (PAX)2 is activated by estradiol via estrogen receptor (ER)α in breast and endometrial cancer. The expression of PAX2 was restricted to ovarian serous tumors and only one case was positive in borderline mucinous tumor in our previous study. In the present study, immunohistochemistry was performed to assess the expression of ERα in 58 cases of ovarian serous tumors, including 30 serous cystadenomas, 16 borderline serous cystadenomas, 12 serous carcinomas and 67 cases of ovarian mucinous tumors, including 29 mucinous cystadenoma, 23 borderline mucinous cystadenoma and 15 mucinous carcinoma, which were the same specimens with detection of PAX2 expression. The results demonstrated that ERα was expressed in 10% (3/30) of serous cystadenomas, 62.5% (10/16) borderline serous cystadenomas and 66.7% (8/12) serous carcinomas. The expression of ERα in borderline serous cystadenomas and serous carcinomas were significantly higher compared with that in serous cystadenomas (P<0.01). ERα was detected in 3.4% (1/29) mucinous cystadenoma, 26.1% (6/23) borderline mucinous cystadenoma and only 6.7% (1/15) mucinous carcinoma. Furthermore, a scatter plot of the expression of PAX2 and ERα revealed a linear correlation between them in ovarian serous tumors (P<0.0001). With few positive results, no correlation was determined in ovarian mucinous tumors. It was demonstrated that PAX2 is associated with ERα in ovarian serous tumors, and this may become a potential theory basis for targeted therapy for ovarian serous tumors. Further research is required to determine how PAX2 and ERα work together, and the role of targeted therapy in ovarian serous tumors. PMID:27446571

  15. Melatonin Receptor Genes in Vertebrates

    PubMed Central

    Li, Di Yan; Smith, David Glenn; Hardeland, Rüdiger; Yang, Ming Yao; Xu, Huai Liang; Zhang, Long; Yin, Hua Dong; Zhu, Qing

    2013-01-01

    Melatonin receptors are members of the G protein-coupled receptor (GPCR) family. Three genes for melatonin receptors have been cloned. The MT1 (or Mel1a or MTNR1A) and MT2 (or Mel1b or MTNR1B) receptor subtypes are present in humans and other mammals, while an additional melatonin receptor subtype, Mel1c (or MTNR1C), has been identified in fish, amphibians and birds. Another melatonin related orphan receptor, GPR50, which does not bind melatonin, is found exclusively in mammals. The hormone melatonin is secreted primarily by the pineal gland, with highest levels occurring during the dark period of a circadian cycle. This hormone acts systemically in numerous organs. In the brain, it is involved in the regulation of various neural and endocrine processes, and it readjusts the circadian pacemaker, the suprachiasmatic nucleus. This article reviews recent studies of gene organization, expression, evolution and mutations of melatonin receptor genes of vertebrates. Gene polymorphisms reveal that numerous mutations are associated with diseases and disorders. The phylogenetic analysis of receptor genes indicates that GPR50 is an outgroup to all other melatonin receptor sequences. GPR50 may have separated from a melatonin receptor ancestor before the split between MTNR1C and the MTNR1A/B ancestor. PMID:23712359

  16. Gene expression profiling of potential peroxisome proliferator-activated receptor (PPAR) target genes in human hepatoblastoma cell lines inducibly expressing different PPAR isoforms

    PubMed Central

    Tachibana, Keisuke; Kobayashi, Yumi; Tanaka, Toshiya; Tagami, Masayuki; Sugiyama, Akira; Katayama, Tatsuya; Ueda, Chihiro; Yamasaki, Daisuke; Ishimoto, Kenji; Sumitomo, Mikako; Uchiyama, Yasutoshi; Kohro, Takahide; Sakai, Juro; Hamakubo, Takao; Kodama, Tatsuhiko; Doi, Takefumi

    2005-01-01

    Background Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors and commonly play an important role in the regulation of lipid homeostasis. To identify human PPARs-responsive genes, we established tetracycline-regulated human hepatoblastoma cell lines that can be induced to express each human PPAR and investigated the gene expression profiles of these cells. Results The expression of each introduced PPAR gene was investigated using the various concentrations of doxycycline in the culture media. We found that the expression of each PPAR subtype was tightly controlled by the concentration of doxycycline in these established cell lines. DNA microarray analyses using these cell lines were performed with or without adding each subtype ligand and provided much important information on the PPAR target genes involved in lipid metabolism, transport, storage and other activities. Interestingly, it was noted that while ligand-activated PPARδ induced target gene expression, unliganded PPARδ repressed these genes. The real-time RT-PCR was used to verify the altered expression of selected genes by PPARs and we found that these genes were induced to express in the same pattern as detected in the microarray analyses. Furthermore, we analysed the 5'-flanking region of the human adipose differentiation-related protein (adrp) gene that responded to all subtypes of PPARs. From the detailed analyses by reporter assays, the EMSAs, and ChIP assays, we determined the functional PPRE of the human adrp gene. Conclusion The results suggest that these cell lines are important tools used to identify the human PPARs-responsive genes. PMID:16197558

  17. Variability in response to nicotine in the LSxSS RI strains: potential role of polymorphisms in alpha4 and alpha6 nicotinic receptor genes.

    PubMed

    Tritto, Theresa; Stitzel, Jerry A; Marks, Michael J; Romm, Elena; Collins, Allan C

    2002-04-01

    Several studies have shown that genetic factors influence the effects of nicotine on respiration, acoustic startle, Y-maze crosses and rears, heart rate and body temperature in the mouse. Recently, we identified restriction fragment length polymorphisms (RFLPs) associated with the alpha4 (Chrna4) and alpha6 (Chrna6) nicotinic cholinergic receptor genes in the recombinant inbred (RI) strains derived from the Long-Sleep (LS) and Short-Sleep (SS) mouse lines. The alpha4 polymorphism has been identified as a point-mutation at position 529 (threonine to alanine) and the alpha6 polymorphism has not yet been identified. The studies described here evaluated the potential role of these polymorphisms in regulating sensitivity to nicotine by constructing dose-response curves for the effects of nicotine on six responses in the LSxSS RI strains. The results obtained suggest that both of the polymorphisms may play a role in regulating variability in sensitivity to nicotine. Those RI strains carrying the LS-like alpha4 RFLP were significantly more sensitive to the effects of nicotine on Y-maze crosses and rears, temperature and respiration and were less sensitive to the effects of nicotine on acoustic startle than those strains carrying the SS-like alpha4 RFLP. Those RI strains carrying the LS-like alpha6 RFLP were more sensitive to the effects of nicotine on respiration and acoustic startle, and less sensitive to the effects of nicotine on Y-maze crosses than those strains carrying the SS-like alpha6 RFLP. These results suggest that genetically determined differences in sensitivity to nicotine may be explained, in part, by variability associated with at least two of the neuronal nicotinic receptor genes, alpha4 and alpha6.

  18. Social regulation of cortisol receptor gene expression

    PubMed Central

    Korzan, Wayne J.; Grone, Brian P.; Fernald, Russell D.

    2014-01-01

    In many social species, individuals influence the reproductive capacity of conspecifics. In a well-studied African cichlid fish species, Astatotilapia burtoni, males are either dominant (D) and reproductively competent or non-dominant (ND) and reproductively suppressed as evidenced by reduced gonadotropin releasing hormone (GnRH1) release, regressed gonads, lower levels of androgens and elevated levels of cortisol. Here, we asked whether androgen and cortisol levels might regulate this reproductive suppression. Astatotilapia burtoni has four glucocorticoid receptors (GR1a, GR1b, GR2 and MR), encoded by three genes, and two androgen receptors (ARα and ARβ), encoded by two genes. We previously showed that ARα and ARβ are expressed in GnRH1 neurons in the preoptic area (POA), which regulates reproduction, and that the mRNA levels of these receptors are regulated by social status. Here, we show that GR1, GR2 and MR mRNAs are also expressed in GnRH1 neurons in the POA, revealing potential mechanisms for both androgens and cortisol to influence reproductive capacity. We measured AR, MR and GR mRNA expression levels in a microdissected region of the POA containing GnRH1 neurons, comparing D and ND males. Using quantitative PCR (qPCR), we found D males had higher mRNA levels of ARα, MR, total GR1a and GR2 in the POA compared with ND males. In contrast, ND males had significantly higher levels of GR1b mRNA, a receptor subtype with a reduced transcriptional response to cortisol. Through this novel regulation of receptor type, neurons in the POA of an ND male will be less affected by the higher levels of cortisol typical of low status, suggesting GR receptor type change as a potential adaptive mechanism to mediate high cortisol levels during social suppression. PMID:25013108

  19. Myeloid differentiation primary response gene 88-leukotriene B4 receptor 2 cascade mediates lipopolysaccharide-potentiated invasiveness of breast cancer cells.

    PubMed

    Park, Geun-Soo; Kim, Jae-Hong

    2015-03-20

    Inflammation and local inflammatory mediators are inextricably linked to tumor progression through complex pathways in the tumor microenvironment. Lipopolysaccharide (LPS) exposure to tumor cells has been suggested to promote tumor invasiveness and metastasis. However, the detailed signaling mechanism involved has not been elucidated. In this study, we showed that LPS upregulated the expression of leukotriene B4 receptor-2 (BLT2) and the synthesis of BLT2 ligands in MDA-MB-231 and MDA-MB-435 breast cancer cells, thereby promoting invasiveness. BLT2 depletion with siRNA clearly attenuated LPS-induced invasiveness. In addition, we demonstrated that myeloid differentiation primary response gene 88 (MyD88) lies upstream of BLT2 in LPS-potentiated invasiveness and that this 'MyD88-BLT2' cascade mediates activation of NF-κB and the synthesis of IL-6 and IL-8, which are critical for the invasiveness and aggression of breast cancer cells. LPS-driven metastasis of MDA-MB-231 cells was also markedly suppressed by the inhibition of BLT2. Together, our results demonstrate, for the first time, that LPS potentiates the invasiveness and metastasis of breast cancer cells via a 'MyD88-BLT2'-linked signaling cascade.

  20. Identification of clonally rearranged T-cell receptor beta chain genes in HTLV-I carriers as a potential instrument for early detection of neoplasia.

    PubMed

    Sales, M M; Bezerra, C N A; Hiraki, Y; Melo, N B; Rebouças, N A

    2005-05-01

    We analyzed the genetic recombination pattern of the T-cell receptor beta-chain gene (TCR-beta) in order to identify clonal expansion of T-lymphocytes in 17 human T-lymphotropic virus type I (HTLV-I)-positive healthy carriers, 7 of them with abnormal features in the peripheral blood lymphocytes. Monoclonal or oligoclonal expansion of T-cells was detected in 5 of 7 HTLV-I-positive patients with abnormal lymphocytes and unconfirmed diagnosis by using PCR amplification of segments of TCR-beta gene, in a set of reactions that target 102 different variable (V) segments, covering all members of the 24 V families available in the gene bank, including the more recently identified segments of the Vbeta-5 and Vbeta-8 family and the two diversity beta segments. Southern blots, the gold standard method to detect T-lymphocyte clonality, were negative for all of these 7 patients, what highlights the low sensitivity of this method that requires a large amount of very high quality DNA. To evaluate the performance of PCR in the detection of clonality we also analyzed 18 leukemia patients, all of whom tested positive. Clonal expansion was not detected in any of the negative controls or healthy carriers without abnormal lymphocytes. In conclusion, PCR amplification of segments of rearranged TCR-beta is reliable and highly suitable for the detection of small populations of clonal T-cells in asymptomatic HTLV-I carriers who present abnormal peripheral blood lymphocytes providing an additional instrument for following up these patients with potentially higher risk of leukemia. PMID:15917950

  1. Gene expression analysis of CL-20-induced reversible neurotoxicity reveals GABA(A) receptors as potential targets in the earthworm Eisenia fetida.

    PubMed

    Gong, Ping; Guan, Xin; Pirooznia, Mehdi; Liang, Chun; Perkins, Edward J

    2012-01-17

    The earthworm Eisenia fetida is one of the most used species in standardized soil ecotoxicity tests. End points such as survival, growth, and reproduction are eco-toxicologically relevant but provide little mechanistic insight into toxicity pathways, especially at the molecular level. Here we apply a toxicogenomic approach to investigate the mode of action underlying the reversible neurotoxicity of hexanitrohexaazaisowurtzitane (CL-20), a cyclic nitroamine explosives compound. We developed an E. fetida-specific shotgun microarray targeting 15119 unique E. fetida transcripts. Using this array we profiled gene expression in E. fetida in response to exposure to CL-20. Eighteen earthworms were exposed for 6 days to 0.2 μg/cm(2) of CL-20 on filter paper, half of which were allowed to recover in a clean environment for 7 days. Nine vehicle control earthworms were sacrificed at days 6 and 13, separately. Electrophysiological measurements indicated that the conduction velocity of earthworm medial giant nerve fiber decreased significantly after 6-day exposure to CL-20, but was restored after 7 days of recovery. Total RNA was isolated from the four treatment groups including 6-day control, 6-day exposed, 13-day control, and 13-day exposed (i.e., 6-day exposure followed by 7-day recovery), and was hybridized to the 15K shotgun oligo array. Statistical and bioinformatic analyses suggest that CL-20 initiated neurotoxicity by noncompetitively blocking the ligand-gated GABA(A) receptor ion channel, leading to altered expression of genes involved in GABAergic, cholinergic, and Agrin-MuSK pathways. In the recovery phase, expression of affected genes returned to normality, possibly as a result of autophagy and CL-20 dissociation/metabolism. This study provides significant insights into potential mechanisms of CL-20-induced neurotoxicity and the recovery of earthworms from transient neurotoxicity stress.

  2. Gene expression analysis of CL-20-induced reversible neurotoxicity reveals GABA(A) receptors as potential targets in the earthworm Eisenia fetida.

    PubMed

    Gong, Ping; Guan, Xin; Pirooznia, Mehdi; Liang, Chun; Perkins, Edward J

    2012-01-17

    The earthworm Eisenia fetida is one of the most used species in standardized soil ecotoxicity tests. End points such as survival, growth, and reproduction are eco-toxicologically relevant but provide little mechanistic insight into toxicity pathways, especially at the molecular level. Here we apply a toxicogenomic approach to investigate the mode of action underlying the reversible neurotoxicity of hexanitrohexaazaisowurtzitane (CL-20), a cyclic nitroamine explosives compound. We developed an E. fetida-specific shotgun microarray targeting 15119 unique E. fetida transcripts. Using this array we profiled gene expression in E. fetida in response to exposure to CL-20. Eighteen earthworms were exposed for 6 days to 0.2 μg/cm(2) of CL-20 on filter paper, half of which were allowed to recover in a clean environment for 7 days. Nine vehicle control earthworms were sacrificed at days 6 and 13, separately. Electrophysiological measurements indicated that the conduction velocity of earthworm medial giant nerve fiber decreased significantly after 6-day exposure to CL-20, but was restored after 7 days of recovery. Total RNA was isolated from the four treatment groups including 6-day control, 6-day exposed, 13-day control, and 13-day exposed (i.e., 6-day exposure followed by 7-day recovery), and was hybridized to the 15K shotgun oligo array. Statistical and bioinformatic analyses suggest that CL-20 initiated neurotoxicity by noncompetitively blocking the ligand-gated GABA(A) receptor ion channel, leading to altered expression of genes involved in GABAergic, cholinergic, and Agrin-MuSK pathways. In the recovery phase, expression of affected genes returned to normality, possibly as a result of autophagy and CL-20 dissociation/metabolism. This study provides significant insights into potential mechanisms of CL-20-induced neurotoxicity and the recovery of earthworms from transient neurotoxicity stress. PMID:22191394

  3. Evolution of the nuclear receptor gene superfamily.

    PubMed Central

    Laudet, V; Hänni, C; Coll, J; Catzeflis, F; Stéhelin, D

    1992-01-01

    Nuclear receptor genes represent a large family of genes encoding receptors for various hydrophobic ligands such as steroids, vitamin D, retinoic acid and thyroid hormones. This family also contains genes encoding putative receptors for unknown ligands. Nuclear receptor gene products are composed of several domains important for transcriptional activation, DNA binding (C domain), hormone binding and dimerization (E domain). It is not known whether these genes have evolved through gene duplication from a common ancestor or if their different domains came from different independent sources. To test these possibilities we have constructed and compared the phylogenetic trees derived from two different domains of 30 nuclear receptor genes. The tree built from the DNA binding C domain clearly shows a common progeny of all nuclear receptors, which can be grouped into three subfamilies: (i) thyroid hormone and retinoic acid receptors, (ii) orphan receptors and (iii) steroid hormone receptors. The tree constructed from the central part of the E domain which is implicated in transcriptional regulation and dimerization shows the same distribution in three subfamilies but two groups of receptors are in a different position from that in the C domain tree: (i) the Drosophila knirps family genes have acquired very different E domains during evolution, and (ii) the vitamin D and ecdysone receptors, as well as the FTZ-F1 and the NGF1B genes, seem to have DNA binding and hormone binding domains belonging to different classes. These data suggest a complex evolutionary history for nuclear receptor genes in which gene duplication events and swapping between domains of different origins took place. PMID:1312460

  4. Combinations of Polymorphic Markers of Chemokine Genes, Their Receptors and Acute Phase Protein Genes As Potential Predictors of Coronary Heart Diseases

    PubMed Central

    Nasibullin, T.R.; Yagafarova, L.F.; Yagafarov, I.R.; Timasheva, Y.R.; Erdman, V.V.; Tuktarova, I.A.; Mustafina, O.E.

    2016-01-01

    Atherosclerosis, the main factor in the development of coronary heart diseases (CHD), is an inflammatory response to endothelial layer damage in the arterial bed. We have analyzed the association between CHD and the polymorphic markers of genes that control the synthesis of proteins involved in the processes of adhesion and chemotaxis of immunocompetent cells: rs1024611 (–2518A>G, CCL2 gene), rs1799864 (V64I, CCR2 gene), rs3732378 (T280M, CX3CR1 gene), rs1136743 (A70V, SAA1 gene), and rs1205 (2042C>T, CRP gene) in 217 patients with CHD and 250 controls. Using the Monte Carlo method and Markov chains (APSampler), we revealed a combination of alleles/genotypes associated with both a reduced and increased risk of CHD. The most significant alleles/genotypes areSAA1*T/T+CRP*C+CX3CR1*G/A (Pperm = 0.0056, OR = 0.07 95%CI 0.009–0.55),SAA1*T+CRP*T+CCR2*G/A+CX3CR1*G (Pperm = 0.0063, OR = 14.58 95%CI 1.88–113.04), SAA1*T+CCR2*A+CCL2* G/G (Pperm = 0.0351, OR = 10.77 95%CI 1.35–85.74). PMID:27099791

  5. Minireview: Linking genetic variation in human Toll-like receptor 5 genes to the gut microbiome’s potential to cause inflammation

    PubMed Central

    Leifer, Cynthia A.; McConkey, Cameron; Li, Sha; Chassaing, Benoit; Gewirtz, Andrew T.; Ley, Ruth E.

    2014-01-01

    Immunodeficiencies can lead to alterations of the gut microbiome that render it pathogenic and capable of transmitting disease to naïve hosts. Here we review the role of Toll-like receptor (TLR) 5, the innate receptor for bacterial flagellin, in immune responses to the normal gut microbiota with a focus its role on adaptive immunity. Loss of TLR5 has profound effects on the microbiota that include greater temporal instability of major lineages and upregulation of flagellar motility genes that may be linked to the reduced levels of anti-flagellin antibodies in the TLR5−/− host. A variety of human TLR5 gene alleles exist that also associated with inflammatory conditions and may do so via effects on the gut microbiome and altered host-microbial crosstalk. PMID:25284610

  6. Genetic knockout of the α7 nicotinic acetylcholine receptor gene alters hippocampal long-term potentiation in a background strain-dependent manner.

    PubMed

    Freund, Ronald K; Graw, Sharon; Choo, Kevin S; Stevens, Karen E; Leonard, Sherry; Dell'Acqua, Mark L

    2016-08-01

    Reduced α7 nicotinic acetylcholine receptor (nAChR) function is linked to impaired hippocampal-dependent sensory processing and learning and memory in schizophrenia. While knockout of the Chrna7 gene encoding the α7nAChR on a C57/Bl6 background results in changes in cognitive measures, prior studies found little impact on hippocampal synaptic plasticity in these mice. However, schizophrenia is a multi-genic disorder where complex interactions between specific genetic mutations and overall genetic background may play a prominent role in determining phenotypic penetrance. Thus, we compared the consequences of knocking out the α7nAChR on synaptic plasticity in C57/Bl6 and C3H mice, which differ in their basal α7nAChR expression levels. Homozygous α7 deletion in C3H mice, which normally express higher α7nAChR levels, resulted in impaired long-term potentiation (LTP) at hippocampal CA1 synapses, while C3H α7 heterozygous mice maintained robust LTP. In contrast, homozygous α7 deletion in C57 mice, which normally express lower α7nAChR levels, did not alter LTP, as had been previously reported for this strain. Thus, the threshold of Chrna7 expression required for LTP may be different in the two strains. Measurements of auditory gating, a hippocampal-dependent behavioral paradigm used to identify schizophrenia-associated sensory processing deficits, was abnormal in C3H α7 knockout mice confirming that auditory gating also requires α7nAChR expression. Our studies highlight the importance of genetic background on the regulation of synaptic plasticity and could be relevant for understanding genetic and cognitive heterogeneity in human studies of α7nAChR dysfunction in mental disorders.

  7. Dopamine receptor genes: new tools for molecular psychiatry.

    PubMed Central

    Niznik, H B; Van Tol, H H

    1992-01-01

    For over a decade it has been generally assumed that all the pharmacological and biochemical actions of dopamine within the central nervous system and periphery were mediated by two distinct dopamine receptors. These receptors, termed D1 and D2, were defined as those coupled to the stimulation or inhibition of adenylate cyclase, respectively, and by their selectivity and avidity for various drugs and compounds. The concept that two dopamine receptors were sufficient to account for all the effects mediated by dopamine was an oversimplification. Recent molecular biological studies have identified five distinct genes which encode at least eight functional dopamine receptors. The members of the expanded dopamine receptor family, however, can still be codifed by way of the original D1 and D2 receptor dichotomy. These include two genes encoding dopamine D1-like receptors (D1 [D1A]/D5 [D1B]) and three genes encoding D2-like receptors (D2/D3/D4). We review here our recent work on the cloning and characterization of some of the members of the dopamine receptor gene family (D1, D2, D4, D5), their relationship to neuropsychiatric disorders and their potential role in antipsychotic drug action. Images Fig. 1 PMID:1450188

  8. Gene silencing by nuclear orphan receptors.

    PubMed

    Zhang, Ying; Dufau, Maria L

    2004-01-01

    Nuclear orphan receptors represent a large and diverse subgroup in the nuclear receptor superfamily. Although putative ligands for these orphan members remain to be identified, some of these receptors possess intrinsic activating, inhibitory, or dual regulatory functions in development, differentiation, homeostasis, and reproduction. In particular, gene-silencing events elicited by chicken ovalbumin upstream promoter-transcription factors (COUP-TFs); dosage-sensitive sex reversal-adrenal hypoplasia congenita critical region on the X chromosome, gene 1 (DAX-1); germ cell nuclear factor (GCNF); short heterodimer partner (SHP); and testicular receptors 2 and 4 (TR2 and TR4) are among the best characterized. These orphan receptors are critical in controlling basal activities or hormonal responsiveness of numerous target genes. They employ multiple and distinct mechanisms to mediate target gene repression. Complex cross-talk exists between these orphan receptors at their cognate DNA binding elements and an array of steroid?nonsteroid hormone receptors, other transcriptional activators, coactivators and corepressors, histone modification enzyme complexes, and components of basal transcriptional components. Therefore, perturbation induced by these orphan receptors at multiple levels, including DNA binding activities, receptor homo- or heterodimerization, recruitment of cofactor proteins, communication with general transcriptional machinery, and changes at histone acetylation status and chromatin structures, may contribute to silencing of target gene expression in a specific promoter or cell-type context. Moreover, the findings derived from gene-targeting studies have demonstrated the significance of these orphan receptors' function in physiologic settings. Thus, COUP-TFs, DAX-1, GCNF, SHP, and TR2 and 4 are known to be required for multiple physiologic and biologic functions, including neurogenesis and development of the heart and vascular system steroidogenesis and sex

  9. Androgen receptor gene polymorphism in zebra species.

    PubMed

    Ito, Hideyuki; Langenhorst, Tanya; Ogden, Rob; Inoue-Murayama, Miho

    2015-09-01

    Androgen receptor genes (AR) have been found to have associations with reproductive development, behavioral traits, and disorders in humans. However, the influence of similar genetic effects on the behavior of other animals is scarce. We examined the loci AR glutamine repeat (ARQ) in 44 Grevy's zebras, 23 plains zebras, and three mountain zebras, and compared them with those of domesticated horses. We observed polymorphism among zebra species and between zebra and horse. As androgens such as testosterone influence aggressiveness, AR polymorphism among equid species may be associated with differences in levels of aggression and tameness. Our findings indicate that it would be useful to conduct further studies focusing on the potential association between AR and personality traits, and to understand domestication of equid species. PMID:26236645

  10. T Cell Receptor Gene Therapy for Cancer

    PubMed Central

    Schmitt, Thomas M.; Ragnarsson, Gunnar B.

    2009-01-01

    Abstract T cell-based adoptive immunotherapy has been shown to be a promising treatment for various types of cancer. However, adoptive T cell therapy currently requires the custom isolation and characterization of tumor-specific T cells from each patient—a process that can be not only difficult and time-consuming but also often fails to yield high-avidity T cells, which together have limited the broad application of this approach as a clinical treatment. Employing T cell receptor (TCR) gene therapy as a component of adoptive T cell therapy strategies can overcome many of these obstacles, allowing autologous T cells with a defined specificity to be generated in a much shorter time period. Initial studies using this approach have been hampered by a number of technical difficulties resulting in low TCR expression and acquisition of potentially problematic specificities due to mispairing of introduced TCR chains with endogenous TCR chains. The last several years have seen substantial progress in our understanding of the multiple facets of TCR gene therapy that will have to be properly orchestrated for this strategy to succeed. Here we outline the challenges of TCR gene therapy and the advances that have been made toward realizing the promise of this approach. PMID:19702439

  11. Structure of the human progesterone receptor gene.

    PubMed

    Misrahi, M; Venencie, P Y; Saugier-Veber, P; Sar, S; Dessen, P; Milgrom, E

    1993-11-16

    The complete organization of the human progesterone receptor (hPR) gene has been determined. It spans over 90 kbp and contains eight exons. The first exon encodes the N-terminal part of the receptor. The DNA binding domain is encoded by two exons, each exon corresponding to one zinc finger. The steroid binding domain is encoded by five exons. The nucleotide sequence of 1144 bp of the 5' flanking region has been determined. PMID:8241270

  12. Stimulation of expression for the adenosine A2A receptor gene by hypoxia in PC12 cells. A potential role in cell protection.

    PubMed

    Kobayashi, S; Millhorn, D E

    1999-07-16

    The purpose of this study was to examine the regulation of adenosine A2A receptor (A2AR) gene expression during hypoxia in pheochromocytoma (PC12) cells. Northern blot analysis revealed that the A2AR mRNA level was substantially increased after a 3-h exposure to hypoxia (5% O2), which reached a peak at 12 h. Immunoblot analysis showed that the A2AR protein level was also increased during hypoxia. Inhibition of de novo protein synthesis blocked A2AR induction by hypoxia. In addition, removal of extracellular free Ca2+, chelation of intracellular free Ca2+, and pretreatment with protein kinase C inhibitors prevented A2AR induction by hypoxia. Moreover, depletion of protein kinase C activity by prolonged treatment with phorbol 12-myristate 13-acetate significantly inhibited the hypoxic induction of A2AR. A2AR antagonists led to a significant enhancement of A2AR mRNA levels during hypoxia, whereas A2AR agonists caused down-regulation of A2AR expression during hypoxia. This suggests that A2AR regulates its own expression during hypoxia by feedback mechanisms. We further found that activation of A2AR enhances cell viability during hypoxia and also inhibits vascular endothelial growth factor expression in PC12 cells. Thus, increased expression of A2AR during hypoxia might protect cells against hypoxia and may act to inhibit hypoxia-induced angiogenic activity mediated by vascular endothelial growth factor. PMID:10400659

  13. Transient Receptor Potential Vanilloid 1 Gene Deficiency Ameliorates Hepatic Injury in a Mouse Model of Chronic Binge Alcohol-Induced Alcoholic Liver Disease

    PubMed Central

    Liu, Huilin; Beier, Juliane I.; Arteel, Gavin E.; Ramsden, Christopher E.; Feldstein, Ariel E.; McClain, Craig J.; Kirpich, Irina A.

    2016-01-01

    Experimental alcohol-induced liver injury is exacerbated by a high polyunsaturated fat diet rich in linoleic acid. We postulated that bioactive oxidized linoleic acid metabolites (OXLAMs) play a critical role in the development/progression of alcohol-mediated hepatic inflammation and injury. OXLAMs are endogenous ligands for transient receptor potential vanilloid 1 (TRPV1). Herein, we evaluated the role of signaling through TRPV1 in an experimental animal model of alcoholic liver disease (ALD). Chronic binge alcohol administration increased plasma OXLAM levels, specifically 9- and 13-hydroxy-octadecadienoic acids. This effect was associated with up-regulation of hepatic TRPV1. Exposure of hepatocytes to these OXLAMs in vitro resulted in activation of TRPV1 signal transduction with increased intracellular Ca2+ levels. Genetic depletion of TRPV1 did not blunt hepatic steatosis caused by ethanol, but prevented hepatic injury. TRPV1 deficiency protected from hepatocyte death and prevented the increase in proinflammatory cytokine and chemokine expression, including tumor necrosis factor-α, IL-6, macrophage inflammatory protein-2, and monocyte chemotactic protein 1. TRPV1 depletion markedly blunted ethanol-mediated induction of plasminogen activator inhibitor-1, an important alcohol-induced hepatic inflammation mediator, via fibrin accumulation. This study indicates, for the first time, that TRPV1 receptor pathway may be involved in hepatic inflammatory response in an experimental animal model of ALD. TRPV1-OXLAM interactions appear to play a significant role in hepatic inflammation/injury, further supporting an important role for dietary lipids in ALD. PMID:25447051

  14. The androgen receptor gene mutations database.

    PubMed

    Patterson, M N; Hughes, I A; Gottlieb, B; Pinsky, L

    1994-09-01

    The androgen receptor gene mutations database is a comprehensive listing of mutations published in journals and meetings proceedings. The majority of mutations are point mutations identified in patients with androgen insensitivity syndrome. Information is included regarding the phenotype, the nature and location of the mutations, as well as the effects of the mutations on the androgen binding activity of the receptor. The current version of the database contains 149 entries, of which 114 are unique mutations. The database is available from EMBL (NetServ@EMBL-Heidelberg.DE) or as a Macintosh Filemaker file (mc33001@musica.mcgill.ca).

  15. Chemosensory receptor genes in the Oriental tobacco budworm Helicoverpa assulta.

    PubMed

    Xu, W; Papanicolaou, A; Liu, N-Y; Dong, S-L; Anderson, A

    2015-04-01

    The Oriental tobacco budworm (Helicoverpa assulta) is a specialist herbivore moth and its larvae feed on Solanaceous plants. (Z)-9-hexadecenal (Z9-16: Ald) is the major sex pheromone component in H. assulta but the specific pheromone receptor (PR) against Z9-16: Ald has not yet been identified. In the present study, we integrated transcriptomic, bioinformatic and functional characterization approaches to investigate the chemosensory receptor genes of H. assulta. We identified seven potential PRs with 44 olfactory receptors, 18 gustatory receptors and 24 ionotropic receptors, which were further studied by in silico gene expression profile, phylogenetic analysis, reverse transcription PCR and calcium imaging assays. The candidate PR, HassOR13, showed a strong response to the minor sex pheromone component, (Z)-11-hexadecenal, but not the major component, Z9-16: Ald, in calcium imaging assays. This study provides the molecular basis for comparative studies of chemosensory receptors between H. assulta and other Helicoverpa species and will advance our understanding of the evolution and function of Lepidoptera insect chemosensation. PMID:25430896

  16. Loss of coxsackie and adenovirus receptor expression in human colorectal cancer: A potential impact on the efficacy of adenovirus-mediated gene therapy in Chinese Han population

    PubMed Central

    Ma, Ying-Yu; Wang, Xiao-Jun; Han, Yong; Li, Gang; Wang, Hui-Ju; Wang, Shi-Bing; Chen, Xiao-Yi; Liu, Fan-Long; He, Xiang-Lei; Tong, Xiang-Min; Mou, Xiao-Zhou

    2016-01-01

    The coxsackie and adenovirus receptor (CAR) is considered a tumor suppressor and critical factor for the efficacy of therapeutic strategies that employ the adenovirus. However, data on CAR expression levels in colorectal cancer are conflicting and its clinical relevance remains to be elucidated. Immunohistochemistry was performed on tissue microarrays containing 251 pairs of colon cancer and adjacent normal tissue samples from Chinese Han patients to assess the expression levels of CAR. Compared with healthy mucosa, decreased CAR expression (40.6% vs. 95.6%; P<0.001) was observed in colorectal cancer samples. The CAR immunopositivity in tumor tissues was not significantly associated with gender, age, tumor size, differentiation, TNM stage, lymph node metastasis or distant metastasis in patients with colon cancer. However, expression of CAR is present in 83.3% of the tumor tissues from patient with colorectal liver metastasis, which was significantly higher than those without liver metastasis (39.6%; P=0.042). At the plasma membrane, CAR was observed in 29.5% normal mucosa samples, which was significantly higher than in colorectal cancer samples (4.0%; P<0.001). In addition, the survival analysis demonstrated that the expression level of CAR has no association with the prognosis of colorectal cancer. CAR expression was observed to be downregulated in colorectal cancer, and it exerts complex effects during colorectal carcinogenesis, potentially depending on the stage of the cancer development and progression. High CAR expression may promote liver metastasis. With regard to oncolytic therapy, CAR expression analysis should be performed prior to adenoviral oncolytic treatment to stratify Chinese Han patients for treatment. PMID:27485384

  17. Cardiac gene expression data and in silico analysis provide novel insights into human and mouse taste receptor gene regulation.

    PubMed

    Foster, Simon R; Porrello, Enzo R; Stefani, Maurizio; Smith, Nicola J; Molenaar, Peter; dos Remedios, Cristobal G; Thomas, Walter G; Ramialison, Mirana

    2015-10-01

    G protein-coupled receptors are the principal mediators of the sweet, umami, bitter, and fat taste qualities in mammals. Intriguingly, the taste receptors are also expressed outside of the oral cavity, including in the gut, airways, brain, and heart, where they have additional functions and contribute to disease. However, there is little known about the mechanisms governing the transcriptional regulation of taste receptor genes. Following our recent delineation of taste receptors in the heart, we investigated the genomic loci encoding for taste receptors to gain insight into the regulatory mechanisms that drive their expression in the heart. Gene expression analyses of healthy and diseased human and mouse hearts showed coordinated expression for a subset of chromosomally clustered taste receptors. This chromosomal clustering mirrored the cardiac expression profile, suggesting that a common gene regulatory block may control the taste receptor locus. We identified unique domains with strong regulatory potential in the vicinity of taste receptor genes. We also performed de novo motif enrichment in the proximal promoter regions and found several overrepresented DNA motifs in cardiac taste receptor gene promoters corresponding to ubiquitous and cardiac-specific transcription factor binding sites. Thus, combining cardiac gene expression data with bioinformatic analyses, this study has provided insights into the noncoding regulatory landscape for taste GPCRs. These findings also have broader relevance for the study of taste GPCRs outside of the classical gustatory system, where understanding the mechanisms controlling the expression of these receptors may have implications for future therapeutic development.

  18. Cardiac gene expression data and in silico analysis provide novel insights into human and mouse taste receptor gene regulation.

    PubMed

    Foster, Simon R; Porrello, Enzo R; Stefani, Maurizio; Smith, Nicola J; Molenaar, Peter; dos Remedios, Cristobal G; Thomas, Walter G; Ramialison, Mirana

    2015-10-01

    G protein-coupled receptors are the principal mediators of the sweet, umami, bitter, and fat taste qualities in mammals. Intriguingly, the taste receptors are also expressed outside of the oral cavity, including in the gut, airways, brain, and heart, where they have additional functions and contribute to disease. However, there is little known about the mechanisms governing the transcriptional regulation of taste receptor genes. Following our recent delineation of taste receptors in the heart, we investigated the genomic loci encoding for taste receptors to gain insight into the regulatory mechanisms that drive their expression in the heart. Gene expression analyses of healthy and diseased human and mouse hearts showed coordinated expression for a subset of chromosomally clustered taste receptors. This chromosomal clustering mirrored the cardiac expression profile, suggesting that a common gene regulatory block may control the taste receptor locus. We identified unique domains with strong regulatory potential in the vicinity of taste receptor genes. We also performed de novo motif enrichment in the proximal promoter regions and found several overrepresented DNA motifs in cardiac taste receptor gene promoters corresponding to ubiquitous and cardiac-specific transcription factor binding sites. Thus, combining cardiac gene expression data with bioinformatic analyses, this study has provided insights into the noncoding regulatory landscape for taste GPCRs. These findings also have broader relevance for the study of taste GPCRs outside of the classical gustatory system, where understanding the mechanisms controlling the expression of these receptors may have implications for future therapeutic development. PMID:25986534

  19. A role for BMP-induced homeobox gene MIXL1 in acute myelogenous leukemia and identification of type I BMP receptor as a potential target for therapy.

    PubMed

    Raymond, Aaron; Liu, Bin; Liang, Hong; Wei, Caimiao; Guindani, Michele; Lu, Yue; Liang, Shoudan; St John, Lisa S; Molldrem, Jeff; Nagarajan, Lalitha

    2014-12-30

    Mesoderm Inducer in Xenopus Like1 (MIXL1), a paired-type homeobox transcription factor induced by TGF-β family of ligands is required for early embryonic specification of mesoderm and endoderm. Retrovirally transduced Mixl1 is reported to induce acute myelogenous leukemia (AML) with a high penetrance. But the mechanistic underpinnings of MIXL1 mediated leukemogenesis are unknown. Here, we establish the protooncogene c-REL to be a transcriptional target of MIXL1 by genome wide chromatin immune precipitation. Accordingly, expression of c-REL and its downstream targets BCL2L1 and BCL2A2 are elevated in MIXL1 expressing cells. Notably, MIXL1 regulates c-REL through a zinc finger binding motif, potentially by a MIXL1-Zinc finger protein transcriptional complex. Furthermore, MIXL1 expression is detected in the cancer genome atlas (TCGA) AML samples in a pattern mutually exclusive from that of HOXA9, CDX2 and HLX suggesting the existence of a core, yet distinct HOX transcriptional program. Finally, we demonstrate MIXL1 to be induced by BMP4 and not TGF-β in primary human hematopoietic stem and progenitor cells. Consequently, MIXL1 expressing AML cells are preferentially sensitive to the BMPR1 kinase inhibitor LDN-193189. These findings support the existence of a novel MIXL1-c REL mediated survival axis in AML that can be targeted by BMPR1 inhibitors. (MIXL1- human gene, Mixl1- mouse ortholog, MIXL1- protein). PMID:25544748

  20. Folate receptor gene variants and neural tube defect occurrence

    SciTech Connect

    Finnell, R.; Greer, K.; Lammer, E.

    1994-09-01

    Recent epidemiological evidence shows that periconceptional use of folic acid supplements may prevent 40-50% of neural tube defects (NTDs). The FDA has subsequently recommended folic acid supplementation of all women of childbearing potential, even though the mechanism by which folic acid prevents NTDs is unknown. We investigated genetic variation of a candidate gene, the 5-methyltetrahydrofolate (5-MeTHF) receptor, that may mediate this preventive effect. The receptor concentrates folate within cells and we have localized its mRNA to neuroepithelial cells during neurulation. Our hypothesis is that dysfunctional 5-MeTHF receptors inadequately concentrate folate intracellularly, predisposing infants to NTDs. We have completed SSCP analysis on 3 of the 4 coding exons of the 5-MeTHF receptor gene of 474 infants participating in a large population-based epidemiological case-control study of NTDs in California; genotyping of another 500 infants is ongoing. Genomic DNA was extracted from residual blood spots from newborn screening samples of cases and controls. Genotyping was done blinded to case status. Polymorphisms have been detected for exons 4 and 5; fourteen percent of the infants have exon 5 polymorphisms. Data will be presented on the prevalence of 5-MeTHF receptor polymorphisms among cases and controls. Relationships among the polymorphisms and NTD occurrence may shed light on how folic acid supplementation prevents NTDs.

  1. Targeting melanocortin receptors as potential novel therapeutics.

    PubMed

    Getting, Stephen J

    2006-07-01

    Adrenocorticotrophic hormone (ACTH(1-39)) and the melanocortins (alpha, beta and gamma-melanocyte-stimulating hormone [MSH]) are derived from a larger precursor molecule known as the pro-opiomelanocortin (POMC) protein. They exert their numerous biological effects by activating 7 transmembrane G-protein coupled receptors (GPCR), leading to adenylyl cyclase activation and subsequent cAMP accumulation within the target cell. To date, 5 melanocortin receptors (MCR) have been identified and termed MC1R to MC5R, they have been shown to have a wide and varied distribution throughout the body, being found in the central nervous system (CNS), periphery and immune cells. Melanocortins have a multitude of actions including: (i) modulating disease pathologies including arthritis, asthma, obesity; (ii) affecting functions, for example erectile dysfunction, skin tanning; and (iii) organ systems, for example cardiovascular system. Recently a mechanistic approach has been identified with alpha-MSH preventing NF-kappaB activation via the preservation and expression of IkappaBalphaprotein. This leads to a reduction of pro-inflammatory mediators including cytokines and inhibition of adhesion molecule expression, with subsequent reduction in leukocyte emigration. Development of selective ligands with an appropriate pharmacokinetic profile will enable a pharmacological evaluation of the potential beneficial effects of the melanocortins. In this review I have discussed the potential mechanistic action for the melanocortins and some of the disease pathologies shown to be modulated. This review proposes targeting the MCR with the ultimate aim of controlling many of the diseases that we face today.

  2. Chronic SSRI stimulation of astrocytic 5-HT2B receptors change multiple gene expressions/editings and metabolism of glutamate, glucose and glycogen: a potential paradigm shift

    PubMed Central

    Hertz, Leif; Rothman, Douglas L.; Li, Baoman; Peng, Liang

    2015-01-01

    It is firmly believed that the mechanism of action of SSRIs in major depression is to inhibit the serotonin transporter, SERT, and increase extracellular concentration of serotonin. However, this undisputed observation does not prove that SERT inhibition is the mechanism, let alone the only mechanism, by which SSRI’s exert their therapeutic effects. It has recently been demonstrated that 5-HT2B receptor stimulation is needed for the antidepressant effect of fluoxetine in vivo. The ability of all five currently used SSRIs to stimulate the 5-HT2B receptor equipotentially in cultured astrocytes has been known for several years, and increasing evidence has shown the importance of astrocytes and astrocyte-neuronal interactions for neuroplasticity and complex brain activity. This paper reviews acute and chronic effects of 5-HT2B receptor stimulation in cultured astrocytes and in astrocytes freshly isolated from brains of mice treated with fluoxetine for 14 days together with effects of anti-depressant therapy on turnover of glutamate and GABA and metabolism of glucose and glycogen. It is suggested that these events are causally related to the mechanism of action of SSRIs and of interest for development of newer antidepressant drugs. PMID:25750618

  3. The Androgen Receptor Gene Mutations Database.

    PubMed

    Gottlieb, B; Lehvaslaiho, H; Beitel, L K; Lumbroso, R; Pinsky, L; Trifiro, M

    1998-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. The total number of reported mutations has risen from 272 to 309 in the past year. We have expanded the database: (i) by giving each entry an accession number; (ii) by adding information on the length of polymorphic polyglutamine (polyGln) and polyglycine (polyGly) tracts in exon 1; (iii) by adding information on large gene deletions; (iv) by providing a direct link with a completely searchable database (courtesy EMBL-European Bioinformatics Institute). The addition of the exon 1 polymorphisms is discussed in light of their possible relevance as markers for predisposition to prostate or breast cancer. The database is also available on the internet (http://www.mcgill. ca/androgendb/ ), from EMBL-European Bioinformatics Institute (ftp. ebi.ac.uk/pub/databases/androgen ), or as a Macintosh FilemakerPro or Word file (MC33@musica.mcgill.ca).

  4. Transient Receptor Potential Channels in the Vasculature

    PubMed Central

    Earley, Scott; Brayden, Joseph E.

    2015-01-01

    The mammalian genome encodes 28 distinct members of the transient receptor potential (TRP) superfamily of cation channels, which exhibit varying degrees of selectivity for different ionic species. Multiple TRP channels are present in all cells and are involved in diverse aspects of cellular function, including sensory perception and signal transduction. Notably, TRP channels are involved in regulating vascular function and pathophysiology, the focus of this review. TRP channels in vascular smooth muscle cells participate in regulating contractility and proliferation, whereas endothelial TRP channel activity is an important contributor to endothelium-dependent vasodilation, vascular wall permeability, and angiogenesis. TRP channels are also present in perivascular sensory neurons and astrocytic endfeet proximal to cerebral arterioles, where they participate in the regulation of vascular tone. Almost all of these functions are mediated by changes in global intracellular Ca2+ levels or subcellular Ca2+ signaling events. In addition to directly mediating Ca2+ entry, TRP channels influence intracellular Ca2+ dynamics through membrane depolarization associated with the influx of cations or through receptor- or store-operated mechanisms. Dysregulation of TRP channels is associated with vascular-related pathologies, including hypertension, neointimal injury, ischemia-reperfusion injury, pulmonary edema, and neurogenic inflammation. In this review, we briefly consider general aspects of TRP channel biology and provide an in-depth discussion of the functions of TRP channels in vascular smooth muscle cells, endothelial cells, and perivascular cells under normal and pathophysiological conditions. PMID:25834234

  5. Identification of potential glucocorticoid receptor therapeutic targets in multiple myeloma

    PubMed Central

    Thomas, Alexandra L.; Coarfa, Cristian; Qian, Jun; Wilkerson, Joseph J.; Rajapakshe, Kimal; Krett, Nancy L.; Gunaratne, Preethi H.; Rosen, Steven T.

    2015-01-01

    Glucocorticoids (GC) are a cornerstone of combination therapies for multiple myeloma. However, patients ultimately develop resistance to GCs frequently based on decreased glucocorticoid receptor (GR) expression. An understanding of the direct targets of GC actions, which induce cell death, is expected to culminate in potential therapeutic strategies for inducing cell death by regulating downstream targets in the absence of a functional GR. The specific goal of our research is to identify primary GR targets that contribute to GC-induced cell death, with the ultimate goal of developing novel therapeutics around these targets that can be used to overcome resistance to GCs in the absence of GR. Using the MM.1S glucocorticoid-sensitive human myeloma cell line, we began with the broad platform of gene expression profiling to identify glucocorticoid-regulated genes further refined by combination treatment with phosphatidylinositol-3’-kinase inhibition (PI3Ki). To further refine the search to distinguish direct and indirect targets of GR that respond to the combination GC and PI3Ki treatment of MM.1S cells, we integrated 1) gene expression profiles of combination GC treatment with PI3Ki, which induces synergistic cell death; 2) negative correlation between genes inhibited by combination treatment in MM.1S cells and genes over-expressed in myeloma patients to establish clinical relevance and 3) GR chromatin immunoprecipitation with massively parallel sequencing (ChIP-Seq) in myeloma cells to identify global chromatin binding for the glucocorticoid receptor (GR). Using established bioinformatics platforms, we have integrated these data sets to identify a subset of candidate genes that may form the basis for a comprehensive picture of glucocorticoid actions in multiple myeloma. As a proof of principle, we have verified two targets, namely RRM2 and BCL2L1, as primary functional targets of GR involved in GC-induced cell death. PMID:26715915

  6. The prostaglandin EP1 receptor potentiates kainate receptor activation via a protein kinase C pathway and exacerbates status epilepticus

    PubMed Central

    Rojas, Asheebo; Gueorguieva, Paoula; Lelutiu, Nadia; Quan, Yi; Shaw, Renee; Dingledine, Raymond

    2014-01-01

    Prostaglandin E2 (PGE2) regulates membrane excitability, synaptic transmission, plasticity, and neuronal survival. The consequences of PGE2 release following seizures has been the subject of much study. Here we demonstrate that the prostaglandin E2 receptor 1 (EP1, or Ptger1) modulates native kainate receptors, a family of ionotropic glutamate receptors widely expressed throughout the central nervous system. Global ablation of the EP1 gene in mice (EP1-KO) had no effect on seizure threshold after kainate injection but reduced the likelihood to enter status epilepticus. EP1-KO mice that did experience typical status epilepticus had reduced hippocampal neurodegeneration and a blunted inflammatory response. Further studies with native prostanoid and kainate receptors in cultured cortical neurons, as well as with recombinant prostanoid and kainate receptors expressed in Xenopus oocytes, demonstrated that EP1 receptor activation potentiates heteromeric but not homomeric kainate receptors via a second messenger cascade involving phospholipase C, calcium and protein kinase C. Three critical GluK5 C-terminal serines underlie the potentiation of the GluK2/GluK5 receptor by EP1 activation. Taken together, these results indicate that EP1 receptor activation during seizures, through a protein kinase C pathway, increases the probability of kainic acid induced status epilepticus, and independently promotes hippocampal neurodegeneration and a broad inflammatory response. PMID:24952362

  7. The androgen receptor gene mutations database.

    PubMed

    Gottlieb, B; Trifiro, M; Lumbroso, R; Pinsky, L

    1997-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. The total number of reported mutations has risen from 212 to 272. We have expanded the database: (i) by adding a large amount of new data on somatic mutations in prostatic cancer tissue; (ii) by defining a new constitutional phenotype, mild androgen insensitivity (MAI); (iii) by placing additional relevant information on an internet site (http://www.mcgill.ca/androgendb/ ). The database has allowed us to examine the contribution of CpG sites to the multiplicity of reports of the same mutation in different families. The database is also available from EMBL (ftp.ebi.ac.uk/pub/databases/androgen) or as a Macintosh Filemaker Pro or Word file (MC33@musica,mcgill.ca)

  8. The androgen receptor gene mutations database.

    PubMed

    Gottlieb, B; Trifiro, M; Lumbroso, R; Vasiliou, D M; Pinsky, L

    1996-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. We have added (if available) data on the androgen binding phenotype of the mutant AR, the clinical phenotype of the affected persons, the family history and whether the pathogenicity of a mutation has been proven. Exonic mutations are now listed in 5'-->3' sequence regardless of type and single base pair changes are presented in codon context. Splice site and intronic mutations are listed separately. The database has allowed us to substantiate and amplify the observation of mutational hot spots within exons encoding the AR androgen binding domain. The database is available from EML (ftp://www.ebi.ac.uk/pub/databases/androgen) or as a Macintosh Filemaker file (MC33@musica.mcgill.ca).

  9. Changes in Gene Expression Patterns of Circadian-Clock, Transient Receptor Potential Vanilloid-1 and Nerve Growth Factor in Inflamed Human Esophagus

    PubMed Central

    Yang, Shu-Chuan; Chen, Chien-Lin; Yi, Chih-Hsun; Liu, Tso-Tsai; Shieh, Kun-Ruey

    2015-01-01

    Circadian rhythm is driven by the molecular circadian-clock system and regulates many physiological functions. Diurnal rhythms in the gastrointestinal tract are known to be related to feeding pattern, but whether these rhythms are also related to the gastrointestinal damage or injuries; for example, gastroesophageal reflux disease (GERD), is unclear. This study was conducted to determine whether expression of circadian-clock genes or factors involved in vagal stimulation or sensitization were altered in the esophagus of GERD patients. Diurnal patterns of PER1, PER2, BMAL1, CRY2, TRPV1, and NGF mRNA expression were found in patient controls, and these patterns were altered and significantly correlated to the GERD severity in GERD patients. Although levels of CRY1, TIM, CB1, NHE3, GDNF, and TAC1 mRNA expression did not show diurnal patterns, they were elevated and also correlated with GERD severity in GERD patients. Finally, strong correlations among PER1, TRPV1, NGF and CRY2 mRNA expression, and among PER2, TRPV1 and CRY2 expression were found. Expression levels of CRY1 mRNA highly correlated with levels of TIM, CB1, NHE3, GDNF and TAC1. This study suggests that the circadian rhythm in the esophagus may be important for the mediation of and/or the response to erosive damage in GERD patients. PMID:26337663

  10. Combined therapeutic potential of nuclear receptors with receptor tyrosine kinase inhibitors in lung cancer

    SciTech Connect

    Wairagu, Peninah M.; Park, Kwang Hwa; Kim, Jihye; Choi, Jong-Whan; Kim, Hyun-Won; Yeh, Byung-Il; Jung, Soon-Hee; Yong, Suk-Joong; Jeong, Yangsik

    2014-05-09

    Highlights: • The 48 NR genes and 48 biological anti-cancer targets are profiled in paired-cells. • Growth inhibition by NR ligands or TKIs is target receptor level-dependent. • T0901317 with gefitinib/PHA665752 shows additive growth inhibition in lung cells. - Abstract: Cancer heterogeneity is a big hurdle in achieving complete cancer treatment, which has led to the emergence of combinational therapy. In this study, we investigated the potential use of nuclear receptor (NR) ligands for combinational therapy with other anti-cancer drugs. We first profiled all 48 NRs and 48 biological anti-cancer targets in four pairs of lung cell lines, where each pair was obtained from the same patient. Two sets of cell lines were normal and the corresponding tumor cell lines while the other two sets consisted of primary versus metastatic tumor cell lines. Analysis of the expression profile revealed 11 NRs and 15 cancer targets from the two pairs of normal versus tumor cell lines, and 9 NRs and 9 cancer targets from the primary versus metastatic tumor cell lines had distinct expression patterns in each category. Finally, the evaluation of nuclear receptor ligand T0901317 for liver X receptor (LXR) demonstrated its combined therapeutic potential with tyrosine kinase inhibitors. The combined treatment of cMET inhibitor PHA665752 or EGFR inhibitor gefitinib with T0901317 showed additive growth inhibition in both H2073 and H1993 cells. Mechanistically, the combined treatment suppressed cell cycle progression by inhibiting cyclinD1 and cyclinB expression. Taken together, this study provides insight into the potential use of NR ligands in combined therapeutics with other biological anti-cancer drugs.

  11. Gene Transfer and Molecular Cloning of the Human NGF Receptor

    NASA Astrophysics Data System (ADS)

    Chao, Moses V.; Bothwell, Mark A.; Ross, Alonzo H.; Koprowski, Hilary; Lanahan, Anthony A.; Buck, C. Randall; Sehgal, Amita

    1986-04-01

    Nerve growth factor (NGF) and its receptor are important in the development of cells derived from the neural crest. Mouse L cell transformants have been generated that stably express the human NGF receptor gene transfer with total human DNA. Affinity cross-linking, metabolic labeling and immunoprecipitation, and equilibrium binding with 125I-labeled NGF revealed that this NGF receptor had the same size and binding characteristics as the receptor from human melanoma cells and rat PC12 cells. The sequences encoding the NGF receptor were molecularly cloned using the human Alu repetitive sequence as a probe. A cosmid clone that contained the human NGF receptor gene allowed efficient transfection and expression of the receptor.

  12. Constraint and Adaptation in newt Toll-Like Receptor Genes

    PubMed Central

    Babik, Wiesław; Dudek, Katarzyna; Fijarczyk, Anna; Pabijan, Maciej; Stuglik, Michał; Szkotak, Rafał; Zieliński, Piotr

    2015-01-01

    Acute die-offs of amphibian populations worldwide have been linked to the emergence of viral and fungal diseases. Inter and intraspecific immunogenetic differences may influence the outcome of infection. Toll-like receptors (TLRs) are an essential component of innate immunity and also prime acquired defenses. We report the first comprehensive assessment of TLR gene variation for urodele amphibians. The Lissotriton newt TLR repertoire includes representatives of 13 families and is compositionally most similar to that of the anuran Xenopus. Both ancient and recent gene duplications have occurred in urodeles, bringing the total number of TLR genes to at least 21. Purifying selection has predominated the evolution of newt TLRs in both long (∼70 Ma) and medium (∼18 Ma) timescales. However, we find evidence for both purifying and positive selection acting on TLRs in two recently diverged (2–5 Ma) allopatric evolutionary lineages (Lissotriton montandoni and L. vulgaris graecus). Overall, both forms of selection have been stronger in L. v. graecus, while constraint on most TLR genes in L. montandoni appears relaxed. The differences in selection regimes are unlikely to be biased by demographic effects because these were controlled by means of a historical demographic model derived from an independent data set of 62 loci. We infer that TLR genes undergo distinct trajectories of adaptive evolution in closely related amphibian lineages, highlight the potential of TLRs to capture the signatures of different assemblages of pathogenic microorganisms, and suggest differences between lineages in the relative roles of innate and acquired immunity. PMID:25480684

  13. Biological roles and therapeutic potential of hydroxy-carboxylic Acid receptors.

    PubMed

    Ahmed, Kashan

    2011-01-01

    In the recent past, deorphanization studies have described intermediates of energy metabolism to activate G protein-coupled receptors and to thereby regulate metabolic functions. GPR81, GPR109A, and GPR109B, formerly known as the nicotinic acid receptor family, are encoded by clustered genes and share a high degree of sequence homology. Recently, hydroxy-carboxylic acids were identified as endogenous ligands of GPR81, GPR109A, and GPR109B, and therefore these receptors have been placed into a novel receptor family of hydroxy-carboxylic acid (HCA) receptors. The HCA(1) receptor (GPR81) is activated by the glycolytic metabolite 2-hydroxy-propionic acid (lactate), the HCA(2) receptor is activated by the ketone body 3-hydroxy-butyric acid, and the HCA(3) receptor (GPR109B) is a receptor for the β-oxidation intermediate 3-hydroxy-octanoic acid. While HCA(1) and HCA(2) receptors are present in most mammalian species, the HCA(3) receptor is exclusively found in humans and higher primates. HCA receptors are expressed in adipose tissue and mediate anti-lipolytic effects in adipocytes through G(i)-type G protein-dependent inhibition of adenylyl cyclase. HCA(2) and HCA(3) inhibit lipolysis during conditions of increased β-oxidation such as prolonged fasting, whereas HCA(1) mediates the anti-lipolytic effects of insulin in the fed state. As HCA(2) is a receptor for the established anti-dyslipidemic drug nicotinic acid, HCA(1) and HCA(3) also represent promising drug targets and several synthetic ligands for HCA receptors have been developed. In this article, we will summarize the deorphanization and pharmacological characterization of HCA receptors. Moreover, we will discuss recent progress in elucidating the physiological and pathophysiological role to further evaluate the therapeutic potential of the HCA receptor family for the treatment of metabolic disease.

  14. Conserved structure and adjacent location of the thrombin receptor and protease-activated receptor 2 genes define a protease-activated receptor gene cluster.

    PubMed Central

    Kahn, M.; Ishii, K.; Kuo, W. L.; Piper, M.; Connolly, A.; Shi, Y. P.; Wu, R.; Lin, C. C.; Coughlin, S. R.

    1996-01-01

    BACKGROUND: Thrombin is a serine protease that elicits a variety of cellular responses. Molecular cloning of a thrombin receptor revealed a G protein-coupled receptor that is activated by a novel proteolytic mechanism. Recently, a second protease-activated receptor was discovered and dubbed PAR2. PAR2 is highly related to the thrombin receptor by sequence and, like the thrombin receptor, is activated by cleavage of its amino terminal exodomain. Also like the thrombin receptor, PAR2 can be activated by the hexapeptide corresponding to its tethered ligand sequence independent of receptor cleavage. Thus, functionally, the thrombin receptor and PAR2 constitute a fledgling receptor family that shares a novel proteolytic activation mechanism. To further explore the relatedness of the two known protease-activated receptors and to examine the possibility that a protease-activated gene cluster might exist, we have compared the structure and chromosomal locations of the thrombin receptor and PAR2 genes. MATERIALS AND METHODS: The genomic structures of the two protease-activated receptor genes were determined by analysis of lambda phage, P1 bacteriophage, and bacterial artificial chromosome (BAC) genomic clones. Chromosomal location was determined with fluorescent in situ hybridization (FISH) on metaphase chromosomes, and the relative distance separating the two genes was evaluated both by means of two-color FISH and analysis of YACs and BACs containing both genes. RESULTS: Analysis of genomic clones revealed that the two protease-activated receptor genes share a two-exon genomic structure in which the first exon encodes 5'-untranslated sequence and signal peptide, and the second exon encodes the mature receptor protein and 3'-untranslated sequence. The two receptor genes also share a common locus with the two human genes located at 5q13 and the two mouse genes at 13D2, a syntenic region of the mouse genome. These techniques also suggest that the physical distance separating

  15. Transient Receptor Potential Channel Polymorphisms Are Associated with the Somatosensory Function in Neuropathic Pain Patients

    PubMed Central

    Baron, Ralf; Maier, Christoph; Tölle, Thomas R.; Treede, Rolf-Detlef; Berthele, Achim; Faltraco, Frank; Flor, Herta; Gierthmühlen, Janne; Haenisch, Sierk; Huge, Volker; Magerl, Walter; Maihöfner, Christian; Richter, Helmut; Rolke, Roman; Scherens, Andrea; Üçeyler, Nurcan; Ufer, Mike; Wasner, Gunnar; Zhu, Jihong; Cascorbi, Ingolf

    2011-01-01

    Transient receptor potential channels are important mediators of thermal and mechanical stimuli and play an important role in neuropathic pain. The contribution of hereditary variants in the genes of transient receptor potential channels to neuropathic pain is unknown. We investigated the frequency of transient receptor potential ankyrin 1, transient receptor potential melastin 8 and transient receptor potential vanilloid 1 single nucleotide polymorphisms and their impact on somatosensory abnormalities in neuropathic pain patients. Within the German Research Network on Neuropathic Pain (Deutscher Forscbungsverbund Neuropathischer Schmerz) 371 neuropathic pain patients were phenotypically characterized using standardized quantitative sensory testing. Pyrosequencing was employed to determine a total of eleven single nucleotide polymorphisms in transient receptor potential channel genes of the neuropathic pain patients and a cohort of 253 German healthy volunteers. Associations of quantitative sensory testing parameters and single nucleotide polymorphisms between and within groups and subgroups, based on sensory phenotypes, were analyzed. Single nucleotide polymorphisms frequencies did not differ between both the cohorts. However, in neuropathic pain patients transient receptor potential ankyrin 1 710G>A (rs920829, E179K) was associated with the presence of paradoxical heat sensation (p = 0.03), and transient receptor potential vanilloid 1 1911A>G (rs8065080, I585V) with cold hypoalgesia (p = 0.0035). Two main subgroups characterized by preserved (1) and impaired (2) sensory function were identified. In subgroup 1 transient receptor potential vanilloid 1 1911A>G led to significantly less heat hyperalgesia, pinprick hyperalgesia and mechanical hypaesthesia (p = 0.006, p = 0.005 and p<0.001) and transient receptor potential vanilloid 1 1103C>G (rs222747, M315I) to cold hypaesthesia (p = 0.002), but there was absence of associations in subgroup 2. In

  16. The transient receptor potential type vanilloid 1 suppresses skin carcinogenesis

    PubMed Central

    Bode, Ann M.; Cho, Yong-Yeon; Zheng, Duo; Zhu, Feng; Ericson, Marna E; Ma, Wei-Ya; Yao, Ke; Dong, Zigang

    2008-01-01

    Blockade of the transient receptor potential channel vanilloid subfamily 1 (TRPV1) is suggested as a therapeutic approach to pain relief. However, TRPV1 is a widely expressed protein whose function might be critical in various non-neuronal physiological conditions. The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that is overexpressed in many human epithelial cancers and is a potential target for anticancer drugs. Here we show that TRPV1 interacts with the EGFR leading to EGFR degradation. Notably, the absence of TRPV1 in mice results in a striking increase in skin carcinogenesis. The TRPV1 is the first membrane receptor shown to have a tumor-suppressing effect associated with the downregulation of another membrane receptor. The data suggest that even though a great deal of interest has focused on the TRPV1 as a target for pain relief, the chronic blockade of this pain receptor might increase the risk for cancer development. PMID:19155296

  17. Potentiation of the ionotropic GABA receptor response by whiskey fragrance.

    PubMed

    Hossain, Sheikh Julfikar; Aoshima, Hitoshi; Koda, Hirofumi; Kiso, Yoshinobu

    2002-11-01

    It is well-known that the target of most mood-defining compounds is an ionotropic gamma-aminobutyric acid receptor (GABA(A) receptor). The potentiation of the response of these inhibitory neurotransmitter receptors induces anxiolytic, sedative, and anesthetic activity in the human brain. To study the effects of whiskey fragrance on the GABA(A) receptor-mediated response, GABA(A) receptors were expressed in Xenopus oocyte by injecting rat whole brain mRNA or cRNA prepared from the cloned cDNA for the alpha(1) and beta(1) subunits of the bovine receptors. Most whiskey components such as phenol, ethoxy, and lactone derivatives potentiated the electrical responses of GABA(A) receptors, especially ethyl phenylpropanoate (EPP), which strongly potentiated the response. When this compound was applied to mice through respiration, the convulsions induced by pentetrazole were delayed, suggesting that EPP was absorbed by the brain, where it could potentiate the GABA(A) receptor responses. The extract of other alcoholic drinks such as wine, sake, brandy, and shochu also potentiated the responses to varying degrees. Although these fragrant components are present in alcoholic drinks at low concentrations (extremely small quantities compared with ethanol), they may also modulate the mood or consciousness of the human through the potentiation of the GABA(A) receptor response after absorption into the brain, because these hydrophobic fragrant compounds are easily absorbed into the brain through the blood-brain barrier and are several thousands times as potent as ethanol in the potentiation of the GABA(A) receptor-mediated response.

  18. Potentiation of the ionotropic GABA receptor response by whiskey fragrance.

    PubMed

    Hossain, Sheikh Julfikar; Aoshima, Hitoshi; Koda, Hirofumi; Kiso, Yoshinobu

    2002-11-01

    It is well-known that the target of most mood-defining compounds is an ionotropic gamma-aminobutyric acid receptor (GABA(A) receptor). The potentiation of the response of these inhibitory neurotransmitter receptors induces anxiolytic, sedative, and anesthetic activity in the human brain. To study the effects of whiskey fragrance on the GABA(A) receptor-mediated response, GABA(A) receptors were expressed in Xenopus oocyte by injecting rat whole brain mRNA or cRNA prepared from the cloned cDNA for the alpha(1) and beta(1) subunits of the bovine receptors. Most whiskey components such as phenol, ethoxy, and lactone derivatives potentiated the electrical responses of GABA(A) receptors, especially ethyl phenylpropanoate (EPP), which strongly potentiated the response. When this compound was applied to mice through respiration, the convulsions induced by pentetrazole were delayed, suggesting that EPP was absorbed by the brain, where it could potentiate the GABA(A) receptor responses. The extract of other alcoholic drinks such as wine, sake, brandy, and shochu also potentiated the responses to varying degrees. Although these fragrant components are present in alcoholic drinks at low concentrations (extremely small quantities compared with ethanol), they may also modulate the mood or consciousness of the human through the potentiation of the GABA(A) receptor response after absorption into the brain, because these hydrophobic fragrant compounds are easily absorbed into the brain through the blood-brain barrier and are several thousands times as potent as ethanol in the potentiation of the GABA(A) receptor-mediated response. PMID:12405783

  19. Adenovirus receptors and their implications in gene delivery

    PubMed Central

    Sharma, Anurag; Li, Xiaoxin; Bangari, Dinesh S.; Mittal, Suresh K.

    2010-01-01

    Adenoviruses (Ads) have gained popularity as gene delivery vectors for therapeutic and prophylactic applications. Ad entry into host cells involves specific interactions between cell surface receptors and viral capsid proteins. Several cell surface molecules have been identified as receptors for Ad attachment and entry. Tissue tropism of Ad vectors is greatly influenced by their receptor usage. A variety of strategies have been investigated to modify Ad vector tropism by manipulating the receptor-interacting moieties. Many such strategies are aimed at targeting and/or detargeting of Ad vectors. In this review, we discuss the various cell surface molecules that are implicated as receptors for virus attachment and internalization. Special emphasis is given to Ad types that are utilized as gene delivery vectors. Various strategies to modify Ad tropism using the knowledge of Ad receptors are also discussed. PMID:19647886

  20. Specific repertoire of olfactory receptor genes in the male germ cells of several mammalian species

    SciTech Connect

    Vanderhaeghen, P.; Schurmans, S.; Vassart, G.; Parmentier, M.

    1997-02-01

    Olfactory receptors constitute the largest family among G protein-coupled receptors, with up to 1000 members expected. We have previously shown that genes belonging to this family were expressed in the male germ line from both dog and human. We have subsequently demonstrated the presence of one of the corresponding olfactory receptor proteins during dog spermatogenesis and in mature sperm cells. In this study, we investigated whether the unexpected pattern of expression of olfactory receptors in the male germ line was conserved in other mammalian species. Using reverse transcription-PCR with primers specific for the olfactory receptor gene family, about 20 olfactory receptor cDNA fragments were cloned from the testis of each mammalian species tested. As a whole, they displayed no sequence specificity compared to other olfactory receptors, but highly homologous, possibly orthologous, genes were amplified from different species. Finally, their pattern of expression, as determined by RNase protection assay, revealed that many but not all of these receptors were expressed predominantly in testis. The male germ line from each mammalian species tested is thus characterized by a specific repertoire of olfactory receptors, which display a pattern of expression suggestive of their potential implication in the control of sperm maturation, migration, or fertilization. 34 refs., 4 figs., 1 tab.

  1. The dopamine D3 receptor gene and posttraumatic stress disorder.

    PubMed

    Wolf, Erika J; Mitchell, Karen S; Logue, Mark W; Baldwin, Clinton T; Reardon, Annemarie F; Aiello, Alison; Galea, Sandro; Koenen, Karestan C; Uddin, Monica; Wildman, Derek; Miller, Mark W

    2014-08-01

    The dopamine D3 receptor (DRD3) gene has been implicated in schizophrenia, autism, and substance use-disorders and is related to emotion reactivity, executive functioning, and stress-responding, processes impaired in posttraumatic stress disorder (PTSD). The aim of this candidate gene study was to evaluate DRD3 polymorphisms for association with PTSD. The discovery sample was trauma-exposed White, non-Hispanic U.S. veterans and their trauma-exposed intimate partners (N = 491); 60.3% met criteria for lifetime PTSD. The replication sample was 601 trauma-exposed African American participants living in Detroit, Michigan; 23.6% met criteria for lifetime PTSD. Genotyping was based on high-density bead chips. In the discovery sample, 4 single nucleotide polymorphisms (SNPs), rs2134655, rs201252087, rs4646996, and rs9868039, showed evidence of association with PTSD and withstood correction for multiple testing. The minor alleles were associated with reduced risk for PTSD (OR range = 0.59 to 0.69). In the replication sample, rs2251177, located 149 base pairs away from the most significant SNP in the discovery sample, was nominally associated with PTSD in men (OR = 0.32). Although the precise role of the D3 receptor in PTSD is not yet known, its role in executive functioning and emotional reactivity, and the sensitivity of the dopamine system to environmental stressors could potentially explain this association. PMID:25158632

  2. The Dopamine D3 Receptor Gene and Posttraumatic Stress Disorder

    PubMed Central

    Wolf, Erika J.; Mitchell, Karen S.; Logue, Mark W.; Baldwin, Clinton T.; Reardon, Annemarie F.; Aiello, Alison; Galea, Sandro; Koenen, Karestan C.; Uddin, Monica; Wildman, Derek; Miller, Mark W.

    2014-01-01

    The dopamine D3 receptor (DRD3) gene has been implicated in schizophrenia, autism, and substance use-disorders and is related to emotion reactivity, executive functioning, and stress-responding, processes impaired in posttraumatic stress disorder (PTSD). This aim of this candidate gene study was to evaluate DRD3 polymorphisms for association with PTSD. The discovery sample was trauma-exposed white, non-Hispanic veterans and their trauma-exposed intimate partners (N = 491); 60% met criteria for lifetime PTSD. The replication sample was 601 trauma-exposed African American participants; 24% met criteria for lifetime PTSD. Genotyping was based on high-density bead chips. In the discovery sample, four single nucleotide polymorphisms (SNPs), rs2134655, rs201252087, rs4646996, and rs9868039, showed evidence of association with PTSD and withstood correction for multiple testing. The minor alleles were associated with reduced risk for PTSD (odds ratio range: 0.59 – 0.69). In the replication sample, rs2251177, located 149 base pairs away from the most significant SNP in the discovery sample, was nominally associated with PTSD in men (odds ratio: 0.32). Although the precise role of the D3 receptor in PTSD is not yet known, its role in executive functioning and emotional reactivity, and the sensitivity of the dopamine system to environmental stressors, could potentially explain this association. PMID:25158632

  3. Expression of plasma membrane receptor genes during megakaryocyte development

    PubMed Central

    Sun, Sijie; Wang, Wenjing; Latchman, Yvette; Gao, Dayong; Aronow, Bruce

    2013-01-01

    Megakaryocyte (MK) development is critically informed by plasma membrane-localized receptors that integrate a multiplicity of environmental cues. Given that the current understanding about receptors and ligands involved in megakaryocytopoiesis is based on single targets, we performed a genome-wide search to identify a plasma membrane receptome for developing MKs. We identified 40 transmembrane receptor genes as being upregulated during MK development. Seven of the 40 receptor-associated genes were selected to validate the dataset. These genes included: interleukin-9 receptor (IL9R), transforming growth factor, β receptor II (TGFBR2), interleukin-4 receptor (IL4R), colony stimulating factor-2 receptor-beta (CSFR2B), adiponectin receptor (ADIPOR2), thrombin receptor (F2R), and interleukin-21 receptor (IL21R). RNA and protein analyses confirmed their expression in primary human MKs. Matched ligands to IL9R, TGFBR2, IL4R, CSFR2B, and ADIPOR2 affected megakaryocytopoiesis. IL9 was unique in its ability to increase the number of MKs formed. In contrast, MK colony formation was inhibited by adiponectin, TGF-β, IL4, and GM-CSF. The thrombin-F2R axis affected platelet function, but not MK development, while IL21 had no apparent detectable effects. ADP-induced platelet aggregation was suppressed by IL9, TGF-β, IL4, and adiponectin. Overall, six of seven of the plasma membrane receptors were confirmed to have functional roles in MK and platelet biology. Also, results show for the first time that adiponectin plays a regulatory role in MK development. Together these data support a strong likelihood that the 40 transmembrane genes identified as being upregulated during MK development will be an important resource to the research community for deciphering the complex repertoire of environmental cues regulating megakaryocytopoiesis and/or platelet function. PMID:23321270

  4. Comparative Genomics of Natural Killer Cell Receptor Gene Clusters

    PubMed Central

    Kelley, James; Walter, Lutz; Trowsdale, John

    2005-01-01

    Many receptors on natural killer (NK) cells recognize major histocompatibility complex class I molecules in order to monitor unhealthy tissues, such as cells infected with viruses, and some tumors. Genes encoding families of NK receptors and related sequences are organized into two main clusters in humans: the natural killer complex on Chromosome 12p13.1, which encodes C-type lectin molecules, and the leukocyte receptor complex on Chromosome 19q13.4, which encodes immunoglobulin superfamily molecules. The composition of these gene clusters differs markedly between closely related species, providing evidence for rapid, lineage-specific expansions or contractions of sets of loci. The choice of NK receptor genes is polarized in the two species most studied, mouse and human. In mouse, the C-type lectin-related Ly49 gene family predominates. Conversely, the single Ly49 sequence is a pseudogene in humans, and the immunoglobulin superfamily KIR gene family is extensive. These different gene sets encode proteins that are comparable in function and genetic diversity, even though they have undergone species-specific expansions. Understanding the biological significance of this curious situation may be aided by studying which NK receptor genes are used in other vertebrates, especially in relation to species-specific differences in genes for major histocompatibility complex class I molecules. PMID:16132082

  5. The GABAA receptor is an FMRP target with therapeutic potential in fragile X syndrome

    PubMed Central

    Braat, Sien; D'Hulst, Charlotte; Heulens, Inge; De Rubeis, Silvia; Mientjes, Edwin; Nelson, David L; Willemsen, Rob; Bagni, Claudia; Van Dam, Debby; De Deyn, Peter P; Kooy, R Frank

    2015-01-01

    Previous research indicates that the GABAAergic system is involved in the pathophysiology of the fragile X syndrome, a frequent form of inherited intellectual disability and associated with autism spectrum disorder. However, the molecular mechanism underlying GABAAergic deficits has remained largely unknown. Here, we demonstrate reduced mRNA expression of GABAA receptor subunits in the cortex and cerebellum of young Fmr1 knockout mice. In addition, we show that the previously reported underexpression of specific subunits of the GABAA receptor can be corrected in YAC transgenic rescue mice, containing the full-length human FMR1 gene in an Fmr1 knockout background. Moreover, we demonstrate that FMRP directly binds several GABAA receptor mRNAs. Finally, positive allosteric modulation of GABAA receptors with the neurosteroid ganaxolone can modulate specific behaviors in Fmr1 knockout mice, emphasizing the therapeutic potential of the receptor. PMID:25790165

  6. Analyses of the role of the glucocorticoid receptor gene polymorphism (rs41423247) as a potential moderator in the association between childhood overweight, psychopathology, and clinical outcomes in Eating Disorders patients: A 6 years follow up study.

    PubMed

    Castellini, Giovanni; Lelli, Lorenzo; Tedde, Andrea; Piaceri, Irene; Bagnoli, Silvia; Lucenteforte, Ersilia; Sorbi, Sandro; Monteleone, Alessio Maria; Hudziak, James J; Nacmias, Benedetta; Ricca, Valdo

    2016-09-30

    Childhood overweight and the SNP rs41423247 of the glucocorticoid receptor gene (GR) were reported to represent predisposing factors for Eating Disorders (EDs). The distribution of the polymorphism was evaluated in 202 EDs patients, and in 116 healthy subjects. The Structured Clinical Interview for the DSM-IV and self-reported questionnaires were administered at the admission to the clinic and at 3 time points (end of a cognitive behavioral therapy, 3 and 6 years follow up). G-allele was associated with childhood overweight, depressive disorder comorbidity, and diagnostic instability. G-allele carriers reporting childhood overweight showed greater frequency of subjective binge eating and emotional eating.

  7. Analyses of the role of the glucocorticoid receptor gene polymorphism (rs41423247) as a potential moderator in the association between childhood overweight, psychopathology, and clinical outcomes in Eating Disorders patients: A 6 years follow up study.

    PubMed

    Castellini, Giovanni; Lelli, Lorenzo; Tedde, Andrea; Piaceri, Irene; Bagnoli, Silvia; Lucenteforte, Ersilia; Sorbi, Sandro; Monteleone, Alessio Maria; Hudziak, James J; Nacmias, Benedetta; Ricca, Valdo

    2016-09-30

    Childhood overweight and the SNP rs41423247 of the glucocorticoid receptor gene (GR) were reported to represent predisposing factors for Eating Disorders (EDs). The distribution of the polymorphism was evaluated in 202 EDs patients, and in 116 healthy subjects. The Structured Clinical Interview for the DSM-IV and self-reported questionnaires were administered at the admission to the clinic and at 3 time points (end of a cognitive behavioral therapy, 3 and 6 years follow up). G-allele was associated with childhood overweight, depressive disorder comorbidity, and diagnostic instability. G-allele carriers reporting childhood overweight showed greater frequency of subjective binge eating and emotional eating. PMID:27400218

  8. CB2 Cannabinoid Receptor As Potential Target against Alzheimer's Disease

    PubMed Central

    Aso, Ester; Ferrer, Isidro

    2016-01-01

    The CB2 receptor is one of the components of the endogenous cannabinoid system, a complex network of signaling molecules and receptors involved in the homeostatic control of several physiological functions. Accumulated evidence suggests a role for CB2 receptors in Alzheimer's disease (AD) and indicates their potential as a therapeutic target against this neurodegenerative disease. Levels of CB2 receptors are significantly increased in post-mortem AD brains, mainly in microglia surrounding senile plaques, and their expression levels correlate with the amounts of Aβ42 and β-amyloid plaque deposition. Moreover, several studies on animal models of AD have demonstrated that specific CB2 receptor agonists, which are devoid of psychoactive effects, reduce AD-like pathology, resulting in attenuation of the inflammation associated with the disease but also modulating Aβ and tau aberrant processing, among other effects. CB2 receptor activation also improves cognitive impairment in animal models of AD. This review discusses available data regarding the role of CB2 receptors in AD and the potential usefulness of specific agonists of these receptors against AD. PMID:27303261

  9. Neuropeptide Y receptor gene y6: multiple deaths or resurrections?

    PubMed

    Starbäck, P; Wraith, A; Eriksson, H; Larhammar, D

    2000-10-14

    The neuropeptide Y family of G-protein-coupled receptors consists of five cloned members in mammals. Four genes give rise to functional receptors in all mammals investigated. The y6 gene is a pseudogene in human and pig and is absent in rat, but generates a functional receptor in rabbit and mouse and probably in the collared peccary (Pecari tajacu), a distant relative of the pig family. We report here that the guinea pig y6 gene has a highly distorted nucleotide sequence with multiple frame-shift mutations. One evolutionary scenario may suggest that y6 was inactivated before the divergence of the mammalian orders and subsequently resurrected in some lineages. However, the pseudogene mutations seem to be distinct in human, pig, and guinea pig, arguing for separate inactivation events. In either case, the y6 gene has a quite unusual evolutionary history with multiple independent deaths or resurrections.

  10. Dopamine receptor gene expression by enkephalin neurons in rat forebrain

    SciTech Connect

    Le Moine, C.; Normand, E.; Guitteny, A.F.; Fouque, B.; Teoule, R.; Bloch, B. )

    1990-01-01

    In situ hybridization experiments were performed with brain sections from normal, control and haloperidol-treated rats to identify and map the cells expressing the D2 dopamine receptor gene. D2 receptor mRNA was detected with radioactive or biotinylated oligonucleotide probes. D2 receptor mRNA was present in glandular cells of the pituitary intermediate lobe and in neurons of the substantia nigra, ventral tegmental area, and forebrain, especially in caudate putamen, nucleus accumbens, olfactory tubercle, and piriform cortex. Hybridization with D2 and preproenkephalin A probes in adjacent sections, as well as combined hybridization with the two probes in the same sections, demonstrated that all detectable enkephalin neurons in the striatum contained the D2 receptor mRNA. Large neurons in caudate putamen, which were unlabeled with the preproenkephalin A probe and which may have been cholinergic, also expressed the D2 receptor gene. Haloperidol treatment (14 or 21 days) provoked an increase in mRNA content for D2 receptor and preproenkephalin A in the striatum. This suggests that the increase in D2 receptor number observed after haloperidol treatment is due to increased activity of the D2 gene. These results indicate that in the striatum, the enkephalin neurons are direct targets for dopamine liberated from mesostriatal neurons.

  11. Identification of a null mutation in the human dopamine D4 receptor gene

    SciTech Connect

    Noethen, M.M.; Cichon, S.; Hebebrand, J.

    1994-09-01

    Dopamine receptors belong to the family of G protein-coupled receptors. Five different dopamine receptor genes have thus far been identified. These receptors are classified into two main subfamilies: D1, which includes the D1 and D5 receptors, and D2, which includes the D2, D3, and D4 receptors. The dopamine D4 receptor is of great interest for research into neuropsychiatric disorders and psychopharmacology in light of the fact that it binds the antipsychotic medication clozapine with higher affinity than does any other dopamine receptor. In addition, among the dopamine receptors, the D4 receptor shows a uniquely high degree of genetic variation in the human population. We identified a new 13 bp deletion in exon 1 of the D4 gene. This frameshift creates a terminator codon at amino acid position 98. mRNA isolated from brain tissue of two heterozygous persons showed both alleles to be expressed. The deletion occurs with a frequency of 2% in the German population. One person was identified to be homozygous for the deletion. Interestingly, he has a normal intelligence and did not exhibit a major psychiatric disorder as defined by DSM III-R. The 13 bp deletion is the first mutation resulting in premature translation termination reported for a dopamine receptor gene so far. This mutation is a good candidate to test for potential effects on disease and/or individual response to pharmacotherapy. Association studies in patients with various psychiatric illnesses and differences in response to clozapine are underway.

  12. The Mouse Solitary Odorant Receptor Gene Promoters as Models for the Study of Odorant Receptor Gene Choice

    PubMed Central

    Degl'Innocenti, Andrea

    2016-01-01

    Background In vertebrates, several anatomical regions located within the nasal cavity mediate olfaction. Among these, the main olfactory epithelium detects most conventional odorants. Olfactory sensory neurons, provided with cilia exposed to the air, detect volatile chemicals via an extremely large family of seven-transmembrane chemoreceptors named odorant receptors. Their genes are expressed in a monogenic and monoallelic fashion: a single allele of a single odorant receptor gene is transcribed in a given mature neuron, through a still uncharacterized molecular mechanism known as odorant receptor gene choice. Aim Odorant receptor genes are typically arranged in genomic clusters, but a few are isolated (we call them solitary) from the others within a region broader than 1 Mb upstream and downstream with respect to their transcript's coordinates. The study of clustered genes is problematic, because of redundancy and ambiguities in their regulatory elements: we propose to use the solitary genes as simplified models to understand odorant receptor gene choice. Procedures Here we define number and identity of the solitary genes in the mouse genome (C57BL/6J), and assess the conservation of the solitary status in some mammalian orthologs. Furthermore, we locate their putative promoters, predict their homeodomain binding sites (commonly present in the promoters of odorant receptor genes) and compare candidate promoter sequences with those of wild-caught mice. We also provide expression data from histological sections. Results In the mouse genome there are eight intact solitary genes: Olfr19 (M12), Olfr49, Olfr266, Olfr267, Olfr370, Olfr371, Olfr466, Olfr1402; five are conserved as solitary in rat. These genes are all expressed in the main olfactory epithelium of three-day-old mice. The C57BL/6J candidate promoter of Olfr370 has considerably varied compared to its wild-type counterpart. Within the putative promoter for Olfr266 a homeodomain binding site is predicted. As a

  13. Transient receptor potential (TRP) channels: a clinical perspective

    PubMed Central

    Kaneko, Yosuke; Szallasi, Arpad

    2014-01-01

    Transient receptor potential (TRP) channels are important mediators of sensory signals with marked effects on cellular functions and signalling pathways. Indeed, mutations in genes encoding TRP channels are the cause of several inherited diseases in humans (the so-called ‘TRP channelopathies’) that affect the cardiovascular, renal, skeletal and nervous systems. TRP channels are also promising targets for drug discovery. The initial focus of research was on TRP channels that are expressed on nociceptive neurons. Indeed, a number of potent, small-molecule TRPV1, TRPV3 and TRPA1 antagonists have already entered clinical trials as novel analgesic agents. There has been a recent upsurge in the amount of work that expands TRP channel drug discovery efforts into new disease areas such as asthma, cancer, anxiety, cardiac hypertrophy, as well as obesity and metabolic disorders. A better understanding of TRP channel functions in health and disease should lead to the discovery of first-in-class drugs for these intractable diseases. With this review, we hope to capture the current state of this rapidly expanding and changing field. LINKED ARTICLES This article is part of a themed section on the pharmacology of TRP channels. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-10 PMID:24102319

  14. Genes involved in Drosophila glutamate receptor expression and localization

    PubMed Central

    Liebl, Faith LW; Featherstone, David E

    2005-01-01

    Background A clear picture of the mechanisms controlling glutamate receptor expression, localization, and stability remains elusive, possibly due to an incomplete understanding of the proteins involved. We screened transposon mutants generated by the ongoing Drosophila Gene Disruption Project in an effort to identify the different types of genes required for glutamate receptor cluster development. Results To enrich for non-silent insertions with severe disruptions in glutamate receptor clustering, we identified and focused on homozygous lethal mutants in a collection of 2185 BG and KG transposon mutants generated by the BDGP Gene Disruption Project. 202 lethal mutant lines were individually dissected to expose glutamatergic neuromuscular junctions, stained using antibodies that recognize neuronal membrane and the glutamate receptor subunit GluRIIA, and viewed using laser-scanning confocal microscopy. We identified 57 mutants with qualitative differences in GluRIIA expression and/or localization. 84% of mutants showed loss of receptors and/or clusters; 16% of mutants showed an increase in receptors. Insertion loci encode a variety of protein types, including cytoskeleton proteins and regulators, kinases, phosphatases, ubiquitin ligases, mucins, cell adhesion proteins, transporters, proteins controlling gene expression and protein translation, and proteins of unknown/novel function. Expression pattern analyses and complementation tests, however, suggest that any single mutant – even if a mutant gene is uniquely tagged – must be interpreted with caution until the mutation is validated genetically and phenotypically. Conclusion Our study identified 57 transposon mutants with qualitative differences in glutamate receptor expression and localization. Despite transposon tagging of every insertion locus, extensive validation is needed before one can have confidence in the role of any individual gene. Alternatively, one can focus on the types of genes identified, rather

  15. A novel mutation of the luteinizing hormone receptor gene causing male gonadotropin-independent precocious puberty.

    PubMed

    Latronico, A C; Anasti, J; Arnhold, I J; Mendonça, B B; Domenice, S; Albano, M C; Zachman, K; Wajchenberg, B L; Tsigos, C

    1995-08-01

    Familial male-limited precocious puberty (FMPP) is an autosomal dominant gonadotropin-independent disorder. Affected males generally develop signs of precocious puberty in early childhood. They typically show Leydig cell hyperplasia and increased testosterone production typical for their age, whereas circulating LH concentrations remain prepubertal. Several dominant point mutations of the LH receptor gene were identified in pedigrees with familial male-limited precocious puberty and were shown to cosegregate with the disease. Here we report a novel heterozygote point mutation in the LH receptor gene of a Brazilian boy with gonadotropin-independent precocious puberty. This mutation substitutes alanine 568 with valine at the carboxyterminus of the third cytosolic loop of the LH receptor. The unoccupied mutant receptors confer constitutive activation of adenyl cyclase activity when expressed in COS-7 cells, resulting in 4-fold higher cAMP concentrations over baseline compared with cells expressing an equivalent number of wild-type receptors. The affinity of the mutant receptors to 125I-labeled human LH was not altered compared with the wild type. Mutations of the homologue alanine residue in the alpha 1-adrenergic (in vitro), FSH (in vitro), and TSH (naturally occurring) receptors also result in constitutive adenyl cyclase activation, suggesting that this alanine residue is crucial for signal transduction and a potential site for upregulatory/oncogenic mutations in G-protein coupled receptors. PMID:7629248

  16. Discoidin Domain Receptors: Potential Actors and Targets in Cancer

    PubMed Central

    Rammal, Hassan; Saby, Charles; Magnien, Kevin; Van-Gulick, Laurence; Garnotel, Roselyne; Buache, Emilie; El Btaouri, Hassan; Jeannesson, Pierre; Morjani, Hamid

    2016-01-01

    The extracellular matrix critically controls cancer cell behavior by inducing several signaling pathways through cell membrane receptors. Besides conferring structural properties to tissues around the tumor, the extracellular matrix is able to regulate cell proliferation, survival, migration, and invasion. Among these receptors, the integrins family constitutes a major class of receptors that mediate cell interactions with extracellular matrix components. Twenty years ago, a new class of extracellular matrix receptors has been discovered. These tyrosine kinase receptors are the two discoidin domain receptors DDR1 and DDR2. DDR1 was first identified in the Dictyostelium discoideum and was shown to mediate cell aggregation. DDR2 shares highly conserved sequences with DDR1. Both receptors are activated upon binding to collagen, one of the most abundant proteins in extracellular matrix. While DDR2 can only be activated by fibrillar collagen, particularly types I and III, DDR1 is mostly activated by type I and IV collagens. In contrast with classical growth factor tyrosine kinase receptors which display a rapid and transient activation, DDR1 and DDR2 are unique in that they exhibit delayed and sustained receptor phosphorylation upon binding to collagen. Recent studies have reported differential expression and mutations of DDR1 and DDR2 in several cancer types and indicate clearly that these receptors have to be taken into account as new players in the different aspects of tumor progression, from non-malignant to highly malignant and invasive stages. This review will discuss the current knowledge on the role of DDR1 and DDR2 in malignant transformation, cell proliferation, epithelial to mesenchymal transition, migratory, and invasive processes, and finally the modulation of the response to chemotherapy. These new insights suggest that DDR1 and DDR2 are new potential targets in cancer therapy. PMID:27014069

  17. Sphingosine-1-Phosphate Receptor-2 Antagonists: Therapeutic Potential and Potential Risks

    PubMed Central

    Blankenbach, Kira V.; Schwalm, Stephanie; Pfeilschifter, Josef; Meyer zu Heringdorf, Dagmar

    2016-01-01

    The sphingosine-1-phosphate (S1P) signaling system with its specific G-protein-coupled S1P receptors, the enzymes of S1P metabolism and the S1P transporters, offers a multitude of promising targets for drug development. Until today, drug development in this area has nearly exclusively focused on (functional) antagonists at the S1P1 receptor, which cause a unique phenotype of immunomodulation. Accordingly, the first-in class S1P1 receptor modulator, fingolimod, has been approved for the treatment of relapsing-remitting multiple sclerosis, and novel S1P1 receptor (functional) antagonists are being developed for autoimmune and inflammatory diseases such as psoriasis, inflammatory bowel disease, lupus erythematodes, or polymyositis. Besides the S1P1 receptor, also S1P2 and S1P3 are widely expressed and regulate many diverse functions throughout the body. The S1P2 receptor, in particular, often exerts cellular functions which are opposed to the functions of the S1P1 receptor. As a consequence, antagonists at the S1P2 receptor have the potential to be useful in a contrasting context and different areas of indication compared to S1P1 antagonists. The present review will focus on the therapeutic potential of S1P2 receptor antagonists and discuss their opportunities as well as their potential risks. Open questions and areas which require further investigations will be emphasized in particular. PMID:27445808

  18. Androgen receptor gene mutation, rearrangement, polymorphism.

    PubMed

    Eisermann, Kurtis; Wang, Dan; Jing, Yifeng; Pascal, Laura E; Wang, Zhou

    2013-09-01

    Genetic aberrations of the androgen receptor (AR) caused by mutations, rearrangements, and polymorphisms result in a mutant receptor that has varied functions compared to wild type AR. To date, over 1,000 mutations have been reported in the AR with most of these being associated with androgen insensitivity syndrome (AIS). While mutations of AR associated with prostate cancer occur less often in early stage localized disease, mutations in castration-resistant prostate cancer (CRPC) patients treated with anti-androgens occur more frequently with 10-30% of these patients having some form of mutation in the AR. Resistance to anti-androgen therapy usually results from gain-of-function mutations in the LBD such as is seen with bicalutamide and more recently with enzalutamide (MDV3100). Thus, it is crucial to investigate these new AR mutations arising from drug resistance to anti-androgens and other small molecule pharmacological agents.

  19. Metabotropic glutamate receptors: their therapeutic potential in anxiety.

    PubMed

    Spooren, Will; Lesage, Anne; Lavreysen, Hilde; Gasparini, Fabrizio; Steckler, Thomas

    2010-01-01

    Psychiatric and neurological disorders are linked to changes in synaptic excitatory processes with a key role for glutamate, that is, the most abundant excitatory amino-acid. Molecular cloning of the metabotropic glutamate (mGlu) receptors has led to the identification of eight mGlu receptors, which, in contrast to ligand-gated ion channels (responsible for fast excitatory transmission), modulate and fine-tune the efficacy of synaptic transmission. mGlu receptors are G protein-coupled and constitute a new group of "drugable" targets for the treatment of various CNS disorders. The recent discovery of small molecules that selectively bind to receptors of Groups I (mGlu1 and mGlu5) and II (mGlu2 and mGlu3) allowed significant advances in our understanding of the roles of these receptors in brain function and dysfunction including anxiety. Although investigation of the role of the Group III (mGlu4, 6, 7, and 8) receptors is less advanced, the generation of genetically manipulated animals and recent advances in the identification of subtype-selective compounds have revealed some first insights into the therapeutic potential of this group of receptors. PMID:21309118

  20. Metabotropic glutamate receptors: their therapeutic potential in anxiety.

    PubMed

    Spooren, Will; Lesage, Anne; Lavreysen, Hilde; Gasparini, Fabrizio; Steckler, Thomas

    2010-01-01

    Psychiatric and neurological disorders are linked to changes in synaptic excitatory processes with a key role for glutamate, that is, the most abundant excitatory amino-acid. Molecular cloning of the metabotropic glutamate (mGlu) receptors has led to the identification of eight mGlu receptors, which, in contrast to ligand-gated ion channels (responsible for fast excitatory transmission), modulate and fine-tune the efficacy of synaptic transmission. mGlu receptors are G protein-coupled and constitute a new group of "drugable" targets for the treatment of various CNS disorders. The recent discovery of small molecules that selectively bind to receptors of Groups I (mGlu1 and mGlu5) and II (mGlu2 and mGlu3) allowed significant advances in our understanding of the roles of these receptors in brain function and dysfunction including anxiety. Although investigation of the role of the Group III (mGlu4, 6, 7, and 8) receptors is less advanced, the generation of genetically manipulated animals and recent advances in the identification of subtype-selective compounds have revealed some first insights into the therapeutic potential of this group of receptors.

  1. 5-Hydroxytryptamine Receptor Subtypes and their Modulators with Therapeutic Potentials

    PubMed Central

    Pithadia, Anand B.; Jain, Sunita M.

    2009-01-01

    5-hydroxytryptamine (5-HT) has become one of the most investigated and complex biogenic amines. The main receptors and their subtypes, e.g., 5-HTI (5-HT1A, 5-HT1B, 5-HTID, 5-HTIE and 5-HT1F), 5-HT2 (5-HT2A, 5-HT2B and 5-HT2C), 5-HT3, 5-HT4, 5-HT5 (5-HT5A, 5-HT5B), 5-HT6 and 5-HT7 have been identified. Specific drugs which are capable of either selectively stimulating or inhibiting these receptor subtypes are being designed. This has generated therapeutic potentials of 5-HT receptor modulators in a variety of disease conditions. Conditions where 5-HT receptor modulators have established their use with distinct efficacy and advantages include migraine, anxiety, psychosis, obesity and cancer therapy-induced vomiting by cytotoxic drugs and radiation. Discovery of 5-HT, its biosynthesis, metabolism, physiological role and the potential of 5-HT receptor modulators in various nervous, cardiovascular and gastrointestinal tract disorders, bone growth and micturition have been discussed in this article. Keywords 5-hydroxytryptamine (5-HT) receptors; Modulators; Biogenic amines PMID:22505971

  2. Propofol Restores Transient Receptor Potential Vanilloid Receptor Subtype-1 Sensitivity via Activation of Transient Receptor Potential Ankyrin Receptor Subtype-1 in Sensory Neurons

    PubMed Central

    Zhang, Hongyu; Wickley, Peter J.; Sinha, Sayantani; Bratz, Ian N.; Damron, Derek S.

    2011-01-01

    Background Crosstalk between peripheral nociceptors belonging to the transient receptor potential vanilloid receptor subtype-1 (TRPV1) and ankyrin subtype-1 (TRPA1) family has recently been demonstrated. Moreover, the intravenous anesthetic propofol has been shown to directly activate TRPA1 receptors, and indirectly restore sensitivity of TRPV1 receptors in dorsal root ganglion (DRG) sensory neurons. Our objective was to determine the extent to which TRPA1 activation is involved in mediating the propofol-induced restoration of TRPV1 sensitivity. Methods Mouse DRG neurons were isolated by enzymatic dissociation and grown for 24 h. F-11 cells were transfected with complementary DNA for both TRPV1 and TRPA1 or TRPV1 only. Intracellular Ca2+ concentration was measured in individual cells via fluorescence microscopy. Following TRPV1 de-sensitization with capsaicin (100 nM), cells were treated with propofol (1, 5 and 10 μM) alone, propofol in the presence of the TRPA1 antagonist, HC-030031 (0.5 μM) or the TRPA1 agonist, Allyl isothiocyanate (AITC, 100 μM) and capsaicin was then reapplied. Results In DRG neurons that contain both TRPV1 and TRPA1, propofol and AITC restored TRPV1 sensitivity. However, in DRG neurons containing only TRPV1 receptors, exposure to propofol or AITC following de-sensitization did not restore capsaicin-induced TRPV1 sensitivity. Similarly, in F-11 cells transfected with both TRPV1 and TRPA1, propofol and AITC restored TRPV1 sensitivity. However, in F-11 cells transfected with TRPV1 only, neither propofol nor AITC were capable of restoring TRPV1 sensitivity. Conclusions These data demonstrate that propofol restores TRPV1 sensitivity in primary DRG neurons and in cultured F-11 cells transfected with both the TRPV1 and TRPA1 receptors via a TRPA1-dependent process. Propofol’s effects on sensory neurons may be clinically important and contribute to peripheral sensitization to nociceptive stimuli in traumatized tissue. PMID:21364461

  3. Mouse T-cell receptor variable gene segment families

    SciTech Connect

    Arden, B.; Kabelitz, D.; Clark, S.P.; Mak, T.W.

    1995-10-01

    All mouse T-cell receptor {alpha}/{delta}, {beta}, and {gamma} variable (Tcra/d-, b-, and g-V) gene segments were aligned to compare the sequences with one another, to group them into subfamilies, and to derive a name which complies with the standard nomenclature. it was necessary to change the names of some V gene segments because they conflicted with those of other segments. The traditional classification into subfamilies was re-evaluated using a much larger pool of sequences. In the mouse, most V gene segments can be grouped into subfamilies of closely related genes with significantly less similarity between different subfamilies. 118 refs., 11 figs., 4 tabs.

  4. Transient Receptor Potential Ion Channels Control Thermoregulatory Behaviour in Reptiles

    PubMed Central

    Seebacher, Frank; Murray, Shauna A.

    2007-01-01

    Biological functions are governed by thermodynamics, and animals regulate their body temperature to optimise cellular performance and to avoid harmful extremes. The capacity to sense environmental and internal temperatures is a prerequisite for the evolution of thermoregulation. However, the mechanisms that enable ectothermic vertebrates to sense heat remain unknown. The recently discovered thermal characteristics of transient receptor potential ion channels (TRP) render these proteins suitable to act as temperature sensors. Here we test the hypothesis that TRPs are present in reptiles and function to control thermoregulatory behaviour. We show that the hot-sensing TRPV1 is expressed in a crocodile (Crocodylus porosus), an agamid (Amphibolurus muricatus) and a scincid (Pseudemoia entrecasteauxii) lizard, as well as in the quail and zebrafinch (Coturnix chinensis and Poephila guttata). The TRPV1 genes from all reptiles form a unique clade that is delineated from the mammalian and the ancestral Xenopus sequences by an insertion of two amino acids. TRPV1 and the cool-sensing TRPM8 are expressed in liver, muscle (transversospinalis complex), and heart tissues of the crocodile, and have the potential to act as internal thermometer and as external temperatures sensors. Inhibition of TRPV1 and TRPM8 in C. porosus abolishes the typically reptilian shuttling behaviour between cooling and heating environments, and leads to significantly altered body temperature patterns. Our results provide the proximate mechanism of thermal selection in terrestrial ectotherms, which heralds a fundamental change in interpretation, because TRPs provide the mechanism for a tissue-specific input into the animals' thermoregulatory response. PMID:17356692

  5. From "junk" to gene: curriculum vitae of a primate receptor isoform gene.

    PubMed

    Singer, Silke S; Männel, Daniela N; Hehlgans, Thomas; Brosius, Jürgen; Schmitz, Jürgen

    2004-08-20

    Exonization of Alu retroposons awakens public opinion, particularly when causing genetic diseases. However, often neglected, alternative "Alu-exons" also carry the potential to greatly enhance genetic diversity by increasing the transcriptome of primates chiefly via alternative splicing.Here, we report a 5' exon generated from one of the two alternative transcripts in human tumor necrosis factor receptor gene type 2 (p75TNFR) that contains an ancient Alu-SINE, which provides an alternative N-terminal protein-coding domain. We follow the primate evolution over the past 63 million years to reconstruct the key events that gave rise to a novel receptor isoform. The Alu integration and start codon formation occurred between 58 and 40 million years ago (MYA) in the common ancestor of anthropoid primates. Yet a functional gene product could not be generated until a novel splice site and an open reading frame were introduced between 40 and 25 MYA on the catarrhine lineage (Old World monkeys including apes).

  6. Nuclear receptors: potential biomarkers for assessing physiological functions of soy proteins and phytoestrogens.

    PubMed

    Xiao, Chao Wu; Wood, Carla; Gilani, G Sarwar

    2006-01-01

    Soy consumption is associated with decreased incidence of chronic diseases, including cardiovascular diseases, atherosclerosis, diabetes, osteoporosis, and certain types of cancers. However, consumption of high amounts of soy isoflavones may adversely influence endocrine functions, such as thyroid function and reproductive performance, because of their structural similarity to endogenous estrogens. Nuclear receptors are a group of transcription factors that play critical roles in the regulation of gene expression and physiological functions through direct interaction with target genes. Modulation of the abundance of these receptors, such as changing their gene expression, alters the sensitivity of the target cells or tissues to the stimulation of ligands, and eventually affects the relevant physiological functions, such as growth, development, osteogenesis, immune response, lipogenesis, reproductive process, and anticarcinogenesis. A number of studies have shown that the bioactive components in soy can modify the expression of these receptors in various tissues and cancer cells, which is believed to be a key intracellular mechanism by which soy components affect physiological functions. This review summarizes the current understanding of the modulation of nuclear receptors by soy proteins and isoflavones, and focuses especially on the receptors for estrogens, progesterone, androgen, vitamin D, retinoic acid, and thyroid hormones as well as the potential impact on physiological functions.

  7. Natural killer cell receptor genes in the family Equidae: not only Ly49.

    PubMed

    Futas, Jan; Horin, Petr

    2013-01-01

    Natural killer (NK) cells have important functions in immunity. NK recognition in mammals can be mediated through killer cell immunoglobulin-like receptors (KIR) and/or killer cell lectin-like Ly49 receptors. Genes encoding highly variable NK cell receptors (NKR) represent rapidly evolving genomic regions. No single conservative model of NKR genes was observed in mammals. Single-copy low polymorphic NKR genes present in one mammalian species may expand into highly polymorphic multigene families in other species. In contrast to other non-rodent mammals, multiple Ly49-like genes appear to exist in the horse, while no functional KIR genes were observed in this species. In this study, Ly49 and KIR were sought and their evolution was characterized in the entire family Equidae. Genomic sequences retrieved showed the presence of at least five highly conserved polymorphic Ly49 genes in horses, asses and zebras. These findings confirmed that the expansion of Ly49 occurred in the entire family. Several KIR-like sequences were also identified in the genome of Equids. Besides a previously identified non-functional KIR-Immunoglobulin-like transcript fusion gene (KIR-ILTA) and two putative pseudogenes, a KIR3DL-like sequence was analyzed. In contrast to previous observations made in the horse, the KIR3DL sequence, genomic organization and mRNA expression suggest that all Equids might produce a functional KIR receptor protein molecule with a single non-mutated immune tyrosine-based inhibition motif (ITIM) domain. No evidence for positive selection in the KIR3DL gene was found. Phylogenetic analysis including rhinoceros and tapir genomic DNA and deduced amino acid KIR-related sequences showed differences between families and even between species within the order Perissodactyla. The results suggest that the order Perissodactyla and its family Equidae with expanded Ly49 genes and with a potentially functional KIR gene may represent an interesting model for evolutionary biology of

  8. Natural Killer Cell Receptor Genes in the Family Equidae: Not only Ly49

    PubMed Central

    Futas, Jan; Horin, Petr

    2013-01-01

    Natural killer (NK) cells have important functions in immunity. NK recognition in mammals can be mediated through killer cell immunoglobulin-like receptors (KIR) and/or killer cell lectin-like Ly49 receptors. Genes encoding highly variable NK cell receptors (NKR) represent rapidly evolving genomic regions. No single conservative model of NKR genes was observed in mammals. Single-copy low polymorphic NKR genes present in one mammalian species may expand into highly polymorphic multigene families in other species. In contrast to other non-rodent mammals, multiple Ly49-like genes appear to exist in the horse, while no functional KIR genes were observed in this species. In this study, Ly49 and KIR were sought and their evolution was characterized in the entire family Equidae. Genomic sequences retrieved showed the presence of at least five highly conserved polymorphic Ly49 genes in horses, asses and zebras. These findings confirmed that the expansion of Ly49 occurred in the entire family. Several KIR-like sequences were also identified in the genome of Equids. Besides a previously identified non-functional KIR-Immunoglobulin-like transcript fusion gene (KIR-ILTA) and two putative pseudogenes, a KIR3DL-like sequence was analyzed. In contrast to previous observations made in the horse, the KIR3DL sequence, genomic organization and mRNA expression suggest that all Equids might produce a functional KIR receptor protein molecule with a single non-mutated immune tyrosine-based inhibition motif (ITIM) domain. No evidence for positive selection in the KIR3DL gene was found. Phylogenetic analysis including rhinoceros and tapir genomic DNA and deduced amino acid KIR-related sequences showed differences between families and even between species within the order Perissodactyla. The results suggest that the order Perissodactyla and its family Equidae with expanded Ly49 genes and with a potentially functional KIR gene may represent an interesting model for evolutionary biology of

  9. Natural killer cell receptor genes in the family Equidae: not only Ly49.

    PubMed

    Futas, Jan; Horin, Petr

    2013-01-01

    Natural killer (NK) cells have important functions in immunity. NK recognition in mammals can be mediated through killer cell immunoglobulin-like receptors (KIR) and/or killer cell lectin-like Ly49 receptors. Genes encoding highly variable NK cell receptors (NKR) represent rapidly evolving genomic regions. No single conservative model of NKR genes was observed in mammals. Single-copy low polymorphic NKR genes present in one mammalian species may expand into highly polymorphic multigene families in other species. In contrast to other non-rodent mammals, multiple Ly49-like genes appear to exist in the horse, while no functional KIR genes were observed in this species. In this study, Ly49 and KIR were sought and their evolution was characterized in the entire family Equidae. Genomic sequences retrieved showed the presence of at least five highly conserved polymorphic Ly49 genes in horses, asses and zebras. These findings confirmed that the expansion of Ly49 occurred in the entire family. Several KIR-like sequences were also identified in the genome of Equids. Besides a previously identified non-functional KIR-Immunoglobulin-like transcript fusion gene (KIR-ILTA) and two putative pseudogenes, a KIR3DL-like sequence was analyzed. In contrast to previous observations made in the horse, the KIR3DL sequence, genomic organization and mRNA expression suggest that all Equids might produce a functional KIR receptor protein molecule with a single non-mutated immune tyrosine-based inhibition motif (ITIM) domain. No evidence for positive selection in the KIR3DL gene was found. Phylogenetic analysis including rhinoceros and tapir genomic DNA and deduced amino acid KIR-related sequences showed differences between families and even between species within the order Perissodactyla. The results suggest that the order Perissodactyla and its family Equidae with expanded Ly49 genes and with a potentially functional KIR gene may represent an interesting model for evolutionary biology of

  10. Organization, structure, chromosomal assignment, and expression of the gene encoding the human endothelin-A receptor.

    PubMed

    Hosoda, K; Nakao, K; Tamura, N; Arai, H; Ogawa, Y; Suga, S; Nakanishi, S; Imura, H

    1992-09-15

    We have isolated and characterized the gene for the human endothelin-A receptor. Southern blot analyses demonstrated a single copy gene for the receptor. The gene spans more than 40 kilobases and contains eight exons and seven introns. Intron 1 exists in the 5'-noncoding region, and introns 2-7 occur in the coding region. The locations of introns 2-7 exist before or after the regions encoding the membrane-spanning domains. The transcription start site, determined by primer extension experiments, is 502 base pairs upstream of the methionine initiation codon. The 5'-flanking region lacks a typical TATA box but contains a potential SP-1-binding site 27 base pairs upstream of the transcription start site. Using human-rodent somatic hybrid cell DNA, the gene was assigned to human chromosome 4. Northern blot analyses revealed a 4.3-kilobase mRNA in a wide variety of human tissues, at the highest level in the aorta and at a substantial level in the cultured human mesangial cells. This is the first report of cloning of a gene for a member of the endothelin receptor family. The present study should give a clue to the discovery of possible disorders of the endothelin-A receptor, as well as facilitate the elucidation of the mechanisms by which the gene expression is regulated.

  11. A cluster of novel serotonin receptor 3-like genes on human chromosome 3.

    PubMed

    Karnovsky, Alla M; Gotow, Lisa F; McKinley, Denise D; Piechan, Julie L; Ruble, Cara L; Mills, Cynthia J; Schellin, Kathleen A B; Slightom, Jerry L; Fitzgerald, Laura R; Benjamin, Christopher W; Roberds, Steven L

    2003-11-13

    The ligand-gated ion channel family includes receptors for serotonin (5-hydroxytryptamine, 5-HT), acetylcholine, GABA, and glutamate. Drugs targeting subtypes of these receptors have proven useful for the treatment of various neuropsychiatric and neurological disorders. To identify new ligand-gated ion channels as potential therapeutic targets, drafts of human genome sequence were interrogated. Portions of four novel genes homologous to 5-HT(3A) and 5-HT(3B) receptors were identified within human sequence databases. We named the genes 5-HT(3C1)-5-HT(3C4). Radiation hybrid (RH) mapping localized these genes to chromosome 3q27-28. All four genes shared similar intron-exon organizations and predicted protein secondary structure with 5-HT(3A) and 5-HT(3B). Orthologous genes were detected by Southern blotting in several species including dog, cow, and chicken, but not in rodents, suggesting that these novel genes are not present in rodents or are very poorly conserved. Two of the novel genes are predicted to be pseudogenes, but two other genes are transcribed and spliced to form appropriate open reading frames. The 5-HT(3C1) transcript is expressed almost exclusively in small intestine and colon, suggesting a possible role in the serotonin-responsiveness of the gut.

  12. Allelic association of the D2 dopamine receptor gene with receptor-binding characteristics in alcoholism

    SciTech Connect

    Noble, E.P.; Blum, K.; Ritchie, T.; Montgomery, A.; Sheridan, P.J. )

    1991-07-01

    The allelic association of the human D2 dopamine receptor gene with the binding characteristics of the D2 dopamine receptor was determined in 66 brains of alcoholic and non-alcoholic subjects. In a blinded experiment, DNA from the cerebral cortex was treated with the restriction endonuclease Taql and probed with a 1.5-kilobase (kb) digest of a clone (lambda hD2G1) of the human D2 dopamine receptor gene. The binding characteristics (Kd (binding affinity) and Bmax (number of binding sites)) of the D2 dopamine receptor were determined in the caudate nuclei of these brains using tritiated spiperone as the ligand. The adjusted Kd was significantly lower in alcoholic than in nonalcoholic subjects. In subjects with the A1 allele, in whom a high association with alcoholism was found, the Bmax was significantly reduced compared with the Bmax of subjects with the A2 allele. Moreover, a progressively reduced Bmax was found in subjects with A2/A2, A1/A2, and A1/A1 alleles, with subjects with A2/A2 having the highest mean values, and subjects with A1/A1, the lowest. The polymorphic pattern of the D2 dopamine receptor gene and its differential expression of receptors suggests the involvement of the dopaminergic system in conferring susceptibility to at least one subtype of severe alcoholism.

  13. Expression of serotonin receptor genes in cranial ganglia.

    PubMed

    Maeda, Naohiro; Ohmoto, Makoto; Yamamoto, Kurumi; Kurokawa, Azusa; Narukawa, Masataka; Ishimaru, Yoshiro; Misaka, Takumi; Matsumoto, Ichiro; Abe, Keiko

    2016-03-23

    Taste cells release neurotransmitters to gustatory neurons to transmit chemical information they received. Sweet, umami, and bitter taste cells use ATP as a neurotransmitter. However, ATP release from sour taste cells has not been observed so far. Instead, they release serotonin when they are activated by sour/acid stimuli. Thus it is still controversial whether sour taste cells use ATP, serotonin, or both. By reverse transcription-polymerase chain reaction and subsequent in situ hybridization (ISH) analyses, we revealed that of 14 serotonin receptor genes only 5-HT3A and 5-HT3B showed significant/clear signals in a subset of neurons of cranial sensory ganglia in which gustatory neurons reside. Double-fluorescent labeling analyses of ISH for serotonin receptor genes with wheat germ agglutinin (WGA) in cranial sensory ganglia of pkd1l3-WGA mice whose sour neural pathway is visualized by the distribution of WGA originating from sour taste cells in the posterior region of the tongue revealed that WGA-positive cranial sensory neurons rarely express either of serotonin receptor gene. These results suggest that serotonin receptors expressed in cranial sensory neurons do not play any role as neurotransmitter receptor from sour taste cells. PMID:26854841

  14. Mineralocorticoid receptor interaction with SP1 generates a new response element for pathophysiologically relevant gene expression

    PubMed Central

    Meinel, Sandra; Ruhs, Stefanie; Schumann, Katja; Strätz, Nicole; Trenkmann, Kay; Schreier, Barbara; Grosse, Ivo; Keilwagen, Jens; Gekle, Michael; Grossmann, Claudia

    2013-01-01

    The mineralocorticoid receptor (MR) is a ligand-induced transcription factor belonging to the steroid receptor family and involved in water-electrolyte homeostasis, blood pressure regulation, inflammation and fibrosis in the renocardiovascular system. The MR shares a common hormone-response-element with the glucocorticoid receptor but nevertheless elicits MR-specific effects including enhanced epidermal growth factor receptor (EGFR) expression via unknown mechanisms. The EGFR is a receptor tyrosine kinase that leads to activation of MAP kinases, but that can also function as a signal transducer for other signaling pathways. In the present study, we mechanistically investigate the interaction between a newly discovered MR- but not glucocorticoid receptor- responsive-element (=MRE1) of the EGFR promoter, specificity protein 1 (SP1) and MR to gain general insights into MR-specificity. Biological relevance of the interaction for EGFR expression and consequently for different signaling pathways in general is demonstrated in human, rat and murine vascular smooth muscle cells and cells of EGFR knockout mice. A genome-wide promoter search for identical binding regions followed by quantitative PCR validation suggests that the identified MR-SP1–MRE1 interaction might be applicable to other genes. Overall, a novel principle of MR-specific gene expression is explored that applies to the pathophysiologically relevant expression of the EGFR and potentially also to other genes. PMID:23821666

  15. Evolution of an Expanded Mannose Receptor Gene Family

    PubMed Central

    Staines, Karen; Hunt, Lawrence G.; Young, John R.; Butter, Colin

    2014-01-01

    Sequences of peptides from a protein specifically immunoprecipitated by an antibody, KUL01, that recognises chicken macrophages, identified a homologue of the mammalian mannose receptor, MRC1, which we called MRC1L-B. Inspection of the genomic environment of the chicken gene revealed an array of five paralogous genes, MRC1L-A to MRC1L-E, located between conserved flanking genes found either side of the single MRC1 gene in mammals. Transcripts of all five genes were detected in RNA from a macrophage cell line and other RNAs, whose sequences allowed the precise definition of spliced exons, confirming or correcting existing bioinformatic annotation. The confirmed gene structures were used to locate orthologues of all five genes in the genomes of two other avian species and of the painted turtle, all with intact coding sequences. The lizard genome had only three genes, one orthologue of MRC1L-A and two orthologues of the MRC1L-B antigen gene resulting from a recent duplication. The Xenopus genome, like that of most mammals, had only a single MRC1-like gene at the corresponding locus. MRC1L-A and MRC1L-B genes had similar cytoplasmic regions that may be indicative of similar subcellular migration and functions. Cytoplasmic regions of the other three genes were very divergent, possibly indicating the evolution of a new functional repertoire for this family of molecules, which might include novel interactions with pathogens. PMID:25390371

  16. Selection for Genes Encoding Secreted Proteins and Receptors

    NASA Astrophysics Data System (ADS)

    Klein, Robert D.; Gu, Qimin; Goddard, Audrey; Rosenthal, Arnon

    1996-07-01

    Extracellular proteins play an essential role in the formation, differentiation, and maintenance of multicellular organisms. Despite that, the systematic identification of genes encoding these proteins has not been possible. We describe here a highly efficient method to isolate genes encoding secreted and membrane-bound proteins by using a single-step selection in yeast. Application of this method, termed signal peptide selection, to various tissues yielded 559 clones that appear to encode known or novel extracellular proteins. These include members of the transforming growth factor and epidermal growth factor protein families, endocrine hormones, tyrosine kinase receptors, serine/threonine kinase receptors, seven transmembrane receptors, cell adhesion molecules, extracellular matrix proteins, plasma proteins, and ion channels. The eventual identification of most, or all, extracellular signaling molecules will advance our understanding of fundamental biological processes and our ability to intervene in disease states.

  17. Characterization of the "CCR5" Chemokine Receptor Gene

    ERIC Educational Resources Information Center

    Thomas, John C.

    2004-01-01

    The life cycle of retroviruses is an essential topic of modern cell biology instruction. Furthermore, the process of HIV viral entry into the cell is a question of great interest in basic and clinical biology. This paper describes how students can easily recover their own DNA, amplify a portion of the "CCR5" chemokine receptor gene, characterize…

  18. β-Adrenergic receptor signaling and modulation of long-term potentiation in the mammalian hippocampus

    PubMed Central

    O'Dell, Thomas J.; Connor, Steven A.; Guglietta, Ryan

    2015-01-01

    Encoding new information in the brain requires changes in synaptic strength. Neuromodulatory transmitters can facilitate synaptic plasticity by modifying the actions and expression of specific signaling cascades, transmitter receptors and their associated signaling complexes, genes, and effector proteins. One critical neuromodulator in the mammalian brain is norepinephrine (NE), which regulates multiple brain functions such as attention, perception, arousal, sleep, learning, and memory. The mammalian hippocampus receives noradrenergic innervation and hippocampal neurons express β-adrenergic receptors, which are known to play important roles in gating the induction of long-lasting forms of synaptic potentiation. These forms of long-term potentiation (LTP) are believed to importantly contribute to long-term storage of spatial and contextual memories in the brain. In this review, we highlight the contributions of noradrenergic signaling in general and β-adrenergic receptors in particular, toward modulating hippocampal LTP. We focus on the roles of NE and β-adrenergic receptors in altering the efficacies of specific signaling molecules such as NMDA and AMPA receptors, protein phosphatases, and translation initiation factors. Also, the roles of β-adrenergic receptors in regulating synaptic “tagging” and “capture” of LTP within synaptic networks of the hippocampus are reviewed. Understanding the molecular and cellular bases of noradrenergic signaling will enrich our grasp of how the brain makes new, enduring memories, and may shed light on credible strategies for improving mental health through treatment of specific disorders linked to perturbed memory processing and dysfunctional noradrenergic synaptic transmission. PMID:26286656

  19. Estrogen receptor and progesterone receptor genes are expressed differentially in mouse embryos during preimplantation development.

    PubMed Central

    Hou, Q; Gorski, J

    1993-01-01

    Estrogen and progesterone play an important role in the development and implantation of preimplantation embryos. However, it is controversial whether these hormones act directly on the embryos. The effects of these hormones depend on the existence of their specific receptors. To determine whether estrogen receptor (ER) and progesterone receptor genes are expressed in mouse preimplantation embryos, we examined RNA from embryos at different stages of preimplantation development by reverse transcription-polymerase chain reaction techniques. ER mRNA was found in oocytes and fertilized eggs. The message level began to decline at the two-cell stage and reached its lowest level at the five- to eight-cell stage. ER mRNA was not detectable at the morula stage but reappeared at the blastocyst stage. Progesterone receptor mRNA was not detectable until the blastocyst stage. The embryonic expression of ER and progesterone receptor genes in the blastocyst suggests a possible functional requirement for ER and progesterone receptor at this stage of development. These results provide a basis for determining the direct role of estrogen and progesterone in preimplantation embryos. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8415723

  20. Interspecies variations in Bordetella catecholamine receptor gene regulation and function.

    PubMed

    Brickman, Timothy J; Suhadolc, Ryan J; Armstrong, Sandra K

    2015-12-01

    Bordetella bronchiseptica can use catecholamines to obtain iron from transferrin and lactoferrin via uptake pathways involving the BfrA, BfrD, and BfrE outer membrane receptor proteins, and although Bordetella pertussis has the bfrD and bfrE genes, the role of these genes in iron uptake has not been demonstrated. In this study, the bfrD and bfrE genes of B. pertussis were shown to be functional in B. bronchiseptica, but neither B. bronchiseptica bfrD nor bfrE imparted catecholamine utilization to B. pertussis. Gene fusion analyses found that expression of B. bronchiseptica bfrA was increased during iron starvation, as is common for iron receptor genes, but that expression of the bfrD and bfrE genes of both species was decreased during iron limitation. As shown previously for B. pertussis, bfrD expression in B. bronchiseptica was also dependent on the BvgAS virulence regulatory system; however, in contrast to the case in B. pertussis, the known modulators nicotinic acid and sulfate, which silence Bvg-activated genes, did not silence expression of bfrD in B. bronchiseptica. Further studies using a B. bronchiseptica bvgAS mutant expressing the B. pertussis bvgAS genes revealed that the interspecies differences in bfrD modulation are partly due to BvgAS differences. Mouse respiratory infection experiments determined that catecholamine utilization contributes to the in vivo fitness of B. bronchiseptica and B. pertussis. Additional evidence of the in vivo importance of the B. pertussis receptors was obtained from serologic studies demonstrating pertussis patient serum reactivity with the B. pertussis BfrD and BfrE proteins. PMID:26371128

  1. Interspecies Variations in Bordetella Catecholamine Receptor Gene Regulation and Function

    PubMed Central

    Brickman, Timothy J.; Suhadolc, Ryan J.

    2015-01-01

    Bordetella bronchiseptica can use catecholamines to obtain iron from transferrin and lactoferrin via uptake pathways involving the BfrA, BfrD, and BfrE outer membrane receptor proteins, and although Bordetella pertussis has the bfrD and bfrE genes, the role of these genes in iron uptake has not been demonstrated. In this study, the bfrD and bfrE genes of B. pertussis were shown to be functional in B. bronchiseptica, but neither B. bronchiseptica bfrD nor bfrE imparted catecholamine utilization to B. pertussis. Gene fusion analyses found that expression of B. bronchiseptica bfrA was increased during iron starvation, as is common for iron receptor genes, but that expression of the bfrD and bfrE genes of both species was decreased during iron limitation. As shown previously for B. pertussis, bfrD expression in B. bronchiseptica was also dependent on the BvgAS virulence regulatory system; however, in contrast to the case in B. pertussis, the known modulators nicotinic acid and sulfate, which silence Bvg-activated genes, did not silence expression of bfrD in B. bronchiseptica. Further studies using a B. bronchiseptica bvgAS mutant expressing the B. pertussis bvgAS genes revealed that the interspecies differences in bfrD modulation are partly due to BvgAS differences. Mouse respiratory infection experiments determined that catecholamine utilization contributes to the in vivo fitness of B. bronchiseptica and B. pertussis. Additional evidence of the in vivo importance of the B. pertussis receptors was obtained from serologic studies demonstrating pertussis patient serum reactivity with the B. pertussis BfrD and BfrE proteins. PMID:26371128

  2. Interspecies variations in Bordetella catecholamine receptor gene regulation and function.

    PubMed

    Brickman, Timothy J; Suhadolc, Ryan J; Armstrong, Sandra K

    2015-12-01

    Bordetella bronchiseptica can use catecholamines to obtain iron from transferrin and lactoferrin via uptake pathways involving the BfrA, BfrD, and BfrE outer membrane receptor proteins, and although Bordetella pertussis has the bfrD and bfrE genes, the role of these genes in iron uptake has not been demonstrated. In this study, the bfrD and bfrE genes of B. pertussis were shown to be functional in B. bronchiseptica, but neither B. bronchiseptica bfrD nor bfrE imparted catecholamine utilization to B. pertussis. Gene fusion analyses found that expression of B. bronchiseptica bfrA was increased during iron starvation, as is common for iron receptor genes, but that expression of the bfrD and bfrE genes of both species was decreased during iron limitation. As shown previously for B. pertussis, bfrD expression in B. bronchiseptica was also dependent on the BvgAS virulence regulatory system; however, in contrast to the case in B. pertussis, the known modulators nicotinic acid and sulfate, which silence Bvg-activated genes, did not silence expression of bfrD in B. bronchiseptica. Further studies using a B. bronchiseptica bvgAS mutant expressing the B. pertussis bvgAS genes revealed that the interspecies differences in bfrD modulation are partly due to BvgAS differences. Mouse respiratory infection experiments determined that catecholamine utilization contributes to the in vivo fitness of B. bronchiseptica and B. pertussis. Additional evidence of the in vivo importance of the B. pertussis receptors was obtained from serologic studies demonstrating pertussis patient serum reactivity with the B. pertussis BfrD and BfrE proteins.

  3. Therapeutic potential of endothelin receptor antagonism in kidney disease.

    PubMed

    Czopek, Alicja; Moorhouse, Rebecca; Webb, David J; Dhaun, Neeraj

    2016-03-01

    Our growing understanding of the role of the endothelin (ET) system in renal physiology and pathophysiology is from emerging studies of renal disease in animal models and humans. ET receptor antagonists reduce blood pressure and proteinuria in chronic kidney disease and cause regression of renal injury in animals. However, the therapeutic potential of ET receptor antagonism has not been fully explored and clinical studies have been largely limited to patients with diabetic nephropathy. There remains a need for more work in nondiabetic chronic kidney disease, end-stage renal disease (patients requiring maintenance dialysis and those with a functioning kidney transplant), ischemia reperfusion injury, and sickle cell disease. The current review summarizes the most recent advances in both preclinical and clinical studies of ET receptor antagonists in the field of kidney disease.

  4. Gene Expression Control by Glucocorticoid Receptors during Innate Immune Responses

    PubMed Central

    Xavier, Andre Machado; Anunciato, Aparecida Kataryna Olimpio; Rosenstock, Tatiana Rosado; Glezer, Isaias

    2016-01-01

    Glucocorticoids (GCs) are potent anti-inflammatory compounds that have been extensively used in clinical practice for several decades. GC’s effects on inflammation are generally mediated through GC receptors (GRs). Signal transduction through these nuclear receptors leads to dramatic changes in gene expression programs in different cell types, typically due to GR binding to DNA or to transcription modulators. During the last decade, the view of GCs as exclusive anti-inflammatory molecules has been challenged. GR negative interference in pro-inflammatory gene expression was a landmark in terms of molecular mechanisms that suppress immune activity. In fact, GR can induce varied inhibitory molecules, including a negative regulator of Toll-like receptors pathway, or subject key transcription factors, such as NF-κB and AP-1, to a repressor mechanism. In contrast, the expression of some acute-phase proteins and other players of innate immunity generally requires GR signaling. Consequently, GRs must operate context-dependent inhibitory, permissive, or stimulatory effects on host defense signaling triggered by pathogens or tissue damage. This review aims to disclose how contradictory or comparable effects on inflammatory gene expression can depend on pharmacological approach (including selective GC receptor modulators; SEGRMs), cell culture, animal treatment, or transgenic strategies used as models. Although the current view of GR-signaling integrated many advances in the field, some answers to important questions remain elusive. PMID:27148162

  5. The farnesoid X receptor induces very low density lipoprotein receptor gene expression.

    PubMed

    Sirvent, Audrey; Claudel, Thierry; Martin, Geneviève; Brozek, John; Kosykh, Vladimir; Darteil, Raphaël; Hum, Dean W; Fruchart, Jean-Charles; Staels, Bart

    2004-05-21

    The farnesoid X receptor (FXR) is a nuclear receptor activated by bile acids (BAs). In response to ligand-binding, FXR regulates many genes involved in BA, lipid, and lipoprotein metabolism. To identify new FXR target genes, microarray technology was used to profile total RNA extracted from HepG2 cells treated with the natural FXR agonist chenodeoxycholic acid (CDCA). Interestingly, a significant increase of transcript level of the very low density lipoprotein receptor (VLDLR) was observed. Our data, resulting from selective FXR activation, FXR RNA silencing and FXR-deficient mice, clearly demonstrate that BAs up-regulate VLDLR transcript levels via a FXR-dependent mechanism in vitro in human and in vivo in mouse liver cells.

  6. CRDB: database of chemosensory receptor gene families in vertebrate.

    PubMed

    Dong, Dong; Jin, Ke; Wu, Xiaoli; Zhong, Yang

    2012-01-01

    Chemosensory receptors (CR) are crucial for animals to sense the environmental changes and survive on earth. The emergence of whole-genome sequences provides us an opportunity to identify the entire CR gene repertoires. To completely gain more insight into the evolution of CR genes in vertebrates, we identified the nearly all CR genes in 25 vertebrates using homology-based approaches. Among these CR gene repertoires, nearly half of them were identified for the first time in those previously uncharacterized species, such as the guinea pig, giant panda and elephant, etc. Consistent with previous findings, we found that the numbers of CR genes vary extensively among different species, suggesting an extreme form of 'birth-and-death' evolution. For the purpose of facilitating CR gene analysis, we constructed a database with the goals to provide a resource for CR genes annotation and a web tool for exploring their evolutionary patterns. Besides a search engine for the gene extraction from a specific chromosome region, an easy-to-use phylogenetic analysis tool was also provided to facilitate online phylogeny study of CR genes. Our work can provide a rigorous platform for further study on the evolution of CR genes in vertebrates.

  7. Identification of a Bitter-Taste Receptor Gene Repertoire in Different Lagomorphs Species

    PubMed Central

    Ferreira, Ana M.; Marques, Andreia T.; Fontanesi, Luca; Thulin, Carl-Gustaf; Sales-Baptista, Elvira; Araújo, Susana S.; Almeida, André M.

    2016-01-01

    The repertoires of bitter-taste receptor (T2R) gene have been described for several animal species, but these data are still scarce for Lagomorphs. The aim of the present work is to identify potential repertoires of T2R in several Lagomorph species, covering a wide geographical distribution. We studied these genes in Lepus timidus, L. europaeus, Oryctolagus cuniculus algirus, Romerolagus diazi, and Sylvilagus floridanus, using O. cuniculus cuniculus as control species for PCR and DNA sequencing. We studied the identities of the DNA sequences and built the corresponding phylogenetic tree. Sequencing was successful for both subspecies of O. cuniculus for all T2R genes studied, for five genes in Lepus, and for three genes in R. diazi and S. floridanus. We describe for the first time the partial repertoires of T2R genes for Lagomorphs species, other than the common rabbit. Our phylogenetic analyses indicate that sequence proximity levels follow the established taxonomic classification. PMID:27092177

  8. Identification of a Bitter-Taste Receptor Gene Repertoire in Different Lagomorphs Species.

    PubMed

    Ferreira, Ana M; Marques, Andreia T; Fontanesi, Luca; Thulin, Carl-Gustaf; Sales-Baptista, Elvira; Araújo, Susana S; Almeida, André M

    2016-01-01

    The repertoires of bitter-taste receptor (T2R) gene have been described for several animal species, but these data are still scarce for Lagomorphs. The aim of the present work is to identify potential repertoires of T2R in several Lagomorph species, covering a wide geographical distribution. We studied these genes in Lepus timidus, L. europaeus, Oryctolagus cuniculus algirus, Romerolagus diazi, and Sylvilagus floridanus, using O. cuniculus cuniculus as control species for PCR and DNA sequencing. We studied the identities of the DNA sequences and built the corresponding phylogenetic tree. Sequencing was successful for both subspecies of O. cuniculus for all T2R genes studied, for five genes in Lepus, and for three genes in R. diazi and S. floridanus. We describe for the first time the partial repertoires of T2R genes for Lagomorphs species, other than the common rabbit. Our phylogenetic analyses indicate that sequence proximity levels follow the established taxonomic classification. PMID:27092177

  9. Tumor necrosis factor and its receptors in human ovarian cancer. Potential role in disease progression.

    PubMed Central

    Naylor, M S; Stamp, G W; Foulkes, W D; Eccles, D; Balkwill, F R

    1993-01-01

    The gene for tumor necrosis factor, TNF, was expressed in 45 out of 63 biopsies of human epithelial ovarian cancer. In serous tumors, there was a positive correlation between level of TNF expression and tumor grade. TNF mRNA was found in epithelial tumor cells and infiltrating macrophages, whereas TNF protein localized primarily to a subpopulation of macrophages within and in close proximity to tumor areas. mRNA and protein for the p55 TNF receptor gene localized to the tumor epithelium and tumor, but not to stromal macrophages. The p75 TNF receptor was confined to infiltrating cells. Cells expressing TNF mRNA were also found in ovarian cancer ascites and TNF protein was detected in some ascitic fluids. In 2 out of 12 biopsies of normal ovary, TNF mRNA was detected in a minority of cells in the thecal layer of the corpus luteum. Serum levels of TNF and its soluble receptor did not correlate with extent of TNF expression in matched biopsies. Northern and Southern analysis revealed no gross abnormality of the TNF gene. The coexpression of TNF and its receptor in ovarian cancer biopsies suggests the capacity for autocrine/paracrine action. TNF antagonists may have therapeutic potential in this malignancy. Images PMID:8387543

  10. Novel drugs that target the estrogen-related receptor alpha: their therapeutic potential in breast cancer

    PubMed Central

    May, Felicity EB

    2014-01-01

    The incidence of breast cancer continues to rise: 1.7 million women were diagnosed with and 521,000 women died from breast cancer in 2012. This review considers first current treatment options: surgery; radiotherapy; and systemic endocrine, anti-biological, and cytotoxic therapies. Clinical management includes prevention, early detection by screening, treatment with curative intent, management of chronic disease, and palliative control of advanced breast cancer. Next, the potential of novel drugs that target DNA repair, growth factor dependence, intracellular and intercellular signal transduction, and cell cycle are considered. Estrogen-related receptor alpha has attracted attention as a therapeutic target in triple-negative breast cancers with de novo resistance to, and in breast cancers with acquired resistance to, endocrine therapies such as antiestrogens and aromatase inhibitors. Estrogen-related receptor alpha is an orphan receptor and transcription factor. Its activity is regulated by coregulator proteins and posttranslational modification. It is an energy sensor that controls adaptation to energy demand and may facilitate glycolytic metabolism and mitochondrial oxidative respiration in breast cancer cells. Estrogen-related receptor alpha increases breast cancer cell migration, proliferation, and tumor development. It is expressed at high levels in estrogen receptor-negative tumors, and is proposed to activate estrogen-responsive genes in endocrine-resistant tumors. The structures and functions of the ligand-binding domains of estrogen receptor alpha and estrogen-related receptor alpha, their ability to bind estrogens, phytoestrogens, and synthetic ligands, and the effects of ligand agonists, antagonists, and inverse agonists on biological activity, are evaluated. Synthetic ligands of estrogen-related receptor alpha have activity in preclinical models of metabolic disorders, diabetes, osteoporosis, and oncology. The clinical settings in which these novel

  11. Identification of putative chemosensory receptor genes from yellow peach moth Conogethes punctiferalis (Guenée) antennae transcriptome

    PubMed Central

    Ge, Xing; Zhang, Tiantao; Wang, Zhenying; He, Kanglai; Bai, Shuxiong

    2016-01-01

    The yellow peach moth, Conogethes punctiferalis, is an extremely important polyphagous insect in Asia. The chemosensory systems of moth play an important role in detecting food, oviposition sites and mate attraction. Several antennal chemosensory receptors are involved in odor detection. Our study aims to identify chemosensory receptor genes for potential applications in behavioral responses of yellow peach moth. By transcriptomic analysis of male and female antennae, 83 candidate chemosensory receptors, including 62 odorant receptors, 11 ionotropic receptors and 10 gustatory receptors were identified. Through Blast and sequence alignment, the highly conserved co-receptor Orco was annotated, eight unigenes clustered into pheromone receptors, and two clustered as sugar receptor. Among the IRs, one unigenes was similar with co-receptors IR25a. Expression levels of 50 odorant receptors were further evaluated by quantitative real-time PCR in antennae. All the ORs tested were detected in antennae and some of which were associated with sex-biased expression. The chemosensory receptors identified in C. punctiferalis provide a foundational resource for further analysis on olfaction for behavior. The expression profiles of ORs in antennae indicated variant functions in olfactory recognition, and our results provided the possibility for the potential application of semiochemical to control this pest moth. PMID:27659493

  12. Mu Opioid Receptor Gene: New Point Mutations in Opioid Addicts

    PubMed Central

    Dinarvand, Amin; Goodarzi, Ali; Vousooghi, Nasim; Hashemi, Mehrdad; Dinarvand, Rasoul; Ostadzadeh, Fahimeh; Khoshzaban, Ahad; Zarrindast, Mohammad-Reza

    2014-01-01

    Introduction Association between single-nucleotide polymorphisms (SNPs) in mu opioid receptor gene and drug addiction has been shown in various studies. Here, we have evaluated the existence of polymorphisms in exon 3 of this gene in Iranian population and investigated the possible association between these mutations and opioid addiction. Methods 79 opioid-dependent subjects (55 males, 24 females) and 134 non-addict or control individuals (74 males, 60 females) participated in the study. Genomic DNA was extracted from volunteers’ peripheral blood and exon 3 of the mu opioid receptor gene was amplified by polymerase chain reaction (PCR) whose products were then sequenced. Results Three different heterozygote polymorphisms were observed in 3 male individuals: 759T > C and 877G > A mutations were found in 2 control volunteers and 1043G > C substitution was observed in an opioid-addicted subject. Association between genotype and opioid addiction for each mutation was not statistically significant. Discussion It seems that the sample size used in our study is not enough to confirm or reject any association between 759T > C, 877G > A and 1043G > C substitutions in exon 3 of the mu opioid receptor gene and opioid addiction susceptibility in Iranian population. PMID:25436079

  13. Diversity and Impact of Rare Variants in Genes Encoding the Platelet G Protein-Coupled Receptors

    PubMed Central

    Jones, Matthew L.; Norman, Jane E.; Morgan, Neil V.; Mundell, Stuart J.; Lordkipanidzé, Marie; Lowe, Gillian C.; Daly, Martina E.; Simpson, Michael A.; Drake, Sian; Watson, Steve P.

    2015-01-01

    Summary Platelet responses to activating agonists are influenced by common population variants within or near G protein-coupled receptor (GPCR) genes that affect receptor activity. However, the impact of rare GPCR gene variants is unknown. We describe the rare single nucleotide variants (SNVs) in the coding and splice regions of 18 GPCR genes in 7,595 exomes from the 1,000-genomes and Exome Sequencing Project databases and in 31 cases with inherited platelet function disorders (IPFDs). In the population databases, the GPCR gene target regions contained 740 SNVs (318 synonymous, 410 missense, 7 stop gain and 6 splice region) of which 70% had global minor allele frequency (MAF) < 0.05%. Functional annotation using six computational algorithms, experimental evidence and structural data identified 156/740 (21%) SNVs as potentially damaging to GPCR function, most commonly in regions encoding the transmembrane and C-terminal intracellular receptor domains. In 31 index cases with IPFDs (Gi-pathway defect n=15; secretion defect n=11; thromboxane pathway defect n=3 and complex defect n=2) there were 256 SNVs in the target regions of 15 stimulatory platelet GPCRs (34 unique; 12 with MAF<1% and 22 with MAF ≥ 1%). These included rare variants predicting R122H, P258T and V207A substitutions in the P2Y12 receptor that were annotated as potentially damaging, but only partially explained the platelet function defects in each case. Our data highlight that potentially damaging variants in platelet GPCR genes have low individual frequencies, but are collectively abundant in the population. Potentially damaging variants are also present in pedigrees with IPFDs and may contribute to complex laboratory phenotypes. PMID:25567036

  14. Cannabinoid receptor 1 suppresses transient receptor potential vanilloid 1-induced inflammatory responses to corneal injury

    PubMed Central

    Yang, Y.; Yang, H.; Wang, Z.; Varadaraj, K.; Kumari, S.S.; Mergler, S.; Okada, Y.; Saika, S.; Kingsley, P.J.; Marnett, L.J.; Reinach, P.S.

    2013-01-01

    Cannabinoid receptor type 1 (CB1)-induced suppression of transient receptor potential vanilloid type 1 (TRPV1) activation provides a therapeutic option to reduce inflammation and pain in different animal disease models through mechanisms involving dampening of TRPV1 activation and signaling events. As we found in both mouse corneal epithelium and human corneal epithelial cells (HCEC) that there is CB1 and TRPV1 expression colocalization based on overlap of coimmunostaining, we determined in mouse corneal wound healing models and in human corneal epithelial cells (HCEC) if they interact with one another to reduce TRPV1-induced inflammatory and scarring responses. Corneal epithelial debridement elicited in vivo a more rapid wound healing response in wildtype (WT) than in CB1−/− mice suggesting functional interaction between CB1 and TRPV1. CB1 activation by injury is tenable based on the identification in mouse corneas of 2-arachidonylglycerol (2-AG) with tandem LC–MS/MS, a selective endocannabinoid CB1 ligand. Suppression of corneal TRPV1 activation by CB1 is indicated since following alkali burning, CB1 activation with WIN55,212-2 (WIN) reduced immune cell stromal infiltration and scarring. Western blot analysis of coimmunoprecipitates identified protein–protein interaction between CB1 and TRPV1. Other immunocomplexes were also identified containing transforming growth factor kinase 1 (TAK1), TRPV1 and CB1. CB1 siRNA gene silencing prevented suppression by WIN of TRPV1-induced TAK1–JNK1 signaling. WIN reduced TRPV1-induced Ca2+ transients in fura2-loaded HCEC whereas pertussis toxin (PTX) preincubation obviated suppression by WIN of such rises caused by capsaicin (CAP). Whole cell patch clamp analysis of HCEC showed that WIN blocked subsequent CAP-induced increases in nonselective outward currents. Taken together, CB1 activation by injury-induced release of endocannabinoids such as 2-AG downregulates TRPV1 mediated inflammation and corneal opacification

  15. Functional expression of purinergic P2 receptors and transient receptor potential channels by the human urothelium

    PubMed Central

    Shabir, Saqib; Cross, William; Kirkwood, Lisa A.; Pearson, Joanna F.; Appleby, Peter A.; Walker, Dawn; Eardley, Ian

    2013-01-01

    In addition to its role as a physical barrier, the urothelium is considered to play an active role in mechanosensation. A key mechanism is the release of transient mediators that activate purinergic P2 receptors and transient receptor potential (TRP) channels to effect changes in intracellular Ca2+. Despite the implied importance of these receptors and channels in urothelial tissue homeostasis and dysfunctional bladder disease, little is known about their functional expression by the human urothelium. To evaluate the expression and function of P2X and P2Y receptors and TRP channels, the human ureter and bladder were used to separate urothelial and stromal tissues for RNA isolation and cell culture. RT-PCR using stringently designed primer sets was used to establish which P2 and TRP species were expressed at the transcript level, and selective agonists/antagonists were used to confirm functional expression by monitoring changes in intracellular Ca2+ and in a scratch repair assay. The results confirmed the functional expression of P2Y4 receptors and excluded nonexpressed receptors/channels (P2X1, P2X3, P2X6, P2Y6, P2Y11, TRPV5, and TRPM8), while a dearth of specific agonists confounded the functional validation of expressed P2X2, P2X4, P2Y1, P2Y2, TRPV2, TRPV3, TRPV6 and TRPM7 receptors/channels. Although a conventional response was elicited in control stromal-derived cells, the urothelial cell response to well-characterized TRPV1 and TRPV4 agonists/antagonists revealed unexpected anomalies. In addition, agonists that invoked an increase in intracellular Ca2+ promoted urothelial scratch repair, presumably through the release of ATP. The study raises important questions about the ligand selectivity of receptor/channel targets expressed by the urothelium. These pathways are important in urothelial tissue homeostasis, and this opens the possibility of selective drug targeting. PMID:23720349

  16. Neuropeptide receptors as potential drug targets in the treatment of inflammatory conditions

    PubMed Central

    Pintér, Erika; Pozsgai, Gábor; Hajna, Zsófia; Helyes, Zsuzsanna; Szolcsányi, János

    2014-01-01

    Cross-talk between the nervous, endocrine and immune systems exists via regulator molecules, such as neuropeptides, hormones and cytokines. A number of neuropeptides have been implicated in the genesis of inflammation, such as tachykinins and calcitonin gene-related peptide. Development of their receptor antagonists could be a promising approach to anti-inflammatory pharmacotherapy. Anti-inflammatory neuropeptides, such as vasoactive intestinal peptide, pituitary adenylate cyclase-activating polypeptide, α-melanocyte-stimulating hormone, urocortin, adrenomedullin, somatostatin, cortistatin, ghrelin, galanin and opioid peptides, are also released and act on their own receptors on the neurons as well as on different inflammatory and immune cells. The aim of the present review is to summarize the most prominent data of preclinical animal studies concerning the main pharmacological effects of ligands acting on the neuropeptide receptors. Promising therapeutic impacts of these compounds as potential candidates for the development of novel types of anti-inflammatory drugs are also discussed. PMID:23432438

  17. Rapid Dark Recovery of the Invertebrate Early Receptor Potential

    PubMed Central

    Hillman, Peter; Dodge, F. A.; Hochstein, S.; Knight, B. W.; Minke, B.

    1973-01-01

    The recovery in the dark of the early receptor potential, as a direct manifestation of the state of the visual pigments, has been studied by intracellular recording in the ventral photoreceptors of Limulus and lateral photoreceptors of Balanus. The recovery is exponential with 1/e time constants of about 80 ms at 24°C for both preparations and 1800 ms at 4°C for Balanus. The 24°C rate extrapolates to total recovery of the pigment within 2 s. The later part of the dark adaptation of the late receptor potential, which may take from seconds to minutes in these preparations, appears thus to be unrelated to the state of the pigment. PMID:4713724

  18. The Role of Metabotropic Glutamate Receptor Genes in Schizophrenia.

    PubMed

    Maj, Carlo; Minelli, Alessandra; Giacopuzzi, Edoardo; Sacchetti, Emilio; Gennarelli, Massimo

    2016-01-01

    Genomic studies revealed two main components in the genetic architecture of schizophrenia, one constituted by common variants determining a distributed polygenic effect and one represented by a large number of heterogeneous rare and highly disruptive mutations. These gene modifications often affect neural transmission and different studies proved an involvement of metabotropic glutamate receptors in schizophrenia phenotype. Through the combination of literature information with genomic data from public repositories, we analyzed the current knowledge on the involvement of genetic variations of the human metabotropic glutamate receptors in schizophrenia and related endophenotypes. Despite the analysis did not reveal a definitive connection, different suggestive associations have been identified and in particular a relevant role has emerged for GRM3 in affecting specific schizophrenia endophenotypes. This supports the hypothesis that these receptors are directly involved in schizophrenia disorder. PMID:27296644

  19. The Role of Metabotropic Glutamate Receptor Genes in Schizophrenia.

    PubMed

    Maj, Carlo; Minelli, Alessandra; Giacopuzzi, Edoardo; Sacchetti, Emilio; Gennarelli, Massimo

    2016-01-01

    Genomic studies revealed two main components in the genetic architecture of schizophrenia, one constituted by common variants determining a distributed polygenic effect and one represented by a large number of heterogeneous rare and highly disruptive mutations. These gene modifications often affect neural transmission and different studies proved an involvement of metabotropic glutamate receptors in schizophrenia phenotype. Through the combination of literature information with genomic data from public repositories, we analyzed the current knowledge on the involvement of genetic variations of the human metabotropic glutamate receptors in schizophrenia and related endophenotypes. Despite the analysis did not reveal a definitive connection, different suggestive associations have been identified and in particular a relevant role has emerged for GRM3 in affecting specific schizophrenia endophenotypes. This supports the hypothesis that these receptors are directly involved in schizophrenia disorder.

  20. Molecular Characterization and Sex Distribution of Chemosensory Receptor Gene Family Based on Transcriptome Analysis of Scaeva pyrastri

    PubMed Central

    Li, Xiao-Ming; Zhu, Xiu-Yun; He, Peng; Xu, Lu; Sun, Liang; Chen, Li; Wang, Zhi-Qiang; Deng, Dao-Gui

    2016-01-01

    Chemosensory receptors play key roles in insect behavior. Thus, genes encoding these receptors have great potential for use in integrated pest management. The hover fly Scaeva pyrastri (L.) is an important pollinating insect and a natural enemy of aphids, mainly distributed in the Palearctic and Nearctic regions. However, a systematic identification of their chemosensory receptor genes in the antennae has not been reported. In the present study, we assembled the antennal transcriptome of S. pyrastri by using Illumina sequencing technology. Analysis of the transcriptome data identified 60 candidate chemosensory genes, including 38 for odorant receptors (ORs), 16 for ionotropic receptors (IRs), and 6 for gustatory receptors (GRs). The numbers are similar to those of other Diptera species, suggesting that we were able to successfully identify S. pyrastri chemosensory genes. We analyzed the expression patterns of all genes by using reverse transcriptase PCR (RT-PCR), and found that some genes exhibited sex-biased or sex-specific expression. These candidate chemosensory genes and their tissue expression profiles provide information for further studies aimed at fully understanding the molecular basis behind chemoreception-related behaviors in S. pyrastri. PMID:27171401

  1. Molecular Characterization and Sex Distribution of Chemosensory Receptor Gene Family Based on Transcriptome Analysis of Scaeva pyrastri.

    PubMed

    Li, Xiao-Ming; Zhu, Xiu-Yun; He, Peng; Xu, Lu; Sun, Liang; Chen, Li; Wang, Zhi-Qiang; Deng, Dao-Gui; Zhang, Ya-Nan

    2016-01-01

    Chemosensory receptors play key roles in insect behavior. Thus, genes encoding these receptors have great potential for use in integrated pest management. The hover fly Scaeva pyrastri (L.) is an important pollinating insect and a natural enemy of aphids, mainly distributed in the Palearctic and Nearctic regions. However, a systematic identification of their chemosensory receptor genes in the antennae has not been reported. In the present study, we assembled the antennal transcriptome of S. pyrastri by using Illumina sequencing technology. Analysis of the transcriptome data identified 60 candidate chemosensory genes, including 38 for odorant receptors (ORs), 16 for ionotropic receptors (IRs), and 6 for gustatory receptors (GRs). The numbers are similar to those of other Diptera species, suggesting that we were able to successfully identify S. pyrastri chemosensory genes. We analyzed the expression patterns of all genes by using reverse transcriptase PCR (RT-PCR), and found that some genes exhibited sex-biased or sex-specific expression. These candidate chemosensory genes and their tissue expression profiles provide information for further studies aimed at fully understanding the molecular basis behind chemoreception-related behaviors in S. pyrastri. PMID:27171401

  2. Mechanisms of oestrogen receptor (ER) gene regulation in breast cancer

    PubMed Central

    2016-01-01

    Most breast cancers are driven by a transcription factor called oestrogen receptor (ER). Understanding the mechanisms of ER activity in breast cancer has been a major research interest and recent genomic advances have revealed extraordinary insights into how ER mediates gene transcription and what occurs during endocrine resistance. This review discusses our current understanding on ER activity, with an emphasis on several evolving, but important areas of ER biology. PMID:26884552

  3. Farnesoid X receptor represses hepatic lipase gene expression.

    PubMed

    Sirvent, Audrey; Verhoeven, Adrie J M; Jansen, Hans; Kosykh, Vladimir; Darteil, Raphaël J; Hum, Dean W; Fruchart, Jean-Charles; Staels, Bart

    2004-11-01

    The farnesoid X receptor (FXR) is a nuclear receptor that regulates gene expression in response to bile acids (BAs). FXR plays a central role in BA, cholesterol, and lipoprotein metabolism. Here, we identify HL, an enzyme involved in the metabolism of remnant and high density lipoproteins, as a novel FXR-regulated gene. The natural FXR ligand, chenodeoxycholic acid (CDCA), downregulates HL gene expression in a dose- and time-dependent manner in human hepatoma HepG2 cells. The nonsteroidal synthetic FXR agonist GW4064 also decreases HL mRNA levels in HepG2 cells and in primary human hepatocytes. Moreover, the decrease of HL mRNA levels after treatment with FXR agonists was associated with a significant decrease in secreted enzymatic activity. In addition, FXR-specific gene silencing using small interfering RNAs demonstrated that CDCA- and GW4064-mediated downregulation of HL transcript levels occurs via an FXR-dependent mechanism. Finally, using transient transfection experiments, it is shown that FXR represses transcriptional activity of a reporter driven by the -698/+13 bp human HL promoter. Taken together, these results identify HL as a new FXR-regulated gene in human liver cells. In view of the role of HL in plasma lipoprotein metabolism, our results further emphasize the central role of FXR in lipid homeostasis.

  4. Characterization of leptin receptor gene in Bubalus bubalis and association analysis with body measurement traits.

    PubMed

    De Matteis, Giovanna; Scatà, Maria Carmela; Catillo, Gennaro; Terzano, Giuseppina Maria; Grandoni, Francesco; Napolitano, Francesco

    2015-06-01

    Leptin has a pleiotropic effect on regulating appetite, energy metabolism, growth, reproduction, body composition and immunity. This property supports leptin and its receptor as candidate genes for evaluating genetic polymorphisms to associate with growth, milk yield and other economic traits. The aim of this study is to characterize the leptin receptor gene in Bubalus bubalis, to identify single-nucleotide polymorphism (SNP) sites in different coding and non-coding regions and to analyse potential associations between SNPs identified and the body measurements traits of growing buffalo heifers. A group of 64 animals were genotyped by direct sequencing and twenty-eight SNPs were detected. A sequence analysis revealed the presence of nine interesting SNPs in gene sequence. The association analysis of polymorphisms with the body measurements traits of growing buffalo heifers shows significant statistical effects on chest depth and sacrum height. Therefore according to the results obtained from this study, the leptin receptor gene appears to have potential effects on the body measurement traits of Bubalus bubalis. PMID:25431006

  5. The 5-HT7 receptor as a potential target for treating drug and alcohol abuse.

    PubMed

    Hauser, Sheketha R; Hedlund, Peter B; Roberts, Amanda J; Sari, Youssef; Bell, Richard L; Engleman, Eric A

    2014-01-01

    Alcohol and drug abuse take a large toll on society and affected individuals. However, very few effective treatments are currently available to treat alcohol and drug addiction. Basic and clinical research has begun to provide some insights into the underlying neurobiological systems involved in the addiction process. Several neurotransmitter pathways have been implicated and distinct reward neurocircuitry have been proposed-including the mesocorticolimbic dopamine (MCL-DA) system and the extended amygdala. The serotonin (5-HT) neurotransmitter system is of particular interest and multiple 5-HT receptors are thought to play significant roles in alcohol and drug self-administration and the development of drug dependence. Among the 5-HT receptors, the 5-HT7 receptor is currently undergoing characterization as a potential target for the treatment of several psychiatric disorders. Although this receptor has received only limited research regarding addictive behaviors, aspects of its neuroanatomical, biochemical, physiological, pharmacological, and behavioral profiles suggest that it could play a key role in the addiction process. For instance, genomic studies in humans have suggested a link between variants in the gene encoding the 5-HT7 receptor and alcoholism. Recent behavioral testing using high-affinity antagonists in mice and preliminary tests with alcohol-preferring rats suggest that this receptor could mediate alcohol consumption and/or reinforcement and play a role in seeking/craving behavior. Interest in the development of new and more selective pharmacological agents for this receptor will aid in examining the 5-HT7 receptor as a novel target for treating addiction. PMID:25628528

  6. The 5-HT7 receptor as a potential target for treating drug and alcohol abuse

    PubMed Central

    Hauser, Sheketha R.; Hedlund, Peter B.; Roberts, Amanda J.; Sari, Youssef; Bell, Richard L.; Engleman, Eric A.

    2015-01-01

    Alcohol and drug abuse take a large toll on society and affected individuals. However, very few effective treatments are currently available to treat alcohol and drug addiction. Basic and clinical research has begun to provide some insights into the underlying neurobiological systems involved in the addiction process. Several neurotransmitter pathways have been implicated and distinct reward neurocircuitry have been proposed—including the mesocorticolimbic dopamine (MCL-DA) system and the extended amygdala. The serotonin (5-HT) neurotransmitter system is of particular interest and multiple 5-HT receptors are thought to play significant roles in alcohol and drug self-administration and the development of drug dependence. Among the 5-HT receptors, the 5-HT7 receptor is currently undergoing characterization as a potential target for the treatment of several psychiatric disorders. Although this receptor has received only limited research regarding addictive behaviors, aspects of its neuroanatomical, biochemical, physiological, pharmacological, and behavioral profiles suggest that it could play a key role in the addiction process. For instance, genomic studies in humans have suggested a link between variants in the gene encoding the 5-HT7 receptor and alcoholism. Recent behavioral testing using high-affinity antagonists in mice and preliminary tests with alcohol-preferring rats suggest that this receptor could mediate alcohol consumption and/or reinforcement and play a role in seeking/craving behavior. Interest in the development of new and more selective pharmacological agents for this receptor will aid in examining the 5-HT7 receptor as a novel target for treating addiction. PMID:25628528

  7. Methuselah/Methuselah-like G protein-coupled receptors constitute an ancient metazoan gene family

    PubMed Central

    de Mendoza, Alexandre; Jones, Jeffery W.; Friedrich, Markus

    2016-01-01

    Inconsistent conclusions have been drawn regarding the phylogenetic age of the Methuselah/Methuselah-like (Mth/Mthl) gene family of G protein-coupled receptors, the founding member of which regulates development and lifespan in Drosophila. Here we report the results from a targeted homolog search of 39 holozoan genomes and phylogenetic analysis of the conserved seven transmembrane domain. Our findings reveal that the Mth/Mthl gene family is ancient, has experienced numerous extinction and expansion events during metazoan evolution, and acquired the current definition of the Methuselah ectodomain during its exceptional expansion in arthropods. In addition, our findings identify Mthl1, Mthl5, Mthl14, and Mthl15 as the oldest Mth/Mthl gene family paralogs in Drosophila. Future studies of these genes have the potential to define ancestral functions of the Mth/Mthl gene family. PMID:26915348

  8. Retinoic acid and retinoid receptors: potential chemopreventive and therapeutic role in cervical cancer.

    PubMed

    Abu, Jafaru; Batuwangala, Madu; Herbert, Karl; Symonds, Paul

    2005-09-01

    Retinoids are natural and synthetic derivatives of vitamin A, which can be obtained from animal products (milk, liver, beef, fish oils, and eggs) and vegetables (carrots, mangos, sweet potatoes, and spinach). Retinoids regulate various important cellular functions in the body through specific nuclear retinoic-acid receptors and retinoid-X receptors, which are encoded by separate genes. Retinoic-acid receptors specifically bind tretinoin and alitretinoin, whereas retinoid-X receptors bind only alitretinoin. Retinoids have long been established as crucial for several essential life processes-healthy growth, vision, maintenance of tissues, reproduction, metabolism, tissue differentiation (normal, premalignant cells, and malignant cells), haemopoiesis, bone development, spermatogenesis, embryogenesis, and overall survival. Therefore, deficiency of vitamin A can lead to various unwanted biological effects. Several experimental and epidemiological studies have shown the antiproliferative activity of retinoids and their potential use in cancer treatment and chemoprevention. Emerging clinical trials have shown the chemotherapeutic and chemopreventive potential of retinoids in cancerous and precancerous conditions of the uterine cervix. In this review, we explore the potential chemopreventive and therapeutic roles of retinoids in preinvasive and invasive cervical neoplasia.

  9. Metabotropic glutamate receptor ligands as potential therapeutics for addiction

    PubMed Central

    Olive, M. F.

    2009-01-01

    There is now compelling evidence that the excitatory amino acid neurotransmitter glutamate plays a pivotal role in drug addiction and alcoholism. As a result, there has been increasing interest in developing glutamate-based therapies for the treatment of addictive disorders. Receptors for glutamate are primarily divided into two classes: ionotropic glutamate receptors (iGluRs) that mediate fast excitatory glutamate transmission, and metabotropic glutamate receptors (mGluRs), which are G-protein coupled receptors that mediate slower, modulatory glutamate transmission. Most iGluR antagonists, while showing some efficacy in animal models of addiction, exhibit serious side effects when tested in humans. mGluR ligands, on the other hand, which have been advanced to testing in clinical trials for various medical conditions, have demonstrated the ability to reduce drug reward, reinforcement, and relapse-like behaviors in animal studies. mGluR ligands that have been shown to be primarily effective are Group I (mGluR1 and mGluR5) negative allosteric modulators and Group II (mGluR2 and mGluR3) orthosteric presynaptic autoreceptor agonists. In this review, we will summarize findings from animal studies suggesting that these mGluR ligands may be of potential benefit in reducing on-going drug self-administration and may aid in the prevention of relapse. The neuroanatomical distribution of mGluR1, mGluR2/3, and mGluR5 receptors and the pharmacological properties of Group I negative allosteric modulators and Group II agonists will also be overviewed. Finally, we will discuss the current status of mGluR ligands in human clinical trials. PMID:19630739

  10. Toll-Like Receptor Gene Expression during Trichinella spiralis Infection

    PubMed Central

    Kim, Sin; Park, Mi Kyung; Yu, Hak Sun

    2015-01-01

    In Trichinella spiralis infection, type 2 helper T (Th2) cell-related and regulatory T (Treg) cell-related immune responses are the most important immune events. In order to clarify which Toll-like receptors (TLRs) are closely associated with these responses, we analyzed the expression of mouse TLR genes in the small intestine and muscle tissue during T. spiralis infection. In addition, the expression of several chemokine- and cytokine-encoding genes, which are related to Th2 and Treg cell mediated immune responses, were analyzed in mouse embryonic fibroblasts (MEFs) isolated from myeloid differentiation factor 88 (MyD88)/TIR-associated proteins (TIRAP) and Toll receptor-associated activator of interferons (TRIF) adapter protein deficient and wild type (WT) mice. The results showed significantly increased TLR4 and TLR9 gene expression in the small intestine after 2 weeks of T. spiralis infection. In the muscle, TLR1, TLR2, TLR5, and TLR9 gene expression significantly increased after 4 weeks of infection. Only the expression of the TLR4 and TLR9 genes was significantly elevated in WT MEF cells after treatment with excretory-secretory (ES) proteins. Gene expression for Th2 chemokine genes were highly enhanced by ES proteins in WT MEF cells, while this elevation was slightly reduced in MyD88/TIRAP-/- MEF cells, and quite substantially decreased in TRIF-/- MEF cells. In contrast, IL-10 and TGF-β expression levels were not elevated in MyD88/TIRAP-/- MEF cells. In conclusion, we suggest that TLR4 and TLR9 might be closely linked to Th2 cell and Treg cell mediated immune responses, although additional data are needed to convincingly prove this observation. PMID:26323841

  11. Allosterism and Structure in Thermally Activated Transient Receptor Potential Channels.

    PubMed

    Diaz-Franulic, Ignacio; Poblete, Horacio; Miño-Galaz, Germán; González, Carlos; Latorre, Ramón

    2016-07-01

    The molecular sensors that mediate temperature changes in living organisms are a large family of proteins known as thermosensitive transient receptor potential (TRP) ion channels. These membrane proteins are polymodal receptors that can be activated by cold or hot temperatures, depending on the channel subtype, voltage, and ligands. The stimuli sensors are allosterically coupled to a pore domain, increasing the probability of finding the channel in its ion conductive conformation. In this review we first discuss the allosteric coupling between the temperature and voltage sensor modules and the pore domain, and then discuss the thermodynamic foundations of thermo-TRP channel activation. We provide a structural overview of the molecular determinants of temperature sensing. We also posit an anisotropic thermal diffusion model that may explain the large temperature sensitivity of TRP channels. Additionally, we examine the effect of several ligands on TRP channel function and the evidence regarding their mechanisms of action. PMID:27297398

  12. Regulation of Transient Receptor Potential channels by the phospholipase C pathway

    PubMed Central

    Rohacs, Tibor

    2013-01-01

    Transient Receptor Potential (TRP) channels were discovered while analyzing visual mutants in drosophila. The protein encoded by the transient receptor potential (trp) gene is a Ca2+ permeable cation channel activated downstream of the phospholipase C (PLC) pathway. While searching for homologues in other organisms, a surprisingly large number of mammalian TRP channels were cloned. The regulation of TRP channels is quite diverse, but many of them are either activated downstream of the PLC pathway, or modulated by it. This review will summarize the current knowledge on regulation of TRP channels by the PLC pathway, with special focus on TRPC-s, which can be considered as effectors of the PLC pathway, and the heat and capsaicin sensitive TRPV1, which is modulated by the PLC pathway in a complex manner. PMID:23916247

  13. Molecular mechanisms of gonadotropin-releasing hormone receptor gene regulation.

    PubMed

    Norwitz, E R; Jeong, K H; Chin, W W

    1999-01-01

    GnRH plays a critical role in regulating mammalian reproductive development and function. At the level of the anterior pituitary, GnRH binds to the GnRH receptor (GnRHR) on the cell surface of pituitary gonadotropes. Here, it activates intracellular signal transduction pathways to effect both the synthesis and intermittent release of the gonadotropins LH and FSH. These hormones then enter the systemic circulation to regulate gonadal function, including steroid hormone synthesis and gametogenesis. The response of pituitary gonadotropes to GnRH correlates directly with the concentration of GnRHR on the cell surface, which is mediated, at least in part, at the level of gene expression. A number of endocrine, paracrine, and autocrine factors are known to regulate GnRHR gene expression. This article reviews in detail the role of the GnRHR in the hypothalamic-pituitary-gonadal axis and the factors mediating expression of this gene. A better understanding of the molecular mechanisms that regulate transcription of the GnRHR gene will further our knowledge about the role of this receptor in mammalian reproductive physiology in health and disease.

  14. Application potential of toll-like receptors in cancer immunotherapy

    PubMed Central

    Shi, Ming; Chen, Xi; Ye, Kangruo; Yao, Yuanfei; Li, Yu

    2016-01-01

    Abstract Toll-like receptors (TLRs), as the most important pattern recognition receptors in innate immunity, play a pivotal role in inducing immune response through recognition of microbial invaders or specific agonists. Recent studies have suggested that TLRs could serve as important regulators in the development of a variety of cancer. However, increasing evidences have shown that TLRs may display quite opposite outcomes in cancer development. Although several potential therapeutic Toll-like receptor ligands have been found, the mechanism and therapy prospect of TLRs in cancer development has to be further elucidated to accelerate the clinical application. By performing a systematic review of the present findings on TLRs in cancer immunology, we attempted to evaluate the therapeutic potential of TLRs in cancer therapy and elucidate the potential mechanism of cancer progress regulated by TLR signaling and the reported targets on TLRs for clinical application. An electronic databases search was conducted in PubMed, Chinese Scientific Journal Database, and Chinese Biomedical Literature Database from their inception to February 1, 2016. The following keywords were used to search the databases: Toll-like receptors, cancer therapy, therapeutic target, innate immunity. Of 244 studies that were identified, 97 nonrelevant studies were excluded. In total, 147 full-text articles were assessed, and from these, 54 were excluded as they did not provide complete key information. Thus, 93 studies were considered eligible and included in the analysis. According to the data from the included trials, 14 TLR ligands (77.8%) from 82 studies have been demonstrated to display antitumor property in various cancers, whereas 4 ligands (22.2%) from 11 studies promote tumors. Among them, only 3 TLR ligands have been approved for cancer therapy, and 9 ligands were in clinical trials. In addition, the potential mechanism of recently reported targets on TLRs for clinical application was also

  15. Potential of the cannabinoid CB(2) receptor as a pharmacological target against inflammation in Parkinson's disease.

    PubMed

    Gómez-Gálvez, Yolanda; Palomo-Garo, Cristina; Fernández-Ruiz, Javier; García, Concepción

    2016-01-01

    Inflammation is an important pathogenic factor in Parkinson's disease (PD), so that it can contribute to kill dopaminergic neurons of the substantia nigra and to enhance the dopaminergic denervation of the striatum. The cannabinoid type-2 (CB2) receptor has been investigated as a potential anti-inflammatory and neuroprotective target in different neurodegenerative disorders, but still limited evidence has been collected in PD. Here, we show for the first time that CB2 receptors are elevated in microglial cells recruited and activated at lesioned sites in the substantia nigra of PD patients compared to control subjects. Parkinsonian inflammation can be reproduced experimentally in rodents by intrastriatal injections of lipopolysaccharide (LPS) which, through an intense activation of glial elements and peripheral infiltration, provokes a rapid deterioration of the striatum that may extend to the substantia nigra too. Using this experimental model, we recently described a much more intense deterioration of tyrosine hydroxylase (TH)-containing nigral neurons in CB2 receptor-deficient mice compared to wild-type animals, supporting a potential neuroprotective role for this receptor. In the present study, we further explored this issue. First, we found elevated levels of the CB2 receptor measured by qRT-PCR in the striatum and substantia nigra of LPS-lesioned mice, as well as an increase in the immunostaining for this receptor in the LPS-lesioned striatum. Second, we found a significant increase in CD68 immunostaining, which serve to identify activated microglia and also infiltrated peripheral macrophages, in these brain structures in response to LPS insult, which was much more intense in CB2 receptor-deficient mice in the case of the substantia nigra. Next, we observed that the activation of CB2 receptors with a selective agonist (HU-308) reversed LPS-induced elevation of CD68 immunostaining in the striatum and the parallel reduction in TH immunostaining. Lastly, we

  16. Smallest bitter taste receptor (T2Rs) gene repertoire in carnivores.

    PubMed

    Hu, Ling-Ling; Shi, Peng

    2013-06-01

    Bitter taste reception is presumably associated with dietary selection, preventing animals from ingesting potentially harmful compounds. Accordingly, carnivores, who encounter these toxic substances less often, should have fewer genes associated with bitter taste reception compared with herbivores and omnivores. To investigate the genetic basis of bitter taste reception, we confirmed bitter taste receptor (T2R) genes previously found in the genome sequences of two herbivores (cow and horse), two omnivores (mouse and rat) and one carnivore (dog). We also identified, for the first time, the T2R repertoire from the genome of other four carnivore species (ferret, giant panda, polar bear and cat) and detected 17-20 bitter receptor genes from the five carnivore genomes, including 12-16 intact genes, 0-1 partial but putatively functional genes, and 3-8 pseudogenes. Both the intact T2R genes and the total T2R gene number among carnivores were the smallest among the tested species, supporting earlier speculations that carnivores have fewer T2R genes, herbivores an intermediate number, and omnivores the largest T2R gene repertoire. To further explain the genetic basis for this disparity, we constructed a phylogenetic tree, which showed most of the T2R genes from the five carnivores were one-to-one orthologs across the tree, suggesting that carnivore T2Rs were conserved among mammals. Similarly, the small carnivore T2R family size was likely due to rare duplication events. Collectively, these results strengthen arguments for the connection between T2R gene family size, diet and habit. PMID:23776004

  17. Smallest bitter taste receptor (T2Rs) gene repertoire in carnivores.

    PubMed

    Hu, Ling-Ling; Shi, Peng

    2013-06-01

    Bitter taste reception is presumably associated with dietary selection, preventing animals from ingesting potentially harmful compounds. Accordingly, carnivores, who encounter these toxic substances less often, should have fewer genes associated with bitter taste reception compared with herbivores and omnivores. To investigate the genetic basis of bitter taste reception, we confirmed bitter taste receptor (T2R) genes previously found in the genome sequences of two herbivores (cow and horse), two omnivores (mouse and rat) and one carnivore (dog). We also identified, for the first time, the T2R repertoire from the genome of other four carnivore species (ferret, giant panda, polar bear and cat) and detected 17-20 bitter receptor genes from the five carnivore genomes, including 12-16 intact genes, 0-1 partial but putatively functional genes, and 3-8 pseudogenes. Both the intact T2R genes and the total T2R gene number among carnivores were the smallest among the tested species, supporting earlier speculations that carnivores have fewer T2R genes, herbivores an intermediate number, and omnivores the largest T2R gene repertoire. To further explain the genetic basis for this disparity, we constructed a phylogenetic tree, which showed most of the T2R genes from the five carnivores were one-to-one orthologs across the tree, suggesting that carnivore T2Rs were conserved among mammals. Similarly, the small carnivore T2R family size was likely due to rare duplication events. Collectively, these results strengthen arguments for the connection between T2R gene family size, diet and habit.

  18. Carbon dioxide receptor genes in cotton bollworm Helicoverpa armigera

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Anderson, Alisha

    2015-04-01

    Carbon dioxide (CO2) is important in insect ecology, eliciting a range of behaviours across different species. Interestingly, the numbers of CO2 gustatory receptors (GRs) vary among insect species. In the model organism Drosophila melanogaster, two GRs (DmelGR21a and DmelGR63a) have been shown to detect CO2. In the butterfly, moth, beetle and mosquito species studied so far, three CO2 GR genes have been identified, while in tsetse flies, four CO2 GR genes have been identified. In other species including honeybees, pea aphids, ants, locusts and wasps, no CO2 GR genes have been identified from the genome. These genomic differences may suggest different mechanisms for CO2 detection exist in different insects but, with the exception of Drosophila and mosquitoes, limited attention has been paid to the CO2 GRs in insects. Here, we cloned three putative CO2 GR genes from the cotton bollworm Helicoverpa armigera and performed phylogenetic and expression analysis. All three H. armigera CO2 GRs (HarmGR1, HarmGR2 and HarmGR3) are specifically expressed in labial palps, the CO2-sensing tissue of this moth. HarmGR3 is significantly activated by NaHCO3 when expressed in insect Sf9 cells but HarmGR1 and HarmGR2 are not. This is the first report characterizing the function of lepidopteran CO2 receptors, which contributes to our general understanding of the molecular mechanisms of insect CO2 gustatory receptors.

  19. Evidence of selection at insulin receptor substrate-1 gene loci.

    PubMed

    Yoshiuchi, Issei

    2013-10-01

    Type 2 diabetes mellitus (T2DM) is a complex disease characterized by insulin resistance and defect of insulin secretion. The worldwide prevalence of T2DM is steadily increasing. T2DM is also significantly associated with obesity, coronary artery disease (CAD), and metabolic syndrome. There is a clear difference in the prevalence of T2DM among populations, and T2DM is highly heritable. Human adaptations to environmental changes in food supply, lifestyle, and geography may have pressured the selection of genes associated with the metabolism of glucose, lipids, carbohydrates, and energy. The insulin receptor substrate-1 (IRS1) gene is considered a major T2DM gene, and common genetic variations near the IRS1 gene were found to be associated with T2DM, insulin resistance, adiposity, and CAD. Here, we aimed to find evidence of selection at the IRS1 gene loci using the HapMap population data. We investigated a 3-step test procedure-Wright's F statistics (Fst), the long-range haplotype (LRH) test, and the integrated haplotype score (iHS) test-to detect selection at the IRS1 gene loci using the HapMap population data. We observed that 1 CAD-associated SNP (rs2943634) and 1 adiposity- and insulin resistance-associated SNP (rs2943650) exhibited high Fst values. We also found selection at the IRS1 gene loci by the LRH test and the iHS test. These findings suggest evidence of selection at the IRS1 gene loci and that further studies should examine the adaptive evolution of T2DM genes. PMID:22797928

  20. AMPA receptor potentiation can prevent ethanol-induced intoxication.

    PubMed

    Jones, Nicholas; Messenger, Marcus J; O'Neill, Michael J; Oldershaw, Anna; Gilmour, Gary; Simmons, Rosa M A; Iyengar, Smriti; Libri, Vincenzo; Tricklebank, Mark; Williams, Steve C R

    2008-06-01

    We present a substantial series of behavioral and imaging experiments, which demonstrate, for the first time, that increasing AMPA receptor-mediated neurotransmission via administration of potent and selective biarylsulfonamide AMPA potentiators LY404187 and LY451395 reverses the central effects of an acutely intoxicating dose of ethanol in the rat. Using pharmacological magnetic resonance imaging (phMRI), we observed that LY404187 attenuated ethanol-induced reductions in blood oxygenation level dependent (BOLD) in the anesthetized rat brain. A similar attenuation was apparent when measuring local cerebral glucose utilization (LCGU) via C14-2-deoxyglucose autoradiography in freely moving conscious rats. Both LY404187 and LY451395 significantly and dose-dependently reversed ethanol-induced deficits in both motor coordination and disruptions in an operant task where animals were trained to press a lever for food reward. Both prophylactic and acute intervention treatment with LY404187 reversed ethanol-induced deficits in motor coordination. Given that LY451395 and related AMPA receptor potentiators/ampakines are tolerated in both healthy volunteers and elderly patients, these data suggest that such compounds may form a potential management strategy for acute alcohol intoxication.

  1. Molecular Characterization of the Aphis gossypii Olfactory Receptor Gene Families

    PubMed Central

    Walker, William B.; Li, Jianhong; Wang, Guirong

    2014-01-01

    The cotton aphid, Aphis gossypii Glover, is a polyphagous pest that inflicts great damage to cotton yields worldwide. Antennal olfaction, which is extremely important for insect survival, mediates key behaviors such as host preference, mate choice, and oviposition site selection. In insects, odor detection is mediated by odorant receptors (ORs) and ionotropic receptors (IRs), which ensure the specificity of the olfactory sensory neuron responses. In this study, our aim is to identify chemosensory receptors in the cotton aphid genome, as a means to uncover olfactory encoding of the polyphagous feeding habits as well as to aid the discovery of new targets for behavioral interference. We identified a total of 45 candidate ORs and 14 IRs in the cotton aphid genome. Among the candidate AgoORs, 9 are apparent pseudogenes, while 19 can be clustered with ORs from the pea aphid, forming 16 AgoOR/ApOR orthologous subgroups. Among the candidate IRs, we identified homologs of the two highly conserved co-receptors IR8a and IR25a; no AgoIR retain the complete glutamic acid binding domain, suggesting that putative AgoIRs bind different ligands. Our results provide the necessary information for functional characterization of the chemosensory receptors of A. gossypii, with potential for new or refined applications of semiochemicals-based control of this pest insect. PMID:24971460

  2. Molecular characterization of the Aphis gossypii olfactory receptor gene families.

    PubMed

    Cao, Depan; Liu, Yang; Walker, William B; Li, Jianhong; Wang, Guirong

    2014-01-01

    The cotton aphid, Aphis gossypii Glover, is a polyphagous pest that inflicts great damage to cotton yields worldwide. Antennal olfaction, which is extremely important for insect survival, mediates key behaviors such as host preference, mate choice, and oviposition site selection. In insects, odor detection is mediated by odorant receptors (ORs) and ionotropic receptors (IRs), which ensure the specificity of the olfactory sensory neuron responses. In this study, our aim is to identify chemosensory receptors in the cotton aphid genome, as a means to uncover olfactory encoding of the polyphagous feeding habits as well as to aid the discovery of new targets for behavioral interference. We identified a total of 45 candidate ORs and 14 IRs in the cotton aphid genome. Among the candidate AgoORs, 9 are apparent pseudogenes, while 19 can be clustered with ORs from the pea aphid, forming 16 AgoOR/ApOR orthologous subgroups. Among the candidate IRs, we identified homologs of the two highly conserved co-receptors IR8a and IR25a; no AgoIR retain the complete glutamic acid binding domain, suggesting that putative AgoIRs bind different ligands. Our results provide the necessary information for functional characterization of the chemosensory receptors of A. gossypii, with potential for new or refined applications of semiochemicals-based control of this pest insect. PMID:24971460

  3. Perilipin, a critical regulator of fat storage and breakdown, is a target gene of estrogen receptor-related receptor {alpha}

    SciTech Connect

    Akter, Mst. Hasina; Yamaguchi, Tomohiro; Hirose, Fumiko; Osumi, Takashi

    2008-04-11

    Perilipin is a protein localized on lipid droplet surfaces in adipocytes and steroidogenic cells, playing a central role in regulated lipolysis. Expression of the perilipin gene is markedly induced during adipogenesis. We found that transcription from the perilipin gene promoter is activated by an orphan nuclear receptor, estrogen receptor-related receptor (ERR){alpha}. A response element to this receptor was identified in the promoter region by a gene reporter assay, the electrophoretic-gel mobility-shift assay and the chromatin immunoprecipitation assay. Peroxisome proliferator-activated receptor {gamma} coactivator (PGC)-1{alpha} enhanced, whereas small heterodimer partner (SHP) repressed, the transactivating function of ERR{alpha} on the promoter. Thus, the perilipin gene expression is regulated by a transcriptional network controlling energy metabolism, substantiating the functional importance of perilipin in the maintenance of body energy balance.

  4. Molecular cloning, functional expression and pharmacological characterization of a mouse melanocortin receptor gene.

    PubMed Central

    Desarnaud, F; Labbe, O; Eggerickx, D; Vassart, G; Parmentier, M

    1994-01-01

    We describe the cloning of the mouse HGMP01A gene that encodes a melanocortin receptor functionally distinct from the adrenal cortex corticotropin (adrenocorticotrophic hormone; ACTH) receptor and the melanocyte-stimulating hormone (MSH) receptor expressed in melanoma. The gene encodes a protein of 323 amino acids with a calculated molecular mass of 35,800 Da, displaying potential sites for N-linked glycosylation and phosphorylation by protein kinase C. An RNAase protection assay detected weak expression in the brain, but not in adrenal gland, skin, or any of the other tissues tested. Stable CHO cell lines expressing over 100,000 receptors per cell were generated. The recombinant receptor binds iodinated [Nle4,D-Phe7]alpha-MSH (NDP-MSH) with an apparent Kd of 700 pM. Displacement of the ligand by a variety of pro-opiomelanocortin-derived peptides revealed a pharmacological profile distinct from that of the classical ACTH and MSH receptors. NDP-MSH was the most powerful competitor (IC50 1.4 nM), followed by gamma-MSH (IC50 7 nM). alpha-MSH, beta-MSH and ACTH-(1-39) were significantly less potent, with IC50 values of 30, 19 and 21 nM respectively. ACTH-(4-10) was poorly active (IC50 2.4 microM), while corticotropin-like intermediate lobe peptide (CLIP) and beta-endorphin were totally ineffective. The recombinant receptor was found to stimulate adenylate cyclase. The potency order of the agonists in this assay was consistent with that of the binding displacement assays. This receptor represents the orthologue of the human melanocortin 3 receptor reported recently. The growing family of melanocortin receptors constitute the molecular basis for the variety of actions of melanocortins that have been described over the years. The availability of functionally expressed receptors from the melanocortin family will allow the development of a specific pharmacology, and a better understanding of the function of the pro-opiomelanocortin-derived peptides. Images Figure 6 PMID

  5. Repurposed transcriptomic data facilitate discovery of innate immunity toll-like receptor (TLR) Genes across Lophotrochozoa.

    PubMed

    Halanych, Kenneth M; Kocot, Kevin M

    2014-10-01

    The growing volume of genomic data from across life represents opportunities for deriving valuable biological information from data that were initially collected for another purpose. Here, we use transcriptomes collected for phylogenomic studies to search for toll-like receptor (TLR) genes in poorly sampled lophotrochozoan clades (Annelida, Mollusca, Brachiopoda, Phoronida, and Entoprocta) and one ecdysozoan clade (Priapulida). TLR genes are involved in innate immunity across animals by recognizing potential microbial infection. They have an extracellular leucine-rich repeat (LRR) domain connected to a transmembrane domain and an intracellular toll/interleukin-1 receptor (TIR) domain. Consequently, these genes are important in initiating a signaling pathway to trigger defense. We found at least one TLR ortholog in all but two taxa examined, suggesting that a broad array of lophotrochozoans may have innate immune systems similar to those observed in vertebrates and arthropods. Comparison to the SMART database confirmed the presence of both the LRR and the TIR protein motifs characteristic of TLR genes. Because we looked at only one transcriptome per species, discovery of TLR genes was limited for most taxa. However, several TRL-like genes that vary in the number and placement of LRR domains were found in phoronids. Additionally, several contigs contained LRR domains but lacked TIR domains, suggesting they were not TLRs. Many of these LRR-containing contigs had other domains (e.g., immunoglobin) and are likely involved in innate immunity.

  6. Glycine Potentiates AMPA Receptor Function through Metabotropic Activation of GluN2A-Containing NMDA Receptors

    PubMed Central

    Li, Li-Jun; Hu, Rong; Lujan, Brendan; Chen, Juan; Zhang, Jian-Jian; Nakano, Yasuko; Cui, Tian-Yuan; Liao, Ming-Xia; Chen, Jin-Cao; Man, Heng-Ye; Feng, Hua; Wan, Qi

    2016-01-01

    NMDA receptors are Ca2+-permeable ion channels. The activation of NMDA receptors requires agonist glutamate and co-agonist glycine. Recent evidence indicates that NMDA receptor also has metabotropic function. Here we report that in cultured mouse hippocampal neurons, glycine increases AMPA receptor-mediated currents independent of the channel activity of NMDA receptors and the activation of glycine receptors. The potentiation of AMPA receptor function by glycine is antagonized by the inhibition of ERK1/2. In the hippocampal neurons and in the HEK293 cells transfected with different combinations of NMDA receptors, glycine preferentially acts on GluN2A-containing NMDA receptors (GluN2ARs), but not GluN2B-containing NMDA receptors (GluN2BRs), to enhance ERK1/2 phosphorylation independent of the channel activity of GluN2ARs. Without requiring the channel activity of GluN2ARs, glycine increases AMPA receptor-mediated currents through GluN2ARs. Thus, these results reveal a metabotropic function of GluN2ARs in mediating glycine-induced potentiation of AMPA receptor function via ERK1/2 activation. PMID:27807405

  7. Killer cell immunoglobulin-like receptor gene association with cryptorchidism.

    PubMed

    Niepiekło-Miniewska, Wanda; Kuśnierczyk, Piotr; Havrylyuk, Anna; Kamieniczna, Marzena; Nakonechnyy, Andrij; Chopyak, Valentyna; Kurpisz, Maciej

    2015-12-01

    Cryptorchidism is a condition where a testis persists in the abdominal cavity. Thus, due to elevated temperature we may expect induction of aberrant immune reactions depending on genetic constitution of individual. This may be reflected by development of anti-sperm antibodies (ASA) in cryptorchid males. Also, natural killer (NK) cells which belong to innate immunity may control adaptive immunity. Therefore, the gene system encoding polymorphic NK cell immunoglobulin receptors (KIRs) has been studied. 109 prepubertal boys with cryptorchidism and 136 ethnically matched young male donors were selected to study NK cell KIRs. DNA was isolated using automatic Maxwell(®) system from the peripheral venous blood drawn onto anticoagulant. Olerup SSP KIR Genotyping kit including Taq polymerase was used for detection of KIR genes. Human leukocyte antigen-C (HLA-C) groups, C1 and C2 were established using a Olerup SSP KIR HLA Ligand kit. KIR2DL2 (killer immunoglobulin-like receptor two-domain long 2) and KIR2DS2 (killer immunoglobulin-like receptor two-domain short 2) genes were less frequent in patients than in control individuals (corrected p values: 0.0110 and 0.0383, respectively). However, no significant differences were observed between ASA-positive and ASA-negative patients, or between bilateral or unilateral cryptorchidism. No association between KIR ligands C1 and C2, alone or together with KIR2DL2, was found. However, the results suggest that KIR2DL2+/KIR2DS2+ genotype may be, to some extent, protective against cryptorchidism.

  8. Ecdysone Receptor Gene Switch Technology for Inducible Gene Expression in Plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inducible gene regulation systems based on specific chemicals have many potential applications in agriculture and in the basic understanding of gene function. As a result several gene switches have been developed. However, the properties of the chemicals used in most of these switches make their use...

  9. Human T-cell receptor variable gene segment families

    SciTech Connect

    Arden, B.; Kabelitz, D.; Clark, S.P.; Mak, T.W.

    1995-10-01

    Multiple DNA and protein sequence alignments have been constructed for the human T-cell receptor {alpha}/{delta}, {beta}, and {gamma} (TCRA/D, B, and G) variable (V) gene segments. The traditional classification into subfamilies was confirmed using a much larger pool of sequences. For each sequence, a name was derived which complies with the standard nomenclature. The traditional numbering of V gene segments in the order of their discovery was continued and changed when in conflict with names of other segments. By discriminating between alleles at the same locus versus genes from different loci, we were able to reduce the number of more than 150 different TCRBV sequences in the database to a repertoire of only 47 functional TCRBV gene segments. An extension of this analysis to the over 100 TCRAV sequences results in a predicted repertoire of 42 functional TCRAV gene segments. Our alignment revealed two residues that distinguish between the highly homologous V{delta} and V{alpha}, one at a site that in V{sub H} contacts the constant region, the other at the interface between immunoglobulin V{sub H} and V{sub L}. This site may be responsible for restricted pairing between certain V{delta} and V{gamma} chains. On the other hand, V{beta} and V{gamma} appear to be related by the fact that their CDR2 length is increased by four residues as compared with that of V{alpha}/{delta} peptides. 150 refs., 12 figs., 5 tabs.

  10. The Orphan Nuclear Receptor ERRγ Regulates Hepatic CB1 Receptor-Mediated Fibroblast Growth Factor 21 Gene Expression

    PubMed Central

    Jung, Yoon Seok; Lee, Ji-Min; Kim, Don-Kyu; Lee, Yong-Soo; Kim, Ki-Sun; Kim, Yong-Hoon; Kim, Jina; Lee, Myung-Shik; Lee, In-Kyu; Kim, Seong Heon; Cho, Sung Jin; Jeong, Won-Il; Lee, Chul-Ho; Harris, Robert A.; Choi, Hueng-Sik

    2016-01-01

    Background Fibroblast growth factor 21 (FGF21), a stress inducible hepatokine, is synthesized in the liver and plays important roles in glucose and lipid metabolism. However, the mechanism of hepatic cannabinoid type 1 (CB1) receptor-mediated induction of FGF21 gene expression is largely unknown. Results Activation of the hepatic CB1 receptor by arachidonyl-2’-chloroethylamide (ACEA), a CB1 receptor selective agonist, significantly increased FGF21 gene expression. Overexpression of estrogen-related receptor (ERR) γ increased FGF21 gene expression and secretion both in hepatocytes and mice, whereas knockdown of ERRγ decreased ACEA-mediated FGF21 gene expression and secretion. Moreover, ERRγ, but not ERRα and ERRβ, induced FGF21 gene promoter activity. In addition, deletion and mutation analysis of the FGF21 promoter identified a putative ERRγ-binding motif (AGGTGC, a near-consensus response element). A chromatin immunoprecipitation assay revealed direct binding of ERRγ to the FGF21 gene promoter. Finally, GSK5182, an ERRγ inverse agonist, significantly inhibited hepatic CB1 receptor-mediated FGF21 gene expression and secretion. Conclusion Based on our data, we conclude that ERRγ plays a key role in hepatic CB1 receptor-mediated induction of FGF21 gene expression and secretion. PMID:27455076

  11. Transient receptor potential channel C5 in cancer chemoresistance

    PubMed Central

    He, Dong-xu; Ma, Xin

    2016-01-01

    The transient receptor potential (TRP) superfamily contains at least 28 homologs in mammalian. These proteins form TRP channels are permeable to monovalent and divalent cations and participate in a variety of physiological functions. Dysregulation of TRP channels is responsible for numerous diseases. This review provides a brief short overview of mammalian TRP channels with a focus on TRPC5 and its role in cancers. Dysregulation of TRPC5 interrupts Ca2+ homeostasis in cancer cells, which activates signaling pathways that are highly associated with cancer progression, especially cancer chemoresistance. Based on the important role of TRPC5, we also discuss the potential of TRPC5 as a target for therapeutic intervention. Either direct targeting of TRPC5 or indirect interruption of TRPC5-related signaling pathways may effectively overcome cancer chemoresistance. PMID:26657058

  12. Transient Receptor Potential (TRP) channels in T cells.

    PubMed

    Bertin, Samuel; Raz, Eyal

    2016-05-01

    The transient receptor potential (TRP) family of ion channels is widely expressed in many cell types and plays various physiological roles. Growing evidence suggests that certain TRP channels are functionally expressed in the immune system. Indeed, an increasing number of reports have demonstrated the functional expression of several TRP channels in innate and adaptive immune cells and have highlighted their critical role in the activation and function of these cells. However, very few reviews have been entirely dedicated to this subject. Here, we will summarize the recent findings with regards to TRP channel expression in T cells and discuss their emerging role as regulators of T cell activation and functions. Moreover, these studies suggest that beyond their pharmaceutical interest in pain management, certain TRP channels may represent potential novel therapeutic targets for various immune-related diseases.

  13. Chicken interferons, their receptors and interferon-stimulated genes.

    PubMed

    Goossens, Kate E; Ward, Alister C; Lowenthal, John W; Bean, Andrew G D

    2013-11-01

    The prevalence of pathogenic viruses is a serious issue as they pose a constant threat to both the poultry industry and to human health. To prevent these viral infections an understanding of the host-virus response is critical, especially for the development of novel therapeutics. One approach in the control of viral infections would be to boost the immune response through administration of cytokines, such as interferons. However, the innate immune response in chickens is poorly characterised, particularly concerning the interferon pathway. This review will provide an overview of our current understanding of the interferon system of chickens, including their cognate receptors and known interferon-stimulated gene products.

  14. Evolution of the chicken Toll-like receptor gene family: A story of gene gain and gene loss

    PubMed Central

    Temperley, Nicholas D; Berlin, Sofia; Paton, Ian R; Griffin, Darren K; Burt, David W

    2008-01-01

    Background Toll-like receptors (TLRs) perform a vital role in disease resistance through their recognition of pathogen associated molecular patterns (PAMPs). Recent advances in genomics allow comparison of TLR genes within and between many species. This study takes advantage of the recently sequenced chicken genome to determine the complete chicken TLR repertoire and place it in context of vertebrate genomic evolution. Results The chicken TLR repertoire consists of ten genes. Phylogenetic analyses show that six of these genes have orthologs in mammals and fish, while one is only shared by fish and three appear to be unique to birds. Furthermore the phylogeny shows that TLR1-like genes arose independently in fish, birds and mammals from an ancestral gene also shared by TLR6 and TLR10. All other TLRs were already present prior to the divergence of major vertebrate lineages 550 Mya (million years ago) and have since been lost in certain lineages. Phylogenetic analysis shows the absence of TLRs 8 and 9 in chicken to be the result of gene loss. The notable exception to the tendency of gene loss in TLR evolution is found in chicken TLRs 1 and 2, each of which underwent gene duplication about 147 and 65 Mya, respectively. Conclusion Comparative phylogenetic analysis of vertebrate TLR genes provides insight into their patterns and processes of gene evolution, with examples of both gene gain and gene loss. In addition, these comparisons clarify the nomenclature of TLR genes in vertebrates. PMID:18241342

  15. Avian olfactory receptor gene repertoires: evidence for a well-developed sense of smell in birds?

    PubMed

    Steiger, Silke S; Fidler, Andrew E; Valcu, Mihai; Kempenaers, Bart

    2008-10-22

    Among vertebrates, the sense of smell is mediated by olfactory receptors (ORs) expressed in sensory neurons within the olfactory epithelium. Comparative genomic studies suggest that the olfactory acuity of mammalian species correlates positively with both the total number and the proportion of functional OR genes encoded in their genomes. In contrast to mammals, avian olfaction is poorly understood, with birds widely regarded as relying primarily on visual and auditory inputs. Here, we show that in nine bird species from seven orders (blue tit, Cyanistes caeruleus; black coucal, Centropus grillii; brown kiwi, Apteryx australis; canary, Serinus canaria; galah, Eolophus roseicapillus; red jungle fowl, Gallus gallus; kakapo, Strigops habroptilus; mallard, Anas platyrhynchos; snow petrel, Pagodroma nivea), the majority of amplified OR sequences are predicted to be from potentially functional genes. This finding is somewhat surprising as one previous report suggested that the majority of OR genes in an avian (red jungle fowl) genomic sequence are non-functional pseudogenes. We also show that it is not the estimated proportion of potentially functional OR genes, but rather the estimated total number of OR genes that correlates positively with relative olfactory bulb size, an anatomical correlate of olfactory capability. We further demonstrate that all the nine bird genomes examined encode OR genes belonging to a large gene clade, termed gamma-c, the expansion of which appears to be a shared characteristic of class Aves. In summary, our findings suggest that olfaction in birds may be a more important sense than generally believed. PMID:18628122

  16. Update of the androgen receptor gene mutations database.

    PubMed

    Gottlieb, B; Beitel, L K; Lumbroso, R; Pinsky, L; Trifiro, M

    1999-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. The total number of reported mutations has risen from 309 to 374 during the past year. We have expanded the database by adding information on AR-interacting proteins; and we have improved the database by identifying those mutation entries that have been updated. Mutations of unknown significance have now been reported in both the 5' and 3' untranslated regions of the AR gene, and in individuals who are somatic mosaics constitutionally. In addition, single nucleotide polymorphisms, including silent mutations, have been discovered in normal individuals and in individuals with male infertility. A mutation hotspot associated with prostatic cancer has been identified in exon 5. The database is available on the internet (http://www.mcgill.ca/androgendb/), from EMBL-European Bioinformatics Institute (ftp.ebi.ac.uk/pub/databases/androgen), or as a Macintosh FilemakerPro or Word file (MC33@musica.mcgill.ca).

  17. Insulin receptor gene expression in normal and diseased bovine liver.

    PubMed

    Liu, G W; Zhang, Z G; Wang, J G; Wang, Z; Xu, C; Zhu, X L

    2010-11-01

    The aim of the present study was to compare insulin receptor (IR) gene expression in normal bovine liver (n=7) with samples of liver from cows in the perinatal period with ketosis (n=7) and cows with fatty liver (n=7). Gene expression was determined by internally controlled reverse transcriptase polymerase chain reaction (RT-PCR). The expression of IR mRNA in the liver of ketotic dairy cows was higher than in cows with fatty liver, but in both disease groups the expression was substantially lower than that in normal liver. Reduced expression of IR mRNA in fatty liver indicates that responses to insulin are markedly decreased, which might be due to insulin resistance. The relatively lower IR mRNA expression in the liver tissue of dairy cows with ketosis might enhance gluconeogenesis and lipid mobilization to relieve energy negative balance.

  18. A reference gene set for chemosensory receptor genes of Manduca sexta.

    PubMed

    Koenig, Christopher; Hirsh, Ariana; Bucks, Sascha; Klinner, Christian; Vogel, Heiko; Shukla, Aditi; Mansfield, Jennifer H; Morton, Brian; Hansson, Bill S; Grosse-Wilde, Ewald

    2015-11-01

    The order of Lepidoptera has historically been crucial for chemosensory research, with many important advances coming from the analysis of species like Bombyx mori or the tobacco hornworm, Manduca sexta. Specifically M. sexta has long been a major model species in the field, especially regarding the importance of olfaction in an ecological context, mainly the interaction with its host plants. In recent years transcriptomic data has led to the discovery of members of all major chemosensory receptor families in the species, but the data was fragmentary and incomplete. Here we present the analysis of the newly available high-quality genome data for the species, supplemented by additional transcriptome data to generate a high quality reference gene set for the three major chemosensory receptor gene families, the gustatory (GR), olfactory (OR) and antennal ionotropic receptors (IR). Coupled with gene expression analysis our approach allows association of specific receptor types and behaviors, like pheromone and host detection. The dataset will provide valuable support for future analysis of these essential chemosensory modalities in this species and in Lepidoptera in general. PMID:26365739

  19. Comprehensive gene expression analysis of rice aleurone cells: probing the existence of an alternative gibberellin receptor.

    PubMed

    Yano, Kenji; Aya, Koichiro; Hirano, Ko; Ordonio, Reynante Lacsamana; Ueguchi-Tanaka, Miyako; Matsuoka, Makoto

    2015-02-01

    Current gibberellin (GA) research indicates that GA must be perceived in plant nuclei by its cognate receptor, GIBBERELLIN INSENSITIVE DWARF1 (GID1). Recognition of GA by GID1 relieves the repression mediated by the DELLA protein, a model known as the GID1-DELLA GA perception system. There have been reports of potential GA-binding proteins in the plasma membrane that perceive GA and induce α-amylase expression in cereal aleurone cells, which is mechanistically different from the GID1-DELLA system. Therefore, we examined the expression of the rice (Oryza sativa) α-amylase genes in rice mutants impaired in the GA receptor (gid1) and the DELLA repressor (slender rice1; slr1) and confirmed their lack of response to GA in gid1 mutants and constitutive expression in slr1 mutants. We also examined the expression of GA-regulated genes by genome-wide microarray and quantitative reverse transcription-polymerase chain reaction analyses and confirmed that all GA-regulated genes are modulated by the GID1-DELLA system. Furthermore, we studied the regulatory network involved in GA signaling by using a set of mutants defective in genes involved in GA perception and gene expression, namely gid1, slr1, gid2 (a GA-related F-box protein mutant), and gamyb (a GA-related trans-acting factor mutant). Almost all GA up-regulated genes were regulated by the four named GA-signaling components. On the other hand, GA down-regulated genes showed different expression patterns with respect to GID2 and GAMYB (e.g. a considerable number of genes are not controlled by GAMYB or GID2 and GAMYB). Based on these observations, we present a comprehensive discussion of the intricate network of GA-regulated genes in rice aleurone cells.

  20. Variations in Opioid Receptor Genes in Neonatal Abstinence Syndrome*

    PubMed Central

    Wachman, Elisha M; Hayes, Marie J; Sherva, Richard; Brown, Mark S; Davis, Jonathan M; Farrer, Lindsay A; Nielsen, David A

    2015-01-01

    Background There is significant variability in the severity of neonatal abstinence syndrome (NAS) due to in-utero opioid exposure. We wanted to determine if single nucleotide polymorphisms (SNPs) in key candidate genes contribute to this variability. Methods Full-term opioid-exposed newborns and their mothers (n=86 pairs) were studied. DNA was genotyped for 80 SNPs from 14 genes utilizing a custom designed microarray. The association of each SNP with NAS outcomes was evaluated. Results SNPs in two opioid receptor genes in the infants were associated with worse NAS severity: 1) The PNOC rs732636 A allele (OR=3.8, p=0.004) for treatment with 2 medications and a longer hospital stay (LOS) of 5.8 days (p=0.01), and 2) The OPRK1 rs702764 C allele (OR=4.1, p=0.003) for treatment with 2 medications. The OPRM1 rs1799971 G allele (β= −6.9 days, p=0.02) and COMT rs740603 A allele (β= −5.3 days, p=0.01) were associated with shorter LOS. The OPRD1 rs204076 A allele in the mothers was associated with a longer LOS by 6.6 days (p=0.008). Results were significant point-wise but did not meet the experiment-wide significance level. Conclusions These findings suggest that SNPs in opioid receptor and the PNOC genes are associated with NAS severity. However, further testing in a large sample is warranted. This has important implications for prenatal prediction and personalized treatment regimens for infants at highest risk for severe NAS. PMID:26233486

  1. High-throughput mapping of the promoters of the mouse olfactory receptor genes reveals a new type of mammalian promoter and provides insight into olfactory receptor gene regulation

    PubMed Central

    Clowney, E. Josephine; Magklara, Angeliki; Colquitt, Bradley M.; Pathak, Nidhi; Lane, Robert P.; Lomvardas, Stavros

    2011-01-01

    The olfactory receptor (OR) genes are the largest mammalian gene family and are expressed in a monogenic and monoallelic fashion in olfactory neurons. Using a high-throughput approach, we mapped the transcription start sites of 1085 of the 1400 murine OR genes and performed computational analysis that revealed potential transcription factor binding sites shared by the majority of these promoters. Our analysis produced a hierarchical model for OR promoter recognition in which unusually high AT content, a unique epigenetic signature, and a stereotypically positioned O/E site distinguish OR promoters from the rest of the murine promoters. Our computations revealed an intriguing correlation between promoter AT content and evolutionary plasticity, as the most AT-rich promoters regulate rapidly evolving gene families. Within the AT-rich promoter category the position of the TATA-box does not correlate with the transcription start site. Instead, a spike in GC composition might define the exact location of the TSS, introducing the concept of “genomic contrast” in transcriptional regulation. Finally, our experiments show that genomic neighborhood rather than promoter sequence correlates with the probability of different OR genes to be expressed in the same olfactory cell. PMID:21705439

  2. Oxytocin receptor and vasopressin receptor 1a genes are respectively associated with emotional and cognitive empathy.

    PubMed

    Uzefovsky, F; Shalev, I; Israel, S; Edelman, S; Raz, Y; Mankuta, D; Knafo-Noam, A; Ebstein, R P

    2015-01-01

    Empathy is the ability to recognize and share in the emotions of others. It can be considered a multifaceted concept with cognitive and emotional aspects. Little is known regarding the underlying neurochemistry of empathy and in the current study we used a neurogenetic approach to explore possible brain neurotransmitter pathways contributing to cognitive and emotional empathy. Both the oxytocin receptor (OXTR) and the arginine vasopressin receptor 1a (AVPR1a) genes contribute to social cognition in both animals and humans and hence are prominent candidates for contributing to empathy. The following research examined the associations between polymorphisms in these two genes and individual differences in emotional and cognitive empathy in a sample of 367 young adults. Intriguingly, we found that emotional empathy was associated solely with OXTR, whereas cognitive empathy was associated solely with AVPR1a. Moreover, no interaction was observed between the two genes and measures of empathy. The current findings contribute to our understanding of the distinct neurogenetic pathways involved in cognitive and emotional empathy and underscore the pervasive role of both oxytocin and vasopressin in modulating human emotions.

  3. Thyroid hormone receptors bind to defined regions of the growth hormone and placental lactogen genes.

    PubMed Central

    Barlow, J W; Voz, M L; Eliard, P H; Mathy-Harter, M; De Nayer, P; Economidis, I V; Belayew, A; Martial, J A; Rousseau, G G

    1986-01-01

    The intracellular receptor for thyroid hormone is a protein found in chromatin. Since thyroid hormone stimulates transcription of the growth hormone gene through an unknown mechanism, the hypothesis that the thyroid hormone-receptor complex interacts with defined regions of this gene has been investigated in a cell-free system. Nuclear extracts from human lymphoblastoid IM-9 cells containing thyroid hormone receptors were incubated with L-3,5,3'-tri[125I]iodothyronine and calf thymus DNA-cellulose. Restriction fragments of the human growth hormone gene were added to determine their ability to inhibit labeled receptor binding to DNA-cellulose. These fragments encompassed nucleotide sequences from about three kilobase pairs upstream to about four kilobase pairs downstream from the transcription initiation site. The thyroid hormone-receptor complex bound preferentially to the 5'-flanking sequences of the growth hormone gene in a region between nucleotide coordinates -290 and -129. The receptor also bound to an analogous promoter region in the human placental lactogen gene, which has 92% nucleotide sequence homology with the growth hormone gene. These binding regions appear to be distinct from those that are recognized by the receptor for glucocorticoids, which stimulate growth hormone gene expression synergistically with thyroid hormone. The presence of thyroid hormone was required for binding of its receptor to the growth hormone gene promoter, suggesting that thyroid hormone renders the receptor capable of recognizing specific gene regions. PMID:3466175

  4. Transient Receptor Potential Channels as Targets for Phytochemicals

    PubMed Central

    2015-01-01

    To date, 28 mammalian transient receptor potential (TRP) channels have been cloned and characterized. They are grouped into six subfamilies on the basis of their amino acid sequence homology: TRP Ankyrin (TRPA), TRP Canonical (TRPC), TRP Melastatin (TRPM), TRP Mucolipin (TRPML), TRP Polycystin (TRPP), and TRP Vanilloid (TRPV). Most of the TRP channels are nonselective cation channels expressed on the cell membrane and exhibit variable permeability ratios for Ca2+ versus Na+. They mediate sensory functions (such as vision, nociception, taste transduction, temperature sensation, and pheromone signaling) and homeostatic functions (such as divalent cation flux, hormone release, and osmoregulation). Significant progress has been made in our understanding of the specific roles of these TRP channels and their activation mechanisms. In this Review, the emphasis will be on the activation of TRP channels by phytochemicals that are claimed to exert health benefits. Recent findings complement the anecdotal evidence that some of these phytochemicals have specific receptors and the activation of which is responsible for the physiological effects. Now, the targets for these phytochemicals are being unveiled; a specific hypothesis can be proposed and tested experimentally to infer a scientific validity of the claims of the health benefits. The broader and pressing issues that have to be addressed are related to the quantities of the active ingredients in a given preparation, their bioavailability, metabolism, adverse effects, excretion, and systemic versus local effects. PMID:24926802

  5. Regulation and localization of transient receptor potential melastatin 2 in rat uterus.

    PubMed

    Ahn, Changhwan; Yang, Hyun; Hong, Eui-Ju; Jeung, Eui-Bae

    2014-10-01

    The transient receptor potential channels are membrane-binding proteins that are nonselectively permeable for cations, such as Ca(2+) and Mg(2+), in numerous mammalian cells. The extracellular or intracellular ions play key roles in physiological functions including muscle contraction, cytokine production, insulin release, and apoptosis. Although transient receptor potential melastatin (TRPM) channels are implicated in nonreproductive tissues, the presence of TRPM2 has been reported in endometrium of uterus. To examine whether the expression of TRPM2 gene in uterus is due to gonadal steroid hormones or hormone-independent effect, the uterine TRPM2 gene was monitored in uterus of mature rat during estrous cycle and of immature rat after treatment with gonadal steroid estrogen (E2), progesterone (P4) with/without estrogen receptor antagonist Imperial Chemical Industries (ICI) 182780. We examined real-time polymerase chain reaction, Western blot, and immunohistochemistry to demonstrate the expression and localization of the uterine TRPM2 gene. The level of TRPM2 messenger RNA and protein are dramatically induced at proestrus, then dropped to base line levels at metestrus, and restored its level at diestrus. The results imply that uterine TRPM2 expression levels are regulated by gonadal steroid hormone E2. Moreover, the E2-induced TRPM2 expression is inhibited by cotreatment with ICI 182780 or P4. Furthermore, the immune-reactive TRPM2 is observed in myometrium and stromal cell of endometrium and also showed alterations in TRPM2 expression during estrus cycle. This study suggests that TRPM2 may be involved in calcium absorption or uterine contraction and the latter may be related to implantation or labor by endogenous sex steroid hormones.

  6. Mutations in Melanocortin-3 Receptor Gene and Human Obesity.

    PubMed

    Yang, Z; Tao, Y-X

    2016-01-01

    The prevalence of obesity calls for novel therapeutic targets. The melanocortin-3 receptor (MC3R) has been increasingly recognized as an important regulator of energy homeostasis and MC3R has been intensively analyzed in molecular genetic studies for obesity-related traits. Twenty-seven MC3R mutations and two common polymorphic variants have been identified so far in different cohorts. The mutant MC3Rs demonstrate multiple defects in functional analysis and can be cataloged into different classes according to receptor life cycle based classification system. Although the pathogenic role of MC3R in human obesity remains controversial, recent findings in the noncanonical signaling pathway of MC3R mutants have provided new insights. Potential therapeutic strategies for obesity related to MC3R mutations are highlighted. PMID:27288827

  7. Physiology and pathophysiology of canonical transient receptor potential channels

    PubMed Central

    Abramowitz, Joel; Birnbaumer, Lutz

    2009-01-01

    The existence of a mammalian family of TRPC ion channels, direct homologues of TRP, the visual transduction channel of flies, was discovered during 1995–1996 as a consequence of research into the mechanism by which the stimulation of the receptor-Gq-phospholipase Cβ signaling pathway leads to sustained increases in intracellular calcium. Mammalian TRPs, TRPCs, turned out to be nonselective, calcium-permeable cation channels, which cause both a collapse of the cell’s membrane potential and entry of calcium. The family comprises 7 members and is widely expressed. Many cells and tissues express between 3 and 4 of the 7 TRPCs. Despite their recent discovery, a wealth of information has accumulated, showing that TRPCs have widespread roles in almost all cells studied, including cells from excitable and nonexcitable tissues, such as the nervous and cardiovascular systems, the kidney and the liver, and cells from endothelia, epithelia, and the bone marrow compartment. Disruption of TRPC function is at the root of some familial diseases. More often, TRPCs are contributing risk factors in complex diseases. The present article reviews what has been uncovered about physiological roles of mammalian TRPC channels since the time of their discovery. This analysis reveals TRPCs as major and unsuspected gates of Ca2+ entry that contribute, depending on context, to activation of transcription factors, apoptosis, vascular contractility, platelet activation, and cardiac hypertrophy, as well as to normal and abnormal cell proliferation. TRPCs emerge as targets for a thus far nonexistent field of pharmacological intervention that may ameliorate complex diseases.—Abramowitz, J., Birnbaumer, L. Physiology and pathophysiology of canonical transient receptor potential channels. PMID:18940894

  8. Short latency compound action potentials from mammalian gravity receptor organs

    NASA Technical Reports Server (NTRS)

    Jones, T. A.; Jones, S. M.

    1999-01-01

    Gravity receptor function was characterized in four mammalian species using far-field vestibular evoked potentials (VsEPs). VsEPs are compound action potentials of the vestibular nerve and central relays that are elicited by linear acceleration ramps applied to the cranium. Rats, mice, guinea pigs, and gerbils were studied. In all species, response onset occurred within 1.5 ms of the stimulus onset. Responses persisted during intense (116 dBSPL) wide-band (50 to 50 inverted question mark omitted inverted question mark000 Hz) forward masking, whereas auditory responses to intense clicks (112 dBpeSPL) were eliminated under the same conditions. VsEPs remained after cochlear extirpation but were eliminated following bilateral labyrinthectomy. Responses included a series of positive and negative peaks that occurred within 8 ms of stimulus onset (range of means at +6 dBre: 1.0 g/ms: P1=908 to 1062 micros, N1=1342 to 1475 micros, P2=1632 to 1952 micros, N2=2038 to 2387 micros). Mean response amplitudes at +6 dBre: 1.0 g/ms ranged from 0.14 to 0.99 microV. VsEP input/output functions revealed latency slopes that varied across peaks and species ranging from -19 to -51 micros/dB. Amplitude-intensity slopes also varied ranging from 0.04 to 0.08 microV/dB for rats and mice. Latency values were comparable to those of birds although amplitudes were substantially smaller in mammals. VsEP threshold values were considerably higher in mammals compared to birds and ranged from -8.1 to -10.5 dBre 1.0 g/ms across species. These results support the hypothesis that mammalian gravity receptors are less sensitive to dynamic stimuli than are those of birds.

  9. T-cell receptor Vbeta gene usage by lymphocytes infiltrating human renal allografts.

    PubMed

    Gecim, I E; Christmas, S E; Brew, R; Flanagan, B F; Wheatcroft, N J; Bakran, A; Sells, R A

    1992-01-01

    T cell lines have been derived from human kidney allograft biopsies using mitogenic stimulation. Southern blotting using a T-cell receptor (TCR) Cbeta probe revealed an oligoclonal pattern of rearranged bands in all 12 samples analysed. In some cases, differences in band patterns were noted between independent cultures from the same biopsy. Most T-cell clones derived from 2 biopsies showed different patterns of rearranged bands. The polymerase chain reaction (PCR) was used to study TCR Vbeta gene usage in allograft-derived T-cell cultures. This was more sensitive and more informative than Southern blotting and revealed that most TCR Vbeta genes were expressed in T cells from biopsies showing cellular rejection. The potential usefulness of this technique to quantify TCR V gene usage in allospecific T-cell populations is discussed.

  10. Oligopyrrole Macrocycles: Receptors and Chemosensors for Potentially Hazardous Materials

    PubMed Central

    2011-01-01

    Oligopyrroles represent a diverse class of molecular receptors that have been utilized in a growing number of applications. Recently, these systems have attracted interest as receptors and chemosensors for hazardous materials, including harmful anionic species, high-valent actinide cations, and nitroaromatic explosives. These versatile molecular receptors have been used to develop rudimentary colorimetric and fluorimetric assays for hazardous materials. PMID:21465591

  11. Receptor protein kinase gene encoded at the self-incompatibility locus

    DOEpatents

    Nasrallah, June B.; Nasrallah, Mikhail E.; Stein, Joshua

    1996-01-01

    Described herein is a S receptor kinase gene (SRK), derived from the S locus in Brassica oleracea, having a extracellular domain highly similar to the secreted product of the S-locus glycoprotein gene.

  12. Transcriptional Characterization of Porcine Leptin and Leptin Receptor Genes

    PubMed Central

    Pérez-Montarelo, Dafne; Fernández, Almudena; Barragán, Carmen; Noguera, Jose L.; Folch, Josep M.; Rodríguez, M. Carmen; Óvilo, Cristina; Silió, Luis; Fernández, Ana I.

    2013-01-01

    The leptin (LEP) and its receptor (LEPR) regulate food intake and energy balance through hypothalamic signaling. However, the LEP-LEPR axis seems to be more complex and its expression regulation has not been well described. In pigs, LEP and LEPR genes have been widely studied due to their relevance. Previous studies reported significant effects of SNPs located in both genes on growth and fatness traits. The aim of this study was to determine the expression profiles of LEP and LEPR across hypothalamic, adipose, hepatic and muscle tissues in Iberian x Landrace backcrossed pigs and to analyze the effects of gene variants on transcript abundance. To our knowledge, non porcine LEPR isoforms have been described rather than LEPRb. A short porcine LEPR isoform (LEPRa), that encodes a protein lacking the intracellular residues responsible of signal transduction, has been identified for the first time. The LEPRb isoform was only quantifiable in hypothalamus while LEPRa appeared widely expressed across tissues, but at higher levels in liver, suggesting that both isoforms would develop different roles. The unique LEP transcript showed expression in backfat and muscle. The effects of gene variants on transcript expression revealed interesting results. The LEPRc.1987C>T polymorphism showed opposite effects on LEPRb and LEPRa hypothalamic expression. In addition, one out of the 16 polymorphisms identified in the LEPR promoter region revealed high differential expression in hepatic LEPRa. These results suggest a LEPR isoform-specific regulation at tissue level. Conversely, non-differential expression of LEP conditional on the analyzed polymorphisms could be detected, indicating that its regulation is likely affected by other mechanisms rather than gene sequence variants. The present study has allowed a transcriptional characterization of LEP and LEPR isoforms on a range of tissues. Their expression patterns seem to indicate that both molecules develop peripheral roles apart from

  13. Calcium-Sensing Receptor Gene: Regulation of Expression.

    PubMed

    Hendy, Geoffrey N; Canaff, Lucie

    2016-01-01

    The human calcium-sensing receptor gene (CASR) has 8 exons, and localizes to chromosome 3q. Exons 1A and 1B encode alternative 5'-untranslated regions (UTRs) that splice to exon 2 encoding the AUG initiation codon. Exons 2-7 encode the CaSR protein of 1078 amino acids. Promoter P1 has TATA and CCAAT boxes upstream of exon 1A, and promoter P2 has Sp1/3 motifs at the start site of exon 1B. Exon 1A transcripts from the P1 promoter are reduced in parathyroid tumors and colon carcinomas. Studies of colon carcinomas and neuroblastomas have emphasized the importance of epigenetic changes-promoter methylation of the GC-rich P2 promoter, histone acetylation-as well as involvement of microRNAs in bringing about CASR gene silencing and reduced CaSR expression. Functional cis-elements in the CASR promoters responsive to 1,25-dihydroxyvitamin D [1,25(OH)2D], proinflammatory cytokines, and the transcription factor glial cells missing-2 (GCM2) have been characterized. Reduced levels of CaSR and reduced responsiveness to active vitamin D in parathyroid neoplasia and colon carcinoma may blunt the "tumor suppressor" activity of the CaSR. The hypocalcemia of critically ill patients with burn injury or sepsis is associated with CASR gene upregulation by TNF-alpha and IL-1beta via kappaB elements, and by IL-6 via Stat1/3 and Sp1/3 elements in the CASR gene promoters, respectively. The CASR is transactivated by GCM2-the expression of which is essential for parathyroid gland development. Hyperactive forms of GCM2 may contribute to later parathyroid hyperactivity or tumorigenesis. The expression of the CaSR-the calciostat-is regulated physiologically and pathophysiologically at the gene level. PMID:27679579

  14. Calcium-Sensing Receptor Gene: Regulation of Expression

    PubMed Central

    Hendy, Geoffrey N.; Canaff, Lucie

    2016-01-01

    The human calcium-sensing receptor gene (CASR) has 8 exons, and localizes to chromosome 3q. Exons 1A and 1B encode alternative 5′-untranslated regions (UTRs) that splice to exon 2 encoding the AUG initiation codon. Exons 2–7 encode the CaSR protein of 1078 amino acids. Promoter P1 has TATA and CCAAT boxes upstream of exon 1A, and promoter P2 has Sp1/3 motifs at the start site of exon 1B. Exon 1A transcripts from the P1 promoter are reduced in parathyroid tumors and colon carcinomas. Studies of colon carcinomas and neuroblastomas have emphasized the importance of epigenetic changes—promoter methylation of the GC-rich P2 promoter, histone acetylation—as well as involvement of microRNAs in bringing about CASR gene silencing and reduced CaSR expression. Functional cis-elements in the CASR promoters responsive to 1,25-dihydroxyvitamin D [1,25(OH)2D], proinflammatory cytokines, and the transcription factor glial cells missing-2 (GCM2) have been characterized. Reduced levels of CaSR and reduced responsiveness to active vitamin D in parathyroid neoplasia and colon carcinoma may blunt the “tumor suppressor” activity of the CaSR. The hypocalcemia of critically ill patients with burn injury or sepsis is associated with CASR gene upregulation by TNF-alpha and IL-1beta via kappaB elements, and by IL-6 via Stat1/3 and Sp1/3 elements in the CASR gene promoters, respectively. The CASR is transactivated by GCM2—the expression of which is essential for parathyroid gland development. Hyperactive forms of GCM2 may contribute to later parathyroid hyperactivity or tumorigenesis. The expression of the CaSR—the calciostat—is regulated physiologically and pathophysiologically at the gene level. PMID:27679579

  15. Calcium-Sensing Receptor Gene: Regulation of Expression

    PubMed Central

    Hendy, Geoffrey N.; Canaff, Lucie

    2016-01-01

    The human calcium-sensing receptor gene (CASR) has 8 exons, and localizes to chromosome 3q. Exons 1A and 1B encode alternative 5′-untranslated regions (UTRs) that splice to exon 2 encoding the AUG initiation codon. Exons 2–7 encode the CaSR protein of 1078 amino acids. Promoter P1 has TATA and CCAAT boxes upstream of exon 1A, and promoter P2 has Sp1/3 motifs at the start site of exon 1B. Exon 1A transcripts from the P1 promoter are reduced in parathyroid tumors and colon carcinomas. Studies of colon carcinomas and neuroblastomas have emphasized the importance of epigenetic changes—promoter methylation of the GC-rich P2 promoter, histone acetylation—as well as involvement of microRNAs in bringing about CASR gene silencing and reduced CaSR expression. Functional cis-elements in the CASR promoters responsive to 1,25-dihydroxyvitamin D [1,25(OH)2D], proinflammatory cytokines, and the transcription factor glial cells missing-2 (GCM2) have been characterized. Reduced levels of CaSR and reduced responsiveness to active vitamin D in parathyroid neoplasia and colon carcinoma may blunt the “tumor suppressor” activity of the CaSR. The hypocalcemia of critically ill patients with burn injury or sepsis is associated with CASR gene upregulation by TNF-alpha and IL-1beta via kappaB elements, and by IL-6 via Stat1/3 and Sp1/3 elements in the CASR gene promoters, respectively. The CASR is transactivated by GCM2—the expression of which is essential for parathyroid gland development. Hyperactive forms of GCM2 may contribute to later parathyroid hyperactivity or tumorigenesis. The expression of the CaSR—the calciostat—is regulated physiologically and pathophysiologically at the gene level.

  16. Transcriptional Characterization of Porcine Leptin and Leptin Receptor Genes.

    PubMed

    Pérez-Montarelo, Dafne; Fernández, Almudena; Barragán, Carmen; Noguera, Jose L; Folch, Josep M; Rodríguez, M Carmen; Ovilo, Cristina; Silió, Luis; Fernández, Ana I

    2013-01-01

    The leptin (LEP) and its receptor (LEPR) regulate food intake and energy balance through hypothalamic signaling. However, the LEP-LEPR axis seems to be more complex and its expression regulation has not been well described. In pigs, LEP and LEPR genes have been widely studied due to their relevance. Previous studies reported significant effects of SNPs located in both genes on growth and fatness traits. The aim of this study was to determine the expression profiles of LEP and LEPR across hypothalamic, adipose, hepatic and muscle tissues in Iberian x Landrace backcrossed pigs and to analyze the effects of gene variants on transcript abundance. To our knowledge, non porcine LEPR isoforms have been described rather than LEPRb. A short porcine LEPR isoform (LEPRa), that encodes a protein lacking the intracellular residues responsible of signal transduction, has been identified for the first time. The LEPRb isoform was only quantifiable in hypothalamus while LEPRa appeared widely expressed across tissues, but at higher levels in liver, suggesting that both isoforms would develop different roles. The unique LEP transcript showed expression in backfat and muscle. The effects of gene variants on transcript expression revealed interesting results. The LEPRc.1987C>T polymorphism showed opposite effects on LEPRb and LEPRa hypothalamic expression. In addition, one out of the 16 polymorphisms identified in the LEPR promoter region revealed high differential expression in hepatic LEPRa. These results suggest a LEPR isoform-specific regulation at tissue level. Conversely, non-differential expression of LEP conditional on the analyzed polymorphisms could be detected, indicating that its regulation is likely affected by other mechanisms rather than gene sequence variants. The present study has allowed a transcriptional characterization of LEP and LEPR isoforms on a range of tissues. Their expression patterns seem to indicate that both molecules develop peripheral roles apart from

  17. A constitutive promoter directs expression of the nerve growth factor receptor gene

    SciTech Connect

    Sehgal, A.; Patil, N.; Chao, M.

    1988-08-01

    Expression of nerve growth factor receptor is normally restricted to cells derived from the neural crest in a developmentally regulated manner. The authors analyzed promoter sequences for the human nerve growth factor receptor gene and found that the receptor promoter resembles others which are associated with constitutively expressed genes that have housekeeping and growth-related functions. Unlike these other genes, the initiation of transcription occurred at one major site rather than at multiple sites. The constitutive nature of the nerve growth factor receptor promoter may account for the ability of this gene to be transcribed in a diverse number of heterologous cells after gene transfer. The intron-exon structure of the receptor gene indicated that structural features are precisely divided into discrete domains.

  18. The proteasome inhibitor Bortezomib (Velcade) as potential inhibitor of estrogen receptor-positive breast cancer.

    PubMed

    Thaler, Sonja; Thiede, Gitta; Hengstler, Jan G; Schad, Arno; Schmidt, Marcus; Sleeman, Jonathan P

    2015-08-01

    Around 70% of breast cancers express the estrogen receptor α (ERα) and depend on estrogen for growth, survival and disease progression. The presence of hormone sensitivity is usually associated with a favorable prognosis. Use of adjuvant anti-endocrine therapy has significantly decreased breast cancer mortality in patients with early-stage disease, and anti-endocrine therapy also plays a central role in the treatment of advanced stages. However a subset of hormone receptor-positive breast cancers do not benefit from anti-endocrine therapy, and nearly all hormone receptor-positive metastatic breast cancers ultimately develop resistance to anti-hormonal therapies. Despite new insights into mechanisms of anti-endocrine therapy resistance, e.g., crosstalk between ERα and Her2/neu, the management of advanced hormone-receptor-positive breast cancers that are resistant to anti-endocrine agents remains a significant challenge. In the present study, we demonstrate that the proteasome inhibitor Bortezomib strongly inhibits ERα and HER2/neu expression, increases expression of cyclin-dependent kinase inhibitors, inhibits expression of multiple genes associated with poor prognosis in ERα+ breast cancer patients and induces cell death in ER+ breast cancer cells in both the presence and absence of functional p53. Although Bortezomib increased the levels of p53 and increased the expression of pro-apoptotic target genes in ERα+ breast cancer cells harboring wild-type p53, Bortezomib also exerts anti-tumoral effects on ERα+ breast cancer cells through suppression of ERα expression and inhibition of PI3K/Akt/mammalian target of rapamycin (mTOR) and ERK signaling independently of functional p53. These findings suggest that Bortezomib might have the potential to improve the management of anti-endocrine therapy resistant ERα+ breast cancers independently of their p53 status.

  19. Targeted gene delivery mediated by folate-polyethylenimine-block-poly(ethylene glycol) with receptor selectivity.

    PubMed

    Cheng, Han; Zhu, Jing-Ling; Zeng, Xuan; Jing, Yue; Zhang, Xian-Zheng; Zhuo, Ren-Xi

    2009-03-18

    The folate receptor (FR) is a tumor marker overexpressed in large numbers of cancer cells. Folic acid has high affinity to the FR and retains its binding affinity upon derivatization via its gamma-carboxyl. Therefore, in this article, folate-polyethylenimine-block-poly(ethylene glycol) (FOL-PEI-b-PEG) was designed for specific receptor targeted gene delivery. Physicochemical characterizations of resulting FOL-PEI-b-PEG/DNA complexes in terms of agarose gel electrophoresis, particle size, and zeta potential measurements were investigated. The results indicated that FOL-PEI-b-PEG was able to condense plasmid DNA tightly with a suitable particle size. The cytotoxicity study indicated that the copolymer exhibited less toxicity in comparison with that of 25 kDa PEI. Luciferase assay and green fluorescent protein (GFP) detections were also used to confirm that FOL-PEI-b-PEG could be an effective gene vector. Importantly, transfection efficiency of FOL-PEI-b-PEG with free folic acid was much lower than that of the copolymer without free folic acid on FR-positive HeLa cells, suggesting that FOL-PEI-b-PEG has great potential as a targeting gene vector.

  20. Corticosteroid receptor gene expression is related to sex and social behaviour in a social fish.

    PubMed

    O'Connor, Constance M; Rodela, Tammy M; Mileva, Viktoria R; Balshine, Sigal; Gilmour, Kathleen M

    2013-03-01

    Circulating corticosteroids have been related to social status in a variety of species. However, our understanding of corticosteroid receptor expression and its relationship with sociality is still in its infancy. Knowledge of variation in receptor expression is critical to understand the physiological relevance of differences in circulating corticosteroid concentrations. In this study, we examined corticosteroid receptor gene expression in relation to dominance rank, sex, and social behaviour in the highly social cichlid fish, Neolamprologus pulcher. We examined the relative gene expression of the three known teleost corticosteroid receptors: glucocorticoid receptor 1 (GR1), glucocorticoid receptor 2 (GR2), and the mineralocorticoid receptor (MR) in liver and brain tissue of dominant and subordinate N. pulcher males and females. Phylogenetic analysis revealed the N. pulcher gene originally described as GR2, clustered with other teleost GR1 genes, while the originally-described N. pulcher GR1 gene clustered with the GR2 genes of other teleosts. Therefore we propose a change in the original nomenclature of the N. pulcher GRs: GR1 (formerly GR2) and GR2 (formerly GR1) and adopt this new nomenclature throughout this manuscript. Liver MR transcript levels were higher in males than females, and positively related to submissive behaviour. Liver GR2 (formerly GR1) transcript levels were also higher in males than females. Collectively, the results demonstrate sex differences in corticosteroid receptor abundance, and suggest tissue- and receptor-specific roles for corticosteroid receptors in mediating aspects of social behaviour.

  1. Are AMPA receptor positive allosteric modulators potential pharmacotherapeutics for addiction?

    PubMed

    Watterson, Lucas R; Olive, M Foster

    2013-01-01

    Positive allosteric modulators (PAMs) of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are a diverse class of compounds that increase fast excitatory transmission in the brain. AMPA PAMs have been shown to facilitate long-term potentiation, strengthen communication between various cortical and subcortical regions, and some of these compounds increase the production and release of brain-derived neurotrophic factor (BDNF) in an activity-dependent manner. Through these mechanisms, AMPA PAMs have shown promise as broad spectrum pharmacotherapeutics in preclinical and clinical studies for various neurodegenerative and psychiatric disorders. In recent years, a small collection of preclinical animal studies has also shown that AMPA PAMs may have potential as pharmacotherapeutic adjuncts to extinction-based or cue-exposure therapies for the treatment of drug addiction. The present paper will review this preclinical literature, discuss novel data collected in our laboratory, and recommend future research directions for the possible development of AMPA PAMs as anti-addiction medications. PMID:24380895

  2. Are AMPA Receptor Positive Allosteric Modulators Potential Pharmacotherapeutics for Addiction?

    PubMed Central

    Watterson, Lucas R.; Olive, M. Foster

    2013-01-01

    Positive allosteric modulators (PAMs) of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are a diverse class of compounds that increase fast excitatory transmission in the brain. AMPA PAMs have been shown to facilitate long-term potentiation, strengthen communication between various cortical and subcortical regions, and some of these compounds increase the production and release of brain-derived neurotrophic factor (BDNF) in an activity-dependent manner. Through these mechanisms, AMPA PAMs have shown promise as broad spectrum pharmacotherapeutics in preclinical and clinical studies for various neurodegenerative and psychiatric disorders. In recent years, a small collection of preclinical animal studies has also shown that AMPA PAMs may have potential as pharmacotherapeutic adjuncts to extinction-based or cue-exposure therapies for the treatment of drug addiction. The present paper will review this preclinical literature, discuss novel data collected in our laboratory, and recommend future research directions for the possible development of AMPA PAMs as anti-addiction medications. PMID:24380895

  3. Natural genetic variability of the neuronal nicotinic acetylcholine receptor subunit genes in mice: Consequences and confounds.

    PubMed

    Wilking, Jennifer A; Stitzel, Jerry A

    2015-09-01

    Recent human genetic studies have identified genetic variants in multiple nicotinic acetylcholine receptor (nAChR) subunit genes that are associated with risk for nicotine dependence and other smoking-related measures. Genetic variability also exists in the nAChR subunit genes in mice. Most studies on mouse nAChR subunit gene variability to date have focused on Chrna4, the gene that encodes the α4 nAChR subunit and Chrna7, the gene that encodes the α7 nAChR subunit. However, genetic variability exists for all nAChR genes in mice. In this review, we will describe what is known about nAChR subunit gene polymorphisms in mice and how it relates to variability in nAChR expression and function in brain. The relationship between nAChR genetic variability in mice and the effects of nicotine on several behavioral and physiological measures also will be discussed. In addition, an overview of the contribution of other genetic variation to nicotine sensitivity in mice will be provided. Finally, the potential for natural genetic variability to confound and/or modify the results of studies that utilize genetically engineered mice will be considered. As an example of the ability of a natural genetic variant to modify the effect of an engineered mutation, data will be presented that demonstrate that the effect of Chrna5 deletion on oral nicotine intake is dependent upon naturally occurring variant alleles of Chrna4. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'. PMID:25498233

  4. Variants in the vitamin D receptor gene and asthma

    PubMed Central

    Wjst, Matthias

    2005-01-01

    Background Early lifetime exposure to dietary or supplementary vitamin D has been predicted to be a risk factor for later allergy. Twin studies suggest that response to vitamin D exposure might be influenced by genetic factors. As these effects are primarily mediated through the vitamin D receptor (VDR), single base variants in this gene may be risk factors for asthma or allergy. Results 951 individuals from 224 pedigrees with at least 2 asthmatic children were analyzed for 13 SNPs in the VDR. There was no preferential transmission to children with asthma. In their unaffected sibs, however, one allele in the 5' region was 0.5-fold undertransmitted (p = 0.049), while two other alleles in the 3' terminal region were 2-fold over-transmitted (p = 0.013 and 0.018). An association was also seen with bronchial hyperreactivity against methacholine and with specific immunoglobulin E serum levels. Conclusion The transmission disequilibrium in unaffected sibs of otherwise multiple-affected families seem to be a powerful statistical test. A preferential transmission of vitamin D receptor variants to children with asthma could not be confirmed but raises the possibility of a protective effect for unaffected children. PMID:15651992

  5. Progesterone receptor gene variants and risk of endometrial cancer

    PubMed Central

    O'Mara, Tracy A.; Fahey, Paul; Ferguson, Kaltin; Marquart, Louise; Lambrechts, Diether; Despierre, Evelyn; Vergote, Ignace; Amant, Frederic; Hall, Per; Liu, Jianjun; Czene, Kamila; Rebbeck, Timothy R.; Ahmed, Shahana; Dunning, Alison M.; Gregory, Catherine S.; Shah, Mitul; Webb, Penelope M.; Spurdle, Amanda B.

    2011-01-01

    Prolonged excessive estrogen exposure unopposed by progesterone is widely accepted to be a risk factor for endometrial cancer development. The physiological function of progesterone is dependent upon the presence of its receptor [progesterone receptor (PGR)] and several studies have reported single nucleotide polymorphisms (SNPs) in the PGR gene to be associated with endometrial cancer risk. We sought to confirm the associations with endometrial cancer risk previously reported for four different PGR polymorphisms. A maximum of 2888 endometrial cancer cases and 4483 female control subjects from up to three studies were genotyped for four PGR polymorphisms (rs1042838, rs10895068, rs11224561 and rs471767). Logistic regression with adjustment for age, study, ethnicity and body mass index was performed to calculate odds ratios (ORs) and associated 95% confidence intervals (CIs) and P-values. Of the four SNPs investigated, only rs11224561 in the 3′ region of the PGR gene was found to be significantly associated with endometrial cancer risk. The A allele of the rs11224561 SNP was associated with increased risk of endometrial cancer (OR per allele 1.31; 95% CI 1.12–1.53, P = 0.001, adjusted for age and study), an effect of the same magnitude and direction as reported previously. We have validated the endometrial cancer risk association with a tagSNP in the 3′ untranslated region of PGR previously reported in an Asian population. Replication studies will be required to refine the risk estimate and to establish if this, or a correlated SNP, is the underlying causative variant. PMID:21148628

  6. An Expression Refinement Process Ensures Singular Odorant Receptor Gene Choice.

    PubMed

    Abdus-Saboor, Ishmail; Al Nufal, Mohammed J; Agha, Maha V; Ruinart de Brimont, Marion; Fleischmann, Alexander; Shykind, Benjamin M

    2016-04-25

    Odorant receptor (OR) gene choice in mammals is a paradigmatic example of monogenic and monoallelic transcriptional selection, in which each olfactory sensory neuron (OSN) chooses to express one OR allele from over 1,000 encoded in the genome [1-3]. This process, critical for generation of the circuit from nose to brain [4-6], is thought to occur in two steps: a slow initial phase that randomly activates a single OR allele, followed by a rapid feedback that halts subsequent expression [7-14]. Inherent in this model is a finite failure rate wherein multiple OR alleles may be activated prior to feedback suppression [15, 16]. Confronted with more than one receptor, the neuron would need to activate a refinement mechanism to eliminate multigenic OR expression and resolve unique neuronal identity [16], critical to the generation of the circuit from nose to olfactory bulb. Here we used a genetic approach in mice to reveal a new facet of OR regulation that corrects adventitious activation of multiple OR alleles, restoring monogenic OR expression and unique neuronal identity. Using the tetM71tg model system, in which the M71 OR is expressed in >95% of mature OSNs and potently suppresses the expression of the endogenous OR repertoire [10], we provide clear evidence of a post-selection refinement (PSR) process that winnows down the number of ORs. We further demonstrate that PSR efficiency is linked to OR expression level, suggesting an underlying competitive process and shedding light on OR gene switching and the fundamental mechanism of singular OR choice. PMID:27040780

  7. Association between the vitamin D receptor gene polymorphism and osteoporosis

    PubMed Central

    Wu, Ju; Shang, De-Peng; Yang, Sheng; Fu, Da-Peng; Ling, Hao-Yi; Hou, Shuang-Shuang; Lu, Jian-Min

    2016-01-01

    The influence of the vitamin D receptor (VDR) gene for the risk of osteoporosis remains to be elucidated. The aim of the present study was to understand the distribution of various single-nucleotide polymorphisms (SNPs) within the VDR gene and its association with the risk of osteoporosis. In total, 378 subjects without a genetic relationship were recruited to the study between January 2013 and July 2015. The subjects were divided into three groups, which were the normal (n=234), osteoporosis (n=65) and osteoporosis with osteoporotic fracture (n=79) groups. Three pertinent SNPs of the VDR gene rs17879735 (ApaI, Allele A/a, SNP C>A) were examined with polymerase chain reaction-restriction fragment length polymorphism. The bone mineral density (BMD) of the lumbar spine (L2-L4), femoral neck, Ward's and Tro was measured using dual-energy X-ray absorptiometry. The distributions of genotype frequencies aa, AA and Aa were 48.68, 42.86 and 8.46%, separately. Following analysis of each site, BMD, body mass index (BMI) and age, BMD for each site was negatively correlated with age (P<0.01) and positively correlated with BMI (P<0.01). Correction analysis revealed that there were significant differences in the Ward's triangle BMD among each genotype (P<0.05), in which the aa genotype exhibited the lower BMD (P<0.05). No significant difference was identified among the different genotypes in the occurrence of osteoporosis with osteoporotic fracture (P>0.05). In conclusion, these indicated that the VDR gene ApaI polymorphisms had an important role in the osteoporosis risk. PMID:27446548

  8. Impact of gene polymorphisms of gonadotropins and their receptors on human reproductive success.

    PubMed

    Casarini, Livio; Santi, Daniele; Marino, Marco

    2015-12-01

    Gonadotropins and their receptors' genes carry several single-nucleotide polymorphisms resulting in endocrine genotypes modulating reproductive parameters, diseases, and lifespan leading to important implications for reproductive success and potential relevance during human evolution. Here we illustrate common genotypes of the gonadotropins and gonadotropin receptors' genes and their clinical implications in phenotypes relevant for reproduction such as ovarian cycle length, age of menopause, testosterone levels, polycystic ovary syndrome, and cancer. We then discuss their possible role in human reproduction and adaptation to the environment. Gonadotropins and their receptors' variants are differently distributed among human populations. Some hints suggest that they may be the result of natural selection that occurred in ancient times, increasing the individual chance of successful mating, pregnancy, and effective post-natal parental cares. The gender-related differences in the regulation of the reproductive endocrine systems imply that many of these genotypes may lead to sex-dependent effects, increasing the chance of mating and reproductive success in one sex at the expenses of the other sex. Also, we suggest that sexual conflicts within the FSH and LH-choriogonadotropin receptor genes contributed to maintain genotypes linked to subfertility among humans. Because the distribution of polymorphic markers results in a defined geographical pattern due to human migrations rather than natural selection, these polymorphisms may have had only a weak impact on reproductive success. On the contrary, such genotypes could acquire relevant consequences in the modern, developed societies in which parenthood attempts often occur at a later age, during a short, suboptimal reproductive window, making clinical fertility treatments necessary.

  9. Signal transduction through the fibronectin receptor induces collagenase and stromelysin gene expression

    PubMed Central

    1989-01-01

    We have investigated the effects of ligation of the fibronectin receptor (FnR) on gene expression in rabbit synovial fibroblasts. Monoclonal antibodies to the FnR that block initial adhesion of fibroblasts to fibronectin induced the expression of genes encoding the secreted extracellular matrix-degrading metalloproteinases collagenase and stromelysin. That induction was a direct consequence of interaction with the FnR was shown by the accumulation of mRNA for stromelysin and collagenase. Monoclonal antibodies to several other membrane glycoprotein receptors had no effect on metalloproteinase gene expression. Less than 2 h of treatment of the fibroblasts with anti-FnR in solution was sufficient to trigger the change in gene expression, and induction was blocked by dexamethasone. Unlike other inducers of metalloproteinase expression, including phorbol diesters and growth factors, addition of the anti-FnR in solution to cells adherent to serum-derived adhesion proteins or collagen produced no detectable change in cell shape or actin microfilament organization. Inductive effects were potentiated by cross-linking of the ligand. Fab fragments of anti-FnR were ineffective unless cross-linked or immobilized on the substrate. Adhesion of fibroblasts to native fibronectin did not induce metallo-proteinases. However, adhesion to covalently immobilized peptides containing the arg-gly-asp sequence that were derived from fibronectin, varying in size from hexapeptides up to 120 kD, induced collagenase and stromelysin gene expression. This suggests that degradation products of fibronectin are the natural inductive ligands for the FnR. These data demonstrate that signals leading to changes in gene expression are transduced by the FnR, a member of the integrin family of extracellular matrix receptors. The signaling of changes in gene expression by the FnR is distinct from signaling involving cell shape and actin cytoarchitecture. At least two distinct signals are generated: the

  10. Olfactory receptor genes cooperate with protocadherin genes in human extreme obesity.

    PubMed

    Mariman, Edwin C M; Szklarczyk, Radek; Bouwman, Freek G; Aller, Erik E J G; van Baak, Marleen A; Wang, Ping

    2015-07-01

    Worldwide, the incidence of obesity has increased dramatically over the past decades. More knowledge about the complex etiology of obesity is needed in order to find additional approaches for treatment and prevention. Investigating the exome sequencing data of 30 extremely obese subjects (BMI 45-65 kg/m(2)) shows that predicted damaging missense variants in olfactory receptor genes on chromosome 1q and rare predicted damaging variants in the protocadherin (PCDH) beta-cluster genes on chromosome 5q31, reported in our previous work, co-localize in subjects with extreme obesity. This implies a synergistic effect between genetic variation in these gene clusters in the predisposition to extreme obesity. Evidence for a general involvement of the olfactory transduction pathway on itself could not be found. Bioinformatic analysis indicates a specific involvement of the PCDH beta-cluster genes in controlling tissue development. Further mechanistic insight needs to await the identification of the ligands of the 1q olfactory receptors. Eventually, this may provide the possibility to manipulate food flavor in a way to reduce the risk of overeating and of extreme obesity in genetically predisposed subjects.

  11. The Dopamine D2 Receptor Gene, Perceived Parental Support, and Adolescent Loneliness: Longitudinal Evidence for Gene-Environment Interactions

    ERIC Educational Resources Information Center

    van Roekel, Eeske; Goossens, Luc; Scholte, Ron H. J.; Engels, Rutger C. M. E.; Verhagen, Maaike

    2011-01-01

    Background: Loneliness is a common problem in adolescence. Earlier research focused on genes within the serotonin and oxytocin systems, but no studies have examined the role of dopamine-related genes in loneliness. In the present study, we focused on the dopamine D2 receptor gene (DRD2). Methods: Associations among the DRD2, sex, parental support,…

  12. Interaction of polycyclic musks and UV filters with the estrogen receptor (ER), androgen receptor (AR), and progesterone receptor (PR) in reporter gene bioassays.

    PubMed

    Schreurs, Richard H M M; Sonneveld, Edwin; Jansen, Jenny H J; Seinen, Willem; van der Burg, Bart

    2005-02-01

    Two important ingredients of personal care products, namely polycyclic musk fragrances and UV filters, can be found in the environment and in humans. In previous studies, several compounds of both classes have been tested for their interaction with the estrogen receptor. Two polycyclic musk fragrances, namely AHTN and HHCB, turned out to be anti-estrogenic both in vitro and in vivo in a transgenic zebrafish assay. Several UV filters have been shown to exert estrogenic effects in vitro and in some in vivo studies. Here, we assessed the interaction of five polycyclic musk compounds and seven UV filters with the estrogen receptor (ER), androgen receptor (AR), and progesterone (PR) receptor, using sensitive and specific reporter gene cell lines. Four polycyclic musks (AHTN, HHCB, AETT, and AHMI) were found to be antagonists toward the ERbeta, AR and PR. The UV filters that showed estrogenic effects (benzophenone-3, Bp-3; 3-benzylidene camphor, 3-BC; homosalate, HMS; and 4-methylbenzylidene camphor, 4-MBC) were found to be antagonists toward the AR and PR. The ERalpha agonistic UV filter octyl-dimethyl-p-aminobenzoic acid (OD-PABA) did not show activity toward the AR and PR. Octyl methoxy cinnamate (OMC) showed weak ERalpha agonism, but potent PR antagonism. Butyl methoxydibenzoylmethane (B-MDM) only showed weak ERalpha agonism and weak AR antagonism. Most effects were observed at relatively high concentrations (above 1 muM); however, the anti-progestagenic effects of the polycyclic musks AHMI and AHTN were detected at concentrations as low as 0.01 muM. The activity of anti-progestagenic xenobiotics at low concentrations indicates the need to undertake more research to find out about the potential endocrine disrupting effects of these compounds in vivo.

  13. A member of the TGF-beta receptor gene family in the parasitic nematode Brugia pahangi.

    PubMed

    Gomez-Escobar, N; van den Biggelaar, A; Maizels, R

    1997-10-15

    The full length cDNA sequence of a Type I transforming growth factor-beta (TGF-beta) receptor has been isolated from the filarial parasitic nematode Brugia pahangi. This new gene, designated Bp-trk-1, encodes a predicted 645 amino acid sequence with an N-terminal hydrophobic stretch which may act as a signal peptide. The extracellular portion (residues 15-187) is cysteine-rich and has three potential N-glycosylation sites. At positions 250-255 the protein contains the glycine-serine rich motif characteristic of Type I receptors. The closest homologue is a Caenorhabditis elegans gene (Q09488) in cosmid C32D5.2 which shares 67% amino acid identity with Bp-trk-1 in the most conserved kinase domain (aa 259-482). Other type I receptors such as C. elegans daf-1 and Drosophila tkv show 38-53% identity in the same region. Some residues conserved in Drosophila and vertebrates are not present in the B. pahangi sequence. RT-PCR amplification has been used to show that the transcript is expressed in the three main stages of the B. pahangi life cycle: microfilariae, infective larvae and adults. The ligand remains unknown at this time but is likely to be most similar to that for C. elegans Q09488. PMID:9358045

  14. ALK1 signalling analysis identifies angiogenesis related genes and reveals disparity between TGF-β and constitutively active receptor induced gene expression

    PubMed Central

    Lux, Andreas; Salway, Fiona; Dressman, Holly K; Kröner-Lux, Gabriele; Hafner, Mathias; Day, Philip JR; Marchuk, Douglas A; Garland, John

    2006-01-01

    Background TGF-β1 is an important angiogenic factor involved in the different aspects of angiogenesis and vessel maintenance. TGF-β signalling is mediated by the TβRII/ALK5 receptor complex activating the Smad2/Smad3 pathway. In endothelial cells TGF-β utilizes a second type I receptor, ALK1, activating the Smad1/Smad5 pathway. Consequently, a perturbance of ALK1, ALK5 or TβRII activity leads to vascular defects. Mutations in ALK1 cause the vascular disorder hereditary hemorrhagic telangiectasia (HHT). Methods The identification of ALK1 and not ALK5 regulated genes in endothelial cells, might help to better understand the development of HHT. Therefore, the human microvascular endothelial cell line HMEC-1 was infected with a recombinant constitutively active ALK1 adenovirus, and gene expression was studied by using gene arrays and quantitative real-time PCR analysis. Results After 24 hours, 34 genes were identified to be up-regulated by ALK1 signalling. Analysing ALK1 regulated gene expression after 4 hours revealed 13 genes to be up- and 2 to be down-regulated. Several of these genes, including IL-8, ET-1, ID1, HPTPη and TEAD4 are reported to be involved in angiogenesis. Evaluation of ALK1 regulated gene expression in different human endothelial cell types was not in complete agreement. Further on, disparity between constitutively active ALK1 and TGF-β1 induced gene expression in HMEC-1 cells and primary HUVECs was observed. Conclusion Gene array analysis identified 49 genes to be regulated by ALK1 signalling and at least 14 genes are reported to be involved in angiogenesis. There was substantial agreement between the gene array and quantitative real-time PCR data. The angiogenesis related genes might be potential HHT modifier genes. In addition, the results suggest endothelial cell type specific ALK1 and TGF-β signalling. PMID:16594992

  15. Arsenite and insulin exhibit opposing effects on epidermal growth factor receptor and keratinocyte proliferative potential

    SciTech Connect

    Patterson, Timothy J.; Rice, Robert H. . E-mail: rhrice@ucdavis.edu

    2007-05-15

    Previous work has suggested that arsenic exposure contributes to skin carcinogenesis by preserving the proliferative potential of human epidermal keratinocytes, thereby slowing the exit of putative target stem cells into the differentiation pathway. To find a molecular basis for this action, present work has explored the influence of arsenite on keratinocyte responses to epidermal growth factor (EGF). The ability of cultured keratinocytes to found colonies upon passaging several days after confluence was preserved by arsenite and EGF in an additive fashion, but neither was effective when the receptor tyrosine kinase activity was inhibited. Arsenite prevented the loss of EGF receptor protein and phosphorylation of tyrosine 1173, preserving its capability to signal. The level of nuclear {beta}-catenin was higher in cells treated with arsenite and EGF in parallel to elevated colony forming ability, and expression of a dominant negative {beta}-catenin suppressed the increase in both colony forming ability and yield of putative stem cells induced by arsenite and EGF. As judged by expression of three genes regulated by {beta}-catenin, this transcription factor had substantially higher activity in the arsenite/EGF-treated cells. Trivalent antimony exhibited the same effects as arsenite. A novel finding is that insulin in the medium induced the loss of EGF receptor protein, which was largely prevented by arsenite exposure.

  16. A potential role of odorant receptor agonists and antagonists in the treatment of infertility and contraception.

    PubMed

    Spehr, Marc; Hatt, Hanns

    2005-04-01

    In 1992, the identification of odorant receptor expression in mammalian testicular tissue prepared the ground for an ongoing debate about a potential role for these chemoreceptors in significant sperm behaviors, in particular chemotaxis. The identification of hOR17-4, a human testicular odorant receptor that mediates sperm chemotaxis in various bioassays, revealed the first potential key player in this reproductively relevant scenario. Detailed knowledge of the receptor's molecular receptive field, the discovery of a potent receptor antagonist, as well as specific insight into the receptor-linked signaling cascade(s), could establish a basis for pioneering future applications in fertility treatment and/or contraception. PMID:15898342

  17. Pharmacogenetics of the β2-Adrenergic Receptor Gene

    PubMed Central

    Ortega, Victor E.; Hawkins, Gregory A.; Peters, Stephen P.; Bleecker, Eugene R.

    2009-01-01

    Asthma is a complex genetic disease with multiple genetic and environmental determinants contributing to the observed variability in response to common anti-asthma therapies. Asthma pharmacogenetic research has focused on multiple candidate genes including the β2-adrenergic receptor gene (ADRβ2) and its effect on individual responses to beta agonist therapy. At present, knowledge about the effects of ADRβ2 variation on therapeutic responses is evolving and should not alter current Asthma Guideline approaches consisting of the use of short acting beta agonists for as-needed symptom based therapy and the use of a regular long-acting beta agonist in combination with inhaled corticosteroid therapy for optimal control of asthma symptoms in those asthmatics who are not controlled on inhaled corticosteroid alone. This approach is based upon studies showing a consistent pharmacogenetic response to regular use of short acting beta agonists (SABA) and less consistent findings in studies evaluating long acting beta agonist (LABA). While emerging pharmacogenetic studies are provocative and should lead to functional approaches, conflicting data with responses to LABA therapy may be caused by factors that include small sample sizes of study populations and differences in experimental design that may limit the conclusions that may be drawn from these clinical trials at the present time. PMID:17996583

  18. Anti-Epidermal Growth Factor Receptor Gene Therapy for Glioblastoma

    PubMed Central

    Hicks, Martin J.; Chiuchiolo, Maria J.; Ballon, Douglas; Dyke, Jonathan P.; Aronowitz, Eric; Funato, Kosuke; Tabar, Viviane; Havlicek, David; Fan, Fan; Sondhi, Dolan; Kaminsky, Stephen M.; Crystal, Ronald G.

    2016-01-01

    Glioblastoma multiforme (GBM) is the most common and aggressive primary intracranial brain tumor in adults with a mean survival of 14 to 15 months. Aberrant activation of the epidermal growth factor receptor (EGFR) plays a significant role in GBM progression, with amplification or overexpression of EGFR in 60% of GBM tumors. To target EGFR expressed by GBM, we have developed a strategy to deliver the coding sequence for cetuximab, an anti-EGFR antibody, directly to the CNS using an adeno-associated virus serotype rh.10 gene transfer vector. The data demonstrates that single, local delivery of an anti-EGFR antibody by an AAVrh.10 vector coding for cetuximab (AAVrh.10Cetmab) reduces GBM tumor growth and increases survival in xenograft mouse models of a human GBM EGFR-expressing cell line and patient-derived GBM. AAVrh10.CetMab-treated mice displayed a reduction in cachexia, a significant decrease in tumor volume and a prolonged survival following therapy. Adeno-associated-directed delivery of a gene encoding a therapeutic anti-EGFR monoclonal antibody may be an effective strategy to treat GBM. PMID:27711187

  19. Association between olfactory receptor genes, eating behavior traits and adiposity: results from the Quebec Family Study.

    PubMed

    Choquette, Anne C; Bouchard, Luigi; Drapeau, Vicky; Lemieux, Simone; Tremblay, Angelo; Bouchard, Claude; Vohl, Marie-Claude; Pérusse, Louis

    2012-02-01

    Obesity is a major health problem that can be influenced by eating behaviors. Evidence suggests that the sensory properties of food influence eating behaviors and lead to overeating and overweight. A previous genome-wide linkage scan for eating behavior traits assessed with the Three-Factor Eating Questionnaire (cognitive dietary restraint, disinhibition and hunger) performed in the Quebec Family Study (QFS) revealed a quantitative trait locus for disinhibition on chromosome 19p13. This region encodes a cluster of seven olfactory receptor (OR) genes, including OR7D4, previously associated with odor perceptions. Direct sequencing of the OR7D4 gene revealed 16 sequence variants. Nine OR7D4 sequence variants with minor allele frequency (MAF)>1% as well as 100 SNPs spanning the cluster of OR genes on 19p13 were tested for association with age- and sex-adjusted eating behaviors as well as adiposity traits in 890 subjects. One OR7D4 sequence variant (rs2878329 G>A) showed evidence of association with reduced levels of adiposity (p=0.03), cognitive dietary restraint (p=0.05) and susceptibility to hunger (p=0.008). None of the OR7D4 SNPs was associated with disinhibition, but a SNP (rs2240927) in another OR gene (OR7E24) showed evidence of association (p=0.03). Another SNP in the OR7G3 gene (rs10414255) was also found to be associated with adiposity and eating behaviors. These results are the first to suggest that variations in human olfactory receptor genes can influence eating behaviors and adiposity. The associations reported in the present study should be interpreted with caution considering the number of tests performed and considered as potential new hypotheses about the effects OR polymorphisms on eating behaviors and obesity that need to be further explored in other populations.

  20. Activation of transient receptor potential ankyrin 1 by eugenol.

    PubMed

    Chung, G; Im, S T; Kim, Y H; Jung, S J; Rhyu, M-R; Oh, S B

    2014-03-01

    Eugenol is a bioactive plant extract used as an analgesic agent in dentistry. The structural similarity of eugenol to cinnamaldehyde, an active ligand for transient receptor potential ankyrin 1 (TRPA1), suggests that eugenol might produce its effect via TRPA1, in addition to TRPV1 as we reported previously. In this study, we investigated the effect of eugenol on TRPA1, by fura-2-based calcium imaging and patch clamp recording in trigeminal ganglion neurons and in a heterologous expression system. As the result, eugenol induced robust calcium responses in rat trigeminal ganglion neurons that responded to a specific TRPA1 agonist, allyl isothiocyanate (AITC), and not to capsaicin. Capsazepine, a TRPV1 antagonist failed to inhibit eugenol-induced calcium responses in AITC-responding neurons. In addition, eugenol response was observed in trigeminal ganglion neurons from TRPV1 knockout mice and human embryonic kidney 293 cell lines that express human TRPA1, which was inhibited by TRPA1-specific antagonist HC-030031. Eugenol-evoked TRPA1 single channel activity and eugenol-induced TRPA1 currents were dose-dependent with EC50 of 261.5μM. In summary, these results demonstrate that the activation of TRPA1 might account for another molecular mechanism underlying the pharmacological action of eugenol.

  1. Lipid modulation of thermal transient receptor potential channels.

    PubMed

    Hernández-García, Enrique; Rosenbaum, Tamara

    2014-01-01

    There is a subgroup of transient receptor potential (TRP) ion channels that are responsive to temperature (thermo-TRP channels). These are important to a variety of sensory and physiological phenomena such as pain and taste perception. All thermo-TRP channels known to date are subject to modulation by lipidic molecules of many kinds, from the ubiquitous cholesterol to more specialized molecules such as prostaglandins. Although the mechanisms and sites of binding of lipids on thermo-TRPs are largely unknown, the explosion on research of lipids and ion channels has revealed previously unsuspected roles for them. Diacyl glycerol is a lipid produced by phospholipase C (PLC) and it was discovered to modulate TRP channels in the eye of the fly, and many mammal TRP channels have been found to interact with lipids. While most of the lipids acting on thermo-TRP channels have been found to activate them, there are a few capable of inhibition. Phosphatidylinositol 4,5-bisphosphate is even capable of both inhibition and activation on a couple of thermo-TRPs, depending on the cellular context. More data is required to assess the mechanism through which lipids affect thermo-TRP channel activity and the physiological importance of this interaction.

  2. Toll-like receptors: potential targets for lupus treatment.

    PubMed

    Wu, Yan-wei; Tang, Wei; Zuo, Jian-ping

    2015-12-01

    Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by the loss of tolerance to self-nuclear antigens. Accumulating evidence shows that Toll-like receptors (TLRs), previously proven to be critical for host defense, are implicated in the pathogenesis of autoimmune diseases by recognition of self-molecules. Genome-wide association studies, experimental mouse models and clinical sample studies have provided evidence for the involvement of TLRs, including TLR2/4, TLR5, TLR3 and TLR7/8/9, in SLE pathogenesis. A number of downstream proteins in the TLR signaling cascade (such as MyD88, IRAKs and IFN-α) are identified as potential therapeutic targets for SLE treatment. Numerous antagonists targeting TLR signaling, including oligonucleotides, small molecular inhibitors and antibodies, are currently under preclinical studies or clinical trials for SLE treatment. Moreover, the emerging new manipulation of TLR signaling by microRNA (miRNA) regulation shows promise for the future treatment of SLE.

  3. Toll-like receptors: potential targets for lupus treatment

    PubMed Central

    Wu, Yan-wei; Tang, Wei; Zuo, Jian-ping

    2015-01-01

    Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by the loss of tolerance to self-nuclear antigens. Accumulating evidence shows that Toll-like receptors (TLRs), previously proven to be critical for host defense, are implicated in the pathogenesis of autoimmune diseases by recognition of self-molecules. Genome-wide association studies, experimental mouse models and clinical sample studies have provided evidence for the involvement of TLRs, including TLR2/4, TLR5, TLR3 and TLR7/8/9, in SLE pathogenesis. A number of downstream proteins in the TLR signaling cascade (such as MyD88, IRAKs and IFN-α) are identified as potential therapeutic targets for SLE treatment. Numerous antagonists targeting TLR signaling, including oligonucleotides, small molecular inhibitors and antibodies, are currently under preclinical studies or clinical trials for SLE treatment. Moreover, the emerging new manipulation of TLR signaling by microRNA (miRNA) regulation shows promise for the future treatment of SLE. PMID:26592511

  4. Lipid modulation of thermal transient receptor potential channels.

    PubMed

    Hernández-García, Enrique; Rosenbaum, Tamara

    2014-01-01

    There is a subgroup of transient receptor potential (TRP) ion channels that are responsive to temperature (thermo-TRP channels). These are important to a variety of sensory and physiological phenomena such as pain and taste perception. All thermo-TRP channels known to date are subject to modulation by lipidic molecules of many kinds, from the ubiquitous cholesterol to more specialized molecules such as prostaglandins. Although the mechanisms and sites of binding of lipids on thermo-TRPs are largely unknown, the explosion on research of lipids and ion channels has revealed previously unsuspected roles for them. Diacyl glycerol is a lipid produced by phospholipase C (PLC) and it was discovered to modulate TRP channels in the eye of the fly, and many mammal TRP channels have been found to interact with lipids. While most of the lipids acting on thermo-TRP channels have been found to activate them, there are a few capable of inhibition. Phosphatidylinositol 4,5-bisphosphate is even capable of both inhibition and activation on a couple of thermo-TRPs, depending on the cellular context. More data is required to assess the mechanism through which lipids affect thermo-TRP channel activity and the physiological importance of this interaction. PMID:25366236

  5. Transient receptor potential channels and regulation of lung endothelial permeability

    PubMed Central

    2013-01-01

    Abstract This review highlights our current knowledge regarding expression of transient receptor potential (TRP) cation channels in lung endothelium and evidence for their involvement in regulation of lung endothelial permeability. Six mammalian TRP families have been identified and organized on the basis of sequence homology: TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPML (mucolipin), TRPP (polycystin), and TRPA (ankyrin). To date, only TRPC1/4, TRPC6, TRPV4, and TRPM2 have been extensively studied in lung endothelium. Calcium influx through each of these channels has been documented to increase lung endothelial permeability, although their channel-gating mechanisms, downstream signaling mechanisms, and impact on endothelial structure and barrier integrity differ. While other members of the TRPC, TRPV, and TRPM families may be expressed in lung endothelium, we have little or no evidence linking these to regulation of lung endothelial permeability. Further, neither the expression nor functional role(s) of any TRPML, TRPP, and TRPA family members has been studied in lung endothelium. In addition to this assessment organized by TRP channel family, we also discuss TRP channels and lung endothelial permeability from the perspective of lung endothelial heterogeneity, using outcomes of studies focused on TRPC1/4 and TRPV4 channels. The diversity within the TRP channel family and the relative paucity of information regarding roles of a number of these channels in lung endothelium make this field ripe for continued investigation. PMID:25006396

  6. Transient Receptor Potential Melastatin-3 (TRPM3) Mediates Nociceptive-Like Responses in Hydra vulgaris

    PubMed Central

    Malafoglia, Valentina; Traversetti, Lorenzo; Del Grosso, Floriano; Scalici, Massimiliano; Lauro, Filomena; Russo, Valeria; Persichini, Tiziana; Salvemini, Daniela; Mollace, Vincenzo; Fini, Massimo; Raffaeli, William

    2016-01-01

    The ability of mammals to feel noxious stimuli lies in a heterogeneous group of primary somatosensory neurons termed nociceptors, which express specific membrane receptors, such as the Transient Receptor Potential (TRP) family. Here, we show that one of the most important nociceptive-like pathways is conserved in the freshwater coelenterate Hydra vulgaris, the most primitive organism possessing a nervous system. In particular, we found that H. vulgaris expresses TRPM3, a nociceptor calcium channel involved in the detection of noxious heat in mammals. Furthermore, we detected that both heat shock and TRPM3 specific agonist (i.e., pregnenolone sulfate) induce the modulation of the heat shock protein 70 (HSP70) and the nitric oxide synthase (NOS), two genes activated by TRP-mediated heat painful stimuli in mammals. As expected, these effects are inhibited by a TRPM3 antagonist (i.e., mefenamic acid). Interestingly, the TRPM3 agonist and heat shock also induce the expression of nuclear transcription erythroid 2-related factor (Nrf2) and superoxide dismutase (SOD), known markers of oxidative stress; noteworthy gene expression was also inhibited by the TRPM3 antagonist. As a whole, our results demonstrate the presence of conserved molecular oxidative/nociceptive-like pathways at the primordial level of the animal kingdom. PMID:26974325

  7. No association between polymorphisms in the human dopamine D3 and D4 receptors genes and alcoholism.

    PubMed

    Parsian, A; Chakraverty, S; Fisher, L; Cloninger, C R

    1997-05-31

    The human dopamine D2 receptor gene (DRD2) has received considerable attention for the past several years as a potential candidate that may affect susceptibility to alcoholism. The association studies that compared the frequencies of alleles of DRD2 gene between alcoholics and control groups have produced equivocal results. Dopamine D3 and D4 receptor genes (DRD3 and DRD4) are in the same class as DRD2 but with different pharmacological properties. We have used relative risk and haplotype relative risk approaches to test associations between alleles of DRD3 and DRD4 genes and alcoholism. For relative risk studies 162 probands from multiple incidence alcoholic families have been compared to 89 psychiatrically normal controls. Haplotype relative risk approaches have used 29 alcoholic probands in which both parents were available for genotyping. The Bal I restriction enzyme site in DRD3 and tandem repeat (VNTR) in DRD4 genes polymorphisms were used to genotype the above samples. The results of relative risk approaches for both DRD3 and DRD4 genes were negative for comparisons of alcoholics and subtypes of alcoholics with normal controls. Haplotype relative risk approaches also were negative for both genes. These results suggest that any role played by these receptors may account for only part of the variation in susceptibility to alcoholism.

  8. Expression of the human ABCC6 gene is induced by retinoids through the retinoid X receptor

    SciTech Connect

    Ratajewski, Marcin; Bartosz, Grzegorz; Pulaski, Lukasz . E-mail: lpulaski@cbm.pan.pl

    2006-12-01

    Mutations in the human ABCC6 gene are responsible for the disease pseudoxanthoma elasticum, although Physiological function or substrate of the gene product (an ABC transporter known also as MRP6) is not known. We found that the expression of this gene in cells of hepatic origin (where this gene is predominantly expressed in the body) is significantly upregulated by retinoids, acting as agonists of the retinoid X receptor (RXR) rather than the retinoid A receptor (RAR). The direct involvement of this nuclear receptor in the transcriptional regulation of ABCC6 gene expression was confirmed by transient transfection and chromatin immunoprecipitation assays. This constitutes the first direct proof of previously suggested involvement of nuclear hormone receptors in ABCC6 gene expression and the first identification of a transcription factor which may be relevant to regulation of ABCC6 level in tissues and in some PXE patients.

  9. Orthologs of Human Disease Associated Genes and RNAi Analysis of Silencing Insulin Receptor Gene in Bombyx mori

    PubMed Central

    Zhang, Zan; Teng, Xiaolu; Chen, Maohua; Li, Fei

    2014-01-01

    The silkworm, Bombyx mori L., is an important economic insect that has been domesticated for thousands of years to produce silk. It is our great interest to investigate the possibility of developing the B. mori as human disease model. We searched the orthologs of human disease associated genes in the B. mori by bi-directional best hits of BLAST and confirmed by searching the OrthoDB. In total, 5006 genes corresponding to 1612 kinds of human diseases had orthologs in the B. mori, among which, there are 25 genes associated with diabetes mellitus. Of these, we selected the insulin receptor gene of the B. mori (Bm-INSR) to study its expression in different tissues and at different developmental stages and tissues. Quantitative PCR showed that Bm-INSR was highly expressed in the Malpighian tubules but expressed at low levels in the testis. It was highly expressed in the 3rd and 4th instar larvae, and adult. We knocked down Bm-INSR expression using RNA interference. The abundance of Bm-INSR transcripts were dramatically reduced to ~4% of the control level at 6 days after dsRNA injection and the RNAi-treated B. mori individuals showed apparent growth inhibition and malformation such as abnormal body color in black, which is the typical symptom of diabetic patients. Our results demonstrate that B. mori has potential use as an animal model for diabetic mellitus research. PMID:25302617

  10. The Sigma-2 Receptor and Progesterone Receptor Membrane Component 1 are Different Binding Sites Derived From Independent Genes

    PubMed Central

    Chu, Uyen B.; Mavlyutov, Timur A.; Chu, Ming-Liang; Yang, Huan; Schulman, Amanda; Mesangeau, Christophe; McCurdy, Christopher R.; Guo, Lian-Wang; Ruoho, Arnold E.

    2015-01-01

    The sigma-2 receptor (S2R) is a potential therapeutic target for cancer and neuronal diseases. However, the identity of the S2R has remained a matter of debate. Historically, the S2R has been defined as (1) a binding site with high affinity to 1,3-di-o-tolylguanidine (DTG) and haloperidol but not to the selective sigma-1 receptor ligand (+)-pentazocine, and (2) a protein of 18–21 kDa, as shown by specific photolabeling with [3H]-Azido-DTG and [125I]-iodoazido-fenpropimorph ([125I]-IAF). Recently, the progesterone receptor membrane component 1 (PGRMC1), a 25 kDa protein, was reported to be the S2R (Nature Communications, 2011, 2:380). To confirm this identification, we created PGRMC1 knockout NSC34 cell lines using the CRISPR/Cas9 technology. We found that in NSC34 cells devoid of or overexpressing PGRMC1, the maximum [3H]-DTG binding to the S2R (Bmax) as well as the DTG-protectable [125I]-IAF photolabeling of the S2R were similar to those of wild-type control cells. Furthermore, the affinities of DTG and haloperidol for PGRMC1 (KI = 472 μM and 350 μM, respectively), as determined in competition with [3H]-progesterone, were more than 3 orders of magnitude lower than those reported for the S2R (20–80 nM). These results clarify that PGRMC1 and the S2R are distinct binding sites expressed by different genes. PMID:26870805

  11. Perceptual variation in umami taste and polymorphisms in TAS1R taste receptor genes1234

    PubMed Central

    Chen, Qing-Ying; Alarcon, Suzanne; Tharp, Anilet; Ahmed, Osama M; Estrella, Nelsa L; Greene, Tiffani A; Rucker, Joseph; Breslin, Paul AS

    2009-01-01

    Background: The TAS1R1 and TAS1R3 G protein–coupled receptors are believed to function in combination as a heteromeric glutamate taste receptor in humans. Objective: We hypothesized that variations in the umami perception of glutamate would correlate with variations in the sequence of these 2 genes, if they contribute directly to umami taste. Design: In this study, we first characterized the general sensitivity to glutamate in a sample population of 242 subjects. We performed these experiments by sequencing the coding regions of the genomic TAS1R1 and TAS1R3 genes in a separate set of 87 individuals who were tested repeatedly with monopotassium glutamate (MPG) solutions. Last, we tested the role of the candidate umami taste receptor hTAS1R1-hTAS1R3 in a functional expression assay. Results: A subset of subjects displays extremes of sensitivity, and a battery of different psychophysical tests validated this observation. Statistical analysis showed that the rare T allele of single nucleotide polymorphism (SNP) R757C in TAS1R3 led to a doubling of umami ratings of 25 mmol MPG/L. Other suggestive SNPs of TAS1R3 include the A allele of A5T and the A allele of R247H, which both resulted in an approximate doubling of umami ratings of 200 mmol MPG/L. We confirmed the potential role of the human TAS1R1-TAS1R3 heteromer receptor in umami taste by recording responses, specifically to l-glutamate and inosine 5′-monophosphate (IMP) mixtures in a heterologous expression assay in HEK (human embryonic kidney) T cells. Conclusions: There is a reliable and valid variation in human umami taste of l-glutamate. Variations in perception of umami taste correlated with variations in the human TAS1R3 gene. The putative human taste receptor TAS1R1-TAS1R3 responds specifically to l-glutamate mixed with the ribonucleotide IMP. Thus, this receptor likely contributes to human umami taste perception. PMID:19587085

  12. Functional Characterization of Soybean Glyma04g39610 as a Brassinosteroid Receptor Gene and Evolutionary Analysis of Soybean Brassinosteroid Receptors

    PubMed Central

    Peng, Suna; Tao, Ping; Xu, Feng; Wu, Aiping; Huo, Weige; Wang, Jinxiang

    2016-01-01

    Brassinosteroids (BR) play important roles in plant growth and development. Although BR receptors have been intensively studied in Arabidopsis, the BR receptors in soybean remain largely unknown. Here, in addition to the known receptor gene Glyma06g15270 (GmBRI1a), we identified five putative BR receptor genes in the soybean genome: GmBRI1b, GmBRL1a, GmBRL1b, GmBRL2a, and GmBRL2b. Analysis of their expression patterns by quantitative real-time PCR showed that they are ubiquitously expressed in primary roots, lateral roots, stems, leaves, and hypocotyls. We used rapid amplification of cDNA ends (RACE) to clone GmBRI1b (Glyma04g39160), and found that the predicted amino acid sequence of GmBRI1b showed high similarity to those of AtBRI1 and pea PsBRI1. Structural modeling of the ectodomain also demonstrated similarities between the BR receptors of soybean and Arabidopsis. GFP-fusion experiments verified that GmBRI1b localizes to the cell membrane. We also explored GmBRI1b function in Arabidopsis through complementation experiments. Ectopic over-expression of GmBRI1b in Arabidopsis BR receptor loss-of-function mutant (bri1-5 bak1-1D) restored hypocotyl growth in etiolated seedlings; increased the growth of stems, leaves, and siliques in light; and rescued the developmental defects in leaves of the bri1-6 mutant, and complemented the responses of BR biosynthesis-related genes in the bri1-5 bak1-D mutant grown in light. Bioinformatics analysis demonstrated that the six BR receptor genes in soybean resulted from three gene duplication events during evolution. Phylogenetic analysis classified the BR receptors in dicots and monocots into three subclades. Estimation of the synonymous (Ks) and the nonsynonymous substitution rate (Ka) and selection pressure (Ka/Ks) revealed that the Ka/Ks of BR receptor genes from dicots and monocots were less than 1.0, indicating that BR receptor genes in plants experienced purifying selection during evolution. PMID:27338344

  13. Functional Characterization of Soybean Glyma04g39610 as a Brassinosteroid Receptor Gene and Evolutionary Analysis of Soybean Brassinosteroid Receptors.

    PubMed

    Peng, Suna; Tao, Ping; Xu, Feng; Wu, Aiping; Huo, Weige; Wang, Jinxiang

    2016-01-01

    Brassinosteroids (BR) play important roles in plant growth and development. Although BR receptors have been intensively studied in Arabidopsis, the BR receptors in soybean remain largely unknown. Here, in addition to the known receptor gene Glyma06g15270 (GmBRI1a), we identified five putative BR receptor genes in the soybean genome: GmBRI1b, GmBRL1a, GmBRL1b, GmBRL2a, and GmBRL2b. Analysis of their expression patterns by quantitative real-time PCR showed that they are ubiquitously expressed in primary roots, lateral roots, stems, leaves, and hypocotyls. We used rapid amplification of cDNA ends (RACE) to clone GmBRI1b (Glyma04g39160), and found that the predicted amino acid sequence of GmBRI1b showed high similarity to those of AtBRI1 and pea PsBRI1. Structural modeling of the ectodomain also demonstrated similarities between the BR receptors of soybean and Arabidopsis. GFP-fusion experiments verified that GmBRI1b localizes to the cell membrane. We also explored GmBRI1b function in Arabidopsis through complementation experiments. Ectopic over-expression of GmBRI1b in Arabidopsis BR receptor loss-of-function mutant (bri1-5 bak1-1D) restored hypocotyl growth in etiolated seedlings; increased the growth of stems, leaves, and siliques in light; and rescued the developmental defects in leaves of the bri1-6 mutant, and complemented the responses of BR biosynthesis-related genes in the bri1-5 bak1-D mutant grown in light. Bioinformatics analysis demonstrated that the six BR receptor genes in soybean resulted from three gene duplication events during evolution. Phylogenetic analysis classified the BR receptors in dicots and monocots into three subclades. Estimation of the synonymous (Ks) and the nonsynonymous substitution rate (Ka) and selection pressure (Ka/Ks) revealed that the Ka/Ks of BR receptor genes from dicots and monocots were less than 1.0, indicating that BR receptor genes in plants experienced purifying selection during evolution. PMID:27338344

  14. Computational design of a Zn2+ receptor that controls bacterial gene expression

    NASA Astrophysics Data System (ADS)

    Dwyer, M. A.; Looger, L. L.; Hellinga, H. W.

    2003-09-01

    The control of cellular physiology and gene expression in response to extracellular signals is a basic property of living systems. We have constructed a synthetic bacterial signal transduction pathway in which gene expression is controlled by extracellular Zn2+. In this system a computationally designed Zn2+-binding periplasmic receptor senses the extracellular solute and triggers a two-component signal transduction pathway via a chimeric transmembrane protein, resulting in transcriptional up-regulation of a -galactosidase reporter gene. The Zn2+-binding site in the designed receptor is based on a four-coordinate, tetrahedral primary coordination sphere consisting of histidines and glutamates. In addition, mutations were introduced in a secondary coordination sphere to satisfy the residual hydrogen-bonding potential of the histidines coordinated to the metal. The importance of the secondary shell interactions is demonstrated by their effect on metal affinity and selectivity, as well as protein stability. Three designed protein sequences, comprising two distinct metal-binding positions, were all shown to bind Zn2+ and to function in the cell-based assay, indicating the generality of the design methodology. These experiments demonstrate that biological systems can be manipulated with computationally designed proteins that have drastically altered ligand-binding specificities, thereby extending the repertoire of genetic control by extracellular signals.

  15. Gene Expression Switching of Receptor Subunits in Human Brain Development

    PubMed Central

    Bar-Shira, Ossnat; Maor, Ronnie; Chechik, Gal

    2015-01-01

    Synaptic receptors in the human brain consist of multiple protein subunits, many of which have multiple variants, coded by different genes, and are differentially expressed across brain regions and developmental stages. The brain can tune the electrophysiological properties of synapses to regulate plasticity and information processing by switching from one protein variant to another. Such condition-dependent variant switch during development has been demonstrated in several neurotransmitter systems including NMDA and GABA. Here we systematically detect pairs of receptor-subunit variants that switch during the lifetime of the human brain by analyzing postmortem expression data collected in a population of donors at various ages and brain regions measured using microarray and RNA-seq. To further detect variant pairs that co-vary across subjects, we present a method to quantify age-corrected expression correlation in face of strong temporal trends. This is achieved by computing the correlations in the residual expression beyond a cubic-spline model of the population temporal trend, and can be seen as a nonlinear version of partial correlations. Using these methods, we detect multiple new pairs of context dependent variants. For instance, we find a switch from GLRA2 to GLRA3 that differs from the known switch in the rat. We also detect an early switch from HTR1A to HTR5A whose trends are negatively correlated and find that their age-corrected expression is strongly positively correlated. Finally, we observe that GRIN2B switch to GRIN2A occurs mostly during embryonic development, presumably earlier than observed in rodents. These results provide a systematic map of developmental switching in the neurotransmitter systems of the human brain. PMID:26636753

  16. Gene Expression Switching of Receptor Subunits in Human Brain Development.

    PubMed

    Bar-Shira, Ossnat; Maor, Ronnie; Chechik, Gal

    2015-12-01

    Synaptic receptors in the human brain consist of multiple protein subunits, many of which have multiple variants, coded by different genes, and are differentially expressed across brain regions and developmental stages. The brain can tune the electrophysiological properties of synapses to regulate plasticity and information processing by switching from one protein variant to another. Such condition-dependent variant switch during development has been demonstrated in several neurotransmitter systems including NMDA and GABA. Here we systematically detect pairs of receptor-subunit variants that switch during the lifetime of the human brain by analyzing postmortem expression data collected in a population of donors at various ages and brain regions measured using microarray and RNA-seq. To further detect variant pairs that co-vary across subjects, we present a method to quantify age-corrected expression correlation in face of strong temporal trends. This is achieved by computing the correlations in the residual expression beyond a cubic-spline model of the population temporal trend, and can be seen as a nonlinear version of partial correlations. Using these methods, we detect multiple new pairs of context dependent variants. For instance, we find a switch from GLRA2 to GLRA3 that differs from the known switch in the rat. We also detect an early switch from HTR1A to HTR5A whose trends are negatively correlated and find that their age-corrected expression is strongly positively correlated. Finally, we observe that GRIN2B switch to GRIN2A occurs mostly during embryonic development, presumably earlier than observed in rodents. These results provide a systematic map of developmental switching in the neurotransmitter systems of the human brain.

  17. Human kininogen gene is transactivated by the farnesoid X receptor.

    PubMed

    Zhao, Annie; Lew, Jane-L; Huang, Li; Yu, Jinghua; Zhang, Theresa; Hrywna, Yaroslav; Thompson, John R; de Pedro, Nuria; Blevins, Richard A; Peláez, Fernando; Wright, Samuel D; Cui, Jisong

    2003-08-01

    Human kininogen belongs to the plasma kallikreinkinin system. High molecular weight kininogen is the precursor for two-chain kinin-free kininogen and bradykinin. It has been shown that the two-chain kinin-free kininogen has the properties of anti-adhesion, anti-platelet aggregation, and anti-thrombosis, whereas bradykinin is a potent vasodilator and mediator of inflammation. In this study we show that the human kininogen gene is strongly up-regulated by agonists of the farnesoid X receptor (FXR), a nuclear receptor for bile acids. In primary human hepatocytes, both the endogenous FXR agonist chenodeoxycholate and synthetic FXR agonist GW4064 increased kininogen mRNA with a maximum induction of 8-10-fold. A more robust induction of kininogen expression was observed in HepG2 cells, where kininogen mRNA was increased by chenodeoxycholate or GW4064 up to 130-140-fold as shown by real time PCR. Northern blot analysis confirmed the up-regulation of kininogen expression by FXR agonists. To determine whether kininogen is a direct target of FXR, we examined the sequence of the kininogen promoter and identified a highly conserved FXR response element (inverted repeat, IR-1) in the proximity of the kininogen promoter (-66/-54). FXR/RXRalpha heterodimers specifically bind to this IR-1. A construct of a minimal promoter with the luciferase reporter containing this IR-1 was transactivated by FXR. Deletion or mutation of this IR-1 abolished FXR-mediated promoter activation, indicating that this IR-1 element is responsible for the promoter transactivation by FXR. We conclude that kininogen is a novel and direct target of FXR, and bile acids may play a role in the vasodilation and anti-coagulation processes.

  18. Identification of Putative Chemosensory Receptor Genes from the Athetis dissimilis Antennal Transcriptome

    PubMed Central

    Dong, Junfeng; Song, Yueqin; Li, Wenliang; Shi, Jie; Wang, Zhenying

    2016-01-01

    Olfaction plays a crucial role in insect population survival and reproduction. Identification of the genes associated with the olfactory system, without the doubt will promote studying the insect chemical communication system. In this study, RNA-seq technology was used to sequence the antennae transcriptome of Athetis dissimilis, an emerging crop pest in China with limited genomic information, with the purpose of identifying the gene set involved in olfactory recognition. Analysis of the transcriptome of female and male antennae generated 13.74 Gb clean reads in total from which 98,001 unigenes were assembled, and 25,930 unigenes were annotated. Total of 60 olfactory receptors (ORs), 18 gustatory receptors (GRs), and 12 ionotropic receptors (IRs) were identified by Blast and sequence similarity analyzes. One obligated olfactory receptor co-receptor (Orco) and four conserved sex pheromone receptors (PRs) were annotated in 60 ORs. Among the putative GRs, five genes (AdisGR1, 6, 7, 8 and 94) clustered in the sugar receptor family, and two genes (AdisGR3 and 93) involved in CO2 detection were identified. Finally, AdisIR8a.1 and AdisIR8a.2 co-receptors were identified in the group of candidate IRs. Furthermore, expression levels of these chemosensory receptor genes in female and male antennae were analyzed by mapping the Illumina reads. PMID:26812239

  19. Structural organization and chromosomal assignment of the human prostacyclin receptor gene

    SciTech Connect

    Ogawa, Yoshihiro; Tanaka, Issei; Inoue, Miho

    1995-05-01

    Prostacyclin receptor is a member of the prostanoid receptor family in the G protein-coupled receptor superfamily with seven transmembrane domains. The authors report here the isolation and structural organization of the human prostacyclin receptor gene. Southern blot analysis demonstrated a single copy of the human prostacyclin receptor gene in the human genome. The human prostacyclin receptor gene spanned approximately 7.0 kb and was composed of three exons separated by two introns. The first intron occurred in the 5`-untranslated region, 13 bp upstream to the ATG start codon. The second intron was located at the end of the sixth transmembrane domain, thereby separating it from the downstream coding region and the 3`-untranslated region. By primer extension analysis, the transcription initiation sites were mapped 870-872 bp upstream to the ATG start codon. The 1.2-kb human prostacyclin receptor 5`-flanking region lacked conventional TATA and CCAAT boxes, but it contained several cis-acting regulatory elements including an inverted CCAAT box (Y box) and two copies of SP-1 binding sites. Using human-rodent somatic hybrid cell DNA, the human prostacyclin receptor gene was assigned to human chromosome 19. The present study helps establish the genetic basis for prostacyclin receptor research and provides further insight into the molecular mechanisms underlying the prostanoid receptor family. 38 refs., 6 figs.

  20. Ghrelin axis genes, peptides and receptors: recent findings and future challenges.

    PubMed

    Seim, Inge; Josh, Peter; Cunningham, Peter; Herington, Adrian; Chopin, Lisa

    2011-06-20

    The ghrelin axis consists of the gene products of the ghrelin gene (GHRL), and their receptors, including the classical ghrelin receptor GHSR. While it is well-known that the ghrelin gene encodes the 28 amino acid ghrelin peptide hormone, it is now also clear that the locus encodes a range of other bioactive molecules, including novel peptides and non-coding RNAs. For many of these molecules, the physiological functions and cognate receptor(s) remain to be determined. Emerging research techniques, including proteogenomics, are likely to reveal further ghrelin axis-derived molecules. Studies of the role of ghrelin axis genes, peptides and receptors, therefore, promises to be a fruitful area of basic and clinical research in years to come.

  1. Association between interleukin 8 receptor α gene (CXCR1) and mastitis in dairy cattle

    PubMed Central

    Pawlik, Adrianna; Kapera, Magdalena; Korwin-Kossakowska, Agnieszka

    2015-01-01

    The innate immune response plays an important role in the course of bacterial infections. Innate immunity effectiveness relies on the expression of many genes, connected, among others, to the activity of neutrophils. Interleukin 8 (IL-8) receptor α, coded by the CXCR1 gene, is present on the neutrophil surface and binds pro-inflammatory IL-8 with high affinity. This is why the bovine CXCR1 gene carries a potential for use as a dairy cattle mastitis marker. To date, several studies on the CXCR1 polymorphism brought out contradictory results. The aim of this study was to analyse the association between two SNPs of the CXCR1 gene, which is potentially important for the protein function and animal phenotype for mastitis susceptibility. A total of 554 Polish Holsteins were genotyped, and 140 among them were bacteriologically tested. The differences between animals carrying different genotypes and haplotypes of CXCR1 in test day somatic cell count (SCC) and Staphylococcus aureus mastitis susceptibility were estimated. We found that test day SCC was significantly related to CXCR1+472 SNP but not to CXCR1+735 SNP. No statistically significant association between CXCR1 polymorphism and susceptibility to S. aureus mastitis was found in the studied herd. PMID:26557028

  2. Zinc-sensitive genes as potential new target genes of the metal transcription factor-1 (MTF-1).

    PubMed

    Kindermann, Birgit; Döring, Frank; Budczies, Jan; Daniel, Hannelore

    2005-04-01

    Zinc is an essential trace element that serves as a structural constituent of a large number of transcription factors, which explains its pivotal role in the control of gene expression. Previous studies investigating the effect of zinc deficiency and zinc supplementation on gene expression in the human adenocarcinoma cell line HT-29 led to the identification of a considerable number of genes responding to alterations in cellular zinc status with changes in steady state mRNA levels. For 9 of 20 genes from these previous screenings that were studied in more detail, mRNA steady state levels responded to both high and low media zinc concentrations. As they are primarily zinc-dependent, we assessed whether these genes are controlled by the zinc-finger metal transcription factor MTF-1. To test this hypothesis we generated a doxycyline-inducible Tet-On HT-29 cell line overexpressing MTF-1. Using this conditional expression system, we present evidence that Kruppel-like factor 4 (klf4), hepatitis A virus cellular receptor 1 (hhav), and complement factor B (cfbp) are 3 potential new target genes of MTF-1. To support this, we used in silico analysis to screen for metal-responsive elements (MREs) within promotors of zinc-sensitive genes. We conclude that zinc responsiveness of klf4, hhav, and cfbp in HT-29 cells is mediated at least in part by MTF-1.

  3. Classification of Dopamine Receptor Genes in Vertebrates: Nine Subtypes in Osteichthyes.

    PubMed

    Yamamoto, Kei; Fontaine, Romain; Pasqualini, Catherine; Vernier, Philippe

    2015-01-01

    Dopamine neurotransmission regulates various brain functions, and its regulatory roles are mediated by two families of G protein-coupled receptors: the D1 and D2 receptor families. In mammals, the D1 family comprises two receptor subtypes (D1 and D5), while the D2 family comprises three receptor subtypes (D2, D3 and D4). Phylogenetic analyses of dopamine receptor genes strongly suggest that the common ancestor of Osteichthyes (bony jawed vertebrates) possessed four subtypes in the D1 family and five subtypes in the D2 family. Mammals have secondarily lost almost half of the ancestral dopamine receptor genes, whereas nonmammalian species kept many of them. Although the mammalian situation is an exception among Osteichthyes, the current classification and characterization of dopamine receptors are based on mammalian features, which have led to confusion in the identification of dopamine receptor subtypes in nonmammalian species. Here we begin by reviewing the history of the discovery of dopamine receptors in vertebrates. The recent genome sequencing of coelacanth, gar and elephant shark led to the proposal of a refined scenario of evolution of dopamine receptor genes. We also discuss a current problem of nomenclature of dopamine receptors. Following the official nomenclature of mammalian dopamine receptors from D1 to D5, we propose to name newly identified receptor subtypes from D6 to D9 in order to facilitate the use of an identical name for orthologous genes among different species. To promote a nomenclature change which allows distinguishing the two dopamine receptor families, a nomenclature consortium is needed. This comparative perspective is crucial to correctly interpret data obtained in animal studies on dopamine-related brain disorders, and more fundamentally, to understand the characteristics of dopamine neurotransmission in vertebrates. PMID:26613258

  4. Selective oestrogen receptor modulators differentially potentiate brain mitochondrial function.

    PubMed

    Irwin, R W; Yao, J; To, J; Hamilton, R T; Cadenas, E; Brinton, R D

    2012-01-01

    The mitochondrial energy-transducing capacity of the brain is important for long-term neurological health and is influenced by endocrine hormone responsiveness. The present study aimed to determine the role of oestrogen receptor (ER) subtypes in regulating mitochondrial function using selective agonists for ERα (propylpyrazoletriol; PPT) and ERβ (diarylpropionitrile; DPN). Ovariectomised female rats were treated with 17β-oestradiol (E(2) ), PPT, DPN or vehicle control. Both ER selective agonists significantly increased the mitochondrial respiratory control ratio and cytochrome oxidase (COX) activity relative to vehicle. Western blots of purified whole brain mitochondria detected ERα and, to a greater extent, ERβ localisation. Pre-treatment with DPN, an ERβ agonist, significantly increased ERβ association with mitochondria. In the hippocampus, DPN activated mitochondrial DNA-encoded COX I expression, whereas PPT was ineffective, indicating that mechanistically ERβ, and not ERα, activated mitochondrial transcriptional machinery. Both selective ER agonists increased protein expression of nuclear DNA-encoded COX IV, suggesting that activation of ERβ or ERα is sufficient. Selective ER agonists up-regulated a panel of bioenergetic enzymes and antioxidant defence proteins. Up-regulated proteins included pyruvate dehydrogenase, ATP synthase, manganese superoxide dismutase and peroxiredoxin V. In vitro, whole cell metabolism was assessed in live primary cultured hippocampal neurones and mixed glia. The results of analyses conducted in vitro were consistent with data obtained in vivo. Furthermore, lipid peroxides, accumulated as a result of hormone deprivation, were significantly reduced by E(2) , PPT and DPN. These findings suggest that the activation of both ERα and ERβ is differentially required to potentiate mitochondrial function in brain. As active components in hormone therapy, synthetically designed oestrogens as well as natural phyto-oestrogen cocktails

  5. Parathyroid receptor gene expression by epiphyseal growth plates in rickets and tibial dyschondroplasia.

    PubMed

    Ben-Bassat, S; Genina, O; Lavelin, I; Leach, R M; Pines, M

    1999-03-25

    PTH/PTHrP receptor gene expression was evaluated in situ in avian epiphyseal growth plates taken from normal, rachitic and tibial dyschondroplasia (TD) afflicted chicks induced by thiram or by genetic selection. In the normal growth plates, PTH/PTHrP receptor gene expression was localized to the maturation zone as demonstrated by the expression of collagen type II (col II), osteopontin (OPN) genes and alkaline phosphatase activity (AP). In TD, either induced by thiram or by genetic selection, normal levels of PTH/PTHrP receptor gene expression were observed up to 21 days post-hatch. In rickets, on the other hand, no PTH/PTHrP receptor gene expression was observed in the growth plate from day 8 of a vitamin D-deficient diet. In cultured chondrocytes, PTH caused time-dependent down-regulation of its own receptor. These results suggest that alterations in the PTH/PTHrP receptor gene expression are associated with rickets but not with TD. The reduction in the PTH/PTHrP receptor gene expression in rickets may be due to the high plasma levels of PTH.

  6. Aging of whiskey increases the potentiation of GABA(A) receptor response.

    PubMed

    Koda, Hirofumi; Hossain, Sheikh Julfikar; Kiso, Yoshinobu; Aoshima, Hitoshi

    2003-08-27

    It is known that the target of most mood-defining compounds such as ethanol is an ionotropic gamma-aminobutyric acid receptor (GABA(A) receptor). The potentiation of the response of these inhibitory neurotransmitter receptors induces anxiolytic, sedative, and anesthetic activities in the human brain. Because both extracts of whiskey by pentane and fragrant components in whiskey potentiate the GABA(A) receptor-mediated response, GABA(A) receptors were expressed in Xenopus oocyte by injecting cRNAs prepared from the cloned cDNA for the alpha(1) and beta(1) subunits of the bovine receptors in order to study the effects of whiskey itself on the GABA(A) receptor-mediated response. Whiskey itself also potentiated the electrical responses of GABA(A) receptors generally more than ethanol at the same concentration as that of the whiskey. The potentiation of the GABA(A) receptor-mediated response increased with the aging period of the whiskey. Inhalation of whiskey to mice increased the sleeping time induced by pentobarbital more than that of the same concentration of ethanol as the whiskey. These results suggest that not only ethanol but also minor components in whiskey play an important role in the potentiation of GABA(A) receptor-mediated response and possibly the sedative effect of whiskey. Although the minor components are present in extremely small quantities compared with ethanol in alcoholic beverages, they may modulate the mood or consciousness of humans through the potentiation of the GABA(A) receptor response after absorption into the brain, because these hydrophobic compounds are easily absorbed into the brain across the blood-brain barrier and are several thousands times as potent as ethanol in the potentiation of the GABA(A) receptor-mediated response.

  7. Aging of whiskey increases the potentiation of GABA(A) receptor response.

    PubMed

    Koda, Hirofumi; Hossain, Sheikh Julfikar; Kiso, Yoshinobu; Aoshima, Hitoshi

    2003-08-27

    It is known that the target of most mood-defining compounds such as ethanol is an ionotropic gamma-aminobutyric acid receptor (GABA(A) receptor). The potentiation of the response of these inhibitory neurotransmitter receptors induces anxiolytic, sedative, and anesthetic activities in the human brain. Because both extracts of whiskey by pentane and fragrant components in whiskey potentiate the GABA(A) receptor-mediated response, GABA(A) receptors were expressed in Xenopus oocyte by injecting cRNAs prepared from the cloned cDNA for the alpha(1) and beta(1) subunits of the bovine receptors in order to study the effects of whiskey itself on the GABA(A) receptor-mediated response. Whiskey itself also potentiated the electrical responses of GABA(A) receptors generally more than ethanol at the same concentration as that of the whiskey. The potentiation of the GABA(A) receptor-mediated response increased with the aging period of the whiskey. Inhalation of whiskey to mice increased the sleeping time induced by pentobarbital more than that of the same concentration of ethanol as the whiskey. These results suggest that not only ethanol but also minor components in whiskey play an important role in the potentiation of GABA(A) receptor-mediated response and possibly the sedative effect of whiskey. Although the minor components are present in extremely small quantities compared with ethanol in alcoholic beverages, they may modulate the mood or consciousness of humans through the potentiation of the GABA(A) receptor response after absorption into the brain, because these hydrophobic compounds are easily absorbed into the brain across the blood-brain barrier and are several thousands times as potent as ethanol in the potentiation of the GABA(A) receptor-mediated response. PMID:12926865

  8. Further evidence of no linkage between schizophrenia and the dopamine D{sub 3} receptor gene locus

    SciTech Connect

    Nanko, S.; Fukuda, R.; Hattori, M.

    1994-09-15

    The dopamine hypothesis of schizophrenia proposed that dopaminergic pathways are involved in the etiology of the disease. In particular, interest among psychiatrists has focused on the D{sub 2} receptor because of its affinity to antipsychotic drugs. Recently a new dopamine receptor gene has been cloned and named the dopamine D{sub 3} receptor. The D{sub 3} receptor is a potential site for antipsychotic drug action and may be involved in the pathophysiology of schizophrenia. We have carried out a linkage study between the susceptibility gene for schizophrenia and polymorphism of the dopamine D{sub 3} receptor gene in two Japanese pedigrees. The LOD scores were negative for all genetic models and for all affective status at a recombination fraction {theta} = 0. Linkage of DRD{sub 3} has been excluded for the model 1 (dominant model) and the model 3 (recessive model). The LOD score was -3.43 at {theta} = 0 for model 1 (dominant model) and broad definition of affected status. These results were consistent with previous studies. 19 refs., 2 figs., 3 tabs.

  9. Functional characterization of bursicon receptor and genome-wide analysis for identification of genes affected by bursicon receptor RNAi.

    PubMed

    Bai, Hua; Palli, Subba R

    2010-08-01

    Bursicon is an insect neuropeptide hormone that is secreted from the central nervous system into the hemolymph and initiates cuticle tanning. The receptor for bursicon is encoded by the rickets (rk) gene and belongs to the G protein-coupled receptor (GPCR) superfamily. The bursicon and its receptor regulate cuticle tanning as well as wing expansion after adult eclosion. However, the molecular action of bursicon signaling remains unclear. We utilized RNA interference (RNAi) and microarray to study the function of the bursicon receptor (Tcrk) in the model insect, Tribolium castaneum. The data included here showed that in addition to cuticle tanning and wing expansion reported previously, Tcrk is also required for development and expansion of integumentary structures and adult eclosion. Using custom microarrays, we identified 24 genes that are differentially expressed between Tcrk RNAi and control insects. Knockdown in the expression of one of these genes, TC004091, resulted in the arrest of adult eclosion. Identification of genes that are involved in bursicon receptor mediated biological processes will provide tools for future studies on mechanisms of bursicon action.

  10. Beyond classical benzodiazepines: Novel therapeutic potential of GABAA receptor subtypes

    PubMed Central

    Rudolph, Uwe; Knoflach, Frédéric

    2012-01-01

    GABAA receptors are a family of ligand-gated ion channels which are essential for the regulation of central nervous system function. Benzodiazepines – which target GABAA receptors containing the α1, α2, α3, or α5 subunits non-selectively – have been in clinical use for decades and are still among the most widely prescribed drugs for the treatment of insomnia and anxiety disorders. However, their use is limited by side effects and the risk of drug dependence. In the past decade, the identification of separable key functions of GABAA receptor subtypes suggests that receptor subtype-selective compounds could overcome the limitations of classical benzodiazepines and, furthermore, might be valuable for novel indications, such as analgesia, depression, schizophrenia, cognitive enhancement and stroke. PMID:21799515

  11. Identification of Modulators of the Nuclear Receptor Peroxisome Proliferator-Activated Receptor α (PPARα) in a Mouse Liver Gene Expression Compendium

    EPA Science Inventory

    The nuclear receptor family member peroxisome proliferator-activated receptor α (PPARα) is activated by therapeutic hypolipidemic drugs and environmentally-relevant chemicals to regulate genes involved in lipid transport and catabolism. Chronic activation of PPARα in rodents inc...

  12. The human glutamate receptor delta 2 gene (GRID2) maps to chromosome 4q22.

    PubMed

    Hu, W; Zuo, J; De Jager, P L; Heintz, N

    1998-01-01

    We isolated the human glutamate receptor delta 2 (GRID2) gene, which has 97.0% identity in amino acid sequence to the mouse glutamate receptor delta 2 (Grid2) gene. We subsequently mapped this gene to human chromosome 4q22 by radiation hybrid mapping and by hybridization to two overlapping human yeast artificial chromosomes that are located in 4q22. The Grid2 gene, which is mutated in lurcher (Lc) mice, maps to mouse chromosome 6. Thus, the mapping of the GRID2 gene to human chromosome 4q22 confirms and refines a region of synteny between mouse and human genomes.

  13. The promise and potential pitfalls of chimeric antigen receptors.

    PubMed

    Sadelain, Michel; Brentjens, Renier; Rivière, Isabelle

    2009-04-01

    One important purpose of T cell engineering is to generate tumor-targeted T cells through the genetic transfer of antigen-specific receptors, which consist of either physiological, MHC-restricted T cell receptors (TCRs) or non MHC-restricted chimeric antigen receptors (CARs). CARs combine antigen-specificity and T cell activating properties in a single fusion molecule. First generation CARs, which included as their signaling domain the cytoplasmic region of the CD3zeta or Fc receptor gamma chain, effectively redirected T cell cytotoxicity but failed to enable T cell proliferation and survival upon repeated antigen exposure. Receptors encompassing both CD28 and CD3zeta are the prototypes for second generation CARs, which are now rapidly expanding to a diverse array of receptors with different functional properties. First generation CARs have been tested in phase I clinical studies in patients with ovarian cancer, renal cancer, lymphoma, and neuroblastoma, where they have induced modest responses. Second generation CARs, which are just now entering the clinical arena in the B cell malignancies and other cancers, will provide a more significant test for this approach. If the immunogenicity of CARs can be averted, the versatility of their design and HLA-independent antigen recognition will make CARs tools of choice for T cell engineering for the development of targeted cancer immunotherapies.

  14. Allelic association of human dopamine D sub 2 receptor gene in alcoholism

    SciTech Connect

    Blum, K.; Sheridan, P.J.; Montgomery, A.; Jagadeeswaran, P.; Nogami, H.; Briggs, A.H. ); Noble, E.P.; Ritchie, T.; Cohn, J.B. )

    1990-04-18

    In a blinded experiment, the authors report the first allelic association of the dopamine D{sub 2} receptor gene in alcoholism. From 70 brain samples of alcoholics and nonalcoholics, DNA was digested with restriction endonucleases and probed with a clone that contained the entire 3{prime} coding exon, the polyadenylation signal, and approximately 16.4 kilobases of noncoding 3{prime} sequence of the human dopamine D{sub 2} receptor gene ({lambda}hD2G1). In the present samples, the presence of A1 allele of the dopamine D{sub 2} receptor gene correctly classified 77% of alcoholics, and its absence classified 72% of nonalcoholics. The polymorphic pattern of this receptor gene suggests that a gene that confers susceptibility to at least one form of alcoholism is located on the q22-q23 region of chromosome 11.

  15. Potentiation of GABAA receptors expressed in Xenopus oocytes by perfume and phytoncid.

    PubMed

    Aoshima, H; Hamamoto, K

    1999-04-01

    To study the effects of perfume and phytoncid on GABAA receptors, ionotropic GABAA receptors were expressed in Xenopus oocytes by injecting mRNAs that had been prepared from rat whole brain. Essential oil, perfume and such phytoncid as leaf alcohol, hinokitiol, pinene, eugenol, citronellol and citronellal potentiated the response in the presence of GABA at low concentrations (10 and 30 microM), possibly because they bound to the potentiation-site in GABAA receptors and increased the affinity of GABA to the receptors. Since it is known that the potentiation of GABAA receptors by benzodiazepine, barbiturate, steroids and anesthetics induces the anxiolytic, anticonvulsant and sedative activity or anesthetic effect, these results suggest the possibility that the intake of perfume or phytoncid through the lungs, the skin or the intestines modulates the neural transmission in the brain through ionotropic GABAA receptors and changes the frame of the human mind, as alcohol or tobacco does.

  16. Scavenger Receptors and Their Potential as Therapeutic Targets in the Treatment of Cardiovascular Disease

    PubMed Central

    Stephen, Sam L.; Freestone, Katie; Dunn, Sarah; Twigg, Michael W.; Homer-Vanniasinkam, Shervanthi; Walker, John H.; Wheatcroft, Stephen B.; Ponnambalam, Sreenivasan

    2010-01-01

    Scavenger receptors act as membrane-bound and soluble proteins that bind to macromolecular complexes and pathogens. This diverse supergroup of proteins mediates binding to modified lipoprotein particles which regulate the initiation and progression of atherosclerotic plaques. In vascular tissues, scavenger receptors are implicated in regulating intracellular signaling, lipid accumulation, foam cell development, and cellular apoptosis or necrosis linked to the pathophysiology of atherosclerosis. One approach is using gene therapy to modulate scavenger receptor function in atherosclerosis. Ectopic expression of membrane-bound scavenger receptors using viral vectors can modify lipid profiles and reduce the incidence of atherosclerosis. Alternatively, expression of soluble scavenger receptors can also block plaque initiation and progression. Inhibition of scavenger receptor expression using a combined gene therapy and RNA interference strategy also holds promise for long-term therapy. Here we review our current understanding of the gene delivery by viral vectors to cells and tissues in gene therapy strategies and its application to the modulation of scavenger receptor function in atherosclerosis. PMID:20981357

  17. An algorithm to discover gene signatures with predictive potential

    PubMed Central

    2010-01-01

    Background The advent of global gene expression profiling has generated unprecedented insight into our molecular understanding of cancer, including breast cancer. For example, human breast cancer patients display significant diversity in terms of their survival, recurrence, metastasis as well as response to treatment. These patient outcomes can be predicted by the transcriptional programs of their individual breast tumors. Predictive gene signatures allow us to correctly classify human breast tumors into various risk groups as well as to more accurately target therapy to ensure more durable cancer treatment. Results Here we present a novel algorithm to generate gene signatures with predictive potential. The method first classifies the expression intensity for each gene as determined by global gene expression profiling as low, average or high. The matrix containing the classified data for each gene is then used to score the expression of each gene based its individual ability to predict the patient characteristic of interest. Finally, all examined genes are ranked based on their predictive ability and the most highly ranked genes are included in the master gene signature, which is then ready for use as a predictor. This method was used to accurately predict the survival outcomes in a cohort of human breast cancer patients. Conclusions We confirmed the capacity of our algorithm to generate gene signatures with bona fide predictive ability. The simplicity of our algorithm will enable biological researchers to quickly generate valuable gene signatures without specialized software or extensive bioinformatics training. PMID:20813028

  18. Calcium regulation by temperature-sensitive transient receptor potential channels in human uveal melanoma cells.

    PubMed

    Mergler, Stefan; Derckx, Raissa; Reinach, Peter S; Garreis, Fabian; Böhm, Arina; Schmelzer, Lisa; Skosyrski, Sergej; Ramesh, Niraja; Abdelmessih, Suzette; Polat, Onur Kerem; Khajavi, Noushafarin; Riechardt, Aline Isabel

    2014-01-01

    Uveal melanoma (UM) is both the most common and fatal intraocular cancer among adults worldwide. As with all types of neoplasia, changes in Ca(2+) channel regulation can contribute to the onset and progression of this pathological condition. Transient receptor potential channels (TRPs) and cannabinoid receptor type 1 (CB1) are two different types of Ca(2+) permeation pathways that can be dysregulated during neoplasia. We determined in malignant human UM and healthy uvea and four different UM cell lines whether there is gene and functional expression of TRP subtypes and CB1 since they could serve as drug targets to either prevent or inhibit initiation and progression of UM. RT-PCR, Ca(2+) transients, immunohistochemistry and planar patch-clamp analysis probed for their gene expression and functional activity, respectively. In UM cells, TRPV1 and TRPM8 gene expression was identified. Capsaicin (CAP), menthol or icilin induced Ca(2+) transients as well as changes in ion current behavior characteristic of TRPV1 and TRPM8 expression. Such effects were blocked with either La(3+), capsazepine (CPZ) or BCTC. TRPA1 and CB1 are highly expressed in human uvea, but TRPA1 is not expressed in all UM cell lines. In UM cells, the CB1 agonist, WIN 55,212-2, induced Ca(2+) transients, which were suppressed by La(3+) and CPZ whereas CAP-induced Ca(2+) transients could also be suppressed by CB1 activation. Identification of functional TRPV1, TRPM8, TRPA1 and CB1 expression in these tissues may provide novel drug targets for treatment of this aggressive neoplastic disease.

  19. Association study of dopamine D3 receptor gene and schizophrenia

    SciTech Connect

    Kennedy, J.L.; Billett, E.A.; Macciardi, F.M.

    1995-12-18

    Several groups have reported an association between schizophrenia and the MscI polymorphism in the first exon of the dopamine D3 receptor gene (DRD3). We studied this polymorphism using a North American sample (117 patients plus 188 controls) and an Italian sample (97 patients plus 64 controls). In the first part of the study, we compared allele frequencies of schizophrenia patients and unmatched controls and observed a significant difference in the total sample (P = 0.01). The second part of the study involved a case control approach in which each schizophrenia patient was matched to a control of the same sex, and of similar age and ethnic background. The DRD3 allele frequencies of patients and controls revealed no significant difference between the two groups in the Italian (N = 53) or the North American (N = 54) matched populations; however, when these two matched samples were combined, a significant difference was observed (P = 0.026). Our results suggest that the MscI polymorphism may be associated with schizophrenia in the populations studied. 32 refs., 2 tabs.

  20. Penguins reduced olfactory receptor genes common to other waterbirds

    PubMed Central

    Lu, Qin; Wang, Kai; Lei, Fumin; Yu, Dan; Zhao, Huabin

    2016-01-01

    The sense of smell, or olfaction, is fundamental in the life of animals. However, penguins (Aves: Sphenisciformes) possess relatively small olfactory bulbs compared with most other waterbirds such as Procellariiformes and Gaviiformes. To test whether penguins have a reduced reliance on olfaction, we analyzed the draft genome sequences of the two penguins, which diverged at the origin of the order Sphenisciformes; we also examined six closely related species with available genomes, and identified 29 one-to-one orthologous olfactory receptor genes (i.e. ORs) that are putatively functionally conserved and important across the eight birds. To survey the 29 one-to-one orthologous ORs in penguins and their relatives, we newly generated 34 sequences that are missing from the draft genomes. Through the analysis of totaling 378 OR sequences, we found that, of these functionally important ORs common to other waterbirds, penguins have a significantly greater percentage of OR pseudogenes than other waterbirds, suggesting a reduction of olfactory capability. The penguin-specific reduction of olfactory capability arose in the common ancestor of penguins between 23 and 60 Ma, which may have resulted from the aquatic specializations for underwater vision. Our study provides genetic evidence for a possible reduction of reliance on olfaction in penguins. PMID:27527385

  1. Penguins reduced olfactory receptor genes common to other waterbirds.

    PubMed

    Lu, Qin; Wang, Kai; Lei, Fumin; Yu, Dan; Zhao, Huabin

    2016-08-16

    The sense of smell, or olfaction, is fundamental in the life of animals. However, penguins (Aves: Sphenisciformes) possess relatively small olfactory bulbs compared with most other waterbirds such as Procellariiformes and Gaviiformes. To test whether penguins have a reduced reliance on olfaction, we analyzed the draft genome sequences of the two penguins, which diverged at the origin of the order Sphenisciformes; we also examined six closely related species with available genomes, and identified 29 one-to-one orthologous olfactory receptor genes (i.e. ORs) that are putatively functionally conserved and important across the eight birds. To survey the 29 one-to-one orthologous ORs in penguins and their relatives, we newly generated 34 sequences that are missing from the draft genomes. Through the analysis of totaling 378 OR sequences, we found that, of these functionally important ORs common to other waterbirds, penguins have a significantly greater percentage of OR pseudogenes than other waterbirds, suggesting a reduction of olfactory capability. The penguin-specific reduction of olfactory capability arose in the common ancestor of penguins between 23 and 60 Ma, which may have resulted from the aquatic specializations for underwater vision. Our study provides genetic evidence for a possible reduction of reliance on olfaction in penguins.

  2. Penguins reduced olfactory receptor genes common to other waterbirds.

    PubMed

    Lu, Qin; Wang, Kai; Lei, Fumin; Yu, Dan; Zhao, Huabin

    2016-01-01

    The sense of smell, or olfaction, is fundamental in the life of animals. However, penguins (Aves: Sphenisciformes) possess relatively small olfactory bulbs compared with most other waterbirds such as Procellariiformes and Gaviiformes. To test whether penguins have a reduced reliance on olfaction, we analyzed the draft genome sequences of the two penguins, which diverged at the origin of the order Sphenisciformes; we also examined six closely related species with available genomes, and identified 29 one-to-one orthologous olfactory receptor genes (i.e. ORs) that are putatively functionally conserved and important across the eight birds. To survey the 29 one-to-one orthologous ORs in penguins and their relatives, we newly generated 34 sequences that are missing from the draft genomes. Through the analysis of totaling 378 OR sequences, we found that, of these functionally important ORs common to other waterbirds, penguins have a significantly greater percentage of OR pseudogenes than other waterbirds, suggesting a reduction of olfactory capability. The penguin-specific reduction of olfactory capability arose in the common ancestor of penguins between 23 and 60 Ma, which may have resulted from the aquatic specializations for underwater vision. Our study provides genetic evidence for a possible reduction of reliance on olfaction in penguins. PMID:27527385

  3. Positive association between a DNA sequence variant in the serotonin 2A receptor gene and schizophrenia

    SciTech Connect

    Inayama, Y.; Yoneda, H.; Sakai, T.

    1996-02-16

    Sixty-two patients with schizophrenia and 96 normal controls were investigated for genetic association with restriction fragment length polymorphisms (RFLPs) in the serotonin receptor genes. A positive association between the serotonin 2A receptor gene (HTR2A) and schizophrenia was found, but not between schizophrenia and the serotonin 1A receptor gene. The positive association we report here would suggest that the DNA region with susceptibility to schizophrenia lies in the HTR2A on the long arm of chromosome 13. 15 refs., 2 tabs.

  4. Epigenetic regulation of olfactory receptor gene expression by the Myb-MuvB/dREAM complex.

    PubMed

    Sim, Choon Kiat; Perry, Sarah; Tharadra, Sana Khalid; Lipsick, Joseph S; Ray, Anandasankar

    2012-11-15

    In both mammals and insects, an olfactory neuron will usually select a single olfactory receptor and repress remaining members of large receptor families. Here we show that a conserved multiprotein complex, Myb-MuvB (MMB)/dREAM, plays an important role in mediating neuron-specific expression of the carbon dioxide (CO(2)) receptor genes (Gr63a/Gr21a) in Drosophila. Activity of Myb in the complex is required for expression of Gr63a/Gr21a and acts in opposition to the histone methyltransferase Su(var)3-9. Consistent with this, we observed repressive dimethylated H3K9 modifications at the receptor gene loci, suggesting a mechanism for silencing receptor gene expression. Conversely, other complex members, Mip120 (Myb-interacting protein 120) and E2F2, are required for repression of Gr63a in inappropriate neurons. Misexpression in mutants is accompanied by an increase in the H3K4me3 mark of active chromatin at the receptor gene locus. Nuclei of CO(2) receptor-expressing neurons contain reduced levels of the repressive subunit Mip120 compared with surrounding neurons and increased levels of Myb, suggesting that activity of the complex can be regulated in a cell-specific manner. Our evidence suggests a model in which olfactory receptors are regulated epigenetically and the MMB/dREAM complex plays a critical role in specifying, maintaining, and modulating the receptor-to-neuron map.

  5. Identification and Expression Analysis of Putative Chemosensory Receptor Genes in Microplitis mediator by Antennal Transcriptome Screening

    PubMed Central

    Wang, Shan-Ning; Peng, Yong; Lu, Zi-Yun; Dhiloo, Khalid Hussain; Gu, Shao-Hua; Li, Rui-Jun; Zhou, Jing-Jiang; Zhang, Yong-Jun; Guo, Yu-Yuan

    2015-01-01

    Host-seeking, ovipositional behavior and mating of insects are controlled mainly by odor perception through sensory organs such as antennae. Antennal chemoreception is extremely important for insect survival. Several antennal chemosensory receptors are involved in mediating the odor detection in insects, especially the odorant receptors (ORs) and ionotropic receptors (IRs), to ensure the specificity of the olfactory sensory neuron responses. In the present study, we identified the chemosensory receptor gene repertoire of the parasitoid wasp Microplitis mediator, a generalist endoparasitoid that infests more than 40 types of Lepidopterous larvae and is widely distributed in the Palaearctic region. By transcriptome sequencing of male and female antennae we identified 60 candidate odorant receptors, six candidate ionotropic receptors and two gustatory receptors in M. mediator. The full-length sequences of these putative chemosensory receptor genes were obtained by using the rapid amplification of cDNA ends PCR (RACE-PCR) method. We also conducted reverse transcription PCR (RT-PCR) combined with real-time quantitative PCR (qPCR) for investigating the expression profiles of these chemosensory receptor genes in olfactory and non-olfactory tissues. The tissue- and sex-biased expression patterns may provide insights into the roles of the chemosensory receptor in M. mediator. Our findings support possible future study of the chemosensory behavior of M. mediator at the molecular level. PMID:26078716

  6. Potentiation of Gamma Aminobutyric Acid Receptors (GABAAR) by Ethanol: How Are Inhibitory Receptors Affected?

    PubMed Central

    Förstera, Benjamin; Castro, Patricio A.; Moraga-Cid, Gustavo; Aguayo, Luis G.

    2016-01-01

    In recent years there has been an increase in the understanding of ethanol actions on the type A γ-aminobutyric acid chloride channel (GABAAR), a member of the pentameric ligand gated ion channels (pLGICs). However, the mechanism by which ethanol potentiates the complex is still not fully understood and a number of publications have shown contradictory results. Thus many questions still remain unresolved requiring further studies for a better comprehension of this effect. The present review concentrates on the involvement of GABAAR in the acute actions of ethanol and specifically focuses on the immediate, direct or indirect, synaptic and extra-synaptic modulatory effects. To elaborate on the immediate, direct modulation of GABAAR by acute ethanol exposure, electrophysiological studies investigating the importance of different subunits, and data from receptor mutants will be examined. We will also discuss the nature of the putative binding sites for ethanol based on structural data obtained from other members of the pLGICs family. Finally, we will briefly highlight the glycine gated chloride channel (GlyR), another member of the pLGIC family, as a suitable target for the development of new pharmacological tools. PMID:27199667

  7. The heterodimeric sweet taste receptor has multiple potential ligand binding sites.

    PubMed

    Cui, Meng; Jiang, Peihua; Maillet, Emeline; Max, Marianna; Margolskee, Robert F; Osman, Roman

    2006-01-01

    The sweet taste receptor is a heterodimer of two G protein coupled receptors, T1R2 and T1R3. This discovery has increased our understanding at the molecular level of the mechanisms underlying sweet taste. Previous experimental studies using sweet receptor chimeras and mutants show that there are at least three potential binding sites in this heterodimeric receptor. Receptor activity toward the artificial sweeteners aspartame and neotame depends on residues in the amino terminal domain of human T1R2. In contrast, receptor activity toward the sweetener cyclamate and the sweet taste inhibitor lactisole depends on residues within the transmembrane domain of human T1R3. Furthermore, receptor activity toward the sweet protein brazzein depends on the cysteine rich domain of human T1R3. Although crystal structures are not available for the sweet taste receptor, useful homology models can be developed based on appropriate templates. The amino terminal domain, cysteine rich domain and transmembrane helix domain of T1R2 and T1R3 have been modeled based on the crystal structures of metabotropic glutamate receptor type 1, tumor necrosis factor receptor, and bovine rhodopsin, respectively. We have used homology models of the sweet taste receptors, molecular docking of sweet ligands to the receptors, and site-directed mutagenesis of the receptors to identify potential ligand binding sites of the sweet taste receptor. These studies have led to a better understanding of the structure and function of this heterodimeric receptor, and can act as a guide for rational structure-based design of novel non-caloric sweeteners, which can be used in the fighting against obesity and diabetes. PMID:17168764

  8. The heterodimeric sweet taste receptor has multiple potential ligand binding sites.

    PubMed

    Cui, Meng; Jiang, Peihua; Maillet, Emeline; Max, Marianna; Margolskee, Robert F; Osman, Roman

    2006-01-01

    The sweet taste receptor is a heterodimer of two G protein coupled receptors, T1R2 and T1R3. This discovery has increased our understanding at the molecular level of the mechanisms underlying sweet taste. Previous experimental studies using sweet receptor chimeras and mutants show that there are at least three potential binding sites in this heterodimeric receptor. Receptor activity toward the artificial sweeteners aspartame and neotame depends on residues in the amino terminal domain of human T1R2. In contrast, receptor activity toward the sweetener cyclamate and the sweet taste inhibitor lactisole depends on residues within the transmembrane domain of human T1R3. Furthermore, receptor activity toward the sweet protein brazzein depends on the cysteine rich domain of human T1R3. Although crystal structures are not available for the sweet taste receptor, useful homology models can be developed based on appropriate templates. The amino terminal domain, cysteine rich domain and transmembrane helix domain of T1R2 and T1R3 have been modeled based on the crystal structures of metabotropic glutamate receptor type 1, tumor necrosis factor receptor, and bovine rhodopsin, respectively. We have used homology models of the sweet taste receptors, molecular docking of sweet ligands to the receptors, and site-directed mutagenesis of the receptors to identify potential ligand binding sites of the sweet taste receptor. These studies have led to a better understanding of the structure and function of this heterodimeric receptor, and can act as a guide for rational structure-based design of novel non-caloric sweeteners, which can be used in the fighting against obesity and diabetes.

  9. Modulation of neurosteroid potentiation by protein kinases at synaptic- and extrasynaptic-type GABAA receptors.

    PubMed

    Adams, Joanna M; Thomas, Philip; Smart, Trevor G

    2015-01-01

    GABAA receptors are important for inhibition in the CNS where neurosteroids and protein kinases are potent endogenous modulators. Acting individually, these can either enhance or depress receptor function, dependent upon the type of neurosteroid or kinase and the receptor subunit combination. However, in vivo, these modulators probably act in concert to fine-tune GABAA receptor activity and thus inhibition, although how this is achieved remains unclear. Therefore, we investigated the relationship between these modulators at synaptic-type α1β3γ2L and extrasynaptic-type α4β3δ GABAA receptors using electrophysiology. For α1β3γ2L, potentiation of GABA responses by tetrahydro-deoxycorticosterone was reduced after inhibiting protein kinase C, and enhanced following its activation, suggesting this kinase regulates neurosteroid modulation. In comparison, neurosteroid potentiation was reduced at α1β3(S408A,S409A)γ2L receptors, and unaltered by PKC inhibitors or activators, indicating that phosphorylation of β3 subunits is important for regulating neurosteroid activity. To determine whether extrasynaptic-type GABAA receptors were similarly modulated, α4β3δ and α4β3(S408A,S409A)δ receptors were investigated. Neurosteroid potentiation was reduced at both receptors by the kinase inhibitor staurosporine. By contrast, neurosteroid-mediated potentiation at α4(S443A)β3(S408A,S409A)δ receptors was unaffected by protein kinase inhibition, strongly suggesting that phosphorylation of α4 and β3 subunits is required for regulating neurosteroid activity at extrasynaptic receptors. Western blot analyses revealed that neurosteroids increased phosphorylation of β3(S408,S409) implying that a reciprocal pathway exists for neurosteroids to modulate phosphorylation of GABAA receptors. Overall, these findings provide important insight into the regulation of GABAA receptors in vivo, and into the mechanisms by which GABAergic inhibitory transmission may be simultaneously

  10. Oleocanthal Modulates Estradiol-Induced Gene Expression Involving Estrogen Receptor α.

    PubMed

    Keiler, Annekathrin Martina; Djiogue, Sefirin; Ehrhardt, Tino; Zierau, Oliver; Skaltsounis, Leandros; Halabalaki, Maria; Vollmer, Günter

    2015-09-01

    Oleocanthal is a bioactive compound from olive oil. It has attracted considerable attention as it is anti-inflammatory, antiproliferative, and has been shown to possess neuroprotective properties in vitro and in vivo. Delineated from its polyphenolic structure, the aim of this study was to characterize oleocanthal towards estrogenic properties. This might contribute to partly explain the beneficial effects described for the Mediterranean diet. Estrogenic properties of oleocanthal were assessed by different methods: a) stimulation of reporter gene activity in MVLN or RNDA cells either expressing estrogen receptor α or β, b) stimulation of luciferase reporter gene activity in U2OS osteosarcoma cells expressing estrogen receptor α or β, and c) elucidation of the impact on estradiol-induced gene expression in U2OS cells transduced with both estrogen receptors. Depending on the cell line origin, oleocanthal inhibited luciferase activity (MVLN, U2OS-estrogen receptor β) or weakly induced reporter gene activity at 10 µM in U2OS-estrogen receptor α cells. However, oleocanthal inhibited stimulation of luciferase activity by estradiol from both estrogen receptors. Oleocanthal, if given alone, did not stimulate gene expression in U2OS cells, but it significantly modulated the response of estradiol. Oleocanthal enhanced the effect of estradiol on the regulation of those genes, which are believed to be regulated through heterodimeric estrogen receptors. As the estrogenic response pattern of oleocanthal is rather unique, we compared the results obtained with oleacein. Oleocanthal binds to both estrogen receptors inducing estradiol-agonistic or antiagonistic effects depending on the cell line. Regarding regulation of gene expression in U2OS-estrogen receptor α/β cells, oleocanthal and oleacein enhanced estradiol-mediated regulation of heterodimer-regulated genes. PMID:26166135

  11. Heat Avoidance Is Regulated by Transient Receptor Potential (TRP) Channels and a Neuropeptide Signaling Pathway in Caenorhabditis elegans

    PubMed Central

    Glauser, Dominique A.; Chen, Will C.; Agin, Rebecca; MacInnis, Bronwyn L.; Hellman, Andrew B.; Garrity, Paul A.; Tan, Man-Wah; Goodman, Miriam B.

    2011-01-01

    The ability to avoid noxious extremes of hot and cold is critical for survival and depends on thermal nociception. The TRPV subset of transient receptor potential (TRP) channels is heat activated and proposed to be responsible for heat detection in vertebrates and fruit flies. To gain insight into the genetic and neural basis of thermal nociception, we developed assays that quantify noxious heat avoidance in the nematode Caenorhabditis elegans and used them to investigate the genetic basis of this behavior. First, we screened mutants for 18 TRP channel genes (including all TRPV orthologs) and found only minor defects in heat avoidance in single and selected double and triple mutants, indicating that other genes are involved. Next, we compared two wild isolates of C. elegans that diverge in their threshold for heat avoidance and linked this phenotypic variation to a polymorphism in the neuropeptide receptor gene npr-1. Further analysis revealed that loss of either the NPR-1 receptor or its ligand, FLP-21, increases the threshold for heat avoidance. Cell-specific rescue of npr-1 implicates the interneuron RMG in the circuit regulating heat avoidance. This neuropeptide signaling pathway operates independently of the TRPV genes, osm-9 and ocr-2, since mutants lacking npr-1 and both TRPV channels had more severe defects in heat avoidance than mutants lacking only npr-1 or both osm-9 and ocr-2. Our results show that TRPV channels and the FLP-21/NPR-1 neuropeptide signaling pathway determine the threshold for heat avoidance in C. elegans. PMID:21368276

  12. A novel human gene encoding a G-protein-coupled receptor (GPR15) is located on chromosome 3

    SciTech Connect

    Heiber, M.; Marchese, A.; O`Dowd, B.F.

    1996-03-05

    We used sequence similarities among G-protein-coupled receptor genes to discover a novel receptor gene. Using primers based on conserved regions of the opioid-related receptors, we isolated a PCR product that was used to locate the full-length coding region of a novel human receptor gene, which we have named GPR15. A comparison of the amino acid sequence of the receptor gene, which we have named GPR15. A comparison of the amino acid sequence of the receptor encoded by GPR15 with other receptors revealed that it shared sequence identity with the angiotensin II AT1 and AT2 receptors, the interleukin 8b receptor, and the orphan receptors GPR1 and AGTL1. GPR15 was mapped to human chromosome 3q11.2-q13.1. 12 refs., 2 figs.

  13. Localization of the A{sub 3} adenosine receptor gene (ADORA3) to human chromosome 1p

    SciTech Connect

    Monitto, C.L.; Levitt, R.C.; Holroyd, K.J.

    1995-04-10

    Adenosine modulates important physiologic functions involving the cardiovascular system, brain, kidneys, lungs, GI tract, and immune system. To date four adenosine receptors have been identified: A{sub 1}, A{sub 2a}, A{sub 2b}, and A{sub 3}. Activation of these receptors results in inhibition (A{sub 1} and A{sub 3}) or stimulation (A{sub 2a} and A{sub 2b}) of intracellular adenyl cyclase activity, stimulation of K{sup +} flux, inhibition of Ca{sup 2+} flux, and modulation of inositol phospholipid turnover. A{sub 3} receptors have been identified and sequenced in the testes, brain, lung, liver, kidney, and heart of various species, including the rat, mouse, and human. A{sub 3} receptor activation is responsible for release of inflammatory mediators from mast cells, which can cause allergic bronchoconstriction. In addition, they can produce systemic vasodilation and locomotor depression via activation of A{sub 3} receptors in the brain. Given the potential importance of A{sub 3} receptor activity in the pathogenesis of pulmonary, cardiovascular, and central nervous system disease states, we set out to localize the human A{sub 3} adenosine receptor gene (ADORA3). 9 refs., 1 fig.

  14. Identifying potential cancer driver genes by genomic data integration

    NASA Astrophysics Data System (ADS)

    Chen, Yong; Hao, Jingjing; Jiang, Wei; He, Tong; Zhang, Xuegong; Jiang, Tao; Jiang, Rui

    2013-12-01

    Cancer is a genomic disease associated with a plethora of gene mutations resulting in a loss of control over vital cellular functions. Among these mutated genes, driver genes are defined as being causally linked to oncogenesis, while passenger genes are thought to be irrelevant for cancer development. With increasing numbers of large-scale genomic datasets available, integrating these genomic data to identify driver genes from aberration regions of cancer genomes becomes an important goal of cancer genome analysis and investigations into mechanisms responsible for cancer development. A computational method, MAXDRIVER, is proposed here to identify potential driver genes on the basis of copy number aberration (CNA) regions of cancer genomes, by integrating publicly available human genomic data. MAXDRIVER employs several optimization strategies to construct a heterogeneous network, by means of combining a fused gene functional similarity network, gene-disease associations and a disease phenotypic similarity network. MAXDRIVER was validated to effectively recall known associations among genes and cancers. Previously identified as well as novel driver genes were detected by scanning CNAs of breast cancer, melanoma and liver carcinoma. Three predicted driver genes (CDKN2A, AKT1, RNF139) were found common in these three cancers by comparative analysis.

  15. Identifying potential cancer driver genes by genomic data integration

    PubMed Central

    Chen, Yong; Hao, Jingjing; Jiang, Wei; He, Tong; Zhang, Xuegong; Jiang, Tao; Jiang, Rui

    2013-01-01

    Cancer is a genomic disease associated with a plethora of gene mutations resulting in a loss of control over vital cellular functions. Among these mutated genes, driver genes are defined as being causally linked to oncogenesis, while passenger genes are thought to be irrelevant for cancer development. With increasing numbers of large-scale genomic datasets available, integrating these genomic data to identify driver genes from aberration regions of cancer genomes becomes an important goal of cancer genome analysis and investigations into mechanisms responsible for cancer development. A computational method, MAXDRIVER, is proposed here to identify potential driver genes on the basis of copy number aberration (CNA) regions of cancer genomes, by integrating publicly available human genomic data. MAXDRIVER employs several optimization strategies to construct a heterogeneous network, by means of combining a fused gene functional similarity network, gene-disease associations and a disease phenotypic similarity network. MAXDRIVER was validated to effectively recall known associations among genes and cancers. Previously identified as well as novel driver genes were detected by scanning CNAs of breast cancer, melanoma and liver carcinoma. Three predicted driver genes (CDKN2A, AKT1, RNF139) were found common in these three cancers by comparative analysis. PMID:24346768

  16. Transient receptor potential melastatin 4 channel contributes to migration of androgen-insensitive prostate cancer cells

    PubMed Central

    Kilch, Tatiana; Jochum, Marcus Martin; Urban, Sabine Katharina; Jung, Volker; Stöckle, Michael; Rother, Karen; Greiner, Markus; Peinelt, Christine

    2015-01-01

    Impaired Ca2+ signaling in prostate cancer contributes to several cancer hallmarks, such as enhanced proliferation and migration and a decreased ability to induce apoptosis. Na+ influx via transient receptor potential melastatin 4 channel (TRPM4) can reduce store-operated Ca2+ entry (SOCE) by decreasing the driving force for Ca2+. In patients with prostate cancer, gene expression of TRPM4 is elevated. Recently, TRPM4 was identified as a cancer driver gene in androgen-insensitive prostate cancer. We investigated TRPM4 protein expression in cancer tissue samples from 20 patients with prostate cancer. We found elevated TRPM4 protein levels in prostatic intraepithelial neoplasia (PIN) and prostate cancer tissue compared to healthy tissue. In primary human prostate epithelial cells (hPEC) from healthy tissue and in the androgen-insensitive prostate cancer cell lines DU145 and PC3, TRPM4 mediated large Na+ currents. We demonstrated significantly increased SOCE after siRNA targeting of TRPM4 in hPEC and DU145 cells. In addition, knockdown of TRPM4 reduced migration but not proliferation of DU145 and PC3 cells. Taken together, our data identify TRPM4 as a regulator of SOCE in hPEC and DU145 cells, demonstrate a role for TRPM4 in cancer cell migration and suggest that TRPM4 is a promising potential therapeutic target. PMID:26496025

  17. Phenotypical characterization of the rat striatal neurons expressing the D1 dopamine receptor gene.

    PubMed Central

    Le Moine, C; Normand, E; Bloch, B

    1991-01-01

    In situ hybridization experiments were performed in rat brain sections from normal and 6-hydroxydopamine-treated rats in order to map and identify the neurons expressing the D1 receptor gene in the striatum and the substantia nigra. Procedures of combined in situ hybridization, allowing the simultaneous detection of two mRNAs in the same section or in adjacent sections, were used to characterize the phenotypes of the neurons expressing the D1 receptor gene. D1 receptor mRNA was found in neurons all over the caudate-putamen, the accumbens nucleus, and the olfactory tubercle but not in the substantia nigra. In the caudate-putamen and accumbens nucleus, most of the neurons containing D1 receptor mRNA were characterized as medium-sized substance P neurons and distinct from those containing D2 receptor mRNA. Nevertheless, 15-20% of the substance P neurons did not contain D1 receptor mRNA. The neurons containing preproenkephalin A mRNA did not contain D1 receptor mRNA but contained D2 receptor mRNA. A small number of cholinergic and somatostatinergic neurons exhibited a weak reaction for D1 receptor mRNA. These results demonstrate that dopamine acts on efferent striatal neurons through expression of distinct receptors--namely, D1 and D2 in separate cell populations (substance P and preproenkephalin A neurons, respectively)--and can also act on nonprojecting neurons through D1 receptor expression. Images PMID:1827915

  18. A nonsense mutation in the LDL receptor gene leads to familial hypercholesterolemia in the Druze sect

    SciTech Connect

    Landsberger, D.; Meiner, V.; Reshef, A.; Leitersdorf, E. ); Levy, Yishai ); Westhytzen, D.R. van der; Coetzee, G.A. )

    1992-02-01

    Familial hypercholesterolemia (FH) is an autosomal dominant disease caused by mutations in the LDL receptor gene. Here the authors characterize and LDL receptor mutation that is associated with a distinct haplotype and causes FH in the Druze, a small Middle Eastern Islamic sect with a high degree of inbreeding. The mutation was found in FH families from two distinct Druze villages from the Golan Heights (northern Israel). It was not found either in another Druze FH family residing in a different geographical area nor in eight Arab and four Jewish FH heterozygote index cases whose hypercholesterolemia cosegregates with an identical LDL receptor gene haplotype. The mutation, a single-base substitution, results in a termination codon in exon 4 of the LDL receptor gene that encodes for the fourth repeat of the binding domain of the mature receptor. It can be diagnosed by allele-specific oligonucleotide hybridization of PCR-amplified DNA from FH patients.

  19. Oligo/Polynucleotide-Based Gene Modification: Strategies and Therapeutic Potential

    PubMed Central

    Sargent, R. Geoffrey; Kim, Soya

    2011-01-01

    Oligonucleotide- and polynucleotide-based gene modification strategies were developed as an alternative to transgene-based and classical gene targeting-based gene therapy approaches for treatment of genetic disorders. Unlike the transgene-based strategies, oligo/polynucleotide gene targeting approaches maintain gene integrity and the relationship between the protein coding and gene-specific regulatory sequences. Oligo/polynucleotide-based gene modification also has several advantages over classical vector-based homologous recombination approaches. These include essentially complete homology to the target sequence and the potential to rapidly engineer patient-specific oligo/polynucleotide gene modification reagents. Several oligo/polynucleotide-based approaches have been shown to successfully mediate sequence-specific modification of genomic DNA in mammalian cells. The strategies involve the use of polynucleotide small DNA fragments, triplex-forming oligonucleotides, and single-stranded oligodeoxynucleotides to mediate homologous exchange. The primary focus of this review will be on the mechanistic aspects of the small fragment homologous replacement, triplex-forming oligonucleotide-mediated, and single-stranded oligodeoxynucleotide-mediated gene modification strategies as it relates to their therapeutic potential. PMID:21417933

  20. Therapeutic potential of Toll-like receptor 9 activation.

    PubMed

    Krieg, Arthur M

    2006-06-01

    In the decade since the discovery that mouse B cells respond to certain unmethylated CpG dinucleotides in bacterial DNA, a specific receptor for these 'CpG motifs' has been identified, Toll-like receptor 9 (TLR9), and a new approach to immunotherapy has moved into the clinic based on the use of synthetic oligodeoxynucleotides (ODN) as TLR9 agonists. This review highlights the current understanding of the mechanism of action of these CpG ODN, and provides an overview of the preclinical data and early human clinical trial results using these drugs to improve vaccines and treat cancer, infectious disease and allergy/asthma. PMID:16763660

  1. Cannabinoid receptor 1 (CNR1) gene variant moderates neural index of cognitive disruption during nicotine withdrawal.

    PubMed

    Evans, D E; Sutton, S K; Jentink, K G; Lin, H-Y; Park, J Y; Drobes, D J

    2016-09-01

    Nicotine withdrawal-related disruption of cognitive control may contribute to the reinforcement of tobacco use. Identification of gene variants that predict this withdrawal phenotype may lead to tailored pharmacotherapy for smoking cessation. Variation on the cannabinoid receptor 1 gene (CNR1) has been related to nicotine dependence, and CNR1 antagonists may increase attention and memory functioning. We targeted CNR1 variants as moderators of a validated neural marker of nicotine withdrawal-related cognitive disruption. CNR1 polymorphisms comprising the 'TAG' haplotype (rs806379, rs1535255 and rs2023239) were tested independently, as no participants in this sample possessed this haplotype. Nicotine withdrawal-related cognitive disruption was indexed as increased resting electroencephalogram (EEG) alpha-1 power density across 17 electrodes. Seventy-three Caucasian Non-Hispanic smokers (≥15 cigarettes per day) visited the laboratory on two occasions following overnight smoking/nicotine deprivation. Either two nicotine or two placebo cigarettes were smoked prior to collecting EEG data at each session. Analyses showed that rs806379 moderated the effects of nicotine deprivation increasing slow wave EEG (P = 0.004). Smokers homozygous for the major allele exhibited greater nicotine withdrawal-related cognitive disruption. The current findings suggest potential efficacy of cannabinoid receptor antagonism as a pharmacotherapy approach for smoking cessation among individuals who exhibit greater nicotine withdrawal-related cognitive disruption. PMID:27453054

  2. Polymorphisms in gene encoding TRPV1-receptor involved in pain perception are unrelated to chronic pancreatitis

    PubMed Central

    2009-01-01

    Background The major clinical feature in chronic pancreatitis is pain, but the genetic basis of pancreatic pain in chronic pancreatitis is poorly understood. The transient receptor potential vanilloid receptor 1 (TRPV1) gene has been associated with pain perception, and genetic variations in TRPV1 may modify the presence and phenotype of chronic pancreatitis. The aim of our study was to investigate the genetic variation of TRPV1 in Dutch patients with chronic pancreatitis and healthy controls. Methods We genotyped 4 SNPs (rs222749, rs222747, rs224534 and rs8065080) in 228 chronic pancreatitis-patients and 207 healthy controls by PCR, followed by restriction-fragment-length-polymorphism analysis and DNA sequencing. We generated 27 diplotypes and compared prevalence between patients and controls. Results There was no significant difference in allele frequency of the 4 TRPV1 gene SNPs in patients with chronic pancreatitis and healthy controls. Distribution of diplotypes was not statistically significantly different between patients and controls. Conclusion TRPV1 diplotypes are not associated with chronic pancreatitis. PMID:20034385

  3. A competitive inhibitor that reduces recruitment of androgen receptor to androgen-responsive genes.

    PubMed

    Cherian, Milu T; Wilson, Elizabeth M; Shapiro, David J

    2012-07-01

    The androgen receptor (AR) has a critical role in the growth and progression of androgen-dependent and castration-resistant prostate cancers. To identify novel inhibitors of AR transactivation that block growth of prostate cancer cells, a luciferase-based high-throughput screen of ~160,000 small molecules was performed in cells stably expressing AR and a prostate-specific antigen (PSA)-luciferase reporter. CPIC (1-(3-(2-chlorophenoxy) propyl)-1H-indole-3-carbonitrile) was identified as a small molecule that blocks AR transactivation to a greater extent than other steroid receptors. CPIC inhibited AR-mediated proliferation of androgen-sensitive prostate cancer cell lines, with minimal toxicity in AR-negative cell lines. CPIC treatment also reduced the anchorage-independent growth of LAPC-4 prostate cancer cells. CPIC functioned as a pure antagonist by inhibiting the expression of AR-regulated genes in LAPC-4 cells that express wild-type AR and exhibited weak agonist activity in LNCaP cells that express the mutant AR-T877A. CPIC treatment did not reduce AR levels or alter its nuclear localization. We used chromatin immunoprecipitation to identify the site of action of CPIC. CPIC inhibited recruitment of androgen-bound AR to the PSA promoter and enhancer sites to a greater extent than bicalutamide. CPIC is a new therapeutic inhibitor that targets AR-mediated gene activation with potential to arrest the growth of prostate cancer.

  4. Gene expression of NMDA receptor subunits in the cerebellum of elderly patients with schizophrenia.

    PubMed

    Schmitt, Andrea; Koschel, Jiri; Zink, Mathias; Bauer, Manfred; Sommer, Clemens; Frank, Josef; Treutlein, Jens; Schulze, Thomas; Schneider-Axmann, Thomas; Parlapani, Eleni; Rietschel, Marcella; Falkai, Peter; Henn, Fritz A

    2010-03-01

    To determine if NMDA receptor alterations are present in the cerebellum in schizophrenia, we measured NMDA receptor binding and gene expression of the NMDA receptor subunits in a post-mortem study of elderly patients with schizophrenia and non-affected subjects. Furthermore, we assessed influence of genetic variation in the candidate gene neuregulin-1 (NRG1) on the expression of the NMDA receptor in an exploratory study. Post-mortem samples from the cerebellar cortex of ten schizophrenic patients were compared with nine normal subjects. We investigated NMDA receptor binding by receptor autoradiography and gene expression of the NMDA receptor subunits NR1, NR2A, NR2B, NR2C and NR2D by in situ hybridization. For the genetic study, we genotyped the NRG1 polymorphism rs35753505 (SNP8NRG221533). Additionally, we treated rats with the antipsychotics haloperidol or clozapine and assessed cerebellar NMDA receptor binding and gene expression of subunits to examine the effects of antipsychotic treatment. Gene expression of the NR2D subunit was increased in the right cerebellum of schizophrenic patients compared to controls. Individuals carrying at least one C allele of rs35753505 (SNP8NRG221533) showed decreased expression of the NR2C subunit in the right cerebellum, compared to individuals homozygous for the T allele. Correlation with medication parameters and the animal model revealed no treatment effects. In conclusion, increased NR2D expression results in a hyperexcitable NMDA receptor suggesting an adaptive effect due to receptor hypofunction. The decreased NR2C expression in NRG1 risk variant may cause a deficit in NMDA receptor function. This supports the hypothesis of an abnormal glutamatergic neurotransmission in the right cerebellum in the pathophysiology of schizophrenia.

  5. The D4 receptor gene and mood disorders: An association study

    SciTech Connect

    Macciardi, F.; Cavalini, M.C.; Petronis, A.

    1994-09-01

    The problem of a gene-disease association is of major relevance in the current research of Psychiatric Disorders, mostly because of the lack of unequivocal results obtained with the linkage approach. However, some points of an association study must also be carefully considered, namely the statistical methodology and the strategy to select a gene to be tested. The gene coding for the D4 receptor (DRD4) might be theoretically relevant as a component of the genetic susceptibility for mood disorders. We now know that DRD4 has at least 2 functional polymorphisms in the coding regions of the gene, in exon 3 and exon 1, thus conferring etiologic relevance to a potentially positive association. In our work, we investigated the DRD4 genotypes of the 3rd and 1st exon for 93 patients with bipolar disorder and 57 patients with major depression, recurrent disorder. Patients have been diagnosed either by traditional DSMIII-R criteria or by clustering their lifetime psychopathological symptomatology. A random control group consisted of 151 subjects. A significant association has been found with DRD4 exon 3 genotypes, revealing an increase of genotypes 2-4 in Bipolar patients (chi-square=23.07, df=12, p=0.02). Even though a definitive confirmation of our finding requires an independent replication of the study, this result emphasizes the importance of DRD4 in mood disorders.

  6. Birds Generally Carry a Small Repertoire of Bitter Taste Receptor Genes

    PubMed Central

    Wang, Kai; Zhao, Huabin

    2015-01-01

    As they belong to the most species-rich class of tetrapod vertebrates, birds have long been believed to possess an inferior taste system. However, the bitter taste is fundamental in birds to recognize dietary toxins (which are typically bitter) in potential food sources. To characterize the evolution of avian bitter taste receptor genes (Tas2rs) and to test whether dietary toxins have shaped the repertoire size of avian Tas2rs, we examined 48 genomes representing all but 3 avian orders. The total number of Tas2r genes was found to range from 1 in the domestic pigeon to 12 in the bar-tailed trogon, with an average of 4, which suggested that a much smaller Tas2r gene repertoire exists in birds than in other vertebrates. Furthermore, we uncovered a positive correlation between the number of putatively functional Tas2rs and the abundance of potential toxins in avian diets. Because plant products contain more toxins than animal tissues and insects release poisonous defensive secretions, we hypothesized that herbivorous and insectivorous birds may demand more functional Tas2rs than carnivorous birds feeding on noninsect animals. Our analyses appear to support this hypothesis and highlight the critical role of taste perception in birds. PMID:26342138

  7. Birds Generally Carry a Small Repertoire of Bitter Taste Receptor Genes.

    PubMed

    Wang, Kai; Zhao, Huabin

    2015-09-04

    As they belong to the most species-rich class of tetrapod vertebrates, birds have long been believed to possess an inferior taste system. However, the bitter taste is fundamental in birds to recognize dietary toxins (which are typically bitter) in potential food sources. To characterize the evolution of avian bitter taste receptor genes (Tas2rs) and to test whether dietary toxins have shaped the repertoire size of avian Tas2rs, we examined 48 genomes representing all but 3 avian orders. The total number of Tas2r genes was found to range from 1 in the domestic pigeon to 12 in the bar-tailed trogon, with an average of 4, which suggested that a much smaller Tas2r gene repertoire exists in birds than in other vertebrates. Furthermore, we uncovered a positive correlation between the number of putatively functional Tas2rs and the abundance of potential toxins in avian diets. Because plant products contain more toxins than animal tissues and insects release poisonous defensive secretions, we hypothesized that herbivorous and insectivorous birds may demand more functional Tas2rs than carnivorous birds feeding on noninsect animals. Our analyses appear to support this hypothesis and highlight the critical role of taste perception in birds.

  8. Birds Generally Carry a Small Repertoire of Bitter Taste Receptor Genes.

    PubMed

    Wang, Kai; Zhao, Huabin

    2015-09-01

    As they belong to the most species-rich class of tetrapod vertebrates, birds have long been believed to possess an inferior taste system. However, the bitter taste is fundamental in birds to recognize dietary toxins (which are typically bitter) in potential food sources. To characterize the evolution of avian bitter taste receptor genes (Tas2rs) and to test whether dietary toxins have shaped the repertoire size of avian Tas2rs, we examined 48 genomes representing all but 3 avian orders. The total number of Tas2r genes was found to range from 1 in the domestic pigeon to 12 in the bar-tailed trogon, with an average of 4, which suggested that a much smaller Tas2r gene repertoire exists in birds than in other vertebrates. Furthermore, we uncovered a positive correlation between the number of putatively functional Tas2rs and the abundance of potential toxins in avian diets. Because plant products contain more toxins than animal tissues and insects release poisonous defensive secretions, we hypothesized that herbivorous and insectivorous birds may demand more functional Tas2rs than carnivorous birds feeding on noninsect animals. Our analyses appear to support this hypothesis and highlight the critical role of taste perception in birds. PMID:26342138

  9. GLUTAMATE RECEPTOR-LIKE genes mediate leaf-to-leaf wound signalling.

    PubMed

    Mousavi, Seyed A R; Chauvin, Adeline; Pascaud, François; Kellenberger, Stephan; Farmer, Edward E

    2013-08-22

    Wounded leaves communicate their damage status to one another through a poorly understood process of long-distance signalling. This stimulates the distal production of jasmonates, potent regulators of defence responses. Using non-invasive electrodes we mapped surface potential changes in Arabidopsis thaliana after wounding leaf eight and found that membrane depolarizations correlated with jasmonate signalling domains in undamaged leaves. Furthermore, current injection elicited jasmonoyl-isoleucine accumulation, resulting in a transcriptome enriched in RNAs encoding key jasmonate signalling regulators. From among 34 screened membrane protein mutant lines, mutations in several clade 3 GLUTAMATE RECEPTOR-LIKE genes (GLRs 3.2, 3.3 and 3.6) attenuated wound-induced surface potential changes. Jasmonate-response gene expression in leaves distal to wounds was reduced in a glr3.3 glr3.6 double mutant. This work provides a genetic basis for investigating mechanisms of long-distance wound signalling in plants and indicates that plant genes related to those important for synaptic activity in animals function in organ-to-organ wound signalling.

  10. Identification of microsatellite markers linked to the human leptin receptor gene on chromosome 1

    SciTech Connect

    Winick, J.D.; Friedman, J.M.; Stoffel, M.

    1996-08-15

    This report describes the localization of the human leptin receptor gene to human chromosome 1 using polymerase chain reaction of somatic cell hybrids. Leptin is a secreted protein important in the regulation of body weight. 16 refs., 1 fig.

  11. Physiological functions of transient receptor potential channels in pulmonary arterial smooth muscle cells.

    PubMed

    Yang, Xiao-Ru; Lin, Mo-Jun; Sham, James S K

    2010-01-01

    The transient receptor potential (TRP) gene superfamily, which consists of 7 subfamilies with at least 28 mammalian homologues, is known to encode a wide variety of cation channels with diverse biophysical properties, activation mechanisms, and physiological functions. Recent studies have identified multiple TRP channel subtypes, belonging to the canonical (TRPC), melastatin-related (TRPM), and vanilloid-related (TRPV) subfamilies, in pulmonary arterial smooth muscle cells (PASMCs). They operate as specific Ca(2+) pathways responsive to stimuli, including Ca(2+) store depletion, receptor activation, reactive oxygen species, growth factors, and mechanical stress. Increasing evidence suggests that these channels play crucial roles in agonist-induced pulmonary vasoconstriction, hypoxic pulmonary vasoconstriction, smooth muscle cell proliferation, vascular remodeling, and pulmonary arterial hypertension. This chapter highlighted and discussed these putative physiological functions of TRP channels in pulmonary vasculatures. Since Ca(2+) ions regulate many cellular processes via specific Ca(2+) signals, future investigations of these novel channels will likely uncover more important regulatory mechanisms of pulmonary vascular functions in health and in disease states. PMID:20204726

  12. The distribution of transient receptor potential melastatin-8 in the rat soft palate, epiglottis, and pharynx.

    PubMed

    Sato, Tadasu; Fujita, Masatoshi; Kano, Mitsuhiro; Hosokawa, Hiroshi; Kondo, Teruyoshi; Suzuki, Toshihiko; Kasahara, Eriko; Shoji, Noriaki; Sasano, Takashi; Ichikawa, Hiroyuki

    2013-03-01

    Immunohistochemistry for transient receptor potential melastatin-8 (TRPM8), the cold and menthol receptor, was performed on the rat soft palate, epiglottis and pharynx. TRPM8-immunoreactive (IR) nerve fibers were located beneath the mucous epithelium, and occasionally penetrated the epithelium. These nerve fibers were abundant in the posterior portion of the soft palate and at the border region of naso-oral and laryngeal parts of the pharynx. The epiglottis was free from such nerve fibers. The double immunofluorescence method demonstrated that TRPM8-IR nerve fibers in the pharynx and soft palate were mostly devoid of calcitonin gene-related peptide-immunoreactivity (CGRP-IR). The retrograde tracing method also demonstrated that 30.1 and 8.7 % of sensory neurons in the jugular and petrosal ganglia innervating the pharynx contained TRPM8-IR, respectively. Among these neurons, the co-expression of TRPM8 and CGRP-IR was very rare. In the nodose ganglion, however, pharyngeal neurons were devoid of TRPM8-IR. Taste bud-like structures in the soft palate and pharynx contained 4-9 TRPM8-IR cells. In the epiglottis, the mucous epithelium on the laryngeal side had numerous TRPM8-IR cells. The present study suggests that TRPM8 can respond to cold stimulation when food and drinks pass through oral and pharyngeal cavities.

  13. Receptor potentials of lizard hair cells with free-standing stereocilia: responses to acoustic clicks.

    PubMed Central

    Baden-Kristensen, K; Weiss, T F

    1983-01-01

    Receptor potentials of single hair cells in the free-standing region of the basilar papilla of the anaesthetized alligator lizard were measured intracellularly with micropipettes. Stimuli were primarily acoustic pulses (clicks) delivered to the tympanic membrane. The receptor potential was independent of click repetition rate for the range 10-150 clicks/s. This property is presumed to be the basis of the rate independence of the extracellular cochlear microphonic potential. The receptor potential wave-form consisted of a fast oscillatory component (or oscillation) superimposed on a usually positive (depolarizing) slow component. Reversal of the stimulus polarity resulted in a reversal of the polarity of the oscillations; the polarity of the slow component remained unchanged. The relative magnitudes of the two components depended on click level. At the higher click levels the magnitudes of the slow and oscillatory components were comparable. The relation of the receptor potential to the stimulus was non-linear; the peak-to-peak magnitude of the receptor potential increased less than proportionately with increasing sound-pressure level, and reversal of the stimulus polarity did not result in a reversal of the receptor potential. The receptor-potential magnitude for high-level clicks ranged from 1-13 mV peak-to-peak with an average value of 3.5 mV. At the lower click levels the magnitude of the slow component was much smaller than that of the oscillatory component. The relation of the receptor potential to the acoustic stimulus approached that of a linear system, the magnitude of the receptor potential became approximately proportional to the sound-pressure level, and reversal of the stimulus polarity resulted in approximate reversal of the receptor potential. For low-level stimuli the frequency of the oscillations of the receptor potential in response to clicks was approximately equal to the frequency of maximal a.c. response to tones. Apparently, both phenomena

  14. The molecular evolutionary dynamics of the vomeronasal receptor (class 1) genes in primates: a gene family on the verge of a functional breakdown

    PubMed Central

    Yoder, Anne D.; Larsen, Peter A.

    2014-01-01

    Olfaction plays a critical role in both survival of the individual and in the propagation of species. Studies from across the mammalian clade have found a remarkable correlation between organismal lifestyle and molecular evolutionary properties of receptor genes in both the main olfactory system (MOS) and the vomeronasal system (VNS). When a large proportion of intact (and putatively functional) copies is observed, the inference is made that a particular mode of chemoreception is critical for an organism’s fit to its environment and is thus under strong positive selection. Conversely, when the receptors in question show a disproportionately large number of pseudogene copies, this contraction is interpreted as evidence of relaxed selection potentially leading to gene family extinction. Notably, it appears that a risk factor for gene family extinction is a high rate of nonsynonymous substitution. A survey of intact vs. pseudogene copies among primate vomeronasal receptor Class one genes (V1Rs) appears to substantiate this hypothesis. Molecular evolutionary complexities in the V1R gene family combine rapid rates of gene duplication, gene conversion, lineage-specific expansions, deletions, and/or pseudogenization. An intricate mix of phylogenetic footprints and current adaptive landscapes have left their mark on primate V1Rs suggesting that the primate clade offers an ideal model system for exploring the molecular evolutionary and functional properties of the VNS of mammals. Primate V1Rs tell a story of ancestral function and divergent selection as species have moved into ever diversifying adaptive regimes. The sensitivity to functional collapse in these genes, consequent to their precariously high rates of nonsynonymous substitution, confer a remarkable capacity to reveal the lifestyles of the genomes that they presently occupy as well as those of their ancestors. PMID:25565978

  15. Organization, structure, and expression of the gene encoding the rat substance P receptor.

    PubMed

    Hershey, A D; Dykema, P E; Krause, J E

    1991-03-01

    The gene for the rat substance P receptor has been cloned, its genomic structure determined, and the patterns of mRNA expression extensively analyzed. Unlike many genes encoding G protein-coupled receptors, the protein-coding region of this gene is divided into five exons consisting of 965, 195, 151, 197, and 2,010 base pairs. The substance P receptor gene extends more than 45 kilobases in length, and the splice sites for the exons occur at the borders of the sequences encoding putative membrane-spanning domains. The transcription initiation site has been defined by solution hybridization-nuclease protection and nucleotide sequence analyses, and lies downstream of a conventional TATA sequence. Substance P receptor mRNA levels in various tissues have been quantitated using solution hybridization-nuclease protection assays and were found to comprise from 0.00008 to 0.0016% of total RNA levels. Relatively high levels of substance P receptor mRNA are seen in the urinary bladder and the sublingual salivary gland, whereas moderate levels are observed for the submandibular salivary gland, striatum, hippocampus, midbrain, and olfactory bulb with lower levels in the remainder of the central nervous system and alimentary canal. These results are discussed in relation to the evolutionary role of multiple exons for a G protein-coupled receptor and with regard to the locations and mechanisms of substance P receptor gene expression.

  16. Concomitant Duplications of Opioid Peptide and Receptor Genes before the Origin of Jawed Vertebrates

    PubMed Central

    Sundström, Görel; Dreborg, Susanne; Larhammar, Dan

    2010-01-01

    Background The opioid system is involved in reward and pain mechanisms and consists in mammals of four receptors and several peptides. The peptides are derived from four prepropeptide genes, PENK, PDYN, PNOC and POMC, encoding enkephalins, dynorphins, orphanin/nociceptin and beta-endorphin, respectively. Previously we have described how two rounds of genome doubling (2R) before the origin of jawed vertebrates formed the receptor family. Methodology/Principal Findings Opioid peptide gene family members were investigated using a combination of sequence-based phylogeny and chromosomal locations of the peptide genes in various vertebrates. Several adjacent gene families were investigated similarly. The results show that the ancestral peptide gene gave rise to two additional copies in the genome doublings. The fourth member was generated by a local gene duplication, as the genes encoding POMC and PNOC are located on the same chromosome in the chicken genome and all three teleost genomes that we have studied. A translocation has disrupted this synteny in mammals. The PDYN gene seems to have been lost in chicken, but not in zebra finch. Duplicates of some peptide genes have arisen in the teleost fishes. Within the prepropeptide precursors, peptides have been lost or gained in different lineages. Conclusions/Significance The ancestral peptide and receptor genes were located on the same chromosome and were thus duplicated concomitantly. However, subsequently genetic linkage has been lost. In conclusion, the system of opioid peptides and receptors was largely formed by the genome doublings that took place early in vertebrate evolution. PMID:20463905

  17. P2Y2 receptor activation regulates the expression of acetylcholinesterase and acetylcholine receptor genes at vertebrate neuromuscular junctions.

    PubMed

    Tung, Edmund K K; Choi, Roy C Y; Siow, Nina L; Jiang, Joy X S; Ling, Karen K Y; Simon, Joseph; Barnard, Eric A; Tsim, Karl W K

    2004-10-01

    At the vertebrate neuromuscular junction (nmj), ATP is known to be coreleased with acetylcholine from the synaptic vesicles. We have previously shown that the P2Y1 receptor is localized at the nmj. Here, we extend the findings to show that another nucleotide receptor, P2Y2, is also localized there and with P2Y1 jointly mediates trophic responses to ATP. The P2Y2 receptor mRNA in rat muscle increased during development and peaked in adulthood. The P2Y2 receptor protein was shown to become restricted to the nmjs during embryonic development, in chick and in rat. In both rat and chick myotubes, P2Y1 and P2Y2 are expressed, increasing with differentiation, but P2Y4 is absent. The P2Y2 agonist UTP stimulated there inositol trisphosphate production and phosphorylation of extracellular signal-regulated kinases, in a dose-dependent manner. These UTP-induced responses were insensitive to the P2Y1-specific antagonist MRS 2179 (2'-deoxy-N6-methyl adenosine 3',5'-diphosphate diammonium salt). In differentiated myotubes, P2Y2 activation induced expression of acetylcholinesterase (AChE) protein (but not control alpha-tubulin). This was shown to arise from AChE promoter activation, mediated by activation of the transcription factor Elk-1. Two Elk-1-responsive elements, located in intron-1 of the AChE promoter, were found by mutation to act in this gene activation initiated at the P2Y2 receptor and also in that initiated at the P2Y1 receptor. Furthermore, the promoters of different acetylcholine receptor subunits were also stimulated by application of UTP to myotubes. These results indicate that ATP regulates postsynaptic gene expressions via a common pathway triggered by the activation of P2Y1 and P2Y2 receptors at the nmjs. PMID:15258260

  18. P2X7 receptor in epilepsy; role in pathophysiology and potential targeting for seizure control

    PubMed Central

    Engel, Tobias; Jimenez-Pacheco, Alba; Miras-Portugal, Maria Teresa; Diaz-Hernandez, Miguel; Henshall, David C

    2012-01-01

    The P2X7 receptor is an ATP-gated non-selective cation-permeable ionotropic receptor selectively expressed in neurons and glia in the brain. Activation of the P2X7 receptor has been found to modulate neuronal excitability in the hippocampus and it has also been linked to microglia activation and neuroinflammatory responses. Accordingly, interest developed on the P2X7 receptor in disorders of the nervous system, including epilepsy. Studies show that expression of the P2X7 receptor is elevated in damaged regions of the brain after prolonged seizures (status epilepticus) in both neurons and glia. P2X7 receptor expression is also increased in the hippocampus in experimental epilepsy. Recent data show that mice lacking the P2X7 receptor display altered susceptibility to status epilepticus and that drugs targeting the P2X7 receptor have potent anticonvulsant effects. Together, this suggests that P2X7 receptor ligands may be useful adjunctive treatments for refractory status epilepticus or perhaps pharmacoresistant epilepsy. This review summarizes the evidence of P2X7 receptor involvement in the pathophysiology of epilepsy and the potential of drugs targeting this receptor for seizure control. PMID:23320131

  19. Triphenyl phosphate-induced developmental toxicity in zebrafish: Potential role of the retinoic acid receptor

    PubMed Central

    Isales, Gregory M.; Hipszer, Rachel A.; Raftery, Tara D.; Chen, Albert; Stapleton, Heather M.; Volz, David C.

    2015-01-01

    Using zebrafish as a model, we previously reported that developmental exposure to triphenyl phosphate (TPP) – a high-production volume organophosphate-based flame retardant – results in dioxin-like cardiac looping impairments that are independent of the aryl hydrocarbon receptor. Using a pharmacologic approach, the objective of this study was to investigate the potential role of retinoic acid receptor (RAR) – a nuclear receptor that regulates vertebrate heart morphogenesis – in mediating TPP-induced developmental toxicity in zebrafish. We first revealed that static exposure of zebrafish from 5-72 hours post-fertilization (hpf) to TPP in the presence of non-toxic concentrations of an RAR antagonist (BMS493) significantly enhanced TPP-induced toxicity (relative to TPP alone), even though identical non-toxic BMS493 concentrations mitigated retinoic acid (RA)-induced toxicity. BMS493-mediated enhancement of TPP toxicity was not a result of differential TPP uptake or metabolism, as internal embryonic doses of TPP and diphenyl phosphate (DPP) – a primary TPP metabolite - were not different in the presence or absence of BMS493. Using real-time PCR, we then quantified the relative change in expression of cytochrome P450 26a1 (cyp26a1) – a major target gene for RA-induced RAR activation in zebrafish – and found that RA and TPP exposure resulted in a ∼5-fold increase and decrease in cyp26a1 expression, respectively, relative to vehicle-exposed embryos. To address whether TPP may interact with human RARs, we then exposed Chinese hamster ovary cells stably transfected with chimeric human RARα-, RARβ-, or RARγ to TPP in the presence of RA, and found that TPP significantly inhibited RA-induced luciferase activity in a concentration-dependent manner. Overall, our findings suggest that zebrafish RARs may be involved in mediating TPP-induced developmental toxicity, a mechanism of action that may have relevance to humans. PMID:25725299

  20. The potential for Toll-like receptors to collaborate with other innate immune receptors

    PubMed Central

    Mukhopadhyay, Subhankar; Herre, Jurgen; Brown, Gordon D; Gordon, Siamon

    2004-01-01

    Cells of the innate immune system express a large repertoire of germ-line encoded cell-surface glycoprotein receptors including Toll-like receptors (TLRs). TLRs recognize conserved motifs on microbes and induce inflammatory signals. Evidence suggests that individual members of the TLR family or other non-TLR surface antigens either physically or functionally interact with each other and cumulative effects of these interactions instruct the nature and outcome of the immune response to a particular pathogen. PMID:15270722

  1. Cloning of human genes encoding novel G protein-coupled receptors

    SciTech Connect

    Marchese, A.; Docherty, J.M.; Heiber, M.

    1994-10-01

    We report the isolation and characterization of several novel human genes encoding G protein-coupled receptors. Each of the receptors contained the familiar seven transmembrane topography and most closely resembled peptide binding receptors. Gene GPR1 encoded a receptor protein that is intronless in the coding region and that shared identity (43% in the transmembrane regions) with the opioid receptors. Northern blot analysis revealed that GPR1 transcripts were expressed in the human hippocampus, and the gene was localized to chromosome 15q21.6. Gene GPR2 encoded a protein that most closely resembled an interleukin-8 receptor (51% in the transmembrane regions), and this gene, not expressed in the six brain regions examined, was localized to chromosome 17q2.1-q21.3. A third gene, GPR3, showed identity (56% in the transmembrane regions) with a previously characterized cDNA clone from rat and was localized to chromosome 1p35-p36.1. 31 refs., 5 figs., 1 tab.

  2. ROLE OF NMDA, NICOTINIC, AND GABA RECEPTORS IN THE STEADY STATE VISUAL EVOKED POTENTIAL IN RATS.

    EPA Science Inventory

    This manuscript characterizes the receptor pathways involved in pattern-evoked potential generation in rats

    " NMDA and nicotinic acetylcholine receptors appear to be involved in the generation of the steady-state pattern evoked response in vivo.

    " The pattern evok...

  3. Vitamin D receptor expression is linked to potential markers of human thyroid papillary carcinoma.

    PubMed

    Izkhakov, Elena; Somjen, Dalia; Sharon, Orli; Knoll, Esther; Aizic, Asaf; Fliss, Dan M; Limor, Rona; Stern, Naftali

    2016-05-01

    Genes regulated cell-cell and cell-matrix adhesion and degradation of the extracellular matrix (ECM) have been screened as potential markers of malignant thyroid nodules. The mRNA expression levels of two of them, the ECM protein-1 (ECM1) and the type II transmembrane serine protease-4 (TMPRSS4), were shown to be an independent predictor of an existing thyroid carcinoma. The vitamin D receptor (VDR) is expressed in epithelial cells of the normal thyroid gland, as well as in malignant dividing cells, which respond to the active metabolite of vitamin D by decreased proliferative activity in vitro. We evaluated the relationship between mRNA gene expressions of TMPRSS4, ECM1 and VDR in 21 papillary thyroid carcinoma samples and compared it to 21 normal thyroid tissues from the same patients. Gene expression was considered as up- or down-regulated if it varied by more or less than 2-fold in the cancer tissue relative to the normal thyroid tissue (Ca/N) from the same patient. We found an overall significant adjusted correlation between the mRNA expression ratio (ExR) of VDR and that of ECM1 in Ca/N thyroid tissue (R=0.648, P<0.001). There was a high ExR of VDR between Ca/N thyroid tissue from the same patient (3.06±2.9), which also exhibited a high Ca/N ExR of ECM1 and/or of TMPRSS4 (>2, P=0.05).The finding that increased VDR expression in human thyroid cancer cells is often linked to increased ECM1 and/or TPMRSS4 expression warrants further investigation into the potential role of vitamin D analogs in thyroid carcinoma.

  4. Structure and chromosomal localization of the human antidiuretic hormone receptor gene

    SciTech Connect

    Seibold, A.; Brabet, P.; Rosenthal, W.; Birnbaumer, M. )

    1992-11-01

    Applying a genomic DNA-expression approach, the authors cloned the gene and cDNA coding for the human antidiuretic hormone receptor, also called vasopressin V2 receptor' (V2R). The nucleotide sequence of both cloned DNAs provided the information to elucidate the structure of the isolated transcriptional unit. The structure of this gene is unusual in that it is the first G protein-coupled receptor gene that contains two very small intervening sequences, the second of which separates the region encoding the seventh transmembrane region from the rest of the open reading frame. The sequence information was used to synthesize appropriate oligonucleotides to be used as primers in the PCR. The V2R gene was localized by PCR using DNA from hybrid cells as template. The gene was found to reside in the q28-qter portion of the human X chromosome, a region identified as the locus for congential nephrogenic diabetes insipidus. 27 refs., 4 figs.

  5. Potential biological functions emerging from the different estrogen receptors.

    PubMed

    Carpenter, Karen D; Korach, Kenneth S

    2006-12-01

    Technological advances and new tools have brought about tremendous advances in elucidating the roles of estradiol and the estrogen receptors (ERs) in biological processes, especially within the female reproductive system. Development and analysis of multiple genetic models have provided insight into the particular functions of each of the ERs. This article reviews the insights into ER biology in female reproduction gained from the development and use of new types of experimental models.

  6. Gene expression profiling of craniofacial fibrous dysplasia reveals ADAMTS2 overexpression as a potential marker.

    PubMed

    Zhou, Shang-Hui; Yang, Wen-Jun; Liu, Sheng-Wen; Li, Jiang; Zhang, Chun-Ye; Zhu, Yun; Zhang, Chen-Ping

    2014-01-01

    Fibrous dysplasia (FD) as an abnormal bone growth is one of the common fibro-osseous leasions (FOL) in oral and maxillofacial region, however, its etiology still remains unclear. Here, we performed gene expression profiling of FD using microarray analysis to explore the key molecule events in FD development, and develop potential diagnostic markers or therapeutic targets for FD. We found that 1,881 genes exhibited differential expression with more than two-fold changes in FD compared to normal bone tissues, including 1,200 upregulated genes and 681 downregulated genes. Pathway analysis indicated that obviously activated pathways are Ribosome and ECM-receptor interaction pathways; downregulated pathways are "Hepatitis C" and "cancer" signaling pathways. We further validated the expression of ADAMTS2, one of most differentiated expressed genes, by Immunohistochemistry (IHC) in 40 of FD cases. Results showed that ADAMTS2 was significantly overexpressed in FD tissues, but rarely expressed in normal bone tissues, suggesting that ADAMTS2 could be a potential biomarker for FD. Thus, this study uncovered differentially expressed candidate genes in FD, which provides pilot data for understanding FD pathogenesis, and developing novel biomarkers for diagnosis and targeting of FD.

  7. Photoperiod regulates genes encoding melanocortin 3 and serotonin receptors and secretogranins in the dorsomedial posterior arcuate of the Siberian hamster.

    PubMed

    Nilaweera, K N; Archer, Z A; Campbell, G; Mayer, C-D; Balik, A; Ross, A W; Mercer, J G; Ebling, F J P; Morgan, P J; Barrett, P

    2009-02-01

    The mechanism(s) involved in the regulation of the seasonal-appropriate body weight of the Siberian hamster are currently unknown. We have identified photoperiodically regulated genes including VGF in a sub-region of the arcuate nucleus termed the dorsomedial posterior arcuate (dmpARC). Gene expression changes in this nucleus so far account for a significant number of those reported as photoperiodically regulated and are therefore likely to contribute to seasonal physiological responses of the hamsters. The present study aimed to identify additional genes expressed in the dmpARC regulated by photoperiod that could be involved in regulating the activity of this nucleus with respect to seasonal physiology of the Siberian hamster. Using laser capture microdissection coupled with a microarray analysis and a candidate gene approach, we have identified several photoperiodically regulated genes in the dmpARC that are known to have roles in secretory and intracellular signalling pathways. These include secretogranin (sg) III and SgVI (secretory pathway), melanocortin 3 receptor (MC3-R) and serotonin (5-HT) receptors 2A and 7 (signalling pathway), all of which increase in expression under a short photoperiod. The spatial relationship between receptor signalling and potential secretory pathways was investigated by dual in situ hybridisation, which revealed that 5-HT2A and 5-HT7 receptors are expressed in neurones expressing VGF mRNA and that a sub-population (approximately 40%) of these neurones express MC3-R. These gene expression changes in dmpARC neurones may reflect the functional requirement of these neurones for seasonal physiological responses of the hamster.

  8. Meta-Analysis of Associations of IL1 Receptor Antagonist and Estrogen Receptor Gene Polymorphisms with Systemic Lupus Erythematosus Susceptibility

    PubMed Central

    Xue, Xing-xin; Wang, Zhi-gang; Wang, Jia-jia; Tang, Shai-di; Tang, Shao-wen; Wang, Jie; Zhang, Yun; Xia, Xian

    2014-01-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease that affects a number of different organs and tissues. Interleukin-1 (IL1) and estrogen are considered potential elements in the pathology of SLE. Recently, the variable number of tandem repeats (VNTR) polymorphism in the IL1 receptor antagonist gene (IL1-RN) and PvuII (rs2234693) and XbaI (rs9340799) polymorphisms in the estrogen receptor 1 gene (ESR1) have been associated with a predisposition to SLE. However, the evidence for these associations is inconclusive. We therefore conducted a meta-analysis to validate the roles of these polymorphisms in SLE susceptibility. We searched four databases and identified a total of 17 eligible articles comprising 24 studies. The Newcastle-Ottawa quality assessment scale was used to assess the qualities of the selected studies. We assessed the strengths of the associations using odds ratios (ORs) with 95% confidence intervals (95% CIs). Regarding the IL-1RN VNTR, the 2 allele significantly increased SLE susceptibility (2 vs. L: OR = 1.34, 95% CI = 1.03–1.73, P = 0.03). The ESR1 PvuII CC/CT genotype was also associated with SLE susceptibility (CC/CT vs. TT: OR = 1.25, 95% CI = 1.06–1.47, P = 0.01), and the difference was especially pronounced among Asians (CC/CT vs. TT: OR = 1.33, 95% CI = 1.04–1.69, P = 0.02). No significant association between the ESR1 XbaI polymorphism and SLE susceptibility was observed in the overall analysis. However, a marginally significant association between the GG/GA genotype was found in individuals of Asian descent (GG/GA vs. AA: OR = 1.30, 95% CI = 1.01–1.67, P = 0.04). These results indicate that the IL1-RN VNTR 2 allele, ESR1 PvuII CC/CT genotype and ESR1 XbaI GG/GA genotype may increase SLE susceptibility, especially in Asian individuals. PMID:25286391

  9. Regulation of bradykinin receptor gene expression in human lung fibroblasts.

    PubMed

    Phagoo, S B; Yaqoob, M; Herrera-Martinez, E; McIntyre, P; Jones, C; Burgess, G M

    2000-06-01

    In WI-38 human fibroblasts, interleukin-1 beta and tumour necrosis factor-alpha (TNF-alpha) increased bradykinin B(1) receptor mRNA, which peaked between 2 and 4 h, remaining elevated for 20 h. Binding of the bradykinin B(1) receptor selective ligand [3H]des-Arg(10)-kallidin, also increased, peaking at 4 h and remaining elevated for 20 h. The B(max) value for [3H]des-Arg(10)-kallidin rose from 280+/-102 fmol/mg (n=3) to 701+/-147 fmol/mg (n=3), but the K(D) value remained unaltered (control, 1.04+/-0.33 nM (n=3); interleukin-1 beta, 0.88+/-0.41 nM (n=3)). The interleukin-1 beta-induced [3H]des-Arg(10)-kallidin binding sites were functional receptors, as bradykinin B(1) receptor agonist-induced responses increased in treated cells. Bradykinin B(2) receptor mRNA and [3H]bradykinin binding were upregulated by interleukin-1 beta, but not TNF-alpha. The effect of interleukin-1 beta on bradykinin B(2) receptors was smaller than for bradykinin B(1) receptors. Cycloheximide prevented interleukin-1 beta-mediated increases in B(1) and B(2) binding, but not mRNA suggesting that de novo synthesis of a transcriptional activator was unnecessary.

  10. Identification of potential therapeutic target genes and mechanisms in head and neck squamous cell carcinoma by bioinformatics analysis

    PubMed Central

    KUANG, JING; ZHAO, MEI; LI, HUILIAN; DANG, WEI; LI, WEI

    2016-01-01

    The present study aimed to identify the potential target genes and underlying molecular mechanisms involved in head and neck squamous cell carcinoma (HNSCC) by bioinformatics analysis. Microarray data of a Gene Expression Omnibus series GSE6631 was downloaded from the Gene Expression Omnibus database, which was generated from paired samples of HNSCC and normal tissue from 22 patients, and was used to identify differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed to investigate the functions of the identified DEGs. Furthermore, the protein-protein interaction (PPI) network of these DEGs was constructed using Cytoscape software. Between HNSCC and normal samples there was a difference in 419 DEGs, including 196 upregulated and 223 downregulated genes. The upregulated DEGs were mainly enriched in GO terms of cell adhesion, extracellular matrix (ECM) organization and collagen metabolic process, while the downregulated DEGs were mainly associated with epidermis development and epidermal cell differentiation. The DEGs were enriched in pathways such as ECM-receptor interaction, focal adhesion and drug metabolism. Fibronectin 1 (FN1), epidermal growth factor receptor (EGFR), collagen type I alpha 1 (COL1A1) and matrix metallopeptidase-9 (MMP-9) were hub nodes in the PPI network. These results suggested that cell adhesion and drug metabolism may be associated with HNSCC development, and genes such as FN1, EGFR, COL4A1 and MMP-9 may be potential therapeutic target genes in HNSCC. PMID:27123054

  11. SAMP8 mice have altered hippocampal gene expression in long term potentiation, phosphatidylinositol signaling, and endocytosis pathways.

    PubMed

    Armbrecht, Harvey J; Siddiqui, Akbar M; Green, Michael; Farr, Susan A; Kumar, Vijaya B; Banks, William A; Patrick, Ping; Shah, Gul N; Morley, John E

    2014-01-01

    The senescence-accelerated mouse (SAMP8) strain exhibits decreased learning and memory and increased amyloid beta (Aβ) peptide accumulation at 12 months. To detect differences in gene expression in SAMP8 mice, we used a control mouse that was a 50% cross between SAMP8 and CD-1 mice and which showed no memory deficits (50% SAMs). We then compared gene expression in the hippocampus of 4- and 12-month-old SAMP8 and control mice using Affymetrix gene arrays. At 12 months, but not at 4 months, pathway analysis revealed significant differences in the long term potentiation (6 genes), phosphatidylinositol signaling (6 genes), and endocytosis (10 genes) pathways. The changes in long term potentiation included mitogen-activated protein kinase (MAPK) signaling (N-ras, cAMP responsive element binding protein [CREB], protein phosphatase inhibitor 1) and Ca-dependent signaling (inositol triphosphate [ITP] receptors 1 and 2 and phospholipase C). Changes in phosphatidylinositol signaling genes suggested altered signaling through phosphatidylinositol-3-kinase, and Western blotting revealed phosphorylation changes in serine/threonine protein kinase AKT and 70S6K. Changes in the endocytosis pathway involved genes related to clathrin-mediated endocytosis (dynamin and clathrin). Endocytosis is required for receptor recycling, is involved in Aβ metabolism, and is regulated by phosphatidylinositol signaling. In summary, these studies demonstrate altered gene expression in 3 SAMP8 hippocampal pathways associated with memory formation and consolidation. These pathways might provide new therapeutic targets in addition to targeting Aβ metabolism itself.

  12. Developing in vitro reporter gene assays to assess the hormone receptor activities of chemicals frequently detected in drinking water.

    PubMed

    Sun, Hong; Si, Chaozong; Bian, Qian; Chen, Xiaodong; Chen, Liansheng; Wang, Xinru

    2012-08-01

    The present study intended to develop receptor-mediated luciferase reporter gene assays to evaluate and compare the estrogen receptor (ER), androgen receptor (AR) and thyroid hormone receptor (TR) activities of target chemicals. Di-2-ethylhexyl-phthalate (DEHP), chlorpyrifos (CPF), 2,4-dichlorophenoxyacetic acid (2,4-D) and bisphenol A (BPA) are some of the most common contaminants in drinking water and are frequently detected in China and worldwide. The chemicals were tested at concentrations of 0.1, 1, 10 and 100 times their maximum contaminant level in drinking water. The results showed that BPA possessed various activities on ER, AR and TR. DEHP and CPF could suppress 17β-estradiol or testosterone activity with different potencies, and DEHP possessed weaker anti-thyroid hormone activity. 2,4-D showed no agonist or antagonist activity against these hormone receptors, but it significantly enhanced the activity of testosterone through AR. Furthermore, the mixture of DEHP and CPF exhibited stronger ER and AR antagonist activities than each single component alone, but their combined effects were less than the expected effects based on the additive model. These results implied that the transcription activation mediated by hormone receptors was the potential endocrine-disrupting mechanism of the test chemicals. Our study also provided useful tools for evaluation of their endocrine disrupting activity.

  13. Co-regulation of a large and rapidly evolving repertoire of odorant receptor genes

    PubMed Central

    Kambere, Marijo B; Lane, Robert P

    2007-01-01

    The olfactory system meets niche- and species-specific demands by an accelerated evolution of its odorant receptor repertoires. In this review, we describe evolutionary processes that have shaped olfactory and vomeronasal receptor gene families in vertebrate genomes. We emphasize three important periods in the evolution of the olfactory system evident by comparative genomics: the adaptation to land in amphibian ancestors, the decline of olfaction in primates, and the delineation of putative pheromone receptors concurrent with rodent speciation. The rapid evolution of odorant receptor genes, the sheer size of the repertoire, as well as their wide distribution in the genome, presents a developmental challenge: how are these ever-changing odorant receptor repertoires coordinated within the olfactory system? A central organizing principle in olfaction is the specialization of sensory neurons resulting from each sensory neuron expressing only ~one odorant receptor allele. In this review, we also discuss this mutually exclusive expression of odorant receptor genes. We have considered several models to account for co-regulation of odorant receptor repertoires, as well as discussed a new hypothesis that invokes important epigenetic properties of the system. PMID:17903278

  14. Gene Interaction Network Suggests Dioxin Induces a Significant Linkage between Aryl Hydrocarbon Receptor and Retinoic Acid Receptor Beta

    PubMed Central

    Toyoshiba, Hiroyoshi; Yamanaka, Takeharu; Sone, Hideko; Parham, Frederick M.; Walker, Nigel J.; Martinez, Jeanelle; Portier, Christopher J.

    2004-01-01

    Gene expression arrays (gene chips) have enabled researchers to roughly quantify the level of mRNA expression for a large number of genes in a single sample. Several methods have been developed for the analysis of gene array data including clustering, outlier detection, and correlation studies. Most of these analyses are aimed at a qualitative identification of what is different between two samples and/or the relationship between two genes. We propose a quantitative, statistically sound methodology for the analysis of gene regulatory networks using gene expression data sets. The method is based on Bayesian networks for direct quantification of gene expression networks. Using the gene expression changes in HPL1A lung airway epithelial cells after exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin at levels of 0.1, 1.0, and 10.0 nM for 24 hr, a gene expression network was hypothesized and analyzed. The method clearly demonstrates support for the assumed network and the hypothesis linking the usual dioxin expression changes to the retinoic acid receptor system. Simulation studies demonstrated the method works well, even for small samples. PMID:15345368

  15. Pattern recognition receptors as potential therapeutic targets in inflammatory rheumatic disease.

    PubMed

    Mullen, Lisa M; Chamberlain, Giselle; Sacre, Sandra

    2015-05-15

    The pattern recognition receptors of the innate immune system are part of the first line of defence against pathogens. However, they also have the ability to respond to danger signals that are frequently elevated during tissue damage and at sites of inflammation. Inadvertent activation of pattern recognition receptors has been proposed to contribute to the pathogenesis of many conditions including inflammatory rheumatic diseases. Prolonged inflammation most often results in pain and damage to tissues. In particular, the Toll-like receptors and nucleotide-binding oligomerisation domain-like receptors that form inflammasomes have been postulated as key contributors to the inflammation observed in rheumatoid arthritis, osteoarthritis, gout and systemic lupus erythematosus. As such, there is increasing interest in targeting these receptors for therapeutic treatment in the clinic. Here the role of pattern recognition receptors in the pathogenesis of these diseases is discussed, with an update on the development of interventions to modulate the activity of these potential therapeutic targets.

  16. Endothelin receptor polymorphisms in the cardiovascular system: potential implications for therapy and screening.

    PubMed

    Holzhauser, Luise; Zolty, Ronald

    2014-11-01

    Since its discovery in 1988, the endothelin system has been employed in multiple physiological and pathological roles. Endothelin-1 (ET-1) is not only a major regulator of vascular tone and cardiac contractility but also exerts mitogenic effects and is involved in inflammatory responses. ET-1 acts via two endothelin receptors located mainly on smooth muscle and endothelial cells through complex intracellular pathways differing between receptors and cell types. Polymorphisms of the endothelin receptor A have been associated not only with the risk in pulmonary arterial hypertension (PAH), systolic heart failure and systemic hypertension but are also of prognostic significance in dilated cardiomyopathy. Polymorphisms of endothelin receptors might lead to altered endothelin signaling and influence the response to endothelin receptor antagonist therapy in PAH in light of pharmacogenetics. This review will summarize the role of ET-1 within major cardiovascular pathologies and discuss endothelin receptor polymorphisms with special emphasis on potential therapeutic and screening implications.

  17. [Severe type A insulin resistance syndrome due to a mutation in the insulin receptor gene].

    PubMed

    Ros, P; Colino-Alcol, E; Grasso, V; Barbetti, F; Argente, J

    2015-01-01

    Insulin resistance syndromes without lipodystrophy are an infrequent and heterogeneous group of disorders with variable clinical phenotypes, associated with hyperglycemia and hyperinsulinemia. The three conditions related to mutations in the insulin receptor gene are leprechaunism or Donohue syndrome, Rabson-Mendenhall syndrome, and Type A syndrome. A case is presented on a patient diagnosed with type A insulin resistance, defined by the triad of extreme insulin resistance, acanthosis nigricans, and hyperandrogenism, carrying a heterozygous mutation in exon 19 of the insulin receptor gene coding for its tyrosine kinase domain that is crucial for the catalytic activity of the receptor. The molecular basis of the syndrome is reviewed, focusing on the structure-function relationships of the insulin receptor, knowing that the criteria for survival are linked to residual insulin receptor function. It is also pointed out that, although type A insulin resistance appears to represent a somewhat less severe condition, these patients have a high morbidity and their treatment is still unsatisfactory.

  18. Ultrasound-targeted microbubble destruction improves the low density lipoprotein receptor gene expression in HepG{sub 2} cells

    SciTech Connect

    Guo Dongping; Li Xiaoyu; Sun, Ping; Tang Yibo; Chen Xiuying; Chen Qi; Fan Leming . E-mail: lmfan@njmu.edu.cn; Zang Bin; Shao Lizheng; Li Xiaorong

    2006-05-05

    Ultrasound-targeted microbubble destruction had been employed in gene delivery and promised great potential. Liver has unique features that make it attractive for gene therapy. However, it poses formidable obstacles to hepatocyte-specific gene delivery. This study was designed to test the efficiency of therapeutic gene transfer and expression mediated by ultrasound/microbubble strategy in HepG{sub 2} cell line. Air-filled albumin microbubbles were prepared and mixed with plasmid DNA encoding low density lipoprotein receptor (LDLR) and green fluorescent protein. The mixture of the DNA and microbubbles was administer to cultured HepG{sub 2} cells under variable ultrasound conditions. Transfection rate of the transferred gene and cell viability were assessed by FACS analysis, confocal laser scanning microscopy, Western blot analysis and Trypan blue staining. The result demonstrated that microbubbles with ultrasound irradiation can significantly elevate exogenous LDLR gene expression and the expressed LDLRs were functional and active to uptake their ligands. We conclude that ultrasound-targeted microbubble destruction has the potential to promote safe and efficient LDLR gene transfer into hepatocytes. With further refinement, it may represent an effective nonviral avenue of gene therapy for liver-involved genetic diseases.

  19. Megalin and androgen receptor gene expression in young and old human skeletal muscle before and after three sequential exercise bouts.

    PubMed

    Poole, Chris N; Roberts, Michael D; Dalbo, Vincent J; Sunderland, Kyle L; Kerksick, Chad M

    2011-02-01

    Androgen signaling occurs primarily via the androgen receptor. Megalin, a low-density lipoprotein endocytic receptor located in various mammalian tissues, has been recently shown to facilitate sex hormone–binding globulin (SHBG) steroid complexes across cell membranes. The purpose of this investigation is to determine if the megalin gene is expressed in human skeletal muscle and if present to determine how megalin and androgen receptor mRNA expression change in response to sequential exercise bouts with respect to aging. Ten younger (age: 18-25 years) and 10 older (age: 60-75 years) men completed 3 workouts (M, W, F) each consisting of 9 sets of lower-body exercises with 10 repetitions per set at 80% 1 repetition maximum. Vastus lateralis muscle biopsies were extracted at baseline (T1), 48 hours after workout 1 (T2) and 2 (T3), and 24 hours after workout 3 (T4), and blood samples were collected before and 5 minutes after each workout. Muscle was analyzed for megalin and androgen receptor expression using gene-specific primers and SYBR green chemistry, and blood was analyzed for serum testosterone, SHBG, and the free androgen index. Megalin was expressed in both young and old subjects across all time points, although no between- or within-group mean differences were detected at any time point. Androgen receptor was expressed higher in young men at all time points compared to in old men (p < 0.05), and a significant correlation (p < 0.05; r = 0.506) was found between serum testosterone and androgen receptor after workout 1. Based on our data, the gene coding for megalin is expressed inside skeletal muscle, but its role, if any, in steroid cellular transport cannot be determined. This finding could lay the groundwork for more mechanistic investigations to better delineate its functional role and its potential as a therapeutic adjunct for androgen-related disorders in healthy and aged populations. PMID:21322835

  20. [Cloning and regulation of pig estrogen related receptor β gene (ESRRB) promoter].

    PubMed

    Yang, Yang; Wang, Yaxian; Du, Lixia; Wang, Huayan

    2015-04-01

    The estrogen related receptor family member Esrrb (Estrogen related receptor β) is a gene that expresses in the early stage of embryo and plays an important role in the core pluripotent network. Its function has been analyzed in human and mouse, although no report so far related to pig. Therefore, to explore its mechanism of transcriptional regulation and expression pattern, we cloned a 3.3 kb pig ESRRB promoter by PCR and constructed the green fluorescence protein (GFP) reporter vector pE3.3. We used these vectors to study the ESRRB expression pattern in 293T, Hela and C2C12. Sequence was analyzed for regulatory elements that share homology to known transcription factor binding sites by TFSEARCH and JASPER program. Some pluripotency related genes such as SMAD, STAT3, MYC, KLF4 and ESRRB have been found within the 3.3 kb sequence by co-transfected pig ESRRB promoter and these potential regulators. We found that ESRRB only expressed in 293T and SMAD could activate ESRRB expression obviously. To determine the core promoter region, a series of ESRRB promoter fragments with gradually truncated 5'-end were produced by PCR and inserted into pGL3-Basic vector. After transient transfection into 293T, dual luciferase assay was used to measure these promoter activities. The result suggested that the core promoter of pig ESRRB located within -25 bp to -269 bp region. These results suggest that these transcription factor binding sites and the core promoter region may be essential for transcriptional regulation of pig ESRRB gene. PMID:26380406

  1. Estrogen Receptor beta binds Sp1 and recruits a Corepressor Complex to the Estrogen Receptor alpha Gene Promoter

    PubMed Central

    Bartella, V; Rizza, P; Barone, I; Zito, D; Giordano, F; Giordano, C; Catalano, S; Mauro, L; Sisci, D; Panno, ML; Fuqua, SA; Andò, Sebastiano

    2015-01-01

    Human estrogen receptors (ERs) alpha and beta are crucially involved in the regulation of mammary growth and development. Normal breast tissues display a prevalently expression of ER beta than ER alpha, which drastically increases during breast tumorogenesis. So, it is reasonable to assume how a dysregulation of the two estrogen receptor subtypes may induce breast cancer development. However, the molecular mechanism underlying the opposite role played by the two estrogen receptors on tumor cell growth remains to be elucidated. In the present study, we have demonstrated that ER beta overexpression in breast cancer cells decreases cell proliferation and down-regulates ER alpha mRNA and protein content along with a concomitant repression of estrogen-regulated genes. Transient transfection experiments, using a vector containing the human ER alpha promoter region, showed that elevated levels of the ER beta down-regulated basal ER alpha promoter activity. Furthermore, side-directed mutagenesis and deletion analysis have revealed that the proximal GC-rich motifs at −223 and −214 is crucial for the ER beta-induced ER alpha down-regulation in breast cancer cells. This occurred through ER beta-Sp1 protein-protein interaction within the ER alpha promoter region and the recruitment of a corepressor complex containing NCoR/SMRT (nuclear receptor corepressor/silencing mediator of retinoic acid and thyroid hormone receptor), accompanied by hypoacetylation of histone H4 and displacement of RNA polymerase II. Silencing of NCoR gene expression by RNA interference reversed the down-regulatory effect of ER beta on ER alpha gene expression and cell proliferation. Our results provide evidence for a novel mechanism by which overexpression of ER beta through NCoR is able to down regulate ER alpha gene expression, thus inhibiting ER alpha’s driving role on breast cancer cell growth. PMID:22622808

  2. Single nucleotide polymorphism variants within tva and tvb receptor genes in Chinese chickens.

    PubMed

    Liao, C T; Chen, S Y; Chen, W G; Liu, Y; Sun, B L; Li, H X; Zhang, H M; Qu, H; Wang, J; Shu, D M; Xie, Q M

    2014-10-01

    Avian leukosis is an immunosuppressive neoplastic disease caused by avian leukosis viruses (ALV), which causes tremendous economic losses in the worldwide poultry industry. The susceptibility or resistance of chicken cells to subgroup A ALV and subgroup B, D, and E ALV are determined by the receptor genes tumor virus locus A (tva) and tumor virus locus B (tvb), respectively. Four genetic resistant loci (tva(r1), tva(r2), tva(r3), and tva(r4)) in tva receptor gene and a genetic resistant locus tvb(r) in the tvb receptor gene have been identified in inbred lines of White Leghorn. To evaluate the genetic resistance to subgroup A, B, D, and E ALV, genetic variations within resistant loci in tva and tvb genes were screened in Chinese local chicken breeds and commercial broiler lines. Here, the heterozygote tva(s1/r1) and the resistant genotype tva(r2/r2), tva(r3/r3), and tva(r4/r4) were detected in Chinese chickens by direct sequencing. The heterozygote tva(s1/r1) was detected in Huiyang Bearded chicken (HYBC), Rizhaoma chicken, and commercial broiler line 13 to 15 (CB13 to CB15), with the frequencies at 0.08, 0.18, 0.17, 0.25, and 0.15, respectively. The resistant genotype tva(r2/r2) was detected in Jiningbairi chicken (JNBRC), HYBC, and CB15, with the frequencies at 0.03, 0.08, and 0.06, respectively, whereas tva(r3/r3) and tva(r4/r4) were detected in 19 and 17 of the 25 Chinese chickens tested, with the average frequencies at 0.13 and 0.20, respectively. Furthermore, the resistant genotype tvb(r/r) was detected in JNBRC, CB07, CB12, CB14, and CB15 by pyrosequencing assay, with the frequencies at 0.03, 0.03, 0.11, 0.09, and 0.15, respectively. These results demonstrated that the potential for genetic improvement of resistance to subgroup A, B, D, and E ALV were great both in Chinese local chickens and commercial broilers. This study provides valuable insight into the selective breeding for chickens genetically resistant to ALV.

  3. A common polymorphism in the LDL receptor gene has multiple effects on LDL receptor function.

    PubMed

    Gao, Feng; Ihn, Hansel E; Medina, Marisa W; Krauss, Ronald M

    2013-04-01

    A common synonymous single nucleotide polymorphism in exon 12 of the low-density lipoprotein receptor (LDLR) gene, rs688, has been associated with increased plasma total and LDL cholesterol in several populations. Using immortalized lymphoblastoid cell lines from a healthy study population, we confirmed an earlier report that the minor allele of rs688 is associated with increased exon 12 alternative splicing (P < 0.05) and showed that this triggered nonsense-mediated decay (NMD) of the alternatively spliced LDLR mRNA. However, since synonymous single nucleotide polymorphisms may influence structure and function of the encoded proteins by co-translational effects, we sought to test whether rs688 was also functional in the full-length mRNA. In HepG2 cells expressing LDLR cDNA constructs engineered to contain the major or minor allele of rs688, the latter was associated with a smaller amount of LDLR protein at the cell surface (-21.8 ± 0.6%, P = 0.012), a higher amount in the lysosome fraction (+25.7 ± 0.3%, P = 0.037) and reduced uptake of fluorescently labeled LDL (-24.3 ± 0.7%, P < 0.01). Moreover, in the presence of exogenous proprotein convertase subtilisin/kexin type 9 (PCSK9), a protein that reduces cellular LDL uptake by promoting lysosomal degradation of LDLR, the minor allele resulted in reduced capacity of a PCSK9 monoclonal antibody to increase LDL uptake. These findings are consistent with the hypothesis that rs688, which is located in the β-propeller region of LDLR, has effects on LDLR activity beyond its role in alternative splicing due to impairment of LDLR endosomal recycling and/or PCSK9 binding, processes in which the β-propeller is critically involved.

  4. Scavenger receptor A gene regulatory elements target gene expression to macrophages and to foam cells of atherosclerotic lesions.

    PubMed Central

    Horvai, A; Palinski, W; Wu, H; Moulton, K S; Kalla, K; Glass, C K

    1995-01-01

    Transcription of the macrophage scavenger receptor A gene is markedly upregulated during monocyte to macrophage differentiation. In these studies, we demonstrate that 291 bp of the proximal scavenger receptor promoter, in concert with a 400-bp upstream enhancer element, is sufficient to direct macrophage-specific expression of a human growth hormone reporter in transgenic mice. These regulatory elements, which contain binding sites for PU.1, AP-1, and cooperating ets-domain transcription factors, are also sufficient to mediate regulation of transgene expression during the in vitro differentiation of bone marrow progenitor cells in response to macrophage colony-stimulating factor. Mutation of the PU.1 binding site within the scavenger receptor promoter severely impairs transgene expression, consistent with a crucial role of PU.1 in regulating the expression of the scavenger receptor gene. The ability of the scavenger receptor promoter and enhancer to target gene expression to macrophages in vivo, including foam cells of atherosclerotic lesions, suggests that these regulatory elements will be of general utility in the study of macrophage differentiation and function by permitting specific modifications of macrophage gene expression. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:7777517

  5. Extraordinary diversity of chemosensory receptor gene repertoires among vertebrates.

    PubMed

    Shi, P; Zhang, J

    2009-01-01

    Chemosensation (smell and taste) is important to the survival and reproduction of vertebrates and is mediated by specific bindings of odorants, pheromones, and tastants by chemoreceptors that are encoded by several large gene families. This review summarizes recent comparative genomic and evolutionary studies of vertebrate chemoreceptor genes. It focuses on the remarkable diversity of chemoreceptor gene repertoires in terms of gene number and gene sequence across vertebrates and the evolutionary mechanisms that are responsible for generating this diversity. We argue that the great among-species variation of chemoreceptor gene repertoires is a result of adaptations of individual species to their environments and diets. PMID:19145414

  6. Structure, organization, and transcription units of the human {alpha}-platelet-derived growth factor receptor gene, PDGFRA

    SciTech Connect

    Kawagishi, Jun; Yamamoto, Tokuo; Kumabe, Toshihiro; Yoshimoto, Takashi

    1995-11-20

    Isolation and characterization of genomic clones encoding human {alpha}-platelet derived growth factor receptor (HGAM-approved symbol PDGFRA) revealed that the gene spans approximately 65 kb and contains 23 exons. The 5{prime}-untranslated region of the mRNA is encoded by exon 1, and a large intron of 23 kb separates exon 2 encoding the translation initiator codon AUG and the signal sequence. The locations of exon/intron boundaries in the extracellular immunoglobulin-like domains, the transmembrane domain, the two cytoplasmic tyrosine kinase domains, and the kinase insertion domain are very similar to those in c-kit and macrophage colony stimulating factor-1 receptor genes. The transcription start site was mapped to a position 393 bp upstream of the AUG translation initiator codon by Si mapping and primer extension analysis. The 5{prime}-flanking region of the gene lacks a typical TATA box but contains a typical CCAAT box and GATA motifs. This region also contains potential sites for AP-1, AP-2, Oct-1, Oct-2, and Sp1. The 5{prime}-flanking region of the gene was fused to the luciferase reporter gene, and transcription units of the gene were determined. 49 refs., 6 figs., 1 tab.

  7. Molecular cloning of a putative receptor protein kinase gene encoded at the self-incompatibility locus of Brassica oleracea

    SciTech Connect

    Stein, J.C.; Howlett, B.; Boyes, D.C.; Nasrallah, M.E.; Nasrallah, J.B. )

    1991-10-01

    Self-recognition between pollen and stigma during pollination in Brassica oleracea is genetically controlled by the multiallelic self-incompatibility locus (S). The authors describe the S receptor kinase (SRK) gene, a previously uncharacterized gene that residues at the S locus. The nucleotide sequences of genomic DNA and of cDNAs corresponding to SRK predict a putative transmembrane receptor having serine/threonine-specific protein kinase activity. Its extracellular domain exhibits striking homology to the secreted product of the S-locus genotypes are highly polymorphic and have apparently evolved in unison with genetically linked alleles of SLG. SRK directs the synthesis of several alternative transcripts, which potentially encode different protein products, and these transcripts were detected exclusively in reproductive organs. The identification of SRK may provide new perspectives into the signal transduction mechanism underlying pollen recognition.

  8. The human application of gene therapy to re-program T-cell specificity using chimeric antigen receptors

    PubMed Central

    Guerrero, Alan D; Moyes, Judy S; Cooper, Laurence JN

    2014-01-01

    The adoptive transfer of T cells is a promising approach to treat cancers. Primary human T cells can be modified using viral and non-viral vectors to promote the specific targeting of cancer cells via the introduction of exogenous T-cell receptors (TCRs) or chimeric antigen receptors (CARs). This gene transfer displays the potential to increase the specificity and potency of the anticancer response while decreasing the systemic adverse effects that arise from conventional treatments that target both cancerous and healthy cells. This review highlights the generation of clinical-grade T cells expressing CARs for immunotherapy, the use of these cells to target B-cell malignancies and, particularly, the first clinical trials deploying the Sleeping Beauty gene transfer system, which engineers T cells to target CD19+ leukemia and non-Hodgkin's lymphoma. PMID:25189715

  9. Characterization of promoter sequence of toll-like receptor genes in Vechur cattle

    PubMed Central

    Lakshmi, R.; Jayavardhanan, K. K.; Aravindakshan, T. V.

    2016-01-01

    Aim: To analyze the promoter sequence of toll-like receptor (TLR) genes in Vechur cattle, an indigenous breed of Kerala with the sequence of Bos taurus and access the differences that could be attributed to innate immune responses against bovine mastitis. Materials and Methods: Blood samples were collected from Jugular vein of Vechur cattle, maintained at Vechur cattle conservation center of Kerala Veterinary and Animal Sciences University, using an acid-citrate-dextrose anticoagulant. The genomic DNA was extracted, and polymerase chain reaction was carried out to amplify the promoter region of TLRs. The amplified product of TLR2, 4, and 9 promoter regions was sequenced by Sanger enzymatic DNA sequencing technique. Results: The sequence of promoter region of TLR2 of Vechur cattle with the B. taurus sequence present in GenBank showed 98% similarity and revealed variants for four sequence motifs. The sequence of the promoter region of TLR4 of Vechur cattle revealed 99% similarity with that of B. taurus sequence but not reveals significant variant in motifregions. However, two heterozygous loci were observed from the chromatogram. Promoter sequence of TLR9 gene also showed 99% similarity to B. taurus sequence and revealed variants for four sequence motifs. Conclusion: The results of this study indicate that significant variation in the promoter of TLR2 and 9 genes in Vechur cattle breed and may potentially link the influence the innate immunity response against mastitis diseases. PMID:27397987

  10. Diversity in the Toll-Like Receptor Genes of the African Penguin (Spheniscus demersus)

    PubMed Central

    Dalton, Desiré Lee; Vermaak, Elaine; Roelofse, Marli; Kotze, Antoinette

    2016-01-01

    The African penguin, Spheniscus demersus, is listed as Endangered by the IUCN Red List of Threatened Species due to the drastic reduction in population numbers over the last 20 years. To date, the only studies on immunogenetic variation in penguins have been conducted on the major histocompatibility complex (MHC) genes. It was shown in humans that up to half of the genetic variability in immune responses to pathogens are located in non-MHC genes. Toll-like receptors (TLRs) are now increasingly being studied in a variety of taxa as a broader approach to determine functional genetic diversity. In this study, we confirm low genetic diversity in the innate immune region of African penguins similar to that observed in New Zealand robin that has undergone several severe population bottlenecks. Single nucleotide polymorphism (SNP) diversity across TLRs varied between ex situ and in situ penguins with the number of non-synonymous alterations in ex situ populations (n = 14) being reduced in comparison to in situ populations (n = 16). Maintaining adaptive diversity is of vital importance in the assurance populations as these animals may potentially be used in the future for re-introductions. Therefore, this study provides essential data on immune gene diversity in penguins and will assist in providing an additional monitoring tool for African penguin in the wild, as well as to monitor diversity in ex situ populations and to ensure that diversity found in the in situ populations are captured in the assurance populations. PMID:27760133

  11. LncRNA-Dependent Mechanisms of Androgen Receptor-regulated Gene Activation Programs

    PubMed Central

    Jin, Chunyu; Yang, Joy C.; Tanasa, Bogdan; Li, Wenbo; Merkurjev, Daria; Ohgi, Kenneth A.; Meng, Da; Zhang, Jie; Evans, Christopher P.; Rosenfeld, Michael G.

    2014-01-01

    While recent studies indicated roles of long non-coding RNAs (lncRNAs) in physiologic aspects of cell-type determination and tissue homeostasis1 yet their potential involvement in regulated gene transcription programs remain rather poorly understood. Androgen receptor (AR) regulates a large repertoire of genes central to the identity and behavior of prostate cancer cells2, and functions in a ligand-independent fashion in many prostate cancers when they become hormone refractory after initial androgen deprivation therapy3. Here, we report that two lncRNAs highly overexpressed in aggressive prostate cancer, PRNCR1 and PCGEM1, bind successively to the AR and strongly enhance both ligand-dependent and ligand-independent AR-mediated gene activation programs and proliferation in prostate cancer cells. Binding of PRNCR1 to the C-terminally acetylated AR on enhancers and its association with DOT1L appear to be required for recruitment of the second lncRNA, PCGEM1, to the DOT1L-mediated methylated AR N-terminus. Unexpectedly, recognition of specific protein marks by PCGEM1-recruited Pygopus2 PHD domain proves to enhance selective looping of AR-bound enhancers to target gene promoters in these cells. In “resistant” prostate cancer cells, these overexpressed lncRNAs can interact with, and are required for, the robust activation of both truncated and full length AR, causing ligand-independent activation of the AR transcriptional program and cell proliferation. Conditionally-expressed short hairpin RNA (shRNA) targeting of these lncRNAs in castration-resistant prostate cancer (CRPC) cell lines strongly suppressed tumor xenograft growth in vivo. Together, these results suggest that these overexpressed lncRNAs can potentially serve as a required component of castration-resistance in prostatic tumors. PMID:23945587

  12. Receptor tyrosine phosphatase psi is required for Delta/Notch signalling and cyclic gene expression in the presomitic mesoderm.

    PubMed

    Aerne, Birgit; Ish-Horowicz, David

    2004-07-01

    Segmentation in vertebrate embryos is controlled by a biochemical oscillator ('segmentation clock') intrinsic to the cells in the unsegmented presomitic mesoderm, and is manifested in cyclic transcription of genes involved in establishing somite polarity and boundaries. We show that the receptor protein tyrosine phosphatase psi (RPTPpsi) gene is essential for normal functioning of the somitogenesis clock in zebrafish. We show that reduction of RPTPpsi activity using morpholino antisense oligonucleotides results in severe disruption of the segmental pattern of the embryo, and loss of cyclic gene expression in the presomitic mesoderm. Analysis of cyclic genes in RPTPpsi morphant embryos indicates an important requirement for RPTPpsi in the control of the somitogenesis clock upstream of or in parallel with Delta/Notch signalling. Impairing RPTPpsi activity also interferes with convergent extension during gastrulation. We discuss this dual requirement for RPTPpsi in terms of potential functions in Notch and Wnt signalling. PMID:15226256

  13. Moderate AMPA receptor clustering on the nanoscale can efficiently potentiate synaptic current

    PubMed Central

    Savtchenko, Leonid P.; Rusakov, Dmitri A.

    2014-01-01

    The prevailing view at present is that postsynaptic expression of the classical NMDA receptor-dependent long-term potentiation relies on an increase in the numbers of local AMPA receptors (AMPARs). This is thought to parallel an expansion of postsynaptic cell specializations, for instance dendritic spine heads, which accommodate synaptic receptor proteins. However, glutamate released into the synaptic cleft can normally activate only a hotspot of low-affinity AMPARs that occur in the vicinity of the release site. How the enlargement of the AMPAR pool is causally related to the potentiated AMPAR current remains therefore poorly understood. To understand possible scenarios of postsynaptic potentiation, here we explore a detailed Monte Carlo model of the typical small excitatory synapse. Simulations suggest that approximately 50% increase in the synaptic AMPAR current could be provided by expanding the existing AMPAR pool at the expense of 100–200% new AMPARs added at the same packing density. Alternatively, reducing the inter-receptor distances by only 30–35% could achieve a similar level of current potentiation without any changes in the receptor numbers. The NMDA receptor current also appears sensitive to the NMDA receptor crowding. Our observations provide a quantitative framework for understanding the ‘resource-efficient’ ways to enact use-dependent changes in the architecture of central synapses. PMID:24298165

  14. The Association of Polymorphisms in Leptin/Leptin Receptor Genes and Ghrelin/Ghrelin Receptor Genes With Overweight/Obesity and the Related Metabolic Disturbances: A Review

    PubMed Central

    Ghalandari, Hamid; Hosseini-Esfahani, Firoozeh; Mirmiran, Parvin

    2015-01-01

    Context: Leptin and ghrelin are two important appetite and energy balance-regulating peptides. Common polymorphisms in the genes coding these peptides and their related receptors are shown to be associated with body weight, different markers of obesity and metabolic abnormalities. This review article aims to investigate the association of common polymorphisms of these genes with overweight/obesity and the metabolic disturbances related to it. Evidence Acquisition: The keywords leptin, ghrelin, polymorphism, single-nucleotide polymorphism (SNP), obesity, overweight, Body Mass Index, metabolic syndrome, and type 2 diabetes mellitus (T2DM) (MeSH headings) were used to search in the following databases: Pubmed, Sciencedirect (Elsevier), and Google scholar. Overall, 24 case-control studies, relevant to our topic, met the criteria and were included in the review. Results: The most prevalent leptin/leptin receptor genes (LEP/LEPR) and ghrelin/ghrelin receptor genes (GHRL/GHSR) single nucleotide polymorphisms studied were LEP G-2548A, LEPR Q223R, and Leu72Met, respectively. Nine studies of the 17 studies on LEP/LEPR, and three studies of the seven studies on GHRL/GHSR showed significant relationships. Conclusions: In general, our study suggests that the association between LEP/LEPR and GHRL/GHSR with overweight/obesity and the related metabolic disturbances is inconclusive. These results may be due to unidentified gene-environment interactions. More investigations are needed to further clarify this association. PMID:26425125

  15. Identification of Gene Markers for Activation of the Nuclear Receptor Pregnane X Receptor

    EPA Science Inventory

    Many environmentally-relevant chemicals and drugs activate the nuclear receptor pregnane X receptor (PXR). Activation of PXR in the mouse liver can lead to increases in liver weight in part through increased hepatocyte replication similar to chemicals that activate other nuclear ...

  16. Nuclear receptors for retinoic acid and thyroid hormone regulate transcription of keratin genes.

    PubMed Central

    Tomic, M; Jiang, C K; Epstein, H S; Freedberg, I M; Samuels, H H; Blumenberg, M

    1990-01-01

    In the epidermis, retinoids regulate the expression of keratins, the intermediate filament proteins of epithelial cells. We have cloned the 5' regulatory regions of four human epidermal keratin genes, K#5, K#6, K#10, and K#14, and engineered constructs in which these regions drive the expression of the CAT reporter gene. By co-transfecting the constructs into epithelial cells along with the vectors expressing nuclear receptors for retinoic acid (RA) and thyroid hormone, we have demonstrated that the receptors can suppress the promoters of keratin genes. The suppression is ligand dependent; it is evident both in established cell lines and in primary cultures of epithelial cells. The three RA receptors have similar effects on keratin gene transcription. Our data indicate that the nuclear receptors for RA and thyroid hormone regulate keratin synthesis by binding to negative recognition elements in the upstream DNA sequences of the keratin genes. RA thus has a twofold effect on epidermal keratin expression: qualitatively, it regulates the regulators that effect the switch from basal cell-specific keratins to differentiation-specific ones; and quantitatively, it determines the level of keratin synthesis within the cell by direct interaction of its receptors with the keratin gene promoters. Images PMID:1712634

  17. Lipid metabolism genes in contralateral unaffected breast and estrogen receptor status of breast cancer.

    PubMed

    Wang, Jun; Scholtens, Denise; Holko, Michelle; Ivancic, David; Lee, Oukseub; Hu, Hong; Chatterton, Robert T; Sullivan, Megan E; Hansen, Nora; Bethke, Kevin; Zalles, Carola M; Khan, Seema A

    2013-04-01

    Risk biomarkers that are specific to estrogen receptor (ER) subtypes of breast cancer would aid the development and implementation of distinct prevention strategies. The contralateral unaffected breast of women with unilateral breast cancer (cases) is a good model for defining subtype-specific risk because women with ER-negative (ER-) index primaries are at high risk for subsequent ER-negative primary cancers. We conducted random fine needle aspiration of the unaffected breasts of cases. Samples from 30 subjects [15 ER-positive (ER+) and 15 ER- cases matched for age, race and menopausal status] were used for Illumina expression array analysis. Findings were confirmed using quantitative real-time PCR (qRT-PCR) in the same samples. A validation set consisting of 36 subjects (12 ER+, 12 ER- and 12 standard-risk healthy controls) was used to compare gene expression across groups. ER- case samples displayed significantly higher expression of 18 genes/transcripts, 8 of which were associated with lipid metabolism on gene ontology analysis (GO: 0006629). This pattern was confirmed by qRT-PCR in the same samples, and in the 24 cases of the validation set. When compared to the healthy controls in the validation set, significant overexpression of 4 genes (DHRS2, HMGCS2, HPGD and ACSL3) was observed in ER- cases, with significantly lower expression of UGT2B11 and APOD in ER+ cases, and decreased expression of UGT2B7 in both subtypes. These data suggest that differential expression of lipid metabolism genes may be involved in the risk for subtypes of breast cancer, and are potential biomarkers of ER-specific breast cancer risk. PMID:23512947

  18. Coordinated DNA methylation and gene expression changes in smoker alveolar macrophages: specific effects on VEGF receptor 1 expression

    PubMed Central

    Philibert, Robert A.; Sears, Rory A.; Powers, Linda S.; Nash, Emma; Bair, Thomas; Gerke, Alicia K.; Hassan, Ihab; Thomas, Christie P.; Gross, Thomas J.; Monick, Martha M.

    2012-01-01

    Cigarette smoking is implicated in numerous diseases, including emphysema and lung cancer. The clinical expression of lung disease in smokers is not well explained by currently defined variations in gene expression or simple differences in smoking exposure. Alveolar macrophages play a critical role in the inflammation and remodeling of the lung parenchyma in smoking-related lung disease. Significant gene expression changes in alveolar macrophages from smokers have been identified. However, the mechanism for these changes remains unknown. One potential mechanism for smoking-altered gene expression is via changes in cytosine methylation in DNA regions proximal to gene-coding sequences. In this study, alveolar macrophage DNA from heavy smokers and never smokers was isolated and methylation status at 25,000 loci determined. We found differential methylation in genes from immune-system and inflammatory pathways. Analysis of matching gene expression data demonstrated a parallel enrichment for changes in immune-system and inflammatory pathways. A significant number of genes with smoking-altered mRNA expression had inverse changes in methylation status. One gene highlighted by this data was the FLT1, and further studies found particular up-regulation of a splice variant encoding a soluble inhibitory form of the receptor. In conclusion, chronic cigarette smoke exposure altered DNA methylation in specific gene promoter regions in human alveolar macrophages. PMID:22427682

  19. Elevated Resistin Gene Expression in African American Estrogen and Progesterone Receptor Negative Breast Cancer

    PubMed Central

    Vallega, Karin A.; Liu, NingNing; Myers, Jennifer S.; Yu, Kaixian; Sang, Qing-Xiang Amy

    2016-01-01

    Introduction African American (AA) women diagnosed with breast cancer are more likely to have aggressive subtypes. Investigating differentially expressed genes between patient populations may help explain racial health disparities. Resistin, one such gene, is linked to inflammation, obesity, and breast cancer risk. Previous studies indicated that resistin expression is higher in serum and tissue of AA breast cancer patients compared to Caucasian American (CA) patients. However, resistin expression levels have not been compared between AA and CA patients in a stage- and subtype-specific context. Breast cancer prognosis and treatments vary by subtype. This work investigates differential resistin gene expression in human breast cancer tissues of specific stages, receptor subtypes, and menopause statuses in AA and CA women. Methods Differential gene expression analysis was performed using human breast cancer gene expression data from The Cancer Genome Atlas. We performed inter-race resistin gene expression level comparisons looking at receptor status and stage-specific data between AA and CA samples. DESeq was run to test for differentially expressed resistin values. Results Resistin RNA was higher in AA women overall, with highest values in receptor negative subtypes. Estrogen-, progesterone-, and human epidermal growth factor receptor 2- negative groups showed statistically significant elevated resistin levels in Stage I and II AA women compared to CA women. In inter-racial comparisons, AA women had significantly higher levels of resistin regardless of menopause status. In whole population comparisons, resistin expression was higher among Stage I and III estrogen receptor negative cases. In comparisons of molecular subtypes, resistin levels were significant higher in triple negative than in luminal A breast cancer. Conclusion Resistin gene expression levels were significantly higher in receptor negative subtypes, especially estrogen receptor negative cases in AA

  20. Structure of the mouse leukaemia inhibitory factor receptor gene: regulated expression of mRNA encoding a soluble receptor isoform from an alternative 5' untranslated region.

    PubMed Central

    Chambers, I; Cozens, A; Broadbent, J; Robertson, M; Lee, M; Li, M; Smith, A

    1997-01-01

    The low-affinity leukaemia inhibitory factor receptor (LIF-R) is a component of cell-surface receptor complexes for the multifunctional cytokines leukaemia inhibitory factor, ciliary neurotrophic factor, oncostatin M and cardiotrophin-1. Both soluble and transmembrane forms of the protein have been described and several LIF-R mRNAs have been reported previously. In order to determine the coding potential of LIF-R mRNAs we have isolated and characterized the mouse LIF-R gene. mRNA encoding soluble LIF-R (sLIF-R) is formed by inclusion of an exon in which polyadenylation signals are provided by a B2 repeat. This exon is located centrally within the LIF-R gene but is excluded from the transmembrane LIF-R mRNA by alternative splicing. The transmembrane receptor is encoded by 19 exons distributed over 38 kb. Two distinct 5' non-coding exons have been identified, indicating the existence of alternative promoters. One of these is G/C rich and possesses a consensus initiator sequence as well as potential Sp1 binding sites. Expression of exon 1 from this promoter occurs in a wide variety of tissues, whereas expression of the alternative 5' untranslated region (exon 1a) is normally restricted to liver, the principal source of sLIF-R. During pregnancy expression of exon 1a becomes detectable also in the uterus. Expression of exon 1a increases dramatically during gestation and is accompanied by a similar quantitative rise in expression of sLIF-R mRNA. These findings establish that expression of LIF-R is under complex transcriptional control and indicate that regulated expression of the soluble cytokine receptor isoform may be due principally to an increase in the activity of a dedicated promoter. PMID:9396734

  1. Analysis of gene expression profile identifies potential biomarkers for atherosclerosis.

    PubMed

    Liu, Luran; Liu, Yan; Liu, Chang; Zhang, Zhuobo; Du, Yaojun; Zhao, Hao

    2016-10-01

    The present study aimed to identify potential biomarkers for atherosclerosis via analysis of gene expression profiles. The microarray dataset no. GSE20129 was downloaded from the Gene Expression Omnibus database. A total of 118 samples from the peripheral blood of female patients was used, including 47 atherosclerotic and 71 non‑atherosclerotic patients. The differentially expressed genes (DEGs) in the atherosclerosis samples were identified using the Limma package. Gene ontology term and Kyoto Encyclopedia of Genes and Genomes pathway analyses for DEGs were performed using the Database for Annotation, Visualization and Integrated Discovery tool. The recursive feature elimination (RFE) algorithm was applied for feature selection via iterative classification, and support vector machine classifier was used for the validation of prediction accuracy. A total of 430 DEGs in the atherosclerosis samples were identified, including 149 up‑ and 281 downregulated genes. Subsequently, the RFE algorithm was used to identify 11 biomarkers, whose receiver operating characteristic curves had an area under curve of 0.92, indicating that the identified 11 biomarkers were representative. The present study indicated that APH1B, JAM3, FBLN2, CSAD and PSTPIP2 may have important roles in the progression of atherosclerosis in females and may be potential biomarkers for early diagnosis and prognosis as well as treatment targets for this disease. PMID:27573188

  2. Analysis of gene expression profile identifies potential biomarkers for atherosclerosis

    PubMed Central

    Liu, Luran; Liu, Yan; Liu, Chang; Zhang, Zhuobo; Du, Yaojun; Zhao, Hao

    2016-01-01

    The present study aimed to identify potential biomarkers for atherosclerosis via analysis of gene expression profiles. The microarray dataset no. GSE20129 was downloaded from the Gene Expression Omnibus database. A total of 118 samples from the peripheral blood of female patients was used, including 47 atherosclerotic and 71 non-atherosclerotic patients. The differentially expressed genes (DEGs) in the atherosclerosis samples were identified using the Limma package. Gene ontology term and Kyoto Encyclopedia of Genes and Genomes pathway analyses for DEGs were performed using the Database for Annotation, Visualization and Integrated Discovery tool. The recursive feature elimination (RFE) algorithm was applied for feature selection via iterative classification, and support vector machine classifier was used for the validation of prediction accuracy. A total of 430 DEGs in the atherosclerosis samples were identified, including 149 up- and 281 downregulated genes. Subsequently, the RFE algorithm was used to identify 11 biomarkers, whose receiver operating characteristic curves had an area under curve of 0.92, indicating that the identified 11 biomarkers were representative. The present study indicated that APH1B, JAM3, FBLN2, CSAD and PSTPIP2 may have important roles in the progression of atherosclerosis in females and may be potential biomarkers for early diagnosis and prognosis as well as treatment targets for this disease. PMID:27573188

  3. The Dopamine D2 Receptor Gene in Lamprey, Its Expression in the Striatum and Cellular Effects of D2 Receptor Activation

    PubMed Central

    Robertson, Brita; Huerta-Ocampo, Icnelia; Ericsson, Jesper; Stephenson-Jones, Marcus; Pérez-Fernández, Juan; Bolam, J. Paul; Diaz-Heijtz, Rochellys; Grillner, Sten

    2012-01-01

    All basal ganglia subnuclei have recently been identified in lampreys, the phylogenetically oldest group of vertebrates. Furthermore, the interconnectivity of these nuclei is similar to mammals and tyrosine hydroxylase-positive (dopaminergic) fibers have been detected within the input layer, the striatum. Striatal processing is critically dependent on the interplay with the dopamine system, and we explore here whether D2 receptors are expressed in the lamprey striatum and their potential role. We have identified a cDNA encoding the dopamine D2 receptor from the lamprey brain and the deduced protein sequence showed close phylogenetic relationship with other vertebrate D2 receptors, and an almost 100% identity within the transmembrane domains containing the amino acids essential for dopamine binding. There was a strong and distinct expression of D2 receptor mRNA in a subpopulation of striatal neurons, and in the same region tyrosine hydroxylase-immunoreactive synaptic terminals were identified at the ultrastructural level. The synaptic incidence of tyrosine hydroxylase-immunoreactive boutons was highest in a region ventrolateral to the compact layer of striatal neurons, a region where most striatal dendrites arborise. Application of a D2 receptor agonist modulates striatal neurons by causing a reduced spike discharge and a diminished post-inhibitory rebound. We conclude that the D2 receptor gene had already evolved in the earliest group of vertebrates, cyclostomes, when they diverged from the main vertebrate line of evolution (560 mya), and that it is expressed in striatum where it exerts similar cellular effects to that in other vertebrates. These results together with our previous published data (Stephenson-Jones et al. 2011, 2012) further emphasize the high degree of conservation of the basal ganglia, also with regard to the indirect loop, and its role as a basic mechanism for action selection in all vertebrates. PMID:22563388

  4. NR4A nuclear receptors mediate carnitine palmitoyltransferase 1A gene expression by the rexinoid HX600

    SciTech Connect

    Ishizawa, Michiyasu; Kagechika, Hiroyuki; Makishima, Makoto

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer The function of RXR heterodimers with NR4 receptors remains unknown. Black-Right-Pointing-Pointer The RXR ligand HX600 induces expression of carnitine palmitoyltransferase 1A (CPT1A). Black-Right-Pointing-Pointer HX600-induced CPT1A expression is mediated by the NR4 receptors, Nur77 and NURR1. Black-Right-Pointing-Pointer CPT1A induction by HX600 is not mediated by de novo protein synthesis. Black-Right-Pointing-Pointer CPT1A could be a target of the Nur77-RXR and NURR1-RXR heterodimers. -- Abstract: Retinoid X receptors (RXRs) are members of the nuclear receptor superfamily and can be activated by 9-cis retinoic acid (9CRA). RXRs form homodimers and heterodimers with other nuclear receptors such as the retinoic acid receptor and NR4 subfamily nuclear receptors, Nur77 and NURR1. Potential physiological roles of the Nur77-RXR and NURR1-RXR heterodimers have not been elucidated. In this study, we identified a gene regulated by these heterodimers utilizing HX600, a selective RXR agonist for Nur77-RXR and NURR1-RXR. While 9CRA induced many genes, including RAR-target genes, HX600 effectively induced only carnitine palmitoyltransferase 1A (CPT1A) in human teratocarcinoma NT2/D1 cells, which express RXR{alpha}, Nur77 and NURR1. HX600 also increased CPT1A expression in human embryonic kidney (HEK) 293 cells and hepatocyte-derived HepG2 cells. Although HX600 induced CPT1A less effectively than 9CRA, overexpression of Nur77 or NURR1 increased the HX600 response to levels similar to 9CRA in NT2/D1 and HEK293 cells. A dominant-negative form of Nur77 or NURR1 repressed the induction of CPT1A by HX600. A protein synthesis inhibitor did not alter HX600-dependent CPT1A induction. Thus, the rexinoid HX600 directly induces expression of CPT1A through a Nur77 or NURR1-mediated mechanism. CPT1A, a gene involved in fatty acid {beta}-oxidation, could be a target of RXR-NR4 receptor heterodimers.

  5. Multimodality Imaging of Gene Transfer with a Receptor-Based Reporter Gene

    PubMed Central

    Chen, Ron; Parry, Jesse J.; Akers, Walter J.; Berezin, Mikhail Y.; El Naqa, Issam M.; Achilefu, Samuel; Edwards, W. Barry; Rogers, Buck E.

    2010-01-01

    Gene therapy trials have traditionally used tumor and tissue biopsies for assessing the efficacy of gene transfer. Non-invasive imaging techniques offer a distinct advantage over tissue biopsies in that the magnitude and duration of gene transfer can be monitored repeatedly. Human somatostatin receptor subtype 2 (SSTR2) has been used for the nuclear imaging of gene transfer. To extend this concept, we have developed a somatostatin receptor–enhanced green fluorescent protein fusion construct (SSTR2-EGFP) for nuclear and fluorescent multimodality imaging. Methods An adenovirus containing SSTR2-EGFP (AdSSTR2-EGFP) was constructed and evaluated in vitro and in vivo. SCC-9 human squamous cell carcinoma cells were infected with AdEGFP, AdSSTR2, or AdSSTR2-EGFP for in vitro evaluation by saturation binding, internalization, and fluorescence spectroscopy assays. In vivo biodistribution and nano-SPECT imaging studies were conducted with mice bearing SCC-9 tumor xenografts directly injected with AdSSTR2-EGFP or AdSSTR2 to determine the tumor localization of 111In-diethylenetriaminepentaacetic acid (DTPA)-Tyr3-octreotate. Fluorescence imaging was conducted in vivo with mice receiving intratumoral injections of AdSSTR2, AdSSTR2-EGFP, or AdEGFP as well as ex vivo with tissues extracted from mice. Results The similarity between AdSSTR2-EGFP and wild-type AdSSTR2 was demonstrated in vitro by the saturation binding and internalization assays, and the fluorescence emission spectra of cells infected with AdSSTR2-EGFP was almost identical to the spectra of cells infected with wild-type AdEGFP. Biodistribution studies demonstrated that the tumor uptake of 111In-DTPA-Tyr3-octreotate was not significantly different (P > 0.05) when tumors (n = 5) were injected with AdSSTR2 or AdSSTR2-EGFP but was significantly greater than the uptake in control tumors. Fluorescence was observed in tumors injected with AdSSTR2-EGFP and AdEGFP in vivo and ex vivo but not in tumors injected with AdSSTR2

  6. Functional characterization of transient receptor potential channels in mouse urothelial cells.

    PubMed

    Everaerts, Wouter; Vriens, Joris; Owsianik, Grzegorz; Appendino, Giovanni; Voets, Thomas; De Ridder, Dirk; Nilius, Bernd

    2010-03-01

    The bladder urothelium is currently believed to be a sensory structure, contributing to mechano- and chemosensation in the bladder. Transient receptor potential (TRP) cation channels act as polymodal sensors and may underlie some of the receptive properties of urothelial cells. However, the exact TRP channel expression profile of urothelial cells is unclear. In this study, we have performed a systematic analysis of the molecular and functional expression of various TRP channels in mouse urothelium. Urothelial cells from control and trpv4-/- mice were isolated, cultured (12-48 h), and used for quantitative real-time PCR, immunocytochemistry, calcium imaging, and whole cell patch-clamp experiments. At the mRNA level, TRPV4, TRPV2, and TRPM7 were the most abundantly expressed TRP genes. Immunohistochemistry showed a clear expression of TRPV4 in the plasma membrane, whereas TRPV2 was more prominent in the cytoplasm. TRPM7 was detected in the plasma membrane as well as cytoplasmic vesicles. Calcium imaging and patch-clamp experiments using TRP channel agonists and antagonists provided evidence for the functional expression of TRPV4, TRPV2, and TRPM7 but not of TRPA1, TRPV1, and TRPM8. In conclusion, we have demonstrated functional expression of TRPV4, TRPV2, and TRPM7 in mouse urothelial cells. These channels may contribute to the (mechano)sensory function of the urothelial layer and represent potential targets for the treatment of bladder dysfunction. PMID:20015940

  7. P2X receptors in the cardiovascular system and their potential as therapeutic targets in disease.

    PubMed

    Ralevic, Vera

    2015-01-01

    This review considers the expression and roles of P2X receptors in the cardiovascular system in health and disease and their potential as therapeutic targets. P2X receptors are ligand gated ion channels which are activated by the endogenous ligand ATP. They are formed from the assembly of three P2X subunit proteins from the complement of seven (P2X1-7), which can associate to form homomeric or heteromeric P2X receptors. The P2X1 receptor is widely expressed in the cardiovascular system, being located in the heart, in the smooth muscle of the majority of blood vessels and in platelets. P2X1 receptors expressed in blood vessels can be activated by ATP coreleased with noradrenaline as a sympathetic neurotransmitter, leading to smooth muscle depolarisation and contraction. There is evidence that the purinergic component of sympathetic neurotransmission is increased in hypertension, identifying P2X1 receptors as a possible therapeutic target in this disorder. P2X3 and P2X2/3 receptors are expressed on cardiac sympathetic neurones and may, through positive feedback of neuronal ATP at this prejunctional site, amplify sympathetic neurotransmission. Activation of P2X receptors expressed in the heart increases cardiac myocyte contractility, and an important role of the P2X4 receptor in this has been identified. Deletion of P2X4 receptors in the heart depresses contractile performance in models of heart failure, while overexpression of P2X4 receptors has been shown to be cardioprotective, thus P2X4 receptors may be therapeutic targets in the treatment of heart disease. P2X receptors have been identified on endothelial cells. Although immunoreactivity for all P2X1-7 receptor proteins has been shown on the endothelium, relatively little is known about their function, with the exception of the endothelial P2X4 receptor, which has been shown to mediate endothelium-dependent vasodilatation to ATP released during shear stress. The potential of P2X receptors as therapeutic targets

  8. Endocytic Trafficking and Recycling Maintain a Pool of Mobile Surface AMPA Receptors Required for Synaptic Potentiation

    PubMed Central

    Petrini, Enrica Maria; Lu, Jiuyi; Cognet, Laurent; Lounis, Brahim; Ehlers, Michael D.; Choquet, Daniel

    2010-01-01

    SUMMARY At excitatory glutamatergic synapses, postsynaptic endocytic zones (EZs), which are adjacent to the postsynaptic density (PSD), mediate clathrin-dependent endocytosis of surface AMPA Receptors (AMPAR) as a first step to receptor recycling or degradation. However, it remains unknown if receptor recycling influences AMPARs lateral diffusion, and if EZs are important for the expression of synaptic potentiation. Here we demonstrate that the presence of both EZs and AMPAR recycling maintain a large pool of mobile AMPARs at synapses. In addition, we find that synaptic potentiation is accompanied by an accumulation and immobilization of AMPARs at synapses resulting from both their exocytosis and stabilization at the PSD. Displacement of EZs from the postsynaptic region impairs the expression of synaptic potentiation by blocking AMPAR recycling. Thus receptor recycling is crucial for maintaining a mobile population of surface AMPARs which can be delivered to synapses for increases in synaptic strength. PMID:19607795

  9. Evidence for Novel Pharmacological Sensitivities of Transient Receptor Potential (TRP) Channels in Schistosoma mansoni

    PubMed Central

    Bais, Swarna; Churgin, Matthew A.; Fang-Yen, Christopher; Greenberg, Robert M.

    2015-01-01

    Schistosomiasis, caused by parasitic flatworms of the genus Schistosoma, is a neglected tropical disease affecting hundreds of millions globally. Praziquantel (PZQ), the only drug currently available for treatment and control, is largely ineffective against juvenile worms, and reports of PZQ resistance lend added urgency to the need for development of new therapeutics. Ion channels, which underlie electrical excitability in cells, are validated targets for many current anthelmintics. Transient receptor potential (TRP) channels are a large family of non-selective cation channels. TRP channels play key roles in sensory transduction and other critical functions, yet the properties of these channels have remained essentially unexplored in parasitic helminths. TRP channels fall into several (7–8) subfamilies, including TRPA and TRPV. Though schistosomes contain genes predicted to encode representatives of most of the TRP channel subfamilies, they do not appear to have genes for any TRPV channels. Nonetheless, we find that the TRPV1-selective activators capsaicin and resiniferatoxin (RTX) induce dramatic hyperactivity in adult worms; capsaicin also increases motility in schistosomula. SB 366719, a highly-selective TRPV1 antagonist, blocks the capsaicin-induced hyperactivity in adults. Mammalian TRPA1 is not activated by capsaicin, yet knockdown of the single predicted TRPA1-like gene (SmTRPA) in S. mansoni effectively abolishes capsaicin-induced responses in adult worms, suggesting that SmTRPA is required for capsaicin sensitivity in these parasites. Based on these results, we hypothesize that some schistosome TRP channels have novel pharmacological sensitivities that can be targeted to disrupt normal parasite neuromuscular function. These results also have implications for understanding the phylogeny of metazoan TRP channels and may help identify novel targets for new or repurposed therapeutics. PMID:26655809

  10. PET/CT imaging of human somatostatin receptor 2 (hsstr2) as reporter gene for gene therapy

    NASA Astrophysics Data System (ADS)

    Hofmann, M.; Gazdhar, A.; Weitzel, T.; Schmid, R.; Krause, T.

    2006-12-01

    Localized information on region-selective gene expression in small animals is widely obtained by use of reporter genes inducing light emission. Using these reporter genes for imaging deep inside the human body fluorescent probes are hindered by attenuation, scattering and possible fluorescence quenching. This can be overcome by use of radio-peptide receptors as reporter genes. Therefore, the feasibility of the somatostatin receptor 2 expression vector system for expression imaging was checked against a control vector containing luciferase gene. For in vivo transduction of vector DNA into the rat forelimb muscles the in vivo electroporation technique was chosen because of its high regio-selectivity. The gene expression was imaged by high-sensitive CCD camera (luciferase activity) and by PET/CT using a Ga-68-DOTATOC as radio peptide probe. The relative sstr2 expression was enhanced by gene transduction at maximum to a factor of 15. The PET/CT images could be fully quantified. The above demonstrated feasibility of radio-peptide PET/CT reporter gene imaging may serve in the future as a tool for full quantitative understanding of regional gene expression, especially in large animals and humans.

  11. Enhanced neurosteroid potentiation of ternary GABA(A) receptors containing the delta subunit.

    PubMed

    Wohlfarth, Kai M; Bianchi, Matt T; Macdonald, Robert L

    2002-03-01

    Attenuated behavioral sensitivity to neurosteroids has been reported for mice deficient in the GABA(A) receptor delta subunit. We therefore investigated potential subunit-specific neurosteroid pharmacology of the following GABA(A) receptor isoforms in a transient expression system: alpha1beta3gamma2L, alpha1beta3delta, alpha6beta3gamma2L, and alpha6beta3delta. Potentiation of submaximal GABA(A) receptor currents by the neurosteroid tetrahydrodeoxycorticosterone (THDOC) was greatest for the alpha1beta3delta isoform. Whole-cell GABA concentration--response curves performed with and without low concentrations (30 nm) of THDOC revealed enhanced peak GABA(A) receptor currents for isoforms tested without affecting the GABA EC50. Alpha1beta3delta currents were enhanced the most (>150%), whereas the other isoform currents were enhanced 15-50%. At a higher concentration (1 microm), THDOC decreased peak alpha1beta3gamma2L receptor current amplitude evoked by GABA (1 mm) concentration jumps and prolonged deactivation but had little effect on the rate or extent of apparent desensitization. Thus the polarity of THDOC modulation depended on GABA concentration for alpha1beta3gamma2L GABA(A) receptors. However, the same protocol applied to alpha1beta3delta receptors resulted in peak current enhancement by THDOC of >800% and prolonged deactivation. Interestingly, THDOC induced pronounced desensitization in the minimally desensitizing alpha1beta3delta receptors. Single channel recordings obtained from alpha1beta3delta receptors indicated that THDOC increased the channel opening duration, including the introduction of an additional longer duration open state. Our results suggest that the GABA(A) receptor delta subunit confers increased sensitivity to neurosteroid modulation and that the intrinsic gating and desensitization kinetics of alpha1beta3delta GABA(A) receptors are altered by THDOC.

  12. Dissecting the functional significance of endothelin A receptors in peripheral nociceptors in vivo via conditional gene deletion.

    PubMed

    Stösser, Sebastian; Agarwal, Nitin; Tappe-Theodor, Anke; Yanagisawa, Masashi; Kuner, Rohini

    2010-02-01

    The peptide endothelin-1 (ET1), which was originally identified as a vasoconstrictor, has emerged as a critical regulator of a number of painful conditions, including inflammatory pain and tumor-associated pain. There is considerable pharmacological evidence supporting a role for endothelin A receptors (ET(A)) in mediating ET1-induced pro-algesic functions. ET(A) receptors are expressed in small-diameter nociceptive neurons, but also found in a variety of other cell types in peripheral tissues, including immune cells, keratinocytes, endothelial cells, which have the potential to modulate nociception. To elucidate the functional contribution of ET(A) receptors expressed in sensory neurons towards the functions of the ET1 axis in pathological pain states, we undertook a conditional gene deletion approach to selectively deplete expression of ET(A) in sensory nerves, preserving expression in non-neural peripheral tissues; the expression of ET(B) remained unchanged. Behavioural and pharmacological experiments showed that only late nociceptive hypersensitivity caused by ET1 is abrogated upon a loss of ET(A) receptors on nociceptors and further suggest that ET1-induced early nociceptive hypersensitivity involves activation of ET(A) as well as ET(B) receptors in non-neural peripheral cells. Furthermore, in the context of alleviation of cancer pain and chronic inflammatory pain by ET(A) receptor antagonists, we observed in corresponding mouse models that the contribution of ET(A) receptors expressed in nociceptors is most significant. These results help understand the role of ET(A) receptors in complex biological processes and peripheral cell-cell interactions involved in inflammatory and tumor-associated pain.

  13. 5-HT2 Receptor Regulation of Mitochondrial Genes: Unexpected Pharmacological Effects of Agonists and Antagonists.

    PubMed

    Harmon, Jennifer L; Wills, Lauren P; McOmish, Caitlin E; Demireva, Elena Y; Gingrich, Jay A; Beeson, Craig C; Schnellmann, Rick G

    2016-04-01

    In acute organ injuries, mitochondria are often dysfunctional, and recent research has revealed that recovery of mitochondrial and renal functions is accelerated by induction of mitochondrial biogenesis (MB). We previously reported that the nonselective 5-HT2 receptor agonist DOI [1-(4-iodo-2,5-dimethoxyphenyl)propan-2-amine] induced MB in renal proximal tubular cells (RPTCs). The goal of this study was to determine the role of 5-HT2 receptors in the regulation of mitochondrial genes and oxidative metabolism in the kidney. The 5-HT2C receptor agonist CP-809,101 [2-[(3-chlorophenyl)methoxy]-6-(1-piperazinyl)pyrazine] and antagonist SB-242,084 [6-chloro-2,3-dihydro-5-methyl-N-[6-[(2-methyl-3-pyridinyl)oxy]-3-pyridinyl]-1H-indole-1-carboxyamide dihydrochloride] were used to examine the induction of renal mitochondrial genes and oxidative metabolism in RPTCs and in mouse kidneys in the presence and absence of the 5-HT2C receptor. Unexpectedly, both CP-809,101 and SB-242,084 increased RPTC respiration and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) mRNA expression in RPTCs at 1-10 nM. In addition, CP-809,101 and SB-242,084 increased mRNA expression of PGC-1α and the mitochondrial proteins NADH dehydrogenase subunit 1 and NADH dehydrogenase (ubiquinone) β subcomplex 8 in mice. These compounds increased mitochondrial genes in RPTCs in which the 5-HT2C receptor was downregulated with small interfering RNA and in the renal cortex of mice lacking the 5-HT2C receptor. By contrast, the ability of these compounds to increase PGC-1α mRNA and respiration was blocked in RPTCs treated with 5-HT2A receptor small interfering RNA or the 5-HT2A receptor antagonist eplivanserin. In addition, the 5-HT2A receptor agonist NBOH-2C-CN [4-[2-[[(2-hydroxyphenyl)methyl]amino]ethyl]-2,5-dimethoxybenzonitrile] increased RPTC respiration at 1-100 nM. These results suggest that agonism of the 5-HT2A receptor induces MB and that the classic 5-HT2C receptor agonist CP

  14. Antibodies and Their Receptors: Different Potential Roles in Mucosal Defense

    PubMed Central

    Horton, Rachel E.; Vidarsson, Gestur

    2013-01-01

    Over recent years it has become increasingly apparent that mucosal antibodies are not only restricted to the IgM and IgA isotypes, but that also other isotypes and particularly IgG can be found in significant quantities at some mucosal surfaces, such as in the genital tract. Their role is more complex than traditionally believed with, among other things, the discovery of novel function of mucosal immunoglobulin receptors. A thorough knowledge in the source and function and mucosal immunoglobulins is particularly important in development of vaccines providing mucosal immunity, and also in the current climate of microbicide development, to combat major world health issues such as HIV. We present here a comprehensive review of human antibody mediated mucosal immunity. PMID:23882268

  15. Gene-modified T-cell therapy using chimeric antigen receptors for pediatric hematologic malignancies.

    PubMed

    Nakazawa, Yozo

    2016-06-01

    Chimeric antigen receptor (CAR) is the generic name for synthetic T cell receptors redirected to tumor-associated antigens. Most CARs consist of an ectodomain (scFv or ligand), a hinge region, a transmembrane domain, and signaling endodomains derived from one or two co-stimulatory molecules (CD28, 4-1BB, etc) and from a CD3-ζ chain. CD19-targeted CAR T cell therapy has achieved major success in the treatment of B cell malignancies. CD19 CAR-T cells elicited complete remission in 70-90% of adult and pediatric patients with relapsed/refractory acute lymphoblastic leukemia (ALL). CD19 CAR T cell therapy from allogeneic donors including third party donors is a potential option for B-cell malignancies. CAR T cell therapies for myeloma, acute myeloid leukemia, and T-cell leukemia are still under development. Our group is currently preparing a phase I study of CD19 CAR T cell therapy in pediatric and young adult patients with ALL using a non-viral gene transfer method, the piggyBac-transposon system. PMID:27384848

  16. Associations of the Estrogen Receptors 1 and 2 Gene Polymorphisms With the Metabolic Syndrome in Women

    PubMed Central

    Zee, Robert Y.L.; Pradhan, Aruna; Rexrode, Kathryn M.

    2009-01-01

    Abstract Background Genetic variation of the estrogen receptor α (ESR1) and β (ESR2) has been associated with components of the metabolic syndrome. Methods The relationships of two ESR1 (rs2234693 and rs9340799) and three ESR2 (rs1271572, rs1256049, and rs4986938) polymorphisms with the metabolic syndrome were examined in 532 Caucasian female participants (median age 63.1 years) in the Women's Health Study. Most women (99.1%) were postmenopausal. The associations between ESR1 and ESR2 genotypes and haplotypes with the metabolic syndrome were evaluated. Effect modification by hormone therapy was also assessed. Results Genotype and haplotype distributions were similar between women with and without metabolic syndrome. We found no consistent associations between the genotypes and haplotypes tested and the metabolic syndrome, or its components, in logistic regression models. No effect modification by hormone therapy use was noted. Conclusions No association between these genetic variants in ESR1 and ESR2 and the metabolic syndrome was observed among these Caucasian women. Further investigation regarding the potential involvement of estrogen receptor genes and the metabolic syndrome may be warranted in other ethnic groups. PMID:19032032

  17. The insect ecdysone receptor is a good potential target for RNAi-based pest control.

    PubMed

    Yu, Rong; Xu, Xinping; Liang, Yongkang; Tian, Honggang; Pan, Zhanqing; Jin, Shouheng; Wang, Na; Zhang, Wenqing

    2014-01-01

    RNA interference (RNAi) has great potential for use in insect pest control. However, some significant challenges must be overcome before RNAi-based pest control can become a reality. One challenge is the proper selection of a good target gene for RNAi. Here, we report that the insect ecdysone receptor (EcR) is a good potential target for RNAi-based pest control in the brown planthopper Nilaparvata lugens, a serious insect pest of rice plants. We demonstrated that the use of a 360 bp fragment (NlEcR-c) that is common between NlEcR-A and NlEcR-B for feeding RNAi experiments significantly decreased the relative mRNA expression levels of NlEcR compared with those in the dsGFP control. Feeding RNAi also resulted in a significant reduction in the number of offspring per pair of N. lugens. Consequently, a transgenic rice line expressing NlEcR dsRNA was constructed by Agrobacterium- mediated transformation. The results of qRT-PCR showed that the total copy number of the target gene in all transgenic rice lines was 2. Northern blot analysis showed that the small RNA of the hairpin dsNlEcR-c was successfully expressed in the transgenic rice lines. After newly hatched nymphs of N. lugens fed on the transgenic rice lines, effective RNAi was observed. The NlEcR expression levels in all lines examined were decreased significantly compared with the control. In all lines, the survival rate of the nymphs was nearly 90%, and the average number of offspring per pair in the treated groups was significantly less than that observed in the control, with a decrease of 44.18-66.27%. These findings support an RNAi-based pest control strategy and are also important for the management of rice insect pests.

  18. The Insect Ecdysone Receptor is a Good Potential Target for RNAi-based Pest Control

    PubMed Central

    Yu, Rong; Xu, Xinping; Liang, Yongkang; Tian, Honggang; Pan, Zhanqing; Jin, Shouheng; Wang, Na; Zhang, Wenqing

    2014-01-01

    RNA interference (RNAi) has great potential for use in insect pest control. However, some significant challenges must be overcome before RNAi-based pest control can become a reality. One challenge is the proper selection of a good target gene for RNAi. Here, we report that the insect ecdysone receptor (EcR) is a good potential target for RNAi-based pest control in the brown planthopper Nilaparvata lugens, a serious insect pest of rice plants. We demonstrated that the use of a 360 bp fragment (NlEcR-c) that is common between NlEcR-A and NlEcR-B for feeding RNAi experiments significantly decreased the relative mRNA expression levels of NlEcR compared with those in the dsGFP control. Feeding RNAi also resulted in a significant reduction in the number of offspring per pair of N. lugens. Consequently, a transgenic rice line expressing NlEcR dsRNA was constructed by Agrobacterium- mediated transformation. The results of qRT-PCR showed that the total copy number of the target gene in all transgenic rice lines was 2. Northern blot analysis showed that the small RNA of the hairpin dsNlEcR-c was successfully expressed in the transgenic rice lines. After newly hatched nymphs of N. lugens fed on the transgenic rice lines, effective RNAi was observed. The NlEcR expression levels in all lines examined were decreased significantly compared with the control. In all lines, the survival rate of the nymphs was nearly 90%, and the average number of offspring per pair in the treated groups was significantly less than that observed in the control, with a decrease of 44.18-66.27%. These findings support an RNAi-based pest control strategy and are also important for the management of rice insect pests. PMID:25516715

  19. Arginine vasotocin, isotocin and nonapeptide receptor gene expression link to social status and aggression in sex-dependent patterns.

    PubMed

    Lema, S C; Sanders, K E; Walti, K A

    2015-02-01

    -type receptor v1a2 as potentially mediating the effects of vasotocin on behaviour in male fish. These findings also illustrate how associations between social status, aggression and gene expression within the VT and IT nonapeptide systems can be contingent on behavioural context.

  20. Comprehensive Gene Expression Analysis of Rice Aleurone Cells: Probing the Existence of an Alternative Gibberellin Receptor1

    PubMed Central

    Yano, Kenji; Aya, Koichiro; Hirano, Ko; Ordonio, Reynante Lacsamana; Ueguchi-Tanaka, Miyako; Matsuoka, Makoto

    2015-01-01

    Current gibberellin (GA) research indicates that GA must be perceived in plant nuclei by its cognate receptor, GIBBERELLIN INSENSITIVE DWARF1 (GID1). Recognition of GA by GID1 relieves the repression mediated by the DELLA protein, a model known as the GID1-DELLA GA perception system. There have been reports of potential GA-binding proteins in the plasma membrane that perceive GA and induce α-amylase expression in cereal aleurone cells, which is mechanistically different from the GID1-DELLA system. Therefore, we examined the expression of the rice (Oryza sativa) α-amylase genes in rice mutants impaired in the GA receptor (gid1) and the DELLA repressor (slender rice1; slr1) and confirmed their lack of response to GA in gid1 mutants and constitutive expression in slr1 mutants. We also examined the expression of GA-regulated genes by genome-wide microarray and quantitative reverse transcription-polymerase chain reaction analyses and confirmed that all GA-regulated genes are modulated by the GID1-DELLA system. Furthermore, we studied the regulatory network involved in GA signaling by using a set of mutants defective in genes involved in GA perception and gene expression, namely gid1, slr1, gid2 (a GA-related F-box protein mutant), and gamyb (a GA-related trans-acting factor mutant). Almost all GA up-regulated genes were regulated by the four named GA-signaling components. On the other hand, GA down-regulated genes showed different expression patterns with respect to GID2 and GAMYB (e.g. a considerable number of genes are not controlled by GAMYB or GID2 and GAMYB). Based on these observations, we present a comprehensive discussion of the intricate network of GA-regulated genes in rice aleurone cells. PMID:25511432

  1. The Elastin Receptor Complex: A Unique Matricellular Receptor with High Anti-tumoral Potential

    PubMed Central

    Scandolera, Amandine; Odoul, Ludivine; Salesse, Stéphanie; Guillot, Alexandre; Blaise, Sébastien; Kawecki, Charlotte; Maurice, Pascal; El Btaouri, Hassan; Romier-Crouzet, Béatrice; Martiny, Laurent; Debelle, Laurent; Duca, Laurent

    2016-01-01

    Elastin, one of the longest-lived proteins, confers elasticity to tissues with high mechanical constraints. During aging or pathophysiological conditions such as cancer progression, this insoluble polymer of tropoelastin undergoes an important degradation leading to the release of bioactive elastin-derived peptides (EDPs), named elastokines. EDP exhibit several biological functions able to drive tumor development by regulating cell proliferation, invasion, survival, angiogenesis, and matrix metalloproteinase expression in various tumor and stromal cells. Although, several receptors have been suggested to bind elastokines (αvβ3 and αvβ5 integrins, galectin-3), their main receptor remains the elastin receptor complex (ERC). This heterotrimer comprises a peripheral subunit, named elastin binding protein (EBP), associated to the protective protein/cathepsin A (PPCA). The latter is bound to a membrane-associated protein called Neuraminidase-1 (Neu-1). The pro-tumoral effects of elastokines have been linked to their binding onto EBP. Additionally, Neu-1 sialidase activity is essential for their signal transduction. Consistently, EDP-EBP interaction and Neu-1 activity emerge as original anti-tumoral targets. Interestingly, besides its direct involvement in cancer progression, the ERC also regulates diabetes outcome and thrombosis, an important risk factor for cancer development and a vascular process highly increased in patients suffering from cancer. In this review, we will describe ERC and elastokines involvement in cancer development suggesting that this unique receptor would be a promising therapeutic target. We will also discuss the pharmacological concepts aiming at blocking its pro-tumoral activities. Finally, its emerging role in cancer-associated complications and pathologies such as diabetes and thrombotic events will be also considered. PMID:26973522

  2. The Elastin Receptor Complex: A Unique Matricellular Receptor with High Anti-tumoral Potential.

    PubMed

    Scandolera, Amandine; Odoul, Ludivine; Salesse, Stéphanie; Guillot, Alexandre; Blaise, Sébastien; Kawecki, Charlotte; Maurice, Pascal; El Btaouri, Hassan; Romier-Crouzet, Béatrice; Martiny, Laurent; Debelle, Laurent; Duca, Laurent

    2016-01-01

    Elastin, one of the longest-lived proteins, confers elasticity to tissues with high mechanical constraints. During aging or pathophysiological conditions such as cancer progression, this insoluble polymer of tropoelastin undergoes an important degradation leading to the release of bioactive elastin-derived peptides (EDPs), named elastokines. EDP exhibit several biological functions able to drive tumor development by regulating cell proliferation, invasion, survival, angiogenesis, and matrix metalloproteinase expression in various tumor and stromal cells. Although, several receptors have been suggested to bind elastokines (αvβ3 and αvβ5 integrins, galectin-3), their main receptor remains the elastin receptor complex (ERC). This heterotrimer comprises a peripheral subunit, named elastin binding protein (EBP), associated to the protective protein/cathepsin A (PPCA). The latter is bound to a membrane-associated protein called Neuraminidase-1 (Neu-1). The pro-tumoral effects of elastokines have been linked to their binding onto EBP. Additionally, Neu-1 sialidase activity is essential for their signal transduction. Consistently, EDP-EBP interaction and Neu-1 activity emerge as original anti-tumoral targets. Interestingly, besides its direct involvement in cancer progression, the ERC also regulates diabetes outcome and thrombosis, an important risk factor for cancer development and a vascular process highly increased in patients suffering from cancer. In this review, we will describe ERC and elastokines involvement in cancer development suggesting that this unique receptor would be a promising therapeutic target. We will also discuss the pharmacological concepts aiming at blocking its pro-tumoral activities. Finally, its emerging role in cancer-associated complications and pathologies such as diabetes and thrombotic events will be also considered.

  3. Serotonin 5-HT2A receptor gene variants influence antidepressant response to repeated total sleep deprivation in bipolar depression.

    PubMed

    Benedetti, Francesco; Barbini, Barbara; Bernasconi, Alessandro; Fulgosi, Mara Cigala; Colombo, Cristina; Dallaspezia, Sara; Gavinelli, Chiara; Marino, Elena; Pirovano, Adele; Radaelli, Daniele; Smeraldi, Enrico

    2008-12-12

    5-HT2A receptor density in prefrontal cortex was associated with depression and suicide. 5-HT2A receptor gene polymorphism rs6313 was associated with 5-HT2A receptor binding potential, with the ability of individuals to use environmental support in order to prevent depression, and with sleep improvement after antidepressant treatment with mirtazapine. Studies on response to antidepressant drugs gave inconsistent results. Here we studied the effect of rs6313 on response to repeated total sleep deprivation (TSD) in 80 bipolar depressed inpatients treated with three consecutive TSD cycles (each one made of 36 h awake followed by a night of undisturbed sleep). All genotype groups showed comparable acute effects of the first TSD, but patients homozygotes for the T variant had better perceived and observed benefits from treatment than carriers of the C allele. These effects became significant after the first recovery night and during the following days, leading to a 36% higher final response rate (Hamilton depression rating<8). The higher density of postsynaptic excitatory 5-HT2A receptors in T/T homozygotes could have led to higher behavioural effects of increased 5-HT neurotransmission due to repeated TSD. Other possible mechanisms involve allostatic/homeostatic adaptation to sleep loss, and a different effect of the allele variants on epigenetic influences. Results confirm the interest for individual gene variants of the serotonin pathway in shaping clinical characteristics of depression and antidepressant response.

  4. ß-Adrenergic Receptor Signaling and Modulation of Long-Term Potentiation in the Mammalian Hippocampus

    ERIC Educational Resources Information Center

    O'Dell, Thomas J.; Connor, Steven A.; Guglietta, Ryan; Nguyen, Peter V.

    2015-01-01

    Encoding new information in the brain requires changes in synaptic strength. Neuromodulatory transmitters can facilitate synaptic plasticity by modifying the actions and expression of specific signaling cascades, transmitter receptors and their associated signaling complexes, genes, and effector proteins. One critical neuromodulator in the…

  5. Human Mu Opioid Receptor (OPRM1A118G) polymorphism is associated with brain mu- opioid receptor binding potential in smokers

    SciTech Connect

    Ray, R.; Logan, J.; Ray, R.; Ruparel, K.; Newberg, A.; Wileyto, E.P.; Loughead, J.W.; Divgi, C.; Blendy, J.A.; Logan, J.; Zubieta, J.-K.; Lerman, C.

    2011-04-15

    Evidence points to the endogenous opioid system, and the mu-opioid receptor (MOR) in particular, in mediating the rewarding effects of drugs of abuse, including nicotine. A single nucleotide polymorphism (SNP) in the human MOR gene (OPRM1 A118G) has been shown to alter receptor protein level in preclinical models and smoking behavior in humans. To clarify the underlying mechanisms for these associations, we conducted an in vivo investigation of the effects of OPRM1 A118G genotype on MOR binding potential (BP{sub ND} or receptor availability). Twenty-two smokers prescreened for genotype (12 A/A, 10 */G) completed two [{sup 11}C] carfentanil positron emission tomography (PET) imaging sessions following overnight abstinence and exposure to a nicotine-containing cigarette and a denicotinized cigarette. Independent of session, smokers homozygous for the wild-type OPRM1 A allele exhibited significantly higher levels of MOR BP{sub ND} than smokers carrying the G allele in bilateral amygdala, left thalamus, and left anterior cingulate cortex. Among G allele carriers, the extent of subjective reward difference (denicotinized versus nicotine cigarette) was associated significantly with MOR BP{sub ND} difference in right amygdala, caudate, anterior cingulate cortex, and thalamus. Future translational investigations can elucidate the role of MORs in nicotine addiction, which may lead to development of novel therapeutics.

  6. Modulation of neurosteroid potentiation by protein kinases at synaptic- and extrasynaptic-type GABAA receptors

    PubMed Central

    Adams, Joanna M.; Thomas, Philip; Smart, Trevor G.

    2015-01-01

    GABAA receptors are important for inhibition in the CNS where neurosteroids and protein kinases are potent endogenous modulators. Acting individually, these can either enhance or depress receptor function, dependent upon the type of neurosteroid or kinase and the receptor subunit combination. However, in vivo, these modulators probably act in concert to fine-tune GABAA receptor activity and thus inhibition, although how this is achieved remains unclear. Therefore, we investigated the relationship between these modulators at synaptic-type α1β3γ2L and extrasynaptic-type α4β3δ GABAA receptors using electrophysiology. For α1β3γ2L, potentiation of GABA responses by tetrahydro-deoxycorticosterone was reduced after inhibiting protein kinase C, and enhanced following its activation, suggesting this kinase regulates neurosteroid modulation. In comparison, neurosteroid potentiation was reduced at α1β3S408A,S409Aγ2L receptors, and unaltered by PKC inhibitors or activators, indicating that phosphorylation of β3 subunits is important for regulating neurosteroid activity. To determine whether extrasynaptic-type GABAA receptors were similarly modulated, α4β3δ and α4β3S408A,S409Aδ receptors were investigated. Neurosteroid potentiation was reduced at both receptors by the kinase inhibitor staurosporine. By contrast, neurosteroid-mediated potentiation at α4S443Aβ3S408A,S409Aδ receptors was unaffected by protein kinase inhibition, strongly suggesting that phosphorylation of α4 and β3 subunits is required for regulating neurosteroid activity at extrasynaptic receptors. Western blot analyses revealed that neurosteroids increased phosphorylation of β3S408,S409 implying that a reciprocal pathway exists for neurosteroids to modulate phosphorylation of GABAA receptors. Overall, these findings provide important insight into the regulation of GABAA receptors in vivo, and into the mechanisms by which GABAergic inhibitory transmission may be simultaneously tuned by

  7. Massive losses of taste receptor genes in toothed and baleen whales.

    PubMed

    Feng, Ping; Zheng, Jinsong; Rossiter, Stephen J; Wang, Ding; Zhao, Huabin

    2014-05-06

    Taste receptor genes are functionally important in animals, with a surprising exception in the bottlenose dolphin, which shows extensive losses of sweet, umami, and bitter taste receptor genes. To examine the generality of taste gene loss, we examined seven toothed whales and five baleen whales and sequenced the complete repertoire of three sweet/umami (T1Rs) and ten bitter (T2Rs) taste receptor genes. We found all amplified T1Rs and T2Rs to be pseudogenes in all 12 whales, with a shared premature stop codon in 10 of the 13 genes, which demonstrated massive losses of taste receptor genes in the common ancestor of whales. Furthermore, we analyzed three genome sequences from two toothed whales and one baleen whale and found that the sour taste marker gene Pkd2l1 is a pseudogene, whereas the candidate salty taste receptor genes are intact and putatively functional. Additionally, we examined three genes that are responsible for taste signal transduction and found the relaxation of functional constraints on taste signaling pathways along the ancestral branch leading to whales. Together, our results strongly suggest extensive losses of sweet, umami, bitter, and sour tastes in whales, and the relaxation of taste function most likely arose in the common ancestor of whales between 36 and 53 Ma. Therefore, whales represent the first animal group to lack four of five primary tastes, probably driven by the marine environment with high concentration of sodium, the feeding behavior of swallowing prey whole, and the dietary switch from plants to meat in the whale ancestor.

  8. The nicotinic acetylcholine receptor gene family of the honey bee, Apis mellifera.

    PubMed

    Jones, Andrew K; Raymond-Delpech, Valerie; Thany, Steeve H; Gauthier, Monique; Sattelle, David B

    2006-11-01

    Nicotinic acetylcholine receptors (nAChRs) mediate fast cholinergic synaptic transmission and play roles in many cognitive processes. They are under intense research as potential targets of drugs used to treat neurodegenerative diseases and neurological disorders such as Alzheimer's disease and schizophrenia. Invertebrate nAChRs are targets of anthelmintics as well as a major group of insecticides, the neonicotinoids. The honey bee, Apis mellifera, is one of the most beneficial insects worldwide, playing an important role in crop pollination, and is also a valuable model system for studies on social interaction, sensory processing, learning, and memory. We have used the A. mellifera genome information to characterize the complete honey bee nAChR gene family. Comparison with the fruit fly Drosophila melanogaster and the malaria mosquito Anopheles gambiae shows that the honey bee possesses the largest family of insect nAChR subunits to date (11 members). As with Drosophila and Anopheles, alternative splicing of conserved exons increases receptor diversity. Also, we show that in one honey bee nAChR subunit, six adenosine residues are targeted for RNA A-to-I editing, two of which are evolutionarily conserved in Drosophila melanogaster and Heliothis virescens orthologs, and that the extent of editing increases as the honey bee lifecycle progresses, serving to maximize receptor diversity at the adult stage. These findings on Apis mellifera enhance our understanding of nAChR functional genomics and provide a useful basis for the development of improved insecticides that spare a major beneficial insect species.

  9. Lysophospholipid Receptors, as Novel Conditional Danger Receptors and Homeostatic Receptors Modulate Inflammation-Novel Paradigm and Therapeutic Potential.

    PubMed

    Wang, Xin; Li, Ya-Feng; Nanayakkara, Gayani; Shao, Ying; Liang, Bin; Cole, Lauren; Yang, William Y; Li, Xinyuan; Cueto, Ramon; Yu, Jun; Wang, Hong; Yang, Xiao-Feng

    2016-08-01

    There are limitations in the current classification of danger-associated molecular patterns (DAMP) receptors. To overcome these limitations, we propose a new paradigm by using endogenous metabolites lysophospholipids (LPLs) as a prototype. By utilizing a data mining method we pioneered, we made the following findings: (1) endogenous metabolites such as LPLs at basal level have physiological functions; (2) under sterile inflammation, expression of some LPLs is elevated. These LPLs act as conditional DAMPs or anti-inflammatory homeostasis-associated molecular pattern molecules (HAMPs) for regulating the progression of inflammation or inhibition of inflammation, respectively; (3) receptors for conditional DAMPs and HAMPs are differentially expressed in human and mouse tissues; and (4) complex signaling mechanism exists between pro-inflammatory mediators and classical DAMPs that regulate the expression of conditional DAMPs and HAMPs. This novel insight will facilitate identification of novel conditional DAMPs and HAMPs, thus promote development of new therapeutic targets to treat inflammatory disorders.

  10. Gene therapy in Alzheimer's disease - potential for disease modification.

    PubMed

    Nilsson, Per; Iwata, Nobuhisa; Muramatsu, Shin-ichi; Tjernberg, Lars O; Winblad, Bengt; Saido, Takaomi C

    2010-04-01

    Alzheimer's disease (AD) is the major cause of dementia in the elderly, leading to memory loss and cognitive decline. The mechanism underlying onset of the disease has not been fully elucidated. However, characteristic pathological manifestations include extracellular accumulation and aggregation of the amyloid beta-peptide (Abeta) into plaques and intracellular accumulation and aggregation of hyperphosphorylated tau, forming neurofibrillary tangles. Despite extensive research worldwide, no disease modifying treatment is yet available. In this review, we focus on gene therapy as a potential treatment for AD, and summarize recent work in the field, ranging from proof-of-concept studies in animal models to clinical trials. The multifactorial causes of AD offer a variety of possible targets for gene therapy, including two neurotrophic growth factors, nerve growth factor and brain-derived neurotrophic factor, Abeta-degrading enzymes, such as neprilysin, endothelin-converting enzyme and cathepsin B, and AD associated apolipoprotein E. This review also discusses advantages and drawbacks of various rapidly developing virus-mediated gene delivery techniques for gene therapy. Finally, approaches aiming at down-regulating amyloid precursor protein (APP) and beta-site APP cleaving enzyme 1 levels by means of siRNA-mediated knockdown are briefly summarized. Overall, the prospects appear hopeful that gene therapy has the potential to be a disease modifying treatment for AD.

  11. P2Y Receptors in Synaptic Transmission and Plasticity: Therapeutic Potential in Cognitive Dysfunction

    PubMed Central

    Guzman, Segundo J.; Gerevich, Zoltan

    2016-01-01

    ATP released from neurons and astrocytes during neuronal activity or under pathophysiological circumstances is able to influence information flow in neuronal circuits by activation of ionotropic P2X and metabotropic P2Y receptors and subsequent modulation of cellular excitability, synaptic strength, and plasticity. In the present paper we review cellular and network effects of P2Y receptors in the brain. We show that P2Y receptors inhibit the release of neurotransmitters, modulate voltage- and ligand-gated ion channels, and differentially influence the induction of synaptic plasticity in the prefrontal cortex, hippocampus, and cerebellum. The findings discussed here may explain how P2Y1 receptor activation during brain injury, hypoxia, inflammation, schizophrenia, or Alzheimer's disease leads to an impairment of cognitive processes. Hence, it is suggested that the blockade of P2Y1 receptors may have therapeutic potential against cognitive disturbances in these states. PMID:27069691

  12. Potential for vitamin D receptor agonists in the treatment of cardiovascular disease.

    PubMed

    Wu-Wong, J R

    2009-09-01

    Vitamin D(3) is made in the skin and modified in the liver and kidney to form the active metabolite, 1,25-dihydroxyvitamin D(3) (calcitriol). Calcitriol binds to a nuclear receptor, the vitamin D receptor (VDR), and activates VDR to recruit cofactors to form a transcriptional complex that binds to vitamin D response elements in the promoter region of target genes. During the past three decades the field has focused mainly on the role of VDR in the regulation of parathyroid hormone, intestinal calcium/phosphate absorption and bone metabolism; several VDR agonists (VDRAs) have been developed for the treatment of osteoporosis, psoriasis and hyperparathyroidism secondary to chronic kidney disease (CKD). Emerging evidence suggests that VDR plays important roles in modulating cardiovascular, immunological, metabolic and other functions. For example, data from epidemiological, preclinical and clinical studies have shown that vitamin D and/or 25(OH)D deficiency is associated with increased risk for cardiovascular disease (CVD). However, VDRA therapy seems more effective than native vitamin D supplementation in modulating CVD risk factors. In CKD, where decreasing VDR activation persists over the course of the disease and a majority of the patients die of CVD, VDRA therapy was found to provide a survival benefit in both pre-dialysis and dialysis CKD patients. Although VDR plays an important role in regulating cardiovascular function and VDRAs may be potentially useful for treating CVD, at present no VDRA is approved for CVD, and also no serum markers, beside parathyroid hormone in CKD, exist to indicate the efficacy of VDRA in CVD. PMID:19371337

  13. Identification of genes for the constant region of rabbit T-cell receptor beta chains.

    PubMed Central

    Angiolillo, A L; Lamoyi, E; Bernstein, K E; Mage, R G

    1985-01-01

    We describe cDNA clones from thymus mRNA of a young rabbit that have sequences highly homologous to the human and murine T-cell receptor beta-chain constant region (C beta). In rabbit, man, and mouse there is a conserved extra cysteine in the constant region that could lead to a free thiol group or alternative disulfide bond formation depending on the locations and total numbers of cysteines in assembled receptor molecules. A cDNA clone (CL ANA 11) with 571 bases 5' of the C beta coding sequence has an open reading frame starting at a methionine codon that encodes 141 amino acids in frame with the C beta sequence. The encoded sequence has no resemblance to known immunoglobulin or beta-chain variable regions or other known proteins. An oligonucleotide probe from the 5' end of the encoded protein hybridizes to an approximately equal to 2-kilobase genomic DNA fragment that contains C beta gene sequences and to an approximately equal to 8-kilobase mRNA species in the thymus mRNA preparation from which the clone was derived. Within the 5' coding sequence there is a stretch of 211 bases containing strings of alternating purines and pyrimidines that may form Z-DNA. The sequence of the last 55 base pairs adjacent to C beta resembles the corresponding segment of mouse cDNA clone 86T3 that contains sequence 5' of the mouse C beta 1 gene. Although the function of a potential protein encoded by the 5' end of CL ANA 11 is unknown, it could play a role in regulation of thymocyte growth and differentiation. Images PMID:2989826

  14. Candidate genes and potential targets for therapeutics in Wilms' tumour.

    PubMed

    Blackmore, Christopher; Coppes, Max J; Narendran, Aru

    2010-09-01

    Wilms' tumour (WT) is the most common malignant renal tumour of childhood. During the past two decades or so, molecular studies carried out on biopsy specimens and tumour-derived cell lines have identified a multitude of chromosomal and epigenetic alterations in WT. In addition, a significant amount of evidence has been gathered to identify the genes and signalling pathways that play a defining role in its genesis, growth, survival and treatment responsiveness. As such, these molecules and mechanisms constitute potential targets for novel therapeutic strategies for refractory WT. In this report we aim to review some of the many candidate genes and intersecting pathways that underlie the complexities of WT biology.

  15. Association of Vitamin D Receptor Gene Polymorphisms with Colorectal Cancer in a Saudi Arabian Population

    PubMed Central

    Alkhayal, Khayal A.; Awadalia, Zainab H.; Vaali-Mohammed, Mansoor-Ali; Al Obeed, Omar A.; Al Wesaimer, Alanoud; Halwani, Rabih; Zubaidi, Ahmed M.

    2016-01-01

    Background Vitamin D, causally implicated in bone diseases and human malignancies, exerts its effects through binding to the vitamin D receptor (VDR). VDR is a transcription factor modulating the expression of several genes in different pathways. Genetic variants in the VDR gene have been associated with several cancers in different population including colorectal cancer. Objective To assess the association of VDR gene polymorphisms in relation with colorectal cancer (CRC) in a Saudi population. Methods The polymorphisms of VDR gene (BsmI, FokI, ApaI and TaqI) were analyzed by the polymerase chain reaction amplification of segments of interest followed by Sanger sequencing. One hundred diagnosed CRC patients and 100 healthy control subjects that were age and gender matched were recruited. Results We did not observe significant association of any of the four VDR polymorphisms with colorectal cancer risk in the overall analysis. Although not statistically significant, the AA genotype of BsmI conferred about two-fold protection against CRCs compared to the GG genotype. Stratification of the study subjects based on age and gender suggests statistically significant association of CRC with the ‘C’ allele of ApaI in patients >57 years of age at disease diagnosis and BsmI polymorphism in females. In addition, statistically significant differences were observed for the genotypic distributions of VDR-BsmI, ApaI and TaqI SNPs between Saudi Arabian population and several of the International HapMap project populations. Conclusion Despite the absence of correlation of the examined VDR polymorphisms with CRCs in the combined analysis, ApaI and BsmI loci are statistically significantly associated with CRC in elderly and female patients, respectively. These findings need further validation in larger cohorts prior to utilizing these SNPs as potential screening markers for colorectal cancers in Saudi population. PMID:27309378

  16. A novel putative tyrosine kinase receptor with oncogenic potential.

    PubMed

    Janssen, J W; Schulz, A S; Steenvoorden, A C; Schmidberger, M; Strehl, S; Ambros, P F; Bartram, C R

    1991-11-01

    We have detected transforming activity by a tumorigenicity assay using NIH3T3 cells transfected with DNA from a chronic myeloproliferative disorder patient. Here, we report the cDNA cloning of the corresponding oncogene, designated UFO, in allusion to the as yet unidentified function of its protein. Nucleotide sequence analysis of a 3116bp cDNA clone revealed a 2682-bp-long open reading frame capable of directing the synthesis of a 894 amino acid polypeptide. The predicted UFO protein exhibits characteristic features of a transmembrane receptor with associated tyrosine kinase activity. The UFO proto-oncogene maps to human chromosome 19q13.1 and is transcribed into two 5.0 kb and 3.2 kb mRNAs in human bone marrow and human tumor cell lines. The UFO locus is evolutionarily conserved between vertebrate species. A 4.0 kb mRNA of the murine UFO homolog is expressed in a variety of different mouse tissues. We thus have identified a novel element of the complex signaling network involved in the control of cell proliferation and differentiation.

  17. Repeated ketamine administration alters N-methyl-D-aspartic acid receptor subunit gene expression: implication of genetic vulnerability for ketamine abuse and ketamine psychosis in humans.

    PubMed

    Xu, Ke; Lipsky, Robert H

    2015-02-01

    For more than 40 years following its approval by the Food and Drug Administration (FDA) as an anesthetic, ketamine, a non-competitive N-methyl-D-aspartic acid (NMDA) receptor antagonist, has been used as a tool of psychiatric research. As a psychedelic drug, ketamine induces psychotic symptoms, cognitive impairment, and mood elevation, which resemble some symptoms of schizophrenia. Recreational use of ketamine has been increasing in recent years. However, little is known of the underlying molecular mechanisms responsible for ketamine-associated psychosis. Recent animal studies have shown that repeated ketamine administration significantly increases NMDA receptor subunit gene expression, in particular subunit 1 (NR1 or GluN1) levels. This results in neurodegeneration, supporting a potential mechanism where up-regulation of NMDA receptors could produce cognitive deficits in chronic ketamine abuse patients. In other studies, NMDA receptor gene variants are associated with addictive behavior. Here, we focus on the roles of NMDA receptor gene subunits in ketamine abuse and ketamine psychosis and propose that full sequencing of NMDA receptor genes may help explain individual vulnerability to ketamine abuse and ketamine-associated psychosis.

  18. Ecdysone Receptor-Based Gene Switches for Applications in Plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are a number of circumstances in which it is advantageous to use an inducible gene regulation system, the most obvious being when introducing transgenes whose constitutive expression is detrimental or even lethal to the host plants. The selective induction of gene expression is typically accom...

  19. A hot spot for hotfoot mutations in the gene encoding the delta2 glutamate receptor.

    PubMed

    Wang, Ying; Matsuda, Shinji; Drews, Valerie; Torashima, Takashi; Meisler, Miriam H; Yuzaki, Michisuke

    2003-04-01

    The orphan glutamate receptor delta2 is selectively expressed in Purkinje cells and plays a crucial role in cerebellar functions. Recently, ataxia in the hotfoot mouse ho4J was demonstrated to be caused by a deletion in the delta2 receptor gene (Grid2) removing the N-terminal 170 amino acids of the delta2 receptor. To understand how delta2 receptors function, we characterized mutations in eight additional spontaneously occurring hotfoot alleles of Grid2. The mouse Grid2 gene consists of 16 exons, spanning approximately 1.4 Mb. Genomic DNA analysis showed that seven hotfoot mutants had a deletion of one or more exons encoding the N-terminal domain of delta2 receptors. The exception is ho5J, which has a point mutation in exon 12. Deletions in ho7J, ho9J, ho11J and ho12J mice result in the in-frame deletion of between 40 and 95 amino acids. Expression of constructs containing these deletions in HEK293 cells resulted in protein retention in the endoplasmic reticulum or cis-Golgi without transport to the cell surface. Coimmunoprecipitation assays indicated that these deletions also reduce the intermolecular interaction between individual delta2 receptors. These results indicate that the deleted N-terminal regions are crucial for oligomerization of delta2 receptors and their subsequent transport to the cell surface of Purkinje cells. The relatively large size of the Grid2 gene may be one of the reasons why many spontaneous mutations occur in this gene. In addition, the frequent occurrence of in-frame deletions within the N-terminal domain in hotfoot mutants suggests the importance of this domain in the function of delta2 receptors.

  20. Neuroprotection by selective allosteric potentiators of the EP2 prostaglandin receptor

    PubMed Central

    Jiang, Jianxiong; Ganesh, Thota; Du, Yuhong; Thepchatri, Pahk; Rojas, Asheebo; Lewis, Iestyn; Kurtkaya, Serdar; Li, Lian; Qui, Min; Serrano, Geidy; Shaw, Renee; Sun, Aiming; Dingledine, Ray

    2010-01-01

    Activation of the Gαs-coupled EP2 receptor for prostaglandin E2 (PGE2) promotes cell survival in several models of tissue damage. To advance understanding of EP2 functions, we designed experiments to develop allosteric potentiators of this key prostaglandin receptor. Screens of 292,000 compounds identified 93 that at 20 μM (i) potentiated the cAMP response to a low concentration of PGE2 by > 50%; (ii) had no effect on EP4 or β2 adrenergic receptors, the cAMP assay itself, or the parent cell line; and (iii) increased the potency of PGE2 on EP2 receptors at least 3-fold. In aqueous solution, the active compounds are largely present as nanoparticles that appear to serve as active reservoirs for bioactive monomer. From 94 compounds synthesized or purchased, based on the modification of one hit compound, the most active increased the potency of PGE2 on EP2 receptors 4- to 5-fold at 10 to 20 μM and showed substantial neuroprotection in an excitotoxicity model. These small molecules represent previously undescribed allosteric modulators of a PGE2 receptor. Our results strongly reinforce the notion that activation of EP2 receptors by endogenous PGE2 released in a cell-injury setting is neuroprotective. PMID:20080612

  1. Estrogen activation of the nuclear orphan receptor CAR (constitutive active receptor) in induction of the mouse Cyp2b10 gene.

    PubMed

    Kawamoto, T; Kakizaki, S; Yoshinari, K; Negishi, M

    2000-11-01

    The nuclear orphan receptor CAR (constitutively active receptor or constitutive androstane receptor) can be activated in response to xenochemical exposure, such as activation by phenobarbital of a response element called NR1 found in the CYP2B gene. Here various steroids were screened for potential endogenous chemicals that may activate CAR, using the NR1 enhancer and Cyp2b10 induction in transfected HepG2 cell and/or in mouse primary hepatocytes as the experimental criteria. 17beta-Estradiol and estrone activated NR1, whereas estriol, estetrol, estradiol sulfate, and the synthetic estrogen diethylstilbestrol did not. On the other hand, progesterone and androgens repressed NR1 activity in HepG2 cells, and the repressed NR1 activity was fully restored by estradiol. Moreover, estrogen treatment elicited nuclear accumulation of CAR in the mouse livers, as well as primary hepatocytes, and induced the endogenous Cyp2b10 gene. Ovariectomy did not affect either the basal or induced level of CAR in the nucleus of the female livers, while castration slightly increased the basal and greatly increased the induced levels in the liver nucleus of male mice. Thus, endogenous estrogen appears not to regulate CAR in female mice, whereas endogenous androgen may be the repressive factor in male mice. Estrogen at pharmacological levels is an effective activator of CAR in both female and male mice, suggesting a biological and/or toxicological role of this receptor in estrogen metabolism. In addition to mouse CAR, estrogens activated rat CAR, whereas human CAR did not respond well to the estrogens under the experimental conditions. PMID:11075820

  2. Computational studies of new potential antimalarial compounds--stereoelectronic complementarity with the receptor.

    PubMed

    Portela, César; Afonso, Carlos M M; Pinto, Madalena M M; Ramos, Maria João

    2003-09-01

    One of the most important pharmacological mechanisms of antimalarial action is the inhibition of the aggregation of hematin into hemozoin. We present a group of new potential antimalarial molecules for which we have performed a DFT study of their stereoelectronic properties. Additionally, the same calculations were carried out for the two putative drug receptors involved in the referred activity, i.e., hematin mu-oxo dimer and hemozoin. A complementarity between the structural and electronic profiles of the planned molecules and the receptors can be observed. A docking study of the new compounds in relation to the two putative receptors is also presented, providing a correlation with the defined electrostatic complementarity.

  3. Structure and linkage of the D2 dopamine receptor and neural cell adhesion molecule genes on human chromosome 11q23

    SciTech Connect

    Eubanks, J.H.; Djabali, M.; Selleri, L.; McElligott, D.L.; Evans, G.A. ); Grandy, D.K.; Civelli, O. )

    1992-12-01

    The gene encoding the D2 dopamine receptor (DRD2) is located on human chromosome 11q23 and has been circumstantially associated with a number of human disorders including Parkinson's disease, schizophrenia, and susceptibility to alcoholism. To determine the physical structure of the DRD2 gene, the authors utilized cosmid cloning, isolation of yeast artificial chromosomes (YACs), and pulsed-field gel electrophoresis to construct a long-range physical map of human chromosome 11q23 linking the genes for the DRD2 and neural cell adhesion molecule (NCAM). The D2 dopamine receptor gene extends over 270 kb and includes an intron of approximately 250 kb separating the putative first exon from the exons encoding the receptor protein. The resulting physical map spans more than 1.5 mb of chromosome band 11q23 and links the DRD2 gene with the gene encoding the NCAM located 150 kb 3[prime] of the DRD2 gene and transcribed from the same DNA strand. They additionally located the sites of at least four hypomethylated HTF islands within the physical map, which potentially indicate the sites of additional genes. High-resolution fluorescent in situ suppression hybridization using cosmid and YAC clones localized this gene cluster between the ApoAI and STMY loci at the interface of bands 11q22.3 and 11q23.1. 40 refs., 6 figs., 2 tabs.

  4. A stimulus-specific role for CREB-binding protein (CBP) in T cell receptor-activated tumor necrosis factor gene expression

    NASA Astrophysics Data System (ADS)

    Falvo, James V.; Brinkman, Brigitta M. N.; Tsytsykova, Alla V.; Tsai, Eunice Y.; Yao, Tso-Pang; Kung, Andrew L.; Goldfeld, Anne E.

    2000-04-01

    The cAMP response element binding protein (CREB)-binding protein (CBP)/p300 family of coactivator proteins regulates gene transcription through the integration of multiple signal transduction pathways. Here, we show that induction of tumor necrosis factor (TNF-) gene expression in T cells stimulated by engagement of the T cell receptor (TCR) or by virus infection requires CBP/p300. Strikingly, in mice lacking one copy of the CBP gene, TNF- gene induction by TCR activation is inhibited, whereas virus induction of the TNF- gene is not affected. Consistent with these findings, the transcriptional activity of CBP is strongly potentiated by TCR activation but not by virus infection of T cells. Thus, CBP gene dosage and transcriptional activity are critical in TCR-dependent TNF-α gene expression, demonstrating a stimulus-specific requirement for CBP in the regulation of a specific gene.

  5. Intracellular delivery of potential therapeutic genes: prospects in cancer gene therapy.

    PubMed

    Bakhtiar, Athirah; Sayyad, Mustak; Rosli, Rozita; Maruyama, Atsushi; Chowdhury, Ezharul H

    2014-01-01

    Conventional therapies for malignant cancer such as chemotherapy and radiotherapy are associated with poor survival rates owing to the development of cellular resistance to cancer drugs and the lack of targetability, resulting in unwanted adverse effects on healthy cells and necessitating the lowering of therapeutic dose with consequential lower efficacy of the treatment. Gene therapy employing different types of viral and non-viral carriers to transport gene(s) of interest and facilitating production of the desirable therapeutic protein(s) has tremendous prospects in cancer treatments due to the high-level of specificity in therapeutic action of the expressed protein(s) with diminished off-target effects, although cancer cell-specific delivery of transgene(s) still poses some challenges to be addressed. Depending on the potential therapeutic target genes, cancer gene therapy could be categorized into tumor suppressor gene replacement therapy, immune gene therapy and enzyme- or prodrug-based therapy. This review would shed light on the current progress of delivery of potentially therapeutic genes into various cancer cells in vitro and animal models utilizing a variety of viral and non-viral vectors.

  6. Devil's Claw to Suppress Appetite—Ghrelin Receptor Modulation Potential of a Harpagophytum procumbens Root Extract

    PubMed Central

    Torres-Fuentes, Cristina; Theeuwes, Wessel F.; McMullen, Michael K.; McMullen, Anna K.; Dinan, Timothy G.; Cryan, John F.; Schellekens, Harriët

    2014-01-01

    Ghrelin is a stomach-derived peptide that has been identified as the only circulating hunger hormone that exerts a potent orexigenic effect via activation of its receptor, the growth hormone secretagogue receptor (GHS-R1a). Hence, the ghrelinergic system represents a promising target to treat obesity and obesity-related diseases. In this study we analysed the GHS-R1a receptor activating potential of Harpagophytum procumbens, popularly known as Devil's Claw, and its effect on food intake in vivo. H. procumbens is an important traditional medicinal plant from Southern Africa with potent anti-inflammatory and analgesic effects. This plant has been also used as an appetite modulator but most evidences are anecdotal and to our knowledge, no clear scientific studies relating to appetite modulation have been done to this date. The ghrelin receptor activation potential of an extract derived from the dried tuberous roots of H. procumbens was analysed by calcium mobilization and receptor internalization assays in human embryonic kidney cells (Hek) stably expressing the GHS-R1a receptor. Food intake was investigated in male C57BL/6 mice following intraperitoneal administration of H. procumbens root extract in ad libitum and food restricted conditions. Exposure to H. procumbens extract demonstrated a significant increased cellular calcium influx but did not induce subsequent GHS-R1a receptor internalization, which is a characteristic for full receptor activation. A significant anorexigenic effect was observed in male C57BL/6 mice following peripheral administration of H. procumbens extract. We conclude that H. procumbens root extract is a potential novel source for potent anti-obesity bioactives. These results reinforce the promising potential of natural bioactives to be developed into functional foods with weight-loss and weight maintenance benefits. PMID:25068823

  7. Devil's Claw to suppress appetite--ghrelin receptor modulation potential of a Harpagophytum procumbens root extract.

    PubMed

    Torres-Fuentes, Cristina; Theeuwes, Wessel F; McMullen, Michael K; McMullen, Anna K; Dinan, Timothy G; Cryan, John F; Schellekens, Harriët

    2014-01-01

    Ghrelin is a stomach-derived peptide that has been identified as the only circulating hunger hormone that exerts a potent orexigenic effect via activation of its receptor, the growth hormone secretagogue receptor (GHS-R1a). Hence, the ghrelinergic system represents a promising target to treat obesity and obesity-related diseases. In this study we analysed the GHS-R1a receptor activating potential of Harpagophytum procumbens, popularly known as Devil's Claw, and its effect on food intake in vivo. H. procumbens is an important traditional medicinal plant from Southern Africa with potent anti-inflammatory and analgesic effects. This plant has been also used as an appetite modulator but most evidences are anecdotal and to our knowledge, no clear scientific studies relating to appetite modulation have been done to this date. The ghrelin receptor activation potential of an extract derived from the dried tuberous roots of H. procumbens was analysed by calcium mobilization and receptor internalization assays in human embryonic kidney cells (Hek) stably expressing the GHS-R1a receptor. Food intake was investigated in male C57BL/6 mice following intraperitoneal administration of H. procumbens root extract in ad libitum and food restricted conditions. Exposure to H. procumbens extract demonstrated a significant increased cellular calcium influx but did not induce subsequent GHS-R1a receptor internalization, which is a characteristic for full receptor activation. A significant anorexigenic effect was observed in male C57BL/6 mice following peripheral administration of H. procumbens extract. We conclude that H. procumbens root extract is a potential novel source for potent anti-obesity bioactives. These results reinforce the promising potential of natural bioactives to be developed into functional foods with weight-loss and weight maintenance benefits. PMID:25068823

  8. Selective androgen receptor modulators in drug discovery: medicinal chemistry and therapeutic potential.

    PubMed

    Cadilla, Rodolfo; Turnbull, Philip

    2006-01-01

    Modulation of the androgen receptor has the potential to be an effective treatment for hypogonadism, andropause, and associated conditions such as sarcopenia, osteoporosis, benign prostatic hyperplasia, and sexual dysfunction. Side effects associated with classical anabolic steroid treatments have driven the quest for drugs that demonstrate improved therapeutic profiles. Novel, non-steroidal compounds that show tissue selective activity and improved pharmacokinetic properties have been developed. This review provides an overview of current advances in the development of selective androgen receptor modulators (SARMs).

  9. Oxytocin, vasopressin and estrogen receptor gene expression in relation to social recognition in female mice

    PubMed Central

    Clipperton-Allen, Amy E.; Lee, Anna W.; Reyes, Anny; Devidze, Nino; Phan, Anna; Pfaff, Donald W.; Choleris, Elena

    2012-01-01

    Inter- and intra-species differences in social behavior and recognition-related hormones and receptors suggest that different distribution and/or expression patterns may relate to social recognition. We used qRT-PCR to investigate naturally occurring differences in expression of estrogen receptor-alpha (ERα), ER-beta (ERβ), progesterone receptor (PR), oxytocin (OT) and receptor, and vasopressin (AVP) and receptors in proestrous female mice. Following four 5 min exposures to the same two conspecifics, one was replaced with a novel mouse in the final trial (T5). Gene expression was examined in mice showing high (85–100%) and low (40–60%) social recognition scores (i.e., preferential novel mouse investigation in T5) in eight socially-relevant brain regions. Results supported OT and AVP involvement in social recognition, and suggest that in the medial preoptic area, increased OT and AVP mRNA, together with ERα and ERβ gene activation, relate to improved social recognition. Initial social investigation correlated with ERs, PR and OTR in the dorsolateral septum, suggesting that these receptors may modulate social interest without affecting social recognition. Finally, increased lateral amygdala gene activation in the LR mice may be associated with general learning impairments, while decreased lateral amygdala activity may indicate more efficient cognitive mechanisms in the HR mice. PMID:22079582

  10. Ah Receptor Signaling Controls the Expression of Cardiac Development and Homeostasis Genes.

    PubMed

    Carreira, Vinicius S; Fan, Yunxia; Wang, Qing; Zhang, Xiang; Kurita, Hisaka; Ko, Chia-I; Naticchioni, Mindi; Jiang, Min; Koch, Sheryl; Medvedovic, Mario; Xia, Ying; Rubinstein, Jack; Puga, Alvaro

    2015-10-01

    Congenital heart disease (CHD) is the most common congenital abnormality and one of the leading causes of newborn death throughout the world. Despite much emerging scientific information, the precise etiology of this disease remains elusive. Here, we show that the aryl hydrocarbon receptor (AHR) regulates the expression of crucial cardiogenesis genes and that interference with endogenous AHR functions, either by gene ablation or by agonist exposure during early development, causes overlapping structural and functional cardiac abnormalities that lead to altered fetal heart physiology, including higher heart rates, right and left ventricle dilation, higher stroke volume, and reduced ejection fraction. With striking similarity between AHR knockout (Ahr(-/-)) and agonist-exposed wild type (Ahr(+/+)) embryos, in utero disruption of endogenous AHR functions converge into dysregulation of molecular mechanisms needed for attainment and maintenance of cardiac differentiation, including the pivotal signals regulated by the cardiogenic transcription factor NKH2.5, energy balance via oxidative phosphorylation and TCA cycle and global mitochondrial function and homeostasis. Our findings suggest that AHR signaling in the developing mammalian heart is central to the regulation of pathways crucial for cellular metabolism, cardiogenesis, and cardiac function, which are potential targets of environmental factors associated with CHD.

  11. Hyperplasia-adenoma sequence in pituitary tumorigenesis related to aryl hydrocarbon receptor interacting protein gene mutation.

    PubMed

    Villa, Chiara; Lagonigro, Maria Stefania; Magri, Flavia; Koziak, Maria; Jaffrain-Rea, Marie-Lise; Brauner, Raja; Bouligand, Jerome; Junier, Marie Pierre; Di Rocco, Federico; Sainte-Rose, Christian; Beckers, Albert; Roux, François Xavier; Daly, Adrian F; Chiovato, Luca

    2011-06-01

    Mutations of the aryl hydrocarbon receptor interacting protein (AIP) gene are associated with pituitary adenomas that usually occur as familial isolated pituitary adenomas (FIPA). Detailed pathological and tumor genetic data on AIP mutation-related pituitary adenomas are not sufficient. Non-identical twin females presented as adolescents to the emergency department with severe progressive headache caused by large pituitary macroadenomas require emergency neurosurgery; one patient had incipient pituitary apoplexy. Post-surgically, the patients were found to have silent somatotrope adenomas on pathological examination. Furthermore, the light microscopic, immunohistochemical, and electron microscopic studies demonstrated tumors of virtually identical characteristics. The adenomas were accompanied by multiple areas of pituitary hyperplasia, which stained positively for GH, indicating somatotrope hyperplasia. Genetic analyses of the FIPA kindred revealed a novel E216X mutation of the AIP gene, which was present in both the affected patients and the unaffected father. Molecular analysis of surgical specimens revealed loss of heterozygosity (LOH) in the adenoma but showed that LOH was not present in the hyperplastic pituitary tissue from either patient. AIP immunostaining confirmed normal staining in the hyperplastic tissue and decreased staining in the adenoma in the tumors from both patients. These results demonstrate that patients with AIP germline mutation can present with silent somatotrope pituitary adenomas. The finding of somatotrope hyperplasia unaccompanied by AIP LOH suggests that LOH at the AIP locus might be a late event in a potential progression from hyperplastic to adenomatous tissue. PMID:21450940

  12. Variation in the Oxytocin Receptor Gene Is Associated with Face Recognition and its Neural Correlates

    PubMed Central

    Westberg, Lars; Henningsson, Susanne; Zettergren, Anna; Svärd, Joakim; Hovey, Daniel; Lin, Tian; Ebner, Natalie C.; Fischer, Håkan

    2016-01-01

    The ability to recognize faces is crucial for daily social interactions. Recent studies suggest that intranasal oxytocin administration improves social recognition in humans. Oxytocin signaling in the amygdala plays an essential role for social recognition in mice, and oxytocin administration has been shown to influence amygdala activity in humans. It is therefore possible that the effects of oxytocin on human social recognition depend on mechanisms that take place in the amygdala—a central region for memory processing also in humans. Variation in the gene encoding the oxytocin receptor (OXTR) has been associated with several aspects of social behavior. The present study examined the potential associations between nine OXTR polymorphisms, distributed across the gene, and the ability to recognize faces, as well as face-elicited amygdala activity measured by functional magnetic resonance imaging (fMRI) during incidental encoding of faces. The OXTR 3′ polymorphism rs7632287, previously related to social bonding behavior and autism risk, was associated with participants’ ability to recognize faces. Carriers of the GA genotype, associated with enhanced memory, displayed higher amygdala activity during face encoding compared to carriers of the GG genotype. In line with work in rodents, these findings suggest that, in humans, naturally occurring endogenous modulation of OXTR function affects social recognition through an amygdala-dependent mechanism. These findings contribute to the understanding of how oxytocin regulates human social behaviors. PMID:27713694

  13. Lactate promotes plasticity gene expression by potentiating NMDA signaling in neurons

    PubMed Central

    Yang, Jiangyan; Ruchti, Evelyne; Petit, Jean-Marie; Jourdain, Pascal; Grenningloh, Gabriele; Allaman, Igor; Magistretti, Pierre J.

    2014-01-01

    l-lactate is a product of aerobic glycolysis that can be used by neurons as an energy substrate. Here we report that in neurons l-lactate stimulates the expression of synaptic plasticity-related genes such as Arc, c-Fos, and Zif268 through a mechanism involving NMDA receptor activity and its downstream signaling cascade Erk1/2. l-lactate potentiates NMDA receptor-mediated currents and the ensuing increase in intracellular calcium. In parallel to this, l-lactate increases intracellular levels of NADH, thereby modulating the redox state of neurons. NADH mimics all of the effects of l-lactate on NMDA signaling, pointing to NADH increase as a primary mediator of l-lactate effects. The induction of plasticity genes is observed both in mouse primary neurons in culture and in vivo in the mouse sensory-motor cortex. These results provide insights for the understanding of the molecular mechanisms underlying the critical role of astrocyte-derived l-lactate in long-term memory and long-term potentiation in vivo. This set of data reveals a previously unidentified action of l-lactate as a signaling molecule for neuronal plasticity. PMID:25071212

  14. Homer1 gene products orchestrate Ca2+-permeable AMPA receptor distribution and LTP expression

    PubMed Central

    Rozov, Andrei; Zivkovic, Aleksandar R.; Schwarz, Martin K.

    2012-01-01

    We studied the role of Homer1 gene products on the presence of synaptic Ca2+-permeable AMPA receptors (AMPARs) and long-term potentiation (LTP) generation in hippocampal CA1 pyramidal neurons, using mice either lacking all Homer1 isoforms (Homer1 KO) or overexpressing the immediate early gene (IEG) product Homer1a (H1aTG). We found that Homer1 KO caused a significant redistribution of the AMPAR subunit GluA2 from the dendritic compartment to the soma. Furthermore, deletion of Homer1 enhanced the AMPAR-mediated component of glutamatergic currents at Schaffer collateral synapses as demonstrated by increased AMPA/NMDA current ratios. Meanwhile, LTP generation appeared to be unaffected. Conversely, sustained overexpression of Homer1a strongly reduced AMPA/NMDA current ratios and polyamine sensitivity of synaptic AMPAR, indicating that the proportion of synaptic GluA2-containing AMPAR increased relative to WT. LTP maintenance was abolished in H1aTG. Notably, overexpression of Homer1a in Homer1 KO or GluA2 KO mice did not affect LTP expression, suggesting activity-dependent interaction between Homer1a and long Homer1 isoforms with GluA2-containing AMPAR. Thus, Homer1a is essential for the activity-dependent regulation of excitatory synaptic transmission. PMID:23133416

  15. Sex Differences in Kappa Opioid Receptor Function and Their Potential Impact on Addiction

    PubMed Central

    Chartoff, Elena H.; Mavrikaki, Maria

    2015-01-01

    Behavioral, biological, and social sequelae that lead to drug addiction differ between men and women. Our efforts to understand addiction on a mechanistic level must include studies in both males and females. Stress, anxiety, and depression are tightly linked to addiction, and whether they precede or result from compulsive drug use depends on many factors, including biological sex. The neuropeptide dynorphin (DYN), an endogenous ligand at kappa opioid receptors (KORs), is necessary for stress-induced aversive states and is upregulated in the brain after chronic exposure to drugs of abuse. KOR agonists produce signs of anxiety, fear, and depression in laboratory animals and humans, findings that have led to the hypothesis that drug withdrawal-induced DYN release is instrumental in negative reinforcement processes that drive addiction. However, these studies were almost exclusively conducted in males. Only recently is evidence available that there are sex differences in the effects of KOR activation on affective state. This review focuses on sex differences in DYN and KOR systems and how these might contribute to sex differences in addictive behavior. Much of what is known about how biological sex influences KOR systems is from research on pain systems. The basic molecular and genetic mechanisms that have been discovered to underlie sex differences in KOR function in pain systems may apply to sex differences in KOR function in reward systems. Our goals are to discuss the current state of knowledge on how biological sex contributes to KOR function in the context of pain, mood, and addiction and to explore potential mechanisms for sex differences in KOR function. We will highlight evidence that the function of DYN-KOR systems is influenced in a sex-dependent manner by: polymorphisms in the prodynorphin (pDYN) gene, genetic linkage with the melanocortin-1 receptor (MC1R), heterodimerization of KORs and mu opioid receptors (MORs), and gonadal hormones. Finally, we

  16. Sex Differences in Kappa Opioid Receptor Function and Their Potential Impact on Addiction.

    PubMed

    Chartoff, Elena H; Mavrikaki, Maria

    2015-01-01

    Behavioral, biological, and social sequelae that lead to drug addiction differ between men and women. Our efforts to understand addiction on a mechanistic level must include studies in both males and females. Stress, anxiety, and depression are tightly linked to addiction, and whether they precede or result from compulsive drug use depends on many factors, including biological sex. The neuropeptide dynorphin (DYN), an endogenous ligand at kappa opioid receptors (KORs), is necessary for stress-induced aversive states and is upregulated in the brain after chronic exposure to drugs of abuse. KOR agonists produce signs of anxiety, fear, and depression in laboratory animals and humans, findings that have led to the hypothesis that drug withdrawal-induced DYN release is instrumental in negative reinforcement processes that drive addiction. However, these studies were almost exclusively conducted in males. Only recently is evidence available that there are sex differences in the effects of KOR activation on affective state. This review focuses on sex differences in DYN and KOR systems and how these might contribute to sex differences in addictive behavior. Much of what is known about how biological sex influences KOR systems is from research on pain systems. The basic molecular and genetic mechanisms that have been discovered to underlie sex differences in KOR function in pain systems may apply to sex differences in KOR function in reward systems. Our goals are to discuss the current state of knowledge on how biological sex contributes to KOR function in the context of pain, mood, and addiction and to explore potential mechanisms for sex differences in KOR function. We will highlight evidence that the function of DYN-KOR systems is influenced in a sex-dependent manner by: polymorphisms in the prodynorphin (pDYN) gene, genetic linkage with the melanocortin-1 receptor (MC1R), heterodimerization of KORs and mu opioid receptors (MORs), and gonadal hormones. Finally, we

  17. Sex Differences in Kappa Opioid Receptor Function and Their Potential Impact on Addiction.

    PubMed

    Chartoff, Elena H; Mavrikaki, Maria

    2015-01-01

    Behavioral, biological, and social sequelae that lead to drug addiction differ between men and women. Our efforts to understand addiction on a mechanistic level must include studies in both males and females. Stress, anxiety, and depression are tightly linked to addiction, and whether they precede or result from compulsive drug use depends on many factors, including biological sex. The neuropeptide dynorphin (DYN), an endogenous ligand at kappa opioid receptors (KORs), is necessary for stress-induced aversive states and is upregulated in the brain after chronic exposure to drugs of abuse. KOR agonists produce signs of anxiety, fear, and depression in laboratory animals and humans, findings that have led to the hypothesis that drug withdrawal-induced DYN release is instrumental in negative reinforcement processes that drive addiction. However, these studies were almost exclusively conducted in males. Only recently is evidence available that there are sex differences in the effects of KOR activation on affective state. This review focuses on sex differences in DYN and KOR systems and how these might contribute to sex differences in addictive behavior. Much of what is known about how biological sex influences KOR systems is from research on pain systems. The basic molecular and genetic mechanisms that have been discovered to underlie sex differences in KOR function in pain systems may apply to sex differences in KOR function in reward systems. Our goals are to discuss the current state of knowledge on how biological sex contributes to KOR function in the context of pain, mood, and addiction and to explore potential mechanisms for sex differences in KOR function. We will highlight evidence that the function of DYN-KOR systems is influenced in a sex-dependent manner by: polymorphisms in the prodynorphin (pDYN) gene, genetic linkage with the melanocortin-1 receptor (MC1R), heterodimerization of KORs and mu opioid receptors (MORs), and gonadal hormones. Finally, we

  18. Gene set of chemosensory receptors in the polyembryonic endoparasitoid Macrocentrus cingulum

    PubMed Central

    Ahmed, Tofael; Zhang, Tiantao; Wang, Zhenying; He, Kanglai; Bai, Shuxiong

    2016-01-01

    Insects are extremely successful animals whose odor perception is very prominent due to their sophisticated olfactory system. The main chemosensory organ, antennae play a critical role in detecting odor in ambient environment before initiating appropriate behavioral responses. The antennal chemosensory receptor genes families have been suggested to be involved in olfactory signal transduction pathway as a sensory neuron response. The Macrocentrus cingulum is deployed successfully as a biological control agent for corn pest insects from the Lepidopteran genus Ostrinia. In this research, we assembled antennal transcriptomes of M. cingulum by using next generation sequencing to identify the major chemosensory receptors gene families. In total, 112 olfactory receptors candidates (79 odorant receptors, 20 gustatory receptors, and 13 ionotropic receptors) have been identified from the male and female antennal transcriptome. The sequences of all of these transcripts were confirmed by RT-PCR, and direct DNA sequencing. Expression profiles of gustatory receptors in olfactory and non-olfactory tissues were measured by RT-qPCR. The sex-specific and sex-biased chemoreceptors expression patterns suggested that they may have important functions in sense detection which behaviorally relevant to odor molecules. This reported result provides a comprehensive resource of the foundation in semiochemicals driven behaviors at molecular level in polyembryonic endoparasitoid. PMID:27090020

  19. Sequence variation in the androgen receptor gene is not a common determinant of male sexual orientation

    SciTech Connect

    Macke, J.P.; Nathans, J.; King, V.L. ); Hu, N.; Hu, S.; Hamer, D.; Bailey, M. ); Brown, T. )

    1993-10-01

    To test the hypothesis that DNA sequence variation in the androgen receptor gene plays a causal role in the development of male sexual orientation, the authors have (1) measured the degree of concordance of androgen receptor alleles in 36 pairs of homosexual brothers, (2) compared the lengths of polyglutamine and polyglycine tracts in the amino-terminal domain of the androgen receptor in a sample of 197 homosexual males and 213 unselected subjects, and (3) screened the entire androgen receptor coding region for sequence variation by PCR and denaturing gradient-gel electrophoresis (DGGE) and/or single-strand conformation polymorphism analysis in 20 homosexual males with homosexual or bisexual brothers and one homosexual male with no homosexual brothers, and screened the amino-terminal domain of the receptor for sequence variation in an additional 44 homosexual males, 37 of whom had one or more first- or second-degree male relatives who were either homosexual or bisexual. These analyses show that (1) homosexual brothers are as likely to be discordant as concordant for androgen receptor alleles; (2) there are no large-scale differences between the distributions of polyglycine or polyglutamine tract lengths in the homosexual and control groups; and (3) coding region sequence variation is not commonly found within the androgen receptor gene of homosexual men. The DGGE screen identified two rare amino acid substitutions, ser[sup 205] -to-arg and glu[sup 793]-to-asp, the biological significance of which is unknown. 32 refs., 2 figs., 2 tabs.

  20. Gene set of chemosensory receptors in the polyembryonic endoparasitoid Macrocentrus cingulum.

    PubMed

    Ahmed, Tofael; Zhang, Tiantao; Wang, Zhenying; He, Kanglai; Bai, Shuxiong

    2016-01-01

    Insects are extremely successful animals whose odor perception is very prominent due to their sophisticated olfactory system. The main chemosensory organ, antennae play a critical role in detecting odor in ambient environment before initiating appropriate behavioral responses. The antennal chemosensory receptor genes families have been suggested to be involved in olfactory signal transduction pathway as a sensory neuron response. The Macrocentrus cingulum is deployed successfully as a biological control agent for corn pest insects from the Lepidopteran genus Ostrinia. In this research, we assembled antennal transcriptomes of M. cingulum by using next generation sequencing to identify the major chemosensory receptors gene families. In total, 112 olfactory receptors candidates (79 odorant receptors, 20 gustatory receptors, and 13 ionotropic receptors) have been identified from the male and female antennal transcriptome. The sequences of all of these transcripts were confirmed by RT-PCR, and direct DNA sequencing. Expression profiles of gustatory receptors in olfactory and non-olfactory tissues were measured by RT-qPCR. The sex-specific and sex-biased chemoreceptors expression patterns suggested that they may have important functions in sense detection which behaviorally relevant to odor molecules. This reported result provides a comprehensive resource of the foundation in semiochemicals driven behaviors at molecular level in polyembryonic endoparasitoid. PMID:27090020

  1. Association of peroxisome proliferator-activated receptor-gamma gene polymorphisms and gene-gene interaction with asthma risk in a Chinese adults population

    PubMed Central

    Li, Wancheng; Dai, Wenjing; Sun, Jian; Zhang, Wei; Jiang, Yi; Ma, Chunlan; Wang, Chunmao; He, Jie

    2015-01-01

    Aims: To investigate the association between single nucleotide polymorphism (SNP) of peroxisome proliferator-activated receptors γ (PPAR γ) and additional gene-gene interactions on asthma risk. Methods: A total of 882 subjects (602 males, 280 females), with a mean age of 61.3±14.8 years old, including 430 asthma patients and 452 normal subjects were selected in this study, including the genotyping of polymorphisms. Logistic regression was performed to investigate association between SNP and asthma. Generalized MDR (GMDR) was used to analysis the interaction among four SNP. Results: Asthma risk was significantly lower in carriers of Ala allele of the rs1805192 polymorphism than those with Pro/Pro (Pro/Ala+ Ala/Ala versus Pro/Pro, adjusted OR (95% CI)=0.70 (0.51-0.94). In addition, we also found a significant association between rs10865710 and asthma, asthma risk was significantly lower in carriers of G allele of the rs10865710 polymorphism than those with CC (CG+ GG versus CC, adjusted OR (95% CI)=0.68 (0.55-0.95). There was a significant three-locus model (P=0.0107) involving rs1805192, rs10865710 and rs709158, indicating a potential gene-gene interaction among rs1805192, rs10865710 and rs709158. Overall, the three-locus models had a cross-validation consistency of 10 of 10, and had the testing accuracy of 60.72% after covariates adjustment. Conclusions: Our results support an important association of rs1805192 and rs10865710 with asthma, and additional interaction among rs1805192, rs10865710 and rs709158. PMID:26770574

  2. [Receptor tyrosine kinase KIT may regulate expression of genes involved in spontaneous regression of neuroblastoma].

    PubMed

    Lebedev, T D; Spirin, P V; Suntsova, M V; Ivanova, A V; Buzdin, A A; Prokofjeva, M M; Rubtsov, P M; Prassolov, V S

    2015-01-01

    Hallmark of neuroblastoma is an ability of this malignant tumor to undergo spontaneous regression or differentiation into benign tumor during any stage of the disease, but it is little known about mechanisms of these phenomena. We studied effect of receptor tyrosine kinase receptor KIT on expression of genes, which may be involved in tumor spontaneous regression. Downregulation of KIT expression by RNA interference in SH-SY5Y cells causes suppression of neurotrophin receptor NGFR expression that may promote the loss of sensibility of cells to nerve growth factors, also it causes upregulation of TrkA receptor expression which can stimulate cell differentiation or apoptosis in NGF dependent manner. Furthermore there is an upregulation of genes which stimulate malignant cell detection by immune system, such as genes of major histocompatibility complex HLA class I HLA-B and HLA-C, and interferon-γ receptors IFNGR1 and IFNGR2 genes. Thus KIT can mediate neuroblastoma cell sensibility to neurotrophins and immune system components--two factors directly contributing to spontaneous regression of neuroblastoma.

  3. [Histamine H₁ receptor gene as an allergic diseases-sensitive gene and its impact on therapeutics for allergic diseases].

    PubMed

    Mizuguchi, Hiroyuki; Kitamura, Yoshiaki; Kondo, Yuto; Kuroda, Wakana; Yoshida, Haruka; Miyamoto, Yuko; Hattori, Masashi; Takeda, Noriaki; Fukui, Hiroyuki

    2011-02-01

    Therapeutics targeting disease-sensitive genes are required for the therapy of multifactorial diseases. There is no clinical report on therapeutics for allergic disease-sensitive genes. We are focusing on the histamine H₁ receptor (H1R) as a sensitive gene. H1R mediates allergy histamine signals. H1R is a rate-limiting molecule of the H1R signal because the signal is increased with elevated receptor expression level. We discovered that the stimulation of H1R induced H1R gene expression through PKCδ activation, resulting in receptor upregulation. The mechanism of H1R gene expression was revealed to play a key role in the receptor expression level in studies using cultured HeLa cells and allergic rhinitis model rats. Preseasonal prophylactic treatment with antihistamines is recommended for the therapy of pollinosis. However, the mechanism of the therapy remains to be elucidated. We demonstrated that repeated pretreatment treatment with antihistamines in the allergic rhinitis model rats resulted not only in improvement of symptoms but also in suppressed elevation of H1R mRNA levels in the nasal mucosa. A clinical trial was then initiated. When symptoms and H1R mRNA levels in the nasal mucosa of pollinosis patients with or without preseasonal prophylactic treatment with antihistamines were examined, both symptoms and high levels of H1R mRNA were significantly improved in treated compared with untreated patients. These results strongly suggest that H1R is an allergic disease-sensitive gene.

  4. Cell line differences in replication timing of human glutamate receptor genes and other large genes associated with neural disease

    PubMed Central

    Watanabe, Yoshihisa; Shibata, Kiyoshi; Maekawa, Masato

    2014-01-01

    There is considerable current interest in the function of epigenetic mechanisms in neuroplasticity with regard to learning and memory formation and to a range of neural diseases. Previously, we described replication timing on human chromosome 21q in the THP-1 human cell line (2n = 46, XY) and showed that several genes associated with neural diseases, such as the neuronal glutamate receptor subunit GluR-5 (GRIK1) and amyloid precursor protein (APP), were located in regions where replication timing transitioned from early to late S phase. Here, we compared replication timing of all known human glutamate receptor genes (26 genes in total) and APP in 6 different human cell lines including human neuron-related cell lines. Replication timings were obtained by integrating our previously reported data with new data generated here and information from the online database ReplicationDomain. We found that many of the glutamate receptor genes were clearly located in replication timing transition zones in neural precursor cells, but this relationship was less clear in embryonic stem cells before neural differentiation; in the latter, the genes were often located in later replication timing zones that displayed DNA hypermethylation. Analysis of selected large glutamate receptor genes (>200 kb), and of APP, showed that their precise replication timing patterns differed among the cell lines. We propose that the transition zones of DNA replication timing are altered by epigenetic mechanisms, and that these changes may affect the neuroplasticity that is important to memory and learning, and may also have a role in the development of neural diseases. PMID:25437050

  5. Upregulation of Transient Receptor Potential Canonical Channels Contributes to Endotoxin-Induced Pulmonary Arterial Stenosis

    PubMed Central

    Chen, Gui-Lan; Jiang, Hongni; Zou, Fangdong

    2016-01-01

    Background Septic shock is a pathologic condition caused by endotoxin-producing bacteria, and often associated with severe pulmonary hypertension. Inflammation is a major systemic response to endotoxin; however, it is unknown whether endotoxin has a direct impact on pulmonary arteries that contributes to pathogenesis of pulmonary hypertension. Material/Methods Rat pulmonary arteries and primary pulmonary arterial smooth muscle cells (PASMCs) were cultured in vitro and treated with lipopolysaccharide (LPS) and blockers of transient receptor potential canonical (TRPC) channels. Neointimal growth and arterial stenosis were observed on cryosections of cultured pulmonary arteries. Proliferation of PASMCs was examined by a WST-1 (water-soluble tetrazolium salt) assay. Expression of TRPC genes in pulmonary arteries and PASMCs were detected and quantified by real-time polymerase chain reaction and Western blotting. Results LPS significantly induced neointimal growth and stenosis of pulmonary arteries and promoted proliferation of PASMCs. TRPC channel blockers 2-aminoethoxydiphenyl borate and SKF-96365 inhibited LPS-induced remodeling of pulmonary arteries and PASMC proliferation. Expression of TRPC1/3/4/6 was detected in pulmonary arteries and PASMCs. LPS treatment dramatically increased the expression of TRPC3 and TRPC4 at both messenger RNA and protein levels. Conclusions LPS stimulates stenosis of pulmonary arteries through enhancement of TRPC-mediated Ca2+ entry into PASMCs, which is caused by upregulation of TRPC3 and TRPC4 channels. PMID:27471122

  6. Receptor tyrosine kinase (c-Kit) inhibitors: a potential therapeutic target in cancer cells.

    PubMed

    Abbaspour Babaei, Maryam; Kamalidehghan, Behnam; Saleem, Mohammad; Huri, Hasniza Zaman; Ahmadipour, Fatemeh

    2016-01-01

    c-Kit, a receptor tyrosine kinase, is involved in intracellular signaling, and the mutated form of c-Kit plays a crucial role in occurrence of some cancers. The function of c-Kit has led to the concept that inhibiting c-Kit kinase activity can be a target for cancer therapy. The promising results of inhibition of c-Kit for treatment of cancers have been observed in some cancers such as gastrointestinal stromal tumor, acute myeloid leukemia, melanoma, and other tumors, and these results have encouraged attempts toward improvement of using c-Kit as a capable target for cancer therapy. This paper presents the findings of previous studies regarding c-Kit as a receptor tyrosine kinase and an oncogene, as well as its gene targets and signaling pathways in normal and cancer cells. The c-Kit gene location, protein structure, and the role of c-Kit in normal cell have been discussed. Comprehending the molecular mechanism underlying c-Kit-mediated tumorogenesis is consequently essential and may lead to the identification of future novel drug targets. The potential mechanisms by which c-Kit induces cellular transformation have been described. This study aims to elucidate the function of c-Kit for future cancer therapy. In addition, it has c-Kit inhibitor drug properties and their functions have been listed in tables and demonstrated in schematic pictures. This review also has collected previous studies that targeted c-Kit as a novel strategy for cancer therapy. This paper further emphasizes the advantages of this approach, as well as the limitations that must be addressed in the future. Finally, although c-Kit is an attractive target for cancer therapy, based on the outcomes of treatment of patients with c-Kit inhibitors, it is unlikely that Kit inhibitors alone can lead to cure. It seems that c-Kit mutations alone are not sufficient for tumorogenesis, but do play a crucial role in cancer occurrence. PMID:27536065

  7. Receptor tyrosine kinase (c-Kit) inhibitors: a potential therapeutic target in cancer cells

    PubMed Central

    Abbaspour Babaei, Maryam; Kamalidehghan, Behnam; Saleem, Mohammad; Huri, Hasniza Zaman; Ahmadipour, Fatemeh

    2016-01-01

    c-Kit, a receptor tyrosine kinase, is involved in intracellular signaling, and the mutated form of c-Kit plays a crucial role in occurrence of some cancers. The function of c-Kit has led to the concept that inhibiting c-Kit kinase activity can be a target for cancer therapy. The promising results of inhibition of c-Kit for treatment of cancers have been observed in some cancers such as gastrointestinal stromal tumor, acute myeloid leukemia, melanoma, and other tumors, and these results have encouraged attempts toward improvement of using c-Kit as a capable target for cancer therapy. This paper presents the findings of previous studies regarding c-Kit as a receptor tyrosine kinase and an oncogene, as well as its gene targets and signaling pathways in normal and cancer cells. The c-Kit gene location, protein structure, and the role of c-Kit in normal cell have been discussed. Comprehending the molecular mechanism underlying c-Kit-mediated tumorogenesis is consequently essential and may lead to the identification of future novel drug targets. The potential mechanisms by which c-Kit induces cellular transformation have been described. This study aims to elucidate the function of c-Kit for future cancer therapy. In addition, it has c-Kit inhibitor drug properties and their functions have been listed in tables and demonstrated in schematic pictures. This review also has collected previous studies that targeted c-Kit as a novel strategy for cancer therapy. This paper further emphasizes the advantages of this approach, as well as the limitations that must be addressed in the future. Finally, although c-Kit is an attractive target for cancer therapy, based on the outcomes of treatment of patients with c-Kit inhibitors, it is unlikely that Kit inhibitors alone can lead to cure. It seems that c-Kit mutations alone are not sufficient for tumorogenesis, but do play a crucial role in cancer occurrence. PMID:27536065

  8. ACVR1B (ALK4, activin receptor type 1B) gene mutations in pancreatic carcinoma

    PubMed Central

    Su, Gloria H.; Bansal, Ravi; Murphy, Kathleen M.; Montgomery, Elizabeth; Yeo, Charles J.; Hruban, Ralph H.; Kern, Scott E.

    2001-01-01

    DPC4 is known to mediate signals initiated by type β transforming growth factor (TGFβ) as well as by other TGFβ superfamily ligands such as activin and BMP (bone morphogenic proteins), but mutational surveys of such non-TGFβ receptors have been negative to date. Here we describe the gene structure and novel somatic mutations of the activin type I receptor, ACVR1B, in pancreatic cancer. ACVR1B has not been described previously as a mutated tumor-suppressor gene. PMID:11248065

  9. Control of transcriptional repression of the vitellogenin receptor gene in largemouth bass (Micropterus salmoides) by select estrogen receptors isotypes.

    PubMed

    Dominguez, Gustavo A; Bisesi, Joseph H; Kroll, Kevin J; Denslow, Nancy D; Sabo-Attwood, Tara

    2014-10-01

    The vitellogenin receptor (Vtgr) plays an important role in fish reproduction. This receptor functions to incorporate vitellogenin (Vtg), a macromolecule synthesized and released from the liver in the bloodstream, into oocytes where it is processed into yolk. Although studies have focused on the functional role of Vtgr in fish, the mechanistic control of this gene is still unexplored. Here we report the identification and analysis of the first piscine 5' regulatory region of the vtgr gene which was cloned from largemouth bass (Micropterus salmoides). Using this putative promoter sequence, we investigated a role for hormones, including insulin and 17β-estradiol (E2), in transcriptional regulation through cell-based reporter assays. No effect of insulin was observed, however, E2 was able to repress transcriptional activity of the vtgr promoter through select estrogen receptor subtypes, Esr1 and Esr2a but not Esr2b. Electrophoretic mobility shift assay demonstrated that Esr1 likely interacts with the vtgr promoter region through half ERE and/or SP1 sites, in part. Finally we also show that ethinylestradiol (EE2), but not bisphenol-A (BPA), represses promoter activity similarly to E2. These results reveal for the first time that the Esr1 isoform may play an inhibitory role in the expression of LMB vtgr mRNA under the influence of E2, and potent estrogens such as EE2. In addition, this new evidence suggests that vtgr may be a target of select endocrine disrupting compounds through environmental exposures. PMID:25061109

  10. Control of transcriptional repression of the vitellogenin receptor gene in largemouth bass (Micropterus salmoides) by select estrogen receptors isotypes.

    PubMed

    Dominguez, Gustavo A; Bisesi, Joseph H; Kroll, Kevin J; Denslow, Nancy D; Sabo-Attwood, Tara

    2014-10-01

    The vitellogenin receptor (Vtgr) plays an important role in fish reproduction. This receptor functions to incorporate vitellogenin (Vtg), a macromolecule synthesized and released from the liver in the bloodstream, into oocytes where it is processed into yolk. Although studies have focused on the functional role of Vtgr in fish, the mechanistic control of this gene is still unexplored. Here we report the identification and analysis of the first piscine 5' regulatory region of the vtgr gene which was cloned from largemouth bass (Micropterus salmoides). Using this putative promoter sequence, we investigated a role for hormones, including insulin and 17β-estradiol (E2), in transcriptional regulation through cell-based reporter assays. No effect of insulin was observed, however, E2 was able to repress transcriptional activity of the vtgr promoter through select estrogen receptor subtypes, Esr1 and Esr2a but not Esr2b. Electrophoretic mobility shift assay demonstrated that Esr1 likely interacts with the vtgr promoter region through half ERE and/or SP1 sites, in part. Finally we also show that ethinylestradiol (EE2), but not bisphenol-A (BPA), represses promoter activity similarly to E2. These results reveal for the first time that the Esr1 isoform may play an inhibitory role in the expression of LMB vtgr mRNA under the influence of E2, and potent estrogens such as EE2. In addition, this new evidence suggests that vtgr may be a target of select endocrine disrupting compounds through environmental exposures.

  11. The Aryl Hydrocarbon Receptor Complex and the Control of Gene Expression

    PubMed Central

    Beischlag, Timothy V.; Morales, J. Luis; Hollingshead, Brett D.; Perdew, Gary H.

    2008-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that controls the expression of a diverse set of genes. The toxicity of the potent AhR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin is almost exclusively mediated through this receptor. However, the key alterations in gene expression that mediate toxicity are poorly understood. It has been established through characterization of AhR-null mice that the AhR has a required physiological function, yet how endogenous mediators regulate this orphan receptor remains to be established. A picture as to how the AhR/ARNT heterodimer actually mediates gene transcription is starting to emerge. The AhR/ARNT complex can alter transcription both by binding to its cognate response element and through tethering to other transcription factors. In addition, many of the coregulatory proteins necessary for AhR-mediated transcription have been identified. Cross talk between the estrogen receptor and the AhR at the promoter of target genes appears to be an important mode of regulation. Inflammatory signaling pathways and the AhR also appear to be another important site of cross talk at the level of transcription. A major focus of this review is to highlight experimental efforts to characterize nonclassical mechanisms of AhR-mediated modulation of gene transcription. PMID:18540824

  12. Extraction and characterization of the rhesus macaque T cell receptor β-chain genes

    PubMed Central

    Greenaway, Hui Yee; Kurniawan, Monica; Price, David A; Douek, Daniel C; Davenport, Miles P; Venturi, Vanessa

    2009-01-01

    Rhesus macaque models have been instrumental for the development and testing of vaccines prior to human studies and have provided fundamental insights into the determinants of immune efficacy in a variety of infectious diseases. However, the characterization of antigen-specific T cell receptor (TCR) repertoires during adaptive immune responses in these models has previously relied on human TCR gene assignments. Here, we extracted and characterized TCR β-chain (TRB) genes from the recently sequenced rhesus macaque genome that are homologous to the human TRB genes. Comparison of the rhesus macaque TRB genes with the human TRB genes revealed an average best-match similarity of 92.9%. Furthermore, we confirmed the usage of most rhesus macaque TRB genes by expressed TCRβ sequences within epitope-specific TCR repertoires. This primary description of the rhesus macaque TRB genes will provide a standardized nomenclature and enable better characterization of TCR usage in studies that utilize this species. PMID:19506572

  13. Bimodal concentration-response of nicotine involves the nicotinic acetylcholine receptor, transient receptor potential vanilloid type 1, and transient receptor potential ankyrin 1 channels in mouse trachea and sensory neurons.

    PubMed

    Kichko, Tatjana I; Lennerz, Jochen; Eberhardt, Mirjam; Babes, Ramona M; Neuhuber, Winfried; Kobal, Gerd; Reeh, Peter W

    2013-11-01

    High concentrations of nicotine, as in the saliva of oral tobacco consumers or in smoking cessation aids, have been shown to sensitize/activate recombinant transient receptor potential vanilloid type 1 (rTRPV1) and mouse TRPA1 (mTRPA1) channels. By measuring stimulated calcitonin gene-related peptide (CGRP) release from the isolated mouse trachea, we established a bimodal concentration-response relationship with a threshold below 10 µM (-)-nicotine, a maximum at 100 µM, an apparent nadir between 0.5 and 10 mM, and a renewed increase at 20 mM. The first peak was unchanged in TRPV1/A1 double-null mutants as compared with wild-types and was abolished by specific nicotinic acetylcholine receptor (nAChR) inhibitors and by camphor, discovered to act as nicotinic antagonist. The nicotine response at 20 mM was strongly pHe-dependent, - five times greater at pH 9.0 than 7.4, indicating that intracellular permeation of the (uncharged) alkaloid was required to reach the TRPV1/A1 binding sites. The response was strongly reduced in both null mutants, and more so in double-null mutants. Upon measuring calcium transients in nodose/jugular and dorsal root ganglion neurons in response to 100 µM nicotine, 48% of the vagal (but only 14% of the somatic) sensory neurons were activated, the latter very weakly. However, nicotine 20 mM at pH 9.0 repeatedly activated almost every single cultured neuron, partly by releasing intracellular calcium and independent of TRPV1/A1 and nAChRs. In conclusion, in mouse tracheal sensory nerves nAChRs are 200-fold more sensitive to nicotine than TRPV1/A1; they are widely coexpressed with the capsaicin receptor among vagal sensory neurons and twice as abundant as TRPA1. Nicotine is the major stimulant in tobacco, and its sensory impact through nAChRs should not be disregarded.

  14. Sildenafil prevents the up-regulation of transient receptor potential canonical channels in the development of cardiomyocyte hypertrophy

    SciTech Connect

    Kiso, Hironori; Ohba, Takayoshi; Iino, Kenji; Sato, Kazuhiro; Terata, Yutaka; Murakami, Manabu; Ono, Kyoichi; Watanabe, Hiroyuki; Ito, Hiroshi

    2013-07-05

    Highlights: •Transient receptor potential canonical (TRPC1, 3 and 6) are up-regulated by ET-1. •Sildenafil inhibited hypertrophic responses (BNP, Ca entry, NFAT activation). •Sildenafil suppressed TRPC1, 3 and 6 expression. -- Abstract: Background: Transient receptor potential canonical (TRPCs) channels are up-regulated in the development of cardiac hypertrophy. Sildenafil inhibits TRPC6 activation and expression, leading to the prevention of cardiac hypertrophy. However, the effects of sildenafil on the expression of other TRPCs remain unknown. We hypothesized that in addition to its effects of TRPC6, sildenafil blocks the up-regulation of other TRPC channels to suppress cardiomyocyte hypertrophy. Methods and results: In cultured neonatal rat cardiomyocytes, a 48 h treatment with 10 nM endothelin (ET)-1 induced hypertrophic responses characterized by nuclear factor of activated T cells activation and enhancement of brain natriuretic peptide expression and cell surface area. Co-treatment with sildenafil (1 μM, 48 h) inhibited these ET-1-induced hypertrophic responses. Although ET-1 enhanced the gene expression of TRPCs, sildenafil inhibited the enhanced gene expression of TRPC1, C3 and C6. Moreover, co-treatment with sildenafil abolished the augmentation of SOCE in the hypertrophied cardiomyocytes. Conclusions: These results suggest that sildenafil inhibits cardiomyocyte hypertrophy by suppressing the up-regulation of TRPC expression.

  15. Urokinase receptor is a multifunctional protein: influence of receptor occupancy on macrophage gene expression.

    PubMed Central

    Rao, N K; Shi, G P; Chapman, H A

    1995-01-01

    Binding of urokinase to the glycolipid-anchored urokinase receptor (uPAR) has been implicated in macrophage differentiation. However, no biochemical markers of differentiation have yet been directly linked to uPAR occupancy. As extensive changes in proteolytic profile characterize monocytic differentiation, we have examined the role of uPAR occupancy on protease expression by differentiating phagocytes. Antibodies to either urokinase or to uPAR that prevent receptor binding inhibited induction of cathepsin B in cultured monocytes and both cathepsin B and 92-kD gelatinase mRNA and protein in phorbol diester-stimulated myeloid cells. Mannosamine, an inhibitor of glycolipid anchor assembly, also blocked protease expression. Anti-catalytic urokinase antibodies, excess inactive urokinase, or aprotinin had no effect, indicating that receptor occupancy per se regulated protease expression. Antibodies to the integrins CD11a and CD29 or to the glycolipid-anchored proteins CD14 and CD55 also had no effect. Protease induction was independent of matrix attachment. Antibodies to urokinase or uPAR affected neither the decrease in cathepsin G nor the increase in tumor necrosis factor-alpha in phorbol ester-stimulated cells. These data establish that uPAR is a multifunctional receptor, not only promoting pericellular proteolysis and matrix attachment, but also effecting cysteine- and metallo-protease expression during macrophage differentiation. Images PMID:7615819

  16. New Analytical Tool for the Detection of Ractopamine Abuse in Goat Skeletal Muscle by Potential Gene Expression Biomarkers.

    PubMed

    Zhao, Luyao; Yang, Shuming; Zhang, Yanhua; Zhang, Ying; Hou, Can; Cheng, Yongyou; You, Xinyong; Gu, Xu; Zhao, Zhen; Muhammad Tarique, Tunio

    2016-03-01

    In this study, quantification of mRNA gene expression was examined as biomarkers to detect ractopamaine abuse and ractopamaine residues in cashmere goats. It was focused on the identification of potential gene expression biomarkers and describing the coreletionship between gene expression and residue level by 58 animals for 49 days. The results showed that administration periods and residue levels significantly influenced mRNA expressions of the β2-adrenergic receptor (β2AR), the enzymes PRKACB, ADCY3, ATP1A3, ATP2A3, PTH, and MYLK, and the immune factors IL-1β and TNF-α. Statistical analysis like principal components analysis (PCA), hierarchical cluster analysis (HCA), and discriminant analysis (DA) showed that these genes can serve as potential biomarkers for ractopamine in skeletal muscle and that they are also suitable for describing different residue levels separately.

  17. Oxytocin and Vasopressin Receptor Gene Polymorphisms: Role in Social and Psychiatric Traits.

    PubMed

    Aspé-Sánchez, Mauricio; Moreno, Macarena; Rivera, Maria Ignacia; Rossi, Alejandra; Ewer, John

    2015-01-01

    Oxytocin (OXT) and arginine-vasopressin (AVP) are two phylogenetically conserved neuropeptides that have been implicated in a wide range of social behaviors. Although a large body of research, ranging from rodents to humans, has reported on the effects of OXT and AVP administration on affiliative and trust behaviors, and has highlighted the genetic contributions of OXT and AVP receptor polymorphisms to both social behaviors and to diseases related to social deficits, the consequences of peptide administration on psychiatric symptoms, and the impact of receptor polymorphisms on receptor function, are still unclear. Despite the exciting advances that these reports have brought to social neuroscience, they remain preliminary and suffer from the problems that are inherent to monogenetic linkage and association studies. As an alternative, some studies are using polygenic approaches, and consider the contributions of other genes and pathways, including those involving DA, 5-HT, and reelin, in addition to OXT and AVP; a handful of report are also using genome-wide association studies. This review summarizes findings on the associations between OXT and AVP receptor polymorphism, social behavior, and psychiatric diseases. In addition, we discuss reports on the interactions of OXT and AVP receptor genes and genes involved in other pathways (such as those of dopamine, serotonin, and reelin), as well as research that has shed some light on the impact of gene polymorphisms on the volume, connectivity, and activation of specific neural structures, differential receptor expression, and plasma levels of the OXT and AVP peptides. We hope that this effort will be helpful for understanding the studies performed so far, and for encouraging the inclusion of other candidate genes not explored to date. PMID:26858594

  18. Oxytocin and Vasopressin Receptor Gene Polymorphisms: Role in Social and Psychiatric Traits

    PubMed Central

    Aspé-Sánchez, Mauricio; Moreno, Macarena; Rivera, Maria Ignacia; Rossi, Alejandra; Ewer, John

    2016-01-01

    Oxytocin (OXT) and arginine-vasopressin (AVP) are two phylogenetically conserved neuropeptides that have been implicated in a wide range of social behaviors. Although a large body of research, ranging from rodents to humans, has reported on the effects of OXT and AVP administration on affiliative and trust behaviors, and has highlighted the genetic contributions of OXT and AVP receptor polymorphisms to both social behaviors and to diseases related to social deficits, the consequences of peptide administration on psychiatric symptoms, and the impact of receptor polymorphisms on receptor function, are still unclear. Despite the exciting advances that these reports have brought to social neuroscience, they remain preliminary and suffer from the problems that are inherent to monogenetic linkage and association studies. As an alternative, some studies are using polygenic approaches, and consider the contributions of other genes and pathways, including those involving DA, 5-HT, and reelin, in addition to OXT and AVP; a handful of report are also using genome-wide association studies. This review summarizes findings on the associations between OXT and AVP receptor polymorphism, social behavior, and psychiatric diseases. In addition, we discuss reports on the interactions of OXT and AVP receptor genes and genes involved in other pathways (such as those of dopamine, serotonin, and reelin), as well as research that has shed some light on the impact of gene polymorphisms on the volume, connectivity, and activation of specific neural structures, differential receptor expression, and plasma levels of the OXT and AVP peptides. We hope that this effort will be helpful for understanding the studies performed so far, and for encouraging the inclusion of other candidate genes not explored to date. PMID:26858594

  19. Linkage analysis of schizophrenia with five dopamine receptor genes in nine pedigrees

    SciTech Connect

    Coon, H.; Byerley, W.; Holik, J.; Hoff, M.; Myles-Worsley, M.; Plaetke, R. ); Lannfelt, L. ); Sokoloff, P.; Schwartz, J.C. ); Waldo, M.; Freedman, R. )

    1993-02-01

    Alterations in dopamine neurotransmission have been strongly implicated in the pathogenesis of schizophrenia for nearly 2 decades. Recently, the genes for five dopamine receptors have been cloned and characterized, and genetic and physical map information has become available. Using these five loci as candidate genes, the authors have tested for genetic linkage to schizophrenia in nine multigenerational families which include multiple affected individuals. In addition to testing conservative disease models, the have used a neurophysiological indicator variable, the P50 auditory evoked response. Deficits in gating of the P50 response have been shown to segregate with schizophrenia in this sample and may identify carriers of gene(s) predisposing for schizophrenia. Linkage results were consistently negative, indicating that a defect at any of the actual receptor sites is unlikely to be a major contributor to schizophrenia in the nine families studied. 47 refs., 1 fig., 4 tabs.

  20. Pharmacological activation of CB1 receptor modulates long term potentiation by interfering with protein synthesis.

    PubMed

    Navakkode, Sheeja; Korte, Martin

    2014-04-01

    Cognitive impairment is one of the most important side effects associated with cannabis drug abuse, as well as the serious issue concerning the therapeutic use of cannabinoids. Cognitive impairments and neuropsychiatric symptoms are caused by early synaptic dysfunctions, such as loss of synaptic connections in different brain structures including the hippocampus, a region that is believed to play an important role in certain forms of learning and memory. We report here that metaplastic priming of synapses with a cannabinoid type 1 receptor (CB1 receptor) agonist, WIN55,212-2 (WIN55), significantly impaired long-term potentiation in the apical dendrites of CA1 pyramidal neurons. Interestingly, the CB1 receptor exerts its effect by altering the balance of protein synthesis machinery towards higher protein production. Therefore the activation of CB1 receptor, prior to strong tetanization, increased the propensity to produce new proteins. In addition, WIN55 priming resulted in the expression of late-LTP in a synaptic input that would have normally expressed early-LTP, thus confirming that WIN55 priming of LTP induces new synthesis of plasticity-related proteins. Furthermore, in addition to the effects on protein translation, WIN55 also induced synaptic deficits due to the ability of CB1 receptors to inhibit the release of acetylcholine, mediated by both muscarinic and nicotinic acetylcholine receptors. Taken together this supports the notion that the modulation of cholinergic activity by CB1 receptor activation is one mechanism that regulates the synthesis of plasticity-related proteins.

  1. Differential expression of olfactory genes in the southern house mosquito and insights into unique odorant receptor gene isoforms

    PubMed Central

    Leal, Walter S.; Choo, Young-Moo; Xu, Pingxi; da Silva, Cherre S. B.; Ueira-Vieira, Carlos

    2013-01-01

    The southern house mosquito, Culex quinquefasciatus, has one of the most acute and eclectic olfactory systems of all mosquito species hitherto studied. Here, we used Illumina sequencing to identify olfactory genes expressed predominantly in antenna, mosquito’s main olfactory organ. Less than 50% of the trimmed reads generated by high-quality libraries aligned to a transcript, but approximately 70% of them aligned to the genome. Differential expression analysis, which was validated by quantitative real-time PCR on a subset of genes, showed that approximately half of the 48 odorant-binding protein genes were enriched in antennae, with the other half being predominantly expressed in legs. Similar patterns were observed with chemosensory proteins, “plus-C” odorant-binding proteins, and sensory neuron membrane proteins. Transcripts for as many as 43 ionotropic receptors were enriched in female antennae, thus making the ionotropic receptor family the largest of antennae-rich olfactory genes, second only to odorant receptor (OR) genes. As many as 177 OR genes have been identified, including 36 unique transcripts. The unique OR genes differed from previously annotated ORs in internal sequences, splice variants, and extended N or C terminus. One of the previously unknown transcripts was validated by cloning and functional expression. When challenged with a large panel of physiologically relevant compounds, CquiOR95b responded in a dose-dependent manner to ethyl 2-phenylacteate, which was demonstrated to repel Culex mosquitoes, and secondarily to citronellal, a known insect repellent. This transcriptome study led to identification of key molecular components and a repellent for the southern house mosquito. PMID:24167245

  2. Differential expression of olfactory genes in the southern house mosquito and insights into unique odorant receptor gene isoforms.

    PubMed

    Leal, Walter S; Choo, Young-Moo; Xu, Pingxi; da Silva, Cherre S B; Ueira-Vieira, Carlos

    2013-11-12

    The southern house mosquito, Culex quinquefasciatus, has one of the most acute and eclectic olfactory systems of all mosquito species hitherto studied. Here, we used Illumina sequencing to identify olfactory genes expressed predominantly in antenna, mosquito's main olfactory organ. Less than 50% of the trimmed reads generated by high-quality libraries aligned to a transcript, but approximately 70% of them aligned to the genome. Differential expression analysis, which was validated by quantitative real-time PCR on a subset of genes, showed that approximately half of the 48 odorant-binding protein genes were enriched in antennae, with the other half being predominantly expressed in legs. Similar patterns were observed with chemosensory proteins, "plus-C" odorant-binding proteins, and sensory neuron membrane proteins. Transcripts for as many as 43 ionotropic receptors were enriched in female antennae, thus making the ionotropic receptor family the largest of antennae-rich olfactory genes, second only to odorant receptor (OR) genes. As many as 177 OR genes have been identified, including 36 unique transcripts. The unique OR genes differed from previously annotated ORs in internal sequences, splice variants, and extended N or C terminus. One of the previously unknown transcripts was validated by cloning and functional expression. When challenged with a large panel of physiologically relevant compounds, CquiOR95b responded in a dose-dependent manner to ethyl 2-phenylacteate, which was demonstrated to repel Culex mosquitoes, and secondarily to citronellal, a known insect repellent. This transcriptome study led to identification of key molecular components and a repellent for the southern house mosquito.

  3. Rearrangement and expression of T cell antigen receptor and gamma genes during thymic development

    PubMed Central

    1986-01-01

    Rearrangement and expression of the T cell antigen receptor and the gamma genes during T cell ontogeny is a regulated process; the gamma genes are rearranged and expressed first, followed by the beta and then the alpha genes. Expression of both functional alpha and beta gene RNA first occurs at day 17 of gestation, along with the expression of T3 delta chain RNA. T cell antigen receptor gene rearrangements occur primarily or exclusively in the thymus, although some gamma gene rearrangements occur outside the thymus in fetal liver cells that may be committed T cell progenitors. There is no gross difference in the extent of beta and gamma gene rearrangements in the adult thymocyte subpopulations that were analyzed, despite the fact that some of these populations cannot respond to antigen and never emigrate from the thymus. Quantitative analysis of rearrangements in total adult thymocyte DNA shows that beta gene rearrangements generally occur on both chromosomal homologs, and that rearrangements occur preferentially to the J beta 2 gene segment cluster. PMID:3487610

  4. Metabotropic glutamate receptors are required for the induction of long-term potentiation

    NASA Technical Reports Server (NTRS)

    Zheng, F.; Gallagher, J. P.

    1992-01-01

    Recent observations have led to the suggestion that the metabotropic glutamate receptor may play a role in the induction or maintenance of long-term potentiation (LTP). However, experimental evidence supporting a role for this receptor in the induction of LTP is still inconclusive and controversial. Here we report that, in rat dorsolateral septal nucleus (DLSN) neurons, which have the highest density of metabotropic receptors and show functional responses, the induction of LTP is not blocked by the NMDA receptor antagonist 2-amino-5-phosphonovalerate, but is blocked by two putative metabotropic glutamate receptor antagonists, L-2-amino-3-phosphonopropionic acid and L-2-amino-4-phosphonobutyrate. Furthermore, superfusion of (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid, a selective metabotropic glutamate agonist, resulted in a long-lasting potentiation of synaptic transmission similar to that induced by tetanic stimuli. Our results demonstrated that activation of postsynaptic metabotropic receptors is both necessary and sufficient for the induction of LTP in the DLSN, and we suggest that such a mechanism may be important at other CNS synapses.

  5. No substantial changes in estrogen receptor and estrogen-related receptor orthologue gene transcription in Marisa cornuarietis exposed to estrogenic chemicals.

    PubMed

    Bannister, Richard; Beresford, Nicola; Granger, David W; Pounds, Nadine A; Rand-Weaver, Mariann; White, Roger; Jobling, Susan; Routledge, Edwin J

    2013-09-15

    Estrogen receptor orthologues in molluscs may be targets for endocrine disruptors, although mechanistic evidence is lacking. Molluscs are reported to be highly susceptible to effects caused by very low concentrations of environmental estrogens which, if substantiated, would have a major impact on the risk assessment of many chemicals. The present paper describes the most thorough evaluation to-date of the susceptibility of Marisa cornuarietis ER and ERR gene transcription to modulation by vertebrate estrogens in vivo and in vitro. We investigated the effects of estradiol-17β and 4-tert-Octylphenol exposure on in vivo estrogen receptor (ER) and estrogen-related receptor (ERR) gene transcription in the reproductive and neural tissues of the gastropod snail M. cornuarietis over a 12-week period. There was no significant effect (p>0.05) of treatment on gene transcription levels between exposed and non-exposed snails. Absence of a direct interaction of estradiol-17β and 4-tert-Octylphenol with mollusc ER and ERR protein was also supported by in vitro studies in transfected HEK-293 cells. Additional in vitro studies with a selection of other potential ligands (including methyl-testosterone, 17α-ethinylestradiol, 4-hydroxytamoxifen, diethylstilbestrol, cyproterone acetate and ICI182780) showed no interaction when tested using this assay. In repeated in vitro tests, however, genistein (with mcER-like) and bisphenol-A (with mcERR) increased reporter gene expression at high concentrations only (>10(-6)M for Gen and >10(-5)M for BPA, respectively). Like vertebrate estrogen receptors, the mollusc ER protein bound to the consensus vertebrate estrogen-response element (ERE). Together, these data provide no substantial evidence that mcER-like and mcERR activation and transcript levels in tissues are modulated by the vertebrate estrogen estradiol-17β or 4-tert-Octylphenol in vivo, or that other ligands of vertebrate ERs and ERRs (with the possible exception of genistein and

  6. The C. elegans nuclear receptor gene fax-1 and homeobox gene unc-42 coordinate interneuron identity by regulating the expression of glutamate receptor subunits and other neuron-specific genes.

    PubMed

    Wightman, Bruce; Ebert, Bryan; Carmean, Nicole; Weber, Katherine; Clever, Sheila

    2005-11-01

    The fax-1 gene of the nematode C. elegans encodes a conserved nuclear receptor that is the ortholog of the human PNR gene and functions in the specification of neuron identities. Mutations in fax-1 result in locomotion defects. FAX-1 protein accumulates in the nuclei of 18 neurons, among them the AVA, AVB, and AVE interneuron pairs that coordinate body movements. The identities of AVA and AVE interneurons are defective in fax-1 mutants; neither neuron expresses the NMDA receptor subunits nmr-1 and nmr-2. Other ionotropic glutamate receptor subunits are expressed normally in the AVA and AVE neurons. The unc-42 homeobox gene also regulates AVA and AVE identity; however, unc-42 mutants display the complementary phenotype: NMDA receptor subunit expression is normal, but some non-NMDA glutamate receptor subunits are not expressed. These observations support a combinatorial role for fax-1 and unc-42 in specifying AVA and AVE identity. However, in four other neuron types, fax-1 is regulated by unc-42, and both transcriptional regulators function in the regulation of the opt-3 gene in the AVE neurons and the flp-1 and ncs-1 genes in the AVK neurons. Therefore, while fax-1 and unc-42 act in complementary parallel pathways in some cells, they function in overlapping or linear pathways in other cellular contexts, suggesting that combinatorial relationships among transcriptional regulators are complex and cannot be generalized from one neuron type to another.

  7. Transient Receptor Potential Ankyrin 1 (TRPA1) Channel and Neurogenic Inflammation in Pathogenesis of Asthma

    PubMed Central

    Yang, Hang; Li, ShuZhuang

    2016-01-01

    Asthma is characterized by airway inflammation, airway obstruction, and airway hyperresponsiveness (AHR), and it affects 300 million people worldwide. However, our current understanding of the molecular mechanisms that underlie asthma remains limited. Recent studies have suggested that transient receptor potential ankyrin 1 (TRPA1), one of the transient receptor potential cation channels, may be involved in airway inflammation in asthma. The present review discusses the relationship between TRPA1 and neurogenic inflammation in asthma, hoping to enhance our understanding of the mechanisms of airway inflammation in asthma. PMID:27539812

  8. NPY receptors as potential targets for anti-obesity drug development

    PubMed Central

    Yulyaningsih, Ernie; Zhang, Lei; Herzog, Herbert; Sainsbury, Amanda

    2011-01-01

    The neuropeptide Y system has proven to be one of the most important regulators of feeding behaviour and energy homeostasis, thus presenting great potential as a therapeutic target for the treatment of disorders such as obesity and at the other extreme, anorexia. Due to the initial lack of pharmacological tools that are active in vivo, functions of the different Y receptors have been mainly studied in knockout and transgenic mouse models. However, over recent years various Y receptor selective peptidic and non-peptidic agonists and antagonists have been developed and tested. Their therapeutic potential in relation to treating obesity and other disorders of energy homeostasis is discussed in this review. PMID:21545413

  9. Transient Receptor Potential Ankyrin 1 (TRPA1) Channel and Neurogenic Inflammation in Pathogenesis of Asthma.

    PubMed

    Yang, Hang; Li, ShuZhuang

    2016-01-01

    Asthma is characterized by airway inflammation, airway obstruction, and airway hyperresponsiveness (AHR), and it affects 300 million people worldwide. However, our current understanding of the molecular mechanisms that underlie asthma remains limited. Recent studies have suggested that transient receptor potential ankyrin 1 (TRPA1), one of the transient receptor potential cation channels, may be involved in airway inflammation in asthma. The present review discusses the relationship between TRPA1 and neurogenic inflammation in asthma, hoping to enhance our understanding of the mechanisms of airway inflammation in asthma. PMID:27539812

  10. ETA receptor blockade potentiates the bronchoconstrictor response to ET-1 in the guinea pig airway.

    PubMed

    Polakowski, J S; Opgenorth, T J; Pollock, D M

    1996-08-01

    The effect of ETA receptor blockade on the bronchopulmonary response to endothelin-1 was determined in the airway of the anesthetized, spontaneously breathing guinea pig. Endothelin-1 administered as an aerosol increased lung resistance and decreased dynamic lung compliance. Delivery of the ETA receptor antagonist, FR139317, 5 min prior to giving endothelin-1 greatly potentiated these changes. A lower dose of endothelin-1 that had no effect on resistance or compliance produced large and significant changes when pretreated with FR139317. In contrast, aerosolized FR139317 had no effect on the bronchopulmonary response to intravenously administered endothelin-1. These data suggest a non-contractile function of ETA receptors accessible from the airways that serve to buffer the constrictor effects of non-ETA receptors.

  11. Role and therapeutic potential of G-protein coupled receptors in breast cancer progression and metastases

    PubMed Central

    Singh, Anukriti; Nunes, Jessica J.; Ateeq, Bushra

    2015-01-01

    G-protein-coupled receptors (GPCRs) comprise a large family of cell-surface receptors, which have recently emerged as key players in tumorigenesis, angiogenesis and metastasis. In this review, we discussed our current understanding of the many roles played by GPCRs in general, and particularly Angiotensin II type I receptor (AGTR1), a member of the seven-transmembrane-spanning G-protein coupled receptor superfamily, and its significance in breast cancer progression and metastasis. We have also discussed different strategies for targeting AGTR1, and its ligand Angiotension II (Ang II), which might unravel unique opportunities for breast cancer prevention and treatment. For example, AGTR1 blockers (ARBs) which are already in clinical use for treating hypertension, merit further investigation as a therapeutic strategy for AGTR1-positive cancer patients and may have the potential to prevent Ang II-AGTR1 signalling mediated cancer pathogenesis and metastases. PMID:25981295

  12. Positive selection moments identify potential functional residues in human olfactory receptors

    NASA Technical Reports Server (NTRS)

    Singer, M. S.; Weisinger-Lewin, Y.; Lancet, D.; Shepherd, G. M.

    1996-01-01

    Correlated mutation analysis and molecular models of olfactory receptors have provided evidence that residues in the transmembrane domains form a binding pocket for odor ligands. As an independent test of these results, we have calculated positive selection moments for the alpha-helical sixth transmembrane domain (TM6) of human olfactory receptors. The moments can be used to identify residues that have been preferentially affected by positive selection and are thus likely to interact with odor ligands. The results suggest that residue 622, which is commonly a serine or threonine, could form critical H-bonds. In some receptors a dual-serine subsite, formed by residues 622 and 625, could bind hydroxyl determinants on odor ligands. The potential importance of these residues is further supported by site-directed mutagenesis in the beta-adrenergic receptor. The findings should be of practical value for future physiological studies, binding assays, and site-directed mutagenesis.

  13. Potential ligand-binding residues in rat olfactory receptors identified by correlated mutation analysis

    NASA Technical Reports Server (NTRS)

    Singer, M. S.; Oliveira, L.; Vriend, G.; Shepherd, G. M.

    1995-01-01

    A family of G-protein-coupled receptors is believed to mediate the recognition of odor molecules. In order to identify potential ligand-binding residues, we have applied correlated mutation analysis to receptor sequences from the rat. This method identifies pairs of sequence positions where residues remain conserved or mutate in tandem, thereby suggesting structural or functional importance. The analysis supported molecular modeling studies in suggesting several residues in positions that were consistent with ligand-binding function. Two of these positions, dominated by histidine residues, may play important roles in ligand binding and could confer broad specificity to mammalian odor receptors. The presence of positive (overdominant) selection at some of the identified positions provides additional evidence for roles in ligand binding. Higher-order groups of correlated residues were also observed. Each group may interact with an individual ligand determinant, and combinations of these groups may provide a multi-dimensional mechanism for receptor diversity.

  14. Cognitive deficits and changes in gene expression of NMDA receptors after prenatal methylmercury exposure.

    PubMed Central

    Baraldi, Mario; Zanoli, Paola; Tascedda, Fabio; Blom, Joan M C; Brunello, Nicoletta

    2002-01-01

    Previous studies showed learning and memory deficit in adult rats that were prenatally exposed to methylmercury chloride (MMC) in an advanced stage of pregnancy (15 days). Under these conditions, the cognitive deficits found at 60 days of age paralleled particularly changes in the N-methyl-D-aspartate (NMDA) receptor characteristics. In the present study, we report the behavioral effects of a single oral dose of MMC (8 mg/kg) administered earlier at gestational day 8. The use of different learning and memory tests (passive avoidance, object recognition, water maze) showed a general cognitive impairment in the in utero-exposed rats tested at 60 days of age compared with matched controls. Considering the importance of the glutamatergic receptor system and its endogenous ligands in learning and memory process regulation, we surmised that MMC could affect the gene expression of NMDA receptor subtypes. The use of a sensitive RNase protection assay allowed the evaluation of gene expression of two families of NMDA receptors (NR-1 and NR-2 subtypes). The result obtained in 60-day-old rats prenatally exposed to MMC, showed increased mRNA levels of the NR-2B subunit in the hippocampus but not in the frontal cortex. The data suggest that the behavioral abnormalities of MMC-exposed rats might be ascribed to a neurotoxic effect of the metal that alters the gene expression of a specific NMDA receptor subunit in the hippocampus. PMID:12426146

  15. Comparison of Lentiviral and Sleeping Beauty Mediated αβ T Cell Receptor Gene Transfer

    PubMed Central

    Field, Anne-Christine; Vink, Conrad; Gabriel, Richard; Al-Subki, Roua; Schmidt, Manfred; Goulden, Nicholas; Stauss, Hans; Thrasher, Adrian; Morris, Emma; Qasim, Waseem

    2013-01-01

    Transfer of tumour antigen-specific receptors to T cells requires efficient delivery and integration of transgenes, and currently most clinical studies are using gamma retroviral or lentiviral systems. Whilst important proof-of-principle data has been generated for both chimeric antigen receptors and αβ T cell receptors, the current platforms are costly, time-consuming and relatively inflexible. Alternative, more cost-effective, Sleeping Beauty transposon-based plasmid systems could offer a pathway to accelerated clinical testing of a more diverse repertoire of recombinant high affinity T cell receptors. Nucleofection of hyperactive SB100X transposase-mediated stable transposition of an optimised murine-human chimeric T cell receptor specific for Wilm’s tumour antigen from a Sleeping Beauty transposon plasmid. Whilst transfer efficiency was lower than that mediated by lentiviral transduction, cells could be readily enriched and expanded, and mediated effective target cells lysis in vitro and in vivo. Integration sites of transposed TCR genes in primary T cells were almost randomly distributed, contrasting the predilection of lentiviral vectors for transcriptionally active sites. The results support exploitation of the Sleeping Beauty plasmid based system as a flexible and adaptable platform for accelerated, early-phase assessment of T cell receptor gene therapies. PMID:23840834

  16. Improvement of a Monopartite Ecdysone Receptor Gene Switch and Demonstration of its Utility in Regulation of Transgene Expression in Plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chemical inducible gene regulation systems provide essential tools for the precise regulation of transgene expression in plants and animals. We have recent developed a two-hybrid ecdysone receptor (EcR) gene regulation system that works in conjunction with the retinoid X receptor of Locusta migrato...

  17. Exposure to Endocrine Disruptors and Nuclear Receptors Gene Expression in Infertile and Fertile Men from Italian Areas with Different Environmental Features

    PubMed Central

    La Rocca, Cinzia; Tait, Sabrina; Guerranti, Cristiana; Busani, Luca; Ciardo, Francesca; Bergamasco, Bruno; Perra, Guido; Mancini, Francesca Romana; Marci, Roberto; Bordi, Giulia; Caserta, Donatella; Focardi, Silvano; Moscarini, Massimo; Mantovani, Alberto

    2015-01-01

    Internal levels of selected endocrine disruptors (EDs) (i.e., perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), di-2-ethylhexyl-phthalate (DEHP), mono-(2-ethylhexyl)-phthalate (MEHP), and bisphenol A (BPA)) were analyzed in blood/serum of infertile and fertile men from metropolitan, urban and rural Italian areas. PFOS and PFOA levels were also evaluated in seminal plasma. In peripheral blood mononuclear cells (PBMCs) of same subjects, gene expression levels of a panel of nuclear receptors (NRs), namely estrogen receptor α (ERα) estrogen receptor β (ERβ), androgen receptor (AR), aryl hydrocarbon receptor (AhR), peroxisome proliferator-activated receptor γ (PPARγ) and pregnane X receptor (PXR) were also assessed. Infertile men from the metropolitan area had significantly higher levels of BPA and gene expression of all NRs, except PPARγ, compared to subjects from other areas. Subjects from urban areas had significantly higher levels of MEHP, whereas subjects from rural area had higher levels of PFOA in both blood and seminal plasma. Interestingly, ERα, ERβ, AR, PXR and AhR expression is directly correlated with BPA and inversely correlated with PFOA serum levels. Our study indicates the relevance of the living environment when investigating the exposure to specific EDs. Moreover, the NRs panel in PBMCs demonstrated to be a potential biomarker of effect to assess the EDs impact on reproductive health. PMID:26445054

  18. Exposure to Endocrine Disruptors and Nuclear Receptors Gene Expression in Infertile and Fertile Men from Italian Areas with Different Environmental Features.

    PubMed

    La Rocca, Cinzia; Tait, Sabrina; Guerranti, Cristiana; Busani, Luca; Ciardo, Francesca; Bergamasco, Bruno; Perra, Guido; Mancini, Francesca Romana; Marci, Roberto; Bordi, Giulia; Caserta, Donatella; Focardi, Silvano; Moscarini, Massimo; Mantovani, Alberto

    2015-10-01

    Internal levels of selected endocrine disruptors (EDs) (i.e., perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), di-2-ethylhexyl-phthalate (DEHP), mono-(2-ethylhexyl)-phthalate (MEHP), and bisphenol A (BPA)) were analyzed in blood/serum of infertile and fertile men from metropolitan, urban and rural Italian areas. PFOS and PFOA levels were also evaluated in seminal plasma. In peripheral blood mononuclear cells (PBMCs) of same subjects, gene expression levels of a panel of nuclear receptors (NRs), namely estrogen receptor α (ERα) estrogen receptor β (ERβ), androgen receptor (AR), aryl hydrocarbon receptor (AhR), peroxisome proliferator-activated receptor γ (PPARγ) and pregnane X receptor (PXR) were also assessed. Infertile men from the metropolitan area had significantly higher levels of BPA and gene expression of all NRs, except PPARγ, compared to subjects from other areas. Subjects from urban areas had significantly higher levels of MEHP, whereas subjects from rural area had higher levels of PFOA in both blood and seminal plasma. Interestingly, ERα, ERβ, AR, PXR and AhR expression is directly correlated with BPA and inversely correlated with PFOA serum levels. Our study indicates the relevance of the living environment when investigating the exposure to specific EDs. Moreover, the NRs panel in PBMCs demonstrated to be a potential biomarker of effect to assess the EDs impact on reproductive health. PMID:26445054

  19. Association of a nicotinic receptor gene polymorphism with spontaneous eyeblink rates

    PubMed Central

    Nakano, Tamami; Kuriyama, Chiho; Himichi, Toshiyuki; Nomura, Michio

    2015-01-01

    Spontaneous eyeblink rates greatly vary among individuals from several blinks to a few dozen blinks per minute. Because dopamine agonists immediately increase the blink rate, individual differences in blink rate are used as a behavioral index of central dopamine functioning. However, an association of the blink rate with polymorphisms in dopamine-related genes has yet not been found. In this study, we demonstrated that a genetic variation of the nicotinic acetylcholine receptor CHRNA4 (rs1044396) increased the blink rate while watching a video. A receiver operating characteristic analysis revealed that the blink rate predicts a genetic variation in the nicotinic receptor gene with a significant discrimination level (0.66, p < 0.004). The present study suggests that differences in sensitivity to acetylcholine because of the genetic variation of the nicotinic receptor are associated with individual differences in spontaneous eye blink rate. PMID:25729002

  20. Comparison of synganglion neuropeptides, neuropeptide receptors and neurotransmitter receptors and their gene expression in response to feeding in Ixodes scapularis (Ixodidae) vs. Ornithodoros turicata (Argasidae).

    PubMed

    Egekwu, N; Sonenshine, D E; Garman, H; Barshis, D J; Cox, N; Bissinger, B W; Zhu, J; M Roe, R

    2016-02-01

    Illumina GAII high-throughput sequencing was used to compare expressed genes for female synganglion neuropeptides, neuropeptide receptors and neurotransmitter receptors of the soft tick Ornithodoros turicata with the hard tick Ixodes scapularis. Gene ontology molecular level three mapping revealed no significant differences amongst the same categories represented in O. turicata and I. scapularis. Transcripts predicting 22 neuropeptides or their receptors in the O. turicata synganglion were similar to annotations for 23 neuropeptides or receptors previously identified from I scapularis, with minor exceptions. A transcript predicting ecdysis triggering hormone receptor was identified in O. turicata; transcripts encoding for proprotein convertase and glycoprotein B were identified in both species. Transcripts predicting the same neurotransmitter receptors were found in the synganglion of both species. Gene expression of the transcripts showed numerous differences in response to feeding. Major differences were observed in expression of genes believed important in regulating slow vs. rapid feeding, blood water elimination, cuticle synthesis plasticity and in signalling reproductive activity. Although the glutamate receptor was strongly upregulated in both species, the gamma aminobutyric acid receptor, which inhibits glutamate, was upregulated significantly only in I. scapularis. These differences are consistent with the slow vs. rapid action of the pharyngeal pump in the two species.

  1. Comparison of synganglion neuropeptides, neuropeptide receptors and neurotransmitter receptors and their gene expression in response to feeding in Ixodes scapularis (Ixodidae) vs. Ornithodoros turicata (Argasidae).

    PubMed

    Egekwu, N; Sonenshine, D E; Garman, H; Barshis, D J; Cox, N; Bissinger, B W; Zhu, J; M Roe, R

    2016-02-01

    Illumina GAII high-throughput sequencing was used to compare expressed genes for female synganglion neuropeptides, neuropeptide receptors and neurotransmitter receptors of the soft tick Ornithodoros turicata with the hard tick Ixodes scapularis. Gene ontology molecular level three mapping revealed no significant differences amongst the same categories represented in O. turicata and I. scapularis. Transcripts predicting 22 neuropeptides or their receptors in the O. turicata synganglion were similar to annotations for 23 neuropeptides or receptors previously identified from I scapularis, with minor exceptions. A transcript predicting ecdysis triggering hormone receptor was identified in O. turicata; transcripts encoding for proprotein convertase and glycoprotein B were identified in both species. Transcripts predicting the same neurotransmitter receptors were found in the synganglion of both species. Gene expression of the transcripts showed numerous differences in response to feeding. Major differences were observed in expression of genes believed important in regulating slow vs. rapid feeding, blood water elimination, cuticle synthesis plasticity and in signalling reproductive activity. Although the glutamate receptor was strongly upregulated in both species, the gamma aminobutyric acid receptor, which inhibits glutamate, was upregulated significantly only in I. scapularis. These differences are consistent with the slow vs. rapid action of the pharyngeal pump in the two species. PMID:26783017

  2. Methylation of the Glucocorticoid Receptor Gene Promoter in Preschoolers: Links with Internalizing Behavior Problems

    ERIC Educational Resources Information Center

    Parade, Stephanie H.; Ridout, Kathryn K.; Seifer, Ronald; Armstrong, David A.; Marsit, Carmen J.; McWilliams, Melissa A.; Tyrka, Audrey R.

    2016-01-01

    Accumulating evidence suggests that early adversity is linked to methylation of the glucocorticoid receptor (GR) gene, "NR3C1," which is a key regulator of the hypothalamic-pituitary-adrenal axis. Yet no prior work has considered the contribution of methylation of "NR3C1" to emerging behavior problems and psychopathology in…

  3. Assessing the Dynamics of Nuclear Glucocorticoid-Receptor Complex: Adding Flexibility to Gene Expression Modeling1

    PubMed Central

    Hazra, Anasuya; DuBois, Debra C.; Almon, Richard R.; Jusko, William J.

    2014-01-01

    A retrospective analysis was performed to modify our fourth-generation pharmacodynamic model for glucocorticoid receptor (GR) dynamics with incorporation of more physiological features. This modified model was developed by integrating previously reported free cytosolic GR and GR mRNA data following single (10, 50 mg/kg) and dual (50 mg/kg at 0 and 24 hr) intravenous doses of methylprednisolone (MPL) in adrenalectomized (ADX) male Wistar rats with several in vitro studies describing real-time kinetics of the transfer of rat steroid-receptor complex from the cell cytosol to the nucleus. Additionally, free hepatic cytosolic GR and its mRNA data from a chronic infusion dosing study of MPL (0.1 and 0.3 mg/kg/hr) in male ADX Wistar rats were used to verify the predictability of the model. Incorporation of information regarding in vitro receptor kinetics allowed us to describe the receptor-mediated pharmacogenomic effects of MPL for a larger variety of genes in rat liver from microarray studies. These included early responsive gene like CCAAT/enhancer binding protein-β (CEBP-β), a transcription factor, as well as the later responsive gene for tyrosine aminotransferase (TAT), a classical biomarker of glucocorticoid (GC) genomic effects. This more mechanistic model of GR dynamics can be applied to characterize profiles for a greater number of genes in liver. PMID:17285360

  4. Expression of somatostatin receptor genes and acetylcholine receptor development in rat skeletal muscle during postnatal development.

    PubMed

    Peng, M; Conforti, L; Millhorn, D E

    1998-05-01

    Our laboratory reported previously that somatostatin (SST) is transiently expressed in rat motoneurons during the first 14 days after birth. We investigated the possibility that the SST receptor (SSTR) is expressed in skeletal muscle. We found that two of the five subtypes of SSTR (SSTR3 and SSTR4) are expressed in skeletal muscle with a time course that correlates with the transient expression of SST in motoneurons. In addition, SSTR2A is expressed from birth to adulthood in skeletal muscle. Both SSTR2A and SSTR4 are also expressed in L6 cells, a skeletal muscle cell line. Somatostatin acting through its receptors has been shown to stimulate tyrosine phosphatase activity in a number of different tissues. We found that several proteins (50, 65, 90, 140, 180 and 200 kDa) exhibited a reduced degree of tyrosine phosphorylation following SST treatment. Inhibition of tyrosine phosphatase activity with sodium orthovanadate increased expression of the nicotinic acetyl-choline receptor (nAChR) epsilon subunit mRNA by three fold. Somatostatin reversed the elevated epsilon mRNA following orthovanadate treatment. These findings show that SSTR is expressed in skeletal muscle and that SST acting via the SSTR regulates tyrosine phosphorylation and expression of the epsilon subunit of the AChR in the rat skeletal muscle. PMID:9852305

  5. Superfamily of genes encoding G protein-coupled receptors in the diamondback moth Plutella xylostella (Lepidoptera: Plutellidae).

    PubMed

    Wu, S-F; Yu, H-Y; Jiang, T-T; Gao, C-F; Shen, J-L

    2015-08-01

    G protein-coupled receptors (GPCRs) are the largest and most versatile superfamily of cell membrane proteins, which mediate various physiological processes including reproduction, development and behaviour. The diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae), is one of the most notorious insect pests, preferentially feeding on cruciferous plants. P. xylostella is not only one of the world's most widespread lepidopteran insects, but has also developed resistance to nearly all classes of insecticides. Although the mechanisms of insecticide resistance have been studied extensively in many insect species, few investigations have been carried out on GPCRs in P. xylostella. In the present study, we identified 95 putative GPCRs in the P. xylostella genome. The identified GPCRs were compared with their homologues in Bombyx mori and Drosophila melanogaster. Our results suggest that GPCRs in different insect species may have evolved by a birth-and-death process. One of the differences among compared insects is the duplication of short neuropeptide F receptor and adipokinetic hormone receptors in P. xylostella and B. mori. Another divergence is the decrease in quantity and diversity of the stress-tolerance gene, Mth, in P. xylostella. The evolution by the birth-and-death process is probably involved in adaptation to the feeding behaviour, reproduction and stress responses of P. xylostella. Some of the genes identified in the present study could be potential targets for the development of novel pesticides. PMID:25824261

  6. Protein levels and gene expressions of the epidermal growth factor receptors, HER1, HER2, HER3 and HER4 in benign and malignant ovarian tumors.

    PubMed

    Steffensen, Karina Dahl; Waldstrøm, Marianne; Andersen, Rikke Fredslund; Olsen, Dorte Aalund; Jeppesen, Ulla; Knudsen, Hans Jørgen; Brandslund, Ivan; Jakobsen, Anders

    2008-07-01

    The epidermal growth factor receptors, HER1, HER2, HER3 and HER4 play a key role in the growth of malignant tumors. The receptors of the EGF receptor family are not cancer-specific proteins since these receptors are expressed to some extent in both normal and benign tissue, but this is not elucidated in detail in ovarian tissue. High tumor-to-normal-tissue concentration ratios would be favorable for molecular targeted anti-cancer treatment. The primary aim of the study was to analyze the potential differential protein content and gene expression of the four receptors in benign and malignant ovarian tumors. Tissue from 207 patients (101 malignant, 19 borderline, 64 benign ovarian tumors and 23 normal ovaries) were analyzed by quantitative ELISA for HER1-HER4 protein concentrations and by real-time PCR for HER1-HER4 gene expression. HER2 was also analyzed by immunohistochemistry. The HER2-4 receptor protein content and the median gene expression level was significantly higher in ovarian cancer patients compared to patients with benign ovarian tumors and normal ovaries (p<0.0000001). The protein content of the HER1 receptor was significantly lower in ovarian cancer compared to borderline tumors (p=0.012), benign ovarian tumors (p=0.049) and to normal ovaries (p=0.000069). A sound correlation between the protein levels and gene expressions was documented. In conclusion, decreased concentration of HER1 protein and increased HER2, HER3 and HER4 protein concentration were observed, as also elevated HER2-HER4 gene expression levels in ovarian cancer patients with barely any overlap of the HER3 and HER4 expression in malignant ovarian tumors compared to benign ovarian tissues.

  7. Somatic and germline mutations of the TSH receptor gene in thyroid diseases

    SciTech Connect

    Van Sande, J.; Parma, J.; Tonacchera, M.

    1995-09-01

    Under physiological circumstances, thyrotropin (TSH) is the primary hormone that controls thyroid function and growth. TSH acts by binding to its receptor at the basolateral membrane of thyroid follicular cells. The TSH receptor is a member of the large family of G protein-coupled receptors, which share a similar structural pattern: seven transmembrane segments connected by three extra and three intracellular loops. Together with the receptors for other glycoprotein hormones LH/CG and FSH, the TSH receptor has a long aminoterminal domain that has been shown to encode the specificity for hormone recognition and binding. The G protein-coupled receptors share a common mode of intracellular signalling: They control the on/off state of a variety of trimeric G proteins (G{alpha}{beta}{gamma}) by stimulating the exchange of GDP for GTP on the {alpha} subunit (G{alpha}). The result is that G{alpha} or G{beta}{gamma}, after dissociation of the trimer, will interact with downstream effectors of the receptor. In the case of the TSH receptor, the main G protein involved is Gs, which activates adenylyl cyclase via Gs{alpha}. In some species, including man, the TSH receptor is also capable of activating phospholipase C (via Gq), thus stimulating the production of diacylglycerol and inositolphosphate (IP{sub 3}). However, higher concentrations of TSH are required to activate phospholipase C, compared with adenylyl cyclase. As a consequence, the main second messenger of TSH effects on the human thyroid is cyclic AMP. The present review will summarize recent findings identifying mutations of the TSH receptor gene as a cause for thyroid diseases. 59 refs., 4 figs.

  8. An evolutionarily mobile antigen receptor variable region gene: doubly rearranging NAR-TcR genes in sharks.

    PubMed

    Criscitiello, Michael F; Saltis, Mark; Flajnik, Martin F

    2006-03-28

    Distinctive Ig and T cell receptor (TcR) chains define the two major lineages of vertebrate lymphocyte yet similarly recognize antigen with a single, membrane-distal variable (V) domain. Here we describe the first antigen receptor chain that employs two V domains, which are generated by separate VDJ gene rearrangement events. These molecules have specialized "supportive" TcRdeltaV domains membrane-proximal to domains with most similarity to IgNAR V. The ancestral NAR V gene encoding this domain is hypothesized to have recombined with the TRD locus in a cartilaginous fish ancestor >200 million years ago and encodes the first V domain shown to be used in both Igs and TcRs. Furthermore, these data support the view that gamma/delta TcRs have for long used structural conformations recognizing free antigen.

  9. An evolutionarily mobile antigen receptor variable region gene: Doubly rearranging NAR-TcR genes in sharks

    PubMed Central

    Criscitiello, Michael F.; Saltis, Mark; Flajnik, Martin F.

    2006-01-01

    Distinctive Ig and T cell receptor (TcR) chains define the two major lineages of vertebrate lymphocyte yet similarly recognize antigen with a single, membrane-distal variable (V) domain. Here we describe the first antigen receptor chain that employs two V domains, which are generated by separate VDJ gene rearrangement events. These molecules have specialized “supportive” TcRδV domains membrane-proximal to domains with most similarity to IgNAR V. The ancestral NAR V gene encoding this domain is hypothesized to have recombined with the TRD locus in a cartilaginous fish ancestor >200 million years ago and encodes the first V domain shown to be used in both Igs and TcRs. Furthermore, these data support the view that γ/δ TcRs have for long used structural conformations recognizing free antigen. PMID:16549799

  10. Mechanisms intrinsic to 5-HT2B receptor-induced potentiation of NMDA receptor responses in frog motoneurones.

    PubMed

    Holohean, Alice M; Hackman, John C

    2004-10-01

    In the presence of NMDA receptor open-channel blockers [Mg(2+); (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801); 1-amino-3,5-dimethyladamantane (memantine)] and TTX, high concentrations (30-100 microm) of either 5-hydroxytryptamine (5-HT) or alpha-methyl-5-hydroxytryptamine (alpha-Me-5-HT) significantly potentiated NMDA-induced depolarizations of frog spinal cord motoneurones. Potentiation was blocked by LY-53,857 (10-30 microm), SB 206553 (10 microm), and SB 204741 (30 microm), but not by spiroxatrine (10 microm), WAY 100,635 (1-30 microm), ketanserin (10 microm), RS 102221 (10 microm), or RS 39604 (10-20 microm). Therefore, alpha-Me-5-HT's facilitatory effects appear to involve 5-HT(2B) receptors. These effects were G-protein dependent as they were prevented by prior treatment with guanylyl-5'-imidodiphosphate (GMP-PNP, 100 microm) and H-Arg-Pro-Lys-Pro-Gln-Gln-D-Trp-Phe-D-Trp-D-Trp-Met-NH(2) (GP antagonist 2A, 3-6 microm), but not by pertussis toxin (PTX, 3-6 ng ml(-1), 48 h preincubation). This potentiation was not reduced by protein kinase C inhibition with staurosporine (2.0 microm), U73122 (10 microm) or N-(2-aminoethyl)-5-isoquinolinesulfonamide HCl (H9) (77 microm) or by intracellular Ca(2+) depletion with thapsigargin (0.1 microm) (which inhibits Ca(2+)/ATPase). Exposure of the spinal cord to the L-type Ca(2+) channel blockers nifedipine (10 microm), KN-62 (5 microm) or gallopamil (100 microm) eliminated alpha-Me-5-HT's effects. The calmodulin antagonist N-(6-aminohexyl)-5-chloro-1-naphtalenesulfonamide (W7) (100 microm) diminished the potentiation. However, the calcium/calmodulin-dependent protein kinase II (CaM Kinase II) blocker KN-93 (10 microm) did not block the 5-HT enhancement of the NMDA responses. In summary, activation of 5-HT(2B) receptors by alpha-Me-5-HT facilitates NMDA-depolarizations of frog motoneurones via a G-protein, a rise in [Ca(2+)](i) from the entry of extracellular Ca(2+) through L-type Ca(2

  11. The human insulin receptor substrate-1 gene (IRS1) is localized on 2q36

    SciTech Connect

    Nishiyama, Masaki; Matsufuji, Senya; Hayashi, Shin-ichi; Furusaka, Akihiro; Tanaka, Teruji ); Inazawa, J.; Nakamura, Yusuke ); Ariyama, Takeshi ); Wands, J.R. )

    1994-03-01

    The chromosomal localization of some of the genes participating in the insulin signaling pathway is known. The insulin and insulin receptor genes have been mapped to chromosomes 11 and 19, respectively. To identify the chromosomal localization of the human IRS1 gene, the fluorescence in situ hybridization technique was employed with Genomic Clone B-10. A total of 50 metaphase cells exhibiting either single or double spots of hybridization signals were examined. Among them, 32 showed the specific signals on 2q36. Therefore, the authors assigned the human IRS1 gene to 2q36. The genes for homeobox sequence (HOX4), fibronectin 1, alkaline phosphatase (intestinal), transition protein 1, villin 1, collagen (type IV), Waardenburg syndrome (type 1), alanine-glyoxylate aminotransferase, and glucagon have been localized in the vicinity of the IRS1 gene.

  12. Mapping toll-like receptor signaling pathway genes of Zhikong scallop ( Chlamys farreri) with FISH

    NASA Astrophysics Data System (ADS)

    Zhao, Bosong; Zhao, Liang; Liao, Huan; Cheng, Jie; Lian, Shanshan; Li, Xuan; Huang, Xiaoting; Bao, Zhenmin

    2015-12-01

    Toll-like receptor (TLR) signaling pathway plays a pivotal role in the innate immune system. Studies on TLR signaling pathway genes in Zhikong scallop ( Chlamys farreri) have mainly focused on sequence analysis and expression profiling, no research has been carried out on their localization. The chromosomal position of TLR signaling pathway genes can be valuable for assemblying scallop genome and analysizing gene regulatory networks. In the present study, five key TLR signaling pathway genes ( CfTLR, CfMyd88, CfTRAF6, CfNFκB, and CfIκB) containing bacterial artificial chromosomes (BACs) were isolated and physically mapped through fluorescence in situ hybridization on five non-homologous chromosome pairs, showing a similar distribution to another five model species. The isolation and mapping of these key immune genes of C. farreri will aid to the research on innate immunity, assignment of interested genes to chromosomes, and integration of physical, linkage and cytogenetic maps of this species.

  13. The leukemia inhibitory factor receptor (LIFR) gene is located within a cluster of cytokine receptor loci on mouse chromosome 15 and human chromosome 5p12-p13

    SciTech Connect

    Gearing, D.P. ); Druck, T.; Huebner, K. ); Overhauser, J. ); Gilbert, D.J.; Copeland, N.G.; Jenkins, N.A. )

    1993-10-01

    The leukemia inhibitory factor receptor (LIFR) gene was localized to human chromosome 5p12-p13 by somatic cell hybrid analysis. Interspecific backcross analysis revealed that the murine locus was on chromosome 15 in a region of homology with human chromosome 5p. In both human and mouse genomes, the LIFR locus was linked to the genes encoding the receptors for interleukin-7, prolactin, and growth hormone. 13 refs., 1 fig.

  14. Gonadal steroids exert facilitating and "buffering" effects on glucocorticoid-mediated transcriptional regulation of corticotropin-releasing hormone and corticosteroid receptor genes in rat brain.

    PubMed

    Patchev, V K; Almeida, O F

    1996-11-01

    Gonadal steroids profoundly influence several brain functions and are apparently responsible for gender-specific differences in the regulation of hypothalamic-pituitary-adrenal (HPA) secretions. In this study, we examined the so-called "activational" effects of gonadal steroids on the glucocorticoid-mediated regulation of the gene transcription of corticotropin-releasing hormone (CRH) and corticosteroid receptors in brain areas of relevance for the control of pituitary-adrenal secretion. The efficacy of adrenalectomy (ADX) and chronic treatment with high doses of corticosterone (B) to regulate the gene transcription of CRH and corticosteroid receptors in the hypothalamic paraventricular nucleus (PVN) and hippocampus was studied in male and female rats under the conditions of deprivation of gonadectomy (GDX) and replacement with different gonadal steroids, such as estradiol (E2), progesterone (P), and dihydrotestosterone (DHT). In both sexes, ADX alone or in combination with GDX increased, and B treatment suppressed, the steady-state levels of CRH and corticosteroid receptor mRNAs, whereas GDX alone failed to affect any of the parameters studied. Administration of gonadal hormones to steroid-deprived (ADX/GDX) animals partially attenuated the upregulation of mRNAs encoding corticosteroid receptors in the hippocampus. Supplementation with gonadal steroids modified the effects of B on the gene transcription of CRH and corticosteroid receptors. Whereas P alone or in combination with E2 counteracted the B-induced downregulation of GR and CRH gene transcription in females, DHT and E2 administration further potentiated the effects of B on these parameters in a sex-specific manner. Taken together, the results indicate that gonadal steroids have minor influence on MR, GR, and CRH gene transcription under basal conditions, exert "glucocorticoid-like" effects on the transcription of corticosteroid receptors in the hippocampus of steroid-deprived animals, and interact with

  15. Gene Therapy: The Potential Applicability of Gene Transfer Technology to the Human Germline

    PubMed Central

    2004-01-01

    The theoretical possibility of applying gene transfer methodologies to the human germline is explored. Transgenic methods for genetically manipulating embryos may in principle be applied to humans. In particular, microinjection of retroviral vector appears to hold the greatest promise, with transgenic primates already obtained from this approach. Sperm-mediated gene transfer offers potentially the easiest route to the human germline, however the requisite methodology is presently underdeveloped. Nuclear transfer (cloning) offers an alternative approach to germline genetic modification, however there are major health concerns associated with current nuclear transfer methods. It is concluded that human germline gene therapy remains for all practical purposes a future possibility that must await significant and important advances in gene transfer technology. PMID:15912200

  16. Feasibility Study of Odor Biosensor Using Dissociate Neuronal Culture with Gene Expression of Ionotropic Odorant Receptors

    NASA Astrophysics Data System (ADS)

    Tanada, Norio; Sakurai, Takeshi; Mitsuno, Hidefumi; Bakkum, Douglas; Kanzaki, Ryohei; Takahashi, Hirokazu

    We propose a highly sensitive and real-time odor biosensor by expressing ionotropic odorant receptors of insects into dissociated cultures of neurons of rats. The odorant-gated ion channel structure of insect odorant receptor is expected to allow easy functional expression into cells. The neuronal dissociated cultures of rats have two significant advantages: a long lifetime comparable to rats, i.e., a few years; and amplification ability from weak ionic currents of odorant receptors into easily detectable action potentials of neurons. In the present work, in order to show the feasibility of the proposed sensor, we attempt to express the pheromone receptors of silkmoth, Bombyx mori, into cultured neurons of rats. We demonstrate that 10% of neuronal cells transfected using Lipofectamine successfully expressed pheromone receptors, and that these cells showed significant increase of calcium signals by 50% at the presentation of pheromone.

  17. [60]Fullerene derivative modulates adenosine and metabotropic glutamate receptors gene expression: a possible protective effect against hypoxia

    PubMed Central

    2014-01-01

    Background Glutamate, the main excitatory neurotransmitter, is involved in learning and memory processes but at higher concentration results excitotoxic causing degeneration and neuronal death. Adenosine is a nucleoside that exhibit neuroprotective effects by modulating of glutamate release. Hypoxic and related oxidative conditions, in which adenosine and metabotropic glutamate receptors are involved, have been demonstrated to contribute to neurodegenerative processes occurring in certain human pathologies. Results Human neuroblastoma cells (SH-SY5Y) were used to evaluate the long time (24, 48 and 72 hours) effects of a [60]fullerene hydrosoluble derivative (t3ss) as potential inhibitor of hypoxic insult. Low oxygen concentration (5% O2) caused cell death, which was avoided by t3ss exposure in a concentration dependent manner. In addition, gene expression analysis by real time PCR of adenosine A1, A2A and A2B and metabotropic glutamate 1 and 5 receptors revealed that t3ss significantly increased A1 and mGlu1 expression in hypoxic conditions. Moreover, t3ss prevented the hypoxia-induced increase in A2A mRNA expression. Conclusions As t3ss causes overexpression of adenosine A1 and metabotropic glutamate receptors which have been shown to be neuroprotective, our results point to a radical scavenger protective effect of t3ss through the enhancement of these neuroprotective receptors expression. Therefore, the utility of these nanoparticles as therapeutic target to avoid degeneration and cell death of neurodegenerative diseases is suggested. PMID:25123848

  18. Antisocial behavior and polymorphisms in the oxytocin receptor gene: findings in two independent samples.

    PubMed

    Hovey, D; Lindstedt, M; Zettergren, A; Jonsson, L; Johansson, A; Melke, J; Kerekes, N; Anckarsäter, H; Lichtenstein, P; Lundström, S; Westberg, L

    2016-07-01

    The quantitative genetic contribution to antisocial behavior is well established, but few, if any, genetic variants are established as risk factors. Emerging evidence suggests that the neuropeptide oxytocin (OXT) may modulate interpersonal aggression. We here investigated whether single-nucleotide polymorphisms (SNPs) in the OXT receptor gene (OXTR) are associated with the expression of antisocial behavior. A discovery sample, including both sexes, was drawn from the Child and Adolescent Twin Study in Sweden (CATSS; n=2372), and a sample from the Twin Study of Child and Adolescent Development (TCHAD; n=1232) was used for replication. Eight SNPs in OXTR, selected on previous associations with social and antisocial behavior, were genotyped in the participants of CATSS. Significant polymorphisms were subsequently genotyped in TCHAD for replication. Participants completed self-assessment questionnaires-Life History of Aggression (LHA; available only in CATSS), and Self-Reported Delinquency (SRD; available in both samples)-designed to capture antisocial behavior as continuous traits. In the discovery sample, the rs7632287 AA genotype was associated with higher frequency of antisocial behavior in boys, and this was then replicated in the second sample. In particular, overt aggression (directly targeting another individual) was strongly associated with this genotype in boys (P=6.2 × 10(-7) in the discovery sample). Meta-analysis of the results for antisocial behavior from both samples yielded P=2.5 × 10(-5). Furthermore, an association between rs4564970 and LHA (P=0.00013) survived correction in the discovery sample, but there was no association with the SRD in the replication sample. We conclude that the rs7632287 and rs4564970 polymorphisms in OXTR may independently influence antisocial behavior in adolescent boys. Further replication of our results will be crucial to understanding how aberrant social behavior arises, and would support the OXT receptor as one

  19. Role of peroxisome proliferator-activated receptors gene polymorphisms in type 2 diabetes and metabolic syndrome

    PubMed Central

    Dong, Chen; Zhou, Hui; Shen, Chong; Yu, Lu-Gang; Ding, Yi; Zhang, Yong-Hong; Guo, Zhi-Rong

    2015-01-01

    Metabolic syndrome (MetS) and type 2 diabetes mellitus (T2DM) are the serious public health problems worldwide. Moreover, it is estimated that MetS patients have about five-fold greater risk of the T2DM development compared with people without the syndrome. Peroxisome proliferator-activated receptors are a subgroup of the nuclear hormone receptor superfamily of ligand-activated transcription factors which play an important role in the pathogenesis of MetS and T2DM. All three members of the peroxisome proliferator-activated receptor (PPAR) nuclear receptor subfamily, PPARα, PPARβ/δ and PPARγ are critical in regulating insulin sensitivity, adipogenesis, lipid metabolism, and blood pressure. Recently, more and more studies indicated that the gene polymorphism of PPARs, such as Leu162Val and Val227Ala of PPARα, +294T > C of PPARβ/δ, Pro12Ala and C1431T of PPARγ, are significantly associated with the onset and progressing of MetS and T2DM in different population worldwide. Furthermore, a large body of evidence demonstrated that the glucose metabolism and lipid metabolism were influenced by gene-gene interaction among PPARs genes. However, given the complexity pathogenesis of metabolic disease, it is unlikely that genetic variation of a single locus would provide an adequate explanation of inter-individual differences which results in diverse clinical syndromes. Thus, gene-gene interactions and gene-environment interactions associated with T2DM and MetS need future comprehensive studies. PMID:25987964

  20. Mutational analysis of the extracellular Ca{sup 2+}-sensing receptor gene in human parathyroid tumors

    SciTech Connect

    Hosokawa, Yoshitaka; Arnold, A.; Pollak, M.R.; Brown, E.M.

    1995-10-01

    Despite recent progress, such as the identification of PRAD1/cyclin D1 as a parathyroid oncogene, it is likely that many genes involved in the molecular pathogenesis of parathyroid tumors remain unknown. Individuals heterozygous for inherited mutations in the extracellular Ca{sup 2+}-sensing receptor gene that reduce its biological activity exhibit a disorder termed familial hypocalciuric hypercalcemia or familial benign hypercalcemia, which is characterized by reduced responsiveness of parathyroid and kidney to calcium and by PTH-dependent hypercalcemia. Those who are homozygous for such mutations present with neonatal severe hyperparathyroidism and have marked parathroid hypercellularity. Thus, the Ca{sup 2+}-sensing receptor gene is a candidate parathyroid tumor suppressor gene, with inactivating mutations plausibly explaining set-point abnormalities in the regulation of both parathyroid cellular proliferation and PTH secretion by extracellular Ca{sup 2+} similar to those seen in hyperparathyroidism. Using a ribonuclease A protection assay that has detected multiple mutations in the Ca{sup 2+}-sensing receptor gene in familial hypocalciuric hypercalcemia and covers more than 90% of its coding region, we sought somatic mutations in this gene in a total of 44 human parathyroid tumors (23 adenomas, 4 carcinomas, 5 primary hyperplasias, and 12 secondary hyperplasias). No such mutations were detected in these 44 tumors. Thus, our studies suggest that somatic mutation of the Ca{sup 2+}-sensing receptor gene does not commonly contribute to the pathogenesis of sporadic parathyroid tumors. As such, PTH set-point dysfunction in parathroid tumors may well be secondary to other clonal proliferative defects and/or mutations in other components of the extracellular Ca{sup 2+}-sensing pathway. 29 refs., 2 figs.

  1. SNPs in the aryl hydrocarbon receptor-interacting protein gene associated with sporadic non-functioning pituitary adenoma

    PubMed Central

    HU, YESHUAI; YANG, JUN; CHANG, YONGKAI; MA, SHUNCHANG; QI, JIANFA

    2016-01-01

    Mutations in the aryl hydrocarbon receptor-interacting protein (AIP) gene have previously been associated with a predisposition to pituitary adenomas. However, to the best of our knowledge, mutations in AIP that relate specifically to sporadic non-functioning pituitary adenomas (NFPAs) have yet to be reported. Therefore, the present study aimed to identify single nucleotide polymorphisms (SNPs) in the AIP gene that may be associated with NFPAs. Peripheral blood samples and the entire coding sequence of the AIP gene from 56 patients with NFPAs and 56 controls were analyzed in triplicate. Of the 56 patients with NFPAs, 9 patients (16.1%) were identified as harboring five different SNPs, although no germline mutations in the AIP gene were detected in any of the patients. Three different SNPs (7051C>T, 8012G>C and 8020G>C) were identified in exons 4 and 6 in 3 different patients (each in 1 patient). Two different SNPs (7318C>A and 7886A>G) were identified in exons 5 and 6, respectively, in 6 different patients (each in 3 patients). No SNPs or germline mutations in the AIP gene were identified in the controls. The results of the present study suggested that mutations in the AIP gene might not have an important role in the tumorigenesis of NFPAs. However, further studies are required in order to investigate potential molecular and genetic mechanisms that may underlie the involvement of AIP in NFPA. PMID:26998050

  2. Alcohol misuse in emerging adulthood: Association of dopamine and serotonin receptor genes with impulsivity-related cognition.

    PubMed

    Leamy, Talia E; Connor, Jason P; Voisey, Joanne; Young, Ross McD; Gullo, Matthew J

    2016-12-01

    Impulsivity predicts alcohol misuse and risk for alcohol use disorder. Cognition mediates much of this association. Genes also account for a large amount of variance in alcohol misuse, with dopamine and serotonin receptor genes of particular interest, because of their role in motivated behavior. The precise psychological mechanisms through which such genes confer risk is unclear. Trait impulsivity conveys risk for alcohol misuse by influencing two distinct domains of cognition: beliefs about the reinforcing effects of alcohol consumption (positive alcohol expectancy) and the perceived ability to resist it (drinking refusal self-efficacy). This study investigated the effect of the dopamine-related polymorphism in the DRD2/ANKK1 gene (rs1800497) and a serotonin-related polymorphism in the HTR2A gene (rs6313) on associations between impulsivity, cognition, and alcohol misuse in 120 emerging adults (18-21years). HTR2A predicted lower positive alcohol expectancy, higher refusal self-efficacy, and lower alcohol misuse. However, neither polymorphism moderated the linkages between impulsivity, cognition, and alcohol misuse. This is the first report of an association between HTR2A and alcohol-related cognition. Theoretically-driven biopsychosocial models have potential to elucidate the specific cognitive mechanisms through which distal risk factors like genes and temperament affect alcohol misuse in emerging adulthood. PMID:27399274

  3. Expression of obesity gene and obesity gene long form receptor in endometrium of Yorkshire sows during embryo implantation.

    PubMed

    Wang, Hongfang; Fu, Jinlian; Wang, Aiguo

    2014-03-01

    There is accumulating evidence that leptin may be directly involved in mammalian reproduction, however, the potential role of obesity gene/obesity gene long form receptor (ob/ob-Rb) system in porcine implantation is poorly understood. To further confirm this role, mRNA and protein expression of ob/ob-Rb in implantation site and inter-implantation sites of porcine uterus on pregnancy day 13, 18 and 24 were compared in this study. Ob mRNA level went up with the advance of pregnancy and was higher in implantation site than inter-implantation site (P < 0.05). But ob-Rb mRNA, which was negative-regulated by leptin, went down with the advance of pregnancy and lessened in implantation site compared with inter-implantation site (P < 0.05). During the three implantation phase, leptin protein peaked at day 18 pregnancy (P < 0.05) and leptin protein at implantation site were always higher than inter-implantation site (P < 0.05). The higher ob-Rb protein in implantation site compared with inter-implantation site (P < 0.05) only appeared at day 18 pregnancy. Localization of ob/ob-Rb protein in porcine uterus was assayed using immunohistochemistry and found that ob/ob-Rb protein mainly located in luminal epithelium and glandular epithelium in pregnant pigs, but distinct immune-staining of leptin also detected in stroma in non-pregnancy porcine uterus except for luminal epithelium and glandular epithelium. In conclusion, the peak of leptin and the peak of ob-Rb protein in implantation site specifically appeared on day 18 pregnancy of pig. Another funning discovery is ob-Rb mRNA in porcine endometrium was mainly negative-regulated by leptin. The space-time difference of gene and protein expression for ob/ob-Rb confirmed ob/ob-Rb system role as delicate regulator of porcine implantation process. PMID:24407604

  4. The T cell receptor beta genes of Xenopus.

    PubMed

    Chretien, I; Marcuz, A; Fellah, J; Charlemagne, J; Du Pasquier, L

    1997-03-01

    cDNA of the T cell receptor beta (TCRB) have been isolated from the anuran amphibian Xenopus and they show strong structural homology to TCRB sequences of other vertebrates. Ten BV families, two D segments, ten J segments, and a single C region have been defined so far. Each V family consists of one to two members per haploid genome. A unique feature of the Xenopus TCRB constant region is the lack of N-linked carbohydrate glycosylation sites. The recombination signal sequences suggest that the mechanism of rearrangements are identical to those of mammals. The locus is inherited in a diploid manner despite the pseudotetraploidy of the Xenopus laevis and X. gilli used in this study. PMID:9079820

  5. Activation of Estrogen Receptor Transfected into a Receptor-Negative Brest Cancer Cell Line Decreases the Metastatic and Invasive Potential of the Cells

    NASA Astrophysics Data System