Grigsby, Peta L; Sooranna, Suren R; Adu-Amankwa, Bernice; Pitzer, Brad; Brockman, Diane E; Johnson, Mark R; Myatt, Leslie
2006-08-01
The change from uterine quiescence to enhanced contractile activity may be due to the differential expression of prostaglandin receptors within the myometrium and fetal membranes, in a temporal and topographically distinct manner. To address this question, we determined the localization and expression of the PGE2 receptor subtypes (PTGER1-4) and the PGF2alpha receptor (PTGFR) in paired upper and lower segment myometrium, amnion, and choriodecidual samples throughout human pregnancy, with and without labor. All receptor subtypes were found throughout the muscle layers in both the upper and lower uterine segments, colocalizing with alpha smooth muscle actin. A change in intracellular localization was observed at term labor, where PTGER1 and PTGER4 were predominately associated with the nucleus. Minimal changes in the expression of the PGE2 and PGF2alpha receptor subtypes were observed with gestational age, labor, or between the upper and lower myometrial segments. Receptor expression in maternal and fetal tissues differed between the receptor subtypes; PTGER1 and PTGER4 were predominately expressed in the fetal membranes, PTGER2 was greatest in the myometrium, whereas PTGER3 and PTGFR were similarly expressed in the myometrium and fetal membranes. Myometrial activation through the prostaglandin receptors is perhaps more subtle and may be mediated by a balance between one or several of the prostaglandin receptor subtypes together with other known contraction associated proteins. Lack of coordination in receptor expression between the myometrium and fetal membranes may indicate different regulatory mechanisms between these tissues, or it may suggest a function for these receptors in the amnion and choriodecidua that is independent of that seen in the myometrium.
Pharmacological characterization of recombinant human and rat P2X receptor subtypes.
Bianchi, B R; Lynch, K J; Touma, E; Niforatos, W; Burgard, E C; Alexander, K M; Park, H S; Yu, H; Metzger, R; Kowaluk, E; Jarvis, M F; van Biesen, T
1999-07-02
ATP functions as a fast neurotransmitter through the specific activation of a family of ligand-gated ion channels termed P2X receptors. In this report, six distinct recombinant P2X receptor subtypes were pharmacologically characterized in a heterologous expression system devoid of endogenous P2 receptor activity. cDNAs encoding four human P2X receptor subtypes (hP2X1, hP2X3, hP2X4, and hP2X7), and two rat P2X receptor subtypes (rP2X2 and rP2X3), were stably expressed in 1321N1 human astrocytoma cells. Furthermore, the rP2X2 and rP2X3 receptor subtypes were co-expressed in these same cells to form heteromultimeric receptors. Pharmacological profiles were determined for each receptor subtype, based on the activity of putative P2 ligands to stimulate Ca2+ influx. The observed potency and kinetics of each response was receptor subtype-specific and correlated with their respective electrophysiological properties. Each receptor subtype exhibited a distinct pharmacological profile, based on its respective sensitivity to nucleotide analogs, diadenosine polyphosphates and putative P2 receptor antagonists. Alphabeta-methylene ATP (alphabeta-meATP), a putative P2X receptor-selective agonist, was found to exhibit potent agonist activity only at the hP2X1, hP2X3 and rP2X3 receptor subtypes. Benzoylbenzoic ATP (BzATP, 2' and 3' mixed isomers), which has been reported to act as a P2X7 receptor-selective agonist, was least active at the rat and human P2X7 receptors, but was a potent (nM) agonist at hP2X1, rP2X3 and hP2X3 receptors. These data comprise a systematic examination of the functional pharmacology of P2X receptor activation.
Evidence for Alpha Receptors in the Human Ureter
NASA Astrophysics Data System (ADS)
Madeb, Ralph; Knopf, Joy; Golijanin, Dragan; Bourne, Patricia; Erturk, Erdal
2007-04-01
An immunohistochemical and western blot expression analysis of human ureters was performed in order to characterize the alpha-1-adrenergic receptor distribution along the length of the human ureteral wall. Mapping the distribution will assist in understanding the potential role alpha -1-adrenergic receptors and their subtype density might have in the pathophysiology of ureteral colic and stone passage. Patients diagnosed with renal cancer or bladder cancer undergoing nephrectomy, nephroureterectomy, or cystectomy had ureteral specimens taken from the proximal, mid, distal and tunneled ureter. Tissues were processed for fresh frozen examination and fixed in formalin. None of the ureteral specimens were involved with cancer. Serial histologic sections and immunohistochemical studies were performed using antibodies specific for alpha-1-adrenergic receptor subtypes (alpha 1a, alpha 1b, alpha 1d). The sections were examined under a light microscope and scored as positive or negative. In order to validate and quantify the alpha receptor subtypes along the human ureter. Western blotting techniques were applied. Human ureter stained positively for alpha -1-adrenergic receptors. Immunostaining appeared red, with intense reaction in the smooth muscle of the ureter and endothelium of the neighboring blood vessels. There was differential expression between all the receptors with the highest staining for alpha-1D subtype. The highest protein expression for all three subtypes was in the renal pelvis and decreased with advancement along the ureter to the distal ureter. At the distal ureter, there was marked increase in expression as one progressed towards the ureteral orifice. The same pattern of protein expression was exhibited for all three alpha -1-adrenergic receptor subtypes. We provide preliminary evidence for the ability to detect and quantify the alpha-1-receptor subtypes along the human ureter which to the best of our knowledge has never been done with immunohistochemistry and molecular techniques. These findings may lend support to the preliminary studies of the effectiveness of alpha-receptor blockade on ureteral colic and stone passage.
Preiksaitis, H G; Krysiak, P S; Chrones, T; Rajgopal, V; Laurier, L G
2000-12-01
Esophageal peristalsis is dependent on activation of muscarinic receptors, but little is known about the roles of specific receptor subtypes in the human esophagus. We examined muscarinic receptor expression and function in human esophageal smooth muscle obtained from patients undergoing resection for cancer. [(3)H]Quinuclidinyl benzylate (QNB)-specific binding was similar in longitudinal muscle (B(max) = 106 +/- 22 fmol/mg of protein, K(d) = 68 +/- 9 pM) and circular muscle (B(max) = 81 +/- 16 fmol/mg of protein, K(d) = 79 +/- 15 pM). Subtype-selective antagonists inhibited [(3)H]QNB similarly in muscle from both layers. Further analysis of antagonist inhibition of [(3)H]QNB binding showed a major site (60-70%) with antagonist affinity profile consistent with the M2 subtype and a second site that could not be classified. Reverse transcription-polymerase chain reaction and immunoblotting demonstrated the presence of all five known muscarinic receptor subtypes, and immunocytochemistry on acutely isolated smooth muscle cells confirmed the expression of each subtype on the muscle cells. Subtype-selective antagonists had similar inhibitory effects on carbachol-evoked contractions in longitudinal muscle and circular muscle strips with pA(2) values of 9.5 +/- 0.1 and 9.6 +/- 0.2 for 4-diphenylacetoxy-N-methylpiperidine methiodide, 7.1 +/- 0.1 and 7.0 +/- 0.2 for pirenzepine, and 6.2 +/- 0.2 and 6.4 +/- 0.2 for methoctramine, respectively. We conclude that human esophageal smooth muscle expresses muscarinic receptor subtypes M1 through M5. The antagonist sensitivity profile for muscle contraction is consistent with activation of the M3 subtype.
Grandclément, B; Morel, G
1998-06-01
Atrial natriuretic peptide (ANP) and two complementary peptides named brain natriuretic peptide and C-type natriuretic peptide are involved in diuresis, natriuresis, hypotension and vasorelaxation. Their actions are mediated by highly selective and specific ANP receptors. Three subtypes have been characterized and cloned: ANP receptor A, -B and -C. In the present study, the mRNA for each subtype was detected by ultrastructural in situ hybridization on ultrathin sections of Lowicryl-embedded tissue and frozen tissue. The distribution of mRNA (visualized by gold particles) for each subtype was found to differ in different cells of the nephron. The three subtypes of this receptor family were expressed in all the parts of the nephron, but their expression levels were different. The ANPR-A mRNA was the most abundant in cells of glomerulus, proximal and distal tubules. The subtype C was the least expressed mRNA in glomerulus. In contrast, the subcellular localization of the three mRNAs was similar; they were found in the cytoplasmic matrix and the euchromatin of the nucleus. In conclusion, the differential expression of these mRNAs in kidney cortex indicates that these three peptides act directly in differing parts of nephron regions which are the glomerulus, the proximal and distal tubules.
Bombesin-like peptide receptors in human bronchial epithelial cells.
Kane, M A; Toi-Scott, M; Johnson, G L; Kelley, K K; Boose, D; Escobedo-Morse, A
1996-01-01
Northern blot and RNAse protection assays previously failed to detect bombesin-like peptide (BLP) receptors in normal human lung tissue, but by RT/PCR cultured human bronchial epithelial (HBE) cells expressed all three BLP receptor subtypes, predominantly neuromedin B (NMB) receptor. By RT/PCR, we found expression of all three BLP receptor subtypes by human lung tissue and confirmed NMB receptor expression in six out of six HBE samples. However, transformed HBE BEAS B2B cells expressed only gastrin-releasing peptide (GRP) receptors; saturable, high-affinity (Kd = 3.5 nM) specific [125I]GRP binding confirmed functional GRP receptor, with M(r) = 75 kDa and immunologic cross-reactivity with GRP receptor from human small-cell lung carcinoma (SCLC) NCI-H345 cells. Altered regulation of BLP receptors may accompany transformation of normal lung cells to cancer.
Taxonomy of breast cancer based on normal cell phenotype predicts outcome
Santagata, Sandro; Thakkar, Ankita; Ergonul, Ayse; Wang, Bin; Woo, Terri; Hu, Rong; Harrell, J. Chuck; McNamara, George; Schwede, Matthew; Culhane, Aedin C.; Kindelberger, David; Rodig, Scott; Richardson, Andrea; Schnitt, Stuart J.; Tamimi, Rulla M.; Ince, Tan A.
2014-01-01
Accurate classification is essential for understanding the pathophysiology of a disease and can inform therapeutic choices. For hematopoietic malignancies, a classification scheme based on the phenotypic similarity between tumor cells and normal cells has been successfully used to define tumor subtypes; however, use of normal cell types as a reference by which to classify solid tumors has not been widely emulated, in part due to more limited understanding of epithelial cell differentiation compared with hematopoiesis. To provide a better definition of the subtypes of epithelial cells comprising the breast epithelium, we performed a systematic analysis of a large set of breast epithelial markers in more than 15,000 normal breast cells, which identified 11 differentiation states for normal luminal cells. We then applied information from this analysis to classify human breast tumors based on normal cell types into 4 major subtypes, HR0–HR3, which were differentiated by vitamin D, androgen, and estrogen hormone receptor (HR) expression. Examination of 3,157 human breast tumors revealed that these HR subtypes were distinct from the current classification scheme, which is based on estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. Patient outcomes were best when tumors expressed all 3 hormone receptors (subtype HR3) and worst when they expressed none of the receptors (subtype HR0). Together, these data provide an ontological classification scheme associated with patient survival differences and provides actionable insights for treating breast tumors. PMID:24463450
Regulation of IP 3 Receptors by IP 3 and Ca 2+
NASA Astrophysics Data System (ADS)
Taylor, Colin W.; Swatton, Jane E.
Inositol 1,4,5-trisphosphate ( IP 3) receptors are intracellular Ca 2+ channels that mediate release of Ca 2+ from intracellular stores. The channels are oligomeric assemblies of four subunits, each of which has an N-terminal IP 3-binding domain and each of which contributes to formation of the Ca 2+ channel. In mammals, three different genes encode IP 3 receptors subunits and the type 1 receptor (and perhaps the type 2 receptor) is also expressed as splice variants. Further diversity arises from assembly of the receptor in hetero- and homo-tetrameric channels. The subtypes differ in their expression and regulation, but they share the key property of being regulated by both IP3 and cytosolic Ca 2+. All three mammalian IP 3 subtypes, and probably also the IP 3 receptors expressed in invertebrates, are biphasically regulated by cytosolic Ca2+, although the underlying mechanisms appear to differ between subtypes. The interactions between IP 3 and Ca 2+ in controlling IP 3 receptor gating, and the physiological significance of such regulation will be reviewed.
Cruz, Silvia L; Balster, Robert L; Woodward, John J
2000-01-01
We have previously shown that toluene dose-dependently inhibits recombinant N-methyl-D-aspartate (NMDA) receptors at micromolar concentrations. This inhibition was rapid, almost complete and reversible. The NR1/2B combination was the most sensitive receptor subtype tested with an IC50 value for toluene of 0.17 mM. We now report on the effects of other commonly abused solvents (benzene, m-xylene, ethylbenzene, propylbenzene, 1,1,1-trichlorethane (TCE) and those of a convulsive solvent, 2,2,2-trifluoroethyl ether (flurothyl), on NMDA-induced currents measured in Xenopus oocytes expressing NR1/2A or NR1/2B receptor subtypes. All of the alkylbenzenes and TCE produced a reversible inhibition of NMDA-induced currents that was dose- and subunit-dependent. The NR1/2B receptor subtype was several times more sensitive to these compounds than the NR1/2A subtype. The convulsant solvent flurothyl had no effect on NMDA responses in oocytes but potently inhibited ion flux through recombinant GABA receptors expressed in oocytes. Overall, these results suggest that abused solvents display pharmacological selectivity and that NR1/2B NMDA receptors may be an important target for the actions of these compounds on the brain. PMID:11090101
Grandclément, B; Ronsin, B; Morel, G
1997-03-01
Atrial natriuretic peptide (ANP) actions are mediated by highly selective and specific receptors. Three subtypes have been characterized and cloned: ANP receptor-A (or GC-A), -B (or GC-B) and -C (the so-called clearance receptor). In rat adrenal gland, the mRNA for each subtype was detected using 35S-dUTP or digoxigenin-11-dUTP specific labeled probes, and in situ hybridization at light and electron microscopic levels respectively. The three subtypes were expressed the most abundantly in the zona glomerulosa. The amount of GC-A mRNA expression, quantified using macro-autoradiography and densitometry, was higher than the amounts of GC-B mRNA and ANPR-C mRNA both in zona glomerulosa and medullary of adrenal gland. At electron microscopic level, the three subtypes of ANPR were revealed in glomerulosa cells. A noticeable signal was also present in the medullary area, especially for GC-A mRNA, in adrenaline-containing chromaffin cells. No signal was detected in noradrenaline-containing chromaffin cells. The subcellular localization of the three mRNAs is similar: in the cytoplasmic matrix and in the euchromatin of the nucleus in each cell of glomerulosa, and in the same compartments of the adrenaline-containing chromaffin cells. These data indicate that the adrenal gland is an important target tissue for ANP action both in glomerulosa cells and adrenaline-containing chromaffin cells. The mRNA expression levels were different for each ANPR subtype.
Lundius, Ebba Gregorsson; Sanchez-Alavez, Manuel; Ghochani, Yasmin; Klaus, Joseph; Tabarean, Iustin V.
2010-01-01
The preoptic area/anterior hypothalamus (PO/AH), a region that contains neurons that control thermoregulation, is the main locus at which histamine affects body temperature. Here we report that histamine reduced the spontaneous firing rate of GABAergic preoptic neurons by activating H3 subtype histamine receptors. This effect involved a decrease in the level of phosphorylation of the extracellular signal-regulated kinase (ERK) and was not dependent on synaptic activity. Furthermore, a population of nonGABAergic neurons was depolarized and their firing rate was enhanced by histamine acting at H1 subtype receptors. In our experiments, activation of the H1R receptors was linked to the PLC pathway and Ca2+ release from intracellular stores. This depolarization persisted in TTX or when fast synaptic potentials were blocked indicating that it represents a postsynaptic effect. Single-cell reverse transcription –PCR analysis revealed expression of H3 receptors in a population of GABAergic neurons while H1 receptors were expressed in nonGABAergic cells. Histamine applied in the median preoptic nucleus induced a robust, long lasting hyperthermia effect that was mimicked by either H1 or H3 histamine receptor subtype specific agonists. Our data indicate that histamine modulates the core body temperature by acting at two distinct populations of preoptic neurons which express H1 and H3 receptor subtypes, respectively. PMID:20335473
Lundius, Ebba Gregorsson; Sanchez-Alavez, Manuel; Ghochani, Yasmin; Klaus, Joseph; Tabarean, Iustin V
2010-03-24
The preoptic area/anterior hypothalamus, a region that contains neurons that control thermoregulation, is the main locus at which histamine affects body temperature. Here we report that histamine reduced the spontaneous firing rate of GABAergic preoptic neurons by activating H3 subtype histamine receptors. This effect involved a decrease in the level of phosphorylation of the extracellular signal-regulated kinase and was not dependent on synaptic activity. Furthermore, a population of non-GABAergic neurons was depolarized, and their firing rate was enhanced by histamine acting at H1 subtype receptors. In our experiments, activation of the H1R receptors was linked to the PLC pathway and Ca(2+) release from intracellular stores. This depolarization persisted in TTX or when fast synaptic potentials were blocked, indicating that it represents a postsynaptic effect. Single-cell reverse transcription-PCR analysis revealed expression of H3 receptors in a population of GABAergic neurons, while H1 receptors were expressed in non-GABAergic cells. Histamine applied in the median preoptic nucleus induced a robust, long-lasting hyperthermia effect that was mimicked by either H1 or H3 histamine receptor subtype-specific agonists. Our data indicate that histamine modulates the core body temperature by acting at two distinct populations of preoptic neurons that express H1 and H3 receptor subtypes, respectively.
Differential expression of appetite-regulating genes in avian models of anorexia and obesity.
Yi, J; Yuan, J; Gilbert, E R; Siegel, P B; Cline, M A
2017-08-01
Chickens from lines that have been selected for low (LWS) or high (HWS) juvenile body weight for more than 57 generations provide a unique model by which to research appetite regulation. The LWS display different severities of anorexia, whereas all HWS become obese. In the present study, we measured mRNA abundance of various factors in appetite-associated nuclei in the hypothalamus. The lateral hypothalamus (LHA), paraventricular nucleus (PVN), ventromedial hypothalamus (VMH), dorsomedial nucleus (DMN) and arcuate nucleus (ARC) were collected from 5 day-old chicks that were fasted for 180 minutes or provided with continuous access to food. Fasting increased neuropeptide Y receptor subtype 1 (NPYR1) mRNA in the LHA and c-Fos in the VMH, at the same time as decreasing c-Fos in the LHA, neuropeptide Y receptor subtype 5 and ghrelin in the PVN, and neuropeptide Y receptor subtype 2 in the ARC. Fasting increased melanocortin receptor subtype 3 (MC3R) expression in the DMN and NPY in the ARC of LWS but not HWS chicks. Expression of NPY was greater in LWS than HWS in the DMN. neuropeptide Y receptor subtype 5 mRNA was greater in LWS than HWS in the LHA, PVN and ARC. Expression of orexin was greater in LWS than HWS in the LHA. There was greater expression of NPYR1, melanocortin receptor subtype 4 and cocaine- and amphetamine-regulated transcript in HWS than LWS and mesotocin in LWS than HWS in the PVN. In the ARC, agouti-related peptide and MC3R were greater in LWS than HWS and, in the VMH, orexin receptor 2 and leptin receptor were greater in LWS than HWS. Greater mesotocin in the PVN, orexin in the LHA and ORXR2 in the VMH of LWS may contribute to their increased sympathetic tone and anorexic phenotype. The results of the present study also suggest that an increased hypothalamic anorexigenic tone in the LWS over-rides orexigenic factors such as NPY and AgRP that were more highly expressed in LWS than HWS in several nuclei. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sonier, Brigitte; Arseneault, Madeleine; Institut National de la Recherche Scientifique-Institut Armand-Frappier, Montreal, Que.
2006-05-19
Serotonin (5-hydroxytryptamine, 5-HT) has been described as a mitogen in a variety of cell types and carcinomas. It exerts its mitogenic effect by interacting with a wide range of 5-HT receptor types. Certain studies suggest that some selective serotonin re-uptake inhibitors promote breast cancer in animals and humans. This study attempts to clarify the role of serotonin in promoting the growth of neoplastic mammary cells. Expression of the 5-HT{sub 2A} serotoninergic receptor subtype in MCF-7 cells was determined by RT-PCR, Western blotting, and immunofluorescence analysis. The mitogenic effect of 5-HT on MCF-7 cells was determined by means of the MTTmore » proliferation assay. We have demonstrated that the 5-HT{sub 2A} receptor subtype is fully expressed in the MCF-7 human breast cancer cell line, in terms of encoding mRNA and receptor protein. Automated sequencing has confirmed that the 5-HT{sub 2A} receptor present in this cell line is identical to the 5-HT{sub 2A} receptor found in human platelets and in human cerebral cortex. Furthermore, this receptor was found by immunofluorescence to be on the plasma membrane. MTT proliferation assays revealed that 5-HT and DOI, a selective 5-HT{sub 2A} receptor subtype agonist, stimulated MCF-7 cell. These results indicate that 5-HT plays a mitogenic role in neoplastic mammary cells. Our data also indicate that 5-HT exerts this positive growth effect on MCF-7 cells through, in part, the 5-HT{sub 2A} receptor subtype, which is fully expressed in this cell line.« less
G protein γ (Gγ) subtype dependent targeting of GRK2 to M3 receptor by Gβγ.
Samaradivakara, Saroopa; Kankanamge, Dinesh; Senarath, Kanishka; Ratnayake, Kasun; Karunarathne, Ajith
2018-06-11
Interactions of cytosolic G protein coupled receptor kinase 2 (GRK2) with activated G protein coupled receptors (GPCRs) induce receptor phosphorylation and desensitization. GRK2 is recruited to active M3-muscarinic receptors (M3R) with the participation of the receptor, Gαq and Gβγ. Since we have shown that signaling efficacy of Gβγ is governed by its Gγ subtype identity, the present study examined whether recruitment of GRK2 to M3R is also Gγ subtype dependent. To capture the dynamics of GRK2-recruitment concurrently with GPCR-G protein activation, we employed live cell confocal imaging and a novel assay based on Gβγ translocation. Data show that M3R activation-induced GRK2 recruitment is Gγ subtype dependent in which Gβγ dimers with low PM-affinity Gγ9 exhibited a two-fold higher GRK2-recruitment compared to high PM affinity Gγ3 expressing cells. Since 12-mammalian Gγ types exhibit a cell and tissue specific expressions and the PM-affinity of a Gγ is linked to its subtype identity, our results indicate a mechanism by which Gγ profile of a cell controls GRK2 signaling and GPCR desensitization. Copyright © 2018 Elsevier Inc. All rights reserved.
Shariati, Gholam Reza; Ahangari, Ghasem; Hossein-nezhad, Arash; Asadi, Seyed Mohammad; Pooyafard, Farzaneh; Ahmadkhaniha, Hamid Reza
2009-09-01
Serotonin receptors are involved in pathophysiology of schizophrenia and may mediate other neurotransmitter effects. We investigated serotonin receptors gene expression in peripheral blood mononuclear cells (PBMC) of naïve schizophrenic patients, before and after treatment. Also serotonin receptor gene expression was compared in two treatment groups including Haloperidol and Olanzapine. The PBMC was separated from whole blood by Ficoll-hypaque. The total cellular RNA was extracted and the cDNA was synthesized. This process was followed by real-time PCR using primer pairs specific for 5HT(3a) serotonin receptor mRNA and beta-actin as internal control. The results showed the presence of subtype of serotonin receptor in lymphocytes. Serotonin gene expression showed significant changes in Olanzapine treatment group which correlated with Clinical Global Impression (CGI) score improvement. In conclusion, the present study has shown that human PBMC express serotonin receptors 5HT(3a). Moreover, clinical symptom improvement of Olanzapin may be demonstrated by a change in serotonin receptor gene expression.
Expression of mammalian beta-adrenergic receptors in Xenopus laevis oocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bahouth, S.W.; Malbon, C.C.
1987-05-01
Xenopus laevis oocytes are a useful transcription and expression system for DNA and RNA, respectively. Total cellular RNA was extracted from mouse lymphoma S49 cells and poly(A)/sup +/mRNA prepared by affinity chromatography of RNA on oligo(dT) cellulose. The membranes of S49 cells contain beta-adrenergic receptors that display pharmacological characteristics of beta/sub 2/-subtype. Xenopus laevis oocytes were injected with 50 ng of mRNA/oocyte. Expression of beta-adrenergic receptors in oocytes incubated for 30 hr after microinjection was assessed in membranes by radioligand binding using (/sup 3/H) dihydroalprenolol. The injected oocytes displayed 0.34 fmol receptor/oocyte as compared to 0.02 fmol receptor/oocyte in themore » control oocytes. The affinity of beta-adrenergic receptors in injected oocytes for this radioligand was 2 nM, a value similar to the affinity of beta-adrenergic receptors for DHA in S49 cell membranes. The potency of beta-adrenergic agonists in competing for DHA binding to oocytes membranes was isoproterenol > epinephrine > norepineprine, indicating that the expressed beta-adrenergic receptors were of the beta/sub 2/-subtype. The K/sub I/ of these agonists for the beta-adrenergic receptor in oocyte membranes was 0.03, 0.15 and 1.2 ..mu..M, respectively. The role of post-translational modification in dictating receptor subtype is analyzed using mRNA of beta/sub 1/- as well as beta/sub 2/-adrenergic receptors.« less
Blankenburg, S; Balfanz, S; Hayashi, Y; Shigenobu, S; Miura, T; Baumann, O; Baumann, A; Blenau, W
2015-01-01
γ-aminobutyric acid (GABA) is the predominant inhibitory neurotransmitter in the central nervous system (CNS). Its effects are mediated by either ionotropic GABAA receptors or metabotropic GABAB receptors. GABAB receptors regulate, via Gi/o G-proteins, ion channels, and adenylyl cyclases. In humans, GABAB receptor subtypes are involved in the etiology of neurologic and psychiatric disorders. In arthropods, however, these members of the G-protein-coupled receptor family are only inadequately characterized. Interestingly, physiological data have revealed important functions of GABAB receptors in the American cockroach, Periplaneta americana. We have cloned cDNAs coding for putative GABAB receptor subtypes 1 and 2 of P. americana (PeaGB1 and PeaGB2). When both receptor proteins are co-expressed in mammalian cells, activation of the receptor heteromer with GABA leads to a dose-dependent decrease in cAMP production. The pharmacological profile differs from that of mammalian and Drosophila GABAB receptors. Western blot analyses with polyclonal antibodies have revealed the expression of PeaGB1 and PeaGB2 in the CNS of the American cockroach. In addition to the widespread distribution in the brain, PeaGB1 is expressed in salivary glands and male accessory glands. Notably, PeaGB1-like immunoreactivity has been detected in the GABAergic salivary neuron 2, suggesting that GABAB receptors act as autoreceptors in this neuron. Copyright © 2014 Elsevier Ltd. All rights reserved.
Rouppe van der Voort, C; Kavelaars, A; van de Pol, M; Heijnen, C J
1999-03-01
Beta2- and alpha2-adrenergic receptors (AR) are thought to be the main AR subtypes to exert the effects of catecholamines on the immune system. However, in the present study, we demonstrate that another subtype of AR can be induced in human monocytes. Expression of alpha1b- and alpha1d-AR mRNA can be obtained by culturing freshly isolated human peripheral blood monocytes with the neuroendocrine mediators dexamethasone or the beta2-AR agonist terbutaline. Using the human monocytic cell line THP-1, we demonstrate that increased levels of alpha1b- and alpha1d-mRNA are accompanied by increased levels of receptor protein as determined by Western blot analysis and radioligand binding assays. This study describes for the first time regulated expression of alpha1-AR subtypes in human monocytes.
Brtko, J; Rock, E; Nezbedova, P; Krizanova, O; Dvorcakova, M; Minet-Quinard, R; Farges, M-C; Ribalta, J; Winklhofer-Roob, B M; Vasson, M-P; Macejova, D
2007-01-01
The regulation of cell growth and differentiation and also expression of a number of genes by retinoids are mediated by nuclear retinoid receptors (RARs and/or RXRs). In this study we investigated age-related alteration in both RAR and RXR receptor subtypes gene expression and tissue transglutaminase (tTG) activity before and after supplementation with 13-cis retinoic acid (13cRA) in human peripheral blood mononuclear cells (PBMCs). Healthy men (40) were divided in two groups according to their age (young group: 26.1+/-4.1 years and old group: 65.4+/-3.8 years). Each volunteer received 13cRA (Curacné), 0.5mg/(kgday)) during a period of 4 weeks. We have shown that RXRbeta expression was decreased significantly (p=0.0108) in PBMCs of elderly men when compared to that of young volunteers. Distribution of retinoic acid receptor subtype expression in PBMCs was found in the order: RXRbeta>RARgamma>RXRalpha>RARalpha. The tTG activity in PBMCs reflected a trend to be enhanced after 13-cis retinoic acid supplementation. In conclusion, we demonstrate a significant decrease in the expression of RXRbeta subtype of rexinoid receptors in PBMCs of healthy elderly men. Our data suggest that in healthy elderly men reduction of RXRbeta expression in PBMCs might be a common feature of physiological senescence.
Expression profiling of G-protein-coupled receptors in human urothelium and related cell lines.
Ochodnický, Peter; Humphreys, Sian; Eccles, Rachel; Poljakovic, Mirjana; Wiklund, Peter; Michel, Martin C
2012-09-01
What's known on the subject? and What does the study add? Urothelium emerged as a crucial integrator of sensory inputs and outputs in the bladder wall, and urothelial G-protein-coupled receptors (GPCRs) may represent plausible targets for treatment of various bladder pathologies. Urothelial cell lines provide a useful tool to study urothelial receptor function, but their validity as models for native human urothelium remains unclear. We characterize the mRNA expression of genes coding for GPCRs in human freshly isolated urothelium and compare the expression pattern with those in human urothelial cell lines. To characterize the mRNA expression pattern of genes coding for G-protein-coupled receptors (GPCRs) in human freshly isolated urothelium. To compare GPCR expression in human urothelium-derived cell lines to explore the suitability of these cell lines as model systems to study urothelial function. Native human urothelium (commercially sourced) and human urothelium-derived non-cancer (UROtsa and TERT-NHUC) and cancer (J82) cell lines were used. For mRNA expression profiling we used custom-designed real-time polymerase chain reaction array for 40 receptors and several related genes. Native urothelium expressed a wide variety of GPCRs, including α(1A), α(1D) and all subtypes of α(2) and β adrenoceptors. In addition, M(2) and M(3) cholinergic muscarinic receptors, angiotensin II AT(1) receptor, serotonin 5-HT(2A) receptor and all subtypes of bradykinin, endothelin, cannabinoid, tachykinin and sphingosine-1-phosphate receptors were detected. Nerve growth factor and both its low- and high-affinity receptors were also expressed in urothelium. In all cell lines expression of most GPCRs was markedly downregulated, with few exceptions. In UROtsa cells, but much less in other cell lines, the expression of β(2) adrenoceptors, M(3) muscarinic receptors, B(1) and B(2) bradykinin receptors, ET(B) endothelin receptors and several subtypes of sphingosine-1-phosphate receptors was largely retained. Human urothelium expresses a wide range of receptors which enables sensing and integration of various extracellular signals. Human urothelium-derived cell lines, especially UROtsa cells, show comparable mRNA expression to native tissue for several physiologically relevant GPCRs, but lose expression of many other receptors. The use of cell lines as model systems of human urothelium requires careful validation of suitability for the genes of interest. © 2012 BJU INTERNATIONAL.
PAM50 Breast Cancer Subtyping by RT-qPCR and Concordance with Standard Clinical Molecular Markers
2012-01-01
Background Many methodologies have been used in research to identify the “intrinsic” subtypes of breast cancer commonly known as Luminal A, Luminal B, HER2-Enriched (HER2-E) and Basal-like. The PAM50 gene set is often used for gene expression-based subtyping; however, surrogate subtyping using panels of immunohistochemical (IHC) markers are still widely used clinically. Discrepancies between these methods may lead to different treatment decisions. Methods We used the PAM50 RT-qPCR assay to expression profile 814 tumors from the GEICAM/9906 phase III clinical trial that enrolled women with locally advanced primary invasive breast cancer. All samples were scored at a single site by IHC for estrogen receptor (ER), progesterone receptor (PR), and Her2/neu (HER2) protein expression. Equivocal HER2 cases were confirmed by chromogenic in situ hybridization (CISH). Single gene scores by IHC/CISH were compared with RT-qPCR continuous gene expression values and “intrinsic” subtype assignment by the PAM50. High, medium, and low expression for ESR1, PGR, ERBB2, and proliferation were selected using quartile cut-points from the continuous RT-qPCR data across the PAM50 subtype assignments. Results ESR1, PGR, and ERBB2 gene expression had high agreement with established binary IHC cut-points (area under the curve (AUC) ≥ 0.9). Estrogen receptor positivity by IHC was strongly associated with Luminal (A and B) subtypes (92%), but only 75% of ER negative tumors were classified into the HER2-E and Basal-like subtypes. Luminal A tumors more frequently expressed PR than Luminal B (94% vs 74%) and Luminal A tumors were less likely to have high proliferation (11% vs 77%). Seventy-seven percent (30/39) of ER-/HER2+ tumors by IHC were classified as the HER2-E subtype. Triple negative tumors were mainly comprised of Basal-like (57%) and HER2-E (30%) subtypes. Single gene scoring for ESR1, PGR, and ERBB2 was more prognostic than the corresponding IHC markers as shown in a multivariate analysis. Conclusions The standard immunohistochemical panel for breast cancer (ER, PR, and HER2) does not adequately identify the PAM50 gene expression subtypes. Although there is high agreement between biomarker scoring by protein immunohistochemistry and gene expression, the gene expression determinations for ESR1 and ERBB2 status was more prognostic. PMID:23035882
Differential Expression of Glutamate Receptors in Avian Neural Pathways for Learned Vocalization
WADA, KAZUHIRO; SAKAGUCHI, HIRONOBU; JARVIS, ERICH D.; HAGIWARA, MASATOSHI
2008-01-01
Learned vocalization, the substrate for human language, is a rare trait. It is found in three distantly related groups of birds—parrots, hummingbirds, and songbirds. These three groups contain cerebral vocal nuclei for learned vocalization not found in their more closely related vocal nonlearning relatives. Here, we cloned 21 receptor subunits/subtypes of all four glutamate receptor families (AMPA, kainate, NMDA, and metabotropic) and examined their expression in vocal nuclei of songbirds. We also examined expression of a subset of these receptors in vocal nuclei of hummingbirds and parrots, as well as in the brains of dove species as examples of close vocal nonlearning relatives. Among the 21 subunits/subtypes, 19 showed higher and/or lower prominent differential expression in songbird vocal nuclei relative to the surrounding brain subdivisions in which the vocal nuclei are located. This included relatively lower levels of all four AMPA subunits in lMAN, strikingly higher levels of the kainite subunit GluR5 in the robust nucleus of the arcopallium (RA), higher and lower levels respectively of the NMDA subunits NR2A and NR2B in most vocal nuclei and lower levels of the metabotropic group I subtypes (mGluR1 and -5) in most vocal nuclei and the group II subtype (mGluR2), showing a unique expression pattern of very low levels in RA and very high levels in HVC. The splice variants of AMPA subunits showed further differential expression in vocal nuclei. Some of the receptor subunits/subtypes also showed differential expression in hummingbird and parrot vocal nuclei. The magnitude of differential expression in vocal nuclei of all three vocal learners was unique compared with the smaller magnitude of differences found for nonvocal areas of vocal learners and vocal nonlearners. Our results suggest that evolution of vocal learning was accompanied by differential expression of a conserved gene family for synaptic transmission and plasticity in vocal nuclei. They also suggest that neural activity and signal transduction in vocal nuclei of vocal learners will be different relative to the surrounding brain areas. PMID:15236466
Guo, Mei; Krieger, Jürgen; Große-Wilde, Ewald; Mißbach, Christine; Zhang, Long; Breer, Heinz
2013-01-01
The behaviour of the desert locust, Schistocera gregaria, is largely directed by volatile olfactory cues. The relevant odorants are detected by specialized antennal sensory neurons which project their sensory dendrites into hair-like structures, the sensilla. Generally, the responsiveness of the antennal chemosensory cells is determined by specific receptors which may be either odorant receptors (ORs) or variant ionotropic receptors (IRs). Previously, we demonstrated that in locust the co-receptor for ORs (ORco) is only expressed in cells of sensilla basiconica and sensilla trichodea, suggesting that cells in sensilla coeloconica may express different types of chemosensory receptors. In this study, we have identified the genes of S. gregaria which encode homologues of co-receptors for the variant ionotropic receptors, the subtypes IR8a and IR25a. It was found that both subtypes, SgreIR8a and SgreIR25a, are expressed in the antennae of all five nymphal stages and in adults. Attempts to assign the relevant cell types by means of in situ hybridization revealed that SgreIR8a and SgreIR25a are expressed in cells of sensilla coeloconica. Double fluorescence in situ hybridization experiments disclosed that the two IR-subtypes are co-expressed in some cells of this sensillum type. Expression of SgreIR25a was also found in some of the sensilla chaetica, however, neither SgreIR25a nor SgreIR8a was found to be expressed in sensilla basiconica and sensilla trichodea. This observation was substantiated by the results of double FISH experiments demonstrating that cells expressing SgreIR8a or SgreIR25a do not express ORco. These results support the notion that the antenna of the desert locust employs two different populations of OSNs to sense odors; cells which express IRs in sensilla coeloconica and cells which express ORs in sensilla basiconica and sensilla trichodea.
Mantilla, Carlos B.; Bailey, Jeffrey P.; Zhan, Wen-Zhi; Sieck, Gary C.
2012-01-01
Following cervical spinal cord injury at C2 (SH hemisection model) there is progressive recovery of phrenic activity. Neuroplasticity in the postsynaptic expression of neurotransmitter receptors may contribute to functional recovery. Phrenic motoneurons express multiple serotonergic (5-HTR) and glutamatergic (GluR) receptors, but the timing and possible role of these different neurotransmitter receptor subtypes in the neuroplasticity following SH are not clear. The current study was designed to test the hypothesis that there is an increased expression of serotonergic and glutamatergic neurotransmitter receptors within phrenic motoneurons after SH. In adult male rats, phrenic motoneurons were labeled retrogradely by intrapleural injection of Alexa 488-conjugated cholera toxin B. In thin (10 μm) frozen sections of the spinal cord, fluorescently-labeled phrenic motoneurons were visualized for laser capture microdissection (LCM). Using quantitative real-time RT-PCR in LCM samples, the time course of changes in 5-HTR and GluR mRNA expression was determined in phrenic motoneurons up to 21 days post-SH. Expression of 5-HTR subtypes 1b, 2a and 2c and GluR subtypes AMPA, NMDA, mGluR1 and mGluR5 was evident in phrenic motoneurons from control and SH rats. Phrenic motoneuron expression of 5-HTR2a increased ~8-fold (relative to control) at 14 days post-SH, whereas NMDA expression increased ~16-fold by 21-days post-SH. There were no other significant changes in receptor expression at any time post-SH. This is the first study to systematically document changes in motoneuron expression of multiple neurotransmitter receptors involved in regulation of motoneuron excitability. By providing information on the neuroplasticity of receptors expressed in a motoneuron pool that is inactivated by a higher-level spinal cord injury, appropriate pharmacological targets can be identified to alter motoneuron excitability. PMID:22227062
Alea, Mileidys Perez; Borroto-Escuela, Dasiel O; Romero-Fernandez, Wilber; Fuxe, Kjell; Garriga, Pere
2011-08-15
Muscarinic acetylcholine receptors expression and signaling in the human Jurkat T cell line were investigated. Semiquantitative real-time PCR and radioligand binding studies, using a wide set of antagonist compounds, showed the co-existence of M(3), M(4), and M(5) subtypes. Stimulation of these subpopulations caused a concentration and time- dependent activation of second messengers and ERK signaling pathways, with a major contribution of the M(3) subtype in a G(q/11)-mediated response. In addition, we found that T-cell stimulation leads to increased expression of M(3) and M(5) both at transcriptional and protein levels in a PLC/PKCθ dependent manner. Our data clarifies the functional role of AChR subtypes in Jurkat cells and pave the way to future studies on the potential cross-talk among these subpopulations and their regulation of T lymphocytes immune function. Copyright © 2011 Elsevier B.V. All rights reserved.
2013-01-01
Background Co-Activator Arginine Methyltransferase 1(CARM1) is an Estrogen Receptor (ER) cofactor that remodels chromatin for gene regulation via methylation of Histone3. We investigated CARM1 levels and localization across breast cancer tumors in a cohort of patients of either European or African ancestry. Methods We analyzed CARM1 levels using tissue microarrays with over 800 histological samples from 549 female cancer patients from the US and Nigeria, Africa. We assessed associations between CARM1 expression localized to the nucleus and cytoplasm for 11 distinct variables, including; ER status, Progesterone Receptor status, molecular subtypes, ethnicity, HER2+ status, other clinical variables and survival. Results We found that levels of cytoplasmic CARM1 are distinct among tumor sub-types and increased levels are associated with ER-negative (ER-) status. Higher nuclear CARM1 levels are associated with HER2 receptor status. EGFR expression also correlates with localization of CARM1 into the cytoplasm. This suggests there are distinct functions of CARM1 among molecular tumor types. Our data reveals a basal-like subtype association with CARM1, possibly due to expression of Epidermal Growth Factor Receptor (EGFR). Lastly, increased cytoplasmic CARM1, relative to nuclear levels, appear to be associated with self-identified African ethnicity and this result is being further investigated using quantified genetic ancestry measures. Conclusions Although it is known to be an ER cofactor in breast cancer, CARM1 expression levels are independent of ER. CARM1 has distinct functions among molecular subtypes, as is indicative of its sub-cellular localization and it may function in subtype etiology. These sub-cellular localization patterns, indicate a novel role beyond its ER cofactor function in breast cancer. Differential localization among ethnic groups may be due to ancestry-specific polymorphisms which alter the gene product. PMID:23663560
Larvae of small white butterfly, Pieris rapae, express a novel serotonin receptor
USDA-ARS?s Scientific Manuscript database
The biogenic amine serotonin (5-hydroxytryptamine, 5-HT) is a neurotransmitter in vertebrates and invertebrates. It acts in regulation and modulation of many physiological and behavioral processes through G protein-coupled receptors. Insects express five 5-HT receptor subtypes that share high simila...
Differential regulation of the cell cycle by alpha1-adrenergic receptor subtypes.
Gonzalez-Cabrera, Pedro J; Shi, Ting; Yun, June; McCune, Dan F; Rorabaugh, Boyd R; Perez, Dianne M
2004-11-01
Alpha(1)-Adrenergic receptors have been implicated in growth-promoting pathways. A microarray study of individual alpha(1)-adrenergic receptor subtypes (alpha(1A), alpha(1B), and alpha(1D)) expressed in Rat-1 fibroblasts revealed that epinephrine altered the transcription of several cell cycle regulatory genes in a direction consistent with the alpha(1A)- and alpha(1D)-adrenergic receptors mediating G(1)-S cell cycle arrest and the alpha(1B-)mediating cell-cycle progression. A time course indicated that in alpha(1A) cells, epinephrine stimulated a G(1)-S arrest, which began after 8 h of stimulation and maximized at 16 h, at which point was completely blocked with cycloheximide. The alpha(1B)-adrenergic receptor profile also showed unchecked cell cycle progression, even under low serum conditions and induced foci formation. The G(1)-S arrest induced by alpha(1A)- and alpha(1D)-adrenergic receptors was associated with decreased cyclin-dependent kinase-6 and cyclin E-associated kinase activities and increased expression of the cyclin-dependent kinase inhibitor p27(Kip1), all of which were blocked by prazosin. There were no differences in kinase activities and/or expression of p27(Kip1) in epinephrine alpha(1B)-AR fibroblasts, although the microarray did indicate differences in p27(Kip1) RNA levels. Cell counts proved the antimitotic effect of epinephrine in alpha(1A) and alpha(1D) cells and indicated that alpha(1B)-adrenergic receptor subtype expression was sufficient to cause proliferation of Rat-1 fibroblasts independent of agonist stimulation. Analysis in transfected PC12 cells also confirmed the alpha(1A)- and alpha(1B)-adrenergic receptor effect. The alpha(1B)-subtype native to DDT1-MF2 cells, a smooth muscle cell line, caused progression of the cell cycle. These results indicate that the alpha(1A)- and alpha(1D)-adrenergic receptors mediate G(1)-S cell-cycle arrest, whereas alpha(1B)-adrenergic receptor expression causes a cell cycle progression and may induce transformation in sensitive cell lines.
Alvarez, R; Checa, M; Brun, S; Viñas, O; Mampel, T; Iglesias, R; Giralt, M; Villarroya, F
2000-01-01
The intracellular pathways and receptors mediating the effects of retinoic acid (RA) on the brown-fat-uncoupling-protein-1 gene (ucp-1) have been analysed. RA activates transcription of ucp-1 and the RA receptor (RAR) is known to be involved in this effect. However, co-transfection of an expression vector for retinoid-X receptor (RXR) increases the action of 9-cis RA but not the effects of all-trans RA on the ucp-1 promoter in brown adipocytes. Either RAR-specific ¿p-[(E)-2-(5,6,7,8,-tetrahydro-5,5,8, 8-tetramethyl-2-naphthalenyl)-1-propenyl]benzoic acid¿ or RXR-specific [isopropyl-(E,E)-(R,S)-11-methoxy-3,7, 11-trimethyldodeca-2,4-dienoate, or methoprene] synthetic compounds increase the expression of UCP-1 mRNA and the activity of chloramphenicol acetyltransferase expression vectors driven by the ucp-1 promoter. The RXR-mediated action of 9-cis RA requires the upstream enhancer region at -2469/-2318 in ucp-1. During brown-adipocyte differentiation RXRalpha and RXRgamma mRNA expression is induced in parallel with UCP-1 mRNA, whereas the mRNA for the three RAR subtypes, alpha, beta and gamma, decreases. Co-transfection of murine expression vectors for the different RAR and RXR subtypes indicates that RARalpha and RARbeta as well as RXRalpha are the major retinoid-receptor subtypes capable of mediating the responsiveness of ucp-1 to retinoids. It is concluded that the effects of retinoids on ucp-1 transcription involve both RAR- and RXR-dependent signalling pathways. The responsiveness of brown adipose tissue to retinoids in vivo relies on a complex combination of the capacity of RAR and RXR subtypes to mediate ucp-1 induction and their distinct expression in the differentiated brown adipocyte. PMID:10600643
Uzé, G; Lutfalla, G; Bandu, M T; Proudhon, D; Mogensen, K E
1992-05-15
A murine interferon (IFN) alpha/beta receptor was cloned from the IFN-sensitive L1210 cell line on the basis of its homology with the human receptor. A combination of methods that includes the screening of random-primed and oligo(dT)-primed cDNA libraries and polymerase chain reactions with a single-side specificity was used. At the amino acid level, the murine IFN-alpha/beta shows 46% identity with its human counterpart. Both human WISH cells presenting a low sensitivity to mouse IFN and a murine L1210 mutant subline that does not express the receptor have been stably transfected with the murine IFN-alpha/beta receptor. Whereas transfected human cells became sensitive to a limited number of mouse IFN-alpha/beta subtypes, the transfected murine L1210 mutant was found to be fully complemented and became sensitive to all mouse IFN-alpha/beta subtypes tested, including those that were not active on transfected human cells. These results strongly suggest that the receptor described here is implicated in the mediation of the activities of all murine IFN-alpha/beta subtypes.
Lamonte, Nicole; Echo, Joyce A; Ackerman, Tsippa F; Christian, Garrison; Bodnar, Richard J
2002-03-01
The present study examined opioid receptor(s) mediation of feeding elicited by mu opioid agonists in the ventral tegmental area using general or selective opioid antagonist pretreatment. Naltrexone as well as equimolar doses of selective mu and kappa, but not delta opioid antagonists in the ventral tegmental area significantly reduced mu agonist-induced feeding, indicating a pivotal role for these receptor subtypes in the full expression of this response.
Lee, Jonathan K; Garbe, James C; Vrba, Lukas; Miyano, Masaru; Futscher, Bernard W; Stampfer, Martha R; LaBarge, Mark A
2015-01-01
Based on molecular features, breast cancers are grouped into intrinsic subtypes that have different prognoses and therapeutic response profiles. With increasing age, breast cancer incidence increases, with hormone receptor-positive and other luminal-like subtype tumors comprising a majority of cases. It is not known at what stage of tumor progression subtype specification occurs, nor how the process of aging affects the intrinsic subtype. We examined subtype markers in immortalized human mammary epithelial cell lines established following exposure of primary cultured cell strains to a two-step immortalization protocol that targets the two main barriers to immortality: stasis (stress-associated senescence) and replicative senescence. Cell lines derived from epithelial cells obtained from non-tumorous pre- and post-menopausal breast surgery tissues were compared. Additionally, comparisons were made between lines generated using two different genetic interventions to bypass stasis: transduction of either an shRNA that down-regulated p16(INK4A), or overexpressed constitutive active cyclin D1/CDK2. In all cases, the replicative senescence barrier was bypassed by transduction of c-Myc. Cells from all resulting immortal lines exhibited normal karyotypes. Immunofluorescence, flow cytometry, and gene expression analyses of lineage-specific markers were used to categorize the intrinsic subtypes of the immortalized lines. Bypassing stasis with p16 shRNA in young strains generated cell lines that were invariably basal-like, but the lines examined from older strains exhibited some luminal features such as keratin 19 and estrogen receptor expression. Overexpression of cyclin D1/CDK2 resulted in keratin 19 positive, luminal-like cell lines from both young and old strains, and the lines examined from older strains exhibited estrogen receptor expression. Thus age and the method of bypassing stasis independently influence the subtype of immortalized human mammary epithelial cells.
Wang, Zheng; Zhang, Chuanbao; Sun, Lihua; Liang, Jingshan; Liu, Xing; Li, Guanzhang; Yao, Kun; Zhang, Wei; Jiang, Tao
2016-12-20
Activation of receptor tyrosine kinases is common in Malignancies. FGFR3 fusion with TACC3 has been reported to have transforming effects in primary glioblastoma and display oncogenic activity in vitro and in vivo. We set out to investigate the role of FGFR3 in glioma through transcriptomic analysis. FGFR3 increased in Classical subtype and Neural subtype consistently in CGGA and TCGA cohort. Similar patterns of FGFR3 distribution through subtypes were observed in CGGA and TCGA samples. Gene ontology analysis was performed with genes that were significantly correlated with FGFR3 expression. We found that positively associated biological processes of FGFR3 were focused on differentiated cellular functions and neuronal activities, while negatively correlated biological processes focused on mitosis and cell cycle phase. Clinical investigation showed that higher FGFR3 expression predicted improved survival for glioma patients, especially in Proneural subtype. Moreover, FGFR3 showed very limited relevance with other receptor tyrosine kinases in glioma at transcriptome level. FGFR3 expression data of glioma was obtained from Chinese Glioma Genome Atlas (CGGA) and TCGA (The Cancer Genome Atlas). In total, RNA sequencing data of 325 glioma samples and mRNA microarray data of 301 samples from CGGA dataset were enrolled into this study. To consolidate the findings that we have revealed in CGGA dataset, RNA-seq data of 672 glioma samples from TCGA dataset were used as a validation cohort. R language was used as the main tool to perform statistical analysis and graphical work. FGFR3 expression increased in classical and neural subtypes and was associated with differentiated cellular functions. FGFR3 showed very limited correlation with other common receptor tyrosine kinases, and predicted improved survival for glioma patients.
Wang, Zheng; Zhang, Chuanbao; Sun, Lihua; Liang, Jingshan; Liu, Xing; Li, Guanzhang; Yao, Kun; Zhang, Wei; Jiang, Tao
2016-01-01
Background Activation of receptor tyrosine kinases is common in Malignancies. FGFR3 fusion with TACC3 has been reported to have transforming effects in primary glioblastoma and display oncogenic activity in vitro and in vivo. We set out to investigate the role of FGFR3 in glioma through transcriptomic analysis. Results FGFR3 increased in Classical subtype and Neural subtype consistently in CGGA and TCGA cohort. Similar patterns of FGFR3 distribution through subtypes were observed in CGGA and TCGA samples. Gene ontology analysis was performed with genes that were significantly correlated with FGFR3 expression. We found that positively associated biological processes of FGFR3 were focused on differentiated cellular functions and neuronal activities, while negatively correlated biological processes focused on mitosis and cell cycle phase. Clinical investigation showed that higher FGFR3 expression predicted improved survival for glioma patients, especially in Proneural subtype. Moreover, FGFR3 showed very limited relevance with other receptor tyrosine kinases in glioma at transcriptome level. Materials and Methods FGFR3 expression data of glioma was obtained from Chinese Glioma Genome Atlas (CGGA) and TCGA (The Cancer Genome Atlas). In total, RNA sequencing data of 325 glioma samples and mRNA microarray data of 301 samples from CGGA dataset were enrolled into this study. To consolidate the findings that we have revealed in CGGA dataset, RNA-seq data of 672 glioma samples from TCGA dataset were used as a validation cohort. R language was used as the main tool to perform statistical analysis and graphical work. Conclusions FGFR3 expression increased in classical and neural subtypes and was associated with differentiated cellular functions. FGFR3 showed very limited correlation with other common receptor tyrosine kinases, and predicted improved survival for glioma patients. PMID:27829236
Li, G Q; Kevetter, G A; Leonard, R B; Prusak, D J; Wood, T G; Correia, M J
2007-04-25
Muscarinic acetylcholine receptors (mAChRs) are widely expressed in the CNS and peripheral nervous system and play an important role in modulating the cell activity and function. We have shown that the cholinergic agonist carbachol reduces the pigeon's inwardly rectifying potassium channel (pKir2.1) ionic currents in native vestibular hair cells. We have cloned and sequenced pigeon mAChR subtypes M2-M5 and we have studied the expression of all five mAChR subtypes (M1-M5) in the pigeon vestibular end organs (semicircular canal ampullary cristae and utricular maculae), vestibular nerve fibers and the vestibular (Scarpa's) ganglion using tissue immunohistochemistry (IH), dissociated single cell immunocytochemistry (IC) and Western blotting (WB). We found that vestibular hair cells, nerve fibers and ganglion cells each expressed all five (M1-M5) mAChR subtypes. Two of the three odd-numbered mAChRs (M1, M5) were present on the hair cell cilia, supporting cells and nerve terminals. And all three odd numbered mAChRs (M1, M3 and M5) were expressed on cuticular plates, myelin sheaths and Schwann cells. Even-numbered mAChRs were seen on the nerve terminals. M2 was also shown on the cuticular plates and supporting cells. Vestibular efferent fibers and terminals were not identified in our studies. Results from WB of the dissociated vestibular epithelia, nerve fibers and vestibular ganglia were consistent with the results from IH and IC. Our findings suggest that there is considerable co-expression of the subtypes on the neural elements of the labyrinth. Further electrophysiological and pharmacological studies should delineate the mechanisms of action of muscarinic acetylcholine receptors on structures in the labyrinth.
Neto, Leonardo Vieira; Machado, Evelyn de O.; Luque, Raul M.; Taboada, Giselle F.; Marcondes, Jorge B.; Chimelli, Leila M. C.; Quintella, Leonardo Pereira; Niemeyer, Paulo; de Carvalho, Denise P.; Kineman, Rhonda D.; Gadelha, Mônica R.
2009-01-01
Context: Dopamine receptor (DR) and somatostatin receptor subtype expression in pituitary adenomas may predict the response to postsurgical therapies. Objectives: Our objectives were to assess and compare the mRNA levels of DR1-5 and somatostatin receptors 1–5 in normal pituitaries (NPs), nonfunctioning pituitary adenomas (NFPAs), and somatotropinomas. In addition, we determined whether the level of DR expression correlates with the in vivo response to octreotide-LAR in acromegalic patients. Design and Patients: Eight NPs, 30 NFPAs, and 39 somatotropinomas were analyzed for receptor mRNA levels by real-time RT-PCR. The DR2 short variant was estimated as the DR2 long/DR2 total (DR2T). The relationship between DR expression and the postsurgical response to octreotide-LAR was assessed in 19 of the acromegalic patients. Results: DR3 was not detected. The relationship between expression levels of DR subtypes in NPs and somatotropinomas was DR2T⋙DR4≫DR5>DR1, whereas in NFPAs, DR2T⋙DR4≫DR1>DR5. The DR2 short variant was the predominant DR2 variant in the majority of samples. In acromegalics treated with octreotide-LAR, DR1 was negatively correlated with percent GH reduction (3 months: r = −0.67, P = 0.002; and 6 months: r = −0.58, P = 0.009), and DR5 was positively correlated with percent IGF-I reduction (3 months: r = 0.55, P = 0.01; and 6 months: r = 0.47, P = 0.04). Conclusions: DR2 is the predominant DR subtype in NPs, NFPAs, and somatotropinomas. The fact that DR1, DR4, and DR5 are also expressed in many adenomas tested suggests that these receptors might also play a role in the therapeutic impact of postsurgical medical therapies in patients with NFPA and acromegaly. This was supported by the finding that the in vivo response to octreotide-LAR was negatively associated with DR1 and positively associated with DR5. PMID:19293270
Molecular analysis of nicotinic receptor expression in autism.
Martin-Ruiz, C M; Lee, M; Perry, R H; Baumann, M; Court, J A; Perry, E K
2004-04-07
Autism is a developmental disorder of unknown aetiopathology and lacking any specific pharmacological therapeutic intervention. Neurotransmitters such as serotonin, gamma-aminobutyric acid (GABA) and acetylcholine have been implicated. Abnormalities in nicotinic acetylcholine receptors have been identified including cortical loss of binding to the alpha4/beta2 subtype and increase in cerebellar alpha7 binding. Receptor expression (mRNA) has not so far been systematically examined. This study aims to further explore the role of nicotinic receptors in autism by analysing nicotinic receptor subunit mRNA in conjunction with protein levels and receptor binding in different brain areas. Quantitative RT-PCR for alpha4, alpha7 and beta2 subunit mRNA expression levels; alpha3, alpha4, alpha7 and beta2 subunit protein expression immunochemistry and specific radioligand receptor binding were performed in adult autism and control brain samples from cerebral cortex and cerebellum. Alpha4 and beta2 protein expression and receptor binding density as well as alpha4 mRNA levels were lower in parietal cortex in autism, while alpha7 did not change for any of these parameters. In cerebellum, alpha4 mRNA expression was increased, whereas subunit protein and receptor levels were decreased. Alpha7 receptor binding in cerebellum was increased alongside non-significant elevations in mRNA and protein expression levels. No significant changes were found for beta2 in cerebellum. The data obtained, using complementary measures of receptor expression, indicate that reduced gene expression of the alpha4beta2 nicotinic receptor in the cerebral cortex is a major feature of the neurochemical pathology of autism, whilst post-transcriptional abnormalities of both this and the alpha7 subtype are apparent in the cerebellum. The findings point to dendritic and/or synaptic nicotinic receptor abnormalities that may relate to disruptions in cerebral circuitry development.
Collins, Laura C; Cole, Kimberly S; Marotti, Jonathan D; Hu, Rong; Schnitt, Stuart J; Tamimi, Rulla M
2011-07-01
Previous studies have demonstrated that androgen receptor is expressed in many breast cancers, but its expression in relation to the various breast cancer subtypes as defined by molecular profiling has not been studied in detail. We constructed tissue microarrays from 3093 breast cancers that developed in women enrolled in the Nurses' Health Study. Tissue microarray sections were immunostained for estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), cytokeratin 5/6, epidermal growth factor receptor (EGFR) and androgen receptor (ER). Immunostain results were used to categorize each cancer as luminal A or B, HER2 and basal like. The relationships between androgen receptor expression and molecular subtype were analyzed. Overall, 77% of the invasive breast carcinomas were androgen receptor positive. Among 2171 invasive cancers, 64% were luminal A, 15% luminal B, 6% HER2 and 11% basal like. The frequency of androgen receptor expression varied significantly across the molecular phenotypes (P<0.0001). In particular, androgen receptor expression was commonly observed in luminal A (91%) and B (68%) cancers, but was less frequently seen in HER2 cancers (59%). Despite being defined by the absence of ER and PR expression and being considered hormonally unresponsive, 32% of basal-like cancers expressed androgen receptor. Among 246 cases of ductal carcinoma in situ, 86% were androgen receptor positive, but the frequency of androgen receptor expression differed significantly across the molecular phenotypes (P=0.001), and high nuclear grade lesions were less likely to be androgen receptor positive compared with lower-grade lesions. Androgen receptor expression is most commonly seen in luminal A and B invasive breast cancers. However, expression of androgen receptor is also seen in approximately one-third of basal-like cancers, providing further evidence that basal-like cancers represent a heterogeneous group. Our findings raise the possibility that targeting the androgen receptor pathway may represent a novel therapeutic approach to the management of patients with basal-like cancers.
Neuhaus, Jochen; Weimann, Annett; Stolzenburg, Jens-Uwe; Dawood, Waled; Schwalenberg, Thilo; Dorschner, Wolfgang
2006-06-01
The potent inflammatory mediator histamine is released from activated mast cells in interstitial cystitis (IC). Here, we report on the histamine receptor subtypes involved in the intracellular calcium response of cultured smooth muscle cells (cSMC). Fura-2 was used to monitor the calcium response in cSMC, cultured from human detrusor biopsies. The distribution of histamine receptor subtypes was addressed by immunocytochemistry in situ and in vitro. Histamine stimulated a maximum of 92% of the cells (n=335), being more effective than carbachol (70%, n=920). HTMT (H1R-agonist), dimaprit (H2R) and MTH (H3R) lead to significant lower numbers of reacting cells (60, 48 and 54%). Histamine receptor immunoreactivity (H1R, H2R, H3R, H4R) was found in situ and in vitro. Histamine-induced calcium increase is mediated by distinct histamine receptors. Thus, pre-therapeutic evaluation of histamine receptor expression in IC patients may help to optimize therapy by using a patient-specific cocktail of subtype-specific histamine receptor antagonists.
Prostaglandins and Their Receptors in Eosinophil Function and As Therapeutic Targets
Peinhaupt, Miriam; Sturm, Eva M.; Heinemann, Akos
2017-01-01
Of the known prostanoid receptors, human eosinophils express the prostaglandin D2 (PGD2) receptors DP1 [also D-type prostanoid (DP)] and DP2 (also chemoattractant receptor homologous molecule, expressed on Th2 cells), the prostaglandin E2 receptors EP2 and EP4, and the prostacyclin (PGI2) receptor IP. Prostanoids can bind to either one or multiple receptors, characteristically have a short half-life in vivo, and are quickly degraded into metabolites with altered affinity and specificity for a given receptor subtype. Prostanoid receptors signal mainly through G proteins and naturally activate signal transduction pathways according to the G protein subtype that they preferentially interact with. This can lead to the activation of sometimes opposing signaling pathways. In addition, prostanoid signaling is often cell-type specific and also the combination of expressed receptors can influence the outcome of the prostanoid impulse. Accordingly, it is assumed that eosinophils and their (patho-)physiological functions are governed by a sensitive prostanoid signaling network. In this review, we specifically focus on the functions of PGD2, PGE2, and PGI2 and their receptors on eosinophils. We discuss their significance in allergic and non-allergic diseases and summarize potential targets for drug intervention. PMID:28770200
Ruggeri, R.M.; Ferraù, F.; Campennì, A.; Simone, A.; Barresi, V.; Giuffrè, G.; Tuccari, G.; Baldari, S.; Trimarchi, F.
2009-01-01
Somastostatin receptors are frequently expressed in phaeochromocytoma but data on somatostatin receptor subtyping are scanty and the functional response to the somatostatin analogue octretide is still debated.We report an unusual case of pheochromocytoma, causing ectopic Cushing’s syndrome due to CRH production by the tumour cells, in a 50-yr-old woman. Abdominal computed tomography revealed an inhomogeneous, 9-cm mass in the right adrenal gland, and [111In-DTPA0] octreotide scintigraphy showed an abnormal uptake of the radiotracer in the right perirenal region, corresponding to the adrenal mass. The patient underwent laparoscopic surgery and formalin-fixed and paraffin-embedded samples were studied. The tumour was extensively characterized by immunohistochemistry and somatostatin receptor (SSTRs) subtypes expression was analyzed. Histological and immunohistochemical examination of the surgical specimens displayed a typical pheochromocytoma, which was found to be immunoreative to S-100, chromogranin A and neurofilaments. Immunostaining for SSTR subtypes showed a positive reaction for SSTR1, SSTR2A, SSTR2B, antisera on tumour cells. The intense and diffuse immunostaining for corticotropin releasing hormone (CRH) antiserum indicated that Cushing’s disease was dependent on CRH overproduction by the pheochromocytoma, in which no immunostaining for adrenocorticotropic hormone was found. Our report confirms the heterogeneity of the pattern of SSTR expression in pheochromocytomas, and provide further evidence for functional SSTR subtype SSTR2a in a subgroup of pheochromocytomas, suggesting that these tumours may represent potential target for octreotide treatment.
Ruggeri, Rosaria M; Ferraù, F; Campennì, A; Simone, A; Barresi, V; Giuffrè, G; Tuccari, G; Baldari, S; Trimarchi, F
2009-01-01
Somastostatin receptors are frequently expressed in phaeochromocytoma but data on somatostatin receptor subtyping are scanty and the functional response to the somatostatin analogue octretide is still debated.We report an unusual case of pheochro-mocytoma,causing ectopic Cushing's syndrome due to CRH production by the tumour cells, in a 50-yr-old woman. Abdominal computed tomography revealed an inhomogeneous,9-cm mass in the right adrenal gland,and [111In-DTPA0] octreotide scintigraphy showed an abnormal uptake of the radiotracer in the right perirenal region,corresponding to the adrenal mass.The patient underwent laparoscopic surgery and formalin-fixed and paraffin embedded samples were studied. The tumour was extensively characterized by immunohistochemistry and somatostatin receptor (SSTRs) subtypes expression was analyzed.Histological and immunohistochemical examination of the surgical specimens displayed a typical pheochromocytoma,which was found to be immunoreative to S-100, chromogranin A and neurofilaments. Immunostaining for SSTR subtypes showed a positive reaction for SSTR1, SSTR2A, SSTR2B, antisera on tumour cells. The intense and diffuse immunostaining for corticotropin releasing hormone (CRH) antiserum indicated that Cushing's disease was dependent on CRH overproduction by the pheochromocytoma,in which no immunostaining for adrenocorticotropic hormone was found. Our report confirms the heterogeneity of the pattern of SSTR expression in pheochromocytomas,and provide further evidence for functional SSTR subtype SSTR2a in a subgroup of pheochromocytomas,suggesting that these tumours may represent potential target for octreotide treatment.
Association Between Imaging Characteristics and Different Molecular Subtypes of Breast Cancer.
Wu, Mingxiang; Ma, Jie
2017-04-01
Breast cancer can be divided into four major molecular subtypes based on the expression of hormone receptor (estrogen receptor and progesterone receptor), human epidermal growth factor receptor 2, HER2 status, and molecular proliferation rate (Ki67). In this study, we sought to investigate the association between breast cancer subtype and radiological findings in the Chinese population. Medical records of 300 consecutive invasive breast cancer patients were reviewed from the database: the Breast Imaging Reporting and Data System. The imaging characteristics of the lesions were evaluated. The molecular subtypes of breast cancer were classified into four types: luminal A, luminal B, HER2 overexpressed (HER2), and basal-like breast cancer (BLBC). Univariate and multivariate logistic regression analyses were performed to assess the association between the subtype (dependent variable) and mammography or 15 magnetic resonance imaging (MRI) indicators (independent variables). Luminal A and B subtypes were commonly associated with "clustered calcification distribution," "nipple invasion," or "skin invasion" (P <0.05). The BLBC subtype was more commonly associated with "rim enhancement" and persistent inflow type enhancement in delayed phase (P <0.05). HER2 overexpressed cancers showed association with persistent enhancement in the delayed phase on MRI and "clustered calcification distribution" on mammography (P <0.05). Certain radiological features are strongly associated with the molecular subtype and hormone receptor status of breast tumor, which are potentially useful tools in the diagnosis and subtyping of breast cancer. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Uzé, G; Lutfalla, G; Bandu, M T; Proudhon, D; Mogensen, K E
1992-01-01
A murine interferon (IFN) alpha/beta receptor was cloned from the IFN-sensitive L1210 cell line on the basis of its homology with the human receptor. A combination of methods that includes the screening of random-primed and oligo(dT)-primed cDNA libraries and polymerase chain reactions with a single-side specificity was used. At the amino acid level, the murine IFN-alpha/beta shows 46% identity with its human counterpart. Both human WISH cells presenting a low sensitivity to mouse IFN and a murine L1210 mutant subline that does not express the receptor have been stably transfected with the murine IFN-alpha/beta receptor. Whereas transfected human cells became sensitive to a limited number of mouse IFN-alpha/beta subtypes, the transfected murine L1210 mutant was found to be fully complemented and became sensitive to all mouse IFN-alpha/beta subtypes tested, including those that were not active on transfected human cells. These results strongly suggest that the receptor described here is implicated in the mediation of the activities of all murine IFN-alpha/beta subtypes. Images PMID:1533935
Kappa2 opioid receptor subtype binding requires the presence of the DOR-1 gene.
Ansonoff, Michael A; Wen, Ting; Pintar, John E
2010-01-01
Over the past several years substantial evidence has documented that opioid receptor homo- and heterodimers form in cell lines expressing one or more of the opioid receptors. We used opioid receptor knockout mice to determine whether in vivo pharmacological characteristics of kappa1 and kappa2 opioid receptors changed following knockout of specific opioid receptors. Using displacement of the general opioid ligand diprenorphine, we observed that occupancy or knockout of the DOR-1 gene increases the binding density of kappa1 receptors and eliminates kappa2 receptors in crude membrane preparations while the total density of kappa opioid binding sites is unchanged. Further, the analgesic potency of U69,593 in cumulative dose response curves is enhanced in mice lacking the DOR-1 gene. These results demonstrate that the DOR-1 gene is required for the expression of the kappa2 opioid receptor subtype and are consistent with the possibility that a KOR-1/DOR-1 heterodimer mediates kappa2 pharmacology.
Mohr, Annika; Lüder Ripoli, Florenza; Hammer, Susanne Conradine; Willenbrock, Saskia; Hewicker-Trautwein, Marion; Kiełbowicz, Zdzisław; Murua Escobar, Hugo; Nolte, Ingo
2016-01-01
Immunohistochemistry (IHC) is currently considered the method of choice for steroid hormone receptor status evaluation in human breast cancer and, therefore, it is commonly utilized for assessing canine mammary tumors. In case of low hormone receptor expression, IHC is limited and thus is complemented by molecular analyses. In the present study, a multiplex bDNA assay was evaluated as a method for hormone receptor gene expression detection in canine mammary tissues. Estrogen receptor (ESR1), progesterone receptor (PGR), prolactin receptor (PRLR) and growth hormone receptor (GHR) gene expressions were evaluated in neoplastic and non-neoplastic canine mammary tissues. A set of 119 fresh frozen and 180 formalin-fixed, paraffin-embedded (FFPE) was comparatively analyzed and used for assay evaluation. Furthermore, a possible association between the hormone receptor expression in different histological subtypes of canine malignant mammary tumors and the castration status, breed and invasive growth of the tumor were analyzed. The multiplex bDNA assay proved to be more sensitive for fresh frozen specimens. Hormone receptor expression found was significantly decreased in malignant mammary tumors in comparison to non-neoplastic tissue and benign mammary tumors. Among the histological subtypes the lowest gene expression levels of ESR1, PGR and PRLR were found in solid, anaplastic and ductal carcinomas. In summary, the evaluation showed that the measurement of hormone receptors with the multiplex bDNA assay represents a practicable method for obtaining detailed quantitative information about gene expression in canine mammary tissue for future studies. Still, comparison with IHC or quantitative real-time PCR is needed for further validation of the present method.
Functional expression of ionotropic purinergic receptors on mouse taste bud cells.
Hayato, Ryotaro; Ohtubo, Yoshitaka; Yoshii, Kiyonori
2007-10-15
Neurotransmitter receptors on taste bud cells (TBCs) and taste nerve fibres are likely to contribute to taste transduction by mediating the interaction among TBCs and that between TBCs and taste nerve fibres. We investigated the functional expression of P2 receptor subtypes on TBCs of mouse fungiform papillae. Electrophysiological studies showed that 100 microm ATP applied to their basolateral membranes either depolarized or hyperpolarized a few cells per taste bud. Ca(2+) imaging showed that similarly applied 1 mum ATP, 30 microm BzATP (a P2X(7) agonist), or 1 microm 2MeSATP (a P2Y(1) and P2Y(11) agonist) increased intracellular Ca(2+) concentration, but 100 microm UTP (a P2Y(2) and P2Y(4) agonist) and alpha,beta-meATP (a P2X agonist except for P2X(2), P2X(4) and P2X(7)) did not. RT-PCR suggested the expression of P2X(2), P2X(4), P2X(7), P2Y(1), P2Y(13) and P2Y(14) among the seven P2X subtypes and seven P2Y subtypes examined. Immunohistostaining confirmed the expression of P2X(2). The exposure of the basolateral membranes to 3 mm ATP for 30 min caused the uptake of Lucifer Yellow CH in a few TBCs per taste bud. This was antagonized by 100 microm PPADS (a non-selective P2 blocker) and 1 microm KN-62 (a P2X(7) blocker). These results showed for the first time the functional expression of P2X(2) and P2X(7) on TBCs. The roles of P2 receptor subtypes in the taste transduction, and the renewal of TBCs, are discussed.
Enhancement of Adipocyte Browning by Angiotensin II Type 1 Receptor Blockade.
Tsukuda, Kana; Mogi, Masaki; Iwanami, Jun; Kanno, Harumi; Nakaoka, Hirotomo; Wang, Xiao-Li; Bai, Hui-Yu; Shan, Bao-Shuai; Kukida, Masayoshi; Higaki, Akinori; Yamauchi, Toshifumi; Min, Li-Juan; Horiuchi, Masatsugu
2016-01-01
Browning of white adipose tissue (WAT) has been highlighted as a new possible therapeutic target for obesity, diabetes and lipid metabolic disorders, because WAT browning could increase energy expenditure and reduce adiposity. The new clusters of adipocytes that emerge with WAT browning have been named 'beige' or 'brite' adipocytes. Recent reports have indicated that the renin-angiotensin system (RAS) plays a role in various aspects of adipose tissue physiology and dysfunction. The biological effects of angiotensin II, a major component of RAS, are mediated by two receptor subtypes, angiotensin II type 1 receptor (AT1R) and type 2 receptor (AT2R). However, the functional roles of angiotensin II receptor subtypes in WAT browning have not been defined. Therefore, we examined whether deletion of angiotensin II receptor subtypes (AT1aR and AT2R) may affect white-to-beige fat conversion in vivo. AT1a receptor knockout (AT1aKO) mice exhibited increased appearance of multilocular lipid droplets and upregulation of thermogenic gene expression in inguinal white adipose tissue (iWAT) compared to wild-type (WT) mice. AT2 receptor-deleted mice did not show miniaturization of lipid droplets or alteration of thermogenic gene expression levels in iWAT. An in vitro experiment using adipose tissue-derived stem cells showed that deletion of the AT1a receptor resulted in suppression of adipocyte differentiation, with reduction in expression of thermogenic genes. These results indicate that deletion of the AT1a receptor might have some effects on the process of browning of WAT and that blockade of the AT1 receptor could be a therapeutic target for the treatment of metabolic disorders.
High-Throughput Patch Clamp Screening in Human α6-Containing Nicotinic Acetylcholine Receptors
Armstrong, Lucas C.; Kirsch, Glenn E.; Fedorov, Nikolai B.; Wu, Caiyun; Kuryshev, Yuri A.; Sewell, Abby L.; Liu, Zhiqi; Motter, Arianne L.; Leggett, Carmine S.; Orr, Michael S.
2017-01-01
Nicotine, the addictive component of tobacco products, is an agonist at nicotinic acetylcholine receptors (nAChRs) in the brain. The subtypes of nAChR are defined by their α- and β-subunit composition. The α6β2β3 nAChR subtype is expressed in terminals of dopaminergic neurons that project to the nucleus accumbens and striatum and modulate dopamine release in brain regions involved in nicotine addiction. Although subtype-dependent selectivity of nicotine is well documented, subtype-selective profiles of other tobacco product constituents are largely unknown and could be essential for understanding the addiction-related neurological effects of tobacco products. We describe the development and validation of a recombinant cell line expressing human α6/3β2β3V273S nAChR for screening and profiling assays in an automated patch clamp platform (IonWorks Barracuda). The cell line was pharmacologically characterized by subtype-selective and nonselective reference agonists, pore blockers, and competitive antagonists. Agonist and antagonist effects detected by the automated patch clamp approach were comparable to those obtained by conventional electrophysiological assays. A pilot screen of a library of Food and Drug Administration–approved drugs identified compounds, previously not known to modulate nAChRs, which selectively inhibited the α6/3β2β3V273S subtype. These assays provide new tools for screening and subtype-selective profiling of compounds that act at α6β2β3 nicotinic receptors. PMID:28298165
McNamara, Keely M; Guestini, Fouzia; Sauer, Torill; Touma, Joel; Bukholm, Ida Rashida; Lindstrøm, Jonas C; Sasano, Hironobu; Geisler, Jürgen
2018-05-01
The majority of breast cancer cases are steroid dependent neoplasms, with hormonal manipulation of either CYP19/aromatase or oestrogen receptor alpha axis being the most common therapy. Alternate pathways of steroid actions are documented, but their interconnections and correlations to BC subtypes and clinical outcome could be further explored. We evaluated selected steroid receptors (Androgen Receptor, Oestrogen Receptor alpha and Beta, Glucocorticoid Receptor) and oestrogen pathways (steroid sulfatase (STS), 17β-hydroxysteroid dehydrogenase 2 (17βHSD2) and aromatase) in a cohort of 139 BC cases from Norway. Using logistic and cox regression analysis, we examined interactions between these and clinical outcomes such as distant metastasis, local relapse and survival. Our principal finding is an impact of STS expression on the risk for distant metastasis (p<0.001) and local relapses (p <0.001), HER2 subtype (p<0.015), and survival (p<0.001). The suggestion of a beneficial effect of alternative oestrogen synthesis pathways was strengthened by inverted, but non-significant findings for 17βHSD2. Increased intratumoural metabolism of oestrogens through STS is associated with significantly lower incidence of relapse and/or distant metastasis and correspondingly improved prognosis. The enrichment of STS in the HER2 overexpressing subtype is intriguing, especially given the possible role of HER-2 over-expression in endocrine resistance.
Yoshida, Kenji; Fujino, Hiromichi; Otake, Sho; Seira, Naofumi; Regan, John W; Murayama, Toshihiko
2013-10-15
Increased expressions of cyclooxygenase-2 (COX-2) and its downstream metabolite, prostaglandin E2 (PGE2), are well documented events in the development of colorectal cancer. Interestingly, PGE2 itself can induce the expression of COX-2 thereby creating the potential for positive feedback. Although evidence for such a positive feedback has been previously described, the specific E-type prostanoid (EP) receptor subtype that mediates this response, as well as the relevant signaling pathways, remain unclear. We now report that the PGE2 stimulated induction of COX-2 expression in human colon cancer HCA-7 cells is mediated by activation of the prostanoid EP4 receptor subtype and is followed by coupling of the receptor to Gαi and the activation of phosphatidylinositol 3-kinase. Subsequent activation of metalloproteinases releases membrane bound heparin-binding epidermal growth factor-like growth factor resulting in the transactivation of epidermal growth factor receptors and the activation of the extracellular signal-regulated kinases and induction of COX-2 expression. This induction of COX-2 expression by PGE2 stimulation of the prostanoid EP4 receptor may underlie the upregulation of COX-2 during colorectal cancer and appears to be an early event in the process of tumorigenesis. © 2013 Elsevier B.V. All rights reserved.
Kwok, Amy Ho Yan; Wang, Yajun; Wang, Crystal Ying; Leung, Frederick C
2008-06-01
Prostaglandin E(2) (PGE(2)) is an important chemical mediator responsible for regulation of many vital physiological processes. Four receptor subtypes have been identified to mediate its biological actions. Among these subtypes, prostaglandin E receptor subtypes 2 and 4 (EP(2) and EP(4)), both coupled to cAMP-protein kinase A (cAMP-PKA) signaling pathway, are proposed to play crucial roles under both physiological and pathological conditions. Though both receptors were extensively studied in mammals, little is known about their functionality and expression in non-mammalian species including chicken. In present study, the full-length cDNAs for chicken EP(2) and EP(4) receptors were first cloned from adult chicken ovary and testis, respectively. Chicken EP(2) is 356 amino acids in length and shows high amino acid identity to that of human (61%), mouse (63%), and rat (61%). On the other hand, the full-length cDNA of EP(4) gene encodes a precursor of 475 amino acids with a high degree of amino acid identity to that of mammals, including human (87%), mouse (86%), rat (84%), dog (85%), and cattle (83%), and a comparatively lower sequence identity to zebrafish (52%). RT-PCR assays revealed that EP(2) mRNA was expressed in all tissues examined including the oviduct, while EP(4) expression was detected only in a few tissues. Using the pGL3-CRE-luciferase reporter system, we also demonstrated that PGE(2) could induce luciferase activity in DF-1 cells expressing EP(2) and EP(4) in dose-dependent manners (EC(50): <1 nM), confirming that both receptors could be activated by PGE(2) and functionally coupled to the cAMP-PKA signaling pathway. Together, our study establishes a molecular basis to understand the physiological roles of PGE(2) in target tissues of chicken.
Muscarinic receptor subtype selectivity of novel heterocyclic QNB analogues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baumgold, J.; Cohen, V.I.; Paek, R.
1991-01-01
In an effort at synthesizing centrally-active subtype-selective antimuscarinic agents, the authors derivatized QNB (quinuclidinyl benzilate), a potent muscarinic antagonist, by replacing one of the phenyl groups with less lipophilic heterocyclic moieties. The displacement of ({sup 3}H)-N-methyl scopolamine binding by these novel compounds to membranes from cells expressing ml - m4 receptor subtypes was determined. Most of the novel 4-bromo-QNB analogues were potent and slightly selective for ml receptors. The 2-thienyl derivative was the most potent, exhibiting a 2-fold greater potency than BrQNB at ml receptors, and a 4-fold greater potency than BrQNB at ml receptors, and a 4-fold greater potencymore » at m2 receptors. This compound was also considerably less lipophilic than BrQNB as determined from its retention time on C18 reverse phase HPLC. This compound may therefore be useful both for pharmacological studies and as a candidate for a radioiodinated SPECT imaging agent for ml muscarinic receptors in human brain.« less
Ziegler, Susanne M; Beisel, Claudia; Sutter, Kathrin; Griesbeck, Morgane; Hildebrandt, Heike; Hagen, Sven H; Dittmer, Ulf; Altfeld, Marcus
2017-02-01
The outcomes of many diseases differ between women and men, with women experiencing a higher incidence and more severe pathogenesis of autoimmune and some infectious diseases. It has been suggested that this is partially due to activation of plasmacytoid dendritic cells (pDCs), the main producers of interferon (IFN)-α, in response to toll-like receptor (TLR)7 stimulation. We investigated the induction of type I IFN (IFN-I) subtypes upon TLR7 stimulation on isolated pDCs. Our data revealed a sex-specific differential expression of IFN-Is, with pDCs from females showing a significantly higher mRNA expression of all 13 IFN-α subtypes. In addition, pDCs from females had higher levels of IFN-β mRNA after stimulation, indicating that sex differences in IFN-I production by pDCs were mediated by a signaling event upstream of the first loop of IFN-I mRNA transcription. Furthermore, the surface expression levels of the common IFN-α/β receptor subunit 2 were significantly higher on pDCs from females in comparison to males. These data indicate that higher IFN-α production is already established at the mRNA level and propose a contribution of higher IFN-α/β receptor 2 expression on pDCs to the immunological differences in IFN-I production observed between females and males. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Stengel, Andreas; Rivier, Jean; Taché, Yvette
2013-04-01
Somatostatin-14 was discovered in 1973 in the hypothalamus as a peptide inhibiting growth hormone release. Somatostatin interacts with five receptor subtypes (sst(1-5)) which are widely distributed in the brain with a distinct, but overlapping, expression pattern. During the last few years, the development of highly selective peptide agonists and antagonists provided new insight to characterize the role of somatostatin receptor subtypes in the pleiotropic actions of somatostatin. Recent evidence in rodents indicates that the activation of selective somatostatin receptor subtypes in the brain blunts stress-corticotropin-releasing factor (CRF) related ACTH release (sst2/5), sympathetic-adrenal activaton (sst5), stimulation of colonic motility (sst1), delayed gastric emptying (sst5), suppression of food intake (sst2) and the anxiogenic-like (sst2) response. These findings suggest that brain somatostatin signaling pathways may play an important role in dampening CRF-mediated endocrine, sympathetic, behavioral and visceral responses to stress. Published by Elsevier Inc.
Is androgen receptor targeting an emerging treatment strategy for triple negative breast cancer?
Anestis, Aristomenis; Karamouzis, Michalis V; Dalagiorgou, Georgia; Papavassiliou, Athanasios G
2015-06-01
Triple negative breast cancer (TNBC) is an aggressive breast cancer subtype. The absence of expression and/or amplification of estrogen and progesterone receptor as well as ERBB-2 prevent the use of currently available endocrine options and/or ERBB-2-directed drugs and indicates chemotherapy as the main current therapy. TNBC represents approximately 15% of breast cancer cases with high index of heterogeneity. Here, we review the role of androgen receptor in breast carcinogenesis and its association with alterations in the expression pattern and functional roles of regulatory molecules and signal transduction pathways in TNBC. Additionally, based on the so far preclinical and clinical published data, we evaluate the perspectives for using and/or developing androgen receptor targeting strategies for specific TNBC subtypes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Stollberg, Susann; Kämmerer, Daniel; Neubauer, Elisa; Schulz, Stefan; Simonitsch-Klupp, Ingrid; Kiesewetter, Barbara; Raderer, Markus; Lupp, Amelie
2016-11-01
Whereas the different somatostatin receptor (SSTR) subtypes and the chemokine receptor CXCR4 are known to be expressed in a wide variety of human malignancies, comprehensive data are still lacking for MALT-type lymphomas. Overall, 55 cases of MALT-type lymphoma of both gastric and extragastric origin were evaluated for the SSTR subtype and CXCR4 expression by means of immunohistochemistry using novel monoclonal rabbit antibodies. The stainings were rated by means of the immunoreactive score and correlated with clinical data. While the CXCR4 was detected in 92 % of the cases investigated, the SSTR subtypes were much less frequently present. The SSTR5 was expressed in about 50 % of the cases, followed by the SSTR3, the SSTR2A, the SSTR4 and the SSTR1, which were present in 35, 27, 18 or 2 %, respectively, of the tumors only. Gastric lymphomas displayed a significantly higher SSTR3, SSTR4 and SSTR5 expression than extragastric tumors. A correlation between CXCR4 and Ki-67 expression was seen in gastric lymphomas, whereas primarily in extragastric tumors SSTR5 negativity was associated with poor patient outcome. The CXCR4 may serve as a promising target for diagnostics and therapy of MALT-type lymphomas, while the SSTRs appear not suitable in this respect.
Development of antibodies against the rat brain somatostatin receptor.
Theveniau, M; Rens-Domiano, S; Law, S F; Rougon, G; Reisine, T
1992-05-15
Somatostatin (SRIF) is a neurotransmitter in the brain involved in the regulation of motor activity and cognition. It induces its physiological actions by interacting with receptors. We have developed antibodies against the receptor to investigate its structural properties. Rabbit polyclonal antibodies were generated against the rat brain SRIF receptor. These antibodies (F4) were able to immunoprecipitate solubilized SRIF receptors from rat brain and the cell line AtT-20. The specificity of the interaction of these antibodies with SRIF receptors was further demonstrated by immunoblotting. F4 detected SRIF receptors of 60 kDa from rat brain and adrenal cortex and the cell lines AtT-20, GH3, and NG-108, which express high densities of SRIF receptors. They did not detect immunoreactive material from rat liver or COS-1, HEPG, or CRL cells, which do not express functional SRIF receptors. In rat brain, 60-kDa immunoreactivity was detected by F4 in the hippocampus, cerebral cortex, and striatum, which have high densities of SRIF receptors. However, F4 did not interact with proteins from cerebellum and brain stem, which express few SRIF receptors. Immunoreactive material cannot be detected in rat pancreas or pituitary, which have been reported to express a 90-kDa SRIF receptor subtype. The selective detection of 60-kDa SRIF receptors by F4 indicates that the 60- and 90-kDa SRIF receptor subtypes are immunologically distinct. The availability of antibodies that selectively detect native and denatured brain SRIF receptors provides us with a feasible approach to clone the brain SRIF receptor gene(s).
The role of PPARδ signaling in the cardiovascular system.
Ding, Yishu; Yang, Kevin D; Yang, Qinglin
2014-01-01
Peroxisome proliferator-activated receptors (PPARα, β/δ, and γ), members of the nuclear receptor transcription factor superfamily, play important roles in the regulation of metabolism, inflammation, and cell differentiation. All three PPAR subtypes are expressed in the cardiovascular system with various expression patterns. Among the three PPAR subtypes, PPARδ is the least studied but has arisen as a potential therapeutic target for cardiovascular and many other diseases. It is known that PPARδ is ubiquitously expressed and abundantly expressed in cardiomyocytes. Accumulated evidence illustrates the role of PPARδ in regulating cardiovascular function and determining pathological progression. In this chapter, we will discuss the current knowledge in the role of PPARδ in the cardiovascular system, the mechanistic insights, and the potential therapeutic utilization for treating cardiovascular disease. © 2014 Elsevier Inc. All rights reserved.
Faisal, Farzana A; Sundi, Debasish; Tosoian, Jeffrey J; Choeurng, Voleak; Alshalalfa, Mohammed; Ross, Ashley E; Klein, Eric; Den, Robert; Dicker, Adam; Erho, Nicholas; Davicioni, Elai; Lotan, Tamara L; Schaeffer, Edward M
2016-07-01
Prostate cancer (PCa) subtypes based on ETS gene expression have been described. Recent studies suggest there are racial differences in tumor location, with PCa located anteriorly more often among African-American (AA) compared to Caucasian-American (CA) men. In this retrospective analysis of a multi-institutional cohort treated by radical prostatectomy (179 CA, 121 AA), we evaluated associations among molecular subtype, race, anatomic tumor location, and androgen receptor (AR) signaling. Subtype (m-ERG(+), m-ETS(+), m-SPINK1(+), or triple-negative) was determined using distribution-based outlier analysis. AR signaling was investigated using gene expression profiling of canonical AR targets. m-ERG(+) was more common in CA than AA men (47% vs 22%, p<0.001). AA men were more likely to be m-SPINK1(+) (13% vs 7%; p=0.069) and triple-negative (50% vs 37%; p=0.043). Racial differences in molecular subtypes did not persist when tumors were analyzed by location, suggesting a biologically important relationship between tumor location and subtype. Accordingly, anterior tumor location was associated with higher Decipher scores and lower global AR signaling. This study demonstrates associations among patient race, prostate cancer molecular subtypes, and tumor location. Location-specific differences in androgen regulation may further underlie these relationships. Copyright © 2015. Published by Elsevier B.V.
Meconium increases type 1 angiotensin II receptor expression and alveolar cell death.
Rosenfeld, Charles R; Zagariya, Alexander M; Liu, Xiao-Tie; Willis, Brigham C; Fluharty, Steven; Vidyasagar, Dharmapuri
2008-03-01
The pulmonary renin-angiotensin system (RAS) contributes to inflammation and epithelial apoptosis in meconium aspiration. It is unclear if both angiotensin II receptors (ATR) contribute, where they are expressed and if meconium modifies subtype expression. We examined ATR subtypes in 2 wk rabbit pup lungs before and after meconium exposure and with and without captopril pretreatment or type 1 receptor (AT1R) inhibition with losartan, determining expression and cellular localization with immunoblots, RT-PCR and immunohistochemistry, respectively. Responses of cultured rat alveolar type II pneumocytes were also examined. Type 2 ATR were undetected in newborn lung before and after meconium instillation. AT1R were expressed in pulmonary vascular and bronchial smooth muscle and alveolar and bronchial epithelium. Meconium increased total lung AT1R protein approximately 3-fold (p = 0.006), mRNA 29% (p = 0.006) and immunostaining in bronchial and alveolar epithelium and smooth muscle, which were unaffected by captopril and losartan. Meconium also increased AT1R expression >3-fold in cultured type II pneumocytes and caused concentration-dependent cell death inhibited by losartan. Meconium increases AT1R expression in newborn rabbit lung and cultured type II pneumocytes and induces AT1R-mediated cell death. The pulmonary RAS contributes to the pathogenesis of meconium aspiration through increased receptor expression.
The distribution of the orphan bombesin receptor subtype-3 in the rat CNS.
Jennings, C A; Harrison, D C; Maycox, P R; Crook, B; Smart, D; Hervieu, G J
2003-01-01
Bombesin receptor subtype 3 (BRS-3) is an orphan G-protein coupled receptor that shares between 47 and 51% homology with other known bombesin receptors. The natural ligand for BRS-3 is currently unknown and little is known about the mechanisms regulating BRS-3 gene expression. Unlike other mammalian bombesin receptors that have been shown to be predominantly expressed in the CNS and gastrointestinal tract, expression of the BRS-3 receptor in the rat brain has previously not been observed. To gain further understanding of the biology of BRS-3, we have studied the distribution of BRS-3 mRNA and protein in the rat CNS. The mRNA expression pattern was studied using reverse transcription followed by quantitative polymerase chain reaction. Using immunohistological techniques, the distribution of BRS-3 protein in the rat brain was investigated using a rabbit affinity-purified polyclonal antiserum raised against an N-terminal peptide. The BRS-3 receptor was found to be widely expressed in the rat brain at both mRNA and protein levels. Particularly strong immunosignals were observed in the cerebral cortex, hippocampal formation, hypothalamus and thalamus. Other regions of the brain such as the basal ganglia, midbrain and reticular formation were also immunopositive for BRS-3. In conclusion, our neuroanatomical data provide evidence that BRS-3 is as widely expressed in the rat brain as other bombesin-like peptide receptors and suggest that this receptor may also have important roles in the CNS, mediating the functions of a so far unidentified ligand.
The neuropeptides CCK and NPY and the changing view of cell-to-cell communication in the taste bud.
Herness, Scott; Zhao, Fang-Li
2009-07-14
The evolving view of the taste bud increasingly suggests that it operates as a complex signal processing unit. A number of neurotransmitters and neuropeptides and their corresponding receptors are now known to be expressed in subsets of taste receptor cells in the mammalian bud. These expression patterns set up hard-wired cell-to-cell communication pathways whose exact physiological roles still remain obscure. As occurs in other cellular systems, it is likely that neuropeptides are co-expressed with neurotransmitters and function as neuromodulators. Several neuropeptides have been identified in taste receptor cells including cholecystokinin (CCK), neuropeptide Y (NPY), vasoactive intestinal peptide (VIP), and glucagon-like peptide 1 (GLP-1). Of these, CCK and NPY are the best studied. These two peptides are co-expressed in the same presynaptic cells; however, their postsynaptic actions are both divergent and antagonistic. CCK and its receptor, the CCK-1 subtype, are expressed in the same subset of taste receptor cells and the autocrine activation of these cells produces a number of excitatory physiological actions. Further, most of these cells are responsive to bitter stimuli. On the other hand, NPY and its receptor, the NPY-1 subtype, are expressed in different cells. NPY, acting in a paracrine fashion on NPY-1 receptors, results in inhibitory actions on the cell. Preliminary evidence suggests the NPY-1 receptor expressing cell co-expresses T1R3, a member of the T1R family of G-protein coupled receptors thought to be important in detection of sweet and umami stimuli. Thus the neuropeptide expressing cells co-express CCK, NPY, and CCK-1 receptor. Neuropeptides released from these cells during bitter stimulation may work in concert to both modulate the excitation of bitter-sensitive taste receptor cells while concurrently inhibiting sweet-sensitive cells. This modulatory process is similar to the phenomenon of lateral inhibition that occurs in other sensory systems.
Ueda, Hirotaka; Mitoh, Yoshihiro; Fujita, Masako; Kobashi, Motoi; Yamashiro, Takashi; Sugimoto, Tomosada; Ichikawa, Hiroyuki; Matsuo, Ryuji
2011-07-15
The superior salivatory nucleus (SSN) contains preganglionic parasympathetic neurons to the submandibular and sublingual salivary glands. Cevimeline, a muscarinic acetylcholine receptor agonist, stimulates the salivary glands and is presently used as sialogogue in the treatment of dry mouth. Since cevimeline passes through the blood-brain barrier, it is also able to act on muscarinic acetylcholine receptors in the central nervous system. Our preliminary experiment using the whole-cell patch-clamp technique has shown that cevimeline excites SSN neurons in rat brain slices, suggesting that SSN neurons have muscarinic acetylcholine receptors; however, it is unclear which subtypes of muscarinic acetylcholine receptors exist in SSN neurons. In the present study, we investigated immunohistochemically muscarinic acetylcholine receptor subtypes, M1 receptor (M1R), M2R, M3R, M4R, and M5R in SSN neurons. SSN neurons innervating the salivary glands, retrogradely labeled with a fluorescent tracer from the chorda-lingual nerve, mostly expressed M3R immunoreactivity (-ir) (92.3%) but not M1R-ir. About half of such SSN neurons also showed M2R- (40.1%), M4R- (54.0%) and M5R-ir (46.0%); therefore, it is probable that SSN neurons co-express M3R-ir with at least two of the other muscarinic receptor subtypes. This is the first report to show that SSN neurons contain muscarinic acetylcholine receptors. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Papke, Roger L; Wecker, Lynn; Stitzel, Jerry A
2010-05-01
Transgenic mouse models with nicotinic acetylcholine receptor (nAChR) knockouts and knockins have provided important insights into the molecular substrates of addiction and disease. However, most studies of heterologously expressed neuronal nAChR have used clones obtained from other species, usually human or rat. In this work, we use mouse clones expressed in Xenopus oocytes to provide a relatively comprehensive characterization of the three primary classes of nAChR: muscle-type receptors, heteromeric neuronal receptors, and homomeric alpha7-type receptors. We evaluated the activation of these receptor subtypes with acetylcholine and cytisine-related compounds, including varenicline. We also characterized the activity of classic nAChR antagonists, confirming the utility of mecamylamine and dihydro-beta-erythroidine as selective antagonists in mouse models of alpha3beta4 and alpha4beta2 receptors, respectively. We also conducted an in-depth analysis of decamethonium and hexamethonium on muscle and neuronal receptor subtypes. Our data indicate that, as with receptors cloned from other species, pairwise expression of neuronal alpha and beta subunits in oocytes generates heterogeneous populations of receptors, most likely caused by variations in subunit stoichiometry. Coexpression of the mouse alpha5 subunit had varying effects, depending on the other subunits expressed. The properties of cytisine-related compounds are similar for mouse, rat, and human nAChR, except that varenicline produced greater residual inhibition of mouse alpha4beta2 receptors than with human receptors. We confirm that decamethonium is a partial agonist, selective for muscle-type receptors, but also note that it is a nondepolarizing antagonist for neuronal-type receptors. Hexamethonium was a relatively nonselective antagonist with mixed competitive and noncompetitive activity.
Wecker, Lynn; Stitzel, Jerry A.
2010-01-01
Transgenic mouse models with nicotinic acetylcholine receptor (nAChR) knockouts and knockins have provided important insights into the molecular substrates of addiction and disease. However, most studies of heterologously expressed neuronal nAChR have used clones obtained from other species, usually human or rat. In this work, we use mouse clones expressed in Xenopus oocytes to provide a relatively comprehensive characterization of the three primary classes of nAChR: muscle-type receptors, heteromeric neuronal receptors, and homomeric α7-type receptors. We evaluated the activation of these receptor subtypes with acetylcholine and cytisine-related compounds, including varenicline. We also characterized the activity of classic nAChR antagonists, confirming the utility of mecamylamine and dihydro-β-erythroidine as selective antagonists in mouse models of α3β4 and α4β2 receptors, respectively. We also conducted an in-depth analysis of decamethonium and hexamethonium on muscle and neuronal receptor subtypes. Our data indicate that, as with receptors cloned from other species, pairwise expression of neuronal α and β subunits in oocytes generates heterogeneous populations of receptors, most likely caused by variations in subunit stoichiometry. Coexpression of the mouse α5 subunit had varying effects, depending on the other subunits expressed. The properties of cytisine-related compounds are similar for mouse, rat, and human nAChR, except that varenicline produced greater residual inhibition of mouse α4β2 receptors than with human receptors. We confirm that decamethonium is a partial agonist, selective for muscle-type receptors, but also note that it is a nondepolarizing antagonist for neuronal-type receptors. Hexamethonium was a relatively nonselective antagonist with mixed competitive and noncompetitive activity. PMID:20100906
Ikegami, Taro; Maruyama, Yusuke; Doi, Hiroyuki; Hattori, Atsuhiko; Ando, Hironori
2015-01-01
Melatonin receptor gene expression as well as melatonin synthesis and secretion activities were examined in the pineal gland of the grass puffer, which exhibits unique lunar/tidal cycle-synchronized mass spawing: spawning occurs before high tide on the day of spring tide during spawing season. Melatonin synthesizing activity was assessed by the abundance of arylalkylamine N-acetyltransferase 2 (AANAT2) mRNA. The amount of aanat2 mRNA was low during light phase and initiated to increase after the light was turned off. The secretion of melatonin from primary pineal organ culture was stimulated after the light was turned off and ceased immediately after the light was turned on. The expression levels of four melatonin receptor subtype genes (mel 1a 1.4, mel 1a 1.7, mel1b, and mel1c) showed synchronous variations, and the levels tended to be high during the dark phase under light/dark conditions. These results suggest that the action of melatonin on the pineal gland is highly dependent on light and photoperiod, possibly with stronger action during night time. Under constant darkness, the expression of four melatonin receptor subtype genes showed unique ultradian oscillations with the period of 14.0-15.4 h, suggesting the presence of a circatidal oscillator in the pineal gland. The present results indicate that melatonin may serve local chronobiological functions in the pineal gland. These cyclic expressions of melatonin receptor genes in the pineal gland may be important in the control of the lunar/tidal cycle-synchronized mass spawning in the grass puffer.
Ikegami, Taro; Maruyama, Yusuke; Doi, Hiroyuki; Hattori, Atsuhiko; Ando, Hironori
2015-01-01
Melatonin receptor gene expression as well as melatonin synthesis and secretion activities were examined in the pineal gland of the grass puffer, which exhibits unique lunar/tidal cycle-synchronized mass spawing: spawning occurs before high tide on the day of spring tide during spawing season. Melatonin synthesizing activity was assessed by the abundance of arylalkylamine N-acetyltransferase 2 (AANAT2) mRNA. The amount of aanat2 mRNA was low during light phase and initiated to increase after the light was turned off. The secretion of melatonin from primary pineal organ culture was stimulated after the light was turned off and ceased immediately after the light was turned on. The expression levels of four melatonin receptor subtype genes (mel1a1.4, mel1a1.7, mel1b, and mel1c) showed synchronous variations, and the levels tended to be high during the dark phase under light/dark conditions. These results suggest that the action of melatonin on the pineal gland is highly dependent on light and photoperiod, possibly with stronger action during night time. Under constant darkness, the expression of four melatonin receptor subtype genes showed unique ultradian oscillations with the period of 14.0–15.4 h, suggesting the presence of a circatidal oscillator in the pineal gland. The present results indicate that melatonin may serve local chronobiological functions in the pineal gland. These cyclic expressions of melatonin receptor genes in the pineal gland may be important in the control of the lunar/tidal cycle-synchronized mass spawning in the grass puffer. PMID:25688184
Nielsen, Ronni; Grøntved, Lars; Stunnenberg, Hendrik G.; Mandrup, Susanne
2006-01-01
Investigations of the molecular events involved in activation of genomic target genes by peroxisome proliferator-activated receptors (PPARs) have been hampered by the inability to establish a clean on/off state of the receptor in living cells. Here we show that the combination of adenoviral delivery and chromatin immunoprecipitation (ChIP) is ideal for dissecting these mechanisms. Adenoviral delivery of PPARs leads to a rapid and synchronous expression of the PPAR subtypes, establishment of transcriptional active complexes at genomic loci, and immediate activation of even silent target genes. We demonstrate that PPARγ2 possesses considerable ligand-dependent as well as independent transactivation potential and that agonists increase the occupancy of PPARγ2/retinoid X receptor at PPAR response elements. Intriguingly, by direct comparison of the PPARs (α, γ, and β/δ), we show that the subtypes have very different abilities to gain access to target sites and that in general the genomic occupancy correlates with the ability to activate the corresponding target gene. In addition, the specificity and potency of activation by PPAR subtypes are highly dependent on the cell type. Thus, PPAR subtype-specific activation of genomic target genes involves an intricate interplay between the properties of the subtype- and cell-type-specific settings at the individual target loci. PMID:16847324
Homologous upregulation of sst2 somatostatin receptor expression in the rat arcuate nucleus in vivo.
Tannenbaum, G S; Turner, J; Guo, F; Videau, C; Epelbaum, J; Beaudet, A
2001-07-01
In vitro studies using various cell systems have provided conflicting results regarding homologous regulation of somatostatin (SRIH) receptors, and information on whether SRIH regulates the expression of its own receptors in vivo is lacking. In the present study we examined, by in situ hybridization, the effects of pretreatment with the sst2-preferring SRIH analog, octreotide, in vivo, on mRNA levels of two SRIH receptor subtypes, sst1 and sst2, in rat brain and pituitary. (125)I-[DTrp(8)]-SRIH binding was also measured in these regions. Three hours after the iv injection of 50 microg octreotide to conscious adult male rats, there was a 46% increase (p < 0.01) in the labeling density of sst2 mRNA-expressing cells in the hypothalamic arcuate nucleus compared to normal saline-pretreated controls, but not in any of the other brain regions examined. Computer-assisted image analysis revealed that 3 h exposure to octreotide significantly (p < 0.01) augmented both the number and labeling density of sst2 mRNA-expressing cells in the arcuate nucleus, compared to those in saline-treated controls. By contrast, within the anterior pituitary gland, in vivo exposure to octreotide did not affect the expression of sst2 mRNA. No changes in sst1 mRNA-expressing cells were observed after octreotide treatment in any of the regions measured, indicating that the observed effects were homologous, i.e. specific of the receptor subtype stimulated. Octreotide pretreatment was also without effect on the density of (125)I-[DTrp(8)]-SRIH binding in either the arcuate nucleus or pituitary. These results demonstrate, for the first time, that SRIH preexposure in vivo upregulates the expression of a subtype of its own receptors, sst2, within the central nervous system. They further suggest that pretreatment with SRIH in vivo does not cause sst2 receptor desensitization in arcuate nucleus and pituitary. Such homologous regulatory mechanisms may play an important role in the neuroendocrine control of growth hormone (GH) secretion by the arcuate nucleus. Copyright 2001 S. Karger AG, Basel
Melanocortin systems on pigment dispersion in fish chromatophores.
Kobayashi, Yuki; Mizusawa, Kanta; Saito, Yumiko; Takahashi, Akiyoshi
2012-01-01
α-Melanocyte-stimulating hormone (α-MSH) is responsible for pigment dispersion in the chromatophores of fish and other tetrapods such as amphibians and reptiles. Recently, we discovered that α-MSH did not always stimulate pigment dispersion because this hormonal peptide exerted no effects on the melanophores of flounders. We assumed that the reduction of α-MSH activity was related to the co-expression of different α-MSH receptor subtypes - termed melanocortin receptors (MCR) - a member of G-protein-coupled receptors (GPCR) - based on several reports demonstrating that GPCR forms heterodimers with various properties that are distinct from those of the corresponding monomers. In this review, we summarize the relationships between the pigment-dispersing activity of α-MSH-related peptides, molecular forms of α-MSH-related peptides, and mcr subtypes expressed in fish chromatophores.
Spinophilin Is Indispensable for the α2B Adrenergic Receptor-Elicited Hypertensive Response.
Che, Pulin; Chen, Yunjia; Lu, Roujian; Peng, Ning; Gannon, Mary; Wyss, J Michael; Jiao, Kai; Wang, Qin
2015-01-01
The α2 adrenergic receptor (AR) subtypes are important for blood pressure control. When activated, the α2A subtype elicits a hypotensive response whereas the α2B subtype mediates a hypertensive effect that counteracts the hypotensive response by the α2A subtype. We have previously shown that spinophilin attenuates the α2AAR-dependent hypotensive response; in spinophilin null mice, this response is highly potentiated. In this study, we demonstrate that spinophilin impedes arrestin-dependent phosphorylation and desensitization of the α2BAR subtype by competing against arrestin binding to this receptor subtype. The Del301-303 α2BAR, a human variation that shows impaired phosphorylation and desensitization and is linked to hypertension in certain populations, exhibits preferential interaction with spinophilin over arrestin. Furthermore, Del301-303 α2BAR-induced ERK signaling is quickly desensitized in cells without spinophilin expression, showing a profile similar to that induced by the wild type receptor in these cells. Together, these data suggest a critical role of spinophilin in sustaining α2BAR signaling. Consistent with this notion, our in vivo study reveals that the α2BAR-elicited hypertensive response is diminished in spinophilin deficient mice. In arrestin 3 deficient mice, where the receptor has a stronger binding to spinophilin, the same hypertensive response is enhanced. These data suggest that interaction with spinophilin is indispensable for the α2BAR to elicit the hypertensive response. This is opposite of the negative role of spinophilin in regulating α2AAR-mediated hypotensive response, suggesting that spinophilin regulation of these closely related receptor subtypes can result in distinct functional outcomes in vivo. Thus, spinophilin may represent a useful therapeutic target for treatment of hypertension.
Rangel-Barajas, Claudia; Malik, Maninder; Taylor, Michelle; Neve, Kim A.; Mach, Robert H.; Luedtke, Robert R.
2014-01-01
LS-3-134 is a substituted N-phenylpiperazine derivative that has been reported to exhibit a) high-affinity binding (Ki value 0.2 nM) at human D3 dopamine receptors, b) >100-fold D3 vs. D2 dopamine receptor subtype binding selectivity and c) low-affinity binding (Ki values >5,000 nM) at sigma 1 and sigma 2 receptors. Based upon a forskolin-dependent activation of the adenylyl cyclase inhibition assay, LS-3-134 is a weak partial agonist at both D2 and D3 dopamine receptor subtypes (29% and 35% of full agonist activity, respectively). In this study, [3H]-labeled LS-3-134 was prepared and evaluated to further characterize its use as a D3 dopamine receptor selective radioligand. Kinetic and equilibrium radioligand binding studies were performed. This radioligand rapidly reaches equilibrium (10-15 min at 37°C) and binds with high affinity to both human (Kd = 0.06 ± 0.01 nM) and rat (Kd = 0.2 ± 0.02 nM) D3 receptors expressed in HEK-293 cells. Direct and competitive radioligand binding studies using rat caudate and nucleus accumbens tissue indicate that [3H]LS-3-134 selectively binds a homogeneous population of binding sites with a dopamine D3 receptor pharmacological profile. Based upon these studies we propose that [3H]LS-3-134 represents a novel D3 dopamine receptor selective radioligand that can be used for studying the expression and regulation of the D3 dopamine receptor subtype. PMID:25041389
Linden, Anni-Maija; Aller, M Isabel; Leppä, Elli; Rosenberg, Per H; Wisden, William; Korpi, Esa R
2008-10-01
TASK two-pore-domain leak K(+) channels occur throughout the brain. However, TASK-1 and TASK-3 knockout (KO) mice have few neurological impairments and only mildly reduced sensitivities to inhalational anesthetics, contrasting with the anticipated functions and importance of these channels. TASK-1/-3 channel expression can compensate for the absence of GABA(A) receptors in GABA(A) alpha6 KO mice. To investigate the converse, we analyzed the behavior of TASK-1 and -3 KO mice after administering drugs with preferential efficacies at GABA(A) receptor subtypes: benzodiazepines (diazepam and flurazepam, active at alpha1betagamma2, alpha2betagamma2, alpha3betagamma2, and alpha5betagamma2 subtypes), zolpidem (alpha1betagamma2 subtype), propofol (beta2-3-containing receptors), gaboxadol (alpha4betadelta and alpha6betadelta subtypes), pregnanolone, and pentobarbital (many subtypes). TASK-1 KO mice showed increased motor impairment in rotarod and beam-walking tests after diazepam and flurazepam administration but not after zolpidem. They also showed prolonged loss of righting reflex induced by propofol and pentobarbital. Autoradiography indicated no change in GABA(A) receptor ligand binding levels. These altered behavioral responses to GABAergic drugs suggest functional up-regulation of alpha2beta2/3gamma2 and alpha3beta2/3gamma2 receptor subtypes in TASK-1 KO mice. In addition, female, but not male, TASK-1 KO mice were more sensitive to gaboxadol, suggesting an increased influence of alpha4betadelta or alpha6betadelta subtypes. The benzodiazepine sensitivity of TASK-3 KO mice was marginally increased. Our results underline that TASK-1 channels perform such key functions in the brain that compensation is needed for their absence. Furthermore, because inhalation anesthetics act partially through GABA(A) receptors, the up-regulation of GABA(A) receptor function in TASK-1 KO mice might mask TASK-1 channel's significance as a target for inhalation anesthetics.
Vinkers, Christiaan H.; Olivier, Berend
2012-01-01
Despite decades of basic and clinical research, our understanding of how benzodiazepines tend to lose their efficacy over time (tolerance) is at least incomplete. In appears that tolerance develops relatively quickly for the sedative and anticonvulsant actions of benzodiazepines, whereas tolerance to anxiolytic and amnesic effects probably does not develop at all. In light of this evidence, we review the current evidence for the neuroadaptive mechanisms underlying benzodiazepine tolerance, including changes of (i) the GABAA receptor (subunit expression and receptor coupling), (ii) intracellular changes stemming from transcriptional and neurotrophic factors, (iii) ionotropic glutamate receptors, (iv) other neurotransmitters (serotonin, dopamine, and acetylcholine systems), and (v) the neurosteroid system. From the large variance in the studies, it appears that either different (simultaneous) tolerance mechanisms occur depending on the benzodiazepine effect, or that the tolerance-inducing mechanism depends on the activated GABAA receptor subtypes. Importantly, there is no convincing evidence that tolerance occurs with α subunit subtype-selective compounds acting at the benzodiazepine site. PMID:22536226
Morrison, R Ray; Teng, Bunyen; Oldenburg, Peter J; Katwa, Laxmansa C; Schnermann, Jurgen B; Mustafa, S Jamal
2006-10-01
To examine ischemic tolerance in the absence of A(1) adenosine receptors (A(1)ARs), isolated wild-type (WT) and A(1)AR knockout (A(1)KO) murine hearts underwent global ischemia-reperfusion, and injury was measured in terms of functional recovery and efflux of lactate dehydrogenase (LDH). Hearts were analyzed by real-time RT-PCR both at baseline and at intervals during ischemia-reperfusion to determine whether compensatory expression of other adenosine receptor subtypes occurs with either A(1)AR deletion and/or ischemia-reperfusion. A(1)KO hearts had higher baseline coronary flow (CF) and left ventricular developed pressure (LVDP) than WT hearts, whereas heart rate was unchanged by A(1)AR deletion. After 20 min of ischemia, CF was attenuated in A(1)KO compared with WT hearts, and this reduction persisted throughout reperfusion. Final recovery of LVDP was decreased in A(1)KO hearts (54.4 +/- 5.1 vs. WT 81.1 +/- 3.4% preischemic baseline) and correlated with higher diastolic pressure during reperfusion. Postischemic efflux of LDH was greater in A(1)KO compared with WT hearts. Real-time RT-PCR demonstrated the absence of A(1)AR transcript in A(1)KO hearts, and the message for A(2A), A(2B), and A(3) adenosine receptors was similar in uninstrumented A(1)KO and WT hearts. Ischemia-reperfusion increased A(2B) mRNA expression 2.5-fold in both WT and A(1)KO hearts without changing A(1) or A(3) expression. In WT hearts, ischemia transiently doubled A(2A) mRNA, which returned to preischemic level upon reperfusion, a pattern not observed in A(1)KO hearts. Together, these data affirm the cardioprotective role of A(1)ARs and suggest that induced expression of other adenosine receptor subtypes may participate in the response to ischemia-reperfusion in isolated murine hearts.
Gulbahce, H Evin; Blair, Cindy K; Sweeney, Carol; Salama, Mohamed E
2017-09-01
Estrogen exposure is important in the pathogenesis of breast cancer and is a contributing risk factor. In this study we quantified estrogen receptor (ER) alpha expression in normal breast epithelium (NBR) in women with breast cancer and correlated it with breast cancer subtypes. Tissue microarrays were constructed from 204 breast cancer patients for whom normal breast tissue away from tumor was available. Slides stained with ER were scanned and expression in normal terminal duct lobular epithelium was quantitated using computer-assisted image analysis. ER expression in normal terminal duct lobular epithelium of postmenopausal women with breast cancer was significantly associated with estrogen and triple (estrogen, progesterone receptors, and HER2) negative phenotypes. Also increased age at diagnosis was significantly associated with ER expression in NBR. ER positivity in normal epithelium did not vary by tumor size, lymph node status, tumor grade, or stage. On the basis of quantitative image analysis, we confirm that ER expression in NBR increases with age in women with breast cancer, and report for the first time, a significant association between ER expression in NBR with ER-negative and triple-negative cancers in postmenopausal women.
Regan, Patrick M.; Langford, T. Dianne; Khalili, Kamel
2015-01-01
Despite the identification and characterization of four opioid receptor subtypes and the genes from which they are encoded, pharmacological data does not conform to the predications of a four opioid receptor model. Instead, current studies of opioid pharmacology suggest the existence of additional receptor subtypes; however, no additional opioid receptor subtype has been identified to date. It is now understood that this discrepancy is due to the generation of multiple isoforms of opioid receptor subtypes. While several mechanisms are utilized to generate these isoforms, the primary mechanism involves alternative splicing of the pre-mRNA transcript. Extensive alternative splicing patterns for opioid receptors have since been identified and discrepancies in opioid pharmacology are now partially attributed to variable expression of these isoforms. Recent studies have been successful in characterizing the localization of these isoforms as well as their specificity in ligand binding; however, the regulation of opioid receptor splicing specificity is poorly characterized. Furthermore, the functional significance of individual receptor isoforms and the extent to which opioid- and/or HIV-mediated changes in the opioid receptor isoform profile contributes to altered opioid pharmacology or the well-known physiological role of opioids in the exacerbation of HIV neurocognitive dysfunction is unknown. As such, the current review details constitutive splicing mechanisms as well as the specific architecture of opioid receptor genes, transcripts, and receptors in order to highlight the current understanding of opioid receptor isoforms, potential mechanisms of their regulation and signaling, and their functional significance in both opioid pharmacology and HIV-associated neuropathology. PMID:26529364
Karmouty-Quintana, Harry; Cicko, Sanja; Ayata, Korcan; Zissel, Gernot; Goldmann, Torsten; Lungarella, Giuseppe; Ferrari, Davide; Di Virgilio, Francesco; Robaye, Bernard; Boeynaems, Jean-Marie; Blackburn, Michael R.; Idzko, Marco
2017-01-01
Idiopathic pulmonary fibrosis (IPF) is a devastating disease with few available treatment options. Recently, the involvement of purinergic receptor subtypes in the pathogenesis of different lung diseases has been demonstrated. Here we investigated the role of the purinergic receptor subtype P2Y2 in the context of fibrotic lung diseases. The concentration of different nucleotides was measured in the broncho-alveolar lavage (BAL) fluid derived from IPF patients and animals with bleomycin-induced pulmonary fibrosis. In addition expression of P2Y2 receptors by different cell types was determined. To investigate the functional relevance of P2Y2 receptors for the pathogenesis of the disease the bleomycin model of pulmonary fibrosis was used. Finally, experiments were performed in pursuit of the involved mechanisms. Compared to healthy individuals or vehicle treated animals, extracellular nucleotide levels in the BAL fluid were increased in patients with IPF and in mice after bleomycin administration, paralleled by a functional up-regulation of P2Y2R expression. Both bleomycin-induced inflammation and fibrosis were reduced in P2Y2R-deficient compared to wild type animals. Mechanistic studies demonstrated that recruitment of neutrophils into the lungs, proliferation and migration of lung fibroblasts as well as IL6 production are key P2Y2R mediated processes. Our results clearly demonstrate the involvement of P2Y2R subtypes in the pathogenesis of fibrotic lung diseases in humans and mice and hence support the development of selective P2Y2R antagonists for the treatment of IPF. PMID:28415591
Hurbin, A; Boissin-Agasse, L; Orcel, H; Rabié, A; Joux, N; Desarménien, M G; Richard, P; Moos, F C
1998-11-01
We have identified and visualized the vasopressin (VP) receptors expressed by hypothalamic magnocellular neurons in supraoptic and paraventricular nuclei. To do this, we used RT-PCR on total RNA extracts from supraoptic nuclei or on single freshly dissociated supraoptic neurons, and in situ hybridization on frontal sections of hypothalamus of Wistar rats. The RT-PCR on supraoptic RNA extracts revealed that mainly V1a, but also V1b, subtypes of VP receptors are expressed from birth to adulthood. No V2 receptor messenger RNA (mRNA) was detected. Furthermore, the single-cell RT-nested PCR indicated that the V1a receptor mRNA is present in vasopressinergic magnocellular neurons. In light of these results, in situ hybridization was performed to visualize the V1a and V1b receptor mRNAs in supraoptic and paraventricular nuclei. Simultaneously, we coupled this approach to: 1) in situ hybridization detection of oxytocin or VP mRNAs; or 2) immunocytochemistry to detect the neuropeptides. This provided a way of identifying the neurons expressing perceptible amounts of V1a or V1b receptor mRNAs as vasopressinergic neurons. Here, we suggest that the autocontrol exerted specifically by VP on vasopressinergic neurons is mediated through, at least, V1a and V1b subtype receptors.
Lehmann, Brian D.; Bauer, Joshua A.; Chen, Xi; Sanders, Melinda E.; Chakravarthy, A. Bapsi; Shyr, Yu; Pietenpol, Jennifer A.
2011-01-01
Triple-negative breast cancer (TNBC) is a highly diverse group of cancers, and subtyping is necessary to better identify molecular-based therapies. In this study, we analyzed gene expression (GE) profiles from 21 breast cancer data sets and identified 587 TNBC cases. Cluster analysis identified 6 TNBC subtypes displaying unique GE and ontologies, including 2 basal-like (BL1 and BL2), an immunomodulatory (IM), a mesenchymal (M), a mesenchymal stem–like (MSL), and a luminal androgen receptor (LAR) subtype. Further, GE analysis allowed us to identify TNBC cell line models representative of these subtypes. Predicted “driver” signaling pathways were pharmacologically targeted in these cell line models as proof of concept that analysis of distinct GE signatures can inform therapy selection. BL1 and BL2 subtypes had higher expression of cell cycle and DNA damage response genes, and representative cell lines preferentially responded to cisplatin. M and MSL subtypes were enriched in GE for epithelial-mesenchymal transition, and growth factor pathways and cell models responded to NVP-BEZ235 (a PI3K/mTOR inhibitor) and dasatinib (an abl/src inhibitor). The LAR subtype includes patients with decreased relapse-free survival and was characterized by androgen receptor (AR) signaling. LAR cell lines were uniquely sensitive to bicalutamide (an AR antagonist). These data may be useful in biomarker selection, drug discovery, and clinical trial design that will enable alignment of TNBC patients to appropriate targeted therapies. PMID:21633166
Mizuta, Kentaro; Gallos, George; Zhu, Defen; Mizuta, Fumiko; Goubaeva, Farida; Xu, Dingbang; Panettieri, Reynold A.; Yang, Jay; Emala, Charles W.
2013-01-01
Neuropeptide tachykinins (substance P, neurokinin A, and neurokinin B) are present in peripheral terminals of sensory nerve fibers within the respiratory tract and cause airway contractile responses and hyperresponsiveness in humans and most mammalian species. Three subtypes of neurokinin receptors (NK1R, NK2R, and NK3R) classically couple to Gq protein-mediated inositol 1,4,5-trisphosphate (IP3) synthesis and liberation of intracellular Ca2+, which initiates contraction, but their expression and calcium signaling mechanisms are incompletely understood in airway smooth muscle. All three subtypes were identified in native and cultured human airway smooth muscle (HASM) and were subsequently overexpressed in HASM cells using a human immunodeficiency virus-1-based lentivirus transduction system. Specific NKR agonists {NK1R, [Sar9,Met(O2)11]-substance P; NK2R, [β-Ala8]-neurokinin A(4–10); NK3R, senktide} stimulated inositol phosphate synthesis and increased intracellular Ca2+ concentration ([Ca2+]i) in native HASM cells and in HASM cells transfected with each NKR subtype. These effects were blocked by NKR-selective antagonists (NK1R, L-732138; NK2R, GR-159897; NK3R, SB-222200). The initial transient and sustained phases of increased [Ca2+]i were predominantly inhibited by the IP3 receptor antagonist 2-aminoethoxydiphenyl borate (2-APB) or the store-operated Ca2+ channel antagonist SKF-96365, respectively. These results show that all three subtypes of NKRs are expressed in native HASM cells and that IP3 levels are the primary mediators of NKR-stimulated initial [Ca2+]i increases, whereas store-operated Ca2+ channels mediate the sustained phase of the [Ca2+]i increase. PMID:18203813
Mizuta, Kentaro; Gallos, George; Zhu, Defen; Mizuta, Fumiko; Goubaeva, Farida; Xu, Dingbang; Panettieri, Reynold A; Yang, Jay; Emala, Charles W
2008-03-01
Neuropeptide tachykinins (substance P, neurokinin A, and neurokinin B) are present in peripheral terminals of sensory nerve fibers within the respiratory tract and cause airway contractile responses and hyperresponsiveness in humans and most mammalian species. Three subtypes of neurokinin receptors (NK1R, NK2R, and NK3R) classically couple to Gq protein-mediated inositol 1,4,5-trisphosphate (IP3) synthesis and liberation of intracellular Ca2+, which initiates contraction, but their expression and calcium signaling mechanisms are incompletely understood in airway smooth muscle. All three subtypes were identified in native and cultured human airway smooth muscle (HASM) and were subsequently overexpressed in HASM cells using a human immunodeficiency virus-1-based lentivirus transduction system. Specific NKR agonists {NK1R, [Sar9,Met(O2)11]-substance P; NK2R, [beta-Ala8]-neurokinin A(4-10); NK3R, senktide} stimulated inositol phosphate synthesis and increased intracellular Ca2+ concentration ([Ca2+]i) in native HASM cells and in HASM cells transfected with each NKR subtype. These effects were blocked by NKR-selective antagonists (NK1R, L-732138; NK2R, GR-159897; NK3R, SB-222200). The initial transient and sustained phases of increased [Ca2+]i were predominantly inhibited by the IP3 receptor antagonist 2-aminoethoxydiphenyl borate (2-APB) or the store-operated Ca2+ channel antagonist SKF-96365, respectively. These results show that all three subtypes of NKRs are expressed in native HASM cells and that IP3 levels are the primary mediators of NKR-stimulated initial [Ca2+]i increases, whereas store-operated Ca2+ channels mediate the sustained phase of the [Ca2+]i increase.
Prostaglandin E2 modulates dendritic cell function via EP2 and EP4 receptor subtypes.
Harizi, Hedi; Grosset, Christophe; Gualde, Norbert
2003-06-01
We have reported previously that PGE(2) inhibits dendritic cells (DC) functions. Because E prostanoid receptor (EPR) subtypes involved in this action are unknown, expression and functions of these receptors were examined in DC. Western blot and flow cytometry analyses showed that all EPRs were coexpressed in DC. In a dose-dependent manner, lipopolysaccharide (LPS) enhanced EP(2)R/EP(4)R but not EP(1)R/EP(3)R expressions. NS-398, a cyclooxygenase (COX)-2-selective inhibitor, suppressed LPS-enhanced EP(2)R/EP(4)R expression, suggesting that COX-2-issued prostaglandin E(2) (PGE(2)) modulates DC function through stimulation of specific EPR subtypes. Using selective agonists, we found that butaprost, an EP(2)R agonist, and PGE(1) alcohol, an EP(2)R and EP(2)R/EP(4)R agonist, inhibited major histocompatibility complex class II expression and enhanced interleukin-10 production from DC. However, no effect was observed with sulprostone and 17-phenyl-omega-trinor-PGE(2), selective agonists for EP(1)R and EP(1)R/EP(3)R, respectively. Treatment of DC with dibutyryl cyclic adenosine monophosphate (cAMP), an analog of cAMP, mimics PGE(2)-induced, inhibitory effects. Taken together, our data demonstrate that EP(2)R/EP(4)R are efficient for mediating PGE(2)-induced modulation of DC functions.
Blok, Erik J.; van den Bulk, Jitske; Dekker-Ensink, N. Geeske; Derr, Remco; Kanters, Corné; Bastiaannet, Esther; Kroep, Judith R.; van de Velde, Cornelis J.H.; Kuppen, Peter J.K.
2017-01-01
Multiple studies showed the prognostic capacities of tumor-infiltrating lymphocytes (TILs) in triple-negative breast cancer (TNBC), but not in other subtypes. We evaluated tumor expression of FAS, a key receptor in T-cell mediated apoptosis, as possible explanation for this differential prognostic value of TILs. Furthermore, we evaluated the prognostic relevance of FAS, both as an independent biomarker and in relation to CD8-positive T-cell presence. The study cohort consisted of 667 breast cancer patients treated in the LUMC between 1997 and 2009. FAS expression was determined using immunohistochemistry and the percentage of FAS-positive tumor cells was quantified. Furthermore, the number of CD8-positive infiltrating cells was determined, and its prognostic relevance was associated to FAS-expression using stratified survival analysis. In TNBC, FAS was averagely expressed in 49% of tumor cells, whereas ER-positive subtypes showed an average Fas expression of 16-20%. In the entire cohort, FAS was identified as significant prognostic marker for recurrence (adjusted HR 0.53, 95% CI 0.36-0.77) and borderline significant marker for overall survival (adjusted HR 0.72, 95% CI 0.52-1.01). Upon stratification for FAS-expression, CD8+ TILs were only prognostic at high levels (above median) of FAS expression in ER-negative disease. In summary, FAS was identified as an independent prognostic marker for recurrence free survival in breast cancer, with large variation in expression by receptor subtypes. Interestingly, the prognostic effect of CD8+ TILs in ER-negative disease was only valid for tumors with a high FAS expression. PMID:28121628
Blok, Erik J; van den Bulk, Jitske; Dekker-Ensink, N Geeske; Derr, Remco; Kanters, Corné; Bastiaannet, Esther; Kroep, Judith R; van de Velde, Cornelis J H; Kuppen, Peter J K
2017-02-28
Multiple studies showed the prognostic capacities of tumor-infiltrating lymphocytes (TILs) in triple-negative breast cancer (TNBC), but not in other subtypes. We evaluated tumor expression of FAS, a key receptor in T-cell mediated apoptosis, as possible explanation for this differential prognostic value of TILs. Furthermore, we evaluated the prognostic relevance of FAS, both as an independent biomarker and in relation to CD8-positive T-cell presence. The study cohort consisted of 667 breast cancer patients treated in the LUMC between 1997 and 2009. FAS expression was determined using immunohistochemistry and the percentage of FAS-positive tumor cells was quantified. Furthermore, the number of CD8-positive infiltrating cells was determined, and its prognostic relevance was associated to FAS-expression using stratified survival analysis. In TNBC, FAS was averagely expressed in 49% of tumor cells, whereas ER-positive subtypes showed an average Fas expression of 16-20%. In the entire cohort, FAS was identified as significant prognostic marker for recurrence (adjusted HR 0.53, 95% CI 0.36-0.77) and borderline significant marker for overall survival (adjusted HR 0.72, 95% CI 0.52-1.01). Upon stratification for FAS-expression, CD8+ TILs were only prognostic at high levels (above median) of FAS expression in ER-negative disease. In summary, FAS was identified as an independent prognostic marker for recurrence free survival in breast cancer, with large variation in expression by receptor subtypes. Interestingly, the prognostic effect of CD8+ TILs in ER-negative disease was only valid for tumors with a high FAS expression.
Niemiec, Joanna A; Adamczyk, Agnieszka; Małecki, Krzysztof; Majchrzyk, Kaja; Ryś, Janusz
2012-12-01
There is still a lack of complete consensus on immunohistochemical surrogate markers for luminal A (LA) and luminal B (LB), HER2, and basal-like subtypes of breast carcinomas and their correlation with cancer cell adhesion and invasion-promoting factors. Therefore, early-stage invasive ductal breast cancer patients (N=209) were recruited to the study and divided into 4 subtypes, on the basis of the expression of the estrogen/progesterone receptor and HER2 (LA: 74.4% of cases; LB: 7.8%; HER2: 5.6%; and triple-negative phenotype: 12.2%). Regardless of the above-mentioned classification, we divided all carcinomas into 2 groups: carcinomas expressing at least 1 basal marker [cytokeratine (CK)5/6, CK5, vimentin, epidermal growth factor receptor, or aberrant CK8/18 expression-membranous or in <10% of cells] versus carcinomas negative for basal markers. Then we studied the relationships between the above subtypes (2 classifications) and (i) the expression of adhesion molecules (Ep-CAM, P-cadherin), (ii) matrix metalloproteinases (MMP)-2, (iii) the proliferation index (MIB-1 LI), and (iv) the microvascular density. We confirmed that triple-negative phenotypes are characterized by basal marker expression, a high tumor grade, and high MIB-1 LI. In this subtype, we found MMP-2 expression in stromal leukocytes less frequently. Both LA carcinomas and carcinomas negative for basal markers were more often negative for epithelial cell adhesion molecule (Ep-CAM) and P-cadherin. Moreover, we noted a higher mean value of microvascular density in CK5/6 and Ep-CAM-immunopositive tumors, carcinomas with aberrant CK8/18 expression, and carcinomas with no or strong expression of MMP-2 in stromal fibroblast-like cells. These results might suggest that mechanisms of stroma remodeling and carcinogenesis (Ep-CAM is the suggested marker of breast progenitors) may differ between breast cancer subtypes.
Sherin, Antony; Peeyush, Kumar T; Naijil, George; Nandhu, Mohan Sobhana; Jayanarayanan, Sadanandan; Jes, Paul; Paulose, Cheramadathikudiyil Skaria
2011-01-25
Glucose homeostasis in humans is an important factor for the functioning of nervous system. Both hypo and hyperglycemia contributes to neuronal functional deficit. In the present study, effect of insulin induced hypoglycemia and streptozotocin induced diabetes on muscarinic receptor binding, cholinergic enzymes; AChE, ChAT expression and GLUT3 in the cerebral cortex of experimental rats were analysed. Total muscarinic, muscarinic M(1) receptor showed a significant decrease and muscarinic M(3) receptor subtype showed a significant increased binding in the cerebral cortex of hypoglycemic rats compared to diabetic and control. Real-Time PCR analysis of muscarinic M(1), M(3) receptor subtypes confirmed the receptor binding studies. Immunohistochemistry of muscarinic M(1), M(3) receptors using specific antibodies were also carried out. AChE and GLUT3 expression up regulated and ChAT expression down regulated in hypoglycemic rats compared to diabetic and control rats. Our results showed that hypo/hyperglycemia caused impaired glucose transport in neuronal cells as shown by altered expression of GLUT3. Increased AChE and decreased ChAT expression is suggested to alter cortical acetylcholine metabolism in experimental rats along with altered muscarinic receptor binding in hypo/hyperglycemic rats, impair cholinergic transmission, which subsequently lead to cholinergic dysfunction thereby causing learning and memory deficits. We observed a prominent cholinergic functional disturbance in hypoglycemic condition than in hyperglycemia. Hypoglycemia exacerbated the neurochemical changes in cerebral cortex induced by hyperglycemia. These findings have implications for both therapy and identification of causes contributing to neuronal dysfunction in diabetes. Copyright © 2010 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Walker, David L.; Davis, Michael
2008-01-01
Within the amygdala, most N-methyl-D-aspartic acid (NMDA) receptors consist of NR1 subunits in combination with either NR2A or NR2B subunits. Because the particular subunit composition greatly influences the receptors' properties, we investigated the contribution of both subtypes to fear conditioning and expression. To do so, we infused the…
Function and distribution of 5-HT2 receptors in the honeybee (Apis mellifera).
Thamm, Markus; Rolke, Daniel; Jordan, Nadine; Balfanz, Sabine; Schiffer, Christian; Baumann, Arnd; Blenau, Wolfgang
2013-01-01
Serotonin plays a pivotal role in regulating and modulating physiological and behavioral processes in both vertebrates and invertebrates. In the honeybee (Apis mellifera), serotonin has been implicated in division of labor, visual processing, and learning processes. Here, we present the cloning, heterologous expression, and detailed functional and pharmacological characterization of two honeybee 5-HT2 receptors. Honeybee 5-HT2 receptor cDNAs were amplified from brain cDNA. Recombinant cell lines were established constitutively expressing receptor variants. Pharmacological properties of the receptors were investigated by Ca(2+) imaging experiments. Quantitative PCR was applied to explore the expression patterns of receptor mRNAs. The honeybee 5-HT2 receptor class consists of two subtypes, Am5-HT2α and Am5-HT2β. Each receptor gene also gives rise to alternatively spliced mRNAs that possibly code for truncated receptors. Only activation of the full-length receptors with serotonin caused an increase in the intracellular Ca(2+) concentration. The effect was mimicked by the agonists 5-methoxytryptamine and 8-OH-DPAT at low micromolar concentrations. Receptor activities were blocked by established 5-HT receptor antagonists such as clozapine, methiothepin, or mianserin. High transcript numbers were detected in exocrine glands suggesting that 5-HT2 receptors participate in secretory processes in the honeybee. This study marks the first molecular and pharmacological characterization of two 5-HT2 receptor subtypes in the same insect species. The results presented should facilitate further attempts to unravel central and peripheral effects of serotonin mediated by these receptors.
Function and Distribution of 5-HT2 Receptors in the Honeybee (Apis mellifera)
Thamm, Markus; Rolke, Daniel; Jordan, Nadine; Balfanz, Sabine; Schiffer, Christian; Baumann, Arnd; Blenau, Wolfgang
2013-01-01
Background Serotonin plays a pivotal role in regulating and modulating physiological and behavioral processes in both vertebrates and invertebrates. In the honeybee (Apis mellifera), serotonin has been implicated in division of labor, visual processing, and learning processes. Here, we present the cloning, heterologous expression, and detailed functional and pharmacological characterization of two honeybee 5-HT2 receptors. Methods Honeybee 5-HT2 receptor cDNAs were amplified from brain cDNA. Recombinant cell lines were established constitutively expressing receptor variants. Pharmacological properties of the receptors were investigated by Ca2+ imaging experiments. Quantitative PCR was applied to explore the expression patterns of receptor mRNAs. Results The honeybee 5-HT2 receptor class consists of two subtypes, Am5-HT2α and Am5-HT2β. Each receptor gene also gives rise to alternatively spliced mRNAs that possibly code for truncated receptors. Only activation of the full-length receptors with serotonin caused an increase in the intracellular Ca2+ concentration. The effect was mimicked by the agonists 5-methoxytryptamine and 8-OH-DPAT at low micromolar concentrations. Receptor activities were blocked by established 5-HT receptor antagonists such as clozapine, methiothepin, or mianserin. High transcript numbers were detected in exocrine glands suggesting that 5-HT2 receptors participate in secretory processes in the honeybee. Conclusions This study marks the first molecular and pharmacological characterization of two 5-HT2 receptor subtypes in the same insect species. The results presented should facilitate further attempts to unravel central and peripheral effects of serotonin mediated by these receptors. PMID:24324783
Muldoon, P P; Jackson, K J; Perez, E; Harenza, J L; Molas, S; Rais, B; Anwar, H; Zaveri, N T; Maldonado, R; Maskos, U; McIntosh, J M; Dierssen, M; Miles, M F; Chen, X; De Biasi, M; Damaj, M I
2014-08-01
Recent data have indicated that α3β4* neuronal nicotinic (n) ACh receptors may play a role in morphine dependence. Here we investigated if nACh receptors modulate morphine physical withdrawal. To assess the role of α3β4* nACh receptors in morphine withdrawal, we used a genetic correlation approach using publically available datasets within the GeneNetwork web resource, genetic knockout and pharmacological tools. Male and female European-American (n = 2772) and African-American (n = 1309) subjects from the Study of Addiction: Genetics and Environment dataset were assessed for possible associations of polymorphisms in the 15q25 gene cluster and opioid dependence. BXD recombinant mouse lines demonstrated an increased expression of α3, β4 and α5 nACh receptor mRNA in the forebrain and midbrain, which significantly correlated with increased defecation in mice undergoing morphine withdrawal. Mice overexpressing the gene cluster CHRNA5/A3/B4 exhibited increased somatic signs of withdrawal. Furthermore, α5 and β4 nACh receptor knockout mice expressed decreased somatic withdrawal signs compared with their wild-type counterparts. Moreover, selective α3β4* nACh receptor antagonists, α-conotoxin AuIB and AT-1001, attenuated somatic signs of morphine withdrawal in a dose-related manner. In addition, two human datasets revealed a protective role for variants in the CHRNA3 gene, which codes for the α3 nACh receptor subunit, in opioid dependence and withdrawal. In contrast, we found that the α4β2* nACh receptor subtype is not involved in morphine somatic withdrawal signs. Overall, our findings suggest an important role for the α3β4* nACh receptor subtype in morphine physical dependence. © 2014 The British Pharmacological Society.
Hong, Lu Yan; Hong, Wan Shu; Zhu, Wen Bo; Shi, Qiong; You, Xin Xin; Chen, Shi Xi
2014-01-01
The mudskipper Boleophthalmus pectinirostris, a burrow-dwelling fish inhabiting intertidal mudflats, spawns only once during the spawning season around either the first or last lunar quarters. To understand the molecular mechanisms regulating this semilunar spawning rhythm, we cloned all melatonin receptor subtypes (mtnr1a1.4, mtnr1a1.7, mtnr1b, and mtnr1c). Expression of three melatonin receptor subtypes (except mtnr1c) was found in the ovaries. In contrast, the expression of all receptor subtypes was found in the diencephalon and the pituitary. In the fully-grown follicles, only mtnr1a1.7 mRNA was detected in both the isolated follicle layers and denuded oocytes. Interestingly, the transcript levels of both mtnr1a1.4 in the diencephalon and mtnr1a1.7 in the ovary displayed two cycles within one lunar month, and peaked around the first and last lunar quarters. We used 17α,20β-dihydroxy-4-pregnen-3-one (DHP), a maturation-inducing hormone, as a biomarker to examine the involvement of melatonin receptors in the control of the spawning cycle. Melatonin significantly increased the plasma DHP level 1h post intraperitoneal injection. Melatonin also directly stimulated ovarian fragments in vitro to produce a significantly higher amount of DHP. Taken together, these results provided the first evidence that melatonin receptors were involved in the synchronization of the semilunar spawning rhythm in the female mudskipper by acting through the HPG axis and/or directly on ovarian tissues to stimulate the production of DHP. Copyright © 2013 Elsevier Inc. All rights reserved.
Mannan Baig, Abdul; Khan, Naveed A; Effendi, Vardah; Rana, Zohaib; Ahmad, H R; Abbas, Farhat
2017-01-01
Recent reports on acetylcholine muscarinic receptor subtype 3 (CHRM3) have shown its growth-promoting role in prostate cancer. Additional studies report the proliferative effect of the cholinergic agonist carbachol on prostate cancer by its agonistic action on CHRM3. This study shows that the type 1 acetylcholine muscarinic receptor (CHRM1) contributes toward the proliferation and growth of prostate cancer. We used growth and cytotoxic assays, the prostate cancer microarray database and CHRM downstream pathways' homology of CHRM subtypes to uncover multiple signals leading to the growth of prostate cancer. Growth assays showed that pilocarpine stimulates the proliferation of prostate cancer. Moreover, it shows that carbachol exerts an additional agonistic action on nicotinic cholinergic receptor of prostate cancer cells that can be blocked by tubocurarine. With the use of selective CHRM1 antagonists such as pirenzepine and dicyclomine, a considerable inhibition of proliferation of prostate cancer cell lines was observed in dose ranging from 15-60 µg/ml of dicyclomine. The microarray database of prostate cancer shows a dominant expression of CHRM1 in prostate cancer compared with other cholinergic subtypes. The bioinformatics of prostate cancer and CHRM pathways show that the downstream signalling include PIP3-AKT-CaM-mediated growth in LNCaP and PC3 cells. Our study suggests that antagonism of CHRM1 may be a potential therapeutic target against prostate cancer.
Akgül, Gülcan; McBain, Chris J
2016-10-01
Glutamate receptor-mediated recruitment of GABAergic inhibitory interneurons is a critical determinant of network processing. Early studies observed that many, but not all, interneuron glutamatergic synapses contain AMPA receptors that are GluA2-subunit lacking and Ca(2+) permeable, making them distinct from AMPA receptors at most principal cell synapses. Subsequent studies demonstrated considerable alignment of synaptic AMPA and NMDA receptor subunit composition within specific subtypes of interneurons, suggesting that both receptor expression profiles are developmentally and functionally linked. Indeed glutamate receptor expression profiles are largely predicted by the embryonic origins of cortical interneurons within the medial and caudal ganglionic eminences of the developing telencephalon. Distinct complements of AMPA and NMDA receptors within different interneuron subpopulations contribute to the differential recruitment of functionally divergent interneuron subtypes by common afferent inputs for appropriate feed-forward and feedback inhibitory drive and network entrainment. In contrast, the lesser-studied kainate receptors, which are often present at both pre- and postsynaptic sites, appear to follow an independent developmental expression profile. Loss of specific ionotropic glutamate receptor (iGluR) subunits during interneuron development has dramatic consequences for both cellular and network function, often precipitating circuit inhibition-excitation imbalances and in some cases lethality. Here we briefly review recent findings highlighting the roles of iGluRs in interneuron development. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
Regulation of ocular surface inflammation by prostaglandin E receptor subtype EP3.
Ueta, Mayumi
2010-11-01
We first investigated whether the prostaglandin (PG) E2-PGE receptor subtype EP3 axis regulates the development of murine experimental allergic conjunctivitis because it has been reported that this pathway negatively regulates allergic reactions in a murine allergic asthma model. We observed that EP3 is constitutively expressed in mice conjunctival epithelium. EP3 knockout mice demonstrated significantly increased eosinophil infiltration in conjunctiva after ragweed challenge compared with wild-type mice. Consistently, significantly higher expression of eotaxin-1 messenger RNA was observed in Ptger3-/- mice. Conversely, treatment of wild-type mice with an EP3-selective agonist significantly decreased eosinophil infiltration, which was blunted in Ptger3-/- mice. Expression of cyclooxygenase-2 and PGE synthases was upregulated and PGE2 content increased in the eyelids after ragweed challenge. These data suggest that PGE2 acts on EP3 in the conjunctival epithelium and downregulates the progression of experimental allergic conjunctivitis. We next examined and compared the expression of EP3 in human conjunctival epithelium in various ocular surface diseases. Human conjunctival epithelium expressed EP3-specific messenger RNA and EP3 protein. Although we could clearly find positive signals in the conjunctival epithelium from patients with noninflammatory ocular surface diseases such as conjunctivochalasis and pterygium, we could not find positive signals in that from those with inflammatory disorders such as Stevens-Johnson syndrome and ocular cicatricial pemphigoid. Likewise, expression of the PGE receptor subtype EP4 was clearly found in the conjunctival epithelium from patients with conjunctivochalasis and pterygium but not from patients with Stevens-Johnson syndrome and ocular cicatricial pemphigoid.
Faraj, Sheila F; Gonzalez-Roibon, Nilda; Munari, Enrico; Sharma, Rajni; Burnett, Arthur L; Cubilla, Antonio L; Netto, George J; Chaux, Alcides
2017-06-01
Insulin-like growth factor-1 receptor (IGF1R) plays a key role in cell growth and transformation. It is overexpressed in several solid tumors. This study evaluates IGF1R immunoexpression in penile squamous cell carcinoma (SCC). Four tissue microarrays were built from formalin-fixed, paraffin-embedded blocks of 112 penile SCC from Paraguay. Membranous IGF1R expression was evaluated by immunohistochemistry using two different approaches. An H-score was calculated in each spot (stain intensity by extent), and a median score per tumor was obtained. The second approach consisted of a score similar to the scoring system that was used for evaluating HER2 immunoexpression. For each case, the highest category obtained at any spot was used for statistical analyses. IGF1R expression was compared by histologic subtype, grade, and human papillomavirus (HPV) status. Median H-score was 22.5. The distribution of IGF1R expression by HER2 approach was as follows: 0 in 33.0% cases, 1+ in 46.4%, 2+ in 14.3%, and 3+ in 6.2%. IGF1R H-scores were associated with basaloid and warty/basaloid subtypes (p = 0.0026) and higher grade (p = 0.00052). Although weaker when using the HER2 approach, the association of IGF1R expression with subtype (p = 0.015) and grade (p = 0.015) remained significant. Furthermore, there was an association between IGF1R expression by HER2 approach and HPV status (p = 0.012). IGF1R was expressed in about two thirds of penile SCC cases, showing a strong positive association with histologic grade, subtype, and HPV status. Considering that grade is a predictor of outcome IGF1R expression may have prognostic relevance and could point to a potential role for IGF1R inhibitors in treating penile SCC.
Variation of M3 muscarinic receptor expression in different prostate tissues and its significance.
Song, Wei; Yuan, Mingzhen; Zhao, Shengtian
2009-08-01
To detect the expression of the muscarinic receptor (M receptor) in different prostate tissues and analyze the role of its subtype in prostatic oncogenesis. Thirty-six cases of normal prostate and benign prostatic hyperplasia, and 8 cases of prostatic tumor, were used in this study from the Shandong University, Shandong, China, between 2003-2006. The protein expressions of M1, M2, and M3 receptors in each group were determined by Western-blotting. The gene expressions of the M3 receptor and vascular endothelial growth factors (VEGF) in each group were determined by reverse transcriptase-polymerase chain reaction. The protein and gene expressions of the M3 receptor in the prostatic carcinoma group were higher than that of benign prostatic hyperplasia group (p=0.0001) and normal prostate group (p=0.0001). The M3 receptor and VEGF showed positive straight-line correlations of gene expressions with the 3 groups (r=0.4999, p=0.0001). The M3 receptor may have a close relationship with prostatic oncogenesis.
Horiuchi, Dai; Camarda, Roman; Zhou, Alicia Y; Yau, Christina; Momcilovic, Olga; Balakrishnan, Sanjeev; Corella, Alexandra N; Eyob, Henok; Kessenbrock, Kai; Lawson, Devon A; Marsh, Lindsey A; Anderton, Brittany N; Rohrberg, Julia; Kunder, Ratika; Bazarov, Alexey V; Yaswen, Paul; McManus, Michael T; Rugo, Hope S; Werb, Zena; Goga, Andrei
2016-11-01
Triple-negative breast cancer (TNBC), in which cells lack expression of the estrogen receptor (ER), the progesterone receptor (PR) and the ERBB2 (also known as HER2) receptor, is the breast cancer subtype with the poorest outcome. No targeted therapy is available against this subtype of cancer owing to a lack of validated molecular targets. We previously reported that signaling involving MYC-an essential, pleiotropic transcription factor that regulates the expression of hundreds of genes-is disproportionally higher in triple-negative (TN) tumors than in receptor-positive (RP) tumors. Direct inhibition of the oncogenic transcriptional activity of MYC has been challenging to achieve. Here, by conducting a shRNA screen targeting the kinome, we identified PIM1, a non-essential serine-threonine kinase, in a synthetic lethal interaction with MYC. PIM1 expression was higher in TN tumors than in RP tumors and was associated with poor prognosis in patients with hormone- and HER2-negative tumors. Small-molecule PIM kinase inhibitors halted the growth of human TN tumors with elevated MYC expression in patient-derived tumor xenograft (PDX) and MYC-driven transgenic mouse models of breast cancer by inhibiting the oncogenic transcriptional activity of MYC and restoring the function of the endogenous cell cycle inhibitor, p27. Our findings warrant clinical evaluation of PIM kinase inhibitors in patients with TN tumors that have elevated MYC expression.
Sterin-Borda, Leonor; Orman, Betina; De Couto Pita, Alejandra; Borda, Enri
2011-02-01
The purpose of this study was to investigate whether the inflammation of rat dental pulp induces the muscarinic acetylcholine receptor (mAChR) constitutive receptor activity. Pulpitis was induced with bacterial lipolysaccharide in rat incisors dental pulp. Saturation assay with [(3)H]-quinuclidinyl benzilate ([(3)H] QNB), competitive binding with different mAChR antagonist subtypes, and nitric oxide synthase (NOS) activity were performed. A drastic change in expression and response to mAChR subtypes was observed in pulpitis. Inflamed pulp expressed high number of M(3) mAChR of high affinity, whereas the M(1) mAChR is the main subtype displayed in normal pulp. Consistent with the identification of the affinity constant (Ki) of M(3) and Ki of M(1) in both pulpitis and in normal pulps are the differences in the subtype functionality of these cells. In pulpitis, pilocarpine (1 × 10(-11) mol/L to 5 × 10(-9) mol/L) exerted an inhibitory action on NOS activity that was blocked by J 104129 fumarate (highest selective affinity to M(3) mAChR). In normal pulps, pilocarpine (1 × 10(-11) mol/L to 5 × 10(-9) mol/L) has no effect. NOS basal activity was 5.9 times as high in pulpitis as in the normal pulp as a result of the activation of inducible NOS. The irreversible pulpitis could induce a mAChR alteration, increasing the high-affinity receptor density and transduction-coupling efficiency of inducible NOS activity, leading to a spontaneously active conformation of the receptor. Pilocarpine acting as an inverse agonist might be useful therapeutically to prevent necrosis and subsequent loss of dental pulp. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Šukalović, V; Roglić, G; Husinec, S; Kostić-Rajaćić, S; Andrić, D; Šoškić, Vukić
2003-11-01
Several tertiary 2-phenylethyl, 2-(1-naphthyl)ethyl and 2-(2-naphthyl)ethyl amines were synthesized and their binding affinities for dopamine D(1), D(2) and serotonin 5-HT(1A) receptors evaluated in radioligand binding assays. All compounds were inactive in D(1) dopamine radioligand binding assay. The 2-(1-naphthyl)ethyl analogues expressed a low but significant binding affinity for the D(2) and moderate one for the 5-HT(1A) receptor subtypes. Most of the remaining compounds expressed binding affinity at the 5-HT(1A) receptor subtype but were inactive in D(2) receptor binding assay. Based on these results and considering the chemical characteristics of the compounds synthesized and evaluated for dopaminergic and serotonergic activity throughout the present study it can be concluded that hydrophobic type of interaction (stacking or edge-to-face) plays a significant role in the formation of receptor-ligand complexes of 2-(1-naphthyl)ethyl amines. This structural motive can be applied to design and synthesize new, more potent dopaminergic/serotonergic ligands by slight chemical modifications.
Role of stress peptides during human pregnancy and labour.
Hillhouse, Edward W; Grammatopoulos, Dimitris K
2002-09-01
Premature birth is the major source of perinatal death and disability. Furthermore, the intrauterine health of the baby is important for preventing certain adult diseases. However, the molecular mechanisms driving the onset of human labour remain uncertain, although several key players have been identified. It is becoming clear that there are many pathways to parturition in humans. Stress peptides, in particular placental corticotrophin releasing hormone (CRH) and possibly the related peptide urocortin, appear to play important roles throughout pregnancy. Plasma CRH is a predictor of the duration of human gestation. During most of pregnancy, CRH, acting via specific CRH receptor subtypes, plays a 'protective' role by promoting myometrial quiescence via the generation of cAMP and cGMP, and upregulation of nitric oxide synthase expression. At term, myometrial contractility is enhanced by a complex series of molecular switches, involving the upregulation of oxytocin receptor expression and crosstalk between the oxytocin and CRH receptors. This results in protein kinase C-induced phosphorylation of specific CRH receptor subtypes, with subsequent desensitization and a shift in the intracellular microenvironment to enhance contractility. CRH/urocortin, via specific receptor isoforms, is now able to activate Gq and potentially enhance the oxytocin-driven generation of inositol triphosphate. In addition, CRH/urocortin, via specific CRH receptor subtypes, may generate prostaglandins from the fetal membranes and decidua, play a role in placental vasodilatation and participate in fetal adrenal function and organ maturation. These peptides and receptors are phylogenetically ancient and well preserved across species. They may have evolved as a mechanism to protect against the 'stress' of premature birth.
Samartzis, Eleftherios P; Noske, Aurelia; Meisel, Alexander; Varga, Zsuzsanna; Fink, Daniel; Imesch, Patrick
2014-01-01
The G protein-coupled estrogen receptor (GPER) is a novel estrogen receptor that mediates proliferative effects induced by estrogen but also by tamoxifen. The aim of our study was to analyze the frequency of GPER in a large collective of primary invasive breast carcinomas, with special emphasis on the subcellular expression and to evaluate the association with clinicopathological parameters and patient overall survival. The tissue microarrays from formalin-fixed, paraffin embedded samples of primary invasive breast carcinomas (n = 981) were analyzed for GPER expression using immunohistochemistry. Expression data were compared to the clinicopathological parameters and overall survival. GPER localization was also analyzed in two immortalized breast cancer cell lines T47D and MCF7 by confocal immunofluorescence microscopy. A predominantly cytoplasmic GPER expression was found in 189 carcinomas (19.3%), whereas a predominantly nuclear expression was observed in 529 cases (53.9%). A simultaneous comparable positive expression of both patterns was found in 32 of 981 cases (3.2%), and negative staining was detected in 295 cases (30%). Confocal microscopy confirmed the occurrence of cytoplasmic and nuclear GPER expression in T47D and MCF7. Cytoplasmic GPER expression was significantly associated with non-ductal histologic subtypes, low tumor stage, better histologic differentiation, as well as Luminal A and B subtypes. In contrast, nuclear GPER expression was significantly associated with poorly differentiated carcinomas and the triple-negative subtype. In univariate analysis, cytoplasmic GPER expression was associated with better overall survival (p = 0.012). Our data suggest that predominantly cytoplasmic and/or nuclear GPER expression are two distinct immunohistochemical patterns in breast carcinomas and may reflect different biological features, reason why these patterns should be clearly distinguished in histological evaluations. Prospective studies will be needed to assess whether the expression status of GPER in breast carcinomas should be routinely observed by clinicians, for instance, before implementing endocrine breast cancer treatment.
Samartzis, Eleftherios P.; Noske, Aurelia; Meisel, Alexander; Varga, Zsuzsanna; Fink, Daniel; Imesch, Patrick
2014-01-01
Introduction The G protein-coupled estrogen receptor (GPER) is a novel estrogen receptor that mediates proliferative effects induced by estrogen but also by tamoxifen. The aim of our study was to analyze the frequency of GPER in a large collective of primary invasive breast carcinomas, with special emphasis on the subcellular expression and to evaluate the association with clinicopathological parameters and patient overall survival. Methods The tissue microarrays from formalin-fixed, paraffin embedded samples of primary invasive breast carcinomas (n = 981) were analyzed for GPER expression using immunohistochemistry. Expression data were compared to the clinicopathological parameters and overall survival. GPER localization was also analyzed in two immortalized breast cancer cell lines T47D and MCF7 by confocal immunofluorescence microscopy. Results A predominantly cytoplasmic GPER expression was found in 189 carcinomas (19.3%), whereas a predominantly nuclear expression was observed in 529 cases (53.9%). A simultaneous comparable positive expression of both patterns was found in 32 of 981 cases (3.2%), and negative staining was detected in 295 cases (30%). Confocal microscopy confirmed the occurrence of cytoplasmic and nuclear GPER expression in T47D and MCF7. Cytoplasmic GPER expression was significantly associated with non-ductal histologic subtypes, low tumor stage, better histologic differentiation, as well as Luminal A and B subtypes. In contrast, nuclear GPER expression was significantly associated with poorly differentiated carcinomas and the triple-negative subtype. In univariate analysis, cytoplasmic GPER expression was associated with better overall survival (p = 0.012). Conclusion Our data suggest that predominantly cytoplasmic and/or nuclear GPER expression are two distinct immunohistochemical patterns in breast carcinomas and may reflect different biological features, reason why these patterns should be clearly distinguished in histological evaluations. Prospective studies will be needed to assess whether the expression status of GPER in breast carcinomas should be routinely observed by clinicians, for instance, before implementing endocrine breast cancer treatment. PMID:24421881
Dutta, B; Pusztai, L; Qi, Y; André, F; Lazar, V; Bianchini, G; Ueno, N; Agarwal, R; Wang, B; Shiang, C Y; Hortobagyi, G N; Mills, G B; Symmans, W F; Balázsi, G
2012-01-01
Background: The rapid collection of diverse genome-scale data raises the urgent need to integrate and utilise these resources for biological discovery or biomedical applications. For example, diverse transcriptomic and gene copy number variation data are currently collected for various cancers, but relatively few current methods are capable to utilise the emerging information. Methods: We developed and tested a data-integration method to identify gene networks that drive the biology of breast cancer clinical subtypes. The method simultaneously overlays gene expression and gene copy number data on protein–protein interaction, transcriptional-regulatory and signalling networks by identifying coincident genomic and transcriptional disturbances in local network neighborhoods. Results: We identified distinct driver-networks for each of the three common clinical breast cancer subtypes: oestrogen receptor (ER)+, human epidermal growth factor receptor 2 (HER2)+, and triple receptor-negative breast cancers (TNBC) from patient and cell line data sets. Driver-networks inferred from independent datasets were significantly reproducible. We also confirmed the functional relevance of a subset of randomly selected driver-network members for TNBC in gene knockdown experiments in vitro. We found that TNBC driver-network members genes have increased functional specificity to TNBC cell lines and higher functional sensitivity compared with genes selected by differential expression alone. Conclusion: Clinical subtype-specific driver-networks identified through data integration are reproducible and functionally important. PMID:22343619
Occurrence of breast cancer subtypes in adolescent and young adult women
2012-01-01
Introduction Breast cancers are increasingly recognized as heterogeneous based on expression of receptors for estrogen (ER), progesterone (PR), and human epidermal growth factor receptor 2 (HER2). Triple-negative tumors (ER-/PR-/HER2-) have been reported to be more common among younger women, but occurrence of the spectrum of breast cancer subtypes in adolescent and young adult (AYA) women aged between 15 and 39 years is otherwise poorly understood. Methods Data regarding all 5,605 AYA breast cancers diagnosed in California during the period 2005 to 2009, including ER and PR status (referred to jointly as hormone receptor (HR) status) and HER2 status, was obtained from the population-based California Cancer Registry. Incidence rates were calculated by subtype (triple-negative; HR+/HER2-; HR+/HER2+; HR-/HER2+), and logistic regression was used to evaluate differences in subtype characteristics by age group. Results AYAs had higher proportions of HR+/HER2+, triple-negative and HR-/HER2+ breast cancer subtypes and higher proportions of patients of non-White race/ethnicity than did older women. AYAs also were more likely to be diagnosed with stage III/IV disease and high-grade tumors than were older women. Rates of HR+/HER2- and triple-negative subtypes in AYAs varied substantially by race/ethnicity. Conclusions The distribution of breast cancer subtypes among AYAs varies from that observed in older women, and varies further by race/ethnicity. Observed subtype distributions may explain the poorer breast cancer survival previously observed among AYAs. PMID:22452927
Hwang, Ki-Tae; Kim, Eun-Kyu; Jung, Sung Hoo; Lee, Eun Sook; Kim, Seung Il; Lee, Seokwon; Park, Heung Kyu; Kim, Jongjin; Oh, Sohee; Kim, Young A
2018-06-01
To determine the prognostic role of tamoxifen therapy for patients with ductal carcinoma in situ (DCIS) according to molecular subtypes. Data of 14,944 patients with DCIS were analyzed. Molecular subtypes were classified into four categories based on expression of estrogen receptor (ER)/progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2). Kaplan-Meier estimator was used for overall survival analysis while Cox proportional hazards model was used for univariate and multivariate analyses. Luminal A subtype (ER/PR+, HER2-) showed higher (P = .009) survival rate than triple-negative (TN) subtype. Tamoxifen therapy group showed superior (P < .001) survival than no-tamoxifen therapy group. It had survival benefit only for luminal A subtype (P = .001). Tamoxifen therapy resulted in higher survival rate in subgroups with positive ER (P = .006), positive PR (P = .009), and negative HER2 (P < .001). In luminal A subtype, tamoxifen therapy showed lower hazard ratio (HR) compared to no-tamoxifen therapy (HR, 0.420; 95% CI 0.250-0.705; P = .001). Tamoxifen therapy was a significant independent factor by multivariate analysis (HR, 0.538; 95% CI 0.306-0.946; P = .031) as well as univariate analysis. Tamoxifen therapy group showed superior prognosis than the no-tamoxifen therapy group. Its prognostic influence was only effective for luminal A subtype. Patients with luminal A subtype showed higher survival rate than those with TN subtype. Active tamoxifen therapy is recommended for DCIS patients with luminal A subtype, and routine tests for ER, PR, and HER2 should be considered for DCIS.
Memory Effects of Benzodiazepines: Memory Stages and Types Versus Binding-Site Subtypes
Savić, Miroslav M.; Obradović, Dragan I.; Ugrešić, Nenad D.; Bokonjić, Dubravko R.
2005-01-01
Benzodiazepines are well established as inhibitory modulators of memory processing. This effect is especially prominent when applied before the acquisition phase of a memory task. This minireview concentrates on the putative subtype selectivity of the acquisition-impairing action of benzodiazepines. Namely, recent genetic studies and standard behavioral tests employing subtype-selective ligands pointed to the predominant involvement of two subtypes of benzodiazepine binding sites in memory modulation. Explicit memory learning seems to be affected through the GABAA receptors containing the α1 and α1 subunits, whereas the effects on procedural memory can be mainly mediated by the α1 subunit. The pervading involvement of the α1 subunit in memory modulation is not at all unexpected because this subunit is the major subtype, present in 60% of all GABAA receptors. On the other hand, the role of α5 subunits, mainly expressed in the hippocampus, in modulating distinct forms of memory gives promise of selective pharmacological coping with certain memory deficit states. PMID:16444900
Monkey Adrenal Chromaffin Cells Express α6β4* Nicotinic Acetylcholine Receptors
Scadden, Mick´l; Carmona-Hidalgo, Beatriz; McIntosh, J. Michael; Albillos, Almudena
2014-01-01
Nicotinic acetylcholine receptors (nAChRs) that contain α6 and β4 subunits have been demonstrated functionally in human adrenal chromaffin cells, rat dorsal root ganglion neurons, and on noradrenergic terminals in the hippocampus of adolescent mice. In human adrenal chromaffin cells, α6β4* nAChRs (the asterisk denotes the possible presence of additional subunits) are the predominant subtype whereas in rodents, the predominant nAChR is the α3β4* subtype. Here we present molecular and pharmacological evidence that chromaffin cells from monkey (Macaca mulatta) also express α6β4* receptors. PCR was used to show the presence of transcripts for α6 and β4 subunits and pharmacological characterization was performed using patch-clamp electrophysiology in combination with α-conotoxins that target the α6β4* subtype. Acetylcholine-evoked currents were sensitive to inhibition by BuIA[T5A,P6O] and MII[H9A,L15A]; α-conotoxins that inhibit α6-containing nAChRs. Two additional agonists were used to probe for the expression of α7 and β2-containing nAChRs. Cells with currents evoked by acetylcholine were relatively unresponsive to the α7-selctive agonist choline but responded to the agonist 5-I-A-85380. These studies provide further insights into the properties of natively expressed α6β4* nAChRs. PMID:24727685
Molecular Insights into Metabotropic Glutamate Receptor Allosteric Modulation
Gregory, Karen J.
2015-01-01
The metabotropic glutamate (mGlu) receptors are a group of eight family C G protein–coupled receptors that are expressed throughout the central nervous system (CNS) and periphery. Within the CNS the different subtypes are found in neurons, both pre- and/or postsynaptically, where they mediate modulatory roles and in glial cells. The mGlu receptor family provides attractive targets for numerous psychiatric and neurologic disorders, with the majority of discovery programs focused on targeting allosteric sites, with allosteric ligands now available for all mGlu receptor subtypes. However, the development of allosteric ligands remains challenging. Biased modulation, probe dependence, and molecular switches all contribute to the complex molecular pharmacology exhibited by mGlu receptor allosteric ligands. In recent years we have made significant progress in our understanding of this molecular complexity coupled with an increased understanding of the structural basis of mGlu allosteric modulation. PMID:25808929
Gibson, Andrew; Faulkner, Lee; Lichtenfels, Maike; Ogese, Monday; Al-Attar, Zaid; Alfirevic, Ana; Esser, Philipp R.; Martin, Stefan F.; Pirmohamed, Munir; Park, B. Kevin; Naisbitt, Dean J.
2017-01-01
Drug hypersensitivity involves the activation of T-cells in an HLA allele-restricted manner. Since the majority of individuals who carry HLA risk alleles do not develop hypersensitivity, other parameters must control development of the drug-specific T-cell response. Thus, we have utilized a T-cell priming assay and nitroso sulfamethoxazole (SMX-NO) as a model antigen to investigate (1) the activation of specific T-cell receptor (TCR)Vβ subtypes, (2) the impact of PD-1, CTLA4 and TIM-3 co-inhibitory signalling on activation of naïve and memory T-cells and (3) the ability of Tregs to prevent responses. An expansion of the TCR repertoire was observed for nine different Vβ subtypes, while spectratyping revealed that SMX-NO-specific T-cell responses are controlled by public TCRs present in all individuals alongside private TCR repertoires specific to each individual. We proceeded to evaluate the extent to which the activation of these TCR Vβ-restricted antigen-specific T-cell responses is governed by regulatory signals. Blockade of PDL-1/CTLA4 signalling dampened activation of SMX-NO-specific naïve and memory T-cells, while blockade of TIM-3 produced no effect. PD-1, CTLA4, and TIM-3 displayed discrete expression profiles during drug-induced T-cell activation and expression of each receptor was enhanced on dividing T-cells. As these receptors are also expressed on Tregs, Treg-mediated suppression of SMX-NO-induced T-cell activation was investigated. Tregs significantly dampened the priming of T-cells. In conclusion, our findings demonstrate that distinct TCR Vβ subtypes, dysregulation of co-inhibitory signalling pathways and dysfunctional Tregs may influence predisposition to hypersensitivity. PMID:28687658
Prat, Aleix; Cheang, Maggie Chon U.; Martín, Miguel; Parker, Joel S.; Carrasco, Eva; Caballero, Rosalía; Tyldesley, Scott; Gelmon, Karen; Bernard, Philip S.; Nielsen, Torsten O.; Perou, Charles M.
2013-01-01
Purpose Current immunohistochemical (IHC)-based definitions of luminal A and B breast cancers are imperfect when compared with multigene expression-based assays. In this study, we sought to improve the IHC subtyping by examining the pathologic and gene expression characteristics of genomically defined luminal A and B subtypes. Patients and Methods Gene expression and pathologic features were collected from primary tumors across five independent cohorts: British Columbia Cancer Agency (BCCA) tamoxifen-treated only, Grupo Español de Investigación en Cáncer de Mama 9906 trial, BCCA no systemic treatment cohort, PAM50 microarray training data set, and a combined publicly available microarray data set. Optimal cutoffs of percentage of progesterone receptor (PR) –positive tumor cells to predict survival were derived and independently tested. Multivariable Cox models were used to test the prognostic significance. Results Clinicopathologic comparisons among luminal A and B subtypes consistently identified higher rates of PR positivity, human epidermal growth factor receptor 2 (HER2) negativity, and histologic grade 1 in luminal A tumors. Quantitative PR gene and protein expression were also found to be significantly higher in luminal A tumors. An empiric cutoff of more than 20% of PR-positive tumor cells was statistically chosen and proved significant for predicting survival differences within IHC-defined luminal A tumors independently of endocrine therapy administration. Finally, no additional prognostic value within hormonal receptor (HR) –positive/HER2-negative disease was observed with the use of the IHC4 score when intrinsic IHC-based subtypes were used that included the more than 20% PR-positive tumor cells and vice versa. Conclusion Semiquantitative IHC expression of PR adds prognostic value within the current IHC-based luminal A definition by improving the identification of good outcome breast cancers. The new proposed IHC-based definition of luminal A tumors is HR positive/HER2 negative/Ki-67 less than 14%, and PR more than 20%. PMID:23233704
Guillermet-Guibert, J; Saint-Laurent, N; Davenne, L; Rochaix, P; Cuvillier, O; Culler, M D; Pradayrol, L; Buscail, L; Susini, C; Bousquet, C
2007-02-01
Somatostatin is a multifunctional hormone that modulates cell proliferation, differentiation and apoptosis. Mechanisms for somatostatin-induced apoptosis are at present mostly unsolved. Therefore, we investigated whether somatostatin receptor subtype 2 (sst2) induces apoptosis in the nontransformed murine fibroblastic NIH3T3 cells. Somatostatin receptor subtype 2 expression induced an executioner caspase-mediated apoptosis through a tyrosine phosphatase SHP-1 (Src homology domain phosphatase-1)-dependent stimulation of nuclear factor kappa B (NF-kappaB) activity and subsequent inhibition of the mitogen-activated protein kinase JNK. Tumor necrosis factor alpha (TNFalpha) stimulated both NF-kappaB and c-Jun NH2-terminal kinase (JNK) activities, which had opposite action on cell survival. Importantly, sst2 sensitized NIH3T3 cells to TNFalpha-induced apoptosis by (1) upregulating TNFalpha receptor protein expression, and sensitizing to TNFalpha-induced caspase-8 activation; (2) enhancing TNFalpha-mediated activation of NF-kappaB, resulting in JNK inhibition and subsequent executioner caspase activation and cell death. We have here unraveled a novel signaling mechanism for a G protein-coupled receptor, which directly triggers apoptosis and crosstalks with a death receptor to enhance death ligand-induced apoptosis.
Parry, Jesse J.; Chen, Ronald; Andrews, Rebecca; Lears, Kimberly A.
2012-01-01
G protein signaling through human somatostatin receptor subtype 2 (SSTR2) is well known, but the amino acids involved in stimulation of intracellular responses upon ligand binding have not been characterized. We constructed a series of point mutants in SSTR2 at amino acid positions 89, 139, and 140 in attempts to disrupt G protein signaling upon ligand binding. The aspartic acid changes at position 89 to either Ala, Leu, or Arg generated mutant receptors with varying expression profiles and a complete inability to bind somatostatin-14 (SST). Mutations to Asp 139 and Arg 140 also led to varying expression profiles with some mutants maintaining their affinity for SST. Mutation of Arg 140 to Ala resulted in a mutated receptor that had a Bmax and dissociation constant (Kd) similar to wild-type receptor but was still coupled to the G protein as determined in both a cAMP assay and a calcium-release assay. In contrast, mutation of Asp 139 to Asn resulted in a mutated receptor with Bmax and Kd values that were similar to wild type but was uncoupled from G protein-mediated cAMP signaling, but not calcium release. Thus, we identified mutations in SSTR2 that result in either receptor expression levels that are similar to wild type but is completely ablated for ligand binding or a receptor that maintains affinity for SST and is uncoupled from G protein-mediated cAMP signaling. PMID:22495673
Altered striatal function in a mutant mouse lacking D1A dopamine receptors.
Drago, J; Gerfen, C R; Lachowicz, J E; Steiner, H; Hollon, T R; Love, P E; Ooi, G T; Grinberg, A; Lee, E J; Huang, S P
1994-01-01
Of the five known dopamine receptors, D1A and D2 represent the major subtypes expressed in the striatum of the adult brain. Within the striatum, these two subtypes are differentially distributed in the two main neuronal populations that provide direct and indirect pathways between the striatum and the output nuclei of the basal ganglia. Movement disorders, including Parkinson disease and various dystonias, are thought to result from imbalanced activity in these pathways. Dopamine regulates movement through its differential effects on D1A receptors expressed by direct output neurons and D2 receptors expressed by indirect output neurons. To further examine the interaction of D1A and D2 neuronal pathways in the striatum, we used homologous recombination to generate mutant mice lacking functional D1A receptors (D1A-/-). D1A-/- mutants are growth retarded and die shortly after weaning age unless their diet is supplemented with hydrated food. With such treatment the mice gain weight and survive to adulthood. Neurologically, D1A-/- mice exhibit normal coordination and locomotion, although they display a significant decrease in rearing behavior. Examination of the striatum revealed changes associated with the altered phenotype of these mutants. D1A receptor binding was absent in striatal sections from D1A-/- mice. Striatal neurons normally expressing functional D1A receptors are formed and persist in adult homozygous mutants. Moreover, substance P mRNA, which is colocalized specifically in striatal neurons with D1A receptors, is expressed at a reduced level. In contrast, levels of enkephalin mRNA, which is expressed in striatal neurons with D2 receptors, are unaffected. These findings show that D1A-/- mice exhibit selective functional alterations in the striatal neurons giving rise to the direct striatal output pathway. Images Fig. 2 Fig. 4 PMID:7809078
Matrone, C; Pivonello, R; Colao, A; Cappabianca, P; Cavallo, L M; Del Basso De Caro, M L; Taylor, J E; Culler, M D; Lombardi, G; Di Renzo, G F; Annunziato, L
2004-03-01
The role of somatostatin (SS) receptor subtype 1 (SSTR(1)) in mediating the inhibitory effect of SS on growth hormone (GH) secreting pituitary tumors has been recently demonstrated. In the present study, we evaluated the effect of the selective SSTR(1) agonist BIM-23745 on in vitro GH secretion in GH-secreting pituitary tumor cells, deriving from patients resistant or partially responsive to octreotide long-acting release (octreotide-LAR) or lanreotide therapy in vivo and expressing SSTR(1) mRNA. In addition, the inhibiting effect of BIM-23745 on the GH secretion was compared with that of octreotide. Our data demonstrate that (1) SSTR(1) receptor was present in 56.25% (9/16) of the GH-secreting adenomas examined; (2) in all GH-secreting pituitary tumors that expressed SSTR(1), BIM-23745 significantly inhibited GH secretion in vitro, and (3) when SSTR(1) subtype was present in tumors from patients resistant to octreotide-LAR or lanreotide therapy, BIM-23745 was able to inhibit the in vitro GH secretion. In conclusion, the results of the current study suggest that SS analogs selective for the SSTR(1) may represent a further useful approach for the treatment of acromegaly in patients resistant or partially responsive to octreotide-LAR or lanreotide treatment in vivo. Copyright 2004 S. Karger AG, Basel
Olfactory Receptors in Non-Chemosensory Organs: The Nervous System in Health and Disease.
Ferrer, Isidro; Garcia-Esparcia, Paula; Carmona, Margarita; Carro, Eva; Aronica, Eleonora; Kovacs, Gabor G; Grison, Alice; Gustincich, Stefano
2016-01-01
Olfactory receptors (ORs) and down-stream functional signaling molecules adenylyl cyclase 3 (AC3), olfactory G protein α subunit (Gαolf), OR transporters receptor transporter proteins 1 and 2 (RTP1 and RTP2), receptor expression enhancing protein 1 (REEP1), and UDP-glucuronosyltransferases (UGTs) are expressed in neurons of the human and murine central nervous system (CNS). In vitro studies have shown that these receptors react to external stimuli and therefore are equipped to be functional. However, ORs are not directly related to the detection of odors. Several molecules delivered from the blood, cerebrospinal fluid, neighboring local neurons and glial cells, distant cells through the extracellular space, and the cells' own self-regulating internal homeostasis can be postulated as possible ligands. Moreover, a single neuron outside the olfactory epithelium expresses more than one receptor, and the mechanism of transcriptional regulation may be different in olfactory epithelia and brain neurons. OR gene expression is altered in several neurodegenerative diseases including Parkinson's disease (PD), Alzheimer's disease (AD), progressive supranuclear palsy (PSP) and sporadic Creutzfeldt-Jakob disease (sCJD) subtypes MM1 and VV2 with disease-, region- and subtype-specific patterns. Altered gene expression is also observed in the prefrontal cortex in schizophrenia with a major but not total influence of chlorpromazine treatment. Preliminary parallel observations have also shown the presence of taste receptors (TASRs), mainly of the bitter taste family, in the mammalian brain, whose function is not related to taste. TASRs in brain are also abnormally regulated in neurodegenerative diseases. These seminal observations point to the need for further studies on ORs and TASRs chemoreceptors in the mammalian brain.
Olfactory Receptors in Non-Chemosensory Organs: The Nervous System in Health and Disease
Ferrer, Isidro; Garcia-Esparcia, Paula; Carmona, Margarita; Carro, Eva; Aronica, Eleonora; Kovacs, Gabor G.; Grison, Alice; Gustincich, Stefano
2016-01-01
Olfactory receptors (ORs) and down-stream functional signaling molecules adenylyl cyclase 3 (AC3), olfactory G protein α subunit (Gαolf), OR transporters receptor transporter proteins 1 and 2 (RTP1 and RTP2), receptor expression enhancing protein 1 (REEP1), and UDP-glucuronosyltransferases (UGTs) are expressed in neurons of the human and murine central nervous system (CNS). In vitro studies have shown that these receptors react to external stimuli and therefore are equipped to be functional. However, ORs are not directly related to the detection of odors. Several molecules delivered from the blood, cerebrospinal fluid, neighboring local neurons and glial cells, distant cells through the extracellular space, and the cells’ own self-regulating internal homeostasis can be postulated as possible ligands. Moreover, a single neuron outside the olfactory epithelium expresses more than one receptor, and the mechanism of transcriptional regulation may be different in olfactory epithelia and brain neurons. OR gene expression is altered in several neurodegenerative diseases including Parkinson’s disease (PD), Alzheimer’s disease (AD), progressive supranuclear palsy (PSP) and sporadic Creutzfeldt-Jakob disease (sCJD) subtypes MM1 and VV2 with disease-, region- and subtype-specific patterns. Altered gene expression is also observed in the prefrontal cortex in schizophrenia with a major but not total influence of chlorpromazine treatment. Preliminary parallel observations have also shown the presence of taste receptors (TASRs), mainly of the bitter taste family, in the mammalian brain, whose function is not related to taste. TASRs in brain are also abnormally regulated in neurodegenerative diseases. These seminal observations point to the need for further studies on ORs and TASRs chemoreceptors in the mammalian brain. PMID:27458372
Prognostic value of Ki67 analysed by cytology or histology in primary breast cancer.
Robertson, Stephanie; Stålhammar, Gustav; Darai-Ramqvist, Eva; Rantalainen, Mattias; Tobin, Nicholas P; Bergh, Jonas; Hartman, Johan
2018-03-27
The accuracy of biomarker assessment in breast pathology is vital for therapy decisions. The therapy predictive and prognostic biomarkers oestrogen receptor (ER), progesterone receptor, HER2 and Ki67 may act as surrogates to gene expression profiling of breast cancer. The aims of this study were to investigate the concordance of consecutive biomarker assessment by immunocytochemistry on preoperative fine-needle aspiration cytology versus immunohistochemistry (IHC) on the corresponding resected breast tumours. Further, to investigate the concordance with molecular subtype and correlation to stage and outcome. Two retrospective cohorts comprising 385 breast tumours with clinicopathological data including gene expression-based subtype and up to 10-year overall survival data were evaluated. In both cohorts, we identified a substantial variation in Ki67 index between cytology and histology and a switch between low and high proliferation within the same tumour in 121/360 cases. ER evaluations were discordant in only 1.5% of the tumours. From cohort 2, gene expression data with PAM50 subtype were used to correlate surrogate subtypes. IHC-based surrogate classification could identify the correct molecular subtype in 60% and 64% of patients by cytology (n=63) and surgical resections (n=73), respectively. Furthermore, high Ki67 in surgical resections but not in cytology was associated with poor overall survival and higher probability for axillary lymph node metastasis. This study shows considerable differences in the prognostic value of Ki67 but not ER in breast cancer depending on the diagnostic method. Furthermore, our findings show that both methods are insufficient in predicting true molecular subtypes. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Identification of a µ opiate receptor signaling mechanism in human placenta.
Mantione, Kirk J; Angert, Robert M; Cadet, Patrick; Kream, Richard M; Stefano, George B
2010-11-01
Previous studies report that genes in the morphine biosynthetic pathway have been found in placental tissue. Prior researchers have shown that kappa opioid receptors are present in human placenta. We determined if a µ opiate receptor was present and which subtype was expressed in human placenta. We also sought to demonstrate a functional µ opiate receptor in human placenta. Polymerase chain reactions as well as DNA sequencing were performed to identify the µ opiate receptor subtypes present in human placenta. The functionality of the receptor was demonstrated by real time amperometric measurements of morphine induced NO release. The µ4 opiate receptor sequence was present as well as the µ1 opioid receptor transcript. The addition of morphine to placental tissue resulted in immediate nitric oxide release and this effect was blocked by naloxone. In the present study, an intact morphine signaling system has been demonstrated in human placenta. Morphine signaling in human placenta probably functions to regulate the immune, vascular, and endocrine functions of this organ via NO.
Pathophysiological roles of P2 receptors in glial cells.
Abbracchio, Maria P; Verderio, Claudia
2006-01-01
Extracellular nucleotides act through specific receptors on target cells: the seven ionotropic P2X and the eight G protein-coupled P2Y receptors. All these receptors are expressed by brain astroglia and microglia. In astrocytes, P2 receptors have been implicated in short-term calcium-dependent cell-cell communication. Upon mechanical stimulation or activation by other transmitters, astrocytes release ATP and respond to ATP with a propagating wave of intracellular calcium increases, allowing a homotypic astrocyte-astrocyte communication, as well as an heterotypic signalling which also involves neurons, oligodendrocytes and microglia. Astrocytic P2 receptors also mediate reactive astrogliosis, a reaction contributing to neuronal death in neurodegenerative diseases. Signalling leading to inflammatory astrogliosis involves induction of cyclo-oxygenase 2 through stimulation of ERK1,2 and of the transcriptional factors AP-1 and NF-kappaB. Microglia also express several P2 receptors linked to intracellular calcium increases. P2 receptor subtypes are differentially regulated by typical proinflammatory signals for these cells (e.g. lipopolysaccharide), suggesting specific roles in brain immune responses. Globally, these findings highlight the roles of P2 receptors in glial cell pathophysiology suggesting a contribution to neurodegenerative diseases characterized by excessive gliosis and neuro-inflammation. They also open up the possibility of modulating brain damage by ligands selectively targeting the specific P2 receptor subtypes involved in the gliotic response.
Greater absolute risk for all subtypes of breast cancer in the US than Malaysia.
Horne, Hisani N; Beena Devi, C R; Sung, Hyuna; Tang, Tieng Swee; Rosenberg, Philip S; Hewitt, Stephen M; Sherman, Mark E; Anderson, William F; Yang, Xiaohong R
2015-01-01
Hormone receptor (HR) negative breast cancers are relatively more common in low-risk than high-risk countries and/or populations. However, the absolute variations between these different populations are not well established given the limited number of cancer registries with incidence rate data by breast cancer subtype. We, therefore, used two unique population-based resources with molecular data to compare incidence rates for the 'intrinsic' breast cancer subtypes between a low-risk Asian population in Malaysia and high-risk non-Hispanic white population in the National Cancer Institute's surveillance, epidemiology, and end results 18 registries database (SEER 18). The intrinsic breast cancer subtypes were recapitulated with the joint expression of the HRs (estrogen receptor and progesterone receptor) and human epidermal growth factor receptor-2 (HER2). Invasive breast cancer incidence rates overall were fivefold greater in SEER 18 than in Malaysia. The majority of breast cancers were HR-positive in SEER 18 and HR-negative in Malaysia. Notwithstanding the greater relative distribution for HR-negative cancers in Malaysia, there was a greater absolute risk for all subtypes in SEER 18; incidence rates were nearly 7-fold higher for HR-positive and 2-fold higher for HR-negative cancers in SEER 18. Despite the well-established relative breast cancer differences between low-risk and high-risk countries and/or populations, there was a greater absolute risk for HR-positive and HR-negative subtypes in the US than Malaysia. Additional analytical studies are sorely needed to determine the factors responsible for the elevated risk of all subtypes of breast cancer in high-risk countries like the United States.
Dojo, Kumiko; Yamaguchi, Yoshiaki; Fustin, Jean-Michel; Doi, Masao; Kobayashi, Masaki; Okamura, Hitoshi
2017-04-01
Among nonphotic stimulants, a classic cholinergic agonist, carbachol, is known to have a strong and unique phase-resetting effect on the circadian clock: Intracerebroventricular carbachol treatment causes phase delays during the subjective early night and phase advances in the subjective late night, but the effects of this drug on the suprachiasmatic nucleus (SCN) in vivo and in vitro are still controversial. In the present study, we succeeded in reproducing the biphasic phase-shifting effect of carbachol on clock gene expression in organotypic SCN slices prepared from mice carrying a Per1-promoter fused luciferase gene ( Per1-luc). Since this biphasic effect of carbachol in Per1-luc SCN was prevented by atropine but not by mecamylamine, we concluded that these phase shifts were muscarinic receptor-dependent. Next, we analyzed the expression of muscarinic receptors in the SCN by in situ hybridization and found that M3 and M4 subtypes were expressed in SCN cells. These signals appeared neonatally and reached adult levels at postnatal day 10. Together, these findings suggest that carbachol has a phase-dependent phase-shifting effect on the SCN clock through muscarinic receptor subtypes expressed in the SCN.
Hillman, Kristin L; Doze, Van A; Porter, James E
2005-08-01
Recent studies have demonstrated that activation of the beta-adrenergic receptor (AR) using the selective beta-AR agonist isoproterenol (ISO) facilitates pyramidal cell long-term potentiation in the cornu ammonis 1 (CA1) region of the rat hippocampus. We have previously analyzed beta-AR genomic expression patterns of 17 CA1 pyramidal cells using single cell reverse transcription-polymerase chain reaction, demonstrating that all samples expressed the beta2-AR transcript, with four of the 17 cells additionally expressing mRNA for the beta1-AR subtype. However, it has not been determined which beta-AR subtypes are functionally expressed in CA1 for these same pyramidal neurons. Using cell-attached recordings, we tested the ability of ISO to increase pyramidal cell action potential (AP) frequency in the presence of subtype-selective beta-AR antagonists. ICI-118,551 [(+/-)-1-[2,3-(dihydro-7-methyl-1H-inden-4-yl)oxy]-3-[(1-methylethyl)amino]-2-butanol] and butoxamine [alpha-[1-(t-butylamino)ethyl]-2,5-dimethoxybenzyl alcohol) hydrochloride], agents that selectively block the beta2-AR, produced significant parallel rightward shifts in the concentration-response curves for ISO. From these curves, apparent equilibrium dissociation constant (K(b)) values of 0.3 nM for ICI-118,551 and 355 nM for butoxamine were calculated using Schild regression analysis. Conversely, effective concentrations of the selective beta1-AR antagonists CGP 20712A [(+/-)-2-hydroxy-5-[2-([2-hydroxy-3-(4-[1-methyl-4-(trifluoromethyl)-1H-imidazol-2-yl]phenoxy)propyl]amino)ethoxy]-benzamide methanesulfonate] and atenolol [4-[2'-hydroxy-3'-(isopropyl-amino)propoxy]phenylacetamide] did not significantly affect the pyramidal cell response to ISO. However, at higher concentrations, atenolol significantly decreased the potency for ISO-mediated AP frequencies. From these curves, an apparent atenolol K(b) value of 3162 nM was calculated. This pharmacological profile for subtype-selective beta-AR antagonists indicates that beta2-AR activation is mediating the increased AP frequency. Knowledge of functional AR expression in CA1 pyramidal neurons will aid future long-term potentiation studies by allowing selective manipulation of specific beta-AR subtypes.
Rooprai, Harcharan K; Martin, Andrew J; King, Andrew; Appadu, Usha D; Jones, Huw; Selway, Richard P; Gullan, Richard W; Pilkington, Geoffrey J
2016-12-01
MMPs (matrix metalloproteinases), ADAMs (a disintegrin and metalloproteinase) and TIMPs (tissue inhibitors of metalloproteinases) are implicated in invasion and angiogenesis: both are tissue remodeling processes involving regulated proteolysis of the extracellular matrix, growth factors and their receptors. The expression of these three groups and their correlations with clinical behaviour has been reported in gliomas but a similar comprehensive study in meningiomas is lacking. In this study, we aimed to evaluate the patterns of expression of 23 MMPs, 4 TIMPs, 8 ADAMs, selective growth factors and their receptors in 17 benign meningiomas using a quantitative real-time polymerase chain reaction (qPCR). Results indicated very high gene expression of 13 proteases, inhibitors and growth factors studied: MMP2 and MMP14, TIMP-1, -2 and -3, ADAM9, 10, 12, 15 and 17, EGF-R, EMMPRIN and VEGF-A, in almost every meningioma. Expression pattern analysis showed several positive correlations between MMPs, ADAMs, TIMPs and growth factors. Furthermore, our findings suggest that expression of MMP14, ADAM9, 10, 12, 15 and 17, TIMP-2, EGF-R and EMMPRIN reflects histological subtype of meningioma such that fibroblastic subtype had the highest mRNA expression, transitional subtype was intermediate and meningothelial type had the lowest expression. In conclusion, this is the first comprehensive study characterizing gene expression of 8 ADAMs in meningiomas. These neoplasms, although by histological definition benign, have invasive potential. Taken together, the selected elevated gene expression pattern may serve to identify targets for therapeutic intervention or indicators of biological progression and recurrence.
Shirasaki, Hideaki; Kanaizumi, Etsuko; Himi, Tetsuo
2016-06-01
Adrenergic receptors (ARs) include four general types (α1, α2, β1 and β2), which are found in different target tissues. α-AR agonists are commonly used for decongestant therapy of upper airway diseases. In order to clarify the roles of AR subtypes in the upper airways, we investigated the localization of these receptors by immunohistochemistry. Human turbinates were obtained after turbinectomy from 12 patients with nasal obstruction refractory to medical therapy. The specific cells expressing α- and β-AR proteins were identified by immunostaining using an anti-human AR subtype-specific antibodies (α1A-, α1D-, α2C- and β2-ARs) antibody. Immunohistochemical analysis revealed that immunoreactivities for α1D- and β2-ARs were densely distributed in submucosal glands. In contrast, immunoreactivities for α1A- and 2C-ARs were densely distributed in vascular smooth muscle. Our results suggested that adrenergic receptor (AR) subtypes had different roles in upper airway diseases, such as allergic rhinitis and nonallergic rhinitis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Tangsucharit, Panot; Takatori, Shingo; Zamami, Yoshito; Goda, Mitsuhiro; Pakdeechote, Poungrat; Kawasaki, Hiromu; Takayama, Fusako
2016-01-01
The present study investigated pharmacological characterizations of muscarinic acetylcholine receptor (AChR) subtypes involving ACh-induced endothelium-independent vasodilatation in rat mesenteric arteries. Changes in perfusion pressure to periarterial nerve stimulation and ACh were measured before and after the perfusion of Krebs solution containing muscarinic receptor antagonists. Distributions of muscarinic AChR subtypes in mesenteric arteries with an intact endothelium were studied using Western blotting. The expression level of M1 and M3 was significantly greater than that of M2. Endothelium removal significantly decreased expression levels of M2 and M3, but not M1. In perfused mesenteric vascular beds with intact endothelium and active tone, exogenous ACh (1, 10, and 100 nmol) produced concentration-dependent and long-lasting vasodilatations. In endothelium-denuded preparations, relaxation to ACh (1 nmol) disappeared, but ACh at 10 and 100 nmol caused long-lasting vasodilatations, which were markedly blocked by the treatment of pirenzepine (M1 antagonist) or 4-DAMP (M1 and M3 antagonist) plus hexamethonium (nicotinic AChR antagonist), but not methoctramine (M2 and M4 antagonist). These results suggest that muscarinic AChR subtypes, mainly M1, distribute throughout the rat mesenteric arteries, and that activation of M1 and/or M3 which may be located on CGRPergic nerves releases CGRP, causing an endothelium-independent vasodilatation. Copyright © 2015 Japanese Pharmacological Society. Production and hosting by Elsevier B.V. All rights reserved.
Shang, Liu-Tong; Yang, Jia-Fei; Lu, Jing; Wang, Ting-Ting; Zhou, Ying; Xing, Xin-Bo; Wang, Xin-Kun; Yang, Shu-Hui; Hu, Ming-Yan
2017-10-20
To study the correlation of apparent diffusion coefficient (ADC) measured by diffusion-weighted magnetic resonance imaging (MRI) with the molecular subtypes and biological prognostic factors of invasive breast cancer masses. Breast MRI data (including dynamic enhanced and diffusion-weighted imaging) were collected from 64 patients with pathologically confirmed invasive breast cancer masses (a total of 69 lesions). The mean ADC values of the lesions were calculated and their correlations were analyzed with the 5 molecular subtypes of invasive breast cancer and the biological prognostic factors including estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor 2 (HER2), and Ki-67 index. The ADC values did not differ significantly among the 5 molecular subtypes of invasive breast cancer masses (P>0.05) or among lesions with different ER, PR, or HER2 status (P>0.05). The mean ADC values were significantly higher in Ki-67-positive lesions than in the negative lesions (P=0.023 and negatively correlated with the expressions of Ki-67 (r=-0.249). ADC value can not be used to identify the molecular subtypes of invasive breast cancer masses or to evaluate the biological prognosis of the lesions, but its correlation with Ki-67 expression may help in prognostic evaluation and guiding clinical therapy of the tumors.
Sigma receptors as potential therapeutic targets for neuroprotection.
Nguyen, Linda; Kaushal, Nidhi; Robson, Matthew J; Matsumoto, Rae R
2014-11-15
Sigma receptors comprise a unique family of proteins that have been implicated in the pathophysiology and treatment of many central nervous system disorders, consistent with their high level of expression in the brain and spinal cord. Mounting evidence indicate that targeting sigma receptors may be particularly beneficial in a number of neurodegenerative conditions including Alzheimer׳s disease, Parkinson׳s disease, stroke, methamphetamine neurotoxicity, Huntington׳s disease, amyotrophic lateral sclerosis, and retinal degeneration. In this perspective, a brief overview is given on sigma receptors, followed by a focus on common mechanisms of neurodegeneration that appear amenable to modulation by sigma receptor ligands to convey neuroprotective effects and/or restorative functions. Within each of the major mechanisms discussed herein, the neuroprotective effects of sigma ligands are summarized, and when known, the specific sigma receptor subtype(s) involved are identified. Together, the literature suggests sigma receptors may provide a novel target for combatting neurodegenerative diseases through both neuronal and glial mechanisms. Copyright © 2014 Elsevier B.V. All rights reserved.
Muldoon, P P; Jackson, K J; Perez, E; Harenza, J L; Molas, S; Rais, B; Anwar, H; Zaveri, N T; Maldonado, R; Maskos, U; McIntosh, J M; Dierssen, M; Miles, M F; Chen, X; De Biasi, M; Damaj, M I
2014-01-01
BACKGROUND AND PURPOSE Recent data have indicated that α3β4* neuronal nicotinic (n) ACh receptors may play a role in morphine dependence. Here we investigated if nACh receptors modulate morphine physical withdrawal. EXPERIMENTAL APPROACHES To assess the role of α3β4* nACh receptors in morphine withdrawal, we used a genetic correlation approach using publically available datasets within the GeneNetwork web resource, genetic knockout and pharmacological tools. Male and female European-American (n = 2772) and African-American (n = 1309) subjects from the Study of Addiction: Genetics and Environment dataset were assessed for possible associations of polymorphisms in the 15q25 gene cluster and opioid dependence. KEY RESULTS BXD recombinant mouse lines demonstrated an increased expression of α3, β4 and α5 nACh receptor mRNA in the forebrain and midbrain, which significantly correlated with increased defecation in mice undergoing morphine withdrawal. Mice overexpressing the gene cluster CHRNA5/A3/B4 exhibited increased somatic signs of withdrawal. Furthermore, α5 and β4 nACh receptor knockout mice expressed decreased somatic withdrawal signs compared with their wild-type counterparts. Moreover, selective α3β4* nACh receptor antagonists, α-conotoxin AuIB and AT-1001, attenuated somatic signs of morphine withdrawal in a dose-related manner. In addition, two human datasets revealed a protective role for variants in the CHRNA3 gene, which codes for the α3 nACh receptor subunit, in opioid dependence and withdrawal. In contrast, we found that the α4β2* nACh receptor subtype is not involved in morphine somatic withdrawal signs. CONCLUSION AND IMPLICATIONS Overall, our findings suggest an important role for the α3β4* nACh receptor subtype in morphine physical dependence. PMID:24750073
Wong, Kah Keng; Ch'ng, Ewe Seng; Loo, Suet Kee; Husin, Azlan; Muruzabal, María Arestin; Møller, Michael B; Pedersen, Lars M; Pomposo, María Puente; Gaafar, Ayman; Banham, Alison H; Green, Tina M; Lawrie, Charles H
2015-12-01
Huntingtin-interacting protein 1-related (HIP1R) is an endocytic protein involved in receptor trafficking, including regulating cell surface expression of receptor tyrosine kinases. We have previously shown that low HIP1R protein expression was associated with poorer survival in diffuse large B-cell lymphoma (DLBCL) patients from Denmark treated with R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone). In this multicenter study, we extend these findings and validate the prognostic and subtyping utility of HIP1R expression at both transcript and protein level. Using data mining on three independent transcriptomic datasets of DLBCL, HIP1R transcript was preferentially expressed in germinal center B-cell (GCB)-like DLBCL subtype (P<0.01 in all three datasets), and lower expression was correlated with worse overall survival (OS; P<0.01) and progression-free survival (PFS; P<0.05) in a microarray-profiled DLBCL dataset. At the protein level examined by immunohistochemistry, HIP1R expression at 30% cut-off was associated with GCB-DLBCL molecular subtype (P=0.0004; n=42), and predictive of OS (P=0.0006) and PFS (P=0.0230) in de novo DLBCL patients treated with R-CHOP (n=73). Cases with high FOXP1 and low HIP1R expression frequency (FOXP1(hi)/HIP1R(lo) phenotype) exhibited poorer OS (P=0.0038) and PFS (P=0.0134). Multivariate analysis showed that HIP1R<30% or FOXP1(hi)/HIP1R(lo) subgroup of patients exhibited inferior OS and PFS (P<0.05) independently of the International Prognostic Index. We conclude that HIP1R expression is strongly indicative of survival when utilized on its own or in combination with FOXP1, and the molecule is potentially applicable for subtyping of DLBCL cases. Copyright © 2015 Elsevier Inc. All rights reserved.
Saleem, Huma; Tovey, Stephen C.; Riley, Andrew M.; Potter, Barry V. L.; Taylor, Colin W.
2013-01-01
Inositol 1,4,5-trisphosphate receptors (IP3R) are intracellular Ca2+ channels. Most animal cells express mixtures of the three IP3R subtypes encoded by vertebrate genomes. Adenophostin A (AdA) is the most potent naturally occurring agonist of IP3R and it shares with IP3 the essential features of all IP3R agonists, namely structures equivalent to the 4,5-bisphosphate and 6-hydroxyl of IP3. The two essential phosphate groups contribute to closure of the clam-like IP3-binding core (IBC), and thereby IP3R activation, by binding to each of its sides (the α- and β-domains). Regulation of the three subtypes of IP3R by AdA and its analogues has not been examined in cells expressing defined homogenous populations of IP3R. We measured Ca2+ release evoked by synthetic adenophostin A (AdA) and its analogues in permeabilized DT40 cells devoid of native IP3R and stably expressing single subtypes of mammalian IP3R. The determinants of high-affinity binding of AdA and its analogues were indistinguishable for each IP3R subtype. The results are consistent with a cation-π interaction between the adenine of AdA and a conserved arginine within the IBC α-domain contributing to closure of the IBC. The two complementary contacts between AdA and the α-domain (cation-π interaction and 3″-phosphate) allow activation of IP3R by an analogue of AdA (3″-dephospho-AdA) that lacks a phosphate group equivalent to the essential 5-phosphate of IP3. These data provide the first structure-activity analyses of key AdA analogues using homogenous populations of all mammalian IP3R subtypes. They demonstrate that differences in the Ca2+ signals evoked by AdA analogues are unlikely to be due to selective regulation of IP3R subtypes. PMID:23469136
Estrogen Receptors Modulation of Anxiety-Like Behavior
Borrow, A.P.; Handa, R.J.
2018-01-01
Estrogens exert profound effects on the expression of anxiety in humans and rodents; however, the directionality of these effects varies considerably within both clinical and preclinical literature. It is believed that discrepancies regarding the nature of estrogens’ effects on anxiety are attributable to the differential effects of specific estrogen receptor (ER) subtypes. In this chapter we will discuss the relative impact on anxiety and anxiety-like behavior of each of the three main ERs: ERα, which has a generally anxiogenic effect, ERβ, which has a generally anxiolytic effect, and the G-protein-coupled ER known as GPR30, which has been found to both increase and decrease anxiety-like behavior. In addition, we will describe the known mechanisms by which these receptor subtypes exert their influence on emotional responses, focusing on the hypothalamic–pituitary–adrenal axis and the oxytocinergic and serotonergic systems. The impact of estrogens on the expression of anxiety is likely the result of their combined effects on all of these neurobiological systems. PMID:28061972
Estrogen Receptors Modulation of Anxiety-Like Behavior.
Borrow, A P; Handa, R J
2017-01-01
Estrogens exert profound effects on the expression of anxiety in humans and rodents; however, the directionality of these effects varies considerably within both clinical and preclinical literature. It is believed that discrepancies regarding the nature of estrogens' effects on anxiety are attributable to the differential effects of specific estrogen receptor (ER) subtypes. In this chapter we will discuss the relative impact on anxiety and anxiety-like behavior of each of the three main ERs: ERα, which has a generally anxiogenic effect, ERβ, which has a generally anxiolytic effect, and the G-protein-coupled ER known as GPR30, which has been found to both increase and decrease anxiety-like behavior. In addition, we will describe the known mechanisms by which these receptor subtypes exert their influence on emotional responses, focusing on the hypothalamic-pituitary-adrenal axis and the oxytocinergic and serotonergic systems. The impact of estrogens on the expression of anxiety is likely the result of their combined effects on all of these neurobiological systems. © 2017 Elsevier Inc. All rights reserved.
Functional expression of 5-HT{sub 2A} receptor in osteoblastic MC3T3-E1 cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirai, Takao; Kaneshige, Kota; Kurosaki, Teruko
2010-05-28
In the previous study, we reported the gene expression for proteins related to the function of 5-hydroxytryptamine (5-HT, serotonin) and elucidated the expression patterns of 5-HT{sub 2} receptor subtypes in mouse osteoblasts. In the present study, we evaluated the possible involvement of 5-HT receptor subtypes and its inactivation system in MC3T3-E1 cells, an osteoblast cell line. DOI, a 5-HT{sub 2A} and 5-HT{sub 2C} receptor selective agonist, as well as 5-HT concentration-dependently increased proliferative activities of MC3T3-E1 cells in their premature period. This effect of 5-HT on cell proliferation were inhibited by ketanserin, a 5-HT{sub 2A} receptor specific antagonist. Moreover, bothmore » DOI-induced cell proliferation and phosphorylation of ERK1 and 2 proteins were inhibited by PD98059 and U0126, selective inhibitors of MEK in a concentration-dependent manner. Furthermore, treatment with fluoxetine, a 5-HT specific re-uptake inhibitor which inactivate the function of extracellular 5-HT, significantly increased the proliferative activities of MC3T3-E1 cells in a concentration-dependent manner. Our data indicate that 5-HT fill the role for proliferation of osteoblast cells in their premature period. Notably, 5-HT{sub 2A} receptor may be functionally expressed to regulate mechanisms underlying osteoblast cell proliferation, at least in part, through activation of ERK/MAPK pathways in MC3T3-E1 cells.« less
Adrenoceptors in Brain: Cellular Gene Expression and Effects on Astrocytic Metabolism and [Ca2+]i
Hertz, Leif; Lovatt, Ditte; Goldman, Steven A.; Nedergaard, Maiken
2010-01-01
Recent in vivo studies have established astrocytes as a major target for locus coeruleus activation (Bekar et al., Cereb. Cortex 18, 2789–2795), renewing interest in cell culture studies on noradrenergic effects on astrocytes in primary cultures and calling for additional information about the expression of adrenoceptor subtypes on different types of brain cells. In the present communication, mRNA expression of α1-, α2- and β-adrenergic receptors and their subtypes was determined in freshly-isolated, cell marker-defined populations of astrocytes, NG2-positive cells, microglia, endothelial cells, and Thy1-positive neurons (mainly glutamatergic projection neurons) in murine cerebral cortex. Immediately after dissection of frontal, parietal and occipital cortex of 10–12-week-old transgenic mice, which combined each cell-type marker with a specific fluorescent signal, the tissue was digested, triturated and centrifuged, yielding a solution of dissociated cells of all types, which were separated by fluorescence-activated cell sorting (FACS). mRNA expression in each cell fraction was determined by microarray analysis. α1A-Receptors were unequivocally expressed in astrocytes and NG2-positive cells, but absent in other cell types, and α1B-receptors were not expressed in any cell population. Among α2-receptors only α2A-receptors were expressed, unequivocally in astrocytes and NG-positive cells, tentatively in microglia and questionably in Thy1-positive neurons and endothelial cells. β1-Receptors were unequivocally expressed in astrocytes, tentatively in microglia, and questionably in neurons and endothelial cells, whereas β2-adrenergic receptors showed tentative expression in neurons and astrocytes and unequivocal expression in other cell types. This distribution was supported by immunochemical data and its relevance established by previous studies in well-differentiated primary cultures of mouse astrocytes, showing that stimulation of α2-adrenoceptors increases glycogen formation and oxidative metabolism, the latter by a mechanism depending on intramitochondrial Ca2+, whereas α1-adrenoceptor stimulation enhances glutamate uptake, and β-adrenoceptor activation causes glycogenolysis and increased Na+,K+-ATPase activity. The Ca2+- and cAMP-mediated association between energy-consuming and energy-yielding processes is emphasized. PMID:20380860
Sphingosine 1-Phosphate Receptor Modulators for the Treatment of Multiple Sclerosis.
Chaudhry, Burhan Z; Cohen, Jeffrey A; Conway, Devon S
2017-10-01
Sphingosine 1-phosphate receptor (S1PR) modulators possess a unique mechanism of action in the treatment of multiple sclerosis (MS). Subtype 1 of the S1PR is expressed on the surface of lymphocytes and is important in regulating egression from lymph nodes. The S1PR modulators indirectly antagonize the receptor's function leading to sequestration of lymphocytes in the lymph nodes. Fingolimod was the first S1PR modulator to receive regulatory approval for relapsing-remitting MS after 2 phase III trials demonstrated potent efficacy, safety, and tolerability. Fingolimod can cause undesirable effects as a result of its interaction with other S1PR subtypes, which are expressed in diverse tissues, including cardiac myocytes. As such, agents that more selectively target subtype 1 of the S1PR are of interest and are at various stages of development. These include ponesimod (ACT128800), siponimod (BAF312), ozanimod (RPC1063), ceralifimod (ONO-4641), GSK2018682, and MT-1303. Data from phase II trials and early results from phase III studies have been promising and will be presented in this review. Of special interest are results from the EXPAND study of siponimod, which suggest a potential role for S1PR modulators in secondary progressive MS.
PKCλ/ι signaling promotes triple-negative breast cancer growth and metastasis.
Paul, A; Gunewardena, S; Stecklein, S R; Saha, B; Parelkar, N; Danley, M; Rajendran, G; Home, P; Ray, S; Jokar, I; Vielhauer, G A; Jensen, R A; Tawfik, O; Paul, S
2014-09-01
Triple-negative breast cancer (TNBC) is a distinct breast cancer subtype defined by the absence of estrogen receptor (ER), progesterone receptor (PR) and epidermal growth factor receptor 2 (HER2/neu), and the patients with TNBC are often diagnosed with higher rates of recurrence and metastasis. Because of the absence of ER, PR and HER2/neu expressions, TNBC patients are insensitive to HER2-directed and endocrine therapies available for breast cancer treatment. Here, we report that expression of atypical protein kinase C isoform, PKCλ/ι, significantly increased and activated in all invasive breast cancer (invasive ductal carcinoma or IDC) subtypes including the TNBC subtype. Because of the lack of targeted therapies for TNBC, we choose to study PKCλ/ι signaling as a potential therapeutic target for TNBC. Our observations indicated that PKCλ/ι signaling is highly active during breast cancer invasive progression, and metastatic breast cancers, the advanced stages of breast cancer disease that developed more frequently in TNBC patients, are also characterized with high levels of PKCλ/ι expression and activation. Functional analysis in experimental mouse models revealed that depletion of PKCλ/ι significantly reduces TNBC growth as well as lung metastatic colonization. Furthermore, we have identified a PKCλ/ι-regulated gene signature consisting of 110 genes, which are significantly associated with indolent to invasive progression of human breast cancer and poor prognosis. Mechanistically, cytokines such as TGFβ and IL1β could activate PKCλ/ι signaling in TNBC cells and depletion of PKCλ/ι impairs NF-κB p65 (RelA) nuclear localization. We observed that cytokine-PKCλ/ι-RelA signaling axis, at least in part, involved in modulating gene expression to regulate invasion of TNBC cells. Overall, our results indicate that induction and activation of PKCλ/ι promote TNBC growth, invasion and metastasis. Thus, targeting PKCλ/ι signaling could be a therapeutic option for breast cancer, including the TNBC subtype.
PKCλ/ι signaling promotes triple-negative breast cancer growth and metastasis
Paul, A; Gunewardena, S; Stecklein, S R; Saha, B; Parelkar, N; Danley, M; Rajendran, G; Home, P; Ray, S; Jokar, I; Vielhauer, G A; Jensen, R A; Tawfik, O; Paul, S
2014-01-01
Triple-negative breast cancer (TNBC) is a distinct breast cancer subtype defined by the absence of estrogen receptor (ER), progesterone receptor (PR) and epidermal growth factor receptor 2 (HER2/neu), and the patients with TNBC are often diagnosed with higher rates of recurrence and metastasis. Because of the absence of ER, PR and HER2/neu expressions, TNBC patients are insensitive to HER2-directed and endocrine therapies available for breast cancer treatment. Here, we report that expression of atypical protein kinase C isoform, PKCλ/ι, significantly increased and activated in all invasive breast cancer (invasive ductal carcinoma or IDC) subtypes including the TNBC subtype. Because of the lack of targeted therapies for TNBC, we choose to study PKCλ/ι signaling as a potential therapeutic target for TNBC. Our observations indicated that PKCλ/ι signaling is highly active during breast cancer invasive progression, and metastatic breast cancers, the advanced stages of breast cancer disease that developed more frequently in TNBC patients, are also characterized with high levels of PKCλ/ι expression and activation. Functional analysis in experimental mouse models revealed that depletion of PKCλ/ι significantly reduces TNBC growth as well as lung metastatic colonization. Furthermore, we have identified a PKCλ/ι-regulated gene signature consisting of 110 genes, which are significantly associated with indolent to invasive progression of human breast cancer and poor prognosis. Mechanistically, cytokines such as TGFβ and IL1β could activate PKCλ/ι signaling in TNBC cells and depletion of PKCλ/ι impairs NF-κB p65 (RelA) nuclear localization. We observed that cytokine-PKCλ/ι-RelA signaling axis, at least in part, involved in modulating gene expression to regulate invasion of TNBC cells. Overall, our results indicate that induction and activation of PKCλ/ι promote TNBC growth, invasion and metastasis. Thus, targeting PKCλ/ι signaling could be a therapeutic option for breast cancer, including the TNBC subtype. PMID:24786829
Buchan, Alison M J; Lin, Chin-Yu; Choi, Jimmy; Barber, Diane L
2002-08-09
Somatostatin regulates multiple biological functions by acting through a family of five G protein-coupled receptors, somatostatin receptors (SSTRs) 1-5. Although all five receptor subtypes inhibit adenylate cyclase activity and decrease intracellular cAMP levels, specific receptor subtypes also couple to additional signaling pathways. In CCL39 fibroblasts expressing either human SSTR1 or SSTR2, we demonstrate that activation of SSTR1 (but not SSTR2) attenuated both thrombin- and integrin-stimulated Rho-GTP complex formation. The reduction in Rho-GTP formation in the presence of somatostatin was associated with decreased translocation of Rho and LIM kinase to the plasma membrane and fewer focal contacts. Activation of Rho resulted in the formation of intracellular actin stress fibers and cell migration. In CCL39-R1 cells, somatostatin treatment prevented actin stress fiber assembly and attenuated thrombin-stimulated cell migration through Transwell membranes to basal levels. To show that native SSTR1 shares the ability to inhibit Rho activation, we demonstrated that somatostatin treatment of human umbilical vein endothelial cells attenuated thrombin-stimulated Rho-GTP accumulation. These data show for the first time that a G protein-coupled receptor, SSTR1, inhibits the activation of Rho, the assembly of focal adhesions and actin stress fibers, and cell migration.
Senter, Rebecca K.; Ghoshal, Ayan; Walker, Adam G.; Xiang, Zixiu; Niswender, Colleen M.; Conn, P. Jeffrey
2016-01-01
Long-term potentiation (LTP) and long-term depression (LTD) are two distinct forms of synaptic plasticity that have been extensively characterized at the Schaffer collateral-CA1 (SC-CA1) synapse and the mossy fiber (MF)-CA3 synapse within the hippocampus, and are postulated to be the molecular underpinning for several cognitive functions. Deficits in LTP and LTD have been implicated in the pathophysiology of several neurological and psychiatric disorders. Therefore, there has been a large effort focused on developing an understanding of the mechanisms underlying these forms of plasticity and novel therapeutic strategies that improve or rescue these plasticity deficits. Among many other targets, the metabotropic glutamate (mGlu) receptors show promise as novel therapeutic candidates for the treatment of these disorders. Among the eight distinct mGlu receptor subtypes (mGlu1-8), the mGlu1,2,3,5,7 subtypes are expressed throughout the hippocampus and have been shown to play important roles in the regulation of synaptic plasticity in this brain area. However, development of therapeutic agents that target these mGlu receptors has been hampered by a lack of subtype-selective compounds. Recently, discovery of allosteric modulators of mGlu receptors has provided novel ligands that are highly selective for individual mGlu receptor subtypes. The mGlu receptors modulate the multiple forms of synaptic plasticity at both SC-CA1 and MF synapses and allosteric modulators of mGlu receptors have emerged as potential therapeutic agents that may rescue plasticity deficits and improve cognitive function in patients suffering from multiple neurological and psychiatric disorders. PMID:27296640
Discoidin Domain Receptors: Novel Targets in Breast Cancer Bone Metastasis
2017-02-01
of invasive BrCa cases with different molecular subtypes, and found a significant inverse association between cytoplasmic DDR1 localization and... inverse association between DDR1 cytoplasmic expression and PR expression in the BrCa tissues analyzed. Specific Aim 2, Task 1 and 2: We defined
Age-Specific Incidence of Breast Cancer Subtypes: Understanding the Black–White Crossover
2012-01-01
Background Breast cancer incidence is higher among black women than white women before age 40 years, but higher among white women than black women after age 40 years (black–white crossover). We used newly available population-based data to examine whether the age-specific incidences of breast cancer subtypes vary by race and ethnicity. Methods We classified 91908 invasive breast cancers diagnosed in California between January 1, 2006, and December 31, 2009, by subtype based on tumor expression of estrogen receptor (ER) and progesterone receptor (PR)—together referred to as hormone receptor (HR)—and human epidermal growth factor receptor 2 (HER2). Breast cancer subtypes were classified as ER or PR positive and HER2 negative (HR+/HER2−), ER or PR positive and HER2 positive (HR+/HER2+), ER and PR negative and HER2 positive (HR−/HER2+), and ER, PR, and HER2 negative (triple-negative). We calculated and compared age-specific incidence rates, incidence rate ratios, and 95% confidence intervals by subtype and race (black, white, Hispanic, and Asian). All P values are two-sided. Results We did not observe an age-related black–white crossover in incidence for any molecular subtype of breast cancer. Compared with white women, black women had statistically significantly higher rates of triple-negative breast cancer at all ages but statistically significantly lower rates of HR+/HER2− breast cancers after age 35 years (all P < .05). The age-specific incidence of HR+/HER2+ and HR−/HER2+ subtypes did not vary markedly between white and black women. Conclusions The black–white crossover in breast cancer incidence occurs only when all breast cancer subtypes are combined and relates largely to higher rates of triple-negative breast cancers and lower rates of HR+/HER2− breast cancers in black vs white women. PMID:22773826
Rai, Rakesh K; Vishvakarma, Naveen K; Mohapatra, Tribhuban M; Singh, Sukh Mahendra
2012-09-01
This study investigates the effect of Listeria administration on differentiation of macrophages from precursor bone marrow cells and functional status of tumor-associated macrophages (TAM). Listeria administration not only resulted in an augmented infiltration of tumor by F4/80 macrophages but also repolarized the functional status of TAM displaying features of some M1 macrophage subtype with upregulated phagocytosis and tumoricidal activity accompanied by altered expression of monocarboxylate transporter-1, toll-like receptor-2, surface markers: CD11c, interleukin-2 receptor, CD62L, and secreted molecules: nitric oxide, interleukin (IL)-1, IL-6, tumor necrosis factor-α, and vascular endothelial growth factor. Declined tumor cell survival and modulated repertoire of cytokines: interferon-γ, IL-6, IL-10, and transforming growth factor-β in tumor microenvironment indicated their role in polarization of TAM towards proinflammatory state. Bone marrow cell of Listeria-administered tumor-bearing mice showed augmented survival, declined expression of p53 upregulated modulator of apoptosis with an upregulated differentiation into activation responsive bone marrow-derived macrophages along with altered expression of macrophage-colony stimulating factor, macrophage-colony stimulating factor receptor, and granulocyte macrophage-colony stimulating factor receptor. These findings indicate that Listeria infection is associated with an augmented differentiation of macrophages accompanied by tumoricidal activation of TAM.
The Prevalence of CD146 Expression in Breast Cancer Subtypes and Its Relation to Outcome.
de Kruijff, Ingeborg E; Timmermans, Anna M; den Bakker, Michael A; Trapman-Jansen, Anita M A C; Foekens, Renée; Meijer-Van Gelder, Marion E; Oomen-de Hoop, Esther; Smid, Marcel; Hollestelle, Antoinette; van Deurzen, Carolien H M; Foekens, John A; Martens, John W M; Sleijfer, Stefan
2018-05-05
CD146, involved in epithelial-to-mesenchymal transition (EMT), might affect cancer aggressiveness. We here investigated the prevalence of CD146 expression in breast cancer subtypes, its relation to prognosis, the relation between CD146 and EMT and the outcome to tamoxifen. Primary breast cancer tissues from 1342 patients were available for this retrospective study and immunohistochemically stained for CD146. For survival analyses, pure prognosis was studied by only including lymph-node negative patients who did not receive (neo)adjuvant systemic treatment ( n = 551). 11% of the tumors showed CD146 expression. CD146 expression was most prevalent in triple-negative cases (64%, p < 0.001). In univariable analysis, CD146 expression was a prognostic factor for both metastasis-free survival (MFS) ( p = 0.020) and overall survival (OS) ( p = 0.037), but not in multivariable analysis (including age, tumor size, grade, estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) and Ki-67). No correlation between CD146 and EMT nor difference in outcome to first-line tamoxifen was seen. In this large series, our data showed that CD146 is present in primary breast cancer and is a pure prognostic factor for MFS and OS in breast cancer patients. We did not see an association between CD146 expression and EMT nor on outcome to tamoxifen.
Horiuchi, Dai; Camarda, Roman; Zhou, Alicia Y.; Yau, Christina; Momcilovic, Olga; Balakrishnan, Sanjeev; Corella, Alexandra N.; Eyob, Henok; Kessenbrock, Kai; Lawson, Devon A.; Marsh, Lindsey A.; Anderton, Brittany N.; Rohrberg, Julia; Kunder, Ratika; Bazarov, Alexey V.; Yaswen, Paul; McManus, Michael T.; Rugo, Hope S.; Werb, Zena; Goga, Andrei
2017-01-01
Triple-negative breast cancer (TNBC), which lacks the expression of the estrogen, progesterone, and HER2 receptors, represents the breast cancer subtype with the poorest outcome1. No targeted therapy is available against this subtype due to lack of validated molecular targets. We previously reported that MYC signaling is disproportionally elevated in triple-negative (TN) tumors compared to receptor-positive (RP) tumors2. MYC is an essential, pleiotropic transcription factor that regulates the expression of hundreds of genes3. Direct inhibition of oncogenic MYC transcriptional activity has remained challenging4,5. The present study conducted an shRNA screen against all kinases to uncover novel MYC-dependent synthetic lethal combinations, and identified PIM1, a non-essential kinase. Here we demonstrate that PIM1 expression was elevated in TN tumors and was associated with poor prognosis in patients with hormone and HER2 receptor-negative tumors. Small molecule PIM kinase inhibitors halted the growth of human TN tumors with elevated MYC expression in patient-derived tumor xenograft (PDX) and MYC-driven transgenic breast cancer models by inhibiting oncogenic transcriptional activity of MYC while simultaneously restoring the function of the endogenous cell cycle inhibitor, p27. Our findings warrant clinical evaluation of PIM kinase inhibitors in patients with TN tumors that exhibit elevated MYC expression. PMID:27775705
Visser, S A G; Wolters, F L C; van der Graaf, P H; Peletier, L A; Danhof, M
2003-03-01
Zolpidem is a nonbenzodiazepine GABA(A) receptor modulator that binds in vitro with high affinity to GABA(A) receptors expressing alpha(1) subunits but with relatively low affinity to receptors expressing alpha(2), alpha(3), and alpha(5) subunits. In the present study, it was investigated whether this subtype selectivity could be detected and quantified in vivo. Three doses (1.25, 5, and 25 mg) of zolpidem were administered to rats in an intravenous infusion over 5 min. The time course of the plasma concentrations was determined in conjunction with the change in the beta-frequency range of the EEG as pharmacodynamic endpoint. The concentration-effect relationship of the three doses showed a dose-dependent maximum effect and a dose-dependent potency. The data were analyzed for one- or two-site binding using two pharmacodynamic models based on 1) the descriptive model and 2) a novel mechanism-based pharmacokinetic/pharmacodynamic (PK/PD) model for GABA(A) receptor modulators that aims to separates drug- and system-specific properties, thereby allowing the estimation of in vivo affinity and efficacy. The application of two-site models significantly improved the fits compared with one-site models. Furthermore, in contrast to the descriptive model, the mechanism-based PK/PD model yielded dose-independent estimates for affinity (97 +/- 40 and 33,100 +/- 14,800 ng x ml(-1)). In conclusion, the mechanism-based PK/PD model is able to describe and explain the observed dose-dependent EEG effects of zolpidem and suggests the subtype selectivity of zolpidem in vivo.
Human brain nicotinic receptors, their distribution and participation in neuropsychiatric disorders.
Graham, A J; Martin-Ruiz, C M; Teaktong, T; Ray, M A; Court, J A
2002-08-01
Mapping of nicotinic acetylcholine receptor (nAChR) subtypes and subunits in human brain is far from complete, however it is clear that multiple subunits are present (including alpha3, alpha4, alpha5, alpha6 and alpha7, beta2, alpha3 and beta4) and that these receptors are not solely distributed on neurones, but also on cerebral vasculature and astrocytes. It is important to elucidate subunit composition of receptors associated with different cell types and pathways within the human CNS in terms of potential nicotinic therapy for a range of both developmental and age-related disorders in which nAChR attenuation occurs. Reductions in nAChRs are reported in Alzheimer's and Parkinson's diseases, dementia with Lewy bodies, schizophrenia and autism, but may not be associated with reduced cortical cholinergic innervation observed in vascular dementia or occur at an early stage in Down's syndrome. Changes in nAChR expression in neuropsychiatric disorders appear to be brain region and subtype specific and have been shown in some instances to be associated with pathology and symptomatology. It is likely that deficits in alpha4-containing receptors predominate in cortical areas in Alzheimer's disease and autism, whereas reduction of alpha7 receptors may be more important in schizophrenia. Changes in astrocytic and vascular nAChR expression in neurodegenerative diseases should also be considered. Studies using both animal models and human autopsy tissue suggest that nAChRs can play a role in neuroprotection against age-related pathology. It is possible that the development of nAChR subtype specific drugs may lead to advances in therapy for both age-related and psychiatric disorders.
Nagler, James J.; Cavileer, Timothy D.; Verducci, Joseph S.; Schultz, Irvin R.; Hook, Sharon E.; Hayton, William L.
2012-01-01
Estrogens are critical hormones involved in reproduction and need to bind to estrogen receptors in target organs for biological activity. Fishes have two distinct estrogen receptor subtypes, alpha (α) and beta (β), with variable combinations of additional isoforms of each subtype dependent on the history of genome duplication within a taxon. The comparative expression patterns of estrogen receptor isoforms during the female reproductive cycle will provide important insights into the unique function and importance of each. The purpose of this study was to measure the mRNAs for the four estrogen receptor isoforms (erα1, erα2, erβ1, erβ2) in the liver and ovary of adult, female rainbow trout over the course of an annual reproductive cycle. The expression of estrogen receptor mRNA isoforms was measured by quantitative real-time RT-PCR. Several reproductive indices (gonadosomatic index, maximum oocyte diameter, plasma estradiol-17β, plasma vitellogenin, and ovulation) were also quantified for comparison and used in a correlation analysis to examine any inter-relationships. Of the four isoforms, the expression of erα1 was highest in the liver, and had a significant positive correlation with liver erβ1 expression. Liver expression of erα2 mRNA was the lowest, but showed a significant positive correlation with maximum oocyte diameter in the ovary. The pattern of the erβ isoforms in liver was one of initially elevated mRNA expression followed by a gradual decrease as reproductive development proceeded. In the ovary the erβ1 isoform had the highest mRNA expression of all estrogen receptor isoforms, at the beginning of the reproductive cycle, but then decreased afterward. Both ovarian erβ isoforms had a significant positive correlation with one another. In contrast, erα2 mRNA expression showed a high maximum level in the ovary near the end of the cycle along with a significant positive correlation with plasma estradiol-17β levels; the highest gonadosomatic indices, maximum oocyte diameter, and vitellogenin levels occurred then too. PMID:22732076
Han, ShouWei; Ritzenthaler, Jeffrey D; Wingerd, Byron; Roman, Jesse
2005-09-30
The prostaglandin E2 receptor subtype EP4 has been implicated in the growth and progression of human non-small cell lung carcinoma (NSCLC). However, the factors that control its expression have not been entirely elucidated. Our studies show that NSCLC cells express peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) protein and that treatment with a selective PPARbeta/delta agonist (GW501516) increases EP4 mRNA and protein levels. GW501516 induced NSCLC cell proliferation, and this effect was prevented by PPARbeta/delta antisense or EP4 short interfering RNA (siRNA). GW501516 increased the phosphorylation of Akt and decreased PTEN expression. The selective inhibitor of phosphatidylinositol 3-kinase (PI3-K), wortmannin, and PPARbeta/delta antisense, abrogated the effect of GW501516 on EP4 expression, whereas that of the inhibitor of Erk did not. GW501516 also increased EP4 promoter activity through effects on the region between -1555 and -992 bp in the EP4 promoter, and mutation of the CCAAT/enhancer-binding protein (C/EBP) site in this region abrogated the effect of GW501516. GW501516 increased not only the binding activity of C/EBP to the NF-IL6 site in the EP4 promoter, which was prevented by the inhibitor of PI3-K, but also increased C/EBPbeta protein in a dose- and PPARbeta/delta-dependent manner. The effect of GW501516 on EP4 protein was eliminated in the presence of C/EBPbeta siRNA. Finally, we showed that pretreatment of NSCLC with GW501516 further increased NSCLC cell proliferation in response to exogenous dimethyl-prostaglandin E2 (PGE2) that was diminished in the presence of PPARbeta/delta antisense and EP4 siRNA. Taken together, these findings suggest that activation of PPARbeta/delta induces PGE2 receptor subtype EP4 expression through PI3-K signals and increases human lung carcinoma cell proliferation in response to PGE2. The increase in transcription of the EP4 gene by PPARbeta/delta agonist was associated with increased C/EBP binding activity in the NF-IL6 site of EP4 promoter region and C/EBPbeta protein expression that were mediated through both PI3-K/Akt and PPARbeta/delta signaling pathways.
Córdoba-Rodríguez, Guadalupe; Vargas, Mario H; Ruiz, Víctor; Carbajal, Verónica; Campos-Bedolla, Patricia; Mercadillo-Herrera, Paulina; Arreola-Ramírez, José Luis; Segura-Medina, Patricia
2016-03-01
There is mounting evidence that 5-hydroxytryptamine (5-HT) plays a role in asthma. However, scarce information exists about the pulmonary expression of 5-HT receptors and its modification after allergic sensitization. In the present work, we explored the expression of 5-HT1A, 5-HT2A, 5-HT3, 5-HT4, 5-ht5a, 5-HT6, and 5-HT7 receptors in lungs from control and sensitized guinea pigs through qPCR and Western blot. In control animals, mRNA from all receptors was detectable in lung homogenates, especially from 5-HT2A and 5-HT4 receptors. Sensitized animals had decreased mRNA expression of 5-HT2A and 5-HT4 receptors and increased that of 5-HT7 receptor. In contrast, they had increased protein expression of 5-HT2A receptor in bronchial epithelium and of 5-HT4 receptor in lung parenchyma. The degree of airway response to the allergic challenge was inversely correlated with mRNA expression of the 5-HT1A receptor. In summary, our results showed that major 5-HT receptor subtypes are constitutively expressed in the guinea pig lung, and that allergic sensitization modifies the expression of 5-HT2A, 5-HT4, and 5-HT7 receptors. Copyright © 2015 Elsevier B.V. All rights reserved.
Tremblay, J; Huot, C; Willenbrock, R C; Bayard, F; Gossard, F; Fujio, N; Koch, C; Kuchel, O; Debinski, W; Hamet, P
1993-11-01
Atrial natriuretic peptide (ANP) specifically stimulates particulate guanylate cyclase, and cyclic guanosine monophosphate (cGMP) has been recognized as its second messenger. Spontaneously hypertensive rats (SHR) have elevated plasma ANP levels, but manifest an exaggerated natriuretic and diuretic response to exogenous ANP when compared to normotensive strains. In isolated glomeruli, the maximal cGMP response to ANP corresponds to a 12- to 14-fold increase over basal levels in normotensive strains (Wistar 13 +/- 2; Wistar-Kyoto 12 +/- 2; Sprague-Dawley 14 +/- 2) while a maximal 33 +/- 3-fold elevation occurs in SHR (P < 0.001). This hyperresponsiveness of cGMP is reproducible in intact glomeruli from SHR from various commercial sources. Furthermore, this abnormality develops early in life, even before hypertension is clearly established, and persists despite pharmacological modulation of blood pressure, indicating that it is a primary event in hypertension. In vitro studies have revealed a higher particulate guanylate cyclase activity in membranes from glomeruli and other tissues from SHR. This increase is not accounted for by different patterns of ANP binding to its receptor subtypes between normotensive and hypertensive strains, as assessed by competitive displacement with C-ANP102-121, an analog which selectively binds to one ANP receptor subtype. The hyperactivity of particulate guanylate cyclase in SHR and its behavior under basal, ligand (ANP), and detergent-enhanced conditions could be attributed either to increased expression or augmented sensitivity of the enzyme. Radiation-inactivation analysis does not evoke a disturbance in the size of regulatory elements normally repressing enzymatic activity, while the expression of particulate guanylate cyclase gene using mutated standard of A- and B-receptors partial cDNAs, quantified by polymerase chain reaction (PCR) transcript titration assay, manifests a selective increase of one guanylate cyclase subtype. Our data suggest that in hypertension, genetic overexpression of the ANP A-receptor subtype is related to the exaggerated biological response to ANP in this disease.
Sakuma, Yoko; Tanaka, Kiyoshi; Suda, Michio; Komatsu, Yasato; Yasoda, Akihiro; Miura, Masako; Ozasa, Ami; Narumiya, Shuh; Sugimoto, Yukihiko; Ichikawa, Atsushi; Ushikubi, Fumitaka; Nakao, Kazuwa
2000-01-01
In a previous study we showed that the involvement of EP4 subtype of the prostaglandin E (PGE) receptor is crucial for lipopolysaccharide (LPS)-induced osteoclast formation in vitro. The present study was undertaken to test whether EP4 is actually associated with LPS-induced bone resorption in vivo. In wild-type (WT) mice, osteoclast formation in vertebrae and tibiae increased 5 days after systemic LPS injection, and urinary excretion of deoxypyridinoline, a sensitive marker for bone resorption, statistically increased 10 days after injection. In EP4 knockout (KO) mice, however, LPS injection caused no significant changes in these parameters throughout the experiment. LPS exposure for 4 h strongly induced osteoclast differentiation factor (ODF) mRNA expression in primary osteoblastic cells (POB) both from WT and EP4 KO mice, and this expression was not inhibited by indomethacin, suggesting prostaglandin (PG) independence. LPS exposure for 24 h further induced ODF expression in WT POB, but not in EP4 KO POB. Indomethacin partially inhibited ODF expression in WT POB, but not in EP4 KO POB. These data suggest that ODF is induced both PG dependently and PG independently. LPS exposure for 24 h induced slightly greater osteoclastgenesis inhibitory factor (OCIF) mRNA expression in EP4 KO than in WT POB. These findings suggest that the reduced ODF expression and apparently increased OCIF expression also are responsible for the markedly reduced LPS-induced osteoclast formation in EP4 KO mice. Our results show that the EP4 subtype of the PGE receptor is involved in LPS-induced bone resorption in vivo also. Since LPS is considered to be largely involved in bacterially induced bone loss, such as in periodontitis and osteomyelitis, our study is expected to help broaden our understanding of the pathophysiology of these conditions. PMID:11083800
Nakata, Shinsuke; Imagawa, Akihisa; Miyata, Yugo; Yoshikawa, Atsushi; Kozawa, Junji; Okita, Kohei; Funahashi, Tohru; Nakamura, Seiji; Matsubara, Kenichi; Iwahashi, Hiromi; Shimomura, Iichiro
2013-01-01
Fulminant type 1 diabetes is an independent subtype of type 1 diabetes characterized by extremely rapid onset and absence of islet-related autoantibodies. However, detailed pathophysiology of this subtype is poorly understood. In this study, a comprehensive approach was applied to understand the pathogenesis of fulminant type 1 diabetes. We determined the genes that were differentially expressed in fulminant type 1 diabetes compared with type 1A diabetes and healthy control, using gene expression microarray in peripheral blood cells. Using volcano plot analysis, we found reduced expression of killer cell lectin-like receptor subfamily C, member 3 (KLRC3) which encodes NKG2E, a natural killer (NK) cell activating receptor, in fulminant type 1 diabetes, compared with healthy controls. This difference was confirmed by real-time RT-PCR among NK-enriched cells. The expression of KLRD1 (CD94), which forms heterodimer with NKG2E (KLRC3), was also reduced in NK-enriched cells in fulminant type 1 diabetes. Furthermore, flow cytometry showed significantly lower proportion of NK cells among peripheral blood mononuclear cells (PBMCs) in fulminant type 1 diabetes than in healthy controls. In patients with fulminant type 1 diabetes, the relative proportion of NK cells correlated significantly with the time period between onset of fever to the appearance of hyperglycemic-related symptoms. We conclude the presence of reduced NK activating receptor gene expression and low proportion of NK cells in fulminant type 1 diabetes. Copyright © 2013 Elsevier B.V. All rights reserved.
Bae, Soo Youn; Jung, Seung Pil; Jung, Eun Sung; Park, Sung Min; Lee, Se Kyung; Yu, Jong Han; Lee, Jeong Eon; Kim, Seok Won; Nam, Seok Jin
2018-06-18
Pregnancy-associated breast cancer (PABC) is rare and is generally defined as breast cancer diagnosed during pregnancy or within 1 year of delivery. The average ages of marriage and childbearing are increasing, and PABC is expected to also increase. This study is intended to increase understanding of the characteristics of PABC. A database of 2,810 patients with breast cancer diagnosed when they were less than 40 years of age was reviewed. The clinicopathological factors and survival of PABC (40 patients) were compared to those of patients with young breast cancer (YBC, non-pregnant or over 12 months after delivery; 2,770 patients). PABC had significantly lower estrogen receptor (ER) and progesterone receptor (PR) expression (ER-positive 50.0%, PR-positive 45.0%) and higher HER2 overexpression (38.5%) than YBC. The most common subtype of PABC was triple-negative breast cancer (TNBC; 35.9%), and luminal A subtype represented only 7.7% of cases. In univariate analysis, PABC had significantly worse disease-free survival (DFS) and breast cancer-specific survival (BCSS) compared to YBC. In multivariate analysis, PABC was associated with worse BCSS (HR 4.0, 95% CI 1.2-12.9, p = 0.019) and survival, but there was no difference in DFS between PABC and YBC. In subgroup analysis by subtype, luminal B subtype of PABC showed worse DFS (HR 3.5; 95% CI 1.1-11.2, p = 0.039) and BCSS (HR 10.2, 95% CI 1.2-87.1, p = 0.035), especially with high Ki67. However, no differences were demonstrated in other subtypes. In this study, PABC showed lower expression of ER/PR, higher overexpression of HER2, fewer luminal A subtype, and more TNBC subtype compared to YBC. PABC had worse BCSS, especially luminal B subtype, compared to YBC. © 2018 S. Karger AG, Basel.
Atchison, Elizabeth A; Garrity, James A; Castillo, Francisco; Engman, Steven J; Couch, Steven M; Salomão, Diva R
2016-01-01
Vascular lesions of the orbit, although not malignant, can cause morbidity because of their location near critical structures in the orbit. For the same reason, they can be challenging to remove surgically. Anti-vascular endothelial growth factor (VEGF) drugs are increasingly being used to treat diseases with prominent angiogenesis. Our study aimed to determine to what extent VEGF receptors and their subtypes are expressed on selected vascular lesions of the orbit. Retrospective case series of all orbital vascular lesions removed by one of the authors (JAG) at the Mayo Clinic. A total of 52 patients who underwent removal of vascular orbital lesions. The pathology specimens from the patients were retrieved, their pathologic diagnosis was confirmed, demographic and clinical information were gathered, and sections from vascular tumors were stained with vascular endothelial growth factor receptor (VEGFR), vascular endothelial growth factor receptor type 1 (VEGFR1), vascular endothelial growth factor receptor type 2 (VEGFR2), and vascular endothelial growth factor receptor type 3 (VEGFR3). The existence and pattern of staining with VEGF and its subtypes on these lesions. There were 28 specimens of venous malformations, 4 capillary hemangiomas, 7 lymphatic malformations, and 6 lymphaticovenous malformations. All samples stained with VEGF, 55% stained with VEGFR1, 98% stained with VEGFR2, and 96% stained with VEGFR3. Most (94%) of the VEGFR2 staining was diffuse. Most orbital vascular lesions express VEGF receptors, which may suggest a future target for nonsurgical treatment. Copyright © 2016 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Wu, N; Qin, H; Wang, M; Bian, Y; Dong, B; Sun, G; Zhao, W; Chang, G; Xu, Q; Chen, G
2017-04-01
1. Endothelin receptor B subtype 2 (EDNRB2) is a paralog of EDNRB, which encodes a 7-transmembrane G-protein coupled receptor. Previous studies reported that EDNRB was essential for melanoblast migration in mammals and ducks. 2. Muscovy ducks have different plumage colour phenotypes. Variations in EDNRB2 coding sequences (CDSs) and mRNA expression levels were investigated in 4 different Muscovy duck plumage colour phenotypes, including black, black mutant, silver and white head. 3. The EDNRB2 gene from Muscovy duck was cloned; it had a length of 6435 bp and encoded 437 amino acids. The coding region was screened and potential single nucleotide polymorphisms were identified. Eight mutations were obtained, including one missense variant (c.64C > T) and 7 synonymous substitutions. The substitutions were associated with plumage colour phenotypes. 4. The EDNRB2 mRNA expression levels were compared between feather pulp from black birds and black mutant birds. The results indicated that EDNRB2 transcripts in feather pulp were significantly higher in black feathers than in white feathers. 5. The results determined the variation of EDNRB2 CDS and mRNA expression in Muscovy ducks of various plumage colours.
Serotonin Receptors in Hippocampus
Berumen, Laura Cristina; Rodríguez, Angelina; Miledi, Ricardo; García-Alcocer, Guadalupe
2012-01-01
Serotonin is an ancient molecular signal and a recognized neurotransmitter brainwide distributed with particular presence in hippocampus. Almost all serotonin receptor subtypes are expressed in hippocampus, which implicates an intricate modulating system, considering that they can be localized as autosynaptic, presynaptic, and postsynaptic receptors, even colocalized within the same cell and being target of homo- and heterodimerization. Neurons and glia, including immune cells, integrate a functional network that uses several serotonin receptors to regulate their roles in this particular part of the limbic system. PMID:22629209
Lai, Y M; Feng, Q; Sun, Y; Wang, P; Shi, Y F; Zhao, M; Wu, Q; Li, X H
2016-09-08
To evaluate the expression of epidermal growth factor receptor (EGFR) mutation specific antibodies in invasive lung adenocarcinomas, and their sensitivity, specificity, as well as relationship to histological subtypes. Immunostaining with EGFR mutation-specific antibodies, del E746-A750 in exon 19 and L858R in exon 21, was performed in tissue microarrays of 884 cases of resection specimens to study the relationship between the immunophenotypes and morphologic subtypes. The sensitivity and specificity of the stains were compared with gene mutations detected by amplified refractory mutation system-polymerase chain reaction (ARMS-PCR). Of the 884 cases, the expression of del E746-A750 in exon 19 was 3+ , 2+ , 1+ and 0 in 7 cases (0.79%), 38 cases (4.30%), 129 cases (14.59%) and 710 cases (80.32%), respectively. For L858R in exon 21, 3+ , 2+ , 1+ and 0 staining were seen in 82 cases (9.28%), 93 cases (10.52%), 82 cases (9.28%) and 627 cases (70.93%), respectively. For both antibodies, positive expression (1+ or more) was mainly observed in lepidic, acinar and papillary predominant subtypes, and rarely seen in solid subtype or invasive mucinous adenocarcinoma (P=0.014 and 0.016). If 1+ to 3+ expression was set as positive, the specificity of exon 19/exon 21 reached 98.59%/92.98%, while the sensitivity was relatively lower (62.86%/88.89%). If 2+ to 3+ expression was read as positive, the specificity and sensitivity were 99.30%/97.37% and 25.71%/74.60% for exon 19/exon 21. If only 3+ expression was considered positive, the specificity was 100.0% for both antibodies, with a low sensitivity (8.57% for exon 19 and 34.92% for exon 21). Of the 18 cases with E746-A750 del in exon 19 based on molecular detection, the sensitivity of immunohistochemistry for exon 19 was 88.89% if a positive cutoff value ≥1+ was used; in contrast, of the 8 cases harboring other deletions in exon 19, only two cases were positive as 1+ . Both the EGFR mutation specific antibodies del E746-A750 in exon 19 and L858R in exon 21 demonstrate high specificity and relatively low sensitivity, and are mostly expressed in lepidic, acinar and papillary predominant subtypes, but rarely in solid subtype or invasive mucinous adenocarcinoma. For cases with 3+ expression, a mutational statue for EGFR is likely. For the 2+ positive cases, the accuracy to predict mutation almost reaches 90%, but molecular detection for confirmation is desirable. For the 1+ and negative cases, DNA-based test is essential to avoid false negativity.
Lu, Kim D.; Cooper, Dan; Haddad, Fadia; Zaldivar, Frank; Kraft, Monica; Radom-Aizik, Shlomit
2017-01-01
Background Poor aerobic fitness is associated with worsening of asthma symptoms and fitness training may improve asthma control. The mechanism linking fitness with asthma is not known. We hypothesized that repeated bouts of exercise would lead to a downregulation of glucocorticoid receptor (GR) expression on circulating leukocytes reflecting a reduced responsiveness to stress. Methods In a prospective exercise training intervention of healthy and asthmatic adolescents, GR expression in leukocytes was measured using flow cytometry in response to a brief exercise challenge before and after the training intervention. PBMC gene expression of GR, GRβ, HSP70, and TGFβ1, 2 were determined using RT-PCR. Results Peak V̇O2 increased by 14.6 ± 2.3% indicating an effective training (p<0.01). There was a significant difference in GR expression among leukocyte subtypes, with highest expression in eosinophils. Following the training intervention, there was a significant decrease in baseline GR expression (p<0.05) in leukocyte and monocyte subtypes in both healthy and asthmatic adolescents. Conclusions This is the first study in adolescents to show that exercise training reduces GR expression on circulating leukocytes. We speculate that exercise training downregulates the stress response in general, manifested by decreased GR expression, and may explain why improving fitness improves asthma health. PMID:28796240
Ramos, Cathy I.; Igiesuorobo, Oghomwen; Wang, Qi; Serpe, Mihaela
2015-01-01
The molecular mechanisms controlling the subunit composition of glutamate receptors are crucial for the formation of neural circuits and for the long-term plasticity underlying learning and memory. Here we use the Drosophila neuromuscular junction (NMJ) to examine how specific receptor subtypes are recruited and stabilized at synaptic locations. In flies, clustering of ionotropic glutamate receptors (iGluRs) requires Neto (Neuropillin and Tolloid-like), a highly conserved auxiliary subunit that is essential for NMJ assembly and development. Drosophila neto encodes two isoforms, Neto-α and Neto-β, with common extracellular parts and distinct cytoplasmic domains. Mutations that specifically eliminate Neto-β or its intracellular domain were generated. When Neto-β is missing or is truncated, the larval NMJs show profound changes in the subtype composition of iGluRs due to reduced synaptic accumulation of the GluRIIA subunit. Furthermore, neto-β mutant NMJs fail to accumulate p21-activated kinase (PAK), a critical postsynaptic component implicated in the synaptic stabilization of GluRIIA. Muscle expression of either Neto-α or Neto-β rescued the synaptic transmission at neto null NMJs, indicating that Neto conserved domains mediate iGluRs clustering. However, only Neto-β restored PAK synaptic accumulation at neto null NMJs. Thus, Neto engages in intracellular interactions that regulate the iGluR subtype composition by preferentially recruiting and/or stabilizing selective receptor subtypes. PMID:25905467
Challenges in projecting clustering results across gene expression-profiling datasets.
Lusa, Lara; McShane, Lisa M; Reid, James F; De Cecco, Loris; Ambrogi, Federico; Biganzoli, Elia; Gariboldi, Manuela; Pierotti, Marco A
2007-11-21
Gene expression microarray studies for several types of cancer have been reported to identify previously unknown subtypes of tumors. For breast cancer, a molecular classification consisting of five subtypes based on gene expression microarray data has been proposed. These subtypes have been reported to exist across several breast cancer microarray studies, and they have demonstrated some association with clinical outcome. A classification rule based on the method of centroids has been proposed for identifying the subtypes in new collections of breast cancer samples; the method is based on the similarity of the new profiles to the mean expression profile of the previously identified subtypes. Previously identified centroids of five breast cancer subtypes were used to assign 99 breast cancer samples, including a subset of 65 estrogen receptor-positive (ER+) samples, to five breast cancer subtypes based on microarray data for the samples. The effect of mean centering the genes (i.e., transforming the expression of each gene so that its mean expression is equal to 0) on subtype assignment by method of centroids was assessed. Further studies of the effect of mean centering and of class prevalence in the test set on the accuracy of method of centroids classifications of ER status were carried out using training and test sets for which ER status had been independently determined by ligand-binding assay and for which the proportion of ER+ and ER- samples were systematically varied. When all 99 samples were considered, mean centering before application of the method of centroids appeared to be helpful for correctly assigning samples to subtypes, as evidenced by the expression of genes that had previously been used as markers to identify the subtypes. However, when only the 65 ER+ samples were considered for classification, many samples appeared to be misclassified, as evidenced by an unexpected distribution of ER+ samples among the resultant subtypes. When genes were mean centered before classification of samples for ER status, the accuracy of the ER subgroup assignments was highly dependent on the proportion of ER+ samples in the test set; this effect of subtype prevalence was not seen when gene expression data were not mean centered. Simple corrections such as mean centering of genes aimed at microarray platform or batch effect correction can have undesirable consequences because patient population effects can easily be confused with these assay-related effects. Careful thought should be given to the comparability of the patient populations before attempting to force data comparability for purposes of assigning subtypes to independent subjects.
Gorelick, Daniel A.; Iwanowicz, Luke R.; Hung, Alice L.; Blazer, Vicki; Halpern, Marnie E.
2014-01-01
Background: Environmental endocrine disruptors (EED) are exogenous chemicals that mimic endogenous hormones, such as estrogens. Previous studies using a zebrafish transgenic reporter demonstrated that the EEDs bisphenol A and genistein preferentially activate estrogen receptors (ER) in the larval heart compared to the liver. However, it was not known whether the transgenic zebrafish reporter was sensitive enough to detect estrogens from environmental samples, whether environmental estrogens would exhibit similar tissue-specific effects as BPA and genistein or why some compounds preferentially target receptors in the heart. Methods: We tested surface water samples using a transgenic zebrafish reporter with tandem estrogen response elements driving green fluorescent protein expression (5xERE:GFP). Reporter activation was colocalized with tissue-specific expression of estrogen receptor genes by RNA in situ hybridization. Results: Selective patterns of ER activation were observed in transgenic fish exposed to river water samples from the Mid-Atlantic United States, with several samples preferentially activating receptors in embryonic and larval heart valves. We discovered that tissue-specificity in ER activation is due to differences in the expression of estrogen receptor subtypes. ERα is expressed in developing heart valves but not in the liver, whereas ERβ2 has the opposite profile. Accordingly, subtype-specific ER agonists activate the reporter in either the heart valves or the liver. Conclusion: The use of 5xERE:GFP transgenic zebrafish has revealed an unexpected tissue-specific difference in the response to environmentally relevant estrogenic compounds. Exposure to estrogenic EEDs in utero is associated with adverse health effects, with the potentially unanticipated consequence of targeting developing heart valves.
Li, Mengjiao; Li, Haoran; Liu, Fei; Bi, Rui; Tu, Xiaoyu; Chen, Lihua; Ye, Shuang; Cheng, Xi
2017-02-10
It has long been appreciated that different subtypes (serous, clear cell, endometrioid and mucinous) of epithelial ovarian carcinoma (EOC) have distinct pathogenetic pathways. However, clinical management, especially chemotherapeutic regimens, for EOC patients is not subtype specific. Ovarian clear cell carcinoma (CCC) is a rare histological subtype of EOC, which exhibits high rates of recurrence and low chemosensitivity. We assessed potential therapeutic targets for ovarian CCC patients through analyzing the variation of drug-based molecular biomarkers expression between ovarian CCC and high-grade serous carcinoma (HGSC). Seven candidate drug-based molecular biomarkers, human epidermal growth factor receptor (EGFR), human epidermal growth factor receptor-2 (HER2), phosphatase and tensin homolog deleted on chromosome ten (PTEN), aurora kinase A (AURKA), breast cancer susceptibility gene 1 (BRCA1), breast cancer susceptibility gene 2 (BRCA2) and programmed death-ligand 1 (PD-L1) were measured in 96 ovarian CCC and 113 HGSC by immunohistochemistry in paraffin embedded tissues. The relationship between these biomarkers and clinicopathological factors were explored. The expression level of four of the seven drug-based molecular biomarkers was markedly different between HGSC and CCC. High expression levels of HER2 and PD-L1 were more commonly observed in CCC patients (12.6% vs 2.7%, 21.1% vs 11.6%, P = 0.006, 0.064, respectively), while loss of BRCA1 and BRCA2 expression were more frequently occurred in HGSC patients (72.6% vs 54.3%, 89.4% vs 79.8%, P = 0.007, 0.054, respectively). Survival analysis showed that five of seven biomarkers had prognostic values but varied between subtypes. Furthermore, EGFR expressed frequently in CCC patients with endometriosis than in HGSC patients (44.4% vs 8.3%, P = 0.049). AURKA and PD-L1 correlated with the resistance to platinum-based chemotherapy in CCC patients (P = 0.043, 0.028, respectively) while no similar results were observed in HGSC patients. Ovarian CCC showed a markedly different expression map of drug-based molecular biomarkers from HGSC, which suggested a new personalized target therapy in this rare subtype.
Expression and GTP sensitivity of peptide histidine isoleucine high-affinity-binding sites in rat.
Debaigt, Colin; Meunier, Annie-Claire; Goursaud, Stephanie; Montoni, Alicia; Pineau, Nicolas; Couvineau, Alain; Laburthe, Marc; Muller, Jean-Marc; Janet, Thierry
2006-07-01
High-affinity-binding sites for the vasoactive intestinal peptide (VIP) analogs peptide histidine/isoleucine-amide (PHI)/carboxyterminal methionine instead of isoleucine (PHM) are expressed in numerous tissues in the body but the nature of their receptors remains to be elucidated. The data presented indicate that PHI discriminated a high-affinity guanosine 5'-triphosphate (GTP)-insensitive-binding subtype that represented the totality of the PHI-binding sites in newborn rat tissues but was differentially expressed in adult animals. The GTP-insensitive PHI/PHM-binding sites were also observed in CHO cells over expressing the VPAC2 but not the VPAC1 VIP receptor.
The dopamine D1 receptor is expressed and facilitates relaxation in airway smooth muscle.
Mizuta, Kentaro; Zhang, Yi; Xu, Dingbang; Mizuta, Fumiko; D'Ovidio, Frank; Masaki, Eiji; Emala, Charles W
2013-09-02
Dopamine signaling is mediated by Gs protein-coupled "D1-like" receptors (D1 and D5) and Gi-coupled "D2-like" receptors (D2-4). In asthmatic patients, inhaled dopamine induces bronchodilation. Although the Gi-coupled dopamine D2 receptor is expressed and sensitizes adenylyl cyclase activity in airway smooth muscle (ASM) cells, the Gs-coupled dopamine D1-like receptor subtypes have never been identified on these cells. Activation of Gs-coupled receptors stimulates cyclic AMP (cAMP) production through the stimulation of adenylyl cyclase, which promotes ASM relaxation. We questioned whether the dopamine D1-like receptor is expressed on ASM, and modulates its function through Gs-coupling. The mRNA and protein expression of dopamine D1-like receptor subtypes in both native human and guinea pig ASM tissue and cultured human ASM (HASM) cells was measured. To characterize the stimulation of cAMP through the dopamine D1 receptor, HASM cells were treated with dopamine or the dopamine D1-like receptor agonists (A68930 or SKF38393) before cAMP measurements. To evaluate whether the activation of dopamine D1 receptor induces ASM relaxation, guinea pig tracheal rings suspended under isometric tension in organ baths were treated with cumulatively increasing concentrations of dopamine or A68930, following an acetylcholine-induced contraction with or without the cAMP-dependent protein kinase (PKA) inhibitor Rp-cAMPS, the large-conductance calcium-activated potassium (BKCa) channel blocker iberiotoxin, or the exchange proteins directly activated by cAMP (Epac) antagonist NSC45576. Messenger RNA encoding the dopamine D1 and D5 receptors were detected in native human ASM tissue and cultured HASM cells. Immunoblots confirmed the protein expression of the dopamine D1 receptor in both native human and guinea pig ASM tissue and cultured HASM cells. The dopamine D1 receptor was also immunohistochemically localized to both human and guinea pig ASM. The dopamine D1-like receptor agonists stimulated cAMP production in HASM cells, which was reversed by the selective dopamine D1-like receptor antagonists SCH23390 or SCH39166. A68930 relaxed acetylcholine-contracted guinea pig tracheal rings, which was attenuated by Rp-cAMPS but not by iberiotoxin or NSC45576. These results demonstrate that the dopamine D1 receptors are expressed on ASM and regulate smooth muscle force via cAMP activation of PKA, and offer a novel target for therapeutic relaxation of ASM.
The dopamine D1 receptor is expressed and facilitates relaxation in airway smooth muscle
2013-01-01
Background Dopamine signaling is mediated by Gs protein-coupled “D1-like” receptors (D1 and D5) and Gi-coupled “D2-like” receptors (D2-4). In asthmatic patients, inhaled dopamine induces bronchodilation. Although the Gi-coupled dopamine D2 receptor is expressed and sensitizes adenylyl cyclase activity in airway smooth muscle (ASM) cells, the Gs-coupled dopamine D1-like receptor subtypes have never been identified on these cells. Activation of Gs-coupled receptors stimulates cyclic AMP (cAMP) production through the stimulation of adenylyl cyclase, which promotes ASM relaxation. We questioned whether the dopamine D1-like receptor is expressed on ASM, and modulates its function through Gs-coupling. Methods The mRNA and protein expression of dopamine D1-like receptor subtypes in both native human and guinea pig ASM tissue and cultured human ASM (HASM) cells was measured. To characterize the stimulation of cAMP through the dopamine D1 receptor, HASM cells were treated with dopamine or the dopamine D1-like receptor agonists (A68930 or SKF38393) before cAMP measurements. To evaluate whether the activation of dopamine D1 receptor induces ASM relaxation, guinea pig tracheal rings suspended under isometric tension in organ baths were treated with cumulatively increasing concentrations of dopamine or A68930, following an acetylcholine-induced contraction with or without the cAMP-dependent protein kinase (PKA) inhibitor Rp-cAMPS, the large-conductance calcium-activated potassium (BKCa) channel blocker iberiotoxin, or the exchange proteins directly activated by cAMP (Epac) antagonist NSC45576. Results Messenger RNA encoding the dopamine D1 and D5 receptors were detected in native human ASM tissue and cultured HASM cells. Immunoblots confirmed the protein expression of the dopamine D1 receptor in both native human and guinea pig ASM tissue and cultured HASM cells. The dopamine D1 receptor was also immunohistochemically localized to both human and guinea pig ASM. The dopamine D1-like receptor agonists stimulated cAMP production in HASM cells, which was reversed by the selective dopamine D1-like receptor antagonists SCH23390 or SCH39166. A68930 relaxed acetylcholine-contracted guinea pig tracheal rings, which was attenuated by Rp-cAMPS but not by iberiotoxin or NSC45576. Conclusions These results demonstrate that the dopamine D1 receptors are expressed on ASM and regulate smooth muscle force via cAMP activation of PKA, and offer a novel target for therapeutic relaxation of ASM. PMID:24004608
Modulation of PPAR activity via phosphorylation
Burns, Katherine A.; Vanden Heuvel, John P.
2009-01-01
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor superfamily of transcription factors that respond to specific ligands by altering gene expression in a cell-, developmental- and sex-specific manner. Three subtypes of this receptor have been discovered (PPARα, β and γ), each apparently evolving to fulfill different biological niches. PPARs control a variety of target genes involved in lipid homeostasis, diabetes and cancer. Similar to other nuclear receptors, the PPARs are phosphoproteins and their transcriptional activity is affected by cross-talk with kinases and phosphatases. Phosphorylation by the mitogen-activated protein kinases (ERK- and p38-MAPK), Protein Kinase A and C (PKA, PKC), AMP Kinase (AMPK) and glycogen synthase kinase-3 (GSK3) affect their activity in a ligand-dependent or -independent manner. The effects of phosphorylation depend on the cellular context, receptor subtype and residue metabolized which can be manifested at several steps in the PPAR activation sequence including ligand affinity, DNA binding, coactivator recruitment and proteasomal degradation. The review will summarize the known PPAR kinases that directly act on these receptors, the sites affected and the result of this modification on receptor activity. PMID:17560826
Comparative functional expression of nAChR subtypes in rodent DRG neurons.
Smith, Nathan J; Hone, Arik J; Memon, Tosifa; Bossi, Simon; Smith, Thomas E; McIntosh, J Michael; Olivera, Baldomero M; Teichert, Russell W
2013-01-01
We investigated the functional expression of nicotinic acetylcholine receptors (nAChRs) in heterogeneous populations of dissociated rat and mouse lumbar dorsal root ganglion (DRG) neurons by calcium imaging. By this experimental approach, it is possible to investigate the functional expression of multiple receptor and ion-channel subtypes across more than 100 neuronal and glial cells simultaneously. Based on nAChR expression, DRG neurons could be divided into four subclasses: (1) neurons that express predominantly α3β4 and α6β4 nAChRs; (2) neurons that express predominantly α7 nAChRs; (3) neurons that express a combination of α3β4/α6β4 and α7 nAChRs; and (4) neurons that do not express nAChRs. In this comparative study, the same four neuronal subclasses were observed in mouse and rat DRG. However, the expression frequency differed between species: substantially more rat DRG neurons were in the first three subclasses than mouse DRG neurons, at all developmental time points tested in our study. Approximately 70-80% of rat DRG neurons expressed functional nAChRs, in contrast to only ~15-30% of mouse DRG neurons. Our study also demonstrated functional coupling between nAChRs, voltage-gated calcium channels, and mitochondrial Ca(2) (+) transport in discrete subsets of DRG neurons. In contrast to the expression of nAChRs in DRG neurons, we demonstrated that a subset of non-neuronal DRG cells expressed muscarinic acetylcholine receptors and not nAChRs. The general approach to comparative cellular neurobiology outlined in this paper has the potential to better integrate molecular and systems neuroscience by uncovering the spectrum of neuronal subclasses present in a given cell population and the functionally integrated signaling components expressed in each subclass.
Differential distribution of adenosine receptors in rat cochlea.
Vlajkovic, Srdjan M; Abi, Shukri; Wang, Carol J H; Housley, Gary D; Thorne, Peter R
2007-06-01
Adenosine is a constitutive cell metabolite that can be released from cells via specific bi-directional transporters and is an end-point for nucleotide hydrolysis. In the extracellular space, adenosine becomes a signalling molecule for P1 (adenosine) receptors that modulate physiological responses in a wide range of mammalian tissues. Whereas adenosine signalling has been implicated in the regulation of cochlear blood flow and in cochlear protection from oxidative damage, the potential roles for adenosine signalling in the modulation of sound transduction and auditory neurotransmission have not been established. We have characterised the expression and distribution of adenosine receptors in the rat cochlea. mRNA transcripts for all four subtypes of adenosine receptors (A(1), A(2A), A(2B) and A(3)) were detected in dissected cochlear tissue by using reverse transcription/polymerase chain reaction analysis. The protein distribution for the A(1), A(2A) and A(3) receptor subtypes was identified by immunoperoxidase histochemistry and confocal immunofluorescence labelling. These receptors were differentially expressed in the organ of Corti, spiral ganglion neurones, lateral wall tissues and cochlear blood vessels. The distribution of adenosine receptors in sensory and neural tissues and in the vasculature coincided with other elements of purinergic signalling (P2X and P2Y receptors, ectonucleotidases), consistent with the integrative regulation of many physiological processes in the cochlea by extracellular nucleotides and nucleosides. Our study provides a framework for further investigation of adenosine signalling in the inner ear, including putative roles in oxidative stress responses.
Schiffner, René; Bischoff, Sabine Juliane; Lehmann, Thomas; Rakers, Florian; Rupprecht, Sven; Reiche, Juliane; Matziolis, Georg; Schubert, Harald; Schwab, Matthias; Huber, Otmar; Schmidt, Martin
2017-01-01
Background: Maintenance of brain circulation during shock is sufficient to prevent subcortical injury but the cerebral cortex is not spared. This suggests area-specific regulation of cerebral blood flow (CBF) during hemorrhage. Methods: Cortical and subcortical CBF were continuously measured during blood loss (≤50%) and subsequent reperfusion using laser Doppler flowmetry. Blood gases, mean arterial blood pressure (MABP), heart rate and renal blood flow were also monitored. Urapidil was used for α1A-adrenergic receptor blockade in dosages, which did not modify the MABP-response to blood loss. Western blot and quantitative reverse transcription polymerase chain reactions were used to determine adrenergic receptor expression in brain arterioles. Results: During hypovolemia subcortical CBF was maintained at 81 ± 6% of baseline, whereas cortical CBF decreased to 40 ± 4% (p < 0.001). Reperfusion led to peak CBFs of about 70% above baseline in both brain regions. α1A-Adrenergic blockade massively reduced subcortical CBF during hemorrhage and reperfusion, and prevented hyperperfusion during reperfusion in the cortex. α1A-mRNA expression was significantly higher in the cortex, whereas α1D-mRNA expression was higher in the subcortex (p < 0.001). Conclusions: α1-Adrenergic receptors are critical for perfusion redistribution: activity of the α1A-receptor subtype is a prerequisite for redistribution of CBF, whereas the α1D-receptor subtype may determine the magnitude of redistribution responses. PMID:28492488
Schiffner, René; Bischoff, Sabine Juliane; Lehmann, Thomas; Rakers, Florian; Rupprecht, Sven; Reiche, Juliane; Matziolis, Georg; Schubert, Harald; Schwab, Matthias; Huber, Otmar; Schmidt, Martin
2017-05-11
Maintenance of brain circulation during shock is sufficient to prevent subcortical injury but the cerebral cortex is not spared. This suggests area-specific regulation of cerebral blood flow (CBF) during hemorrhage. Cortical and subcortical CBF were continuously measured during blood loss (≤50%) and subsequent reperfusion using laser Doppler flowmetry. Blood gases, mean arterial blood pressure (MABP), heart rate and renal blood flow were also monitored. Urapidil was used for α1A-adrenergic receptor blockade in dosages, which did not modify the MABP-response to blood loss. Western blot and quantitative reverse transcription polymerase chain reactions were used to determine adrenergic receptor expression in brain arterioles. During hypovolemia subcortical CBF was maintained at 81 ± 6% of baseline, whereas cortical CBF decreased to 40 ± 4% ( p < 0.001). Reperfusion led to peak CBFs of about 70% above baseline in both brain regions. α1A-Adrenergic blockade massively reduced subcortical CBF during hemorrhage and reperfusion, and prevented hyperperfusion during reperfusion in the cortex. α1A-mRNA expression was significantly higher in the cortex, whereas α1D-mRNA expression was higher in the subcortex ( p < 0.001). α1-Adrenergic receptors are critical for perfusion redistribution: activity of the α1A-receptor subtype is a prerequisite for redistribution of CBF, whereas the α1D-receptor subtype may determine the magnitude of redistribution responses.
Muscarinic Receptors as Targets for Metronomic Therapy in Breast Cancer.
Sales, María Elena
2016-01-01
It is actually known that acetylcholine works as a signaling molecule in non-neuronal cells and tissues, in addition to its neuronal function as neurotransmitter. It can act on two types of receptors nicotinic and muscarinic receptors (mAChRs). The latter belong to the G protein coupled receptor family and there are five subtypes genetically cloned. Their activation triggers classical and non-classical intracellular signals that could be linked to the proliferation of normal and/or transformed cells. The M3 subtype was identified in different types of tumors and its stimulation with agonists triggers cell proliferation, migration, invasion and metastasis. Our laboratory has extensively investigated the expression and function of mAChRs in breast tumors from animal and human origins. We found a profuse expression of mAChRs in breast tumors, but opposite to this, an absence of these receptors in normal breast cells and tissues. The stimulation of mAChRs with the cholinergic agonist carbachol for 20 h increased tumor cell death. Moreover, the combination of subthreshold concentrations of the agonist with paclitaxel potentiates cell death. The usage of low dose chemotherapy with short drug free intervals was named metronomic therapy and it has emerged as a novel regimen for cancer treatment with very low incidence of side effects. Our work and that of others indicate that mAChRs that are over-expressed in different types of tumor cells could be a useful target for metronomic therapy in cancer treatment.
Costa, M Adelina; Barbosa, A; Neto, E; Sá-e-Sousa, A; Freitas, R; Neves, J M; Magalhães-Cardoso, T; Ferreirinha, F; Correia-de-Sá, P
2011-05-01
Purines are important modulators of bone cell biology. ATP is metabolized into adenosine by human primary osteoblast cells (HPOC); due to very low activity of adenosine deaminase, the nucleoside is the end product of the ecto-nucleotidase cascade. We, therefore, investigated the expression and function of adenosine receptor subtypes (A(1) , A(2A) , A(2B) , and A(3) ) during proliferation and osteogenic differentiation of HPOC. Adenosine A(1) (CPA), A(2A) (CGS21680C), A(2B) (NECA), and A(3) (2-Cl-IB-MECA) receptor agonists concentration-dependently increased HPOC proliferation. Agonist-induced HPOC proliferation was prevented by their selective antagonists, DPCPX, SCH442416, PSB603, and MRS1191. CPA and NECA facilitated osteogenic differentiation measured by increases in alkaline phosphatase (ALP) activity. This contrasts with the effect of CGS21680C which delayed HPOC differentiation; 2-Cl-IB-MECA was devoid of effect. Blockade of the A(2B) receptor with PSB603 prevented osteogenic differentiation by NECA. In the presence of the A(1) antagonist, DPCPX, CPA reduced ALP activity at 21 and 28 days in culture. At the same time points, blockade of A(2A) receptors with SCH442416 transformed the inhibitory effect of CGS21680C into facilitation. Inhibition of adenosine uptake with dipyridamole caused a net increase in osteogenic differentiation. The presence of all subtypes of adenosine receptors on HPOC was confirmed by immunocytochemistry. Data show that adenosine is an important regulator of osteogenic cell differentiation through the activation of subtype-specific receptors. The most abundant A(2B) receptor seems to have a consistent role in cell differentiation, which may be balanced through the relative strengths of A(1) or A(2A) receptors determining whether osteoblasts are driven into proliferation or differentiation. Copyright © 2010 Wiley-Liss, Inc.
Reduced Serotonin Receptor Subtypes in a Limbic and a Neocortical Region in Autism
Oblak, Adrian; Gibbs, Terrell T.; Blatt, Gene J.
2013-01-01
Autism is a behaviorally defined, neurological disorder with symptom onset before the age of three. Abnormalities in social-emotional behaviors are a core deficit in autism and are characterized by impaired reciprocal social interaction, lack of facial expressions, and the inability to recognize familiar faces. The posterior cingulate cortex (PCC) and fusiform gyrus (FG) are two regions within an extensive limbic-cortical network that contribute to social-emotional behaviors. Evidence indicates that changes in brains of individuals with autism begin prenatally. Serotonin (5HT) is one of the earliest expressed neurotransmitters, and plays an important role in synaptogenesis, neurite outgrowth, and neuronal migration. Abnormalities in 5HT systems have been implicated in several psychiatric disorders including autism, as evidenced by immunology, imaging, genetics, pharmacotherapy, and neuropathology. Although information is known regarding peripheral 5HT in autism, there is emerging evidence that 5HT systems in the CNS, including various 5HT receptor subtypes and transporters, are affected in autism. The present study demonstrated significant reductions in 5HT1A receptor binding density in superficial and deep layers of the PCC and FG, and in the density of 5HT2A receptors in superficial layers of the PCC and FG. Significant reduction in the density of serotonin transporters (5-HTT) was also found in the deep layers of the FG, but normal levels were demonstrated in both layers of the PCC and superficial layers of the FG. These studies provide potential substrates for decreased 5-HT modulation/innervation in the autism brain, and implicate two 5-HT receptor subtypes as potential neuromarkers for novel or existing pharmacotherapies. PMID:23894004
Reduced serotonin receptor subtypes in a limbic and a neocortical region in autism.
Oblak, Adrian; Gibbs, Terrell T; Blatt, Gene J
2013-12-01
Autism is a behaviorally defined, neurological disorder with symptom onset before the age of 3. Abnormalities in social-emotional behaviors are a core deficit in autism, and are characterized by impaired reciprocal-social interaction, lack of facial expressions, and the inability to recognize familiar faces. The posterior cingulate cortex (PCC) and fusiform gyrus (FG) are two regions within an extensive limbic-cortical network that contribute to social-emotional behaviors. Evidence indicates that changes in brains of individuals with autism begin prenatally. Serotonin (5-HT) is one of the earliest expressed neurotransmitters, and plays an important role in synaptogenesis, neurite outgrowth, and neuronal migration. Abnormalities in 5-HT systems have been implicated in several psychiatric disorders, including autism, as evidenced by immunology, imaging, genetics, pharmacotherapy, and neuropathology. Although information is known regarding peripheral 5-HT in autism, there is emerging evidence that 5-HT systems in the central nervous system, including various 5-HT receptor subtypes and transporters, are affected in autism. The present study demonstrated significant reductions in 5-HT1A receptor-binding density in superficial and deep layers of the PCC and FG, and in the density of 5-HT(2A) receptors in superficial layers of the PCC and FG. A significant reduction in the density of serotonin transporters (5-HTT) was also found in the deep layers of the FG, but normal levels were demonstrated in both layers of the PCC and superficial layers of the FG. This study provides potential substrates for decreased 5-HT modulation/innervation in the autism brain, and implicate two 5-HT receptor subtypes as potential neuromarkers for novel or existing pharmacotherapies. © 2013 International Society for Autism Research, Wiley Periodicals, Inc.
Sweeney, Carol; Bernard, Philip S; Factor, Rachel E; Kwan, Marilyn L; Habel, Laurel A; Quesenberry, Charles P; Shakespear, Kaylynn; Weltzien, Erin K; Stijleman, Inge J; Davis, Carole A; Ebbert, Mark T W; Castillo, Adrienne; Kushi, Lawrence H; Caan, Bette J
2014-05-01
Data are lacking to describe gene expression-based breast cancer intrinsic subtype patterns for population-based patient groups. We studied a diverse cohort of women with breast cancer from the Life After Cancer Epidemiology and Pathways studies. RNA was extracted from 1 mm punches from fixed tumor tissue. Quantitative reverse-transcriptase PCR was conducted for the 50 genes that comprise the PAM50 intrinsic subtype classifier. In a subcohort of 1,319 women, the overall subtype distribution based on PAM50 was 53.1% luminal A, 20.5% luminal B, 13.0% HER2-enriched, 9.8% basal-like, and 3.6% normal-like. Among low-risk endocrine-positive tumors (i.e., estrogen and progesterone receptor positive by immunohistochemistry, HER2 negative, and low histologic grade), only 76.5% were categorized as luminal A by PAM50. Continuous-scale luminal A, luminal B, HER2-enriched, and normal-like scores from PAM50 were mutually positively correlated. Basal-like score was inversely correlated with other subtypes. The proportion with non-luminal A subtype decreased with older age at diagnosis, P Trend < 0.0001. Compared with non-Hispanic Whites, African American women were more likely to have basal-like tumors, age-adjusted OR = 4.4 [95% confidence intervals (CI), 2.3-8.4], whereas Asian and Pacific Islander women had reduced odds of basal-like subtype, OR = 0.5 (95% CI, 0.3-0.9). Our data indicate that over 50% of breast cancers treated in the community have luminal A subtype. Gene expression-based classification shifted some tumors categorized as low risk by surrogate clinicopathologic criteria to higher-risk subtypes. Subtyping in a population-based cohort revealed distinct profiles by age and race. ©2014 AACR.
Kim, Na Na; Jin, Deuk-Hee; Lee, Jehee; Kil, Gyung-Suk; Choi, Cheol Young
2010-10-01
In the present study, we investigated the expression pattern of estrogen receptors (esr) and vitellogenin (vtg) mRNA in the gonads and liver during sex change in cinnamon clownfish by using quantitative polymerase chain reaction. We divided gonadal development during the sex change from male to female into 3 stages (mature male, male at 90days after removing female, and mature female) and investigated esr and vtg mRNA expressions during the sex change. With female, the esr and vtg mRNA expressions increased. In western blot analysis, Esr1 protein was detected only in the ovaries of female cinnamon clownfish. Also, to understand the effect of 17beta-estradiol (E(2)), we investigated the esr and vtg mRNA expression patterns in the gonads and liver, and the changes in plasma E(2) level after E(2) injection. E(2) treatment increased both mRNA expression levels of esr and vtg and plasma E(2) levels. The present study describes the molecular characterization of esr subtypes and the interactions between esr and vtg after E(2) treatment in cinnamon clownfish. 2010 Elsevier Inc. All rights reserved.
Differential expression of estrogen receptor α and β isoforms in multiple and solitary leiomyomas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Ruyue; Fang, Liaoqiong; Xing, Ruoxi
Uterine leiomyomas are benign myometrial neoplasms that function as one of the common indications for hysterectomy. Clinical and biological evidences indicate that uterine leiomyomas are estrogen-dependent. Estrogen stimulates cell proliferation through binding to the estrogen receptor (ER), of which both subtypes α and β are present in leiomyomas. Clinically, leiomyomas may be singular or multiple, where the first one is rarely recurring if removed and the latter associated to a relatively young age or genetic predisposition. These markedly different clinical phenotypes indicate that there may different mechanism causing a similar smooth muscle response. To investigate the relative expression of ERαmore » and ERβ in multiple and solitary uterine leiomyomas, we collected samples from 35 Chinese women (multiple leiomyomas n = 20, solitary leiomyoma n = 15) undergoing surgery to remove uterine leiomyomas. ELISA assay was performed to detect estrogen(E{sub 2}) concentration. Quantitative real-time PCR analysis was performed to detect ERα and ERβ mRNA expression. Western blot and immunohistochemical analysis were performed to detect ERα and ERβ protein expression. We found that ERα mRNA and protein levels of in multiple leiomyomas were significantly lower than those of solitary leiomyomas, whereas ERβ mRNA and protein levels in multiple leiomyomas were significantly higher than those in solitary leiomyomas, irrespectively of the menstrual cycle stage. In both multiple and solitary leiomyomas, ERα expression was higher than that of ERβ. E{sub 2} concentration in multiple and solitary leiomyomas correlated with that of ERα expression. ERα was present in nuclus and cytoplasma while estrogen receptor β localized only in nuclei in both multiple and solitary leiomyomas. Our findings suggest that the difference of ERα and ERβ expression between multiple and solitary leiomyomas may be responsible for the course of the disease subtypes. - Highlights: • In both multiple and solitary leiomyomas, ERα expression was higher than that of ERβ. • ERα was significantly lower, whereas ERβ was significantly higher in multiple leiomyomas than that in solitary leiomyomas. • The differential expression of ERα and ERβ may be responsible for the cause of the disease subtypes.« less
Landeen, Lee K; Aroonsakool, Nakon; Haga, Jason H; Hu, Betty S; Giles, Wayne R
2007-06-01
The bioactive molecule sphingosine-1-phosphate (S1P) binds with high affinity to five recognized receptors (S1P(1-5)) to affect various tissues, including cellular responses of cardiac fibroblasts (CFbs) and myocytes. CFbs are essential components of myocardium, and detailed study of their cell signaling and physiology is required for a number of emerging disciplines. Meaningful studies on CFbs, however, necessitate methods for selective, reproducible cell isolations. Macrophages reside within normal cardiac tissues and often are isolated with CFbs. A protocol was therefore developed that significantly reduces macrophage levels and utilizes more CFb-specific markers (discoidin domain receptor-2) instead of, or in addition to, more commonly used cytoskeletal markers. Our results demonstrate that primary isolated, purified CFbs express predominantly S1P(1-3); however, the relative levels of these receptor subtypes are modulated with time and by culture conditions. In coculture experiments, macrophages altered CFb S1P receptor levels relative to controls. Further investigations using known macrophage-secreted factors showed that S1P and H(2)O(2) had minimal effects on CFb S1P(1-3) expression, whereas transforming growth factor-beta1, TNF-alpha, and PDGF-BB significantly altered all S1P receptor subtypes. Lowering FBS concentrations from 10% to 0.1% increased S1P(2), whereas supplementation with either PDGF-BB or Rho-associated protein kinase inhibitor Y-27632 significantly elevated S1P(3) levels. S1P(2) and S1P(3) receptor levels are known to regulate cell migration. Using cells isolated from either normal or S1P(3)-null mice, we demonstrate that S1P(3) is important and necessary for CFb migration. These results highlight the importance of demonstrating CFb culture purity in functional studies of S1P and also identify conditions that modulate S1P receptor expression in CFbs.
Thomas, Elizabeth A.; Carson, Monica J.; Neal, Michael J.; Sutcliffe, J. Gregor
1997-01-01
The effects of oleamide, an amidated lipid isolated from the cerebrospinal fluid of sleep-deprived cats, on serotonin receptor-mediated responses were investigated in cultured mammalian cells. In rat P11 cells, which endogenously express the 5-hydroxytryptamine2A (5HT2A) receptor, oleamide significantly potentiated 5HT-induced phosphoinositide hydrolysis. In HeLa cells expressing the 5HT7 receptor subtype, oleamide caused a concentration-dependent increase in cAMP accumulation but with lower efficacy than that observed by 5HT. This effect was not observed in untransfected HeLa cells. Clozapine did not prevent the increase in cAMP elicited by oleamide, and ketanserin caused an ≈65% decrease. In the presence of 5HT, oleamide had the opposite effect on cAMP, causing insurmountable antagonism of the concentration-effect curve to 5HT, but had no effect on cAMP levels elicited by isoproterenol or forskolin. These results indicate that oleamide can modulate 5HT-mediated signal transduction at different subtypes of mammalian 5HT receptors. Additionally, our data indicate that oleamide acts at an apparent allosteric site on the 5HT7 receptor and elicits functional responses via activation of this site. This represents a unique mechanism of activation for 5HT G protein-coupled receptors and suggests that G protein-coupled neurotransmitter receptors may act like their iontropic counterparts (i.e., γ-aminobutyric acid type A receptors) in that there may be several binding sites on the receptor that regulate functional activity with varying efficacies. PMID:9391162
Elhusseiny, A; Cohen, Z; Olivier, A; Stanimirović, D B; Hamel, E
1999-07-01
Acetylcholine is an important regulator of local cerebral blood flow. There is, however, limited information available on the possible sites of action of this neurotransmitter on brain intraparenchymal microvessels. In this study, a combination of molecular and functional approaches was used to identify which of the five muscarinic acetylcholine receptors (mAChR) are present in human brain microvessels and their intimately associated astroglial cells. Microvessel and capillary fractions isolated from human cerebral cortex were found by reverse transcriptase-polymerase chain reaction to express m2, m3, and, occasionally, m1 and m5 receptor subtypes. To localize these receptors to a specific cellular compartment of the vessel wall, cultures of human brain microvascular endothelial and smooth muscle cells were used, together with cultured human brain astrocytes. Endothelial cells invariably expressed m2 and m5 receptors, and occasionally the m1 receptor; smooth muscle cells exhibited messages for all except the m4 mAChR subtypes, whereas messages for all five muscarinic receptors were identified in astrocytes. In all three cell types studied, acetylcholine induced a pirenzepine-sensitive increase (62% to 176%, P<0.05 to 0.01) in inositol trisphosphate, suggesting functional coupling of m1, m3, or m5 mAChR to a phospholipase C signaling cascade. Similarly, coupling of m2 or m4 mAChR to adenylate cyclase inhibition in endothelial cells and astrocytes, but not in smooth muscle cells, was demonstrated by the ability of carbachol to significantly reduce (44% to 50%, P<0.05 to 0.01) the forskolin-stimulated increase in cAMP levels. This effect was reversed by the mAChR antagonist AFDX 384. The results indicate that microvessels are able to respond to neurally released acetylcholine and that mAChR, distributed in different vascular and astroglial compartments, could regulate cortical perfusion and, possibly, blood-brain barrier permeability, functions that could become jeopardized in neurodegenerative disorders such as Alzheimer's disease.
Tsuji, Motonori; Shudo, Koichi; Kagechika, Hiroyuki
2017-03-01
Understanding and identifying the receptor subtype selectivity of a ligand is an important issue in the field of drug discovery. Using a combination of classical molecular mechanics and quantum mechanical calculations, this report assesses the receptor subtype selectivity for the human retinoid X receptor (hRXR) and retinoic acid receptor (hRAR) ligand-binding domains (LBDs) complexed with retinoid ligands. The calculated energies show good correlation with the experimentally reported binding affinities. The technique proposed here is a promising method as it reveals the origin of the receptor subtype selectivity of selective ligands.
Phosphorylation and Internalization of Lysophosphatidic Acid Receptors LPA1, LPA2, and LPA3
Alcántara-Hernández, Rocío; Hernández-Méndez, Aurelio; Campos-Martínez, Gisselle A.; Meizoso-Huesca, Aldo; García-Sáinz, J. Adolfo
2015-01-01
Results The lysophosphatidic acid receptors LPA1, LPA2, and LPA3 were individually expressed in C9 cells and their signaling and regulation were studied. Agonist-activation increases intracellular calcium concentration in a concentration-dependent fashion. Phorbol myristate acetate markedly inhibited LPA1- and LPA3-mediated effect, whereas that mediated by LPA2 was only partially diminished; the actions of the phorbol ester were inhibited by bisindolylmaleimide I and by overnight incubation with the protein kinase C activator, which leads to down regulation of this protein kinase. Homologous desensitization was also observed for the three LPA receptors studied, with that of LPA2 receptors being consistently of lesser magnitude; neither inhibition nor down-regulation of protein kinase C exerted any effect on homologous desensitization. Activation of LPA1–3 receptors induced ERK 1/2 phosphorylation; this effect was markedly attenuated by inhibition of epidermal growth factor receptor tyrosine kinase activity, suggesting growth factor receptor transactivation in this effect. Lysophosphatidic acid and phorbol myristate acetate were able to induce LPA1–3 phosphorylation, in time- and concentration-dependent fashions. It was also clearly observed that agonists and protein kinase C activation induced internalization of these receptors. Phosphorylation of the LPA2 subtype required larger concentrations of these agents and its internalization was less intense than that of the other subtypes. Conclusion Our data show that these three LPA receptors are phosphoproteins whose phosphorylation state is modulated by agonist-stimulation and protein kinase C-activation and that differences in regulation and cellular localization exist, among the subtypes. PMID:26473723
Johnston, April; McBain, Chris J; Fisahn, André
2014-01-01
Rhythmic cortical neuronal oscillations in the gamma frequency band (30–80 Hz, gamma oscillations) have been associated with cognitive processes such as sensory perception and integration, attention, learning, and memory. Gamma oscillations are disrupted in disorders for which cognitive deficits are hallmark symptoms such as schizophrenia and Alzheimer's disease. In vitro, various neurotransmitters have been found to modulate gamma oscillations. Serotonin (5-HT) has long been known to be important for both behavioural and cognitive functions such as learning and memory. Multiple 5-HT receptor subtypes are expressed in the CA3 region of the hippocampus and high doses of 5-HT reduce the power of induced gamma oscillations. Hypothesizing that 5-HT may have cell- and receptor subtype-specific modulatory effects, we investigated the receptor subtypes, cell types and cellular mechanisms engaged by 5-HT in the modulation of gamma oscillations in mice and rats. We found that 5-HT decreases the power of kainate-induced hippocampal gamma oscillations in both species via the 5-HT1A receptor subtype. Whole-cell patch clamp recordings demonstrated that this decrease was caused by a hyperpolarization of CA3 pyramidal cells and a reduction of their firing frequency, but not by alteration of inhibitory neurotransmission. Finally, our results show that the effect on pyramidal cells is mediated via the G protein-coupled receptor inwardly rectifying potassium channel Kir3. Our findings suggest this novel cellular mechanism as a potential target for therapies that are aimed at alleviating cognitive decline by helping the brain to maintain or re-establish normal gamma oscillation levels in neuropsychiatric and neurodegenerative disorders. PMID:25107925
Trujillo, Cleber A.; Sathler, Luciana B.; Juliano, Maria A.; Juliano, Luiz; Ulrich, Henning; Ferreira, Sergio T.
2013-01-01
Alzheimer's disease (AD) is characterized by brain accumulation of the neurotoxic amyloid-β peptide (Aβ) and by loss of cholinergic neurons and nicotinic acetylcholine receptors (nAChRs). Recent evidence indicates that memory loss and cognitive decline in AD correlate better with the amount of soluble Aβ than with the extent of amyloid plaque deposits in affected brains. Inhibition of nAChRs by soluble Aβ40 is suggested to contribute to early cholinergic dysfunction in AD. Using phage display screening, we have previously identified a heptapeptide, termed IQ, homologous to most nAChR subtypes, binding with nanomolar affinity to soluble Aβ40 and blocking Aβ-induced inhibition of carbamylcholine-induced currents in PC12 cells expressing α7 nAChRs. Using alanine scanning mutagenesis and whole-cell current recording, we have now defined the amino acids in IQ essential for reversal of Aβ40 inhibition of carbamylcholine-induced responses in PC12 cells, mediated by α7 subtypes and other endogenously expressed nAChRs. We further investigated the effects of soluble Aβ, IQ and analogues of IQ on α3β4 nAChRs recombinantly expressed in HEK293 cells. Results show that nanomolar concentrations of soluble Aβ40 potently inhibit the function of α3β4 nAChRs, and that subsequent addition of IQ or its analogues does not reverse this effect. However, co-application of IQ makes the inhibition of α3β4 nAChRs by Aβ40 reversible. These findings indicate that Aβ40 inhibits different subtypes of nAChRs by interacting with specific receptor domains homologous to the IQ peptide, suggesting that IQ may be a lead for novel drugs to block the inhibition of cholinergic function in AD. PMID:23894286
Sniatecki, Jan J.; Goloborodko, Evgeny; Steege, Andreas; Zavaritskaya, Olga; Vetter, Jan M.; Grus, Franz H.; Patzak, Andreas; Wess, Jürgen; Pfeiffer, Norbert
2011-01-01
Purpose. To identify the muscarinic acetylcholine receptor subtype that mediates cholinergic vasodilation in murine retinal arterioles. Methods. Muscarinic receptor gene expression was determined in murine retinal arterioles using real-time PCR. To assess the functional relevance of muscarinic receptors for mediating vascular responses, retinal vascular preparations from muscarinic receptor–deficient mice were studied in vitro. Changes in luminal arteriole diameter in response to muscarinic and nonmuscarinic vasoactive substances were measured by video microscopy. Results. Only mRNA for the M3 receptor was detected in retinal arterioles. Thus, M3 receptor–deficient mice (M3R−/−) and respective wild-type controls were used for functional studies. Acetylcholine concentration-dependently dilated retinal arterioles from wild-type mice. In contrast, vasodilation to acetylcholine was almost completely abolished in retinal arterioles from M3R−/− mice, whereas responses to the nitric oxide (NO) donor nitroprusside were retained. Carbachol, an acetylcholinesterase-resistant analog of acetylcholine, also evoked dilation in retinal arterioles from wild-type, but not from M3R−/−, mice. Vasodilation responses from wild-type mice to acetylcholine were negligible after incubation with the non–subtype-selective muscarinic receptor blocker atropine or the NO synthase inhibitor Nω-nitro-l-arginine methyl ester, and were even reversed to contraction after endothelial damage with 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. Conclusions. These findings provide evidence that endothelial M3 receptors mediate cholinergic vasodilation in murine retinal arterioles via activation of NO synthase. PMID:21873683
Dennison, Jennifer B.; Shahmoradgoli, Maria; Liu, Wenbin; Ju, Zhenlin; Meric-Bernstam, Funda; Perou, Charles M.; Sahin, Aysegul A.; Welm, Alana; Oesterreich, Steffi; Sikora, Matthew J.; Brown, Robert E.; Mills, Gordon B.
2016-01-01
Purpose The current study evaluated associative effects of breast cancer cells with the tumor microenvironment and its influence on tumor behavior. Experimental design Formalin-fixed paraffin embedded tissue and matched protein lysates were evaluated from two independent breast cancer patient data sets (TCGA and MD Anderson). Reverse-phase protein arrays (RPPA) were utilized to create a proteomics signature to define breast tumor subtypes. Expression patterns of cell lines and normal breast tissues were utilized to determine markers that were differentially expressed in stroma and cancer cells. Protein localization and stromal contents were evaluated for matched cases by imaging. Results A subtype of breast cancers designated “Reactive,” previously identified by RPPA that was not predicted by mRNA profiling, was extensively characterized. These tumors were primarily estrogen receptor (ER)-positive/human epidermal growth factor receptor (HER)2-negative, low-risk cancers as determined by enrichment of low-grade nuclei, lobular or tubular histopathology, and the luminal A subtype by PAM50. Reactive breast cancers contained high numbers of stromal cells and the highest extracellular matrix content typically without infiltration of immune cells. For ER-positive/HER2-negative cancers, the Reactive classification predicted favorable clinical outcomes in the TCGA cohort (HR = 0.36, P < 0.05). Conclusions A protein stromal signature in breast cancers is associated with a highly differentiated phenotype. The stromal compartment content and proteins are an extended phenotype not predicted by mRNA expression that could be utilized to sub-classify ER-positive/HER2-negative breast cancers. PMID:27172895
Tobin, N. P.; Harrell, J. C.; Lövrot, J.; Egyhazi Brage, S.; Frostvik Stolt, M.; Carlsson, L.; Einbeigi, Z.; Linderholm, B.; Loman, N.; Malmberg, M.; Walz, T.; Fernö, M.; Perou, C. M.; Bergh, J.; Hatschek, T.; Lindström, L. S.; Hatschek, Thomas; Fernö, Mårten; Lindström, Linda Sofie; Hedenfalk, Ingrid; Brandberg, Yvonne; Carstensen, John; Egyhazy, Suzanne; Stolt, Marianne Frostvik; Skoog, Lambert; Hellström, Mats; Maliniemi, Maarit; Svensson, Helene; Åström, Gunnar; Bergh, Jonas; Bjöhle, Judith; Lidbrink, Elisabet; Rotstein, Sam; Wallberg, Birgitta; Einbeigi, Zakaria; Carlsson, Per; Linderholm, Barbro; Walz, Thomas; Loman, Niklas; Malmström, Per; Söderberg, Martin; Malmberg, Martin; Carlsson, Lena; Umeå; Lindh, Birgitta; Sundqvist, Marie; Malmberg, Lena
2015-01-01
Background We and others have recently shown that tumor characteristics are altered throughout tumor progression. These findings emphasize the need for re-examination of tumor characteristics at relapse and have led to recommendations from ESMO and the Swedish Breast Cancer group. Here, we aim to determine whether tumor characteristics and molecular subtypes in breast cancer metastases confer clinically relevant prognostic information for patients. Patients and methods The translational aspect of the Swedish multicenter randomized trial called TEX included 111 patients with at least one biopsy from a morphologically confirmed locoregional or distant breast cancer metastasis diagnosed from December 2002 until June 2007. All patients had detailed clinical information, complete follow-up, and metastasis gene expression information (Affymetrix array GPL10379). We assessed the previously published gene expression modules describing biological processes [proliferation, apoptosis, human epidermal receptor 2 (HER2) and estrogen (ER) signaling, tumor invasion, immune response, and angiogenesis] and pathways (Ras, MAPK, PTEN, AKT-MTOR, PI3KCA, IGF1, Src, Myc, E2F3, and β-catenin) and the intrinsic subtypes (PAM50). Furthermore, by contrasting genes expressed in the metastases in relation to survival, we derived a poor metastasis survival signature. Results A significant reduction in post-relapse breast cancer-specific survival was associated with low-ER receptor signaling and apoptosis gene module scores, and high AKT-MTOR, Ras, and β-catenin module scores. Similarly, intrinsic subtyping of the metastases provided statistically significant post-relapse survival information with the worst survival outcome in the basal-like [hazard ratio (HR) 3.7; 95% confidence interval (CI) 1.3–10.9] and HER2-enriched (HR 4.4; 95% CI 1.5–12.8) subtypes compared with the luminal A subtype. Overall, 25% of the metastases were basal-like, 32% HER2-enriched, 10% luminal A, 28% luminal B, and 5% normal-like. Conclusions We show that tumor characteristics and molecular subtypes of breast cancer metastases significantly influence post-relapse patient survival, emphasizing that molecular investigations at relapse provide prognostic and clinically relevant information. ClinicalTrials.gov This is the translational part of the Swedish multicenter and randomized trial TEX, clinicaltrials.gov identifier nct01433614 (http://www.clinicaltrials.gov/ct2/show/nct01433614). PMID:25361981
Endothelin ETA receptor expression in human cerebrovascular smooth muscle cells.
Yu, J C; Pickard, J D; Davenport, A P
1995-11-01
1. Endothelin (ET) has been implicated in cerebrovasospasm for example, following subarachnoid haemorrhage, and blocking the interaction of ET with its receptors on cerebral vessels, may be of therapeutic benefit. The aim of our study was to characterize endothelin receptor sub-types on medial smooth muscle cells of human cerebral vessels. Cultures of vascular smooth muscle cells were explanted from human cerebral resistance vessels and characterized as human brain smooth muscle cells (HBSMCs). 2. Over a 48 h incubation period, HBSMC cultures secreted comparable levels of immunoreactive (IR) big endothelin-1 (big ET-1) and IR endothelin (ET): 12.7 +/- 10.3 and 8.3 +/- 5.6 pmol/10(6) cells, respectively (mean +/- s.e. mean from three different individuals), into the culture medium. 3. Total RNA was extracted from cultures of human brain smooth muscle cells. Reverse-transcriptase polymerase chain reaction (RI-PCR) assays and subsequent product separation by agarose gel electrophoresis revealed single bands corresponding to the expected product sizes encoding cDNA for ETA (299 base pairs) and ETB (428 base pairs) (n = 3 different cultures). 4. Autoradiography demonstrated the presence of specific binding sites for [125I]-ET-1 which labels all ET receptors, and [125I]-PD151242, an ETA subtype-selective antagonist which exclusively labels ETA receptors, but no specific-binding was detected using ETB subtype-selective [125I]-BQ3020 (n = 3 different cultures, in duplicate). 5. In saturation binding assays, [123I]-ET-1 bound with high affinity: KD = 0.8 +/- 0.1 nM and Bmax = 690 +/- 108 fmol mg-1. A one-site fit was preferred and Hill slopes were close to unity over the concentration range (10(-12) to 10(-8) M). [125I]-PD151242 also bound with similar affinity: KD = 0.4 +/- 0.1 nM and Bmax = 388 +/- 68 fmol mg-1 (mean +/- s.e. mean, n = 3 different cultures). Again, a one-site fit was preferred and Hill slopes were close to unity over the concentration range. Unlabelled PD151242 competed for the binding of [125I]-ET-1 monophasically and analysis of the competition curves indicated that a one-site fit was preferred over a two-site model, implying that the cultures express mainly ETA receptors. 6. Although messenger RNA encoding both ETA and ETB receptors was detected, autoradiographical analysis, as well as binding studies indicate that human cultured brain smooth muscle cells express only ETA receptor protein. Antagonism of this sub-type may be necessary to block the actions of ET-1 in the human cerebral resistance vessels in the vasospasm observed subsequent to subarachnoid haemorrhage.
Targeting Individual GPCRs with Redesigned Nonvisual Arrestins
Gimenez, Luis E.; Vishnivetskiy, Sergey A.; Gurevich, Vsevolod V.
2015-01-01
Numerous human diseases are caused by excessive signaling of mutant G protein-coupled receptors (GPCRs) or receptors that are overstimulated due to upstream signaling imbalances. The feasibility of functional compensation by arrestins with enhanced ability to quench receptor signaling was recently tested in the visual system. The results showed that even in this extremely demanding situation of rods that have no ability to phosphorylate rhodopsin, enhanced arrestin improved rod morphology, light sensitivity, survival, and accelerated photoresponse recovery. Structurally distinct enhanced mutants of arrestins that bind phosphorylated and non-phosphorylated active GPCRs with much higher affinity than parental wild-type (WT) proteins have been constructed. These “super-arrestins” are likely to have the power to dampen the signaling by hyperactive GPCRs. However, most cells express 5–20 GPCR subtypes, only one of which would be overactive, while nonvisual arrestins are remarkably promiscuous, binding hundreds of different GPCRs. Thus, to be therapeutically useful, enhanced versions of nonvisual arrestins must be made fairly specific for particular receptors. Recent identification of very few arrestin residues as key receptor discriminators paves the way to the construction of receptor subtype-specific nonvisual arrestins. PMID:24292829
Ostrowski, N L
1998-11-01
The nonapeptide, oxytocin (OT), has been implicated in a wide range of physiological, behavioral and pharmacological effects related to learning and memory, parturition and lactation, maternal and sexual behavior, and the formation of social attachments. Specific G-protein linked membrane bound OT receptors mediate OTs effects. The unavailability of highly selective pharmacological ligands that discriminate the OT receptor from the highly homologous vasopressin receptors (V1a, V1b and V2 subtypes) has made it difficult to confirm specific effects of oxytocin, particularly in brain regions where OT and multiple AVP receptor subtypes may be coexpressed. Here, data on the oxytocin receptor (OTR) messenger ribonucleic acid (mRNA) localization in brain are presented in the context of a model that proposes a reproductive state-dependent role for steroid-hormone restructuring of neural circuits, and a role for oxytocin in the integration of neural transmission in pathways subserving: (1) steroid-sensitive reproductive behaviors; (2) learning; and (3) reinforcement. It is hypothesized that social attachments emerge as a consequence of a conditioned association between OT-related activity in these pathways and the eliciting stimulus.
Horton, Janet K.; Siamakpour-Reihani, Sharareh; Lee, Chen-Ting; Zhou, Ying; Chen, Wei; Geradts, Joseph; Fels, Diane R.; Hoang, Peter; Ashcraft, Kathleen A.; Groth, Jeff; Kung, Hsiu-Ni; Dewhirst, Mark W.; Chi, Jen-Tsan A.
2015-01-01
Although a standardized approach to radiotherapy has been used to treat breast cancer, regardless of subtype (e.g., luminal, basal), recent clinical data suggest that radiation response may vary significantly among subtypes. We hypothesized that this clinical variability may be due, in part, to differences in cellular radiation response. In this study, we utilized RNA samples for microarray analysis from two sources: 1. Paired pre- and postirradiation breast tumor tissue from 32 early-stage breast cancer patients treated in our unique preoperative radiation Phase I trial; and 2. Sixteen biologically diverse breast tumor cell lines exposed to 0 and 5 Gy irradiation. The transcriptome response to radiation exposure was derived by comparing gene expression in samples before and after irradiation. Genes with the highest coefficient of variation were selected for further evaluation and validated at the RNA and protein level. Gene editing and agonistic antibody treatment were performed to assess the impact of gene modulation on radiation response. Gene expression in our cohort of luminal breast cancer patients was distinctly different before and after irradiation. Further, two distinct patterns of gene expression were observed in our biologically diverse group of breast cancer cell lines pre- versus postirradiation. Cell lines that showed significant change after irradiation were largely luminal subtype, while gene expression in the basal and HER2+ cell lines was minimally impacted. The 100 genes with the most significant response to radiation in patients were identified and analyzed for differential patterns of expression in the radiation-responsive versus nonresponsive cell lines. Fourteen genes were identified as significant, including FAS, a member of the tumor necrosis factor receptor family known to play a critical role in programed cell death. Modulation of FAS in breast cancer cell lines altered radiation response phenotype and enhanced radiation sensitivity in radioresistant basal cell lines. Our findings suggest that cell-type-specific, radiation-induced FAS contributes to subtype-specific breast cancer radiation response and that activation of FAS pathways may be exploited for biologically tailored radiotherapy. PMID:26488758
Purinergic receptor immunoreactivity in the rostral ventromedial medulla.
Close, L N; Cetas, J S; Heinricher, M M; Selden, N R
2009-01-23
The rostral ventromedial medulla (RVM) has long been recognized to play a pivotal role in nociceptive modulation. Pro-nociception within the RVM is associated with a distinct functional class of neurons, ON-cells that begin to discharge immediately before nocifensive reflexes. Anti-nociceptive function within the RVM, including the analgesic response to opiates, is associated with another distinct class, OFF-cells, which pause immediately prior to nocifensive reflexes. A third class of RVM neurons, NEUTRAL-cells, does not alter firing in association with nocifensive reflexes. ON-, OFF- and NEUTRAL-cells show differential responsiveness to various behaviorally relevant neuromodulators, including purinergic ligands. Iontophoresis of semi-selective P2X ligands, which are associated with nociceptive transmission in the spinal cord and dorsal root ganglia, preferentially activate ON-cells. By contrast, P2Y ligands activate OFF-cells and P1 ligands suppress the firing of NEUTRAL cells. The current study investigates the distribution of P2X, P2Y and P1 receptor immunoreactivity in RVM neurons of Sprague-Dawley rats. Co-localization with tryptophan hydroxylase (TPH), a well-established marker for serotonergic neurons was also studied. Immunoreactivity for the four purinergic receptor subtypes examined was abundant in all anatomical subdivisions of the RVM. By contrast, TPH-immunoreactivity was restricted to a relatively small subset of RVM neurons concentrated in the nucleus raphe magnus and pallidus, as expected. There was a significant degree of co-localization of each purinergic receptor subtype with TPH-immunoreactivity. This co-localization was most pronounced for P2Y1 receptor immunoreactivity, although this was the least abundant among the different purinergic receptor subtypes examined. Immunoreactivity for multiple purinergic receptor subtypes was often co-localized in single neurons. These results confirm the physiological finding that purinergic receptors are widely expressed in the RVM. Purinergic neurotransmission in this region may play an important role in nociception and/or nociceptive modulation, as at other levels of the neuraxis.
Kuba, Sayaka; Ishida, Mayumi; Nakamura, Yoshiaki; Yamanouchi, Kosho; Minami, Shigeki; Taguchi, Kenichi; Eguchi, Susumu; Ohno, Shinji
2014-11-01
How breast cancer subtypes should affect treatment decisions for breast cancer patients with brain metastases is unclear. We analyzed local brain metastases treatments and their outcomes according to subtype in patients with breast cancer and brain metastases. We reviewed records and database information for women treated at the National Kyushu Cancer Center between 2001 and 2010. Patients were divided into three breast cancer subtype groups: Luminal (estrogen receptor positive and/or progesterone receptor positive, but human epidermal growth factor receptor 2 negative); human epidermal growth factor receptor 2 positive and triple negative (estrogen receptor negative, progesterone receptor negative and human epidermal growth factor receptor 2 negative). Of 524 advanced breast cancer patients, we reviewed 65 (12%) with brain metastases and records showing estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2 status, as well as outcome data; there were 26 (40%) Luminal, 26 (40%) had human epidermal growth factor receptor 2 and 13 (20%) had triple negative subtypes. There was no statistical difference in the number of brain metastases among subtypes; however, rates of stereotactic radiosurgery or surgery for brain metastases differed significantly by subtype (human epidermal growth factor receptor 2: 81%, Luminal: 42% and triple negative: 47%; P = 0.03). Patients having the human epidermal growth factor receptor 2 subtype, a performance status of ≤1 and ≤4 brain metastases, who underwent systemic therapy after brain metastases and underwent stereotactic radiosurgery or surgery, were predicted to have longer overall survival after brain metastases. Multivariate analysis demonstrated that not having systemic therapy and not having the human epidermal growth factor receptor 2 subtype were independent factors associated with an increased risk of death (hazard ratio 2.4, 95% confidence interval 1.01-5.6; P = 0.05 and hazard ratio 2.9, 95% confidence interval 1.5-5.8; P = 0.003, respectively). Our study showed that local brain treatments and prognosis differed by subtype in breast cancer patients with brain metastases. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Sandoval, Karin E; Farr, Susan A; Banks, William A; Crider, Albert M; Morley, John E; Witt, Ken A
2012-05-15
Soluble amyloid β-protein (Aβ) oligomers are primary mediators of synaptic dysfunction associated with the progression of Alzheimer's disease. Such Aβ oligomers exist dependent on their rates of aggregation and metabolism. Use of selective somatostatin receptor-subtype agonists have been identified as a potential means to mitigate Aβ accumulation in the brain, via regulation of the enzyme neprilysin. Herein, we first evaluated the impact of the somatostatin receptor subtype-4 agonist 1-[3-[N-(5-Bromopyridin-2-yl)-N-(3,4-dichlorobenzyl)amino]propyl]-3-[3-(1H-imidazol-4-yl)propyl]thiourea (NNC 26-9100) on learning and memory in 12-month SAMP8 mice (i.c.v. injection). NNC 26-9100 (0.2 μg-dose) was shown to enhance both learning (T-maze) and memory (object recognition) compared to vehicle controls. Cortical and hippocampal tissues were evaluated subsequent to NNC 26-9100 (0.2 μg) or vehicle administration for changes in neprilysin activity, along with protein expression of amyloid-precursor protein (APP), neprilysin, and Aβ₁₋₄₂ oligomers within respective cellular fractions (extracellular, intracellular and membrane). NNC 26-9100 increased neprilysin activity in cortical tissue, with an associated protein expression increase in the extracellular fraction and decreased in the intracellular fraction. A decrease in intracellular APP expression was found with treatment in both cortical and hippocampal tissues. NNC 26-9100 also significantly decreased expression of Aβ₁₋₄₂ trimers within both the extracellular and intracellular cortical fractions. No expression changes were found in membrane fractions for any protein. These finding suggest the potential use of selective SSTR4 agonists to mitigate toxic oligomeric forms of Aβ₁₋₄₂ in critical regions of the brain identified with learning and memory decline. Copyright © 2012 Elsevier B.V. All rights reserved.
Characterization of endogenous calcium responses in neuronal cell lines.
Vetter, Irina; Lewis, Richard J
2010-03-15
An increasing number of putative therapeutic targets have been identified in recent years for the treatment of neuronal pathophysiologies including pain, epilepsy, stroke and schizophrenia. Many of these targets signal through calcium (Ca(2+)), either by directly facilitating Ca(2+) influx through an ion channel, or through activation of G proteins that couple to intracellular Ca(2+) stores or voltage-gated Ca(2+) channels. Immortalized neuronal cell lines are widely used models to study neuropharmacology. However, systematic pharmacological characterization of the receptors and ion channels expressed in these cell lines is lacking. In this study, we systematically assessed endogenous Ca(2+) signaling in response to addition of agonists at potential therapeutic targets in a range of cell lines of neuronal origin (ND7/23, SH-SY5Y, 50B11, F11 and Neuro2A cells) as well as HEK293 cells, a cell line commonly used for over-expression of receptors and ion channels. This study revealed a remarkable diversity of endogenous Ca(2+) responses in these cell lines, with one or more cell lines responding to addition of trypsin, bradykinin, ATP, nicotine, acetylcholine, histamine and neurotensin. Subtype specificity of these responses was inferred from agonist potency and the effect of receptor subtype specific antagonist. Surprisingly, HEK293 and SH-SY5Y cells responded to the largest number of agonists with potential roles in neuronal signaling. These findings have implications for the heterologous expression of neuronal receptors and ion channels in these cell lines, and highlight the potential of neuron-derived cell lines for the study of a range of endogenously expressed receptors and ion channels that signal through Ca(2+). Crown Copyright 2009. Published by Elsevier Inc. All rights reserved.
Strong, Paul V; Greenwood, Benjamin N; Fleshner, Monika
2009-05-01
Rats exposed to an uncontrollable stressor demonstrate a constellation of behaviors such as exaggerated freezing and deficits in shuttle box escape learning. These behaviors in rats have been called learned helplessness and have been argued to model human stress-related mood disorders. Learned helplessness is thought to be caused by hyperactivation of serotonin (5-HT) neurons in the dorsal raphe nucleus (DRN) and a subsequent exaggerated release of 5-HT in DRN projection sites. Blocking 5-HT(2C) receptors in the face of an increase in serotonin can alleviate anxiety behaviors in some animal models. However, specific 5-HT receptor subtypes involved in learned helplessness remain unknown. The current experiments tested the hypothesis that 5-HT(2C) receptor activation is necessary and sufficient for the expression of learned helplessness. The selective 5-HT(2C) receptor antagonist SB 242084 (1.0 mg/kg) administered i.p. to adult male Fischer 344 rats prior to shuttle box behavioral testing, but not before stress, blocked stress-induced deficits in escape learning but had no effect on the exaggerated shock-elicited freezing. The selective 5-HT(2C) receptor agonist CP-809101 was sufficient to produce learned helplessness-like behaviors in the absence of prior stress and these effects were blocked by pretreatment with SB 242084. Results implicate the 5-HT(2C) receptor subtype in mediating the shuttle box escape deficits produced by exposure to uncontrollable stress and suggest that different postsynaptic 5-HT receptor subtypes underlie the different learned helplessness behaviors.
Soukup, Ondrej; Winder, Michael; Killi, Uday Kumar; Wsol, Vladimir; Jun, Daniel; Kuca, Kamil; Tobin, Gunnar
2017-01-01
Background Pharmaceuticals with targets in the cholinergic transmission have been used for decades and are still fundamental treatments in many diseases and conditions today. Both the transmission and the effects of the somatomotoric and the parasympathetic nervous systems may be targeted by such treatments. Irrespective of the knowledge that the effects of neuronal signalling in the nervous systems may include a number of different receptor subtypes of both the nicotinic and the muscarinic receptors, this complexity is generally overlooked when assessing the mechanisms of action of pharmaceuticals. Methods We have search of bibliographic databases for peer-reviewed research literature focused on the cholinergic system. Also, we have taken advantage of our expertise in this field to deduce the conclusions of this study. Results Presently, the life cycle of acetylcholine, muscarinic receptors and their effects are reviewed in the major organ systems of the body. Neuronal and non-neuronal sources of acetylcholine are elucidated. Examples of pharmaceuticals, in particular cholinesterase inhibitors, affecting these systems are discussed. The review focuses on salivary glands, the respiratory tract and the lower urinary tract, since the complexity of the interplay of different muscarinic receptor subtypes is of significance for physiological, pharmacological and toxicological effects in these organs. Conclusion Most pharmaceuticals targeting muscarinic receptors are employed at such large doses that no selectivity can be expected. However, some differences in the adverse effect profile of muscarinic antagonists may still be explained by the variation of expression of muscarinic receptor subtypes in different organs. However, a complex pattern of interactions between muscarinic receptor subtypes occurs and needs to be considered when searching for selective pharmaceuticals. In the development of new entities for the treatment of for instance pesticide intoxication, the muscarinic receptor selectivity needs to be considered. Reactivators generally have a muscarinic M2 receptor acting profile. Such a blockade may engrave the situation since it may enlarge the effect of the muscarinic M3 receptor effect. This may explain why respiratory arrest is the major cause for deaths by esterase blocking. PMID:27281175
P2X purinergic receptor ligands: recently patented compounds.
Gunosewoyo, Hendra; Kassiou, Michael
2010-05-01
P2X channels are ionotropic purinergic receptors that are currently under scrutiny as attractive targets for novel therapeutics in areas including chronic inflammation, pain and depression. Their wide expression in the CNS, recent advances in the biochemical and pharmacological properties as well as increasing numbers of patents published in this research domain demand a review in this field. The patent literature covering novel drug-like antagonists for each P2X receptor subtype (P2X1R to P2X7R) up to December 2009 is described in this review article together with their recent highlights in pharmacology. Readers will gain an up-to-date overview of patents covering drug-like antagonists for seven P2X receptor subtypes within the last 4 years. P2X7R antagonists and other P2X inhibitors will probably be on the market for combating rheumatoid arthritis and other diseases. Some P2X7R antagonists are already in Phase I and II clinical trials.
Wang, Rui; Mellem, Jerry E.; Jensen, Michael; Brockie, Penelope J.; Walker, Craig S.; Hoerndli, Frédéric J.; Madsen, David M.; Maricq, Andres V.
2012-01-01
Summary The neurotransmitter glutamate mediates excitatory synaptic transmission by gating ionotropic glutamate receptors (iGluRs). AMPA receptors (AMPARs), a subtype of iGluR, are strongly implicated in synaptic plasticity, learning and memory. We previously discovered two classes of AMPAR auxiliary proteins in C. elegans that modify receptor kinetics and thus change synaptic transmission. Here, we have identified another auxiliary protein, SOL-2, a CUB-domain protein that associates with both the related auxiliary subunit SOL-1 and with the GLR-1 AMPAR. In sol-2 mutants, behaviors dependent on glutamatergic transmission are disrupted, GLR-1-mediated currents are diminished, and GLR-1 desensitization and pharmacology are modified. Remarkably, a secreted variant of SOL-1 delivered in trans can rescue sol-1 mutants and this rescue depends on in cis expression of SOL-2. Finally, we demonstrate that SOL-1 and SOL-2 have an ongoing role in the adult nervous system to control AMPAR-mediated currents. PMID:22958824
Wang, Rui; Mellem, Jerry E; Jensen, Michael; Brockie, Penelope J; Walker, Craig S; Hoerndli, Frédéric J; Hauth, Linda; Madsen, David M; Maricq, Andres V
2012-09-06
The neurotransmitter glutamate mediates excitatory synaptic transmission by gating ionotropic glutamate receptors (iGluRs). AMPA receptors (AMPARs), a subtype of iGluR, are strongly implicated in synaptic plasticity, learning, and memory. We previously discovered two classes of AMPAR auxiliary proteins in C. elegans that modify receptor kinetics and thus change synaptic transmission. Here, we have identified another auxiliary protein, SOL-2, a CUB-domain protein that associates with both the related auxiliary subunit SOL-1 and with the GLR-1 AMPAR. In sol-2 mutants, behaviors dependent on glutamatergic transmission are disrupted, GLR-1-mediated currents are diminished, and GLR-1 desensitization and pharmacology are modified. Remarkably, a secreted variant of SOL-1 delivered in trans can rescue sol-1 mutants, and this rescue depends on in cis expression of SOL-2. Finally, we demonstrate that SOL-1 and SOL-2 have an ongoing role in the adult nervous system to control AMPAR-mediated currents. Copyright © 2012 Elsevier Inc. All rights reserved.
GABAA receptor: Positive and negative allosteric modulators.
Olsen, Richard W
2018-01-31
gamma-Aminobutyric acid (GABA)-mediated inhibitory neurotransmission and the gene products involved were discovered during the mid-twentieth century. Historically, myriad existing nervous system drugs act as positive and negative allosteric modulators of these proteins, making GABA a major component of modern neuropharmacology, and suggesting that many potential drugs will be found that share these targets. Although some of these drugs act on proteins involved in synthesis, degradation, and membrane transport of GABA, the GABA receptors Type A (GABA A R) and Type B (GABA B R) are the targets of the great majority of GABAergic drugs. This discovery is due in no small part to Professor Norman Bowery. Whereas the topic of GABA B R is appropriately emphasized in this special issue, Norman Bowery also made many insights into GABA A R pharmacology, the topic of this article. GABA A R are members of the ligand-gated ion channel receptor superfamily, a chloride channel family of a dozen or more heteropentameric subtypes containing 19 possible different subunits. These subtypes show different brain regional and subcellular localization, age-dependent expression, and potential for plastic changes with experience including drug exposure. Not only are GABA A R the targets of agonist depressants and antagonist convulsants, but most GABA A R drugs act at other (allosteric) binding sites on the GABA A R proteins. Some anxiolytic and sedative drugs, like benzodiazepine and related drugs, act on GABA A R subtype-dependent extracellular domain sites. General anesthetics including alcohols and neurosteroids act at GABA A R subunit-interface trans-membrane sites. Ethanol at high anesthetic doses acts on GABA A R subtype-dependent trans-membrane domain sites. Ethanol at low intoxicating doses acts at GABA A R subtype-dependent extracellular domain sites. Thus GABA A R subtypes possess pharmacologically specific receptor binding sites for a large group of different chemical classes of clinically important neuropharmacological agents. Copyright © 2018 Elsevier Ltd. All rights reserved.
Sha, F; Ye, X; Zhao, W; Xu, C-L; Wang, L; Ding, M-H; Bi, A-L; Wu, J-F; Jiang, W-J; Guo, D-D; Guo, J-G; Bi, H-S
2015-02-26
Gamma-aminobutyric acid (GABA) is a major inhibitory neurotransmitter of the retina and affects myopic development. Electroacupuncture (EA) is widely utilized to treat myopia in clinical settings. However, there are few reports on whether EA affects the level of retinal GABA during myopic development. To study this issue, in the present study, we explored the changes of retinal GABA content and the expression of its receptor subtypes, and the effects of EA stimulation on them in a guinea pig model with lens-induced myopia (LIM). Our results showed that the content of GABA and the expression of GABAA and GABAC receptors of retina were up-regulated during the development of myopia, and this up-regulation was inhibited by applying EA to Hegu (LI4) and Taiyang (EX-HN5) acupoints. Moreover, these effects of EA show a positional specificity. While applying EA at a sham acupoint, no apparent change of myopic retinal GABA and its receptor subtypes was observed. Taken together, our findings suggest that LIM is effective to up-regulate the level of retinal GABA, GABAA and GABAC receptors in guinea pigs and the effect may be inhibited by EA stimulation at LI4 and EX-HN5 acupoints. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
S100A8/A9 is associated with estrogen receptor loss in breast cancer.
Bao, Y I; Wang, Antao; Mo, Juanfen
2016-03-01
S100A8 and S100A9 are calcium-binding proteins that are secreted primarily by granulocytes and monocytes, and are upregulated during the inflammatory response. S100A8 and S100A9 have been identified to be expressed by epithelial cells involved in malignancy. In the present study, the transcriptional levels of S100A8 and S100A9 were investigated in various subtypes of breast cancer (BC), and the correlation with estrogen receptor 1 (ESR1) and GATA binding protein 3 (GATA3) gene expression was evaluated using microarray datasets. The expression of S100A8 and S100A9 in BC cells was assessed by reverse transcription-polymerase chain reaction (RT-PCR). The regulation of ESR1 and GATA3 by administration of recombinant S100A8/A9 was examined in the BC MCF-7 cell line using quantitative (q)PCR. The association between S100A8 and S100A9 and overall survival (OS) was investigated in GeneChip® data of BC. The expression levels of S100A8 and S100A9 were higher in human epidermal growth factor receptor 2 (Her2)-amplified and basal-like BC. The messenger (m)RNA levels of S100A8 and S100A9 were inversely correlated with ESR1 and GATA3 expression. S100A8/A9 induced a 10-fold decrease in the mRNA levels of ESR1 in MCF-7 cells. Poor OS was associated with high expression levels of S100A9, but not with high expression levels of S100A8 in BC. In conclusion, strong expression and secretion of S100A8/A9 may be associated with the loss of estrogen receptor in BC, and may be involved in the poor prognosis of Her2+/basal-like subtypes of BC.
S100A8/A9 is associated with estrogen receptor loss in breast cancer
BAO, YI; WANG, ANTAO; MO, JUANFEN
2016-01-01
S100A8 and S100A9 are calcium-binding proteins that are secreted primarily by granulocytes and monocytes, and are upregulated during the inflammatory response. S100A8 and S100A9 have been identified to be expressed by epithelial cells involved in malignancy. In the present study, the transcriptional levels of S100A8 and S100A9 were investigated in various subtypes of breast cancer (BC), and the correlation with estrogen receptor 1 (ESR1) and GATA binding protein 3 (GATA3) gene expression was evaluated using microarray datasets. The expression of S100A8 and S100A9 in BC cells was assessed by reverse transcription-polymerase chain reaction (RT-PCR). The regulation of ESR1 and GATA3 by administration of recombinant S100A8/A9 was examined in the BC MCF-7 cell line using quantitative (q)PCR. The association between S100A8 and S100A9 and overall survival (OS) was investigated in GeneChip® data of BC. The expression levels of S100A8 and S100A9 were higher in human epidermal growth factor receptor 2 (Her2)-amplified and basal-like BC. The messenger (m)RNA levels of S100A8 and S100A9 were inversely correlated with ESR1 and GATA3 expression. S100A8/A9 induced a 10-fold decrease in the mRNA levels of ESR1 in MCF-7 cells. Poor OS was associated with high expression levels of S100A9, but not with high expression levels of S100A8 in BC. In conclusion, strong expression and secretion of S100A8/A9 may be associated with the loss of estrogen receptor in BC, and may be involved in the poor prognosis of Her2+/basal-like subtypes of BC. PMID:26998104
Tao, Li; Gomez, Scarlett Lin; Keegan, Theresa HM; Kurian, Allison W.; Clarke, Christina A.
2015-01-01
Background Higher breast cancer mortality rates for African-American than non-Hispanic white women are well documented; however, it remains uncertain if this disparity occurs in disease subgroups defined by tumor molecular markers and stage at diagnosis. We examined racial differences in outcome according to subtype and stage in a diverse, population-based series of 103,498 patients. Methods We obtained data for all invasive breast cancers diagnosed 1/1/2005-12/31/2012 and followed through 12/31/2012 among 93,760 non-Hispanic white and 9,738 African-American women in California. Molecular subtypes were categorized according to tumor expression of hormone receptor (HR, based on estrogen and progesterone receptors) and human epidermal growth factor receptor 2 (HER2). Cox proportional hazards models were used to calculate hazard ratios (HR) and 95% confidence intervals (CI) for breast cancer-specific mortality. Results After adjustment for patient, tumor and treatment characteristics, outcomes were comparable by race for Stage I or IV cancer regardless of subtype, and HR+/HER2+ or HR-/HER2+ cancer regardless of stage. We found substantially higher hazards of breast cancer death among African-American women with Stage II/III HR+/HER2- (HR, 1.31, 95% CI, 1.03-1.65, and HR, 1.39, 95% CI, 1.10-1.75, respectively) and Stage III triple-negative cancers relative to whites. Conclusions There are substantial racial/ethnic disparities among patients with Stages II/III HR+/HER2- and Stage III triple-negative breast cancers but not for other subtype and stage. Impact These data provide insights to assess barriers to targeted treatment (e.g. trastuzumab or endocrine therapy) of particular subtypes of breast cancer among African-American patients. PMID:25969506
Tao, Li; Gomez, Scarlett Lin; Keegan, Theresa H M; Kurian, Allison W; Clarke, Christina A
2015-07-01
Higher breast cancer mortality rates for African-American than non-Hispanic White women are well documented; however, it remains uncertain if this disparity occurs in disease subgroups defined by tumor molecular markers and stage at diagnosis. We examined racial differences in outcome according to subtype and stage in a diverse, population-based series of 103,498 patients. We obtained data for all invasive breast cancers diagnosed between January 1, 2005, and December 31, 2012, and followed through December 31, 2012, among 93,760 non-Hispanic White and 9,738 African-American women in California. Molecular subtypes were categorized according to tumor expression of hormone receptor (HR, based on estrogen and progesterone receptors) and human epidermal growth factor receptor 2 (HER2). Cox proportional hazards models were used to calculate relative hazard (RH) and 95% confidence intervals (CI) for breast cancer-specific mortality. After adjustment for patient, tumor, and treatment characteristics, outcomes were comparable by race for stage I or IV cancer regardless of subtype, and HR(+)/HER2(+) or HR(-)/HER2(+) cancer regardless of stage. We found substantially higher hazards of breast cancer death among African-American women with stage II/III HR(+)/HER2(-) (RH, 1.31; 95% CI, 1.03-1.65; and RH, 1.39; 95% CI, 1.10-1.75, respectively) and stage III triple-negative cancers relative to Whites. There are substantial racial/ethnic disparities among patients with stages II/III HR(+)/HER2(-) and stage III triple-negative breast cancers but not for other subtype and stage. These data provide insights to assess barriers to targeted treatment (e.g., trastuzumab or endocrine therapy) of particular subtypes of breast cancer among African-American patients. ©2015 American Association for Cancer Research.
Neurotrophin Receptors TrkA, p75NTR, and Sortilin Are Increased and Targetable in Thyroid Cancer.
Faulkner, Sam; Jobling, Philip; Rowe, Christopher W; Rodrigues Oliveira, S M; Roselli, Severine; Thorne, Rick F; Oldmeadow, Christopher; Attia, John; Jiang, Chen Chen; Zhang, Xu Dong; Walker, Marjorie M; Hondermarck, Hubert
2018-01-01
Neurotrophin receptors are emerging targets in oncology, but their clinicopathologic significance in thyroid cancer is unclear. In this study, the neurotrophin tyrosine receptor kinase TrkA (also called NTRK1), the common neurotrophin receptor p75 NTR , and the proneurotrophin receptor sortilin were analyzed with immunohistochemistry in a cohort of thyroid cancers (n = 128) and compared with adenomas and normal thyroid tissues (n = 62). TrkA was detected in 20% of thyroid cancers, compared with none of the benign samples (P = 0.0007). TrkA expression was independent of histologic subtypes but associated with lymph node metastasis (P = 0.0148), suggesting the involvement of TrkA in tumor invasiveness. Nerves in the tumor microenvironment were positive for TrkA. p75 NTR was overexpressed in anaplastic thyroid cancers compared with papillary and follicular subtypes (P < 0.0001). Sortilin was overexpressed in thyroid cancers compared with benign thyroid tissues (P < 0.0001). Neurotrophin receptor expression was confirmed in a panel of thyroid cancer cell lines at the mRNA and protein levels. Functional investigations using the anaplastic thyroid cancer cell line CAL-62 found that siRNA against TrkA, p75 NTR , and sortilin decreased cell survival and cell migration through decreased SRC and ERK activation. Together, these data reveal TrkA, p75 NTR , and sortilin as potential therapeutic targets in thyroid cancer. Copyright © 2018 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
P2 receptor subtypes in the cardiovascular system.
Kunapuli, S P; Daniel, J L
1998-01-01
Extracellular nucleotides have been implicated in a number of physiological functions. Nucleotides act on cell-surface receptors known as P2 receptors, of which several subtypes have been cloned. Both ATP and ADP are stored in platelets and are released upon platelet activation. Furthermore, nucleotides are also released from damaged or broken cells. Thus during vascular injury nucleotides play an important role in haemostasis through activation of platelets, modulation of vascular tone, recruitment of neutrophils and monocytes to the site of injury, and facilitation of adhesion of leucocytes to the endothelium. Nucleotides also moderate these functions by generating nitric oxide and prostaglandin I2 through activation of endothelial cells, and by activating different receptor subtypes on vascular smooth muscle cells. In the heart, P2 receptors regulate contractility through modulation of L-type Ca2+ channels, although the molecular mechanisms involved are still under investigation. Classical pharmacological studies have identified several P2 receptor subtypes in the cardiovascular system. Molecular pharmacological studies have clarified the nature of some of these receptors, but have complicated the picture with others. In platelets, the classical P2T receptor has now been resolved into three P2 receptor subtypes: the P2Y1, P2X1 and P2TAC receptors (the last of these, which is coupled to the inhibition of adenylate cyclase, is yet to be cloned). In peripheral blood leucocytes, endothelial cells, vascular smooth muscle cells and cardiomyocytes, the effects of classical P2X, P2Y and P2U receptors have been found to be mediated by more than one P2 receptor subtype. However, the exact functions of these multiple receptor subtypes remain to be understood, as P2-receptor-selective agonists and antagonists are still under development. PMID:9841859
Liu, Xiaozhen; Yang, Yang; Feng, Xiaolong; Shen, Honghong; Liu, Jian; Liu, Xia; Niu, Yun
2016-01-01
As a new subtype of breast cancer, molecular apocrine breast cancer (MABC) is estrogen receptor (ER) and progesterone receptor (PR) negative expression, but androgen receptor (AR) positive expression. The prognostic significance and clinical biological behavior of MABC have remained unclear up to now. This study aimed to analysis the distant metastasis behavior and response to adjuvant radiotherapy and chemotherapy of MABC subgroup. The report showed that there were significant differences between early and late distant metastasizing tumors with respect to Ki67, epidermal growth factor receptor 2 (HER2) and vascular endothelial growth factor (VEGF) expressions by a retrospective analysis consisting of 410 invasive breast cancer patients, which included 205 MABC and 205 nonMABC cases. MABC subgroup metastasized earlier than nonMABC subgroup, and MABC showed a tendency for a higher metastasis rate in lung, liver and brain, but lower in bone. HER2-positive or VEGF-positive tumors were more inclined to develop bone metastasis within MABC subgroup. The survival rate was superior for patients undergone both adjuvant radiotherapy and chemotherapy than those undergone chemotherapy alone in nonMABC subgroup, but there was no significant difference in MABC subgroup. Our data suggested that MABC subgroup seemed to develop distant metastasis earlier than nonMABC subgroup, and patients with MABC indicated poor prognosis. This study might also provide a foundation for helping patients receive reasonable treatments according to molecular subtype. PMID:27340922
Liu, Xiaozhen; Yang, Yang; Feng, Xiaolong; Shen, Honghong; Liu, Jian; Liu, Xia; Niu, Yun
2016-08-02
As a new subtype of breast cancer, molecular apocrine breast cancer (MABC) is estrogen receptor (ER) and progesterone receptor (PR) negative expression, but androgen receptor (AR) positive expression. The prognostic significance and clinical biological behavior of MABC have remained unclear up to now. This study aimed to analysis the distant metastasis behavior and response to adjuvant radiotherapy and chemotherapy of MABC subgroup. The report showed that there were significant differences between early and late distant metastasizing tumors with respect to Ki67, epidermal growth factor receptor 2 (HER2) and vascular endothelial growth factor (VEGF) expressions by a retrospective analysis consisting of 410 invasive breast cancer patients, which included 205 MABC and 205 nonMABC cases. MABC subgroup metastasized earlier than nonMABC subgroup, and MABC showed a tendency for a higher metastasis rate in lung, liver and brain, but lower in bone. HER2-positive or VEGF-positive tumors were more inclined to develop bone metastasis within MABC subgroup. The survival rate was superior for patients undergone both adjuvant radiotherapy and chemotherapy than those undergone chemotherapy alone in nonMABC subgroup, but there was no significant difference in MABC subgroup. Our data suggested that MABC subgroup seemed to develop distant metastasis earlier than nonMABC subgroup, and patients with MABC indicated poor prognosis. This study might also provide a foundation for helping patients receive reasonable treatments according to molecular subtype.
Muscarinic acetylcholine receptor expression in aganglionic bowel.
Oue, T; Yoneda, A; Shima, H; Puri, P
2000-01-01
In Hirschsprung's disease (HD) there exists an overabundance of acetylcholine (ACh), which in turn stimulates excessive production of the enzyme acetylcholinesterase. Muscarinic ACh receptors (mAChRs) play an important role in smooth-muscle contraction. Recent studies have indicated five different subtypes of mAChRs encoded by five different genes, ml to m5. The purpose of this study was to investigate the expression of each mAChR subtype in aganglionic (AG) colon to further understand the pathophysiology of HD. Entire colon resected at the time of pull-through operation for HD was obtained from 14 patients. Specimens obtained at autopsy from 8 age-matched patients without gastrointestinal disease acted as controls. Frozen sections were used for indirect immunohistochemistry as well as in-situ hybridization. Immunohistochemistry was performed using specific antiserum against each mAChR subtype and in-situ hybridization was performed using specific oligonucleotide probes against ml to m5 subtypes. Messenger RNA (mRNA) was extracted from normoganglionic (NG) and AG bowel of HD patients and normal control bowel. Reverse transcription-polymerase chain reaction was performed to evaluate mRNA levels of each mAChR subtype. To adjust the levels of mRNA expression, a housekeeping gene G3PDH, known to be expressed normally, was used as an internal control. Strong m2 and m3 immunoreactivity was observed in the mucosal layer, smooth-muscle layers, and myenteric plexus of NG bowel, whereas ml immunoreactivity was only detected in the mucosal layer. The most striking finding was the abundance of m3-immunoreactive fibers in muscle layers of NG bowel while there was a total lack of m3 fibers in smooth-muscle of AG bowel. Intense mRNA signals encoding m2 and m3 and to a lesser degree ml were detected in NG bowel, and these signals were weak in AG bowel. Immunoreactivity and mRNA expression of m4 and m5 was not detected in NG or AG bowel. The lack of m3-immunoreactive fibers in the smooth-muscle layers of AG bowel and decreased m2 and m3 mRNA expression in AG bowel may be responsible for the motility dysfunction in the aganglionic segment.
Lin, Meng-Lay; Patel, Hetal; Remenyi, Judit; Banerji, Christopher R S; Lai, Chun-Fui; Periyasamy, Manikandan; Lombardo, Ylenia; Busonero, Claudia; Ottaviani, Silvia; Passey, Alun; Quinlan, Philip R; Purdie, Colin A; Jordan, Lee B; Thompson, Alastair M; Finn, Richard S; Rueda, Oscar M; Caldas, Carlos; Gil, Jesus; Coombes, R Charles; Fuller-Pace, Frances V; Teschendorff, Andrew E; Buluwela, Laki; Ali, Simak
2015-08-28
The Nuclear Receptor (NR) superfamily of transcription factors comprises 48 members, several of which have been implicated in breast cancer. Most important is estrogen receptor-α (ERα), which is a key therapeutic target. ERα action is facilitated by co-operativity with other NR and there is evidence that ERα function may be recapitulated by other NRs in ERα-negative breast cancer. In order to examine the inter-relationships between nuclear receptors, and to obtain evidence for previously unsuspected roles for any NRs, we undertook quantitative RT-PCR and bioinformatics analysis to examine their expression in breast cancer. While most NRs were expressed, bioinformatic analyses differentiated tumours into distinct prognostic groups that were validated by analyzing public microarray data sets. Although ERα and progesterone receptor were dominant in distinguishing prognostic groups, other NR strengthened these groups. Clustering analysis identified several family members with potential importance in breast cancer. Specifically, RORγ is identified as being co-expressed with ERα, whilst several NRs are preferentially expressed in ERα-negative disease, with TLX expression being prognostic in this subtype. Functional studies demonstrated the importance of TLX in regulating growth and invasion in ERα-negative breast cancer cells.
Hasegawa, Shunji; Ichiyama, Takashi; Kohno, Fumitaka; Korenaga, Yuno; Ohsaki, Ayami; Hirano, Reiji; Haneda, Yasuhiro; Fukano, Reiji; Furukawa, Susumu
2010-01-01
Beta1-integrins mediate cell attachment to different extracellular matrix proteins, intracellular proteins, and intercellular adhesions. Recently, it has been reported that prostaglandin E2 (PGE2) has anti-inflammatory properties such as inhibition of the expression of adhesion molecules or production of chemokines. However, the effect of PGE2 on the expression of beta1-integrin remains unknown. In this study, we investigated the effects of PGE2 on the expression of beta1-integrin in the human monocytic cell line THP-1 and in CD14+ monocytes/macrophages in human peripheral blood. For this, we examined the role of four subtypes of PGE2 receptors and E-prostanoid (EP) receptors on PGE2-mediated inhibition. We found that PGE2 significantly inhibited the expression of beta1-integrin, mainly through EP4 receptors in THP-1 cells and CD14+ monocytes/macrophages in human peripheral blood. We suggest that PGE2 has anti-inflammatory effects, leading to the inhibited expression of beta1-integrin in human monocytes/macrophages, and that the EP4 receptor may play an important role in PGE2-mediated inhibition. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Peroxisome-proliferator-activated receptors regulate redox signaling in the cardiovascular system
Kim, Teayoun; Yang, Qinglin
2013-01-01
Peroxisome-proliferator-activated receptors (PPARs) comprise three subtypes (PPARα, δ and γ) to form a nuclear receptor superfamily. PPARs act as key transcriptional regulators of lipid metabolism, mitochondrial biogenesis, and anti-oxidant defense. While their roles in regulating lipid metabolism have been well established, the role of PPARs in regulating redox activity remains incompletely understood. Since redox activity is an integral part of oxidative metabolism, it is not surprising that changes in PPAR signaling in a specific cell or tissue will lead to alteration of redox state. The effects of PPAR signaling are directly related to PPAR expression, protein activities and PPAR interactions with their coregulators. The three subtypes of PPARs regulate cellular lipid and energy metabolism in most tissues in the body with overlapping and preferential effects on different metabolic steps depending on a specific tissue. Adding to the complexity, specific ligands of each PPAR subtype may also display different potencies and specificities of their role on regulating the redox pathways. Moreover, the intensity and extension of redox regulation by each PPAR subtype are varied depending on different tissues and cell types. Both beneficial and adverse effects of PPAR ligands against cardiovascular disorders have been extensively studied by many groups. The purpose of the review is to summarize the effects of each PPAR on regulating redox and the underlying mechanisms, as well as to discuss the implications in the cardiovascular system. PMID:23802046
Linnenbringer, Erin; Gehlert, Sarah; Geronimus, Arline T.
2017-01-01
Hormone receptor negative (HR−) breast cancer subtypes are etiologically distinct from the more common, less aggressive, and more treatable form of estrogen receptor positive (ER+) breast cancer. Numerous population-based studies have found that, in the United States, Black women are 2 to 3 times more likely to develop HR− breast cancer than White women. Much of the existing research on racial disparities in breast cancer subtype has focused on identifying predisposing genetic factors associated with African ancestry. This approach fails to acknowledge that racial stratification shapes a wide range of environmental and social exposures over the life course. Human stress genomics considers the role of individual stress perceptions on gene expression. Yet, the role of structurally rooted biopsychosocial processes that may be activated by the social patterning of stressors in an historically unequal society, whether perceived by individual black women or not, could also impact cellular physiology and gene expression patterns relevant to HR− breast cancer etiology. Using the weathering hypothesis as our conceptual framework, we develop a structural perspective for examining racial disparities in breast cancer subtypes, integrating important findings from the stress biology, breast cancer epidemiology, and health disparities literatures. After integrating key findings from these largely independent literatures, we develop a theoretically and empirically guided framework for assessing potential multilevel factors relevant to the development of HR− breast cancer disproportionately among Black women in the US. We hypothesize that a dynamic interplay among socially patterned psychosocial stressors, physiological & behavioral responses, and genomic pathways contribute to the increased risk of HR− breast cancer among Black women. This work provides a basis for exploring potential alternative pathways linking the lived experience of race to the risk of HR- breast cancer, and suggests new avenues for research and public health action. PMID:29333472
Linnenbringer, Erin; Gehlert, Sarah; Geronimus, Arline T
2017-01-01
Hormone receptor negative (HR-) breast cancer subtypes are etiologically distinct from the more common, less aggressive, and more treatable form of estrogen receptor positive (ER+) breast cancer. Numerous population-based studies have found that, in the United States, Black women are 2 to 3 times more likely to develop HR- breast cancer than White women. Much of the existing research on racial disparities in breast cancer subtype has focused on identifying predisposing genetic factors associated with African ancestry. This approach fails to acknowledge that racial stratification shapes a wide range of environmental and social exposures over the life course. Human stress genomics considers the role of individual stress perceptions on gene expression. Yet, the role of structurally rooted biopsychosocial processes that may be activated by the social patterning of stressors in an historically unequal society, whether perceived by individual black women or not, could also impact cellular physiology and gene expression patterns relevant to HR- breast cancer etiology. Using the weathering hypothesis as our conceptual framework, we develop a structural perspective for examining racial disparities in breast cancer subtypes, integrating important findings from the stress biology, breast cancer epidemiology, and health disparities literatures. After integrating key findings from these largely independent literatures, we develop a theoretically and empirically guided framework for assessing potential multilevel factors relevant to the development of HR- breast cancer disproportionately among Black women in the US. We hypothesize that a dynamic interplay among socially patterned psychosocial stressors, physiological & behavioral responses, and genomic pathways contribute to the increased risk of HR- breast cancer among Black women. This work provides a basis for exploring potential alternative pathways linking the lived experience of race to the risk of HR- breast cancer, and suggests new avenues for research and public health action.
P2Y6 Receptor Activation Promotes Inflammation and Tissue Remodeling in Pulmonary Fibrosis
Müller, Tobias; Fay, Susanne; Vieira, Rodolfo Paula; Karmouty-Quintana, Harry; Cicko, Sanja; Ayata, Cemil Korcan; Zissel, Gernot; Goldmann, Torsten; Lungarella, Giuseppe; Ferrari, Davide; Di Virgilio, Francesco; Robaye, Bernard; Boeynaems, Jean-Marie; Lazarowski, Eduardo R.; Blackburn, Michael R.; Idzko, Marco
2017-01-01
Idiopathic pulmonary fibrosis (IPF) is a disease with a poor prognosis and very few available treatment options. The involvement of the purinergic receptor subtypes P2Y2 and P2X7 in fibrotic lung disease has been demonstrated recently. In this study, we investigated the role of P2Y6 receptors in the pathogenesis of IPF in humans and in the animal model of bleomycin-induced lung injury. P2Y6R expression was upregulated in lung structural cells but not in bronchoalveolar lavage (BAL) cells derived from IPF patients as well as in animals following bleomycin administration. Furthermore, BAL fluid levels of the P2Y6R agonist uridine-5′-diphosphate were elevated in animals with bleomycin-induced pulmonary fibrosis. Inflammation and fibrosis following bleomycin administration were reduced in P2Y6R-deficient compared to wild-type animals confirming the pathophysiological relevance of P2Y6R subtypes for fibrotic lung diseases. Experiments with bone marrow chimeras revealed the importance of P2Y6R expression on lung structural cells for pulmonary inflammation and fibrosis. Similar effects were obtained when animals were treated with the P2Y6R antagonist MRS2578. In vitro studies demonstrated that proliferation and secretion of the pro-inflammatory/pro-fibrotic cytokine IL-6 by lung fibroblasts are P2Y6R-mediated processes. In summary, our results clearly demonstrate the involvement of P2Y6R subtypes in the pathogenesis of pulmonary fibrosis. Thus, blocking pulmonary P2Y6 receptors might be a new target for the treatment of IPF. PMID:28878780
Behavioral meaningful opioidergic stimulation activates kappa receptor gene expression
Teodorov, E.; Ferrari, M.F.R.; Fior-Chadi, D.R.; Camarini, R.; Felício, L.F.
2012-01-01
The periaqueductal gray (PAG) has been reported to be a location for opioid regulation of pain and a potential site for behavioral selection in females. Opioid-mediated behavioral and physiological responses differ according to the activity of opioid receptor subtypes. The present study investigated the effects of the peripheral injection of the kappa-opioid receptor agonist U69593 into the dorsal subcutaneous region of animals on maternal behavior and on Oprk1 gene activity in the PAG of female rats. Female Wistar rats weighing 200-250 g at the beginning of the study were randomly divided into 2 groups for maternal behavior and gene expression experiments. On day 5, pups were removed at 7:00 am and placed in another home cage that was distant from their mother. Thirty minutes after removing the pups, the dams were treated with U69593 (0.15 mg/kg, sc) or 0.9% saline (up to 1 mL/kg) and after 30 min were evaluated in the maternal behavior test. Latencies in seconds for pup retrieval, grouping, crouching, and full maternal behavior were scored. The results showed that U69593 administration inhibited maternal behavior (P < 0.05) because a lower percentage of U69593 group dams showed retrieval of first pup, retrieving all pups, grouping, crouching and displaying full maternal behavior compared to the saline group. Opioid gene expression was evaluated using real-time reverse-transcription polymerase chain reaction (RT-PCR). A single injection of U69593 increased Oprk1 PAG expression in both virgin (P < 0.05) and lactating female rats (P < 0.01), with no significant effect on Oprm1 or Oprd1 gene activity. Thus, the expression of kappa-opioid receptors in the PAG may be modulated by single opioid receptor stimulation and behavioral meaningful opioidergic transmission in the adult female might occur simultaneously to specific changes in gene expression of kappa-opioid receptor subtype. This is yet another alert for the complex role of the opioid system in female reproduction. PMID:22641418
Cerebral Artery Alpha-1 AR Subtypes: High Altitude Long-Term Acclimatization Responses
Goyal, Ravi; Goyal, Dipali; Chu, Nina; Van Wickle, Jonathan; Longo, Lawrence D.
2014-01-01
In response to hypoxia and other stress, the sympathetic (adrenergic) nervous system regulates arterial contractility and blood flow, partly through differential activities of the alpha1 (α1) - adrenergic receptor (AR) subtypes (α1A-, α1B-, and α1D-AR). Thus, we tested the hypothesis that with acclimatization to long-term hypoxia (LTH), contractility of middle cerebral arteries (MCA) is regulated by changes in expression and activation of the specific α1-AR subtypes. We conducted experiments in MCA from adult normoxic sheep maintained near sea level (300 m) and those exposed to LTH (110 days at 3801 m). Following acclimatization to LTH, ovine MCA showed a 20% reduction (n = 5; P<0.05) in the maximum tension achieved by 10−5 M phenylephrine (PHE). LTH-acclimatized cerebral arteries also demonstrated a statistically significant (P<0.05) inhibition of PHE-induced contractility in the presence of specific α1-AR subtype antagonists. Importantly, compared to normoxic vessels, there was significantly greater (P<0.05) α1B-AR subtype mRNA and protein levels in LTH acclimatized MCA. Also, our results demonstrate that extracellular regulated kinase 1 and 2 (ERK1/2)-mediated negative feedback regulation of PHE-induced contractility is modulated by α1B-AR subtype. Overall, in ovine MCA, LTH produces profound effects on α1-AR subtype expression and function. PMID:25393740
Robo2 determines subtype-specific axonal projections of trigeminal sensory neurons
Pan, Y. Albert; Choy, Margaret; Prober, David A.; Schier, Alexander F.
2012-01-01
How neurons connect to form functional circuits is central to the understanding of the development and function of the nervous system. In the somatosensory system, perception of sensory stimuli to the head requires specific connections between trigeminal sensory neurons and their many target areas in the central nervous system. Different trigeminal subtypes have specialized functions and downstream circuits, but it has remained unclear how subtype-specific axonal projection patterns are formed. Using zebrafish as a model system, we followed the development of two trigeminal sensory neuron subtypes: one that expresses trpa1b, a nociceptive channel important for sensing environmental chemicals; and a distinct subtype labeled by an islet1 reporter (Isl1SS). We found that Trpa1b and Isl1SS neurons have overall similar axon trajectories but different branching morphologies and distributions of presynaptic sites. Compared with Trpa1b neurons, Isl1SS neurons display reduced branch growth and synaptogenesis at the hindbrain-spinal cord junction. The subtype-specific morphogenesis of Isl1SS neurons depends on the guidance receptor Robo2. robo2 is preferentially expressed in the Isl1SS subset and inhibits branch growth and synaptogenesis. In the absence of Robo2, Isl1SS afferents acquire many of the characteristics of Trpa1b afferents. These results reveal that subtype-specific activity of Robo2 regulates subcircuit morphogenesis in the trigeminal sensory system. PMID:22190641
Cerebral artery alpha-1 AR subtypes: high altitude long-term acclimatization responses.
Goyal, Ravi; Goyal, Dipali; Chu, Nina; Van Wickle, Jonathan; Longo, Lawrence D
2014-01-01
In response to hypoxia and other stress, the sympathetic (adrenergic) nervous system regulates arterial contractility and blood flow, partly through differential activities of the alpha1 (α1) - adrenergic receptor (AR) subtypes (α1A-, α1B-, and α1D-AR). Thus, we tested the hypothesis that with acclimatization to long-term hypoxia (LTH), contractility of middle cerebral arteries (MCA) is regulated by changes in expression and activation of the specific α1-AR subtypes. We conducted experiments in MCA from adult normoxic sheep maintained near sea level (300 m) and those exposed to LTH (110 days at 3801 m). Following acclimatization to LTH, ovine MCA showed a 20% reduction (n = 5; P<0.05) in the maximum tension achieved by 10-5 M phenylephrine (PHE). LTH-acclimatized cerebral arteries also demonstrated a statistically significant (P<0.05) inhibition of PHE-induced contractility in the presence of specific α1-AR subtype antagonists. Importantly, compared to normoxic vessels, there was significantly greater (P<0.05) α1B-AR subtype mRNA and protein levels in LTH acclimatized MCA. Also, our results demonstrate that extracellular regulated kinase 1 and 2 (ERK1/2)-mediated negative feedback regulation of PHE-induced contractility is modulated by α1B-AR subtype. Overall, in ovine MCA, LTH produces profound effects on α1-AR subtype expression and function.
Xia, Zhenfang; Gale, William L.; Chang, Xiaotian; Langenau, David; Patino, Reynaldo; Maule, Alec G.; Densmore, Llewellyn D.
2000-01-01
An estrogen receptor β (ERβ) cDNA fragment was amplified by RT-PCR of total RNAextracted from liver and ovary of immature channel catfish. This cDNA fragment was used to screen an ovarian cDNA library made from an immature female fish. A clone was obtained that contained an open reading frame encoding a 575-amino-acid protein with a deduced molecular weight of 63.9 kDa. Maximum parsimony and Neighbor Joining analyses were used to generate a phylogenetic classification of channel catfish ERβ on the basis of 25 full-length teleost and tetrapod ER sequences. The consensus tree obtained indicated the existence of two major vertebrate ER subtypes, α and β. Within each subtype, and in accordance with established phylogenetic relationships, teleost and tetrapod ER were monophyletic confirming the results of a previous analysis (Z. Xiaet al., 1999, Gen. Comp. Endocrinol. 113, 360–368). Extracts of COS-7 cells transfectedwith channel catfish ERβ cDNA bound estrogen with high affinity (Kd = 0.21 nM) and specificity. The affinity of channel catfish ERβ for estrogen was higher than previously reported for channel catfish ERα. As determined by qualitative RT-PCR, the tissue distributions of ERα and ERβ were similar but not identical. Both ER subtypes were present in ovary and testis. ERα was found in all other tissues examined from juvenile and mature fish of both sexes. ERβ was also found in most tissues except, in most cases, whole blood and head kidney. Interestingly, the pattern of expression of ER subtypes in head kidney always corresponded to the pattern in whole blood. In conclusion, we isolated a channel catfish ERβ with ligand-binding affinity and tissue expression patterns different from ERα. Also, we confirmed the validity of our previously proposed general classification scheme for vertebrate ER into α and β subtypes and within each subtype, into teleost and tetrapod clades.
Segi-Nishida, Eri
2017-01-01
Antidepressant drugs such as selective serotonin reuptake inhibitors (SSRIs) specifically increase serotonin (5-HT) levels in the synaptic cleft and are widely used to treat mood and anxiety disorders. There are 14 established subtypes of 5-HT receptors in rodents, each of which has regionally different expression patterns. Many preclinical studies have suggested that the hippocampus, which contains abundant 5-HT1A and 5-HT4 receptor subtypes in the dentate gyrus (DG), is critically involved in the mechanisms of action of antidepressants. This review article will analyze studies demonstrating regulation of hippocampal functions and hippocampus-dependent behaviors by SSRIs and similar serotonergic agents. Multiple studies indicate that 5-HT1A and 5-HT4 receptor signaling in the DG contributes to SSRI-mediated promotion of neurogenesis and increased neurotrophic factors expression. Chronic SSRI treatment causes functions and phenotypes of mature granule cells (GCs) to revert to immature-like phenotypes defined as a “dematured” state in the DG, and to increase monoamine reactivity at the dentate-to-CA3 synapses, via 5-HT4 receptor signaling. Behavioral studies demonstrate that the 5-HT1A receptors on mature GCs are critical for expression of antidepressant effects in the forced swim test and in novelty suppressed feeding; such studies also note that 5-HT4 receptors mediate neurogenesis-dependent antidepressant activity in, for example, novelty-suppressed feeding. Despite their limitations, the collective results of these studies describe a potential new mechanism of action, in which 5-HT1A and 5-HT4 receptor signaling, either independently or cooperatively, modulates the function of the hippocampal DG at multiple levels, any of which could play a critical role in the antidepressant actions of 5-HT-enhancing drugs. PMID:28559799
Mkumbaye, Sixbert I; Wang, Christian W; Lyimo, Eric; Jespersen, Jakob S; Manjurano, Alphaxard; Mosha, Jacklin; Kavishe, Reginald A; Mwakalinga, Steven B; Minja, Daniel T R; Lusingu, John P; Theander, Thor G; Lavstsen, Thomas
2017-04-01
By attaching infected erythrocytes to the vascular lining, Plasmodium falciparum parasites leave blood circulation and avoid splenic clearance. This sequestration is central to pathogenesis. Severe malaria is associated with parasites expressing an antigenically distinct P. falciparum erythrocyte membrane protein 1 (PfEMP1) subset mediating binding to endothelial receptors. Previous studies indicate that PfEMP1 adhesins with so-called CIDRα1 domains capable of binding endothelial protein C receptor (EPCR) constitute the PfEMP1 subset associated with severe pediatric malaria. To analyze the relative importance of different subtypes of CIDRα1 domains, we compared Pf emp1 transcript levels in children with severe malaria (including 9 fatal and 114 surviving cases), children hospitalized with uncomplicated malaria ( n = 42), children with mild malaria not requiring hospitalization ( n = 10), and children with parasitemia and no ongoing fever ( n = 12). High levels of transcripts encoding EPCR-binding PfEMP1 were found in patients with symptomatic infections, and the abundance of these transcripts increased with disease severity. The compositions of CIDRα1 subtype transcripts varied markedly between patients, and none of the subtypes were dominant. Transcript-level analyses targeting other domain types indicated that subtypes of DBLβ or DBLζ domains might mediate binding phenomena that, in conjunction with EPCR binding, could contribute to pathogenesis. These observations strengthen the rationale for targeting the PfEMP1-EPCR interaction by vaccines and adjunctive therapies. Interventions should target EPCR binding of all CIDRα1 subtypes. Copyright © 2017 American Society for Microbiology.
2009-01-01
Cholinergic transmission in the forebrain is mediated primarily by five subtypes of muscarinic acetylcholine receptors (mAChRs), termed M1−M5. Of the mAChR subtypes, M1 is among the most heavily expressed in regions that are critical for learning and memory and has been viewed as the most critical mAChR subtype for memory and attention mechanisms. Unfortunately, it has been difficult to develop selective activators of M1 and other individual mAChR subtypes, which has prevented detailed studies of the functional roles of selective activation of M1. Using a functional high-throughput screening and subsequent diversity-oriented synthesis approach, we have discovered a novel series of highly selective M1 allosteric agonists. These compounds activate M1 with EC50 values in the 150−500 nM range and have unprecedented, clean ancillary pharmacology (no substantial activity at 10 μM across a large panel of targets). Targeted mutagenesis revealed a potentially novel allosteric binding site in the third extracellular loop of the M1 receptor for these allosteric agonists. Optimized compounds, such as VU0357017, provide excellent brain exposure after systemic dosing and have robust in vivo efficacy in reversing scopolamine-induced deficits in a rodent model of contextual fear conditioning. This series of selective M1 allosteric agonists provides critical research tools to allow dissection of M1-mediated effects in the CNS and potential leads for novel treatments for Alzheimer’s disease and schizophrenia. PMID:21961051
Lapierre, Danielle M.; Tanabe, Natsuko; Pereverzev, Alexey; Spencer, Martha; Shugg, Ryan P. P.; Dixon, S. Jeffrey; Sims, Stephen M.
2010-01-01
Lysophosphatidic acid (LPA) is a bioactive phospholipid whose functions are mediated by multiple G protein-coupled receptors. We have shown that osteoblasts produce LPA, raising the possibility that it mediates intercellular signaling among osteoblasts and osteoclasts. Here we investigated the expression, signaling and function of LPA receptors in osteoclasts. Focal application of LPA elicited transient increases in cytosolic calcium concentration ([Ca2+]i), with 50% of osteoclasts responding at ∼400 nm LPA. LPA-induced elevation of [Ca2+]i was blocked by pertussis toxin or the LPA1/3 receptor antagonist VPC-32183. LPA caused sustained retraction of osteoclast lamellipodia and disrupted peripheral actin belts. Retraction was insensitive to VPC-32183 or pertussis toxin, indicating involvement of a distinct signaling pathway. In this regard, inhibition of Rho-associated kinase stimulated respreading after LPA-induced retraction. Real-time reverse transcription-PCR revealed transcripts encoding LPA1 and to a lesser extent LPA2, LPA4, and LPA5 receptor subtypes. LPA induced nuclear translocation of NFATc1 and enhanced osteoclast survival, effects that were blocked by VPC-32183 or by a specific peptide inhibitor of NFAT activation. LPA slightly reduced the resorptive activity of osteoclasts in vitro. Thus, LPA binds to at least two receptor subtypes on osteoclasts: LPA1, which couples through Gi/o to elevate [Ca2+]i, activate NFATc1, and promote survival, and a second receptor that likely couples through G12/13 and Rho to evoke and maintain retraction through reorganization of the actin cytoskeleton. These findings reveal a signaling axis in bone through which LPA, produced by osteoblasts, acts on multiple receptor subtypes to induce pleiotropic effects on osteoclast activity and function. PMID:20551326
Sweeney, Carol; Bernard, Philip S.; Factor, Rachel E.; Kwan, Marilyn L.; Habel, Laurel A.; Quesenberry, Charles P.; Shakespear, Kaylynn; Weltzien, Erin K.; Stijleman, Inge J.; Davis, Carole A.; Ebbert, Mark T.W.; Castillo, Adrienne; Kushi, Lawrence H.; Caan, Bette J.
2014-01-01
Background Data are lacking to describe gene expression-based breast cancer intrinsic subtype patterns for population-based patient groups. Methods We studied a diverse cohort of women with breast cancer from the Life After Cancer Epidemiology (LACE) and Pathways studies. RNA was extracted from 1 mm punches from fixed tumor tissue. Quantitative reverse-transcriptase polymerase chain reaction (RT-qPCR) was conducted for the 50 genes that comprise the PAM50 intrinsic subtype classifier. Results In a subcohort of 1,319 women, the overall subtype distribution based on PAM50 was 53.1% Luminal A, 20.5% Luminal B, 13.0% HER2-enriched, 9.8% Basal-like, and 3.6% Normal-like. Among low-risk endocrine positive tumors (i.e. estrogen and progesterone receptor positive by immunohistochemistry, Her2 negative, and low histologic grade), only 76.5% were categorized as Luminal A by PAM50. Continuous-scale Luminal A, Luminal B, HER2-enriched, and Normal-like scores from PAM50 were mutually positively correlated; Basal-like score was inversely correlated with other subtypes. The proportion with non-Luminal A subtype decreased with older age at diagnosis, p trend < 0.0001. Compared with non-Hispanic whites, African-American women were more likely to have Basal-like tumors, age-adjusted odds ratio (OR) 4.4 (95% CI 2.3,8.4), whereas Asian and Pacific Islander women had reduced odds of Basal-like subtype, OR 0.5 (95% CI 0.3,0.9). Conclusions Our data indicate that over 50% of breast cancers treated in the community have Luminal A subtype. Gene expression-based classification shifted some tumors categorized as low risk by surrogate clinicopathological criteria to higher-risk subtypes. Impact Subtyping in a population-based cohort revealed distinct profiles by age and race. PMID:24521995
2014-01-01
The melanocortin system regulates many important functions in the body. There are five melanocortin G protein-coupled receptor subtypes known to date. Herein, we report a structure–activity relationship (SAR) study of a tetrapeptide lead discovered through a double substitution strategy at the melanocortin core His-Phe-Arg-Trp sequence. Several compounds were identified with micromolar agonist activity at the mouse melanocortin-1 (mMC1R) and mouse melanocortin-5 receptor (mMC5R) subtypes, weak antagonist activity at the mouse melanocortin-3 receptor (mMC3R), and potent antagonist activity at the mouse melanocortin-4 receptor (mMC4R). Two compounds (2 and 3) were nanomolar mMC4R antagonists with no mMC3R antagonist activity observed. Additionally, we identified three tetrapeptide MC3R antagonists (1, 6, and 7) that possess minimal mMC3R agonist activity only at 100 μM, not commonly observed for mMC3R/mMC4R antagonists. These novel molecular templates have the potential as molecular probes to better differentiate the roles of the centrally expressed MC3 and MC4 receptors. PMID:25699138
Vitalis, Tania; Ansorge, Mark S.; Dayer, Alexandre G.
2013-01-01
Cortical circuits control higher-order cognitive processes and their function is highly dependent on their structure that emerges during development. The construction of cortical circuits involves the coordinated interplay between different types of cellular processes such as proliferation, migration, and differentiation of neural and glial cell subtypes. Among the multiple factors that regulate the assembly of cortical circuits, 5-HT is an important developmental signal that impacts on a broad diversity of cellular processes. 5-HT is detected at the onset of embryonic telencephalic formation and a variety of serotonergic receptors are dynamically expressed in the embryonic developing cortex in a region and cell-type specific manner. Among these receptors, the ionotropic 5-HT3A receptor and the metabotropic 5-HT6 receptor have recently been identified as novel serotonergic targets regulating different aspects of cortical construction including neuronal migration and dendritic differentiation. In this review, we focus on the developmental impact of serotonergic systems on the construction of cortical circuits and discuss their potential role in programming risk for human psychiatric disorders. PMID:23801939
Li, M; Marubayashi, A; Nakaya, Y; Fukui, K; Arase, S
2001-12-01
The mechanism by which minoxidil, an adenosine-triphosphate-sensitive potassium channel opener, induces hypertrichosis remains to be elucidated. Minoxidil has been reported to stimulate the production of vascular endothelial growth factor, a possible promoter of hair growth, in cultured dermal papilla cells. The mechanism of production of vascular endothelial growth factor remains unclear, however. We hypothesize that adenosine serves as a mediator of vascular endothelial growth factor production. Minoxidil-induced increases in levels of intracellular Ca(2+) and vascular endothelial growth factor production in cultured dermal papilla cells were found to be inhibited by 8-sulfophenyl theophylline, a specific antagonist for adenosine receptors, suggesting that dermal papilla cells possess adenosine receptors and sulfonylurea receptors, the latter of which is a well-known target receptor for adenosine-triphosphate-sensitive potassium channel openers. The expression of sulfonylurea receptor 2B and of the adenosine A1, A2A, and A2B receptors was detected in dermal papilla cells by means of reverse transcription polymerase chain reaction analysis. In order to determine which of the adenosine receptor subtypes contribute to minoxidil-induced hair growth, the effects of subtype-specific antagonists for adenosine receptors were investigated. Significant inhibition in increase in intracellular calcium level by minoxidil or adenosine was observed as the result of pretreatment with 8-cyclopentyl-1,3-dipropylxanthine, an antagonist for adenosine A1 receptor, but not by 3,7-dimethyl-1-propargyl-xanthine, an antagonist for adenosine A2 receptor, whereas vascular endothelial growth factor production was blocked by both adenosine A1 and A2 receptor antagonists. These results indicate that the effect of minoxidil is mediated by adenosine, which triggers intracellular signal transduction via both adenosine A1 and A2 receptors, and that the expression of sulfonylurea receptor 2B in dermal papilla cells might play a role in the production of adenosine.
Discoidin Domain Receptors: Novel Targets in Breast Cancer Bone Metastasis
2017-02-01
BrCa cases with different molecular subtypes, and found a significant inverse association between cytoplasmic DDR1 localization and progesterone...DDR1 antibody, and completed the study of DDR1 expression and association with disease progression with one TMA. We found a significant inverse
GATA-3 and FOXA1 expression is useful to differentiate breast carcinoma from other carcinomas.
Davis, Drew G; Siddiqui, Momin T; Oprea-Ilies, Gabriela; Stevens, Keith; Osunkoya, Adeboye O; Cohen, Cynthia; Li, Xiaoxian Bill
2016-01-01
GATA-3, a member of the GATA family of zinc-finger DNA binding proteins, and FOXA1, a member of the forkhead transcription factor family, are both associated with estrogen receptor expression. Both GATA-3 and FOXA1 are useful markers for breast carcinoma, but their expression in the different breast cancer subtypes and other neoplasms has not been thoroughly evaluated. We examined the expression of GATA-3 and FOXA1 in estrogen receptor-positive, Her2/neu-positive, and triple-negative breast carcinomas as well as in 10 other common carcinomas, including hepatocellular, colonic, pancreatic, gastric, endometrial (endometrioid), lung, prostatic, renal cell, urothelial, and ovarian serous carcinomas. Primary and metastatic melanomas and mesotheliomas were also evaluated. GATA-3 and FOXA1 staining of estrogen receptor-positive breast carcinomas was seen in 96.6% and 96.2%, respectively. In triple-negative breast carcinomas, GATA-3 and FOXA1 staining was seen in 21.6% and 15.9%, respectively. Among the other tumors, GATA-3 staining was only seen in urothelial carcinoma (70.9%) and FOXA1 staining was only seen in prostatic (87.5%), urothelial (5.1%) carcinomas, and mesotheliomas (40.0%). In conclusion, GATA-3 and FOXA1 are excellent breast carcinoma markers; however, their utility is limited in the triple-negative subtype. The utility of FOXA1 in diagnosing prostatic carcinoma and mesothelioma warrants further investigation. Copyright © 2015 Elsevier Inc. All rights reserved.
Geographic differences in the distribution of molecular subtypes of breast cancer in Brazil
2014-01-01
Background To compare the distribution of the intrinsic molecular subtypes of breast cancer based on immunohistochemical profile in the five major geographic regions of Brazil, a country of continental dimension, with a wide racial variation of people. Methods The study was retrospective observational. We classified 5,687 invasive breast cancers by molecular subtype based on immunohistochemical expression of estrogen-receptor (ER), progesterone-receptor (PR), human epidermal growth factor receptor 2 (HER2), and Ki-67 proliferation index. Cases were classified as luminal A (ER and/or PR positive and HER2 negative, Ki-67 < 14%), luminal B (ER and/or PR positive, HER2 negative, and Ki-67 > 14%), triple-positive (ER and/or PR positive and HER2 positive), HER2-enriched (ER and PR negative, and HER2- positive), and triple-negative (TN) (ER negative, PR negative, and HER2- negative). Comparisons of the ages of patients and molecular subtypes between different geographic regions were performed. Results South and Southeast regions with a higher percentage of European ancestry and higher socioeconomic status presented with the highest proportion of luminal tumors. The North region presented with more aggressive subtypes (HER2-enriched and triple-negative), while the Central-West region predominated triple-positive carcinomas. The Northeast—a region with a high African influence—presented intermediate frequency of the different molecular subtypes. The differences persisted in subgroups of patients under and over 50 years. Conclusions The geographic regions differ according to the distribution of molecular subtypes of breast cancer. However, other differences, beside those related to African ancestry, such as socioeconomic, climatic, nutritional, and geographic, have to be considered to explain our results. The knowledge of the differences in breast cancer characteristics among the geographic regions may help to organize healthcare programs in large countries like Brazil with diverse economic and race composition among different geographic regions. PMID:25174527
Lorcaserin and pimavanserin: emerging selectivity of serotonin receptor subtype-targeted drugs.
Meltzer, Herbert Y; Roth, Bryan L
2013-12-01
Serotonin (5-hydroxytryptamine, or 5-HT) receptors mediate a plethora of physiological phenomena in the brain and the periphery. Additionally, serotonergic dysfunction has been implicated in nearly every neuropsychiatric disorder. The effects of serotonin are mediated by fourteen GPCRs. Both the therapeutic actions and side effects of commonly prescribed drugs are frequently due to nonspecific actions on various 5-HT receptor subtypes. For more than 20 years, the search for clinically efficacious drugs that selectively target 5-HT receptor subtypes has been only occasionally successful. This review provides an overview of 5-HT receptor pharmacology and discusses two recent 5-HT receptor subtype-selective drugs, lorcaserin and pimavanserin, which target the 5HT2C and 5HT2A receptors and provide new treatments for obesity and Parkinson's disease psychosis, respectively.
Hou, June Y; Baptiste, Caitlin; Hombalegowda, Radhika Bangalore; Tergas, Ana I; Feldman, Rebecca; Jones, Nathaniel L; Chatterjee-Paer, Sudeshna; Bus-Kwolfski, Ama; Wright, Jason D; Burke, William M
2017-04-15
Optimal treatments for vulvar and vaginal melanomas (VVMs) have not been identified. Herein, the authors compare molecular profiles between VVM and nongynecologic melanoma (NGM) subtypes with the objective of identifying novel, targetable biomarkers. In total, 2304 samples of malignant melanoma that were submitted to Caris Life Sciences between 2009 and 2015 were reviewed. In situ hybridization and immunohistochemistry were used to assess copy numbers and protein expression of selected genes. Sequenced variants were analyzed using a proprietary cancer panel. In total, 51 VVMs (14 vaginal and 37 vulvar melanomas) were compared with 2253 malignant NGMs, including 2127 cutaneous, 105 mucosal, and 21 acral melanomas. In VVMs, B-Raf proto-oncogene serine/threonine kinase (BRAF) was the most frequently mutated gene (26%) compared with 8.3% of mucosal NGMs (P = .008). In BRAF-mutated tumors, fewer VVMs (50%), compared with NGMs (82.1%), had a variant within the valine codon 600 (V600) domain. The KIT mutation rate was highest in VVMs (22%) compared with 3% in cutaneous (P < .001) and 8.8% in mucosal (P = .05) melanoma subtypes. NRAS mutations were rare in VVMs compared with cutaneous (25.9%; P = .009) and acral (40.6%; P = .002) melanoma subtypes. PD-L1 (56%) and PD-1 (75%) were frequently expressed in VVM, whereas PI3KCA pathway mutations and estrogen receptor/progesterone receptor expression were rare. Compared with VVMs that had KIT mutations, wild-type KIT VVMs were more likely to express molecular markers suggestive of platinum resistance (ERCC1), alkylating sensitivity (MGMT), and anthracycline sensitivity (TOP2A). The unique molecular features of VVM render this disease a distinct subtype of melanoma. Gene-based molecular therapy and immunotherapies may be promising and should be evaluated in clinical trials. Cancer 2017;123:1333-1344. © 2016 American Cancer Society. © 2016 American Cancer Society.
Adrenoceptor function and expression in bladder urothelium and lamina propria.
Moro, Christian; Tajouri, Lotti; Chess-Williams, Russ
2013-01-01
To investigate the role of adrenoceptor subtypes in regulating the spontaneous contractile activity of the inner lining of the urinary bladder (urothelium/lamina propria). The responses of isolated strips of porcine urothelium/lamina propria to noradrenaline, phenylephrine, and isoprenaline were obtained in the absence and presence of receptor subtype-selective antagonists. Quantitative reverse-transcriptase polymerase chain reaction was undertaken to assess the expression of adrenoceptor genes. The tissues expressed all α1- and β-adrenoceptor subtypes, with the α1A-, α1B-, and β2-adrenoceptors the predominant receptors at the messenger RNA level. In the functional experiments, the rate of phasic contractions and the basal tension were increased by the α1-adrenoceptor agonists phenylephrine (100 μM) and A61603 (10 μM). The rate and tension responses to phenylephrine were reduced by low concentrations of tamsulosin (3 nM) and RS100329 (10 nM) but were unaffected by BMY7378 (100 nM), prazosin (10 nM), and RS17053 (1 μM). In contrast, isoprenaline and salbutamol (both 1 μM) induced a relaxation of tissues and slowing of phasic contractions. The rate and tension responses to isoprenaline were inhibited by propranolol (100 nM) or a combination of CGP20712A (30 nM) and ICI118551 (70 nM). The rate responses were also significantly inhibited by ICI118551 alone (70 nM). Although all α1- and β-adrenoceptor subtypes were expressed in the pig urothelium/lamina propria, the α1A/L-adrenoceptor appeared to mediate increases in the contractile rate and tension. The β-adrenoceptor induced inhibition of spontaneous contractile activity appears to be predominately mediated by β2-adrenoceptors, with β1- and β2-adrenoceptors possibly involved in the tension responses. Copyright © 2013 Elsevier Inc. All rights reserved.
van de Water, Willemien; Fontein, Duveken B Y; van Nes, Johanna G H; Bartlett, John M S; Hille, Elysée T M; Putter, Hein; Robson, Tammy; Liefers, Gerrit-Jan; Roumen, Rudi M H; Seynaeve, Caroline; Dirix, Luc Y; Paridaens, Robert; Kranenbarg, Elma Meershoek-Klein; Nortier, Johan W R; van de Velde, Cornelis J H
2013-01-01
Multiple studies suggest better efficacy of chemotherapy in invasive ductal breast carcinomas (IDC) than invasive lobular breast carcinomas (ILC). However, data on efficacy of adjuvant endocrine therapy regimens and histological subtypes are sparse. This study assessed endocrine therapy efficacy in IDC and ILC. The influence of semi-quantitative oestrogen receptor (ER) expression by Allred score was also investigated. Dutch and Belgian patients enrolled in the Tamoxifen Exemestane Adjuvant Multinational (TEAM) trial were randomized to exemestane (25mg daily) alone or following tamoxifen (20mg daily) for 5 years. Inclusion was restricted to IDC and ILC patients. Histological subtype was assessed locally; ER expression was centrally reviewed according to Allred score (ER-poor (<7; n=235); ER-rich (7; n=1789)). Primary end-point was relapse-free survival (RFS), which was the time from randomization to disease relapse. Overall, 2140 (82%) IDC and 463 (18%) ILC patients were included. RFS was similar for both endocrine treatment regimens in IDC (hazard ratio (HR) for exemestane was 0.83 (95%confidence interval (CI) 0.67-1.03)), and ILC (HR 0.69 (95%CI 0.45-1.06)). Irrespective of histological subtype, patients with ER-rich Allred scores allocated to exemestane alone had an improved RFS (multivariable HR 0.71 (95%CI 0.56-0.89)). In contrast, patients with ER-poor Allred scores allocated to exemestane had a worse RFS (multivariable HR 2.33 (95%CI 1.32-4.11)). Significant effect modification by ER-Allred score was confirmed (multivariable p=0.003). Efficacy of endocrine therapy regimens was similar for IDC and ILC. However, ER-rich patients showed superior efficacy to upfront exemestane, while ER-poor patients had better outcomes with sequential therapy, irrespective of histological subtype, emphasising the relevance of quantification of ER expression. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selz, Jessica, E-mail: chaumontjessica@yahoo.fr; Stevens, Denise; Jouanneau, Ludivine
2012-12-01
Purpose: To determine whether Ki67 expression and breast cancer subtypes could predict locoregional recurrence (LRR) and influence the postmastectomy radiotherapy (PMRT) decision in breast cancer (BC) patients with pathologic negative lymph nodes (pN0) after modified radical mastectomy (MRM). Methods and Materials: A total of 699 BC patients with pN0 status after MRM, treated between 2001 and 2008, were identified from a prospective database in a single institution. Tumors were classified by intrinsic molecular subtype as luminal A or B, HER2+, and triple-negative (TN) using estrogen, progesterone, and HER2 receptors. Multivariate Cox analysis was used to determine the risk of LRRmore » associated with intrinsic subtypes and Ki67 expression, adjusting for known prognostic factors. Results: At a median follow-up of 56 months, 17 patients developed LRR. Five-year LRR-free survival and overall survival in the entire population were 97%, and 94.7%, respectively, with no difference between the PMRT (n=191) and no-PMRT (n=508) subgroups. No constructed subtype was associated with an increased risk of LRR. Ki67 >20% was the only independent prognostic factor associated with increased LRR (hazard ratio, 4.18; 95% CI, 1.11-15.77; P<.0215). However, PMRT was not associated with better locoregional control in patients with proliferative tumors. Conclusions: Ki67 expression but not molecular subtypes are predictors of locoregional recurrence in breast cancer patients with negative lymph nodes after MRM. The benefit of adjuvant RT in patients with proliferative tumors should be further investigated in prospective studies.« less
Miranda, Rosiane A; Agostinho, Aryane R; Trevenzoli, Isis H; Barella, Luiz F; Franco, Claudinéia C S; Trombini, Amanda B; Malta, Ananda; Gravena, Clarice; Torrezan, Rosana; Mathias, Paulo C F; de Oliveira, Júlio C
2014-01-01
Impaired pancreatic beta cell function and insulin secretion/action are a link between obesity and type 2 diabetes, which are worldwide public health burdens. We aimed to characterize the muscarinic acetylcholine receptor (mAChR) M1-M4 subtypes in isolated pancreatic islets from pre-diabetic obese rats that had been treated neonatally with monosodium L-glutamate (MSG). At 90 days of age, both the MSG and the control groups underwent biometric and biochemical evaluation. Anti-muscarinic drugs were used to study mAChR function either in vivo or in vitro. The results demonstrated that atropine treatment reduced insulin secretion in the MSG-treated and control groups, whereas treatment with an M2mAChR-selective antagonist increased secretion. Moreover, the insulinostatic effect of an M3mAChR-selective antagonist was significantly higher in the MSG-treated group. M1mAChR and M3mAChR expression was increased in the MSG-obese group by 55% and 73%, respectively. In contrast, M2mAChR expression decreased by 25% in the MSG group, whereas M4mAChR expression was unchanged. Functional changes in and altered content of the mAChR (M1-M4) subtypes are pivotal to the demand for high pancreatic beta cell insulin secretion in MSG-obese rats, which is directly associated with vagal hyperactivity and peripheral insulin resistance. © 2014 S. Karger AG, Basel.
Benoit, Alice; Besnard, Stephane; Guillamin, Maryline; Philoxene, Bruno; Sola, Brigitte; Le Gall, Anne; Machado, Marie-Laure; Toulouse, Joseph; Hitier, Martin; Smith, Paul F
2018-06-21
There is substantial evidence that loss of vestibular function impairs spatial learning and memory related to hippocampal (HPC) function, as well as increasing evidence that striatal (Str) plasticity is also implicated. Since the N-methyl-D-aspartate (NMDA) subtype of glutamate receptor is considered essential to spatial memory, previous studies have investigated whether the expression of HPC NMDA receptors changes following vestibular loss; however, the results have been contradictory. Here we used a novel flow cytometric method to quantify the number of neurons expressing NMDA receptors in the HPC and Str following bilateral vestibular loss (BVL) in rats. At 7 and 30 days post-op., there was a significant increase in the number of HPC neurons expressing NMDA receptors in the BVL animals, compared to sham controls (P ≤ 0.004 and P ≤ 0.0001, respectively). By contrast, in the Str, at 7 days there was a significant reduction in the number of neurons expressing NMDA receptors in the BVL group (P ≤ 0.05); however, this difference had disappeared by 30 days post-op. These results suggest that BVL causes differential changes in the number of neurons expressing NMDA receptors in the HPC and Str, which may be related to its long-term impairment of spatial memory. Copyright © 2018. Published by Elsevier B.V.
Serotonin receptor 5-HT5A in rat hippocampus decrease by leptin treatment.
García-Alcocer, Guadalupe; Rodríguez, Angelina; Moreno-Layseca, Paulina; Berumen, Laura C; Escobar, Jesica; Miledi, Ricardo
2010-12-17
5-Hydroxytryptamine (5-HT) is involved in a variety of different physiological processes and behaviors through the activation of equally diverse receptors subtypes. In this work we studied the changes on the expression of 5-HT(5A) receptors in rat hippocampus induced by leptin, an adipocyte-derived hormone that has been reported to participate in the modulation of food intake and in adult hippocampal neurogenesis. To study the effect of leptin on the 5-HT(5A) receptor gene expression a qRT-PCR was used and the distribution of those receptors in the hippocampus was visualized by immunohistochemistry. Rats were separated in four groups: control (untreated rats), leptin-treated, serotonin-treated and leptin+serotonin treated. The results showed that even though the 5-HT(5A) gene expression did not change in the hippocampus of any of the treated groups, in the rats treated with leptin and serotonin, the specific immunostaining for the 5-HT(5A) serotonin receptor decreased significantly in the dentate gyrus. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
AR Signaling in Breast Cancer.
Rahim, Bilal; O'Regan, Ruth
2017-02-24
Androgen receptor (AR, a member of the steroid hormone receptor family) status has become increasingly important as both a prognostic marker and potential therapeutic target in breast cancer. AR is expressed in up to 90% of estrogen receptor (ER) positive breast cancer, and to a lesser degree, human epidermal growth factor 2 (HER2) amplified tumors. In the former, AR signaling has been correlated with a better prognosis given its inhibitory activity in estrogen dependent disease, though conversely has also been shown to increase resistance to anti-estrogen therapies such as tamoxifen. AR blockade can mitigate this resistance, and thus serves as a potential target in ER-positive breast cancer. In HER2 amplified breast cancer, studies are somewhat conflicting, though most show either no effect or are associated with poorer survival. Much of the available data on AR signaling is in triple-negative breast cancer (TNBC), which is an aggressive disease with inferior outcomes comparative to other breast cancer subtypes. At present, there are no approved targeted therapies in TNBC, making study of the AR signaling pathway compelling. Gene expression profiling studies have also identified a luminal androgen receptor (LAR) subtype that is dependent on AR signaling in TNBC. Regardless, there seems to be an association between AR expression and improved outcomes in TNBC. Despite lower pathologic complete response (pCR) rates with neoadjuvant therapy, patients with AR-expressing TNBC have been shown to have a better prognosis than those that are AR-negative. Clinical studies targeting AR have shown somewhat promising results. In this paper we review the literature on the biology of AR in breast cancer and its prognostic and predictive roles. We also present our thoughts on therapeutic strategies.
Rahim, Bilal; O’Regan, Ruth
2017-01-01
Androgen receptor (AR, a member of the steroid hormone receptor family) status has become increasingly important as both a prognostic marker and potential therapeutic target in breast cancer. AR is expressed in up to 90% of estrogen receptor (ER) positive breast cancer, and to a lesser degree, human epidermal growth factor 2 (HER2) amplified tumors. In the former, AR signaling has been correlated with a better prognosis given its inhibitory activity in estrogen dependent disease, though conversely has also been shown to increase resistance to anti-estrogen therapies such as tamoxifen. AR blockade can mitigate this resistance, and thus serves as a potential target in ER-positive breast cancer. In HER2 amplified breast cancer, studies are somewhat conflicting, though most show either no effect or are associated with poorer survival. Much of the available data on AR signaling is in triple-negative breast cancer (TNBC), which is an aggressive disease with inferior outcomes comparative to other breast cancer subtypes. At present, there are no approved targeted therapies in TNBC, making study of the AR signaling pathway compelling. Gene expression profiling studies have also identified a luminal androgen receptor (LAR) subtype that is dependent on AR signaling in TNBC. Regardless, there seems to be an association between AR expression and improved outcomes in TNBC. Despite lower pathologic complete response (pCR) rates with neoadjuvant therapy, patients with AR-expressing TNBC have been shown to have a better prognosis than those that are AR-negative. Clinical studies targeting AR have shown somewhat promising results. In this paper we review the literature on the biology of AR in breast cancer and its prognostic and predictive roles. We also present our thoughts on therapeutic strategies. PMID:28245550
Epidemiological risk factors associated with inflammatory breast cancer subtypes.
Atkinson, Rachel L; El-Zein, Randa; Valero, Vicente; Lucci, Anthony; Bevers, Therese B; Fouad, Tamer; Liao, Weiqin; Ueno, Naoto T; Woodward, Wendy A; Brewster, Abenaa M
2016-03-01
In this single-institution case-control study, we identified risk factors associated with inflammatory breast cancer (IBC) subtypes based on staining of estrogen receptor (ER), progesterone receptor (PR) and expression of human epidermal growth factor 2 (HER2neu) to determine distinct etiologic pathways. We identified 224 women with IBC and 396 cancer-free women seen at the MD Anderson Cancer Center. Multinomial logistic regression was used to estimate odds ratios (ORs) and 95 % confidence intervals (CIs) for associations between breast cancer risk factors and the IBC tumor subtypes: luminal (ER+ and/or PR+/HER2neu-), HER2neu+ (any ER and PR, HER2neu+), and triple-negative (ER-/PR-/HER2neu-). In multivariable analysis, compared with women age ≥26 at first pregnancy, women age <26 had a higher risk of triple-negative IBC (OR 3.32, 95% CI 1.37-8.05). Women with a history of breast-feeding had a lower risk of triple-negative (OR 0.30; 95% CI 0.15-0.62) and luminal IBC (OR 0.35, 95% CI 0.18-0.68). A history of smoking was associated with an increased risk of luminal IBC (OR 2.37; 95% CI 1.24-4.52). Compared with normal-weight women, those who were overweight or obese (body mass index ≥25 kg/m(2)) had a higher risk of all three tumor subtypes (p < 0.01 for all subtypes). Overweight or obese status is important modifiable risk factor for IBC of any subtype. Modifiable risk factors, age at first pregnancy (≥26), breast-feeding, and smoking may be associated with specific IBC subtypes. These results highlight the importance of evaluating epidemiologic risk factors for IBC for the identification of subtype-specific prevention strategies.
CD40 engagement on dendritic cells induces cyclooxygenase-2 and EP2 receptor via p38 and ERK MAPKs.
Harizi, Hedi; Limem, Ilef; Gualde, Norbert
2011-02-01
We have previously reported that cyclooxygenase (COX)-2-derived prostaglandin (PG)E2 critically regulates dendritic cell (DC) inflammatory phenotype and function through EP2/EP4 receptor subtypes. As genes activated by CD40 engagement are directly relevant to inflammation, we examined the effects of CD40 activation on inflammatory PGs in murine bone marrow-derived DC (mBM-DC). We showed for the first time that activation of mBM-DC with agonist anti-CD40 monoclonal antibody (anti-CD40 mAb) dose dependently induces the synthesis of significant amounts of PGE2 via inducible expression of COX-2 enzyme, as NS-398, a COX-2-selective inhibitor reduces this upregulation. In contrast to lipopolysaccharide, which upregulates mBM-DC surface levels of EP2 and EP4 receptors, CD40 crosslinking on mBM-DC increases EP2, but not EP4, receptor expression. Flow cytometry analysis and radioligand-binding assay showed that EP2 was the major EP receptor subtype, which binds to PGE2 at the surface of anti-CD40-activated mBM-DC. Upregulation of COX-2 and EP2 levels by CD40 engagement was accompanied by dose-dependent phosphorylation of p38 and ERK1/2 mitogen-activated protein kinase (MAPK) and was abrogated by inhibitors of both pathways. Collectively, we demonstrated that CD40 engagement on mBM-DC upregulates COX-2 and EP2 receptor expression through activation of p38 and ERK1/2 MAPK signaling. Triggering the PGE2/EP2 pathway by anti-CD40 mAb resulted on the induction of Th2 immune response. Thus, CD40-induced production of PGE2 by mBM-DC could represent a negative feedback mechanism involving EP2 receptor and limiting the propagation of Th1 responses. Blocking CD40 pathway may represent a novel therapeutic pathway of inhibiting COX-2-derived prostanoids in chronically inflamed tissues (that is, arthritis).
Yang, Yong; Zhou, Yong; Cao, Zheng; Tong, Xin Zhu; Xie, Hua Qiang; Luo, Tao; Hua, Xian Ping; Wang, Han Qin
2016-09-01
Cardiac hypertrophy is characterized by maladaptive tissue remodeling that may lead to heart failure or sudden death. MicroRNAs (miRs) are negative regulators of angiotensin II and the angiotensin II receptor subtype 1 (AGTR 1 ), which are two components involved in cardiac hypertrophy. In the present study, the interaction between angiotensin II receptor subtype 1 (AGTR 1 ) signaling and miR-155 was investigated. Rat H9C2 (2-1) cardiomyocytes were transfected with miR-155 analogues or inhibitors, then stimulated with angiotensin II to induce cardiac hypertrophy. miR-155 expression was revealed to be altered following transfection with chemically-modified miR-155 analogues and inhibitors in rat cardiomyocytes. In cell cardiac hypertrophy models, the cell surface area, AGTR 1 , atrial natriuretic peptide and myosin heavy chain-β mRNA expression levels were revealed to be lower in cells stimulated with miR-155 analogue-transfected cells treated with angiotensin II compared with cells stimulated with angiotensin alone (P<0.05), as determined using reverse transcription-polymerase chain reaction (PCR), quantitative PCR and western blot analyses. Furthermore, calcineurin mRNA and protein, intracellular free calcium and nuclear factor of activated T-cells-4 proteins were downregulated in miR-155 analogue-transfected cells treated with angiotensin II, as compared with cells stimulated with angiotensin II alone (P<0.05). In conclusion, the current study indicates that miR-155 may improve cardiac hypertrophy by downregulating AGTR 1 and suppressing the calcium signaling pathways activated by AGTR 1 .
Mercogliano, María F; Inurrigarro, Gloria; De Martino, Mara; Venturutti, Leandro; Rivas, Martín A; Cordo-Russo, Rosalía; Proietti, Cecilia J; Fernández, Elmer A; Frahm, Isabel; Barchuk, Sabrina; Allemand, Daniel H; Figurelli, Silvina; Deza, Ernesto Gil; Ares, Sandra; Gercovich, Felipe G; Cortese, Eduardo; Amasino, Matías; Guzmán, Pablo; Roa, Juan C; Elizalde, Patricia V; Schillaci, Roxana
2017-12-28
Invasive micropapillary carcinoma of the breast (IMPC) is a histological tumor variant that occurs with low frequency characterized by an inside-out formation of tumor clusters with a pseudopapillary arrangement. IMPC is an aggressive tumor with poor clinical outcome. In addition, this histological subtype usually expresses human epidermal growth factor receptor 2 (HER2) which also correlates with a more aggressive tumor. In this work we studied the clinical significance of IMPC in HER2-positive breast cancer patients treated with adjuvant trastuzumab. We also analyzed mucin 4 (MUC4) expression as a novel biomarker to identify IMPC. We retrospectively studied 86 HER2-positive breast cancer patients treated with trastuzumab and chemotherapy in the adjuvant setting. We explored the association of the IMPC component with clinicopathological parameters at diagnosis and its prognostic value. We compared MUC4 expression in IMPC with respect to other histological breast cancer subtypes by immunohistochemistry. IMPC, either as a pure entity or associated with invasive ductal carcinoma (IDC), was present in 18.6% of HER2-positive cases. It was positively correlated with estrogen receptor expression and tumor size and inversely correlated with patient's age. Disease-free survival was significantly lower in patients with IMPC (hazard ratio = 2.6; 95%, confidence interval 1.1-6.1, P = 0.0340). MUC4, a glycoprotein associated with metastasis, was strongly expressed in all IMPC cases tested. IMPC appeared as the histological breast cancer subtype with the highest MUC4 expression compared to IDC, lobular and mucinous carcinoma. In HER2-positive breast cancer, the presence of IMPC should be carefully examined. As it is often not informed, because it is relatively difficult to identify or altogether overlooked, we propose MUC4 expression as a useful biomarker to highlight IMPC presence. Patients with MUC4-positive tumors with IMPC component should be more frequently monitored and/or receive additional therapies.
Metastatic breast carcinomas display genomic and transcriptomic heterogeneity
Weigelt, Britta; Ng, Charlotte KY; Shen, Ronglai; Popova, Tatiana; Schizas, Michail; Natrajan, Rachael; Mariani, Odette; Stern, Marc-Henri; Norton, Larry; Vincent-Salomon, Anne; Reis-Filho, Jorge S
2015-01-01
Metaplastic breast carcinoma is a rare and aggressive histologic type of breast cancer, preferentially displaying a triple-negative phenotype. We sought to define the transcriptomic heterogeneity of metaplastic breast cancers on the basis of current gene expression microarray-based classifiers, and to determine whether these tumors display gene copy number profiles consistent with those of BRCA1-associated breast cancers. Twenty-eight consecutive triple-negative metaplastic breast carcinomas were reviewed, and the metaplastic component present in each frozen specimen was defined (ie, spindle cell, squamous, chondroid metaplasia). RNA and DNA extracted from frozen sections with tumor cell content >60% were subjected to gene expression (Illumina HumanHT-12 v4) and copy number profiling (Affymetrix SNP 6.0), respectively. Using the best practice PAM50/claudin-low microarray-based classifier, all metaplastic breast carcinomas with spindle cell metaplasia were of claudin-low subtype, whereas those with squamous or chondroid metaplasia were preferentially of basal-like subtype. Triple-negative breast cancer subtyping using a dedicated website (http://cbc.mc.vanderbilt.edu/tnbc/) revealed that all metaplastic breast carcinomas with chondroid metaplasia were of mesenchymal-like subtype, spindle cell carcinomas preferentially of unstable or mesenchymal stem-like subtype, and those with squamous metaplasia were of multiple subtypes. None of the cases was classified as immunomodulatory or luminal androgen receptor subtype. Integrative clustering, combining gene expression and gene copy number data, revealed that metaplastic breast carcinomas with spindle cell and chondroid metaplasia were preferentially classified as of integrative clusters 4 and 9, respectively, whereas those with squamous metaplasia were classified into six different clusters. Eight of the 26 metaplastic breast cancers subjected to SNP6 analysis were classified as BRCA1-like. The diversity of histologic features of metaplastic breast carcinomas is reflected at the transcriptomic level, and an association between molecular subtypes and histology was observed. BRCA1-like genomic profiles were found only in a subset (31%) of metaplastic breast cancers, and were not associated with a specific molecular or histologic subtype. PMID:25412848
Xiang, Jin; Wang, Ying; Su, Ke; Liu, Min; Hu, Peng-Chao; Ma, Tian; Li, Jia-Xi; Wei, Lei; Zheng, Zhongliang; Yang, Fang
2014-10-01
Estrogenic actions are closely related to cardiovascular disease. Ritonavir (RTV), a human immunodeficiency virus (HIV) protease inhibitor, induces atherosclerosis in an estrogen-related manner. However, how RTV induce pathological phenotypes through estrogen pathway remains unclear. In this study, we found that RTV increases thickness of coronary artery walls of Sprague Dawley rats and plasma free fatty acids (FFA) levels. In addition, RTV could induce foam cell formation, downregulate both estrogen receptor α (ERα) and ERβ expression, upregulate G protein-coupled estrogen receptor (GPER) expression, and all of them could be partially blocked by 17β-estradiol (E2), suggesting RTV acts as an antagonist for E2. Computational modeling shows a similar interaction with ERα between RTV and 2-aryl indoles, which are highly subtype-selective ligands for ERα. We also found that RTV directly bound to ERα and selectively inhibited the nuclear localization of ERα, and residue Leu536 in the hydrophobic core of ligand binding domain (LBD) was essential for the interaction with RTV. In addition, RTV did not change the secondary structure of ERα-LBD like E2, which explained how ERα lost the capacity of nuclear translocation under the treatment of RTV. All of the evidences suggest that ritonavir acts as an antagonist for 17β-estradiol in regulating α subtype estrogen receptor function and early events of atherosclerosis. Copyright © 2014 Elsevier Inc. All rights reserved.
Trace amine-associated receptors and their ligands
Zucchi, R; Chiellini, G; Scanlan, T S; Grandy, D K
2006-01-01
Classical biogenic amines (adrenaline, noradrenaline, dopamine, serotonin and histamine) interact with specific families of G protein-coupled receptors (GPCRs). The term ‘trace amines' is used when referring to p-tyramine, β-phenylethylamine, tryptamine and octopamine, compounds that are present in mammalian tissues at very low (nanomolar) concentrations. The pharmacological effects of trace amines are usually attributed to their interference with the aminergic pathways, but in 2001 a new gene was identified, that codes for a GPCR responding to p-tyramine and β-phenylethylamine but not to classical biogenic amines. Several closely related genes were subsequently identified and designated as the trace amine-associated receptors (TAARs). Pharmacological investigations in vitro show that many TAAR subtypes may not respond to p-tyramine, β-phenylethylamine, tryptamine or octopamine, suggesting the existence of additional endogenous ligands. A novel endogenous thyroid hormone derivative, 3-iodothyronamine, has been found to interact with TAAR1 and possibly other TAAR subtypes. In vivo, micromolar concentrations of 3-iodothyronamine determine functional effects which are opposite to those produced on a longer time scale by thyroid hormones, including reduction in body temperature and decrease in cardiac contractility. Expression of all TAAR subtypes except TAAR1 has been reported in mouse olfactory epithelium, and several volatile amines were shown to interact with specific TAAR subtypes. In addition, there is evidence that TAAR1 is targeted by amphetamines and other psychotropic agents, while genetic linkage studies show a significant association between the TAAR gene family locus and susceptibility to schizophrenia or bipolar affective disorder. PMID:17088868
Shi, Ting; Papay, Robert S; Perez, Dianne M
2017-04-01
The role of α 1 -adrenergic receptors (α 1 -ARs) and their subtypes in metabolism is not well known. Most previous studies were performed before the advent of transgenic mouse models and utilized transformed cell lines and poorly selective antagonists. We have now studied the metabolic regulation of the α 1A - and α 1B -AR subtypes in vivo using knock-out (KO) and transgenic mice that express a constitutively active mutant (CAM) form of the receptor, assessing subtype-selective functions. CAM mice increased glucose tolerance while KO mice display impaired glucose tolerance. CAM mice increased while KO decreased glucose uptake into white fat tissue and skeletal muscle with the CAM α 1A -AR showing selective glucose uptake into the heart. Using indirect calorimetry, both CAM mice demonstrated increased whole body fatty acid oxidation, while KO mice preferentially oxidized carbohydrate. CAM α 1A -AR mice displayed significantly decreased fasting plasma triglycerides and glucose levels while α 1A -AR KO displayed increased levels of triglycerides and glucose. Both CAM mice displayed increased plasma levels of leptin while KO mice decreased leptin levels. Most metabolic effects were more efficacious with the α 1A -AR subtype. Our results suggest that stimulation of α 1 -ARs results in a favorable metabolic profile of increased glucose tolerance, cardiac glucose uptake, leptin secretion and increased whole body lipid metabolism that may contribute to its previously recognized cardioprotective and neuroprotective benefits.
Maeda, Tetsuyo; Nakanishi, Yoko; Hirotani, Yukari; Fuchinoue, Fumi; Enomoto, Katsuhisa; Sakurai, Kenichi; Amano, Sadao; Nemoto, Norimichi
2016-03-01
Triple negative breast cancer (TNBC) is immunohistochemically characterised by the lack of expression of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor type 2 (HER2). TNBC is known for its poor prognosis and high recurrence probability. There is no effective targeted treatment for TNBC, but only adjuvant chemotherapies. There are two TNBC subtypes, basal-like and non-basal-like, which are defined based on positive cytokeratin (CK) 5/6 and/or epidermal growth factor receptor (EGFR) expression. In particular, CK5/6 expression is reported to correlate with TNBC recurrence. TNBC lacks ER-α expression, but some TNBCs are known to express the androgen receptor (AR). Moreover, although p53 accumulation is detected in various malignant tumors, its influence on adjuvant chemotherapy for patients with TNBC remains unclear. The aim of this study was to assess the combined immunohistochemical expression of CK 5/6, AR, and p53 as a potential prognostic marker of adjuvant chemotherapy for patients with TNBC. The expression of CK5/6, AR, and p53 in formalin-fixed and paraffin-embedded (FFPE) surgical sections from 52 patients with TNBC was analysed by immunohistochemistry (IHC) and the co-expression patterns in individual cells were investigated by immunofluorescent (IF) staining. Low AR expression was correlated with high clinical stage (P < 0.05) and low nuclear grade (P < 0.05). The expression of CK5/6 and p53 did not correlate with clinicopathological features. Patients who needed adjuvant chemotherapy presented the worst prognosis. In particular, when the IHC expression pattern was CK5/6 (-), AR (-), and p53 (+), the disease free survival (DFS) and overall survival (OS) were the worst. On the other hand, patients with AR (+) and p53 (-) TNBC presented a good prognosis. The analysis of the co-expression status of these three markers showed that no cells presented both AR and CK5/6 expression. Furthermore, TP53 mRNA expression was higher in patients with AR-negative TNBC (P < 0.05) and in patients with the worst prognosis (P < 0.05) than in the other patients. These results suggested that, in patients with CK5/6-negative TNBC, AR expression correlated with good prognosis, but p53 accumulation correlated with poor prognosis. The present IHC markers allowed us to predict the post-surgery prognosis of patients with TNBC. In conclusion, TNBCs are heterogeneous. Patients with the CK5/6 (-), AR (-), and p53 (+) TNBC subtype, evaluated by IHC, presented the worst prognosis. These IHC markers will be helpful to follow patients with TNBC.
Remenyi, Judit; Banerji, Christopher R.S.; Lai, Chun-Fui; Periyasamy, Manikandan; Lombardo, Ylenia; Busonero, Claudia; Ottaviani, Silvia; Passey, Alun; Quinlan, Philip R.; Purdie, Colin A.; Jordan, Lee B.; Thompson, Alastair M.; Finn, Richard S.; Rueda, Oscar M.; Caldas, Carlos; Gil, Jesus; Coombes, R. Charles; Fuller-Pace, Frances V.; Teschendorff, Andrew E.; Buluwela, Laki; Ali, Simak
2015-01-01
The Nuclear Receptor (NR) superfamily of transcription factors comprises 48 members, several of which have been implicated in breast cancer. Most important is estrogen receptor-α (ERα), which is a key therapeutic target. ERα action is facilitated by co-operativity with other NR and there is evidence that ERα function may be recapitulated by other NRs in ERα-negative breast cancer. In order to examine the inter-relationships between nuclear receptors, and to obtain evidence for previously unsuspected roles for any NRs, we undertook quantitative RT-PCR and bioinformatics analysis to examine their expression in breast cancer. While most NRs were expressed, bioinformatic analyses differentiated tumours into distinct prognostic groups that were validated by analyzing public microarray data sets. Although ERα and progesterone receptor were dominant in distinguishing prognostic groups, other NR strengthened these groups. Clustering analysis identified several family members with potential importance in breast cancer. Specifically, RORγ is identified as being co-expressed with ERα, whilst several NRs are preferentially expressed in ERα-negative disease, with TLX expression being prognostic in this subtype. Functional studies demonstrated the importance of TLX in regulating growth and invasion in ERα-negative breast cancer cells. PMID:26280373
Trainor, Brian C.; Hofmann, Hans A.
2009-01-01
Somatostatin is a neuropeptide best known for its inhibitory effects on growth hormone secretion and has recently been implicated in the control of social behavior. Several somatostatin receptor subtypes have been identified in vertebrates, but the functional basis for this diversity is still unclear. Here we investigate the expression levels of the somatostatin prepropeptide and two of its receptors, sstR2, and sstR3, in the brains of socially dominant and subordinate A. burtoni males using real-time PCR. Dominant males had higher somatostatin prepropeptide and sstR3 expression in hypothalamus compared to subordinate males. Hypothalamic sstR2 expression did not differ. There were no differences in gene expression in the telencephalon. We also observed an interesting difference between dominants and subordinates in the relationship between hypothalamic sstR2 expression and body size. As would be predicted based on the inhibitory effects of somatostatin on somatic growth, sstR2 expression was negatively correlated with body size in dominant males. In contrast sstR2 expression was positively correlated with body size in subordinate males. These results suggest that somatostatin prepropeptide and receptor gene expression in the hypothalamus are associated with the control of somatic growth in A. burtoni depending on social status. PMID:17374406
Schleifenbaum, Johanna; Kassmann, Mario; Szijártó, István András; Hercule, Hantz C; Tano, Jean-Yves; Weinert, Stefanie; Heidenreich, Matthias; Pathan, Asif R; Anistan, Yoland-Marie; Alenina, Natalia; Rusch, Nancy J; Bader, Michael; Jentsch, Thomas J; Gollasch, Maik
2014-07-07
Vascular wall stretch is the major stimulus for the myogenic response of small arteries to pressure. The molecular mechanisms are elusive, but recent findings suggest that G protein-coupled receptors can elicit a stretch response. To determine whether angiotensin II type 1 receptors (AT1R) in vascular smooth muscle cells exert mechanosensitivity and identify the downstream ion channel mediators of myogenic vasoconstriction. We used mice deficient in AT1R signaling molecules and putative ion channel targets, namely AT1R, angiotensinogen, transient receptor potential channel 6 (TRPC6) channels, or several subtypes of the voltage-gated K+ (Kv7) gene family (KCNQ3, 4, or 5). We identified a mechanosensing mechanism in isolated mesenteric arteries and in the renal circulation that relies on coupling of the AT1R subtype a to a Gq/11 protein as a critical event to accomplish the myogenic response. Arterial mechanoactivation occurs after pharmacological block of AT1R and in the absence of angiotensinogen or TRPC6 channels. Activation of AT1R subtype a by osmotically induced membrane stretch suppresses an XE991-sensitive Kv channel current in patch-clamped vascular smooth muscle cells, and similar concentrations of XE991 enhance mesenteric and renal myogenic tone. Although XE991-sensitive KCNQ3, 4, and 5 channels are expressed in vascular smooth muscle cells, XE991-sensitive K+ current and myogenic contractions persist in arteries deficient in these channels. Our results provide definitive evidence that myogenic responses of mouse mesenteric and renal arteries rely on ligand-independent, mechanoactivation of AT1R subtype a. The AT1R subtype a signal relies on an ion channel distinct from TRPC6 or KCNQ3, 4, or 5 to enact vascular smooth muscle cell activation and elevated vascular resistance. © 2014 American Heart Association, Inc.
High throughput functional assays for P2X receptors.
Namovic, Marian T; Jarvis, Michael F; Donnelly-Roberts, Diana
2012-06-01
Adenosine triphosphate (ATP) activates two receptor superfamilies, metabotropic P2Y and ionotropic P2X receptors. The P2X receptors are nonselective cation channels that are widely expressed on excitable cells including neurons, glia, and smooth muscle cells. The protocols in this unit are useful for evaluating ligands that interact with P2X receptors on native cells or that are cloned and expressed in recombinant heterologous cell systems. Calcium imaging methods are described for the pharmacological characterization of fast or slowly desensitizing P2X receptors. While these methods are readily applicable to a wide variety of ligand-gated ion channels, the protocols provided herein detail how they can be used to measure activation of homomeric P2X3 (fast desensitizing) and heteromeric P2X2/3 (slowly desensitizing) receptors. Appropriate agonists and/or calcium dyes can be substituted to assess activity at other P2X receptor subtypes. An additional protocol is provided for measuring P2X7 receptor-mediated pore formation in THP-1, a native human acute monocytic leukemia cell line that can be used to study homomeric P2X7 (non-desensitizing) receptors that are expressed on macrophages and microglial cells. © 2012 by John Wiley & Sons, Inc.
The role of striatal NMDA receptors in drug addiction.
Ma, Yao-Ying; Cepeda, Carlos; Cui, Cai-Lian
2009-01-01
The past decade has witnessed an impressive accumulation of evidence indicating that the excitatory amino acid glutamate and its receptors, in particular the N-methyl-D-aspartate (NMDA) receptor subtype, play an important role in drug addiction. Various lines of research using animal models of drug addiction have demonstrated that drug-induced craving is accompanied by significant upregulation of NR2B subunit expression. Furthermore, selective blockade of NR2B-containing NMDA receptors in the striatum, especially in the nucleus accumbens (NAc) can inhibit drug craving and reinstatement. The purpose of this review is to examine the role of striatal NMDA receptors in drug addiction. After a brief description of glutamatergic innervation and NMDA receptor subunit distribution in the striatum, we discuss potential mechanisms to explain the role of striatal NMDA receptors in drug addiction by elucidating signaling cascades involved in the regulation of subunit expression and redistribution, phosphorylation of receptor subunits, as well as activation of intracellular signals triggered by drug experience. Understanding the mechanisms regulating striatal NMDA receptor changes in drug addiction will provide more specific and rational targets to counteract the deleterious effects of drug addiction.
Estrogen Receptors in Breast and Bone: from Virtue of Remodeling to Vileness of Metastasis
Bado, Igor; Gugala, Zbigniew; Fuqua, Suzanne A. W.; Zhang, Xiang H.-F.
2017-01-01
Bone metastasis is a prominent cause of morbidity and mortality in cancer. High rates of bone colonization in breast cancer, especially in the subtype expressing estrogen receptors (ERs), suggests tissue-specific proclivities for metastatic tumor formation. The mechanisms behind this subtype-specific organ-tropism remains largely elusive. Interestingly, as the major driver of ER+ breast cancer, ERs also play important roles in bone development and homeostasis. Thus, any agents targeting ER will also inevitably affect the microenvironment, i.e., the osteoblasts and osteoclasts. Yet, how such microenvironmental effects are integrated with direct therapeutic responses of cancer cells remain poorly understood. Recent findings on ER mutations, especially their enrichment in bone metastasis, raised even more provocative questions on the role of ER in cancer-bone interaction. In this review, we evaluate the importance of estrogen receptors (ERs) in bone metastasis and discuss new avenues of investigation for bone metastasis treatment based on current knowledge. PMID:28368409
Targeting the androgen receptor in triple-negative breast cancer: current perspectives.
Mina, Alain; Yoder, Rachel; Sharma, Priyanka
2017-01-01
Triple-negative breast cancer (TNBC) is an aggressive subtype associated with frequent recurrence and metastasis. Unlike hormone receptor-positive subtypes, treatment of TNBC is currently limited by the lack of clinically available targeted therapies. Androgen signaling is necessary for normal breast development, and its dysregulation has been implicated in breast tumorigenesis. In recent years, gene expression studies have identified a subset of TNBC that is enriched for androgen receptor (AR) signaling. Interference with androgen signaling in TNBC is promising, and AR-inhibiting drugs have shown antitumorigenic activity in preclinical and proof of concept clinical studies. Recent advances in our understanding of androgenic signaling in TNBC, along with the identification of interacting pathways, are allowing development of the next generation of clinical trials with AR inhibitors. As novel AR-targeting agents are developed and evaluated in clinical trials, it is equally important to establish a robust set of biomarkers for identification of TNBC tumors that are most likely to respond to AR inhibition.
Free, R Benjamin; Kaser, Daniel J; Boyd, R Thomas; McKay, Dennis B
2006-01-09
Studies involving receptor protection have been used to define the functional involvement of specific receptor subtypes in tissues expressing multiple receptor subtypes. Previous functional studies from our laboratory demonstrate the feasibility of this approach when applied to neuronal tissues expressing multiple nicotinic acetylcholine receptors (nAChRs). In the current studies, the ability of a variety of nAChR agonists and antagonists to protect native and recombinant alpha3beta4 nAChRs from alkylation were investigated using nAChR binding techniques. Alkylation of native alpha3beta4* nAChRs from membrane preparations of bovine adrenal chromaffin cells resulted in a complete loss of specific [(3)H]epibatidine binding. This loss of binding to native nAChRs was preventable by pretreatment with the agonists, carbachol or nicotine. The partial agonist, cytisine, produced partial protection. Several nAChR antagonists were also tested for their ability to protect. Hexamethonium and decamethonium were without protective activity while mecamylamine and tubocurarine were partially effective. Addition protection studies were performed on recombinant alpha3beta4 nAChRs. As with native alpha3beta4* nAChRs, alkylation produced a complete loss of specific [(3)H]epibatidine binding to recombinant alpha3beta4 nAChRs which was preventable by pretreatment with nicotine. However, unlike native alpha3beta4* nAChRs, cytisine and mecamylamine, provide no protection for alkylation. These results highlight the differences between native alpha3beta4* nAChRs and recombinant alpha3beta4 nAChRs and support the use of protection assays to characterize native nAChR subpopulations.
Pérez-Fernández, Juan; Megías, Manuel; Pombal, Manuel A
2014-04-01
The NPY receptors known as Y receptors are classified into three subfamilies, Y1, Y2, and Y5, and are involved in different physiological functions. The Y5 receptor is the only member of the Y5 subfamily, and it is present in all vertebrate groups, except for teleosts. Both molecular and pharmacological studies show that Y5 receptor is highly conserved during vertebrate evolution. Furthermore, this receptor is widely expressed in the mammalian brain, including the hypothalamus, where it is thought to take part in feeding and homeostasis regulation. Lampreys belong to the agnathan lineage, and they are thought to have branched out between the two whole-genome duplications that occurred in vertebrates. Therefore, they are in a key position for studies on the evolution of gene families in vertebrates. Here we report the cloning, phylogeny, and brain expression pattern of the sea lamprey Y5 receptor. In phylogenetic studies, the lamprey Y5 receptor clusters in a basal position, together with Y5 receptors of other vertebrates. The mRNA of this receptor is broadly expressed in the lamprey brain, being especially abundant in hypothalamic areas. Its expression pattern is roughly similar to that reported for other vertebrates and parallels the expression pattern of the Y1 receptor subtype previously described by our group, as it occurs in mammals. Altogether, these results confirm that a Y5 receptor is present in lampreys, thus being highly conserved during the evolution of vertebrates, and suggest that it is involved in many brain functions, the only known exception being teleosts. Copyright © 2013 Wiley Periodicals, Inc.
2010-01-01
The neurotensin receptor subtype 1 (NTS1) represents an attractive molecular target for imaging various tumors. Positron emission tomography (PET) gained widespread importance due to its sensitivity. We combined the design of a metabolically stable neurotensin analogue with a 68Ga-radiolabeling approach. The 68Ga-labeled peptoid−peptide hybrid [68Ga]3 revealed high stability, specific tumor uptake (0.7%ID/g, 65 min p.i.), and advantageous biokinetics in vivo using HT29 tumor-bearing nude mice. Because of the ability to internalize into NTS1-expressing tumor cells, [68Ga]3 proved to be highly suitable for a reliable and practical visualization of NTS1-expressing tumors in vivo by small animal PET. PMID:24900199
Maschauer, Simone; Einsiedel, Jürgen; Hocke, Carsten; Hübner, Harald; Kuwert, Torsten; Gmeiner, Peter; Prante, Olaf
2010-08-12
The neurotensin receptor subtype 1 (NTS1) represents an attractive molecular target for imaging various tumors. Positron emission tomography (PET) gained widespread importance due to its sensitivity. We combined the design of a metabolically stable neurotensin analogue with a (68)Ga-radiolabeling approach. The (68)Ga-labeled peptoid-peptide hybrid [(68)Ga]3 revealed high stability, specific tumor uptake (0.7%ID/g, 65 min p.i.), and advantageous biokinetics in vivo using HT29 tumor-bearing nude mice. Because of the ability to internalize into NTS1-expressing tumor cells, [(68)Ga]3 proved to be highly suitable for a reliable and practical visualization of NTS1-expressing tumors in vivo by small animal PET.
Molecular Biology In Young Women With Breast Cancer: From Tumor Gene Expression To DNA Mutations.
Gómez-Flores-Ramos, Liliana; Castro-Sánchez, Andrea; Peña-Curiel, Omar; Mohar-Betancourt, Alejandro
2017-01-01
Young women with breast cancer (YWBC) represent roughly 15% of breast cancer (BC) cases in Latin America and other developing regions. Breast tumors occurring at an early age are more aggressive and have an overall worse prognosis compared to breast tumors in postmenopausal women. The expression of relevant proliferation biomarkers such as endocrine receptors and human epidermal growth factor receptor 2 appears to be unique in YWBC. Moreover, histopathological, molecular, genetic, and genomic studies have shown that YWBC exhibit a higher frequency of aggressive subtypes, differential tumor gene expression, increased genetic susceptibility, and specific genomic signatures, compared to older women with BC. This article reviews the current knowledge on tumor biology and genomic signatures in YWBC.
Predicted 25(OH)D score and colorectal cancer risk according to vitamin D receptor expression.
Jung, Seungyoun; Qian, Zhi Rong; Yamauchi, Mai; Bertrand, Kimberly A; Fitzgerald, Kathryn C; Inamura, Kentaro; Kim, Sun A; Mima, Kosuke; Sukawa, Yasutaka; Zhang, Xuehong; Wang, Molin; Smith-Warner, Stephanie A; Wu, Kana; Fuchs, Charles S; Chan, Andrew T; Giovannucci, Edward L; Ng, Kimmie; Cho, Eunyoung; Ogino, Shuji; Nishihara, Reiko
2014-08-01
Despite accumulating evidence for the preventive effect of vitamin D on colorectal carcinogenesis, its precise mechanisms remain unclear. We hypothesized that vitamin D was associated with a lower risk of colorectal cancer with high-level vitamin D receptor (VDR) expression, but not with risk of tumor with low-level VDR expression. Among 140,418 participants followed from 1986 through 2008 in the Nurses' Health Study and the Health Professionals' Follow-up Study, we identified 1,059 incident colorectal cancer cases with tumor molecular data. The predicted 25-hydroxyvitamin D [25(OH)D] score was developed using the known determinants of plasma 25(OH)D. We estimated the HR for cancer subtypes using the duplication method Cox proportional hazards model. A higher predicted 25(OH)D score was associated with a lower risk of colorectal cancer irrespective of VDR expression level (P(heterogeneity) for subtypes = 0.75). Multivariate HRs (95% confidence intervals) comparing the highest with the lowest quintile of predicted 25(OH)D scores were 0.48 (0.30-0.78) for VDR-negative tumor and 0.56 (0.42-0.75) for VDR-positive tumor. Similarly, the significant inverse associations of the predicted 25(OH)D score with colorectal cancer risk did not significantly differ by KRAS, BRAF, or PIK3CA status (P(heterogeneity) for subtypes ≥ 0.22). A higher predicted vitamin D score was significantly associated with a lower colorectal cancer risk, regardless of VDR status and other molecular features examined. The preventive effect of vitamin D on colorectal carcinogenesis may not totally depend on tumor factors. Host factors (such as local and systemic immunity) may need to be considered. ©2014 American Association for Cancer Research.
Daniel, Kaemmerer; Maria, Athelogou; Amelie, Lupp; Isabell, Lenhardt; Stefan, Schulz; Luisa, Peter; Merten, Hommann; Vikas, Prasad; Gerd, Binnig; Paul, Baum Richard
2014-01-01
Background: Manual evaluation of somatostatin receptor (SSTR) immunohistochemistry (IHC) is a time-consuming and cost-intensive procedure. Aim of the study was to compare manual evaluation of SSTR subtype IHC to an automated software-based analysis, and to in-vivo imaging by SSTR-based PET/CT. Methods: We examined 25 gastroenteropancreatic neuroendocrine tumor (GEP-NET) patients and correlated their in-vivo SSTR-PET/CT data (determined by the standardized uptake values SUVmax,-mean) with the corresponding ex-vivo IHC data of SSTR subtype (1, 2A, 4, 5) expression. Exactly the same lesions were imaged by PET/CT, resected and analyzed by IHC in each patient. After manual evaluation, the IHC slides were digitized and automatically evaluated for SSTR expression by Definiens XD software. A virtual IHC score “BB1” was created for comparing the manual and automated analysis of SSTR expression. Results: BB1 showed a significant correlation with the corresponding conventionally determined Her2/neu score of the SSTR-subtypes 2A (rs: 0.57), 4 (rs: 0.44) and 5 (rs: 0.43). BB1 of SSTR2A also significantly correlated with the SUVmax (rs: 0.41) and the SUVmean (rs: 0.50). Likewise, a significant correlation was seen between the conventionally evaluated SSTR2A status and the SUVmax (rs: 0.42) and SUVmean (rs: 0.62).Conclusion: Our data demonstrate that the evaluation of the SSTR status by automated analysis (BB1 score), using digitized histopathology slides (“virtual microscopy”), corresponds well with the SSTR2A, 4 and 5 expression as determined by conventional manual histopathology. The BB1 score also exhibited a significant association to the SSTR-PET/CT data in accordance with the high affinity profile of the SSTR analogues used for imaging. PMID:25197368
Hoestgaard-Jensen, K; O'Connor, R M; Dalby, N O; Simonsen, C; Finger, B C; Golubeva, A; Hammer, H; Bergmann, M L; Kristiansen, U; Krogsgaard-Larsen, P; Bräuner-Osborne, H; Ebert, B; Frølund, B; Cryan, J F; Jensen, A A
2013-01-01
BACKGROUND AND PURPOSE Explorations into the heterogeneous population of native GABA type A receptors (GABAARs) and the physiological functions governed by the multiple GABAAR subtypes have for decades been hampered by the lack of subtype-selective ligands. EXPERIMENTAL APPROACH The functional properties of the orthosteric GABAA receptor ligand 5-(4-piperidyl)-3-isothiazolol (Thio-4-PIOL) have been investigated in vitro, ex vivo and in vivo. KEY RESULTS Thio-4-PIOL displayed substantial partial agonist activity at the human extrasynaptic GABAAR subtypes expressed in Xenopus oocytes, eliciting maximal responses of up to ∼30% of that of GABA at α5β3γ2S, α4β3δ and α6β3δ and somewhat lower efficacies at the corresponding α5β2γ2S, α4β2δ and α6β2δ subtypes (maximal responses of 4–12%). In contrast, it was an extremely low efficacious agonist at the α1β3γ2S, α1β2γ2S, α2β2γ2S, α2β3γ2S, α3β2γ2S and α3β3γ2S GABAARs (maximal responses of 0–4%). In concordance with its agonism at extrasynaptic GABAARs and its de facto antagonism at the synaptic receptors, Thio-4-PIOL elicited robust tonic currents in electrophysiological recordings on slices from rat CA1 hippocampus and ventrobasal thalamus and antagonized phasic currents in hippocampal neurons. Finally, the observed effects of Thio-4-PIOL in rat tests of anxiety, locomotion, nociception and spatial memory were overall in good agreement with its in vitro and ex vivo properties. CONCLUSION AND IMPLICATIONS The diverse signalling characteristics of Thio-4-PIOL at GABAARs represent one of the few examples of a functionally subtype-selective orthosteric GABAAR ligand reported to date. We propose that Thio-4-PIOL could be a useful pharmacological tool in future studies exploring the physiological roles of native synaptic and extrasynaptic GABAARs. PMID:23957253
Metabolic profiling of triple-negative breast cancer cells reveals metabolic vulnerabilities.
Lanning, Nathan J; Castle, Joshua P; Singh, Simar J; Leon, Andre N; Tovar, Elizabeth A; Sanghera, Amandeep; MacKeigan, Jeffrey P; Filipp, Fabian V; Graveel, Carrie R
2017-01-01
Among breast cancers, the triple-negative breast cancer (TNBC) subtype has the worst prognosis with no approved targeted therapies and only standard chemotherapy as the backbone of systemic therapy. Unique metabolic changes in cancer progression provide innovative therapeutic opportunities. The receptor tyrosine kinases (RTKs) epidermal growth factor receptor (EGFR), and MET receptor are highly expressed in TNBC, making both promising therapeutic targets. RTK signaling profoundly alters cellular metabolism by increasing glucose consumption and subsequently diverting glucose carbon sources into metabolic pathways necessary to support the tumorigenesis. Therefore, detailed metabolic profiles of TNBC subtypes and their response to tyrosine kinase inhibitors may identify therapeutic sensitivities. We quantified the metabolic profiles of TNBC cell lines representing multiple TNBC subtypes using gas chromatography mass spectrometry. In addition, we subjected MDA-MB-231, MDA-MB-468, Hs578T, and HCC70 cell lines to metabolic flux analysis of basal and maximal glycolytic and mitochondrial oxidative rates. Metabolic pool size and flux measurements were performed in the presence and absence of the MET inhibitor, INC280/capmatinib, and the EGFR inhibitor, erlotinib. Further, the sensitivities of these cells to modulators of core metabolic pathways were determined. In addition, we annotated a rate-limiting metabolic enzymes library and performed a siRNA screen in combination with MET or EGFR inhibitors to validate synergistic effects. TNBC cell line models displayed significant metabolic heterogeneity with respect to basal and maximal metabolic rates and responses to RTK and metabolic pathway inhibitors. Comprehensive systems biology analysis of metabolic perturbations, combined siRNA and tyrosine kinase inhibitor screens identified a core set of TCA cycle and fatty acid pathways whose perturbation sensitizes TNBC cells to small molecule targeting of receptor tyrosine kinases. Similar to the genomic heterogeneity observed in TNBC, our results reveal metabolic heterogeneity among TNBC subtypes and demonstrate that understanding metabolic profiles and drug responses may prove valuable in targeting TNBC subtypes and identifying therapeutic susceptibilities in TNBC patients. Perturbation of metabolic pathways sensitizes TNBC to inhibition of receptor tyrosine kinases. Such metabolic vulnerabilities offer promise for effective therapeutic targeting for TNBC patients.
Fatty acid metabolism in breast cancer subtypes
Monaco, Marie E.
2017-01-01
Dysregulation of fatty acid metabolism is recognized as a component of malignant transformation in many different cancers, including breast; yet the potential for targeting this pathway for prevention and/or treatment of cancer remains unrealized. Evidence indicates that proteins involved in both synthesis and oxidation of fatty acids play a pivotal role in the proliferation, migration and invasion of breast cancer cells. The following essay summarizes data implicating specific fatty acid metabolic enzymes in the genesis and progression of breast cancer, and further categorizes the relevance of specific metabolic pathways to individual intrinsic molecular subtypes of breast cancer. Based on mRNA expression data, the less aggressive luminal subtypes appear to rely on a balance between de novo fatty acid synthesis and oxidation as sources for both biomass and energy requirements, while basal-like, receptor negative subtypes overexpress genes involved in the utilization of exogenous fatty acids. With these differences in mind, treatments may need to be tailored to individual subtypes. PMID:28412757
Antagonist action of progesterone at σ-receptors in the modulation of voltage-gated sodium channels
Johannessen, Molly; Fontanilla, Dominique; Mavlyutov, Timur; Ruoho, Arnold E.
2011-01-01
σ-Receptors are integral membrane proteins that have been implicated in a number of biological functions, many of which involve the modulation of ion channels. A wide range of synthetic ligands activate σ-receptors, but endogenous σ-receptor ligands have proven elusive. One endogenous ligand, dimethyltryptamine (DMT), has been shown to act as a σ-receptor agonist. Progesterone and other steroids bind σ-receptors, but the functional consequences of these interactions are unclear. Here we investigated progesterone binding to σ1- and σ2-receptors and evaluated its effect on σ-receptor-mediated modulation of voltage-gated Na+ channels. Progesterone binds both σ-receptor subtypes in liver membranes with comparable affinities and blocks photolabeling of both subtypes in human embryonic kidney 293 cells that stably express the human cardiac Na+ channel Nav1.5. Patch-clamp recording in this cell line tested Na+ current modulation by the σ-receptor ligands ditolylguanidine, PB28, (+)SKF10047, and DMT. Progesterone inhibited the action of these ligands to varying degrees, and some of these actions were reduced by σ1-receptor knockdown with small interfering RNA. Progesterone inhibition of channel modulation by drugs was consistent with stronger antagonism of σ2-receptors. By contrast, progesterone inhibition of channel modulation by DMT was consistent with stronger antagonism of σ1-receptors. Progesterone binding to σ-receptors blocks σ-receptor-mediated modulation of a voltage-gated ion channel, and this novel membrane action of progesterone may be relevant to changes in brain and cardiovascular function during endocrine transitions. PMID:21084640
Antagonist action of progesterone at σ-receptors in the modulation of voltage-gated sodium channels.
Johannessen, Molly; Fontanilla, Dominique; Mavlyutov, Timur; Ruoho, Arnold E; Jackson, Meyer B
2011-02-01
σ-Receptors are integral membrane proteins that have been implicated in a number of biological functions, many of which involve the modulation of ion channels. A wide range of synthetic ligands activate σ-receptors, but endogenous σ-receptor ligands have proven elusive. One endogenous ligand, dimethyltryptamine (DMT), has been shown to act as a σ-receptor agonist. Progesterone and other steroids bind σ-receptors, but the functional consequences of these interactions are unclear. Here we investigated progesterone binding to σ(1)- and σ(2)-receptors and evaluated its effect on σ-receptor-mediated modulation of voltage-gated Na(+) channels. Progesterone binds both σ-receptor subtypes in liver membranes with comparable affinities and blocks photolabeling of both subtypes in human embryonic kidney 293 cells that stably express the human cardiac Na(+) channel Na(v)1.5. Patch-clamp recording in this cell line tested Na(+) current modulation by the σ-receptor ligands ditolylguanidine, PB28, (+)SKF10047, and DMT. Progesterone inhibited the action of these ligands to varying degrees, and some of these actions were reduced by σ(1)-receptor knockdown with small interfering RNA. Progesterone inhibition of channel modulation by drugs was consistent with stronger antagonism of σ(2)-receptors. By contrast, progesterone inhibition of channel modulation by DMT was consistent with stronger antagonism of σ(1)-receptors. Progesterone binding to σ-receptors blocks σ-receptor-mediated modulation of a voltage-gated ion channel, and this novel membrane action of progesterone may be relevant to changes in brain and cardiovascular function during endocrine transitions.
Politis, S N; Servili, A; Mazurais, D; Zambonino-Infante, J-L; Miest, J J; Tomkiewicz, J; Butts, I A E
2018-04-01
Thyroid hormones (THs) are key regulators of growth, development, and metabolism in vertebrates and influence early life development of fish. TH is produced in the thyroid gland (or thyroid follicles) mainly as T4 (thyroxine), which is metabolized to T3 (3,5,3'-triiodothyronine) and T2 (3,5-diiodothyronine) by deiodinase (DIO) enzymes in peripheral tissues. The action of these hormones is mostly exerted by binding to a specific nuclear thyroid hormone receptor (THR). In this study, we i) cloned and characterized thr sequences, ii) investigated the expression pattern of the different subtypes of thrs and dios, and iii) studied how temperature affects the expression of those genes in artificially produced early life history stages of European eel (Anguilla anguilla), reared in different thermal regimes (16, 18, 20 and 22 °C) from hatch until first-feeding. We identified 2 subtypes of thr (thrα and thrβ) with 2 isoforms each (thrαA, thrαB, thrβA, thrβB) and 3 subtypes of deiodinases (dio1, dio2, dio3). All thr genes identified showed high similarity to the closely related Japanese eel (Anguilla japonica). We found that all genes investigated in this study were affected by larval age (in real time or at specific developmental stages), temperature, and/or their interaction. More specifically, the warmer the temperature the earlier the expression response of a specific target gene. In real time, the expression profiles appeared very similar and only shifted with temperature. In developmental time, gene expression of all genes differed across selected developmental stages, such as at hatch, during teeth formation or at first-feeding. Thus, we demonstrate that thrs and dios show sensitivity to temperature and are involved in and during early life development of European eel. Copyright © 2017 Elsevier Inc. All rights reserved.
Gorelick, Daniel A; Iwanowicz, Luke R; Hung, Alice L; Blazer, Vicki S; Halpern, Marnie E
2014-04-01
Environmental endocrine disruptors (EEDs) are exogenous chemicals that mimic endogenous hormones such as estrogens. Previous studies using a zebrafish transgenic reporter demonstrated that the EEDs bisphenol A and genistein preferentially activate estrogen receptors (ERs) in the larval heart compared with the liver. However, it was not known whether the transgenic zebrafish reporter was sensitive enough to detect estrogens from environmental samples, whether environmental estrogens would exhibit tissue-specific effects similar to those of BPA and genistein, or why some compounds preferentially target receptors in the heart. We tested surface water samples using a transgenic zebrafish reporter with tandem estrogen response elements driving green fluorescent protein expression (5xERE:GFP). Reporter activation was colocalized with tissue-specific expression of ER genes by RNA in situ hybridization. We observed selective patterns of ER activation in transgenic fish exposed to river water samples from the Mid-Atlantic United States, with several samples preferentially activating receptors in embryonic and larval heart valves. We discovered that tissue specificity in ER activation was due to differences in the expression of ER subtypes. ERα was expressed in developing heart valves but not in the liver, whereas ERβ2 had the opposite profile. Accordingly, subtype-specific ER agonists activated the reporter in either the heart valves or the liver. The use of 5xERE:GFP transgenic zebrafish revealed an unexpected tissue-specific difference in the response to environmentally relevant estrogenic compounds. Exposure to estrogenic EEDs in utero was associated with adverse health effects, with the potentially unanticipated consequence of targeting developing heart valves.
Regulation of G-protein coupled receptor traffic by an evolutionary conserved hydrophobic signal.
Angelotti, Tim; Daunt, David; Shcherbakova, Olga G; Kobilka, Brian; Hurt, Carl M
2010-04-01
Plasma membrane (PM) expression of G-protein coupled receptors (GPCRs) is required for activation by extracellular ligands; however, mechanisms that regulate PM expression of GPCRs are poorly understood. For some GPCRs, such as alpha2c-adrenergic receptors (alpha(2c)-ARs), heterologous expression in non-native cells results in limited PM expression and extensive endoplasmic reticulum (ER) retention. Recently, ER export/retentions signals have been proposed to regulate cellular trafficking of several GPCRs. By utilizing a chimeric alpha(2a)/alpha(2c)-AR strategy, we identified an evolutionary conserved hydrophobic sequence (ALAAALAAAAA) in the extracellular amino terminal region that is responsible in part for alpha(2c)-AR subtype-specific trafficking. To our knowledge, this is the first luminal ER retention signal reported for a GPCR. Removal or disruption of the ER retention signal dramatically increased PM expression and decreased ER retention. Conversely, transplantation of this hydrophobic sequence into alpha(2a)-ARs reduced their PM expression and increased ER retention. This evolutionary conserved hydrophobic trafficking signal within alpha(2c)-ARs serves as a regulator of GPCR trafficking.
A shifted repertoire of endocannabinoid genes in the zebrafish (Danio rerio).
McPartland, J M; Glass, Michelle; Matias, Isabel; Norris, Ryan W; Kilpatrick, C William
2007-05-01
The zebrafish has served as a model organism for developmental biology. Sequencing its genome has expanded zebrafish research into physiology and drug-development testing. Several cannabinoid pharmaceuticals are in development, but expression of endocannabinoid receptors and enzymes remains unknown in this species. We conducted a bioinformatics analysis of the zebrafish genome using 17 human endocannabinoid genes as a reference set. Putative zebrafish orthologs were identified in filtered BLAST searches as reciprocal best hits. Orthology was confirmed by three in silico methods: phylogenetic testing, synteny analysis, and functional mapping. Zebrafish expressed orthologs of cannabinoid receptor 1, transient receptor potential channel vanilloid receptor 4, GPR55 receptor, fatty acid amide hydrolase 1, monoacylglycerol lipase, NAPE-selective phospholipase D, abhydrolase domain-containing protein 4, and diacylglycerol lipase alpha and beta; and paired paralogs of cannabinoid receptor 2, fatty acid amide hydrolase 2, peroxisome proliferator-activated receptor alpha, prostaglandin-endoperoxide synthase 2, and transient receptor potential cation channel subtype A1. Functional mapping suggested the orthologs of transient receptor potential vanilloid receptor 1 and peroxisome proliferator-activated receptor gamma lack specific amino acids critical for cannabinoid ligand binding. No orthologs of N-acylethanolamine acid amidase or protein tyrosine phosphatase, non-receptor type 22 were identified. In conclusion, the zebrafish genome expresses a shifted repertoire of endocannabinoid genes. In vitro analyses are warranted before using zebrafish for cannabinoid development testing.
The role of cortistatin in the human immune system.
van Hagen, P Martin; Dalm, Virgil A; Staal, Frank; Hofland, Leo J
2008-05-14
Cortistatin (CST) is a recently described neuropeptide that shares high homology with somatostatin (somatotropin release-inhibiting factor, SRIF) and binds with high affinity to all somatostatin (sst) receptor subtypes. CST is currently known to have a widespread distribution in many human organs including the immune system. The activities specific to CST may be partially attributable to its binding to the growth hormone secretagogue (GHS)-receptor (GHS-R) and the orphan G-protein-coupled receptor MrgX2. Human immune cells produce CST, whereas macrophage lineage and activated endothelium express sst2, and human lymphocytes express sst3. The human thymus expresses sst1, 2, 3, MrgX2 and almost all immune cells express GHS-R. Moreover, at this very moment promising research with CST in experimental animal models is being performed. On the basis of these promising results, studies aiming to further evaluate the possibilities of CST as a therapeutic agent in human immune-mediated inflammatory diseases are warranted.
Ilyaskina, Olga S; Lemoine, Horst; Bünemann, Moritz
2018-05-08
G-protein-coupled receptors (GPCRs) are essential for the detection of extracellular stimuli by cells and transfer the encoded information via the activation of functionally distinct subsets of heterotrimeric G proteins into intracellular signals. Despite enormous achievements toward understanding GPCR structures, major aspects of the GPCR-G-protein selectivity mechanism remain unresolved. As this can be attributed to the lack of suitable and broadly applicable assays, we set out to develop a quantitative FRET-based assay to study kinetics and affinities of G protein binding to activated GPCRs in membranes of permeabilized cells in the absence of nucleotides. We measured the association and dissociation kinetics of agonist-induced binding of G i/o , G q/11 , G s , and G 12/13 proteins to muscarinic M 1 , M 2 , and M 3 receptors in the absence of nucleotides between fluorescently labeled G proteins and receptors expressed in mammalian cells. Our results show a strong quantitative correlation between not the on-rates of G-protein-M 3 -R interactions but rather the affinities of G q and G o proteins to M 3 -Rs, their GPCR-G-protein lifetime and their coupling efficiencies determined in intact cells, suggesting that the G-protein subtype-specific affinity to the activated receptor in the absence of nucleotides is, in fact, a major determinant of the coupling efficiency. Our broadly applicable FRET-based assay represents a fast and reliable method to quantify the intrinsic affinity and relative coupling selectivity of GPCRs toward all G-protein subtypes.
Dupré, Christophe; Lovett-Barron, Matthew; Pfaff, Donald W; Kow, Lee-Ming
2010-07-06
How do fluctuations in the level of generalized arousal of the brain affect the performance of specific motivated behaviors, such as sexual behaviors that depend on sexual arousal? A great deal of previous work has provided us with two important starting points in answering this question: (i) that histamine (HA) serves generalized CNS arousal and (ii) that heightened electrical activity of neurons in the ventromedial nucleus of the hypothalamus (VMN) is necessary and sufficient for facilitating the primary female sex behavior in laboratory animals, lordosis behavior. Here we used patch clamp recording technology to analyze HA effects on VMN neuronal activity. The results show that HA acting through H1 receptors (H1R) depolarizes these neurons. Further, acute administration of estradiol, an estrogen necessary for lordosis behavior to occur, heightens this effect. Hyperpolarization, which tends to decrease excitability and enhance inhibition, was not affected by acute estradiol or mediated by H1R but was mediated by other HA receptor subtypes, H2 and H3. Sampling of mRNA from individual VMN neurons showed colocalization of expression of H1 receptor mRNA with estrogen receptor (ER)-alpha mRNA but also revealed ER colocalization with the other HA receptor subtypes and colocalization of different subtypes with each other. The latter finding provides the molecular basis for complex "push-pull" regulation of VMN neuronal excitability by HA. Thus, in the simplest causal route, HA, acting on VMN neurons through H1R provides a mechanism by which elevated states of generalized CNS arousal can foster a specific estrogen-dependent, aroused behavior, sexual behavior.
Extrinsic factors regulate partial agonist efficacy of strychnine-sensitive glycine receptors
Farroni, Jeffrey S; McCool, Brian A
2004-01-01
Background Strychnine-sensitive glycine receptors in many adult forebrain regions consist of alpha2 + beta heteromeric channels. This subunit composition is distinct from the alpha1 + beta channels found throughout the adult spinal cord. Unfortunately, the pharmacology of forebrain alpha2beta receptors are poorly defined compared to 'neonatal' alpha2 homomeric channels or 'spinal' alpha1beta heteromers. In addition, the pharmacologic properties of native alpha2beta glycine receptors have been generally distinct from receptors produced by heterologous expression. To identify subtype-specific pharmacologic tools for the forebrain alpha2beta receptors, it is important to identify a heterologous expression system that closely resembles these native glycine-gated chloride channels. Results While exploring pharmacological properties of alpha2beta glycine receptors compared to alpha2-homomers, we found that distinct heterologous expression systems appeared to differentially influence partial agonist pharmacology. The β-amino acid taurine possessed 30–50% efficacy for alpha2-containing receptor isoforms when expressed in HEK 293 cells. However, taurine efficacy was dramatically reduced in L-cell fibroblasts. Similar results were obtained for β-alanine. The efficacy of these partial agonists was also strongly reduced by the beta subunit. There were no significant differences in apparent strychnine affinity values calculated from concentration-response data between expression systems or subunit combinations. Nor did relative levels of expression correlate with partial agonist efficacy when compared within or between several different expression systems. Finally, disruption of the tubulin cytoskeleton reduced the efficacy of partial agonists in a subunit-dependent, but system-independent, fashion. Conclusions Our results suggest that different heterologous expression systems can dramatically influence the agonist pharmacology of strychnine-sensitive glycine receptors. In the systems examine here, these effects are independent of both absolute expression level and any system-related alterations in the agonist binding site. We conclude that complex interactions between receptor composition and extrinsic factors may play a significant role in determining strychnine-sensitive glycine receptor partial agonist pharmacology. PMID:15301692
Extrinsic factors regulate partial agonist efficacy of strychnine-sensitive glycine receptors.
Farroni, Jeffrey S; McCool, Brian A
2004-08-09
Strychnine-sensitive glycine receptors in many adult forebrain regions consist of alpha2 + beta heteromeric channels. This subunit composition is distinct from the alpha1 + beta channels found throughout the adult spinal cord. Unfortunately, the pharmacology of forebrain alpha2beta receptors are poorly defined compared to 'neonatal' alpha2 homomeric channels or 'spinal' alpha1beta heteromers. In addition, the pharmacologic properties of native alpha2beta glycine receptors have been generally distinct from receptors produced by heterologous expression. To identify subtype-specific pharmacologic tools for the forebrain alpha2beta receptors, it is important to identify a heterologous expression system that closely resembles these native glycine-gated chloride channels. While exploring pharmacological properties of alpha2beta glycine receptors compared to alpha2-homomers, we found that distinct heterologous expression systems appeared to differentially influence partial agonist pharmacology. The beta-amino acid taurine possessed 30-50% efficacy for alpha2-containing receptor isoforms when expressed in HEK 293 cells. However, taurine efficacy was dramatically reduced in L-cell fibroblasts. Similar results were obtained for beta-alanine. The efficacy of these partial agonists was also strongly reduced by the beta subunit. There were no significant differences in apparent strychnine affinity values calculated from concentration-response data between expression systems or subunit combinations. Nor did relative levels of expression correlate with partial agonist efficacy when compared within or between several different expression systems. Finally, disruption of the tubulin cytoskeleton reduced the efficacy of partial agonists in a subunit-dependent, but system-independent, fashion. Our results suggest that different heterologous expression systems can dramatically influence the agonist pharmacology of strychnine-sensitive glycine receptors. In the systems examine here, these effects are independent of both absolute expression level and any system-related alterations in the agonist binding site. We conclude that complex interactions between receptor composition and extrinsic factors may play a significant role in determining strychnine-sensitive glycine receptor partial agonist pharmacology.
Saito, Yuichi; Mekuchi, Miyuki; Kobayashi, Noriaki; Kimura, Makoto; Aoki, Yasuhiro; Masuda, Tomohiro; Azuma, Teruo; Fukami, Motohiro; Iigo, Masayuki; Yanagisawa, Tadashi
2011-11-01
Molecular cloning of thyrotropin-releasing hormone receptors (TRHR) was performed in a teleost, the sockeye salmon (Oncorhynchus nerka). Four different TRHR cDNAs were cloned and named TRHR1, TRHR2a, TRHR2b and TRHR3 based on their similarity to known TRHR subtypes in vertebrates. Important residues for TRH binding were conserved in deduced amino acid sequences of the three TRHR subtypes except for the TRHR2b. Seven transmembrane domains were predicted for TRHR1, TRHR2a and TRHR3 proteins but only five for TRHR2b which appears to be truncated. In silico database analysis identified putative TRHR sequences including invertebrate TRHR and reptilian, avian and mammalian TRHR3. Phylogenetic analyses predicted the molecular evolution of TRHR in vertebrates: from the common ancestral TRHR (i.e. invertebrate TRHR), the TRHR2 subtype diverged first and then TRHR1 and TRHR3 diverged. Reverse transcription-polymerase chain reaction analyses revealed TRHR1 transcripts in the brain (hypothalamus), retina, pituitary gland and large intestine; TRHR2a in the brain (telencephalon and hypothalamus); and TRHR3 in the brain (olfactory bulbs) and retina. Copyright © 2011 Elsevier Inc. All rights reserved.
Pinheiro, C; Sousa, B; Albergaria, A; Paredes, J; Dufloth, R; Vieira, D; Schmitt, F; Baltazar, F
2011-10-01
The goal of the present work was to evaluate the correlation of glucose transporter 1 (GLUT1) and carbonic anhydrase IX (CAIX) with the monocarboxylate transporters 1 (MCT1) and 4 (MCT4) and their chaperone, CD147, in breast cancer. The clinico-pathological value of GLUT1 and CAIX was also evaluated. For that, we analysed the immunohistochemical expression of GLUT1 and CAIX, in a large series of invasive breast carcinoma samples (n=124), previously characterized for MCT1, MCT4 and CD147 expression. GLUT1 expression was found in 46% of the cases (57/124), while CAIX was found in 18% of the cases (22/122). Importantly, both MCT1 and CD147, but not MCT4, were associated with GLUT1 and CAIX expression. Also, GLUT1 and CAIX correlated with each other. Concerning the clinico-pathological values, GLUT1 was associated with high grade tumours, basal-like subtype, absence of progesterone receptor, presence of vimentin and high proliferative index as measured by Ki-67. Additionally, CAIX was associated with large tumour size, high histological grade, basal-like subtype, absence of estrogen and progesterone receptors and presence of basal cytokeratins and vimentin expression. Finally, patients with CAIX positive tumours had a significantly shorter disease-free survival. The association between MCT1 and both GLUT1 and CAIX may result from hypoxia-mediated metabolic adaptations, which confer a glycolytic, acid-resistant and more aggressive phenotype to cancer cells.
Clarke, Christina A; Canchola, Alison J; Moy, Lisa M; Neuhausen, Susan L; Chung, Nadia T; Lacey, James V; Bernstein, Leslie
2017-05-01
Regular users of aspirin may have reduced risk of breast cancer. Few studies have addressed whether risk reduction pertains to specific breast cancer subtypes defined jointly by hormone receptor (estrogen and progesterone receptor) and human epidermal growth factor receptor 2 (HER2) expression. This study assessed the prospective risk of breast cancer (overall and by subtype) according to use of aspirin and other non-steroidal anti-inflammatory medications (NSAIDs) in a cohort of female public school professionals in California. In 1995 - 1996, participants in the California Teachers Study completed a baseline questionnaire on family history of cancer and other conditions, use of NSAIDs, menstrual and reproductive history, self-reported weight and height, living environment, diet, alcohol use, and physical activity. In 2005-2006, 57,164 participants provided some updated information, including use of NSAIDs and 1457 of these participants developed invasive breast cancer before January 2013. Multivariable Cox proportional hazards regression models provided hazard rate ratios (HRR) for the association between NSAID use and risk of invasive breast cancer as well as hormone receptor- and HER2-defined subtypes. Developing breast cancer was associated inversely with taking three or more tablets of low-dose aspirin per week (23% of participants). Among women reporting this exposure, the HRR was 0.84 (95% confidence interval (CI) 0.72-0.98) compared to those not taking NSAIDs and this was particularly evident in women with the hormone receptor-positive/HER2-negative subtype (HRR = 0.80, 95% CI 0.66-0.96). Use of three or more tablets of "other" NSAIDs was marginally associated with lower risk of breast cancer (HRR = 0.79, 95% CI 0.62-1.00). Other associations with NSAIDs were generally null. Our observation of reduced risk of breast cancer, among participants who took three or more tablets of low-dose aspirin weekly, is consistent with other reports looking at aspirin without differentiation by dose. This is the first report to suggest that the reduction in risk occurs for low-dose aspirin and not for regular-dose aspirin and only among women with the hormone receptor-positive/HER2-negative subtype. This preliminary study builds on previous knowledge and further supports the need for formal cancer chemoprevention studies of low-dose aspirin.
Palikhe, Nami Shrestha; Sin, Hye Jung; Kim, Seung Hyun; Sin, Hyun Jung; Hwang, Eui Kyung; Ye, Young Min; Park, Hae-Sim
2012-08-01
Prostaglandin E2 receptor subtype EP4 (PTGER4) is one of the four subtypes of receptors for prostaglandin E2 (PGE2). Overproduction of cysteinyl leukotriene in mast cells may be related with suppression of PGE2 in patients with aspirin hypersensitivity. Considering the association of PTGER4 in mast cells, urticaria- and aspirin-related disease, we hypothesized the genetic variability of PTGER4 may be associated with aspirin-intolerant chronic urticaria (AICU). The case-control study was performed in 141 with AICU, 153 with aspirin-tolerant chronic urticaria (ATCU) and 174 with normal controls (NCs). PTGER4 promoter single-nucleotide polymorphism was genotyped using a primer extension method with the SNAPshot ddNTP primer extension kit. The functional variability of PTGER4 promoter polymorphism was carried out by dual-luciferase system and electrophoretic mobility shift assay (EMSA) in human mast cells (HMC-1). Furthermore, the effect of aspirin was performed for PTGER4 mRNA expression using real-time PCR, and PGE2 production was checked in HMC-1 cells using ELISA. AICU patients carrying GG genotype at -1254 G>A showed significantly higher frequency compared with NC (P=0.032). Similarly, the minor allele frequency, G allele was significantly higher in AICU compared with NC (P=0.031). In vitro functional study demonstrated that the -1254 G allele had lower luciferase activity (P<0.001) in HMC-1 cells. EMSA finding showed that PTGER4 -1254 G produced a specific band. Significantly decreased PTGER4 expression (P=0.008) and PGE2 production by aspirin exposure was confirmed in in vitro HMC cell line model (P=0.001). The PTGER4 -1254 G allele demonstrated a higher frequency in AICU patients and lower promoter activity with decreased expression of PTGER4 and contributes to the development of AICU.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hattangadi-Gluth, Jona A.; Wo, Jennifer Y.; Nguyen, Paul L.
2012-03-01
Purpose: To determine whether breast cancer subtype is associated with patterns of ipsilateral breast tumor recurrence (IBTR), either true recurrence (TR) or elsewhere local recurrence (ELR), among women with pT1-T2 invasive breast cancer (IBC) who receive breast-conserving therapy (BCT). Methods and Materials: From Jan 1998 to Dec 2003, 1,223 women with pT1-T2N0-3 IBC were treated with BCT (lumpectomy plus whole-breast radiation). Ninety percent of patients received adjuvant systemic therapy, but none received trastuzumab. Biologic cancer subtypes were approximated by determining estrogen receptor-positive (ER+), progesterone receptor-positive (PR+), and human epidermal growth factor receptor-2-positive (HER-2+) expression, classified as luminal A (ER+ ormore » PR+ and HER-2 negative [HER-2-]), luminal B (ER+ or PR+ and HER-2+), HER-2 (ER- and PR- and HER-2+), and basal (ER- and PR- and HER-2- ) subtypes. Imaging, pathology, and operative reports were reviewed by two physicians independently, including an attending breast radiologist. Readers were blinded to subtype and outcome. TR was defined as IBTR within the same quadrant and within 3 cm of the primary tumor. All others were defined as ELR. Results: At a median follow-up of 70 months, 24 patients developed IBTR (5-year cumulative incidence of 1.6%), including 15 TR and 9 ELR patients. At 5 years, basal (4.4%) and HER-2 (9%) subtypes had a significantly higher incidence of TR than luminal B (1.2%) and luminal A (0.2%) subtypes (p < 0.0001). On multivariate analysis, basal subtype (hazard ratio [HR], 4.8, p = 0.01), younger age at diagnosis (HR, 0.97; p = 0.05), and increasing tumor size (HR, 2.1; p = 0.04) were independent predictors of TR. Only younger age (HR, 0.95; p = 0.01) significantly predicted for ELR. Conclusions: Basal and HER-2 subtypes are significantly associated with higher rates of TR among women with pT1-T2 IBC after BCT. Younger age predicts for both TR and ELR. Strategies to reduce TR in basal breast cancers, such as increased boost doses, concomitant radiation and chemotherapy, or targeted therapy agents, should be explored.« less
Tena-Sempere, M; Barreiro, M L; González, L C; Pinilla, L; Aguilar, E
2001-11-01
Two distinct nuclear estrogen receptors (ERs) have been identified, the classical one, renamed ERalpha, and the more recently cloned ERbeta. In a variety of tissues, gene expression of both receptor subtypes results in the generation of multiple transcripts encoding the full-length as well as several alternately spliced isoforms. In the rat pituitary, a truncated, tissue-specific variant of ERalpha, called TERP-1, has been identified and found able to modulate ERalpha and ERbeta activity. So far, its pattern of expression and hormonal regulation have been mostly studied in females. The present study was designed to analyze the pattern of expression of TERP-1 mRNA in the male rat pituitary at different stages of postnatal development, and to evaluate the impact of neonatal imprinting and estrogen treatment upon TERP-1 expression in the male pituitary. Assessment of TERP-1 mRNA levels by semi-quantitative RT-PCR, using a variant-specific primer pair, revealed that TERP-1 is also expressed in the male rat pituitary. Relative mRNA expression levels changed markedly during postnatal development, with moderate expression of the TERP-1 transcript at birth, barely detectable levels during the infantile-prepubertal period, and maximal values in adulthood. Expression of TERP-1 was sensitive to neonatal estrogen exposure, which resulted in a significant, persistent increase in mRNA levels from the infantile period until puberty. This phenomenon was not mimicked by neonatal blockade of endogenous GnRH. In addition, estrogen was able to acutely up-regulate pituitary TERP-1 mRNA expression levels in prepubertal (30-day-old) and adult (75-day-old) males. Interestingly, neonatal imprinting as well as acute estrogen treatment resulted in opposite effects on TERP-1 and full-length ERalpha and ERbeta transcripts, the latter being decreased under both conditions. In conclusion, our data indicate that TERP-1 mRNA is expressed in a developmentally regulated manner in the male rat pituitary, and is affected by neonatal estrogen imprinting and acute estrogen treatment. Regulation of TERP-1 expression by neonatal or acute estrogen treatment may thus represent an additional tuning mechanism for estrogen actions in the male rat pituitary. Copyright 2001 S. Karger AG, Basel
Pirenzepine binding to membrane-bound, solubilized and purified muscarinic receptor subtypes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baumgold, J.
1986-05-01
Muscarinic receptors were purified to near-homogeneity from bovine cortex, an area rich in the putative M1 subtype, and from bovine pons/medulla, an area rich in the putative M2 subtype. In both cases, the receptors were solubilized in digitonin and purified over an affinity column. Both the cortical and pons/medulla preparations yielded receptor proteins of 70,000 daltons. Pirenzepine binding was deduced from its competition with /sup 3/H-N-methyl scopolamine. The binding of pirenzepine to membrane-bound receptors from cortex was best described by a two site model, with approximately half the sites having a Ki of 6.4 x 10/sup -9/ M and themore » remaining sites having a Ki of 3.5 x 10/sup -7/ M. Membrane-bound receptors from pons/medulla bound pirenzepine according to a one-site model with a Ki of 1.1 x 10/sup -7/ M. After solubilization the two-site binding of cortical receptors became a one-site binding, Ki = 1.1 x 10/sup -7/M. This value was still five-fold lower than that of soluble receptors from pons/medulla. After purification however the affinity of pirenzepine for the pons/medulla receptor increased so that the two putative subtypes bound pirenzepine with approximately the same affinity. These findings suggest that the different pirenzepine binding characteristics used to define muscarinic receptor subtypes are not inherent in the receptor protein itself but may be due to coupling factors associated with the receptor.« less
Sternfeld, F; Guiblin, A R; Jelley, R A; Matassa, V G; Reeve, A J; Hunt, P A; Beer, M S; Heald, A; Stanton, J A; Sohal, B; Watt, A P; Street, L J
1999-02-25
The design, synthesis, and biological evaluation of a novel series of 3-[2-(pyrrolidin-1-yl)ethyl]indoles with excellent selectivity for h5-HT1D (formerly 5-HT1Dalpha) receptors over h5-HT1B (formerly 5-HT1Dbeta) receptors are described. Clinically effective antimigraine drugs such as Sumatriptan show little selectivity between h5-HT1D and h5-HT1B receptors. The differential expression of h5-HT1D and h5-HT1B receptors in neural and vascular tissue prompted an investigation of whether a compound selective for the h5-HT1D subtype would have the same clinical efficacy but with reduced side effects. The pyrrolidine 3b was initially identified as having 9-fold selectivity for h5-HT1D over h5-HT1B receptors. Substitution of the pyrrolidine ring of 3b with methylbenzylamine groups gave compounds with nanomolar affinity for the h5-HT1D receptor and 100-fold selectivity with respect to h5-HT1B receptors. Modification of the indole 5-substituent led to the oxazolidinones 24a,b with up to 163-fold selectivity for the h5-HT1D subtype and improved selectivity over other serotonin receptors. The compounds were shown to be full agonists by measurement of agonist-induced [35S]GTPgammaS binding in CHO cells expressed with h5-HT receptors. This study suggests that the h5-HT1D and h5-HT1B receptors can be differentiated by appropriate substitution of the ligand in the region which binds to the aspartate residue and reveals a large binding pocket in the h5-HT1D receptor domain which is absent for the h5-HT1B receptor. The compounds described herein will be important tools to delineate the role of h5-HT1D receptors in migraine.
Schlenstedt, Jana; Balfanz, Sabine; Baumann, Arnd; Blenau, Wolfgang
2006-09-01
The biogenic amine serotonin (5-HT) plays a key role in the regulation and modulation of many physiological and behavioural processes in both vertebrates and invertebrates. These functions are mediated through the binding of serotonin to its receptors, of which 13 subtypes have been characterized in vertebrates. We have isolated a cDNA from the honeybee Apis mellifera (Am5-ht7) sharing high similarity to members of the 5-HT(7) receptor family. Expression of the Am5-HT(7) receptor in HEK293 cells results in an increase in basal cAMP levels, suggesting that Am5-HT(7) is expressed as a constitutively active receptor. Serotonin application to Am5-ht7-transfected cells elevates cyclic adenosine 3',5'-monophosphate (cAMP) levels in a dose-dependent manner (EC(50) = 1.1-1.8 nm). The Am5-HT(7) receptor is also activated by 5-carboxamidotryptamine, whereas methiothepin acts as an inverse agonist. Receptor expression has been investigated by RT-PCR, in situ hybridization, and western blotting experiments. Receptor mRNA is expressed in the perikarya of various brain neuropils, including intrinsic mushroom body neurons, and in peripheral organs. This study marks the first comprehensive characterization of a serotonin receptor in the honeybee and should facilitate further analysis of the role(s) of the receptor in mediating the various central and peripheral effects of 5-HT.
Anaplastic lymphoma kinase is expressed in different subtypes of human breast cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez-Pinera, Pablo; Chang, Y.; Astudillo, A.
2007-06-29
Pleiotrophin (PTN, Ptn) is an 18 kDa cytokine expressed in human breast cancers. Since inappropriate expression of Ptn stimulates progression of breast cancer in transgenic mice and a dominant negative PTN reverses the transformed phenotype of human breast cancer cells that inappropriately express Ptn, it is suggested that constitutive PTN signaling in breast cancer cells that inappropriately express Ptn activates pathways that promote a more aggressive breast cancer phenotype. Pleiotrophin signals by inactivating its receptor, the receptor protein tyrosine phosphatase (RPTP){beta}/{zeta}, and, recently, PTN was found to activate anaplastic lymphoma kinase (ALK) through the PTN/RPTP{beta}/{zeta} signaling pathway in PTN-stimulated cells,more » not through a direct interaction of PTN with ALK and thus not through the PTN-enforced dimerization of ALK. Since full-length ALK is activated in different malignant cancers and activated ALK is a potent oncogenic protein, we examined human breast cancers to test the possibility that ALK may be expressed in breast cancers and potentially activated through the PTN/RPTP{beta}/{zeta} signaling pathway; we now demonstrate that ALK is strongly expressed in different histological subtypes of human breast cancer; furthermore, ALK is expressed in both nuclei and cytoplasm and, in the 'dotted' pattern characteristic of ALK fusion proteins in anaplastic large cell lymphoma. This study thus supports the possibility that activated ALK may be important in human breast cancers and potentially activated either through the PTN/RPTP{beta}/{zeta} signaling pathway, or, alternatively, as an activated fusion protein to stimulate progression of breast cancer in humans.« less
GABAA receptor subtype involvement in addictive behaviour.
Stephens, D N; King, S L; Lambert, J J; Belelli, D; Duka, T
2017-01-01
GABA A receptors form the major class of inhibitory neurotransmitter receptors in the mammalian brain. This review sets out to summarize the evidence that variations in genes encoding GABA A receptor isoforms are associated with aspects of addictive behaviour in humans, while animal models of addictive behaviour also implicate certain subtypes of GABA A receptor. In addition to outlining the evidence for the involvement of specific subtypes in addiction, we summarize the particular contributions of these isoforms in control over the functioning of brain circuits, especially the mesolimbic system, and make a first attempt to bring together evidence from several fields to understanding potential involvement of GABA A receptor subtypes in addictive behaviour. While the weight of the published literature is on alcohol dependency, the underlying principles outlined are relevant across a number of different aspects of addictive behaviour. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Premer, Courtney; Lamondin, Courtney; Mitzey, Ann; Speth, Robert C.; Brownfield, Mark S.
2013-01-01
Angiotensin II increases blood pressure and stimulates thirst and sodium appetite in the brain. It also stimulates secretion of aldosterone from the adrenal zona glomerulosa and epinephrine from the adrenal medulla. The rat has 3 subtypes of angiotensin II receptors: AT1a, AT1b, and AT2. mRNAs for all three subtypes occur in the adrenal and brain. To immunohistochemically differentiate these receptor subtypes, rabbits were immunized with C-terminal fragments of these subtypes to generate receptor subtype-specific antibodies. Immunofluorescence revealed AT1a and AT2 receptors in adrenal zona glomerulosa and medulla. AT1b immunofluorescence was present in the zona glomerulosa, but not the medulla. Ultrastructural immunogold labeling for the AT1a receptor in glomerulosa and medullary cells localized it to plasma membrane, endocytic vesicles, multivesicular bodies, and the nucleus. AT1b and AT2, but not AT1a, immunofluorescence was observed in the anterior pituitary. Stellate cells were AT1b positive while ovoid cells were AT2 positive. In the brain, neurons were AT1a, AT1b, and AT2 positive, but glia was only AT1b positive. Highest levels of AT1a, AT1b, and AT2 receptor immunofluorescence were in the subfornical organ, median eminence, area postrema, paraventricular nucleus, and solitary tract nucleus. These studies complement those employing different techniques to characterize Ang II receptors. PMID:23573410
Tracking Progesterone Receptor-Mediated Actions in Breast Cancer
Knutson, Todd P.; Lange, Carol A.
2014-01-01
Ovarian steroid hormones contribute to breast cancer initiation and progression primarily through the actions of their nuclear transcription factors, the estrogen receptor alpha (ERα) and progesterone receptors (PRs). These receptors are important drivers of the luminal A and B subtypes of breast cancer, where estrogen-blocking drugs have been effective endocrine therapies for patients with these tumors. However, many patients do not respond, or become resistant to treatment. When endocrine therapies fail, the luminal subtypes of breast cancer are more difficult to treat because these subtypes are among the most heterogeneous in terms of mutation diversity and gene expression profiles. Recent evidence suggests that progestin and PR actions may be important drivers of luminal breast cancers. Clinical trial data has demonstrated that hormone replacement therapy with progestins drives invasive breast cancer and results in greater mortality. PR transcriptional activity is dependent upon cross-talk with growth factor signaling pathways that alter PR phosphorylation, acetylation, or SUMOylation as mechanisms for regulating PR target gene selection required for increased cell proliferation and survival. Site-specific PR phosphorylation is the primary driver of gene-selective PR transcriptional activity. However, PR phosphorylation and heightened transcriptional activity is coupled to rapid PR protein degradation; the range of active PR detected in tumors is likely to be dynamic. Thus, PR target gene signatures may provide a more accurate means of tracking PR’s contribution to tumor progression rather than standard clinical protein-based (IHC) assays. Further development of antiprogestin therapies should be considered along side antiestrogens and aromatase inhibitors. PMID:24291072
Pak, Kyung Ho; Kim, Dong Hoon; Kim, Hyunki; Lee, Do Hyung; Cheong, Jae-Ho
2016-02-04
Aberrant TGF-β1 signaling is suggested to be involved in gastric carcinogenesis. However, the role of TGF-β1 in intestinal-type [i-GC] and diffuse-type [d-GC] gastric cancer remains largely unknown. In this study, we evaluated the expression of TGF-β1 signaling molecules and compared the clinicopathological features of i-GC and d-GC. Patients (n=365, consecutive) who underwent curative gastrectomy for gastric adenocarcinoma in 2005 were enrolled. We performed immunohistochemical staining of TGF-β1, TGF-β1 receptor-2 (TβR2), Smad4, p-ERK1/2, TGF-activated kinase (TAK)1, and p-Akt in 68 paraffin-embedded tumor blocks (33 i-GC and 35 d-GC), scored the expression according to the extent of staining, and evaluated differences between the histologic subtypes. Patients with d-GC differed from those with i-GC as follows: younger and more likely to be female; more aggressive stage; higher recurrence rate. The expression of TGF-β1 and TβR2 was higher in i-GC (P = 0.05 and P <0.001, respectively). The expression of Smad4, a representative molecule of the Smad-dependent pathway, was decreased in both subtypes. TAK1 and p-Akt, two major molecules involved in the Smad-independent pathway, were over-expressed (69 ~87% of cases stained), without a statistically significant difference between i-GC and d-GC. Of note, the expression of p-ERK1/2, a Smad-independent pathway, was significantly increased in i-GC (P = 0.008). The clinicopathological characteristics vary in different histologic gastric cancer subtypes. Although TGF-β1 signaling in gastric cancer cells appears hyper-activated in i-GC compared to d-GC, the Smad-dependent pathway seems down-regulated while the Smad-independent pathway seems up-regulated in both histologic subtypes.
O'Connell, T D; Rokosh, D G; Simpson, P C
2001-05-01
alpha1-Adrenergic receptor (AR) subtypes in the heart are expressed by myocytes but not by fibroblasts, a feature that distinguishes alpha1-ARs from beta-ARs. Here we studied myocyte-specific expression of alpha1-ARs, focusing on the subtype alpha1C (also called alpha1A), a subtype implicated in cardiac hypertrophic signaling in rat models. We first cloned the mouse alpha1C-AR gene, which consisted of two exons with an 18 kb intron, similar to the alpha1B-AR gene. The receptor coding sequence was >90% homologous to that of rat and human. alpha1C-AR transcription in mouse heart was initiated from a single Inr consensus sequence at -588 from the ATG; this and a putative polyadenylation sequence 8.5 kb 3' could account for the predominant 11 kb alpha1C mRNA in mouse heart. A 5'-nontranscribed fragment of 4.4 kb was active as a promoter in cardiac myocytes but not in fibroblasts. Promoter activity in myocytes required a single muscle CAT (MCAT) element, and this MCAT bound in vitro to recombinant and endogenous transcriptional enhancer factor-1. Thus, alpha1C-AR transcription in cardiac myocytes shares MCAT dependence with other cardiac-specific genes, including the alpha- and beta-myosin heavy chains, skeletal alpha-actin, and brain natriuretic peptide. However, the mouse alpha1C gene was not transcribed in the neonatal heart and was not activated by alpha1-AR and other hypertrophic agonists in rat myocytes, and thus differed from other MCAT-dependent genes and the rat alpha1C gene.
Aykaç, Aslı; Aydın, Banu; Cabadak, Hülya; Gören, M Zafer
2012-06-15
This study shows the possible contribution of muscarinic receptors in the pathophysiology of post-traumatic stress disorder. Sprague-Dawley rats of both sexes were exposed to dirty cat litter (trauma) for 10 min and the protocol was repeated 1 week later with a trauma reminder (clean litter). The rats also received intraperitoneal fluoxetine (2.5, 5 or 10 mg/kg/day), propranolol (10 mg/kg/day) or saline for 7 days between two exposure sessions. Functional behavioral experiments were performed using elevated plus maze, following exposure to trauma reminder. Western blot analyses for M(1), M(2), M(3), M(4) and M(5) receptor proteins were employed in the homogenates of the hippocampus, the frontal cortex and the amygdaloid complex. The anxiety indices increased from 0.63±0.02 to 0.89±0.04 in rats exposed to the trauma reminder. The freezing times were also recorded as 47±6 and 133±12 s, in control and test animals respectively. Fluoxetine or propranolol treatments restored the increases in the anxiety indices and the freezing times. Female rats had higher anxiety indices compared to males. Western blot data showed increases in M(2) and M(5) expression in the frontal cortex. Expression of M(1) receptors increased and M(4) subtype decreased in the hippocampus. In the amygdaloid complex of rats, we also detected a down-regulation of M(4) receptors. Fluoxetine and propranolol only corrected the changes occurred in the frontal cortex. These results may imply that muscarinic receptors are involved in this experimental model of post-traumatic stress disorder. Copyright © 2012 Elsevier B.V. All rights reserved.
ABBRACCHIO, MARIA P.; BURNSTOCK, GEOFFREY; BOEYNAEMS, JEAN-MARIE; BARNARD, ERIC A.; BOYER, JOSÉ L.; KENNEDY, CHARLES; KNIGHT, GILLIAN E.; FUMAGALLI, MARTA; GACHET, CHRISTIAN; JACOBSON, KENNETH A.; WEISMAN, GARY A.
2012-01-01
There have been many advances in our knowledge about different aspects of P2Y receptor signaling since the last review published by our International Union of Pharmacology subcommittee. More receptor subtypes have been cloned and characterized and most orphan receptors deorphanized, so that it is now possible to provide a basis for a future subdivision of P2Y receptor subtypes. More is known about the functional elements of the P2Y receptor molecules and the signaling pathways involved, including interactions with ion channels. There have been substantial developments in the design of selective agonists and antagonists to some of the P2Y receptor subtypes. There are new findings about the mechanisms underlying nucleotide release and ectoenzymatic nucleotide breakdown. Interactions between P2Y receptors and receptors to other signaling molecules have been explored as well as P2Y-mediated control of gene transcription. The distribution and roles of P2Y receptor subtypes in many different cell types are better understood and P2Y receptor-related compounds are being explored for therapeutic purposes. These and other advances are discussed in the present review. PMID:16968944
Structure and genomic organization of the human B1 receptor gene for kinins (BDKRB1).
Bachvarov, D R; Hess, J F; Menke, J G; Larrivée, J F; Marceau, F
1996-05-01
Two subtypes of mammalian bradykinin receptors, B1 and B2 (BDKRB1 and BDKRB2), have been defined based on their pharmacological properties. The B1 type kinin receptors have weak affinity for intact BK or Lys-BK but strong affinity for kinin metabolites without the C-terminal arginine (e.g., des-Arg9-BK and Lys-des-Arg9-BK, also called des-Arg10-kallidin), which are generated by kininase I. The B1 receptor expression is up-regulated following tissue injury and inflammation (hyperemia, exudation, hyperalgesia, etc.). In the present study, we have cloned and sequenced the gene encoding human B1 receptor from a human genomic library. The human B1 receptor gene contains three exons separated by two introns. The first and the second exon are noncoding, while the coding region and the 3'-flanking region are located entirely on the third exon. The exon-intron arrangement of the human B1 receptor gene shows significant similarity with the genes encoding the B2 receptor subtype in human, mouse, and rat. Sequence analysis of the 5'-flanking region revealed the presence of a consensus TATA box and of numerous candidate transcription factor binding sequences. Primer extension experiments have shown the existence of multiple transcription initiation sites situated downstream and upstream from the consensus TATA box. Genomic Southern blot analysis indicated that the human B1 receptor is encoded by a single-copy gene.
Kubis, Sybille; Patel, Ramesh; Combe, Jonathan; Bédard, Jocelyn; Kovacheva, Sabina; Lilley, Kathryn; Biehl, Alexander; Leister, Dario; Ríos, Gabino; Koncz, Csaba; Jarvis, Paul
2004-01-01
The initial stages of preprotein import into chloroplasts are mediated by the receptor GTPase Toc159. In Arabidopsis thaliana, Toc159 is encoded by a small gene family: atTOC159, atTOC132, atTOC120, and atTOC90. Phylogenetic analysis suggested that at least two distinct Toc159 subtypes, characterized by atToc159 and atToc132/atToc120, exist in plants. atTOC159 was strongly expressed in young, photosynthetic tissues, whereas atTOC132 and atTOC120 were expressed at a uniformly low level and so were relatively prominent in nonphotosynthetic tissues. Based on the albino phenotype of its knockout mutant, atToc159 was previously proposed to be a receptor with specificity for photosynthetic preproteins. To elucidate the roles of the other isoforms, we characterized Arabidopsis knockout mutants for each one. None of the single mutants had strong visible phenotypes, but toc132 toc120 double homozygotes appeared similar to toc159, indicating redundancy between atToc132 and atToc120. Transgenic complementation studies confirmed this redundancy but revealed little functional overlap between atToc132/atToc120 and atToc159 or atToc90. Unlike toc159, toc132 toc120 caused structural abnormalities in root plastids. Furthermore, when proteomics and transcriptomics were used to compare toc132 with ppi1 (a receptor mutant that is specifically defective in the expression, import, and accumulation of photosynthetic proteins), major differences were observed, suggesting that atToc132 (and atToc120) has specificity for nonphotosynthetic proteins. When both atToc159 and the major isoform of the other subtype, atToc132, were absent, an embryo-lethal phenotype resulted, demonstrating the essential role of Toc159 in the import mechanism. PMID:15273297
Microphysiometric analysis of human α1a-adrenoceptor expressed in Chinese hamster ovary cells
Taniguchi, Takanobu; Inagaki, Rika; Murata, Satoshi; Akiba, Isamu; Muramatsu, Ikunobu
1999-01-01
The human recombinant α1a-adrenoceptor (AR) has been stably expressed in Chinese hamster ovary cells. Four stable clones, aH4, aH5, aH6 and aH7, expressing 30, 370, 940 and 2900 fmol AR mg−1 protein, respectively, have been employed to characterize this AR subtype using radioligand binding and microphysiometry to measure extracellular acidification rates.Noradrenaline (NA) gave concentration-dependent responses in microphysiometry with increasing extracellular acidification rates. The potency of NA increased as the receptor density increased; pEC50 values of NA for the clones aH4, aH5, aH6 and aH7 were 6.9, 7.5, 7.8 and 8.1, respectively. This increase of potency according to receptor density indicates the presence of spare receptor for NA. Methoxamine, phenylephrine, oxymetazoline and clonidine also gave concentration-dependent responses with various intrinsic activities.Antagonists shifted concentration-response curves for NA rightward in a concentration-dependent manner. Schild analysis revealed that the affinity profile of this AR subtype to antagonists in the clone aH7 had a typical pattern for the α1a-AR; high affinity for prazosin and WB 4101, and low affinity for BMY7378 (pA2=9.5, 9.8 and 7.3, respectively). This profile is similar in the case of the clone aH4. These affinities were in good agreement with those obtained in binding experiments.These results have demonstrated that (1) classical receptor theory can be applied in microphysiometry, and (2) microphysiometry is a useful tool to investigate the pharmacological characterization of α1a-AR. PMID:10433504
Pierucci-Alves, Fernando; Schultz, Bruce D
2008-09-01
Epithelia lining the male reproductive duct modulate fertility by altering the luminal environment to which sperm are exposed. Although vas deferens epithelial cells reportedly express high levels of cyclooxygenases (Ptgs), and activation of bradykinin (BK) receptors can lead to upregulation of PTGS activity in epididymal epithelia, it remains unknown whether BKs and/or PTGSs have any role in modulating epithelial ion transport across vas deferens epithelia. Porcine and human vas deferens epithelial cell primary cultures and the PVD9902 cell line responded to lysylbradykinin with an increase in short circuit current (I SC; indicating net anion secretion), an effect that was 60%-93% reduced by indomethacin. The BK effect was inhibited by the B2 receptor subtype (BDKRB2) antagonist HOE140, whereas the B1 receptor subtype agonist des-Arg9-BK had no effect. BDKRB2 immunoreactivity was documented in most epithelial cells composing the native epithelium and on Western blots derived from cultured cells. Gene expression analysis revealed that the PTGS2 transcript is 20 times more abundant than its PTGS1 counterpart in cultured porcine vas deferens epithelia and that BDKRB2 mRNA is likewise highly expressed. Subsequent experiments revealed that prostaglandin E2, 1-OH prostaglandin E1 (prostaglandin E receptor 4 [PTGER4] agonist) and butaprost (PTGER2 agonist) increase I SC in a concentration-dependent manner, whereas sulprostone (mixed PTGER1 and PTGER3 agonist) produced no change in I SC. These results demonstrate that autacoids can affect epithelial cells to acutely modulate the luminal environment to which sperm are exposed in the vas deferens by enhancing PTGS activity, leading to the production of prostaglandins that act at PTGER4 and/or PTGER2 to induce or enhance anion secretion.
Pierucci-Alves, Fernando; Schultz, Bruce D.
2008-01-01
Epithelia lining the male reproductive duct modulate fertility by altering the luminal environment to which sperm are exposed. Although vas deferens epithelial cells reportedly express high levels of cyclooxygenases (Ptgs), and activation of bradykinin (BK) receptors can lead to upregulation of PTGS activity in epididymal epithelia, it remains unknown whether BKs and/or PTGSs have any role in modulating epithelial ion transport across vas deferens epithelia. Porcine and human vas deferens epithelial cell primary cultures and the PVD9902 cell line responded to lysylbradykinin with an increase in short circuit current (ISC; indicating net anion secretion), an effect that was 60%–93% reduced by indomethacin. The BK effect was inhibited by the B2 receptor subtype (BDKRB2) antagonist HOE140, whereas the B1 receptor subtype agonist des-Arg9-BK had no effect. BDKRB2 immunoreactivity was documented in most epithelial cells composing the native epithelium and on Western blots derived from cultured cells. Gene expression analysis revealed that the PTGS2 transcript is 20 times more abundant than its PTGS1 counterpart in cultured porcine vas deferens epithelia and that BDKRB2 mRNA is likewise highly expressed. Subsequent experiments revealed that prostaglandin E2, 1-OH prostaglandin E1 (prostaglandin E receptor 4 [PTGER4] agonist) and butaprost (PTGER2 agonist) increase ISC in a concentration-dependent manner, whereas sulprostone (mixed PTGER1 and PTGER3 agonist) produced no change in ISC. These results demonstrate that autacoids can affect epithelial cells to acutely modulate the luminal environment to which sperm are exposed in the vas deferens by enhancing PTGS activity, leading to the production of prostaglandins that act at PTGER4 and/or PTGER2 to induce or enhance anion secretion. PMID:18480467
Disney, Anita A.; Aoki, Chiye
2010-01-01
Acetylcholine (ACh) is believed to underlie mechanisms of arousal and attention in mammals. ACh also has a demonstrated functional effect in visual cortex that is both diverse and profound. We have reported previously that cholinergic modulation in V1 of the macaque monkey is strongly targeted toward GABAergic interneurons. Here we examine the localization of m1 and m2 muscarinic receptor subtypes across subpopulations of GABAergic interneurons—identified by their expression of the calcium-binding proteins parvalbumin, calbindin, and calretinin—using dual-immunofluorescence confocal microscopy in V1 of the macaque monkey. In doing so, we find that the vast majority (87%) of parvalbumin-immunoreactive neurons express m1-type muscarinic ACh receptors. m1 receptors are also expressed by 60% of calbindin-immunoreactive neurons and 40% of calretinin-immunoreactive neurons. m2 AChRs, on the other hand, are expressed by only 31% of parvalbumin neurons, 23% of calbindin neurons, and 25% of calretinin neurons. Parvalbumin-immunoreactive cells comprise ≈75% of the inhibitory neuronal population in V1 and included in this large subpopulation are neurons known to veto and regulate the synchrony of principal cell spiking. Through the expression of m1 ACh receptors on nearly all of these PV cells, the cholinergic system avails itself of powerful control of information flow through and processing within the network of principal cells in the cortical circuit. PMID:18265004
Yu, Chuan-Jiang; Butt, Christopher M.; Debski, Elizabeth A.
2008-01-01
Cholinergic input to the optic tectum is necessary for visual map maintenance. To understand why, we examined the effects of activation of the different cholinergic receptor subtypes in tectal brain slices and determined whether the retinotectal map was affected by manipulations of their activity in vivo. Both α-bungarotoxin sensitive and insensitive nicotinic receptor agonists increased spontaneous postsynaptic currents (sPSCs) in a subpopulation of patch-clamped tectal cells; application of subtype selective receptor antagonists reduced nicotine-induced increases in sPSCs. Activation of α-bungarotoxin insensitive nicotinic receptors also induced substantial inward current in some cells. Muscarinic receptor mediated outward current responses were blocked by the M2-like muscarinic receptor antagonists himbacine or AF-DX 384 and mimicked by application of the M2-like agonist oxotremorine. A less frequently observed muscarinic response involving a change in sPSC frequency appeared to be mediated by M1-like muscarinic receptors. In separate experiments, pharmacological manipulation of cholinergic receptor subtype activation led to changes in the activity-dependent visual map created in the tectum by retinal ganglion cell terminals. Chronic exposure of the tectum to either α-bungarotoxin insensitive, α-bungarotoxin sensitive or M1-like receptor antagonists resulted in map disruption. However, treatment with the M2-like receptor antagonist, AF-DX 384, compressed the map. We conclude that nicotinic or M1-like muscarinic receptors control input to tectal cells while α-bungarotoxin insensitive nicotinic receptors and M2-like muscarinic receptors change tectal cell responses to that input. Blockade of the different cholinergic receptor subtypes can have opposing effects on map topography that are consistent with expected effects on tectal cell activity levels. PMID:12670313
Schier, Christina J; Marks, William D; Paris, Jason J; Barbour, Aaron J; McLane, Virginia D; Maragos, William F; McQuiston, A Rory; Knapp, Pamela E; Hauser, Kurt F
2017-06-07
Despite marked regional differences in HIV susceptibility within the CNS, there has been surprisingly little exploration into the differential vulnerability among neuron types and the circuits they underlie. The dorsal striatum is especially susceptible, harboring high viral loads and displaying marked neuropathology, with motor impairment a frequent manifestation of chronic infection. However, little is known about the response of individual striatal neuron types to HIV or how this disrupts function. Therefore, we investigated the morphological and electrophysiological effects of HIV-1 trans -activator of transcription (Tat) in dopamine subtype 1 (D1) and dopamine subtype 2 (D2) receptor-expressing striatal medium spiny neurons (MSNs) by breeding transgenic Tat-expressing mice to Drd1a -tdTomato- or Drd2 -eGFP-reporter mice. An additional goal was to examine neuronal vulnerability early during the degenerative process to gain insight into key events underlying the neuropathogenesis. In D2 MSNs, exposure to HIV-1 Tat reduced dendritic spine density significantly, increased dendritic damage (characterized by swellings/varicosities), and dysregulated neuronal excitability (decreased firing at 200-300 pA and increased firing rates at 450 pA), whereas insignificant morphologic and electrophysiological consequences were observed in Tat-exposed D1 MSNs. These changes were concomitant with an increased anxiety-like behavioral profile (lower latencies to enter a dark chamber in a light-dark transition task, a greater frequency of light-dark transitions, and reduced rearing time in an open field), whereas locomotor behavior was unaffected by 2 weeks of Tat induction. Our findings suggest that D2 MSNs and a specific subset of neural circuits within the dorsal striatum are preferentially vulnerable to HIV-1. SIGNIFICANCE STATEMENT Despite combination antiretroviral therapy (cART), neurocognitive disorders afflict 30-50% of HIV-infected individuals and synaptodendritic injury remains evident in specific brain regions such as the dorsal striatum. A possible explanation for the sustained neuronal injury is that the neurotoxic HIV-1 regulatory protein trans -activator of transcription (Tat) continues to be expressed in virally suppressed patients on cART. Using inducible Tat-expressing transgenic mice, we found that dopamine subtype 2 (D2) receptor-expressing medium spiny neurons (MSNs) are selectively vulnerable to Tat exposure compared with D1 receptor-expressing MSNs. This includes Tat-induced reductions in D2 MSN dendritic spine density, increased dendritic damage, and disruptions in neuronal excitability, which coincide with elevated anxiety-like behavior. These data suggest that D2 MSNs and specific circuits within the basal ganglia are preferentially vulnerable to HIV-1. Copyright © 2017 the authors 0270-6474/17/375759-12$15.00/0.
Genetics and Pathogenesis of Diffuse Large B-Cell Lymphoma.
Schmitz, Roland; Wright, George W; Huang, Da Wei; Johnson, Calvin A; Phelan, James D; Wang, James Q; Roulland, Sandrine; Kasbekar, Monica; Young, Ryan M; Shaffer, Arthur L; Hodson, Daniel J; Xiao, Wenming; Yu, Xin; Yang, Yandan; Zhao, Hong; Xu, Weihong; Liu, Xuelu; Zhou, Bin; Du, Wei; Chan, Wing C; Jaffe, Elaine S; Gascoyne, Randy D; Connors, Joseph M; Campo, Elias; Lopez-Guillermo, Armando; Rosenwald, Andreas; Ott, German; Delabie, Jan; Rimsza, Lisa M; Tay Kuang Wei, Kevin; Zelenetz, Andrew D; Leonard, John P; Bartlett, Nancy L; Tran, Bao; Shetty, Jyoti; Zhao, Yongmei; Soppet, Dan R; Pittaluga, Stefania; Wilson, Wyndham H; Staudt, Louis M
2018-04-12
Diffuse large B-cell lymphomas (DLBCLs) are phenotypically and genetically heterogeneous. Gene-expression profiling has identified subgroups of DLBCL (activated B-cell-like [ABC], germinal-center B-cell-like [GCB], and unclassified) according to cell of origin that are associated with a differential response to chemotherapy and targeted agents. We sought to extend these findings by identifying genetic subtypes of DLBCL based on shared genomic abnormalities and to uncover therapeutic vulnerabilities based on tumor genetics. We studied 574 DLBCL biopsy samples using exome and transcriptome sequencing, array-based DNA copy-number analysis, and targeted amplicon resequencing of 372 genes to identify genes with recurrent aberrations. We developed and implemented an algorithm to discover genetic subtypes based on the co-occurrence of genetic alterations. We identified four prominent genetic subtypes in DLBCL, termed MCD (based on the co-occurrence of MYD88 L265P and CD79B mutations), BN2 (based on BCL6 fusions and NOTCH2 mutations), N1 (based on NOTCH1 mutations), and EZB (based on EZH2 mutations and BCL2 translocations). Genetic aberrations in multiple genes distinguished each genetic subtype from other DLBCLs. These subtypes differed phenotypically, as judged by differences in gene-expression signatures and responses to immunochemotherapy, with favorable survival in the BN2 and EZB subtypes and inferior outcomes in the MCD and N1 subtypes. Analysis of genetic pathways suggested that MCD and BN2 DLBCLs rely on "chronic active" B-cell receptor signaling that is amenable to therapeutic inhibition. We uncovered genetic subtypes of DLBCL with distinct genotypic, epigenetic, and clinical characteristics, providing a potential nosology for precision-medicine strategies in DLBCL. (Funded by the Intramural Research Program of the National Institutes of Health and others.).
Tao, Li; Chu, Laura; Wang, Lisa I; Moy, Lisa; Brammer, Melissa; Song, Chunyan; Green, Marjorie; Kurian, Allison W; Gomez, Scarlett L; Clarke, Christina A
2016-09-01
To examine the occurrence and outcomes of de novo metastatic (Stage IV) breast cancer, particularly with respect to tumor HER2 expression. We studied all 6,268 de novo metastatic breast cancer cases diagnosed from 1 January 2005 to 31 December 2011 and reported to the California Cancer Registry. Molecular subtypes were classified according to HER2 and hormone receptor (HR, including estrogen and/or progesterone receptor) expression. Multivariable logistic regression was used to estimate odds ratios (ORs) and 95 % confidence intervals (CIs) of Stage IV versus Stage I-III breast cancer; Cox proportional hazards regression was used to assess relative hazard (RH) of mortality. Five percent of invasive breast cancer was metastatic at diagnosis. Compared to patients with earlier stage disease, patients with de novo metastatic disease were significantly more likely to have HER2+ tumors (HR+/HER2+: OR 1.29, 95 % CI 1.17-1.42; HR-/HER2+: OR 1.40, 95 %CI 1.25-1.57, vs. HR+/HER2-). Median survival improved over time, but varied substantially across race/ethnicity (Asians: 34 months; African Americans: 6 months), neighborhood socioeconomic status (SES) (highest: 34 months, lowest: 20 months), and molecular subtype (HR+/HER2+: 45 months; triple negative: 12 months). In a multivariable model, triple negative (RH 2.85, 95 % CI 2.50-3.24) and HR-/HER2+ (RH 1.60, 95 % CI 1.37-1.87) had worse, while HR+/HER2+ had similar, risk of all-cause death compared to HR+/HER2- breast cancer. De novo metastatic breast cancer was more likely to be HER2+. Among metastatic tumors, those that were HER2+ had better survival than other subtypes.
Tonic B-cell receptor signaling in diffuse large B-cell lymphoma.
Havranek, Ondrej; Xu, Jingda; Köhrer, Stefan; Wang, Zhiqiang; Becker, Lisa; Comer, Justin M; Henderson, Jared; Ma, Wencai; Man Chun Ma, John; Westin, Jason R; Ghosh, Dipanjan; Shinners, Nicholas; Sun, Luhong; Yi, Allen F; Karri, Anusha R; Burger, Jan A; Zal, Tomasz; Davis, R Eric
2017-08-24
We used clustered regularly interspaced short palindromic repeats/Cas9-mediated genomic modification to investigate B-cell receptor (BCR) signaling in cell lines of diffuse large B-cell lymphoma (DLBCL). Three manipulations that altered BCR genes without affecting surface BCR levels showed that BCR signaling differs between the germinal center B-cell (GCB) subtype, which is insensitive to Bruton tyrosine kinase inhibition by ibrutinib, and the activated B-cell (ABC) subtype. Replacing antigen-binding BCR regions had no effect on BCR signaling in GCB-DLBCL lines, reflecting this subtype's exclusive use of tonic BCR signaling. Conversely, Y188F mutation in the immunoreceptor tyrosine-based activation motif of CD79A inhibited tonic BCR signaling in GCB-DLBCL lines but did not affect their calcium flux after BCR cross-linking or the proliferation of otherwise-unmodified ABC-DLBCL lines. CD79A-GFP fusion showed BCR clustering or diffuse distribution, respectively, in lines of ABC and GCB subtypes. Tonic BCR signaling acts principally to activate AKT, and forced activation of AKT rescued GCB-DLBCL lines from knockout (KO) of the BCR or 2 mediators of tonic BCR signaling, SYK and CD19. The magnitude and importance of tonic BCR signaling to proliferation and size of GCB-DLBCL lines, shown by the effect of BCR KO, was highly variable; in contrast, pan-AKT KO was uniformly toxic. This discrepancy was explained by finding that BCR KO-induced changes in AKT activity (measured by gene expression, CXCR4 level, and a fluorescent reporter) correlated with changes in proliferation and with baseline BCR surface density. PTEN protein expression and BCR surface density may influence clinical response to therapeutic inhibition of tonic BCR signaling in DLBCL. © 2017 by The American Society of Hematology.
Comprehensive Analysis of the Unfolded Protein Response in Breast Cancer Subtypes.
Jiang, Dadi; Turner, Brandon; Song, Jie; Li, Ruijiang; Diehn, Maximilian; Le, Quynh-Thu; Khatri, Purvesh; Koong, Albert C
2017-01-01
Triple-negative breast cancers (TNBCs) are associated with a worse prognosis and patients with TNBC have fewer therapeutic options than patients with non-TNBC. Recently, the IRE1α-XBP1 branch of the unfolded protein response (UPR) was implicated in TNBC prognosis on the basis of a relatively small patient population, suggesting the diagnostic and therapeutic value of this pathway in TNBCs. In addition, the IRE1α-XBP1 and hypoxia-induced factor 1 α (HIF1α) pathways have been identified as interacting partners in TNBC, suggesting a novel mechanism of regulation. To comprehensively evaluate and validate these findings, we investigated the relative activities and relevance to patient survival of the UPR and HIF1α pathways in different breast cancer subtypes in large populations of patients. We performed a comprehensive analysis of gene expression and survival data from large cohorts of patients with breast cancer. The patients were stratified based on the average expression of the UPR or HIF1α gene signatures. We identified a strong positive association between the XBP1 gene signature and estrogen receptor-positive status or the HIF1α gene signature, as well as the predictive value of the XBP1 gene signature for survival of patients who are estrogen receptor negative, or have TNBC or HER2 + . In contrast, another important UPR branch, the ATF4/CHOP pathway, lacks prognostic value in breast cancer in general. Activity of the HIF1α pathway is correlated with patient survival in all the subtypes evaluated. These findings clarify the relevance of the UPR pathways in different breast cancer subtypes and underscore the potential therapeutic importance of the IRE1α-XBP1 branch in breast cancer treatment.
Isono, Sayuri; Fujishima, Makoto; Azumi, Tatsuya; Hashimoto, Yukihiko; Komoike, Yoshifumi; Yukawa, Masao; Watatani, Masahiro
2014-06-01
The O 6 -methylguanine-DNA methyltransferase (MGMT) protein protects cells from alkylating agents by removing alkyl groups from the O 6 -position of guanine. However, its effect on DNA damage induced by cyclophosphamide (CPM) is unclear. The present study investigated whether MGMT expression was correlated with prognosis in patients with breast cancer that was managed according to a common therapeutic protocol or treated with CPM-based chemotherapy. The intrinsic subtypes and MGMT protein expression levels were assessed in 635 consecutive patients with breast cancer using immunohistochemistry. In total, 425 (67%) luminal A, 95 (15%) luminal B, 47 (7%) human epidermal growth factor receptor-2 + /estrogen receptor - (HER2 + /ER - ) and 48 (8%) basal-like subtypes were identified. Of these, MGMT positivity was identified in 398 (63%) of 635 breast cancers; 68% of luminal A, 67% of luminal B, 30% of HER2 + /ER - and 46% of basal-like subtypes were positive. The overall survival (OS) and disease-free survival (DFS) rates did not significantly differ according to the MGMT status among patients with luminal A, luminal B or HER2 + /ER - subtypes, and patients with MGMT-negative basal-like cancers tended to have a longer DFS, but not a significantly longer OS time. CPM-containing chemotherapy was administered to 26%, 40%, 47% and 31% of patients with luminal A, luminal B, HER2 + /ER - and basal-like tumors, respectively. Although the MGMT status and clinical outcomes of patients with the luminal A, luminal B or HER2 + /ER - subtypes treated with CPM were not significantly correlated, the patients with MGMT-negative basal-like tumors who received CPM exhibited significantly improved DFS and OS compared with the CPM-treated patients with MGMT-positive tumors. MGMT may be a useful prognostic and predictive marker for CPM-containing chemotherapy in basal-like breast cancer.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Context-Dependent Modulation of GABAAR-Mediated Tonic Currents.
Patel, Bijal; Bright, Damian P; Mortensen, Martin; Frølund, Bente; Smart, Trevor G
2016-01-13
Tonic GABA currents mediated by high-affinity extrasynaptic GABAA receptors, are increasingly recognized as important regulators of cell and neuronal network excitability. Dysfunctional GABAA receptor signaling that results in modified tonic GABA currents is associated with a number of neurological disorders. Consequently, developing compounds to selectively modulate the activity of extrasynaptic GABAA receptors underlying tonic inhibition is likely to prove therapeutically useful. Here, we examine the GABAA receptor subtype selectivity of the weak partial agonist, 5-(4-piperidyl)isoxazol-3-ol (4-PIOL), as a potential mechanism for modulating extrasynaptic GABAA receptor-mediated tonic currents. By using recombinant GABAA receptors expressed in HEK293 cells, and native GABAA receptors of cerebellar granule cells, hippocampal neurons, and thalamic relay neurons, 4-PIOL evidently displayed differential agonist and antagonist-type profiles, depending on the extrasynaptic GABAA receptor isoforms targeted. For neurons, this resulted in differential modulation of GABA tonic currents, depending on the cell type studied, their respective GABAA receptor subunit compositions, and critically, on the ambient GABA levels. Unexpectedly, 4-PIOL revealed a significant population of relatively low-affinity γ2 subunit-containing GABAA receptors in the thalamus, which can contribute to tonic inhibition under specific conditions when GABA levels are raised. Together, these data indicate that partial agonists, such as 4-PIOL, may be useful for modulating GABAA receptor-mediated tonic currents, but the direction and extent of this modulation is strongly dependent on relative expression levels of different extrasynaptic GABAA receptor subtypes, and on the ambient GABA levels. A background level of inhibition (tonic) is important in the brain for controlling neuronal excitability. Increased levels of tonic inhibition are associated with some neurological disorders but there are no specific ligands capable of selectively reducing tonic inhibition. Here we explore the use of a GABA partial agonist as a selective chemical tool in three different brain regions. We discover that the activity of a partial agonist is heavily dependent upon the GABAA receptor subunit composition underpinning tonic inhibition, and on the ambient levels of GABA in the brain. Copyright © 2016 Patel et al.
Context-Dependent Modulation of GABAAR-Mediated Tonic Currents
Patel, Bijal; Bright, Damian P.; Mortensen, Martin; Frølund, Bente
2016-01-01
Tonic GABA currents mediated by high-affinity extrasynaptic GABAA receptors, are increasingly recognized as important regulators of cell and neuronal network excitability. Dysfunctional GABAA receptor signaling that results in modified tonic GABA currents is associated with a number of neurological disorders. Consequently, developing compounds to selectively modulate the activity of extrasynaptic GABAA receptors underlying tonic inhibition is likely to prove therapeutically useful. Here, we examine the GABAA receptor subtype selectivity of the weak partial agonist, 5-(4-piperidyl)isoxazol-3-ol (4-PIOL), as a potential mechanism for modulating extrasynaptic GABAA receptor-mediated tonic currents. By using recombinant GABAA receptors expressed in HEK293 cells, and native GABAA receptors of cerebellar granule cells, hippocampal neurons, and thalamic relay neurons, 4-PIOL evidently displayed differential agonist and antagonist-type profiles, depending on the extrasynaptic GABAA receptor isoforms targeted. For neurons, this resulted in differential modulation of GABA tonic currents, depending on the cell type studied, their respective GABAA receptor subunit compositions, and critically, on the ambient GABA levels. Unexpectedly, 4-PIOL revealed a significant population of relatively low-affinity γ2 subunit-containing GABAA receptors in the thalamus, which can contribute to tonic inhibition under specific conditions when GABA levels are raised. Together, these data indicate that partial agonists, such as 4-PIOL, may be useful for modulating GABAA receptor-mediated tonic currents, but the direction and extent of this modulation is strongly dependent on relative expression levels of different extrasynaptic GABAA receptor subtypes, and on the ambient GABA levels. SIGNIFICANCE STATEMENT A background level of inhibition (tonic) is important in the brain for controlling neuronal excitability. Increased levels of tonic inhibition are associated with some neurological disorders but there are no specific ligands capable of selectively reducing tonic inhibition. Here we explore the use of a GABA partial agonist as a selective chemical tool in three different brain regions. We discover that the activity of a partial agonist is heavily dependent upon the GABAA receptor subunit composition underpinning tonic inhibition, and on the ambient levels of GABA in the brain. PMID:26758848
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benyhe, S.; Varga, E.; Hepp, J.
1990-09-01
The distribution and properties of frog brain kappa-opioid receptor subtypes differ not only from those of the guinea pig brain, but also from that of the rat brain. In guinea pig cerebellum the kappa 1 is the dominant receptor subtype, frog brain contains mainly the kappa 2 subtype, and the distribution of the rat brain subtypes is intermediate between the two others. In competition experiments it has been established that ethylketocyclazocine and N-cyclopropylmethyl-norazidomorphine, which are nonselective kappa-ligands, have relatively high affinities to frog brain membranes. The kappa 2 ligands (Met5)enkephalin-Arg6-Phe7 and etorphine also show high affinities to the frog brain.more » Kappa 1 binding sites measured in the presence of 5 microM/D-Ala2-Leu5/enkephalin represent 25-30% of (3H)ethylketocyclazocine binding in frog brain membranes. The kappa 2 subtype in frog brain resembles more to the mu subtype than the delta subtype of opioid receptors, but it differs from the mu subtype in displaying low affinity toward beta-endorphin and /D-Ala2-(Me)Phe4-Gly5-ol/enkephalin (DAGO). From our data it is evident that the opioid receptor subtypes are already present in the amphibian brain but the differences among them are less pronounced than in mammalian brain.« less
Sui, Xuxia; Liu, Yanmin; Li, Qi; Liu, Gefei; Song, Xuhong; Su, Zhongjing; Chang, Xiaolan; Zhou, Yingbi; Liang, Bin; Huang, Dongyang
2014-01-01
EP3, one of four prostaglandin E2 (PGE2) receptors, is significantly lower in atherosclerotic plaques than in normal arteries and is localized predominantly in macrophages of the plaque shoulder region. However, mechanisms behind this EP3 expression pattern are still unknown. We investigated the underlying mechanism of EP3 expression in phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 macrophages with oxidized low-density lipoprotein (oxLDL) treatment. We found that oxLDL decreased EP3 expression, in a dose-dependent manner, at both the mRNA and protein levels. Moreover, oxLDL inhibited nuclear factor-κB (NF-κB)-dependent transcription of the EP3 gene by the activation of peroxisome proliferator-activated receptor-γ (PPAR-γ). Finally, chromatin immunoprecipitation revealed decreased binding of NF-κB to the EP3 promoter with oxLDL and PPAR-γ agonist treatment. Our results show that oxLDL suppresses EP3 expression by activation of PPAR-γ and subsequent inhibition of NF-κB in macrophages. These results suggest that down-regulation of EP3 expression by oxLDL is associated with impairment of EP3-mediated anti-inflammatory effects, and that EP3 receptor activity may exert a beneficial effect on atherosclerosis. PMID:25333975
Tulapurkar, M E; Laubinger, W; Nahum, V; Fischer, B; Reiser, G
2004-01-01
P2Y-nucleotide receptors represent important targets for drug development. The lack of stable and receptor specific agonists, however, has prevented successful therapeutic applications. A novel series of P-boronated ATP derivatives (ATP-α-B) were synthesized by substitution of a nonbridging O at Pα with a BH3 group. This introduces a chiral center, thus resulting in diastereoisomers. In addition, at C2 of the adenine ring a further substitution was made (Cl- or methylthio-). The pairs of diastereoisomers were denoted here as A and B isomers. Here, we tested the receptor subtype specificity of these analogs on HEK 293 cells stably expressing rat P2Y1 and rat P2Y2 receptors, respectively, both attached to the fluorescent marker protein GFP (rP2Y1-GFP, rP2Y2-GFP). We investigated agonist-induced receptor endocytosis, [Ca2+]i rise and arachidonic acid (AA) release. Agonist-induced endocytosis of rP2Y1-GFP was more pronounced for the A isomers than the corresponding B counterparts for all ATP-α-B analogs. Both 2-MeS-substituted diastereoisomers induced a greater degree of agonist-induced receptor endocytosis as compared to the 2-Cl-substituted derivatives. Endocytosis results are in accordance with the potency to induce Ca2+ release by these compounds in HEK 293 cells stably transfected with rP2Y1. In case of rP2Y2-GFP, the borano-nucleotides were very weak agonists in comparison to UTP and ATP in terms of Ca2+ release, AA release and in inducing receptor endocytosis. The different ATP-α-B derivatives and also the diastereoisomers were equally ineffective. Thus, the new agonists may be considered as potent and highly specific agonist drug candidates for P2Y1 receptors. The difference in activity of the ATP analogs at P2Y receptors could be used as a tool to investigate structural differences between P2Y receptor subtypes. PMID:15197109
Effects of selective type I and II adrenal steroid agonists on immune cell distribution.
Miller, A H; Spencer, R L; hassett, J; Kim, C; Rhee, R; Ciurea, D; Dhabhar, F; McEwen, B; Stein, M
1994-11-01
Adrenal steroids exert their effects through two distinct adrenal steroid receptor subtypes; the high affinity type I, or mineralocorticoid, receptor and the lower affinity type II, or glucocorticoid, receptor. Adrenal steroids have well known effects on immune cell distribution, and although both type I and II receptors are expressed in immune cells and tissues, few data exist on the relative effects mediated through these two receptor subtypes. Accordingly, we administered selective type I and II adrenal steroid receptor agonists to young adult male Sprague-Dawley rats for 7 days and then measured immune cell distribution in the peripheral blood and spleen. Results were compared with those of similar studies using the naturally occurring glucocorticoid of the rat, corticosterone, which binds both type I and II receptors. The majority of the well characterized effects of adrenal steroids on peripheral blood immune cells (increased neutrophils and decreased lymphocytes and monocytes) were reproduced by the type II receptor agonist, RU28362. RU28362 decreased the numbers of all lymphocyte subsets [T-cells, B-cells, and natural killer (NK) cells] to very low absolute levels. The largest relative decrease (i.e. in percentage) was seen in B-cells, whereas NK cells exhibited the least relative decrease and actually showed a 2-fold increase in relative percentage during RU28362 treatment. Similar to RU28362, the type I receptor agonist, aldosterone, significantly reduced the number of lymphocytes and monocytes. In contrast to RU28362, however, aldosterone significantly decreased the number of neutrophils. Moreover, aldosterone decreased the number of T-helper cells and NK cells, while having no effect on the number of B-cells or T-suppressor/cytotoxic cells. Corticosterone at physiologically relevant concentrations had potent effects on immune cell distribution, which were indistinguishable from those of the type II receptor agonist, RU28362. Taken together, these results indicate that effects of adrenal steroids on immune cell distribution are dependent on the receptor subtype involved as well as the specific cell type targeted. These factors allow for varied and complex effects of adrenal steroids on the immune system under physiological conditions.
Pharmacological activation of lysophosphatidic acid receptors regulates erythropoiesis
Lin, Kuan-Hung; Ho, Ya-Hsuan; Chiang, Jui-Chung; Li, Meng-Wei; Lin, Shi-Hung; Chen, Wei-Min; Chiang, Chi-Ling; Lin, Yu-Nung; Yang, Ya-Jan; Chen, Chiung-Nien; Lu, Jenher; Huang, Chang-Jen; Tigyi, Gabor; Yao, Chao-Ling; Lee, Hsinyu
2016-01-01
Lysophosphatidic acid (LPA), a growth factor-like phospholipid, regulates numerous physiological functions, including cell proliferation and differentiation. In a previous study, we have demonstrated that LPA activates erythropoiesis by activating the LPA 3 receptor subtype (LPA3) under erythropoietin (EPO) induction. In the present study, we applied a pharmacological approach to further elucidate the functions of LPA receptors during red blood cell (RBC) differentiation. In K562 human erythroleukemia cells, knockdown of LPA2 enhanced erythropoiesis, whereas knockdown of LPA3 inhibited RBC differentiation. In CD34+ human hematopoietic stem cells (hHSC) and K526 cells, the LPA3 agonist 1-oleoyl-2-methyl-sn-glycero-3-phosphothionate (2S-OMPT) promoted erythropoiesis, whereas the LPA2 agonist dodecyl monophosphate (DMP) and the nonlipid specific agonist GRI977143 (GRI) suppressed this process. In zebrafish embryos, hemoglobin expression was significantly increased by 2S-OMPT treatment but was inhibited by GRI. Furthermore, GRI treatment decreased, whereas 2S-OMPT treatment increased RBC counts and amount of hemoglobin level in adult BALB/c mice. These results indicate that LPA2 and LPA3 play opposing roles during RBC differentiation. The pharmacological activation of LPA receptor subtypes represent a novel strategies for augmenting or inhibiting erythropoiesis. PMID:27244685
Pharmacological activation of lysophosphatidic acid receptors regulates erythropoiesis.
Lin, Kuan-Hung; Ho, Ya-Hsuan; Chiang, Jui-Chung; Li, Meng-Wei; Lin, Shi-Hung; Chen, Wei-Min; Chiang, Chi-Ling; Lin, Yu-Nung; Yang, Ya-Jan; Chen, Chiung-Nien; Lu, Jenher; Huang, Chang-Jen; Tigyi, Gabor; Yao, Chao-Ling; Lee, Hsinyu
2016-05-31
Lysophosphatidic acid (LPA), a growth factor-like phospholipid, regulates numerous physiological functions, including cell proliferation and differentiation. In a previous study, we have demonstrated that LPA activates erythropoiesis by activating the LPA 3 receptor subtype (LPA3) under erythropoietin (EPO) induction. In the present study, we applied a pharmacological approach to further elucidate the functions of LPA receptors during red blood cell (RBC) differentiation. In K562 human erythroleukemia cells, knockdown of LPA2 enhanced erythropoiesis, whereas knockdown of LPA3 inhibited RBC differentiation. In CD34(+) human hematopoietic stem cells (hHSC) and K526 cells, the LPA3 agonist 1-oleoyl-2-methyl-sn-glycero-3-phosphothionate (2S-OMPT) promoted erythropoiesis, whereas the LPA2 agonist dodecyl monophosphate (DMP) and the nonlipid specific agonist GRI977143 (GRI) suppressed this process. In zebrafish embryos, hemoglobin expression was significantly increased by 2S-OMPT treatment but was inhibited by GRI. Furthermore, GRI treatment decreased, whereas 2S-OMPT treatment increased RBC counts and amount of hemoglobin level in adult BALB/c mice. These results indicate that LPA2 and LPA3 play opposing roles during RBC differentiation. The pharmacological activation of LPA receptor subtypes represent a novel strategies for augmenting or inhibiting erythropoiesis.
Zhao, L-F; Iwasaki, Y; Oki, Y; Tsugita, M; Taguchi, T; Nishiyama, M; Takao, T; Kambayashi, M; Hashimoto, K
2006-04-01
Although recent studies have suggested that purinergic receptors are expressed in the anterior pituitary gland, their involvement in the regulation of pituitary hormone gene expression is not completely understood. In the present study, we examined the expression of purinergic receptors and the effects of purinergic receptor ligands on pro-opiomelanocortin (POMC) gene expression, in AtT20 mouse corticotroph cells. We identified the expression of most of the purinergic receptor subtypes (A1, A2, P2X1, 3-7, P2Y1, 2, 4) mRNAs, analysed by the reverse transcriptase-polymerase chain reaction. We also found that adenosine and ATP, two representative and endogenous agonists of A1-3 and P2X/P2Y receptors, respectively, stimulated the 5'-promoter activity of the POMC gene in a dose- and time-related manner. When these ligands were simultaneously used with corticotrophin-releasing hormone (CRH), effects that were more than additive were observed, suggesting an enhancing role of these compounds in CRH-mediated adrenocorticotrophic hormone (ACTH) synthesis. These ligands also stimulated the expression of transcription factors involved in the regulation of the POMC gene, but did not enhance ACTH secretion. Finally, the positive effect of adenosine as well as CRH was completely inhibited by the protein kinase A inhibitor H89, whereas that of ATP was not influenced, indicating that different intracellular signalling pathways mediate these effects. Altogether, our results suggest a stimulatory role for these purinergic receptor ligands in the regulation of POMC gene expression in corticotroph cells. Because adenosine and ATP are known to be produced within the pituitary gland, it is possible they may be acting in an autocrine/paracrine fashion.
Villa-Osaba, Alicia; Gahete, Manuel D; Cordoba-Chacon, José; de Lecea, Luis; Castaño, Justo P; Luque, Raúl M
2016-10-15
Growth hormone (GH) and insulin-like growth factor-I (IGF-I) are essential factors in mammary-gland (MG) development and are altered during fasting. However, no studies have investigated the alterations in the expression of GH/IGF-I and its regulatory systems (somatostatin/cortistatin and ghrelin) in MG during fasting. Therefore, this study was aimed at characterizing the regulation of GH/IGF-I/somatostatin/cortistatin/ghrelin-systems expression in MG of fasted female-mice (compared to fed-controls) and the influence of endogenous-cortistatin (using cortistatin-knockouts). Fasting decreased IGF-I while increased IGF-I/Insulin-receptors expression in MGs. Fasting provoked an increase in GH expression that might be associated to enhanced ghrelin-variants/ghrelin-O-acyl-transferase enzyme expression, while an upregulation of somatostatin-receptors was observed. However, cortistatin-knockouts mice showed a decrease in GH and somatostatin receptor-subtypes expression. Altogether, we demonstrate that GH/IGF-I, somatostatin/cortistatin and ghrelin systems expression is altered in MG during fasting, suggesting a relevant role in coordinating its response to metabolic stress, wherein endogenous cortistatin might be essential for an appropriate response. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
The emerging role of promiscuous 7TM receptors as chemosensors for food intake.
Wellendorph, Petrine; Johansen, Lars Dan; Bräuner-Osborne, Hans
2010-01-01
In recent years, several highly promiscuous seven transmembrane (7TM) receptors have been cloned and characterized of which many are activated broadly by amino acids, proteolytic degradation products, carbohydrates, or free fatty acids (FFAs) and are expressed in taste tissue, the gastrointestinal (GI) tract, endocrine glands, adipose tissue, and/or kidney. This has led to the hypothesis that these receptors may act as sensors of food intake modulating, for example, release of incretin hormones from the gut, insulin/glucagon from the pancreas, and leptin from adipose tissue. In the present review, we describe the molecular mechanisms of nutrient-sensing of the calcium-sensing receptor (CaR), the G protein-coupled receptor family C, group 6, subtype A (GPRC6A), and the taste1 receptor T1R1/T1R3-sensing L-α-amino acids; the carbohydrate-sensing T1R2/T1R3 receptor; the proteolytic degradation product sensor GPR93 (also termed GPR92); and the FFA sensing receptors FFA1, FFA2, FFA3, GPR84, and GPR120. Due to their omnipresent nature, the natural ligands have had limited usability in pharmacological/physiological studies which has hampered the elucidation of the physiological function and therapeutic prospect of their receptors. However, an increasing number of subtype-selective ligands and/or receptor knockout mice are being developed which at least for some of the receptors have validated them as promising drug targets in, for example, type II diabetes. Copyright © 2010 Elsevier Inc. All rights reserved.
Hepatic expression and cellular distribution of the glucose transporter family
Karim, Sumera; Adams, David H; Lalor, Patricia F
2012-01-01
Glucose and other carbohydrates are transported into cells using members of a family of integral membrane glucose transporter (GLUT) molecules. To date 14 members of this family, also called the solute carrier 2A proteins have been identified which are divided on the basis of transport characteristics and sequence similarities into several families (Classes 1 to 3). The expression of these different receptor subtypes varies between different species, tissues and cellular subtypes and each has differential sensitivities to stimuli such as insulin. The liver is a contributor to metabolic carbohydrate homeostasis and is a major site for synthesis, storage and redistribution of carbohydrates. Situations in which the balance of glucose homeostasis is upset such as diabetes or the metabolic syndrome can lead metabolic disturbances that drive chronic organ damage and failure, confirming the importance of understanding the molecular regulation of hepatic glucose homeostasis. There is a considerable literature describing the expression and function of receptors that regulate glucose uptake and release by hepatocytes, the most import cells in glucose regulation and glycogen storage. However there is less appreciation of the roles of GLUTs expressed by non parenchymal cell types within the liver, all of which require carbohydrate to function. A better understanding of the detailed cellular distribution of GLUTs in human liver tissue may shed light on mechanisms underlying disease pathogenesis. This review summarises the available literature on hepatocellular expression of GLUTs in health and disease and highlights areas where further investigation is required. PMID:23239915
Allosteric Modulation of Metabotropic Glutamate Receptors
Sheffler, Douglas J.; Gregory, Karen J.; Rook, Jerri M.; Conn, P. Jeffrey
2013-01-01
The development of receptor subtype-selective ligands by targeting allosteric sites of G protein-coupled receptors (GPCRs) has proven highly successful in recent years. One GPCR family that has greatly benefited from this approach is the metabotropic glutamate receptors (mGlus). These family C GPCRs participate in the neuromodulatory actions of glutamate throughout the CNS, where they play a number of key roles in regulating synaptic transmission and neuronal excitability. A large number of mGlu subtype-selective allosteric modulators have been identified, the majority of which are thought to bind within the transmembrane regions of the receptor. These modulators can either enhance or inhibit mGlu functional responses and, together with mGlu knockout mice, have furthered the establishment of the physiologic roles of many mGlu subtypes. Numerous pharmacological and receptor mutagenesis studies have been aimed at providing a greater mechanistic understanding of the interaction of mGlu allosteric modulators with the receptor, which have revealed evidence for common allosteric binding sites across multiple mGlu subtypes and the presence for multiple allosteric sites within a single mGlu subtype. Recent data have also revealed that mGlu allosteric modulators can display functional selectivity toward particular signal transduction cascades downstream of an individual mGlu subtype. Studies continue to validate the therapeutic utility of mGlu allosteric modulators as a potential therapeutic approach for a number of disorders including anxiety, schizophrenia, Parkinson’s disease, and Fragile X syndrome. PMID:21907906
Khan, Samir A; Rossi, Ana M; Riley, Andrew M; Potter, Barry V L; Taylor, Colin W
2013-04-15
IP(3)R (IP(3) [inositol 1,4,5-trisphosphate] receptors) and ryanodine receptors are the most widely expressed intracellular Ca(2+) channels and both are regulated by thiol reagents. In DT40 cells stably expressing single subtypes of mammalian IP(3)R, low concentrations of thimerosal (also known as thiomersal), which oxidizes thiols to form a thiomercurylethyl complex, increased the sensitivity of IP(3)-evoked Ca(2+) release via IP(3)R1 and IP(3)R2, but inhibited IP(3)R3. Activation of IP(3)R is initiated by IP(3) binding to the IBC (IP(3)-binding core; residues 224-604) and proceeds via re-arrangement of an interface between the IBC and SD (suppressor domain; residues 1-223). Thimerosal (100 μM) stimulated IP(3) binding to the isolated NT (N-terminal; residues 1-604) of IP(3)R1 and IP(3)R2, but not to that of IP(3)R3. Binding of a competitive antagonist (heparin) or partial agonist (dimeric-IP(3)) to NT1 was unaffected by thiomersal, suggesting that the effect of thimerosal is specifically related to IP(3)R activation. IP(3) binding to NT1 in which all cysteine residues were replaced by alanine was insensitive to thimerosal, so too were NT1 in which cysteine residues were replaced in either the SD or IBC. This demonstrates that thimerosal interacts directly with cysteine in both the SD and IBC. Chimaeric proteins in which the SD of the IP(3)R was replaced by the structurally related A domain of a ryanodine receptor were functional, but thimerosal inhibited both IP(3) binding to the chimaeric NT and IP(3)-evoked Ca(2+) release from the chimaeric IP(3)R. This is the first systematic analysis of the effects of a thiol reagent on each IP(3)R subtype. We conclude that thimerosal selectively sensitizes IP(3)R1 and IP(3)R2 to IP(3) by modifying cysteine residues within both the SD and IBC and thereby stabilizing an active conformation of the receptor.
Dopamine D2-like receptor signaling suppresses human osteoclastogenesis.
Hanami, Kentaro; Nakano, Kazuhisa; Saito, Kazuyoshi; Okada, Yosuke; Yamaoka, Kunihiro; Kubo, Satoshi; Kondo, Masahiro; Tanaka, Yoshiya
2013-09-01
Dopamine, a major neurotransmitter, transmits signals via five different seven-transmembrane G protein-coupled receptors termed D1 to D5. Although the relevance of neuroendocrine system to bone metabolism has been emerging, the precise effects of dopaminergic signaling upon osteoclastogenesis remain unknown. Here, we demonstrate that human monocyte-derived osteoclast precursor cells express all dopamine-receptor subtypes. Dopamine and dopamine D2-like receptor agonists such as pramipexole and quinpirole reduced the formation of TRAP-positive multi-nucleated cells, cathepsin K mRNA expression, and pit formation area in vitro. These inhibitory effects were reversed by pre-treatment with a D2-like receptor antagonist haloperidol or a Gαi inhibitor pertussis toxin, but not with the D1-like receptor antagonist SCH-23390. Dopamine and dopamine D2-like receptor agonists, but not a D1-like receptor agonist, suppressed intracellular cAMP concentration as well as RANKL-meditated induction of c-Fos and NFATc1 mRNA expression in human osteoclast precursor cells. Finally, the dopamine D2-like receptor agonist suppressed LPS-induced osteoclast formation in murine bone marrow culture ex vivo. These findings indicate that dopaminergic signaling plays an important role in bone homeostasis via direct effects upon osteoclast differentiation and further suggest that the clinical use of neuroleptics is likely to affect bone mass. Copyright © 2013 Elsevier Inc. All rights reserved.
Tsukada, Junko; Tahara, Atsuo; Tomura, Yuichi; Wada, Koh-ichi; Kusayama, Toshiyuki; Ishii, Noe; Yatsu, Takeyuki; Uchida, Wataru; Taniguchi, Nobuaki; Tanaka, Akihiro
2001-01-01
YM471, (Z)-4′-{4,4-difluoro-5-[2-(4-dimethylaminopiperidino)-2-oxoethylidene]-2,3,4,5-tetrahydro-1H-1-benzoazepine-1-carbonyl}-2-phenylbenzanilide monohydrochloride, is a newly synthesized potent vasopressin (AVP) receptor antagonist. Its effects on binding to and signal transduction by cloned human AVP receptors (V1A, V1B and V2) stably expressed in Chinese hamster ovary (CHO) cells, and oxytocin receptors in human uterine smooth muscle cells (USMC) were studied. YM471 potently inhibited specific [3H]-AVP binding to V1A and V2 receptors with Ki values of 0.62 nM and 1.19 nM, respectively. In contrast, YM471 exhibited much lower affinity for V1B and oxytocin receptors with Ki values of 16.4 μM and 31.6 nM, respectively. In CHO cells expressing V1A receptors, YM471 potently inhibited AVP-induced intracellular Ca2+ concentration ([Ca2+]i) increase, exhibiting an IC50 value of 0.56 nM. However, in human USMC expressing oxytocin receptors, YM471 exhibited much lower potency in inhibiting oxytocin-induced [Ca2+]i increase (IC50=193 nM), and did not affect AVP-induced [Ca2+]i increase in CHO cells expressing V1B receptors. Furthermore, in CHO cells expressing V2 receptors, YM471 potently inhibited the production of cyclic AMP stimulated by AVP with an IC50 value of 1.88 nM. In all assays, YM471 showed no agonistic activity. These results demonstrate that YM471 is a potent, nonpeptide human V1A and V2 receptor antagonist which will be a valuable tool in defining the physiologic and pharmacologic actions of AVP. PMID:11429400
Tsukada, J; Tahara, A; Tomura, Y; Wada Ki; Kusayama, T; Ishii, N; Yatsu, T; Uchida, W; Taniguchi, N; Tanaka, A
2001-07-01
YM471, (Z)-4'-[4,4-difluoro-5-[2-(4-dimethylaminopiperidino)-2-oxoethylidene]-2,3,4,5-tetrahydro-1H-1-benzoazepine-1-carbonyl]-2-phenylbenzanilide monohydrochloride, is a newly synthesized potent vasopressin (AVP) receptor antagonist. Its effects on binding to and signal transduction by cloned human AVP receptors (V(1A), V(1B) and V(2)) stably expressed in Chinese hamster ovary (CHO) cells, and oxytocin receptors in human uterine smooth muscle cells (USMC) were studied. YM471 potently inhibited specific [(3)H]-AVP binding to V(1A) and V(2) receptors with K(i) values of 0.62 nM and 1.19 nM, respectively. In contrast, YM471 exhibited much lower affinity for V(1B) and oxytocin receptors with K(i) values of 16.4 microM and 31.6 nM, respectively. In CHO cells expressing V(1A) receptors, YM471 potently inhibited AVP-induced intracellular Ca(2+) concentration ([Ca(2+)](i)) increase, exhibiting an IC(50) value of 0.56 nM. However, in human USMC expressing oxytocin receptors, YM471 exhibited much lower potency in inhibiting oxytocin-induced [Ca(2+)](i) increase (IC(50)=193 nM), and did not affect AVP-induced [Ca(2+)](i) increase in CHO cells expressing V(1B) receptors. Furthermore, in CHO cells expressing V(2) receptors, YM471 potently inhibited the production of cyclic AMP stimulated by AVP with an IC(50) value of 1.88 nM. In all assays, YM471 showed no agonistic activity. These results demonstrate that YM471 is a potent, nonpeptide human V(1A) and V(2) receptor antagonist which will be a valuable tool in defining the physiologic and pharmacologic actions of AVP.
Racial Differences in PAM50 Subtypes in the Carolina Breast Cancer Study.
Troester, Melissa A; Sun, Xuezheng; Allott, Emma H; Geradts, Joseph; Cohen, Stephanie M; Tse, Chiu-Kit; Kirk, Erin L; Thorne, Leigh B; Mathews, Michelle; Li, Yan; Hu, Zhiyuan; Robinson, Whitney R; Hoadley, Katherine A; Olopade, Olufunmilayo I; Reeder-Hayes, Katherine E; Earp, H Shelton; Olshan, Andrew F; Carey, Lisa A; Perou, Charles M
2018-02-01
African American breast cancer patients have lower frequency of hormone receptor-positive (HR+)/human epidermal growth factor receptor 2 (HER2)-negative disease and higher subtype-specific mortality. Racial differences in molecular subtype within clinically defined subgroups are not well understood. Using data and biospecimens from the population-based Carolina Breast Cancer Study (CBCS) Phase 3 (2008-2013), we classified 980 invasive breast cancers using RNA expression-based PAM50 subtype and recurrence (ROR) score that reflects proliferation and tumor size. Molecular subtypes (Luminal A, Luminal B, HER2-enriched, and Basal-like) and ROR scores (high vs low/medium) were compared by race (blacks vs whites) and age (≤50 years vs > 50 years) using chi-square tests and analysis of variance tests. Black women of all ages had a statistically significantly lower frequency of Luminal A breast cancer (25.4% and 33.6% in blacks vs 42.8% and 52.1% in whites; younger and older, respectively). All other subtype frequencies were higher in black women (case-only odds ratio [OR] = 3.11, 95% confidence interval [CI] = 2.22 to 4.37, for Basal-like; OR = 1.45, 95% CI = 1.02 to 2.06, for Luminal B; OR = 2.04, 95% CI = 1.33 to 3.13, for HER2-enriched). Among clinically HR+/HER2- cases, Luminal A subtype was less common and ROR scores were statistically significantly higher among black women. Multigene assays highlight racial disparities in tumor subtype distribution that persist even in clinically defined subgroups. Differences in tumor biology (eg, HER2-enriched status) may be targetable to reduce disparities among clinically ER+/HER2- cases. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
Zhou, Chengwen; Sun, Hongyu; Klein, Peter M.; Jensen, Frances E.
2015-01-01
Neonatal seizures are commonly caused by hypoxic and/or ischemic injury during birth and can lead to long-term epilepsy and cognitive deficits. In a rodent hypoxic seizure (HS) model, we have previously demonstrated a critical role for seizure-induced enhancement of the AMPA subtype of glutamate receptor (GluA) in epileptogenesis and cognitive consequences, in part due to GluA maturational upregulation of expression. Similarly, as the expression and function of the N-Methyl-D-aspartate (NMDA) subtype of glutamate receptor (GluN) is also developmentally controlled, we examined how early life seizures during the critical period of synaptogenesis could modify GluN development and function. In a postnatal day (P)10 rat model of neonatal seizures, we found that seizures could alter GluN2/3 subunit composition of GluNs and physiological function of synaptic GluNs. In hippocampal slices removed from rats within 48–96 h following seizures, the amplitudes of synaptic GluN-mediated evoked excitatory postsynaptic currents (eEPSCs) were elevated in CA1 pyramidal neurons. Moreover, GluN eEPSCs showed a decreased sensitivity to GluN2B selective antagonists and decreased Mg2+ sensitivity at negative holding potentials, indicating a higher proportion of GluN2A and GluN3A subunit function, respectively. These physiological findings were accompanied by a concurrent increase in GluN2A phosphorylation and GluN3A protein. These results suggest that altered GluN function and expression could potentially contribute to future epileptogenesis following neonatal seizures, and may represent potential therapeutic targets for the blockade of future epileptogenesis in the developing brain. PMID:26441533
2013-01-01
Introduction Recurrence risk in breast cancer varies throughout the follow-up time. We examined if these changes are related to the level of expression of the proliferation pathway and intrinsic subtypes. Methods Expression of estrogen and progesterone receptor, Ki-67, human epidermal growth factor receptor 2 (HER2), epidermal growth factor receptor (EGFR) and cytokeratin 5/6 (CK 5/6) was performed on tissue-microarrays constructed from a large and uniformly managed series of early breast cancer patients (N = 1,249). Subtype definitions by four biomarkers were as follows: luminal A (ER + and/or PR+, HER2-, Ki-67 <14), luminal B (ER + and/or PR+, HER2-, Ki-67 ≥14), HER2-enriched (any ER, any PR, HER2+, any Ki-67), triple-negative (ER-, PR-, HER2-, any Ki-67). Subtype definitions by six biomarkers were as follows: luminal A (ER + and/or PR+, HER2-, Ki-67 <14, any CK 5/6, any EGFR), luminal B (ER + and/or PR+, HER2-, Ki-67 ≥14, any CK 5/6, any EGFR), HER2-enriched (ER-, PR-, HER2+, any Ki-67, any CK 5/6, any EGFR), Luminal-HER2 (ER + and/or PR+, HER2+, any Ki-67, any CK 5/6, any EGFR), Basal-like (ER-, PR-, HER2-, any Ki-67, CK5/6+ and/or EGFR+), triple-negative nonbasal (ER-, PR-, HER2-, any Ki-67, CK 5/6-, EGFR-). Each four- or six-marker defined intrinsic subtype was divided in two groups, with Ki-67 <14% or with Ki-67 ≥14%. Recurrence hazard rate function was determined for each intrinsic subtype as a whole and according to Ki-67 value. Results Luminal A displayed a slow risk increase, reaching its maximum after three years and then remained steady. Luminal B presented most of its relapses during the first five years. HER2-enriched tumors show a peak of recurrence nearly twenty months post-surgery, with a greater risk in Ki-67 ≥14%. However a second peak occurred at 72 months but the risk magnitude was greater in Ki-67 <14%. Triple negative tumors with low proliferation rate display a smooth risk curve, but with Ki-67 ≥14% show sharp peak at nearly 18 months. Conclusions Each intrinsic subtype has a particular pattern of relapses over time which change depending on the level of activation of the proliferation pathway assessed by Ki-67. These findings could have clinical implications both on adjuvant treatment trial design and on the recommendations concerning the surveillance of patients. PMID:24148581
Kasuga, Jun-ichi; Yamasaki, Daisuke; Araya, Yoko; Nakagawa, Aya; Makishima, Makoto; Doi, Takefumi; Hashimoto, Yuichi; Miyachi, Hiroyuki
2006-12-15
A series of alpha-alkyl-substituted phenylpropanoic acids was prepared as dual agonists of peroxisome proliferator-activated receptors alpha and delta (PPARalpha/delta). Structure-activity relationship studies indicated that the shape of the linking group and the shape of the substituent at the distal benzene ring play key roles in determining the potency and the selectivity of PPAR subtype transactivation. Structure-activity relationships among the amide series (10) and the reversed amide series (13) are similar, but not identical, especially in the case of the compounds bearing a bulky hydrophobic substituent at the distal benzene ring, indicating that the hydrophobic tail part of the molecules in these two series binds at somewhat different positions in the large binding pocket of PPAR. alpha-Alkyl-substituted phenylpropanoic acids of (S)-configuration were identified as potent human PPARalpha/delta dual agonists. Representative compounds exhibited marked nuclear receptor selectivity for PPARalpha and PPARdelta. Subtype-selective PPAR activation was also examined by analysis of the mRNA expression of PPAR-regulated genes.
Renna, Jordan M.; Amthor, Franklin R.; Keyser, Kent T.
2010-01-01
Purpose. The activation and blockade of muscarinic acetylcholine receptors (mAChRs) affects retinal ganglion cell light responses and firing rates. This study was undertaken to identify the full complement of mAChRs expressed in the rabbit retina and to assess mAChR distribution and the functional effects of mAChR activation and blockade on retinal response properties. Methods. RT-PCR, Western blot analysis, and immunohistochemistry were used to identify the complement and distribution of mAChRs in the rabbit retina. Extracellular electrophysiology was used to determine the effects of the activation or blockade of mAChRs on ganglion cell response properties. Results. RT-PCR of whole neural retina resulted in the amplification of mRNA transcripts for the m1 to m5 mAChR subtypes. Western blot and immunohistochemical analyses confirmed that all five mAChR subtypes were expressed by subpopulations of bipolar, amacrine, and ganglion cells in the rabbit retina, including subsets of cells in cholinergic and glycinergic circuits. Nonspecific muscarinic activation and blockade resulted in the class-specific modulation of maintained ganglion cell firing rates and light responses. Conclusions. The expression of mAChR subtypes on subsets of bipolar, amacrine, and ganglion cells provides a substrate for both enhancement and suppression of retinal responses via activation by cholinergic agents. Thus, the muscarinic cholinergic system in the retina may contribute to the modulation of complex stimuli. Understanding the distribution and function of mAChRs in the retina has the potential to provide important insights into the visual changes that are caused by decreased ACh in the retinas of Alzheimer's patients and the potential visual effects of anticholinergic treatments for ocular diseases. PMID:20042645
GABAB receptor attenuation of GABAA currents in neurons of the mammalian central nervous system.
Shen, Wen; Nan, Changlong; Nelson, Peter T; Ripps, Harris; Slaughter, Malcolm M
2017-03-01
Ionotropic receptors are tightly regulated by second messenger systems and are often present along with their metabotropic counterparts on a neuron's plasma membrane. This leads to the hypothesis that the two receptor subtypes can interact, and indeed this has been observed in excitatory glutamate and inhibitory GABA receptors. In both systems the metabotropic pathway augments the ionotropic receptor response. However, we have found that the metabotropic GABA B receptor can suppress the ionotropic GABA A receptor current, in both the in vitro mouse retina and in human amygdala membrane fractions. Expression of amygdala membrane microdomains in Xenopus oocytes by microtransplantation produced functional ionotropic and metabotropic GABA receptors. Most GABA A receptors had properties of α -subunit containing receptors, with ~5% having ρ -subunit properties. Only GABA A receptors with α -subunit-like properties were regulated by GABA B receptors. In mouse retinal ganglion cells, where only α -subunit-containing GABA A receptors are expressed, GABA B receptors suppressed GABA A receptor currents. This suppression was blocked by GABA B receptor antagonists, G-protein inhibitors, and GABA B receptor antibodies. Based on the kinetic differences between metabotropic and ionotropic receptors, their interaction would suppress repeated, rapid GABAergic inhibition. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Important roles of P2Y receptors in the inflammation and cancer of digestive system.
Wan, Han-Xing; Hu, Jian-Hong; Xie, Rei; Yang, Shi-Ming; Dong, Hui
2016-05-10
Purinergic signaling is important for many biological processes in humans. Purinoceptors P2Y are widely distributed in human digestive system and different subtypes of P2Y receptors mediate different physiological functions from metabolism, proliferation, differentiation to apoptosis etc. The P2Y receptors are essential in many gastrointestinal functions and also involve in the occurrence of some digestive diseases. Since different subtypes of P2Y receptors are present on the same cell of digestive organs, varying subtypes of P2Y receptors may have opposite or synergetic functions on the same cell. Recently, growing lines of evidence strongly suggest the involvement of P2Y receptors in the pathogenesis of several digestive diseases. In this review, we will focus on their important roles in the development of digestive inflammation and cancer. We anticipate that as the special subtypes of P2Y receptors are studied in depth, specific modulators for them will have good potentials to become promising new drugs to treat human digestive diseases in the near future.
Getahun, Merid N; Thoma, Michael; Lavista-Llanos, Sofia; Keesey, Ian; Fandino, Richard A; Knaden, Markus; Wicher, Dieter; Olsson, Shannon B; Hansson, Bill S
2016-11-01
Flying insects are well known for airborne odour tracking and have evolved diverse chemoreceptors. While ionotropic receptors (IRs) are found across protostomes, insect odorant receptors (ORs) have only been identified in winged insects. We therefore hypothesized that the unique signal transduction of ORs offers an advantage for odour localization in flight. Using Drosophila, we found expression and increased activity of the intracellular signalling protein PKC in antennal sensilla following odour stimulation. Odour stimulation also enhanced phosphorylation of the OR co-receptor Orco in vitro, while site-directed mutation of Orco or mutations in PKC subtypes reduced the sensitivity and dynamic range of OR-expressing neurons in vivo, but not IR-expressing neurons. We ultimately show that these mutations reduce competence for odour localization of flies in flight. We conclude that intracellular regulation of OR sensitivity is necessary for efficient odour localization, which suggests a mechanistic advantage for the evolution of the OR complex in flying insects. © 2016. Published by The Company of Biologists Ltd.
Peptide receptor targeting in cancer: the somatostatin paradigm.
Barbieri, Federica; Bajetto, Adriana; Pattarozzi, Alessandra; Gatti, Monica; Würth, Roberto; Thellung, Stefano; Corsaro, Alessandro; Villa, Valentina; Nizzari, Mario; Florio, Tullio
2013-01-01
Peptide receptors involved in pathophysiological processes represent promising therapeutic targets. Neuropeptide somatostatin (SST) is produced by specialized cells in a large number of human organs and tissues. SST primarily acts as inhibitor of endocrine and exocrine secretion via the activation of five G-protein-coupled receptors, named sst1-5, while in central nervous system, SST acts as a neurotransmitter/neuromodulator, regulating locomotory and cognitive functions. Critical points of SST/SST receptor biology, such as signaling pathways of individual receptor subtypes, homo- and heterodimerization, trafficking, and cross-talk with growth factor receptors, have been extensively studied, although functions associated with several pathological conditions, including cancer, are still not completely unraveled. Importantly, SST exerts antiproliferative and antiangiogenic effects on cancer cells in vitro, and on experimental tumors in vivo. Moreover, SST agonists are clinically effective as antitumor agents for pituitary adenomas and gastro-pancreatic neuroendocrine tumors. However, SST receptors being expressed by tumor cells of various tumor histotypes, their pharmacological use is potentially extendible to other cancer types, although to date no significant results have been obtained. In this paper the most recent findings on the expression and functional roles of SST and SST receptors in tumor cells are discussed.
Molecular evidence and clinical importance of β-arrestins expression in patients with acromegaly.
Coelho, Maria Caroline Alves; Vasquez, Marina Lipkin; Wildemberg, Luiz Eduardo; Vázquez-Borrego, Mari C; Bitana, Luciana; Camacho, Aline Helen da Silva; Silva, Débora; Ogino, Liana Lumi; Ventura, Nina; Chimelli, Leila; Luque, Raul M; Kasuki, Leandro; Gadelha, Mônica R
2018-04-01
β-arrestins seem to have a role in endocytosis and desensitization of somatostatin receptor subtype 2 (sst2) and could be associated with the responsiveness to somatostatin receptor ligands (SRL) in patients with acromegaly. To investigate the in vivo correlation between β-arrestins 1 and 2 with sst2, sst5 and dopamine receptor subtype 2 (D2) expressions, and the association of β-arrestins with response to first-generation SRL and invasiveness in somatotropinomas. β-arrestins 1 and 2, sst2, sst5 and D2 mRNA expressions were evaluated by quantitative real-time RT-PCR on tumoral tissue of 96 patients. Moreover, sst2 and sst5 protein expressions were also evaluated in 40 somatotropinomas by immunohistochemistry. Response to SRL, defined as GH <1 μg/l and normal IGF-I levels, was assessed in 40 patients. The Knosp-Steiner criteria were used to define invasiveness. Median β-arrestin 1, β-arrestin 2, sst2, sst5 and D2 mRNA copy numbers were 478; 9375; 731; 156; and 3989, respectively. There was a positive correlation between β-arrestins 1 and 2 (R = 0.444, P < 0.001). However, no correlation between β-arrestins and sst2, sst5 (mRNA and protein levels) or D2 was found. No association was found between β-arrestins expression and SRL responsiveness or tumour invasiveness. Although previous data suggest a putative correlation between β-arrestins and sst2, our data clearly indicated that no association existed between β-arrestins and sst2, sst5 or D2 expression, nor with response to SRL or tumour invasiveness. Therefore, further studies are required to clarify whether β-arrestins have a role in the response to treatment with SRL in acromegaly. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
P2X receptors, sensory neurons and pain.
Bele, Tanja; Fabbretti, Elsa
2015-01-01
Pain represents a very large social and clinical problem since the current treatment provides insufficient pain relief. Plasticity of pain receptors together with sensitisation of sensory neurons, and the role of soluble mediators released from non-neuronal cells render difficult to understand the spatial and temporal scale of pain development, neuronal responses and disease progression. In pathological conditions, ATP is one of the most powerful mediators that activates P2X receptors that behave as sensitive ATP-detectors, such as neuronal P2X3 receptor subtypes and P2X4 and P2X7 receptors expressed on non-neuronal cells. Dissecting the molecular mechanisms occurring in sensory neurons and in accessory cells allows to design appropriate tissue- and cell- targeted approaches to treat chronic pain.
Dopaminergic Modulation of Risky Decision-Making
Simon, Nicholas W.; Montgomery, Karienn S.; Beas, Blanca S.; Mitchell, Marci R.; LaSarge, Candi L.; Mendez, Ian A.; Bañuelos, Cristina; Vokes, Colin M.; Taylor, Aaron B.; Haberman, Rebecca P.; Bizon, Jennifer L.; Setlow, Barry
2012-01-01
Many psychiatric disorders are characterized by abnormal risky decision-making and dysregulated dopamine receptor expression. The current study was designed to determine how different dopamine receptor subtypes modulate risk-taking in young adult rats, using a “Risky Decision-making Task” that involves choices between small “safe” rewards and large “risky” rewards accompanied by adverse consequences. Rats showed considerable, stable individual differences in risk preference in the task, which were not related to multiple measures of reward motivation, anxiety, or pain sensitivity. Systemic activation of D2-like receptors robustly attenuated risk-taking, whereas drugs acting on D1-like receptors had no effect. Systemic amphetamine also reduced risk-taking, an effect which was attenuated by D2-like (but not D1-like) receptor blockade. Dopamine receptor mRNA expression was evaluated in a separate cohort of drug-naive rats characterized in the task. D1 mRNA expression in both nucleus accumbens shell and insular cortex was positively associated with risk-taking, while D2 mRNA expression in orbitofrontal and medial prefrontal cortex predicted risk preference in opposing nonlinear patterns. Additionally, lower levels of D2 mRNA in dorsal striatum were associated with greater risk-taking. These data strongly implicate dopamine signaling in prefrontal corticalstriatal circuitry in modulating decision-making processes involving integration of reward information with risks of adverse consequences. PMID:22131407
Otake, Sho; Yoshida, Kenji; Seira, Naofumi; Sanchez, Christopher M; Regan, John W; Fujino, Hiromichi; Murayama, Toshihiko
2015-02-01
Increases in prostaglandin E2 (PGE2) and cyclooxygenase-2 (COX-2) levels are features of colon cancer. Among the different E-type prostanoid receptor subtypes, EP4 receptors are considered to play a crucial role in carcinogenesis by, for example, inducing COX-2 when stimulated with PGE2. However, EP4 receptor levels and PGE2-induced cellular responses are inconsistent among the cellular conditions. Therefore, the connections responsible for the expression of EP4 receptors were investigated in the present study by focusing on cell density-induced hypoxia-inducible factor-1α (HIF-1α). The expression of EP4 receptors was examined using immunoblot analysis, quantitative polymerase chain reaction, and reporter gene assays in HCA-7 human colon cancer cells with different cellular densities. The involvement of HIF-1α and its signaling pathways were also examined by immunoblot analysis, reporter gene assays, and with siRNA. We here demonstrated that EP4 receptors as well as EP4 receptor-mediated COX-2 expression levels decreased with an increase in cellular density. In contrast, HIF-1α levels increased in a cellular density-dependent manner. The knockdown of HIF-1α by siRNA restored the expression of EP4 receptors and EP4 receptor-mediated COX-2 in cells at a high density. Thus, the cellular density-dependent increase observed in HIF-1α expression levels reduced the expression of COX-2 by decreasing EP4 receptor levels. This novel regulation mechanism for the expression of EP4 receptors by HIF-1α may provide an explanation for the inconsistent actions of PGE2. The expression levels of EP4 receptors may vary depending on cellular density, which may lead to the differential activation of their signaling pathways by PGE2. Thus, cellular density-dependent PGE2-mediated signaling may determine the fate/stage of cancer cells, i.e., the surrounding environments could define the fate/stage of malignancies associated with colon cancer.
Otake, Sho; Yoshida, Kenji; Seira, Naofumi; Sanchez, Christopher M; Regan, John W; Fujino, Hiromichi; Murayama, Toshihiko
2015-01-01
Increases in prostaglandin E2 (PGE2) and cyclooxygenase-2 (COX-2) levels are features of colon cancer. Among the different E-type prostanoid receptor subtypes, EP4 receptors are considered to play a crucial role in carcinogenesis by, for example, inducing COX-2 when stimulated with PGE2. However, EP4 receptor levels and PGE2-induced cellular responses are inconsistent among the cellular conditions. Therefore, the connections responsible for the expression of EP4 receptors were investigated in the present study by focusing on cell density-induced hypoxia-inducible factor-1α (HIF-1α). The expression of EP4 receptors was examined using immunoblot analysis, quantitative polymerase chain reaction, and reporter gene assays in HCA-7 human colon cancer cells with different cellular densities. The involvement of HIF-1α and its signaling pathways were also examined by immunoblot analysis, reporter gene assays, and with siRNA. We here demonstrated that EP4 receptors as well as EP4 receptor-mediated COX-2 expression levels decreased with an increase in cellular density. In contrast, HIF-1α levels increased in a cellular density-dependent manner. The knockdown of HIF-1α by siRNA restored the expression of EP4 receptors and EP4 receptor-mediated COX-2 in cells at a high density. Thus, the cellular density-dependent increase observed in HIF-1α expression levels reduced the expression of COX-2 by decreasing EP4 receptor levels. This novel regulation mechanism for the expression of EP4 receptors by HIF-1α may provide an explanation for the inconsistent actions of PGE2. The expression levels of EP4 receptors may vary depending on cellular density, which may lead to the differential activation of their signaling pathways by PGE2. Thus, cellular density-dependent PGE2-mediated signaling may determine the fate/stage of cancer cells, i.e., the surrounding environments could define the fate/stage of malignancies associated with colon cancer. PMID:25692008
Xue, Miao-Qun; Liu, Jun; Sang, Jian-Feng; Su, Lei; Yao, Yong-Zhong
2017-07-25
To investigate chemokine receptor CXCR1 expression characteristic in different breast tissues and analyze the relationship between CXCR1 expression changes in breast cancer tissue and efficacy of neo-adjuvant chemotherapy. Chemokine receptor CXCR1 was lowly expressed in normal breast tissues and breast fibroadenoma, but highly expressed in breast cancer. It was significantly correlated with pathological stage, tumor cell differentiation, and lymph node metastasis (P < 0.05). After neo-adjuvant chemotherapy, CXCR1 expression in breast cancer tissues decreased. Among these 104 breast cancer patients with different molecular subtypes, the survival rate with Luminal A was the highest, followed by the Luminal B breast cancer, TNBC was the worst. 104 cases with breast carcinoma, 20 cases with normal breast and 20 cases with breast fibroadenoma were included and followed up. Immunohistochemistry was used to detect the expression of CXCR1 in the various tissues. The relationship between the CXCR1 expression changes in breast cancer biopsies and surgical specimens, as well as the efficacy of neo-adjuvant chemotherapy, was analyzed. Chemokine receptor CXCR1 could be used as an indicator to predict benign or malignant breast disease, and it can even predict the malignancy degree of breast cancer, as well as its invasive ability and prognosis.
Oliver, William R.; Shenk, Jennifer L.; Snaith, Mike R.; Russell, Caroline S.; Plunket, Kelli D.; Bodkin, Noni L.; Lewis, Michael C.; Winegar, Deborah A.; Sznaidman, Marcos L.; Lambert, Millard H.; Xu, H. Eric; Sternbach, Daniel D.; Kliewer, Steven A.; Hansen, Barbara C.; Willson, Timothy M.
2001-01-01
The peroxisome proliferator-activated receptors (PPARs) are dietary lipid sensors that regulate fatty acid and carbohydrate metabolism. The hypolipidemic effects of the fibrate drugs and the antidiabetic effects of the glitazone drugs in humans are due to activation of the α (NR1C1) and γ (NR1C3) subtypes, respectively. By contrast, the therapeutic potential of the δ (NR1C2) subtype is unknown, due in part to the lack of selective ligands. We have used combinatorial chemistry and structure-based drug design to develop a potent and subtype-selective PPARδ agonist, GW501516. In macrophages, fibroblasts, and intestinal cells, GW501516 increases expression of the reverse cholesterol transporter ATP-binding cassette A1 and induces apolipoprotein A1-specific cholesterol efflux. When dosed to insulin-resistant middle-aged obese rhesus monkeys, GW501516 causes a dramatic dose-dependent rise in serum high density lipoprotein cholesterol while lowering the levels of small-dense low density lipoprotein, fasting triglycerides, and fasting insulin. Our results suggest that PPARδ agonists may be effective drugs to increase reverse cholesterol transport and decrease cardiovascular disease associated with the metabolic syndrome X. PMID:11309497
Eibl, Christoph; Tomassoli, Isabelle; Munoz, Lenka; Stokes, Clare; Papke, Roger L; Gündisch, Daniela
2013-12-01
3,7-Diazabicyclo[3.3.1]nonane is a naturally occurring scaffold interacting with nicotinic acetylcholine receptors (nAChRs). When one nitrogen of the 3,7-diazabicyclo[3.3.1]nonane scaffold was implemented in a carboxamide motif displaying a hydrogen bond acceptor (HBA) functionality, compounds with higher affinities and subtype selectivity for α4β2(∗) were obtained. The nature of the HBA system (carboxamide, sulfonamide, urea) had a strong impact on nAChR interaction. High affinity ligands for α4β2(∗) possessed small alkyl chains, small un-substituted hetero-aryl groups or para-substituted phenyl ring systems along with a carboxamide group. Electrophysiological responses of selected 3,7-diazabicyclo[3.3.1]nonane derivatives to Xenopus oocytes expressing various nAChR subtypes showed diverse activation profiles. Compounds with strongest agonistic profiles were obtained with small alkyl groups whereas a shift to partial agonism/antagonism was observed for aryl substituents. Copyright © 2013 Elsevier Ltd. All rights reserved.
Determinants of glycan receptor specificity of H2N2 influenza A virus hemagglutinin.
Viswanathan, Karthik; Koh, Xiaoying; Chandrasekaran, Aarthi; Pappas, Claudia; Raman, Rahul; Srinivasan, Aravind; Shriver, Zachary; Tumpey, Terrence M; Sasisekharan, Ram
2010-10-29
The H2N2 subtype of influenza A virus was responsible for the Asian pandemic of 1957-58. However, unlike other subtypes that have caused pandemics such as H1N1 and H3N2, which continue to circulate among humans, H2N2 stopped circulating in the human population in 1968. Strains of H2 subtype still continue to circulate in birds and occasionally pigs and could be reintroduced into the human population through antigenic drift or shift. Such an event is a potential global health concern because of the waning population immunity to H2 hemagglutinin (HA). The first step in such a cross-species transmission and human adaptation of influenza A virus is the ability for its surface glycoprotein HA to bind to glycan receptors expressed in the human upper respiratory epithelia. Recent structural and biochemical studies have focused on understanding the glycan receptor binding specificity of the 1957-58 pandemic H2N2 HA. However, there has been considerable HA sequence divergence in the recent avian-adapted H2 strains from the pandemic H2N2 strain. Using a combination of structural modeling, quantitative glycan binding and human respiratory tissue binding methods, we systematically identify mutations in the HA from a recent avian-adapted H2N2 strain (A/Chicken/PA/2004) that make its quantitative glycan receptor binding affinity (defined using an apparent binding constant) comparable to that of a prototypic pandemic H2N2 (A/Albany/6/58) HA.
Determinants of Glycan Receptor Specificity of H2N2 Influenza A Virus Hemagglutinin
Chandrasekaran, Aarthi; Pappas, Claudia; Raman, Rahul; Srinivasan, Aravind; Shriver, Zachary; Tumpey, Terrence M.; Sasisekharan, Ram
2010-01-01
The H2N2 subtype of influenza A virus was responsible for the Asian pandemic of 1957-58. However, unlike other subtypes that have caused pandemics such as H1N1 and H3N2, which continue to circulate among humans, H2N2 stopped circulating in the human population in 1968. Strains of H2 subtype still continue to circulate in birds and occasionally pigs and could be reintroduced into the human population through antigenic drift or shift. Such an event is a potential global health concern because of the waning population immunity to H2 hemagglutinin (HA). The first step in such a cross-species transmission and human adaptation of influenza A virus is the ability for its surface glycoprotein HA to bind to glycan receptors expressed in the human upper respiratory epithelia. Recent structural and biochemical studies have focused on understanding the glycan receptor binding specificity of the 1957-58 pandemic H2N2 HA. However, there has been considerable HA sequence divergence in the recent avian-adapted H2 strains from the pandemic H2N2 strain. Using a combination of structural modeling, quantitative glycan binding and human respiratory tissue binding methods, we systematically identify mutations in the HA from a recent avian-adapted H2N2 strain (A/Chicken/PA/2004) that make its quantitative glycan receptor binding affinity (defined using an apparent binding constant) comparable to that of a prototypic pandemic H2N2 (A/Albany/6/58) HA. PMID:21060797
Romagnoli, Romeo; Baraldi, Pier Giovanni; Pavani, Maria Giovanna; Tabrizi, Mojgan Aghazadeh; Moorman, Allan R; Di Virgilio, Francesco; Cattabriga, Elena; Pancaldi, Cecilia; Gessi, Stefania; Borea, Pier Andrea
2004-11-15
The design, synthesis, and preliminary biological evaluation of the first potent radioligand antagonist for the P2X(7) receptor, named [(3)H]-1-[(S)-N,O-bis-(isoquinolinesulfonyl)-N-methyl-tyrosyl]-4-(o-tolyl)-piperazine (compound 13), are reported. This compound bound to human P2X(7) receptors expressed in HEK transfected cells with K(D) and B(max) value of 3.46+/-0.1 nM and 727+/-73 fmol/mg of protein, respectively. The high affinity and facile labeling makes it a promising radioligand for a further characterization of P2X(7) receptor subtype.
Neurotrophins and their receptors in human lingual tonsil: an immunohistochemical analysis.
Artico, Marco; Bronzetti, Elena; Felici, Laura M; Alicino, Valentina; Ionta, Brunella; Bronzetti, Benedetto; Magliulo, Giuseppe; Grande, Claudia; Zamai, Loris; Pasquantonio, Guido; De Vincentiis, Marco
2008-11-01
Lymphoid organs are supplied by many nerve endings associated with different kinds of cells and macrophages. The role of this innervation on the release of locally active molecules is still unclear. Lingual tonsils belong to Waldeyer's Ring, in close association with palatine tonsils and nasopharyngeal (adenoids) tonsils, thus constituting part of NALT (nasal-associated lymphoid tissue) together with the tubal tonsils and lateral pharyngeal bands. In this study, we focused our attention on the expression of some neurotrophins (NTs) and their high- and low-affinity receptors in human lingual tonsils. Light immunohistochemistry showed that human tonsillar samples were generally positive for all the NTs investigated (NGF, BDNF, NT-3, NT-4) and their receptors (TrKA, TrKB, TrKC and p75) with some different expression levels. NGF and TrKC were strongly expressed in macrophages, but weakly in lymphocytes. However, BDNF and TrKB was highly expressed in lymphocytes and weaker in macrophages. The low-affinity receptor for NGF, p75, was mainly moderately expressed in the analysed samples. These results suggest the presence of a pattern of neurotrophin innervation in the human lingual tonsil which may play a role in sustaining inflammatory conditions and in modulating a close interaction between the nervous system and the different immune cellular subtypes.
Functional expression of ionotropic glutamate receptors in the rabbit retinal ganglion cells.
Chen, Yin-Peng; Chiao, Chuan-Chin
2012-01-03
It has been known that retinal ganglion cells (RGCs) with distinct morphologies have different physiological properties. It was hypothesized that different functions of RGCs may in part result from various expressions of N-methyl-d-aspartate (NMDA), α-amino-3-hydroxyl-5-methyl-isoxazole-4-propinoic acid (AMPA), and kainic acid (KA) receptors on their dendrites. In the present study, we aimed to characterize the functional expression of AMPA and NMDA receptors of morphologically identified RGCs in the wholemount rabbit retina. The agmatine (AGB) activation assay was used to reveal functional expression of ionotropic glutamate receptors after the RGCs were targeted by injecting Neurobiotin. To examine the excitability of these glutamate receptors in an agonist specific manner, the lower concentrations of AMPA (2 μM) and NMDA (100 μM) were chosen to examine G7 (ON-OFF direction selective ganglion cells) and G11 (alpha ganglion cells) types of RGCs. We found that less than 40% of G7 type RGCs had salient AGB activation when incubated with 2 μM AMPA or 100 μM NMDA. The G11 type RGCs also showed similar activation frequencies, except that all of the OFF subtype examined had no AGB permeation under the same AMPA concentration. These results suggest that RGCs with large somata (G7 and G11 types) may express various heterogeneous functional ionotropic glutamate receptors, thus in part rendering their functional diversity. Copyright © 2011 Elsevier B.V. All rights reserved.
Steinberg, Anna; Frederiksen, Simona D; Blixt, Frank W; Warfvinge, Karin; Edvinsson, Lars
2016-12-01
Migraine and Cluster Headache (CH) are two primary headaches with severe disease burden. The disease expression and the mechanisms involved are poorly known. In some attacks of migraine and in most attacks of CH, there is a release of vasoactive intestinal peptide (VIP) originating from parasympathetic cranial ganglia such as the sphenopalatine ganglion (SPG). Patients suffering from these diseases are often deprived of effective drugs. The aim of the study was to examine the localization of the botulinum toxin receptor element synaptic vesicle glycoprotein 2A (SV-2A) and the vesicular docking protein synaptosomal-associated protein 25 (SNAP25) in human and rat SPG. Additionally the expression of the neurotransmitters pituitary adenylate cyclase activating polypeptide (PACAP-38), nitric oxide synthase (nNOS), VIP and 5-hydroxttryptamine subtype receptors (5-HT1B,1D,1F) were examined. SPG from adult male rats and from humans, the later removed at autopsy, were prepared for immunohistochemistry using specific antibodies against neurotransmitters, 5-HT1B,1D,1F receptors, and botulinum toxin receptor elements. We found that the selected neurotransmitters and 5-HT receptors were expressed in rat and human SPG. In addition, we found SV2-A and SNAP25 expression in both rat and human SPG. We report that all three 5-HT receptors studied occur in neurons and satellite glial cells (SGCs) of the SPG. 5-HT1B receptors were in addition found in the walls of intraganglionic blood vessels. Recent focus on the SPG has emphasized the role of parasympathetic mechanisms in the pathophysiology of mainly CH. The development of next generation's drugs and treatment of cranial parasympathetic symptoms, mediated through the SPG, can be modulated by treatment with BoNT-A and 5-HT receptor agonists.
Selvam, R; Jurkevich, A; Kang, S W; Mikhailova, M V; Cornett, L E; Kuenzel, W J
2013-01-01
The neurohormone arginine vasotocin (AVT) in non mammalian vertebrates is homologous to arginine vasopressin (AVP) in mammals. Its actions are mediated via G protein-coupled receptors that belong to the vasotocin/mesotocin family. Because of the known regulatory effects of nonapeptide hormones on anterior pituitary functions, receptor subtypes in that family have been proposed to be located in anterior pituitary cells. Recently, an avian vasotocin receptor subtype designated VT4R has been cloned, which shares 69% sequence homology with a human vasopressin receptor, the V1aR. In the present study, a polyclonal antibody to the VT4R was developed and validated to confirm its specificity to the VT4R. The antibody was used to test the hypothesis that the VT4R is present in the avian anterior pituitary and is specifically associated with certain cell types, where its expression is modulated by acute stress. Western blotting of membrane protein extracts from pituitary tissue, the use of HeLa cells transfected with the VT4R and peptide competition assays all confirmed the specificity of the antibody to the VT4R. Dual-labelling immunofluorescence microscopy was utilised to identify pituitary cell types that contained immunoreactive VT4R. The receptor was found to be widely distributed throughout the cephalic lobe but not in the caudal lobe of the anterior pituitary. Immunoreactive VT4R was associated with corticotrophs. Approximately 89% of immunolabelled corticotrophs were shown to contain the VT4R. The immunoreactive VT4R was not found in gonadotrophs, somatotrophs or lactotrophs. To determine a possible functional role of the VT4R and previously characterised VT2R, gene expression levels in the anterior pituitary were determined after acute immobilisation stress by quantitative reverse transcriptase-polymerase chain reaction. The results showed a significant increase in plasma corticosterone levels (three- to four-fold), a significant reduction of VT4R mRNA and an increase of VT2R mRNA (P < 0.05) in acutely immobilised chicks compared to controls. The data suggest a role of the VT4R in the avian stress response. © 2012 British Society for Neuroendocrinology.
Kiviniemi, Aida; Gardberg, Maria; Frantzén, Janek; Pesola, Marko; Vuorinen, Ville; Parkkola, Riitta; Tolvanen, Tuula; Suilamo, Sami; Johansson, Jarkko; Luoto, Pauliina; Kemppainen, Jukka; Roivainen, Anne; Minn, Heikki
2015-01-01
High-grade gliomas (HGGs) express somatostatin receptors (SSTR), rendering them candidates for peptide receptor radionuclide therapy (PRRT). Our purpose was to evaluate the potential of (68)Ga-DOTA-1-Nal(3)-octreotide ((68)Ga-DOTANOC) or (68)Ga-DOTA-Tyr(3)-octreotide ((68)Ga-DOTATOC) to target SSTR subtype 2 (SSTR2) in HGGs, and to study the association between SSTR2 expression and established biomarkers. Twenty-seven patients (mean age 52 years) with primary or recurrent HGG prospectively underwent (68)Ga-DOTA-peptide positron emission tomography/computed tomography (PET/CT) before resection. Maximum standardized uptake values (SUVmax) and receptor binding potential (BP) were calculated on PET/CT and disruption of blood-brain barrier (BBB) from contrast-enhanced T1-weighted magnetic resonance imaging (MRI-T1-Gad). Tumor volume concordance between PET and MRI-T1-Gad was assessed by Dice similarity coefficient (DC) and correlation by Spearman's rank. Immunohistochemically determined SSTR2 status was compared to receptor imaging findings, prognostic biomarkers, and survival with Kruskal-Wallis, Pearson chi-square, and multivariate Cox regression, respectively. All 19 HGGs with disrupted BBB demonstrated tracer uptake. Tumor SUVmax (2.25 ± 1.33) correlated with MRI-T1-Gad (r = 0.713, P = 0.001) although DC 0.41 ± 0.19 suggested limited concordance. SSTR2 immunohistochemistry was regarded as positive in nine HGGs (32%) but no correlation with SUVmax or BP was found. By contrast, SSTR2 expression was associated with IDH1 mutation (P = 0.007), oligodendroglioma component (P = 0.010), lower grade (P = 0.005), absence of EGFR amplification (P = 0.021), and longer progression-free survival (HR 0.161, CI 0.037 to 0.704, P = 0.015). In HGGs, uptake of (68)Ga-DOTA-peptides is associated with disrupted BBB and cannot be predicted by SSTR2 immunohistochemistry. Thus, PET/CT shows limited value to detect HGGs suitable for PRRT. However, high SSTR2 expression portends favorable outcome along with established biomarkers such as IDH1 mutation. ClinicalTrials.gov NCT01460706.
Tabarean, Iustin V.; Sanchez-Alavez, Manuel; Sethi, Jasmine
2012-01-01
Histamine is involved in the central control of arousal, circadian rhythms and metabolism. The preoptic area, a region that contains thermoregulatory neurons is the main locus of histamine modulation of body temperature. Here we report that in mice histamine activates H2 subtype receptors in the medial preoptic nucleus (MPON) and induces hyperthermia. We also found that a population of glutamatergic MPON neurons express H2 receptors and are excited by histamine or H2 specific agonists. The agonists decreased the input resistance of the neuron and increased the depolarizing “sag” observed during hyperpolarizing current injections. Furthermore, at −60 mV holding potential activation of H2 receptors induced an inward current that was blocked by ZD7288, a specific blocker of the hyperpolarization activated cationic current (Ih). Indeed, activation of H2 receptors resulted in increased Ih amplitude in response to hyperpolarizing voltage steps and a depolarizing shift in its voltage-dependent activation. The neurons excited by H2 specific agonism expressed the HCN1 and HCN2 channel subunits. Our data indicate that at the level of the MPON histamine influences thermoregulation by increasing the firing rate of glutamatergic neurons that express H2 receptors. PMID:22366077
Tabarean, Iustin V; Sanchez-Alavez, Manuel; Sethi, Jasmine
2012-08-01
Histamine is involved in the central control of arousal, circadian rhythms and metabolism. The preoptic area, a region that contains thermoregulatory neurons is the main locus of histamine modulation of body temperature. Here we report that in mice, histamine activates H(2) subtype receptors in the medial preoptic nucleus (MPON) and induces hyperthermia. We also found that a population of glutamatergic MPON neurons express H(2) receptors and are excited by histamine or H(2) specific agonists. The agonists decreased the input resistance of the neuron and increased the depolarizing "sag" observed during hyperpolarizing current injections. Furthermore, at -60 mV holding potential, activation of H(2) receptors induced an inward current that was blocked by ZD7288, a specific blocker of the hyperpolarization activated cationic current (I(h)). Indeed, activation of H(2) receptors resulted in increased I(h) amplitude in response to hyperpolarizing voltage steps and a depolarizing shift in its voltage-dependent activation. The neurons excited by H(2) specific agonism expressed the HCN1 and HCN2 channel subunits. Our data indicate that at the level of the MPON histamine influences thermoregulation by increasing the firing rate of glutamatergic neurons that express H(2) receptors. Copyright © 2012 Elsevier Ltd. All rights reserved.
Moon, C; Fraser, S P; Djamgoz, M B
2000-02-01
The GABA(A) receptor and the non-NMDA subtype of the ionotropic glutamate receptor were co-expressed in Xenopus oocytes by injection of quail brain mRNA. The oocytes were treated with various protein kinase (PK) and protein phosphatase (PP) activators and inhibitors and the effects on receptor functioning were monitored. Two phorbol esters, 4-beta-phorbol 12-myristate-13-acetate (PMA) and 4-beta-phorbol 12,13-dibutyrate (PDBu); the cGMP-dependent PK activators sodium nitroprusside (SNP) and S-nitrosoglutathione (SNOG); and the PP inhibitor okadaic acid (OA) reduced the amplitude of the GABA-induced currents, whilst the PK inhibitor staurosporine potentiated it. In addition, PMA, PDBu, SNP, and OA reduced the desensitization of the GABA-induced response. Identical treatments generally had similar but less pronounced effects on responses generated by kainate (KA) but the desensitization characteristic of the non-NMDA receptor was not affected. None of the treatments had any effect on the reversal potentials of the induced currents. Immunoblots revealed that the oocytes express endogenous PKG and guanylate cyclase. The results are discussed in terms of the molecular structures of GABA(A) and non-NMDA receptors and the potential functional consequences of phosphorylation/dephosphorylation.
Yehia, Lamis; Boulos, Fouad; Jabbour, Mark; Mahfoud, Ziyad; Fakhruddin, Najla; El-Sabban, Marwan
2015-01-01
Triple negative breast cancer lacks estrogen, progesterone and epidermal growth factor receptors rendering it refractory to available targetedtherapies. TNBC is associated with central fibrosis and necrosis, both indicators of tumor hypoxia. Hypoxia inducible factor 1α is up-regulated under hypoxia and its expression is associated with induction of angiogenesis resulting in proliferation, aggressive tumor phenotype and metastasis. In this study we evaluate the potential use of HIF-1α as aTNBC-specific marker. 62 TNBC, 64 HER2+, and 64 hormone-receptors positive breast cancer cases were evaluated for central fibrosis and necrosis, HIF-1α, HIF-1β, VEGFR3, CD31 expression and microvessel density. RNA extraction from paraffin-embedded samples, followed by quantitative real-time polymerase chain reaction (qRT-PCR) evaluation of HIF-1α and VEGF transcripts was performed on 54 cases (18 from each subtype). HIF-1α protein was expressed in 35.5% TNBC, 45.3% HER2+and 25.0% ER+/PR+ (p = 0.055; χ2 test). PCRanalysis of subgroup of breast cancers, 84.2% expressed HIF-1α protein and its transcripts, while only 66.7% expressed VEGF transcripts simultaneously with the HIF-1α protein and its transcripts. Central fibrosis and necrosis was highest in TNBC (p = 0.015; χ2 test), while MVD was comparable among all groups (p = 0.928; χ2 test). VEGFR3 was highest in TNBC expressing HIF-1α. HIF-1β protein was expressed in 32.0% of HIF-1α(+), and in (44.3%) of HIF-1α(-) breast cancer cases (p = 0.033; χ2 test). Moreover, HIF-1α expression in cases with central fibrosis and necrosis was highest in the HER2+ followed by the TNBC (p = 0.156; χ2 test). A proportion of TNBC express HIF-1α but not in a significantly different manner from other breast cancer subtypes. The potential of anti-HIF-1α targeted therapy is therefore not a candidate for exclusive use in TNBC, but should be considered in all breast cancers, especially in the setting of clinically aggressive or refractory disease.
Allosteric modulation of alpha4beta2 nicotinic acetylcholine receptors by HEPES✩
Weltzin, Maegan M; Huang, Yanzhou; Schulte, Marvin K
2013-01-01
A number of new positive allosteric modulators (PAMs) have been reported that enhance responses of neuronal alpha7 and alpha4beta2 nicotinic acetylcholine receptor subtypes to orthosteric ligands. PAMs represent promising new leads for the development of therapeutic agents for disorders involving alterations in nicotinic neurotransmission including Autism, Alzheimer's and Parkinson's disease. During our recent studies of alpha4beta2 PAMs, we identified a novel effect of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES). The effects of HEPES were evaluated in a phosphate buffered recording solution using two-electrode voltage clamp techniques and alpha4beta2 and alpha7 nicotinic acetylcholine receptor subtypes expressed in Xenopus laevis oocytes. Acetylcholine induced responses of high-sensitivity alpha4beta2 receptors were potentiated 190% by co-exposure to HEPES. Responses were inhibited at higher concentrations (bell-shaped concentration/response curve). Coincidentally, at concentrations of HEPES typically used in oocyte recording (5–10 mM), the potentiating effects of HEPES are matched by its inhibitory effects, thus producing no net effect. Mutagenesis results suggest HEPES potentiates the high-sensitivity stoichiometry of the alpha4beta2 receptors through action at the beta2+/beta2− interface and is dependent on residue beta2D218. HEPES did not potentiate low-sensitivity alpha4beta2 receptors and did not produce any observable effect on acetylcholine induced responses on alpha7 nicotinic acetylcholine receptors. PMID:22732654
Allosteric modulation of alpha4beta2 nicotinic acetylcholine receptors by HEPES.
Weltzin, Maegan M; Huang, Yanzhou; Schulte, Marvin K
2014-06-05
A number of new positive allosteric modulators (PAMs) have been reported that enhance responses of neuronal alpha7 and alpha4beta2 nicotinic acetylcholine receptor subtypes to orthosteric ligands. PAMs represent promising new leads for the development of therapeutic agents for disorders involving alterations in nicotinic neurotransmission including Autism, Alzheimer's and Parkinson's disease. During our recent studies of alpha4beta2 PAMs, we identified a novel effect of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES). The effects of HEPES were evaluated in a phosphate buffered recording solution using two-electrode voltage clamp techniques and alpha4beta2 and alpha7 nicotinic acetylcholine receptor subtypes expressed in Xenopus laevis oocytes. Acetylcholine induced responses of high-sensitivity alpha4beta2 receptors were potentiated 190% by co-exposure to HEPES. Responses were inhibited at higher concentrations (bell-shaped concentration/response curve). Coincidentally, at concentrations of HEPES typically used in oocyte recording (5-10mM), the potentiating effects of HEPES are matched by its inhibitory effects, thus producing no net effect. Mutagenesis results suggest HEPES potentiates the high-sensitivity stoichiometry of the alpha4beta2 receptors through action at the beta2+/beta2- interface and is dependent on residue beta2D218. HEPES did not potentiate low-sensitivity alpha4beta2 receptors and did not produce any observable effect on acetylcholine induced responses on alpha7 nicotinic acetylcholine receptors. Copyright © 2012 Elsevier B.V. All rights reserved.
Fiorelli, Roberto; Rudolph, Uwe; Straub, Carolin J; Feldon, Joram; Yee, Benjamin K
2008-09-01
Gamma-aminobutyric acid (GABA)A receptors characterized by the presence of the alpha3 subunit are the major GABAA receptor subtype expressed in brain stem monoaminergic nuclei. These alpha3-GABAA receptors are therefore in a unique position to regulate monoaminergic functions. To characterize the functional properties of alpha3-GABAA receptors, we present a preliminary assessment of the expression of affective and cognitive behaviour in male mice with a targeted deletion of the Gabra3 gene encoding the alpha3 subunit [alpha3 knockout (KO) mice] on a C57BL/6Jx129X1/SvJ F1 hybrid genetic background. The alpha3 KO mice did not exhibit any gross change of anxiety-like behaviour or spontaneous locomotor behaviour. In the Porsolt forced swim test for potential antidepressant activity, alpha3 KO mice exhibited reduced floating and enhanced swimming behaviour relative to wild-type controls. Performance on a two-choice sucrose preference test, however, revealed no evidence for an increase in sucrose preference in the alpha3 KO mice that would have substantiated a potential phenotype for depression-related behaviour. In contrast, a suggestion of an enhanced negative contrast effect was revealed in a one-bottle sucrose consumption test across different sucrose concentrations. These affective phenotypes were accompanied by alterations in the balance between conditioned responding to the discrete conditioned stimulus and to the context, and a suggestion of faster extinction, in the Pavlovian conditioned freezing paradigm. Spatial learning in the water maze reference memory test, however, was largely unchanged in the alpha3 KO mice, except for a trend of preservation during reversal learning. The novel phenotypes following global deletion of the GABAA receptor alpha3 subunit identified here provided relevant insights, in addition to our earlier study, into the potential behavioural relevance of this specific receptor subtypes in the modulation of both affective and cognitive functions.
Functional proteomics outlines the complexity of breast cancer molecular subtypes.
Gámez-Pozo, Angelo; Trilla-Fuertes, Lucía; Berges-Soria, Julia; Selevsek, Nathalie; López-Vacas, Rocío; Díaz-Almirón, Mariana; Nanni, Paolo; Arevalillo, Jorge M; Navarro, Hilario; Grossmann, Jonas; Gayá Moreno, Francisco; Gómez Rioja, Rubén; Prado-Vázquez, Guillermo; Zapater-Moros, Andrea; Main, Paloma; Feliú, Jaime; Martínez Del Prado, Purificación; Zamora, Pilar; Ciruelos, Eva; Espinosa, Enrique; Fresno Vara, Juan Ángel
2017-08-30
Breast cancer is a heterogeneous disease comprising a variety of entities with various genetic backgrounds. Estrogen receptor-positive, human epidermal growth factor receptor 2-negative tumors typically have a favorable outcome; however, some patients eventually relapse, which suggests some heterogeneity within this category. In the present study, we used proteomics and miRNA profiling techniques to characterize a set of 102 either estrogen receptor-positive (ER+)/progesterone receptor-positive (PR+) or triple-negative formalin-fixed, paraffin-embedded breast tumors. Protein expression-based probabilistic graphical models and flux balance analyses revealed that some ER+/PR+ samples had a protein expression profile similar to that of triple-negative samples and had a clinical outcome similar to those with triple-negative disease. This probabilistic graphical model-based classification had prognostic value in patients with luminal A breast cancer. This prognostic information was independent of that provided by standard genomic tests for breast cancer, such as MammaPrint, OncoType Dx and the 8-gene Score.
Courtot, Elise; Charvet, Claude L.; Beech, Robin N.; Harmache, Abdallah; Wolstenholme, Adrian J.; Holden-Dye, Lindy; O’Connor, Vincent; Peineau, Nicolas; Woods, Debra J.; Neveu, Cedric
2015-01-01
Acetylcholine receptors are pentameric ligand–gated channels involved in excitatory neuro-transmission in both vertebrates and invertebrates. In nematodes, they represent major targets for cholinergic agonist or antagonist anthelmintic drugs. Despite the large diversity of acetylcholine-receptor subunit genes present in nematodes, only a few receptor subtypes have been characterized so far. Interestingly, parasitic nematodes affecting human or animal health possess two closely related members of this gene family, acr-26 and acr-27 that are essentially absent in free-living or plant parasitic species. Using the pathogenic parasitic nematode of ruminants, Haemonchus contortus, as a model, we found that Hco-ACR-26 and Hco-ACR-27 are co-expressed in body muscle cells. We demonstrated that co-expression of Hco-ACR-26 and Hco-ACR-27 in Xenopus laevis oocytes led to the functional expression of an acetylcholine-receptor highly sensitive to the anthelmintics morantel and pyrantel. Importantly we also reported that ACR-26 and ACR-27, from the distantly related parasitic nematode of horses, Parascaris equorum, also formed a functional acetylcholine-receptor highly sensitive to these two drugs. In Caenorhabditis elegans, a free-living model nematode, we demonstrated that heterologous expression of the H. contortus and P. equorum receptors drastically increased its sensitivity to morantel and pyrantel, mirroring the pharmacological properties observed in Xenopus oocytes. Our results are the first to describe significant molecular determinants of a novel class of nematode body wall muscle AChR. PMID:26625142
Adenoid cystic carcinoma of breast: Recent advances
Miyai, Kosuke; Schwartz, Mary R; Divatia, Mukul K; Anton, Rose C; Park, Yong Wook; Ayala, Alberto G; Ro, Jae Y
2014-01-01
Adenoid cystic carcinoma (ACC) of the breast is a rare special subtype of breast cancer characterized by the presence of a dual cell population of luminal and basaloid cells arranged in specific growth patterns. Most breast cancers with triple-negative, basal-like breast features (i.e., tumors that are devoid of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 expression, and express basal cell markers) are generally high-grade tumors with an aggressive clinical course. Conversely, while ACCs also display a triple-negative, basal-like phenotype, they are usually low-grade and exhibit an indolent clinical behavior. Many discoveries regarding the molecular and genetic features of the ACC, including a specific chromosomal translocation t(6;9) that results in a MYB-NFIB fusion gene, have been made in recent years. This comprehensive review provides our experience with the ACC of the breast, as well as an overview of clinical, histopathological, and molecular genetic features. PMID:25516849
Ecke, Denise; Hanck, Theodor; Tulapurkar, Mohan E; Schäfer, Rainer; Kassack, Matthias; Stricker, Rolf; Reiser, Georg
2008-01-01
Nucleotides signal through purinergic receptors such as the P2 receptors, which are subdivided into the ionotropic P2X receptors and the metabotropic P2Y receptors. The diversity of functions within the purinergic receptor family is required for the tissue-specificity of nucleotide signalling. In the present study, hetero-oligomerization between two metabotropic P2Y receptor subtypes is established. These receptors, P2Y1 and P2Y11, were found to associate together when co-expressed in HEK293 cells. This association was detected by co-pull-down, immunoprecipitation and FRET (fluorescence resonance energy transfer) experiments. We found a striking functional consequence of the interaction between the P2Y11 receptor and the P2Y1 receptor where this interaction promotes agonist-induced internalization of the P2Y11 receptor. This is remarkable because the P2Y11 receptor by itself is not able to undergo endocytosis. Co-internalization of these receptors was also seen in 1321N1 astrocytoma cells co-expressing both P2Y11 and P2Y1 receptors, upon stimulation with ATP or the P2Y1 receptor-specific agonist 2-MeS-ADP. 1321N1 astrocytoma cells do not express endogenous P2Y receptors. Moreover, in HEK293 cells, the P2Y11 receptor was found to functionally associate with endogenous P2Y1 receptors. Treatment of HEK293 cells with siRNA (small interfering RNA) directed against the P2Y1 receptor diminished the agonist-induced endocytosis of the heterologously expressed GFP-P2Y11 receptor. Pharmacological characteristics of the P2Y11 receptor expressed in HEK293 cells were determined by recording Ca2+ responses after nucleotide stimulation. This analysis revealed a ligand specificity which was different from the agonist profile established in cells expressing the P2Y11 receptor as the only metabotropic nucleotide receptor. Thus the hetero-oligomerization of the P2Y1 and P2Y11 receptors allows novel functions of the P2Y11 receptor in response to extracellular nucleotides.
Izumi, Koji; Zheng, Yichun; Hsu, Jong-Wei; Chang, Chawnshang; Miyamoto, Hiroshi
2013-02-01
UDP-glucuronosyltransferases (UGTs), major phase II drug metabolism enzymes, play an important role in urinary bladder cancer initiation by detoxifying carcinogens. We aimed to determine if androgens regulate UGT expression via the androgen receptor (AR) pathway in the bladder. Real-time reverse transcription-polymerase chain reaction and Western blot analyses were used to assess UGT1A levels in the normal urothelium SVHUC cell line stably expressed with AR and in bladder tissues from AR knockout (ARKO) and castrated male mice. Immunohistochemistry was also performed in radical cystectomy specimens. Dihydrotestosterone (DHT) treatment in SVHUC-AR reduced mRNA expression of all the UGT1A subtypes (19-75% decrease), and hydroxyflutamide antagonized the DHT effects. In contrast, DHT showed only marginal effects on UGT1A expression in SVHUC-Vector. Of note were higher expression levels of UGT1As in SVHUC-Vector than in SVHUC-AR. In ARKO mice, all the Ugt1a subtypes were up-regulated, compared to wild-type littermates. In wild-type male mice, castration increased the expression of Ugt1a8, Ugt1a9, and Ugt1a10. Additionally, wild-type female mice had higher levels of Ugt1a than wild-type males. Immunohistochemical studies showed strong (3+) UGT1A staining in 11/24 (46%) cancer tissues, which was significantly lower than in corresponding benign tissues [17/18 (94%) cases (P = 0.0009)]. These results suggest that androgen-mediated AR signals promote bladder carcinogenesis by down-regulating the expression of UGTs in the bladder. Copyright © 2011 Wiley Periodicals, Inc.
Zheng, Yun-Min; Wang, Qing-Song; Rathore, Rakesh; Zhang, Wan-Hui; Mazurkiewicz, Joseph E; Sorrentino, Vincenzo; Singer, Harold A; Kotlikoff, Michael I; Wang, Yong-Xiao
2005-04-01
In this study we examined the expression of RyR subtypes and the role of RyRs in neurotransmitter- and hypoxia-induced Ca2+ release and contraction in pulmonary artery smooth muscle cells (PASMCs). Under perforated patch clamp conditions, maximal activation of RyRs with caffeine or inositol triphosphate receptors (IP3Rs) with noradrenaline induced equivalent increases in [Ca2+]i and Ca2+-activated Cl- currents in freshly isolated rat PASMCs. Following maximal IP3-induced Ca2+ release, neither caffeine nor chloro-m-cresol induced a response, whereas prior application of caffeine or chloro-m-cresol blocked IP3-induced Ca2+ release. In cultured human PASMCs, which lack functional expression of RyRs, caffeine failed to affect ATP-induced increases in [Ca2+]i in the presence and absence of extracellular Ca2+. The RyR antagonists ruthenium red, ryanodine, tetracaine, and dantrolene greatly inhibited submaximal noradrenaline- and hypoxia-induced Ca2+ release and contraction in freshly isolated rat PASMCs, but did not affect ATP-induced Ca2+ release in cultured human PASMCs. Real-time quantitative RT-PCR and immunofluorescence staining indicated similar expression of all three RyR subtypes (RyR1, RyR2, and RyR3) in freshly isolated rat PASMCs. In freshly isolated PASMCs from RyR3 knockout (RyR3-/-) mice, hypoxia-induced, but not submaximal noradrenaline-induced, Ca2+ release and contraction were significantly reduced. Ruthenium red and tetracaine can further inhibit hypoxic increase in [Ca2+]i in RyR3-/- mouse PASMCs. Collectively, our data suggest that (a) RyRs play an important role in submaximal noradrenaline- and hypoxia-induced Ca2+ release and contraction; (b) all three subtype RyRs are expressed; and (c) RyR3 gene knockout significantly inhibits hypoxia-, but not submaximal noradrenaline-induced Ca2+ and contractile responses in PASMCs.
Role of Fos-related antigen 1 in the progression and prognosis of ductal breast carcinoma
Logullo, Angela Flavia; Stiepcich, Mônica Maria Ágata; de Toledo Osório, Cintia Aparecida Bueno; Nonogaki, Sueli; Pasini, Fátima Solange; Rocha, Rafael Malagoli; Soares, Fernando Augusto; Brentani, Maria M
2011-01-01
Aims Fos-related antigen 1 (Fra-1) is a member of the activator protein 1 (AP-1) transcription factor family. Our objective was to evaluate the role of Fra-1 expression in breast carcinoma progression and prognosis. Methods and results Fra-1 expression was investigated by immunohistochemistry in two tissue microarrays containing, respectively, 85 ductal carcinoma in situ (DCIS) and 771 invasive ductal carcinoma (IDC) samples. Staining was observed in the nucleus and cytoplasm of the carcinomas, but only nuclear staining was considered to be positive. Fibroblasts associated with IDC were also Fra-1-positive. The frequency of Fra-1 positivity in IDC (22.8%) was lower than that in DCIS (42.2%). No association was found between Fra-1 and clinico-pathological variables in DCIS. In IDC, Fra-1 expression correlated with aggressive phenotype markers, including: high grade, oestrogen receptor negativity and human epidermal growth factor receptor 2 (HER-2) positivity (P = 0.001, 0.015 and 0.004, respectively), and marginally with the presence of metastasis (P = 0.07). Fra-1 was more frequently positive in basal-like (34%) and in HER-2-positive (38.5%) subtypes than in luminal subtypes. Fra-1 presence did not correlate with survival. Conclusions A high frequency of Fra-1 in DCIS tumours may be associated with early events in breast carcinogenesis. Although Fra-1 expression correlated with features of a more aggressive phenotype in IDC, no relationship with overall survival was found. PMID:21371080
Bao, Ping-Ping; Shu, Xiao Ou; Gao, Yu-Tang; Zheng, Ying; Cai, Hui; Deming, Sandra L.; Ruan, Zhi-Xian; Gu, Kai; Lu, Wei; Zheng, Wei
2011-01-01
Etiologic differences between subtypes of breast cancer defined by estrogen receptor (ER) and progesterone receptor (PR) status are not well understood. The authors evaluated associations of hormone-related factors with breast cancer subtypes in a population-based case-control study involving 1,409 ER-positive (ER+)/PR-positive (PR+) cases, 712 ER-negative (ER−)/PR-negative (PR−) cases, 301 ER+/PR− cases, 254 ER−/PR+ cases, and 3,474 controls aged 20–70 years in Shanghai, China (phase I, 1996–1998; phase II, 2002–2005). Polytomous logistic regression and Wald tests for heterogeneity across subtypes were conducted. Breast cancer risks associated with age at menarche, age at menopause, breastfeeding, age at first livebirth, waist-to-hip ratio, and oral contraceptive use did not differ by hormone receptor status. Among postmenopausal women, higher parity (≥2 children vs. 1) was associated with reduced risk (odds ratio (OR) = 0.69, 95% confidence interval (CI): 0.52, 0.91) and higher body mass index (BMI; weight (kg)/height (m)2) with increased risk (highest quartile: OR = 2.40, 95% CI: 1.65, 3.47) of the ER+/PR+ subtype but was unrelated to the ER−/PR− subtype (for parity, Pheterogeneity = 0.02; for BMI, Pheterogeneity < 0.01). Hormone replacement therapy (OR = 2.25, 95% CI: 1.40, 3.62) and alcohol consumption (OR = 1.59, 95% CI: 1.01, 2.51) appeared to be preferentially associated with the ER+/PR− subtype. These findings indicate that BMI, parity, hormone replacement therapy, and alcohol consumption may play different roles in subtypes of breast cancer. More research is needed to better understand the etiology of 2 relatively rare subtypes, ER+/PR− tumors and ER−/PR+ tumors. PMID:21768404
Zhou, Lin; Huang, Junjing; Gao, Jun; Zhang, Guanpo; Jiang, Jinjin
2014-02-01
Several studies have shown that N-methyl-D-aspartate (NMDA)-receptor activation in anterior cingulate cortex (ACC) neurons plays critical roles in modulating visceral pain responses in visceral hypersensitivity (VH) rats. However, there are few reports about the expressions of NMDA and α-amino-3-hydroxy-5-methyl-4-isox-azolepropionic-acid (AMPA) receptor subtypes in ACC of VH model rats at different time points. The current study was undertaken to investigate NR2A, NR2B and GluR2 expressions in ACC of VH rats that were induced by administration with 5% mustard oil. Our results indicated that NR2B, but not NR2A, was highly expressed in VH model group on day 15, 22, and 36 compared with normal group (p < 0.05). GluR2 expression was also higher in VH model group on day 15, 22, and 36 than that of normal group (p < 0.05). These findings suggested increased expression of NR2B and GluR2 might be key mechanisms for long-term synaptic plastic changes in VH rats. Copyright © 2014. Published by Elsevier Inc.
Kumar, Alan Prem; Loo, Ser Yue; Shin, Sung Won; Tan, Tuan Zea; Eng, Chon Boon; Singh, Rajeev; Putti, Thomas Choudary; Ong, Chee Wee; Salto-Tellez, Manuel; Goh, Boon Cher; Park, Joo In; Thiery, Jean Paul; Pervaiz, Shazib
2014-01-01
Abstract Aims: Although earlier reports highlighted a tumor suppressor role for manganese superoxide dismutase (MnSOD), recent evidence indicates increased expression in a variety of human cancers including aggressive breast carcinoma. In the present article, we hypothesized that MnSOD expression is significantly amplified in the aggressive breast carcinoma basal subtype, and targeting MnSOD could be an attractive strategy for enhancing chemosensitivity of this highly aggressive breast cancer subtype. Results: Using MDA-MB-231 and BT549 as a model of basal breast cancer cell lines, we show that knockdown of MnSOD decreased the colony-forming ability and sensitized the cells to drug-induced cell death, while drug resistance was associated with increased MnSOD expression. In an attempt to develop a clinically relevant approach to down-regulate MnSOD expression in patients with basal breast carcinoma, we employed activation of the peroxisome proliferator-activated receptor gamma (PPARγ) to repress MnSOD expression; PPARγ activation significantly reduced MnSOD expression, increased chemosensitivity, and inhibited tumor growth. Moreover, as a proof of concept for the clinical use of PPARγ agonists to decrease MnSOD expression, biopsies derived from breast cancer patients who had received synthetic PPARγ ligands as anti-diabetic therapy had significantly reduced MnSOD expression. Finally, we provide evidence to implicate peroxynitrite as the mechanism involved in the increased sensitivity to chemotherapy induced by MnSOD repression. Innovation and Conclusion: These data provide evidence to link increased MnSOD expression with the aggressive basal breast cancer, and underscore the judicious use of PPARγ ligands for specifically down-regulating MnSOD to increase the chemosensitivity of this subtype of breast carcinoma. Antioxid. Redox Signal. 20, 2326–2346. PMID:23964924
Hirata, Tatsumi; Kumada, Tatsuro; Kawasaki, Takahiko; Furukawa, Tomonori; Aiba, Atsu; Conquet, François; Saga, Yumiko; Fukuda, Atsuo
2012-12-01
The guidepost neurons for the lateral olfactory tract, which are called lot cells, are the earliest-generated neurons in the neocortex. They migrate tangentially and ventrally further down this tract, and provide scaffolding for the olfactory bulb axons projecting into this pathway. The molecular profiles of the lot cells are largely uncharacterized. We found that lot cells specifically express metabotropic glutamate receptor subtype-1 at a very early stage of development. This receptor is functionally competent and responds to a metabotropic glutamate receptor agonist with a transient increase in the intracellular calcium ion concentration. When the glutamatergic olfactory bulb axons were electrically stimulated, lot cells responded to the stimulation with a calcium increase mainly via ionotropic glutamate receptors, suggesting potential neurotransmission between the axons and lot cells during early development. Together with the finding that lot cells themselves are glutamatergic excitatory neurons, our results provide another notable example of precocious interactions between the projecting axons and their intermediate targets. Copyright © 2012 Wiley Periodicals, Inc.
Schmucker, Hannah S; Park, Jang Pyo; Coissieux, Marie-May; Bentires-Alj, Mohamed; Feltus, F Alex; Booth, Brian W
2017-05-01
Tumorigenic cells can be redirected to adopt a normal phenotype when transplanted into cleared mammary fat pads of juvenile female mice in specific ratios with normal epithelial cells. The redirected tumorigenic cells enter stem cell niches and provide progeny that differentiate into all mammary epithelial subtypes. We have developed an in vitro model that mimics the in vivo phenomenon. The shift in phenotype to redirection should be accomplished through a return to a normal gene expression state. To measure this shift, we interrogated the transcriptome of various in vitro model states in search for casual genes. For this study, expression of growth factors, cytokines, and their associated receptors was examined. In all, we queried 251 growth factor and cytokine-related genes. We found numerous growth factor and cytokine genes whose expression levels switched from expression levels seen in cancer cells to expression levels observed in normal cells. The comparisons of gene expression between normal mammary epithelial cells, tumor-derived cells, and redirected cancer cells have revealed insight into active and inactive growth factors and cytokines in cancer cell redirection.
Gene expression profiling assigns CHEK2 1100delC breast cancers to the luminal intrinsic subtypes.
Nagel, Jord H A; Peeters, Justine K; Smid, Marcel; Sieuwerts, Anieta M; Wasielewski, Marijke; de Weerd, Vanja; Trapman-Jansen, Anita M A C; van den Ouweland, Ans; Brüggenwirth, Hennie; van I Jcken, Wilfred F J; Klijn, Jan G M; van der Spek, Peter J; Foekens, John A; Martens, John W M; Schutte, Mieke; Meijers-Heijboer, Hanne
2012-04-01
CHEK2 1100delC is a moderate-risk cancer susceptibility allele that confers a high breast cancer risk in a polygenic setting. Gene expression profiling of CHEK2 1100delC breast cancers may reveal clues to the nature of the polygenic CHEK2 model and its genes involved. Here, we report global gene expression profiles of a cohort of 155 familial breast cancers, including 26 CHEK2 1100delC mutant tumors. In line with previous work, all CHEK2 1100delC mutant tumors clustered among the hormone receptor-positive breast cancers. In the hormone receptor-positive subset, a 40-gene CHEK2 signature was subsequently defined that significantly associated with CHEK2 1100delC breast cancers. The identification of a CHEK2 gene signature implies an unexpected biological homogeneity among the CHEK2 1100delC breast cancers. In addition, all 26 CHEK2 1100delC tumors classified as luminal intrinsic subtype breast cancers, with 8 luminal A and 18 luminal B tumors. This biological make-up of CHEK2 1100delC breast cancers suggests that a relatively limited number of additional susceptibility alleles are involved in the polygenic CHEK2 model. Identification of these as-yet-unknown susceptibility alleles should be aided by clues from the 40-gene CHEK2 signature.
Actions of subtype-specific purinergic ligands on rat spiral ganglion neurons.
Ito, Ken; Iwasaki, Shinichi; Kondo, Kenji; Dulon, Didier; Kaga, Kimitaka
2004-08-01
In a previous study we showed that, in rat spiral ganglion neurons (SGNs), the adenosine 5'-triphosphate (ATP)-evoked currents were a combination of the activation of ionotropic receptors (the first fast current) and the activation of metabotropic receptors which secondarily opened non-selective cation channels. These two conductances imply the involvement of different receptor subtypes. In the present study, we tested three subtype-specific purinergic ligands: alpha,beta-methylene ATP (a;pha,beta-meATP) for P2X receptors, uridine 5'-triphosphate (UTP) for P2Y receptors and 2'-3'-O-(4-benzoylbenzoyl) ATP (Bz-ATP) for P2Z (P2X(7)) receptors. Application of 100 microM alpha,beta-meATP did not trigger any significant change in membrane conductance, while the SGNs were responsive to ATP. Pressure application of UTP (100 microM, 1 s) evoked an inward current averaging 344+/-169 pA at a holding potential of -50 mV. The conductance developed after a latency averaging 1.5+/-0.6 s, took 4-6 s to peak and reversed slowly within 15-30 s. The current-voltage curve reversed near 0 mV, suggesting a non-selective cation conductance, like the second component of the ATP conductance. Bz-ATP evoked an inward current which developed without latency, was sustained during ligand application and was rapidly inactivated at the end of application: the same characteristics as the first component of the ATP-evoked current. The Bz-ATP conductance reversed around -10 mV, indicating also a non-selective cation conductance. These results suggest that, in SGNs, ATP acts via two different receptor subtypes, ionotropic P2Z receptors and metabotropic P2Y receptors, and that these two receptor subtypes can assume different physiological roles.
Schumann, Michael; Nakagawa, Tomoo; Mantey, Samuel A; Howell, Brian; Jensen, Robert T
2008-03-01
Little is known about the role of arrestins in gastrointestinal hormone/neurotransmitter receptor endocytosis. With other G protein-coupled receptors, arrestins induce G protein-uncoupling and receptor endocytosis. In this study, we used arrestin wild-type and dominant-negative mutant constructs to analyze the arrestin dependence of endocytosis and desensitization of the gastrin-releasing peptide receptor (GRP-R). Co-expression of the GRP-R with wild-type arrestin2 and arrestin3 increased not only GRP-R endocytosis but also GRP-R desensitization in arrestin-overexpressing cells. Co-expression of the dominant-negative mutants V53D-arrestin2 or V54D-arrestin3 reduced GRP-R endocytosis. Notably, different trafficking routes for agonist-activated GRP-R-arrestin2 and GRP-R-arrestin3 complexes were found. Arrestin3 internalizes with GRP-R to intracellular vesicles, arrestin2 splits from the GRP-R and localizes to the cell membrane. Also, the recycling pathway of the GRP-R was different if co-expressed with arrestin2 or arrestin3. Using different GRP-R mutants, the C-terminus and the 2nd intracellular loop of the GRP-R were found to be important for the GRP-R-arrestin interaction and for the difference in GRP receptor trafficking with the two arrestin subtypes. Our results show that both non-visual arrestins play an important role in GRP-R internalization and desensitization.
Coldwell, M C; Boyfield, I; Brown, A M; Stemp, G; Middlemiss, D N
1999-01-01
This study characterized pharmacologically the functional responses to agonists at human dopamine D2(long) (hD2), D3 (hD3) and D4.4 (hD4) zreceptors separately expressed in cloned cells using the cytosensor microphysiometer. Dopaminergic receptor agonists caused increases in extracellular acidification rate in adherent Chinese hamster ovary (CHO) clones expressing hD2, hD3 or hD4 receptors. Acidification rate responses to agonists in other cell lines expressing these receptors were smaller than those in adherent CHO cells. The time courses and maximum increases in acidification rate of the agonist responses in adherent CHO cells were different between the three dopamine receptor clones. Responses were blocked by pretreatment of cells with pertussis toxin or amiloride analogues. Most agonists had full intrinsic activity at each of the dopamine receptor subtypes, as compared to quinpirole, however both enantiomers of UH-232 and (−)3-PPP were partial agonists in this assay system. The functional potency of full agonists at each of the three receptors expressed in CHO cells was either higher than, or similar to, the apparent inhibition constants (Ki) determined in [125I]-iodosulpride competition binding studies. Functional selectivities of the agonists were less than radioligand binding selectivities. The rank orders of agonist potencies and selectivities were similar, but not identical, to the rank orders of radioligand binding affinities and selectivities. The dopamine receptor antagonists, iodosulpride and clozapine, had no effect on basal acidification rates but inhibited acidification responses in CHO cells to quinpirole in an apparently competitive manner. Antagonist potencies closely matched their radioligand binding affinities in these cells. PMID:10455259
Identifying potential markers in Breast Cancer subtypes using plasma label-free proteomics.
Corrêa, Stephany; Panis, Carolina; Binato, Renata; Herrera, Ana Cristina; Pizzatti, Luciana; Abdelhay, Eliana
2017-01-16
Breast Cancer (BC) is the most common neoplasia among women and has a high mortality rate worldwide. Over the past several decades, increasing molecular knowledge of BC has resulted in its stratification into 4 major molecular subtypes according to hormonal receptor expression. Unfortunately, although the data accumulated thus far has improved BC prognosis and treatment, there have been few achievements in its diagnosis. In this study, we applied a Label-free Nano-LC/MSMS approach to reveal systemic molecular features and possible plasma markers for BC patients. Compared to healthy control plasma donors, we identified 191, 166, 182, and 186 differentially expressed proteins in the Luminal, Lumina-HER2, HER2, and TN subtypes. In silico analysis demonstrated an overall downregulation of cellular basal machinery and, more importantly, brought new focus to the known pathways and signaling molecules in BC that are related to immune system alterations. Moreover, using western blot analysis, we verified high levels of BCAS3, IRX1, IRX4 and IRX5 in BC plasma samples, thus highlighting the potential use of plasma proteomics in investigations into cancer biomarkers. The results of this study provide new insight into Breast Cancer (BC). We determined the plasma proteomic profile of BC subtypes. Furthermore, we report that the signaling pathways correlating with late processes in BC already exhibit plasma alterations in less aggressive subtypes. Additionally, we validated the high levels of particular proteins in patient samples, which suggests the use of these proteins as potential disease markers.
Smith, Kiersten S.; Rudolph, Uwe
2012-01-01
GABAA receptors mediate fast synaptic inhibitory neurotransmission throughout the central nervous system. Recent work indicates a role for GABAA receptors in physiologically modulating anxiety and depression levels. In this review, we summarize research that led to the identification of the essential role of GABAA receptors in counteracting trait anxiety and depression-related behaviors, and research aimed at identifying individual GABAA receptor subtypes involved in physiological and pharmacological modulation of emotions. PMID:21810433
Kaemmerer, Daniel; Sänger, Jörg; Arsenic, Ruza; D'Haese, Jan G; Neumann, Jens; Schmitt-Graeff, Annette; Wirtz, Ralph Markus; Schulz, Stefan; Lupp, Amelie
2017-10-27
Paragangliomas are predominantly benign tumors, but in some cases invasive growth and also metastasis are observed. Given the limited number of nonsurgical treatment options, novel target structures for diagnostics and therapy of this tumor entity are urgently needed. In the present study, expression of all five somatostatin receptor (SST) subtypes, chemokine receptor CXCR4 and endothelin receptor type A (ETA) was assessed by means of immunohistochemistry in a total of 66 paraffin-embedded paraganglioma samples from 55 patients. The stainings were rated by means of the Immunoreactive Score and correlated to clinical data and to succinate dehydrogenase subunit B (SDHB) expression. SST2A was by far the most prominent receptor in the paragangliomas investigated. It was present in 89% of the tumors at a high intensity, followed by SST5, SST3, SST1 and SST4, which were detected in 47%, 35%, 35% and 13% of the samples, respectively. SDHB positive tumors exhibited significantly higher SST2A and SST3 expression as compared to SDHB negative cases. There was no correlation between SST and Ki-67 expression or grading of the tumors and no difference in SST expression between primary tumors and metastases. Cell surface expression of CXCR4 and ETA was detected only in few samples. On tumor capillaries, however, exceptionally strong staining for these two receptors was noticed in the vast majority of the tumors. In conclusion, paragangliomas are well suited for SST2A-based diagnostics and treatment modalities. An indirect targeting of these highly vascularized tumors via CXCR4 or ETA may also represent a promising future strategy.
Kaemmerer, Daniel; Sänger, Jörg; Arsenic, Ruza; D’Haese, Jan G.; Neumann, Jens; Schmitt-Graeff, Annette; Wirtz, Ralph Markus; Schulz, Stefan; Lupp, Amelie
2017-01-01
Paragangliomas are predominantly benign tumors, but in some cases invasive growth and also metastasis are observed. Given the limited number of nonsurgical treatment options, novel target structures for diagnostics and therapy of this tumor entity are urgently needed. In the present study, expression of all five somatostatin receptor (SST) subtypes, chemokine receptor CXCR4 and endothelin receptor type A (ETA) was assessed by means of immunohistochemistry in a total of 66 paraffin-embedded paraganglioma samples from 55 patients. The stainings were rated by means of the Immunoreactive Score and correlated to clinical data and to succinate dehydrogenase subunit B (SDHB) expression. SST2A was by far the most prominent receptor in the paragangliomas investigated. It was present in 89% of the tumors at a high intensity, followed by SST5, SST3, SST1 and SST4, which were detected in 47%, 35%, 35% and 13% of the samples, respectively. SDHB positive tumors exhibited significantly higher SST2A and SST3 expression as compared to SDHB negative cases. There was no correlation between SST and Ki-67 expression or grading of the tumors and no difference in SST expression between primary tumors and metastases. Cell surface expression of CXCR4 and ETA was detected only in few samples. On tumor capillaries, however, exceptionally strong staining for these two receptors was noticed in the vast majority of the tumors. In conclusion, paragangliomas are well suited for SST2A-based diagnostics and treatment modalities. An indirect targeting of these highly vascularized tumors via CXCR4 or ETA may also represent a promising future strategy. PMID:29163802
ROLE OF ESTROGEN RECEPTOR-α ON FOOD DEMAND ELASTICITY
Minervini, Vanessa; Rowland, Neil E.; Robertson, Kimberly L.; Foster, Thomas C.
2016-01-01
Estrogens have been shown to have an inhibitory effect on food intake under free-feeding conditions, yet the effects of estrogens on food-maintained operant responding have been studied to a much lesser extent and, thus, are not well understood. Therefore, the purpose of the present experiment was to use a behavioral economics paradigm to assess differences in demand elasticity between mice with knockout of the estrogen receptor subtype α, knockout of subtype β, and their wild type controls. The mice responded in a closed economy, and the price of food was increased by increasing the fixed-ratio response requirement every four sessions. Overall, we found that mice with the knockout of receptor subtype α had the most elastic demand functions. Therefore, under these conditions, estrogens increased food seeking via activation of the receptor subtype α. The results were inconsistent with those reported by previous studies that employed free-feeding conditions. PMID:25869426
Activation of Adenosine A2A Receptors Inhibits Neutrophil Transuroepithelial Migration ▿
Säve, Susanne; Mohlin, Camilla; Vumma, Ravi; Persson, Katarina
2011-01-01
Adenosine has been identified as a significant inhibitor of inflammation by acting on adenosine A2A receptors. In this study, we examined the role of adenosine and A2A receptors in the transmigration of human neutrophils across an in vitro model of the transitional bladder urothelium. Human uroepithelial cells (UROtsa) were grown on transwell inserts; uropathogenic Escherichia coli (UPEC) and neutrophils were added to the transwell system; and the number of migrating neutrophils was evaluated. Reverse transcription-PCR (RT-PCR), immunohistochemistry, and flow cytometry were used to investigate the expression of adenosine receptors, the epithelial adhesion molecule ICAM-1, and the neutrophil integrin CD11b. Levels of proinflammatory interleukin-8 (IL-8) and phosphorylated IκBα were measured by enzyme-linked immunosorbent assays (ELISA) and Luminex assays, respectively. The neutrophils expressed all four adenosine receptor subtypes (A1, A2A, A2B, and A3 receptors), but A3 receptors were not expressed by UROtsa cells. UPEC stimulated neutrophil transuroepithelial migration, which was significantly decreased in response to the specific A2A receptor agonist CGS 21680. The inhibitory effect of CGS 21680 on neutrophil migration was reversed by the A2A receptor antagonist SCH 58261. The production of chemotactic IL-8 and the expression of the adhesion molecule ICAM-1 or CD11b were not significantly affected by CGS 21680. However, a significant decrease in the level of phosporylated IκBα was revealed in response to CGS 21680. In conclusion, UPEC infection in vitro evoked neutrophil migration through a multilayered human uroepithelium. The UPEC-evoked neutrophil transmigration decreased in response to A2A receptor activation, possibly through inhibition of NF-κB signaling pathways. PMID:21646447
Nogami, H; Hoshino, R; Ogasawara, K; Miyamoto, S; Hisano, S
2007-08-01
Recent studies have revealed the occurrence of five first exon variants of the rat prolactin receptor mRNA, suggesting that multiple promoters direct prolactin receptor transcription in response to different regulatory factors. In the present study, regional expression of these first exon variants, as well as two prolactin receptor subtypes generated by alternative splicing, was examined in the brains and anterior pituitary glands of female rats. Expression of the long-form was detected in the choroid plexus, hypothalamus, hippocampus, cerebral cortex and anterior pituitary gland, whereas the short form was detected only in the choroid plexus. E1-3 mRNA, a first exon variant, was detected in the choroid plexus, hypothalamus, and anterior pituitary gland, whereas E1-4 was detected only in the choroid plexus. Other variants were not detectable by the polymerase chain reaction protocol employed in this study. Ovariectomy increased the short form in the choroid plexus and the E1-3 expression in the choroid plexus and pituitary gland, but changes in the long-form and E1-4 expression were minimal. Replacement of oestrogens and prolactin suggest that oestrogens down-regulate E1-3 expression in the choroid plexus and pituitary gland, and that the negative effect of oestrogen is mediated by prolactin in the pituitary gland. The present results revealed the region-specific promoter usage in prolactin receptor mRNA transcription, as well as the involvement of oestrogens in the regulation of E1-3 mRNA expression in the brain and pituitary gland.
GABA pharmacology: the search for analgesics.
McCarson, Kenneth E; Enna, S J
2014-10-01
Decades of research have been devoted to defining the role of GABAergic transmission in nociceptive processing. Much of this work was performed using rigid, orthosteric GABA analogs created by Povl Krogsgaard-Larsen and his associates. A relationship between GABA and pain is suggested by the anatomical distribution of GABA receptors and the ability of some GABA agonists to alter nociceptive responsiveness. Outlined in this report are data supporting this proposition, with particular emphasis on the anatomical localization and function of GABA-containing neurons and the molecular and pharmacological properties of GABAA and GABAB receptor subtypes. Reference is made to changes in overall GABAergic tone, GABA receptor expression and activity as a function of the duration and intensity of a painful stimulus or exposure to GABAergic agents. Evidence is presented that the plasticity of this receptor system may be responsible for the variability in the antinociceptive effectiveness of compounds that influence GABA transmission. These findings demonstrate that at least some types of persistent pain are associated with a regionally selective decline in GABAergic tone, highlighting the need for agents that enhance GABA activity in the affected regions without compromising GABA function over the long-term. As subtype selective positive allosteric modulators may accomplish these goals, such compounds might represent a new class of analgesic drugs.
ATPergic signalling during seizures and epilepsy.
Engel, Tobias; Alves, Mariana; Sheedy, Caroline; Henshall, David C
2016-05-01
Much progress has been made over the last few decades in the identification of new anti-epileptic drugs (AEDs). However, 30% of epilepsy patients suffer poor seizure control. This underscores the need to identify alternative druggable neurotransmitter systems and drugs with novel mechanisms of action. An emerging concept is that seizure generation involves a complex interplay between neurons and glial cells at the tripartite synapse and neuroinflammation has been proposed as one of the main drivers of epileptogenesis. The ATP-gated purinergic receptor family is expressed throughout the brain and is functional on neurons and glial cells. ATP is released in high amounts into the extracellular space after increased neuronal activity and during chronic inflammation and cell death to act as a neuro- and gliotransmitter. Emerging work shows pharmacological targeting of ATP-gated purinergic P2 receptors can potently modulate seizure generation, inflammatory processes and seizure-induced brain damage. To date, work showing the functional contribution of P2 receptors has been mainly performed in animal models of acute seizures, in particular, by targeting the ionotropic P2X7 receptor subtype. Other ionotropic P2X and metabotropic P2Y receptor family members have also been implicated in pathological processes following seizures such as the P2X4 receptor and the P2Y12 receptor. However, during epilepsy, the characterization of P2 receptors was mostly restricted to the study of expressional changes of the different receptor subtypes. This review summarizes the work to date on ATP-mediated signalling during seizures and the functional impact of targeting the ATP-gated purinergic receptors on seizures and seizure-induced pathology. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'. Copyright © 2015 Elsevier Ltd. All rights reserved.
Selective targeting of G-protein-coupled receptor subtypes with venom peptides.
Näreoja, K; Näsman, J
2012-02-01
The G-protein-coupled receptor (GPCR) family is one of the largest gene superfamilies with approx. 370 members responding to endogenous ligands in humans and a roughly equal amount of receptors sensitive to external stimuli from the surrounding. A number of receptors from this superfamily are well recognized targets for medical treatment of various disease conditions, whereas for many others the potential medical benefit of interference is still obscure. A general problem associated with GPCR research and therapeutics is the insufficient specificity of available ligands to differentiate between closely homologous receptor subtypes. In this context, venom peptides could make a significant contribution to the development of more specific drugs. Venoms from certain animals specialized in biochemical hunting contain a mixture of molecules that are directed towards a variety of membrane proteins. Peptide toxins isolated from these mixtures usually exhibit high specificity for their targets. Muscarinic toxins found from mamba snakes attracted much attention during the 1990s. These are 65-66 amino acid long peptides with a structural three-finger folding similar to the α-neurotoxins and they target the muscarinic acetylcholine receptors in a subtype-selective manner. Recently, several members of the three-finger toxins from mamba snakes as well as conotoxins from marine cone snails have been shown to selectively interact with subtypes of adrenergic receptors. In this review, we will discuss the GPCR-directed peptide toxins found from different venoms and how some of these can be useful in exploring specific roles of receptor subtypes. © 2011 The Authors. Acta Physiologica © 2011 Scandinavian Physiological Society.
Androgen Receptor: A Complex Therapeutic Target for Breast Cancer
Narayanan, Ramesh; Dalton, James T.
2016-01-01
Molecular and histopathological profiling have classified breast cancer into multiple sub-types empowering precision treatment. Although estrogen receptor (ER) and human epidermal growth factor receptor (HER2) are the mainstay therapeutic targets in breast cancer, the androgen receptor (AR) is evolving as a molecular target for cancers that have developed resistance to conventional treatments. The high expression of AR in breast cancer and recent discovery and development of new nonsteroidal drugs targeting the AR provide a strong rationale for exploring it again as a therapeutic target in this disease. Ironically, both nonsteroidal agonists and antagonists for the AR are undergoing clinical trials, making AR a complicated target to understand in breast cancer. This review provides a detailed account of AR’s therapeutic role in breast cancer. PMID:27918430
NASA Technical Reports Server (NTRS)
Mccarthy, Bruce G.; Peroutka, Stephen J.
1988-01-01
Radioligand binding studies were used to analyze muscarinic cholinergic receptor subtypes in human cortex and pons. Muscarinic cholinergic receptors were labeled by H-3-quinuclidinyl benzilate (H-3-QNB). Scopolamine was equipotent in both brain regions and did not discriminate subtypes of H-3-QNB binding. By contrast, the M1 selective antagonist pirenzepine was approximately 33-fold more potent in human cortex than pons. Carbachol, a putative M2 selective agonist, was more than 100-fold more potent in human pons than cortex. These results demonstrate that the human pons contains a relatively large proportion of carbachol-sensitive muscarinic cholinergic receptors. Drugs targeted to this subpopulation of muscarinic cholinergic receptors may prove to be effective anti-motion sickness agents with less side effects than scopolamine.
8-(2-Furyl)adenine derivatives as A₂A adenosine receptor ligands.
Dal Ben, Diego; Buccioni, Michela; Lambertucci, Catia; Thomas, Ajiroghene; Klotz, Karl-Norbert; Federico, Stephanie; Cacciari, Barbara; Spalluto, Giampiero; Volpini, Rosaria
2013-01-01
Selective adenosine receptor modulators are potential tools for numerous therapeutic applications, including cardiovascular, inflammatory, and neurodegenerative diseases. In this work, the synthesis and biological evaluation at the four human adenosine receptor subtypes of a series of 9-substituted 8-(2-furyl)adenine derivatives are reported. Results show that 8-(2-furyl)-9-methyladenine is endowed with high affinity at the A₂A subtype. Further modification of this compound with introduction of arylacetyl or arylcarbamoyl groups in N(6)-position takes to different effects on the A₂A affinity and in particular on the selectivity versus the other three adenosine receptor subtypes. A molecular modelling analysis at three different A₂A receptor crystal structures provides an interpretation of the obtained biological results. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Foda, Abd AlRahman M; AbdelAziz, Azza; El-Hawary, Amira K; Hosni, Ali; Zalata, Khalid R; Gado, Asmaa I
2015-08-01
Previous studies have shown conflicting results on epidermal growth factor receptor (EGFR) and E-cadherin expression in colorectal carcinoma and their prognostic significance. To the best of our knowledge, this study is the first to investigate EGFR and E-cadherin expression, interrelation and relation to clinicopathologic, histologic parameters, and survival in rare colorectal mucinous adenocarcinoma (MA). In this study, we studied tumor tissue specimens from 150 patients with colorectal MA and nonmucinous adenocarcinoma (NMA). High-density manual tissue microarrays were constructed using modified mechanical pencil tips technique, and immunohistochemistry for EGFR and E-cadherin was performed. All relations were analyzed using established statistical methodologies. NMA expressed EGFR and E-cadherin in significantly higher rates with significant heterogenous pattern than MA. EGFR and E-cadherin positivity rates were significantly interrelated in both NMA and MA groups. In the NMA group, high EGFR expression was associated with old age, male sex, multiplicity of tumors, lack of mucinous component, and association with schistosomiasis. However, in the MA group, high EGFR expression was associated only with old age and MA subtype rather than signet ring carcinoma subtype. Conversely, high E-cadherin expression in MA cases was associated with old age, fungating tumor configuration, MA subtype, and negative intratumoral lymphocytic response. However, in the NMA cases, none of these factors was statistically significant. In a univariate analysis, neither EGFR nor E-cadherin expression showed a significant impact on disease-free or overall survival. Targeted therapy against EGFR and E-cadherin may not be useful in patients with MA. Neither EGFR nor E-cadherin is an independent prognostic factor in NMA or MA.
A Role for Oxytocin-Like Receptor in Social Habituation in a Teleost.
Weitekamp, Chelsea A; Solomon-Lane, Tessa K; Del Valle, Pamela; Triki, Zegni; Nugent, Bridget M; Hofmann, Hans A
2017-01-01
Oxytocin (OT) mediates social habituation in rodent model systems, but its role in mediating this effect in other vertebrates is unknown. We used males of the African cichlid fish, Astatotilapia burtoni, to investigate two aspects of isotocin (IT; an OT homolog) signaling in social habituation. First, we examined the expression of IT receptor 2 (ITR2) as well as two immediate early genes in brain regions implicated in social recognition. Next, we examined IT neuron activity using immunohistochemistry. Patterns of gene expression in homologs of the amygdala and hippocampus implicate IT signaling in these regions in social habituation to a territorial neighbor. In the preoptic area, the expression of the ITR2 subtype and IT neuron activity respond to the presence of a male, independent of familiarity. Our results implicate IT in mediating social habituation in a teleost. © 2017 S. Karger AG, Basel.
Effect of lappaconitine on neuropathic pain mediated by P2X3 receptor in rat dorsal root ganglion.
Ou, Shan; Zhao, Yan-Dong; Xiao, Zhi; Wen, Hui-Zhong; Cui, Jian; Ruan, Huai-Zhen
2011-04-01
ATP facilitates initiation and transmission of the neuropathic pain at the dorsal root ganglion (DRG) level via the P2X receptors, especially the subtype P2X(3). Lappaconitine (LA) is an active principle isolated from Chinese herbal medicine and possesses analgesic effect. The aim of this study was to investigate the effect of LA on chronic constriction injury (CCI)-induced neuropathic pain mediated by P2X(3) receptor in the DRG neurons. In the presence of CCI and/or LA, the mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were measured and P2X(3) receptor expression in the DRG neurons was evaluated by immunohistochemistry and Western blotting. Following intrathecal administration of P2X(3) receptor oligonucleotide, the effect of LA on pain thresholds was assessed. Furthermore, the effect of LA on the P2X(3) receptor agonists ATP- and α,β-meATP-induced inward currents (I(ATP) and I(α,β-meATP)) in the acutely dissociated rat DRG neurons was investigated by whole cell patch-clamp. The results included: (1) There showed reduction of pain thresholds, enhancement of I(ATP) and I(α,β-meATP) and up-regulation of P2X(3) receptor expression in rat DRG neurons when neuropathic pain occurred. (2) In the presence of LA, the decreased pain thresholds, the up-regulated P2X(3) receptor expression and the enhanced I(ATP) and I(α,β-meATP) were reversible in the CCI rats. (3) The down-regulated P2X(3) receptor expression with pretreatment of P2X(3) receptor antisense oligonucleotide significantly attenuated the analgesic effect of LA. These results indicate that the analgesic effect of LA involves decrease of expression and sensitization of the P2X(3) receptors of the rat DRG neurons following CCI. Copyright © 2011 Elsevier Ltd. All rights reserved.
Ikarashi, Yasushi; Sekiguchi, Kyoji; Mizoguchi, Kazushige
2018-01-01
Background: Geissoschizine methyl ether (GM) is one of the indole alkaloids in Uncaria hook, and an active ingredient of yokukansan (YKS) that improves behavioral and psychological symp-toms of dementia (BPSD) in patients with several types of dementia. The pharmacological action of GM has been related to various serotonin (5-HT) receptor subtypes. Objective: The aim of this article is to review the binding characteristics of GM to the 5-HT receptor sub-types in the brains using our own data and previous findings. Methods: Competitive receptor-binding and agonist/antagonist activity assays for several 5-HT receptor subtypes were performed. Moreover, the articles describing pharmacokinetics and brain distribution of GM were searched in PubMed. Results: GM bound the following 5-HT receptor subtypes: 5-HT1A, 5-HT1B, 5-HT2A, 5-HT2B, 5-HT2C, 5-HT4, 5-HT5A, 5-HT6, and 5-HT7. Among these receptors, GM had partial agonistic activity for 5-HT1A receptors and antagonistic activity for 5-HT2A, 5-HT2B, 5-HT2C, and 5-HT7 receptors. Also, GM was me-tabolized by various CYP isoforms, mainly CYP3A4. Parent/unchanged GM was detected in both the blood and brain of rats after oral administration of YKS. In the brains, GM was presumed to bind to 5-HT1A, 5-HT2A, 5-HT2B, 5-HT2C, and 5-HT7 receptors on neuron-like large cells mainly in the frontal cor-tex. Conclusion: These results suggest that GM is a pharmacologically important alkaloid that regulates vari-ous serotonergic activities or functions by binding to multiple 5-HT receptor subtypes. Thus, this review provides recent 5-HT receptor-related evidence that GM is partly responsible for pharmacological effects of YKS. PMID:28322152
Subunit profiling and functional characteristics of acetylcholine receptors in GT1-7 cells.
Arai, Yuki; Ishii, Hirotaka; Kobayashi, Makito; Ozawa, Hitoshi
2017-03-01
GnRH neurons form a final common pathway for the central regulation of reproduction. Although the involvement of acetylcholine in GnRH secretion has been reported, direct effects of acetylcholine and expression profiles of acetylcholine receptors (AChRs) still remain to be studied. Using immortalized GnRH neurons (GT1-7 cells), we analyzed molecular expression and functionality of AChRs. Expression of the mRNAs were identified in the order α7 > β2 = β1 ≧ α4 ≧ α5 = β4 = δ > α3 for nicotinic acetylcholine receptor (nAChR) subunits and m4 > m2 for muscarinic acetylcholine receptor (mAChR) subtypes. Furthermore, this study revealed that α7 nAChRs contributed to Ca 2+ influx and GnRH release and that m2 and m4 mAChRs inhibited forskolin-induced cAMP production and isobutylmethylxanthine-induced GnRH secretion. These findings demonstrate the molecular profiles of AChRs, which directly contribute to GnRH secretion in GT1-7 cells, and provide one possible regulatory action of acetylcholine in GnRH neurons.
Rangel-Yescas, Gisela E; Vazquez-Cuevas, Francisco G; Garay, Edith; Arellano, Rogelio O
2012-01-01
P2X receptors are trimeric, ATP-gated cation channels. In mammals seven P2X subtypes have been reported (P2X1-P2X7), as well as several variants generated by alternative splicing. Variants confer to the homomeric or heteromeric channels distinct functional and/or pharmacological properties. Molecular biology, biochemical, and functional analysis by electrophysiological methods were used to identify and study a new variant of the P2X1 receptor named P2X1b. This new variant, identified in rat optic nerve, was also expressed in other tissues. P2X1b receptors lack amino acids 182 to 208 of native P2X1, a region that includes residues that are highly conserved among distinct P2X receptors. When expressed in Xenopus oocytes, P2X1b was not functional as a homomer; however, when co-expressed with P2X1, it downregulated the electrical response generated by ATP compared with that of oocytes expressing P2X1 alone, and it seemed to form heteromeric channels with a modestly enhanced ATP potency. A decrease in responses to ATP in oocytes co-expressing different ratios of P2X1b to P2X1 was completely eliminated by overnight pretreatment with apyrase. Thus, it is suggested that P2X1b regulates, through a use-dependent mechanism, the availability, in the plasma membrane, of receptor channels that can be operated by ATP.
Role of 5-HT3 Receptor on Food Intake in Fed and Fasted Mice
Li, Bingjin; Shao, Dongyuan; Luo, Yungang; Wang, Pu; Liu, Changhong; Zhang, Xingyi; Cui, Ranji
2015-01-01
Background Many studies have shown that 5-hydroxytryptamine (5-HT) receptor subtypes are involved in the regulation of feeding behavior. However, the relative contribution of 5-HT3 receptor remains unclear. The present study was aimed to investigate the role of 5-HT3 receptor in control of feeding behavior in fed and fasted mice. Methodology/Principal Findings Food intake and expression of c-Fos, tyrosine hydroxylase (TH), proopiomelanocortin (POMC) and 5-HT in the brain were examined after acute treatment with 5-HT3 receptor agonist SR-57227 alone or in combination with 5-HT3 receptor antagonist ondansetron. Food intake was significantly inhibited within 3 h after acute treatment with SR 57227 in fasted mice but not fed mice, and this inhibition was blocked by ondansetron. Immunohistochemical study revealed that fasting-induced c-Fos expression was further enhanced by SR 57227 in the brainstem and the hypothalamus, and this enhancement was also blocked by ondansetron. Furthermore, the fasting-induced downregulation of POMC expression in the hypothalamus and the TH expression in the brain stem was blocked by SR 57227 in the fasted mice, and this effect of SR 57227 was also antagonized by ondansetron. Conclusion/Significance Taken together, our findings suggest that the effect of SR 57227 on the control of feeding behavior in fasted mice may be, at least partially, related to the c-Fos expression in hypothalamus and brain stem, as well as POMC system in the hypothalamus and the TH system in the brain stem. PMID:25789930
Cavaliere, Fabio; Nestola, Valeria; Amadio, Susanna; D'Ambrosi, Nadia; Angelini, Daniela F; Sancesario, Giuseppe; Bernardi, Giorgio; Volonté, Cinzia
2005-02-01
Extracellular nucleotides exert a variety of biological actions through different subtypes of P2 receptors. Here we characterized in the human neuroblastoma SH-SY5Y cells the simultaneous presence of various P2 receptors, belonging to the P2X ionotropic and P2Y metabotropic families. Western blot analysis detected the P2X1,2,4,5,6,7 and P2Y1,2,4,6, but not the P2X3 and P2Y12 receptors. We then investigated which biological effects were mediated by the P2Y4 subtype and its physiological pyrimidine agonist UTP. We found that neuronal differentiation of the SH-SY5Y cells with dibutiryl-cAMP increased the expression of the P2Y4 protein and that UTP itself was able to positively interfere with neuritogenesis. Moreover, transient transfection and activation of P2Y4 also facilitated neuritogenesis in SH-SY5Y cells, as detected by morphological phase contrast analysis and confocal examination of neurofilament proteins NFL. This was concurrent with increased transcription of immediate-early genes linked to differentiation such as cdk-5 and NeuroD6, and activity of AP-1 transcription family members such as c-fos, fos-B, and jun-D. Nevertheless, a prolonged activation of the P2Y4 receptor by UTP also induced cell death, both in naive, differentiated, and P2Y4-transfected SH-SY5Y cells, as measured by direct count of intact nuclei and cytofluorimetric analysis of damaged DNA. Taken together, our data indicate that the high expression and activation of the P2Y4 receptor participates in the neuronal differentiation and commitment to death of SH-SY5Y cells.
Sulk, Mathias; Seeliger, Stephan; Aubert, Jerome; Schwab, Verena D; Cevikbas, Ferda; Rivier, Michel; Nowak, Pawel; Voegel, Johannes J; Buddenkotte, Jörg; Steinhoff, Martin
2012-04-01
Rosacea is a frequent chronic inflammatory skin disease of unknown etiology. Because early rosacea reveals all characteristics of neurogenic inflammation, a central role of sensory nerves in its pathophysiology has been discussed. Neuroinflammatory mediators and their receptors involved in rosacea are poorly defined. Good candidates may be transient receptor potential (TRP) ion channels of vanilloid type (TRPV), which can be activated by many trigger factors of rosacea. Interestingly, TRPV2, TRPV3, and TRPV4 are expressed by both neuronal and non-neuronal cells. Here, we analyzed the expression and distribution of TRPV receptors in the various subtypes of rosacea on non-neuronal cells using immunohistochemistry, morphometry, double immunoflourescence, and quantitative real-time PCR (qRT-PCR) as compared with healthy skin and lupus erythematosus. Our results show that dermal immunolabeling of TRPV2 and TRPV3 and gene expression of TRPV1 is significantly increased in erythematotelangiectatic rosacea (ETR). Papulopustular rosacea (PPR) displayed an enhanced immunoreactivity for TRPV2, TRPV4, and also of TRPV2 gene expression. In phymatous rosacea (PhR)-affected skin, dermal immunostaining of TRPV3 and TRPV4 and gene expression of TRPV1 and TRPV3 was enhanced, whereas epidermal TRPV2 staining was decreased. Thus, dysregulation of TRPV channels also expressed by non-neuronal cells may be critically involved in the initiation and/or development of rosacea. TRP ion channels may be targets for the treatment of rosacea.
Sulk, Mathias; Seeliger, Stephan; Aubert, Jerome; Schwab, Verena D.; Cevikbas, Ferda; Rivier, Michel; Nowak, Pawel; Voegel, Johannes J.; Buddenkotte, Jörg; Steinhoff, Martin
2011-01-01
Rosacea is a frequent chronic inflammatory skin disease of unknown etiology. Because early rosacea reveals all characteristics of neurogenic inflammation, a central role of sensory nerves in its pathophysiology has been discussed. Neuroinflammatory mediators and their receptors involved in rosacea are poorly defined. Good candidates may be transient receptor potential (TRP) ion channels of vanilloid type (TRPV), which can be activated by many trigger factors of rosacea. Interestingly, TRPV2, TRPV3, and TRPV4 are expressed by both neuronal and non-neuronal cells. Here, we analyzed the expression and distribution of TRPV receptors in the various subtypes of rosacea on non-neuronal cells using immunohistochemistry, morphometry, double immunoflourescence, and quantitative real-time PCR (qRT-PCR) as compared with healthy skin and lupus erythematosus. Our results show that dermal immunolabeling of TRPV2 and TRPV3 and gene expression of TRPV1 is significantly increased in erythematotelangiectatic rosacea (ETR). Papulopustular rosacea (PPR) displayed an enhanced immunoreactivity for TRPV2, TRPV4, and also of TRPV2 gene expression. In phymatous rosacea (PhR)-affected skin, dermal immunostaining of TRPV3 and TRPV4 and gene expression of TRPV1 and TRPV3 was enhanced, whereas epidermal TRPV2 staining was decreased. Thus, dysregulation of TRPV channels also expressed by non-neuronal cells may be critically involved in the initiation and/or development of rosacea. TRP ion channels may be targets for the treatment of rosacea. PMID:22189789
Dexamethasone upregulates ANP C-receptor protein in human mesangial cells without affecting mRNA.
Ardaillou, N; Blaise, V; Placier, S; Amestoy, F; Ardaillou, R
1996-03-01
The objective of this study was to examine the role of dexamethasone on the expression of natriuretic peptide B-type and C-type receptors (ANPR-B and ANPR-C) in cultured human mesangial cells, which only possess these two subtypes. Dexamethasone caused concentration- and time-dependent increases in 125I-labeled ANP binding, which were prevented by glucocorticoid receptor inhibition with RU-38486. A lag time of 24 h and a concentration of dexamethasone of at least 1 nmol/l were necessary for this effect to occur. Dexamethasone-induced upregulation of 125I-ANP binding resulted from increased receptor density. No change in dissociation constant (Kd) was observed. Only ANPR-C were affected by dexamethasone. Indeed, dexamethasone did not modify C-type natriuretic peptide (i.e., CNP)-dependent cGMP production by mesangial cells. Moreover, dexamethasone upregulated ANPR-C protein expression as shown by Western blot analysis and by an increase in ANPR-C immunoreactivity at the cell surface. In contrast, dexamethasone did not modify ANPR-C mRNA expression. In conclusion, glucocorticoids increase ANPR-C density on mesangial cells through a mechanism implying, successively, interaction with the glucocorticoid receptor and increase of ANPR-C protein synthesis at a posttranscriptional stage. Thus dexamethasone may influence availability of natriuretic peptides at their glomerular target sites.
Ionotropic glutamate receptor antagonists and cancer therapy: time to think out of the box?
Ribeiro, Mariana P C; Custódio, José B A; Santos, Armanda E
2017-02-01
Glutamate has a trophic function in the development of the central nervous system, regulating the proliferation and migration of neuronal progenitors. The resemblance between neuronal embryonic and tumor cells has paved the way for the investigation of the effects of glutamate on tumor cells. Indeed, tumor cells derived from neuronal tissue express ionotropic glutamate receptor (iGluRs) subunits and iGluR antagonists decrease cell proliferation. Likewise, iGluRs subunits are expressed in several peripheral cancer cells and blockade of the N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) ionotropic glutamate receptor subtypes decreases their proliferation and migration. Although these mechanisms are still being investigated, the inhibition of the mitogen-activated protein kinase pathway was shown to play a key role in the antiproliferative activity of iGluR antagonists. Importantly, MK-801, a NMDAR channel blocker, was effective and well tolerated in animal models of melanoma, lung, and breast cancers, suggesting that the blockade of iGluR signaling may represent a new strategy for cancer treatment. In this review, we focus on the significance of NMDA and AMPA receptor expression in tumor cells, as well as possible therapeutic strategies targeting these receptors.
Pöschel, Beatrice; Wroblewska, Barbara; Heinemann, Uwe; Manahan-Vaughan, Denise
2005-09-01
Group II metabotropic glutamate receptors (mGluRs) play an important role in the regulation of hippocampal synaptic plasticity in vivo: long-term potentiation (LTP) is inhibited and long-term depression (LTD) is enhanced by activation of these receptors. The contribution, in vivo, of the individual group II mGluR subtypes has not been characterized. We analysed the involvement of the subtype mGluR3 in LTD and LTP. Rats were implanted with electrodes to enable chronic measurement of evoked potentials from medial perforant path-dentate gyrus synapses. Neither the selective mGluR3 agonist, N-acetylaspartylglutamate (NAAG), nor the antagonist beta-NAAG, given intracerebrally, affected basal synaptic transmission. beta-NAAG significantly inhibited LTD expression. NAAG exhibited transient inhibitory effects on the intermediate phase of LTD. Whereas NAAG altered paired-pulse responses, beta-NAAG had no effect, suggesting that antagonism of mGluR3 prevents LTD via a postsynaptic mechanism, whereas agonist activation of mGluR3 modulates LTD at a presynaptic locus. NAAG impaired the expression of LTP, whereas beta-NAAG had no effect. NAAG effects on LTP were blocked by EGLU, a selective group II mGluR antagonist. Our data suggest an essential role for mGluR3 in LTD, and a modulatory role for mGluR3 in LTP, with effects being mediated by distinct pre- and post-synaptic loci.
Maina, Theodosia; Cescato, Renzo; Waser, Beatrice; Tatsi, Aikaterini; Kaloudi, Aikaterini; Krenning, Eric P; de Jong, Marion; Nock, Berthold A; Reubi, Jean Claude
2014-08-14
Radiolabeled pansomatostatin-like analogues are expected to enhance the diagnostic sensitivity and to expand the clinical indications of currently applied sst2-specific radioligands. In this study, we present the somatostatin mimic [DOTA]LTT-SS28 {[(DOTA)Ser1,Leu8,D-Trp22,Tyr25]SS28} and its 111In radioligand. [DOTA]LTT-SS28 exhibited a pansomatostatin-like profile binding with high affinity to all five hsst1-hsst5 subtypes (IC50 values in the lower nanomolar range). Furthermore, [DOTA]LTT-SS28 behaved as an agonist at hsst2, hsst3, and hsst5, efficiently stimulating internalization of the three receptor subtypes. Radioligand [111In-DOTA]LTT-SS28 showed good stability in the mouse bloodstream. It displayed strong and specific uptake in AR42J tumors 4 h postinjection (9.3±1.6% ID/g vs 0.3±0.0% ID/g during sst2 blockade) in mice. Significant and specific uptake was also observed in HEK293-hsst2-, HEK293-hsst3-, and HEK293-hsst5-expressing tumors (4.43±1.5, 4.88±1.1, and <3% ID/g, respectively, with values of <0.5% ID/g during receptor blockade). In conclusion, the somatostatin mimic [111In-DOTA]LTT-SS28 specifically localizes in sst2-, sst3-, and sst5-expressing xenografts in mice showing promise for multi-sst1-sst5 targeted tumor imaging.
Rapid constitutive and ligand-activated endocytic trafficking of P2X receptor.
Vacca, Fabrizio; Giustizieri, Michela; Ciotti, Maria Teresa; Mercuri, Nicola Biagio; Volonté, Cinzia
2009-05-01
P2X receptors mediate a variety of physiological actions, including smooth muscle contraction, neuro-endocrine secretion and synaptic transmission. Among P2X receptors, the P2X(3) subtype is expressed in sensory neurons of dorsal root- and trigeminal-ganglia, where it performs a well-recognized role in sensory and pain transmission. Recent evidence indicates that the strength of P2X(3)-mediated responses is modulated in vivo by altering the number of receptors at the plasma membrane. In the present study, we investigate the trafficking properties of P2X(3) receptor in transfected HEK293 cells and in primary cultures of dorsal root ganglion neurons, finding that P2X(3) receptor undergoes rapid constitutive and cholesterol-dependent endocytosis. We also show that endocytosis is accompanied by preferential targeting of the receptor to late endosomes/lysosomes, with subsequent degradation. Furthermore, we observe that at steady state the receptor localizes predominantly in lamp1-positive intracellular structures, with a minor fraction present at the plasma membrane. Finally, the level of functional receptor expressed on the cell surface is rapidly up-regulated in response to agonist stimulation, which also augments receptor endocytosis. The findings presented in this work underscore a very dynamic trafficking behavior of P2X(3) receptor and disclose a possible mechanism for the rapid modulation of ATP-mediated responses potentially relevant during physiological and pathological conditions.
Uberti, Michelle A; Hague, Chris; Oller, Heide; Minneman, Kenneth P; Hall, Randy A
2005-04-01
The alpha1D-adrenergic receptor (alpha1D-AR) is a G protein-coupled receptor (GPCR) that is poorly trafficked to the cell surface and largely nonfunctional when heterologously expressed by itself in a variety of cell types. We screened a library of approximately 30 other group I GPCRs in a quantitative luminometer assay for the ability to promote alpha1D-AR cell surface expression. Strikingly, these screens revealed only two receptors capable of inducing robust increases in the amount of alpha1D-AR at the cell surface: alpha1B-AR and beta2-AR. Confocal imaging confirmed that coexpression with beta2-AR resulted in translocation of alpha1D-AR from intracellular sites to the plasma membrane. Additionally, coimmunoprecipitation studies demonstrated that alpha1D-AR and beta2-AR specifically interact to form heterodimers when coexpressed in HEK-293 cells. Ligand binding studies revealed an increase in total alpha1D-AR binding sites upon coexpression with beta2-AR, but no apparent effect on the pharmacological properties of the receptors. In functional studies, coexpression with beta2-AR significantly enhanced the coupling of alpha1D-AR to norepinephrine-stimulated Ca2+ mobilization. Heterodimerization of beta2-AR with alpha1D-AR also conferred the ability of alpha1D-AR to cointernalize upon beta2-AR agonist stimulation, revealing a novel mechanism by which these different adrenergic receptor subtypes may regulate each other's activity. These findings demonstrate that the selective association of alpha1D-AR with other receptors is crucial for receptor surface expression and function and also shed light on a novel mechanism of cross talk between alpha1- and beta2-ARs that is mediated through heterodimerization and cross-internalization.
Chen, Jinghai; Chen, Yuefeng; Zhu, Weiquan; Han, Yu; Han, Bianmei; Xu, Ruixia; Deng, Linzi; Cai, Yan; Cong, Xiangfeng; Yang, Yuejing; Hu, Shengshou; Chen, Xi
2008-04-15
Lysophosphatidic acid (LPA) is a bioactive phospholipid with diverse functions mediated via G-protein-coupled receptors (GPCRs). In view of the elevated levels of LPA in acute myocardial infarction (MI) patients we have conducted studies aimed at identifying specific LPA receptor subtypes and signaling events that may mediate its actions in hypertrophic remodeling. Experiments were carried out in cultured neonatal rat cardiomyocytes (NRCMs) exposed to LPA and in a rat MI model. In NRCMs, LPA-induced hypertrophic growth was completely abrogated by DGPP, an LPA1/LPA3 antagonist. The LPA3 agonist OMPT, but not the LPA2 agonist dodecylphosphate, promoted hypertrophy as examined by 3[H]-Leucine incorporation, ANF-luciferase expression and cell area. In in vivo experiments, LPA1, LPA2 and LPA3 mRNA levels as well as LPA1 and LPA3 protein levels increased together with left ventricular remodeling (LVRM) after MI. In addition, LPA stimulated the phosphorylation of Akt and p65 protein and activated NF-kappaB-luciferase expression. Inhibitors of PI3K (wortmannin), mTOR (rapamycin), and NF-kappaB (PDTC or SN50) effectively prevented LPA-induced 3[H]-Leucine incorporation and ANF-luciferase expression. Furthermore, ERK inhibitors (U0126 and PD98059) suppressed LPA-stimulated activation of NF-kappaB and p65 phosphorylation whereas wortmannin showed no effect on NF-kappaB activation. Our findings indicate that LPA3 and/or LPA1 mediate LPA-induced hypertrophy of NRCMs and that LPA1 and LPA3 may be involved in LVRM of MI rats. Moreover, Akt and NF-kappaB signaling pathways independently implicate in LPA-stimulated myocardial hypertrophic growth.
Dunning, Alison M; Michailidou, Kyriaki; Kuchenbaecker, Karoline B; Thompson, Deborah; French, Juliet D; Beesley, Jonathan; Healey, Catherine S; Kar, Siddhartha; Pooley, Karen A; Lopez-Knowles, Elena; Dicks, Ed; Barrowdale, Daniel; Sinnott-Armstrong, Nicholas A; Sallari, Richard C; Hillman, Kristine M; Kaufmann, Susanne; Sivakumaran, Haran; Moradi Marjaneh, Mahdi; Lee, Jason S; Hills, Margaret; Jarosz, Monika; Drury, Suzie; Canisius, Sander; Bolla, Manjeet K; Dennis, Joe; Wang, Qin; Hopper, John L; Southey, Melissa C; Broeks, Annegien; Schmidt, Marjanka K; Lophatananon, Artitaya; Muir, Kenneth; Beckmann, Matthias W; Fasching, Peter A; Dos-Santos-Silva, Isabel; Peto, Julian; Sawyer, Elinor J; Tomlinson, Ian; Burwinkel, Barbara; Marme, Frederik; Guénel, Pascal; Truong, Thérèse; Bojesen, Stig E; Flyger, Henrik; González-Neira, Anna; Perez, Jose I A; Anton-Culver, Hoda; Eunjung, Lee; Arndt, Volker; Brenner, Hermann; Meindl, Alfons; Schmutzler, Rita K; Brauch, Hiltrud; Hamann, Ute; Aittomäki, Kristiina; Blomqvist, Carl; Ito, Hidemi; Matsuo, Keitaro; Bogdanova, Natasha; Dörk, Thilo; Lindblom, Annika; Margolin, Sara; Kosma, Veli-Matti; Mannermaa, Arto; Tseng, Chiu-Chen; Wu, Anna H; Lambrechts, Diether; Wildiers, Hans; Chang-Claude, Jenny; Rudolph, Anja; Peterlongo, Paolo; Radice, Paolo; Olson, Janet E; Giles, Graham G; Milne, Roger L; Haiman, Christopher A; Henderson, Brian E; Goldberg, Mark S; Teo, Soo H; Yip, Cheng Har; Nord, Silje; Borresen-Dale, Anne-Lise; Kristensen, Vessela; Long, Jirong; Zheng, Wei; Pylkäs, Katri; Winqvist, Robert; Andrulis, Irene L; Knight, Julia A; Devilee, Peter; Seynaeve, Caroline; Figueroa, Jonine; Sherman, Mark E; Czene, Kamila; Darabi, Hatef; Hollestelle, Antoinette; van den Ouweland, Ans M W; Humphreys, Keith; Gao, Yu-Tang; Shu, Xiao-Ou; Cox, Angela; Cross, Simon S; Blot, William; Cai, Qiuyin; Ghoussaini, Maya; Perkins, Barbara J; Shah, Mitul; Choi, Ji-Yeob; Kang, Daehee; Lee, Soo Chin; Hartman, Mikael; Kabisch, Maria; Torres, Diana; Jakubowska, Anna; Lubinski, Jan; Brennan, Paul; Sangrajrang, Suleeporn; Ambrosone, Christine B; Toland, Amanda E; Shen, Chen-Yang; Wu, Pei-Ei; Orr, Nick; Swerdlow, Anthony; McGuffog, Lesley; Healey, Sue; Lee, Andrew; Kapuscinski, Miroslav; John, Esther M; Terry, Mary Beth; Daly, Mary B; Goldgar, David E; Buys, Saundra S; Janavicius, Ramunas; Tihomirova, Laima; Tung, Nadine; Dorfling, Cecilia M; van Rensburg, Elizabeth J; Neuhausen, Susan L; Ejlertsen, Bent; Hansen, Thomas V O; Osorio, Ana; Benitez, Javier; Rando, Rachel; Weitzel, Jeffrey N; Bonanni, Bernardo; Peissel, Bernard; Manoukian, Siranoush; Papi, Laura; Ottini, Laura; Konstantopoulou, Irene; Apostolou, Paraskevi; Garber, Judy; Rashid, Muhammad Usman; Frost, Debra; Izatt, Louise; Ellis, Steve; Godwin, Andrew K; Arnold, Norbert; Niederacher, Dieter; Rhiem, Kerstin; Bogdanova-Markov, Nadja; Sagne, Charlotte; Stoppa-Lyonnet, Dominique; Damiola, Francesca; Sinilnikova, Olga M; Mazoyer, Sylvie; Isaacs, Claudine; Claes, Kathleen B M; De Leeneer, Kim; de la Hoya, Miguel; Caldes, Trinidad; Nevanlinna, Heli; Khan, Sofia; Mensenkamp, Arjen R; Hooning, Maartje J; Rookus, Matti A; Kwong, Ava; Olah, Edith; Diez, Orland; Brunet, Joan; Pujana, Miquel Angel; Gronwald, Jacek; Huzarski, Tomasz; Barkardottir, Rosa B; Laframboise, Rachel; Soucy, Penny; Montagna, Marco; Agata, Simona; Teixeira, Manuel R; Park, Sue Kyung; Lindor, Noralane; Couch, Fergus J; Tischkowitz, Marc; Foretova, Lenka; Vijai, Joseph; Offit, Kenneth; Singer, Christian F; Rappaport, Christine; Phelan, Catherine M; Greene, Mark H; Mai, Phuong L; Rennert, Gad; Imyanitov, Evgeny N; Hulick, Peter J; Phillips, Kelly-Anne; Piedmonte, Marion; Mulligan, Anna Marie; Glendon, Gord; Bojesen, Anders; Thomassen, Mads; Caligo, Maria A; Yoon, Sook-Yee; Friedman, Eitan; Laitman, Yael; Borg, Ake; von Wachenfeldt, Anna; Ehrencrona, Hans; Rantala, Johanna; Olopade, Olufunmilayo I; Ganz, Patricia A; Nussbaum, Robert L; Gayther, Simon A; Nathanson, Katherine L; Domchek, Susan M; Arun, Banu K; Mitchell, Gillian; Karlan, Beth Y; Lester, Jenny; Maskarinec, Gertraud; Woolcott, Christy; Scott, Christopher; Stone, Jennifer; Apicella, Carmel; Tamimi, Rulla; Luben, Robert; Khaw, Kay-Tee; Helland, Åslaug; Haakensen, Vilde; Dowsett, Mitch; Pharoah, Paul D P; Simard, Jacques; Hall, Per; García-Closas, Montserrat; Vachon, Celine; Chenevix-Trench, Georgia; Antoniou, Antonis C; Easton, Douglas F; Edwards, Stacey L
2016-04-01
We analyzed 3,872 common genetic variants across the ESR1 locus (encoding estrogen receptor α) in 118,816 subjects from three international consortia. We found evidence for at least five independent causal variants, each associated with different phenotype sets, including estrogen receptor (ER(+) or ER(-)) and human ERBB2 (HER2(+) or HER2(-)) tumor subtypes, mammographic density and tumor grade. The best candidate causal variants for ER(-) tumors lie in four separate enhancer elements, and their risk alleles reduce expression of ESR1, RMND1 and CCDC170, whereas the risk alleles of the strongest candidates for the remaining independent causal variant disrupt a silencer element and putatively increase ESR1 and RMND1 expression.
Dunning, Alison M; Michailidou, Kyriaki; Kuchenbaecker, Karoline B; Thompson, Deborah; French, Juliet D; Beesley, Jonathan; Healey, Catherine S; Kar, Siddhartha; Pooley, Karen A; Lopez-Knowles, Elena; Dicks, Ed; Barrowdale, Daniel; Sinnott-Armstrong, Nicholas A; Sallari, Richard C; Hillman, Kristine M; Kaufmann, Susanne; Sivakumaran, Haran; Marjaneh, Mahdi Moradi; Lee, Jason S; Hills, Margaret; Jarosz, Monika; Drury, Suzie; Canisius, Sander; Bolla, Manjeet K; Dennis, Joe; Wang, Qin; Hopper, John L; Southey, Melissa C; Broeks, Annegien; Schmidt, Marjanka K; Lophatananon, Artitaya; Muir, Kenneth; Beckmann, Matthias W; Fasching, Peter A; dos-Santos-Silva, Isabel; Peto, Julian; Sawyer, Elinor J; Tomlinson, Ian; Burwinkel, Barbara; Marme, Frederik; Guénel, Pascal; Truong, Thérèse; Bojesen, Stig E; Flyger, Henrik; González-Neira, Anna; Perez, Jose I A; Anton-Culver, Hoda; Eunjung, Lee; Arndt, Volker; Brenner, Hermann; Meindl, Alfons; Schmutzler, Rita K; Brauch, Hiltrud; Hamann, Ute; Aittomäki, Kristiina; Blomqvist, Carl; Ito, Hidemi; Matsuo, Keitaro; Bogdanova, Natasha; Dörk, Thilo; Lindblom, Annika; Margolin, Sara; Kosma, Veli-Matti; Mannermaa, Arto; Tseng, Chiu-chen; Wu, Anna H; Lambrechts, Diether; Wildiers, Hans; Chang-Claude, Jenny; Rudolph, Anja; Peterlongo, Paolo; Radice, Paolo; Olson, Janet E; Giles, Graham G; Milne, Roger L; Haiman, Christopher A; Henderson, Brian E; Goldberg, Mark S; Teo, Soo H; Yip, Cheng Har; Nord, Silje; Borresen-Dale, Anne-Lise; Kristensen, Vessela; Long, Jirong; Zheng, Wei; Pylkäs, Katri; Winqvist, Robert; Andrulis, Irene L; Knight, Julia A; Devilee, Peter; Seynaeve, Caroline; Figueroa, Jonine; Sherman, Mark E; Czene, Kamila; Darabi, Hatef; Hollestelle, Antoinette; van den Ouweland, Ans M W; Humphreys, Keith; Gao, Yu-Tang; Shu, Xiao-Ou; Cox, Angela; Cross, Simon S; Blot, William; Cai, Qiuyin; Ghoussaini, Maya; Perkins, Barbara J; Shah, Mitul; Choi, Ji-Yeob; Kang, Daehee; Lee, Soo Chin; Hartman, Mikael; Kabisch, Maria; Torres, Diana; Jakubowska, Anna; Lubinski, Jan; Brennan, Paul; Sangrajrang, Suleeporn; Ambrosone, Christine B; Toland, Amanda E; Shen, Chen-Yang; Wu, Pei-Ei; Orr, Nick; Swerdlow, Anthony; McGuffog, Lesley; Healey, Sue; Lee, Andrew; Kapuscinski, Miroslav; John, Esther M; Terry, Mary Beth; Daly, Mary B; Goldgar, David E; Buys, Saundra S; Janavicius, Ramunas; Tihomirova, Laima; Tung, Nadine; Dorfling, Cecilia M; van Rensburg, Elizabeth J; Neuhausen, Susan L; Ejlertsen, Bent; Hansen, Thomas V O; Osorio, Ana; Benitez, Javier; Rando, Rachel; Weitzel, Jeffrey N; Bonanni, Bernardo; Peissel, Bernard; Manoukian, Siranoush; Papi, Laura; Ottini, Laura; Konstantopoulou, Irene; Apostolou, Paraskevi; Garber, Judy; Rashid, Muhammad Usman; Frost, Debra; Izatt, Louise; Ellis, Steve; Godwin, Andrew K; Arnold, Norbert; Niederacher, Dieter; Rhiem, Kerstin; Bogdanova-Markov, Nadja; Sagne, Charlotte; Stoppa-Lyonnet, Dominique; Damiola, Francesca; Sinilnikova, Olga M; Mazoyer, Sylvie; Isaacs, Claudine; Claes, Kathleen B M; De Leeneer, Kim; de la Hoya, Miguel; Caldes, Trinidad; Nevanlinna, Heli; Khan, Sofia; Mensenkamp, Arjen R; Hooning, Maartje J; Rookus, Matti A; Kwong, Ava; Olah, Edith; Diez, Orland; Brunet, Joan; Pujana, Miquel Angel; Gronwald, Jacek; Huzarski, Tomasz; Barkardottir, Rosa B; Laframboise, Rachel; Soucy, Penny; Montagna, Marco; Agata, Simona; Teixeira, Manuel R; Park, Sue Kyung; Lindor, Noralane; Couch, Fergus J; Tischkowitz, Marc; Foretova, Lenka; Vijai, Joseph; Offit, Kenneth; Singer, Christian F; Rappaport, Christine; Phelan, Catherine M; Greene, Mark H; Mai, Phuong L; Rennert, Gad; Imyanitov, Evgeny N; Hulick, Peter J; Phillips, Kelly-Anne; Piedmonte, Marion; Mulligan, Anna Marie; Glendon, Gord; Bojesen, Anders; Thomassen, Mads; Caligo, Maria A; Yoon, Sook-Yee; Friedman, Eitan; Laitman, Yael; Borg, Ake; von Wachenfeldt, Anna; Ehrencrona, Hans; Rantala, Johanna; Olopade, Olufunmilayo I; Ganz, Patricia A; Nussbaum, Robert L; Gayther, Simon A; Nathanson, Katherine L; Domchek, Susan M; Arun, Banu K; Mitchell, Gillian; Karlan, Beth Y; Lester, Jenny; Maskarinec, Gertraud; Woolcott, Christy; Scott, Christopher; Stone, Jennifer; Apicella, Carmel; Tamimi, Rulla; Luben, Robert; Khaw, Kay-Tee; Helland, Åslaug; Haakensen, Vilde; Dowsett, Mitch; Pharoah, Paul D P; Simard, Jacques; Hall, Per; García-Closas, Montserrat; Vachon, Celine; Chenevix-Trench, Georgia; Antoniou, Antonis C; Easton, Douglas F; Edwards, Stacey L
2016-01-01
We analyzed 3,872 common genetic variants across the ESR1 locus (encoding estrogen receptor α) in 118,816 subjects from three international consortia. We found evidence for at least five independent causal variants, each associated with different phenotype sets, including estrogen receptor (ER+ or ER−) and human ERBB2 (HER2+ or HER2−) tumor subtypes, mammographic density and tumor grade. The best candidate causal variants for ER− tumors lie in four separate enhancer elements, and their risk alleles reduce expression of ESR1, RMND1 and CCDC170, whereas the risk alleles of the strongest candidates for the remaining independent causal variant disrupt a silencer element and putatively increase ESR1 and RMND1 expression. PMID:26928228
Mitrano, Darlene A; Jackson, Kelsey; Finley, Samantha; Seeley, Allison
2018-02-10
The α1-adrenergic receptors (α1ARs) have been implicated in numerous actions of the brain, including attention and wakefulness. Additionally, they have been identified as contributing to disorders of the brain, such as drug addiction, and recent work has shown a role of these receptors in relapse to psychostimulants. While some functionality is known, the actual subcellular localization of the subtypes of the α1ARs remains to be elucidated. Further, their anatomical relationship to receptors for other neurotransmitters, such as dopamine (DA), remains unclear. Therefore, using immunohistochemistry and electron microscopy techniques, this study describes the subcellular localization of the α1b-adrenergic receptor (α1bAR), the subtype most tied to relapse behaviors, as well as its relationship to the D1-dopamine receptor (D1R) in both the shell and core of the rat nucleus accumbens (NAc). Overall, α1bARs were found in unmyelinated axons and axon terminals with some labeling in dendrites. In accordance with other studies of the striatum, the D1R was found mainly in dendrites and spines; therefore, colocalization of the D1R with the α1bAR was rare postsynaptically. However, in the NAc shell, when the receptors were co-expressed in the same neuronal elements there was a trend for both receptors to be found on the plasma membrane, as opposed to the intracellular compartment. This study provides valuable anatomical information about the α1bAR and its relationship to the D1R and the regulation of DA and norepinephrine (NE) neurotransmission in the brain which have been examined previously. Published by Elsevier Ltd.
Weber, Bernd; Schlicker, Eberhard; Sokoloff, Pierre; Stark, Holger
2001-01-01
Dopamine release in the retina is subject to modulation via autoreceptors, which belong to the D2 receptor family (encompassing the D2, D3 and D4 receptors). The aim of the present study was to determine the receptor subtype (D2 vs D3) involved in the inhibition of dopamine release in guinea-pig retinal discs, using established (haloperidol, (S)-nafadotride) and novel dopamine receptor antagonists (ST-148, ST-198). hD2L and hD3 receptors were expressed in CHO cells and the pKi values determined in binding studies with [125I]-iodosulpride were: haloperidol 9.22 vs 8.54; ST-148 7.85 vs 6.60; (S)-nafadotride 8.52 vs 9.51; ST-198 6.14 vs 7.92. The electrically evoked tritium overflow from retinal discs preincubated with [3H]-noradrenaline (which represents quasi-physiological dopamine release) was inhibited by the dopamine receptor agonists B-HT 920 (talipexole) and quinpirole (maximally by 82 and 71%; pEC50 5.80 and 5.83). The concentration-response curves of these agonists were shifted to the right by haloperidol (apparent pA2 8.69 and 8.23) and ST-148 (7.52 and 7.66). (S)-Nafadotride 0.01 μM and ST-198 0.32 μM did not affect the concentration-response curve of B-HT 920. The dopamine autoreceptor in the guinea-pig retina can be classified as a D2 receptor. ST-148 and ST-198 show an improved selectivity for D2 and D3 receptors when compared to haloperidol and (S)-nafadotride, respectively. PMID:11498509
Current Research on Opioid Receptor Function
Feng, Yuan; He, Xiaozhou; Yang, Yilin; Chao, Dongman; Lazarus, Lawrence H.; Xia, Ying
2012-01-01
The use of opioid analgesics has a long history in clinical settings, although the comprehensive action of opioid receptors is still less understood. Nonetheless, recent studies have generated fresh insights into opioid receptor-mediated functions and their underlying mechanisms. Three major opioid receptors (μ-opioid receptor, MOR; δ-opioid receptor, DOR; and κ-opioid receptor, KOR) have been cloned in many species. Each opioid receptor is functionally sub-classified into several pharmacological subtypes, although, specific gene corresponding each of these receptor subtypes is still unidentified as only a single gene has been isolated for each opioid receptor. In addition to pain modulation and addiction, opioid receptors are widely involved in various physiological and pathophysiological activities, including the regulation of membrane ionic homeostasis, cell proliferation, emotional response, epileptic seizures, immune function, feeding, obesity, respiratory and cardiovascular control as well as some neurodegenerative disorders. In some species, they play an essential role in hibernation. One of the most exciting findings of the past decade is the opioid-receptor, especially DOR, mediated neuroprotection and cardioprotection. The up-regulation of DOR expression and DOR activation increase the neuronal tolerance to hypoxic/ischemic stress. The DOR signal triggers (depending on stress duration and severity) different mechanisms at multiple levels to preserve neuronal survival, including the stabilization of homeostasis and increased pro-survival signaling (e.g., PKC-ERK-Bcl 2) and anti-oxidative capacity. In the heart, PKC and KATP channels are involved in the opioid receptor-mediated cardioprotection. The DOR-mediated neuroprotection and cardioprotection have the potential to significantly alter the clinical pharmacology in terms of prevention and treatment of life-threatening conditions like stroke and myocardial infarction. The main purpose of this article is to review the recent work done on opioids and their receptor functions. It shall provide an informative reference for better understanding the opioid system and further elucidation of the opioid receptor function from a physiological and pharmacological point of view. PMID:22204322
Maimaiti, Yusufu; Dong, Lingling; Aili, Aikebaier; Maimaitiaili, Maimaitiaili; Huang, Tao; Abudureyimu, Kelimu
2017-07-04
Bcl-2 interacting mediator of cell death (Bim) appears to have contradictory roles in cancer. It is uncertain whether Bim show prognostic significance in patients with breast cancer. To investigate the correlation between Bim expression and clinicopathological characteristics of breast cancer and to evaluate Bim's effect on overall survival (OS). We used immunohistochemistry (IHC) technique to detect the expression of Bim via tissue microarray in 275 breast cancer samples, Kaplan-Meier analysis to perform survival analysis, and Cox proportional hazards regression model to explore the risk factors of breast cancer. The results revealed that Bim expression was significantly correlated with age, estrogen receptor (ER) and/or progesterone receptor (PR), human epidermal growth factor receptor (HER2) and Ki67 expression (P< 0.05). Bim expression was significantly different in the four molecular subtypes (P= 0.000). Survival analysis showed that Bim positive expression contributed to a shorter OS (P= 0.034), especially in patients with luminal A tumors (P= 0.039). Univariate and multivariate regression analysis showed that Bim was an independent prognostic factor for breast cancer (P< 0.05). Bim may serve as an effective predictive factor for lower OS in breast cancer patients, especially in those with luminal A tumors.
Venegas-Moreno, Eva; Vazquez-Borrego, Mari C; Dios, Elena; Gros-Herguido, Noelia; Flores-Martinez, Alvaro; Rivero-Cortés, Esther; Madrazo-Atutxa, Ainara; Japón, Miguel A; Luque, Raúl M; Castaño, Justo P; Cano, David A; Soto-Moreno, Alfonso
2018-03-01
Acromegaly is a hormonal disorder resulting from excessive growth hormone (GH) secretion frequently produced by pituitary adenomas and consequent increase in insulin-like growth factor 1 (IGF-I). Elevated GH and IGF-I levels result in a wide range of somatic, cardiovascular, endocrine, metabolic and gastrointestinal morbidities. Somatostatin analogues (SSAs) form the basis of medical therapy for acromegaly and are currently used as first-line treatment or as second-line therapy in patients undergoing unsuccessful surgery. However, a considerable percentage of patients do not respond to SSAs treatment. Somatostatin receptors (SSTR1-5) and dopamine receptors (DRD1-5) subtypes play critical roles in the regulation of hormone secretion. These receptors are considered important pharmacological targets to inhibit hormone oversecretion. It has been proposed that decreased expression of SSTRs may be associated with poor response to SSAs. Here, we systematically examine SSTRs and DRDs expression in human somatotroph adenomas by quantitative PCR. We observed an association between the response to SSAs treatment and DRD4, DRD5, SSTR1 and SSTR2 expression. We also examined SSTR expression by immunohistochemistry and found that the immunohistochemical detection of SSTR2 in particular might be a good predictor of response to SSAs. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Molecular properties of muscarinic acetylcholine receptors
HAGA, Tatsuya
2013-01-01
Muscarinic acetylcholine receptors, which comprise five subtypes (M1-M5 receptors), are expressed in both the CNS and PNS (particularly the target organs of parasympathetic neurons). M1-M5 receptors are integral membrane proteins with seven transmembrane segments, bind with acetylcholine (ACh) in the extracellular phase, and thereafter interact with and activate GTP-binding regulatory proteins (G proteins) in the intracellular phase: M1, M3, and M5 receptors interact with Gq-type G proteins, and M2 and M4 receptors with Gi/Go-type G proteins. Activated G proteins initiate a number of intracellular signal transduction systems. Agonist-bound muscarinic receptors are phosphorylated by G protein-coupled receptor kinases, which initiate their desensitization through uncoupling from G proteins, receptor internalization, and receptor breakdown (down regulation). Recently the crystal structures of M2 and M3 receptors were determined and are expected to contribute to the development of drugs targeted to muscarinic receptors. This paper summarizes the molecular properties of muscarinic receptors with reference to the historical background and bias to studies performed in our laboratories. PMID:23759942
DOE Office of Scientific and Technical Information (OSTI.GOV)
Booze, R.M.; Crisostomo, E.A.; Davis, J.N.
1989-06-01
The localization and number of beta adrenergic receptors were directly compared in the brains of rats and guinea pigs. The time course of association and saturability of (125I)cyanopindolol (CYP) binding to slide-mounted tissue sections was similar in rats (Kd = 17 pM) and guinea pigs (Kd = 20 pM). The beta-1 and beta-2 receptor subtypes were examined through the use of highly selective unlabeled receptor antagonists, ICI 118,551 (50 nM) and ICI 89,406 (70 nM). Dramatic species differences between rats and guinea pigs were observed in the neuroanatomical regional localization of the beta adrenergic receptor subtypes. For example, in themore » thalamus prominent beta-1 and beta-2 receptor populations were identified in the rat; however, the entire thalamus of the guinea pig had few, if any, beta adrenergic receptors of either subtype. Hippocampal area CA1 had high levels of beta-2 adrenergic receptors in both rats and guinea pigs but was accompanied by a widespread distribution of beta-2 adrenergic receptors only in rats. Quantitative autoradiographic analyses of 25 selected neuroanatomical regions (1) confirmed the qualitative differences in CNS beta adrenergic receptor localization, (2) determined that guinea pigs had significantly lower levels of beta adrenergic receptors than rats and (3) indicated a differential pattern of receptor subtypes between the two species. Knowledge of species differences in receptor patterns may be useful in designing effective experiments as well as in exploring the relationships between receptor and innervation patterns. Collectively, these data suggest caution be used in extrapolation of the relationships of neurotransmitters and receptors from studies of a single species.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiang, Jin; Wang, Ying; Su, Ke
Estrogenic actions are closely related to cardiovascular disease. Ritonavir (RTV), a human immunodeficiency virus (HIV) protease inhibitor, induces atherosclerosis in an estrogen-related manner. However, how RTV induce pathological phenotypes through estrogen pathway remains unclear. In this study, we found that RTV increases thickness of coronary artery walls of Sprague Dawley rats and plasma free fatty acids (FFA) levels. In addition, RTV could induce foam cell formation, downregulate both estrogen receptor α (ERα) and ERβ expression, upregulate G protein-coupled estrogen receptor (GPER) expression, and all of them could be partially blocked by 17β-estradiol (E2), suggesting RTV acts as an antagonist formore » E2. Computational modeling shows a similar interaction with ERα between RTV and 2-aryl indoles, which are highly subtype-selective ligands for ERα. We also found that RTV directly bound to ERα and selectively inhibited the nuclear localization of ERα, and residue Leu536 in the hydrophobic core of ligand binding domain (LBD) was essential for the interaction with RTV. In addition, RTV did not change the secondary structure of ERα-LBD like E2, which explained how ERα lost the capacity of nuclear translocation under the treatment of RTV. All of the evidences suggest that ritonavir acts as an antagonist for 17β-estradiol in regulating α subtype estrogen receptor function and early events of atherosclerosis. - Graphical abstract: RTV directly binds to ERα and Leu536 in the hydrophobic core of ligand binding domain is essential for the interaction. - Highlights: • RTV increases the thickness of rat coronary artery wall and foam cell formation. • RTV downregulates the expression of ERα and ERβ. • RTV inhibits ERα promoter activity. • RTV directly binds to ERα and the key amino acid is Leu536. • RTV inhibits the nuclear translocation of ERα and GPER.« less
Dziedzic, Barbara; Prevot, Vincent; Lomniczi, Alejandro; Jung, Heike; Cornea, Anda; Ojeda, Sergio R
2003-02-01
Hypothalamic astroglial erbB tyrosine kinase receptors are required for the timely initiation of mammalian puberty. Ligand-dependent activation of these receptors sets in motion a glia-to-neuron signaling pathway that prompts the secretion of luteinizing hormone-releasing hormone (LHRH), the neuropeptide controlling sexual development, from hypothalamic neuroendocrine neurons. The neuronal systems that may regulate this growth factor-mediated back signaling to neuroendocrine neurons have not been identified. Here we demonstrate that hypothalamic astrocytes contain metabotropic receptors of the metabotropic glutamate receptor 5 subtype and the AMPA receptor subunits glutamate receptor 2 (GluR2) and GluR3. As in excitatory synapses, these receptors are in physical association with their respective interacting/clustering proteins Homer and PICK1. In addition, they are associated with erbB-1 and erbB-4 receptors. Concomitant activation of astroglial metabotropic and AMPA receptors results in the recruitment of erbB tyrosine kinase receptors and their respective ligands to the glial cell membrane, transactivation of erbB receptors via a mechanism requiring metalloproteinase activity, and increased erbB receptor gene expression. By facilitating erbB-dependent signaling and promoting erbB receptor gene expression in astrocytes, a neuron-to-glia glutamatergic pathway may represent a basic cell-cell communication mechanism used by the neuroendocrine brain to coordinate the facilitatory transsynaptic and astroglial input to LHRH neurons during sexual development.
Oligomerization of GPCRs involved in endocrine regulation.
Kleinau, Gunnar; Müller, Anne; Biebermann, Heike
2016-07-01
More than 800 different human membrane-spanning G-protein-coupled receptors (GPCRs) serve as signal transducers at biological barriers. These receptors are activated by a wide variety of ligands such as peptides, ions and hormones, and are able to activate a diverse set of intracellular signaling pathways. GPCRs are of central importance in endocrine regulation, which underpins the significance of comprehensively studying these receptors and interrelated systems. During the last decade, the capacity for multimerization of GPCRs was found to be a common and functionally relevant property. The interaction between GPCR monomers results in higher order complexes such as homomers (identical receptor subtype) or heteromers (different receptor subtypes), which may be present in a specific and dynamic monomer/oligomer equilibrium. It is widely accepted that the oligomerization of GPCRs is a mechanism for determining the fine-tuning and expansion of cellular processes by modification of ligand action, expression levels, and related signaling outcome. Accordingly, oligomerization provides exciting opportunities to optimize pharmacological treatment with respect to receptor target and tissue selectivity or for the development of diagnostic tools. On the other hand, GPCR heteromerization may be a potential reason for the undesired side effects of pharmacological interventions, faced with numerous and common mutual signaling modifications in heteromeric constellations. Finally, detailed deciphering of the physiological occurrence and relevance of specific GPCR/GPCR-ligand interactions poses a future challenge. This review will tackle the aspects of GPCR oligomerization with specific emphasis on family A GPCRs involved in endocrine regulation, whereby only a subset of these receptors will be discussed in detail. © 2016 Society for Endocrinology.
Khan, Samir A.; Rossi, Ana M.; Riley, Andrew M.; Potter, Barry V. L.; Taylor, Colin W.
2013-01-01
IP3R (IP3 [inositol 1,4,5-trisphosphate] receptors) and ryanodine receptors are the most widely expressed intracellular Ca2+ channels and both are regulated by thiol reagents. In DT40 cells stably expressing single subtypes of mammalian IP3R, low concentrations of thimerosal (also known as thiomersal), which oxidizes thiols to form a thiomercurylethyl complex, increased the sensitivity of IP3-evoked Ca2+ release via IP3R1 and IP3R2, but inhibited IP3R3. Activation of IP3R is initiated by IP3 binding to the IBC (IP3-binding core; residues 224–604) and proceeds via re-arrangement of an interface between the IBC and SD (suppressor domain; residues 1–223). Thimerosal (100 μM) stimulated IP3 binding to the isolated NT (N-terminal; residues 1–604) of IP3R1 and IP3R2, but not to that of IP3R3. Binding of a competitive antagonist (heparin) or partial agonist (dimeric-IP3) to NT1 was unaffected by thiomersal, suggesting that the effect of thimerosal is specifically related to IP3R activation. IP3 binding to NT1 in which all cysteine residues were replaced by alanine was insensitive to thimerosal, so too were NT1 in which cysteine residues were replaced in either the SD or IBC. This demonstrates that thimerosal interacts directly with cysteine in both the SD and IBC. Chimaeric proteins in which the SD of the IP3R was replaced by the structurally related A domain of a ryanodine receptor were functional, but thimerosal inhibited both IP3 binding to the chimaeric NT and IP3-evoked Ca2+ release from the chimaeric IP3R. This is the first systematic analysis of the effects of a thiol reagent on each IP3R subtype. We conclude that thimerosal selectively sensitizes IP3R1 and IP3R2 to IP3 by modifying cysteine residues within both the SD and IBC and thereby stabilizing an active conformation of the receptor. PMID:23282150
Cholinergic chemosensory cells of the thymic medulla express the bitter receptor Tas2r131.
Soultanova, Aichurek; Voigt, Anja; Chubanov, Vladimir; Gudermann, Thomas; Meyerhof, Wolfgang; Boehm, Ulrich; Kummer, Wolfgang
2015-11-01
The thymus is the site of T cell maturation which includes positive selection in the cortex and negative selection in the medulla. Acetylcholine is locally produced in the thymus and cholinergic signaling influences the T cell development. We recently described a distinct subset of medullary epithelial cells in the murine thymus which express the acetylcholine-synthesizing enzyme choline acetyltransferase (ChAT) and components of the canonical taste transduction cascade, i.e. transient receptor potential melastatin-like subtype 5 channel (TRPM5), phospholipase Cβ(2), and Gα-gustducin. Such a chemical phenotype is characteristic for chemosensory cells of mucosal surfaces which utilize bitter receptors for detection of potentially hazardous compounds and cholinergic signaling to initiate avoidance reflexes. We here demonstrate mRNA expression of bitter receptors Tas2r105, Tas2r108, and Tas2r131 in the murine thymus. Using a Tas2r131-tauGFP reporter mouse we localized the expression of this receptor to cholinergic cells expressing the downstream elements of the taste transduction pathway. These cells are distinct from the medullary thymic epithelial cells which promiscuously express tissue-restricted self-antigens during the process of negative selection, since double-labeling immunofluorescence showed no colocalization of autoimmune regulator (AIRE), the key mediator of negative selection, and TRPM5. These data demonstrate the presence of bitter taste-sensing signaling in cholinergic epithelial cells in the thymic medulla and opens a discussion as to what is the physiological role of this pathway. Copyright © 2015 Elsevier B.V. All rights reserved.
Sherman, Recinda L.; Howlader, Nadia; Jemal, Ahmedin; Ryerson, A. Blythe; Henry, Kevin A.; Boscoe, Francis P.; Cronin, Kathleen A.; Lake, Andrew; Noone, Anne-Michelle; Henley, S. Jane; Eheman, Christie R.; Anderson, Robert N.; Penberthy, Lynne
2015-01-01
Background: The American Cancer Society (ACS), Centers for Disease Control and Prevention (CDC), National Cancer Institute (NCI), and North American Association of Central Cancer Registries (NAACCR) collaborate annually to produce updated, national cancer statistics. This Annual Report includes a focus on breast cancer incidence by subtype using new, national-level data. Methods: Population-based cancer trends and breast cancer incidence by molecular subtype were calculated. Breast cancer subtypes were classified using tumor biomarkers for hormone receptor (HR) and human growth factor-neu receptor (HER2) expression. Results: Overall cancer incidence decreased for men by 1.8% annually from 2007 to 2011. Rates for women were stable from 1998 to 2011. Within these trends there was racial/ethnic variation, and some sites have increasing rates. Among children, incidence rates continued to increase by 0.8% per year over the past decade while, like adults, mortality declined. Overall mortality has been declining for both men and women since the early 1990’s and for children since the 1970’s. HR+/HER2- breast cancers, the subtype with the best prognosis, were the most common for all races/ethnicities with highest rates among non-Hispanic white women, local stage cases, and low poverty areas (92.7, 63.51, and 98.69 per 100000 non-Hispanic white women, respectively). HR+/HER2- breast cancer incidence rates were strongly, positively correlated with mammography use, particularly for non-Hispanic white women (Pearson 0.57, two-sided P < .001). Triple-negative breast cancers, the subtype with the worst prognosis, were highest among non-Hispanic black women (27.2 per 100000 non-Hispanic black women), which is reflected in high rates in southeastern states. Conclusions: Progress continues in reducing the burden of cancer in the United States. There are unique racial/ethnic-specific incidence patterns for breast cancer subtypes; likely because of both biologic and social risk factors, including variation in mammography use. Breast cancer subtype analysis confirms the capacity of cancer registries to adjust national collection standards to produce clinically relevant data based on evolving medical knowledge. PMID:25825511
Kohler, Betsy A; Sherman, Recinda L; Howlader, Nadia; Jemal, Ahmedin; Ryerson, A Blythe; Henry, Kevin A; Boscoe, Francis P; Cronin, Kathleen A; Lake, Andrew; Noone, Anne-Michelle; Henley, S Jane; Eheman, Christie R; Anderson, Robert N; Penberthy, Lynne
2015-06-01
The American Cancer Society (ACS), Centers for Disease Control and Prevention (CDC), National Cancer Institute (NCI), and North American Association of Central Cancer Registries (NAACCR) collaborate annually to produce updated, national cancer statistics. This Annual Report includes a focus on breast cancer incidence by subtype using new, national-level data. Population-based cancer trends and breast cancer incidence by molecular subtype were calculated. Breast cancer subtypes were classified using tumor biomarkers for hormone receptor (HR) and human growth factor-neu receptor (HER2) expression. Overall cancer incidence decreased for men by 1.8% annually from 2007 to 2011 [corrected]. Rates for women were stable from 1998 to 2011. Within these trends there was racial/ethnic variation, and some sites have increasing rates. Among children, incidence rates continued to increase by 0.8% per year over the past decade while, like adults, mortality declined. HR+/HER2- breast cancers, the subtype with the best prognosis, were the most common for all races/ethnicities with highest rates among non-Hispanic white women, local stage cases, and low poverty areas (92.7, 63.51, and 98.69 per 100000 non-Hispanic white women, respectively). HR+/HER2- breast cancer incidence rates were strongly, positively correlated with mammography use, particularly for non-Hispanic white women (Pearson 0.57, two-sided P < .001). Triple-negative breast cancers, the subtype with the worst prognosis, were highest among non-Hispanic black women (27.2 per 100000 non-Hispanic black women), which is reflected in high rates in southeastern states. Progress continues in reducing the burden of cancer in the United States. There are unique racial/ethnic-specific incidence patterns for breast cancer subtypes; likely because of both biologic and social risk factors, including variation in mammography use. Breast cancer subtype analysis confirms the capacity of cancer registries to adjust national collection standards to produce clinically relevant data based on evolving medical knowledge. © The Author 2015. Published by Oxford University Press.
Purinergic Signalling: Therapeutic Developments
Burnstock, Geoffrey
2017-01-01
Purinergic signalling, i.e., the role of nucleotides as extracellular signalling molecules, was proposed in 1972. However, this concept was not well accepted until the early 1990’s when receptor subtypes for purines and pyrimidines were cloned and characterised, which includes four subtypes of the P1 (adenosine) receptor, seven subtypes of P2X ion channel receptors and 8 subtypes of the P2Y G protein-coupled receptor. Early studies were largely concerned with the physiology, pharmacology and biochemistry of purinergic signalling. More recently, the focus has been on the pathophysiology and therapeutic potential. There was early recognition of the use of P1 receptor agonists for the treatment of supraventricular tachycardia and A2A receptor antagonists are promising for the treatment of Parkinson’s disease. Clopidogrel, a P2Y12 antagonist, is widely used for the treatment of thrombosis and stroke, blocking P2Y12 receptor-mediated platelet aggregation. Diquafosol, a long acting P2Y2 receptor agonist, is being used for the treatment of dry eye. P2X3 receptor antagonists have been developed that are orally bioavailable and stable in vivo and are currently in clinical trials for the treatment of chronic cough, bladder incontinence, visceral pain and hypertension. Antagonists to P2X7 receptors are being investigated for the treatment of inflammatory disorders, including neurodegenerative diseases. Other investigations are in progress for the use of purinergic agents for the treatment of osteoporosis, myocardial infarction, irritable bowel syndrome, epilepsy, atherosclerosis, depression, autism, diabetes, and cancer. PMID:28993732
Fekete, Tibor; Rásó, Erzsébet; Pete, Imre; Tegze, Bálint; Liko, István; Munkácsy, Gyöngyi; Sipos, Norbert; Rigó, János; Györffy, Balázs
2012-07-01
Transcriptomic analysis of global gene expression in ovarian carcinoma can identify dysregulated genes capable to serve as molecular markers for histology subtypes and survival. The aim of our study was to validate previous candidate signatures in an independent setting and to identify single genes capable to serve as biomarkers for ovarian cancer progression. As several datasets are available in the GEO today, we were able to perform a true meta-analysis. First, 829 samples (11 datasets) were downloaded, and the predictive power of 16 previously published gene sets was assessed. Of these, eight were capable to discriminate histology subtypes, and none was capable to predict survival. To overcome the differences in previous studies, we used the 829 samples to identify new predictors. Then, we collected 64 ovarian cancer samples (median relapse-free survival 24.5 months) and performed TaqMan Real Time Polimerase Chain Reaction (RT-PCR) analysis for the best 40 genes associated with histology subtypes and survival. Over 90% of subtype-associated genes were confirmed. Overall survival was effectively predicted by hormone receptors (PGR and ESR2) and by TSPAN8. Relapse-free survival was predicted by MAPT and SNCG. In summary, we successfully validated several gene sets in a meta-analysis in large datasets of ovarian samples. Additionally, several individual genes identified were validated in a clinical cohort. Copyright © 2011 UICC.
Kahsai, L; Carlsson, M A; Winther, A M E; Nässel, D R
2012-04-19
The central complex is a prominent set of midline neuropils in the insect brain, known to be a higher locomotor control center that integrates visual inputs and modulates motor outputs. It is composed of four major neuropil structures, the ellipsoid body (EB), fan-shaped body (FB), noduli (NO), and protocerebral bridge (PB). In Drosophila different types of central complex neurons have been shown to express multiple neuropeptides and neurotransmitters; however, the distribution of corresponding receptors is not known. Here, we have mapped metabotropic, G-protein-coupled receptors (GPCRs) of several neurotransmitters to neurons of the central complex. By combining immunocytochemistry with GAL4 driven green fluorescent protein, we examined the distribution patterns of six different GPCRs: two serotonin receptor subtypes (5-HT(1B) and 5-HT(7)), a dopamine receptor (DopR), the metabotropic GABA(B) receptor (GABA(B)R), the metabotropic glutamate receptor (DmGluR(A)) and a short neuropeptide F receptor (sNPFR1). Five of the six GPCRs were mapped to different neurons in the EB (sNPFR1 was not seen). Different layers of the FB express DopR, GABA(B)R, DmGluR(A,) and sNPFR1, whereas only GABA(B)R and DmGluR(A) were localized to the PB. Finally, strong expression of DopR and DmGluR(A) was detected in the NO. In most cases the distribution patterns of the GPCRs matched the expression of markers for their respective ligands. In some nonmatching regions it is likely that other types of dopamine and serotonin receptors or ionotropic GABA and glutamate receptors are expressed. Our data suggest that chemical signaling and signal modulation are diverse and highly complex in the different compartments and circuits of the Drosophila central complex. The information provided here, on receptor distribution, will be very useful for future analysis of functional circuits in the central complex, based on targeted interference with receptor expression. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Existence of three subtypes of bradykinin B2 receptors in guinea pig.
Seguin, L; Widdowson, P S; Giesen-Crouse, E
1992-12-01
We describe the binding of [3H]bradykinin to homogenates of guinea pig brain, lung, and ileum. Analysis of [3H]bradykinin binding kinetics in guinea pig brain, lung, and ileum suggests the existence of two binding sites in each tissue. The finding of two binding sites for [3H]bradykinin in ileum, lung, and brain was further supported by Scatchard analysis of equilibrium binding in each tissue. [3H]Bradykinin binds to a high-affinity site in brain, lung, and ileum (KD = 70-200 pM), which constitutes approximately 20% of the bradykinin binding, and to a second, lower-affinity site (0.63-0.95 nM), which constitutes the remaining 80% of binding. Displacement studies with various bradykinin analogues led us to subdivide the high- and lower-affinity sites in each tissue and to suggest the existence of three subtypes of B2 receptors in the guinea pig, which we classify as B2a, B2b, and B2c. Binding of [3H]bradykinin is largely to a B2b receptor subtype, which constitutes the majority of binding in brain, lung, and ileum and represents the lower-affinity site in our binding studies. Receptor subtype B2c constitutes approximately 20% of binding sites in the brain and lung and is equivalent to the high-affinity site in brain and lung. We suggest that a third subtype of B2 receptor (high-affinity site in ileum), B2a, is found only in the ileum. All three subtypes of B2 receptors display a high affinity for bradykinin, whereas they show different affinities for various bradykinin analogues displaying agonist or antagonist activities.(ABSTRACT TRUNCATED AT 250 WORDS)
Hung, Fei-Hung; Chiu, Hung-Wen
2015-01-01
Gene expression profiles differ in different diseases. Even if diseases are at the same stage, such diseases exhibit different gene expressions, not to mention the different subtypes at a single lesion site. Distinguishing different disease subtypes at a single lesion site is difficult. In early cases, subtypes were initially distinguished by doctors. Subsequently, further differences were found through pathological experiments. For example, a brain tumor can be classified according to its origin, its cell-type origin, or the tumor site. Because of the advancements in bioinformatics and the techniques for accumulating gene expressions, researchers can use gene expression data to classify disease subtypes. Because the operation of a biopathway is closely related to the disease mechanism, the application of gene expression profiles for clustering disease subtypes is insufficient. In this study, we collected gene expression data of healthy and four myelodysplastic syndrome subtypes and applied a method that integrated protein-protein interaction and gene expression data to identify different patterns of disease subtypes. We hope it is efficient for the classification of disease subtypes in adventure.
Molecular basis of the dopaminergic system in the cricket Gryllus bimaculatus.
Watanabe, Takayuki; Sadamoto, Hisayo; Aonuma, Hitoshi
2013-12-01
In insects, dopamine modulates various aspects of behavior such as learning and memory, arousal and locomotion, and is also a precursor of melanin. To elucidate the molecular basis of the dopaminergic system in the field cricket Gryllus bimaculatus DeGeer, we identified genes involved in dopamine biosynthesis, signal transduction, and dopamine re-uptake in the cricket. Complementary DNA of two isoforms of tyrosine hydroxylase (TH), which convert tyrosine into L-3,4-dihydroxyphenylalanine, was isolated from the cricket brain cDNA library. In addition, four dopamine receptor genes (Dop1, Dop2, Dop3, and DopEcR) and a high-affinity dopamine transporter gene were identified. The two TH isoforms contained isoform-specific regions in the regulatory ACT domain and showed differential expression patterns in different tissues. In addition, the dopamine receptor genes had a receptor subtype-specific distribution: the Dop1, Dop2, and DopEcR genes were broadly expressed in various tissues at differential expression levels, and the Dop3 gene was restrictedly expressed in neuronal tissues and the testicles. Our findings provide a fundamental basis for understanding the dopaminergic regulation of diverse physiological processes in the cricket.
Sauvageau, Stéphanie; Thorin, Eric; Villeneuve, Louis; Dupuis, Jocelyn
2013-01-01
Background and purpose The endothelin (ET) system is activated in pulmonary arterial hypertension (PAH). The therapeutic value of pharmacological blockade of ET receptors has been demonstrated in various animal models and led to the current approval and continued development of these drugs for the therapy of human PAH. However, we currently incompletely comprehend what local modifications of this system occur as a consequence of PAH, particularly in small resistance arteries, and how this could affect the pharmacological response to ET receptor antagonists with various selectivities for the receptor subtypes. Therefore, the purposes of this study were to evaluate potential modifications of the pharmacology of the ET system in rat pulmonary resistance arteries from monocrotaline (MCT)-induced pulmonary arterial hypertension. Experimental approach ET-1 levels were quantified by ELISA. PreproET-1, ETA and ETB receptor mRNA expressions were quantified in pulmonary resistance arteries using Q-PCR, while protein expression was evaluated by Western blots. Reactivity to ET-1 of isolated pulmonary resistance arteries was measured in the presence of ETA (A-147627), ETB (A-192621) and dual ETA/B (bosentan) receptor antagonists. Key results In rats with PAH, plasma ET-1 increased (p < 0.001) while pulmonary levels were reduced (p < 0.05). In PAH arteries, preproET-1 (p < 0.05) and ETB receptor (p < 0.001) gene expressions were reduced, as were ETB receptor protein levels (p < 0.05). ET-1 induced similar vasoconstrictions in both groups. In arteries from sham animals, neither bosentan nor the ETA or the ETB receptor antagonists modified the response. In arteries from PAH rats, however, bosentan and the ETA receptor antagonist potently reduced the maximal contraction, while bosentan also reduced sensitivity (p < 0.01). Conclusions and implications The effectiveness of both selective ETA and dual ETA/B receptor antagonists is markedly increased in PAH. Down-regulation of pulmonary resistance arteries ETB receptor may contribute to this finding. PMID:19489130
Luhrs, Lauren; Manlapaz, Cynthia; Kedzie, Karen; Rao, Sandhya; Cabrera-Ghayouri, Sara; Donello, John; Gil, Daniel
2016-12-17
Noradrenergic signaling, through the α 2A and α 2C adrenergic receptors modulates the cognitive and behavioral symptoms of disorders such as schizophrenia, attention deficit hyperactivity disorder (ADHD), and addiction. However, it is unknown whether the α 2B receptor has any significant role in CNS function. The present study elucidates the potential role of the α 2B receptor in CNS function via the discovery and use of the first subtype-selective α 2B antagonist (AGN-209419), and behavioral analyses of α-receptor knockout (KO) mice. Using AGN-209419 as radioligand, α 2B receptor binding sites were identified within the olfactory bulb, cortex, thalamus, cerebellum, and striatum. Based on the observed expression patterns of α 2 subtypes in the brain, we compared α 2B KO, α 2A KO and α 2C KO mice behavioral phenotypes with their respective wild-type lines in anxiety (plus maze), compulsive (marble burying), and sensorimotor (prepulse inhibition) tasks. α 2B KO mice exhibited increased marble burying and α 2C KO mice exhibited an increased startle response to a pulse stimulus, but otherwise intact prepulse inhibition. To further explore compulsive behavior, we evaluated novelty-induced locomotor hyperactivity and found that α 2B KO and α 2C KO mice exhibited increased locomotion in the open field. Interestingly, when challenged with amphetamine, α 2C KO mice increased activity at lower doses relative to either α 2A KO or WT mice. However, α 2B KO mice exhibited stereotypy at doses of amphetamine that were only locomotor stimulatory to all other genotypes. Following co-administration of AGN-209419 with low-dose amphetamine in WT mice, stereotypy was observed, mimicking the α 2B KO phenotype. These findings suggest that the α 2B receptor is involved in CNS behaviors associated with sensorimotor gating and compulsivity, and may be therapeutically relevant for disorders such as schizophrenia, ADHD, post-traumatic stress disorder, addiction, and obsessive compulsive disorder. Copyright © 2016. Published by Elsevier Ltd.
Haggerty, D C; Glykos, V; Adams, N E; Lebeau, F E N
2013-12-03
Noradrenaline (NA) in the hippocampus plays an important role in memory function and has been shown to modulate different forms of synaptic plasticity. Oscillations in the gamma frequency (20-80 Hz) band in the hippocampus have also been proposed to play an important role in memory functions and, evidence from both in vitro and in vivo studies, has suggested this activity can be modulated by NA. However, the role of different NA receptor subtypes in the modulation of gamma frequency activity has not been fully elucidated. We have found that NA (30 μM) exerts a bidirectional control on the magnitude of kainate-evoked (50-200 nM) gamma frequency oscillations in the cornu Ammonis (CA3) region of the rat hippocampus in vitro via activation of different receptor subtypes. Activation of alpha-adrenergic receptors (α-AR) reduced the power of the gamma frequency oscillation. In contrast, activation of beta-adrenergic receptors (β-AR) caused an increase in the power of the gamma frequency oscillations. Using specific agonists and antagonists of AR receptor subtypes we demonstrated that these effects are mediated specifically via α1A-AR and β1-AR subtypes. NA activated both receptor subtypes, but the α1A-AR-mediated effect predominated, resulting in a reversible suppression of gamma frequency activity. These results suggest that NA is able to differentially modulate on-going gamma frequency oscillatory activity that could result in either increased or decreased information flow through the hippocampus. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
Confente, Francesca; Rendón, María Carmen; Besseau, Laurence; Falcón, Jack; Muñoz-Cueto, José A
2010-06-01
Melatonin receptors are expressed in neural and peripheral tissues and mediate melatonin actions on the synchronization of circadian and circannual rhythms. In this study we have cloned three melatonin receptor subtypes (MT1, MT2 and Mel1c) in the Senegalese sole and analyzed their central and peripheral tissue distribution. The full-length MT1 (1452 nt), MT2 (1728 nt) and Mel1c (1980 nt) cDNAs encode different proteins of 345, 373, 355 amino acids, respectively. They were mainly expressed in retina, brain and pituitary, but MT1 was also expressed in gill, liver, intestine, kidney, spleen, heart and skin. At peripheral level, MT2 expression was only evident in gill, kidney and skin whereas Mel1c expression was restricted to the muscle and skin. This pattern of expression was not markedly different between sexes or among the times of day analyzed. The real-time quantitative PCR analyses showed that MT1 displayed higher expression at night than during the day in the retina and optic tectum. Seasonal MT1 expression was characterized by higher mRNA levels in spring and autumn equinoxes for the retina, and in winter and summer solstices for the optic tectum. An almost similar expression profile was found for MT2, but differences were less conspicuous. No day-night differences in MT1 and MT2 expression were observed in the pituitary but a seasonal variation was detected, being mRNA levels higher in summer for both receptors. Mel1c expression did not exhibit significant day-night variation in retina and optic tectum but showed seasonal variations, with higher transcript levels in summer (optic tectum) and autumn (retina). Our results suggest that day-night and seasonal variations in melatonin receptor expression could also be mediating circadian and circannual rhythms in sole. Copyright 2010 Elsevier Inc. All rights reserved.
Role of estrogen receptor-α on food demand elasticity.
Minervini, Vanessa; Rowland, Neil E; Robertson, Kimberly L; Foster, Thomas C
2015-05-01
Estrogens have been shown to have an inhibitory effect on food intake under free-feeding conditions, yet the effects of estrogens on food-maintained operant responding have been studied to a much lesser extent and, thus, are not well understood. Therefore, the purpose of the present experiment was to use a behavioral economics paradigm to assess differences in demand elasticity between mice with knockout of the estrogen receptor subtype α, knockout of subtype β, and their wild type controls. The mice responded in a closed economy, and the price of food was increased by increasing the fixed-ratio response requirement every four sessions. Overall, we found that mice with the knockout of receptor subtype α had the most elastic demand functions. Therefore, under these conditions, estrogens increased food seeking via activation of the receptor subtype α. The results were inconsistent with those reported by previous studies that employed free-feeding conditions. © Society for the Experimental Analysis of Behavior.
Samplaski, Mary K; Heston, Warren; Elson, Paul; Magi-Galluzzi, Cristina; Hansel, Donna E
2011-11-01
Folate hydrolase (prostate-specific antigen) 1 (FH(PSA)1), also known as prostate-specific membrane antigen (PSMA), is a transmembrane receptor expressed on prostate cancer cells that correlates with a more aggressive phenotype. Recent studies have demonstrated FH(PSA)1 expression in numerous benign and malignant tissue types, as well as the malignant neovasculature. As FH(PSA)1 represents a diagnostic immunomarker for prostate cancer, we explored its expression pattern in various subtypes of bladder cancer. Immunohistochemical analysis (IHC) of FH(PSA)1 was performed using tissue microarrays constructed from 167 bladder cancers, including 96 urothelial carcinomas (UCCs), 37 squamous cell carcinomas, 17 adenocarcinomas and 17 small cell carcinomas. We used a FH(PSA)1 monoclonal antibody obtained from Dako (clone 3E6, dilution 1:100), which recognizes the epitope present in the 57-134 amino acid region of the extracellular portion of the PSMA molecule. Intensity of IHC staining was scored as 0 (no expression) to 3+ (strong expression), with 2-3+ IHC considered a positive result. FH(PSA)1 demonstrated expression in a subset of bladder cancers and was most common in small cell carcinoma (3/17; 18%), with concurrent expression in non-small cell components in a subset of cases (2/6). FH(PSA)1 expression was less frequent in UCC (3/96; 3%) and adenocarcinoma (2/17; 12%). None of the squamous cell carcinomas demonstrated tumor cell expression of FH(PSA)1. However, all bladder cancers examined expressed FH(PSA)1 in the tumor vasculature, suggesting a potential role for this molecule in mediating new vessel ingrowth. FH(PSA)1 may occasionally be expressed in various subtypes of bladder cancer. These findings suggest cautious use of FH(PSA)1 as a diagnostic marker for prostatic tissue invading the bladder. The finding of FH(PSA)1 in the bladder cancer neovasculature suggests that this molecule may promote tumor growth and may represent a potential new vascular target in this disease.
Molecular recognition at adenine nucleotide (P2) receptors in platelets.
Jacobson, Kenneth A; Mamedova, Liaman; Joshi, Bhalchandra V; Besada, Pedro; Costanzi, Stefano
2005-04-01
Transmembrane signaling through P2Y receptors for extracellular nucleotides controls a diverse array of cellular processes, including thrombosis. Selective agonists and antagonists of the two P2Y receptors present on the platelet surface-the G (q)-coupled P2Y (1) subtype and the G (i)-coupled P2Y (12) subtype-are now known. High-affinity antagonists of each have been developed from nucleotide structures. The (N)-methanocarba bisphosphate derivatives MRS2279 and MRS2500 are potent and selective P2Y (1) receptor antagonists. The carbocyclic nucleoside AZD6140 is an uncharged, orally active P2Y (12) receptor antagonist of nM affinity. Another nucleotide receptor on the platelet surface, the P2X (1) receptor, the activation of which may also be proaggregatory, especially under conditions of high shear stress, has high-affinity ligands, although high selectivity has not yet been achieved. Although alpha,beta-methylene-adenosine triphosphate (ATP) is the classic agonist for the P2X (1) receptor, where it causes rapid desensitization, the agonist BzATP is among the most potent in activating this subtype. The aromatic sulfonates NF279 and NF449 are potent antagonists of the P2X (1) receptor. The structures of the two platelet P2Y receptors have been modeled, based on a rhodopsin template, to explain the basis for nucleotide recognition within the putative transmembrane binding sites. The P2Y (1) receptor model, especially, has been exploited in the design and optimization of antagonists targeted to interact selectively with that subtype.
Localization of P2X receptor subtypes 2, 3 and 7 in human urinary bladder.
Svennersten, Karl; Hallén-Grufman, Katarina; de Verdier, Petra J; Wiklund, N Peter; Poljakovic, Mirjana
2015-08-08
Voiding dysfunctions are a common problem that has a severe negative impact on the quality of life. Today there is a need for new drug targets for these conditions. The role of ATP receptors in bladder physiology has been studied for some time, primarily in animal models. The aim of this work is to investigate the localization of the ATP receptors P2X2, P2X3 and P2X7 and their colocalization with vimentin and actin in the human urinary bladder. Immunohistochemical analysis was conducted on full-thickness bladder tissues from fundus and trigonum collected from 15 patients undergoing open radical cystectomy due to chronic cystitis, bladder cancer or locally advanced prostate cancer. Colocalization analyses were performed between the three different P2X subtypes and the structural proteins vimentin and actin. Specimens were examined using epifluorescence microscopy and correlation coefficients were calculated for each costaining as well as the mean distance from the laminin positive basal side of the urothelium to the vimentin positive cells located in the suburothelium. P2X2 was expressed in vimentin positive cells located in the suburothelium. Less distinct labelling of P2X2 was also observed in actin positive smooth muscle cells and in the urothelium. P2X3 was expressed in vimentin positive cells surrounding the smooth muscle, and in vimentin positive cells located in the suburothelium. Weaker P2X3 labelling was seen in the urothelium. P2X7 was expressed in the smooth muscle cells and the urothelium. In the suburothelium, cells double positive for P2X2 and vimentin where located closer to the urothelium while cells double positive for P2X3 and vimentin where located further from the urothelium. The results from this study demonstrate that there is a significant difference in the expression of the purinergic P2X2, P2X3 and P2X7 receptors in the different histological layers of the human urinary bladder.
Chittajallu, R; Wester, J C; Craig, M T; Barksdale, E; Yuan, X Q; Akgül, G; Fang, C; Collins, D; Hunt, S; Pelkey, K A; McBain, C J
2017-07-28
Appropriate integration of GABAergic interneurons into nascent cortical circuits is critical for ensuring normal information processing within the brain. Network and cognitive deficits associated with neurological disorders, such as schizophrenia, that result from NMDA receptor-hypofunction have been mainly attributed to dysfunction of parvalbumin-expressing interneurons that paradoxically express low levels of synaptic NMDA receptors. Here, we reveal that throughout postnatal development, thalamic, and entorhinal cortical inputs onto hippocampal neurogliaform cells are characterized by a large NMDA receptor-mediated component. This NMDA receptor-signaling is prerequisite for developmental programs ultimately responsible for the appropriate long-range AMPAR-mediated recruitment of neurogliaform cells. In contrast, AMPAR-mediated input at local Schaffer-collateral synapses on neurogliaform cells remains normal following NMDA receptor-ablation. These afferent specific deficits potentially impact neurogliaform cell mediated inhibition within the hippocampus and our findings reveal circuit loci implicating this relatively understudied interneuron subtype in the etiology of neurodevelopmental disorders characterized by NMDA receptor-hypofunction.Proper brain function depends on the correct assembly of excitatory and inhibitory neurons into neural circuits. Here the authors show that during early postnatal development in mice, NMDAR signaling via activity of long-range synaptic inputs onto neurogliaform cells is required for their appropriate integration into the hippocampal circuitry.
Mulak, Agata; Larauche, Muriel; Biraud, Mandy; Million, Mulugeta; Rivier, Jean; Taché, Yvette
2014-01-01
Somatostatin interacts with 5 G-protein-coupled receptor (sst1–5). Octreotide, a stable sst2≫3≥5 agonist, octreotide, exerts a visceral anti-hyperalgesic effect in experimental and clinical studies. Little is known on the receptor subtypes involved. We investigated the influence of the stable sst1–5 agonist, ODT8-SST and selective receptor subtype peptide agonists (3 or 10 μg/mouse) injected intraperitoneally (ip) on visceral hypersensitivity in mice induced by repeated noxious colorectal distensions (4 sets of 3 CRD, each at 55 mmHg) or corticotropin-releasing factor receptor 1 agonist, cortagine given between 2 sets of graded CRD (15, 30, 45, and 60 mmHg, 3 times each pressure). The mean visceromotor response (VMR) was assessed using a non-invasive manometry method and values were expressed as percentage of the VMR to the 1st set of CRD baseline or to the 60 mmHg CRD, respectively. ODT8-SST (10 μg) and the sst2 agonist, S-346-011 (3 and 10 μg) prevented mechanically-induced visceral hypersensitivity in the 3 sets of CRD, the sst1 agonist (10 μg) blocked only the 2nd set and showed a trend at 3 μg while the sst4 agonist had no effect. The selective sst2 antagonist, S-406-028 blocked the sst2 agonist but not the sst1 agonist effect. The sst1 agonist (3 and 10 μg) prevented cortagine-induced hypersensitivity to CRD at each pressure while the sst2 agonist at 10 μg reduced it. These data indicate that in addition to sst2, the sst1 agonist may provide a novel promising target to alleviate visceral hypersensitivity induced by mechanoreceptor sensitization and more prominently, stress-related visceral nociceptive sensitization. PMID:25451334
Mulak, Agata; Larauche, Muriel; Biraud, Mandy; Million, Mulugeta; Rivier, Jean; Taché, Yvette
2015-01-01
Somatostatin interacts with five G-protein-coupled receptor (sst1-5). Octreotide, a stable sst2≫3≥5 agonist, exerts a visceral anti-hyperalgesic effect in experimental and clinical studies. Little is known on the receptor subtypes involved. We investigated the influence of the stable sst1-5 agonist, ODT8-SST and selective receptor subtype peptide agonists (3 or 10μg/mouse) injected intraperitoneally (ip) on visceral hypersensitivity in mice induced by repeated noxious colorectal distensions (four sets of three CRD, each at 55mmHg) or corticotropin-releasing factor receptor 1 agonist, cortagine given between two sets of graded CRD (15, 30, 45, and 60mmHg, three times each pressure). The mean visceromotor response (VMR) was assessed using a non-invasive manometry method and values were expressed as percentage of the VMR to the 1st set of CRD baseline or to the 60mmHg CRD, respectively. ODT8-SST (10μg) and the sst2 agonist, S-346-011 (3 and 10μg) prevented mechanically induced visceral hypersensitivity in the three sets of CRD, the sst1 agonist (10μg) blocked only the 2nd set and showed a trend at 3μg while the sst4 agonist had no effect. The selective sst2 antagonist, S-406-028 blocked the sst2 agonist but not the sst1 agonist effect. The sst1 agonist (3 and 10μg) prevented cortagine-induced hypersensitivity to CRD at each pressure while the sst2 agonist at 10μg reduced it. These data indicate that in addition to sst2, the sst1 agonist may provide a novel promising target to alleviate visceral hypersensitivity induced by mechanoreceptor sensitization and more prominently, stress-related visceral nociceptive sensitization. Copyright © 2014 Elsevier Inc. All rights reserved.
Bisphenol A Exposure Is Associated with in Vivo Estrogenic Gene Expression in Adults
Melzer, David; Harries, Lorna; Cipelli, Riccardo; Henley, William; Money, Cathryn; McCormack, Paul; Young, Anita; Guralnik, Jack; Ferrucci, Luigi; Bandinelli, Stefania; Corsi, Anna Maria
2011-01-01
Background: Bisphenol A (BPA) is a synthetic estrogen commonly used in polycarbonate plastic and resin-lined food and beverage containers. Exposure of animal and cell models to doses of BPA below the recommended tolerable daily intake (TDI) of 50 μg/kg/day have been shown to alter specific estrogen-responsive gene expression, but this has not previously been shown in humans. Objective: We investigated associations between BPA exposure and in vivo estrogenic gene expression in humans. Methods: We studied 96 adult men from the InCHIANTI population study and examined in vivo expression of six estrogen receptor, estrogen-related receptor, and androgen receptor genes in peripheral blood leukocytes. Results: The geometric mean urinary BPA concentration was 3.65 ng/mL [95% confidence interval (CI): 3.13, 4.28], giving an estimated mean excretion of 5.84 μg/day (95% CI: 5.00, 6.85), significantly below the current TDI. In age-adjusted models, there were positive associations between higher BPA concentrations and higher ESR2 [estrogen receptor 2 (ER beta)] expression (unstandardized linear regression coefficient = 0.1804; 95% CI: 0.0388, 0.3221; p = 0.013) and ESRRA (estrogen related receptor alpha) expression (coefficient = 0.1718; 95% CI: 0.0213, 0.3223; p = 0.026): These associations were little changed after adjusting for potential confounders, including obesity, serum lipid concentrations, and white cell subtype percentages. Upper-tertile BPA excretors (urinary BPA > 4.6 ng/mL) had 65% higher mean ESR2 expression than did lower-tertile BPA excretors (0–2.4 ng/mL). Conclusions: Because activation of nuclear-receptor–mediated pathways by BPA is consistently found in laboratory studies, such activation in humans provides evidence that BPA is likely to function as a xenoestrogen in this sample of adults. PMID:21831745
Opioid receptor subtypes: fact or artifact?
Dietis, N; Rowbotham, D J; Lambert, D G
2011-07-01
There is a vast amount of pharmacological evidence favouring the existence of multiple subtypes of opioid receptors. In addition to the primary classification of µ (mu: MOP), δ (delta: DOP), κ (kappa: KOP) receptors, and the nociceptin/orphanin FQ peptide receptor (NOP), various groups have further classified the pharmacological µ into µ(1-3), the δ into δ(1-2)/δ(complexed/non-complexed), and the κ into κ(1-3). From an anaesthetic perspective, the suggestions that µ(1) produced analgesia and µ(2) produced respiratory depression are particularly important. However, subsequent to the formal identification of the primary opioid receptors (MOP/DOP/KOP/NOP) by cloning and the use of this information to produce knockout animals, evidence for these additional subtypes is lacking. Indeed, knockout of a single gene (and hence receptor) results in a loss of all function associated with that receptor. In the case of MOP knockout, analgesia and respiratory depression is lost. This suggests that further sub-classification of the primary types is unwise. So how can the wealth of pharmacological data be reconciled with new molecular information? In addition to some simple misclassification (κ(3) is probably NOP), there are several possibilities which include: (i) alternate splicing of a common gene product, (ii) receptor dimerization, (iii) interaction of a common gene product with other receptors/signalling molecules, or (iv) a combination of (i)-(iii). Assigning variations in ligand activity (pharmacological subtypes) to one or more of these molecular suggestions represents an interesting challenge for future opioid research.
Ogura, Tatsuya; Szebenyi, Steven A.; Krosnowski, Kurt; Sathyanesan, Aaron; Jackson, Jacqueline
2011-01-01
The mammalian olfactory epithelium is made up of ciliated olfactory sensory neurons (OSNs), supporting cells, basal cells, and microvillous cells. Previously, we reported that a population of nonneuronal microvillous cells expresses transient receptor potential channel M5 (TRPM5). Using transgenic mice and immunocytochemical labeling, we identify that these cells are cholinergic, expressing the signature markers of choline acetyltransferase (ChAT) and the vesicular acetylcholine transporter. This result suggests that acetylcholine (ACh) can be synthesized and released locally to modulate activities of neighboring supporting cells and OSNs. In Ca2+ imaging experiments, ACh induced increases in intracellular Ca2+ levels in 78% of isolated supporting cells tested in a concentration-dependent manner. Atropine, a muscarinic ACh receptor (mAChR) antagonist suppressed the ACh responses. In contrast, ACh did not induce or potentiate Ca2+ increases in OSNs. Instead ACh suppressed the Ca2+ increases induced by the adenylyl cyclase activator forskolin in some OSNs. Supporting these results, we found differential expression of mAChR subtypes in supporting cells and OSNs using subtype-specific antibodies against M1 through M5 mAChRs. Furthermore, we found that various chemicals, bacterial lysate, and cold saline induced Ca2+ increases in TRPM5/ChAT-expressing microvillous cells. Taken together, our data suggest that TRPM5/ChAT-expressing microvillous cells react to certain chemical or thermal stimuli and release ACh to modulate activities of neighboring supporting cells and OSNs via mAChRs. Our studies reveal an intrinsic and potentially potent mechanism linking external stimulation to cholinergic modulation of activities in the olfactory epithelium. PMID:21676931
High expression of dopamine receptor subtype 2 in a large series of neuroendocrine tumors.
Grossrubatscher, Erika; Veronese, Silvio; Ciaramella, Paolo Dalino; Pugliese, Raffaele; Boniardi, Marco; De Carlis, Luciano; Torre, Massimo; Ravini, Mario; Gambacorta, Marcello; Loli, Paola
2008-12-01
To evaluate by immumohistochemistry the presence of DR subtype 2 (D2R) in well differentiated NETs of different sites and in normal islet cells. Recent data in vitro and in vivo support that dopaminergic drugs might exert an inhibitory effect on hormone secretion and, possibly, on tumor growth in neuroendocrine tumors (NET)s. Their potential therapeutic role needs the demonstration of dopamine receptors (DR) in tumor cells. Little is known on the expression of DR in NETs. 85% of samples (100% of bronchial carcinoids and 93% of islet cell tumors) showed positivity for D2R; intensity of immunoreaction in NETs was similar or higher than in pituitary (54% and respectively 31% of cases). D2R positivity in more than 70% of tumor cells was observed in 46% of samples. Same intensity of D2R-immunoreactivity was found in pituitary and normal islet cells. No differences in D2R expression were recorded on considering tumor grading, size, proliferative activity, presence of metastases, endocrine activity and gender. A significant difference (62.5% vs 96.4%, p = 0.039) was observed in the prevalence of D2R expression between patients with more aggressive tumors and patients without recurrence/progression of disease during follow-up. 46 NET samples from 44 patients and normal endocrine pancreatic tissue were studied. D2R-staining was performed on NETs and compared with six non-secreting pituitary adenomas and related to clinical-pathological data. The present data demonstrate a high expression of D2R in NETs; this finding is of clinical relevance in view of the potential role of dopaminergic drugs in inhibiting secretion and/or cell proliferation in NETs.
Xi, Dong; Zhang, Wentong; Wang, Huai-Xing; Stradtman, George G; Gao, Wen-Jun
2009-11-01
N-methyl-D-aspartic acid receptor (NMDAR) hypofunction has long been implicated in schizophrenia and NMDARs on gamma-aminobutyric acid (GABA)ergic interneurons are proposed to play an essential role in the pathogenesis. However, controversial results have been reported regarding the regulation of NMDAR expression, and direct evidence of how NMDAR antagonists act on specific subpopulations of prefrontal interneurons is missing. We investigated the effects of the NMDAR antagonist dizocilpine (MK-801) on the expression of NMDAR subtypes in the identified interneurons in young adult rat prefrontal cortex (PFC) by using laser microdissection and real-time polymerase chain reaction, combined with Western blotting and immunofluorescent staining. We found that MK-801 induced distinct changes of NMDAR subunits in the parvalbumin-immunoreactive (PV-ir) interneurons vs. pyramidal neurons in the PFC circuitry. The messenger RNA (mRNA) expression of all NMDAR subtypes, including NR1 and NR2A to 2D, exhibited inverted-U dose-dependent changes in response to MK-801 treatment in the PFC. In contrast, subunit mRNAs of NMDARs in PV-ir interneurons were significantly down-regulated at low doses, unaltered at medium doses, and significantly decreased again at high doses, suggesting a biphasic dose response to MK-801. The differential effects of MK-801 in mRNA expression of NMDAR subunits were consistent with the protein expression of NR2A and NR2B subunits revealed with Western blotting and double immunofluorescent staining. These results suggest that PV-containing interneurons in the PFC exhibit a distinct responsiveness to NMDAR antagonism and that NMDA antagonist can differentially and dose-dependently regulate the functions of pyramidal neurons and GABAergic interneurons in the prefrontal cortical circuitry.
FMRP acts as a key messenger for dopamine modulation in the forebrain.
Wang, Hansen; Wu, Long-Jun; Kim, Susan S; Lee, Frank J S; Gong, Bo; Toyoda, Hiroki; Ren, Ming; Shang, Yu-Ze; Xu, Hui; Liu, Fang; Zhao, Ming-Gao; Zhuo, Min
2008-08-28
The fragile X mental retardation protein (FMRP) is an RNA-binding protein that controls translational efficiency and regulates synaptic plasticity. Here, we report that FMRP is involved in dopamine (DA) modulation of synaptic potentiation. AMPA glutamate receptor subtype 1 (GluR1) surface expression and phosphorylation in response to D1 receptor stimulation were reduced in cultured Fmr1(-/-) prefrontal cortex (PFC) neurons. Furthermore, D1 receptor signaling was impaired, accompanied by D1 receptor hyperphosphorylation at serine sites and subcellular redistribution of G protein-coupled receptor kinase 2 (GRK2) in both PFC and striatum of Fmr1(-/-) mice. FMRP interacted with GRK2, and pharmacological inhibition of GRK2 rescued D1 receptor signaling in Fmr1(-/-) neurons. Finally, D1 receptor agonist partially rescued hyperactivity and enhanced the motor function of Fmr1(-/-) mice. Our study has identified FMRP as a key messenger for DA modulation in the forebrain and may provide insights into the cellular and molecular mechanisms underlying fragile X syndrome.
Immunotherapeutic interventions of Triple Negative Breast Cancer.
Li, Zehuan; Qiu, Yiran; Lu, Weiqi; Jiang, Ying; Wang, Jin
2018-05-30
Triple Negative Breast Cancer (TNBC) is a highly heterogeneous subtype of breast cancer that lacks the expression of oestrogen receptors, progesterone receptors and human epidermal growth factor receptor 2. Although TNBC is sensitive to chemotherapy, the overall outcomes of TNBC are worse than for other breast cancers, and TNBC is still one of the most fatal diseases for women. With the discovery of antigens specifically expressed in TNBC cells and the developing technology of monoclonal antibodies, chimeric antigen receptors and cancer vaccines, immunotherapy is emerging as a novel promising option for TNBC. This review is mainly focused on the tumour microenvironment and host immunity, Triple Negative Breast Cancer and the clinical treatment of TNBC, novel therapies for cancer and immunotherapy for TNBC, and the future outlook for the treatment for TNBC and the interplay between the therapies, including immune checkpoint inhibitors, combination of immune checkpoint inhibitors with targeted treatments in TNBC, adoptive cell therapy, cancer vaccines. The review also highlights recent reports on the synergistic effects of immunotherapy and chemotherapy, antibody-drug conjugates, and exosomes, as potential multifunctional therapeutic agents in TNBC.
Guerrini, Gabriella; Ciciani, Giovanna; Daniele, Simona; Martini, Claudia; Costagli, Camilla; Guarino, Chiara; Selleri, Silvia
2018-05-15
A comparison between compounds with pyrazolo[1,5-a]pyrimidine structure (series 4-6) and pyrazolo[5,1-c][1,2,4]triazine core (series 9) as ligands at GABA A -receptor subtype, was evaluated. Moreover, for pyrazolotriazine derivatives having binding recognition, the interaction on recombinant rat α(1-3,5) GABA A receptor subtypes, was performed. Among these latter, emerge compounds 9c, 9k, 9l, 9m and 9n as α1-selective and 9h as α2-selective ligands. Copyright © 2018 Elsevier Ltd. All rights reserved.
Iwanowicz, Luke R.; Hung, Alice L.; Blazer, Vicki S.; Halpern, Marnie E.
2014-01-01
Background: Environmental endocrine disruptors (EEDs) are exogenous chemicals that mimic endogenous hormones such as estrogens. Previous studies using a zebrafish transgenic reporter demonstrated that the EEDs bisphenol A and genistein preferentially activate estrogen receptors (ERs) in the larval heart compared with the liver. However, it was not known whether the transgenic zebrafish reporter was sensitive enough to detect estrogens from environmental samples, whether environmental estrogens would exhibit tissue-specific effects similar to those of BPA and genistein, or why some compounds preferentially target receptors in the heart. Methods: We tested surface water samples using a transgenic zebrafish reporter with tandem estrogen response elements driving green fluorescent protein expression (5xERE:GFP). Reporter activation was colocalized with tissue-specific expression of ER genes by RNA in situ hybridization. Results: We observed selective patterns of ER activation in transgenic fish exposed to river water samples from the Mid-Atlantic United States, with several samples preferentially activating receptors in embryonic and larval heart valves. We discovered that tissue specificity in ER activation was due to differences in the expression of ER subtypes. ERα was expressed in developing heart valves but not in the liver, whereas ERβ2 had the opposite profile. Accordingly, subtype-specific ER agonists activated the reporter in either the heart valves or the liver. Conclusion: The use of 5xERE:GFP transgenic zebrafish revealed an unexpected tissue-specific difference in the response to environmentally relevant estrogenic compounds. Exposure to estrogenic EEDs in utero was associated with adverse health effects, with the potentially unanticipated consequence of targeting developing heart valves. Citation: Gorelick DA, Iwanowicz LR, Hung AL, Blazer VS, Halpern ME. 2014. Transgenic zebrafish reveal tissue-specific differences in estrogen signaling in response to environmental water samples. Environ Health Perspect 122:356–362; http://dx.doi.org/10.1289/ehp.1307329 PMID:24425189
Gao, Xiuhua; Li, Yonghua; Wang, Hongxia; Li, Chuanbao; Ding, Jianguang
2017-12-01
Recent studies demonstrate that pro-inflammatory cytokines (PICs, i.e. IL-1β, IL-6 and TNF-α) in retinal tissues are likely involved in the development of diabetic retinopathy (DR). In this report, we particularly examined contributions of hypoxia inducible factor subtype 1α (HIF-1α) to the expression of PICs and their receptors in diabetic retina. Streptozotocin (STZ) was systemically injected to induce hyperglycaemia in rats. ELISA and Western blot analysis were employed to determine the levels of HIF-1α and PICs as well as PIC receptors in retinal tissues of control rats and STZ rats. The levels of retinal HIF-1α were significantly increased in STZ rats 4-10 weeks after induction of hyperglycaemia as compared with control animals. With increasing HIF-1α retinal PICs including IL-1β, IL-6 and TNF-α, their respective receptors, namely IL-1R, IL-6R and TNFR1, were also elevated in STZ rats. Moreover, inhibition of HIF-1α by injection of 2-methoxyestradiol (2-MET) significantly decreased the amplified expression IL-6, TNF-α, IL-6R and TNFR1 in diabetic retina, but did not modify IL-1β pathway. In addition, we examined protein expression of Caspase-3 indicating cell apoptosis in the retina of STZ rats after infusing 2-MET, demonstrating that 2-MET attenuated an increase in Caspase-3 evoked by STZ. Hypoxia inducible factor subtype 1α (HIF-1α) activated in diabetic retina is likely to play a role in regulating pathophysiological process via IL-6 and TNF-α mechanism. This has pharmacological implications to target specific HIF-1α, IL-6 and TNF-α signalling pathway for dysfunction and vulnerability related to DR. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Design of ligands for the nicotinic acetylcholine receptors: the quest for selectivity.
Bunnelle, William H; Dart, Michael J; Schrimpf, Michael R
2004-01-01
In the last decade, nicotinic acetylcholine receptors (nAChRs) have emerged as important targets for drug discovery. The therapeutic potential of nicotinic agonists depends substantially on the ability to selectively activate certain receptor subtypes that mediate beneficial effects. The design of such compounds has proceeded in spite of a general shortage of data pertaining to subtype selectivity. Medicinal chemistry efforts have been guided principally by binding affinities to the alpha4beta2 and/or alpha7 subtypes, even though these are not predictive of agonist activity at either subtype. Nevertheless, a diverse family of nAChR ligands has been developed, and several analogs with promising therapeutic potential have now advanced to human clinical trials. This paper provides an overview of the structure-affinity relationships that continue to drive development of new nAChR ligands.
Capiotti, Katiucia Marques; Menezes, Fabiano Peres; Nazario, Luiza Reali; Pohlmann, Julhana Bianchini; de Oliveira, Giovanna M T; Fazenda, Lidiane; Bogo, Maurício Reis; Bonan, Carla Denise; Da Silva, Rosane Souza
2011-01-01
Adenosine receptors are the most important biochemical targets of caffeine, a common trimethylxanthine found in food and beverages. Adenosine plays modulatory action during the development through adenosine receptors and their intracellular pathways activation. In this study, we aimed to evaluate if caffeine gave to zebrafish in the very first steps of development is able to affect its direct targets, through the adenosine receptors mRNA expression evaluation, and latter indirect targets, through evaluation of the pattern of dopamine and cAMP-regulated phosphoprotein and brain-derived neurotrophic factor (BDNF) mRNA expression. Here, we demonstrate that zebrafish express adenosine receptor subtypes (A1, A2A1, A2A2 and A2B) since 24h post-fertilization (hpf) and that caffeine exposure is able to affect the expression of these receptors. Caffeine exposure from 1 hpf is able to increase A1 expression at 72-96 hpf and A2A1 expression at 72 hpf. No alterations occurred in A2A2 and A2B expression after caffeine treatment. DARPP-32, a phosphoprotein involved in adenosine intracellular pathway is also expressed since 24 hpf and early exposure to caffeine increased DARPP-32 expression at 168 hpf. We also evaluate the expression of BDNF as one of the targets of adenosine intracellular pathway activation. BDNF was also expressed since 24 hpf and caffeine treatment increased its expression at 48 and 72 hpf. No morphological alterations induced by caffeine treatment were registered by the check of general body features and total body length. Assessment of tactile sensibility also demonstrated no alterations by caffeine treatment. Altogether, these results suggest that caffeine is able to affect expression of its cellular targets since early phases of development in zebrafish without affect visible features. The up-regulation of direct and indirect targets of caffeine presents as a compensatory mechanism of maintenance of adenosinergic modulation during the developmental phase. Copyright © 2011 Elsevier Inc. All rights reserved.
Baladi, Michelle G; Nielsen, Shannon M; McIntosh, J. Michael; Hanson, Glen R; Fleckenstein, Annette E
2015-01-01
Preclinical studies have demonstrated that oral nicotine exposure attenuates long-term dopaminergic damage induced by toxins, including repeated, high doses of methamphetamine. It is suggested that alterations in nicotinic acetylcholine receptor (nAChR) expression, including α4β2* and α6β2* subtypes, likely contribute to this protection. The current study extended these findings by investigating whether nicotine self-administration in male, Sprague-Dawley rats 1): attenuates short-term dopaminergic damage induced by methamphetamine and 2) causes alterations in levels of α4β2* and α6β2* nAChR subtypes. The findings indicate that nicotine self-administration (0.032 mg/kg/infusion for 14 days) per se did not alter α4β2* and α6β2* nAChR expression or dopamine transporter (DAT) expression and function. Interestingly, prior nicotine self-administration attenuated methamphetamine-induced decreases in DAT function when assessed 24 h, but not 1 h, after methamphetamine treatment (4 × 7.5 mg/kg/injection). The ability of nicotine to attenuate the effects of methamphetamine on DAT function corresponded with increases in α4β2*, but not α6β2*, nAChR binding density. Understanding the role of nAChRs in methamphetamine-induced damage has the potential to elucidate mechanisms underlying the etiology of disorders involving dopaminergic dysfunction, as well as to highlight potential new therapeutic strategies for prevention or reduction of dopaminergic neurodegeneration. PMID:26871405
Baladi, Michelle G; Nielsen, Shannon M; McIntosh, J Michael; Hanson, Glen R; Fleckenstein, Annette E
2016-08-01
Preclinical studies have demonstrated that oral nicotine exposure attenuates long-term dopaminergic damage induced by toxins, including repeated, high doses of methamphetamine. It is suggested that alterations in nicotinic acetylcholine receptor (nAChR) expression, including α4β2* and α6β2* subtypes, likely contribute to this protection. The current study extended these findings by investigating whether nicotine self-administration in male, Sprague-Dawley rats (a) attenuates short-term dopaminergic damage induced by methamphetamine and (b) causes alterations in levels of α4β2* and α6β2* nAChR subtypes. The findings indicate that nicotine self-administration (0.032 mg/kg/infusion for 14 days) per se did not alter α4β2* and α6β2* nAChR expression or dopamine transporter (DAT) expression and function. Interestingly, prior nicotine self-administration attenuated methamphetamine-induced decreases in DAT function when assessed 24 h, but not 1 h, after methamphetamine treatment (4×7.5 mg/kg/injection). The ability of nicotine to attenuate the effects of methamphetamine on DAT function corresponded with increases in α4β2*, but not α6β2*, nAChR binding density. Understanding the role of nAChRs in methamphetamine-induced damage has the potential to elucidate mechanisms underlying the etiology of disorders involving dopaminergic dysfunction, as well as to highlight potential new therapeutic strategies for prevention or reduction of dopaminergic neurodegeneration.
Hossain, Ekhtear; Ota, Akinobu; Takahashi, Miyuki; Karnan, Sivasundaram; Damdindorj, Lkhagvasuren; Konishi, Yuko; Konishi, Hiroyuki; Hosokawa, Yoshitaka
2013-06-20
Although chronic arsenic exposure is a well-known risk for cardiovascular disease and has a strong correlation with hypertension, the molecular pathogenesis underlying arsenic exposure-induced hypertension remains poorly understood. To delineate the pathogenesis, we examined changes in the mRNA levels of 2 angiotensin II Type I receptor (AT1R) subtypes, AT1AR and AT1BR, in a mouse aortic endothelial cell line, END-D. Quantitative real-time PCR analysis revealed significant increases in the mRNA levels of 2 AT1R subtypes, AT1AR and AT1BR following sodium arsenite (SA) treatment. Flow cytometry analysis revealed that SA increases the generation of reactive oxygen species (ROS) in a dose-dependent manner. In addition, western blot analysis revealed that SA enhances the phosphorylations of c-Jun N-terminal kinases (JNK) and activated protein 1 (AP-1). These phosphorylations were inhibited by N-acetylcysteine (NAC), an anti-oxidant. Finally, SA-induced AT1R expression was found to be prevented both by NAC and specific JNK inhibitor, SP6001325, strongly indicating that AT1R upregulation is a result of the ROS-mediated activation of the JNK signaling pathway. Taken together, our results indicate that arsenic indeed upregulates the AT1R expression, thus highlighting a role of arsenic-induced aberrant AT1R signaling in the pathogenesis of hypertension. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Agui, T; Xin, X; Cai, Y; Shim, G; Muramatsu, Y; Yamada, T; Fujiwara, H; Matsumoto, K
1995-09-01
The regulation of the gene expression of the atrial natriuretic peptide receptor (ANPR) subtypes, ANPR-A, ANPR-B, and ANPR-C, was investigated in a murine thymic stromal cell line, MRL 104.8a. When MRL 104.8a cells were cultured with transforming growth factor (TGF)-beta1, [125I]ANP binding sites increased with increasing dose of TGF-beta1. These binding sites were identified as ANPR-C by a displacement experiment with ANPR-C-specific ligand, C-ANF, and by the affinity cross-linking of the [125I]ANP binding sites with a chemical cross-linker to determine the molecular weight of the ANPR. This augmentation of the ANPR-C expression was elucidated to occur at the transcriptional level by Northern blot experiment, comparison of the relative amounts of mRNA by reverse transcription (RT)-PCR, and in vitro nuclear transcription assay. Conversely, the expression of the ANP biological receptors, ANPR-A and ANPR-B, was shown to be down-regulated by TGF-beta1. These data suggest that TGF-beta1 regulates the gene expression of ANPRs in the thymic stromal cells and that ANP and TGF-beta1 might affect the thymic stromal cell functions.
Zhang, Hong-Mei; Zhou, Hong-Yi; Chen, Shao-Rui; Gautam, Dinesh; Wess, Jürgen; Pan, Hui-Lin
2007-12-01
Muscarinic acetylcholine receptors (mAChRs) play an important role in the tonic regulation of nociceptive transmission in the spinal cord. However, how mAChR subtypes contribute to the regulation of synaptic glycine release is unknown. To determine their role, glycinergic spontaneous inhibitory postsynaptic currents (sIPSCs) were recorded in lamina II neurons by using whole-cell recordings in spinal cord slices of wild-type (WT) and mAChR subtype knockout (KO) mice. In WT mice, the mAChR agonist oxotremorine-M dose-dependently decreased the frequency of sIPSCs in most neurons, but it had variable effects in other neurons. In contrast, in M3-KO mice, oxotremorine-M consistently decreased the glycinergic sIPSC frequency in all neurons tested, and in M2/M4 double-KO mice, it always increased the sIPSC frequency. In M2/M4 double-KO mice, the potentiating effect of oxotremorine-M was attenuated by higher concentrations in some neurons through activation of GABA(B) receptors. In pertussis toxin-treated WT mice, oxotremorine-M also consistently increased the sIPSC frequency. In M2-KO and M4-KO mice, the effect of oxotremorine-M on sIPSCs was divergent because of the opposing functions of the M3 subtype and the M2 and M4 subtypes. This study demonstrates that stimulation of the M2 and M4 subtypes inhibits glycinergic inputs to spinal dorsal horn neurons of mice, whereas stimulation of the M3 subtype potentiates synaptic glycine release. Furthermore, GABA(B) receptors are involved in the feedback regulation of glycinergic synaptic transmission in the spinal cord. This study revealed distinct functions of mAChR subtypes in controlling glycinergic input to spinal dorsal horn neurons.
Adenosine receptor desensitization and trafficking.
Mundell, Stuart; Kelly, Eamonn
2011-05-01
As with the majority of G-protein-coupled receptors, all four of the adenosine receptor subtypes are known to undergo agonist-induced regulation in the form of desensitization and trafficking. These processes can limit the ability of adenosine receptors to couple to intracellular signalling pathways and thus reduce the ability of adenosine receptor agonists as well as endogenous adenosine to produce cellular responses. In addition, since adenosine receptors couple to multiple signalling pathways, these pathways may desensitize differentially, while the desensitization of one pathway could even trigger signalling via another. Thus, the overall picture of adenosine receptor regulation can be complex. For all adenosine receptor subtypes, there is evidence to implicate arrestins in agonist-induced desensitization and trafficking, but there is also evidence for other possible forms of regulation, including second messenger-dependent kinase regulation, heterologous effects involving G proteins, and the involvement of non-clathrin trafficking pathways such as caveolae. In this review, the evidence implicating these mechanisms is summarized for each adenosine receptor subtype, and we also discuss those issues of adenosine receptor regulation that remain to be resolved as well as likely directions for future research in this field. Copyright © 2010 Elsevier B.V. All rights reserved.
Nagamine, E; Hirayama, K; Matsuda, K; Okamoto, M; Ohmachi, T; Kadosawa, T; Taniyama, H
2015-09-01
Osteosarcoma (OS), the most common bone tumor, includes OS of the head (OSH) and appendicular OS (OSA). In dogs, it is classified into 6 histologic subtypes: osteoblastic, chondroblastic, fibroblastic, telangiectatic, giant cell, and poorly differentiated. This study investigated the significance of the histologic classification relevant to clinical outcome and the histologic and immunohistochemical relationships between pleomorphism and expression of cytoskeletal proteins in 60 cases each of OSH and OSA. Most neoplasms exhibited histologic diversity, and 64% of OS contained multiple subtypes. In addition to the above 6 subtypes, myxoid, round cell, and epithelioid subtypes were observed. Although the epithelioid subtypes were observed in only OSH, no significant difference in the frequency of other subtypes was observed. Also, no significant relevance was observed between the clinical outcome and histologic subtypes. Cytokeratin (CK) was expressed in both epithelioid and sarcomatoid tumor cells in various subtypes, and all CK-positive tumor cells also expressed vimentin. Vimentin and α-smooth muscle actin (SMA) were expressed in all subtypes. A few SMA-positive spindle-shaped tumor cells exhibited desmin expression. Glial fibrillary acidic protein-positive tumor cells were observed in many subtypes, and some of these cells showed neurofilament expression. Although OSH exhibited significantly stronger immunoreactivity for SMA than OSA, no significant difference in other cytoskeletal proteins was observed. Some tumor cells had cytoskeletal protein expression compatible with the corresponding histologic subtypes, such as CK in the epithelioid subtype and SMA in the fibroblastic subtype. Thus, canine skeletal OS is composed of pleomorphic and heterogenous tumor cells as is reflected in the diversity of histologic patterns and expression of cytoskeletal proteins. © The Author(s) 2015.
Mo, Gary; Bernier, Louis-Philippe; Zhao, Qi; Chabot-Doré, Anne-Julie; Ase, Ariel R; Logothetis, Diomedes; Cao, Chang-Qing; Séguéla, Philippe
2009-01-01
Background P2X3 and P2X2/3 purinergic receptor-channels, expressed in primary sensory neurons that mediate nociception, have been implicated in neuropathic and inflammatory pain responses. The phospholipids phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 3,4,5-trisphosphate (PIP3) are involved in functional modulation of several types of ion channels. We report here evidence that these phospholipids are able to modulate the function of homomeric P2X3 and heteromeric P2X2/3 purinoceptors expressed in dorsal root ganglion (DRG) nociceptors and in heterologous expression systems. Results In dissociated rat DRG neurons, incubation with the PI3K/PI4K inhibitor wortmannin at 35 μM induced a dramatic decrease in the amplitude of ATP- or α,β-meATP-evoked P2X3 currents, while incubation with 100 nM wortmannin (selective PI3K inhibition) produced no significant effect. Intracellular application of PIP2 was able to fully reverse the inhibition of P2X3 currents induced by wortmannin. In Xenopus oocytes and in HEK293 cells expressing recombinant P2X3, 35 μM wortmannin incubation induced a significant decrease in the rate of receptor recovery. Native and recombinant P2X2/3 receptor-mediated currents were inhibited by incubation with wortmannin both at 35 μM and 100 nM. The decrease of P2X2/3 current amplitude induced by wortmannin could be partially reversed by application of PIP2 or PIP3, indicating a sensitivity to both phosphoinositides in DRG neurons and Xenopus oocytes. Using a lipid binding assay, we demonstrate that the C-terminus of the P2X2 subunit binds directly to PIP2, PIP3 and other phosphoinositides. In contrast, no direct binding was detected between the C-terminus of P2X3 subunit and phosphoinositides. Conclusion Our findings indicate a functional regulation of homomeric P2X3 and heteromeric P2X2/3 ATP receptors by phosphoinositides in the plasma membrane of DRG nociceptors, based on subtype-specific mechanisms of direct and indirect lipid sensing. PMID:19671169
Nicotinic ACh Receptors as Therapeutic Targets in CNS Disorders
Dineley, Kelly T.; Pandya, Anshul A.; Yakel, Jerrel L.
2015-01-01
The neurotransmitter acetylcholine (ACh) can regulate neuronal excitability by acting on the cys-loop cation-conducting ligand-gated nicotinic ACh receptor channels (nAChRs). These receptors are widely distributed throughout the central nervous system, being expressed on neurons and non-neuronal cells, where they participate in a variety of physiological responses such as anxiety, the central processing of pain, food intake, nicotine seeking behavior, and cognitive functions. In the mammalian brain, nine different subunits have been found thus far, which assemble into pentameric complexes with much subunit diversity; however the α7 and α4β2 subtypes predominate in the CNS. Neuronal nAChR dysfunction is involved in the pathophysiology of many neurological disorders. Here we will briefly discuss the functional makeup and expression of the nAChRs in the mammalian brain, and their role as targets in neurodegenerative diseases (in particular Alzheimer’s disease), neurodevelopmental disorders (in particular autism and schizophrenia), and neuropathic pain. PMID:25639674
Nicotinic ACh receptors as therapeutic targets in CNS disorders.
Dineley, Kelly T; Pandya, Anshul A; Yakel, Jerrel L
2015-02-01
The neurotransmitter acetylcholine (ACh) can regulate neuronal excitability by acting on the cys-loop cation-conducting ligand-gated nicotinic ACh receptor (nAChR) channels. These receptors are widely distributed throughout the central nervous system (CNS), being expressed on neurons and non-neuronal cells, where they participate in a variety of physiological responses such as anxiety, the central processing of pain, food intake, nicotine seeking behavior, and cognitive functions. In the mammalian brain, nine different subunits have been found thus far, which assemble into pentameric complexes with much subunit diversity; however, the α7 and α4β2 subtypes predominate in the CNS. Neuronal nAChR dysfunction is involved in the pathophysiology of many neurological disorders. Here we will briefly discuss the functional makeup and expression of the nAChRs in mammalian brain, and their role as targets in neurodegenerative diseases (in particular Alzheimer's disease, AD), neurodevelopmental disorders (in particular autism and schizophrenia), and neuropathic pain. Published by Elsevier Ltd.
Stagg, John; Allard, Bertrand
2013-05-01
Triple-negative breast cancer (TNBC), as defined by the absence of estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2 expression, is a challenging disease with the poorest prognosis of all breast cancer subtypes. Importantly, there are currently no known molecular targets for this subgroup of patients. Recent advances in genomics and gene expression profiling have shed new light on the molecule heterogeneity of TNBC. We present an overview of the scientific evidence suggesting that clinical outcome in TNBC is affected by tumor-infiltrating immune cells. We also describe tumor-associated antigens recently identified in TNBC. Finally, we review the current literature on promising immunotherapies for TNBC, including tumor vaccine approaches, immune-checkpoint inhibitors, antagonists of immunosuppressive molecules and adoptive cell therapies. It is our contention that selected patients with TNBC with lymphocytic tumor infiltrates at diagnosis may benefit from immune-based therapies and that these immunotherapies will be most beneficial in combination with cytotoxic drugs that potentiate adaptive anti-tumor immunity.
Zhang, Zheng-mao; Xiao, Shuang; Sun, Guang-yu; Liu, Yue-ping; Zhang, Feng-hua; Yang, Hong-fang; Li, Jia; Qiu, Hong-bing; Liu, Yang; Zhang, Chao; Kang, Shan; Shan, Bao-en
2014-03-01
AT-rich interactive domain 1A (ARID1A) is a tumor suppressor gene that encodes the BAF250a protein. Recent studies have shown the loss of ARID1A expression in several types of tumors. We aimed to investigate the clinical and pathologic role of BAF250a in endometrial carcinoma. We examined the expression of BAF250a and its correlation with the expression of p53, estrogen receptor, progesterone receptor, glucocorticoid receptor, hypoxiainduciblefactor-1α, and vascular endothelial growth factor in normal and various malignant endometrial tissues. The expression of BAF250 was significantly down-regulated in endometrial carcinoma when compared with normal endometrial tissues. The loss of BAF250a expression was found in 25% of endometrial carcinoma samples but not in normal endometrial tissues, complex endometrial hyperplasia, and atypical endometrial hyperplasia samples. Subtypes of endometrial carcinoma, especially uterine endometrioid carcinoma and uterine clear cell carcinoma, had higher frequency of loss of BAF250a expression. In addition, the expression of BAF250a was positively correlated with estrogen receptor and negatively correlated with p53 in poorly differentiated endometrial adenocarcinoma. Moreover, the expression of BAF250a was significantly associated with the differentiation status of endometrial carcinoma but not associated with clinical stage, the depth of myometrial invasion, lymph node metastasis, and overall survival of patients with endometrial carcinoma. Our data showed that loss of BAF250a is frequently found in high-grade endometrioid and clear cell carcinomas but not in other types of endometrial carcinoma. The loss of BAF250a expression does not have prognostic value for endometrial carcinoma.
Agonists and antagonists acting at P2X receptors: selectivity profiles and functional implications.
Lambrecht, G
2000-11-01
P2X receptors are nucleotide-gated cation channels composed of homomeric or heteromeric assemblies of three subunits. In the past 7 years, an extended series (P2X1-7) of P2X subunits has been cloned from vertebrate tissues. In this rapidly expanding field, one of the main current challenges is to relate the cloned P2X receptor subtypes to the diverse physiological responses mediated by the native P2X receptors. However, the paucity of useful ligands, especially subtype-selective agonists and antagonists as well as radioligands, acts as a considerable impediment to progress. Most of the ligands available are highly limited in terms of their kinetics of action, receptor-affinity, subtype-selectivity and P2X receptor-specificity. Their suspected ability to be a substrate for ecto-nucleotidases or to inhibit these enzymes also complicates their use. A number of new antagonists at P2X receptors have recently been described which to some degree are more potent and more selective than earlier antagonists like suramin or pyridoxal-5'-phosphate-6-azophenyl 2',4'-disulfonate (PPADS). This work moves us closer to the ideal goal of classifying the recombinant and native P2X receptor subtypes on the basis of antagonist profiles. This review begins with a brief account of the current status of P2X receptors. It then focuses on the pharmacological properties of a series of key P2 receptor agonists and antagonists and will finish with the discussion of some related therapeutic possibilities.
Nacken, Wolfgang; Anhlan, Darisuren; Hrincius, Eike R; Mostafa, Ahmed; Wolff, Thorsten; Sadewasser, Anne; Pleschka, Stephan; Ehrhardt, Christina; Ludwig, Stephan
2014-08-01
A hallmark cell response to influenza A virus (IAV) infections is the phosphorylation and activation of c-jun N-terminal kinase (JNK). However, so far it is not fully clear which molecules are involved in the activation of JNK upon IAV infection. Here, we report that the transfection of influenza viral-RNA induces JNK in a retinoic acid-inducible gene I (RIG-I)-dependent manner. However, neither RIG-I-like receptors nor MyD88-dependent Toll-like receptors were found to be involved in the activation of JNK upon IAV infection. Viral JNK activation may be blocked by addition of cycloheximide and heat shock protein inhibitors during infection, suggesting that the expression of an IAV-encoded protein is responsible for JNK activation. Indeed, the overexpression of nonstructural protein 1 (NS1) of certain IAV subtypes activated JNK, whereas those of some other subtypes failed to activate JNK. Site-directed mutagenesis experiments using NS1 of the IAV H7N7, H5N1, and H3N2 subtypes identified the amino acid residue phenylalanine (F) at position 103 to be decisive for JNK activation. Cleavage- and polyadenylation-specific factor 30 (CPSF30), whose binding to NS1 is stabilized by the amino acids F103 and M106, is not involved in JNK activation. Conclusively, subtype-specific sequence variations in the IAV NS1 protein result in subtype-specific differences in JNK signaling upon IAV infection. Influenza A virus (IAV) infection leads to the activation or modulation of multiple signaling pathways. Here, we demonstrate for the first time that the c-jun N-terminal kinase (JNK), a long-known stress-activated mitogen-activated protein (MAP) kinase, is activated by RIG-I when cells are treated with IAV RNA. However, at the same time, nonstructural protein 1 (NS1) of IAV has an intrinsic JNK-activating property that is dependent on IAV subtype-specific amino acid variations around position 103. Our findings identify two different and independent pathways that result in the activation of JNK in the course of an IAV infection. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Nacken, Wolfgang; Anhlan, Darisuren; Hrincius, Eike R.; Mostafa, Ahmed; Wolff, Thorsten; Sadewasser, Anne; Pleschka, Stephan; Ehrhardt, Christina
2014-01-01
ABSTRACT A hallmark cell response to influenza A virus (IAV) infections is the phosphorylation and activation of c-jun N-terminal kinase (JNK). However, so far it is not fully clear which molecules are involved in the activation of JNK upon IAV infection. Here, we report that the transfection of influenza viral-RNA induces JNK in a retinoic acid-inducible gene I (RIG-I)-dependent manner. However, neither RIG-I-like receptors nor MyD88-dependent Toll-like receptors were found to be involved in the activation of JNK upon IAV infection. Viral JNK activation may be blocked by addition of cycloheximide and heat shock protein inhibitors during infection, suggesting that the expression of an IAV-encoded protein is responsible for JNK activation. Indeed, the overexpression of nonstructural protein 1 (NS1) of certain IAV subtypes activated JNK, whereas those of some other subtypes failed to activate JNK. Site-directed mutagenesis experiments using NS1 of the IAV H7N7, H5N1, and H3N2 subtypes identified the amino acid residue phenylalanine (F) at position 103 to be decisive for JNK activation. Cleavage- and polyadenylation-specific factor 30 (CPSF30), whose binding to NS1 is stabilized by the amino acids F103 and M106, is not involved in JNK activation. Conclusively, subtype-specific sequence variations in the IAV NS1 protein result in subtype-specific differences in JNK signaling upon IAV infection. IMPORTANCE Influenza A virus (IAV) infection leads to the activation or modulation of multiple signaling pathways. Here, we demonstrate for the first time that the c-jun N-terminal kinase (JNK), a long-known stress-activated mitogen-activated protein (MAP) kinase, is activated by RIG-I when cells are treated with IAV RNA. However, at the same time, nonstructural protein 1 (NS1) of IAV has an intrinsic JNK-activating property that is dependent on IAV subtype-specific amino acid variations around position 103. Our findings identify two different and independent pathways that result in the activation of JNK in the course of an IAV infection. PMID:24872593
Pandey, S C; Davis, J M; Pandey, G N
1995-01-01
Serotonergic neurotransmission represents a complex mechanism involving pre- and post-synaptic events and distinct 5-HT receptor subtypes. Serotonin (5-HT) receptors have been classified into several categories, and they are termed as 5-HT1, 5-HT2, 5-HT3, 5-HT4, 5-HT5, 5-HT6 and 5-HT7 type receptors. 5-HT1 receptors have been further subdivided into 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E and 5-HT1F. 5-HT2 receptors have been divided into 5-HT2A, 5-HT2B and 5-HT2C receptors. All 5-HT2 receptor subtypes are linked to the multifunctional phosphoinositide (PI) signalling system. 5-HT3 receptors are considered ion-gated receptors and are also linked to the PI signalling system by an unknown mechanism. The 5-HT2A receptor subtype is the most widely studied of the 5-HT receptors in psychiatric disorders (for example, suicide, depression and schizophrenia) as well as in relation to the mechanism of action of antidepressant drugs. The roles of 5-HT2C and 5-HT3 receptors in psychiatric disorders are less clear. These 5-HT receptors also play an important role in alcoholism. It has been shown that 5-HT2A, 5-HT2C and 5-HT3 antagonists cause attenuation of alcohol intake in animals and humans. However, the exact mechanisms are unknown. The recent cloning of the cDNAs for 5-HT2A, 5-HT2C and 5-HT3 receptors provides the opportunity to explore the molecular mechanisms responsible for the alterations in these receptors during illness as well as pharmacotherapy. This review article will focus on the current research into the pharmacological properties, molecular biology, and clinical correlates of 5-HT2A, 5-HT2C and 5-HT3 receptors. PMID:7786883
Majeed, Zana R.; Abdeljaber, Esraa; Soveland, Robin; Cornwell, Kristin; Bankemper, Aubrey; Koch, Felicitas; Cooper, Robin L.
2016-01-01
Serotonin modulates various physiological processes and behaviors. This study investigates the role of 5-HT in locomotion and feeding behaviors as well as in modulation of sensory-motor circuits. The 5-HT biosynthesis was dysregulated by feeding Drosophila larvae 5-HT, a 5-HT precursor, or an inhibitor of tryptophan hydroxylase during early stages of development. The effects of feeding fluoxetine, a selective serotonin reuptake inhibitor, during early second instars were also examined. 5-HT receptor subtypes were manipulated using RNA interference mediated knockdown and 5-HT receptor insertional mutations. Moreover, synaptic transmission at 5-HT neurons was blocked or enhanced in both larvae and adult flies. The results demonstrate that disruption of components within the 5-HT system significantly impairs locomotion and feeding behaviors in larvae. Acute activation of 5-HT neurons disrupts normal locomotion activity in adult flies. To determine which 5-HT receptor subtype modulates the evoked sensory-motor activity, pharmacological agents were used. In addition, the activity of 5-HT neurons was enhanced by expressing and activating TrpA1 channels or channelrhodopsin-2 while recording the evoked excitatory postsynaptic potentials (EPSPs) in muscle fibers. 5-HT2 receptor activation mediates a modulatory role in a sensory-motor circuit, and the activation of 5-HT neurons can suppress the neural circuit activity, while fluoxetine can significantly decrease the sensory-motor activity. PMID:26989517
Pera, Tonio; Hegde, Akhil; Deshpande, Deepak A; Morgan, Sarah J; Tiegs, Brian C; Theriot, Barbara S; Choi, Yeon H; Walker, Julia K L; Penn, Raymond B
2015-10-01
Arrestins have been shown to regulate numerous G protein-coupled receptors (GPCRs) in studies employing receptor/arrestin overexpression in artificial cell systems. Which arrestin isoforms regulate which GPCRs in primary cell types is poorly understood. We sought to determine the effect of β-arrestin-1 or β-arrestin-2 inhibition or gene ablation on signaling and function of multiple GPCRs endogenously expressed in airway smooth muscle (ASM). In vitro [second messenger (calcium, cAMP generation)], ex vivo (ASM tension generation in suspended airway), and in vivo (invasive airway resistance) analyses were performed on human ASM cells and murine airways/whole animal subject to β-arrestin-1 or -2 knockdown or knockout (KO). In both human and murine model systems, knockdown or KO of β-arrestin-2 relative to control missense small interfering RNA or wild-type mice selectively increased (40-60%) β2-adrenoceptor signaling and function. β-arrestin-1 knockdown or KO had no effect on signaling and function of β2-adrenoceptor or numerous procontractile GPCRs, but selectively inhibited M3 muscarinic acetylcholine receptor signaling (∼50%) and function (∼25% ex vivo, >50% in vivo) without affecting EC50 values. Arrestin subtypes differentially regulate ASM GPCRs and β-arrestin-1 inhibition represents a novel approach to managing bronchospasm in obstructive lung diseases. © FASEB.
Single-cell transcriptional analysis of taste sensory neuron pair in Caenorhabditis elegans.
Takayama, Jun; Faumont, Serge; Kunitomo, Hirofumi; Lockery, Shawn R; Iino, Yuichi
2010-01-01
The nervous system is composed of a wide variety of neurons. A description of the transcriptional profiles of each neuron would yield enormous information about the molecular mechanisms that define morphological or functional characteristics. Here we show that RNA isolation from single neurons is feasible by using an optimized mRNA tagging method. This method extracts transcripts in the target cells by co-immunoprecipitation of the complexes of RNA and epitope-tagged poly(A) binding protein expressed specifically in the cells. With this method and genome-wide microarray, we compared the transcriptional profiles of two functionally different neurons in the main C. elegans gustatory neuron class ASE. Eight of the 13 known subtype-specific genes were successfully detected. Additionally, we identified nine novel genes including a receptor guanylyl cyclase, secreted proteins, a TRPC channel and uncharacterized genes conserved among nematodes, suggesting the two neurons are substantially different than previously thought. The expression of these novel genes was controlled by the previously known regulatory network for subtype differentiation. We also describe unique motif organization within individual gene groups classified by the expression patterns in ASE. Our study paves the way to the complete catalog of the expression profiles of individual C. elegans neurons.
Pyrimidinergic Receptor Activation Controls Toxoplasma gondii Infection in Macrophages
Moreira-Souza, Aline Cristina Abreu; Marinho, Ygor; Correa, Gladys; Santoro, Giani França; Coutinho, Claudia Mara Lara Melo; Vommaro, Rossiane Claudia; Coutinho-Silva, Robson
2015-01-01
Infection by the protozoan parasite Toxoplasma gondii is highly prevalent worldwide and may have serious clinical manifestations in immunocompromised patients. T. gondii is an obligate intracellular parasite that infects almost any cell type in mammalian hosts, including immune cells. The immune cells express purinergic P2 receptors in their membrane – subdivided into P2Y and P2X subfamilies - whose activation is important for infection control. Here, we examined the effect of treatment with UTP and UDP in mouse peritoneal macrophages infected with T. gondii tachyzoites. Treatment with these nucleotides reduced parasitic load by 90%, but did not increase the levels of the inflammatory mediators NO and ROS, nor did it modulate host cell death by apoptosis or necrosis. On the other hand, UTP and UDP treatments induced early egress of tachyzoites from infected macrophages, in a Ca2+-dependent manner, as shown by scanning electron microscopy analysis, and videomicroscopy. In subsequent infections, prematurely egressed parasites had reduced infectivity, and could neither replicate nor inhibit the fusion of lysosomes to the parasitophorous vacuole. The use of selective agonists and antagonists of the receptor subtypes P2Y2 and P2Y4 and P2Y6 showed that premature parasite egress may be mediated by the activation of these receptor subtypes. Our results suggest that the activity of P2Y host cell receptors controls T. gondii infection in macrophages, highlighting the importance of pyrimidinergic signaling for innate immune system response against infection. Finally the P2Y receptors should be considered as new target for the development of drugs against T. gondii infection. PMID:26192447
Nicotinic Acetylcholine Receptors in Sensory Cortex
ERIC Educational Resources Information Center
Metherate, Raju
2004-01-01
Acetylcholine release in sensory neocortex contributes to higher-order sensory function, in part by activating nicotinic acetylcholine receptors (nAChRs). Molecular studies have revealed a bewildering array of nAChR subtypes and cellular actions; however, there is some consensus emerging about the major nAChR subtypes and their functions in…
An Inotropic Action Caused by Muscarinic Receptor Subtype 3 in Canine Cardiac Purkinje Fibers
Urushidani, Tetsuro; Tachibana, Shigehiro
2013-01-01
Objective. The objective of this study was to investigate the inotropic mechanisms and the related muscarinic receptor subtype of acetylcholine (ACh) in canine cardiac Purkinje fibers. Materials and Methods. Isolated Purkinje fiber bundles were used for the measurement of contraction. The receptor subtype was determined using PCR and real-time PCR methods. Results. ACh evoked a biphasic response with a transient negative inotropic effect followed by a positive inotropic effect in a concentration-dependent manner. The biphasic inotropic actions of ACh were inhibited by the pretreatment with atropine. Caffeine inhibited the positive inotropic effect of ACh. ACh increased inositol-1,4,5-trisphosphate content in the Purkinje fibers, which was abolished by atropine. Muscarinic subtypes 2 (M2) and 3 (M3) mRNAs were detected in the canine Purkinje fibers albeit the amount of M3 mRNA was smaller than M2 mRNA. M1 mRNA was not detected. Conclusion. These results suggest that the positive inotropic action of ACh may be mediated by the activation of IP3 receptors through the stimulation of M3 receptors in the canine cardiac Purkinje fibers. PMID:24260719
Wu, San-Gang; Li, Hui; Tang, Li-Ying; Sun, Jia-Yuan; Zhang, Wen-Wen; Li, Feng-Yan; Chen, Yong-Xiong; He, Zhen-Yu
2017-06-01
To investigate the effect of distant metastases sites on survival in patients with de novo stage-IV breast cancer. From 2010 to 2013, patients with a diagnosis of de novo stage-IV breast cancer were identified using the Surveillance, Epidemiology, and End Results database. Univariate and multivariate Cox regression analyses were performed to analyze the effect of distant metastases sites on breast cancer-specific survival and overall survival. A total of 7575 patients were identified. The most common metastatic sites were bone, followed by lung, liver, and brain. Patients with hormone receptor+/human epidermal growth factor receptor 2- and hormone receptor+/human epidermal growth factor receptor 2+ status were more prone to bone metastases. Lung and brain metastases were common in hormone receptor-/human epidermal growth factor receptor 2+ and hormone receptor-/human epidermal growth factor receptor 2- subtypes, and patients with hormone receptor+/ human epidermal growth factor receptor 2+ and hormone receptor-/human epidermal growth factor receptor 2+ subtypes were more prone to liver metastases. Patients with liver and brain metastases had unfavorable prognosis for breast cancer-specific survival and overall survival, whereas bone and lung metastases had no effect on patient survival in multivariate analyses. The hormone receptor-/human epidermal growth factor receptor 2- subtype conferred a significantly poorer outcome in terms of breast cancer-specific survival and overall survival. hormone receptor+/human epidermal growth factor receptor 2+ disease was associated with the best prognosis in terms of breast cancer-specific survival and overall survival. Patients with liver and brain metastases were more likely to experience poor prognosis for breast cancer-specific survival and overall survival by various breast cancer subtypes. Distant metastases sites have differential impact on clinical outcomes in stage-IV breast cancer. Follow-up screening for brain and liver metastases might be effective in improving breast cancer-specific survival and overall survival.
GW501516 acts as an efficient PPARα activator in the mouse liver.
Terada, M; Araki, M; Ashibe, B; Motojima, K
2011-08-01
The peroxisome proliferator-activated receptor (PPAR) subtype specificity of GW501516, a well-known PPARδ-specific agonist, was studied by examining its effects on the expression of endogenous genes in primary hepatocytes and the liver of wild-type and PPARα-null mice. GW501516, like the PPARα-specific agonist Wy14,643, induced the expression of several PPAR target genes in a dose-dependent manner but this action was mostly absent in the cells and liver of PPARα-null mice. Results indicated that GW501516 acts as an efficient PPARα activator in the mouse liver.
Bao, Jing-Yin; Huang, Yan; Wang, Feng; Peng, Yu-Ping; Qiu, Yi-Hua
2007-01-01
Previous work in our laboratory has shown that alpha-adrenoreceptors (alpha-ARs) and beta-ARs exist on lymphocytes from functional profile, and that the receptors mediate the regulation of lymphocyte function by catecholamines. In the present study, we directly examined the expression of alpha-AR subtypes, alpha(1)-AR and alpha(2)-AR mRNAs, in T lymphocytes and explored the roles of the alpha-AR subtypes and intracellular signal transduction mechanisms linked to the receptors in mediating the modulation of T lymphocyte function. T lymphocytes from mesenteric lymph nodes of rats were purified by using a nylon wool column. Reverse transcription polymerase chain reaction was used to detect the expression of alpha(1)-AR and alpha(2)-AR mRNAs in the freshly isolated T cells and the mitogen concanavalin A (Con A)-activated lymphocytes. Colorimetric methylthiazoletetrazolium assay was employed to measure lymphocyte proliferation induced by Con A. Interferon-gamma (IFN-gamma) and interleukin-4 (IL-4) levels in the Con A-stimulated lymphocyte culture supernatants were examined by enzyme-linked immunosorbent assay. T cells expressed both alpha(1)-AR and alpha(2)-AR mRNAs. The expression of both alpha(1)-AR and alpha(2)-AR mRNAs was significantly higher in the Con A-activated lymphocytes than in the resting lymphocytes. Phenylephrine, a selective alpha(1)-AR agonist, had no evident effect on lymphocyte proliferation nor on IFN-gamma and IL-4 production induced by Con A. However, the selective alpha(2)-AR agonist clonidine attenuated Con A-induced lymphocyte proliferation as well as IFN-gamma and IL-4 production. The inhibited lymphocyte proliferation and IFN-gamma and IL-4 production by clonidine were blocked by yohimbine, an alpha(2)-AR antagonist. Either phospholipase C inhibitor U-73122 or protein kinase C inhibitor chelerythrine partially prevented the suppressive effect of clonidine on Con A-stimulated lymphocyte proliferation and IL-4 production. T lymphocytes express both alpha(1)-ARs and alpha(2)-ARs, but only the alpha(2)-ARs participate in the suppressive modulation of lymphocyte proliferation and cytokine production in vitro. The inhibitory effect of alpha(2)-AR stimulation on lymphocyte function is partially mediated via the phospholipase C-protein kinase C pathway. (c) 2008 S. Karger AG, Basel.
St Romain, Paul; Madan, Rashna; Tawfik, Ossama W; Damjanov, Ivan; Fan, Fang
2012-03-01
Prior studies have suggested that the type of breast cancer influences the location of distant metastases ("organotropism") and that there may be discordance of estrogen receptor and human epidermal growth factor receptor 2 (Her2) expression between primaries and metastases. Our aims were to investigate the relationship between tumor type and metastatic site and to compare biomarker expression between primary and metastatic tumors. We retrospectively reviewed 102 biopsy-proven cases of breast cancer metastatic to distant sites from 2000 to 2010 and 34 corresponding primaries for histologic subtype, grade, lymphovascular invasion, lymph node metastasis, and expression of estrogen receptor and Her2. Most metastases were of ductal (88) and lobular (11) histologic types. Available data on primaries indicated that the majority were grade III with positive lymph node metastasis and lymphovascular invasion. Biomarkers on 73 metastases showed 37 estrogen receptor positive/Her2-, 6 estrogen receptor positive/Her2+, 8 estrogen receptor negative/Her2+, and 22 estrogen receptor negative/Her2-. The most common metastatic sites were the lung (26%), bone (32%), and liver (21%). We found no association between estrogen receptor/Her2 profile and metastatic site (P = .16). When compared with ductal carcinoma, lobular carcinoma showed a unique metastatic pattern to gastrointestinal tract/gynecologic sites (P = .014). Of 34 cases with paired prognostic markers for primary and metastatic sites, 7 (20%) demonstrated discordance in estrogen receptor-positive/Her2 profile between the primary and the metastasis. Because the estrogen receptor-positive/Her2 profile of metastatic breast cancer did not always match that of the primary tumor, it is important to repeat the prognostic markers of metastasis. Copyright © 2012 Elsevier Inc. All rights reserved.
Pfeiffer, Julia B. R.; Mevissen, Meike; Steiner, Adrian; Portier, Christopher J.; Meylan, Mireille
2009-01-01
Objective To describe the in vitro effects of bethanechol on contractility of smooth muscle preparations from the small intestines of healthy cows and define the muscarinic receptor subtypes involved in mediating contraction. Sample Population Tissue samples from the duodenum and jejunum collected immediately after slaughter of 40 healthy cows. Procedures Cumulative concentration-response curves were determined for the muscarinic receptor agonist bethanechol with or without prior incubation with subtype-specific receptor antagonists in an organ bath. Effects of bethanechol and antagonists and the influence of intestinal location on basal tone, maximal amplitude (Amax), and area under the curve (AUC) were evaluated. Results Bethanechol induced a significant, concentration-dependent increase in all preparations and variables. The effect of bethanechol was more pronounced in jejunal than in duodenal samples and in circular than in longitudinal preparations. Significant inhibition of the effects of bethanechol was observed after prior incubation with muscarinic receptor subtype M3 antagonists (more commonly for basal tone than for Amax and AUC). The M2 receptor antagonists partly inhibited the response to bethanechol, especially for basal tone. The M3 receptor antagonists were generally more potent than the M2 receptor antagonists. In a protection experiment, an M3 receptor antagonist was less potent than when used in combination with an M2 receptor antagonist. Receptor antagonists for M1 and M4 did not affect contractility variables. Conclusions and Clinical Relevance Bethanechol acting on muscarinic receptor subtypes M2 and M3 may be of clinical use as a prokinetic drug for motility disorders of the duodenum and jejunum in dairy cows. PMID:17331022
Kawase, Tomoyuki; Okuda, Kazuhiro; Burns, Douglas M
2005-10-01
Calcitonin gene-related peptide (CGRP) is clearly an anabolic factor in skeletal tissue, but the distribution of CGRP receptor (CGRPR) subtypes in osteoblastic cells is poorly understood. We previously demonstrated that the CGRPR expressed in osteoblastic MG63 cells does not match exactly the known characteristics of the classic subtype 1 receptor (CGRPR1). The aim of the present study was to further characterize the MG63 CGRPR using a selective agonist of the putative CGRPR2, [Cys(Acm)(2,7)]CGRP, and a relatively specific antagonist of CGRPR1, CGRP(8-37). [Cys(Acm)(2,7)]CGRP acted as a significant agonist only upon ERK dephosphorylation, whereas this analog effectively antagonized CGRP-induced cAMP production and phosphorylation of cAMP response element-binding protein (CREB) and p38 MAPK. Although it had no agonistic action when used alone, CGRP(8-37) potently blocked CGRP actions on cAMP, CREB, and p38 MAPK but had less of an effect on ERK. Schild plot analysis of the latter data revealed that the apparent pA2 value for ERK is clearly distinguishable from those of the other three plots as judged using the 95% confidence intervals. Additional assays using 3-isobutyl-1-methylxanthine or the PKA inhibitor N-(2-[p-bromocinnamylamino]ethyl)-5-isoquinolinesulfonamide hydrochloride (H-89) indicated that the cAMP-dependent pathway was predominantly responsible for CREB phosphorylation, partially involved in ERK dephosphorylation, and not involved in p38 MAPK phosphorylation. Considering previous data from Scatchard analysis of [125I]CGRP binding in connection with these results, these findings suggest that MG63 cells possess two functionally distinct CGRPR subtypes that show almost identical affinity for CGRP but different sensitivity to CGRP analogs: one is best characterized as a variation of CGRPR1, and the second may be a novel variant of CGRPR2.
Lange, Franziska; Kaemmerer, Daniel; Behnke-Mursch, Julianne; Brück, Wolfgang; Schulz, Stefan; Lupp, Amelie
2018-04-25
Glioblastomas represent the most common primary malignant tumor of the nervous system and the most frequent type of astrocytic tumors. Despite improved therapeutic options, prognosis has remained exceptionally poor over the last two decades. Therefore, new treatment approaches are urgently needed. An overexpression of somatostatin (SST) as well as chemokine CXCR4 and endothelin A (ETA) receptors has been shown for many types of cancer. Respective expression data for astrocytic brain tumors, however, are scarce and contradictory. SST subtype, CXCR4 and ETA expression was comparatively evaluated in a total of 57 grade I-IV astrocytic tumor samples by immunohistochemistry using well-characterized monoclonal antibodies. Overall, receptor expression on the tumor cells was only very low. SST5 was the most prominently expressed receptor, followed by SST3, ETA, SST2 and CXCR4. In contrast, tumor capillaries displayed strong SST2, SST3, SST5, CXCR4 and ETA expression. Presence of SST5, CXCR4 and ETA on tumor cells and of SST3, CXCR4 and ETA on microvessels gradually increased from grade II to grade IV tumors. Ki-67 values correlated significantly with CXCR4 expression on tumor cells and with vascular SST3, CXCR4 or ETA positivity. SST5 or CXCR4 positivity of tumor cells and vascular SST3 or CXCR4 expression negatively correlated with patient outcome. Though having some prognostic value, SST, CXCR4 or ETA expression on astrocytic tumor cells is clearly of no therapeutic relevance. Indirect targeting of these highly vascularized tumors via SST3, SST5, CXCR4 or ETA on the microvessels, in contrast, may represent a promising additional therapeutic strategy.
Forman, Stuart A; Miller, Keith W
2016-11-01
IV general anesthetics, including propofol, etomidate, alphaxalone, and barbiturates, produce important actions by enhancing γ-aminobutyric acid type A (GABAA) receptor activation. In this article, we review scientific studies that have located and mapped IV anesthetic sites using photoaffinity labeling and substituted cysteine modification protection. These anesthetics bind in transmembrane pockets between subunits of typical synaptic GABAA receptors, and drugs that display stereoselectivity also show remarkably selective interactions with distinct interfacial sites. These results suggest strategies for developing new drugs that selectively modulate distinct GABAA receptor subtypes.
Yang, Kai; Jackson, Michael F.; MacDonald, John F.
2014-01-01
G Protein Coupled Receptors (GPCRs) are the largest family of receptors whose ligands constitute nearly a third of prescription drugs in the market. They are widely involved in diverse physiological functions including learning and memory. NMDA receptors (NMDARs), which belong to the ionotropic glutamate receptor family, are likewise ubiquitously expressed in the central nervous system (CNS) and play a pivotal role in learning and memory. Despite its critical contribution to physiological and pathophysiological processes, few pharmacological interventions aimed directly at regulating NMDAR function have been developed to date. However, it is well established that NMDAR function is precisely regulated by cellular signalling cascades recruited downstream of G protein coupled receptor (GPCR) stimulation. Accordingly, the downstream regulation of NMDARs likely represents an important determinant of outcome following treatment with neuropsychiatric agents that target selected GPCRs. Importantly, the functional consequence of such regulation on NMDAR function varies, based not only on the identity of the GPCR, but also on the cell type in which relevant receptors are expressed. Indeed, the mechanisms responsible for regulating NMDARs by GPCRs involve numerous intracellular signalling molecules and regulatory proteins that vary from one cell type to another. In the present article, we highlight recent findings from studies that have uncovered novel mechanisms by which selected GPCRs regulate NMDAR function and consequently NMDAR-dependent plasticity. PMID:24562329
Wang, Qi; He, Maoxian
2014-08-01
5-HT (5-hydroxytryptamine; serotonin) has been linked to a variety of biological roles including gonad maturation and sequential spawning in bivalve molluscs. To gain a better understanding of the effects of 5-HT on developmental regulation in the pearl oyster Pinctada fucata, the isolation, cloning, and expression of the 5-HT receptor was investigated in this study. A full-length cDNA (2541 bp) encoding a putative 5-HT receptor (5-HTpf) of 471 amino acids was isolated from the ovary of the pearl oyster. It shared 71% and 51% homology, respectively, with the Crassostrea gigas 5-HT receptor and the Aplysia californica 5-HT1ap. The 5-HTpf sequence possessed the typical characteristics of seven transmembrane domains and a long third inner loop. Phylogenetic analysis also indicated that 5-HTpf was classified into the 5-HT1 subtype together with other invertebrate 5-HT1 receptors. Quantitative RT-PCR showed that 5-HTpf is widely expressed in all tissues tested, is involved in the gametogenesis cycle, embryonic and larval development stages, and expression is induced by E2 in ovarian tissues. These results suggest that 5-HTpf is involved in the reproductive process, specifically in the induction of oocyte maturation and spawning of P. fucata. Copyright © 2014 Elsevier Inc. All rights reserved.
Shaheen, Safa; Fawaz, Febin; Shah, Shaheen; Büsselberg, Dietrich
2018-06-19
Triple-negative breast cancer (TNBC) is among the most notorious types of breast cancer, the treatment of which does not give consistent results due to the absence of the three receptors (estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) as well as high amount of molecular variability. Drug resistance also contributes to treatment unresponsiveness. We studied differentially expressed genes, their biological roles, as well as pathways from RNA-Seq datasets of two different TNBC drug-resistant cell lines of Basal B subtype SUM159 and MDA-MB-231 treated with drugs JQ1 and Dexamethasone, respectively, to elucidate the mechanism of drug resistance. RNA sequencing(RNA-Seq) data analysis was done using edgeR which is an efficient program for determining the most significant Differentially Expressed Genes (DEGs), Gene Ontology (GO) terms, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. iPathway analysis was further used to obtain validated results using analysis that takes into consideration type, function, and interactions of genes in the pathway. The significant similarities and differences throw light into the molecular heterogeneity of TNBC, giving clues into the aspects that can be focused to overcome drug resistance. From this study, cytokine-cytokine receptor interaction pathway appeared to be a key factor in TNBC drug resistance.
Luo, Wangqian; Ge, Xulin; Cui, Wenyu; Wang, Hai
2010-08-01
Clinicians have been treating poisoning by acetylcholinesterase inhibitors (ChEI) for more than half a century. However, the current atropine-centered therapy still cannot protect completely against all ChEIs, and poisoning by ChEIs is fatal in more than 20% of cases. Various solutions that try to enhance atropine's antimuscarinic effects have been used, but these fail to increase the antidotal effect, and their too potent muscarinic antagonism may produce incapacitating side effects. We hypothesized that, in the treatment of ChEI poisoning, the high death rate may not be attributed to the insufficient muscarinic antagonism but to the lack of nicotinic antagonism. To test this hypothesis, we designed and synthesized benthiactzine, a drug that blocks both muscarinic acetylcholine receptors (mAChRs) and nicotinic acetylcholine receptors (nAChRs). A specific [(3)H]quinuclidinyl benzilate-binding assay showed that benthiactzine was much weaker than atropine in binding to five different mAChR subtypes or to mAChRs expressed in 14 different tissues. Electrophysiological measures were used to identify and characterize benthiactzine's antinicotinic effect on three typical neuronal nAChRs subtypes, alpha4beta2, alpha4beta4, and alpha7, which are expressed heterogenously in SH-EP1 cells. Finally, benthiactzine afforded better protection than atropine against the most lethal ChEI, VX or sarin, in a mouse model. These results indicate that the antidotal effect may not be directly related to the antidote's antimuscarinic effect and that the antinicotinic effect may provide additional protection against ChEI poisoning. This new drug may benefit future antidote discovery.
Ho, Vincent K.; Angelotti, Timothy
2013-01-01
Receptor expression enhancing proteins (REEPs) were identified by their ability to enhance cell surface expression of a subset of G protein-coupled receptors (GPCRs), specifically GPCRs that have proven difficult to express in heterologous cell systems. Further analysis revealed that they belong to the Yip (Ypt-interacting protein) family and that some REEP subtypes affect ER structure. Yip family comparisons have established other potential roles for REEPs, including regulation of ER-Golgi transport and processing/neuronal localization of cargo proteins. However, these other potential REEP functions and the mechanism by which they selectively enhance GPCR cell surface expression have not been clarified. By utilizing several REEP family members (REEP1, REEP2, and REEP6) and model GPCRs (α2A and α2C adrenergic receptors), we examined REEP regulation of GPCR plasma membrane expression, intracellular processing, and trafficking. Using a combination of immunolocalization and biochemical methods, we demonstrated that this REEP subset is localized primarily to ER, but not plasma membranes. Single cell analysis demonstrated that these REEPs do not specifically enhance surface expression of all GPCRs, but affect ER cargo capacity of specific GPCRs and thus their surface expression. REEP co-expression with α2 adrenergic receptors (ARs) revealed that this REEP subset interacts with and alter glycosidic processing of α2C, but not α2A ARs, demonstrating selective interaction with cargo proteins. Specifically, these REEPs enhanced expression of and interacted with minimally/non-glycosylated forms of α2C ARs. Most importantly, expression of a mutant REEP1 allele (hereditary spastic paraplegia SPG31) lacking the carboxyl terminus led to loss of this interaction. Thus specific REEP isoforms have additional intracellular functions besides altering ER structure, such as enhancing ER cargo capacity, regulating ER-Golgi processing, and interacting with select cargo proteins. Therefore, some REEPs can be further described as ER membrane shaping adapter proteins. PMID:24098485
Homologous regulation of the α2C-adrenoceptor subtype in human hepatocarcinoma, HepG2
Cayla, Cécile; Schaak, Stéphane; Roquelaine, Cyril; Gales, Céline; Quinchon, Françoise; Paris, Hervé
1999-01-01
Previous studies of the regulation of the α2C-adrenoceptor in OK and in transfected cells have led to discrepant conclusions. In the present work, we examined the homologous regulation of the human α2C-adrenoceptor in the hepatocarcinoma cell-line, HepG2; a model which expresses this subtype spontaneously.Short-period treatment of the cells with UK14304 provoked neither a diminution of the potency of the α2-agonist to inhibit forskolin-induced cyclic AMP-accumulation nor a change in the degree of receptor coupling to G-proteins.Long-period exposure to UK14304 resulted in a large reduction of [3H]MK912 binding sites (55% decrease). The action of UK14304 was dose-dependent (EC50=190±45 nM), rapid (t1/2 =4.2 h) and reversible. Receptor down-regulation was also observed with clonidine or (−)adrenaline (38 and 36% decrease, respectively) and was blocked by the addition of α2-antagonists.Conversely to that observed with α2-agonists, treatment of the cells with RX821002 or yohimbine alone, but not with phentolamine, promoted a significant increase of the receptor expression.The observed alterations of receptor density are not the reflection of changes at the α2C4 mRNA level. Estimation of the receptor protein turnover and measurement of its half-life demonstrated that down-regulation by α2-agonists and up-regulation by α2-antagonists, with inverse-agonist efficacy, are respectively the consequence of increased and decreased rate of receptor degradation.In conclusion, our data show that α2C-adrenoceptor does not undergo desensitization but is down-regulated in HepG2. The lack of desensitization agrees with previous results obtained in cells transfected with the α2C4 gene, but not with observations made in OK cells. Inversely, down-regulation fits with results obtained in OK but not in transfected cells. The reasons for these discrepancies are discussed. Our results also demonstrated that certain α2-antagonists behave as inverse agonist on the HepG2 model and thus provide for the first time evidence of inverse efficacy of antagonists on a cellular model expressing physiological level of a wild-type α2-adrenoceptor. PMID:10051122
Sphingosine 1-phosphate receptor modulators in multiple sclerosis.
Subei, Adnan M; Cohen, Jeffrey A
2015-07-01
Sphingosine 1-phosphate (S1P) receptor modulators possess a unique mechanism of action as disease-modifying therapy for multiple sclerosis (MS). Subtype 1 S1P receptors are expressed on the surfaces of lymphocytes and are important in regulating egression from lymph nodes. The S1P receptor modulators indirectly antagonize the receptor's function and sequester lymphocytes in lymph nodes. Fingolimod was the first S1P agent approved in the USA in 2010 for relapsing MS after two phase III trials (FREEDOMS and TRANSFORMS) demonstrated potent efficacy, and good safety and tolerability. Post-marketing experience, as well as a third phase III trial (FREEDOMS II), also showed favorable results. More selective S1P receptor agents-ponesimod (ACT128800), siponimod (BAF312), ozanimod (RPC1063), ceralifimod (ONO-4641), GSK2018682, and MT-1303-are still in relatively early stages of development, but phase I and II trials showed promising efficacy and safety. However, these observations have yet to be reproduced in phase III clinical trials.
Bruna-Larenas, Tamara; Gómez-Jeria, Juan S
2012-01-01
We report the results of a search for model-based relationships between mu, delta, and kappa opioid receptor binding affinity and molecular structure for a group of molecules having in common a morphine structural core. The wave functions and local reactivity indices were obtained at the ZINDO/1 and B3LYP/6-31G(∗∗) levels of theory for comparison. New developments in the expression for the drug-receptor interaction energy expression allowed several local atomic reactivity indices to be included, such as local electronic chemical potential, local hardness, and local electrophilicity. These indices, together with a new proposal for the ordering of the independent variables, were incorporated in the statistical study. We found and discussed several statistically significant relationships for mu, delta, and kappa opioid receptor binding affinity at both levels of theory. Some of the new local reactivity indices incorporated in the theory appear in several equations for the first time in the history of model-based equations. Interaction pharmacophores were generated for mu, delta, and kappa receptors. We discuss possible differences regulating binding and selectivity in opioid receptor subtypes. This study, contrarily to the statistically backed ones, is able to provide a microscopic insight of the mechanisms involved in the binding process.
Leiser, Steven C; Li, Yan; Pehrson, Alan L; Dale, Elena; Smagin, Gennady; Sanchez, Connie
2015-07-15
It has been known for several decades that serotonergic neurotransmission is a key regulator of cognitive function, mood, and sleep. Yet with the relatively recent discoveries of novel serotonin (5-HT) receptor subtypes, as well as an expanding knowledge of their expression level in certain brain regions and localization on certain cell types, their involvement in cognitive processes is still emerging. Of particular interest are cognitive processes impacted in neuropsychiatric and neurodegenerative disorders. The prefrontal cortex (PFC) is critical to normal cognitive processes, including attention, impulsivity, planning, decision-making, working memory, and learning or recall of learned memories. Furthermore, serotonergic dysregulation within the PFC is implicated in many neuropsychiatric disorders associated with prominent symptoms of cognitive dysfunction. Thus, it is important to better understand the overall makeup of serotonergic receptors in the PFC and on which cell types these receptors mediate their actions. In this Review, we focus on 5-HT receptor expression patterns within the PFC and how they influence cognitive behavior and neurotransmission. We further discuss the net effects of vortioxetine, an antidepressant acting through multiple serotonergic targets given the recent findings that vortioxetine improves cognition by modulating multiple neurotransmitter systems.
Purinergic P2X receptors: structural models and analysis of ligand-target interaction.
Dal Ben, Diego; Buccioni, Michela; Lambertucci, Catia; Marucci, Gabriella; Thomas, Ajiroghene; Volpini, Rosaria
2015-01-07
The purinergic P2X receptors are ligand-gated cation channels activated by the endogenous ligand ATP. They assemble as homo- or heterotrimers from seven cloned subtypes (P2X1-7) and all trimer subunits present a common topology consisting in intracellular N- and C- termini, two transmembrane domains and a large extracellular domain. These membrane proteins are present in virtually all mammalian tissues and regulate a large variety of responses in physio- and pathological conditions. The development of ligands that selectively activate or block specific P2X receptor subtypes hence represents a promising strategy to obtain novel pharmacological tools for the treatment of pain, cancer, inflammation, and neurological, cardiovascular, and endocrine diseases. The publication of the crystal structures of zebrafish P2X4 receptor in inactive and ATP-bound active forms provided structural data for the analysis of the receptor structure, the interpretation of mutagenesis data, and the depiction of ligand binding and receptor activation mechanism. In addition, the availability of ATP-competitive ligands presenting selectivity for P2X receptor subtypes supports the design of new potent and selective ligands with possibly improved pharmacokinetic profiles, with the final aim to obtain new drugs. This study describes molecular modelling studies performed to develop structural models of the human and rat P2X receptors in inactive and active states. These models allowed to analyse the role of some non-conserved residues at ATP binding site and to study the receptor interaction with some non-specific or subtype selective agonists and antagonists. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Goossens, Steven; Radaelli, Enrico; Blanchet, Odile; Durinck, Kaat; Van der Meulen, Joni; Peirs, Sofie; Taghon, Tom; Tremblay, Cedric S.; Costa, Magdaline; Ghahremani, Morvarid Farhang; De Medts, Jelle; Bartunkova, Sonia; Haigh, Katharina; Schwab, Claire; Farla, Natalie; Pieters, Tim; Matthijssens, Filip; Van Roy, Nadine; Best, J. Adam; Deswarte, Kim; Bogaert, Pieter; Carmichael, Catherine; Rickard, Adam; Suryani, Santi; Bracken, Lauryn S.; Alserihi, Raed; Canté-Barrett, Kirsten; Haenebalcke, Lieven; Clappier, Emmanuelle; Rondou, Pieter; Slowicka, Karolina; Huylebroeck, Danny; Goldrath, Ananda W.; Janzen, Viktor; McCormack, Matthew P.; Lock, Richard B.; Curtis, David J.; Harrison, Christine; Berx, Geert; Speleman, Frank; Meijerink, Jules P. P.; Soulier, Jean; Van Vlierberghe, Pieter; Haigh, Jody J.
2015-01-01
Early T-cell precursor leukaemia (ETP-ALL) is a high-risk subtype of human leukaemia that is poorly understood at the molecular level. Here we report translocations targeting the zinc finger E-box-binding transcription factor ZEB2 as a recurrent genetic lesion in immature/ETP-ALL. Using a conditional gain-of-function mouse model, we demonstrate that sustained Zeb2 expression initiates T-cell leukaemia. Moreover, Zeb2-driven mouse leukaemia exhibit some features of the human immature/ETP-ALL gene expression signature, as well as an enhanced leukaemia-initiation potential and activated Janus kinase (JAK)/signal transducers and activators of transcription (STAT) signalling through transcriptional activation of IL7R. This study reveals ZEB2 as an oncogene in the biology of immature/ETP-ALL and paves the way towards pre-clinical studies of novel compounds for the treatment of this aggressive subtype of human T-ALL using our Zeb2-driven mouse model. PMID:25565005
Right Versus Left Colon Cancer Biology: Integrating the Consensus Molecular Subtypes.
Lee, Michael S; Menter, David G; Kopetz, Scott
2017-03-01
Although clinical management of colon cancer generally has not accounted for the primary tumor site, left-sided and right-sided colon cancers harbor different clinical and biologic characteristics. Right-sided colon cancers are more likely to have genome-wide hypermethylation via the CpG island methylator phenotype (CIMP), hypermutated state via microsatellite instability, and BRAF mutation. There are also differential exposures to potential carcinogenic toxins and microbiota in the right and left colon. Gene expression analyses further shed light on distinct biologic subtypes of colorectal cancers (CRCs), with 4 consensus molecular subtypes (CMSs) identified. Importantly, these subtypes are differentially distributed between right- and left-sided CRCs, with greater proportions of the "microsatellite unstable/immune" CMS1 and the "metabolic" CMS3 subtypes found in right-sided colon cancers. This review summarizes important biologic distinctions between right- and left-sided CRCs that likely impact prognosis and may predict for differential responses to biologic therapy. Given the inferior prognosis of stage III-IV right-sided CRCs and emerging data suggesting that anti-epidermal growth factor receptor antibody therapy is associated with worse survival in right-sided stage IV CRCs compared with left-sided cancers, these biologic differences between right- and left-sided CRCs provide critical context and may provide opportunities to personalize therapy. Copyright © 2017 by the National Comprehensive Cancer Network.
Distinct breast cancer subtypes in women with early-onset disease across races
Singh, Mandeep; Ding, Yi; Zhang, Li-Ying; Song, Dong; Gong, Yun; Adams, Sylvia; Ross, Dara S; Wang, Jin-Hua; Grover, Shruti; Doval, Dinesh Chandra; Shao, Charles; He, Zi-Li; Chang, Victor; Chin, Warren W; Deng, Fang-Ming; Singh, Baljit; Zhang, David; Xu, Ru-Liang; Lee, Peng
2014-01-01
Background: Racial disparities among breast cancer (BCa) patients are known but not well studied in early-onset BCa. We analyzed molecular subtypes in early-onset BCa across five major races. Methods: A total of 2120 cases were included from non-Hispanic White (NHW), African American (AA) and Hispanic, Chinese and Indian. Based on ER, PR and HER-2 status, BCa was classified into 4 intrinsic subtypes as Luminal A, Luminal B, HER2/neu overexpression and Triple negative BCa (TNBC) subtypes. Data was stratified according to race and age as younger/early-onset group (40-years and younger) and older group (50-years and older). Results: In early-onset BCa, incidence of TNBC was significantly higher (p = 0.0369) in Indian women followed by AA, Hispanic, NHW and Chinese women. Incidence of Her2 over-expression subtype also was highest in Indian women, followed by Hispanic, Chinese, AA and NHW women. In contrast, Luminal B subtype was most significantly higher in AA women (p = 0.0000) followed by NHW (p = 0.0002), Chinese (p = 0.0003), Hispanic (0.0128) and Indian (p = 0.0468) women. Luminal A subtype was most significantly reduced in Indian women (p = 0.0113) followed by Hispanic, AA, NHW and Chinese women. These results were based on statistical analysis with the mean of older group populations. Conclusions: These results show significant disparities in receptor subtypes across races. This study will contribute in developing optimal clinical trial protocols and personalized management strategies for early-onset BCa patients. PMID:25057437
Córdoba-Chacón, José; Gahete, Manuel D.; Castaño, Justo P.; Kineman, Rhonda D.
2011-01-01
Somatostatin (SST) inhibits growth hormone (GH) secretion and regulates multiple processes by signaling through its receptors sst1–5. Differential expression of SST/ssts may contribute to sex-specific GH pattern and fasting-induced GH rise. To further delineate the tissue-specific roles of SST and sst1–5 in these processes, their expression patterns were evaluated in hypothalamus, pituitary, and stomach of male and female mice under fed/fasted conditions in the presence (wild type) or absence (SST-knockout) of endogenous SST. Under fed conditions, hypothalamic/stomach SST/ssts expression did not differ between sexes, whereas male pituitary expressed more SST and sst2A/2B/3/5A/5TMD2/5TMD1 and less sst1, and male pituitary cell cultures were more responsive to SST inhibitory actions on GH release compared with females. This suggests that local pituitary SST/ssts can contribute to the sexually dimorphic pattern of GH release. Fasting (48 h) reduced stomach sst2A/B and hypothalamic SST/sst2A expression in both sexes, whereas it caused a generalized downregulation of pituitary sst subtypes in male and of sst2A only in females. Thus, fasting can reduce SST sensitivity across tissues and SST input to the pituitary, thereby jointly contributing to enhance GH release. In SST-knockout mice, lack of SST differentially altered sst subtype expression levels in both sexes, supporting an important role for SST in sex-dependent control of GH axis. Evaluation of SST, IGF-I, and glucocorticoid effects on hypothalamic and pituitary cell cultures revealed that these hormones could directly account for alterations in sst2/5 expression in the physiological states examined. Taken together, these results indicate that changes in SST output and sensitivity can contribute critically to precisely define, in a tissue-dependent manner, the sex-specific metabolic regulation of the GH axis. PMID:20943754
Kanjanamekanant, K; Luckprom, P; Pavasant, P
2013-04-01
Mechanical stress is an important factor in maintaining homeostasis of the periodontium. Interleukin-1beta (IL-1β) and adenosine triphosphate (ATP) are considered potent inflammatory mediators. In macrophages, ATP-activated P2X7 receptor is involved in IL-1β processing and release. Our previous works demonstrated mechanical stress-induced expression of osteopontin and RANKL through the ATP/P2Y1 receptor in human periodontal ligament (HPDL) cells. This study was designed to examine the effect of mechanical stress on IL-1β expression in HPDL cells, as well as the mechanism and involvement of ATP and the P2 purinergic receptor. Cultured HPDL cells were treated with continuous compressive loading. IL-1β expression was analyzed at both mRNA and protein levels, using RT-PCR and ELISA, respectively. Cell viability was examined using the MTT assay. ATP was also used to stimulate HPDL cells. Inhibitors, antagonists and the small interfering RNA (siRNA) technique were used to investigate the role of ATP and the specific P2 subtypes responsible for IL-1β induction along with the intracellular mechanism. Mechanical stress could up-regulate IL-1β expression through the release of ATP in HPDL cells. ATP alone was also capable of increasing IL-1β expression. The induction of IL-1β was markedly inhibited by inhibitors and by siRNA targeting the P2X7 receptor. ATP-stimulated IL-1β expression was also diminished by intracellular calcium inhibitors. Our work clearly indicates the capability of HPDL cells to respond directly to mechanical stimulation. The results signified the important roles of ATP/P2 purinergic receptors, as well as intracellular calcium signaling, in mechanical stress-induced inflammation via up-regulation of the proinflammatory cytokine, IL-1β, in HPDL cells. © 2012 John Wiley & Sons A/S.
Jragh, Dina M; Khan, Islam; Oriowo, Mabayoje A
2011-01-01
Carbachol-induced contraction of the rat colon is impaired in rats with trinitrobenzene sulfonic acid (TNBS)-induced colitis. The main objective of this study was to examine the effect of colitis on the expression and function of muscarinic (M) receptor subtypes in the rat colon. Rats (n = 80) were treated with TNBS and used 5 days later for measurement of contractility, myeloperoxidase activity, histology and expression of muscarinic receptor isoforms using Western blot analysis. Carbachol produced concentration-dependent contractions of colonic segments from control (n = 40) and TNBS-treated (n = 40) rats with no significant difference in potency. However, the maximum response to carbachol was significantly reduced in colon segments of TNBS-treated rats. The selective muscarinic receptor antagonists 4-diphenylacetoxy-N-methyl piperidine (4-DAMP, M(3)), pirenzepine (M(1)) and methoctramine (M(2)) antagonized carbachol-induced contraction in control (9.1 ± 0.1, 6.7 ± 0.3 and 6.0 ± 0.1, respectively) and TNBS-treated rats (9.2 ± 0.2, 6.9 ± 0.2, 6.7 ± 0.2). The -logK(B) values in control rats are consistent with an action of carbachol on muscarinic M(3) receptors. There was no significant difference in -logK(B) values for 4-DAMP and pirenzepine in control and TNBS-treated rats, but methoctramine was fivefold more potent in TNBS-treated rats, possibly indicating an increased contribution of muscarinic M(2) receptors to carbachol-induced contraction in the inflamed colon. The expression of M(2) receptors was also significantly increased in colon segments from TNBS-treated rats, confirming the increased role of muscarinic M(2) receptors in the inflamed colon. The data show that while only M(3) receptors appeared to mediate carbachol-induced contraction in control segments, expression of both M(2) and M(3) receptors was increased in the inflamed rat colon. Copyright © 2011 S. Karger AG, Basel.