Science.gov

Sample records for receptor-deficient rat hepatoma

  1. Studies on responsiveness of hepatoma cells to catecholamines. IV. Lack of adrenergic activation of phosphorylase in rat ascites hepatoma cells.

    PubMed

    Miyamoto, K; Yanaoka, T; Sanae, F; Wakusawa, S; Koshiura, R

    1986-10-01

    Glycogen phosphorylase a activity in 7 rat ascites hepatoma cell lines treated with adrenergic agents, phenylephrine, epinephrine and isoproterenol, was investigated as compared with that in freshly isolated rat hepatocytes. Basal phosphorylase activities in hepatoma cells except AH7974 cells were lower than that in hepatocytes. Phosphorylase in hepatoma cells was not activated by any of the agents, while the enzyme activity in hepatocytes was clearly increased in a dose- and time-dependent manner. Phosphorylase in hepatocytes was sensitive to glucagon, but it was found to be insensitive to glucagon in all hepatoma cells. The present results suggest that rat ascites hepatoma cells may escape the glycogenolytic regulation by catecholamines and glucagon.

  2. Studies on responsiveness of hepatoma cells to catecholamines. VI. Characteristics of adrenoceptors and adenylate cyclase response in rat ascites hepatoma cells and human hepatoma cells.

    PubMed

    Sanae, F; Kohei, K; Nomura, M; Miyamoto, K

    1992-06-01

    Alpha 1, alpha 2- and beta-Adrenoceptor densities and catecholamine responsiveness in established hepatoma cells, rat ascites hepatoma AH13, AH66, AH66F, AH109A, AH130 and AH7974 cells and human hepatocellular carcinoma HLF and HepG2 cells, were compared with those in normal rat hepatocytes and Chang liver cells. Alpha 1-Adrenoceptor densities measured by [3H]prazosin bindings were not detected in all hepatoma cell lines. Alpha 2-Adrenoceptor densities measured by [3H]clonidine bindings were also barely detected in hepatoma cell lines except for AH130 cells and HepG2 cells. Regarding beta-adrenoceptor, AH109A, AH130 and AH7974 cells had much more [125I]iodocyanopindolol binding sites than normal rat hepatocytes, although we could not detect the binding in HepG2 cells. Adenylate cyclase of normal rat hepatocyte and Chang liver cells were stimulated by beta 2-adrenergic agonist salbutamol, while the cyclase in hepatoma cells had no beta 2-adrenergic response but a beta 1-type response. These findings indicate that the characteristics of adrenergic response in hepatoma cell lines is very different from that in normal hepatocytes, suggesting a participation in the hepatocarcinogenesis and/or the autonomous proliferation of hepatoma cells.

  3. Effects of Melanocortin 3 and 4 Receptor Deficiency on Energy Homeostasis in Rats

    PubMed Central

    You, Panpan; Hu, Handan; Chen, Yuting; Zhao, Yongliang; Yang, Yiqing; Wang, Tongtong; Xing, Roumei; Shao, Yanjiao; Zhang, Wen; Li, Dali; Chen, Huaqing; Liu, Mingyao

    2016-01-01

    Melanocortin-3 and 4 receptors (MC3R and MC4R) can regulate energy homeostasis, but their respective roles especially the functions of MC3R need more exploration. Here Mc3r and Mc4r single and double knockout (DKO) rats were generated using CRISPR-Cas9 system. Metabolic phenotypes were examined and data were compared systematically. Mc3r KO rats displayed hypophagia and decreased body weight, while Mc4r KO and DKO exhibited hyperphagia and increased body weight. All three mutants showed increased white adipose tissue mass and adipocyte size. Interestingly, although Mc3r KO did not show a significant elevation in lipids as seen in Mc4r KO, DKO displayed even higher lipid levels than Mc4r KO. DKO also showed more severe glucose intolerance and hyperglycaemia than Mc4r KO. These data demonstrated MC3R deficiency caused a reduction of food intake and body weight, whereas at the same time exhibited additive effects on top of MC4R deficiency on lipid and glucose metabolism. This is the first phenotypic analysis and systematic comparison of Mc3r KO, Mc4r KO and DKO rats on a homogenous genetic background. These mutant rats will be important in defining the complicated signalling pathways of MC3R and MC4R. Both Mc4r KO and DKO are good models for obesity and diabetes research. PMID:27713523

  4. Energy substrate utilization in a poorly differentiated rat hepatoma

    SciTech Connect

    Mares-Perlman, J.A.

    1987-01-01

    Metabolism of energy substrates in a transplantable, poorly differentiated rat hepatoma and the effect of high fat total parenteral nutrition (TPN) on growth of this neoplasms and host were studied. Although high-fat TPN better maintained host weight and nitrogen balance than oral feeding and did not increase tumor growth, adverse consequences of high-fat TPN were found. These included liver lipid infiltration and indications of the possible development of insulin resistance. A method for isolating fresh hepatoma cells was designed to study the metabolism of energy substrates by this neoplasms. The metabolic viability of cells obtained by this procedure in sustained incubations was demonstrated by observations of linear rates of leucine and uridine incorporation into acid-insoluble material, retention of cellular ATP and ADP content and stable rates of oxygen consumption. Cells isolated by this procedure were used to determine whether this hepatoma was capable of oxidizing fatty acids and ketones and to estimate the contribution oxidation of these substrates made to ATP production relative to glucose and glutamine. Incorporation of radiolabel from both palmitate and ..beta..-hydroxybutyrate carbon into CO/sub 2/ was observed.

  5. Studies on responsiveness of hepatoma cells to catecholamines. II. Comparison of beta-adrenergic responsiveness of rat ascites hepatoma cells with cultured normal rat liver cells.

    PubMed

    Miyamoto, K; Matsunaga, T; Takemoto, N; Sanae, F; Koshiura, R

    1985-05-01

    The pharmacological properties of beta-adrenoceptors in rat ascites hepatoma cells were compared with those in normal rat liver cells which were cultured for 24 hr after collagenase digestion. Adenylate cyclases in the homogenates of cultured normal rat liver cells and rat ascites hepatoma cells, AH44, AH66, AH109A, AH130 and AH7974, were all activated by isoproterenol or NaF to different degrees. The enzyme in rat liver cells was activated by several beta 2-agonists but those in all hepatoma cells hardly responded. Furthermore, salbutamol, a beta 2-partial agonist, antagonized the cyclase activation by isoproterenol in AH130 cells. The Kact value of isoproterenol for the activation of adenylate cyclase in AH130 cells was smaller than that in rat liver cells. A comparison of the Ki values of beta-antagonists for the inhibition of isoproterenol-stimulated cyclase activity shows that while the Ki values of propranolol and butoxamine in AH130 cells were similar to those in rat liver cells, a significant difference was observed in the values for beta 1-selective antagonists between AH130 cells and rat liver cells. The Ki values of metoprolol and atenolol for AH130 cells were 137- and 90-fold lower, respectively, than for normal rat liver cells. From these findings, it is strongly suggested that beta-adrenoceptors in rat ascites hepatoma cells including AH130 cells have similar properties to the mammalian beta 1-receptor.

  6. Properties of aldehyde dehydrogenas from chemically-induced rat hepatomas and normal rat liver.

    PubMed

    Lindahl, R

    1980-01-01

    The subcellular distribution and properties of four aldehyde dehydrogenase isozymes (I-IV) identified in 2-acetylaminofluorene-induced rat hepatomas and three aldehyde dehydrogenase (I-III) identified in normal rat liver are compared. In normal liver, mitochondria (50%) and microsomes (27%) possess the majority of the aldehyde dehydrogenase (AlDH), with cytosol possessing little activity. Isozymes I-III can be identified in both fractions and can be differentiated on the basis of substrate and coenzyme specificity, substrate Km, inhibition by disulfiram and anti-hepatoma aldehyde dehydrogenase sera, and/or isoelectric point. Hepatomas possess considerable cytosolic AlDH (20%), in addition to mitochondrial (23%) and microsomal (35%) activity. Although isozymes I-III are present in tumor mitochondria and microsomes, little isozyme I or II is found in cytosol. Hepatoma cytosolic AlDH is composed (50%) of a hepatoma-specific isozyme (IV), differing in several properties from isozymes I-III; the remainder of the tumor cytosolic activity is due to isozyme III (48%). The data indicate that expression of the tumor-specific aldehyde dehydrogenase phenotype requires both qualitative and quantitative changes involving cytosolic and microsomal aldehyde dehydrogenase. The qualitative change requires the derepression of a gene for an aldehyde dehydrogenase expressed in normal liver only following exposure to potentially harmful xenobiotics. The quantitative change involves both an increase in activity and change in subcellular location of a basal, normal liver AlDH isozyme.

  7. Comparison of cell-surface glycoproteins of rat hepatomas and embryonic rat liver.

    PubMed Central

    van Beek, W. P.; Emmelot, P.; Homburg, C.

    1977-01-01

    Cell-surface glycoprotein of 3 rat hepatoma strains and late-embryonic liver was metabolically labelled in vivo with [3H]- or [14C]-fucose. Trypsinization of the cells and exhaustive pronase digestion of combined hepatoma-liver trypsinates followed by gel filtration over Sephadex-Biogel mixtures, yielded elution profiles that contained more early-eluting (high-mol.-wt.) glycopeptides for hepatomas than for liver. At least 3 factors were identified which acted to augment the fraction of early-eluting tumour glycopeptides: (a) increase of neuraminidase-sensitive sialic acid, (b) increase of neuraminidase-insensitive sialic acid that was sensitive to mild HCl hydrolysis, and (c) presence of sugar sulphate groups contributing to a restricted extent, relative to possible unknown factor(s). Whether (a), (b) or (c) operated depended on the hepatoma strain or its mode of growth. Notwithstanding these differences in the nature of the increase in early-eluting glycopeptides, the increase itself appears not to be due to growth per se, nor to an embryonic expression, but rather may serve as a marker of tumourigenicity. PMID:199223

  8. Physical Activity, Energy Expenditure, and Defense of Body Weight in Melanocortin 4 Receptor-Deficient Male Rats

    PubMed Central

    Almundarij, Tariq I.; Smyers, Mark E.; Spriggs, Addison; Heemstra, Lydia A.; Beltz, Lisa; Dyne, Eric; Ridenour, Caitlyn; Novak, Colleen M.

    2016-01-01

    Melanocortin 4 receptor (MC4R) variants contribute to human obesity, and rats lacking functional MC4R (Mc4rK314X/K314X) are obese. We investigated the hypothesis that low energy expenditure (EE) and physical activity contribute to this obese phenotype in male rats, and determined whether lack of functional MC4R conferred protection from weight loss during 50% calorie restriction. Though Mc4rK314X/K314X rats showed low brown adipose Ucp1 expression and were less physically active than rats heterozygous for the mutation (Mc4r+/K314X) or wild-type (Mc4r+/+) rats, we found no evidence of lowered EE in Mc4rK314X/K314X rats once body weight was taken into account using covariance. Mc4rK314X/K314X rats had a significantly higher respiratory exchange ratio. Compared to Mc4r+/+ rats, Mc4rK314X/K314X and Mc4r+/K314X rats lost less lean mass during calorie restriction, and less body mass when baseline weight was accounted for. Limited regional overexpression of Mc3r was found in the hypothalamus. Although lower physical activity levels in rats with nonfunctional MC4R did not result in lower total EE during free-fed conditions, rats lacking one or two functional copies of Mc4r showed conservation of mass, particularly lean mass, during energy restriction. This suggests that variants affecting MC4R function may contribute to individual differences in the metabolic response to food restriction. PMID:27886210

  9. Expression of rat class I major histocompatibility complex (MHC) alloantigens and hepatocytes and hepatoma cells

    SciTech Connect

    Hunt, J.M.; Desai, P.A.; Chakraborty, S.

    1986-03-05

    Altered expression of Class I MHC alloantigens has been reported for murine tumors, and may be associated with the tumorigenic phenotype of tumor cells. To characterize MHC Class I alloantigen expression on a chemically-induced transplantable rat hepatoma cell line, 17X, derived from a (WF x F344) F/sub 1/ rat, polyvalent anti-F344 and anti-WF rat alloantisera were first used to immunoprecipitate the rat RT1.A Class I MHC alloantigens expressed on primary (WF x F344) F/sub 1/ hepatocyptes in short-term monolayer cultures. Two-dimensional isoelectric focusing and SDS-PAGE of immunoprecipitates from /sup 35/S-methionine-labeled (WF x F344) F/sub 1/ hepatocytes clearly resolved the RT1.A/sup u/ (WF) and RT1.A/sup LvI/ (F344) parental alloantigens. Identical radiolabeling and immunoprecipitation failed to detect either parental alloantigen on the 17X hepatoma cells. However, indirect immunofluorescence and immunoblot analyses demonstrated the presence of parental alloantigens on the 17X cells. Immunization of F344 rats but not of WF rats with 17X cells resulted in antibodies cytotoxic for normal (WF X F344) F/sub 1/ spleen cells in the presence of complement. These findings indicate that a combination of detection techniques will be necessary to characterize altered alloantigen expression on rat hepatoma cells.

  10. Structure and properties of an under-sulfated heparan sulfate proteoglycan synthesized by a rat hepatoma cell line

    PubMed Central

    1984-01-01

    A rat hepatoma cell line was shown to synthesize heparan sulfate and chondroitin sulfate proteoglycans. Unlike cultured hepatocytes, the hepatoma cells did not deposit these proteoglycans into an extracellular matrix, and most of the newly synthesized heparan sulfate proteoglycans were secreted into the culture medium. Heparan sulfate proteoglycans were also found associated with the cell surface. These proteoglycans could be solubilized by mild trypsin or detergent treatment of the cells but could not be displaced from the cells by incubation with heparin. The detergent-solubilized heparan sulfate proteoglycan had a hydrophobic segment that enabled it to bind to octyl- Sepharose. This segment could conceivably anchor the molecule in the lipid interior of the plasma membrane. The size of the hepatoma heparan sulfate proteoglycans was similar to that of proteoglycans isolated from rat liver microsomes or from primary cultures of rat hepatocytes. Ion-exchange chromatography on DEAE-Sephacel indicated that the hepatoma heparan sulfate proteoglycans had a lower average charge density than the rat liver heparan sulfate proteoglycans. The lower charge density of the hepatoma heparan sulfate can be largely attributed to a reduced number of N-sulfated glucosamine units in the polysaccharide chain compared with that of rat liver heparan sulfate. Hepatoma heparan sulfate proteoglycans purified from the culture medium had a considerably lower affinity for fibronectin-Sepharose compared with that of rat liver heparan sulfate proteoglycans. Furthermore, the hepatoma proteoglycan did not bind to the neoplastic cells, whereas heparan sulfate from normal rat liver bound to the hepatoma cells in a time-dependent reaction. The possible consequences of the reduced sulfation of the heparan sulfate proteoglycan produced by the hepatoma cells are discussed in terms of the postulated roles of heparan sulfate in the regulation of cell growth and extracellular matrix formation. PMID

  11. Cocaine- and amphetamine-regulated transcript peptide immunoreactivity in the brain of the CCK-1 receptor deficient obese OLETF rat.

    PubMed

    Abraham, Hajnalka; Covasa, Mihai; Hajnal, Andras

    2009-07-01

    Cocaine- and amphetamine-regulated transcript (CART) peptide is expressed in brain areas involved in homeostatic regulation and reward. CART has been shown to reduce food intake, but the underlying mechanisms and the relevance of this effect on obesity yet remain unknown. Therefore, we used immunohistochemistry to investigate the expression of CART peptide in various brain regions of the obese Otsuka Long Evans Tokushima Fatty (OLETF) rats lacking the CCK-1 receptor. Analysis revealed that whereas the distribution of CART-peptide immunoreactive neurons and axonal networks was identical in OLETF rats and lean controls, the intensity of CART immunoreactivity was significantly reduced in the rostral part of the nucleus accumbens (p < 0.01), the basolateral complex of the amygdala (p < 0.05) and the rostro-medial nucleus of the solitary tract (p < 0.001) of the OLETF rats. These areas are involved in reward and integration of taste and viscerosensory information and have been previously associated with altered functions in this strain. The findings suggest that in addition to previously described deficits in peripheral satiety signals and augmented orexigenic regulation, the anorectic effect of CART peptide may also be diminished in OLETF rats.

  12. Beta/sub 1/-adrenoceptors in rat hepatoma, desensitization by isoproterenol and phorbol-myristate-acetate

    SciTech Connect

    Garcia-Sainz, J.A.; Alcantara, R.; Hernandez-Sotomayor, S.M.T.; Mas-Oliva, J.

    1989-01-01

    The beta-adrenergic responsiveness of hepatocytes obtained from hypothyroid rats and of a transplantable hepatoma cell line (AS-30D) were studied by measuring the accumulation of cyclic AMP. The potency order for agonists in hepatocytes was: isoproterenol > epinephrine >> norepinephrine whereas in the hepatoma cells the potency order was: isoproterenol > norepinephrine /equivalent to/ epinephrine. The effect of isoproterenol was antagonized in hepatocytes by low concentrations of ICI 118551 and only partially by concentrations of atenolol as high as 100 ..mu..M. In hepatome cells the effect of isoproterenol was inhibited by both antagonists with the potency order atenolol > ICI 118551. These data indicate that in hepatocytes the effect is mediated by beta/sub 2/-adrenoceptors whereas in hepatoma cells it is through beta/sub 1/-adrenoceptors. Preincubation of hepatoma cells with isoproterenol or phorbol-myristate-acetate diminished the subsequent beta-adrenergic responsiveness of the cells. Interestingly, when both isoproterenol and phorbol-myristate-acetate were present during the preincubation the beta-adrenergic desensitization observed was bigger than that induced by any of these agents alone.

  13. Rat hepatoproliferin revealed the status of a complete hepatomitogen in human hepatoma cells.

    PubMed

    Oosthuizen, M M J; Ndaba, N; Myburgh, J A

    2005-01-01

    Hepatoproliferin (HPF), a liver regeneration factor isolated from rat hepatocytes, was assessed for its mitogenic status in the human hepatoma cell line PLC/PRF-5. HPF was able to enhance hepatoma cell growth on its own without the aid of the established complete mitogens EGF and TGF-alpha or the hepato-priming factor TNF-alpha. HPF therefore acted as a complete hepatomitogen and had no co-mitogenic properties since it did not augment proliferation when combined with EGF or TGF-alpha but showed only an additive effect in the presence of TGF-alpha. Rat HPF was phylogenetically unrestricted, because it was found active in human cells. When each of the established growth factors (GFs) was used alone, the hepatoma cells responded with the same kind of response profile, namely a bi-phasic bell-shaped dose-dependent response due to stimulation at low levels and inhibition at higher levels. However, hepatocyte growth factor (HGF) was an exception since it did not induce a growth response in hepatoma cells. On the contrary HPF, on its own, showed a progressive enhanced linear dose response at the levels used for the GFs (ie 1.0-15 ng/5 x 10(5) cells). The comparative potency (CP) (dpm x 10(3)/microg DNA/ng GF) of HPF (CP = 13) was in the same range as for the complete hepatomitogens EGF (CP = 12) and TGF-alpha (CP = 14), revealing that HPF has indeed the status of a complete mitogen.

  14. Osmoregulated taurine transport in H4IIE hepatoma cells and perfused rat liver.

    PubMed Central

    Warskulat, U; Wettstein, M; Häussinger, D

    1997-01-01

    The effects of aniso-osmotic exposure on taurine transport were studied in H4IIE rat hepatoma cells. Hyperosmotic (405 mosmol/l) exposure of H4IIE cells stimulated Na+-dependent taurine uptake and led to an increase in taurine transporter (TAUT) mRNA levels, whereas hypo-osmotic (205 mosmol/l) exposure diminished both taurine uptake and TAUT mRNA levels when compared with normo-osmotic (305 mosmol/l) control incubations. Taurine uptake increased 30-40-fold upon raising the ambient osmolarity from 205 to 405 mosmol/l. When H4IIE cells and perfused livers were preloaded with taurine, hypo-osmotic cell swelling led to a rapid release of taurine from the cells. The taurine efflux, but not taurine uptake, was sensitive to 4,4'-di-isothiocyanatostilbene-2,2'-disulphonic acid (DIDS), suggestive of an involvement of DIDS-sensitive channels in mediating volume-regulatory taurine efflux. Whereas in both H4IIE rat hepatoma cells and primary hepatocytes TAUT mRNA levels were strongly dependent upon ambient osmolarity, mRNAs for other osmolyte transporters, i.e. the betaine transporter BGT-1 and the Na+/myo-inositol transporter SMIT, were not detectable. In line with this, myo-inositol uptake by H4IIE hepatoma cells was low and was not stimulated by hyperosmolarity. However, despite the absence of BGT-1 mRNA, a slight osmosensitive uptake of betaine was observed, but the rate was less than 10% of that of taurine transport. This study identifies a constitutively expressed and osmosensitive TAUT in H4IIE cells and the use of taurine as a main osmolyte, whereas betaine and myo-inositol play little or no role in the osmolyte strategy in these cells. This is in contrast with rat liver macrophages, in which betaine has been shown to be a major osmolyte. PMID:9032454

  15. Mitochondria as an important target in heavy metal toxicity in rat hepatoma AS-30D cells.

    PubMed

    Belyaeva, Elena A; Dymkowska, Dorota; Wieckowski, Mariusz R; Wojtczak, Lech

    2008-08-15

    The mechanisms of toxic effects of divalent cations of three heavy metals Hg, Cd and Cu in rat ascites hepatoma AS-30D cells cultivated in vitro were compared. It was found that the toxicity of these ions, applied in the micromolar range (10-500 microM), decreased from Hg(2+) (most toxic) to Cu(2+) (least toxic). Hg(2+) and Cd(2+) produced a high percentage of cell death by both necrosis and apoptosis, whereas Cu(2+) at concentrations up to 500 microM was weakly effective. Hg(2+) at concentration of 10 microM appeared slightly uncoupling (i.e., stimulated resting state respiration and decreased the mitochondrial transmembrane potential), whereas it exerted a strong inhibitory effect on the respiratory chain and rapid dissipation of the membrane potential at higher concentrations. Cu(2+) had inhibitory effect on cell respiration only at 500 microM concentration and after incubation of 48 h but produced a significant uncoupling effect at lower concentrations. Cu(2+) induced an early and sharp increase of intracellular production of reactive oxygen species (ROS). The action of Hg(2+) and Cd(2+) on ROS generation was biphasic. They stimulated ROS generation within the cells at low concentrations and at short incubation times but decreased ROS generation at higher concentrations and at longer incubation. It is concluded that mitochondria are an important target for toxic effects of Hg(2+), Cd(2+) and Cu(2+) in AS-30D rat hepatoma cells.

  16. Isolation and characterization of cAMP-resistant mutants of the H-4 rat hepatoma cells

    SciTech Connect

    Liu, A.Y.; Lin, Z.

    1987-05-01

    H-4 rat hepatoma cells were mutagenized with ethyl methane-sulfonate and the frequency of emergence of cAMP resistant mutant cells were evaluated by cloning the EMS-treated cells in a semi-solid agar medium that contained either 1-3 mM 8-bromo-cAMP plus 1 mM 3-isobutyl-1-methyl xanthine or 5 ..mu..g/ml cholera toxin plus 1 mM IBMX. cAMP resistant mutants emerged at a frequency of 8 x 10/sup -5/. 15 colonies were isolated, recloned, grown in mass culture, and cell extracts were prepared. Analysis of cAMP-dependent protein kinase demonstrated that: (1) the type II enzyme is the only cAMP-dependent protein kinase detected in extracts of the hepatoma cells; (2) of the 15 cAMP resistant clonal cell lines examined, only one (H/sub 4/M/sub 18/) was found to be devoid of cAMP-dependent protein kinase activity. In another cell line (H/sub 4/M/sub 10/) the activity was 30% of that of the parental H-4 cells; (3) there was an increase (130-300%) in cAMP-dependent protein kinase activity in 13/15 of the mutant cell lines over that of the parental H-4 cells. Analysis of cAMP-phosphodiesterase demonstrated significant increases (150-370%) in the enzyme activity in extracts of the mutants over that of the H-4 parental line. Their results suggest that while a deficiency in cAMP-dependent protein kinase may confer resistance to the hepatoma cells against the cytostatic effects of 8-bromo-cAMP and cholera toxin, other events such as overexpression of phosphodiesterase may contribute to this phenotype.

  17. Molecular cloning of cDNA for rat argininosuccinate lyase and its expression in rat hepatoma cell lines.

    PubMed Central

    Lambert, M A; Simard, L R; Ray, P N; McInnes, R R

    1986-01-01

    Using antibody and plaque hybridization screening, we isolated rat argininosuccinate lyase (AS lyase) cDNA clones from a liver cDNA library prepared in the phage expression vector lambda gt11. Five overlapping cDNAs covering 1.7 kilobases of the estimated 2.0-kilobase AS lyase mRNA were characterized and confirmed as AS lyase sequences by hybrid selection. We examined the differential expression of AS lyase in rat liver and four rat hepatoma cell lines (7800C1, H4, HTC, and MH1C1). These cells exhibited a 60-fold range of AS lyase enzyme activity, with a direct correlation between activity, amount of AS lyase immunoreactive protein, and quantity of specific AS lyase mRNA. These observations suggest that the differences in AS lyase expression between rat liver and the hepatoma cell lines result from variations in AS lyase transcriptional activity or alterations in nuclear processing of AS lyase RNA. Images PMID:3785176

  18. [Partial purification and certain properties of gamma-glutamyltransferase from rat liver and hepatoma].

    PubMed

    Loginov, V A; Chernov, N N; Berezov, T T

    1980-07-01

    gamma-Glutamyltransferase (GGT) from the liver and transplantable hepatoma of rats was purified 130- and 170-fold, respectively. The properties of the enzymatic preparations obtained were studied. The optimum pH for the transferase reaction between L-gamma-glutamyl-p-nitroanilide (5 mM) and glycyl-glycine (50 mM) was 8.0--8.2, while that for the auto-transferase reaction (without glycyl-glycine) amounted to 9.3--9.5. The isoelectric points of GGT from the liver correlated with the pH 3.9, 4.2 and 4.4 whereas those of hepatoma enzyme with the pH 5.7, 6.0 and 7.0 GGT obtained from both sources were equally specific for various acceptors at the pH 8.1 and 7.0. It has been shown that metotrexate (0.9 mM) and folic acid (3.5 mM) inhibited both enzymes by 50%.

  19. Reverse relationship between malignancy and cyclic AMP-dependent protein kinase activity in Yoshida rat ascites hepatomas.

    PubMed

    Miyamoto, K; Nakamura, S; Nomura, M; Yamamoto, H; Sanae, F; Hidaka, H

    1993-08-31

    Rat ascites hepatoma (AH) cells (10(6) cells/head) inoculated intraperitoneally into rats had host-killing ability (malignancy) in the order AH66F > AH44 > AH13 > AH7974 > AH109A > AH66 > AH130. The life span of the rats after inoculation closely correlated with the activity of cyclic AMP-dependent protein kinase (protein kinase A) in the tumor cells but not the activity of Ca2+/phospholipid-dependent protein kinase (protein kinase C). N-[2-[N-[3-(4-chlorophenyl)-1-methyl-2-propenyl]amino]ethyl]-5- isoquinoline-sulfonamide (H-87), a potent, selective inhibitor of protein kinase A, inhibited in vitro growth of these hepatoma cells with a similar potency and, intraperitoneally injected, prolonged the lives of rats bearing less malignant AH66 cells (with high protein kinase A activity) but did not affect the life span of rats bearing highly malignant AH66F cells (with low protein kinase A activity). On the other hand N-(2-methylpiperazyl)-5-isoquinolinesulfonamide (H-7), an inhibitor of protein kinase C, inhibited AH66F cells more than AH66 cells, but did not influence the life span of rats bearing either hepatoma. From these results it is deduced that protein kinase A may be important in the regulation of malignancy and in vivo proliferation of AH cells.

  20. A comparison of adrenergic receptors of rat ascites hepatoma AH130 cells with those of normal rat hepatocytes.

    PubMed

    Sanae, F; Miyamoto, K; Koshiura, R

    1988-04-01

    The pharmacological specificity of adrenergic receptors in the plasma membrane of rat ascites hepatoma AH130 cells was compared with that in normal rat hepatocytes. The number of [125I]iodocyanopindolol-binding sites was much greater in AH130 cells than in the hepatocytes. We characterized the alpha-adrenergic receptor subtypes using the alpha 1-selective ligand [3H]prazosin and the alpha 2-selective ligand [3H]clonidine. AH130 cells had fewer prazosin-binding sites than the hepatocytes and about 8 times as many clonidine-binding sites of high affinity. The results showed that the adrenergic receptors in AH130 cells have pharmacological properties that are very different from those of the receptors in normal rat hepatocytes.

  1. Combination antitumor effect with central nervous system depressants on rat ascites hepatomas.

    PubMed

    Koshiura, R; Miyamoto, K; Sanae, F

    1980-02-01

    Combined effect of twenty-one central nervous system depressants with several antitumor agents was studied in the in vitro and in vivo experimental systems, using rat ascites hepatoma call lines, AH13 and AH44, sensitive and insensitive to alkylating agents, respectively. Reserpine remarkably enhanced the cytotoxic effect of 1-(gamma-chloropropyl)-2-chloromethylpiperidine hydrobromide (CAP-2) both on AH13 and AH44 cells. In the in vivo combined experiments, reserpine also synergistically enhanced the life-prolonging effect of CAP-2 on AH13-bearing rats and, although CAP-2 was not potent on the prolongation of life span of AH44-bearing rats and reserpine was also ineffective at the doses examined, the life span of tumor-bearing rats receiving the combined administration was apparently prolonged compared with control groups. Thus, there was a parallelism between in vitro and in vivo experiments. These findings suggested that the antitumor-enhancing effect of reserpine might be due to the direct action on the tumor cells, and a possible mechanism that reserpine inhibited the DNA damage-repairing activity of the cells was contradictory. Other mechanisms are also discussed.

  2. Induction of aldose reductase gene expression in LEC rats during the development of the hereditary hepatitis and hepatoma.

    PubMed

    Takahashi, M; Hoshi, A; Fujii, J; Miyoshi, E; Kasahara, T; Suzuki, K; Aozasa, K; Taniguchi, N

    1996-04-01

    We examined age-related changes in the protein and the mRNA expression of aldose reductase in livers of Long-Evans with a cinnamon-like color (LEC) rats, which develop hereditary hepatitis and hepatoma with aging, using Long-Evans with an agouti color rats as controls. The levels of the protein and mRNA of aldose reductase increased after 20 weeks, at the stage of acute hepatitis, and were maintained at 60 weeks of age, while those of aldehyde reductase seemed to be constant at all ages. The expression of aldose reductase was marked in cancerous lesions in hepatoma-bearing LEC rat liver compared to uninvolved surrounding tissues. These results indicated that elevation of aldose reductase accompanied hepatocarcinogenesis and may be related to the acquisition of immortality of the cancer cells through detoxifying cytotoxic aldehyde compounds.

  3. Feeding long-chain n-3 polyunsaturated fatty acids to obese leptin receptor-deficient JCR:LA- cp rats modifies immune function and lipid-raft fatty acid composition.

    PubMed

    Ruth, Megan R; Proctor, Spencer D; Field, Catherine J

    2009-05-01

    Dietary EPA and DHA modulate immunity and thereby may improve the aberrant immune function in obese states. To determine the effects of feeding fish oil (FO) containing EPA and DHA on splenocyte phospholipid (PL) and lipid-raft fatty acid composition, phenotypes and cytokine production, 14-week-old obese, leptin receptor-deficient JCR:LA-cp rats (cp/cp; n 10) were randomised to one of three nutritionally adequate diets for 3 weeks: control (Ctl, 0 % EPA+DHA); low FO (LFO, 0.8 % (w/w) EPA+DHA); high FO (HFO, 1.4 % (w/w) EPA+DHA). Lean JCR:LA-cp (+/ - or +/+) rats (n 5) were fed the Ctl diet. Obese Ctl rats had a higher proportion of n-3 PUFA in splenocyte PL than lean rats fed the same diet (P < 0.05). The lower n-6:n-3 PUFA ratio of splenocyte PL was consistent with the lower mitogen-stimulated interferon (IFN)-gamma and IL-1beta production by cells from obese rats (P < 0.05). Obese rats fed the FO diet had lower mitogen-stimulated Th1 (IFN-gamma) and Th2 (IL-4) cytokine responses, but IL-2 production (concanavalin A; ConA) did not differ (P < 0.05). The HFO diet was more effective in lowering IL-1beta and increasing IL-10 production (ConA, P < 0.05). This lower IL-1beta production was accompanied by a lower proportion of major histocompatability complex class II-positive cells and a higher incorporation of DHA into lipid rafts. This is the first study to demonstrate impaired responses to mitogen stimulation and altered fatty acid incorporation into the membrane PL of JCR:LA-cp rats. Feeding FO lowered the ex vivo inflammatory response, without altering IL-2 production from ConA-stimulated splenocytes which may occur independent of leptin signalling.

  4. The phytoestrogen daidzein affects the antioxidant enzyme system of rat hepatoma H4IIE cells.

    PubMed

    Röhrdanz, Elke; Ohler, Sandra; Tran-Thi, Quynh-Hoa; Kahl, Regine

    2002-03-01

    Phytoestrogens such as the soy isoflavonoid daidzein have potential health benefits. The antioxidant properties of phytoestrogens are considered to be responsible in part for their protective effects. The antioxidant enzyme (AOE) system plays an important role in the defense of cells against oxidative insults. To determine whether flavonoids can exert antioxidative effects not only directly but also indirectly by modulating the AOE system, we investigated the influence of the flavonoid daidzein on the expression of different AOE. Daidzein treatment of hepatoma H4IIE cells increased catalase mRNA expression two- to threefold. Expression levels of copper zinc superoxide dismutase (CuZnSOD) were not affected by exposure to daidzein. Manganese superoxide dismutase (MnSOD) mRNA expression levels decreased slightly and glutathione peroxidase (GPx) levels increased slightly after daidzein exposure. Changes in AOE mRNA expression levels were significant at 300 micromol/L daidzein. To elucidate the mechanisms underlying the strong increase in catalase mRNA, transfection experiments were performed. Transient transfection of hepatoma cells with reporter plasmids containing different parts of the upstream region of the catalase gene showed a significant one- to threefold increase in reporter gene activity after daidzein exposure. This indicates that daidzein can directly activate the rat catalase promoter region. Despite the increase in catalase mRNA, daidzein pretreatment of cells did not protect against oxidative stress resulting from H(2)O(2) exposure. On the contrary, daidzein itself exerted a mild oxidative stress. In conclusion, the changes in the AOE system provoked by daidzein affected the oxidant rather than the antioxidant properties of daidzein.

  5. Inducible protein in rat hepatomas with expression alternative to alpha-fetoprotein.

    PubMed

    Eraiser, T L; Yazova, A K; Poltoranina, V S; Kuprina, N I; Karamova, E R; Shipova, L Y; Lazarevich, N L; Abelev, G I

    1998-01-30

    The rat hepatoma cell line McA RH7777 was cloned into alpha-fetoprotein-producing (AFP+) and non-producing (AFP-) sublines. A monoclonal antibody (MAb A2/3) reacting with an antigen (Ag A2/3) present only in AFP- clones or AFP- cells in mixed clones was obtained. Ag A2/3 was absent from the liver of embryonic, fetal, newborn and adult rats, but it was present in gastric and intestinal mucosa of adult rats. Ag A2/3 was found to be a heavy metal-inducible protein: Cd2+ and Pb2+ strongly induced the expression of Ag A2/3 in vivo in the liver of adult rats, while xenobiotics and CCl4 were not active in this respect. In vitro Cd2+ and Pb2+ induced Ag A2/3 expression in several AFP+ clones, leading to a simultaneous marked decrease of AFP+ cells from such clones. The effect of Cd2+ in the induction of Ag A2/3 and suppression of AFP was reversible. SDS PAGE revealed one protein band with an m.w. close to 45,000, which was not sensitive to mercaptoethanol. Despite its inducible properties, Ag A2/3 was shown not to belong to metallothioneins, cytochrome P-450, glutathion-transferase or heat shock proteins families, well-known as being inducible cell stress proteins. Expression of Ag A2/3 could be one of the factors determining the high amplitude of AFP production by individual liver tumors. The nature of Ag A2/3 and its alternative expression with respect to AFP remain to be studied.

  6. Genetics Home Reference: leptin receptor deficiency

    MedlinePlus

    ... Facebook Share on Twitter Your Guide to Understanding Genetic Conditions Search MENU Toggle navigation Home Page Search ... Conditions Genes Chromosomes & mtDNA Resources Help Me Understand Genetics Home Health Conditions leptin receptor deficiency leptin receptor ...

  7. Angiotensin-converting enzyme inhibition reduces food intake and weight gain and improves glucose tolerance in melanocortin-4 receptor deficient female rats.

    PubMed

    Mul, Joram D; Seeley, Randy J; Woods, Stephen C; Begg, Denovan P

    2013-09-10

    Functional loss of melanocortin-4 receptor (MC4R) activity leads to hyperphagia and an obese, glucose intolerant phenotype. We have previously established that inhibition of angiotensin-converting enzyme (ACE) reduces food intake, body weight and glucose homeostasis in diet-induced obesity. The current study assessed the effect of ACE inhibitor treatment in MC4R-deficient female rats on body weight, adiposity and glucose tolerance. Rats homozygous (HOM) for a loss of function Mc4r mutation had an obese phenotype relative to their wildtype (WT) littermates. Inhibition of ACE for 8weeks produced reductions in body weight gain in both HOM and WT rats; however, food intake was only reduced in HOM rats. Weight loss following ACE inhibitor treatment was specific to fat mass while lean mass was unaffected. HOM rats were severely glucose intolerant and insensitive to exogenous insulin injection, and treatment with an ACE inhibitor improved both glucose tolerance and insulin sensitivity in HOM rats although not fully to that of the level of WT rats. The current study indicates that HOM rats are sensitive to the anorectic effects of ACE inhibition, unlike their WT littermates. This resulted in a more rapid reduction in body weight gain and a more substantial loss of adipose mass in HOM animals, relative to WT animals, treated with an ACE inhibitor. Overall, these data demonstrate that MC4R signaling is not required for weight loss following treatment with an ACE inhibitor.

  8. Differential body weight, blood pressure and placental inflammatory responses to normal versus high-fat diet in melanocortin-4 receptor-deficient pregnant rats

    PubMed Central

    Spradley, Frank T.; Palei, Ana C.; Granger, Joey P.

    2016-01-01

    Objectives Although obesity increases the risk for hypertensive disorders of pregnancy, the mechanisms remain unclear. Neural melanocortin-4 receptor (MC4R) deficiency causes hyperphagia and obesity. Effects of MC4R deficiency on body weight, blood pressure (BP) and placental inflammatory responses to high-fat diet (HFD) are unknown. We tested two hypotheses: MC4R deficiency results in higher body weight, BP and placental inflammation under normal-fat diet (NFD) conditions and HFD exaggerates these responses in MC4R-deficient pregnant rats. Methods MC4R+/+ and MC4R+/− rats were maintained on NFD (13% kcal fat) or HFD (40% kcal fat) for ~15 weeks, then measurements made on gestational day 19. Results MC4R+/− pregnant rats had greater body mass and total body fat and visceral adipose tissue weights along with greater circulating total cholesterol (TC) and leptin levels than MC4R+/+ rats regardless of diet. On NFD, circulating adiponectin levels were lower and placental TNFα levels and BP (conscious with carotid catheter) were higher in these heavier rats. Circulating adiponectin levels were lower and placental TNFα levels and BP were higher in MC4R+/+ rats compared with NFD controls. These parameters were not affected by HFD in the already heavier and hypertensive MC4R+/− pregnant rats. Conclusion Obesity in MC4R deficiency and HFD in MC4R+/+ rats result in higher BP and placental inflammation during pregnancy. However, HFD did not exaggerate these responses in already obese MC4R+/− pregnant rats. These data suggest that obesity and HFD are independently related to hypertension and placental inflammation in pregnancy. PMID:27467764

  9. Glucocorticoid regulation of amino acid transport in anucleate rat hepatoma (HTC) cells

    PubMed Central

    1981-01-01

    The transport of alpha-aminoisobutyric acid (AIB) by rat hepatoma tissue culture (HTC) cells is rapidly and reversibly inhibited by dexamethasone and other glucocorticoids. To investigate the role of the nucleus in the regulation of transport and to determine whether steroid hormones or steroid-receptor complexes may have direct effects on cytoplasmic or membrane functions, we have examined the regulation of transport by dexamethasone in anucleate HTC cells. Cytoplasts prepared from suspension cultures of HTC cells fully retain active transport of AIB with the same kinetic properties as intact cells. However, the uptake of AIB is not inhibited by dexamethasone or other corticosteroids. Neither is the inhibited rate of transport, manifested by cytoplasts prepared from dexamethasone-treated cells, restored to normal upon removal of the hormone. Anucleate cells exhibit specific, saturable binding of [3H]dexamethasone; however, the binding is reduced compared with that of intact cells. The nucleus is thus required for the glucocorticoid regulation of amino acid transport in HTC cells. PMID:7217203

  10. Stimulatory and inhibitory effects of forskolin on adenylate cyclase in rat normal hepatocytes and hepatoma cells.

    PubMed

    Miyamoto, K; Sanae, F; Koshiura, R; Matsunaga, T; Takagi, K; Satake, T; Hasegawa, T

    1989-02-01

    Forskolin synergistically potentiated adenosine 3',5'-cyclic monophosphate formation by prostaglandin E1 (PGE1) in rat normal hepatocytes freshly prepared by collagenase digestion and rat ascites hepatoma AH66 cells, but dose-dependently inhibited the accumulation by PGE1 in AH66F cells. Forskolin activated adenylate cyclase in a dose-dependent manner in homogenates of all cell lines. In normal hepatocytes and AH66 cells, simultaneous addition of forskolin and other adenylate cyclase activators [isoproterenol (IPN), PGE1, guanosine 5'-triphosphate sodium salt (GTP), 5'-guanylylimidodiphosphate sodium salt (Gpp (NH)p), NaF, cholera toxin, islet activating protein and MnCl2] gave greater than additive responses. On the other hand, in AH66F cells, the effect of forskolin on adenylate cyclase was hardly influenced by GTP, but forskolin diminished the activities induced by high concentrations of GTP to that by the diterpene alone. Forskolin also significantly inhibited the PGE1-stimulated and the guanine nucleotide binding regulatory protein-stimulated activities. Because AH66F cells were insensitive to IPN, the combination with forskolin and IPN gave similar activity to that obtained with the diterpene alone. The effect of forskolin on the activation by manganese ion was neither synergistic nor inhibitory but was additive in AH66F cells. These results suggest that forskolin promotes the interaction between the stimulatory guanine nucleotide binding regulatory protein and the catalytic unit in normal hepatocytes and AH66 cells, but in AH66F cells forskolin interferes with the coupling of the two components of adenylate cyclase.

  11. Altered adrenergic response and specificity of the receptors in rat ascites hepatoma AH130.

    PubMed

    Sanae, F; Miyamoto, K; Koshiura, R

    1989-11-15

    Adenylate cyclase activation through adrenergic receptors in rat ascites hepatoma (AH) 130 cells in response to adrenergic drugs was studied, and receptor binding and displacement were compared with those of normal rat hepatocytes. Epinephrine (Epi) and norepinephrine (NE) activated AH130 adenylate cyclase about half as much as isoproterenol (IPN) but equaled IPN after treatment with the alpha-antagonist phentolamine or islet-activating protein (IAP). The three catecholamines in hepatocytes were similar regardless of phentolamine or IAP. These catecholamines activated adenylate cyclase in order of IPN greater than NE greater than Epi in AH130 cells but IPN greater than Epi greater than NE in hepatocytes. We then used the alpha 1-selective ligand [3H]prazosin, the alpha 2-selective ligand [3H]clonidine, and the beta-ligand [125I]iodocyanopindolol [( 125I]ICYP), and found that AH130 cells had few prazosin-binding sites, about eight times as many clonidine-binding sites with high affinity, and many more ICYP-binding sites than in hepatocytes. The dissociation constant (Ki) of the beta 1-selective drug metoprolol by Hofstee plots for AH130 cells was lower than that for hepatocytes. The inhibition of specific ICYP binding by the beta 2-selective agonist salbutamol for AH130 cells gave only one Ki value which was much higher than both high and low Ki values of the drug for hepatocytes. These findings indicate that the alpha- and beta-adrenergic receptors in hepatocytes are predominantly alpha 1-type and beta 2-type, but that those in AH130 cells are predominantly alpha 2-type and beta 1-type, and the low adrenergic response of AH130 cells is due to the dominant appearance of alpha 2-adrenergic receptors, linked with the inhibitory guanine-nucleotide binding regulatory protein, instead of alpha 1-adrenergic receptors, and beta 1-adrenergic receptors with low affinity for the hormone.

  12. Functional ET(A)-ET(B) Receptor Cross-talk in Basilar Artery In Situ From ET(B) Receptor Deficient Rats.

    PubMed

    Yoon, SeongHun; Gariepy, Cheryl E; Yanagisawa, Masashi; Zuccarello, Mario; Rapoport, Robert M

    2016-03-01

    The role of endothelin (ET)(A)-ET(B) receptor cross-talk in limiting the ET(A) receptor antagonist inhibition of ET-1 constriction is revealed by the partial or complete dependency of the ET(A) receptor antagonist inhibition on functional removal of the ET(B) receptor. Although functional removal of the ET(B) receptor is generally accomplished with ET(B) receptor antagonist, a novel approach using rats containing a naturally occurring deletion mutation in the ET(B) receptor [rescued "spotting lethal" (sl) rats; ET(B)(sl/sl)] demonstrated increased ET(A) receptor antagonist inhibition of ET-1 constriction in vena cava. We investigated whether this deletion mutation was also sufficient to remove the ET(B) receptor dependency of the ET(A) receptor antagonist inhibition of ET-1 constriction in the basilar artery. Consistent with previous reports, ET-1 plasma levels were elevated in ET(B)(sl/sl) as compared with ET(B)(+/+) rats. ET(B) receptor antagonist failed to relax the ET-1 constricted basilar artery from ET(B)(+/+) and ET(B)(sl/sl) rats. Relaxation to combined ET(A) and ET(B) receptor antagonist was greater than relaxation to ET(A) receptor antagonist in the basilar artery from ET(B)(+/+) and, unexpectedly, ET(B)(sl/sl) rats. These findings confirm the presence of ET(A)-ET(B) receptor cross-talk in the basilar artery. We speculate that mutant ET(B) receptor expression produced by alternative splicing may be sufficient to allow cross-talk.

  13. [Features of the immune proteasome expression in ascite Zajdela hepatoma after implantation into Brattleboro rats with the hereditary defect of arginine-vasopressin synthesis].

    PubMed

    Mel'nikova, V I; Khegaĭ, I I; Popova, N A; Lifantseva, N V; Ivanova, L N; Zaharova, L A

    2014-01-01

    The expression of the total proteasome pool, immune proteasome subunits LMP2 and LMP7, TAP1 and TAP2 transporters, as well as RT1A molecule of MHC class I was investigated in the ascite Zajdela hepatoma at the 10th day after implantation into Brattleboro rats with the hereditary defect of hypothalamic arginine-vasopressin synthesis (AVP) and into WAG rats with normal AVP expression. In Zajdela hepatoma cells implanted into Brattleboro rats the 3-fold increase of the total proteasome pool and LMP2 level and 8-fold increase of the LMP7 level was detected by Western blotting as compared to those in WAG rats. Differences in the LMP2 and LMP7 expression suggest variations in their functions, namely the important role of LMP7 in anti-tumor immunity. The growth of Zajdela hepatoma in WAG rats was accompanied by the decreased level of total proteasome pool as well as immune proteasome expression as compared to those in Brattleboro rats during the regression of tumor. The analysis of TAP1 and TAP2 revealed the pronounced expression of these peptide transporters in Zajdela hepatoma cells implanted into Brattleboro and WAG rats. The expression level of RT1A molecule of MHC class I was increased 3 times in Zajdela hepatoma cells implanted into Brattleboro rats as compared to WAG rats. Moreover, flow cytometric analysis of CD4- and CD8-lymphocytes number in the spleen of Brattleboro and WAG rats was performed at the 10th day after implantation of Zajdela hepatoma. The increased number of CD4- and CD8-lymphocytes was observed in the spleen of Brattleboro as compared to WAG. The increased subpopulations of cytotoxic T-lymphocytes and T-helpers might promote the tumor regression in Brattleboro rats. The reduced populations of CD4- and CD8-lymphocytes in the spleen of WAG rats were accompanied by the splenomegaly and tumor progression. The data obtained suggest that AVP deficiency in Brattleboro rats leads to the increase of the immune proteasome and MHC class I expression in

  14. Thyromimetic actions of tetrabromobisphenol A (TBBPA) in steatotic FaO rat hepatoma cells.

    PubMed

    Grasselli, E; Cortese, K; Fabbri, R; Smerilli, A; Vergani, L; Voci, A; Gallo, G; Canesi, L

    2014-10-01

    Tetrabromobisphenol A (2,2-bis(3,5-dibromo-4-hydroxyphenyl propane-TBBPA) is the most produced brominated flame retardant, detected in the environment and in biological samples. TBBPA shares structural similarities with thyroid hormones (THs), and it has been shown to interfere with different aspects of TH physiology, this raising concern on its possible effects as an endocrine disruptor in humans and wildlife. THs play a major role in lipid metabolism, with the liver representing one of their main target tissues. At the cellular level, THs act through interactions with TH receptors (TRs), as well as through TR-independent mechanisms. Rat hepatoma FaO cells (a liver cell line defective for functional TRs) overloaded with lipids have been utilized as a model to investigate the anti-steatotic effects of THs in the hepatocyte. In this work, the possible effects of TBBPA in steatotic FaO cells were investigated. Exposure to TBBPA for 24 h reduced triglyceride (TAG) content and the size of lipid droplets (LDs); similar effects were obtained with equimolar doses (10(-6) M) of T3 (3,3',5-L-triiodothyronine). TBBPA and T3 showed common effects on transcription of genes involved in lipid homeostasis. In particular, TBBPA mainly up-regulated mRNA levels for LD-associated oxidative tissue-enriched PAT protein (OXPAT), peroxisome proliferator-activated receptor (PPAR) isoform β/δ, and the mitochondrial uncoupling protein 2 (UCP2). The results demonstrate that TBBPA can decrease lipid accumulation in steatotic cells through stimulation of oxidative pathways. These data identify novel thyromimetic actions of TBBPA at the cellular level.

  15. Forskolin inhibits the Gs-stimulated adenylate cyclase in rat ascites hepatoma AH66F cells.

    PubMed

    Miyamoto, K; Sanae, F; Koshiura, R; Matsunaga, T; Hasegawa, T; Takagi, K; Satake, T

    1989-09-01

    Forskolin increased intracellular cyclic AMP and augmented cyclic AMP formation by prostaglandin E1 (PGE1) in normal rat hepatocytes and ascites hepatoma AH66 cells. However, in AH66F cells which were derived from the AH66 cell line, the diterpene only slightly increased the cyclic AMP level, and dose-dependently inhibited the accumulation caused by PGE1. Forskolin dose-dependently activated adenylate cyclase in these membranes, and the magnitude of activation by forskolin was largest in the following order: hepatocytes, AH66 cells, and AH66F cells. This difference may be based on the number of forskolin-binding sites. The binding affinity of forskolin for each cell membrane was similar. The number and affinity of forskolin-binding sites in these cells were not influenced by 5'-guanylylimidodiphosphate [Gpp(NH)p]. In hepatocytes and AH66 cells, forskolin and other adenylate cyclase activators such as PGE1, GTP, Gpp(NH)p, F-, and Mn2+ synergistically increased the enzyme activity. In AH66F cells, the forskolin-stimulated activity was hardly influenced by the GTP analog, and forskolin diminished the activities induced by the GTP analog in a manner similar to that of diterpene alone. Forskolin (10 microM) also significantly inhibited the activities induced by PGE1, GTP, and F-. The effect of forskolin with Mn2+ was additive in AH66F cells. The data suggest that forskolin promotes the interaction between the stimulatory guanine nucleotide-binding protein and the catalytic unit in the membrane of normal hepatocytes and AH66 cells, but it interferes with the coupling in AH66F cells.

  16. Activation of the ATP-ubiquitin-proteasome pathway in skeletal muscle of cachectic rats bearing a hepatoma

    NASA Technical Reports Server (NTRS)

    Baracos, V. E.; DeVivo, C.; Hoyle, D. H.; Goldberg, A. L.

    1995-01-01

    Rats implanted with Yoshida ascites hepatoma (YAH) show a rapid and selective loss of muscle protein due mainly to a marked increase (63-95%) in the rate of protein degradation (compared with rates in muscles of pair-fed controls). To define which proteolytic pathways contribute to this increase, epitrochlearis muscles from YAH-bearing and control rats were incubated under conditions that modify different proteolytic systems. Overall proteolysis in either group of rats was not affected by removal of Ca2+ or by blocking the Ca(2+)-dependent proteolytic system. Inhibition of lysosomal function with methylamine reduced proteolysis (-12%) in muscles from YAH-bearing rats, but not in muscles of pair-fed rats. When ATP production was also inhibited, the remaining accelerated proteolysis in muscles of tumor-bearing rats fell to control levels. Muscles of YAH-bearing rats showed increased levels of ubiquitin-conjugated proteins and a 27-kDa proteasome subunit in Western blot analysis. Levels of mRNA encoding components of proteolytic systems were quantitated using Northern hybridization analysis. Although their total RNA content decreased 20-38%, pale muscles of YAH-bearing rats showed increased levels of ubiquitin mRNA (590-880%) and mRNA for multiple subunits of the proteasome (100-215%). Liver, kidney, heart, and brain showed no weight loss and no change in these mRNA species. Muscles of YAH-bearing rats also showed small increases (30-40%) in mRNA for cathepsins B and D, but not for calpain I or heat shock protein 70. Our findings suggest that accelerated muscle proteolysis and muscle wasting in tumor-bearing rats result primarily from activation of the ATP-dependent pathway involving ubiquitin and the proteasome.

  17. A study of chromosomal changes associated with amplified dihydrofolate reductase genes in rat hepatoma cells and their dedifferentiated variants

    PubMed Central

    1984-01-01

    We have examined the karyological consequences of dihydrofolate reductase gene amplification in a series of six rat hepatoma cell lines, all derived from the same clone. Cells of three of these lines express a series of liver-specific functions whereas those of three others fail to express these functions. Cells of each line have been subjected to stepwise selection for methotrexate resistance and, in most cases, resistance is associated with a 40-50-fold amplification of sequences hybridizing to a dihydrofolate reductase cDNA probe. In one line no modified chromosome is observed, whereas in two others the amplified genes are associated with an expanded chromosomal region. R- banding analysis of these karyotypes showed that few changes have occurred. These observations apply to two of the well-differentiated lines, and to a variant able to revert to the differentiated state. In contrast, in the two stably dedifferentiated hepatoma cell lines, amplified dihydrofolate reductase genes are found on large chromosomes of variable size, on ring chromosomes, and on chromosomes containing terminal, median, or multiple centromeres. We conclude that the nature of the chromosomal changes associated with dihydrofolate reductase gene amplification are the result of differences in cell lines rather than in the protocols employed for selection. PMID:6746737

  18. Neutral red uptake inhibition in adhered and adhering rat hepatoma-derived Fa32 cells to predict human toxicity.

    PubMed

    Dierickx, Paul J; Scheers, Ellen M

    2002-01-01

    The cytotoxicity of the MEIC (Multicentre Evaluation of In vitro Cytotoxicity) reference chemicals was investigated by measuring the neutral red uptake inhibition in adhered and adhering rat hepatoma-derived Fa32 cells. The adhered cells were seeded and then treated and the adhering cells were treated simultaneously upon seeding. Five of the 44 test chemicals were twofold more toxic in adhering cells; ethylene glycol was 28-fold more toxic and mercuric chloride was 5.2-fold more toxic than in adhered cells. The cytotoxicity of dithiothreitol was altered in the same way as that of ethylene glycol, probably by interacting with calcium. When the neutral red uptake inhibition was compared with human toxicity, the correlation coefficient for adhering cells was almost identical to that obtained previously in human hepatoma-derived Hep G2 cells and slightly higher for adhered cells. The Hep G2 assay was the best acute in vitro assay for the prediction of human toxicity within the MEIC study. An obviously better correlation was obtained when the strong intoxicant mercuric chloride was withdrawn from the comparison, both for the adhered and the adhering cells. Altogether, the results can be integrated very well with the basal cytotoxicity concept.

  19. Modulated expression of a nuclear-associated glycoprotein during normal rat liver development and in various hepatoma cells.

    PubMed

    Goulet, Francine; Napa, Ioana Diana; Solomon, Luc; Morin, Odette; Islam, Nazrul

    2006-01-01

    Liver plays a major role in systemic detoxification and drug metabolism. NF-164, a protein of 164 kDa predominantly localized in hepatocyte nuclei, was found to be present in increasing amounts during liver maturation. In addition, fetal rat hepatocytes had ten times, and neonatal five times less of this protein than adult hepatocytes. It was also detected in an albumin producing hepatoma cell line, but not in three other lines that have lost several differentiated functions. These data suggest that NF-164 expression is development-dependent and that it may be a marker for both normal and malignant hepatocyte differentiation. NF-164 seems to be liver-specific, since it was not detected in rat brain, spleen, kidney, lung and bovine thymus. It was purified from adult rat hepatocyte nuclei. Its estimated pI is 6.8. Its total amino acid composition and partial amino acid sequence is also being reported. Despite major differences between their respective contents in amino acids, partial sequences showed homologies with carbamyl phosphate synthetase I (CPSI). These observations may suggest that NF-164 also shares some functional features with this enzyme.

  20. Glucocorticoid-regulated and constitutive trafficking of proteolytically processed cell surface-associated glycoproteins in wild type and variant rat hepatoma cells

    SciTech Connect

    Amacher, S.L.; Goodman, L.J.; Bravo, D.A.; Wong, K.Y.; Goldfine, I.D.; Hawley, D.M.; Firestone, G.L. )

    1989-10-01

    Glucocorticoids regulate the trafficking of mouse mammary tumor virus (MMTV) glycoproteins to the cell surface in the rat hepatoma cell line M1.54, but not in the immunoselected sorting variant CR4. To compare the localization of MMTV glycoproteins to another proteolytically processed glycoprotein, both wild type M1.54 cells and variant CR4 cells were transfected with a human insulin receptor (hIR) expression vector, pRSVhIR. The production of cell surface hIR was monitored in dexamethasone-treated and -untreated wild type M1.54 and variant CR4 cells by indirect immunofluorescence, direct plasma membrane immunoprecipitation, and by (125I) insulin binding. In both wild type and variant rat hepatoma cells, hIR were localized at the cell surface in the presence or in the absence of 1 microM dexamethasone. In contrast, the glucocorticoid-regulated trafficking of cell surface MMTV glycoproteins occurred only in wild type M1.54 cells. We conclude that the hIR, which undergoes posttranslational processing reactions similar to MMTV glycoproteins, does not require glucocorticoids to be transported to the plasma membrane and is representative of a subset of cell surface glycoproteins whose trafficking is constitutive in rat hepatoma cells. Thus, MMTV glycoproteins and hIR provide specific cell surface markers to characterize the glucocorticoid-regulated and constitutive sorting pathways.

  1. RhoC is essential for TGF-{beta}1-induced invasive capacity of rat ascites hepatoma cells

    SciTech Connect

    Mukai, M.; Endo, H.; Iwasaki, T.; Tatsuta, M.; Togawa, A.; Nakamura, H.; Inoue, M. . E-mail: inoue-ma2@mc.pref.osaka.jp

    2006-07-21

    Transforming growth factor-{beta}1 (TGF-{beta}1) is a multifunctional growth factor that plays a role in cell proliferation, differentiation, extracellular matrix production, apoptosis, and cell motility. We show here that TGF-{beta}1 increased the invasiveness of MM1 cells, which are a highly invasive clone of rat ascites hepatoma cells. Both mRNA and protein levels of RhoC but not RhoA in TGF-{beta}1-treated MM1 cells increased. In parallel with this increase in expression, RhoC activity was induced by TGF-{beta}1 treatment. When RhoC was overexpressed in MM1 cells, the invasive capacity increased. The RhoC-overexpressing cells formed more nodules than did mock cells when injected into rat peritoneum. Furthermore, when RhoC expression was reduced by transfection with shRNA/RhoC, the invasiveness of MM1 cells decreased with concomitant suppression of RhoC expression. Thus, the induced expression of RhoC by TGF-{beta}1 in MM1 cells plays a critical role in TGF-{beta}1-induced cell migration.

  2. A high expression of heme oxygenase-1 in the liver of LEC rats at the stage of hepatoma: the possible implication of induction in uninvolved tissue.

    PubMed

    Matsumoto, A; Hanayama, R; Nakamura, M; Suzuki, K; Fujii, J; Tatsumi, H; Taniguchi, N

    1998-04-01

    We have examined changes in the expression of heme oxygenase-1 (HO-1), an inducible isoform and HO-2, a constitutive isoform, in the liver of Long-Evans with a Cinnamon-like color (LEC) rat, a mutant strain which spontaneously develops acute hepatitis and hepatoma. HO-1 expression was highly enhanced in the LEC rat livers with jaundice, and then decreased slightly, but overall remained at a higher level than in the Long-Evans with Agouti color (LEA) control rats, as judged by Northern blotting analysis of the whole liver extract. The high expression of HO-1 in the LEC rat liver was, however, not due to the actual cancer lesion but, rather, due to the surrounding uninvolved tissues including hepatocytes. Immunohistochemical analysis also supported this conclusion. Among normal tissues, the expression of HO-1 but not HO-2 was high in only the spleen of both LEC and LEA rats. The high expression observed in the stage of acute hepatitis and hepatoma stages in the LEC rat is probably due to the oxidative stress caused by the accumulation of free copper and free iron levels which has been reported earlier by our group (Suzuki et al., Carcinogenesis, 1993, 14, 1881-1884 and Koizumi et al., Free Radical Research, in press) as well as by free heme levels. The inflammatory cytokines produced by the surrounding tissue at the hepatoma stage would also be expected to play a role in the induction mechanism. The physiological relevance of HO-1 induction might be an adaptive response to oxidative stress and vasodilatory effect of carbon monoxide on sinusoidal circulation.

  3. Comparison of polysomal and nuclear poly(A)-containing RNA populations from normal rat liver and Novikoff hepatoma.

    PubMed Central

    Capetanaki, Y G; Alonso, A

    1980-01-01

    Polysomal and nuclear poly(A)-containing RNA of normal rat liver and Novikoff hepatoma cells have been compared by cDNA.RNA hybridization kinetics. Homologous hybridization reactions revealed at total kinetic complexity of about 1.6 X 10(10) and 1.38 X 10(10) daltons for liver and Novikoff mRNA respectively. The high abundance component present in liver cannot be detected in Novikoff. It was found from heterologous reactions that about 30% by weight of mRNA sequences are specific to liver. Determination of the nuclear poly(A)-containing RNA complexities revealed that about 5.5% and 4% of the haploid genome is expressed in the liver and Novikoff respectively. In a heterologous reaction, up to 30% of the liver cDNA failed to form hybrids with Novikoff nuclear RNA. Cross hybridizations have further revealed abundance shifts in both nuclear and polysomal RNA populations. Some sequences abundant in liver are less abundant in Novikoff and some rare liver sequences are relatively abundant in Novikoff. PMID:6160467

  4. Spheroid organization kinetics of H35 rat hepatoma model cell system on elastin-like polypeptide-polyethyleneimine copolymer substrates.

    PubMed

    Turner, Paul A; Weeks, C Andrew; McMurphy, Austin J; Janorkar, Amol V

    2014-03-01

    Though two-dimensional systems have yielded some success in deriving morphological and functional markers of hepatocyte culture, they largely fail to capture the three-dimensional organization, long-term viability, and functionality of the hepatic tissue. We have engineered a system for inducing self-assembly of model H35 rat hepatoma spheroids using a copolymer comprised of biocompatible elastin-like polypeptide (ELP) chemically conjugated to positively charged polyethyleneimine (PEI). We have achieved a conjugation ratio of 30 mol %, though our studies analyzing spheroid organization kinetics indicate conjugate ratios of 5 mol % and greater to be optimal for cell culture based on least variability in spheroid sizes and minimum incidence of overgrown aggregates. Furthermore, our ELP-PEI system indicated the potential for influencing ultimate spheroid dimensions, with spheroid size inversely related to polyelectrolyte conjugation. Overall, this study provides a good starting point to investigate functional correlations between spheroid size and functional markers and their future use as an in vitro diagnostic or tissue engineering tool.

  5. Growth Characteristics and Imaging Properties of the Morris Hepatoma 3924A in ACI Rats: A Suitable Model for Transarterial Chemoembolization

    SciTech Connect

    Truebenbach, Jochen; Graepler, Florian; Pereira, Philippe L.; Ruck, Peter; Lauer, Ulrich; Gregor, Michael; Claussen, Claus-D.; Huppert, Peter E.

    2000-03-15

    Purpose: For experimental studies investigating modalities and efficacy of transarterial chemoembolization (TACE) in hepatocellular carcinoma (HCC) an animal model resembling the human situation as closely as possible would be appropriate. Specifically, reproducible tumor growth characteristics with the capability for appropriate in vivo imaging to monitor treatment efficacy are required.Methods: Morris hepatoma 3924A was implanted into the liver of 30 ACI rats. Tumor growth was followed by angiography (n = 10), ultrasound (US, n = 30), native computed tomography (CT, n = 16), and native magnetic resonance imaging (MRI, n = 30) between day 8 and day 36 after implantation. The radiological morphological characteristics were compared with the macroscopic and microscopic histological findings of the explanted tumors.Results: In all 30 animals a solitary liver tumor was found and macroscopically no signs of metastases, ascites, or peritoneal tumor were visible. On histopathological examination tumor sizes ranged between 27 {+-} 3 mm{sup 3} (day 8) and 3468 {+-} 79 mm{sup 3} (day 36). The first signs of tumor necrosis occurred at day 16. US allowed tumor visualization from day 8, MRI from day 8, angiography from day 10, and CT from day 14.Conclusions: The tumor model has the potential to be used for the visualization of tumor growth by MRI and US. The potential for monitoring therapeutic effects of TACE needs to be investigated.

  6. Selection of rat hepatoma cells defective in hormone-regulated production of mouse mammary tumor virus RNA.

    PubMed Central

    Grove, J R; Ringold, G M

    1981-01-01

    We have been studying the mechanism of glucocorticoid hormone action by using mouse mammary tumor virus (MMTV)-infected rat hepatoma cells as a model system. J2.17, a clonal cell line that contains one MMTV provirus, induces tyrosine aminotransferase (TyrATase; L-tyrosine:2-oxoglutarate aminotransferase, EC 2.6.1.5), viral RNA, and the cell surface viral glycoprotein gp52 in response to dexamethasone. Using a fluorescence-activated cell sorter and a rabbit antiserum directed against gp52, we selected a cell population that displays a reduced hormone-mediated increase in cell surface gp52. Fourteen clones of this population were assayed for induction of viral gp52 and RNA and of cellular TyrATase. The results of these assays revealed that the clones display a variety of responses to hormone. One clone has retained wild-type responses of both TyrATase and gp52. Six clones exhibit coordinately reduced or abolished responses of both markers. Seven clones show normal induction of TyrATase but reduced or undetectable induction of gp52. These latter clones exhibit reduced production of MMTV RNA and thus may represent a unique class of variants defective in the regulation of MMTV gene expression. Images PMID:6117075

  7. Resveratrol induces apoptotic cell death in rat H4IIE hepatoma cells but necrosis in C6 glioma cells.

    PubMed

    Michels, G; Wätjen, W; Weber, N; Niering, P; Chovolou, Y; Kampkötter, A; Proksch, P; Kahl, R

    2006-08-15

    Resveratrol (trans-3,5,4',-trihydroxystilbene) is assumed to possess cancer-preventive and cancer-therapeutic properties. The aim of this project was to analyze cellular effects of resveratrol in metabolically active H4IIE rat hepatoma cells in comparison to metabolically poorly active C6 rat glioma cells. Resveratrol is rapidly taken up by both cell types and acts as a potent intracellular antioxidant. On the other hand, resveratrol in higher concentrations is relatively toxic to both cell lines as measured by the neutral red accumulation assay. In H4IIE cells, resveratrol concentrations rapidly decline to very low levels during the first hours of incubation due to formation of resveratrol glucuronides. The first resveratrol effect found at 3h after the start of resveratrol treatment was the induction of mild DNA damage as detected by the comet assay. Cell death was caused via induction of apoptosis as detected by caspase activation, oligonucleosomal DNA fragmentation and formation of apoptotic nuclei. Following DNA damage, resveratrol led to an activation of caspases 2 and 8/10 at 6h and consequently of caspase 3 at 12h, but failed to activate caspase 9. In contrast to H4IIE cells, resveratrol is not metabolised in C6 glioma cells and accumulates to concentrations which are assumed to drive the cell into necrosis. This suggests that the mode of cell death caused by resveratrol and the usefulness of resveratrol for cancer prevention and treatment critically depends on the metabolic capacity of the tumor cell to be eradicated.

  8. Activation of PPARalpha and PPARgamma reduces triacylglycerol synthesis in rat hepatoma cells by reduction of nuclear SREBP-1.

    PubMed

    König, Bettina; Koch, Alexander; Spielmann, Julia; Hilgenfeld, Christian; Hirche, Frank; Stangl, Gabriele I; Eder, Klaus

    2009-03-01

    Fibrates and thiazolidinediones, agonists of PPARalpha and PPARgamma, respectively, reduce triglyceride concentrations in rat liver and plasma. Fatty acid and triacylglycerol synthesis in mammals is regulated by sterol regulatory element-binding protein (SREBP)-1c. Recently, it was shown that insulin-induced gene (Insig)-1, the key regulator of SREBP activity, is up-regulated by both activation of PPARalpha and PPARgamma. In order to elucidate whether inhibition of SREBP-1 activation may contribute to the triacylglycerol lowering effect of PPARalpha and PPARgamma agonists, we incubated rat hepatoma Fao cells with WY 14,643 and troglitazone, strong and selective agonists of PPARalpha and PPARgamma, respectively. Activation of both, PPARalpha and PPARgamma led to increased concentrations of Insig-1 and Insig-2a, with the most prominent effect on Insig-2a after troglitazone incubation. As a result, the amount of nuclear SREBP-1 was reduced in Fao cells by both WY 14,643 and troglitazone treatment. The reduction of nuclear SREBP-1 was associated with decreased mRNA concentrations of its target genes fatty acid synthase and glycerol-3-phosphate acyltransferase, implicated in fatty acid and triacylglycerol synthesis. This was finally reflected in reduced rates of newly synthesized triacylglycerols from de novo-derived fatty acids and decreased intracellular and secreted triacylglycerol concentrations in Fao cells treated with WY 14,643 and troglitazone, respectively. Thus, these data suggest that the triacylglycerol reducing effect of fibrates and thiazolidinediones is partially caused by inhibition of SREBP-1 activation via up-regulation of Insig.

  9. Improved targeting of 5-[125I/131I]iodo-2‧-deoxyuridine to rat hepatoma by using lipiodol emulsion

    NASA Astrophysics Data System (ADS)

    Yu, Hung-Man; Yeh, Hsin-Pei; Chang, Tien-Kui; Huang, Kuang-Liang; Chuang, Kuo-Tang; Liu, Ren-Shen; Wang, Shyh-Jen; Hwang, Jeng-Jong; Chi, Kwan-Hwa; Chen, Fu-Du; Lin, Wuu-Jyh; Chen, Chin-Hsiung; Wang, Hsin-Ell

    2006-12-01

    This study aims to assess whether emulsion of [ 125/131I]IUdR and lipiodol (IUdR/LP) can improve delivery of IUdR into hepatoma. MethodsIn vitro release profile of IUdR from IUdR/LP to serum was performed. IUdR/LP was injected into N1-S1 hepatoma-bearing SD rat via hepatic artery and IUdR/normal saline (IUdR/NS) was used for comparison. Biodistribution, autoradiography, imaging and tumor DNA incorporation assay were performed. The radioactive metabolites in plasma and urine were analyzed. Radiation doses to tumor and organs were estimated. ResultsIUdR released from lipiodol into serum was fast. There were longer retention, more DNA incorporation and higher radiation dose of IUdR in the tumor by using IUdR/LP. IUdR/LP deposited deep in the hepatomas. Only free iodide was found in the plasma and urine after injection of IUdR/LP. ConclusionsHepatic artery injection of IUdR/LP emulsion could definitely enhance the tumor cell uptake and incorporation to DNA of *IUdR, prolong the tumor retention time and increase radiation dose to tumor. IUdR/LP may be an effective therapeutic agent for the treatment of hepatic tumors.

  10. Selective expression and induction of cytochrome P450PB and P450MC during the development of hereditary hepatitis and hepatoma of LEC rats.

    PubMed

    Sugiyama, T; Suzuki, K; Ookawara, T; Kurosawa, T; Taniguchi, N

    1989-11-01

    The Long-Evans rat with a cinnamon-like coat color (LEC rat) is a mutant strain displaying hereditary hepatitis with severe jaundice. The age related difference in microsomal dealkylation of pentoxyresorufin and ethoxyresorufin was examined. The enzyme activity levels of pentoxyresorufin O-depentylase in LEC rats were decreased to 25% of the levels in control [Long-Evans rats with an agouti coat color (LEA rats)]. In contrast, ethoxyresorufin O-deethylase exhibited a much less marked difference between the strains. In parallel with these strain differences in enzyme activities, a decrease in phenobarbital (PB) inducible P450 isozymes, mainly P450b and P450e, was observed by Western blot analysis. The level of P450PB in LEC rats was more markedly depressed than in the LEA strain. On the other hand, microsomes from uninduced LEC rat liver had more 3-methylcholanthrene (MC) inducible P450MC, mainly P450c and P450d, than microsomes from LEA rat liver and these isozymes in the LEC were markedly induced by 3-methylcholanthrene treatment. The great difference in cytochrome P450PB content of the liver microsomes between LEC and LEA rats and the maintained constitutive levels of hepatic cytochrome P450MC in the LEC rats suggest a possible role of these cytochrome isozymes in the onset of spontaneous hepatitis and hepatoma.

  11. P2X4 Activation Modulates Volume-sensitive Outwardly Rectifying Chloride Channels in Rat Hepatoma Cells*

    PubMed Central

    Varela, Diego; Penna, Antonello; Simon, Felipe; Eguiguren, Ana Luisa; Leiva-Salcedo, Elías; Cerda, Oscar; Sala, Francisco; Stutzin, Andrés

    2010-01-01

    Volume-sensitive outwardly rectifying (VSOR) Cl− channels are critical for the regulatory volume decrease (RVD) response triggered upon cell swelling. Recent evidence indicates that H2O2 plays an essential role in the activation of these channels and that H2O2 per se activates the channels under isotonic isovolumic conditions. However, a significant difference in the time course for current onset between H2O2-induced and hypotonicity-mediated VSOR Cl− activation is observed. In several cell types, cell swelling induced by hypotonic challenges triggers the release of ATP to the extracellular medium, which in turn, activates purinergic receptors and modulates cell volume regulation. In this study, we have addressed the effect of purinergic receptor activation on H2O2-induced and hypotonicity-mediated VSOR Cl− current activation. Here we show that rat hepatoma cells (HTC) exposed to a 33% hypotonic solution responded by rapidly activating VSOR Cl− current and releasing ATP to the extracellular medium. In contrast, cells exposed to 200 μm H2O2 VSOR Cl− current onset was significantly slower, and ATP release was not detected. In cells exposed to either 11% hypotonicity or 200 μm H2O2, exogenous addition of ATP in the presence of extracellular Ca2+ resulted in a decrease in the half-time for VSOR Cl− current onset. Conversely, in cells that overexpress a dominant-negative mutant of the ionotropic receptor P2X4 challenged with a 33% hypotonic solution, the half-time for VSOR Cl− current onset was significantly slowed down. Our results indicate that, at high hypotonic imbalances, swelling-induced ATP release activates the purinergic receptor P2X4, which in turn modulates the time course of VSOR Cl− current onset in a extracellular Ca2+-dependent manner. PMID:20056605

  12. Analysis of the genotoxic potential of low concentrations of Malathion on the Allium cepa cells and rat hepatoma tissue culture.

    PubMed

    Bianchi, Jaqueline; Mantovani, Mario Sérgio; Marin-Morales, Maria Aparecida

    2015-10-01

    Based on the concentration of Malathion used in the field, we evaluated the genotoxic potential of low concentrations of this insecticide on meristematic and F1 cells of Allium cepa and on rat hepatoma tissue culture (HTC cells). In the A. cepa, chromosomal aberrations (CAs), micronuclei (MN), and mitotic index (MI) were evaluated by exposing the cells at 1.5, 0.75, 0.37, and 0.18mg/mL of Malathion for 24 and 48hr of exposure and 48hr of recovery time. The results showed that all concentrations were genotoxic to A. cepa cells. However, the analysis of the MI has showed non-relevant effects. Chromosomal bridges were the CA more frequently induced, indicating the clastogenic action of Malathion. After the recovery period, the higher concentrations continued to induce genotoxic effects, unlike the observed for the lowest concentrations tested. In HTC cells, the genotoxicity of Malathion was evaluated by the MN test and the comet assay by exposing the cells at 0.09, 0.009, and 0.0009mg/5mL culture medium, for 24hr of exposure. In the comet assay, all the concentrations induced genotoxicity in the HTC cells. In the MN test, no significant induction of MN was observed. The genotoxicity induced by the low concentrations of Malathion presented in this work highlights the importance of studying the effects of low concentrations of this pesticide and demonstrates the efficiency of these two test systems for the detection of genetic damage promoted by Malathion.

  13. Glucocorticoid-regulated localization of cell surface glycoproteins in rat hepatoma cells is mediated within the Golgi complex

    PubMed Central

    1988-01-01

    Glucocorticoid hormones regulate the post-translational maturation and sorting of cell surface and extracellular mouse mammary tumor virus (MMTV) glycoproteins in M1.54 cells, a stably infected rat hepatoma cell line. Exposure to monensin significantly reduced the proteolytic maturation and externalization of viral glycoproteins resulting in a stable cellular accumulation of a single 70,000-Mr glycosylated polyprotein (designated gp70). Cell surface- and intracellular-specific immunoprecipitations of monensin-treated cells revealed that gp70 can be localized to the cell surface only in the presence of 1 microM dexamethasone, while in uninduced cells gp70 is irreversibly sequestered in an intracellular compartment. Analysis of oligosaccharide processing kinetics demonstrated that gp70 acquired resistance to endoglycosidase H with a half-time of 65 min in the presence or absence of hormone. In contrast, gp70 was inefficiently galactosylated after a 60-min lag in uninduced cells while rapidly acquiring this carbohydrate modification in the presence of dexamethasone. Furthermore, in the absence or presence of monensin, MMTV glycoproteins failed to be galactosylated in hormone-induced CR4 cells, a complement-selected sorting variant defective in the glucocorticoid-regulated compartmentalization of viral glycoproteins to the cell surface. Since dexamethasone had no apparent global effects on organelle morphology or production of total cell surface-galactosylated species, we conclude that glucocorticoids induce the localization of cell surface MMTV glycoproteins by regulating a highly selective step within the Golgi apparatus after the acquisition of endoglycosidase H- resistant oligosaccharide side chains but before or at the site of galactose attachment. PMID:2836430

  14. Expression of cytochromes P-450 in rat hepatoma cells. Analysis by monoclonal antibodies specific for cytochromes P-450 from rat liver induced by 3-methylcholanthrene or phenobarbital.

    PubMed

    Wiebel, F J; Park, S S; Kiefer, F; Gelboin, H V

    1984-12-17

    We have studied the expression of aldrin eposidase (AE), 7-ethoxycoumarin-O-deethylase (ECDE), and aryl hydrocarbon (benzo[a]pyrene) hydroxylase (AHH) in nine differentiated or dedifferentiated cell lines derived from H4IIEC3 rat hepatoma cells. The nature of the cytochromes P-450 mediating AE, ECDE and AHH activities was analysed using monoclonal antibodies (MAb) made to the major 3-methylcholanthrene-induced cytochrome P-450 (MAb-MC) or phenobarbital-induced cytochrome P-450 (MAb-PB) from rat liver. The cells were treated with 5 microM dexamethasone for 30 h to increase the levels of the monoxygenase activities. (a) The six differentiated cell lines examined (Faza967, Fao, HF1-4, 2sFou, C2Rev7, and H4IIEC3/G-) contained MAb-PB-sensitive AE comprising 30-75% of the total AE activity. In most of these cell lines MAb-PB also markedly inhibited ECDE; however, the antibody had a considerably weaker effect on AHH. (b) MAb-PB-sensitive AHH, ECDE and AE activities were also observed in untreated and phenobarbital-treated cells. (c) MAb-MC inhibited AHH and ECDE in the two dedifferentiated lines HF1 and H5 by 50-80%. The antibody also inhibited AHH activities in the poorly differentiated line H4IIEC3/T and in the majority of the differentiated lines by 40-65%. MAb-MC-sensitive AHH was found in Fao cells after treatment with benz[a]anthracene but induced AHH in H4IIEC3/T, H4IIEC3/G-, and 2sFou cells 20-30-fold and in Faza967 and Fao cells 3-5-fold. Benz[a]anthracene remained without effect on AHH activity in C2Rev7 cells. The results show that the hepatoma cells examined express to various degrees phenobarbital-inducible cytochrome P-450 and/or 3-methylcholanthrene-inducible cytochrome P-450. These cell lines are versatile tools for studying the regulation of monooxygenase activities and analysing their role in the activation and inactivation of xenobiotics such as carcinogens, drugs and pesticides.

  15. Selective protection of normal hepatocytes by indocyanine green in photodynamic therapy for the hepatoma of rat

    NASA Astrophysics Data System (ADS)

    Gu, Ying; Li, Junheng; Guo, Zhong-He

    1993-03-01

    Using hepatocarcinoma transplanted rats, the present study made consecutive observation for the color change and indocyanine green (ICG) absorption peak of the normal liver and tumor tissues after intravenous injection of ICG. The normal liver tissue of the rat was found to turn violet-green soon after ICG injection and the optic density (OD) of ICG-characteristic spectral peak of the tissue homogenate reached its maximum value at 35 minutes post-injection, while neither color change nor OD value increase was noticed in the tissue of transplanted hepatocarcinoma, suggesting that there is a specific absorption of ICG by the normal liver tissue. Chemiluminescentoassay revealed inhibited luminal chemiluminescence by ICG, indicating the depression of singlet oxygen and reactive oxygen species (ROS) oxidation during HPD photosensitization by ICG. In PDT of the hepatocarcinoma, the irradiated area was examined under microscope and auto-microimage analysis system after ICG administration. For tumor-free tissue, the photosensitization induced necrotic area was found smaller in those with than those without ICG administration, whereas the tumor killing effect was almost the same of the two. It is suggested that ICG may offer selective protection for healthy hepatocytes without diminishing the destruction of tumor cells. The protection of healthy hepatocytes by ICG is thought to be in accordance with the amount of ICG in the cell and the distribution of light energy.

  16. Rat hepatitis E virus derived from wild rats (Rattus rattus) propagates efficiently in human hepatoma cell lines.

    PubMed

    Jirintai, Suljid; Tanggis; Mulyanto; Suparyatmo, Joseph Benedictus; Takahashi, Masaharu; Kobayashi, Tominari; Nagashima, Shigeo; Nishizawa, Tsutomu; Okamoto, Hiroaki

    2014-06-24

    Although rat hepatitis E virus (HEV) has been identified in wild rats, no cell culture systems for this virus have been established. A recent report suggesting the presence of antibodies against rat HEV in human sera encouraged us to cultivate rat HEV in human cells. When liver homogenates obtained from wild rats (Rattus rattus) in Indonesia were inoculated onto human hepatocarcinoma cells, the rat HEV replicated efficiently in PLC/PRF/5, HuH-7 and HepG2 cells, irrespective of its genetic group (G1-G3). The rat HEV particles released from cultured cells harbored lipid-associated membranes on their surface that were depleted by treatment with detergent and protease, with the buoyant density in sucrose shifting from 1.15-1.16 g/ml to 1.27-1.28 g/ml. A Northern blotting analysis revealed genomic RNA of 7.0 kb and subgenomic RNA of 2.0 kb in the infected cells. The subgenomic RNA of G1-G3 each possessed the extreme 5'-end sequence of GUAGC (nt 4933-4937), downstream of the highly conserved sequence of GAAUAACA (nt 4916-4923). The establishment of culture systems for rat HEV would allow for extended studies of the mechanisms of viral replication and functional roles of HEV proteins. Further investigation is required to clarify the zoonotic potential of rat HEV.

  17. Differential action of 13-HPODE on PPARalpha downstream genes in rat Fao and human HepG2 hepatoma cell lines.

    PubMed

    König, Bettina; Eder, Klaus

    2006-06-01

    In rats, oxidized fats activate the peroxisome proliferator-activated receptor alpha (PPARalpha), leading to reduced triglyceride concentrations in liver, plasma and very low density lipoproteins. Oxidation products of linoleic acid constitute an important portion of oxidized dietary fats. This study was conducted to check whether the primary lipid peroxidation product of linoleic acid, 13-hydroperoxy-9,11-octadecadienoic acid (13-HPODE), might be involved in the PPARalpha-activating effect of oxidized fats. Therefore, we examined the effect of 13-HPODE on the expression of PPARalpha target genes in the rat Fao and the human HepG2 hepatoma cell lines. In Fao cells, 13-HPODE increased the mRNA concentration of the PPARalpha target genes acyl-CoA oxidase (ACO), cytochrome P450 4A1 and carnitine-palmitoyltransferase 1A (CPT1A). Furthermore, the concentration of cellular and secreted triglycerides was reduced in Fao cells treated with 13-HPODE. Because PPARalpha mRNA was not influenced, we conclude that these effects are due to an activation of PPARalpha by 13-HPODE. In contrast, HepG2 cells seemed to be resistant to PPARalpha activation by 13-HPODE because no remarkable induction of the PPARalpha target genes ACO, CPT1A, mitochondrial HMG-CoA synthase and delta9-desaturase was observed. Consequently, cellular and secreted triglyceride levels were not changed after incubation of HepG2 cells with 13-HPODE. In conclusion, this study shows that 13-HPODE activates PPARalpha in rat Fao but not in human HepG2 hepatoma cells.

  18. Insulin-like growth factor-I stimulates H{sub 4}II rat hepatoma cell proliferation: Dominant role of PI-3'K/Akt signaling

    SciTech Connect

    Alexia, Catherine; Fourmatgeat, Pascal; Delautier, Daniele; Groyer, Andre . E-mail: groyer@bichat.inserm.fr

    2006-04-15

    Although hepatocytes are the primary source of endocrine IGF-I and -II in mammals, their autocrine/paracrine role in the dysregulation of proliferation and apoptosis during hepatocarcinogenesis and in hepatocarcinomas (HCC) remains to be elucidated. Indeed, IGF-II and type-I IGF receptors are overexpressed in HCC cells, and IGF-I is synthesized in adjacent non-tumoral liver tissue. In the present study, we have investigated the effects of type-I IGF receptor signaling on H{sub 4}II rat hepatoma cell proliferation, as estimated by {sup 3}H-thymidine incorporation into DNA. IGF-I stimulated the rate of DNA synthesis of serum-deprived H{sub 4}II cells, stimulation being maximal 3 h after the onset of IGF-I treatment and remaining elevated until at least 6 h. The IGF-I-induced increase in DNA replication was abolished by LY294002 and only partially inhibited by PD98059, suggesting that phosphoinositol-3' kinase (PI-3'K) and to a lesser extent MEK/Erk signaling were involved. Furthermore, the 3- to 19-fold activation of the Erks in the presence of LY294002 suggested a down-regulation of the MEK/Erk cascade by PI-3'K signaling. Finally, the effect of IGF-I on DNA replication was almost completely abolished in clones of H{sub 4}II cells expressing a dominant-negative form of Akt but was unaltered by rapamycin treatment of wild-type H{sub 4}II cells. Altogether, these data support the notion that the stimulation of H{sub 4}II rat hepatoma cell proliferation by IGF-I is especially dependent on Akt activation but independent on the Akt/mTOR signal0009i.

  19. Molecular mechanism of extinction of liver-specific functions in mouse hepatoma x rat fibroblast hybrids: extinction of the albumin gene

    SciTech Connect

    Papaconstantinou, J.; Wong, E.; Ratrie, H.; Szpirer, C.; Szpirer, J.

    1982-01-01

    Hybrids formed by the fusion of mouse hepatoma (BWTG3) and rat fibroblast (JF1) cells exhibit the extinction of mouse albumin and ..cap alpha..-fetoprotein synthesis. Karyotype analyses suggest that all parental chromosomes are present in the hybrids. The extinction, therefore, of mouse hepatocyte genes is attributed to the inhibitory action of the rat genome. In these studies, we show that these hybrids possess and express the mouse ..beta..-glucyronidase gene (which is encoded on the same chromosome as the mouse albumin and ..cap alpha..-fetoprotein gene), and we present data of Southern blot analysis which demonstrate that such hybrids have indeed retained both mouse and rat albumin DNA sequences. In addition, using mouse albumin cDNA, we have shown by cDNA-RNA reassociation kinetics that albumin mRNA is virtually absent in these hybrids. We conclude from these studies that the extinction of albumin synthesis involves a mechanism which results in the loss of cytoplasmic albumin mRNA.

  20. Vertical sleeve gastrectomy is effective in two genetic mouse models of glucagon-like Peptide 1 receptor deficiency.

    PubMed

    Wilson-Pérez, Hilary E; Chambers, Adam P; Ryan, Karen K; Li, Bailing; Sandoval, Darleen A; Stoffers, Doris; Drucker, Daniel J; Pérez-Tilve, Diego; Seeley, Randy J

    2013-07-01

    Glucagon-like peptide 1 (GLP-1) is a peptide hormone that is released from the gut in response to nutrient ingestion and that has a range of metabolic effects, including enhancing insulin secretion and decreasing food intake. Postprandial GLP-1 secretion is greatly enhanced in rats and humans after some bariatric procedures, including vertical sleeve gastrectomy (VSG), and has been widely hypothesized to contribute to reduced intake, weight loss, and the improvements in glucose homeostasis after VSG. We tested this hypothesis using two separate models of GLP-1 receptor deficiency. We found that VSG-operated GLP-1 receptor-deficient mice responded similarly to wild-type controls in terms of body weight and body fat loss, improved glucose tolerance, food intake reduction, and altered food selection. These data demonstrate that GLP-1 receptor activity is not necessary for the metabolic improvements induced by VSG surgery.

  1. Species-specific differences in peroxisome proliferation, catalase, and SOD2 upregulation as well as toxicity in human, mouse, and rat hepatoma cells induced by the explosive and environmental pollutant 2,4,6-trinitrotoluene.

    PubMed

    Naumenko, Ekaterina Anatolevna; Ahlemeyer, Barbara; Baumgart-Vogt, Eveline

    2017-03-01

    2,4,6-Trinitrotoluene (TNT) has been widely used as an explosive substance and its toxicity is still of interest as it persisted in polluted areas. TNT is metabolized in hepatocytes which are prone to its toxicity. Since analysis of the human liver or hepatocytes is restricted due to ethical reasons, we investigated the effects of TNT on cell viability, reactive oxygen species (ROS) production, peroxisome proliferation, and antioxidative enzymes in human (HepG2), mouse (Hepa 1-6), and rat (H4IIEC3) hepatoma cell lines. Under control conditions, hepatoma cells of all three species were highly comparable exhibiting identical proliferation rates and distribution of their cell cycle phases. However, we found strong differences in TNT toxicity with the lowest IC50 values (highest cell death rate) for rat cells, whereas human and mouse cells were three to sevenfold less sensitive. Moreover, a strong decrease in cellular dehydrogenase activity (MTT assay) and increased ROS levels were noted. TNT caused peroxisome proliferation with rat hepatoma cells being most responsive followed by those from mouse and human. Under control conditions, rat cells contained fivefold higher peroxisomal catalase and mitochondrial SOD2 activities and a twofold higher capacity to reduce MTT than human and mouse cells. TNT treatment caused an increase in catalase and SOD2 mRNA and protein levels in human and mouse, but not in rat cells. Similarly, human and mouse cells upregulated SOD2 activity, whereas rat cells failed therein. We conclude that TNT induced oxidative stress, peroxisome proliferation and mitochondrial damage which are highest in rat cells rendering them most susceptible toward TNT. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 989-1006, 2017.

  2. Development of stably transfected human and rat hepatoma cell lines for the species-specific assessment of xenobiotic response enhancer module (XREM)-dependent induction of drug metabolism.

    PubMed

    Fery, Yvonne; Mueller, Stefan O; Schrenk, Dieter

    2010-11-09

    Based on our current knowledge, PXR holds a key position in the induction of a selective battery of enzymes and transporters of drug metabolism. In order to prevent serious adverse drug effects or unpredicted drug-drug interactions (DDI), it is compulsory to investigate the possible inducing potency of drugs under development. Furthermore, analysis of the inducing potency of environmental pollutants and new or manufactured chemicals is part of toxicological risk assessment. In non-transfected human HepG2 and rat H4IIE hepatoma cells, we examined the characteristics of expression of 45 genes involved in drug metabolism. A few gene products such as CYP2B6 or CYP3A4 mRNA were prominent in HepG2 cells while their major rat counterparts were, e.g., CYP2B3 or CYP3A1/3A3. Furthermore, a number of xenobiotic receptors including PXR were expressed in both cell lines. A number of genes were regulated in a cell type and species-specific manner after incubation with the prototypical PXR agonists rifampicin or dexamethasone, respectively. Then, we established cell-based reporter gene assays for screening for PXR-dependent induction of drug metabolism. HepG2 and H4IIE cells were stably transfected with a reporter gene containing PXR responsive elements (XREMs) which mediate the induction of PXR target genes such as CYP3A enzymes. With both stable cell lines the CYP inducers clotrimazole, dexamethasone, omeprazole, phenobarbital, rifampicin, as well as the drug candidate EMD 392949 and the brominated flame retardants hexabromocylododecane (HBCD) and a pentabromodiphenyl ether (pentaBDE) mixture were screened. In the human HepG2-XREM3 and rat H4IIE-XREM3 cells, clotrimazole and HBCD were found as common activators of the human and rat PXR whereas pentaBDE was more effective with the human cell system. Omeprazole and phenobarbital did not induce the rat PXR-dependent reporter gene expression in H4IIE-XREM3 cells, while a moderate increase was found in HepG2-XREM3 cells. EMD 392949

  3. FoxO3a mediates transforming growth factor-beta1-induced apoptosis in FaO rat hepatoma cells.

    PubMed

    Kim, Byung-Chul

    2008-10-31

    FoxO3a is a member of the forkhead box class O (FoxO) transcription factor family and an important regulator of apoptosis. This work aimed to elucidate the involvement of FoxO3a in transforming growth factor-beta1 (TGF-beta1)-induced apoptosis in FaO rat hepatoma cells. TGF-beta1 caused a time-dependent activation of FoxO3a and a subsequent increase in FoxO response-element-containing luciferase reporter activity, which was Akt-sensitive. The FaO cells stably transfected with a wild type FoxO3a were more susceptible to the formation of apoptotic bodies, populations of sub-G1 apoptotic cells, and collapse of the mitochondrial-membrane potential triggered by TGF-beta1. In contrast, transfection with small-interfering RNA (siRNA) oligonucleotide specific for FoxO3a significantly inhibited caspase activation in FaO cells treated with TGF-beta1. It thus appears that FoxO3a plays a crucial mediatory role in the TGF-beta1 signaling pathway leading to apoptosis.

  4. Antioxidative and apoptotic properties of polyphenolic extracts from edible part of artichoke (Cynara scolymus L.) on cultured rat hepatocytes and on human hepatoma cells.

    PubMed

    Miccadei, Stefania; Di Venere, Donato; Cardinali, Angela; Romano, Ferdinando; Durazzo, Alessandra; Foddai, Maria Stella; Fraioli, Rocco; Mobarhan, Sohrab; Maiani, Giuseppe

    2008-01-01

    Cultured rat hepatocytes and human hepatoma HepG2 cells were used to evaluate the hepatoprotective properties of polyphenolic extracts from the edible part of artichoke (AE). The hepatocytes were exposed to H2O2generated in situ by glucose oxidase and were treated with either AE, or pure chlorogenic acid (ChA) or with the well known antioxidant, N, N'-diphenyl-p-phenilenediamine (DPPD). Addition of glucose oxidase to the culture medium caused depletion of intracellular glutathione (GSH) content, accumulation of malondialdehyde (MDA) in the cultures, as a lipid peroxidation indicator, and cell death. These results demonstrated that AE protected cells from the oxidative stress caused by glucose oxidase, comparable to DPPD. Furthermore, AE, as well as ChA, prevented the loss of total GSH and the accumulation of MDA. Treatment of HepG2 cells for 24 h with AE reduced cell viability in a dose-dependent manner, however, ChA had no prominent effects on the cell death rate. Similarly, AE rather than ChA induced apoptosis, measured by flow cytometric analysis of annexin and by activation of caspase-3, in HepG2 cells. Our findings indicate that AE had a marked antioxidative potential that protects hepatocytes from an oxidative stress. Furthermore, AE reduced cell viability and had an apoptotic activity on a human liver cancer cell line.

  5. Single-channel currents of the permeability transition pore from the inner mitochondrial membrane of rat liver and of a human hepatoma cell line.

    PubMed

    Loupatatzis, Christos; Seitz, Gordon; Schönfeld, Peter; Lang, Florian; Siemen, Detlef

    2002-01-01

    Single-channel currents were recorded from inner mitochondrial membranes of HepG2 hepatoma cells and of normal rat liver cells by means of patch-clamp techniques. The current events showed variable amplitudes of up to 1.1 +/- 0.2 nS (n = 35) at room temperature (24 degrees C) and of up to 1.5 +/- 0.2 nS (n = 10) at 34 degrees C including large numbers of subconductance states. Voltages of -40 mV and below closed the channels usually with a delay of about 2 min. Increasing Ca(2+) concentrations activated the channels, whereas cyclosporin A (100 nM) blocked. The concentration-response relation for the Ca(2+)-effect could be fitted best using an EC(50) of 10 microM and a Hill coefficient of 1.5. Taken together the results indicate that we recorded from the permeability transition pore (PTP). As PTP activity may be related to apoptosis we tested if lysate from differently treated T-lymphocytes (Jurkat cells) was able to induce PTP activity in HepG2 cells. Lysate of untreated cells completely abolished the activity at a Ca(2+) concentration of 18 nM (buffered by EGTA), i.e. three orders of magnitude below the EC(50). Under these conditions the lysate is not likely to contain stable factors that could open the PTP. Preliminary experiments show PTP activity in CD95-activated lysate.

  6. CRF1 receptor-deficiency increases cocaine reward.

    PubMed

    Contarino, Angelo; Kitchener, Pierre; Vallée, Monique; Papaleo, Francesco; Piazza, Pier-Vincenzo

    2017-01-27

    Stimulant drugs produce reward but also activate stress-responsive systems. The corticotropin-releasing factor (CRF) and the related hypothalamus-pituitary-adrenal (HPA) axis stress-responsive systems are activated by stimulant drugs. However, their role in stimulant drug-induced reward remains poorly understood. Herein, we report that CRF1 receptor-deficient (CRF1-/-), but not wild-type, mice show conditioned place preference (CPP) responses to a relatively low cocaine dose (5 mg/kg, i.p.). Conversely, wild-type, but not CRF1-/-, mice display CPP responses to a relatively high cocaine dose (20 mg/kg, i.p.), indicating that CRF1 receptor-deficiency alters the rewarding effects of cocaine. Acute pharmacological antagonism of the CRF1 receptor by antalarmin also eliminates cocaine reward. Nevertheless, CRF1-/- mice display higher stereotypy responses to cocaine than wild-type mice. Despite the very low plasma corticosterone concentration, CRF1-/- mice show higher nuclear glucocorticoid receptor (GR) levels in the brain region of the hippocampus than wild-type mice. Full rescue of wild-type-like corticosterone and GR circadian rhythm and level in CRF1-/- mice by exogenous corticosterone does not affect CRF1 receptor-dependent cocaine reward but induces stereotypy responses to cocaine. These results indicate a critical role for the CRF1 receptor in cocaine reward, independently of the closely related HPA axis activity.

  7. Non-receptor-mediated actions are responsible for the lipid-lowering effects of iodothyronines in FaO rat hepatoma cells.

    PubMed

    Grasselli, Elena; Voci, Adriana; Canesi, Laura; Goglia, Fernando; Ravera, Silvia; Panfoli, Isabella; Gallo, Gabriella; Vergani, Laura

    2011-07-01

    Iodothyronines influence lipid metabolism and energy homeostasis. Previous studies demonstrated that 3,5-l-diiodothyronine (T(2)), as well as 3,3',5-L-triiodothyronine (T(3)), was able to both prevent and reverse hepatic steatosis in rats fed a high-fat diet, and this effect depends on a direct action of iodothyronines on the hepatocyte. However, the involvement of thyroid hormone receptors (TRs) in mediating the lipid-lowering effect of iodothyronines was not elucidated. In this study, we investigated the ability of T(2) and T(3) to reduce the lipid overloading using the rat hepatoma FaO cells defective for functional TRs. The absence of constitutive mRNA expression of both TRα1 and TRβ1 in FaO cells was verified by RT-qPCR. To mimic the fatty liver condition, FaO cells were treated with a fatty acid mixture and then exposed to pharmacological doses of T(2) or T(3) for 24 h. Lipid accumulation, mRNA expression of the peroxisome proliferator-activated receptors (PPAR-α, -γ, -δ) the acyl-CoA oxidase (AOX), and the stearoyl CoA desaturase (SCD1), as well as fuel-stimulated O(2) consumption in intact cells, were evaluated. Lipid accumulation was associated with an increase in triacylglycerol content, PPARγ mRNA expression, and a decrease in PPARδ and SCD1 mRNA expression. The addition of T(2) or T(3) to lipid-overloaded cells resulted in i) reduction in lipid content; ii) downregulation of PPARα, PPARγ, and AOX expression; iii) increase in PPARδ expression; and iv) stimulation of mitochondrial uncoupling. These data demonstrate, for the first time, that in the hepatocyte, the lipid-lowering actions of both T(2) and T(3) are not mediated by TRs.

  8. Carboxyl ester lipase overexpression in rat hepatoma cells and CEL deficiency in mice have no impact on hepatic uptake or metabolism of chylomicron-retinyl ester.

    PubMed

    van Bennekum, A M; Li, L; Piantedosi, R; Shamir, R; Vogel, S; Fisher, E A; Blaner, W S; Harrison, E H

    1999-03-30

    To study the role of carboxyl ester lipase (CEL) in hepatic retinoid (vitamin A) metabolism, we investigated uptake and hydrolysis of chylomicron (CM)-retinyl esters (RE) by rat hepatoma (McArdle-RH7777) cells stably transfected with a rat CEL cDNA. We also studied tissue uptake of CM-RE in CEL-deficient mice generated by targeted disruption of the CEL gene. CEL-transfected cells secreted active enzyme into the medium. However, both control and CEL-transfected cells accumulated exogenously added CM-RE or CM remnant (CMR)-derived RE in equal amounts. Serum clearance of intravenously injected CM-RE and cholesteryl ester were not different between wild-type and CEL-deficient mice. Also, the uptake of the two compounds by the liver and other tissues did not differ. These data indicate that the lack of CEL expression does not affect the uptake of dietary CM-RE by the liver or other tissues. Moreover, the percentage of retinol formed in the liver after CM-RE uptake, the levels of retinol and retinol-binding protein in serum, and retinoid levels in various tissues did not differ, indicating that CEL deficiency does not affect hepatic retinoid metabolism and retinoid distribution throughout the body. Surprisingly, in both pancreas and liver of wild-type, heterozygous, and homozygous CEL-deficient mice, the levels of bile salt-dependent retinyl ester hydrolase (REH) activity were similar. This indicates that in the mouse pancreas and liver an REH enzyme activity, active in the presence of bile salt and distinct from CEL, is present, compatible with the results from our accompanying paper that the intestinal processing and absorption of RE were unimpaired in CEL-deficient mice.

  9. The role of protein glycosylation in the compartmentalization and processing of mouse mammary tumor virus glycoproteins in mouse mammary tumor virus-infected rat hepatoma cells.

    PubMed

    Firestone, G L

    1983-05-25

    The relationship of protein glycosylation to compartmentalization and processing of mouse mammary tumor virus (MTV) glycoproteins has been examined in M1.54, a cloned line of MTV-infected rat hepatoma tissue culture cells. Previous work established that full maturation of MTV glycoproteins in this cell line requires dexamethasone, a synthetic glucocorticoid (Firestone, G. L., Payvar, F., and Yamamoto, K. R. (1982) Nature (Lond.) 300, 221-225). The ability to regulate production of the full complement of five mature membrane-associated and secreted viral glycoproteins from one initially synthesized precursor has been used to advantage in the present work. At concentrations of tunicamycin that specifically inhibit N-linked protein glycosylation, incorporation of [35S]methionine into total cellular and secreted protein is not detectably affected, MTV-specific mRNAs are produced normally, and the nonglycosylated form of the glycosylated viral precursor polyprotein accumulates within the cells. However, tunicamycin inhibits the site-specific cleavage of the glycosylated polyprotein and distribution of MTV polypeptides to the cell surface and extracellular fractions. Thus, when tunicamycin-treated cultures of M1.54 are exposed to dexamethasone and [35S]methionine, no labeled viral antigens are detected in the culture medium. Similarly, tunicamycin prevents the appearance of membrane-associated viral antigens that can be labeled externally by lactoperoxidase-mediated iodination and it protects the cells against the cytolytic effects of MTV-specific antiserum and complement. Taken together, these results are consistent with the view that while glycosylation of some proteins may be unessential for their compartmentalization and processing, it does appear to be correlated with proper maturation of others. The hormone-dependent maturation of MTV glycoproteins in M1.54 may be particularly useful for study of this latter class since glycosylation is stringently associated with

  10. Effects of oolong tea on gene expression of gluconeogenic enzymes in the mouse liver and in rat hepatoma H4IIE cells.

    PubMed

    Yasui, Kensuke; Miyoshi, Noriyuki; Tababe, Hiroki; Ishigami, Yoko; Fukutomi, Ryuuta; Imai, Shinjiro; Isemura, Mamoru

    2011-09-01

    Tea has many beneficial effects. We have previously reported that green tea and a catechin-rich green tea beverage modulated the gene expression of the gluconeogenic enzymes glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK) in the normal murine liver. In the present study, we examined the effects of oral administration of oolong tea on the hepatic expression of gluconeogenesis-related genes in the mouse. The intake of oolong tea for 4 weeks reduced the hepatic expression of G6Pase and PEPCK together with that of the transcription factor hepatocyte nuclear factor (HNF) 4α. When rat hepatoma H4IIE cells were incubated in the presence of oolong tea, the expression of these genes was repressed in accordance with the findings in vivo. The reduced protein expression of PEPCK and HNF4α was also demonstrated. We then fractionated oolong tea by sequential extraction with three organic solvents to give three fractions and the residual fraction (Fraction IV). In addition to organic fractions, Fraction IV, which was devoid of low-molecular-weight catechins such as (-)-epigallocatechin gallate (EGCG), had effects similar to those of oolong tea on H4IIE cells. Fraction IV repressed the gene expression of insulin-like growth factor binding protein 1, as insulin did. This activity was different from that of EGCG. The present findings suggest that drinking oolong tea may help to prevent diabetes and that oolong tea contains a component or components with insulin-like activity distinguishable from EGCG. Identification of such component(s) may open the way to developing a new drug for diabetes.

  11. Glucocorticoids locally disrupt an array of positioned nucleosomes on the rat tyrosine aminotransferase promoter in hepatoma cells.

    PubMed Central

    Carr, K D; Richard-Foy, H

    1990-01-01

    Transcriptional activation by steroid hormones is often associated with the appearance of a DNase I hypersensitive site resulting from a local alteration of the nucleoprotein structure of the promoter. For the mouse mammary tumor virus long terminal repeat, a viral promoter under glucocorticoid control, a model has been proposed: the appearance of the hormonodependent DNase I hypersensitive site reflects the displacement of a single precisely positioned nucleosome associated with the glucocorticoid responsive elements. To determine if such a mechanism is of general relevance in transcriptional activation by steroid hormones, we have investigated the nucleosomal organization of the rat tyrosine aminotransferase promoter over a 1-kilobase region that contains the glucocorticoid regulatory target. This region displays a hormonodependent DNase I hypersensitive site. In the absence of hormone, micrococcal nuclease digestion of nuclei demonstrates the presence of positioned nucleosomes, with cutting sites centered around positions -3080, -2900, -2700, -2800, -2255, and -2040. Treatment of the cells with dexamethasone induces a disruption of the chromatin structure over a relatively short stretch of DNA (approximately positions -2400 to -2650) that overlaps two nucleosomes. These observations suggest a strong similarity in the role of chromatin structure in glucocorticoid-dependent transcriptional activation of mouse mammary tumor virus and tyrosine aminotransferase promoters. Images PMID:1979170

  12. Pu-erh tea supplementation suppresses fatty acid synthase expression in the rat liver through downregulating Akt and JNK signalings as demonstrated in human hepatoma HepG2 cells.

    PubMed

    Chiang, Chun-Te; Weng, Meng-Shih; Lin-Shiau, Shoei-Yn; Kuo, Kuan-Li; Tsai, Yao-Jen; Lin, Jen-Kun

    2005-01-01

    Fatty acid synthase (FAS) is a key enzyme of lipogenesis. Overexpression of FAS is dominant in cancer cells and proliferative tissues. The expression of FAS in the livers of rats fed pu-erh tea leaves was significantly suppressed. The gains in body weight, levels of triacylglycerol, and total cholesterol were also suppressed in the tea-treated rats. FAS expression in hepatoma HepG2 cells was suppressed by the extracts of pu-erh tea at both the protein and mRNA levels. FAS expression in HepG2 cells was strongly inhibited by PI3K inhibitor LY294002 and JNK inhibitor II and slightly inhibited by p38 inhibitor SB203580 and MEK inhibitor PD98059, separately. Based on these findings, we suggest that the suppression of FAS in the livers of rats fed pu-erh tea leaves may occur through downregulation of the PI3K/AKt and JNK signaling pathways. The major components of tea that have been demonstrated to be responsible for the antiobesity and hypolipidemic effects are catechins, caffeine, and theanine. The compositions of catechins, caffeine, and theanine varied dramatically in pu-erh, black, oolong, and green teas. The active principles and molecular mechanisms that exerted these biological effects in pu-erh tea deserve future exploration.

  13. On-line comprehensive two-dimensional HepG2 cell membrane chromatographic analysis system for charactering anti-hepatoma components from rat serum after oral administration of Radix scutellariae: A strategy for rapid screening active compounds in vivo.

    PubMed

    Jia, Dan; Chen, Xiaofei; Cao, Yan; Wu, Xunxun; Ding, Xuan; Zhang, Hai; Zhang, Chuan; Chai, Yifeng; Zhu, Zhenyu

    2016-01-25

    Cell membrane chromatography (CMC) is a bioaffinity chromatography technique for characterizing interactions between drugs and membrane receptors and has been widely used to screen active components from complex samples such as herbal medicines (HMs). However, it has never been applied in vivo due to its relatively high limit of detection (LOD) and the matrix interferences. In this study, a novel on-line comprehensive two-dimensional HepG2/CMC/enrich columns/high performance liquid chromatography/time-of-flight mass spectrometry system was developed to rapidly screen potential anti-hepatoma components from drug-containing serum of rats after oral administration of Radix scutellariae. A matrix interference deduction method with a home-written program in MATLAB was developed, which could successfully eliminate the interference of endogenous substances in serum. Baicalein, wogonin, chrysin, oroxylin A, neobaicalein and rivularin from Radix scutellariae extraction were significantly retained in the HepG2/CMC column. Three potential active components, wogonin, oroxylin A and neobaicalein were firstly screened from the drug-containing serum as well. The cell counting kit-8 assay demonstrated that wogonin, oroxylin A and chrysin showed high inhibitory activities in a dose-dependent manner on HepG2 cells at the concentration of 12.5-200 μM (p<0.05) and the IC50 values were 69.83, 16.66 and 51.6 μM, respectively. Wogonin and oroxylin A, which were screened both from Radix scutellariae extraction and the drug-containing serum, could be selected as lead compounds to obtain good anti-hepatoma effects. The proposed comprehensive 2D CMC system and matrix interference elimination strategy have significant advantages for in vivo screening of active components from complex biological samples and could be applied to other biochromatography models.

  14. Ethanol-induced developmental neurodegeneration in secretin receptor-deficient mice.

    PubMed

    Hwang, Dong-Woo; Givens, Bennet; Nishijima, Ichiko

    2009-05-06

    Alcohol exposure during brain development induces neuronal cell death in the brain. Several neuroactive peptides have been shown to protect against alcohol-induced cell death. Secretin is a peptide hormone, and the secretin receptor is expressed in the gut and the brain. To explore a potential role of secretin signal against ethanol neurotoxicity during brain development, secretin receptor-deficient mice were exposed to ethanol on postnatal day 4. We identified significant ethanol-induced apoptosis in the external granular layer of the secretin receptor-deficient cerebellum and in the striatum after ethanol treatment. During the early postnatal period, there is a proliferation of granular cell progenitors that reside in the external granular layer. The results suggest that secretin signal plays a neuroprotective role of neuronal progenitor cells against the neurotoxicity of ethanol.

  15. Human hepatoblastoma cells (HepG2) and rat hepatoma cells are defective in important enzyme activities in the oxidation of the C27 steroid side chain in bile acid formation.

    PubMed

    Farrants, A K; Nilsson, A; Pedersen, J I

    1993-12-01

    We have examined the ability of HepG2 human hepatoblastoma cells and 7800 C1 Morris rat hepatoma cells to convert 3 alpha, 7 alpha, 12 alpha-trihydroxy-5 beta-cholestanoic acid (THCA) and 3 alpha, 7 alpha-dihydroxy-5 beta-cholestanoic acid (DHCA) to cholic acid and chenodeoxycholic acid, respectively. Cell extracts from both these cell lines could neither form cholic acid from THCA nor from the activated form, THCA-CoA. This suggests that both cell lines are defective in two enzyme activities involved in the pathway, the microsomal THCA-CoA ligase and the peroxisomal THCA-CoA oxidase. Furthermore, we show that the subsequent enzymes are active in the conversion to bile acids, because the product of the THCA-CoA oxidase, 3 alpha, 7 alpha, 12 alpha-trihydroxy-5 beta-cholest-24-enoyl-coenzyme A (delta 24-THCA-CoA) or delta 24-THCA in the presence of THCA-CoA ligase, are converted to cholic acid by both cell lines. HepG2 cells were able to slowly form chenodeoxycholic acid and cholic acid from 5 beta-cholestane-3 alpha, 7 alpha-diol and 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol, respectively, in 24- and 96-h incubations. The rate of cholic acid formation was lower than the rate for chenodeoxycholic acid and there was a clear accumulation of THCA. 7800 C1 Morris cells had no ability to form cholic acid or chenodeoxycholic acid after 96 h incubation. We conclude that these two cell lines have defects in two enzyme activities involved in the peroxisomal oxidation in bile acid formation, the microsomal THCA-CoA ligase and the peroxisomal THCA-CoA oxidase.

  16. Celecoxib suppresses hepatoma stemness and progression by up-regulating PTEN

    PubMed Central

    Kuo, Hsiao-Mei; Liu, Li-Fen; Hu, Tsung-Hui; Sun, Cheuk-Kwan; Kung, Mei-Lang; Lin, Shih-Wei; Wang, E-Ming; Ma, Yi-Ling; Cheng, Kwan-Hung; Lai, Kwok Hung; Wen, Zhi-Hong; Hsu, Ping-I; Tai, Ming-Hong

    2014-01-01

    Celecoxib, a COX-2 inhibitor and non-steroidal anti-inflammatory drug, can prevent several types of cancer, including hepatocellular carcinoma (HCC). Here we show that celecoxib suppressed the self-renewal and drug-pumping functions in HCC cells. Besides, celecoxib depleted CD44 + /CD133 + hepatic cancer stem cells (hCSC). Prostaglandin E2 (PGE2) and CD133 overexpression did not reverse the celecoxib-induced depletion of hCSC. Also, celecoxib inhibited progression of rat Novikoff hepatoma. Moreover, a 60-day celecoxib program increased the survival rate of rats with hepatoma. Histological analysis revealed that celecoxib therapy reduced the abundance of CD44 + /CD133 + hCSCs in hepatoma tissues. Besides, the hCSCs depletion was associated with elevated apoptosis and blunted proliferation and angiogenesis in hepatoma. Celecoxib therapy activated peroxisome proliferator-activated receptor γ (PPARγ) and up-regulated PTEN, thereby inhibiting Akt and disrupting hCSC expansion. PTEN gene delivery by adenovirus reduced CD44/CD133 expression in vitro and hepatoma formation in vivo. This study suggests that celecoxib suppresses cancer stemness and progression of HCC via activation of PPARγ/PTEN signaling. PMID:24721996

  17. Effects of cumene hydroperoxide on the Ca(2+)-induced Ca2+ efflux from mitochondria and on the viability of hepatoma cells.

    PubMed

    Teplova, V V; Kudin, A P; Evtodienko YuV

    1998-01-01

    Effects of cumene hydroperoxide on the Ca(2+)-induced Ca2+ efflux from mitochondria isolated from rat liver and Zaidelja hepatoma were compared. Cumene hydroperoxide at micromolar concentrations (0.3-10 microM) prevented the closing of the permeability transition pore in the inner mitochondrial membrane and, therefore, potentiated the Ca(2+)-induced Ca2+ efflux. This response was 10-100 times greater in hepatoma mitochondria than in rat liver mitochondria. Micromolar concentrations of cumene hydroperoxide induced the death of the hepatoma cells in vitro.

  18. Studies on responsiveness of hepatoma cells to catecholamines. III. Difference between the receptor-adenylate cyclase regulating systems in AH130 cells and cultured normal rat liver cells.

    PubMed

    Sanae, F; Matsunaga, T; Miyamoto, K; Koshiura, R

    1986-10-01

    The responsiveness to three beta-adrenergic agonists, isoproterenol (IPN), epinephrine (Epi) and norepinephrine (NE) in AH13O cells was examined compared with that in normal rat liver cells which were cultured for 24 hr after collagenase digestion. As regards to the activation of adenylate cyclase in the cell homogenates, the relative affinity of the three agonists was in order of IPN greater than NE greater than Epi in AH130 cells and IPN greater than Epi greater than NE in cultured normal liver cells. While the efficacies of the three agonists were similar in cultured liver cells, those of NE and Epi were markedly lower than that of IPN in AH13O cells and were increased to the similar level of IPN by pretreatment with phentolamine, but not with prazosin. Clonidine inhibited the activation of adenylate cyclase by IPN in AH13O cells. When cells were preincubated with islet-activating protein (IAP), the activity of adenylate cyclase in the presence or absence of agonist in both cell lines increased. In IAP-treated AH13O cells, the efficacies of NE and Epi became close to that of IPN. Adenylate cyclase in IAP-treated AH13O cells was activated by GTP in a dose-dependent manner, but that in IAP-treated cultured liver cells was not. In the presence of IPN, biphasic (activatory and inhibitory) effects of GTP on the cyclase were observed, and the inhibitory phase was eliminated by the IAP-treatment in both cell lines.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Magnesium fortification of drinking water suppresses atherogenesis in male LDL-receptor-deficient mice.

    PubMed

    Sherer, Y; Shaish, A; Levkovitz, H; Keren, P; Janackovic, Z; Shoenfeld, Y; Harats, D

    1999-01-01

    Magnesium, an important cofactor of more than 300 enzymes, has previously been found to modulate blood lipid levels, atherogenesis and atherosclerosis in rabbits, when added to their diet. The aim of this study was to examine whether magnesium fortification of drinking water, without a change in diet content, can affect atherogenesis. The study included six groups of LDL-receptor-deficient mice. The mice received either distilled water or water containing 50 g of magnesium sulfate per liter. In the first (12 weeks) and second (6 weeks) stages of the experiment, the mice received low- and high-cholesterol diets, respectively. At the end of each stage, blood was drawn for the determination of plasma magnesium, calcium and lipid levels. In addition, the extent of atherosclerosis was determined at the aortic sinus. In both males and females, magnesium fortification was associated with higher levels of plasma magnesium (50 and 37% increase, respectively), without any differences in plasma calcium content. The extent of atherosclerosis at the aortic sinus in the male mice that received high levels of magnesium was a third of that of the male mice that received distilled water. However, these differences were not found in the female groups. Surprisingly, the female mice that received water fortified with magnesium had higher levels of cholesterol after stage 2, whereas no differences regarding plasma lipid levels were found among the male mice. These results confirm that magnesium fortification of drinking water is capable of inhibiting atherogenesis in male LDL-receptor-deficient mice. The mechanisms of action are yet to be discovered, and are probably not related to diminished lipid excretion, but possibly to the prevention of calcium influx into vascular smooth muscle cells, elevated antioxidative capacity, or other yet undetermined mechanisms.

  20. Heart remodeling and ischemia-reperfusion arrhythmias linked to myocardial vitamin d receptors deficiency in obstructive nephropathy are reversed by paricalcitol.

    PubMed

    Diez, Emiliano Raúl; Altamirano, Liliana Berta; García, Isabel Mercedes; Mazzei, Luciana; Prado, Natalia Jorgelina; Fornes, Miguel Walter; Carrión, Fernando Darío Cuello; Zumino, Amira Zulma Ponce; Ferder, León; Manucha, Walter

    2015-03-01

    Cardiovascular disease is often associated with chronic kidney disease and vice versa; myocardial vitamin D receptors (VDRs) are among the probable links between the 2 disorders. The vitamin D receptor activator paricalcitol protects against some renal and cardiovascular complications. However, the structural and electrophysiological effects of myocardial vitamin D receptor modification and its impact on the response to ischemia-reperfusion are currently unknown. This work attempted to determine whether obstructive nephropathy induced myocardial changes (in rats) linked to vitamin D receptor deficiency and to ventricular arrhythmias in Langendorff-perfused hearts. Unilateral ureteral-obstructed and Sham-operated rats were treated with either paricalcitol (30 ng/kg/d intraperitoneal) or vehicle for 15 days. In 5 hearts from each group, we found that obstructed rats showed a reduction in VDRs and an increase in angiotensin II type 1 receptor expression (messenger RNA and protein), suffered fibrosis (determined by Masson trichrome stain) and myofibril reduction with an increase in mitochondrial size, and had dilated crests (determined by electron microscopy). These changes were reversed by paricalcitol. In 8 additional hearts per group, we found that obstructed rats showed a higher incidence of ventricular fibrillation during reperfusion (after 10 minutes of regional ischemia) than did those treated with paricalcitol. The action potential duration was prolonged throughout the experiment in paricalcitol-treated rats. We conclude that the reduction in myocardial vitamin D receptor expression in obstructed rats might be related to myocardial remodeling associated with an increase in arrhythmogenesis and that paricalcitol protects against these changes by restoring myocardial vitamin D receptor levels and prolonging action potentials.

  1. Transgenic expression of CYP7A1 in LDL receptor-deficient mice blocks diet-induced hypercholesterolemia.

    PubMed

    Ratliff, Eric P; Gutierrez, Alejandra; Davis, Roger A

    2006-07-01

    Constitutive expression of a cholesterol-7alpha-hydroxylase (CYP7A1) transgene in LDL receptor-deficient mice blocked the ability of a cholesterol-enriched diet to increase plasma levels of apolipoprotein B-containing lipoproteins. LDL receptor-deficient mice expressing the CYP7A1 transgene exhibited complete resistance to diet-induced hypercholesterolemia and to the accumulation of cholesterol in the liver. Hepatic mRNA expression of liver X receptor-inducible ABCG5 and ABCG8 was decreased in CYP7A1 transgenic, LDL receptor-deficient mice fed a cholesterol-enriched diet. Thus, increased biliary cholesterol excretion could not account for the maintenance of cholesterol homeostasis. CYP7A1 transgenic, LDL receptor-deficient mice fed the cholesterol-enriched diet exhibited decreased jejunal Niemann-Pick C1-Like 1 protein (NPC1L1) mRNA expression, an important mediator of intestinal cholesterol absorption. A taurocholate-enriched diet also decreased NPC1L1 mRNA expression in a farnesoid X receptor-independent manner. Reduced expression of NPC1L1 mRNA was associated with decreased cholesterol absorption ( approximately 20%; P < 0.05) exhibited by CYP7A1 transgenic LDL receptor-deficient mice fed the cholesterol-enriched diet. The combined data show that enhanced expression of CYP7A1 is an effective means to prevent the accumulation of cholesterol in the liver and of atherogenic apolipoprotein B-containing lipoproteins in plasma.

  2. [Antineoplastic effect of hydrogel prospidin on Seidel ascites hepatoma used as a model].

    PubMed

    Bychkovskiĭ, P M; Iurkshtovich, T L; Kladiev, A A; Revtovich, M Iu

    2012-01-01

    Antineoplastic effect of hydrogel dextran phosphate, hydrogel prospidin, and prospidin in an injectable preparation has been assessed using Seidel ascites hepatoma as a model. Injectable and hydrogel prospidin in doses from 250, 500 to 1000 mg/kg and hydrogel phosphate dextran in doses of 500 and 1000 mg/kg were administered to rats intraperitoneally in a single dose in a volume of 1 or 2 ml per each 100 g of animal body weight. The study has shown that irrespective of rats with Seidel ascites hepatoma and significantly increase in the dosage of prospidin preparations and hydrogel dextran phosphate results in a longer average life expectancy of rats Compared with its injectable variant, hydrogel prospidin appears to produce more than twice as high antineoplastic effect, and is found to provide prolonged therapeutic effects, as well as cure of animals in more than 60 % of cases.

  3. Airway bacteria drive a progressive COPD-like phenotype in mice with polymeric immunoglobulin receptor deficiency

    PubMed Central

    Richmond, Bradley W.; Brucker, Robert M.; Han, Wei; Du, Rui-Hong; Zhang, Yongqin; Cheng, Dong-Sheng; Gleaves, Linda; Abdolrasulnia, Rasul; Polosukhina, Dina; Clark, Peter E.; Bordenstein, Seth R.; Blackwell, Timothy S.; Polosukhin, Vasiliy V.

    2016-01-01

    Mechanisms driving persistent airway inflammation in chronic obstructive pulmonary disease (COPD) are incompletely understood. As secretory immunoglobulin A (SIgA) deficiency in small airways has been reported in COPD patients, we hypothesized that immunobarrier dysfunction resulting from reduced SIgA contributes to chronic airway inflammation and disease progression. Here we show that polymeric immunoglobulin receptor-deficient (pIgR−/−) mice, which lack SIgA, spontaneously develop COPD-like pathology as they age. Progressive airway wall remodelling and emphysema in pIgR−/− mice are associated with an altered lung microbiome, bacterial invasion of the airway epithelium, NF-κB activation, leukocyte infiltration and increased expression of matrix metalloproteinase-12 and neutrophil elastase. Re-derivation of pIgR−/− mice in germ-free conditions or treatment with the anti-inflammatory phosphodiesterase-4 inhibitor roflumilast prevents COPD-like lung inflammation and remodelling. These findings show that pIgR/SIgA deficiency in the airways leads to persistent activation of innate immune responses to resident lung microbiota, driving progressive small airway remodelling and emphysema. PMID:27046438

  4. Macrophage-specific overexpression of interleukin-5 attenuates atherosclerosis in LDL receptor-deficient mice.

    PubMed

    Zhao, W; Lei, T; Li, H; Sun, D; Mo, X; Wang, Z; Zhang, K; Ou, H

    2015-08-01

    Interleukin-5 (IL-5) increases the secretion of natural T15/EO6 IgM antibodies that inhibit the uptake of oxidized low-density lipoprotein (LDL) by macrophages. This study aimed to determine whether macrophage-specific expression of IL-5 in LDL receptor-deficient mice (Ldlr(-/-)) could improve cholesterol metabolism and reduce atherosclerosis. To induce macrophage-specific IL-5 expression, the pLVCD68-IL5 lentivirus was delivered into Ldlr(-/-) mice via bone marrow transplantation. The recipient mice were fed a Western-type diet for 12 weeks to induce lesion formation. We found that IL-5 was efficiently and specifically overexpressed in macrophages in recipients of pLVCD68-IL5-transduced bone marrow cells (BMC). Plasma titers of T15/EO6 IgM antibodies were significantly elevated by 58% compared with control mice transplanted with pLVCD68 lacking the IL-5 coding sequence. Plaque areas of aortas in IL-5-overexpressing mice were reduced by 43% and associated with a 2.4-fold decrease in lesion size at the aortic roots when compared with mice receiving pLVCD68-transduced BMCs. The study showed that macrophage-specific overexpression of IL-5 inhibited the progression of atherosclerotic lesions. These findings suggest that modulation of IL-5 cytokine expression represents a potential strategy for intervention of familial hypercholesterolemia and other cardiovascular diseases.

  5. Airway bacteria drive a progressive COPD-like phenotype in mice with polymeric immunoglobulin receptor deficiency.

    PubMed

    Richmond, Bradley W; Brucker, Robert M; Han, Wei; Du, Rui-Hong; Zhang, Yongqin; Cheng, Dong-Sheng; Gleaves, Linda; Abdolrasulnia, Rasul; Polosukhina, Dina; Clark, Peter E; Bordenstein, Seth R; Blackwell, Timothy S; Polosukhin, Vasiliy V

    2016-04-05

    Mechanisms driving persistent airway inflammation in chronic obstructive pulmonary disease (COPD) are incompletely understood. As secretory immunoglobulin A (SIgA) deficiency in small airways has been reported in COPD patients, we hypothesized that immunobarrier dysfunction resulting from reduced SIgA contributes to chronic airway inflammation and disease progression. Here we show that polymeric immunoglobulin receptor-deficient (pIgR(-/-)) mice, which lack SIgA, spontaneously develop COPD-like pathology as they age. Progressive airway wall remodelling and emphysema in pIgR(-/-) mice are associated with an altered lung microbiome, bacterial invasion of the airway epithelium, NF-κB activation, leukocyte infiltration and increased expression of matrix metalloproteinase-12 and neutrophil elastase. Re-derivation of pIgR(-/-) mice in germ-free conditions or treatment with the anti-inflammatory phosphodiesterase-4 inhibitor roflumilast prevents COPD-like lung inflammation and remodelling. These findings show that pIgR/SIgA deficiency in the airways leads to persistent activation of innate immune responses to resident lung microbiota, driving progressive small airway remodelling and emphysema.

  6. Citrullus lanatus 'sentinel' (watermelon) extract reduces atherosclerosis in LDL receptor-deficient mice.

    PubMed

    Poduri, Aruna; Rateri, Debra L; Saha, Shubin K; Saha, Sibu; Daugherty, Alan

    2013-05-01

    Watermelon (Citrullus lanatus or C. lanatus) has many potentially bioactive compounds including citrulline, which may influence atherosclerosis. In this study, we determined the effects of C. lanatus, provided as an extract of the cultivar 'sentinel,' on hypercholesterolemia-induced atherosclerosis in mice. Male low-density lipoprotein receptor-deficient mice at 8 weeks old were given either C. lanatus 'sentinel' extract (2% vol/vol; n=10) or a mixture of matching carbohydrates (2% vol/vol; n=8) as the control in drinking water while being fed a saturated fat-enriched diet for 12 weeks ad libitum. Mice consuming C. lanatus 'sentinel' extract had significantly increased plasma citrulline concentrations. Systolic blood pressure was comparable between the two groups. Consumption of C. lanatus 'sentinel' extract led to lower body weight and fat mass without influencing lean mass. There were no differences in food and water intake and in urine output between the two groups. C. lanatus 'sentinel' extract administration decreased plasma cholesterol concentrations that were attributed to reductions of intermediate-/low-density lipoprotein cholesterol. Plasma concentrations of monocyte chemoattractant protein-1 and interferon-gamma were decreased and those of interleukin-10 were increased in mice consuming C. lanatus 'sentinel' extract. Intake of C. lanatus 'sentinel' extract resulted in reductions of atherosclerosis in both aortic arch and thoracic regions. In conclusion, consumption of C. lanatus 'sentinel' extract led to reduced body weight gain, decreased plasma cholesterol concentrations, improved homeostasis of pro- and anti-inflammatory cytokines, and attenuated development of atherosclerosis without affecting systolic blood pressure in hypercholesterolemic mice.

  7. GH Receptor Deficiency in Ecuadorian Adults Is Associated With Obesity and Enhanced Insulin Sensitivity

    PubMed Central

    Rosenbloom, Arlan L.; Balasubramanian, Priya; Teran, Enrique; Guevara-Aguirre, Marco; Guevara, Carolina; Procel, Patricio; Alfaras, Irene; De Cabo, Rafael; Di Biase, Stefano; Narvaez, Luis; Saavedra, Jannette

    2015-01-01

    Context: Ecuadorian subjects with GH receptor deficiency (GHRD) have not developed diabetes, despite obesity. Objective: We sought to determine the metabolic associations for this phenomenon. Design: Four studies were carried out: 1) glucose, lipid, adipocytokine concentrations; 2) metabolomics evaluation; 3) metabolic responses to a high-calorie meal; and 4) oral glucose tolerance tests. Setting: Clinical Research Institute in Quito, Ecuador. Subjects: Adults homozygous for the E180 splice mutation of the GH receptor (GHRD) were matched for age, gender, and body mass index with unaffected control relatives (C) as follows: study 1, 27 GHRD and 35 C; study 2, 10 GHRD and 10 C; study 3, seven GHRD and 11 C; and study 4, seven GHRD and seven C. Results: Although GHRD subjects had greater mean percentage body fat than controls, their fasting insulin, 2-hour blood glucose, and triglyceride levels were lower. The indicator of insulin sensitivity, homeostasis model of assessment 2%S, was greater (P < .0001), and the indicator of insulin resistance, homeostasis model of assessment 2-IR, was lower (P = .0025). Metabolomic differences between GHRD and control subjects were consistent with their differing insulin sensitivity, including postprandial decreases of branched-chain amino acids that were more pronounced in controls. High molecular weight and total adiponectin concentrations were greater in GHRD (P = .0004 and P = .0128, respectively), and leptin levels were lower (P = .02). Although approximately 65% the weight of controls, GHRD subjects consumed an identical high-calorie meal; nonetheless, their mean glucose concentrations were lower, with mean insulin levels one-third those of controls. Results of the 2-hour oral glucose tolerance test were similar. Main Outcome Measures: Measures of insulin sensitivity, adipocytokines, and energy metabolites. Conclusions: Without GH counter-regulation, GHRD is associated with insulin efficiency and obesity. Lower leptin levels

  8. [Dynamic monitoring risk of anti-hepatoma new drug development].

    PubMed

    Zhang, Jing; Fan, Wei; Li, Hong-Fa; Man, Shu-Li; Liu, Zhen; Gao, Wen-Yuan

    2014-10-01

    Risk monitoring of new Chinese patent anti-hepatoma drugs is tracking recognized risks and residual risks, identifying emerging risk and ensure the implementation of the plan, estimating the process of reducing effectiveness. The paper is mainly through understanding the status of Chinese patent anti-hepatoma drugs, the content, characteristic and analysis method of dynamic risk monitoring, and then select the risk control indicators, collect risk information. Finally, puts forward the thought of anti-hepatoma drugs listed evaluation in our country, and try to establish the model of dynamic risk management of anti-hepatoma drugs.

  9. Genetic background modifies the effects of type 2 cannabinoid receptor deficiency on bone mass and bone turnover.

    PubMed

    Sophocleous, Antonia; Idris, Aymen I; Ralston, Stuart H

    2014-03-01

    Cannabinoid receptors and their ligands play significant roles in regulating bone metabolism. Previous studies of type 1 cannabinoid receptor-deficient mice have shown that genetic background influences the skeletal phenotype. Here, we investigated the effects of genetic background on the skeletal phenotype of mice with type 2 cannabinoid receptor deficiency (Cnr2 (-/-)). We studied Cnr2 (-/-) mice on a CD1 background and compared the findings with those previously reported in Cnr2 (-/-) C57BL/6 mice. Young female Cnr2 (-/-) CD1 mice had low bone turnover and high trabecular bone mass compared with wild-type (WT), contrasting with the situation in Cnr2 (-/-) C57BL/6 mice where trabecular bone mass has been reported to be similar to WT. The Cnr2 (-/-) CD1 mice lost more trabecular bone at the tibia with age than WT due to reduced bone formation, and at 12 months there was no difference in trabecular bone volume between genotypes. This differs from the phenotype previously reported in C57BL/6 Cnr2 (-/-) mice, where bone turnover is increased and bone mass reduced with age. There were no substantial differences in skeletal phenotype between Cnr2 (-/-) and WT in male mice. Cortical bone phenotype was similar in Cnr2 (-/-) and WT mice of both genders. Deficiency of Cnr2 has site- and gender-specific effects on the skeleton, mainly affecting trabecular bone, which are influenced by genetic differences between mouse strains. Further evaluation of the pathways responsible might yield new insights into the mechanisms by which cannabinoid receptors regulate bone metabolism.

  10. Validity of leptin receptor-deficiency (db/db) type 2 diabetes mellitus mice as a model of secondary osteoporosis

    NASA Astrophysics Data System (ADS)

    Huang, Le; You, Yong-Ke; Zhu, Tracy Y.; Zheng, Li-Zhen; Huang, Xiao-Ru; Chen, Hai-Yong; Yao, Dong; Lan, Hui-Yao; Qin, Ling

    2016-06-01

    This study aimed to evaluate the validation of the leptin receptor-deficient mice model for secondary osteoporosis associated with type 2 diabetes mellitus (T2DM) at bone micro-architectural level. Thirty three 36-week old male mice were divided into four groups: normal control (db/m) (n = 7), leptin receptor-deficient T2DM (db/db) (n = 8), human C-reactive protein (CRP) transgenic normal control (crp/db/m) (n = 7), and human CRP transgenic T2DM (crp/db/db) (n = 11). Lumber vertebrae (L5) and bilateral lower limbs were scanned by micro-CT to analyze trabecular and cortical bone quality. Right femora were used for three-point bending to analyze the mechanical properties. Trabecular bone quality at L5 was better in db/db or crp/db/db group in terms of bone mineral density (BMD), bone volume fraction, connectivity density, trabecular number and separation (all p < 0.05). However the indices measured at proximal tibia showed comparable trabecular BMD and microarchitecture among the four groups. Femur length in crp/db/db group was significantly shorter than db/m group (p < 0.05) and cortices were thinner in db/db and crp/db/db groups (p > 0.05). Maximum loading and energy yield in mechanical test were similar among groups while the elastic modulus in db/db and crp/db/db significantly lower than db/m. The leptin-receptor mice is not a proper model for secondary osteoporosis associated with T2DM.

  11. Trout hepatoma--a preliminary report

    USGS Publications Warehouse

    Rucker, R.R.; Yasutake, W.T.; Wolf, H.

    1961-01-01

    Fish pathology and its role in fish culture were brought into prominence in the spring of 1960 by the disclosure of a high incidence of hepatomas in hatchery-reared rainbow trout. The current problem came to light as the result of a routine inspection of live trout shipments at a California border fish-disease checking station. This service is performed by personnel of the California Department of Fish and Game to preclude the introduction or further spread of communicable fish diseases into California watersheds. Collaborative studies which followed revealed the nationwide distribution of the disease. This unusual disease soon attracted the attention of the Bureau of Sport Fisheries and Wildlife, the Food and Drug Administration, Public Health Service, and several western State health and conservation agencies.

  12. Growth hormone secretagogue receptor deficiency in mice protects against obesity‐induced hypertension

    PubMed Central

    Harris, Louise E.; Morgan, David G.; Balthasar, Nina

    2014-01-01

    Abstract Growth hormone secretagogue receptor (GHS‐R) signaling has been associated with growth hormone release, increases in food intake and pleiotropic cardiovascular effects. Recent data demonstrated that acute GHS‐R antagonism leads to increases in mean arterial pressure mediated by the sympathetic nervous system in rats; a highly undesirable effect if GHS‐R antagonism was to be used as a therapeutic approach to reducing food intake in an already obese, hypertensive patient population. However, our data in conscious, freely moving GHS‐R deficient mice demonstrate that chronic absence of GHS‐R signaling is protective against obesity‐induced hypertension. GHS‐R deficiency leads to reduced systolic blood pressure variability (SBPV); in response to acute high‐fat diet (HFD)‐feeding, increases in the sympathetic control of SBPV are suppressed in GHS‐R KO mice. Our data further suggest that GHS‐R signaling dampens the immediate HFD‐mediated increase in spontaneous baroreflex sensitivity. In diet‐induced obesity, absence of GHS‐R signaling leads to reductions in obesity‐mediated hypertension and tachycardia. Collectively, our findings thus suggest that chronic blockade of GHS‐R signaling may not result in adverse cardiovascular effects in obesity. PMID:24760503

  13. Peroxisomal oxidation of very long chain fatty acids (VLCFA) by human hepatoma cells

    SciTech Connect

    Watkins, P.A.; Ferrell, E.V. Jr.

    1986-05-01

    Beta-oxidation of VLCFA was studied in a human hepatoma cell line (HEP-G2). These cells, disrupted by exposure to low concentrations of digitonin, oxidize (1-/sup 14/C)palmitate (C16:0) and (1-/sup 14/C)lignocerate (C24:0) to /sup 14/CO/sub 2/ and water-soluble products. It was recently reported that in rat liver the beta-oxidation of VLCFA takes place primarily in the peroxisome rather than the mitochondrion. The precise site of VLCFA oxidation in human tissues has not been clearly elucidated. The peroxisome has been implicated since there is impaired VLCFA oxidation in fibroblasts from Zellweger syndrome patients, in which this organelle is deficient. In order to define the subcellular localization of human VLCFA oxidation, homogenates of HEP-G2 cells were fractionated on a discontinuous sucrose gradient. Fractions enriched in the peroxisomal marker catalase oxidized C24:0 at significantly greater rates than fractions enriched in the mitochondrial marker succinate:cytochrome c reductase. C16:0 oxidation was catalyzed by both peroxisomal and mitochondrial fractions. These results suggest that the subcellular site of VLCFA oxidation in human hepatoma cells and rat liver is similar.

  14. Immunization with cationized BSA inhibits progression of disease in ApoBec-1/LDL receptor deficient mice with manifest atherosclerosis.

    PubMed

    Kolbus, Daniel; Wigren, Maria; Ljungcrantz, Irena; Söderberg, Ingrid; Alm, Ragnar; Björkbacka, Harry; Nilsson, Jan; Fredrikson, Gunilla N

    2011-06-01

    Immune responses against modified self-antigens generated by hypercholesterolemia play an important role in atherosclerosis identifying the immune system as a possible novel target for prevention and treatment of cardiovascular disease. It has recently been shown that these immune responses can be modulated by subcutaneous injection of adjuvant. In the present study we immunized 25-week old ApoBec-1/LDL receptor deficient mice with manifest atherosclerosis with adjuvant and two different concentrations of the carrier molecule cationized BSA (cBSA). Plasma levels of Th2-induced apolipoprotein B (apoB)/IgG1 immune complexes were increased in the cBSA immunized groups verifying induction of immunity against a self-antigen. Mice were sacrificed at 36 weeks of age and atherosclerosis was monitored by en face Oil red O staining of the aorta. Immunization with 100 μg cBSA inhibited plaque progression, whereas the lower dose (50 μg) did not. In addition, the higher dose induced a more stable plaque phenotype, indicated by a higher content of collagen and less macrophages and T cells in the plaques. Moreover, there was an increased ratio of Foxp3+/Foxp3⁻ T cells in the circulation suggesting activation of a regulatory T cell response. In conclusion, we show that immunization with cBSA induces an immune response against apoB as well as an activation of Treg cells. This was associated with development of a more stable plaque phenotype and reduced atherosclerosis progression.

  15. Hepatoma cell-specific ganciclovir-mediated toxicity of a lentivirally transduced HSV-TkEGFP fusion protein gene placed under the control of rat alpha-fetoprotein gene regulatory sequences.

    PubMed

    Uch, Rathviro; Gérolami, René; Faivre, Jamila; Hardwigsen, Jean; Mathieu, Sylvie; Mannoni, Patrice; Bagnis, Claude

    2003-09-01

    Suicide gene therapy combining herpes simplex virus thymidine kinase gene transfer and ganciclovir administration can be envisioned as a powerful therapeutical approach in the treatment of hepatocellular carcinoma; however, safety issues regarding transgene expression in parenchyma cells have to be addressed. In this study, we constructed LATKW, a lentiviral vector expressing the HSV-TkEGFP gene placed under the control of the promoter elements that control the expression of the rat alpha-fetoprotein, and assayed its specific expression in vitro in hepatocarcinoma and nonhepatocarcinoma human cell lines, and in epidermal growth factor stimulated human primary hepatocytes. Using LATKW, a strong expression of the transgene was found in transduced hepatocarcinoma cells compared to a very low expression in nonhepatocarcinoma human cell lines, as assessed by Northern blot, RT-PCR, FACS analysis and ganciclovir-mediated toxicity assay, and no expression was found in lentivirally transduced normal human hepatocytes. Altogether, these results demonstrate the possibility to use a lentivirally transduced expression unit containing the rat alpha-fetoprotein promoter to restrict the HSV-TK-mediated induced GCV sensitivity to human hepatocarcinoma cells.

  16. Lipoprotein binding to cultured human hepatoma cells.

    PubMed Central

    Krempler, F; Kostner, G M; Friedl, W; Paulweber, B; Bauer, H; Sandhofer, F

    1987-01-01

    Binding of various 125I-lipoproteins to hepatic receptors was studied on cultured human hepatoma cells (Hep G2). Chylomicrons, isolated from a chylothorax, chylomicron remnants, hypertriglyceridemic very low-density lipoproteins, normotriglyceridemic very low-density lipoproteins (NTG-VLDL), their remnants, low-density lipoproteins (LDL), and HDL-E (an Apo E-rich high-density lipoprotein isolated from the plasma of a patient with primary biliary cirrhosis) were bound by high-affinity receptors. Chylomicron remnants and HDL-E were bound with the highest affinity. The results, obtained from competitive binding experiments, are consistent with the existence of two distinct receptors on Hep G2 cells: (a) a remnant receptor capable of high-affinity binding of triglyceride-rich lipoproteins and HDL-E, but not of Apo E free LDL, and (b) a LDL receptor capable of high-affinity binding of LDL, NTG-VLDL, and HDL-E. Specific binding of Apo E-free LDL was completely abolished in the presence of 3 mM EDTA, indicating that binding to the LDL receptor is calcium dependent. Specific binding of chylomicron remnants was not inhibited by the presence of even 10 mM EDTA. Preincubation of the Hep G2 cells in lipoprotein-containing medium resulted in complete suppression of LDL receptors but did not affect the remnant receptors. Hep G2 cells seem to be a suitable model for the study of hepatic receptors for lipoprotein in man. Images PMID:3038957

  17. Intracellularly Swollen Polypeptide Nanogel Assists Hepatoma Chemotherapy

    PubMed Central

    Shi, Bo; Huang, Kexin; Ding, Jianxun; Xu, Weiguo; Yang, Yu; Liu, Haiyan; Yan, Lesan; Chen, Xuesi

    2017-01-01

    Nowadays, chemotherapy is one of the principal modes of treatment for tumor patients. However, the traditional formulations of small molecule drugs show short circulation time, low tumor selectivity, and high toxicity to normal tissues. To address these problems, a facilely prepared, and pH and reduction dual-responsive polypeptide nanogel was prepared for selectively intracellular delivery of chemotherapy drug. As a model drug, doxorubicin (DOX) was loaded into the nanogel through a sequential dispersion and dialysis technique, resulting in a high drug loading efficiency (DLE) of 96.7 wt.%. The loading nanogel, defined as NG/DOX, exhibited a uniform spherical morphology with a mean hydrodynamic radius of 58.8 nm, pH and reduction dual-triggered DOX release, efficient cell uptake, and cell proliferation inhibition in vitro. Moreover, NG/DOX exhibited improved antitumor efficacy toward H22 hepatoma-bearing BALB/c mouse model compared with free DOX·HCl. Histopathological and immunohistochemical analyses were implemented to further confirm the tumor suppression activity of NG/DOX. Furthermore, the variations of body weight, histopathological morphology, bone marrow cell micronucleus rate, and white blood cell count verified that NG/DOX showed excellent safety in vivo. With these excellent properties in vitro and in vivo, the pH and reduction dual-responsive polypeptide nanogel exhibits great potential for on-demand intracellular delivery of antitumor drug, and holds good prospect for future clinical application. PMID:28255361

  18. TLR4 Antagonist Attenuates Atherogenesis in LDL Receptor-Deficient Mice with Diet-Induced Type 2 Diabetes

    PubMed Central

    Lu, Zhongyang; Zhang, Xiaoming; Li, Yanchun; Lopes-Virella, Maria F.; Huang, Yan

    2015-01-01

    Although a large number of studies have well documented a key role of toll-like receptor (TLR)4 in atherosclerosis, it remains undetermined if TLR4 antagonist attenuates atherogenesis in mouse model for type 2 diabetes. In this study, we induced type 2 diabetes in low-density lipoprotein receptor-deficient (LDLR−/−) mice by high-fat diet (HFD). At 8 weeks old, 20 mice were fed HFD and 20 mice fed regular chow (RC) for 24 weeks. In the last 10 weeks, half HFD-fed mice and half RC-fed mice were treated with Rhodobacter sphaeroides lipopolysaccharide (Rs-LPS), an established TLR4 antagonist. After the treatment, atherosclerotic lesions in aortas were analyzed. Results showed that the HFD significantly increased bodyweight, glucose, lipids including total cholesterol, triglycerides and free fatty acids, and insulin resistance, indicating that the HFD induced type 2 diabetes in LDLR−/− mice. Results also showed that Rs-LPS had no effect on HFD-increased metabolic parameters in both nondiabetic and diabetic mice. Lipid staining of aortas and histological analysis of cross-sections of aortic roots showed that diabetes increased atherosclerotic lesions, but Rs-LPS attenuated atherogenesis in diabetic mice. Furthermore, immunohistochemical studies showed that Rs-LPS reduced infiltration of monocytes/macrophages and expression of interleukin (IL)-6 and matrix metalloproteinase-9 in atherosclerotic lesions of diabetic mice. Finally, the antagonistic effect of Rs-LPS on TLR4 was demonstrated by our in vitro studies showing that Rs-LPS inhibited IL-6 secretion from macrophages and endothelial cells stimulated by LPS or LPS plus saturated fatty acid palmitate. Taken together, our study demonstrated that TLR4 antagonist was capable of attenuating vascular inflammation and atherogenesis in mice with HFD-induced type 2 diabetes. PMID:26162692

  19. Eicosapentaenoic acid ameliorates non-alcoholic steatohepatitis in a novel mouse model using melanocortin 4 receptor-deficient mice.

    PubMed

    Konuma, Kuniha; Itoh, Michiko; Suganami, Takayoshi; Kanai, Sayaka; Nakagawa, Nobutaka; Sakai, Takeru; Kawano, Hiroyuki; Hara, Mitsuko; Kojima, Soichi; Izumi, Yuichi; Ogawa, Yoshihiro

    2015-01-01

    Many attempts have been made to find novel therapeutic strategies for non-alcoholic steatohepatitis (NASH), while their clinical efficacy is unclear. We have recently reported a novel rodent model of NASH using melanocortin 4 receptor-deficient (MC4R-KO) mice, which exhibit the sequence of events that comprise hepatic steatosis, liver fibrosis, and hepatocellular carcinoma with obesity-related phenotypes. In the liver of MC4R-KO mice, there is a unique histological feature termed hepatic crown-like structures (hCLS), where macrophages interact with dead hepatocytes and fibrogenic cells, thereby accelerating inflammation and fibrosis. In this study, we employed MC4R-KO mice to examine the effect of highly purified eicosapentaenoic acid (EPA), a clinically available n-3 polyunsaturated fatty acid, on the development of NASH. EPA treatment markedly prevented the development of hepatocyte injury, hCLS formation and liver fibrosis along with lipid accumulation. EPA treatment was also effective even after MC4R-KO mice developed NASH. Intriguingly, improvement of liver fibrosis was accompanied by the reduction of hCLS formation and plasma kallikrein-mediated transforming growth factor-β activation. Moreover, EPA treatment increased the otherwise reduced serum concentrations of adiponectin, an adipocytokine with anti-inflammatory and anti-fibrotic properties. Collectively, EPA treatment effectively prevents the development and progression of NASH in MC4R-KO mice along with amelioration of hepatic steatosis. This study unravels a novel anti-fibrotic mechanism of EPA, thereby suggesting a clinical implication for the treatment of NASH.

  20. Intermittent hypoxia and hypercapnia induce pulmonary artery atherosclerosis and ventricular dysfunction in low density lipoprotein receptor deficient mice

    PubMed Central

    Bowden, Karen; Pattison, Jennifer; Peterson, Alexander B.; Juliano, Joseph; Dalton, Nancy D.; Gu, Yusu; Alvarez, Erika; Imamura, Toshihiro; Peterson, Kirk L.; Witztum, Joseph L.; Haddad, Gabriel G.; Li, Andrew C.

    2013-01-01

    Patients with obstructive sleep apnea, who experience episodic hypoxia and hypercapnia during sleep, often demonstrate increased inflammation, oxidative stress, and dyslipidemia. We hypothesized that sleep apnea patients would be predisposed to the development of atherosclerosis. To dissect the mechanisms involved, we developed an animal model in mice whereby we expose mice to intermittent hypoxia/hypercapnia (IHH) in normobaric environments. Two- to three-month-old low-density lipoprotein receptor deficient (Ldlr−/−) mice were fed a high-fat diet for 8 or 16 wk while being exposed to IHH for either 10 h/day or 24 h/day. Plasma lipid levels, pulmonary artery and aortic atherosclerotic lesions, and cardiac function were then assayed. Surprisingly, atherosclerosis in the aorta of IHH mice was similar compared with controls. However, in IHH mice, atherosclerosis was markedly increased in the trunk and proximal branches of the pulmonary artery of exposed mice; even though plasma cholesterol and triglycerides were lower than in controls. Hemodynamic analysis revealed that right ventricular maximum pressure and isovolumic relaxation constant were significantly increased in IHH exposed mice and left ventricular % fractional shortening was reduced. In conclusion, 1) Intermittent hypoxia/hypercapnia remarkably accelerated atherosclerotic lesions in the pulmonary artery of Ldlr−/− mice and 2) increased lesion formation in the pulmonary artery was associated with right and left ventricular dysfunction. These findings raise the possibility that patients with obstructive sleep apnea may be susceptible to atherosclerotic disease in the pulmonary vasculature, an observation that has not been previously recognized. PMID:23990245

  1. Stimulation of Hepatoma Cell Invasiveness and Metastatic Potential by Proteins Secreted From Irradiated Nonparenchymal Cells

    SciTech Connect

    Zhou Leyuan; Wang Zhiming; Gao Yabo; Wang Lingyan; Zeng Zhaochong

    2012-11-01

    Purpose: To determine whether factors secreted by irradiated liver nonparenchymal cells (NPCs) may influence invasiveness and/or metastatic potential of hepatocellular carcinoma (HCC) cells and to elucidate a possible mechanism for such effect. Methods and Materials: Primary rat NPCs were cultured and divided into irradiated (10-Gy X-ray) and nonirradiated groups. Forty-eight hours after irradiation, conditioned medium from irradiated (SR) or nonirradiated (SnonR) cultures were collected and added to sublethally irradiated cultures of the hepatoma McA-RH7777 cell line. Then, hepatoma cells were continuously passaged for eight generations (RH10Gy-SR and RH10Gy-SnonR). The invasiveness and metastatic potential of McA-RH7777, RH10Gy-SnonR, and RH10Gy-SR cells were evaluated using an in vitro gelatinous protein (Matrigel) invasion and an in vivo metastasis assay. In addition, SR and SnonR were tested using rat cytokine antibody arrays and enzyme-linked immunosorbent assay (ELISA). Results: In vitro gelatinous protein invasion assay indicated that the numbers of invading cells was significantly higher in RH10Gy-SR (40 {+-} 4.74) than in RH10Gy-SnonR (30.6 {+-} 3.85) cells, and lowest in McA-RH7777 (11.4 {+-} 3.56) cells. The same pattern was observed in vivo in a lung metastasis assay, as evaluated by number of metastatic lung nodules seen with RH10Gy-SR (28.83 {+-} 5.38), RH10Gy-SnonR (22.17 {+-} 4.26), and McA-RH7777 (8.3 {+-} 3.8) cells. Rat cytokine antibody arrays and ELISA demonstrated that metastasis-promoting cytokines (tumor necrosis factor-{alpha} and interleukin-6), circulating growth factors (vascular endothelial growth factor and epidermal growth factor), and metalloproteinases (MMP-2 and MMP-9) were upregulated in SR compared with SnonR. Conclusions: Radiation can increase invasiveness and metastatic potential of sublethally irradiated hepatoma cells, and soluble mediators released from irradiated NPCs promote this potential. Increased secretion of

  2. Comparative Study of Light Scattering from Hepatoma Cells and Hepatocytes

    NASA Astrophysics Data System (ADS)

    Lin, Xiaogang; Wang, Rongrong; Guo, Yongcai; Gao, Chao; Guo, Xiaoen

    2012-11-01

    Primary liver cancer is one of the highest mortality malignant tumors in the world. China is a high occurrence area of primary liver cancer. Diagnosis of liver cancer, especially early diagnosis, is essential for improving patients' survival. Light scattering and measuring method is an emerging technology developed in recent decades, which has attracted a large number of biomedical researchers due to its advantages, such as fast, simple, high accuracy, good repeatability, and non-destructive. The hypothesis of this project is that there may be some different light scattering information between hepatoma cells and hepatocyte. Combined with the advantages of the dynamic light scattering method and the biological cytology, an experimental scheme to measure the light scattering information of cells was formulated. Hepatoma cells and hepatic cells were irradiated by a semiconductor laser (532 nm). And the Brookhaven BI-200SM wide-angle light scattering device and temperature control apparatus were adopted. The light scattering information of hepatoma cells and hepatic cells in vitro within the 15°C to 30°C temperature range was processed by a BI-9000AT digital autocorrelator. The following points were found: (a) the scattering intensities of human hepatic cells and hepatoma cells are nearly not affected by the temperature factor, and the former is always greater than the latter and (b) the relaxation time of hepatoma cells is longer than that of hepatic cells, and both the relaxation time are shortened with increasing temperature from 15°C to 25°C. It can be concluded that hepatoma cells could absorb more incident light than hepatic cells. The reason may be that there exists more protein and nucleic acid in cancerous cells than normal cells. Furthermore, based on the length relaxation time, a conclusion can be inferred that the Brownian movement of cancer cells is greater.

  3. CD8+ T Cell Response to Gammaherpesvirus Infection Mediates Inflammation and Fibrosis in Interferon Gamma Receptor-Deficient Mice

    PubMed Central

    O’Flaherty, Brigid M.; Matar, Caline G.; Wakeman, Brian S.; Garcia, AnaPatricia; Wilke, Carol A.; Courtney, Cynthia L.; Moore, Bethany B.; Speck, Samuel H.

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF), one of the most severe interstitial lung diseases, is a progressive fibrotic disorder of unknown etiology. However, there is growing appreciation for the role of viral infection in disease induction and/or progression. A small animal model of multi-organ fibrosis, which involves murine gammaherpesvirus (MHV68) infection of interferon gamma receptor deficient (IFNγR-/-) mice, has been utilized to model the association of gammaherpesvirus infections and lung fibrosis. Notably, several MHV68 mutants which fail to induce fibrosis have been identified. Our current study aimed to better define the role of the unique MHV68 gene, M1, in development of pulmonary fibrosis. We have previously shown that the M1 gene encodes a secreted protein which possesses superantigen-like function to drive the expansion and activation of Vβ4+ CD8+ T cells. Here we show that M1-dependent fibrosis is correlated with heightened levels of inflammation in the lung. We observe an M1-dependent cellular infiltrate of innate immune cells with most striking differences at 28 days-post infection. Furthermore, in the absence of M1 protein expression we observed reduced CD8+ T cells and MHV68 epitope specific CD8+ T cells to the lungs—despite equivalent levels of viral replication between M1 null and wild type MHV68. Notably, backcrossing the IFNγR-/- onto the Balb/c background, which has previously been shown to exhibit weak MHV68-driven Vβ4+ CD8+ T cell expansion, eliminated MHV68-induced fibrosis—further implicating the activated Vβ4+ CD8+ T cell population in the induction of fibrosis. We further addressed the role that CD8+ T cells play in the induction of fibrosis by depleting CD8+ T cells, which protected the mice from fibrotic disease. Taken together these findings are consistent with the hypothesized role of Vβ4+ CD8+ T cells as mediators of fibrotic disease in IFNγR-/- mice. PMID:26317335

  4. Trichloroethylene toxicity in a human hepatoma cell line

    SciTech Connect

    Thevenin, E.; McMillian, J.

    1994-12-31

    The experiments conducted in this study were designed to determine the usefullness of hepatocyte cultures and a human hepatoma cell line as model systems for assessing human susceptibility to hepatocellular carcinoma due to exposure to trichloroethylene. The results from these studies will then be analyzed to determine if human cell lines can be used to conduct future experiments of this nature.

  5. Mechanical Vibration Mitigates the Decrease of Bone Quantity and Bone Quality of Leptin Receptor-Deficient Db/Db Mice by Promoting Bone Formation and Inhibiting Bone Resorption.

    PubMed

    Jing, Da; Luo, Erping; Cai, Jing; Tong, Shichao; Zhai, Mingming; Shen, Guanghao; Wang, Xin; Luo, Zhuojing

    2016-09-01

    Leptin, a major hormonal product of adipocytes, is involved in regulating appetite and energy metabolism. Substantial studies have revealed the anabolic actions of leptin on skeletons and bone cells both in vivo and in vitro. Growing evidence has substantiated that leptin receptor-deficient db/db mice exhibit decreased bone mass and impaired bone microstructure despite several conflicting results previously reported. We herein systematically investigated bone microarchitecture, mechanical strength, bone turnover and its potential molecular mechanisms in db/db mice. More importantly, we also explored an effective approach for increasing bone mass in leptin receptor-deficient animals in an easy and noninvasive manner. Our results show that deterioration of trabecular and cortical bone microarchitecture and decreases of skeletal mechanical strength-including maximum load, yield load, stiffness, energy, tissue-level modulus and hardness-in db/db mice were significantly ameliorated by 12-week, whole-body vibration (WBV) with 0.5 g, 45 Hz via micro-computed tomography (μCT), three-point bending, and nanoindentation examinations. Serum biochemical analysis shows that WBV significantly decreased serum tartrate-resistant acid phosphatase 5b (TRACP5b) and CTx-1 levels and also mitigated the reduction of serum osteocalcin (OCN) in db/db mice. Bone histomorphometric analysis confirmed that decreased bone formation-lower mineral apposition rate, bone formation rate, and osteoblast numbers in cancellous bone-in db/db mice were suppressed by WBV. Real-time PCR assays show that WBV mitigated the reductions of tibial alkaline phosphatase (ALP), OCN, Runt-related transcription factor 2 (RUNX2), type I collagen (COL1), BMP2, Wnt3a, Lrp6, and β-catenin mRNA expression, and prevented the increases of tibial sclerostin (SOST), RANK, RANKL, RANL/osteoprotegerin (OPG) gene levels in db/db mice. Our results show that WBV promoted bone quantity and quality in db/db mice with obvious

  6. Depletion of Endothelial or Smooth Muscle Cell-Specific Angiotensin II Type 1a Receptors Does Not Influence Aortic Aneurysms or Atherosclerosis in LDL Receptor Deficient Mice

    PubMed Central

    Rateri, Debra L.; Moorleghen, Jessica J.; Knight, Victoria; Balakrishnan, Anju; Howatt, Deborah A.; Cassis, Lisa A.; Daugherty, Alan

    2012-01-01

    Background Whole body genetic deletion of AT1a receptors in mice uniformly reduces hypercholesterolemia and angiotensin II-(AngII) induced atherosclerosis and abdominal aortic aneurysms (AAAs). However, the role of AT1a receptor stimulation of principal cell types resident in the arterial wall remains undefined. Therefore, the aim of this study was to determine whether deletion of AT1a receptors in either endothelial cells or smooth muscle cells influences the development of atherosclerosis and AAAs. Methodology/Principal Findings AT1a receptor floxed mice were developed in an LDL receptor −/− background. To generate endothelial or smooth muscle cell specific deficiency, AT1a receptor floxed mice were bred with mice expressing Cre under the control of either Tie2 or SM22, respectively. Groups of males and females were fed a saturated fat-enriched diet for 3 months to determine effects on atherosclerosis. Deletion of AT1a receptors in either endothelial or smooth muscle cells had no discernible effect on the size of atherosclerotic lesions. We also determined the effect of cell-specific AT1a receptor deficiency on atherosclerosis and AAAs using male mice fed a saturated fat-enriched diet and infused with AngII (1,000 ng/kg/min). Again, deletion of AT1a receptors in either endothelial or smooth muscle cells had no discernible effects on either AngII-induced atherosclerotic lesions or AAAs. Conclusions Although previous studies have demonstrated whole body AT1a receptor deficiency diminishes atherosclerosis and AAAs, depletion of AT1a receptors in either endothelial or smooth muscle cells did not affect either of these vascular pathologies. PMID:23236507

  7. Biosynthesis, surface expression and function of the fibronectin receptor after rat liver cell transformation to tumorigenicity.

    PubMed Central

    Decastel, M; Doyennette-Moyne, M A; Gouet, E; Aubery, M; Codogno, P

    1993-01-01

    Zajdela hepatoma cells are poorly-adherent cells derived from an undifferentiated tumour and transplanted into rat. We compared the biosynthesis, structure and function of the fibronectin receptor in normal rat hepatocytes with that in Zajdela hepatoma cells. The rat hepatocyte fibronectin receptor has been isolated. It is composed of two subunits: alpha 5 (molecular mass 155 kDa) and beta 1 (molecular mass 115 kDa). However, its biosynthesis has not yet been described. Using polyclonal antibodies raised against each of the subunits of the receptor, we observed that the alpha 5-subunit was synthesized as a 155-kDa polypeptide in normal rat hepatocytes and Zajdela hepatoma cells. In contrast, the molecular mass of the beta 1-subunit was 130 kDa in Zajdela hepatoma cells versus 115 kDa in normal rat hepatocytes. Pulse-chase experiments showed that the apparent transition time from the 100-kDa beta 1-precursor to the 130-kDa mature form was abnormally prolonged in Zajdela hepatoma cells since the latter was not detected until 24 h, while the transition from the 100-kDa precursor to the 115-kDa mature form began within 3 h in normal rat hepatocytes. Digestion of both the normal rat hepatocytes and Zajdela hepatoma cells 100-kDa beta 1-precursors with endo-beta-N-acetylglucosaminidase H and peptide N-glycosidase yielded products from 100 kDa to 84 kDa and 82 kDa, respectively, as judged by SDS/PAGE, suggesting that the same polypeptide chain is synthesized in normal rat hepatocytes and in Zajdela hepatoma cells. Incubation of the mature normal rat hepatocyte beta 1-subunit with peptide N-glycosidase reduced its molecular mass from 115 kDa to 82 kDa, as judged by SDS/PAGE, while the molecular mass of the abnormal mature Zajdela hepatoma cell beta 1-subunit decreased from 130 to 110 kDa. Thus, in addition to alterations in the Asn-linked oligosaccharide processing, 'ascitic growth' induced other post-translational modifications in the Zajdela hepatoma cell beta 1-subunit

  8. [Experimental study on electrical impedance properties of human hepatoma cells].

    PubMed

    Fang, Yun; Tang, Zhiyuan; Zhang, Qian; Zhao, Xin; Ma, Qing

    2014-10-01

    The AC impedance of human hepatoma SMMC-7721 cells were measured in our laboratory by Agilent 4294A impedance analyzer in the frequency range of 0.01-100 MHz. And then the effect of hematocrit on electrical impedance characteristics of hepatoma cells was observed by electrical impedance spectroscopy, Bode diagram, Nyquist diagram and Nichols diagram. The results showed that firstly, there is a frequency dependence, i.e., the increment of real part and the imaginary part of complex electrical impedance (δZ', δZ"), the increment of the amplitude modulus of complex electrical impedance (δ[Z *]) and phase angle (δθ) were all changed with the increasing frequency. Secondly, it showed cell volume fraction (CVF) dependence, i. e. , the increment of low-frequency limit (δZ'0, δ[Z*] 0), peak (δZ"(p), δθ(p)), area and radius (Nyquist diagram, Nichols diagram) were all increased along with the electric field frequency. Thirdly, there was the presence of two characteristic frequencies: the first characteristic frequency (f(c1)) and the second characteristic frequency (f(c2)), which were originated respectively in the polarization effects of two interfaces that the cell membrane and extracellular fluid, cell membrane and cytoplasm. A conclusion can be drawn that the electrical impedance spectroscopy is able to be used to observe the electrical characteristics of human hepatoma cells, and therefore this method can be used to investigate the electrophysiological mechanisms of liver cancer cells, and provide research tools and observation parameters, and it also has important theoretical value and potential applications for screening anticancer drugs.

  9. Effect of hepatoma H22 on lymphatic endothelium in vitro

    PubMed Central

    Yu, Hua; Zhou, Hong-Zhi; Wang, Chun-Mei; Gu, Xiao-Ming; Pan, Bo-Rong

    2004-01-01

    AIM: To determine the effect of metastatic hepatoma cells on lymphangioma-derived endothelium, and to establish in vitro model systems for assessing metastasis-related response of lymphatic endothelium. METHODS: Benign lymphangioma, induced by intraperitoneal injection of the incomplete Freund’s adjuvant in BALB/c mice, was embedded in fibrin gel or digested and then cultured in the conditioned medium derived from hepatoma H22. Light and electron microscopy, and the transwell migration assay were used to determine the effect of H22 on tissue or cell culture. Expressions of Flt-4, c-Fos, proliferating cell nuclear antigen (PCNA), and inducible nitric oxide synthase (iNOS) in cultured cells, and content of nitric oxide in culture medium were also examined. RESULTS: The embedded lymphangioma pieces gave rise to array of capillaries, while separated cells from lymphangioma grew to a cobblestone-like monolayer. H22 activated growth and migration of the capillaries and cells, induced expressions of Flt-4, c-Fos, PCNA and iNOS in cultured cells, and significantly increased the content of NO in the culture medium. CONCLUSION: Lymphangioma-derived cells keep the differentiated phenotypes of lymphatic endothelium, and the models established in this study are feasible for in vitro study of metastasis-related response of lymphatic endothelium. PMID:15526361

  10. Toll-like Receptor 4 Deficiency Decreases Atherosclerosis but Does Not Protect against Inflammation in Obese LDL Receptor-Deficient Mice

    PubMed Central

    Ding, Yilei; Subramanian, Savitha; Montes, Vince N.; Goodspeed, Leela; Wang, Shari; Han, Chang Yeop; Teresa, Antonio Sta.; Kim, Jinkyu; O’Brien, Kevin D.; Chait, Alan

    2013-01-01

    Objective Obesity is associated with insulin resistance, chronic low-grade inflammation and atherosclerosis. Toll-like receptor 4 (TLR4) participates in the cross-talk between inflammation and insulin resistance, being activated by both lipopolysaccharide and saturated fatty acids. This study was undertaken to determine whether TLR4 deficiency has a protective role in inflammation, insulin resistance and atherosclerosis induced by a diabetogenic diet. Methods and Results TLR4 and LDL receptor double knockout (Tlr4−/−Ldlr−/−) mice and Ldlr−/− mice were fed either a normal chow or a diabetogenic diet for 24 weeks. Tlr4−/−Ldlr−/− mice fed a diabetogenic diet showed improved plasma cholesterol and triglyceride levels but developed obesity, hyperinsulinemia and glucose intolerance equivalent to obese Ldlr−/− mice. Adipocyte hypertrophy, macrophage accumulation and local inflammation were not attenuated in intra-abdominal adipose tissue in Tlr4−/−Ldlr−/− mice. However, TLR4 deficiency led to markedly decreased atherosclerosis in obese Tlr4−/−Ldlr−/− mice. Compensatory up-regulation of TLR2 expression was observed both in obese TLR4 deficient mice and in palmitate-treated TLR4-silenced 3T3-L1 adipocytes. Conclusions TLR4 deficiency decreases atherosclerosis without affecting obesity-induced inflammation and insulin resistance in LDL receptor deficient mice. Alternative pathways may be responsible for adipose tissue macrophage infiltration and insulin resistance that occurs in obesity. PMID:22580897

  11. Membrane Glycolipids Content Variety in Gastrointestinal Tumors and Transplantable Hepatomas in Mice

    PubMed Central

    Lv, Jun; Lv, Can Qun; Wang, Bo-Liang; Mei, Ping; Xu, Lei

    2016-01-01

    Background The aim of this study was to investigate the variety of plasma contents of membrane glycolipids in 65 gastrointestinal tumors and 31 transplant hepatomas in mice. Material/Methods The experimental model was a transplantable murine hepatoma. Experimental mice were divided into 3 groups. Results The LSA and TSA content in the 2 groups were significantly difference (p<0.01), and were significantly lower in the therapeutic group than in the control group (p<0.01). Conclusions These results indicate that membrane glycolipids index LSA and TSA are sensitive markers in gastrointestinal tumors. In the transplanted hepatomas in mice, they may be considered as ancillary indicators for judging the therapeutic effect of hepatoma. PMID:27554918

  12. Infection of type I interferon receptor-deficient mice with various old world arenaviruses: a model for studying virulence and host species barriers.

    PubMed

    Rieger, Toni; Merkler, Doron; Günther, Stephan

    2013-01-01

    Lassa virus causes hemorrhagic Lassa fever in humans, while the related Old World arenaviruses Mopeia, Morogoro, and Mobala are supposedly apathogenic to humans and cause only inapparent infection in non-human primates. Here, we studied whether the virulence of Old World arenaviruses in humans and non-human primates is reflected in type I interferon receptor deficient (IFNAR(-/-)) mice by testing several strains of Lassa virus vs. the apathogenic viruses Mopeia, Morogoro, and Mobala. All Lassa virus strains tested-Josiah, AV, BA366, and Nig04-10-replicated to high titers in blood, lung, kidney, heart, spleen, brain, and liver and caused disease as evidenced by weight loss and elevation of aspartate and alanine aminotransferase (AST and ALT) levels with a high AST/ALT ratio. Lassa fever-like pathology included acute hepatitis, interstitial pneumonia, and pronounced disturbance of splenic cytoarchitecture. Infiltrations of activated monocytes/macrophages expressing inducible nitric oxide synthase and T cells were found in liver and lung. In contrast, Mopeia, Morogoro, and Mobala virus replicated poorly in the animals and acute inflammatory alterations were not noted. Depletion of CD4(+) and CD8(+) T cells strongly enhanced susceptibility of IFNAR(-/-) mice to the apathogenic viruses. In conclusion, the virulence of Old World arenaviruses in IFNAR(-/-) mice correlates with their virulence in humans and non-human primates. In addition to the type I interferon system, T cells seem to regulate whether or not an arenavirus can productively infect non-host rodent species. The observation that Lassa virus overcomes the species barrier without artificial depletion of T cells suggests it is able to impair T cell functionality in a way that corresponds to depletion.

  13. Effects of JS-K, a novel anti-cancer nitric oxide prodrug, on gene expression in human hepatoma Hep3B cells.

    PubMed

    Dong, Ray; Wang, Xueqian; Wang, Huan; Liu, Zhengyun; Liu, Jie; Saavedra, Joseph E

    2017-04-01

    JS-K is a novel anticancer nitric oxide (NO) prodrug effective against a variety of cancer cells, including the inhibition of AM-1 hepatoma cell growth in rats. To further evaluate anticancer effects of JS-K, human hepatoma Hep3B cells were treated with JS-K and the compound control JS-43-126 at various concentrations (0-100μM) for 24h, and cytotoxicity was determined by the MTS assay. The compound control JS-43-126 was not cytotoxic to Hep3B cells at concentrations up to 100μM, while the LC50 for JS-K was about 10μM. To examine the molecular mechanisms of antitumor effects of JS-K, Hep3B cells were treated with 1-10μM of JS-K for 24h, and then subjected to gene expression analysis via real time RT-PCR and protein immunostain via confocal images. JS-K is a GST-α targeting NO prodrug, and decreased immunostaining for GST-α was associated with JS-K treatment. JS-K activated apoptosis pathways in Hep3B cells, including induction of caspase-3, caspase-9, Bax, TNF-α, and IL-1β, and immunostaining for caspase-3 was intensified. The expressions of thrombospondin-1 (TSP-1) and the tissue inhibitors of metalloproteinase-1 (TIMP-1) were increased by JS-K at both transcript and protein levels. JS-K treatment also increased the expression of differentiation-related genes CD14 and CD11b, and depressed the expression of c-myc in Hep3B cells. Thus, multiple molecular events appear to be associated with anticancer effects of JS-K in human hepatoma Hep3B cells, including activation of genes related to apoptosis and induction of genes involved in antiangiogenesis and tumor cell migration.

  14. Autophagy of metallothioneins prevents TNF-induced oxidative stress and toxicity in hepatoma cells

    PubMed Central

    Ullio, Chiara; Brunk, Ulf T; Urani, Chiara; Melchioretto, Pasquale; Bonelli, Gabriella; Baccino, Francesco M; Autelli, Riccardo

    2015-01-01

    Lysosomal membrane permeabilization (LMP) induced by oxidative stress has recently emerged as a prominent mechanism behind TNF cytotoxicity. This pathway relies on diffusion of hydrogen peroxide into lysosomes containing redox-active iron, accumulated by breakdown of iron-containing proteins and subcellular organelles. Upon oxidative lysosomal damage, LMP allows relocation to the cytoplasm of low mass iron and acidic hydrolases that contribute to DNA and mitochondrial damage, resulting in death by apoptosis or necrosis. Here we investigate the role of lysosomes and free iron in death of HTC cells, a rat hepatoma line, exposed to TNF following metallothionein (MT) upregulation. Iron-binding MT does not normally occur in HTC cells in significant amounts. Intracellular iron chelation attenuates TNF and cycloheximide (CHX)-induced LMP and cell death, demonstrating the critical role of this transition metal in mediating cytokine lethality. MT upregulation, combined with starvation-activated MT autophagy almost completely suppresses TNF and CHX toxicity, while impairment of both autophagy and MT upregulation by silencing of Atg7, and Mt1a and/or Mt2a, respectively, abrogates protection. Interestingly, MT upregulation by itself has little effect, while stimulated autophagy alone depresses cytokine toxicity to some degree. These results provide evidence that intralysosomal iron-catalyzed redox reactions play a key role in TNF and CHX-induced LMP and toxicity. The finding that chelation of intralysosomal iron achieved by autophagic delivery of MT, and to some degree probably of other iron-binding proteins as well, into the lysosomal compartment is highly protective provides a putative mechanism to explain autophagy-related suppression of death by TNF and CHX. PMID:26566051

  15. Autophagy of metallothioneins prevents TNF-induced oxidative stress and toxicity in hepatoma cells.

    PubMed

    Ullio, Chiara; Brunk, Ulf T; Urani, Chiara; Melchioretto, Pasquale; Bonelli, Gabriella; Baccino, Francesco M; Autelli, Riccardo

    2015-01-01

    Lysosomal membrane permeabilization (LMP) induced by oxidative stress has recently emerged as a prominent mechanism behind TNF cytotoxicity. This pathway relies on diffusion of hydrogen peroxide into lysosomes containing redox-active iron, accumulated by breakdown of iron-containing proteins and subcellular organelles. Upon oxidative lysosomal damage, LMP allows relocation to the cytoplasm of low mass iron and acidic hydrolases that contribute to DNA and mitochondrial damage, resulting in death by apoptosis or necrosis. Here we investigate the role of lysosomes and free iron in death of HTC cells, a rat hepatoma line, exposed to TNF following metallothionein (MT) upregulation. Iron-binding MT does not normally occur in HTC cells in significant amounts. Intracellular iron chelation attenuates TNF and cycloheximide (CHX)-induced LMP and cell death, demonstrating the critical role of this transition metal in mediating cytokine lethality. MT upregulation, combined with starvation-activated MT autophagy almost completely suppresses TNF and CHX toxicity, while impairment of both autophagy and MT upregulation by silencing of Atg7, and Mt1a and/or Mt2a, respectively, abrogates protection. Interestingly, MT upregulation by itself has little effect, while stimulated autophagy alone depresses cytokine toxicity to some degree. These results provide evidence that intralysosomal iron-catalyzed redox reactions play a key role in TNF and CHX-induced LMP and toxicity. The finding that chelation of intralysosomal iron achieved by autophagic delivery of MT, and to some degree probably of other iron-binding proteins as well, into the lysosomal compartment is highly protective provides a putative mechanism to explain autophagy-related suppression of death by TNF and CHX.

  16. Detection of early stage atherosclerotic plaques using PET and CT fusion imaging targeting P-selectin in low density lipoprotein receptor-deficient mice

    SciTech Connect

    Nakamura, Ikuko; Hasegawa, Koki; Wada, Yasuhiro; Hirase, Tetsuaki; Node, Koichi; Watanabe, Yasuyoshi

    2013-03-29

    Highlights: ► P-selectin regulates leukocyte recruitment as an early stage event of atherogenesis. ► We developed an antibody-based molecular imaging probe targeting P-selectin for PET. ► This is the first report on successful PET imaging for delineation of P-selectin. ► P-selectin is a candidate target for atherosclerotic plaque imaging by clinical PET. -- Abstract: Background: Sensitive detection and qualitative analysis of atherosclerotic plaques are in high demand in cardiovascular clinical settings. The leukocyte–endothelial interaction mediated by an adhesion molecule P-selectin participates in arterial wall inflammation and atherosclerosis. Methods and results: A {sup 64}Cu-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid conjugated anti-P-selectin monoclonal antibody ({sup 64}Cu-DOTA-anti-P-selectin mAb) probe was prepared by conjugating an anti-P-selectin monoclonal antibody with DOTA followed by {sup 64}Cu labeling. Thirty-six hours prior to PET and CT fusion imaging, 3 MBq of {sup 64}Cu-DOTA-anti-P-selectin mAb was intravenously injected into low density lipoprotein receptor-deficient Ldlr-/- mice. After a 180 min PET scan, autoradiography and biodistribution of {sup 64}Cu-DOTA-anti-P-selectin monoclonal antibody was examined using excised aortas. In Ldlr-/- mice fed with a high cholesterol diet for promotion of atherosclerotic plaque development, PET and CT fusion imaging revealed selective and prominent accumulation of the probe in the aortic root. Autoradiography of aortas that demonstrated probe uptake into atherosclerotic plaques was confirmed by Oil red O staining for lipid droplets. In Ldlr-/- mice fed with a chow diet to develop mild atherosclerotic plaques, probe accumulation was barely detectable in the aortic root on PET and CT fusion imaging. Probe biodistribution in aortas was 6.6-fold higher in Ldlr-/- mice fed with a high cholesterol diet than in those fed with a normal chow diet. {sup 64}Cu-DOTA-anti-P-selectin m

  17. AT1a receptor signaling is required for basal and water deprivation-induced urine concentration in AT1a receptor-deficient mice

    PubMed Central

    Li, Xiao C.; Shao, Yuan

    2012-01-01

    It is well recognized that ANG II interacts with arginine vasopressin (AVP) to regulate water reabsorption and urine concentration in the kidney. The present study used ANG II type 1a (AT1a) receptor-deficient (Agtr1a−/−) mice to test the hypothesis that AT1a receptor signaling is required for basal and water deprivation-induced urine concentration in the renal medulla. Eight groups of wild-type (WT) and Agtr1a−/− mice were treated with or without 24-h water deprivation and 1-desamino-8-d-AVP (DDAVP; 100 ng/h ip) for 2 wk or with losartan (10 mg/kg ip) during water deprivation. Under basal conditions, Agtr1a−/− mice had lower systolic blood pressure (P < 0.01), greater than threefold higher 24-h urine excretion (WT mice: 1.3 ± 0.1 ml vs. Agtr1a−/− mice: 5.9 ± 0.7 ml, P < 0.01), and markedly decreased urine osmolality (WT mice: 1,834 ± 86 mosM/kg vs. Agtr1a−/− mice: 843 ± 170 mosM/kg, P < 0.01), without significant changes in 24-h urinary Na+ excretion. These responses in Agtr1a−/− mice were associated with lower basal plasma AVP (WT mice: 105 ± 8 pg/ml vs. Agtr1a−/− mice: 67 ± 6 pg/ml, P < 0.01) and decreases in total lysate and membrane aquaporin-2 (AQP2; 48.6 ± 7% of WT mice, P < 0.001) and adenylyl cyclase isoform III (55.6 ± 8% of WT mice, P < 0.01) proteins. Although 24-h water deprivation increased plasma AVP to the same levels in both strains, 24-h urine excretion was still higher, whereas urine osmolality remained lower, in Agtr1a−/− mice (P < 0.01). Water deprivation increased total lysate AQP2 proteins in the inner medulla but had no effect on adenylyl cyclase III, phosphorylated MAPK ERK1/2, and membrane AQP2 proteins in Agtr1a−/− mice. Furthermore, infusion of DDAVP for 2 wk was unable to correct the urine-concentrating defects in Agtr1a−/− mice. These results demonstrate that AT1a receptor-mediated ANG II signaling is required to maintain tonic AVP release and regulate V2 receptor-mediated responses to

  18. Overexpression of c-Jun contributes to sorafenib resistance in human hepatoma cell lines

    PubMed Central

    Haga, Yuki; Nakamura, Masato; Nakamoto, Shingo; Sasaki, Reina; Takahashi, Koji; Wu, Shuang; Yokosuka, Osamu

    2017-01-01

    Background Despite recent advances in treatment strategies, it is still difficult to cure patients with hepatocellular carcinoma (HCC). Sorafenib is the only approved multiple kinase inhibitor for systemic chemotherapy in patients with advanced HCC. The majority of advanced HCC patients are resistant to sorafenib. The mechanisms of sorafenib resistance are still unknown. Methods The expression of molecules involved in the mitogen-activated protein kinase (MAPK) signaling pathway in human hepatoma cell lines was examined in the presence or absence of sorafenib. Apoptosis of human hepatoma cells treated with sorafenib was investigated, and the expression of Jun proto-oncogene (c-Jun) was measured. Results The expression and phosphorylation of c-Jun were enhanced in human hepatoma cell lines after treatment with sorafenib. Inhibiting c-Jun enhanced sorafenib-induced apoptosis. The overexpression of c-Jun impaired sorafenib-induced apoptosis. The expression of osteopontin, one of the established AP-1 target genes, was enhanced after treatment with sorafenib in human hepatoma cell lines. Conclusions The protein c-Jun plays a role in sorafenib resistance in human hepatoma cell lines. The modulation and phosphorylation of c-Jun could be a new therapeutic option for enhancing responsiveness to sorafenib. Modulating c-Jun may be useful for certain HCC patients with sorafenib resistance. PMID:28323861

  19. Magnetic nanoparticles for targeted therapeutic gene delivery and magnetic-inducing heating on hepatoma

    NASA Astrophysics Data System (ADS)

    Yuan, Chenyan; An, Yanli; Zhang, Jia; Li, Hongbo; Zhang, Hao; Wang, Ling; Zhang, Dongsheng

    2014-08-01

    Gene therapy holds great promise for treating cancers, but their clinical applications are being hampered due to uncontrolled gene delivery and expression. To develop a targeted, safe and efficient tumor therapy system, we constructed a tissue-specific suicide gene delivery system by using magnetic nanoparticles (MNPs) as carriers for the combination of gene therapy and hyperthermia on hepatoma. The suicide gene was hepatoma-targeted and hypoxia-enhanced, and the MNPs possessed the ability to elevate temperature to the effective range for tumor hyperthermia as imposed on an alternating magnetic field (AMF). The tumoricidal effects of targeted gene therapy associated with hyperthermia were evaluated in vitro and in vivo. The experiment demonstrated that hyperthermia combined with a targeted gene therapy system proffer an effective tool for tumor therapy with high selectivity and the synergistic effect of hepatoma suppression.

  20. Hepatoma targeting peptide conjugated bio-reducible polymer complexed with oncolytic adenovirus for cancer gene therapy.

    PubMed

    Choi, Joung-Woo; Kim, Hyun Ah; Nam, Kihoon; Na, Youjin; Yun, Chae-Ok; Kim, SungWan

    2015-12-28

    Despite adenovirus (Ad) vector's numerous advantages for cancer gene therapy, such as high ability of endosomal escape, efficient nuclear entry mechanism, and high transduction, and therapeutic efficacy, tumor specific targeting and antiviral immune response still remain as a critical challenge in clinical setting. To overcome these obstacles and achieve cancer-specific targeting, we constructed tumor targeting bioreducible polymer, an arginine grafted bio-reducible polymer (ABP)-PEG-HCBP1, by conjugating PEGylated ABP with HCBP1 peptides which has high affinity and selectivity towards hepatoma. The ABP-PEG-HCBP1-conjugated replication incompetent GFP-expressing ad, (Ad/GFP)-ABP-PEG-HCBP1, showed a hepatoma cancer specific uptake and transduction compared to either naked Ad/GFP or Ad/GFP-ABP. Competition assays demonstrated that Ad/GFP-ABP-PEG-HCBP1-mediated transduction was specifically inhibited by HCBP1 peptide rather than coxsackie and adenovirus receptor specific antibody. In addition, ABP-PEG-HCBP1 can protect biological activity of Ad against serum, and considerably reduced both innate and adaptive immune response against Ad. shMet-expressing oncolytic Ad (oAd; RdB/shMet) complexed with ABP-PEG-HCBP1 delivered oAd efficiently into hepatoma cancer cells. The oAd/ABP-PEG-HCBP1 demonstrated enhanced cancer cell killing efficacy in comparison to oAd/ABP complex. Furthermore, Huh7 and HT1080 cancer cells treated with oAd/shMet-ABP-PEG-HCBP1 complex had significantly decreased Met and VEGF expression in hepatoma cancer, but not in non-hepatoma cancer. In sum, these results suggest that HCBP1-conjugated bioreducible polymer could be used to deliver oncolytic Ad safely and efficiently to treat hepatoma.

  1. The Triad of Lichen Planus, Thymoma and Liver Cirrhosis-Hepatoma. First Reported Case

    PubMed Central

    Hassan, J. A.; Saadiah, S; Roslina, A M; Atan, M; Masir, Noraidah; Hussein, S; Ganesapillai, T

    2000-01-01

    We describe a patient with liver cirrhosis who presented with erosive oral and cutaneous lichen planus (LP) and incidentally was found simultaneously to have thymoma and hepatoma. We support the notion forwarded earlier that LP and chronic liver disease is more than a mere coincidence and that there is a non-coincidental association between LP and thymoma. We believe this is also the first reported case in the English Literature of coexistence of the three condition LP, thymoma and hepatoma complicating liver disease. PMID:22977389

  2. [Regularity of drugs compatibility of anti-hepatoma traditional Chinese medicine ancient prescriptions and risk evaluation of anti-hepatoma new drug research and development].

    PubMed

    Zhang, Jing; Li, Hong-Fa; Fan, Wei; Liu, Zhen; Man, Shu-Li; Si, Shu-Yong; Gao, Wen-Yuan

    2014-10-01

    Traditional Chinese ancient prescriptions have been used for treatment of liver cancer for a long history and the scientific and rational compatibility is a great wealth for modern research and development (R&D) of new drugs. The research and development of new drugs are often accompanied with a large investment, a long cycle and a high risk, especially for the anti-tumor drugs R&D which are facing more risks and lower successful rate. In this research, the regularity of compatibility of drugs was analyzed from 124 anti-hepatoma ancient prescriptions by computer program. The results can offer help to the R&D of anti-hepatoma new drugs and reduce the risk of drug screening. In addition, we surveyed 22 companies in this field from six provinces such as Beijing, Shanghai, Tianjin and so on and obtained 240 risk assessment questionaires. Then we used qualitative analysis method to interpret the greatest impacts for the risks in the process of R&D, production and sales of anti-hepatoma new drugs. The study provides a basis for anti-liver cancer drugs R&D researchers, who can take effective measures to reduce the R&D risks and improve successful rate.

  3. Biological response of hepatomas to an extract of Fagopyrum esculentum M. (buckwheat) is not mediated by inositols or rutin.

    PubMed

    Curran, Julianne M; Stringer, Danielle M; Wright, Brenda; Taylor, Carla G; Przybylski, Roman; Zahradka, Peter

    2010-03-10

    Buckwheat contains d-chiro-inositol (D-CI) and myo-inositol (MI), possible insulin-mimetic compounds; thus, this study investigated the insulin-mimetic activities of a buckwheat concentrate (BWC), D-CI, and MI on insulin signal transduction pathways and glucose uptake with H4IIE rat hepatoma cells. BWC stimulated phosphorylation of p42/44 extracellular-related kinase (p42/44 ERK) and its downstream target, p70(S6K), on Thr(421). In contrast, D-CI, MI, rutin, or its agylcone form, quercetin, did not activate these signal transduction proteins. Phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK), another target of insulin, was also up-regulated upon BWC treatment. The effects of BWC on glucose uptake were subsequently investigated using H4IIE cells. Insulin and D-CI stimulated glucose uptake, whereas BWC inhibited basal and insulin-stimulated glucose uptake. Although results from this work suggest that BWC has insulin-mimetic effects on select protein phosphorylation events in H4IIE cells, D-CI and MI were not the active components responsible for the observed effects. The inhibition of glucose uptake by BWC suggests that buckwheat may affect hepatic glucose metabolism, possibly by inhibiting glucose flux. Furthermore, the fact that D-CI and MI stimulated glucose uptake in H4IIE cells suggests that other compounds are responsible for inhibition of glucose uptake by BWC.

  4. Anti-hepatoma activities of ethyl acetate extract from Ampelopsis sinica root.

    PubMed

    Wang, Jia-Zhi; Huang, Bi-Sheng; Cao, Yan; Chen, Ke-Li; Li, Juan

    2017-03-13

    Ampelopsis sinica root (ASR) is a known hepatoprotective folk traditional Chinese medicine. The anti‑hepatoma activity of ethyl acetate extract from A. sinica root (ASRE) in vitro and in vivo and its possible mechanism were explored. This study was designed to investigate cytotoxicity by MTT assay, induction of apoptosis via Hoechst 33258 staining, scanning electron microscopy and bivariate flow cytometric analysis (Annexin V-FITC/PI), inflammation and apoptosis related genes expression by RT-PCR and p53 protein expression by immunofluorescence assay in HepG2 cells. Then, the antitumor activity in vivo was detected by hepatoma H22 xenograft tumor in mice. The results showed that ASRE had powerful anti‑hepatoma activity in vitro without obvious toxicity on normal cells and could induce HepG2 cell apoptosis. The mechanism may be associated with downregulation of inflammatory cytokines including cyclooxygenase-2, 5-lipoxygenase and FLAP, increase of the ratio of bax/bcl-2, activation caspase-3 and inhibition of survivin, and increased expression of p53 protein. Furthermore, the HPLC assay showed the main compounds of ASRE were gallic acid, catechin and gallic acid ethyl ester. In animal experiments, ASR ethanol extract decreased the tumor weights of hepatoma H22 tumor-bearing mice. Therefore, ASR may be a potential therapeutic agent in the treatment of hepatocellular carcinoma.

  5. Decreased Mitochondrial OGG1 Expression is Linked to Mitochondrial Defects and Delayed Hepatoma Cell Growth

    PubMed Central

    Lee, Young-Kyoung; Youn, Hwang-Guem; Wang, Hee-Jung; Yoon, Gyesoon

    2013-01-01

    Many solid tumor cells exhibit mitochondrial respiratory impairment; however, the mechanisms of such impairment in cancer development remain unclear. Here, we demonstrate that SNU human hepatoma cells with declined mitochondrial respiratory activity showed decreased expression of mitochondrial 8-oxoguanine DNA glycosylase/lyase (mtOGG1), a mitochondrial DNA repair enzyme; similar results were obtained with human hepatocellular carcinoma tissues. Among several OGG1-2 variants with a mitochondrial- targeting sequence (OGG1-2a, -2b, -2c, -2d, and -2e), OGG1-2a was the major mitochondrial isoform in all examined hepatoma cells. Interestingly, hepatoma cells with low mtOGG1 levels showed delayed cell growth and increased intracellular reactive oxygen species (ROS) levels. Knockdown of OGG1-2 isoforms in Chang-L cells, which have active mitochondrial respiration with high mtOGG1 levels, significantly decreased cellular respiration and cell growth, and increased intracellular ROS. Overexpression of OGG1-2a in SNU423 cells, which have low mtOGG1 levels, effectively recovered cellular respiration and cell growth activities, and decreased intracellular ROS. Taken together, our results suggest that mtOGG1 plays an important role in maintaining mitochondrial respiration, thereby contributing to cell growth of hepatoma cells. PMID:23677377

  6. Andrographolide inhibits hepatoma cells growth and affects the expression of cell cycle related proteins.

    PubMed

    Shen, Kai-Kai; Liu, Tian-Yu; Xu, Chong; Ji, Li-Li; Wang, Zheng-Tao

    2009-09-01

    The present study is aimed to investigate the toxic effects of andrographolide (Andro) on hepatoma cells and elucidate its preliminary mechanisms. After cells were treated with different concentrations of Andro (0-50 micromol x L(-1)) for 24 h, cell viability was evaluated with 3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyltetrazolium bromide (MTT) assay. Furthermore, after hepatoma cells (Hep3B and HepG2) were treated with different concentrations of Andro (0-30 micromol x L(-1)) for 14 d, the number of colony formation was accounted under microscope. Cell cycle related proteins such as Cdc-2, phosphorylated-Cdc-2, Cyclin B and Cyclin D1 were detected with Western blotting assay and the cell cycle was analyzed by flow cytometry using propidium iodide staining. MTT results showed that Andro induced growth inhibition of hepatoma cells in a concentration-dependent manner but had no significant effects on human normal liver L-02 cells. Andro dramatically decreased the colony formation of hepatoma cells in the concentration-dependent manner. Moreover, Andro induced a decrease of Hep3B cells at the G0-G1 phase and a concomitant accumulation of cells at G2-M phase. At the molecular level, Western blotting results showed that Andro decreased the expression of Cdc-2, phosphorylated-Cdc-2, Cyclin D1 and Cyclin B proteins in a time-dependent manner, which are all cell cycle related proteins. Taken together, the results demonstrated that Andro specifically inhibited the growth of hepatoma cells and cellular cell cycle related proteins were possibly involved in this process.

  7. A Long Noncoding RNA Perturbs the Circadian Rhythm of Hepatoma Cells to Facilitate Hepatocarcinogenesis12

    PubMed Central

    Cui, Ming; Zheng, Minying; Sun, Baodi; Wang, Yue; Ye, Lihong; Zhang, Xiaodong

    2015-01-01

    Clock circadian regulator (CLOCK)/brain and muscle arnt-like protein-1 (BMAL1) complex governs the regulation of circadian rhythm through triggering periodic alterations of gene expression. However, the underlying mechanism of circadian clock disruption in hepatocellular carcinoma (HCC) remains unclear. Here, we report that a long noncoding RNA (lncRNA), highly upregulated in liver cancer (HULC), contributes to the perturbations in circadian rhythm of hepatoma cells. Our observations showed that HULC was able to heighten the expression levels of CLOCK and its downstream circadian oscillators, such as period circadian clock 1 and cryptochrome circadian clock 1, in hepatoma cells. Strikingly, HULC altered the expression pattern and prolonged the periodic expression of CLOCK in hepatoma cells. Mechanistically, the complementary base pairing between HULC and the 5' untranslated region of CLOCK mRNA underlay the HULC-modulated expression of CLOCK, and the mutants in the complementary region failed to achieve the event. Moreover, immunohistochemistry staining and quantitative real-time polymerase chain reaction validated that the levels of CLOCK were elevated in HCC tissues, and the expression levels of HULC were positively associated with those of CLOCK in clinical HCC samples. In functional experiments, our data exhibited that CLOCK was implicated in the HULC-accelerated proliferation of hepatoma cells in vitro and in vivo. Taken together, our data show that an lncRNA, HULC, is responsible for the perturbations in circadian rhythm through upregulating circadian oscillator CLOCK in hepatoma cells, resulting in the promotion of hepatocarcinogenesis. Thus, our finding provides new insights into the mechanism by which lncRNA accelerates hepatocarcinogenesis through disturbing circadian rhythm of HCC. PMID:25622901

  8. Baicalein inhibits the migration and invasive properties of human hepatoma cells

    SciTech Connect

    Chiu, Yung-Wei; Lin, Tseng-Hsi; Huang, Wen-Shih; Teng, Chun-Yuh; Liou, Yi-Sheng; Kuo, Wu-Hsien; Lin, Wea-Lung; Huang, Hai-I; Tung, Jai-Nien; Huang, Chih-Yang; Liu, Jer-Yuh; Wang, Wen-Hung; Hwang, Jin-Ming

    2011-09-15

    Flavonoids have been demonstrated to exert health benefits in humans. We investigated whether the flavonoid baicalein would inhibit the adhesion, migration, invasion, and growth of human hepatoma cell lines, and we also investigated its mechanism of action. The separate effects of baicalein and baicalin on the viability of HA22T/VGH and SK-Hep1 cells were investigated for 24 h. To evaluate their invasive properties, cells were incubated on matrigel-coated transwell membranes in the presence or absence of baicalein. We examined the effect of baicalein on the adhesion of cells, on the activation of matrix metalloproteinases (MMPs), protein kinase C (PKC), and p38 mitogen-activated protein kinase (MAPK), and on tumor growth in vivo. We observed that baicalein suppresses hepatoma cell growth by 55%, baicalein-treated cells showed lower levels of migration than untreated cells, and cell invasion was significantly reduced to 28%. Incubation of hepatoma cells with baicalein also significantly inhibited cell adhesion to matrigel, collagen I, and gelatin-coated substrate. Baicalein also decreased the gelatinolytic activities of the matrix metalloproteinases MMP-2, MMP-9, and uPA, decreased p50 and p65 nuclear translocation, and decreased phosphorylated I-kappa-B (IKB)-{beta}. In addition, baicalein reduced the phosphorylation levels of PKC{alpha} and p38 proteins, which regulate invasion in poorly differentiated hepatoma cells. Finally, when SK-Hep1 cells were grown as xenografts in nude mice, intraperitoneal (i.p.) injection of baicalein induced a significant dose-dependent decrease in tumor growth. These results demonstrate the anticancer properties of baicalein, which include the inhibition of adhesion, invasion, migration, and proliferation of human hepatoma cells in vivo. - Highlight: > Baicalein inhibits several essential steps in the onset of metastasis.

  9. A long noncoding RNA perturbs the circadian rhythm of hepatoma cells to facilitate hepatocarcinogenesis.

    PubMed

    Cui, Ming; Zheng, Minying; Sun, Baodi; Wang, Yue; Ye, Lihong; Zhang, Xiaodong

    2015-01-01

    Clock circadian regulator (CLOCK)/brain and muscle arnt-like protein-1 (BMAL1) complex governs the regulation of circadian rhythm through triggering periodic alterations of gene expression. However, the underlying mechanism of circadian clock disruption in hepatocellular carcinoma (HCC) remains unclear. Here, we report that a long noncoding RNA (lncRNA), highly upregulated in liver cancer (HULC), contributes to the perturbations in circadian rhythm of hepatoma cells. Our observations showed that HULC was able to heighten the expression levels of CLOCK and its downstream circadian oscillators, such as period circadian clock 1 and cryptochrome circadian clock 1, in hepatoma cells. Strikingly, HULC altered the expression pattern and prolonged the periodic expression of CLOCK in hepatoma cells. Mechanistically, the complementary base pairing between HULC and the 5' untranslated region of CLOCK mRNA underlay the HULC-modulated expression of CLOCK, and the mutants in the complementary region failed to achieve the event. Moreover, immunohistochemistry staining and quantitative real-time polymerase chain reaction validated that the levels of CLOCK were elevated in HCC tissues, and the expression levels of HULC were positively associated with those of CLOCK in clinical HCC samples. In functional experiments, our data exhibited that CLOCK was implicated in the HULC-accelerated proliferation of hepatoma cells in vitro and in vivo. Taken together, our data show that an lncRNA, HULC, is responsible for the perturbations in circadian rhythm through upregulating circadian oscillator CLOCK in hepatoma cells, resulting in the promotion of hepatocarcinogenesis. Thus, our finding provides new insights into the mechanism by which lncRNA accelerates hepatocarcinogenesis through disturbing circadian rhythm of HCC.

  10. Characterization of rat c-myc and adjacent regions.

    PubMed Central

    Hayashi, K; Makino, R; Kawamura, H; Arisawa, A; Yoneda, K

    1987-01-01

    Rat genomic regions covering c-myc were cloned from the DNA of both normal liver and two lines of Morris hepatomas, one of which had c-myc amplification. The three restriction maps showed perfect agreement within the overlapping regions. The 7 kb regions, which included the entire normal rat c-myc and the region 2.2 kb upstream, and one from the hepatomas, were sequenced and found to be identical. The coding regions of exons 2 and 3 were highly conserved between rat, mouse and man, but some differences in amino acids were noted. Exon 1 and the non-coding region of exon 3 showed limited homology between the three species. Rat exon 1 contained several nonsense codons in each frame and no ATG codon, indicating there to be no coding capacity in this exon. The 2.2 kb upstream regions and the introns compared showed unusual conservation between the rat and human genes. Some motifs, previously proposed as having a functional role in human c-myc, were also found in equivalent positions of the rat sequence. Nucleas S1 protection mapping revealed the second promoter to be preferentially used in most tissues or in hepatoma cells, and the second poly A addition signal to be the only one functional in all the RNA sources examined. Images PMID:3306601

  11. Merocyanine 540 and Photofrin II as photosensitizers for in vitro killing of duck hepatitis B virus and human hepatoma cells

    NASA Astrophysics Data System (ADS)

    Lin, Tsung-I.; Shien, Yong-Shau; Kao, Ming-Chien

    1994-03-01

    The feasibility of using merocyanine 540 (MC 540) and Photofrin II (PII) as effective photodynamic therapeutic (PDT) agents for killing hepatoma cells and duck hepatitis B virus (DHBV) in vitro was investigated. Cultured duck hepatocytes infected with DHBV and hepatoma cells, Hep 3B and HCC 36, were used as models. MC 540 and PII effectively inhibits the DHBV growth by 90 - 99% in a dose- and light-dependent manner. Photodynamic killing of MC 540 in the two hepatoma cell lines results in 94 - 99% growth inhibition. However, both photosensitizers exhibit dark cytotoxicity (37 - 56%). The present results suggest that MC 540 and PII could be promising and effective photodynamic agents for killing HBV and hepatoma cells.

  12. Sorafenib suppresses growth and survival of hepatoma cells by accelerating degradation of enhancer of zeste homolog 2.

    PubMed

    Wang, Shanshan; Zhu, Yu; He, Hongyong; Liu, Jing; Xu, Le; Zhang, Heng; Liu, Haiou; Liu, Weisi; Liu, Yidong; Pan, Deng; Chen, Lin; Wu, Qian; Xu, Jiejie; Gu, Jianxin

    2013-06-01

    Enhancer of zeste homolog 2 (EZH2) is a mammalian histone methyltransferase that contributes to the epigenetic silencing of target genes that regulate cancer cell growth and survival. It is overexpressed in hepatocellular carcinoma (HCC) with a clinical significance that remains obscure. Sorafenib, a multikinase inhibitor, has been used as a first-line therapeutic drug and shown clinical efficiency for advanced-stage HCC patients. In the present study, we found that sorafenib lowered the protein level of EZH2 through accelerating proteasome-mediated EZH2 degradation in hepatoma cells. Overexpression of EZH2 reversed sorafenib-induced cell growth arrest, cell cycle arrest, and cell apoptosis dependent on histone methyltransferase activity in hepatoma cells. More importantly, shRNA-mediated EZH2 knockdown or EZH2 inhibition with 3-deazaneplanocin A treatment promoted sorafenib-induced hepatoma cell growth arrest and apoptosis. Sorafenib altered the hepatoma epigenome by reducing EZH2 and H3K27 trimethylation. These results revealed a novel therapeutic mechanism underlying sorafenib treatment in suppressing hepatoma growth and survival by accelerating EZH2 degradation. Genetic deletion or pharmacological ablation of EZH2 made hepatoma cells more sensitive to sorafenib, which helps provide a strong framework for exploring innovative combined therapies for advanced-stage HCC patients.

  13. Herbal compound “Songyou Yin” attenuates hepatoma cell invasiveness and metastasis through downregulation of cytokines secreted by activated hepatic stellate cells

    PubMed Central

    2013-01-01

    Background Activated hepatic stellate cells (aHSCs) play an important role in the progression of hepatocellular carcinoma (HCC). Here, we determined if cytokines secreted in response to the herbal compound “Songyou Yin” (SYY) treatment of aHSCs could influence invasiveness and metastatic capabilities of hepatoma cells. Methods Primary rat hepatic stellate cells (HSCs) were isolated, activated, divided into SYY treated and untreated (nSYY) groups, and conditioned media (CM-SYY and CM-nSYY, respectively) were collected. The hepatoma cell line, McA-RH7777 was cultured for 4 weeks with SYY, CM-SYY, and CM-nSYY, designated McA-SYY, McA-SYYCM and McA-nSYYCM. The invasiveness and metastatic capabilities were evaluated using Matrigel invasion assay in vitro and pulmonary metastasis in vivo. Matrix metalloproteinase-2 (MMP-2), MMP-9, E-cadherin, N-cadherin, and vimentin protein levels in McA-SYYCM and McA-nSYYCM were evaluated by Western blot. Cytokine levels in conditioned media were tested using enzyme-linked immunosorbent assay (ELISA). Results Matrigel invasion assay indicated that the number of McA-SYYCM cells passing through the basement membrane was less than in McA-nSYYCM cells (P < 0.01). Similar results were also observed in vivo for lung metastasis. McA-SYYCM cells showed less pulmonary metastasis capabilities than McA-nSYYCM cells (P < 0.001). The reduced expression of MMP-2 and reversed epithelial to mesenchymal transition with E-cadherin upregulation, and N-cadherin and vimentin downregulation were also found in McA-SYYCM compared to McA-nSYYCM. Metastasis-promoting cytokines hepatocyte growth factor, interleukin-6, transforming growth factor-β1, and vascular endothelial growth factor were markedly decreased in CM-SYY compared to CM-nSYY. Conclusions SYY attenuates hepatoma cell invasiveness and metastasis capabilities through downregulating cytokines secreted by activated hepatic stellate cells. PMID:23622143

  14. Astaxanthin Inhibits Proliferation and Induces Apoptosis and Cell Cycle Arrest of Mice H22 Hepatoma Cells

    PubMed Central

    Shao, Yiye; Ni, Yanbo; Yang, Jing; Lin, Xutao; Li, Jun; Zhang, Lixia

    2016-01-01

    Background It is widely recognized that astaxanthin (ASX), a member of the carotenoid family, has strong biological activities including antioxidant, anti-inflammation, and immune-modulation activities. Previous studies have confirmed that ASX can effectively inhibit hepatoma cells in vitro. Material/Methods MTT was used to assay proliferation of mice H22 cells, and flow cytometry was used to determine apoptosis and cell cycle arrest of H22 cells in vitro and in vivo. Moreover, anti-tumor activity of ASX was observed in mice. Results ASX inhibited the proliferation of H22 cells, promoted cell necrosis, and induced cell cycle arrest in G2 phase in vitro and in vivo. Conclusions This study indicated that ASX can inhibit proliferation and induce apoptosis and cell cycle arrest in mice H22 hepatoma cells in vitro and in vivo. PMID:27333866

  15. The combinational effect of vincristine and berberine on growth inhibition and apoptosis induction in hepatoma cells.

    PubMed

    Wang, Ling; Wei, Dandan; Han, Xiaojuan; Zhang, Wei; Fan, Chengzhong; Zhang, Jie; Mo, Chunfen; Yang, Ming; Li, Junhong; Wang, Zhe; Zhou, Qin; Xiao, Hengyi

    2014-04-01

    The use of vincristine, a known antitumor agent, in hepatoma therapy is limited particularly because of its toxic effect. Meanwhile, berberine has drawn increasing attention to its antineoplastic effect in recent years. In view of the advantages of combinational drug treatment reported in anti-cancer chemotherapy, we evaluated the effects of co-treatment of vincristine and berberine on hepatic carcinoma cell lines in this study. We find that combinational usage of these two drugs can significantly induce cell growth inhibition and apoptosis even under a concentration of vincristine barely showing cytotoxicity in the same cells when used alone. The underlying mechanism about this combinational effect was addressed in this study by monitoring the signals related to mitochondrial function, apoptotic pathway and endoplasmic reticulum stress. Our results suggest a new value of berberine as a potential adjuvant agent in cancer chemotherapy and provide a hopeful approach for developing hepatoma therapy by utilizing the combinational effect of vincristine and berberine.

  16. PLC/PRF/5 (Alexander) hepatoma cell line: further characterization and studies of infectivity.

    PubMed Central

    Daemer, R J; Feinstone, S M; Alexander, J J; Tully, J G; London, W T; Wong, D C; Purcell, R H

    1980-01-01

    The Alexander hepatoma cell line, PLC/PRF/5, was studied for evidence of hepatitis B virus markers and alpha-fetoprotein. Only hepatitis B surface antigen and alpha-fetoprotein were detected. Induction experiments with 5-iodo-2'-deoxyuridine and inoculation of chimpanzees with whole cells or tissue culture fluid did not reveal evidence of synthesis of additional hepatitis B virus markers or of production of infectious virus. Images Fig. 1 Fig. 2 Fig. 3 PMID:6160110

  17. Cyclooxygenase-2 Is a Target of MicroRNA-16 in Human Hepatoma Cells

    PubMed Central

    Agra Andrieu, Noelia; Motiño, Omar; Mayoral, Rafael; Llorente Izquierdo, Cristina; Fernández-Alvarez, Ana; Boscá, Lisardo; Casado, Marta; Martín-Sanz, Paloma

    2012-01-01

    Cyclooxygenase-2 (COX-2) expression has been detected in human hepatoma cell lines and in human hepatocellular carcinoma (HCC); however, the contribution of COX-2 to the development of HCC remains controversial. COX-2 expression is higher in the non-tumoral tissue and inversely correlates with the differentiation grade of the tumor. COX-2 expression depends on the interplay between different cellular pathways involving both transcriptional and post-transcriptional regulation. The aim of this work was to assess whether COX-2 could be regulated by microRNAs in human hepatoma cell lines and in human HCC specimens since these molecules contribute to the regulation of genes implicated in cell growth and differentiation. Our results show that miR-16 silences COX-2 expression in hepatoma cells by two mechanisms: a) by binding directly to the microRNA response element (MRE) in the COX-2 3′-UTR promoting translational suppression of COX-2 mRNA; b) by decreasing the levels of the RNA-binding protein Human Antigen R (HuR). Furthermore, ectopic expression of miR-16 inhibits cell proliferation, promotes cell apoptosis and suppresses the ability of hepatoma cells to develop tumors in nude mice, partially through targeting COX-2. Moreover a reduced miR-16 expression tends to correlate to high levels of COX-2 protein in liver from patients affected by HCC. Our data show an important role for miR-16 as a post-transcriptional regulator of COX-2 in HCC and suggest the potential therapeutic application of miR-16 in those HCC with a high COX-2 expression. PMID:23226427

  18. Involvement of melatonin in autophagy-mediated mouse hepatoma H22 cell survival.

    PubMed

    Liu, Chang; Jia, Zhiling; Zhang, Xia; Hou, Jincai; Wang, Li; Hao, Shuling; Ruan, Xinjian; Yu, Zhonghe; Zheng, Yongqiu

    2012-02-01

    The role of autophagy in cancer is controversial. Melatonin has been linked to several aspects of cancer progression and also to regulation of autophagy. Whether melatonin is involved in an autophagy-induced tumor suppressor mechanism or a cyto-protective mechanism is unknown. Therefore, we investigated the effects of melatonin on autophagy and its upstream regulator. We found that melatonin triggers an autophagic process by enhancing Beclin 1 expression and inducing a conversion of microtubule-associated protein 1 light chain 3(LC3)-I to LC3-II, the protein associated with the autophagosome membrane, in hepatoma H22 tumor-bearing mice. Moreover, melatonin inhibits the phosphorylation of the mammalian target of the rapamycin (mTOR) and Akt. Knockdown of Beclin 1 by either RNA interference or co-treatment with the autophagy inhibitor, 3-methyladenine(3-MA), significantly enhanced the melatonin-induced apoptosis in mouse hepatoma H22 cells. Our data provides the first evidence that melatonin induces protective autophagy that prevents mouse hepatoma H22 cells from undergoing apoptosis. A combination of melatonin with an autophagy inhibitor might be a useful therapeutic strategy for hepatocellular carcinoma.

  19. Polyunsaturated Branched-Chain Fatty Acid Geranylgeranoic Acid Induces Unfolded Protein Response in Human Hepatoma Cells

    PubMed Central

    Iwao, Chieko; Shidoji, Yoshihiro

    2015-01-01

    The acyclic diterpenoid acid geranylgeranoic acid (GGA) has been reported to induce autophagic cell death in several human hepatoma-derived cell lines; however, the molecular mechanism for this remains unknown. In the present study, several diterpenoids were examined for ability to induce XBP1 splicing and/or lipotoxicity for human hepatoma cell lines. Here we show that three groups of diterpenoids emerged: 1) GGA, 2,3-dihydro GGA and 9-cis retinoic acid induce cell death and XBP1 splicing; 2) all-trans retinoic acid induces XBP1 splicing but little cell death; and 3) phytanic acid, phytenic acid and geranylgeraniol induce neither cell death nor XBP1 splicing. GGA-induced ER stress/ unfolded protein response (UPR) and its lipotoxicity were both blocked by co-treatment with oleic acid. The blocking activity of oleic acid for GGA-induced XBP1 splicing was not attenuated by methylation of oleic acid. These findings strongly suggest that GGA at micromolar concentrations induces the so-called lipid-induced ER stress response/UPR, which is oleate-suppressive, and shows its lipotoxicity in human hepatoma cells. PMID:26186544

  20. HAF, hepatoma aggregation factor produced by Streptomyces sp. strain No. A-6143.

    PubMed

    Suzuki, K; Nakano, N; Nagatomi, Y; Tominaga, H; Nakazono, N; Itai, M; Uyeda, M; Shibata, M

    1990-08-01

    We searched for a new cell aggregation factor for hepatoma AH109A cells, and found one we called HAF in the culture filtrate of Streptomyces sp. strain No. A-6143 isolated from a soil sample. HAF was purified by salting-out with ammonium sulfate. DEAE-cellulose column chromatography, gel filtration on Sephadex G-100, and hydroxylapatite column chromatography, HAF was glycoprotein which had a molecular weight of about 73,000. HAF was stable from pH 6 to 8 at 37 degrees C and up to 40 degrees C at pH 8.0 and the aggregation activity of HAF was maximum around pH 8 at 30 degrees C. The activity was not influenced by some saccharides, but it was inhibited by EDTA and EGTA: moreover HAF activity was restored by the addition of calcium ions. HAF aggregated hepatoma AH136B and COS-7 cells as well as hepatoma AH109A cells, but it was inert to other cancer cells and human erythrocytes. These properties proved that HAF is completely different from other aggregation factors for cancer cells so far reported.

  1. Intracellular glutathione regulates Andrographolide-induced cytotoxicity on hepatoma Hep3B cells.

    PubMed

    Ji, Lili; Shen, Kaikai; Liu, Jun; Chen, Ying; Liu, Tianyu; Wang, Zhengtao

    2009-01-01

    Andrographolide (ANDRO), a diterpenoid lactone isolated from the traditional herbal plant Andrographis paniculata, was reported to induce apoptosis in hepatoma Hep3B cells in our previous study (Ji LL, Liu TY, Liu J, Chen Y, Wang ZT. Andrographolide inhibits human hepatoma-derived Hep3B cells growth through the activation of c-Jun N-terminal kinase. Planta Med 2007; 73: 1397-1401). The present investigation was carried out to observe whether cellular reduced glutathione (GSH) plays important roles in ANDRO-induced apoptosis. ANDRO initially increased intracellular GSH levels which then decreased later, while inhibition of cellular GSH synthesis by L-Buthionine-(S,R)-sulfoximine (BSO) augmented ANDRO-induced cytotoxicity and apoptosis in Hep3B cells. On the other hand, the thiol antioxidant dithiothreitol (DTT) rescued ANDRO-depleted cellular GSH, and abrogated ANDRO-induced cytotoxicity and apoptosis. Furthermore, BSO pretreatment augmented ANDRO-decreased expression of antioxidant protein thioredoxin 1 (Trx1), while DTT reversed this decrease. Further results showed that ANDRO increased the activity of the GSH-related antioxidant enzyme glutathione peroxidase (GPx) and the production of intracellular reactive oxygen species (ROS). Taken together, this study demonstrates that the intracellular redox system plays important roles in regulating the cytotoxicity of ANDRO on hepatoma Hep3B cells.

  2. Hepatoma-Targeted Radionuclide Immune Albumin Nanospheres: 131I-antiAFPMcAb-GCV-BSA-NPs

    PubMed Central

    Lin, Mei; Huang, Junxing; Zhang, Dongsheng; Jiang, Xingmao; Zhang, Jia; Yu, Hong; Xiao, Yanhong; Shi, Yujuan; Guo, Ting

    2016-01-01

    An effective strategy has been developed for synthesis of radionuclide immune albumin nanospheres (131I-antiAFPMcAb-GCV-BSA-NPs). In vitro as well as in vivo targeting of 131I-antiAFPMcAb-GCV-BSA-NPs to AFP-positive hepatoma was examined. In cultured HepG2 cells, the uptake and retention rates of 131I-antiAFPMcAb-GCV-BSA-NPs were remarkably higher than those of 131I alone. As well, the uptake rate and retention ratios of 131I-antiAFPMcAb-GCV-BSA-NPs in AFP-positive HepG2 cells were also significantly higher than those in AFP-negative HEK293 cells. Compared to 131I alone, 131I-antiAFPMcAb-GCV-BSA-NPs were much more easily taken in and retained by hepatoma tissue, with a much higher T/NT. Due to good drug-loading, high encapsulation ratio, and highly selective affinity for AFP-positive tumors, the 131I-antiAFPMcAb-GCV-BSA-NPs are promising for further effective radiation-gene therapy of hepatoma. PMID:26981334

  3. Dual role of acetaminophen in promoting hepatoma cell apoptosis and kidney fibroblast proliferation

    PubMed Central

    YU, YUNG-LUEN; YIANG, GIOU-TENG; CHOU, PEI-LUN; TSENG, HSU-HUNG; WU, TSAI-KUN; HUNG, YU-TING; LIN, PEI-SHIUAN; LIN, SHU-YU; LIU, HSIAO-CHUN; CHANG, WEI-JUNG; WEI, CHYOU-WEI

    2014-01-01

    Acetaminophen (APAP), is a safe analgesic and antipyretic drug at therapeutic dose, and is widely used in the clinic. However, high doses of APAP can induce hepatotoxicity and nephrotoxicity. Most studies have focused on high-dose APAP-induced acute liver and kidney injury. So far, few studies have investigated the effects of the therapeutic dose (1/10 of the high dose) or of the low dose (1/100 of the high dose) of APAP on the cells. The aim of this study was to investigate the cellular effects of therapeutic- or low-dose APAP treatment on hepatoma cells and kidney fibroblasts. As expected, high-dose APAP treatment inhibited while therapeutic and low-dose treatment did not inhibit cell survival of kidney tubular epithelial cells. In addition, therapeutic-dose treatment induced an increase in the H2O2 level, activated the caspase-9/-3 cascade, and induced cell apoptosis of hepatoma cells. Notably, APAP promoted fibroblast proliferation, even at low doses. This study demonstrates that different cellular effects are exerted upon treatment with different APAP concentrations. Our results indicate that treatment with the therapeutic dose of APAP may exert an antitumor activity on hepatoma, while low-dose treatment may be harmful for patients with fibrosis, since it may cause proliferation of fibroblasts. PMID:24682227

  4. Specific growth stimulation by linoleic acid in hepatoma cell lines transfected with the target protein of a liver carcinogen.

    PubMed Central

    Keler, T; Barker, C S; Sorof, S

    1992-01-01

    The hepatic carcinogen N-2-fluorenylacetamide (2-acetylaminofluorene) was shown previously to interact specifically with its target protein, liver fatty acid binding protein (L-FABP), early during hepatocarcinogenesis in rats. In search of the significance of the interaction, rat L-FABP cDNA in the sense and antisense orientations was transfected into a subline of the rat hepatoma HTC cell line that did not express L-FABP. After the transfections, the basal doubling times of the cells were not significantly different. However, at 10(-5)-10(-7) M, linoleic acid, which is an essential fatty acid, a ligand of L-FABP, and the precursor of many eicosanoids and related lipids, stimulated the incorporation of [3H]thymidine in three randomly isolated and stably transfected cell clones that expressed L-FABP, but virtually did not stimulate the incorporation of [3H]thymidine in three L-FABP-nonexpressing clones transfected with the antisense DNA. Linoleic acid at 10(-6) M increased cell number almost 3-fold (38% vs. 14%; P less than 0.0001) and thymidine incorporation nearly 5-fold (23.2% vs. 4.9%; P less than 0.001) in the L-FABP-expressing cells compared to that in the transfected nonexpressing cells. L-FABP acted specifically and cooperatively with linoleic acid, inasmuch as all the proteins other than L-FABP in the transfected L-FABP nonexpressing cells and four other fatty acids (gamma-linolenic acid, dihomo-gamma-linolenic acid, arachidonic acid, and palmitoleic acid) were unable to effect a significant elevation or difference in the level of DNA synthesis that was attributable to the transfection. Metabolism of the linoleic acid to oxygenated derivatives was apparently necessary, since the cyclooxygenase inhibitor indomethacin partly inhibited and the antioxidant lipoxygenase inhibitors nordihydroguariaretic acid and alpha-tocopherol completely abolished the growth stimulation. The evidence supports the idea that L-FABP, the target protein of the liver carcinogen

  5. Tumor-targeted gene therapy using Adv-AFP-HRPC/IAA prodrug system suppresses growth of hepatoma xenografted in mice.

    PubMed

    Dai, M; Liu, J; Chen, D-E; Rao, Y; Tang, Z-J; Ho, W-Z; Dong, C-Y

    2012-02-01

    Clinical efficacy of current therapies for hepatocellular carcinoma (HCC) treatment is limited. Indole-3-acetic acid (IAA) is non-toxic for mammalian cells. Oxidative decarboxylation of IAA by horseradish peroxidase (HRP) leads to toxic effects of IAA. The purpose of this study was to investigate the effects of a novel gene-targeted enzyme prodrug therapy with IAA on hepatoma growth in vitro and in vivo mouse hepatoma models. We generated a plasmid using adenovirus to express HRP isoenzyme C (HRPC) with the HCC marker, alpha-fetoprotein (AFP), as the promoter (pAdv-AFP-HRPC). Hepatocellular cells were infected with pAdv-AFP-HRPC and treated with IAA. Cell death was detected using MTT assay. Hepatoma xenografts were developed in mice by injection of mouse hepatoma cells. The size and weight of tumors and organs were evaluated. Cell death in tumors was assessed using hematoxylin and eosin-stained tissue sections. HRPC expression in tissues was detected using Reverse Transcriptase-Polymerase Chain Reaction. IAA stimulated death of hepatocellular cells infected with pAdv-AFP-HRPC, in a dose- and time-dependent manner, but not in control cells. Growth of hepatoma xenografts, including the size and weight, was inhibited in mice treated with pAdv-AFP-HRPC and IAA, compared with that in control group. pAdv-AFP-HRPC/IAA treatment induced cell death in hepatoma xenografts in mice. HRPC gene expressed only in hepatoma, but not in other normal organs of mice. pAdv-AFP-HRPC/IAA treatment did not cause any side effects on normal organs. These findings suggest that pAdv-AFP-HRPC/IAA enzyme/prodrug system may serve as a strategy for HCC therapy.

  6. Inhibition of insulin degradation by hepatoma cells after microinjection of monoclonal antibodies to a specific cytosolic protease.

    PubMed Central

    Shii, K; Roth, R A

    1986-01-01

    Four monoclonal antibodies were identified by their ability to bind to 125I-labeled insulin covalently linked to a cytosolic insulin-degrading enzyme from human erythrocytes. All four antibodies were also found to remove more than 90% of the insulin-degrading activity from erythrocyte extracts. These antibodies were shown to be directed to different sites on the enzyme by mapping studies and by their various properties. Two antibodies recognized the insulin-degrading enzyme from rat liver; one inhibited the erythrocyte enzyme directly; and two recognized the enzyme after gel electrophoresis and transfer to nitrocellulose filters. By this latter procedure and immunoprecipitation from metabolically labeled cells, the enzyme from a variety of tissues was shown to be composed of a single polypeptide chain of apparent Mr 110,000. Finally, these monoclonal antibodies were microinjected into the cytoplasm of a human hepatoma cell line to assess the contribution of this enzyme to insulin degradation in the intact cell. In five separate experiments, preloading of cells with these monoclonal antibodies resulted in an inhibition of insulin degradation of 18-54% (average 39%) and increased the amount of 125I-labeled insulin associated with the cells. In contrast, microinjection of control antibody or an extraneous monoclonal antibody had no effect on insulin degradation or on the amount of insulin associated with the cells. Moreover, the monoclonal antibodies to the insulin-degrading enzyme caused no significant inhibition of degradation of another molecule, low density lipoprotein. Thus, these results support a role for this enzyme in insulin degradation in the intact cell. Images PMID:2424018

  7. Chemotherapy by Intravenous Administration of Conjugates of Daunomycin with Monoclonal and Conventional Anti-Rat α -fetoprotein Antibodies

    NASA Astrophysics Data System (ADS)

    Tsukada, Yutaka; Hurwitz, Esther; Kashi, Rina; Sela, Michael; Hibi, Nozomu; Hara, Akihiko; Hirai, Hidematsu

    1982-12-01

    Monoclonal antibodies to rat α -fetoprotein (AFP) were produced by hybridization of mouse myeloma cells with spleen cells from mice immunized with rat AFP. The monoclonal antibodies as well as horse anti-rat AFP were coupled via a dextran bridge to daunomycin. Both types of conjugates were tested in vitro and in vivo for their anti-tumor activity. They were equally cytotoxic to rat AH66 hepatoma cell line in culture. Rats challenged with hepatoma cells were treated with the conjugates either by intraperitoneal or intravenous injections. Daunomycin conjugates with horse anti-AFP and monoclonal mouse anti-AFP were capable of delaying the tumor development more efficiently than the controls of antibodies or free drug, mixtures of drug with antibodies, and a conjugate of drug and normal immunoglobulin. The specific conjugates were considerably more effective when the treatments were given intravenously. The specific conjugates produced 60% long-term survival, whereas the controls delayed only slightly tumor development.

  8. Tumor Response and Apoptosis of N1-S1 Rodent Hepatomas in Response to Intra-arterial and Intravenous Benzamide Riboside

    SciTech Connect

    McLennan, Gordon Bennett, Stacy L.; Ju, Shenghong; Babsky, Andriy; Bansal, Navin; Shorten, Michelle L.; Levitin, Seth; Bonnac, Laurent; Panciewicz, Krystoff W.; Jayaram, Hiramagular N.

    2012-06-15

    Purpose: Benzamide riboside (BR) induces tumor apoptosis in multiple cell lines and animals. This pilot study compares apoptosis and tumor response in rat hepatomas treated with hepatic arterial BR (IA) or intravenous (IV) BR. Methods: A total of 10{sup 6} N1-S1 cells were placed in the left hepatic lobes of 15 Sprague-Dawley rats. After 2 weeks, BR (20 mg/kg) was infused IA (n = 5) or IV (n = 5). One animal in each group was excluded for technical factors, which prevented a full dose administration (1 IA and 1 IV). Five rats received saline (3 IA and 2 IV). Animals were killed after 3 weeks. Tumor volumes after IA and IV treatments were analyzed by Wilcoxon rank sum test. The percentage of tumor and normal liver apoptosis was counted by using 10 fields of TUNEL (terminal deoxynucleotidyl transferase dUTP nick-end labeling)-stained slides at 40 Multiplication-Sign magnification. The percentage of apoptosis was compared between IV and IA administrations and with saline sham-treated rats by the Wilcoxon rank sum test. Results: Tumors were smaller after IA treatment, but this did not reach statistical significance (0.14 IA vs. 0.57 IV; P = 0.138). There was much variability in percentage of apoptosis and no significant difference between IA and IV BR (44.49 vs. 1.52%; P = 0.18); IA BR and saline (44.49 vs. 33.83%; P = 0.66); or IV BR and saline (1.52 vs. 193%; P = 0.18). Conclusions: Although differences in tumor volumes did not reach statistical significance, there was a trend toward smaller tumors after IA BR than IV BR in this small pilot study. Comparisons of these treatment methods will require a larger sample size and repeat experimentation.

  9. Galactose-functionalized multi-responsive nanogels for hepatoma-targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Lou, Shaofeng; Gao, Shan; Wang, Weiwei; Zhang, Mingming; Zhang, Ju; Wang, Chun; Li, Chen; Kong, Deling; Zhao, Qiang

    2015-02-01

    We report here a hepatoma-targeting multi-responsive biodegradable crosslinked nanogel, poly(6-O-vinyladipoyl-d-galactose-ss-N-vinylcaprolactam-ss-methacrylic acid) P(ODGal-VCL-MAA), using a combination of enzymatic transesterification and emulsion copolymerization for intracellular drug delivery. The nanogel exhibited redox, pH and temperature-responsive properties, which can be adjusted by varying the monomer feeding ratio. Furthermore, the volume phase transition temperature (VPTT) of the nanogels was close to body temperature and can result in rapid thermal gelation at 37 °C. Scanning electron microscopy also revealed that the P(ODGal-VCL-MAA) nanogel showed uniform spherical monodispersion. With pyrene as a probe, the fluorescence excitation spectra demonstrated nanogel degradation in response to glutathione (GSH). X-ray diffraction (XRD) showed an amorphous property of DOX within the nanogel, which was used in this study as a model anti-cancer drug. Drug-releasing characteristics of the nanogel were examined in vitro. The results showed multi-responsiveness of DOX release by the variation of environmental pH values, temperature or the availability of GSH, a biological reductase. An in vitro cytotoxicity assay showed a higher anti-tumor activity of the galactose-functionalized DOX-loaded nanogels against human hepatoma HepG2 cells, which was, at least in part, due to specific binding between the galactose segments and the asialoglycoprotein receptors (ASGP-Rs) in hepatic cells. Confocal laser scanning microscopy (CLSM) and flow cytometric profiles further confirmed elevated cellular uptake of DOX by the galactose-functionalised nanogels. Thus, we report here a multi-responsive P(ODGal-VCL-MAA) nanogel with a hepatoma-specific targeting ability for anti-cancer drug delivery.We report here a hepatoma-targeting multi-responsive biodegradable crosslinked nanogel, poly(6-O-vinyladipoyl-d-galactose-ss-N-vinylcaprolactam-ss-methacrylic acid) P(ODGal-VCL-MAA), using

  10. Human serum activates CIDEB-mediated lipid droplet enlargement in hepatoma cells

    SciTech Connect

    Singaravelu, Ragunath; Lyn, Rodney K.; Srinivasan, Prashanth; Delcorde, Julie; Steenbergen, Rineke H.; Tyrrell, D. Lorne; Pezacki, John P.

    2013-11-15

    Highlights: •Human serum induced differentiation of hepatoma cells increases cellular lipid droplet (LD) size. •The observed increase in LD size correlates with increased PGC-1α and CIDEB expression. •Induction of CIDEB expression correlates with rescue of VLDL secretion and loss of ADRP. •siRNA knockdown of CIDEB impairs the human serum mediated increase in LD size. •This system represents a cost-efficient model to study CIDEB’s role in lipid biology. -- Abstract: Human hepatocytes constitutively express the lipid droplet (LD) associated protein cell death-inducing DFFA-like effector B (CIDEB). CIDEB mediates LD fusion, as well as very-low-density lipoprotein (VLDL) maturation. However, there are limited cell culture models readily available to study CIDEB’s role in these biological processes, as hepatoma cell lines express negligible levels of CIDEB. Recent work has highlighted the ability of human serum to differentiate hepatoma cells. Herein, we demonstrate that culturing Huh7.5 cells in media supplemented with human serum activates CIDEB expression. This activation occurs through the induced expression of PGC-1α, a positive transcriptional regulator of CIDEB. Coherent anti-Stokes Raman scattering (CARS) microscopy revealed a correlation between CIDEB levels and LD size in human serum treated Huh7.5 cells. Human serum treatment also resulted in a rapid decrease in the levels of adipose differentiation-related protein (ADRP). Furthermore, individual overexpression of CIDEB was sufficient to down-regulate ADRP protein levels. siRNA knockdown of CIDEB revealed that the human serum mediated increase in LD size was CIDEB-dependent. Overall, our work highlights CIDEB’s role in LD fusion, and presents a new model system to study the PGC-1α/CIDEB pathway’s role in LD dynamics and the VLDL pathway.

  11. Drug Transporter Expression and Activity in Human Hepatoma HuH-7 Cells

    PubMed Central

    Jouan, Elodie; Le Vée, Marc; Denizot, Claire; Parmentier, Yannick; Fardel, Olivier

    2016-01-01

    Human hepatoma cells may represent a valuable alternative to the use of human hepatocytes for studying hepatic drug transporters, which is now a regulatory issue during drug development. In the present work, we have characterized hepatic drug transporter expression, activity and regulation in human hepatoma HuH-7 cells, in order to determine the potential relevance of these cells for drug transport assays. HuH-7 cells displayed notable multidrug resistance-associated protein (MRP) activity, presumed to reflect expression of various hepatic MRPs, including MRP2. By contrast, they failed to display functional activities of the uptake transporters sodium taurocholate co-transporting polypeptide (NTCP), organic anion-transporting polypeptides (OATPs) and organic cation transporter 1 (OCT1), and of the canalicular transporters P-glycoprotein and breast cancer resistance protein (BCRP). Concomitantly, mRNA expressions of various sinusoidal and canalicular hepatic drug transporters were not detected (NTCP, OATP1B1, organic anion transporter 2 (OAT2), OCT1 and bile salt export pump) or were found to be lower (OATP1B3, OATP2B1, multidrug and toxin extrusion protein 1, BCRP and MRP3) in hepatoma HuH-7 cells than those found in human hepatocytes, whereas other transporters such as OAT7, MRP4 and MRP5 were up-regulated. HuH-7 cells additionally exhibited farnesoid X receptor (FXR)- and nuclear factor erythroid 2-related factor 2 (Nrf2)-related up-regulation of some transporters. Such data indicate that HuH-7 cells, although expressing rather poorly some main hepatic drug transporters, may be useful for investigating interactions of drugs with MRPs, notably MRP2, and for studying FXR- or Nrf2-mediated gene regulation. PMID:28036031

  12. Dietary Factors and Hepatoma in Rainbow Trout (Salmo gairdneri). I. Aflatoxins in Vegetable Protein Feedstuffs

    USGS Publications Warehouse

    Sinnhuber, R.O.; Wales, J.H.; Ayers, J.L.; Engebrecht, R.H.; Amend, D.F.

    1968-01-01

    Aflatoxins (toxic metabolites of the mold Aspergillus flavus) were present in a commercial trout ration causing hepatoma in rainbow trout. Cottonseed meal and solvent extracts of cottonseed meal and of rations containing cottonseed meal and peanut meal were found by chemical assay and confirmed by duckling assay to contain aflatoxins. Diets containing these materials and a purified test diet to which aflatoxins had been added produced microscopic tumors in 6 months and gross lesions of hepatocarcinoma in 9 months. Similar diets without aflatoxin were negative.

  13. High permissivity of human HepG2 hepatoma cells for influenza viruses.

    PubMed

    Ollier, Laurence; Caramella, Anne; Giordanengo, Valérie; Lefebvre, Jean-Claude

    2004-12-01

    Human HepG2 hepatoma cells are highly permissive for influenza virus type A and type B, even without the addition of trypsin, and they exhibit a marked cytopathic effect. This property greatly facilitates the primary isolation of influenza viruses. Virus replication was significantly reduced by the plasmin(ogen)-specific inhibitor tranexamic acid, and this suggests a potential role played by the plasminogen/tissue plasminogen activator complex at the surface of HepG2 cells. This might represent a new approach for study of the interrelations of this complex with influenza viruses.

  14. High Permissivity of Human HepG2 Hepatoma Cells for Influenza Viruses

    PubMed Central

    Ollier, Laurence; Caramella, Anne; Giordanengo, Valérie; Lefebvre, Jean-Claude

    2004-01-01

    Human HepG2 hepatoma cells are highly permissive for influenza virus type A and type B, even without the addition of trypsin, and they exhibit a marked cytopathic effect. This property greatly facilitates the primary isolation of influenza viruses. Virus replication was significantly reduced by the plasmin(ogen)-specific inhibitor tranexamic acid, and this suggests a potential role played by the plasminogen/tissue plasminogen activator complex at the surface of HepG2 cells. This might represent a new approach for study of the interrelations of this complex with influenza viruses. PMID:15583326

  15. Molecular switch of Cre/loxP for radiation modulated gene therapy on hepatoma

    NASA Astrophysics Data System (ADS)

    Hsieh, Ya-Ju; Chen, Fu-Du; Wang, Fu Hui; Ke, Chien Chih; Wang, Hsin-Ell; Liu, Ren-Shyan

    2007-02-01

    For the purpose of enhancement of AFP promoter for the use of radiation modulated gene therapy for hepatocellular carcinoma (HCC), we combined hepatitis B virus (HBV) enhancer II with AFP promoter which shows the selectivity to the target cells to control the Cre/loxP system. Different gene constructs, pE4luc, pE4Tk, EIIAPA-Cre, E4CMV-STOP-Tk and chimeric promoters combined with HBV enhancer were constructed and transfected into HepG2, HeLa and NIH-3T3 cell lines. Cell experiments revealed that E4 enhancer responses to radiation best after 60 h irradiation at a dose range of 5-7 Gy in HepG2 stable clone. The EIIAPA promoter provided high specificity to hepatoma and activated the Cre downstream and removed the stop cassette only in hepatoma cells. After removal of the stop cassette, the E4 response to radiation could encode more Tk protein and kill more tumor cells. In summary, the chimeric EIIAPA promoter can stringently control the expression of Cre recombinase only in HCC. The radiation effect of the EIIAPA-Cre and E4CMV-STOP-Tk system shows promising results in terms of cell survival of HCC.

  16. Uncoupling protein 2 regulates palmitic acid-induced hepatoma cell autophagy.

    PubMed

    Lou, Jiaxin; Wang, Yunjiao; Wang, Xuejiang; Jiang, Ying

    2014-01-01

    Mitochondrial uncoupling protein 2 (UCP2) is suggested to have a role in the development of nonalcoholic steatohepatitis (NASH). However, the mechanism remains unclear. Autophagy is an important mediator of many pathological responses. This study aims to investigate the relationship between UCP2 and hepatoma cells autophagy in palmitic acid- (PA-) induced lipotoxicity. H4IIE cells were treated with palmitic acid (PA), and cell autophagy and apoptosis were examined. UCP2 expression, in association with LC3-II and caspase-3, which are indicators of cell autophagy and apoptosis, respectively,was measured. Results demonstrated that UCP2 was associated with autophagy during PA-induced hepatic carcinoma cells injury. Tests on reactive oxygen species (ROS) showed that UCP2 overexpression strongly decreases PA-induced ROS production and apoptosis. Conversely, UCP2 inhibition by genipin or UCP2 mRNA silencing enhances PA-induced ROS production and apoptosis. Autophagy partially participates in this progress. Moreover, UCP2 was associated with ATP synthesis during PA-induced autophagy. In conclusion, increasing UCP2 expression in hepatoma cells may contribute to cell autophagy and antiapoptotic as result of fatty acid injury. Our results may bring new insights for potential NASH therapies.

  17. Targeting NFKB by autophagy to polarize hepatoma-associated macrophage differentiation.

    PubMed

    Chang, Chih-Peng; Su, Yu-Chi; Lee, Pei-Huan; Lei, Huan-Yao

    2013-04-01

    Tumor-associated macrophages (TAMs) have been linked to promoting tumor progression by stimulating angiogenesis, cell growth and inflammation. NFKB activity in TAMs may mediate inflammation-associated tumor formation. However, most isolated TAMs from established tumors express a M2 phenotype with less NFKB activation and show a strong immunosuppressive phenomenon. How tumors affect the dynamic of NFKB activity in TAMs, and hence maintain their pro-tumor M2 phenotype is still poorly understood. We recently found that hepatoma-derived toll-like receptor 2 (TLR2)-related ligands are capable of stimulating M2 macrophage differentiation via controlling NFKB RELA/p65 protein homeostasis by selective autophagy. TLR2 signal induces NFKB RELA cytosolic ubiquitination and leads to its degradation by SQSTM1/p62-mediated autophagy. Inhibition of autophagy will rescue NFKB activity and shape the phenotype of hepatoma-polarized M2 macrophages. This suggests that autophagy might play a role in manipulating TAM functions and tumor-associated immune responses. Our study also demonstrates that autophagy can directly control a transcriptional factor in addition to its regulatory molecules. This finding uncovers a new role of autophagy in controlling cellular functions.

  18. Berberine Suppresses Cyclin D1 Expression through Proteasomal Degradation in Human Hepatoma Cells

    PubMed Central

    Wang, Ning; Wang, Xuanbin; Tan, Hor-Yue; Li, Sha; Tsang, Chi Man; Tsao, Sai-Wah; Feng, Yibin

    2016-01-01

    The aim of this study is to explore the underlying mechanism on berberine-induced Cyclin D1 degradation in human hepatic carcinoma. We observed that berberine could suppress both in vitro and in vivo expression of Cyclin D1 in hepatoma cells. Berberine exhibits dose- and time-dependent inhibition on Cyclin D1 expression in human hepatoma cell HepG2. Berberine increases the phosphorylation of Cyclin D1 at Thr286 site and potentiates Cyclin D1 nuclear export to cytoplasm for proteasomal degradation. In addition, berberine recruits the Skp, Cullin, F-box containing complex-β-Transducin Repeat Containing Protein (SCFβ-TrCP) complex to facilitate Cyclin D1 ubiquitin-proteasome dependent proteolysis. Knockdown of β-TrCP blocks Cyclin D1 turnover induced by berberine; blocking the protein degradation induced by berberine in HepG2 cells increases tumor cell resistance to berberine. Our results shed light on berberine′s potential as an anti-tumor agent for clinical cancer therapy. PMID:27854312

  19. Inhibition of water activated by far infrared functional ceramics on proliferation of hepatoma cells.

    PubMed

    Zhang, Dongmei; Liang, Jinsheng; Ding, Yan; Meng, Junping; Zhang, Guangchuan

    2014-05-01

    Rare earth (RE)/tourmaline composite materials prepared by the precipitation method are added to the ceramic raw materials at a certain percentage and sintered into RE functional ceramics with high far infrared emission features. Then the far infrared functional ceramics are used to interact with water. The influence of the ceramics on the physical parameters of water is investigated, and the effect of the activated water on the growth of Bel-7402 hepatoma cells cultured in vitro is further studied. The results indicate that, compared with the raw water, the water activated by the ceramics can inhibit the proliferation of hepatoma cells, with statistical probability P < 0.01, which means that the effect is significant. It can be explained that the water activated by the ceramics has a higher concentration of H+, which decreases the potential difference across the cell membrane to release the apoptosis inducing factor (AIF). After entering the cells, the activated water stimulates the mitochondria to produce immune substances that lead tumor cells to apoptosis.

  20. Glucocorticoid Modulation of Mitochondrial Function in Hepatoma Cells Requires the Mitochondrial Fission Protein Drp1

    PubMed Central

    Hernández-Alvarez, María Isabel; Paz, José C.; Sebastián, David; Muñoz, Juan Pablo; Liesa, Marc; Segalés, Jessica; Palacín, Manuel

    2013-01-01

    Abstract Aims: Glucocorticoids, such as dexamethasone, enhance hepatic energy metabolism and gluconeogenesis partly through changes in mitochondrial function. Mitochondrial function is influenced by the balance between mitochondrial fusion and fission events. However, whether glucocorticoids modulate mitochondrial function through the regulation of mitochondrial dynamics is currently unknown. Results: Here, we report that the effects of dexamethasone on mitochondrial function and gluconeogenesis in hepatoma cells are dependent on the mitochondrial fission protein dynamin-related protein 1 (Drp1). Dexamethasone increased routine oxygen consumption, maximal respiratory capacity, superoxide anion, proton leak, and gluconeogenesis in hepatoma cells. Under these conditions, dexamethasone altered mitochondrial morphology, which was paralleled by a large increase in Drp1 expression, and reduced mitofusin 1 (Mfn1) and Mfn2. In vivo dexamethasone treatment also enhanced Drp1 expression in mouse liver. On the basis of these observations, we analyzed the dependence on the Drp1 function of dexamethasone effects on mitochondrial respiration and gluconeogenesis. We show that the increase in mitochondrial respiration and gluconeogenesis induced by dexamethasone are hampered by the inhibition of Drp1 function. Innovation: Our findings provide the first evidence that the effects of glucocorticoids on hepatic metabolism require the mitochondrial fission protein Drp1. Conclusion: In summary, we demonstrate that the mitochondrial effects of dexamethasone both on mitochondrial respiration and on the gluconeogenic pathway depend on Drp1. Antioxid. Redox Signal. 19, 366–378. PMID:22703557

  1. Molecular dynamics study of lipid bilayers modeling the plasma membranes of mouse hepatocytes and hepatomas

    NASA Astrophysics Data System (ADS)

    Andoh, Yoshimichi; Aoki, Noriyuki; Okazaki, Susumu

    2016-02-01

    Molecular dynamics (MD) calculations of lipid bilayers modeling the plasma membranes of normal mouse hepatocytes and hepatomas in water have been performed under physiological isothermal-isobaric conditions (310.15 K and 1 atm). The changes in the membrane properties induced by hepatic canceration were investigated and were compared with previous MD calculations included in our previous study of the changes in membrane properties induced by murine thymic canceration. The calculated model membranes for normal hepatocytes and hepatomas comprised 23 and 24 kinds of lipids, respectively. These included phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, sphingomyelin, lysophospholipids, and cholesterol. We referred to previously published experimental values for the mole fraction of the lipids adopted in the present calculations. The calculated structural and dynamic properties of the membranes such as lateral structure, order parameters, lateral self-diffusion constants, and rotational correlation times all showed that hepatic canceration causes plasma membranes to become more ordered laterally and less fluid. Interestingly, this finding contrasts with the less ordered structure and increased fluidity of plasma membranes induced by thymic canceration observed in our previous MD study.

  2. Melatonin, a novel selective ATF-6 inhibitor, induces human hepatoma cell apoptosis through COX-2 downregulation

    PubMed Central

    Bu, Li-Jia; Yu, Han-Qing; Fan, Lu-Lu; Li, Xiao-Qiu; Wang, Fang; Liu, Jia-Tao; Zhong, Fei; Zhang, Cong-Jun; Wei, Wei; Wang, Hua; Sun, Guo-Ping

    2017-01-01

    AIM To clarify the mechanisms involved in the critical endoplasmic reticulum (ER) stress initiating unfolded protein response pathway modified by melatonin. METHODS Hepatoma cells, HepG2, were cultured in vitro. Flow cytometry and TUNEL assay were used to measure HepG2 cell apoptosis. Western blotting and quantitative reverse transcription-polymerase chain reaction methods were used to determine the protein and messenger RNA levels of ER stress and apoptosis related genes’ expression, respectively. Tissue microarray construction from patients was verified by immunohistochemical analysis. RESULTS In the present study, we first identified that melatonin selectively blocked activating transcription factor 6 (ATF-6) and then inhibited cyclooxygenase-2 (COX-2) expression, leading to enhanced liver cancer cell apoptosis under ER stress condition. Dramatically increased CCAAT-enhancer-binding protein homologous protein level, suppressed COX-2 and decreased Bcl-2/Bax ratio by melatonin or ATF-6 siRNA contributed the enhanced HepG2 cell apoptosis under tunicamycin (an ER stress inducer) stimulation. In clinical hepatocellular carcinoma patients, the close relationship between ATF-6 and COX-2 was further confirmed. CONCLUSION These findings indicate that melatonin as a novel selective ATF-6 inhibitor can sensitize human hepatoma cells to ER stress inducing apoptosis. PMID:28246472

  3. Regulatory aspects of the glutamylation of methotrexate in cultured hepatoma cells

    SciTech Connect

    Nimec, Z.; Galivan, J.

    1983-10-15

    The glutamylation of methotrexate has been evaluated in H35 hepatoma cells in vitro as a function of the conditions of culture. Glutamylation yields methotrexate polyglutamate with two to five additional glutamate residues and is a saturable process. The rate of glutamylation increases little above 10 microM extracellular methotrexate which corresponds to an intracellular concentration of approximately 4 microM. The rate of glutamylation measured over a 6-h period was stimulated by a reduction in cellular folates and prior incubation of the cells with insulin. Glutamylation was also more rapid in dividing cultures than in confluent cells. The combination of insulin inclusion and folate reduction, which was additive, caused approximately a fourfold increase in the rate of glutamylation over control cells under the conditions tested. The maximal rate of methotrexate glutamylation, which was 100 nmol/g/h, occurred in folate-depleted, insulin-supplemented cells. Supplementing folate-depleted cells with reduced folate coenzymes caused the glutamylation to be reduced by more than 90%. In addition to showing that folates can modify the rates of methotrexate polyglutamate formation, data are presented suggesting that methotrexate polyglutamates can regulate their own synthesis. The consequences of the formation of these retained forms of methotrexate in H35 hepatoma cells and the effects of potential regulators of this process are discussed in terms of the glutamylation of folates in the cells and the chemotherapeutic effects of antifolates.

  4. Harmine suppresses homologous recombination repair and inhibits proliferation of hepatoma cells

    PubMed Central

    Zhang, Lei; Zhang, Fan; Zhang, Wenjun; Chen, Lu; Gao, Neng; Men, Yulong; Xu, Xiaojun; Jiang, Ying

    2015-01-01

    To avoid cell cycle arrest or apoptosis, rapidly proliferating cancer cells have to promote DNA double strand break (DSB) repair to fix replication stress induced DSBs. Therefore, developing drugs blocking homologous recombination (HR) and nonhomologous end joining (NHEJ) – 2 major DSB repair pathways – holds great potential for cancer therapy. Over the last few decades, much attention has been paid to explore drugs targeting DSB repair pathways for cancer therapy. Here, using 2 well-established reporters for analyzing HR and NHEJ efficiency, we found that both HR and NHEJ are elevated in hepatoma cell lines Hep3B and HuH7 compared with normal liver cell lines Chang liver and QSG-7701. Our further study found that Harmine, a natural compound, negatively regulates HR but not NHEJ by interfering Rad51 recruitment, resulting in severe cytotoxicity in hepatoma cells. Furthermore, NHEJ inhibitor Nu7441 markedly sensitizes Hep3B cells to the anti-proliferative effects of Harmine. Taken together, our study suggested that Harmine holds great promise as an oncologic drug and combination of Harmine with a NHEJ inhibitor might be an effective strategy for anti-cancer treatment. PMID:26382920

  5. Inhibition of diethylnitrosamine-induced liver cancer in rats by Rhizoma paridis saponin.

    PubMed

    Liu, Jing; Man, Shuli; Li, Jing; Zhang, Yang; Meng, Xin; Gao, Wenyuan

    2016-09-01

    Rhizoma Paridis saponin (RPS) had been regarded as the main active components responsible for the anti-tumor effects of the herb Paris polyphylla var. yunnanensis (Franch.) Hand.-Mazz. In the present research, we set up a rat model of diethylnitrosamine (DEN) induced hepatoma to evaluate antitumor effect of RPS. After 20 weeks treatment, rats were sacrificed to perform histopathological examinations, liver function tests, oxidative stress assays and so forth. As a result, DEN-induced hepatoma formation. RPS alleviated levels of liver injury through inhibiting liver tissues of malondialdehyde (MDA) and nitric oxide (NO) formation, increasing superoxide dismutases (SOD) production, and up-regulating expression of GST-α/μ/π in DEN-induced rats. All in all, RPS would be a potent agent inhibiting chemically induced liver cancer in the prospective application.

  6. Compared with saturated fatty acids, dietary monounsaturated fatty acids and carbohydrates increase atherosclerosis and VLDL cholesterol levels in LDL receptor-deficient, but not apolipoprotein E-deficient, mice.

    PubMed

    Merkel, M; Velez-Carrasco, W; Hudgins, L C; Breslow, J L

    2001-11-06

    Heart-healthy dietary recommendations include decreasing the intake of saturated fatty acids (SFA). However, the relative benefit of replacing SFA with monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), or carbohydrates (CARB) is still being debated. We have used two mouse models of atherosclerosis, low density lipoprotein receptor-deficient (LDLRKO) and apolipoprotein E-deficient (apoEKO) mice to measure the effects of four isocaloric diets enriched with either SFA, MUFA, PUFA, or CARB on atherosclerotic lesion area and lipoprotein levels. In LDLRKO mice, compared with the SFA diet, the MUFA and CARB diets significantly increased atherosclerosis in both sexes, but the PUFA diet had no effect. The MUFA and CARB diets also increased very low density lipoprotein-cholesterol (VLDL-C) and LDL-cholesterol (LDL-C) in males and VLDL-C levels in females. Analysis of data from LDLRKO mice on all diets showed that atherosclerotic lesion area correlated positively with VLDL-C levels (males: r = 0.47, P < 0.005; females: r = 0.52, P < 0.001). In contrast, in apoEKO mice there were no significant dietary effects on atherosclerosis in either sex. Compared with the SFA diet, the CARB diet significantly decreased VLDL-C in males and the MUFA, PUFA, and CARB diets decreased VLDL-C and the CARB diet decreased LDL-C in females. In summary, in LDLRKO mice the replacement of dietary SFA by either MUFA or CARB causes a proportionate increase in both atherosclerotic lesion area and VLDL-C. There were no significant dietary effects on atherosclerotic lesion area in apoEKO mice. These results are surprising and suggest that, depending on the underlying genotype, dietary MUFA and CARB can actually increase atherosclerosis susceptibility, probably by raising VLDL-C levels through a non-LDL receptor, apoE-dependent pathway.

  7. Purification and characterization of a novel type i ribosome inactivating protein, pachyerosin, from Pachyrhizus erosus seeds, and preparation of its immunotoxin against human hepatoma cells.

    PubMed

    Guo, Jin-Lin; Cheng, Yuan-Liu; Qiu, Yi; Shen, Cai-Hong; Yi, Bin; Peng, Cheng

    2014-07-01

    Pachyrhizus erosus seeds have a high protein content and are used in China due to their cytotoxic effect. Here we report the biological and pharmacological activity of the protein extracts from P. erosus seeds. A novel ribosome-inactivating protein, pachyerosin, from P. erosus seeds was successively purified to homogeneity using ammonium sulfate precipitation, DEAE-sepharose FF, and Sephacryl S-200. Pachyerosin showed to be a type I ribosome-inactivating protein with a molecular mass of 29 kDa and an isoelectric point of 9.19. It strongly inhibited protein synthesis of rabbit reticulocyte lysate with an IC50 of 0.37 ng/mL and showed N-glycosidase activity on rat liver ribosomes with an EC50 of 85.9 pM. The N-terminal 27 amino acids of pachyerosin revealed a 60.71% sequence identity with abrin A from the seeds of Abrus precatorius. With the aim of targeting the delivery of pachyerosin, immunotoxin was prepared by conjugating pachyerosin with anti-human AFP monoclonal antibodies SM0736. The immunotoxin pachyerosin-SM0736 efficiently inhibited the growth of the human hepatoma cell line HuH-7 with an IC50 of 0.050 ± 0.004 nM, 2360 times lower than that of pachyerosin and 430 times lower than that of the immunotoxin against human gastric cancer cell line SGC7901. These results imply that pachyerosin may be used as a new promising anticancer agent.

  8. Generation of fluorescently labeled cell lines, C3A hepatoma cells, and human adult skin fibroblasts to study coculture models.

    PubMed

    Samluk, Anna; Zakrzewska, Karolina Ewa; Pluta, Krzysztof Dariusz

    2013-07-01

    Hepatic/nonhepatic cell cocultures are widely used in studies on the role of homo- and heterotypic interactions in liver physiology and pathophysiology. In this article, for the first time, establishment of the coculture model employing hepatoma C3A cells and human skin fibroblasts, stably expressing fluorescent markers, is described. Suitability of the model in studying coculture conditions using fluorescence microscopy and flow cytometry was examined. C3A cells spontaneously formed island-like growth patterns surrounded by fibroblasts. The "islands" size and resulting intensity of the homo- and heterotypic interactions can easily be tuned by applying various plated cells ratios. We examined the capability of the hepatoma cells to produce albumin in hepatic/nonhepatic cell cocultures. The enzyme-linked immunosorbent assay (ELISA) tests showed that greater number of fibroblasts in coculture, resulting in smaller sizes of hepatoma "islands," and thus, a larger heterotypic interface, promoted higher albumin synthesis. The use of fluorescently labeled cells in flow cytometry measurements enabled us to separately gate two cell populations and to evaluate protein expression only in/on cells of interest. Flow cytometry confirmed ELISA results indicating the highest albumin production in hepatoma cells cocultured with the greatest number of fibroblasts and the inhibited protein synthesis in coculture with osteosarcoma cells.

  9. Radiosensitivity of hepatoma cell lines and human normal liver cell lines exposed to 12C6+ ions

    NASA Astrophysics Data System (ADS)

    Jing, X.; Yang, J.; Li, W.; Guo, C.; Dang, B.; Wang, J.; Zhou, L.; Wei, W.; Gao, Q.

    AIM To investigate the radiosensitivity of hepatoma cell lines and human normal liver cell lines METHODS Accelerated carbon ions by heavy ion research facility in Lanzhou HIRFL have high LET We employed it to study the radiosensitivity of hepatoma cell lines SMMC-7721 and human normal liver cell lines L02 using premature chromosome condensation technique PCC Cell survive was documented by a colony assay Chromatid breaks were measured by counting the number of chromatid breaks and isochromatid breaks immediately after prematurely chromosome condensed by Calyculin-A RESULTS The survival curve of the two cell lines presented a good linear relationship and the survival fraction of L02 is higher than that of SMMC-7721 Additionally the two types of G 2 phase chromosome breaks chromatid breaks and isochromatid breaks of L02 are lower than that of SMMC-7721 CONCLUSION Human normal liver cell line have high radioresistance than that of hepatoma cell line It imply that it is less damage to normal organs when radiotherapy to hepatoma

  10. Macrophage migration inhibitory factor has a permissive role in concanavalin A-induced cell death of human hepatoma cells through autophagy.

    PubMed

    Lai, Y-C; Chuang, Y-C; Chang, C-P; Yeh, T-M

    2015-12-03

    Concanavalin A (ConA) is a lectin and T-cell mitogen that can activate immune responses. In recent times, ConA-induced cell death of hepatoma cells through autophagy has been reported and its therapeutic effect was confirmed in a murine in situ hepatoma model. However, the molecular mechanism of ConA-induced autophagy is still unclear. As macrophage migration inhibitory factor (MIF), which is a proinflammatory cytokine, can trigger autophagy in human hepatoma cells, the possible involvement of MIF in ConA-induced autophagy was investigated in this study. We demonstrated that cell death is followed by an increment in MIF expression and secretion in the ConA-stimulated human hepatoma cell lines, HuH-7 and Hep G2. In addition, ConA-induced autophagy and cell death of hepatoma cells were blocked in the presence of an MIF inhibitor. Knockdown of endogenous MIF by small hairpin RNA confirmed that MIF is required for both ConA-induced autophagy and death of hepatoma cells. Furthermore, signal pathway studies demonstrated that ConA induces signal transducer and activator of transcription 3 (STAT3) phosphorylation to trigger MIF upregulation, which in turn promotes Bcl-2/adenovirus E1B 19 kDa-interacting protein 3 (BNIP3)-dependent autophagy. By using a murine in situ hepatoma model, we further demonstrated that MIF contributes to anti-hepatoma activity of ConA by regulating STAT3-MIF-BNIP3-dependent autophagy. In summary, our findings uncover a novel role of MIF in lectin-mediated anti-hepatoma activities by regulating autophagy.

  11. Establishment of a human hepatoma multidrug resistant cell line in vitro

    PubMed Central

    Zhou, Yuan; Ling, Xian-Long; Li, Shi-Wei; Li, Xin-Qiang; Yan, Bin

    2010-01-01

    AIM: To establish a multidrug-resistant hepatoma cell line (SK-Hep-1), and to investigate its biological characteristics. METHODS: A highly invasive SK-Hep-1 cell line of human hepatocellular carcinoma, also known as malignant hepatoma was incubated with a high concentration of cisplatin (CDDP) to establish a CDDP-resistant cell subline (SK-Hep-1/CDDP). The 50% inhibitory dose (IC50) values and the resistance indexes [(IC50 SK-Hep-1/CDDP)/(IC50 SK-Hep-1)] for other chemotherapeutic agents and the growth curve of cells were all evaluated using cell counting kit-8 assays. The distribution of the cell cycles were detected by flow cytometry. Expression of acquired multidrug resistance P-glycoprotein (MDR1, ABCB1) and multidrug resistance-associated protein 1 (MRP1, ABCC1) was compared with that in parent cells by Western blotting and immunofluorescence combined with laser scanning confocal microscopy. RESULTS: The SK-Hep-1/CDDP cells (IC50 = 70.61 ± 1.06 μg/mL) was 13.76 times more resistant to CDDP than the SK-Hep-1 cells (IC50 = 5.13 ± 0.09 μg/mL), and CDDP-resistant cells also demonstrated cross-resistance to many anti-tumor agents such as doxorubicin, 5-fluorouracil and vincristine. Similar morphologies were determined in both SK-Hep-1 and SK-Hep-1/CDDP groups. The cell cycle distribution of the SK-Hep-1/CDDP cell line exhibited a significantly increased percentage of cells in S (42.2% ± 2.65% vs 27.91% ± 2.16%, P < 0.01) and G2/M (20.67% ± 5.69% vs 12.14% ± 3.36%, P < 0.01) phases in comparison with SK-Hep-1 cells, while the percentage of cells in the G0/G1 phase decreased (37.5% ± 5.05% vs 59.83% ± 3.28%, P < 0.01). The levels of MDR1 and MRP1 were overexpressed in the SK-Hep-1/CDDP cells exhibiting the MDR phenotype. CONCLUSION: Multiple drug resistance of multiple drugs in the human hepatoma cell line SK-Hep-1/CDDP was closely related to the overexpression of MDR1 and MRP1. PMID:20458768

  12. TAM receptor deficiency affects adult hippocampal neurogenesis

    PubMed Central

    Ji, Rui; Meng, Lingbin; Li, Qiutang; Lu, Qingxian

    2014-01-01

    The Tyro3, Axl and Mertk (TAM) subfamily of receptor protein tyrosine kinases functions in cell growth, differentiation, survival, and most recently found, in the regulation of immune responses and phagocytosis. All three receptors and their ligands, Gas6 (growth arrest-specific gene 6) and protein S, are expressed in the central nervous system (CNS). TAM receptors play pivotal roles in adult hippocampal neurogenesis. Loss of these receptors causes a comprised neurogenesis in the dentate gyrus of adult hippocampus. TAM receptors have a negative regulatory effect on microglia and peripheral antigen-presenting cells, and play a critical role in preventing overproduction of pro-inflammatory cytokines detrimental to the proliferation, differentiation, and survival of adult neuronal stem cells (NSCs). Besides, these receptors also play an intrinsic trophic function in supporting NSC survival, proliferation, and differentiation into immature neurons. All these events collectively ensure a sustained neurogenesis in adult hippocampus. PMID:25487541

  13. The citrus fruit flavonoid naringenin suppresses hepatic glucose production from Fao hepatoma cells.

    PubMed

    Purushotham, Aparna; Tian, Min; Belury, Martha A

    2009-02-01

    Hepatic gluconeogenesis is the major source of fasting hyperglycemia. Here, we investigated the role of the citrus fruit flavonoid naringenin, in the attenuation of hepatic glucose production from hepatoma (Fao) cells. We show that naringenin, but not its glucoside naringin, suppresses hepatic glucose production. Furthermore, unlike insulin-mediated suppression of hepatic glucose production, incubation of hepatocytes with the phosphatidylinositol 3-kinase (PI3-kinase) inhibitor Ly294002 had no effect on the ability of naringenin to suppress hepatic glucose production. Further, naringenin did not increase phosphorylation of Akt at Ser473 or, Thr308, indicating this down-stream target of PI3-kinase is also not a player in naringenin-mediated suppression of hepatic glucose production. Importantly, like the dimethylbiguanide, metformin, naringenin significantly decreased cellular ATP levels without increasing cell cytotoxicity. Together, these results suggest that the aglycone, naringenin, has a role in the attenuation of hyperglycemia and may exert this effect in a manner similar to the drug, metformin.

  14. Coexistence of hepatoma with mantle cell lymphoma in a hepatitis B carrier

    PubMed Central

    Lee, Mu-Hsien; Lin, Yu-Ching; Cheng, Hao-Tsai; Chuang, Wen-Yu; Huang, Hsin-Chih; Kao, Hsiao-Wen

    2015-01-01

    The coexistence of hepatocellular carcinoma (HCC) and non-Hodgkin’s lymphoma (NHL) in the liver is rare. Reports show that these patients have cirrhotic livers or hepatitis virus infections before they develop HCC and NHL. We present a patient with hepatitis B virus infection who was transferred to our hospital with a newly detected liver mass; abdominal computed tomography examination showed one hypodense mass of 7 cm in diameter and multiple mesenteric and mediastinal lymph nodes. A liver tumor biopsy showed a hepatoma, and the pathologic findings from an inguinal lymph node excision showed mantle cell lymphoma. An immunohistochemical stain confirmed that the atypical lymphoid cells within the HCC were positive for the CD20, CD5 and cyclin D1 antigens. Taking these findings into account, the hepatic tumor was determined to be a HCC infiltrated by mantle cell lymphoma. PMID:26668520

  15. Isoliquiritigenin inhibits cell proliferation and induces apoptosis in human hepatoma cells.

    PubMed

    Hsu, Ya-Ling; Kuo, Po-Lin; Lin, Liang-Tzung; Lin, Chun-Ching

    2005-02-01

    Isoliquiritigenin (4,2',4'-trihydroxychalcone, ISL) is a natural pigment with a simple chalcone structure. In this study, we report the ISL-induced inhibition on the growth of human hepatoma cells (Hep G2) for the first time. The cell growth inhibition achieved by ISL treatment resulted in programmed cell death in a caspase activation-dependent manner, with an IC50 of 10.51 microg/mL. Outcomes of ISL treatment included the up-regulation of IkappaBalpha expression in the cytoplasm, and the decrease of NF-kappaB level as well as its activity in the nucleus. In addition, ISL also suppressed the expression of Bcl-XL and c-IAP1/2 protein, the downstream target molecule of NF-kappaB. These results demonstrated that ISL treatment inhibited the NF-kappaB cell survival-signaling pathway and induced apoptotic cell death in Hep G2 cells.

  16. A novel multi-target RNAi adenovirus inhibits hepatoma cell proliferation, migration, and induction of angiogenesis

    PubMed Central

    Pan, Tingting; Cheng, Ya; Ren, Weihua; Jia, Weidong; Ma, Jinliang; Xu, Geliang

    2016-01-01

    The pathogenesis of hepatocellular carcinoma (HCC) is a multi-step process involving many genes. Consequently, single gene targeting therapy has limited efficacy, making combination therapy targeting multiple genes a necessity. Based on our previous findings, we constructed a single vector mediating simultaneous expression of multiple short hairpin RNAs (shRNAs) against human vascular endothelial growth factor receptor 2 (VEGFR2), chemokine C-C motif receptor 1 (CCR1), and epithelial cell adhesion molecule (EpCAM), three genes closely related to HCC progression that act through separate pathways. The shRNA vector efficiently downregulated the mRNA and protein of all three molecules in Huh7 hepatoma cells. The vector also inhibited cell proliferation and migration and reduced angiogenesis. Furthermore, this shRNA vector can be recombined into adenovirus, a gene therapy vector, for better in vivo application. It thus offers a potentially effective future gene therapy approach to treating human liver cancer. PMID:27221035

  17. Cu,Zn Superoxide Dismutase is a Peroxisomal Enzyme in Human Fibroblast and Hepatoma Cells

    NASA Astrophysics Data System (ADS)

    Keller, Gilbert-Andre; Warner, Thomas G.; Steimer, Kathelyn S.; Hallewell, Robert A.

    1991-08-01

    The intracellular localization of Cu,Zn superoxide dismutase (superoxide:superoxide oxidoreductase, EC 1.15.1.1) has been examined by immunofluorescence using four monoclonal anti-Cu,Zn superoxide dismutase antibodies raised against a recombinant human Cu,Zn superoxide dismutase derivative produced and purified from Escherichia coli. Colocalization with catalase, a peroxisomal matrix enzyme, was used to demonstrate the peroxisomal localization of Cu,Zn superoxide dismutase in human fibroblasts and hepatoma cells. In the fibroblasts of Zellweger syndrome patients, the enzyme is not transported to the peroxisomal ghosts but, like catalase, remains in the cytoplasm. In addition, immunocryoelectron microscopy of yeast cells expressing human Cu,Zn superoxide dismutase showed that the enzyme is translocated to the peroxisomes.

  18. [Retention jaundice caused by central hepatic hepatoma. Treatment with Kron's extra-anatomic biliary prosthesis].

    PubMed

    Partensky, C; Paliard, P; Maurin, T; Bret, P M

    1983-01-01

    A 31 year-old patient presented with a retention jaundice from a centrally located hepatoma invading the hilum. Because of the patient's age and the severity of the pruritus and jaundice, palliative treatment was performed by percutaneous catheterization of the intrahepatic biliary tracts to drain the right and left hepatic canals. As the hilar stenosis could not be overcome, the external drainage was transformed into internal drainage by implantation of a Kron's biliary prosthesis linking the intrahepatic biliary tracts, following segment III hepatotomy, to the duodenal lumen, with burying of the prosthesis in the gastric antrum region. Jaundice was reduced until death of the patients from metastases 6 months later. This case demonstrates that the use of Kron's biliary prosthesis to perform a biliodigestive shunt from intrahepatic biliary pathways is a valid palliative procedure in patients with limited life expectancies.

  19. [Effects of niflumic acid on the proliferation of human hepatoma cells].

    PubMed

    Tian, Jing; Tao, Ling; Cao, Yun-Xin; Dong, Ling; Hu, Yu-Zhen; Yang, An-Gang; Zhou, Shi-Sheng

    2003-04-25

    The purpose of this work was to investigate the effects of niflumic acid (NFA), a chloride channel blocker, on the proliferation of human hepatoma cell line (HHCC). Cell proliferation was analyzed by cell count and MTT assay. Cell cycle analysis was carried out by flow cytometry. [Ca(2+)](i) was determined by laser scanning confocal system. It was found that NFA decreased significantly the cell number and the MTT optical density (OD) of HHCC cells, and that the OD value was reversed after washout of NFA. Compared with control, NFA blocked cell cycle progression in G(1) phase. Extracellular application of NFA (100 micromol/L) induced a rapid decrease in [Ca(2+)](i). These findings demonstrate that blockage of chloride channels by NFA induces growth arrest of HHCC in G(1) phase, which may be due to the inhibition of Ca(2+)/CaM-dependent signaling pathways.

  20. Time-course regulation of quercetin on cell survival/proliferation pathways in human hepatoma cells.

    PubMed

    Granado-Serrano, Ana Belén; Angeles Martín, María; Bravo, Laura; Goya, Luis; Ramos, Sonia

    2008-04-01

    Quercetin, a dietary flavonoid, has been shown to possess anticarcinogenic properties, but the precise molecular mechanisms of action are not thoroughly elucidated. This study was aimed at investigating the time-course regulation effect of quercetin on survival/proliferation pathways in a human hepatoma cell line (HepG2). Quercetin induced a significant time-dependent inactivation of the major survival signaling proteins, i. e., phosphatidylinositol 3-kinase (PI 3-kinase)/protein kinase B (AKT), extracellular regulated kinase (ERK), protein kinase C-alpha (PKC-alpha), in concert with a time-dependent activation of key death-related signals: c-jun amino-terminal kinase (JNK) and PKC-delta. These data suggest that quercetin exerts a tight regulation of survival/proliferation pathways that requires the integration of different signals and persists over time, being the balance of these regulatory signals what determines the fate of HepG2 cells.

  1. Coexistence of hepatoma with mantle cell lymphoma in a hepatitis B carrier.

    PubMed

    Lee, Mu-Hsien; Lin, Yu-Ching; Cheng, Hao-Tsai; Chuang, Wen-Yu; Huang, Hsin-Chih; Kao, Hsiao-Wen

    2015-12-07

    The coexistence of hepatocellular carcinoma (HCC) and non-Hodgkin's lymphoma (NHL) in the liver is rare. Reports show that these patients have cirrhotic livers or hepatitis virus infections before they develop HCC and NHL. We present a patient with hepatitis B virus infection who was transferred to our hospital with a newly detected liver mass; abdominal computed tomography examination showed one hypodense mass of 7 cm in diameter and multiple mesenteric and mediastinal lymph nodes. A liver tumor biopsy showed a hepatoma, and the pathologic findings from an inguinal lymph node excision showed mantle cell lymphoma. An immunohistochemical stain confirmed that the atypical lymphoid cells within the HCC were positive for the CD20, CD5 and cyclin D1 antigens. Taking these findings into account, the hepatic tumor was determined to be a HCC infiltrated by mantle cell lymphoma.

  2. Two unusual cases with Wilson's disease: hepatoma and fulminant hepatitis treated with plasma exchange.

    PubMed Central

    Aydinli, Musa; Harmanci, Ozgur; Ersoy, Osman; Iskit, Arzu T.; Ozcebe, Osman; Abbasoglu, Osman; Bayraktar, Yusuf

    2006-01-01

    We report two atypical cases of Wilson's disease. The first case is a 22-year-old male patient with a history of disease for 15 years and diagnosed as Wilson's disease upon investigations. Alpha-fetoprotein level was found elevated and computed tomography showed a 3.5-cm liver mass. Hepatocellular carcinoma was diagnosed. Radiofrequency ablation and liver transplantation were performed successfully. The second case is a 24-year-old female patient who presented with fulminant hepatitis. Urinary copper excretion and ceruloplasmin levels were suggestive of Wilson's disease. Despite chelation therapy, no improvement was observed. Plasma exchange therapy was performed for seven days. Her clinical status improved, and transplantation was no longer needed. To conclude, although hepatoma is rarely seen in Wilson's disease, patients should be examined regularly to diagnose it in a treatable stage. Removal of copper and toxic metabolites with plasma exchange therapy may be a way of treatment for fulminant hepatitis associated with Wilson's disease. PMID:17225847

  3. Inhibition of spermidine synthase gene expression by transforming growth factor-beta 1 in hepatoma cells.

    PubMed Central

    Nishikawa, Y; Kar, S; Wiest, L; Pegg, A E; Carr, B I

    1997-01-01

    We screened genes responsive to transforming growth factor-beta (TGF-beta 1) protein in a human hepatoma cell line (Hep3B) using a PCR-mediated differential display technique, in order to investigate the mechanisms involved in TGF-beta-induced growth suppression. We found a gene that was down-regulated by TGF-beta 1 to be completely identical in an approx. 620 bp segment to the gene for the enzyme spermidine synthase, which mediates the conversion of putrescine into spermidine. Both spermidine synthase mRNA expression and its enzyme activity were decreased after TGF-beta 1 treatment of Hep3B cells. The inhibition of spermidine synthase gene expression by TGF-beta 1 protein was also observed in other hepatoma cell lines. The expression of genes for other biosynthetic enzymes in polyamine metabolism (ornithine decarboxylase and S-adenosylmethionine decarboxylase) was also inhibited to the same extent as for spermidine synthase, while the gene expression of spermidine/spermine N1-acetyltransferase, a catabolic enzyme, was relatively resistant to TGF-beta 1. Spermine levels in Hep3B cells were decreased by TGF-beta 1 treatment, although the levels of spermidine and putrescine were unchanged, probably due to compensation by remaining spermidine/spermine N1-acetyltransferase activity. Exogenously added spermidine or spermine, but not putrescine, partially antagonized the growth-inhibitor effects of TGF-beta 1 on Hep3B cells. Our data suggest that down-regulation of gene expression of the enzymes involved in polyamine metabolism, including spermidine synthase, may be associated with the mechanism of TGF-beta-induced growth suppression. PMID:9020892

  4. Leptin receptor-deficient (knockout) medaka, Oryzias latipes, show chronical up-regulated levels of orexigenic neuropeptides, elevated food intake and stage specific effects on growth and fat allocation.

    PubMed

    Chisada, Shin-ichi; Kurokawa, Tadahide; Murashita, Koji; Rønnestad, Ivar; Taniguchi, Yoshihito; Toyoda, Atsushi; Sakaki, Yoshiyuki; Takeda, Shunichi; Yoshiura, Yasutoshi

    2014-01-01

    analyses using the mutant will contribute to a better understanding of the role of leptin in fish. This is the first study to produce fish with leptin receptor deficiency.

  5. [IL-12 induces autophagy via AKT/mTOR/STAT3 signaling pathway in human hepatoma cells].

    PubMed

    Liu, Cuiying; Xie, Changli; Lin, Yan; Wu, Bitao; Wang, Qin; Li, Ziwei; Tu, Zhiguang

    2016-07-01

    Objective To investigate the effect of IL-12 on autophagy and the relative possible mechanism in HepG2 and SMMC-7721 human hepatoma cells. Methods The hepatoma cells were treated with IL-12 (10 ng/mL) for 6 hours. Western blotting was applied to detect the expressions of microtubule-associated protein 1 light chain 3 (LC-3), Beclin 1 and the phosphorylated levels of protein kinase B (AKT), mammalian target of rapamycin (mTOR), signal transducer and activator of transcription 3 (STAT3); immunofluorescence assay (IFA) and transmission electron microscopy (TEM) were used to observe the formation of autophagosome. After STAT3 was inhibited by STATTIC or siSTAT3 and AKT was activated by insulin-like growth factor (IGF-1), Western blotting and IFA were performed again to analyze the change of IL-12-induced autophagy. After the cells were treated with IL-12 (10 ng/mL) for 1, 2, 3, 4, 5 days, CCK-8 assay was used to determine the growth ability. After the hepatoma cells were treated with IL-12 (10 ng/mL) for 48 hours, trypan blue staining was used to detect the death rate of the cells. After cell autophagy was inhibit by siBeclin 1, CCK-8 assay and trypan blue staining were performed again to study the effect of IL-12 on the proliferation and death of human hepatoma cells. Results IL-12 induced autophagy and inhibited cell growth in the hepatoma cells. Silencing Beclin 1 gene enhanced IL-12-mediated growth inhibition and cell death. Furthermore, IL-12 treatment also decreased the expressions of p-AKT, p-mTOR and p-STAT3. The pretreatment of siSTAT3 or STATTIC inhibited STAT3-enhanced IL-12-induced autophagy. Accordingly, activation of AKT with IGF-1 decreased IL-12-induced autophagy. Conclusion IL-12 could induce autophagy through AKT/mTOR/STAT3 signaling pathways and the induction of autophagy attenuates the growth-inhibitory effect of IL-12 on hepatoma cells.

  6. LAP (NF-IL-6), a tissue-specific transcriptional activator, is an inhibitor of hepatoma cell proliferation.

    PubMed Central

    Buck, M; Turler, H; Chojkier, M

    1994-01-01

    During postnatal liver development, LAP (NF-IL-6, C/EBP beta) expression and hepatocyte proliferation are mutually exclusive. In addition to transactivating liver-specific genes, LAP, but not C/EBP alpha, arrests the cell cycle before the G1/S boundary in hepatoma cells. LIP, a liver-inhibitory protein, which is translated from LAP mRNA lacking the activation domain of LAP, is not only ineffective in blocking hepatoma cell proliferation but also antagonizes the effect of LAP on the cell cycle. Deletion analysis indicated that this effect of LIP required only the DNA-binding and leucine zipper domains. In addition we found that integrity of the LAP dimerization and activation domains is indispensable for the arrest of cell proliferation induced by LAP. Thus, hepatocyte differentiation and its characteristic quiescent state may be modulated by the LAP/LIP ratio. Images PMID:7906646

  7. Analysis of the Cytotoxicity of Carbon-Based Nanoparticles, Diamond and Graphite, in Human Glioblastoma and Hepatoma Cell Lines

    PubMed Central

    Wierzbicki, Mateusz; Jaworski, Sławomir; Kutwin, Marta; Sawosz, Ewa; Chwalibog, André; Pijanowska, Dorota Genowefa; Pluta, Krzysztof Dariusz

    2015-01-01

    Nanoparticles have attracted a great deal of attention as carriers for drug delivery to cancer cells. However, reports on their potential cytotoxicity raise questions of their safety and this matter needs attentive consideration. In this paper, for the first time, the cytotoxic effects of two carbon based nanoparticles, diamond and graphite, on glioblastoma and hepatoma cells were compared. First, we confirmed previous results that diamond nanoparticles are practically nontoxic. Second, graphite nanoparticles exhibited a negative impact on glioblastoma, but not on hepatoma cells. The studied carbon nanoparticles could be a potentially useful tool for therapeutics delivery to the brain tissue with minimal side effects on the hepatocytes. Furthermore, we showed the influence of the nanoparticles on the stable, fluorescently labeled tumor cell lines and concluded that the labeled cells are suitable for drug cytotoxicity tests. PMID:25816103

  8. Analysis of the cytotoxicity of carbon-based nanoparticles, diamond and graphite, in human glioblastoma and hepatoma cell lines.

    PubMed

    Zakrzewska, Karolina Ewa; Samluk, Anna; Wierzbicki, Mateusz; Jaworski, Sławomir; Kutwin, Marta; Sawosz, Ewa; Chwalibog, André; Pijanowska, Dorota Genowefa; Pluta, Krzysztof Dariusz

    2015-01-01

    Nanoparticles have attracted a great deal of attention as carriers for drug delivery to cancer cells. However, reports on their potential cytotoxicity raise questions of their safety and this matter needs attentive consideration. In this paper, for the first time, the cytotoxic effects of two carbon based nanoparticles, diamond and graphite, on glioblastoma and hepatoma cells were compared. First, we confirmed previous results that diamond nanoparticles are practically nontoxic. Second, graphite nanoparticles exhibited a negative impact on glioblastoma, but not on hepatoma cells. The studied carbon nanoparticles could be a potentially useful tool for therapeutics delivery to the brain tissue with minimal side effects on the hepatocytes. Furthermore, we showed the influence of the nanoparticles on the stable, fluorescently labeled tumor cell lines and concluded that the labeled cells are suitable for drug cytotoxicity tests.

  9. Role of CXCR4/SDF-1 alpha in the migratory phenotype of hepatoma cells that have undergone epithelial-mesenchymal transition in response to the transforming growth factor-beta.

    PubMed

    Bertran, Esther; Caja, Laia; Navarro, Estanis; Sancho, Patricia; Mainez, Jèssica; Murillo, Miguel M; Vinyals, Antonia; Fabra, Angels; Fabregat, Isabel

    2009-11-01

    Treatment of FaO rat hepatoma cells with TGF-beta selects cells that survive to its apoptotic effect and undergo epithelial-mesenchymal transitions (EMT). We have established a cell line (T beta T-FaO, from TGF-beta-treated FaO) that shows a mesenchymal, de-differentiated, phenotype in the presence of TGF-beta and is refractory to its suppressor effects. In the absence of this cytokine, cells revert to an epithelial phenotype in 3-4 weeks and recover the response to TGF-beta. T beta T-FaO show higher capacity to migrate than that observed in the parental FaO cells. We found that FaO cells express low levels of CXCR4 and do not respond to SDF-1 alpha. However, TGF-beta up-regulates CXCR4, through a NF kappaB-dependent mechanism, and T beta T-FaO cells show elevated levels of CXCR4, which is located in the presumptive migration front. A specific CXCR4 antagonist (AMD3100) attenuates the migratory capacity of T beta T-FaO cells on collagen gels. Extracellular SDF-1 alpha activates the ERKs pathway in T beta T-FaO, but not in FaO cells, increasing cell scattering and protecting cells from apoptosis induced by serum deprivation. Targeted knock-down of CXCR4 with specific siRNA blocks the T beta T-FaO response to SDF-1 alpha. Thus, the SDF-1/CXCR4 axis might play an important role in mediating cell migration and survival after a TGF-beta-induced EMT in hepatoma cells.

  10. Impact of graphene oxide on viability of Chinese hamster ovary and mouse hepatoma MH-22A cells.

    PubMed

    Batiuskaite, Danute; Grinceviciute, Nora; Snitka, Valentinas

    2015-08-01

    The evaluation of the cyto- and bio-compatibility is a critical step in the development of graphene oxide (GO) as a new promising material for in vivo biomedical applications. In this study, we report the impact of GO, with and without the addition of bovine serum albumin, on healthy (Chinese hamster ovary) and a cancer (mouse hepatoma MH-22A) cells viability and the estimation of the intracellular distribution of GO inside the cells in vitro. The viability tests were performed using a colony formation assay. The intracellular distribution of GO was estimated using Raman spectroscopy and imaging. The viability of both cell lines decreased with increasing concentration of graphene oxide (12.5-50.0 μg/ml): in the case of Chinese hamster ovary cells viability decreased from 44% to 11%, in the case of mouse hepatoma MH-22A cells--from 22% to 3%. These cell lines significantly differed in their response to GO and GO-BSA formulations. The results of viability tests correlate with results of atomic force microscopy and Raman spectroscopy and imaging findings. The GO influence on cell morphology changes, cell structure, cells colony growth dynamics and GO accumulation inside the cells was higher in the case of mouse hepatoma MH-22A cells.

  11. NDRG2 overexpression suppresses hepatoma cells survival during metabolic stress through disturbing the activation of fatty acid oxidation.

    PubMed

    Pan, Tao; Zhang, Mei; Zhang, Fang; Yan, Guang; Ru, Yi; Wang, Qinhao; Zhang, Yao; Wei, Xuehui; Xu, Xinyuan; Shen, Lan; Zhang, Jian; Wu, Kaichun; Yao, Libo; Li, Xia

    2017-02-05

    Because of the high nutrient consumption and inadequate vascularization, solid tumor constantly undergoes metabolic stress during tumor development. Oncogenes and tumor suppressor genes participated in cancer cells' metabolic reprogramming. N-Myc downstream regulated gene 2 (NDRG2) is a recently identified tumor suppressor gene, but its function in cancer metabolism, particularly during metabolic stress, remains unclear. In this study, we found that NDRG2 overexpression significantly reduced hepatoma cell proliferation and enhanced cell apoptosis under glucose limitation. Moreover, NDRG2 overexpression aggravated energy imbalance and oxidative stress by decreasing the intracellular ATP and NADPH generation and increasing ROS levels. Strikingly, NDRG2 inhibited the activation of fatty acid oxidation (FAO), which preserves ATP and NADPH purveyance in the absence of glucose. Finally, mechanistic investigation showed that NDRG2 overexpression suppressed the glucose-deprivation induced AMPK/ACC pathway activation in hepatoma cells, whereas the expression of a constitutively active form of AMPK abrogated glucose-deprivation induced AMPK activation and cell apoptosis. Thus, as a negative regulator of AMPK, NDRG2 disturbs the induction of FAO genes by glucose limitation, leading to dysregulation of ATP and NADPH, and thus reduces the tolerance of hepatoma cells to glucose limitation.

  12. Dihydromyricetin inhibits migration and invasion of hepatoma cells through regulation of MMP-9 expression

    PubMed Central

    Zhang, Qing-Yu; Li, Ran; Zeng, Guo-Fang; Liu, Bin; Liu, Jie; Shu, Yang; Liu, Zhong-Kao; Qiu, Zhi-Dong; Wang, Dong-Jun; Miao, Hui-Lai; Li, Ming-Yi; Zhu, Run-Zhi

    2014-01-01

    AIM: To investigate the effects of dihydromyricetin (DHM) on the migration and invasion of human hepatic cancer cells. METHODS: The hepatoma cell lines SK-Hep-1 and MHCC97L were used in this study. The cells were cultured in RPIM-1640 medium supplemented with 10% fetal bovine serum at 37 °C in a humidified 5% CO2 incubator. DHM was dissolved in dimethyl sulfoxide and diluted to various concentrations in medium before applying to cells. MTT assays were performed to measure the viability of the cells after DHM treatment. Wound healing and Boyden transwell assays were used to assess cancer cell motility. The invasive capacity of cancer cells was measured using Matrigel-coated transwell chambers. Matrix metalloproteinase (MMP)-2/9 activity was examined by fluorescence analysis. Western blot was carried out to analyze the expression of MMP-2, MMP-9, p-38, JNK, ERK1/2 and PKC-δ proteins. All data were analyzed by Student’s t tests in GraphPad prism 5.0 software and are presented as mean ± SD. RESULTS: DHM was found to strongly inhibit the migration of the hepatoma cell lines SK-Hep-1 (without DHM, 24 h: 120 ± 8 μmol/L vs 100 μmol/L DHM, 24 h: 65 ± 10 μmol/L, P < 0.001) and MHCC97L (without DHM, 24 h: 126 ± 7 μmol/L vs 100 μmol/L DHM, 24 h: 74 ± 6 μmol/L, P < 0.001). The invasive capacity of the cells was reduced by DHM treatment (SK-Hep-1 cells without DHM, 24 h: 67 ± 4 μmol/L vs 100 μmol/L DHM, 24 h: 9 ± 3 μmol/L, P < 0.001; MHCC97L cells without DHM, 24 h: 117 ± 8 μmol/L vs 100 μmol/L DHM, 24 h: 45 ± 2 μmol/L, P < 0.001). MMP2/9 activity was also inhibited by DHM exposure (SK-Hep-1 cells without DHM, 24 h: 600 ± 26 μmol/L vs 100 μmol/L DHM, 24 h: 100 ± 6 μmol/L, P < 0.001; MHCC97L cells without DHM, 24 h: 504 ± 32 μmol/L vs 100 μmol/L DHM 24 h: 156 ± 10 μmol/L, P < 0.001). Western blot analysis showed that DHM decreased the expression level of MMP-9 but had little effect on MMP-2. Further investigation indicated that DHM markedly

  13. Extinction of Hepatitis C Virus by Ribavirin in Hepatoma Cells Involves Lethal Mutagenesis

    PubMed Central

    Ortega-Prieto, Ana M.; Sheldon, Julie; Grande-Pérez, Ana; Tejero, Héctor; Gregori, Josep; Quer, Josep; Esteban, Juan I.; Domingo, Esteban; Perales, Celia

    2013-01-01

    Lethal mutagenesis, or virus extinction produced by enhanced mutation rates, is under investigation as an antiviral strategy that aims at counteracting the adaptive capacity of viral quasispecies, and avoiding selection of antiviral-escape mutants. To explore lethal mutagenesis of hepatitis C virus (HCV), it is important to establish whether ribavirin, the purine nucleoside analogue used in anti-HCV therapy, acts as a mutagenic agent during virus replication in cell culture. Here we report the effect of ribavirin during serial passages of HCV in human hepatoma Huh-7.5 cells, regarding viral progeny production and complexity of mutant spectra. Ribavirin produced an increase of mutant spectrum complexity and of the transition types associated with ribavirin mutagenesis, resulting in HCV extinction. Ribavirin-mediated depletion of intracellular GTP was not the major contributory factor to mutagenesis since mycophenolic acid evoked a similar decrease in GTP without an increase in mutant spectrum complexity. The intracellular concentration of the other nucleoside-triphosphates was elevated as a result of ribavirin treatment. Mycophenolic acid extinguished HCV without an intervening mutagenic activity. Ribavirin-mediated, but not mycophenolic acid-mediated, extinction of HCV occurred via a decrease of specific infectivity, a feature typical of lethal mutagenesis. We discuss some possibilities to explain disparate results on ribavirin mutagenesis of HCV. PMID:23976977

  14. Specific gene transfer mediated by lactosylated poly-L-lysine into hepatoma cells.

    PubMed Central

    Midoux, P; Mendes, C; Legrand, A; Raimond, J; Mayer, R; Monsigny, M; Roche, A C

    1993-01-01

    Plasmid DNA/glycosylated polylysine complexes were used to transfer in vitro a luciferase reporter gene into human hepatoma cells by a receptor-mediated endocytosis process. HepG2 cells which express a galactose specific membrane lectin were efficiently and selectively transfected with pSV2Luc/lactosylated polylysine complexes in a sugar dependent manner: i) HepG2 cells which do not express membrane lectin specific for mannose were quite poorly transfected with pSV2Luc/mannosylated polylysine complexes, ii) HeLa cells which do not express membrane lectin specific for galactose were not transfected with pSV2Luc/lactosylated polylysine complexes. The transfection efficiency of HepG2 cells with pSV2Luc/lactosylated polylysine complexes was greatly enhanced either in the presence of chloroquine or in the presence of a fusogenic peptide. A 22-residue peptide derived from the influenza virus hemagglutinin HA2 N-terminal polypeptide that mimics the fusogenic activity of the virus, was selected. In the presence of the fusogenic peptide, the luciferase activity in HepG2 cells was 10 fold larger than that of cells transfected with pSV2Luc/lactosylated polylysine complexes in the presence of chloroquine. Images PMID:8383843

  15. Curcumin inhibits ROS formation and apoptosis in methylglyoxal-treated human hepatoma G2 cells.

    PubMed

    Chan, Wen-Hsiung; Wu, Hsin-Jung; Hsuuw, Yan-Der

    2005-05-01

    Methylglyoxal (MG) is a reactive dicarbonyl compound endogenously produced mainly from glycolytic intermediates. Elevated MG levels in diabetes patients are believed to contribute to diabetic complications. MG is cytotoxic through induction of apoptosis. Curcumin, the yellow pigment of Curcuma longa, is known to have antioxidant and anti-inflammatory properties. In the present study, we investigated the effect of curcumin on MG-induced apoptotic events in human hepatoma G2 cells. We report that curcumin prevented MG-induced cell death and apoptotic biochemical changes such as mitochondrial release of cytochrome c, caspase-3 activation, and cleavage of PARP (poly [ADP-ribose] polymerase). Using the cell permeable dye 2',7'-dichlorofluorescein diacetate (DCF-DA) as an indicator of reactive oxygen species (ROS) generation, we found that curcumin abolished MG-stimulated intracellular oxidative stress. The results demonstrate that curcumin significantly attenuates MG-induced ROS formation, and suggest that ROS triggers cytochrome c release, caspase activation, and subsequent apoptotic biochemical changes.

  16. Role of zinc in the regulation of autophagy during ethanol exposure in human hepatoma cells.

    PubMed

    Liuzzi, J P; Yoo, Chanwong

    2013-12-01

    Faulty autophagy has been linked to various diseases including neurodegenerative disorders, diabetes, and cancer. Increasing evidence support the notion that activation of autophagy protects against ethanol-induced steatosis and liver injury. Herein, we investigated the role of zinc in autophagy in human hepatoma cells VL-17A exposed or not to ethanol. LC3II/LC3I ratio, p62, and Beclin-1 expression and autophagosomes number were determined in cells incubated in medium containing various concentrations of zinc with or without ethanol. In addition, labile zinc and mRNA expression of metallothionein and the zinc transporters SLC39A8, SLC39A14, and SLC30A10 were evaluated in cells exposed to ethanol and the autophagy inhibitor 3-methyladenine. Zinc depletion caused a significant suppression of autophagy in cells. Conversely, zinc addition to medium stimulated autophagy in cells. Moreover, cotreatment with ethanol and excess zinc (40 μM) had an additive effect on the induction of autophagy. 3-methyadenine treatment decreased labile zinc, but this effect was more pronounced in cells exposed to ethanol. Lastly, ethanol and 3-methyladenine caused significant changes in the expression of metallothionein and zinc transporters. The results from this study support the hypothesis that zinc is critical for autophagy under basal conditions and during ethanol exposure.

  17. Proteomic analysis of human hepatoma cells expressing methionine adenosyltransferase I/III☆

    PubMed Central

    Schröder, Paul C.; Fernández-Irigoyen, Joaquín; Bigaud, Emilie; Serna, Antonio; Renández-Alcoceba, Rubén; Lu, Shelly C.; Mato, José M.; Prieto, Jesús; Corrales, Fernando J.

    2015-01-01

    Methionine adenosyltransferase I/III (MATI/III) synthesizes S-adenosylmethionine (SAM) in quiescent hepatocytes. Its activity is compromised in most liver diseases including liver cancer. Since SAM is a driver of hepatocytes fate we have studied the effect of re-expressing MAT1A in hepatoma Huh7 cells using proteomics. MAT1A expression leads to SAM levels close to those found in quiescent hepatocytes and induced apoptosis. Normalization of intracellular SAM induced alteration of 128 proteins identified by 2D-DIGE and gel-free methods, accounting for deregulation of central cellular functions including apoptosis, cell proliferation and survival. Human Dead-box protein 3 (DDX3X), a RNA helicase regulating RNA splicing, export, transcription and translation was down-regulated upon MAT1A expression. Our data support the regulation of DDX3X levels by SAM in a concentration and time dependent manner. Consistently, DDX3X arises as a primary target of SAM and a principal intermediate of its antitumoral effect. Based on the parallelism between SAM and DDX3X along the progression of liver disorders, and the results reported here, it is tempting to suggest that reduced SAM in the liver may lead to DDX3X up-regulation contributing to the pathogenic process and that replenishment of SAM might prove to have beneficial effects, at least in part by reducing DDX3X levels. This article is part of a Special Issue entitled: Proteomics: The clinical link. PMID:22270009

  18. Antiproliferative and apoptotic potential of Daphne gnidium L. root extract on lung cancer and hepatoma cells.

    PubMed

    Chaouki, W; Meddah, B; Hmamouchi, M

    2015-03-01

    Daphne gnidium L. (Thymeleacees) is a famous Moroccan plant with cancer-related ethnobotanical use. Previously, we demonstrated that ethyl acetate extract of D. gnidium had antiproliferative and pro-apoptotic potential on human breast tumor MCF-7 cells. The purpose of this study was to investigate if the antiproliferative effect of this extract was similar for different human cancer cell lines such as A549 lung cancer and SMMC-7721 hepatoma cells. Moreover, this work essentially focused on the intrinsic apoptotic signaling pathway. Antiproliferative activity was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide on A549 and SMMC-7721 cells. The characterization of the mechanisms involved in this effect was determined by lactate dehydrogenase test, apoptosis assays and western blot analyses. Our present study has shown that this extract strongly inhibited proliferation of A549 (IC50: 213 ± 15 μg/ml) and SMMC-7721 (IC50: 170 ± 13 μLg/ml) cells. The characterization of antiproliferative effect demonstrated that this extract was an apoptosis inducer in both cell lines tested. The results of western blot analyses have shown in SMMC-7721 cells that this extract activated caspase signaling triggered by the modulation of Bcl-2 family proteins. These findings suggest that this natural extract-induced effects may have novel therapeutic applications for the treatment of different cancer types.

  19. GLUCOCORTICOID-INDUCED ALTERATION OF THE SURFACE MEMBRANE OF CULTURED HEPATOMA CELLS

    PubMed Central

    Ballard, Philip L.; Tomkins, Gordon M.

    1970-01-01

    Glucocorticoids induce an alteration of the surface of hepatoma tissue culture (HTC) cells as expressed by changes in cell electrophoretic, antigenic, and adhesive properties. The alteration is assayed by the increased adhesiveness of induced cells for a glass surface. The induction process has a lag period of about 3 hr and attains a plateau level after 24–30 hr when 50–80% of the steroid-treated cells are firmly adhered. Less than 10% of untreated cells adhere under the same conditions. Induction is inhibited by actinomycin D and cycloheximide, demonstrates both pH and temperature dependence, and responds to changes in steroid concentration and structure. By contrast, the attachment per se of preinduced cells is not affected by inhibitors of RNA and protein synthesis, fluctuations of temperature and pH, and the presence or absence of the hormone. When the induction process is reversed by removal of steroid or addition of actinomycin D, preinduced adhesiveness is lost with a half-life of 13–24 hr, but in the presence of cycloheximide the loss is accelerated (t1/2 3–5.5 hr). These results suggest that glucocorticoids induce the biosynthesis of a protein which either modifies the cell surface (an enzyme) or is incorporated into surface structures (structural protein). PMID:4327515

  20. Hepatoma-derived growth factor: from the bovine uterus to the in vitro embryo culture.

    PubMed

    Gómez, E; Correia-Álvarez, E; Caamaño, J N; Díez, C; Carrocera, S; Peynot, N; Martín, D; Giraud-Delville, C; Duranthon, V; Sandra, O; Muñoz, M

    2014-10-01

    Early in cow embryo development, hepatoma-derived growth factor (HDGF) is detectable in uterine fluid. The origin of HDGF in maternal tissues is unknown, as is the effect of the induction on developing embryos. Herein, we analyze HDGF expression in day 8 endometrium exposed to embryos, as well as the effects of recombinant HDGF (rHDGF) on embryo growth. Exposure to embryos did not alter endometrial levels of HDGF mRNA or protein. HDGF protein localized to cell nuclei in the luminal epithelium and superficial glands and to the apical cytoplasm in deep glands. After uterine passage, levels of embryonic HDGF mRNA decreased and HDGF protein was detected only in the trophectoderm. In fetal fibroblast cultures, addition of rHDGF promoted cell proliferation. In experiments with group cultures of morulae in protein-free medium containing polyvinyl alcohol, adding rHDGF inhibited blastocyst development and did not affect cell counts when the morulae were early (day 5), whereas it enhanced blastocyst development and increased cell counts when the morulae were compact (day 6). In cultures of individual day 6 morulae, adding rHDGF promoted blastocyst development and increased cell counts. Our experiments with rHDGF indicate that the growth factor stimulates embryonic development and cell proliferation. HDGF is synthesized similarly by the endometrium and embryo, and it may exert embryotropic effects by autocrine and/or paracrine mechanisms.

  1. Hepatitis B virus X protein mutants exhibit distinct biological activities in hepatoma Huh7 cells

    SciTech Connect

    Liu Xiaohong; Zhang Shuhui; Lin Jing; Zhang Shunmin; Feitelson, Mark A.; Gao Hengjun; Zhu Minghua

    2008-09-05

    The role of the hepatitis B virus X protein (HBx) in hepatocarcinogenesis remains controversial. To investigate the biological impact of hepatitis B virus x gene (HBx) mutation on hepatoma cells, plasmids expressing the full-length HBx or HBx deletion mutants were constructed. The biological activities in these transfectants were analyzed by a series of assays. Results showed that HBx3'-20 and HBx3'-40 amino acid deletion mutants exhibited an increase in cellular proliferation, focus formation, tumorigenicity, and invasive growth and metastasis through promotion of the cell cycle from G0/G1 to the S phase, when compared with the full-length HBx. In contrast, HBx3'-30 amino acid deletion mutant repressed cell proliferation by blocking in G1 phase. The expression of P53, p21{sup WAF1}, p14{sup ARF}, and MDM2 proteins was regulated by expression of HBx mutants. In conclusions, HBx variants showed different effects and functions on cell proliferation and invasion by regulation of the cell cycle progression and its associated proteins expression.

  2. Transplantable Subcutaneous Hepatoma 22a Affects Functional Activity of Resident Tissue Macrophages in Periphery

    PubMed Central

    Kisseleva, Ekaterina P.; Krylov, Andrei V.; Stepanova, Olga I.; Lioudyno, Victoria I.

    2011-01-01

    Tumors spontaneously develop central necroses due to inadequate blood supply. Recent data indicate that dead cells and their products are immunogenic to the host. We hypothesized that macrophage tumor-dependent reactions can be mediated differentially by factors released from live or dead tumor cells. In this study, functional activity of resident peritoneal macrophages was investigated in parallel with tumor morphology during the growth of syngeneic nonimmunogenic hepatoma 22a. Morphometrical analysis of tumor necroses, mitoses and leukocyte infiltration was performed in histological sections. We found that inflammatory potential of peritoneal macrophages in tumor-bearing mice significantly varied depending on the stage of tumor growth and exhibited two peaks of activation as assessed by nitroxide and superoxide anion production, 5′-nucleotidase activity and pinocytosis. Increased inflammatory reactions were not followed by the enhancement of angiogenic potential as assessed by Vascular Endothelial Growth Factor mRNA expression. Phases of macrophage activity corresponded to the stages of tumor growth characterized by high proliferative potential. The appearance and further development of necrotic tissue inside the tumor did not coincide with changes in macrophage behavior and therefore indirectly indicated that activation of macrophages was a reaction mostly to the signals produced by live tumor cells. PMID:21760797

  3. Silver nanoparticles affect glucose metabolism in hepatoma cells through production of reactive oxygen species

    PubMed Central

    Lee, Mi Jin; Lee, Seung Jun; Yun, Su Jin; Jang, Ji-Young; Kang, Hangoo; Kim, Kyongmin; Choi, In-Hong; Park, Sun

    2016-01-01

    The silver nanoparticle (AgNP) is a candidate for anticancer therapy because of its effects on cell survival and signaling. Although numerous reports are available regarding their effect on cell death, the effect of AgNPs on metabolism is not well understood. In this study, we investigated the effect of AgNPs on glucose metabolism in hepatoma cell lines. Lactate release from both HepG2 and Huh7 cells was reduced with 5 nm AgNPs as early as 1 hour after treatment, when cell death did not occur. Treatment with 5 nm AgNPs decreased glucose consumption in HepG2 cells but not in Huh7 cells. Treatment with 5 nm AgNPs reduced nuclear factor erythroid 2-like 2 expression in both cell types without affecting its activation at the early time points after AgNPs’ treatment. Increased reactive oxygen species (ROS) production was detected 1 hour after 5 nm AgNPs’ treatment, and lactate release was restored in the presence of an ROS scavenger. Our results suggest that 5 nm AgNPs affect glucose metabolism by producing ROS. PMID:26730190

  4. Dexamethasone blocks arachidonate biosynthesis in isolated hepatocytes and cultured hepatoma cells

    SciTech Connect

    Marra, C.A.; de Alaniz, M.J.; Brenner, R.R.

    1986-03-01

    The effect of dexamethasone on the incorporation and conversion of (1-14C)eicosa-8,11,14-trienoic acid to arachidonic acid in isolated hepatocytes and in hepatoma tissue culture (HTC) cells was studied. In both kinds of cells, no changes in the exogenous acid incorporation were found when the hormone was added to the incubation media at 0.1 or 0.2 mM concentration, while the biosynthesis of arachidonic acid was significantly depressed. The effect on the biosynthesis was faster in isolated normal liver cells (60 min) than in tumoral cells (120 min) and reached an inhibition of ca. 50% after 3 hr of treatment. The addition of cycloheximide (10(-6) M) also caused a marked decrease in the biosynthesis of this polyunsaturated fatty acid, but when dexamethasone was added to the media simultaneously with cycloheximide, a synergistic action was not observed. The results obtained show that protein synthesis would be involved in the modulation of the biosynthesis of arachidonic acid by glucocorticoids. The changes in the delta 5 desaturation of labeled 20:3 omega 6 to arachidonic acid correlated with changes in the fatty acid composition in isolated cells.

  5. Silver nanoparticles affect glucose metabolism in hepatoma cells through production of reactive oxygen species.

    PubMed

    Lee, Mi Jin; Lee, Seung Jun; Yun, Su Jin; Jang, Ji-Young; Kang, Hangoo; Kim, Kyongmin; Choi, In-Hong; Park, Sun

    2016-01-01

    The silver nanoparticle (AgNP) is a candidate for anticancer therapy because of its effects on cell survival and signaling. Although numerous reports are available regarding their effect on cell death, the effect of AgNPs on metabolism is not well understood. In this study, we investigated the effect of AgNPs on glucose metabolism in hepatoma cell lines. Lactate release from both HepG2 and Huh7 cells was reduced with 5 nm AgNPs as early as 1 hour after treatment, when cell death did not occur. Treatment with 5 nm AgNPs decreased glucose consumption in HepG2 cells but not in Huh7 cells. Treatment with 5 nm AgNPs reduced nuclear factor erythroid 2-like 2 expression in both cell types without affecting its activation at the early time points after AgNPs' treatment. Increased reactive oxygen species (ROS) production was detected 1 hour after 5 nm AgNPs' treatment, and lactate release was restored in the presence of an ROS scavenger. Our results suggest that 5 nm AgNPs affect glucose metabolism by producing ROS.

  6. Reculation of folylpolyglutamate synthetase in extracts of H35 hepatoma cells

    SciTech Connect

    Johnson, T.B.; Galivan, J.; Nair, M.G. )

    1987-05-01

    Folylpolyglutamate synthetase (FPGS) in extracts of H35 hepatoma cells was assayed using 250 {mu}M methotrexate (MTX) as the substrate under conditions where ({sup 3}H)glutamate incorporation was linear with respect to time and rotein concentration. Extracts from confluent cultures with reduced cellular folates exhibited nearly 1.7-fold higher FPGS specific activity than extracts of control cultures (600 pmol/hr/mg). Extracts of rapidly dividing cells (72 hrs) showed nearly a 2.3-fold increase. The addition of reduced exogenous folates such as folinic acid and 5-methyltetrahydrofolate (20 {mu}M, 24 hrs) to confluent cultures of folate-depleted cells typically lowered the FPGS activity in the resultant extracts by 40%, while a 42-hour exclusion of methionine from the media reduced the activity by half. The combination of methionine exclusion and folate addition for 42 hrs resulted in 75% lower FPGS activity vs extracts of control cultures of folate-depleted cells. These data suggest that the change sin the glutamylation rate of MTX in whole cells due to culture conditions such as folate restriction, reduced folate addition, methionine exclusion, and growth state are at least in part a consequence of alterations in FPGS activity. Using MTX or N{sup 10}-propargyl-5,8-dideazafolic acid (CB3717) as the starting substrate under appropriate assay conditions, FPGS from extracts catalyzed the formation of similar polyglutamate products as seen in analogous whole cell experiments.

  7. Glycolysis inhibitor 2-deoxy-D-glucose suppresses carcinogen-induced rat hepatocarcinogenesis by restricting cancer cell metabolism.

    PubMed

    Wang, Zhaofa; Zhang, Liming; Zhang, Dong; Sun, Rongsheng; Wang, Qingyan; Liu, Xinyi

    2015-03-01

    The abnormal metabolism of cancer cells is a crucial feature of tumors and provides promising therapeutic targets for cancer treatments. Aerobic glycolysis in cancer cells, termed the Warburg effect, is a highlighted characteristic of cancer‑specific metabolism. However, the effect of glycolysis inhibition on hepatocarcinogenesis remains to be elucidated. In the present study, the effects of the glycolysis inhibitor 2‑deoxy‑D‑glucose (2‑DG) on the N‑diethylnitrosamine (DEN)‑induced rat hepatocarcinoma model and its underlying mechanisms were investigated. It was observed that 2‑DG significantly delayed hepatocarcinogenesis and effectively prolonged survival time in the DEN‑treated rats. The glycolysis inhibitor, 2‑DG prominently decreased cell proliferation and increased cell apoptosis in the DEN‑induced rat hepatoma and had no evident impact on the pericarcinomatous liver tissues. Further investigation revealed that 2‑DG resulted in a reduction of glycolysis products, the compensatory increase of hexokinase 2 expression and a decrease in 6‑phosphofructo‑2‑kinase, pyruvate kinase M2 and lactate dehydrogenase A expression in the hepatoma tissues. The inhibition of glycolysis further suppressed the tricarboxylic acid cycle, fatty acid and cholesterol biosynthesis and ATP production, while it promoted autophagic activation. In addition, the in vitro study demonstrated that hypoxia, an important factor in the tumor microenvironment, may assist in increasing 2‑DG‑induced inhibition of cell viability, cell cycle retardation and the decrease of colony formation ability in hepatoma cells. Taken together, the present results suggested that 2‑DG may inhibit hepatocarcinogenesis in the DEN‑treated rats via restricting cancer cell metabolism. This finding provides a promising measure in the prevention and treatment of hepatoma.

  8. Single-walled carbon nanohorn (SWNH) aggregates inhibited proliferation of human liver cell lines and promoted apoptosis, especially for hepatoma cell lines

    PubMed Central

    Zhang, Jinqian; Sun, Qiang; Bo, Jian; Huang, Rui; Zhang, Mengran; Xia, Zhenglin; Ju, Lili; Xiang, Guoan

    2014-01-01

    Single-walled carbon nanohorns (SWNHs) may be useful as carriers for anticancer drugs due to their particular structure. However, the interactions between the material itself and cancerous or normal cells have seldom been studied. To address this problem, the effects of raw SWNH material on the biological functions of human liver cell lines were studied. Our results showed that unmodified SWNHs inhibited mitotic entry, growth, and proliferation of human liver cell lines and promoted their apoptosis, especially in hepatoma cell lines. Individual spherical SWNH particles were found inside the nuclei of human hepatoma HepG2 cells and the lysosomes of normal human liver L02 cells, implying that SWNH particles could penetrate into human liver cells_and the different interacted mechanisms on human normal cell lines compared to hepatoma cell lines. Further research on the mechanisms and application in treatment of hepatocellular carcinoma with SWNHs is needed. PMID:24523586

  9. Autophagy inhibition contributes to the synergistic interaction between EGCG and doxorubicin to kill the hepatoma Hep3B cells.

    PubMed

    Chen, Li; Ye, Hui-Lan; Zhang, Guo; Yao, Wen-Min; Chen, Xing-Zhou; Zhang, Fa-Can; Liang, Gang

    2014-01-01

    (-)-Epigallocatechin-3-O-gallate(EGCG), the highest catechins from green tea, has promisingly been found to sensitize the efficacy of several chemotherapy agents like doxorubicin (DOX) in hepatocellular carcinoma (HCC) treatment. However, the detailed mechanisms by which EGCG augments the chemotherapeutic efficacy remain unclear. Herein, this study was designed to determine the synergistic impacts of EGCG and DOX on hepatoma cells and particularly to reveal whether the autophagic flux is involved in this combination strategy for the HCC. Electron microscopy and fluorescent microscopy confirmed that DOX significantly increased autophagic vesicles in hepatoma Hep3B cells. Western blot and trypan blue assay showed that the increasing autophagy flux by DOX impaired about 45% of DOX-induced cell death in these cells. Conversely, both qRT-PCR and western blotting showed that EGCG played dose-dependently inhibitory role in autophagy signaling, and that markedly promoted cellular growth inhibition. Amazingly, the combined treatment caused a synergistic effect with 40 to 60% increment on cell death and about 45% augmentation on apoptosis versus monotherapy pattern. The DOX-induced autophagy was abolished by this combination therapy. Rapamycin, an autophagic agonist, substantially impaired the anticancer effect of either DOX or combination with EGCG treatment. On the other hand, using small interference RNA targeting chloroquine autophagy-related gene Atg5 and beclin1 to inhibit autophagy signal, hepatoma cell death was dramatically enhanced. Furthermore, in the established subcutaneous Hep3B cells xenograft tumor model, about 25% reduction in tumor growth as well as 50% increment of apoptotic cells were found in combination therapy compared with DOX alone. In addition, immunohistochemistry analysis indicated that the suppressed tendency of autophagic hallmark microtubule-associated protein light chain 3 (LC3) expressions was consistent with thus combined usage in vitro

  10. The augmented anti-tumor effects of Antrodia camphorata co-fermented with Chinese medicinal herb in human hepatoma cells.

    PubMed

    Li, Shun-Lai; Huang, Zih-Ning; Hsieh, Hsiao-Hui; Yu, Wen-Chun; Tzeng, Win-Yu; Lee, Guo-Yang; Chen, Yi-Peng; Chang, Chia-Yu; Chuu, Jiunn-Jye

    2009-01-01

    Antrodia camphorata, unique fungal specie, has been used as a folk medicine in Taiwan for many years. The purpose of this study was to compare the extracts from the solid-state culture of A. camphorata co-fermented with Chinese medicinal herb (AC-CF) with two other extracts from fruiting bodies (AC-FB) or solid-state culture (AC-SS), for their anti-tumor effects in human hepatoma HepG2 cells. We measured in vitro cell proliferation, percentage of apoptosis, population distribution of cell cycles, Western blot analysis of multiple drugs resistance-1 (MDR-1), and apoptosis-related proteins in HepG2 cells treated with three different preparations of A. camphorate extracts. Our results showed that AC-CF had better anti-proliferation effect on human hepatoma HepG2 cells than AC-FB or AC-SS dose-dependently. In addition, AC-CF in combination with anti-tumor agents (mitomycin C or methotrexate) showed better adjuvant anti-tumor effects than AC-FB or AC-SS. We further demonstrated the augmented adjuvant anti-tumor effects of AC-CF not only through down regulation of MDR-1 expression but also through a COX-2 dependent apoptosis pathway, involving down-regulation of COX-2 and p-AKT and up-regulation of PARP-1. In conclusion, in this study, we have demonstrated a novel strategy of fermenting A. camphorata with Chinese medicinal herb (AC-CF), which augmented their anti-tumor effects in human hepatoma HepG2 cells as compared to the traditional ones (AC-FB or AC-SS).

  11. Downregulation of miR-210 expression inhibits proliferation, induces apoptosis and enhances radiosensitivity in hypoxic human hepatoma cells in vitro

    SciTech Connect

    Yang, Wei; Sun, Ting; Cao, Jianping; Liu, Fenju; Tian, Ye; Zhu, Wei

    2012-05-01

    Hypoxia is a common feature of solid tumors and an important contributor to tumor radioresistance. miR-210 is the most consistently and robustly induced microRNA under hypoxia in different types of tumor cells and normal cells. In the present study, to explore the feasibility of miR-210 as an effective therapeutic target, lentiviral-mediated anti-sense miR-210 gene transfer technique was employed to downregulate miR-210 expression in hypoxic human hepatoma SMMC-7721, HepG2 and HuH7 cells, and phenotypic changes of which were analyzed. Hypoxia led to an increased hypoxia inducible factor-1{alpha} (HIF-1{alpha}) and miR-210 expression and cell arrest in the G{sub 0}/G{sub 1} phase in all cell lines. miR-210 downregulation significantly suppressed cell viability, induced cell arrest in the G{sub 0}/G{sub 1} phase, increased apoptotic rate and enhanced radiosensitivity in hypoxic human hepatoma cells. Moreover, apoptosis-inducing factor, mitochondrion-associated, 3 (AIFM3) was identified as a direct target gene of miR-210. AIFM3 downregulation by siRNA attenuated radiation induced apoptosis in miR-210 downregulated hypoxic human hepatoma cells. Taken together, these data suggest that miR-210 might be a potential therapeutic target and specific inhibition of miR-210 expression in combination with radiotherapy might be expected to exert strong anti-tumor effect on hypoxic human hepatoma cells. -- Highlights: Black-Right-Pointing-Pointer miR-210 downregulation radiosensitized hypoxic hepatoma. Black-Right-Pointing-Pointer AIFM3 was identified as a direct target gene of miR-210. Black-Right-Pointing-Pointer miR-210 might be a therapeutic target to hypoxic hepatoma.

  12. An occult hepatitis B-derived hepatoma cell line carrying persistent nuclear viral DNA and permissive for exogenous hepatitis B virus infection.

    PubMed

    Lin, Chih-Lang; Chien, Rong-Nan; Lin, Shi-Ming; Ke, Po-Yuan; Lin, Chen-Chun; Yeh, Chau-Ting

    2013-01-01

    Occult hepatitis B virus (HBV) infection is defined as persistence of HBV DNA in liver tissues, with or without detectability of HBV DNA in the serum, in individuals with negative serum HBV surface antigen (HBsAg). Despite accumulating evidence suggesting its important clinical roles, the molecular and virological basis of occult hepatitis B remains unclear. In an attempt to establish new hepatoma cell lines, we achieved a new cell line derived from a hepatoma patient with chronic hepatitis C virus (HCV) and occult HBV infection. Characterization of this cell line revealed previously unrecognized properties. Two novel human hepatoma cell lines were established. Hep-Y1 was derived from a male hepatoma patient negative for HCV and HBV infection. Hep-Y2 was derived from a female hepatoma patient suffering from chronic HCV and occult HBV infection. Morphological, cytogenetic and functional studies were performed. Permissiveness to HBV infection was assessed. Both cell lines showed typical hepatocyte-like morphology under phase-contrast and electron microscopy and expressed alpha-fetoprotein, albumin, transferrin, and aldolase B. Cytogenetic analysis revealed extensive chromosomal anomalies. An extrachromosomal form of HBV DNA persisted in the nuclear fraction of Hep-Y2 cells, while no HBsAg was detected in the medium. After treated with 2% dimethyl sulfoxide, both cell lines were permissive for exogenous HBV infection with transient elevation of the replication intermediates in the cytosol with detectable viral antigens by immunoflurescence analysis. In conclusions, we established two new hepatoma cell lines including one from occult HBV infection (Hep-Y2). Both cell lines were permissive for HBV infection. Additionally, Hep-Y2 cells carried persistent extrachromosomal HBV DNA in the nuclei. This cell line could serve as a useful tool to establish the molecular and virological basis of occult HBV infection.

  13. Induction of phenolsulfotransferase expression by phenolic acids in human hepatoma HepG2 cells.

    PubMed

    Yeh, Chi-Tai; Huang, Shang-Ming; Yen, Gow-Chin

    2005-06-15

    Phenolic acids are antioxidant phenolic compounds, widespread in plant foods, which contribute significant biological and pharmacological properties; some have demonstrated a remarkable ability to alter sulfate conjugation. However, the modulation mechanisms of antioxidant phenolic acids on phenolsulfotransferase activity have not yet been described. In the present study, the human hepatoma cell line, HepG2, was used as a model to investigate the effect of antioxidant phenolic acids on enzymatic activity and expression of one of the major phase II sulfate conjugation enzymes, P-form phenolsulfotransferase (PST-P). The results showed that gallic acid, gentisic acid, p-hydroxybenzoic acid, and p-coumaric acid increased PST-P activity, in a dose-dependent manner. A maximum of 4- and 5-fold induction of PST-P activity was observed for both gallic acid and gentisic acid; however, they showed an adverse effect on cell growth at higher concentrations. A 2- or 2.5-fold increase of PST-P activity was found with either p-coumaric or p-hydroxybenzoic acid treatment, whereas no significant effect was found for ferulic acid treatment. PST-P induction, by gallic acid, was further confirmed, using reverse transcription PCR and Western blotting techniques to measure mRNA expression and protein translation. A significant correlation (r = 0.74, p < 0.01) between the expressions of PST-P mRNA and the corresponding PST-P activity was observed. Thus, gallic acid increased PST-P protein expression in HepG2 cells, in a dose- and time-dependent manner. The results demonstrated that certain antioxidant phenolic acids could induce PST-P activity in HepG2 cells, by promoting PST-P mRNA and protein expression, suggesting a novel mechanism by which phenolic acids may be implicated in phase II sulfate conjugation.

  14. Genetic analysis of a transcriptional activation pathway by using hepatoma cell variants.

    PubMed Central

    Bulla, G A; Fournier, R E

    1994-01-01

    A hierarchy of liver-enriched transcription factors plays an important role in activating expression of many hepatic genes. In particular, hepatocyte nuclear factor 4 (HNF-4) is a major activator of the gene encoding HNF-1, and HNF-1 itself activates expression of more than 20 liver genes. To dissect this activation pathway genetically, we prepared somatic cell variants that were deficient in expression of the liver-specific alpha 1-antitrypsin (alpha 1AT) gene, which requires both HNF-1 and HNF-4 for high-level gene activity. This was accomplished in two steps. First, hepatoma transfectants that stably expressed two selectable markers under alpha 1AT promoter control were prepared; second, variant sublines that could no longer express either transgene were isolated by direct selection. In this report, we demonstrate that the variants contain defects in the HNF-4/HNF-1 activation pathway. These defects functioned in trans, as expression of many liver genes was affected, but the variant phenotypes were recessive to wild type in somatic cell hybrids. Three different variant classes could be discriminated by their phenotypic responses to ectopic expression of either HNF-4 or HNF-1. Two variant clones appeared specifically deficient in HNF-4 expression, as transfection with an HNF-4 expression cassette fully restored their hepatic phenotypes. Another line activated HNF-1 in response to forced HNF-4 expression, but activation of downstream genes failed to occur. One clone was unresponsive to either HNF-1 or HNF-4. Using the variants, we demonstrate further that the chromosomal genes encoding alpha 1AT, aldolase B, and alpha-fibrinogen display strict requirements for HNF-1 activation in vivo, while other liver genes were unaffected by the presence or absence of HNF-1 or HNF-4. We also provide evidence for the existence of an autoregulatory loop in which HNF-1 regulates its own expression through activation of HNF-4. Images PMID:7935424

  15. Zinc protoporphyrin IX enhances chemotherapeutic response of hepatoma cells to cisplatin

    PubMed Central

    Liu, Yang-Sui; Li, Huan-Song; Qi, Dun-Feng; Zhang, Jun; Jiang, Xin-Chun; Shi, Kui; Zhang, Xiao-Jun; Zhang, Xin-Hui

    2014-01-01

    AIM: To investigate the effect of zinc protoporphyrin IX on the response of hepatoma cells to cisplatin and the possible mechanism involved. METHODS: Cytotoxicity was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Apoptosis was determined by a flow cytometric assay. Western blotting was used to measure protein expression. Heme oxygenase (HO)-1 activity was measured by determining the level of bilirubin generated in isolated microsomes. Reactive oxygen species (ROS) production was monitored by flow cytometry. Caspase-3 activity was measured with a colorimetric assay kit. Mice were inoculated with 1 × 107 tumor cells subcutaneously into the right flanks. All mice were sacrificed 6 wk after the first treatment and tumors were weighed and measured. RESULTS: Overexpression of HO-1 in HepG2 cell line was associated with increased chemoresistance to cis-diaminedichloroplatinum (cisplatin; CDDP) compared to other cell lines in vitro. Inhibition of HO-1 expression or activity by zinc protoporphyrin IX (ZnPP IX) markedly augmented CDDP-mediated cytotoxicity towards all liver cancer cell lines in vitro and in vivo. In contrast, induction of HO-1 with hemin increased resistance of tumor cells to CDDP-mediated cytotoxicity in vitro and in vivo. Furthermore, cells treated with ZnPP IX plus CDDP exhibited marked production of intracellular ROS and caspase-3 activity, which paralleled the incidence of cell apoptosis, whereas hemin decreased cellular ROS and caspase-3 activity induced by CDDP. CONCLUSION: ZnPP IX increases cellular sensitivity and susceptibility of liver cancer cell lines to CDDP and this may represent a mechanism of increasing ROS. PMID:25024611

  16. Apoptosis of hepatoma cells SMMC-7721 induced by Ginkgo biloba seed polysaccharide

    PubMed Central

    Chen, Qun; Yang, Gui-Wen; An, Li-Guo

    2002-01-01

    AIM: To study the apoptosis of hepatoma cells SMMC-7721 induced by polysaccharide isolated from Ginkgo biloba seed. METHODS: Ginkgo biloba seed polysaccharide (GBSP) was isolated by ethanol fractionation of Ginkgo biloba seed and purified by Sephadex G-200 chromatography. The purity of GBSP was verified by reaction with iodine-potassium iodide and ninhydrin and confirmed by UV spectrophotometer, cellulose acetate membrane electrophoresis and Sepharose 4B gel filtration chromatography. The Scanning Electron Microscope (SEM) and Flow Cytometry (FCM) were used to examine the SMMC-7721 cells with and without GBSP treatment at 500 mg/mL for 36 h. RESULTS: GBSP product obtained was of high purity with the average molecular weight of 1.86 × 105. Quantitative analysis of SMMC-7721 cells in vitro with FCM showed that the percentages of G2-M cells without and with GBSP treatment were 17.01% ± 1.28% and 11.77% ± 1.50% (P < 0.05), the debris ratio of the cells were 0.46% ± 0.12% and 0.06% ± 0.06% (P < 0.01), and the apoptosis ratio of cells was 3.84% ± 0.55% and 9.13% ± 1.48% (P < 0.01) respectively. Following GBSP treatment, microvilli of SMMC-7721 cells appeared thinner and the number of spherical cells increased markedly. Most significantly, the apoptosis bodies were formed on and around the spherical cells treated with GBSP. CONCLUSION: GBSP could potentially induce the apoptosis of SMMC-7721 cells. PMID:12378625

  17. Vanadium compounds discriminate hepatoma and normal hepatic cells by differential regulation of reactive oxygen species.

    PubMed

    Wang, Qin; Liu, Tong-Tong; Fu, Ying; Wang, Kui; Yang, Xiao-Gai

    2010-09-01

    Our previous study indicated that vanadium compounds can block cell cycle progression at the G1/S phase in human hepatoma HepG2 cells via a highly activated extracellular signal-regulated protein kinase (ERK) signal. To explore their differential action on normal cells, we investigated the response of an immortalized hepatic cell line, L02 cells. The results demonstrated that a higher concentration of vanadium compounds was needed to inhibit L02 proliferation, which was associated with S and G2/M cell cycle arrest. In addition, in contrast to insignificant reactive oxygen species (ROS) generation in HepG2 cells, all of the vanadium compounds resulted significant increases in both O2.- and H2O2 levels in L02 cells. At the same time, ERK and c-Jun N-terminal kinase (JNK) as well as cell division control protein 2 homolog (Cdc2) were found to be highly phosphorylated, which could be counteracted with the antioxidant N-acetylcysteine (NAC). The current study also demonstrated that both the ERK and the JNK pathways contributed to the cell cycle arrest induced by vanadium compounds in L02 cells. More importantly, it was found that although NAC can ameliorate the cytotoxicity of vanadium compounds in L02 cells, it did not decrease their cytotoxicity in HepG2 cells. It thus shed light on the potential therapeutic applications of vanadium compounds with antioxidants as synergistic agents to reduce their toxicities in human normal cells without affecting their antitumor activities in cancer cells.

  18. Transcriptional regulation of human paraoxonase 1 by PXR and GR in human hepatoma cells.

    PubMed

    Ponce-Ruiz, N; Rojas-García, A E; Barrón-Vivanco, B S; Elizondo, G; Bernal-Hernández, Y Y; Mejía-García, A; Medina-Díaz, I M

    2015-12-25

    Human paraoxonase 1 (PON1) is A-esterase synthesized in the liver and secreted into the plasma, where it associates with HDL. PON1 acts as an antioxidant preventing lipid oxidation and detoxifies a wide range of substrates, including organophosphate compounds. The variability of PON1 (enzyme activity/serum levels) has been attributed to internal and external factors. However, the molecular mechanisms involved in the transcriptional regulation of PON1 have not been well-studied. The aim of this study was to evaluate and characterize the transcriptional activation of PON1 by nuclear receptors (NR) in human hepatoma cells. In silico analysis was performed on the promoter region of PON1 to determine the response elements of NR. Real-time PCR was used to evaluate the effect of specific NR ligands on the mRNA levels of genes regulated by NR and PON1. The results indicated that NR response elements had 95% homology to pregnenolone (PXR), glucocorticoids (GR), retinoic acid (RXR) and peroxisomes proliferator-activated receptor alpha (PPARα). Treatments with Dexamethasone (GR ligand), Rifampicin (PXR ligand) and TCDD (AhR ligand) increased the mRNA levels of PON1 at 24 and 48 h. We showed that the activation of GR by Dexamethasone results in PON1 gene induction accompanied by an increase in activity levels. In conclusion, these results demonstrate that GR regulates PON1 gene transcription through directly binding to NR response elements at -95 to -628 bp of the PON1 promoter. This study suggests new molecular mechanisms for the transcriptional regulation of PON1 through a process involving the activation of PXR.

  19. Hepatoma-derived growth factor regulates breast cancer cell invasion by modulating epithelial--mesenchymal transition.

    PubMed

    Chen, San-Cher; Kung, Mei-Lang; Hu, Tsung-Hui; Chen, Hsuan-Yu; Wu, Jian-Ching; Kuo, Hsiao-Mei; Tsai, Han-En; Lin, Yu-Wei; Wen, Zhi-Hong; Liu, Jong-Kang; Yeh, Ming-Hsin; Tai, Ming-Hong

    2012-10-01

    Hepatoma-derived growth factor (HDGF) participates in tumourigenesis but its role in breast cancer is unclear. We set out to elucidate the expression profile and function of HDGF during breast carcinogenesis. Immunoblot and immunohistochemical studies revealed elevated HDGF expression in human breast cancer cell lines and tissues. Nuclear HDGF labelling index was positively correlated with tumour grade, stage and proliferation index, but negatively correlated with survival rate in breast cancer patients. HDGF over-expression was associated with lymph node metastasis and represented an independent prognostic factor for tumour recurrence. Gene transfer studies were performed to elucidate the influence of cellular HDGF level on the malignant behaviour and epithelial-mesenchymal transition (EMT) of breast cancer cells. Adenovirus-mediated HDGF over-expression stimulated the invasiveness and colony formation of MCF-7 cells. Moreover, HDGF over-expression promoted breast cancer cell EMT by E-cadherin down-regulation and vimentin up-regulation. Conversely, HDGF knockdown by RNA interference in MDA-MB-231 cells attenuated the malignant behaviour and elicited EMT reversal by enhancing E-cadherin expression while depleting vimentin expression. Because HDGF is a secreted protein, we evaluated the cellular function of recombinant HDGF and found that exogenously supplied HDGF enhanced the invasiveness of breast cancer cells by down-regulating E-cadherin and up-regulating vimentin at transcriptional and translational levels. In contrast, blockade of HDGF secretion with an HDGF antibody inhibited the malignant behaviours and EMT. Finally, exogenous HDGF partially reversed benzyl isothiocyanate (BITC)-induced EMT suppression. HDGF over-expression may exert a prognostic role for tumour metastasis and recurrence in breast cancer by modulating EMT. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  20. Thyroid hormone receptor inhibits hepatoma cell migration through transcriptional activation of Dickkopf 4

    SciTech Connect

    Chi, Hsiang-Cheng; Liao, Chen-Hsin; Huang, Ya-Hui; Wu, Sheng-Ming; Tsai, Chung-Ying; Liao, Chia-Jung; Tseng, Yi-Hsin; Lin, Yang-Hsiang; Chen, Cheng-Yi; Chung, I-Hsiao; Wu, Tzu-I; Chen, Wei-Jan; Lin, Kwang-Huei

    2013-09-13

    Highlights: •T{sub 3} affects DKK4 mRNA and protein expression in HepG2-TR cells. •Regulation of DKK4 by T{sub 3} is at transcriptional level. •DKK4 overexpression suppresses hepatoma cell metastasis. -- Abstract: Triiodothyronine (T{sub 3}) is a potent form of thyroid hormone mediates several physiological processes including cellular growth, development, and differentiation via binding to the nuclear thyroid hormone receptor (TR). Recent studies have demonstrated critical roles of T{sub 3}/TR in tumor progression. Moreover, long-term hypothyroidism appears to be associated with the incidence of human hepatocellular carcinoma (HCC), independent of other major HCC risk factors. Dickkopf (DKK) 4, a secreted protein that antagonizes the canonical Wnt signaling pathway, is induced by T{sub 3} at both mRNA and protein levels in HCC cell lines. However, the mechanism underlying T{sub 3}-mediated regulation of DKK4 remains unknown. In the present study, the 5′ promoter region of DKK4 was serially deleted, and the reporter assay performed to localize the T{sub 3} response element (TRE). Consequently, we identified an atypical direct repeat TRE between nucleotides −1645 and −1629 conferring T{sub 3} responsiveness to the DKK4 gene. This region was further validated using chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assay (EMSA). Stable DKK4 overexpression in SK-Hep-1 cells suppressed cell invasion and metastatic potential, both in vivo andin vitro, via reduction of matrix metalloproteinase-2 (MMP-2) expression. Our findings collectively suggest that DKK4 upregulated by T{sub 3}/TR antagonizes the Wnt signal pathway to suppress tumor cell progression, thus providing new insights into the molecular mechanism underlying thyroid hormone activity in HCC.

  1. Synergistic effects of acyclic retinoid and OSI-461 on growth inhibition and gene expression in human hepatoma cells.

    PubMed

    Shimizu, Masahito; Suzui, Masumi; Deguchi, Atsuko; Lim, Jin T E; Xiao, Danhua; Hayes, Julia H; Papadopoulos, Kyriakos P; Weinstein, I Bernard

    2004-10-01

    Hepatoma is one of the most frequently occurring cancers worldwide. However, effective chemotherapeutic agents for this disease have not been developed. Acyclic retinoid, a novel synthetic retinoid, can reduce the incidence of postsurgical recurrence of hepatoma and improve the survival rate. OSI-461, a potent derivative of exisulind, can increase intracellular levels of cyclic GMP, which leads to activation of protein kinase G and induction of apoptosis in cancer cells. In the present study, we examined the combined effects of acyclic retinoid plus OSI-461 in the HepG2 human hepatoma cell line. We found that the combination of as little as 1.0 micromol/L acyclic retinoid and 0.01 micromol/L OSI-461 exerted synergistic inhibition of the growth of HepG2 cells. Combined treatment with low concentrations of these two agents also acted synergistically to induce apoptosis in HepG2 cells through induction of Bax and Apaf-1, reduction of Bcl-2 and Bcl-xL, and activation of caspase-3, -8, and -9. OSI-461 enhanced the G0-G1 arrest caused by acyclic retinoid, and the combination of these agents caused a synergistic decrease in the levels of expression of cyclin D1 protein and mRNA, inhibited cyclin D1 promoter activity, decreased the level of hyperphosphorylated forms of the Rb protein, induced increased cellular levels of the p21(CIP1) protein and mRNA, and stimulated p21(CIP1) promoter activity. Moreover, OSI-461 enhanced the ability of acyclic retinoid to induce increased cellular levels of retinoic acid receptor beta and to stimulate retinoic acid response element-chloramphenicol acetyltransferase activity. A hypothetical model involving concerted effects on p21(CIP1) and retinoic acid receptor beta expression is proposed to explain these synergistic effects. Our results suggest that the combination of acyclic retinoid plus OSI-461 might be an effective regimen for the chemoprevention and chemotherapy of human hepatoma and possibly other malignancies.

  2. Differentially profiling the low-expression transcriptomes of human hepatoma using a novel SSH/microarray approach

    PubMed Central

    Pan, Yi-Shin; Lee, Yun-Shien; Lee, Yung-Lin; Lee, Wei-Chen; Hsieh, Sen-Yung

    2006-01-01

    Background The main limitation in performing genome-wide gene-expression profiling is the assay of low-expression genes. Approaches with high throughput and high sensitivity for assaying low-expression transcripts are urgently needed for functional genomic studies. Combination of the suppressive subtractive hybridization (SSH) and cDNA microarray techniques using the subtracted cDNA clones as probes printed on chips has greatly improved the efficiency for fishing out the differentially expressed clones and has been used before. However, it remains tedious and inefficient sequencing works for identifying genes including the great number of redundancy in the subtracted amplicons, and sacrifices the original advantages of high sensitivity of SSH in profiling low-expression transcriptomes. Results We modified the previous combination of SSH and microarray methods by directly using the subtracted amplicons as targets to hybridize the pre-made cDNA microarrays (named as "SSH/microarray"). mRNA prepared from three pairs of hepatoma and non-hepatoma liver tissues was subjected to the SSH/microarray assays, as well as directly to regular cDNA microarray assays for comparison. As compared to the original SSH and microarray combination assays, the modified SSH/microarray assays allowed for much easier inspection of the subtraction efficiency and identification of genes in the subtracted amplicons without tedious and inefficient sequencing work. On the other hand, 5015 of the 9376 genes originally filtered out by the regular cDNA microarray assays because of low expression became analyzable by the SSH/microarray assays. Moreover, the SSH/microarray assays detected about ten times more (701 vs. 69) HCC differentially expressed genes (at least a two-fold difference and P < 0.01), particularly for those with rare transcripts, than did the regular cDNA microarray assays. The differential expression was validated in 9 randomly selected genes in 18 pairs of hepatoma/non-hepatoma

  3. Interleukin-18 Down-Regulates Multidrug Resistance-Associated Protein 2 Expression through Farnesoid X Receptor Associated with Nuclear Factor Kappa B and Yin Yang 1 in Human Hepatoma HepG2 Cells.

    PubMed

    Liu, Xiao-cong; Lian, Wei; Zhang, Liang-jun; Feng, Xin-chan; Gao, Yu; Li, Shao-xue; Liu, Chang; Cheng, Ying; Yang, Long; Wang, Xiao-Juan; Chen, Lei; Wang, Rong-quan; Chai, Jin; Chen, Wen-sheng

    2015-01-01

    Multidrug resistance-associated protein 2 (MRP2) plays an important role in bile acid metabolism by transporting toxic organic anion conjugates, including conjugated bilirubin, glutathione, sulfate, and multifarious drugs. MRP2 expression is reduced in cholestatic patients and rodents. However, the molecular mechanism of MRP2 down-regulation remains elusive. In this report, we treated human hepatoma HepG2 cells with interleukin-18 (IL-18) and measured the expression of MRP2, nuclear factor kappa B (NF-κB), farnesoid X receptor (FXR), and the transcription factor Yin Yang 1 (YY1) by quantitative real-time quantitative polymerase chain reaction (PCR) and western blotting. We found that expression of MRP2 was repressed by IL-18 at both the mRNA and protein levels in a dose- and time-dependent manner. Furthermore, the activated NF-κB pathway increased YY1 and reduced FXR. These changes were all attenuated in HepG2 cells with knockdown of the NF-κB subunit, p65. The reduced expression of FXR and MRP2 in HepG2 cells that had been caused by IL-18 treatment was also attenuated by YY1 knockdown. We further observed significantly elevated IL-18, NF-κB, and YY1 expression and decreased FXR and MRP2 expression in bile duct-ligated Sprague Dawley rat livers. Chromatin immunoprecipitation assays also showed that FXR bound to the promoter region in MRP2 was less abundant in liver extracts from bile duct-ligated rats than sham-operated rats. Our findings indicate that IL-18 down-regulates MRP2 expression through the nuclear receptor FXR in HepG2 cells, and may be mediated by NF-κB and YY1.

  4. Role of CCK-A receptor in the regulation of pancreatic bicarbonate secretion in conscious rats: a study in naturally occurring CCK-A receptor gene knockout rats.

    PubMed

    Miyasaka, K; Suzuki, S; Kanai, S; Masuda, M; Funakoshi, A

    1999-10-01

    Whether cholecystokinin (CCK) has a direct action on duct cells and the role of CCK-A receptor in bicarbonate secretion were examined by comparing the results obtained from OLETF (CCK-A receptor-deficient rats) and control (LETO) rats. Rats were prepared with cannulae for draining bile and pancreatic juice separately, with two duodenal cannulae and an external jugular vein cannula. The experiments were conducted without anesthesia. The responses of bicarbonate secretion to intravenous infusion of CCK, acetyl-beta-methylcholine (Ach), and 2-deoxy-D-glucose (2DG), and to intraduodenal infusion of HCl and a liquid meal were examined. To examine the synergistic effect between CCK and secretin, the effect of CCK during a background secretin infusion was examined in LETO rats. CCK did not stimulate bicarbonate secretion in either strain, nor in LETO rats with secretin infusion. When gastric acid secretion was prevented by administration of omeprazole, Ach did not increase bicarbonate secretion, but 2DG did in both strains. Intraduodenal infusion of HCI and a liquid meal significantly increased bicarbonate secretion in both strains; however, the responses were much less in OLETF than LETO rats. In conclusion, intravenous injection of CCK did not stimulate bicarbonate secretion, and the lack of CCK-A receptor decreased bicarbonate secretion in response to luminal stimulants.

  5. Apoptosis-inducing activity of cisplatin (CDDP) against human hepatoma and oral squamous cell carcinoma cell lines.

    PubMed

    Okamura, Masahiko; Hashimoto, Ken; Shimada, Jun; Sakagami, Hiroshi

    2004-01-01

    The sensitivity of human hepatoma (HepG2) and oral squamous cell carcinoma (HSC-2) cell lines against various apoptosis-inducing agents was compared. HepG2 cells were generally more resistant to an oxidant (H2O2), antioxidants (sodium ascorbate, gallic acid, epigallocatechin gallate) and anticancer drugs (doxorubicin, methotrexate, cisplatin (CDDP), etoposide, 5-fluoro-2,4(1H,3H)-pyrimidinedione (5-FU), peplomycin sulfate) as compared to HSC-2 cells. Lower concentrations of CDDP, but not other anticancer drugs, induced comparable cytostatic effects on both HSC-2 and HepG2 cells. CDDP induced internucleosomal DNA fragmentation and activation of caspases 3, 8 and 9 in HepG2 cells. On the other hand, CDDP did not induce DNA fragmentation and activated caspase 3 only marginally in HSC-2 cells. Combination treatment with CDDP (10 microM) and 5-FU (100 microM) additively activated all three caspases in HepG2 cells, but not in HSC-2 cells. The present study demonstrated the chemotherapeutic potential of combined treatment of CDDP and 5-FU against hepatoma cells and the considerable variation of drug sensitivity between cancer cell lines.

  6. Activation of AMPK/MnSOD signaling mediates anti-apoptotic effect of hepatitis B virus in hepatoma cells

    PubMed Central

    Li, Lei; Hong, Hong-Hai; Chen, Shi-Ping; Ma, Cai-Qi; Liu, Han-Yan; Yao, Ya-Chao

    2016-01-01

    AIM: To investigate the anti-apoptotic capability of the hepatitis B virus (HBV) in the HepG2 hepatoma cell line and the underlying mechanisms. METHODS: Cell viability and apoptosis were measured by MTT assay and flow cytometry, respectively. Targeted knockdown of manganese superoxide dismutase (MnSOD), AMP-activated protein kinase (AMPK) and hepatitis B virus X protein (HBx) genes as well as AMPK agonist AICAR and antagonist compound C were employed to determine the correlations of expression of these genes. RESULTS: HBV markedly protected the hepatoma cells from growth suppression and cell death in the condition of serum deprivation. A decrease of superoxide anion production accompanied with an increase of MnSOD expression and activity was found in HepG2.215 cells. Moreover, AMPK activation contributed to the up-regulation of MnSOD. HBx protein was identified to induce the expression of AMPK and MnSOD. CONCLUSION: Our results suggest that HBV suppresses mitochondrial superoxide level and exerts an anti-apoptotic effect by activating AMPK/MnSOD signaling pathway, which may provide a novel pharmacological strategy to prevent HCC. PMID:27158203

  7. Active compounds from Saussurea lappa Clarks that suppress hepatitis B virus surface antigen gene expression in human hepatoma cells.

    PubMed

    Chen, H C; Chou, C K; Lee, S D; Wang, J C; Yeh, S F

    1995-05-01

    We have examined the antiviral activity of the crude extract prepared from the root of Saussurea lappa Clarks, a Chinese medicinal herb which is widely used for many illnesses including cancer. Two active components, costunolide and dehydrocostus lactone, were identified which show strong suppressive effect on the expression of the hepatitis B surface antigen (HBsAg) in human hepatoma Hep3B cells, but have little effect on the viability of the cells. Both costunolide and dehydrocostus lactone suppress the HBsAg production by Hep3B cells in a dose-dependent manner with IC50s of 1.0 and 2.0 microM, respectively. Northern blotting analysis shows that the suppression of HBsAg gene expression by both costunolide and dehydrocostus lactone were mainly at the mRNA level. Furthermore, the suppressive effect of costunolide and dehydrocostus lactone on HBsAg and hepatitis B e antigen (HBeAg), a marker for hepatitis B viral genome replication in human liver cells, was also observed in another human hepatoma cell line HepA2 which was derived from HepG2 cells by transfecting a tandemly repeat hepatitis B virus (HBV) DNA. Similarly, the mRNA of HBsAg in HepA2 cells was also suppressed by these two compounds. Our findings suggest that costunolide and dehydrocostus lactone may have potential to develop as specific anti-HBV drugs in the future.

  8. Amphiregulin impairs apoptosis-stimulating protein 2 of p53 overexpression-induced apoptosis in hepatoma cells.

    PubMed

    Liu, Kai; Lin, Dongdong; Ouyang, Yabo; Pang, Lijun; Guo, Xianghua; Wang, Shanshan; Zang, Yunjin; Chen, Dexi

    2017-03-01

    Overexpression of apoptosis-stimulating protein 2 of p53 (ASPP2) induces apoptotic cell death in hepatoma cells (e.g. HepG2 cells) by enhancing the transactivation activity of p53, but long-term ASPP2 overexpression fails to induce more apoptosis since activation of the epidermal growth factor/epidermal growth factor receptor/SOS1 pathway impairs the pro-apoptotic role of ASPP2. In this study, in recombinant adenovirus-ASPP2-infected HepG2 cells, ASPP2 overexpression induces amphiregulin expression in a p53-dependent manner. Although amphiregulin initially contributes to ASPP2-induced apoptosis, it eventually impairs the pro-apoptotic function of ASPP2 by activating the epidermal growth factor/epidermal growth factor receptor/SOS1 pathway, leading to apoptosis resistance. Moreover, blocking soluble amphiregulin with a neutralizing antibody also significantly increased apoptotic cell death of HepG2 cells due to treatment with methyl methanesulfonate, cisplatin, or a recombinant p53 adenovirus, suggesting that the function of amphiregulin involved in inhibiting apoptosis may be a common mechanism by which hepatoma cells escape from stimulus-induced apoptosis. Thus, our data elucidate an apoptosis-evasion mechanism in hepatocellular carcinoma and have potential implications for hepatocellular carcinoma therapy.

  9. Critical roles of cellular glutathione homeostasis and jnk activation in andrographolide-mediated apoptotic cell death in human hepatoma cells.

    PubMed

    Ji, Lili; Shen, Kaikai; Jiang, Ping; Morahan, Grant; Wang, Zhengtao

    2011-08-01

    Andrographolide (ANDRO), isolated from the traditional herbal medicine Andrographis paniculata, is reported to have the potential therapeutic effects for hepatocellular carcinoma (HCC) in our previous reports. Here, we investigated the mechanism of ANDRO-mediated apoptotic cell death, focusing on the involvement of cellular reduced glutathione (GSH) homeostasis and c-Jun NH(2) -Terminal kinase (JNK). Buthionine sulfoximine (BSO), an inhibitor of cellular GSH biosynthesis, significantly augmented ANDRO-induced cytotoxicity in hepatoma Hep3B and HepG2 cells. BSO depleted cellular GSH, and augmented ANDRO-induced apoptosis, inhibition of colony formation and JNK activation in Hep3B cells. All these effects could be reversed by GSH monoethyl ester (GSH.EE), whose deacetylation replenishes cellular GSH. BSO also augmented ANDRO-induced activation of apoptosis signal-regulating kinase 1 (ASK1), mitogen-activated protein kinase kinase-4 (MKK4) and c-Jun, which are all up-stream or down-stream signals of JNK. Further results showed that JNK inhibitor SP600125 and 420116 both reversed ANDRO-induced cytotoxicity, and SP600125 also decreased ANDRO-increased intracellular GSH and GCL activity. Finally, we showed that in nude mice bearing xenografted Hep3B tumors, BSO improved the inhibition of tumor growth by ANDRO. Taken together, our results suggest that there is a crosstalk between JNK activation and cellular GSH homeostasis, and ANDRO targets this to induce cytotoxicity in hepatoma cells.

  10. Carnitine palmitoyl transferase activity in Morris Hepatoma 7777 mitochondria and its sensitivity to malonyl CoA inhibition

    SciTech Connect

    Woldegiorgis, G.; Shrago, E.

    1986-05-01

    Earlier reports in the literature have indicated no detectable Carnitine Palymitoyl Transferase (CPT) activity in homogenates prepared from Morris Hepatoma 7777. In its study CPT activity in isolated mitochondria (mito) was measured by butanol extraction of the (/sup 3/H)palmitoyl carnitine formed as outlined by Bremer et al. Contrary to the earlier work where no appreciable activity of CPT was observed the authors find significant levels of CPT (2.6 nMol/min/mg protein) in isolated mito from Morris Hepatoma 7777 (MH 7777). The level of CPT activity observed in MH 7777 mito was, however, 36% lower compared to the host liver CPT activity (4.1 nMol/min/mg protein). The enzyme in MH 7777 mito showed 83% inhibition in the presence of 10 ..mu..M malonyl CoA, in agreement with the degree of sensitivity observed with the host liver isolated mito. On freeze thawing host mito, total CPT activity increased and the sensitivity of the enzyme to malonyl CoA decreased. Frozen thawed MH 7777 mito showed a similar response to malonyl CoA but no change in the total CPT level was observed. The authors results establish for the first time the presence of a malonyl CoA sensitive CPT in MH 7777 mito, which may have slightly different properties from normal due to the membrane environment of the enzyme.

  11. Clinacanthus nutans (Burm. f.) Lindau Ethanol Extract Inhibits Hepatoma in Mice through Upregulation of the Immune Response.

    PubMed

    Huang, Danmin; Guo, Wenjie; Gao, Jing; Chen, Jun; Olatunji, Joshua Opeyemi

    2015-09-18

    Clinacanthans nutans (Burm. f.) Lindau is a popular medicinal vegetable in Southern Asia, and its extracts have displayed significant anti-proliferative effects on cancer cells in vitro. However, the underlying mechanism for this effect has yet to be established. This study investigated the antitumor and immunomodulatory activity of C. nutans (Burm. f.) Lindau 30% ethanol extract (CN30) in vivo. CN30 was prepared and its main components were identified using high-performance liquid chromatography (HPLC) and mass spectrometry (LC/MS/MS). CN30 had a significant inhibitory effect on tumor volume and weight. Hematoxylin and eosin (H & E) staining and TUNEL assay revealed that hepatoma cells underwent significant apoptosis with CN30 treatment, while expression levels of proliferation markers PCNA and p-AKT were significantly decreased when treated with low or high doses of CN30 treatment. Western blot analysis of PAPR, caspase-3, BAX, and Bcl2 also showed that CN30 induced apoptosis in hepatoma cells. Furthermore, intracellular staining analysis showed that CN30 treatment increased the number of IFN-γ⁺ T cells and decreased the number of IL-4⁺ T cells. Serum IFN-γ and interleukin-2 levels also significantly improved. Our findings indicated that CN30 demonstrated antitumor properties by up-regulating the immune response, and warrants further evaluation as a potential therapeutic agent for the treatment and prevention of cancers.

  12. Degradable and biocompatible nanoparticles decorated with cyclic RGD peptide for efficient drug delivery to hepatoma cells in vitro.

    PubMed

    Loyer, Pascal; Bedhouche, Wahib; Huang, Zhi Wei; Cammas-Marion, Sandrine

    2013-10-01

    Amphiphilic derivatives of poly(benzyl malate) were synthesized and characterized with the aim of being used as degradable and biocompatible building blocks for the design of functional nanoparticles (NPs). An anti-cancer model drug, doxorubicin, has been successfully encapsulated into the prepared NPs and its release profile has been evaluated in water and in culture medium. NPs bearing biotin molecules were prepared either for site-specific drug delivery via the targeting of biotin receptors overexpressed on the surface of several cancer cells, or for grafting biotinylated cyclic RGD peptide onto their surface using the strong and highly specific interactions between biotin and the streptavidin protein. We have shown that this binding did not affect dramatically the physico-chemical properties of the corresponding NPs. Cyclic RGD grafted fluorescent NPs were more efficiently uptaken by the HepaRG hepatoma cells than biotinylated fluorescent NPs. Furthermore, the targeting of HepaRG hepatoma cells with NPs bearing cyclic RGD was very efficient and much weaker for HeLa and HT29 cell lines confirming that cyclic RGD is a suitable targeting agent for liver cells. Our results also provide a new mean for rapid screening of short hepatotropic peptides in order to design NPs showing specific liver targeting properties.

  13. Chaga mushroom (Inonotus obliquus) induces G0/G1 arrest and apoptosis in human hepatoma HepG2 cells

    PubMed Central

    Youn, Myung-Ja; Kim, Jin-Kyung; Park, Seong-Yeol; Kim, Yunha; Kim, Se-Jin; Lee, Jin Seok; Chai, Kyu Yun; Kim, Hye-Jung; Cui, Ming-Xun; So, Hong Seob; Kim, Ki-Young; Park, Raekil

    2008-01-01

    AIM: To investigate the anti-proliferative and apoptotic effects of Chaga mushroom (Inonotus obliquus) water extract on human hepatoma cell lines, HepG2 and Hep3B cells. METHODS: The cytotoxicity of Chaga extract was screened by 3-[4,5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) assay. Morphological observation, flow cytometry analysis, Western blot were employed to elucidate the cytotoxic mechanism of Chaga extract. RESULTS: HepG2 cells were more sensitive to Chaga extract than Hep3B cells, as demonstrated by markedly reduced cell viability. Chaga extract inhibited the cell growth in a dose-dependent manner, which was accompanied with G0/G1-phase arrest and apoptotic cell death. In addition, G0/G1 arrest in the cell cycle was closely associated with down-regulation of p53, pRb, p27, cyclins D1, D2, E, cyclin-dependent kinase (Cdk) 2, Cdk4, and Cdk6 expression. CONCLUSION: Chaga mushroom may provide a new therapeutic option, as a potential anticancer agent, in the treatment of hepatoma. PMID:18203281

  14. PPAR{alpha} agonists up-regulate organic cation transporters in rat liver cells

    SciTech Connect

    Luci, Sebastian; Geissler, Stefanie; Koenig, Bettina; Koch, Alexander; Stangl, Gabriele I.; Hirche, Frank; Eder, Klaus . E-mail: klaus.eder@landw.uni-halle.de

    2006-11-24

    It has been shown that clofibrate treatment increases the carnitine concentration in the liver of rats. However, the molecular mechanism is still unknown. In this study, we observed for the first time that treatment of rats with the peroxisome proliferator activated receptor (PPAR)-{alpha} agonist clofibrate increases hepatic mRNA concentrations of organic cation transporters (OCTNs)-1 and -2 which act as transporters of carnitine into the cell. In rat hepatoma (Fao) cells, treatment with WY-14,643 also increased the mRNA concentration of OCTN-2. mRNA concentrations of enzymes involved in carnitine biosynthesis were not altered by treatment with the PPAR{alpha} agonists in livers of rats and in Fao cells. We conclude that PPAR{alpha} agonists increase carnitine concentrations in livers of rats and cells by an increased uptake of carnitine into the cell but not by an increased carnitine biosynthesis.

  15. Involvement of the prostaglandin E receptor EP2 in paeoniflorin-induced human hepatoma cell apoptosis.

    PubMed

    Hu, Shanshan; Sun, Wuyi; Wei, Wei; Wang, Di; Jin, Juan; Wu, Jingjing; Chen, Jingyu; Wu, Huaxun; Wang, Qingtong

    2013-02-01

    Prostaglandin E2 (PGE2) has been shown to play an important role in tumor development and progression. PGE2 mediates its biological activity by binding any one of four prostanoid receptors (EP1 through EP4). The present study was designed to determine the role of the EP2 receptor during the proliferation and apoptosis of human HepG2 and SMMC-7721 hepatoma cell lines and the effect of paeoniflorin, a monoterpene glycoside. The proliferation of HepG2 and SMMC-7721 cells was determined by methyl thiazolyl tetrazolium after exposure to the selective EP2 receptor agonists butaprost and paeoniflorin. Apoptosis of HepG2 and SMMC-7721 cells was also quantified by flow cytometry with annexin V-fluorescein isothiocyanate and propidium iodide staining. The expression levels of Bcl-2 and Bax were quantified by western blotting and immunohistochemistry. The expression of the EP2 receptor and cysteine-aspartic acid protease (caspase)-3 was determined by western blotting. Butaprost significantly increased proliferation in HepG2 and SMMC-7721 cells. Paeoniflorin significantly inhibited the proliferation of HepG2 and SMMC-7721 cells stimulated by butaprost at multiple time points (24, 48, and 72 h). Paeoniflorin induced apoptosis in HepG2 and SMMC-7721 cells, which was quantified by annexin-V and propidium iodide staining. Our results indicate that the expression of the EP2 receptor and Bcl-2 was significantly increased, whereas that of Bax and cleaved caspase-3 was decreased in HepG2 and SMMC-7721 cells after stimulation by butaprost. Paeoniflorin significantly decreased the expression of the EP2 receptor and Bcl-2 and increased Bax and caspase-3 activation in HepG2 and SMMC-7721 cells on addition of butaprost. Our results show that the PGE2 receptor subtype EP2 may play a vital role in the survival of both HepG2 and SMMC-7721 cells. Paeoniflorin, which may be a promising agent in the treatment of liver cancer, induced apoptosis in hepatocellular carcinoma cells by downregulating

  16. Hypoxia on the Expression of Hepatoma Upregulated Protein in Prostate Cancer Cells

    PubMed Central

    Espinoza, Ingrid; Sakiyama, Marcelo J.; Ma, Tangeng; Fair, Logan; Zhou, Xinchun; Hassan, Mohamed; Zabaleta, Jovanny; Gomez, Christian R.

    2016-01-01

    Hepatoma upregulated protein (HURP) is a multifunctional protein with clinical promise. This protein has been demonstrated to be a predictive marker for the outcome in high-risk prostate cancer (PCa) patients, besides being a resistance factor in PCa. Although changes in oxygen tension (pO2) are associated with PCa aggressiveness, the role of hypoxia in the regulation of tumor progression genes such as HURP has not yet been described. We hypothesized that pO2 alteration is involved in the regulation of HURP expression in PCa cells. In the present study, PCa cells were incubated at 2% O2 (hypoxia) and 20% O2 (normoxia) conditions. Hypoxia reduced cell growth rate of PCa cells, when compared to the growth rate of cells cultured under normoxia (p < 0.05). The decrease in cell viability was accompanied by fivefold (p < 0.05) elevated rate of vascular endothelial growth factor (VEGF) release. The expression of VEGF and the hypoxia-inducible metabolic enzyme carbonic anhydrase 9 were elevated maximally nearly 61-fold and 200-fold, respectively (p < 0.05). Noted in two cell lines (LNCaP and C4-2B) and independent of the oxygen levels, HURP expression assessed at both mRNA and protein levels was reduced. However, the decrease was more pronounced in cells cultured under hypoxia (p < 0.05). Interestingly, the analysis of patients’ specimens by Western blot revealed a marked increase of HURP protein (fivefold), when compared to control (cystoprostatectomy) tissue (p < 0.05). Immunohistochemistry analysis showed an increase in the immunostaining intensity of HURP and the hypoxia-sensitive molecules, hypoxia-inducible factor 1-alpha (HIF-1α), VEGF, and heat-shock protein 60 (HSP60) in association with tumor grade. The data also suggested a redistribution of subcellular localization for HURP and HIF-1α from the nucleus to the cytoplasmic compartment in relation to increasing tumor grade. Analysis of HURP Promoter for HIF-1-binding sites revealed presence

  17. Observation of DNA damage of human hepatoma cells irradiated by heavy ions using comet assay

    PubMed Central

    Qiu, Li-Mei; Li, Wen-Jian; Pang, Xin-Yue; Gao, Qing-Xiang; Feng, Yan; Zhou, Li-Bin; Zhang, Gao-Hua

    2003-01-01

    AIM: Now many countries have developed cancer therapy with heavy ions, especially in GSI (Gesellschaft fürSchwerionenforschung mbH, Darmstadt, Germany), remarkable results have obtained, but due to the complexity of particle track structure, the basic theory still needs further researching. In this paper, the genotoxic effects of heavy ions irradiation on SMMC-7721 cells were measured using the single cell gel electrophoresis (comet assay). The information about the DNA damage made by other radiations such as X-ray, γ-ray, UV and fast neutron irradiation is very plentiful, while little work have been done on the heavy ions so far. Hereby we tried to detect the reaction of liver cancer cells to heavy ion using comet assay, meanwhile to establish a database for clinic therapy of cancer with the heavy ions. METHODS: The human hepatoma cells were chosen as the test cell line irradiated by 80Mev/u 20Ne10+ on HIRFL (China), the radiation-doses were 0, 0.5, 1, 2, 4 and 8 Gy, and then comet assay was used immediately to detect the DNA damages, 100-150 cells per dose-sample (30-50 cells were randomly observed at constant depth of the gel). The tail length and the quantity of the cells with the tail were put down. EXCEL was used for statistical analysis. RESULTS: We obtained clear images by comet assay and found that SMMC-7721 cells were all damaged apparently from the dose 0.5 Gy to 8 Gy (t-test: P < 0.001, vs control). The tail length and tail moment increased as the doses increased, and the number of cells with tails increased with increasing doses. When doses were higher than 2 Gy, nearly 100% cells were damaged. Furthermore, both tail length and tail moment, showed linear equation. CONCLUSION: From the clear comet assay images, our experiment proves comet assay can be used to measure DNA damages by heavy ions. Meanwhile DNA damages have a positive correlation with the dose changes of heavy ions and SMMC-7721 cells have a great radiosensitivity to 20Ne10+. Different

  18. Hypoxia on the Expression of Hepatoma Upregulated Protein in Prostate Cancer Cells.

    PubMed

    Espinoza, Ingrid; Sakiyama, Marcelo J; Ma, Tangeng; Fair, Logan; Zhou, Xinchun; Hassan, Mohamed; Zabaleta, Jovanny; Gomez, Christian R

    2016-01-01

    Hepatoma upregulated protein (HURP) is a multifunctional protein with clinical promise. This protein has been demonstrated to be a predictive marker for the outcome in high-risk prostate cancer (PCa) patients, besides being a resistance factor in PCa. Although changes in oxygen tension (pO2) are associated with PCa aggressiveness, the role of hypoxia in the regulation of tumor progression genes such as HURP has not yet been described. We hypothesized that pO2 alteration is involved in the regulation of HURP expression in PCa cells. In the present study, PCa cells were incubated at 2% O2 (hypoxia) and 20% O2 (normoxia) conditions. Hypoxia reduced cell growth rate of PCa cells, when compared to the growth rate of cells cultured under normoxia (p < 0.05). The decrease in cell viability was accompanied by fivefold (p < 0.05) elevated rate of vascular endothelial growth factor (VEGF) release. The expression of VEGF and the hypoxia-inducible metabolic enzyme carbonic anhydrase 9 were elevated maximally nearly 61-fold and 200-fold, respectively (p < 0.05). Noted in two cell lines (LNCaP and C4-2B) and independent of the oxygen levels, HURP expression assessed at both mRNA and protein levels was reduced. However, the decrease was more pronounced in cells cultured under hypoxia (p < 0.05). Interestingly, the analysis of patients' specimens by Western blot revealed a marked increase of HURP protein (fivefold), when compared to control (cystoprostatectomy) tissue (p < 0.05). Immunohistochemistry analysis showed an increase in the immunostaining intensity of HURP and the hypoxia-sensitive molecules, hypoxia-inducible factor 1-alpha (HIF-1α), VEGF, and heat-shock protein 60 (HSP60) in association with tumor grade. The data also suggested a redistribution of subcellular localization for HURP and HIF-1α from the nucleus to the cytoplasmic compartment in relation to increasing tumor grade. Analysis of HURP Promoter for HIF-1-binding sites revealed presence of

  19. The Limonoids TS3 and Rubescin E Induce Apoptosis in Human Hepatoma Cell Lines and Interfere with NF-κB Signaling

    PubMed Central

    Lange, Nicole; Tontsa, Armelle Tsamo; Wegscheid, Claudia; Mkounga, Pierre; Nkengfack, Augustin Ephrem; Sass, Gabriele; Tiegs, Gisa

    2016-01-01

    Hepatocellular carcinoma (HCC) is extremely resistant towards pharmacological therapy. To date, the multi-kinase inhibitor Sorafenib is the only available therapeutic agent with the potential to prolong patient survival. Using the human hepatoma cell lines HepG2 and Huh7, we analyzed anti-cancer activities of 6 purified havanensin type limonoids isolated from the traditional African medicinal plant Trichilia rubescens Oliv. Our results show that two of the compounds, TR4 (TS3) and TR9 (Rubescin E) reduced hepatoma cell viability, but not primary hepatocyte viability, at TC50s of 5 to 10 μM. These were significantly lower than the TC50s for Sorafenib, the histone deacetylase inhibitor SAHA or 5-Fluoruracil. In comparison, TR3 (Rubescin D), a limonoid isolated in parallel and structurally highly similar to TR4 and TR9, did not interfere with hepatoma cell viability. Both, TR4 and TR9, but not TR3, induced apoptosis in hepatoma cells and interfered with NF-κB activation. TR4 as well as TR9 significantly supported anti-cancer activities of Sorafenib. In summary, the limonoids TR4 and TR9 exhibit anti-cancer activities and support Sorafenib effects in vitro, having the potential to support future HCC therapy. PMID:27518192

  20. Co-culture of hepatoma cells with hepatocytic precursor (stem-like) cells inhibits tumor cell growth and invasion by downregulating Akt/NF-κB expression

    PubMed Central

    Sui, Cheng-Jun; Xu, Miao; Li, Wei-Qing; Yang, Jia-Mei; Yan, Hong-Zhu; Liu, Hui-Min; Xia, Chun-Yan; Yu, Hong-Yu

    2016-01-01

    Hepatocytic stem cells (HSCs) have inhibitory effects on hepatocarcinoma cells. The present study investigated the effects of HSC activity in hepatocarcinoma cells in vitro. A Transwell co-culture system of hepatocytic precursor (stem-like) WB-F344 cells and hepatoma CBRH-7919 cells was used to assess HSC activity in metastasized hepatoma cells in vitro. Nude mouse xenografts were used to assess HSC activity in vivo. Co-culture of hepatoma CBRH-7919 cells with WB-F344 cells suppressed the growth and colony formation, tumor cell migration and invasion capacity of CBRH-7919 cells. The nude mouse xenograft assay demonstrated that the xenograft size of CBRH-7919 cells following co-culture with WB-F344 cells was significantly smaller compared with that of control cells. Furthermore, the expression levels of the epithelial markers E-cadherin and β-catenin were downregulated, while the mesenchymal markers α-SMA and vimentin were upregulated. Co-culture of CBRH-7919 cells with WB-F344 cells downregulated NF-κB and phospho-Akt expression. In conclusion, hepatocytic precursor (stem-like) WB-F344 cells inhibited the growth, colony formation and invasion capacity of metastasized hepatoma CBRH-7919 cells in vitro and in vivo by downregulating Akt/NF-κB signaling. PMID:27895771

  1. Sodium butyrate enhances STAT 1 expression in PLC/PRF/5 hepatoma cells and augments their responsiveness to interferon-alpha.

    PubMed

    Hung, W C; Chuang, L Y

    1999-05-01

    Although interferon-alpha (IFN-alpha) has shown great promise in the treatment of chronic viral hepatitis, the anti-tumour effect of this agent in the therapy of liver cancer is unclear. Recent studies have demonstrated that differentiation-inducing agents could modulate the responsiveness of cancer cells to IFN-alpha by regulating the expression of signal transducers and activators of transcription (STAT) proteins, a group of transcription factors which play important roles in the IFN signalling pathway. We have reported that sodium butyrate is a potent differentiation inducer for human hepatoma cells. In this study, we investigated whether this drug could regulate the expression of STAT proteins and enhance the anti-tumour effect of IFN-alpha in hepatoma cells. We found that sodium butyrate specifically activated STAT1 gene expression and enhanced IFN-alpha-induced phosphorylation and activation of STAT1 proteins. Co-treatment with these two drugs led to G1 growth arrest, accompanied by down-regulation of cyclin D1 and up-regulation of p21WAF-1, and accumulation of hypophosphorylated retinoblastoma protein in hepatoma cells. Additionally, internucleosomal DNA fragmentation, a biological hallmark of apoptosis, was detected in hepatoma cells after continuous incubation with a combination of these two drugs for 72 h. Our results show that sodium butyrate potently enhances the anti-tumour effect of IFN-alpha in vitro and suggest that a rational combination of these two drugs may be useful for the treatment of liver cancer.

  2. Exo70 is transcriptionally up-regulated by hepatic nuclear factor 4α and contributes to cell cycle control in hepatoma cells

    PubMed Central

    Zhao, Yujie; Hou, Jihuan; Mi, Panying; Mao, Liyuan; Xu, Liang; Zhang, Youyu; Xiao, Li; Cao, Hanwei; Zhang, Wenqing; Zhang, Bing; Song, Gang; Hu, Tianhui; Zhan, Yan-yan

    2016-01-01

    Exo70, a member of the exocyst complex, is involved in cell exocytosis, migration, invasion and autophagy. However, the expression regulation and function of Exo70 in hepatocellular carcinoma are still poorly understood. In this study, we found Exo70 expression in human hepatoma cells was greatly reduced after knocking down hepatic nuclear factor 4α (HNF4α), the most important and abundant transcription factor in liver. This regulation occurred at the transcriptional level but not post-translational level. HNF4α transactivated Exo70 promoter through directly binding to the HNF4α-response element in this promoter. Cell cycle analysis further revealed that down-regulation of HNF4α and Exo70 was essential to berberine-stimulated G2/M cell cycle arrest in hepatoma cells. Moreover, knocking down either Exo70 or HNF4α induced G2/M phase arrest of hepatoma cells. Exo70 acted downstream of HNF4α to stimulate G2/M transition via increasing Cdc2 expression. Together, our results identify Exo70 as a novel transcriptional target of HNF4α to promote cell cycle progression in hepatoma, thus provide a basis for the development of therapeutic strategies for hepatocellular carcinoma. PMID:26848864

  3. Effect of mitomycin C on the activation of adenylate cyclase in rat ascites hepatoma AH130 cells.

    PubMed

    Miyamoto, K; Matsunaga, T; Sanae, F; Koshiura, R

    1986-09-01

    Isoproterenol (IPN)-stimulated activity of adenylate cyclase was enhanced in a dose-dependent manner by exposure of AH130 cells to mitomycin C (MMC). The enhancement was also observed in prostaglandin E1-, guanine nucleotide analog-, NaF-, cholera toxin- and forskolin-stimulated activities of the enzyme but not in manganese-stimulated activity. In addition, even when the cells pretreated with islet-activating protein were exposed to MMC, IPN-stimulated activity of adenylate cyclase was enhanced. Anaerobic exposure of AH130 cells to MMC somewhat inhibited IPN-stimulated activity of adenylate cyclase in contrast with aerobic exposure. Exposure of cells to adriamycin also caused enhancement of IPN-stimulated activity of adenylate cyclase but exposure to nitrogen mustard inhibited the enzyme stimulation by IPN. The enhancing effect of MMC was lost by the combined treatment with alpha-tocopherol. From these results, it was shown that MMC modulated the activity of adenylate cyclase, probably through alterations in membrane structure.

  4. Hepatitis B virus X protein mutant HBxΔ127 promotes proliferation of hepatoma cells through up-regulating miR-215 targeting PTPRT

    SciTech Connect

    Liu, Fabao; You, Xiaona; Chi, Xiumei; Wang, Tao; Ye, Lihong; Niu, Junqi; Zhang, Xiaodong

    2014-02-07

    Highlights: • Relative to wild type HBx, HBX mutant HBxΔ127 strongly enhances cell proliferation. • Relative to wild type HBx, HBxΔ127 remarkably up-regulates miR-215 in hepatoma cells. • HBxΔ127-elevated miR-215 promotes cell proliferation via targeting PTPRT mRNA. - Abstract: The mutant of virus is a frequent event. Hepatitis B virus X protein (HBx) plays a vital role in the development of hepatocellular carcinoma (HCC). Therefore, the identification of potent mutant of HBx in hepatocarcinogenesis is significant. Previously, we identified a natural mutant of the HBx gene (termed HBxΔ127). Relative to wild type HBx, HBxΔ127 strongly enhanced cell proliferation and migration in HCC. In this study, we aim to explore the mechanism of HBxΔ127 in promotion of proliferation of hepatoma cells. Our data showed that both wild type HBx and HBxΔ127 could increase the expression of miR-215 in hepatoma HepG2 and H7402 cells. However, HBxΔ127 was able to significantly increase miR-215 expression relative to wild type HBx in the cells. We identified that protein tyrosine phosphatase, receptor type T (PTPRT) was one of the target genes of miR-215 through targeting 3′UTR of PTPRT mRNA. In function, miR-215 was able to promote the proliferation of hepatoma cells. Meanwhile anti-miR-215 could partially abolish the enhancement of cell proliferation mediated by HBxΔ127 in vitro. Knockdown of PTPRT by siRNA could distinctly suppress the decrease of cell proliferation mediated by anti-miR-215 in HepG2-XΔ127/H7402-XΔ127 cells. Moreover, we found that anti-miR-215 remarkably inhibited the tumor growth of hepatoma cells in nude mice. Collectively, relative to wild type HBx, HBxΔ127 strongly enhances proliferation of hepatoma cells through up-regulating miR-215 targeting PTPRT. Our finding provides new insights into the mechanism of HBx mutant HBxΔ127 in promotion of proliferation of hepatoma cells.

  5. Arecoline induces HA22T/VGH hepatoma cells to undergo anoikis - involvement of STAT3 and RhoA activation

    PubMed Central

    2010-01-01

    Background Our previous study showed that, in basal cell carcinoma cells, arecoline reduces levels of the tumor cell survival factor interleukin-6 (IL-6), increases levels of tumor suppressor factor p53, and elicits cell cycle arrest, followed by apoptosis. In preliminarily studies, we observed that arecoline induces detachment of the human-derived hepatoma cell line HA22T/VGH from the extracellular matrix. In the present study, we explored the fate of the detached HA22T/VGH cells and investigated the underlying mechanism. Methods HA22T/VGH cells or primary cultured rat hepatocytes were treated with arecoline, then changes in morphology, viability, apoptosis, and the expression of surface β1-integrin, apoptosis-related proteins, and IL-6 were examined. Furthermore, activation of the signal transducer and activator of transcription 3 (STAT3) pathway and the RhoA/Rock signaling pathway, including p190RhoGAP and Src homology-2 domain-containing phosphatase SHP2, was examined. Results A low concentration of arecoline (≤ 100 μg/ml) caused cytoskeletal changes in HA22T/VGH cells, but not hepatocytes, and this was accompanied by decreased β1-integrin expression and followed by apoptosis, indicating that HA22T/VGH cells undergo anoikis after arecoline treatment. IL-6 expression and phosphorylation of STAT3, which provides protection against anoikis, were inhibited and levels of downstream signaling proteins, including Bcl-XL and Bcl-2, were decreased, while Bax expression, mitochondrial cytochrome c release, and caspase-3 activity were increased. In addition, phosphorylation/activation of p190RhoGAP, a RhoA inhibitor, and of its upstream regulator, SHP2, was inhibited by arecoline treatment, while Rho/Rock activation was increased. Addition of the RhoA inhibitor attenuated the effects of arecoline. Conclusions This study demonstrated that arecoline induces anoikis of HA22T/VGH cells involving inhibition of STAT3 and increased RhoA/Rock activation and that the STAT3

  6. Lipid metabolism enzyme 5-LOX and its metabolite LTB4 are capable of activating transcription factor NF-{kappa}B in hepatoma cells

    SciTech Connect

    Zhao, Yu; Wang, Wenhui; Wang, Qi; Zhang, Xiaodong; Ye, Lihong

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer 5-LOX is able to upregulate expression of NF-{kappa}B p65. Black-Right-Pointing-Pointer 5-LOX enhances nuclear translocation of NF-{kappa}B p65 via increasing p-I{kappa}B-{alpha} level. Black-Right-Pointing-Pointer 5-LOX stimulates transcriptional activity of NF-{kappa}B in hepatoma cells. Black-Right-Pointing-Pointer LTB4 activates transcriptional activity of NF-{kappa}B in hepatoma cells. -- Abstract: The issue that lipid metabolism enzyme and its metabolites regulate transcription factors in cancer cell is not fully understood. In this study, we first report that the lipid metabolism enzyme 5-Lipoxygenase (5-LOX) and its metabolite leukotriene B4 (LTB4) are capable of activating nuclear factor-{kappa}B (NF-{kappa}B) in hepatoma cells. We found that the treatment of MK886 (an inhibitor of 5-LOX) or knockdown of 5-LOX was able to downregulate the expression of NF-{kappa}B p65 at the mRNA level and decreased the phosphorylation level of inhibitor {kappa}B{alpha} (I{kappa}B{alpha}) in the cytoplasm of hepatoma HepG2 or H7402 cells, which resulted in the decrease of the level of nuclear NF-{kappa}B p65. These were confirmed by immunofluorescence staining in HepG2 cell. Moreover, the above treatments were able to decrease the transcriptional activity of NF-{kappa}B in the cells. The LTB4, one of metabolites of 5-LOX, is responsible for 5-LOX-activated NF-{kappa}B in a dose-dependent manner. Thus, we conclude that the lipid metabolism enzyme 5-LOX and its metabolite LTB4 are capable of activating transcription factor NF-{kappa}B in hepatoma cells. Our finding provides new insight into the significance of lipid metabolism in activation of transcription factors in cancer.

  7. Percutaneous Ethanol Injection of Unresectable Medium-to-Large-Sized Hepatomas Using a Multipronged Needle: Efficacy and Safety

    SciTech Connect

    Ho, C.S. Kachura, J.R.; Gallinger, S.; Grant, D.; Greig, P.; McGilvray, I.; Knox, J.; Sherman, M.; Wong, F.; Wong, D.

    2007-04-15

    Fine needles with an end hole or multiple side holes have traditionally been used for percutaneous ethanol injection (PEI) of hepatomas. This study retrospectively evaluates the safety and efficacy of PEI of unresectable medium-to-large (3.5-9 cm) hepatomas using a multipronged needle and with conscious sedation. Twelve patients, eight men and four women (age 51-77 years; mean: 69) received PEI for hepatomas, mostly subcapsular or exophytic in location with average tumor size of 5.6 cm (range: 3.5-9.0 cm). Patients were consciously sedated and an 18G retractable multipronged needle (Quadrafuse needle; Rex Medical, Philadelphia, PA) was used for injection under real-time ultrasound guidance. By varying the length of the prongs and rotating the needle, the alcohol was widely distributed within the tumor. The progress of ablation was monitored by contrast-enhanced ultrasound, computed tomography (CT) or magnetic resonance imaging (MRI) after each weekly injection and within a month after the final (third) injection and 3 months thereafter. An average total of 63 mL (range: 20-154 ml) of alcohol was injected per patient in an average of 2.3 sessions. Contrast-enhanced CT, ultrasound, or MRI was used to determine the degree of necrosis. Complete necrosis was noted in eight patients (67%), near-complete necrosis (90-99%) in two (16.7%), and partial success (50-89%) in two (16.7%). Follow-up in the first 9 months showed local recurrence in two patients and new lesions in another. There was no mortality. One patient developed renal failure, liver failure, and localized perforation of the stomach. He responded to medical treatment and surgery was not required for the perforation. One patient had severe postprocedural abdominal pain and fever, and another had transient hyperbilirubinemia; both recovered with conservative treatment. PEI with a multipronged needle is a new, safe, and efficacious method in treating medium-to-large-sized hepatocellular carcinoma under conscious

  8. Prolonged perturbation of the oscillations of hepatoma Fao cell proliferation by a single small dose of methotrexate.

    PubMed

    Guerroui, S; Deschatrette, J; Wolfrom, C

    2005-06-01

    The proliferation rate of various cell types in vitro, including hepatoma Fao cells, displays aperiodic oscillations. The frequency of these oscillations is about one every 3-5 weeks, and there are variations in cell functions and polarity. Topological analysis has showed that these oscillations in growth rate are determined, and presumably chaotic. One characteristic of complex chaotic systems is that their dynamics can be persistently modified by a small external perturbation. We show that treatment with a single small dose of the anticancer drug methotrexate causes long-term stable alteration of the oscillatory dynamics of Fao cell proliferation. The oscillations of growth rate are shifted, and their mean level decreased according to a fractal pattern.

  9. Butein induces G(2)/M phase arrest and apoptosis in human hepatoma cancer cells through ROS generation.

    PubMed

    Moon, Dong-Oh; Kim, Mun-Ock; Choi, Yung Hyun; Hyun, Jin Won; Chang, Weon Young; Kim, Gi-Young

    2010-02-28

    We investigated the molecular effects of 3,4,2',4'-tetrahydroxychalcone (butein) treatment in two human hepatoma cancer cell lines-HepG2 and Hep3B. Butein treatment inhibited cancer cell growth by inducing G(2)/M phase arrest and apoptosis. Butein-induced G(2)/M phase arrest was associated with increased ATM, Chk1, and Chk2 phosphorylations and reduced cdc25C levels. Additionally, butein treatment enhanced inactivated phospho-Cdc2 levels, reduced Cdc2 kinase activity, and generated reactive oxygen species (ROS) that was accompanied by JNK activation. The extent of butein-induced G(2)/M phase arrest significantly decreased following pretreatment with N-acetyl-l-cysteine or glutathione and following JNK phosphorylation reduction by SP600125. Both N-acetyl-l-cysteine and glutathione also decreased butein-mediated apoptosis. Taken together, these results imply a critical role of ROS and JNK in the anticancer effects of butein.

  10. The effect of interferon-{alpha} on the expression of cytochrome P450 3A4 in human hepatoma cells

    SciTech Connect

    Flaman, Anathea S.; Gravel, Caroline; Hashem, Anwar M.; Tocchi, Monika; Li Xuguang

    2011-06-01

    Interferon {alpha} (IFN{alpha}) is used to treat malignancies and chronic viral infections. It has been found to decrease the rate of drug metabolism by acting on cytochrome P450 enzymes, but no studies have investigated the consequences of IFN{alpha} treatment on the CYP3A4 isoform, responsible for the metabolism of a majority of drugs. In this study, we have examined the effect of IFN{alpha} on CYP3A4 catalytic activity and expression in human hepatoma cells. We found that IFN{alpha} inhibits CYP3A4 activity and rapidly down-regulates the expression of CYP3A4, independent of de novo protein synthesis. Pharmacologic inhibitors and a dominant-negative mutant expression plasmid were used to dissect the molecular pathway required for CYP3A4 suppression, revealing roles for Jak1 and Stat1 and eliminating the involvement of the p38 mitogen-activated and extracellular regulated kinases. Treatment of hepatoma cells with IFN{alpha} did not affect the nuclear localization or relative abundance of Sp1 and Sp3 transcription factors, suggesting that the suppression of CYP3A4 by IFN{alpha} does not result from inhibitory Sp3 out-competing Sp1. To our knowledge, this is the first report that IFN{alpha} down-regulates CYP3A4 expression largely through the JAK-STAT pathway. Since IFN{alpha} suppresses CYP3A4 expression, caution is warranted when IFN{alpha} is administered in combination with CYP3A4 substrates to avoid the occurrence of adverse drug interactions.

  11. Effects of chitosan on xenograft models of melanoma in C57BL/6 mice and hepatoma formation in SCID mice.

    PubMed

    Yeh, Ming-Yang; Wu, Ming-Fang; Shang, Hung-Sheng; Chang, Jin-Biou; Shih, Yung-Luen; Chen, Yung-Liang; Hung, Hsiao-Fang; Lu, Hsu-Feng; Yeh, Chun; Wood, W Gibson; Hung, Fang-Ming; Chung, Jing-Gung

    2013-11-01

    According to the World Health Organization, Complementary and alternative medicine (CAM) is a comprehensive term referring to traditional medical treatments and various forms of indigenous medicines, also known as indigenous or folk medicine. Cancer patients often use CAM in the form of nutritional supplements, psychological techniques and natural medical approaches in the place of or in parallel to conventional medicine. The present study aimed to determine if Chitosan can inhibit lung metastasis and hepatoma formation, by studying xenograft of B16F10 melanoma cells in C57BL/6 mice and of Smmu 7721 cells in SCID mice, respectively. For the lung metastasis model, after a five-week treatment, the survival rates of B6 mice were 15% for the control group and 35%, 20%, 45% and 40% for the 320,000 kDa, 173,000 kDa, 86,000 kDa and 8,000 kDa molecular-weight treatment groups, respectively. Chitosan treatment dramatically increased lifespan and inhibited tumor metastasis especially in treatment groups of the low-molecular weight compound. For the hepatoma growth model, the size of the liver tumor mass was approximately >14 mm in the control group. In comparison to the control group, the tumor mass grew slowly with Chitosan treatment, especially at the low-molecular weight treatment group. Chitosan slowed-down the rate of tumor growth but did not inhibit tumor formation. Data presented herein demonstrate that Chitosan has anticancer effects and thus further study of the substance is warranted to examine for mechanisms of action and optimal dosage.

  12. Pharmacological evaluation of several major ingredients of Chinese herbal medicines in human hepatoma Hep3B cells.

    PubMed

    Chou, C C; Pan, S L; Teng, C M; Guh, J H

    2003-08-01

    Long-dan-tan (Chinese name) is one of the most common herbal medicines used by Chinese people with chronic liver disease. Accumulated anecdotal evidence suggests that Long-dan-tan may show a beneficial effect in patients with hepatocellular carcinoma. Long-dan-tan is made from five plants: Gentiana root, Scutellaria root, Gardenia fruit, Alisma rhizome, and Bupleurum root. In this study, we have examined the cytotoxic effects of the five major ingredients isolated from the above plants, i.e. gentiopicroside, baicalein, geniposide, alisol B acetate and saikosaponin-d, respectively, on human hepatoma Hep3B cells. Annexin V immunofluorescence detection, DNA fragmentation assays and FACScan analysis of propidium iodide-staining cells showed that gentiopicroside, baicalein, and geniposide had little effect, whereas alisol B acetate and saikosaponin-d profoundly induced apoptosis in Hep3B cells. Alisol B acetate, but not saikosaponin-d, induced G2/M arrest of the cell cycle as well as a significant increase in caspase-3 activity. Interestingly, baicalein by itself induced an increase in H(2)O(2) generation and the subsequent NF-kappaB activation; furthermore, it effectively inhibited the transforming growth factor-beta(1) (TGF-beta(1))-induced caspase-3 activation and cell apoptosis. We suggest that alisol B acetate and saikosaponin-d induced cell apoptosis through the caspase-3-dependent and -independent pathways, respectively. Instead of inducing apoptosis, baicalein inhibits TGF-beta(1)-induced apoptosis via increase in cellular H(2)O(2) formation and NF-kappaB activation in human hepatoma Hep3B cells.

  13. The X protein of hepatitis B virus activates hepatoma cell proliferation through repressing melanoma inhibitory activity 2 gene

    SciTech Connect

    Xu, Yilin; Yang, Yang; Cai, Yanyan; Liu, Fang; Liu, Yingle; Zhu, Ying; Wu, Jianguo

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer We demonstrated that HBV represses MIA2 gene expression both invitro and in vivo. Black-Right-Pointing-Pointer The X protein of HBV plays a major role in such regulation. Black-Right-Pointing-Pointer Knock-down of MIA2 in HepG2 cells activates cell growth and proliferation. Black-Right-Pointing-Pointer HBx activates cell proliferation, over-expression of MIA2 impaired such regulation. Black-Right-Pointing-Pointer HBx activates hepatoma cell proliferation through repressing MIA2 expression. -- Abstract: Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer deaths globally. Chronic hepatitis B virus (HBV) infection accounts for over 75% of all HCC cases; however, the molecular pathogenesis of HCC is not well understood. In this study, we found that the expression of the newly identified gene melanoma inhibitory activity 2 (MIA2) was reduced by HBV infection invitro and invivo, and that HBV X protein (HBx) plays a major role in this regulation. Recent studies have revealed that MIA2 is a potential tumor suppressor, and that, in most HCCs, MIA2 expression is down-regulated or lost. We found that the knock-down of MIA2 in HepG2 cells activated cell growth and proliferation, suggesting that MIA2 inhibits HCC cell growth and proliferation. In addition, the over-expression of HBx alone induced cell proliferation, whereas MIA2 over-expression impaired the HBx-mediated induction of proliferation. Taken together, our results suggest that HBx activates hepatoma cell growth and proliferation through repression of the potential tumor suppressor MIA2.

  14. Antimutagenicity of supercritical CO2 extracts of Terminalia catappa leaves and cytotoxicity of the extracts to human hepatoma cells.

    PubMed

    Ko, Ting-Fu; Weng, Yih-Ming; Lin, Shwu-Bin; Chiou, Robin Y-Y

    2003-06-04

    Natural antimutagens may prevent cancer and are therefore of great interest to oncologists and the public at large. Phytochemicals are potent antimutagen candidates. When the Ames test was applied to examine the antimutagenic potency of supercritical carbon dioxide (SC-CO(2)) extracts of Terminalia catappa leaves at a dose of 0.5 mg/plate, toxicity and mutagenicity were not detected. The antimutagenic activity of SC-CO(2) extracts increased with decreases of temperature (60, 50, and 40 degrees C) and pressure (4000, 3000, and 2000 psi) used for extraction. The most potent antimutagenicity was observed in extracts obtained at 40 degrees C and 2000 psi. At a dose of 0.5 mg of extract/plate, approximately 80% of the mutagenicity of benzo[a]pyrene (B[a]P, with S-9) and 46% of the mutagenicity of N-methyl-N '-nitroguanidine (MNNG, without S-9) were inhibited. Media supplemented with SC-CO(2) extracts at a range of 0-500 microg/mL were used to cultivate human hepatoma (Huh 7) and normal liver (Chang liver) cells. The viability of the cells was assayed by measuring cellular acid phosphatase activity. A dose-dependent growth inhibition of both types of cells was observed. The SC-CO(2) extracts were more cytotoxic to Huh 7 cells than to Chang liver cells. The observation that SC-CO(2) extracts of T. catappa leaves did not induce mutagenicity at the doses tested while exhibiting potent antimutagenicity and were more cytotoxic to human hepatoma cells than to normal liver cells is of merit and warrants further investigation.

  15. Exogenous hydrogen sulfide exerts proliferation/anti-apoptosis/angiogenesis/migration effects via amplifying the activation of NF-κB pathway in PLC/PRF/5 hepatoma cells.

    PubMed

    Zhen, Yulan; Pan, Wanying; Hu, Fen; Wu, Hongfu; Feng, Jianqiang; Zhang, Ying; Chen, Jingfu

    2015-05-01

    Hydrogen sulfide (H2S) takes part in a diverse range of intracellular pathways and hss physical and pathological properties in vitro and in vivo. However, the effects of H2S on cancer are controversial and remain unclear. The present study investigates the effects of H2S on liver cancer progression via activating NF-κB pathway in PLC/PRF/5 hepatoma cells. PLC/PRF/5 hepatoma cells were pretreated with 500 µmol/l NaHS (a donor of H2S) for 24 h. The expression levels of CSE, CBS, phosphosphorylate (p)-NF-κB p65, caspase-3, COX-2, p-IκB and MMP-2 were measured by western blot assay. Cell viability was detected by cell counter kit 8 (CCK-8). Apoptotic cells were observed by Hoechst 33258 staining assay. The production level of H2S in cell culture medium was measured by using the sulfur-sensitive electrode method. The production of vascular endothelial growth factor (VEGF) was tested by enzyme-linked immunosorbent assay (ELISA). Our results showed that the production of H2S was dramatically increased in the PLC/PRF/5 hepatoma cells, compared with human LO2 hepatocyte cells group, along with the overexpression levels of CSE and CBS. Treatment of PLC/PRF/5 hepatoma cells with 500 µmol/l NaHS (a donor of H2S) for 24 h markedly increased the expression levels of CSE, CBS, p-IκB and NF-κB activation, leading to COX-2 and MMP-2 overexpression, and decreased caspase-3 production, as well as increased cell viability and decreased number of apoptotic cells. Otherwise, the production level of H2S and VEGF were also significantly increased. Furthermore, co-treatment of PLC/PRF/5 hepatoma cells with 500 µmol/l NaHS and 200 µmol/l PDTC for 24 h significantly overturned these indexes. The findings of the present study provide evidence that the NF-κB is involved in the NaHS-induced cell proliferation, anti-apoptisis, angiogenesis, and migration in PLC/PRF/5 hepatoma cells, and that the PDTC against the NaHS-induced effects were by inhibition of the NF-κB pathway.

  16. Chemotherapy by intravenous administration of conjugates of daunomycin with monoclonal and conventional anti-rat alpha-fetoprotein antibodies.

    PubMed Central

    Tsukada, Y; Hurwitz, E; Kashi, R; Sela, M; Hibi, N; Hara, A; Hirai, H

    1982-01-01

    Monoclonal antibodies to rat alpha-fetoprotein (AFP) were produced by hybridization of mouse myeloma cells with spleen cells from mice immunized with rat AFP. The monoclonal antibodies as well as horse anti-rat AFP were coupled via a dextran bridge to daunomycin. Both types of conjugates were tested in vitro and in vivo for their anti-tumor activity. They were equally cytotoxic to rat AH66 hepatoma cell line in culture. Rats challenged with hepatoma cells were treated with the conjugates either by intraperitoneal or intravenous injections. Daunomycin conjugates with horse anti-AFP and monoclonal mouse anti-AFP were capable of delaying the tumor development more efficiently than the controls of antibodies or free drug, mixtures of drug with antibodies, and a conjugate of drug and normal immunoglobulin. The specific conjugates were considerably more effective when the treatments were given intravenously. The specific conjugates produced 60% long-term survival, whereas the controls delayed only slightly tumor development. PMID:6185954

  17. Preventive effects of Morus alba L. anthocyanins on diabetes in Zucker diabetic fatty rats

    PubMed Central

    SARIKAPHUTI, ARIYA; NARARATWANCHAI, THAMTHIWAT; HASHIGUCHI, TERUTO; ITO, TAKASHI; THAWORANUNTA, SITA; KIKUCHI, KIYOSHI; OYAMA, YOKO; MARUYAMA, IKURO; TANCHAROEN, SALUNYA

    2013-01-01

    The mulberry plant (Morus alba L.) contains abundant anthocyanins (ANCs), which are natural antioxidants. The aim of this study was to determine the ANC composition of Thai Morus alba L. fruits and to assess the effect of an ANC extract on blood glucose and insulin levels in male leptin receptor-deficient Zucker diabetic fatty (ZDF) rats. The major components of the ANC extract were identified by high-performance liquid chromatography-electrospray ionization-mass spectrometry. ZDF and lean rats were treated with 125 or 250 mg ANCs/kg body weight, or 1% carboxymethylcellulose (CMC) twice daily for 5 weeks. Neither ANC dose had an effect on body weight. Following 5 weeks of treatment, glucose levels were observed to increase from 105.5±8.7 to 396.25±21 mg/dl (P<0.0001) in the CMC-treated ZDF rats; however, the glucose levels were significantly lower in the rats treated with 125 or 250 mg/kg ANCs (228.25±45 and 131.75±10 mg/dl, respectively; P<0.001 versus CMC). The administration of 250 mg/kg ANCs normalized glucose levels in the ZDF rats towards those of the lean littermates. Insulin levels were decreased significantly in the ZDF rats treated with CMC or 125 mg/kg ANCs (P<0.0001), but not in the rats treated with 250 mg/kg ANCs. Histologically, 250 mg/kg ANCs was observed to prevent islet degeneration compared with the islets in CMC-treated rats. This study, demonstrated that ANCs extracted from Morus alba L. were well tolerated and exhibited effective anti-diabetic properties in ZDF rats. ANCs represent a promising class of therapeutic compounds that may be useful in the prevention of type 2 diabetes. PMID:24137248

  18. Preparation and therapeutic evaluation of (188)Re-thermogelling emulsion in rat model of hepatocellular carcinoma.

    PubMed

    Shih, Ying-Hsia; Lin, Xi-Zhang; Yeh, Chung-Hsin; Peng, Cheng-Liang; Shieh, Ming-Jium; Lin, Wuu-Jyh; Luo, Tsai-Yueh

    2014-01-01

    Radiolabeled Lipiodol(®) (Guerbet, Villepinte, France) is routinely used in hepatoma therapy. The temperature-sensitive hydrogel polyethylene glycol-b-poly-DL-lactic acid-co-glycolic acid-b-polyethylene glycol triblock copolymer is used as an embolic agent and sustained drug release system. This study attempted to combine the polyethylene glycol-b-poly-DL-lactic acid-co-glycolic acid-b-polyethylene glycol hydrogel and radio-labeled Lipiodol to form a new radio-thermogelling emulsion, rhenium-188-N,N'-1,2-ethanediylbis-L-cysteine diethyl-ester dihydrochloride-Lipiodol/hydrogel ((188)Re-ELH). The therapeutic potential of (188)Re-ELH was evaluated in a rodent hepatoma model. Rhenium-188 chelated with N,N'-1,2-ethanediylbis-L-cysteine diethyl-ester dihydrochloride was extracted with Lipiodol to obtain rhenium-188-N,N'-1,2-ethanediylbis-L-cysteine diethyl-ester dihydrochloride-Lipiodol ((188)Re-EL), which was blended with the hydrogel in equal volumes to develop (188)Re-ELH. The (188)Re-ELH phase stability was evaluated at different temperatures. Biodistribution patterns and micro-single-photon emission computed tomography/computed tomography images in Sprague Dawley rats implanted with the rat hepatoma cell line N1-S1 were observed after in situ tumoral injection of ~3.7 MBq (188)Re-ELH. The therapeutic potential of (188)Re-EL (48.58±3.86 MBq/0.1 mL, n=12) was evaluated in a 2-month survival study using the same animal model. The therapeutic effects of (188)Re-ELH (25.52±4.64 MBq/0.1 mL, n=12) were evaluated and compared with those of (188)Re-EL. The responses were assessed by changes in tumor size and survival rates. The (188)Re-ELH emulsion was stable in the gel form at 25°C-35°C for >52 hours. Biodistribution data and micro-single-photon emission computed tomography/computed tomography images of the (188)Re-ELH group indicated that most activity was selectively observed in hepatomas. Long-term (188)Re-ELH studies have demonstrated protracted reductions in tumor

  19. Preparation and therapeutic evaluation of 188Re-thermogelling emulsion in rat model of hepatocellular carcinoma

    PubMed Central

    Shih, Ying-Hsia; Lin, Xi-Zhang; Yeh, Chung-Hsin; Peng, Cheng-Liang; Shieh, Ming-Jium; Lin, Wuu-Jyh; Luo, Tsai-Yueh

    2014-01-01

    Radiolabeled Lipiodol® (Guerbet, Villepinte, France) is routinely used in hepatoma therapy. The temperature-sensitive hydrogel polyethylene glycol-b-poly-DL-lactic acid-co-glycolic acid-b-polyethylene glycol triblock copolymer is used as an embolic agent and sustained drug release system. This study attempted to combine the polyethylene glycol-b-poly-DL-lactic acid-co-glycolic acid-b-polyethylene glycol hydrogel and radio-labeled Lipiodol to form a new radio-thermogelling emulsion, rhenium-188–N,N’-1,2-ethanediylbis-L-cysteine diethyl-ester dihydrochloride–Lipiodol/hydrogel (188Re-ELH). The therapeutic potential of 188Re-ELH was evaluated in a rodent hepatoma model. Rhenium-188 chelated with N,N’-1,2-ethanediylbis-L-cysteine diethyl-ester dihydrochloride was extracted with Lipiodol to obtain rhenium-188–N,N’-1,2-ethanediylbis-L-cysteine diethyl-ester dihydrochloride–Lipiodol (188Re-EL), which was blended with the hydrogel in equal volumes to develop 188Re-ELH. The 188Re-ELH phase stability was evaluated at different temperatures. Biodistribution patterns and micro-single-photon emission computed tomography/computed tomography images in Sprague Dawley rats implanted with the rat hepatoma cell line N1-S1 were observed after in situ tumoral injection of ~3.7 MBq 188Re-ELH. The therapeutic potential of 188Re-EL (48.58±3.86 MBq/0.1 mL, n=12) was evaluated in a 2-month survival study using the same animal model. The therapeutic effects of 188Re-ELH (25.52±4.64 MBq/0.1 mL, n=12) were evaluated and compared with those of 188Re-EL. The responses were assessed by changes in tumor size and survival rates. The 188Re-ELH emulsion was stable in the gel form at 25°C–35°C for >52 hours. Biodistribution data and micro-single-photon emission computed tomography/computed tomography images of the 188Re-ELH group indicated that most activity was selectively observed in hepatomas. Long-term 188Re-ELH studies have demonstrated protracted reductions in tumor volumes

  20. Accumulation of diacylglycerol in the liver membrane of the Long-Evans Cinnamon (LEC) rat with hepatitis: FT-IR spectroscopic and HPLC detection.

    PubMed

    Yoon, S; Kazusaka, A; Fujita, S

    2000-04-03

    Long-Evans Cinnamon (LEC) rats develop severe hepatitis and subsequent hepatoma with excess accumulation of copper in the liver with increasing age. Lipids extracted from the LEC rat liver membrane were studied using FT-IR spectroscopy and an HPLC technique at the stages of pre-hepatitis and hepatitis, i.e. at 10 and 16 weeks of age, respectively. The 10-week-old rats exhibited an IR spectrum characteristic of a phosphatidylcholine and phosphatidylethanolamine mixture with a ratio of 2:1. The 16-week-old rats developed new absorption bands at 1161 and 1070 cm(-1), which were assigned to the spectra of triglyceride, neutral lipid, and diacylglycerol, an endogenous activator of protein kinase C, respectively. The diacylglycerol was estimated to amount to ca. 10% (w/w) of phospholipid extract by comparing the spectrum with those of model compounds. This was confirmed using an HPLC assay. Previously, we found that a serum response factor is activated by copper in the LEC rat liver, and suggested that it must mediate proto-oncogene c-fos induction. The results obtained here suggest that accumulation of diacylglycerol plays an important role in development of hepatoma in LEC rats by mediating proto-oncogene c-fos induction.

  1. Emodin inhibits the growth of hepatoma cells: finding the common anti-cancer pathway using Huh7, Hep3B, and HepG2 cells.

    PubMed

    Hsu, Chin-Mu; Hsu, Yu-An; Tsai, Yuhsin; Shieh, Fa-Kuen; Huang, Su-Hua; Wan, Lei; Tsai, Fuu-Jen

    2010-02-19

    Emodin--a major component of Rheum palmatum L.-exerts antiproliferative effects in cancer cells that are regulated by different signaling pathways. Hepatocellular carcinoma has high-incidence rates and is associated with poor prognosis and high mortality rates. This study was designed to evaluate the effects of emodin on human hepatocarcinoma cell viability and investigate its mechanisms of action in Huh7, Hep3B, and HepG2 cells. To define the molecular changes associated with this process, expression profiles were compared in emodin-treated hepatoma cells by cDNA microarray hybridization, quantitative RT-PCRs, and Western blot analysis. G2/M phase arrest was observed in all 3 cell lines. Cell cycle regulatory gene analysis showed increased protein levels of cyclin A, cyclin B, Chk2, Cdk2, and P27 in hepatoma cells after time courses of emodin treatment, and Western blot analysis showed decreased protein levels of Cdc25c and P21. Microarray expression profile data and quantitative PCR revealed that 15 representative genes were associated with emodin treatment response in hepatoma cell lines. The RNA expression levels of CYP1A1, CYP1B1, GDF15, SERPINE1, SOS1, RASD1, and MRAS were upregulated and those of NR1H4, PALMD, and TXNIP were downregulated in all three hepatoma cells. Moreover, at 6h after emodin treatment, the levels of GDF15, CYP1A1, CYP1B1, and CYR61 were upregulated. Here, we show that emodin treatment caused G2/M arrest in liver cancer cells and increased the expression levels of various genes both in mRNA and protein level. It is likely that these genes act as biomarkers for hepatocellular carcinoma therapy.

  2. Orphan receptor TR3 enhances p53 transactivation and represses DNA double-strand break repair in hepatoma cells under ionizing radiation.

    PubMed

    Zhao, Bi-xing; Chen, Hang-zi; Du, Xiao-dan; Luo, Jie; He, Jian-ping; Wang, Rong-hao; Wang, Yuan; Wu, Rong; Hou, Ru-rong; Hong, Ming; Wu, Qiao

    2011-08-01

    In response to ionizing radiation (IR)-induced DNA double-strand breaks (DSB), cells elicit an evolutionarily conserved checkpoint response that induces cell cycle arrest and either DNA repair or apoptosis, thereby maintaining genomic stability. DNA-dependent protein kinase (DNA-PK) is a central enzyme involved in DSB repair for mammalian cells that comprises a DNA-PK catalytic subunit and the Ku protein, which act as regulatory elements. DNA-PK also functions as a signaling molecule to selectively regulate p53-dependent apoptosis in response to IR. Herein, we demonstrate that the orphan nuclear receptor TR3 suppresses DSB repair by blocking Ku80 DNA-end binding activity and promoting DNA-PK-induced p53 activity in hepatoma cells. We find that TR3 interacts with Ku80 and inhibits its binding to DNA ends, which then suppresses DSB repair. Furthermore, TR3 is a phosphorylation substrate for DNA-PK and interacts with DNA-PK catalytic subunit in a Ku80-independent manner. Phosphorylated TR3, in turn, enhances DNA-PK-induced phosphorylation and p53 transcription activity, thereby enhancing IR-induced apoptosis in hepatoma cells. Together, our findings reveal novel functions for TR3, not only in DSB repair regulation but also in IR-induced hepatoma cell apoptosis, and they suggest that TR3 is a potential target for cancer radiotherapy.

  3. Bioactive chemical constituents of Curcuma longa L. rhizomes extract inhibit the growth of human hepatoma cell line (HepG2).

    PubMed

    Abdel-Lateef, Ezzat; Mahmoud, Faten; Hammam, Olfat; El-Ahwany, Eman; El-Wakil, Eman; Kandil, Sherihan; Abu Taleb, Hoda; El-Sayed, Mortada; Hassenein, Hanaa

    2016-09-01

    The present study was designed to identify the chemical constituents of the methanolic extract of Curcuma longa L. rhizomes and their inhibitory effect on a hepatoma cell line. The methanolic extract was subjected to GC-MS analysis to identify the volatile constituents and the other part of the same extract was subjected to liquid column chromatographic separation to isolate curcumin. The inhibition of cell growth in the hepatoma cell line and the cytopathological changes were studied. GC-MS analysis showed the presence of fifty compounds in the methanolic extract of C. longa. The major compounds were ar-turmerone (20.50 %), β-sesquiphellandrene (5.20 %) and curcumenol (5.11 %). Curcumin was identified using IR, 1H and 13C NMR. The inhibition of cell growth by curcumin (IC50 = 41.69 ± 2.87 μg mL-1) was much more effective than that of methanolic extract (IC50 = 196.12 ± 5.25 μg mL-1). Degenerative and apoptotic changes were more evident in curcumin- treated hepatoma cells than in those treated with the methanol extract. Antitumor potential of the methanolic extract may be attributed to the presence of sesquiterpenes and phenolic constituents including curcumin (0.051 %, 511.39 μg g-1 dried methanol extract) in C. longa rhizomes.

  4. Cancer cachexia: physical activity and muscle force in tumour-bearing rats.

    PubMed

    Toledo, Míriam; Busquets, Sílvia; Sirisi, Sònia; Serpe, Roberto; Orpí, Marcel; Coutinho, Joana; Martínez, Raquel; López-Soriano, Francisco J; Argilés, Josep M

    2011-01-01

    Rats bearing the Yoshida AH-130 ascites hepatoma are subjected to substantial weight loss, which is accompanied by anorexia at the end of the tumour cycle. Total physical activity (measured using the IR Actimeter system and Actitrack software) was determined during 11 days in control and tumour-bearing animals, skeletal muscle strength being also by the grip-strength test. The results presented clearly show that the presence of the tumour induces an earlier decrease in physical performance, which affects both skeletal muscle force and physical activity (both locomotor movements and stereotyped movements and distance travelled, among others parameters).

  5. Reproductive function of the male obese Zucker rats: alteration in sperm production and sperm DNA damage.

    PubMed

    Vendramini, V; Cedenho, A P; Miraglia, S M; Spaine, D M

    2014-02-01

    Obesity has been considered a public health issue in many countries and is of increasing concern for authorities over the past 6 years. The Zucker rat is a good experimental model for obesity and diabetes studies due to its metabolic characteristics that are similar to those developed by humans. A total of 12 obese Zucker rats and their lean littermates were killed in pubertal and young adult phases for assessing organ weights (testis and epididymis), testicular histomorphometric and stereological analyses, daily sperm production, and transit time in the epididymis. Sperm integrity was also investigated in the adult animals using the Comet assay. Alterations in organ weights, seminiferous epithelium architecture, sperm production, and transit time were noticed in the pubertal fatty rats. The volume density of the lymphatic space was decreased in both the ages. Adult animals had a significant increase in the extent of damage found in sperm DNA. Our results show for the first time that leptin receptor deficiency compromises sperm production during puberty and that genetic obese Zucker rats have increased sperm DNA fragmentation.

  6. Kynurenic acid, an aryl hydrocarbon receptor ligand, is elevated in serum of Zucker fatty rats

    PubMed Central

    Oxenkrug, G; Cornicelli, J; van der Hart, M; Roeser, J; Summergrad, P

    2016-01-01

    Obesity is an increasingly urgent global problem and the molecular mechanisms of obesity are not fully understood. Dysregulation of the tryptophan (Trp) – kynurenine (Kyn) metabolic pathway (TKP) have been suggested as a mechanism of obesity and described in obese humans and in animal models of obesity. However, to the best of our knowledge, TKP metabolism has not been studied in leptin-receptor-deficient Zucker fatty rats (ZFR) (fa/fa), the best-known and most widely used rat model of obesity. We were interested to determine if there are any deviations of TKP in ZFR. Concentrations of major TKP metabolites were evaluated (HPLC- MS method) in serum of ZFR (fa/fa) and age-matched lean rats (FA/-). Concentrations of kynurenic acid (KYNA) were 50% higher in ZFR than in lean rats (p<0.004, Mann-Whitney two-tailed test). Anthranilic acid (AA) concentrations, while elevated by 33%, did not reach statistical significance (p<0.04, one-tailed test). Elevated KYNA serum concentrations might contribute to development of obesity via KYNA-induced activation of aryl hydrocarbon receptor. Present results warrant further studies of KYNA and AA in ZFR and other animal models of obesity. PMID:27738521

  7. DMFC (3,5-dimethyl-(7)H-furo[3,2-g]chromen-7-one) regulates Bim to trigger Bax and Bak activation to suppress drug-resistant human hepatoma.

    PubMed

    Xiang, Jun; Wang, Zhe; Liu, Qianqian; Li, Xia; Sun, Jianguo; Fung, Kwok-Pui; Liu, Feiyan

    2017-03-01

    3,5-Dimethyl-(7)H-furo[3,2-g]chromen-7-one (DMFC) is a coumarin derivative with anti-cancer activity against human hepatoma cells, but the mechanisms underlying DMFC function in cancer suppression is unknown. In this study, we aimed at elucidating the molecular mechanisms underlying DMFC anti-cancer activity and determining whether DMFC is effective in suppression of drug-resistant human hepatocellular carcinoma. We show here that DMFC effectively suppresses both the parent and the multidrug-resistant hepatoma cell growth in vitro and DMFC suppresses hepatoma cell growth at least in part through inducing tumor cell apoptosis. In the molecular level, we observed that DMFC treatment decreases Bcl-2 level by a post-transcriptional mechanism and activates Bim transcription to increase Bim mRNA and protein level in hepatoma cells. Furthermore, co-immunoprecipitation studies revealed that DMFC-induced Bim interrupts interactions between Bcl-2 and Bax and between Mcl-1 and Bak, resulting in dissociation of Bax from Bcl-2 and Bak from Mcl-1 and subsequent activation of both Bax and Bak. Activation of Bax and Bak leads to mitochondrial outer membrane permeabilization and cytochrome c release. Consistent with its potent apoptosis-inducing activity, DMFC exhibited potent activity against the multidrug-resistant hepatoma xenograft growth in vivo. Therefore, we determine that DMFC suppresses hepatoma growth through decreasing Bcl-2 and increasing Bim to induce tumor cell apoptosis and hold great promise for further development as a therapeutic agent to treat chemoresistant hepatoma.

  8. Long term and large-scale cultivation of human hepatoma Hep G2 cells in hollow fiber bioreactor. Cultivation of human hepatoma Hep G2 in hollow fiber bioreactor.

    PubMed

    Liu, J J; Chen, B S; Tsai, T F; Wu, Y J; Pang, V F; Hsieh, A; Hsieh, J H; Chang, T H

    1991-02-01

    Long-term and large scale cultivation of an anchorage-dependent cell line using an industrial scale hollow fiber perfusion bioreactor is described. Hep G2 cells (a human hepatoma cell line) were cultivated in an Acusyst-P (Endotronic) with a total fiber surface area of 7.2 m2 6 x 1.2m2) to produce Hep G2 crude conditioned medium (CCM). Pretreatment of the cellulose acetate hollow fibers with collagen enhances the attachment of the anchorage-dependent cells. We have succeeded in growing the Hep G2 cells in an antibiotics- and serum-free IMDM medium, supplemented with 50 micrograms/ml of Hep G2 CCM protein at inoculation. The Hep G2 cells replicate and secrete CCM protein in quantities comparable to those produced in DMEM containing 10% fetal calf serum (FCS). The highest CCM protein productivity during the 80-day cultivation was 1.1 g/day with a total of 30 g of protein accumulated. Hep G2 CCM (20-40 micrograms protein/ml) was comparable to or even better than 10% FCS in supporting the growth of Molt-4 (a human T leukemia cell line) and FO (a mouse myeloma cell line) cells in vitro. The availability of this large amount of Hep G2 CCM will aid the further purification and characterization of growth factor(s) which could be used as serum substituents.

  9. Chemical sympathectomy increases neutrophil-to-lymphocyte ratio in tumor-bearing rats but does not influence cancer progression.

    PubMed

    Horvathova, Lubica; Tillinger, Andrej; Sivakova, Ivana; Mikova, Lucia; Mravec, Boris; Bucova, Maria

    2015-01-15

    The sympathetic nervous system regulates many immune functions and modulates the anti-tumor immune defense response, too. Therefore, we studied the effect of 6-hydroxydopamine induced sympathectomy on selected hematological parameters and inflammatory markers in rats with Yoshida AH130 ascites hepatoma. We found that chemically sympathectomized tumor-bearing rats had significantly increased neutrophil-to-lymphocyte ratio, leukocyte-to-lymphocyte ratio, and plasma levels of tumor necrosis factor alpha. Although our findings showed that sympathetic denervation in tumor-bearing rats led to increased neutrophil-to-lymphocyte ratio, that is an indicator of the disease progression, we found no significant changes in tumor growth and survival of sympathectomized tumor-bearing rats.

  10. Transcriptional regulation of the apolipoprotein F (ApoF) gene by ETS and C/EBPα in hepatoma cells.

    PubMed

    Shen, Xue-Bin; Huang, Ling; Zhang, Shao-Hong; Wang, De-Ping; Wu, Yun-Li; Chen, Wan-Nan; Xu, Shang-Hua; Lin, Xu

    2015-05-01

    Apolipoprotein F (ApoF) inhibits cholesteryl ester transfer protein (CETP) activity and plays an important role in lipid metabolism. In the present study, the full-length human ApoF promoter was cloned, and the molecular mechanism of the regulation of ApoF was investigated. The ApoF promoter displayed higher activities in hepatoma cell lines, and the -198 nt to +79 nt promoter region contained the maximum promoter activity. In the promoter region of -198 nt to -2 nt there were four putative binding sites for transcription factors ETS-1/ETS-2 (named EBS-1 to EBS-4) and one for C/EBP. Mutation of EBS-2, EBS4 and the C/EBP binding site abolished the promoter activity, and ETS-1/ETS-2 and C/EBPα could interact with corresponding binding sites. In addition, overexpression of ETS-1/2 or C/EBPα enhanced, while dominant-negative mutants of ETS-1/2 and knockdown of C/EBPα decreased, ApoF promoter activities. ETS-1 and C/EBPα associated physically, and acted synergistically to activate ApoF transcription. These results demonstrated combined activation of the ApoF promoter by liver-enriched and ubiquitous transcription factors. Direct interactions between C/EBPα and ETS-1 were important for high liver-specific expression of ApoF.

  11. Effects of N-acetyl-L-cysteine on fish hepatoma cells treated with mercury chloride and ionizing radiation.

    PubMed

    Kim, Jin Kyu; Han, Min; Nili, Mohammad

    2011-11-01

    Organisms are exposed to natural radiations from cosmic or terrestrial origins. Furthermore the combined action of radiation with various chemicals is an inevitable feature of modern life. Radiation is known to cause cell death, mainly due to its ability to produce reactive oxygen species in cells. N-acetyl-L-cysteine (NAC) is a well-known sulfhydryl-containing antioxidant whose role in radioprotection has been reported. Synergistic effects of radiation and mercury chloride on human cells was previously reported by the authors. Based on the previous report, this study was designed to assess the synergistic effects of radiation and mercury chloride on fish hepatoma cells, as well as to investigate the protective effects of NAC on the cells. The cytotoxicity of radiation was enhanced in the presence of mercury chloride. NAC in lower concentrations prevented cells from death after irradiation with lower doses (<300 Gy) while it did not prevent cells from radiation-induced death after irradiation with higher doses (300, 500 Gy). The intracellular glutathione (GSH) levels significantly decreased after irradiation while the combined treatment of NAC and radiation alleviated the decrease in the GSH levels. The investigations give a clue for the action mechanism of synergistic or protective effects of NAC on the cells. Due to their high resistance to ionizing radiation, the PLHC-1 cells can be effectively used as a screening tool for assessing the combined effects of radiation with toxic chemicals.

  12. Aqueous extract of Polygonum bistorta modulates proteostasis by ROS-induced ER stress in human hepatoma cells

    PubMed Central

    Liu, Yu-Huei; Weng, Yui-Ping; Lin, Hsuan-Yuan; Tang, Sai-Wen; Chen, Chao-Jung; Liang, Chi-Jung; Ku, Chung-Yu; Lin, Jung-Yaw

    2017-01-01

    Hepatocellular carcinoma (HCC) remains the leading cause of cancer mortality with limited therapeutic targets. The endoplasmic reticulum (ER) plays a pivotal role in maintaining proteostasis in normal cells. However, alterations in proteostasis are often found in cancer cells, making it a potential target for therapy. Polygonum bistorta is used in traditional Chinese medicine owing to its anticancer activities, but the molecular and pharmacological mechanisms remain unclear. Using hepatoma cells as a model system, this study demonstrated that P. bistorta aqueous extract (PB) stimulated ER stress by increasing autophagosomes but by blocking degradation, followed by the accumulation of ubiquitinated proteins and cell apoptosis. In addition, an autophagy inhibitor did not enhance ubiquitinated protein accumulation whereas a reactive oxygen species (ROS) scavenger diminished both ubiquitinated protein accumulation and ligand-stimulated epidermal growth factor receptor (EGFR) expression, suggesting that ROS generation by PB may be upstream of PB-triggered cell death. Nevertheless, PB-exerted proteostasis impairment resulted in cytoskeletal changes, impairment of cell adhesion and motility, and inhibition of cell cycle progression. Oral administration of PB delayed tumour growth in a xenograft model without significant body weight loss. These findings indicate that PB may be a potential new alternative or complementary medicine for HCC. PMID:28134285

  13. Cytotoxic effects and the mechanism of three types of magnetic nanoparticles on human hepatoma BEL-7402 cells

    NASA Astrophysics Data System (ADS)

    Kai, Wei; Xiaojun, Xu; Ximing, Pu; Zhenqing, Hou; Qiqing, Zhang

    2011-07-01

    The evaluation of the toxicity of magnetic nanoparticles (MNPs) has attracted much attention in recent years. The current study aimed to investigate the cytotoxic effects of Fe3O4, oleic acid-coated Fe3O4 (OA-Fe3O4), and carbon-coated Fe (C-Fe) nanoparticles on human hepatoma BEL-7402 cells and the mechanisms. WST-1 assay demonstrated that the cytotoxicity of three types of MNPs was in a dose-dependent manner. G1 (Fe3O4 and OA-Fe3O4) phase and G2 (C-Fe) phase cell arrests and apoptosis induced by MNPs were detected by flow cytometry analysis. The increase in apoptosis was accompanied with the Bax over-expression, mitochondrial membrane potential decrease, and the release of cytochrome C from mitochondria into cytosol. Moreover, apoptosis was further confirmed by morphological and biochemical hallmarks, such as swollen mitochondria with lysing cristae and caspase-3 activation. Our results revealed that certain concentrations of the three types of MNPs affect BEL-7402 cells viability via cell arrest and inducing apoptosis, and the MNPs-induced apoptosis is mediated through the mitochondrial-dependent pathway. The influence potency of MNPs observed in all experiments would be: C-Fe > Fe3O4 > OA-Fe3O4.

  14. Interferon beta 2/interleukin 6 modulates synthesis of alpha 1-antitrypsin in human mononuclear phagocytes and in human hepatoma cells.

    PubMed Central

    Perlmutter, D H; May, L T; Sehgal, P B

    1989-01-01

    The cytokine IFN beta 2/IL-6 has recently been shown to regulate the expression of genes encoding hepatic acute phase plasma proteins. INF beta 2/IL-6 has also been shown to be identical to MGI-2, a protein that induces differentiation of bone marrow precursor cells toward mature granulocytes and monocytes. Accordingly, we have examined the effect of IFN beta 2/IL-6 on expression of the IL-1- and tumor necrosis factor-unresponsive acute phase protein alpha 1-antitrypsin (alpha 1 AT) in human hepatoma-derived hepatocytes and in human mononuclear phagocytes. Purified human fibroblast and recombinant IFN beta 2/IL-6 each mediate a specific increase in steady-state levels of alpha 1 AT mRNA and a corresponding increase in net synthesis of alpha 1 AT in primary cultures of human peripheral blood monocytes as well as in HepG2 and Hep3B cells. Thus, the effect of IFN beta 2/IL-6 on alpha 1 AT gene expression in these cells is primarily due to an increase in accumulation of alpha 1 AT mRNA and can be distinguished from the direct, predominantly translational effect of bacterial lipopolysaccharide on expression of this gene in monocytes and macrophages. The results indicate that IFN beta 2/IL-6 regulates acute phase gene expression, specifically alpha 1 AT gene expression, in extrahepatic as well as hepatic cell types. Images PMID:2472425

  15. Cytotoxic effects and the mechanism of three types of magnetic nanoparticles on human hepatoma BEL-7402 cells

    PubMed Central

    2011-01-01

    The evaluation of the toxicity of magnetic nanoparticles (MNPs) has attracted much attention in recent years. The current study aimed to investigate the cytotoxic effects of Fe3O4, oleic acid-coated Fe3O4 (OA-Fe3O4), and carbon-coated Fe (C-Fe) nanoparticles on human hepatoma BEL-7402 cells and the mechanisms. WST-1 assay demonstrated that the cytotoxicity of three types of MNPs was in a dose-dependent manner. G1 (Fe3O4 and OA-Fe3O4) phase and G2 (C-Fe) phase cell arrests and apoptosis induced by MNPs were detected by flow cytometry analysis. The increase in apoptosis was accompanied with the Bax over-expression, mitochondrial membrane potential decrease, and the release of cytochrome C from mitochondria into cytosol. Moreover, apoptosis was further confirmed by morphological and biochemical hallmarks, such as swollen mitochondria with lysing cristae and caspase-3 activation. Our results revealed that certain concentrations of the three types of MNPs affect BEL-7402 cells viability via cell arrest and inducing apoptosis, and the MNPs-induced apoptosis is mediated through the mitochondrial-dependent pathway. The influence potency of MNPs observed in all experiments would be: C-Fe > Fe3O4 > OA-Fe3O4. PMID:21801413

  16. Size-mediated cytotoxicity of nanocrystalline titanium dioxide, pure and zinc-doped hydroxyapatite nanoparticles in human hepatoma cells

    NASA Astrophysics Data System (ADS)

    Devanand Venkatasubbu, G.; Ramasamy, S.; Avadhani, G. S.; Palanikumar, L.; Kumar, J.

    2012-03-01

    Nanoparticles are highly used in biological applications including nanomedicine. In this present study, the interaction of HepG2 hepatocellular carcinoma cells (HCC) with hydroxyapatite (HAp), zinc-doped hydroxyapatite, and titanium dioxide (TiO2) nanoparticles were investigated. Hydroxyapatite, zinc-doped hydroxyapatite and titanium dioxide nanoparticles were prepared by wet precipitation method. They were subjected to isochronal annealing at different temperatures. Particle morphology and size distribution were characterized by X-ray diffraction and transmission electron microscope. The nanoparticles were co-cultured with HepG2 cells. MTT assay was employed to evaluate the proliferation of tumor cells. The DNA damaging effect of HAp, Zn-doped HAp, and TiO2 nanoparticles in human hepatoma cells (HepG2) were evaluated using DNA fragmentation studies. The results showed that in HepG2 cells, the anti-tumor activity strongly depend on the size of nanoparticles in HCC cells. Cell cycle arrest analysis for HAp, zinc-doped HAp, and TiO2 nanoparticles revealed the influence of HAp, zinc-doped HAp, and titanium dioxide nanoparticles on the apoptosis of HepG2 cells. The results imply that the novel nano nature effect plays an important role in the biomedicinal application of nanoparticles.

  17. Effects of drugs in subtoxic concentrations on the metabolic fluxes in human hepatoma cell line Hep G2

    SciTech Connect

    Niklas, Jens; Noor, Fozia; Heinzle, Elmar

    2009-11-01

    Commonly used cytotoxicity assays assess the toxicity of a compound by measuring certain parameters which directly or indirectly correlate to the viability of the cells. However, the effects of a given compound at concentrations considerably below EC{sub 50} values are usually not evaluated. These subtoxic effects are difficult to identify but may eventually cause severe and costly long term problems such as idiosyncratic hepatotoxicity. We determined the toxicity of three hepatotoxic compounds, namely amiodarone, diclofenac and tacrine on the human hepatoma cell line Hep G2 using an online kinetic respiration assay and analysed the effects of subtoxic concentrations of these drugs on the cellular metabolism by using metabolic flux analysis. Several changes in the metabolism could be detected upon exposure to subtoxic concentrations of the test compounds. Upon exposure to diclofenac and tacrine an increase in the TCA-cycle activity was observed which could be a signature of an uncoupling of the oxidative phosphorylation. The results indicate that metabolic flux analysis could serve as an invaluable novel tool for the investigation of the effects of drugs. The described methodology enables tracking the toxicity of compounds dynamically using the respiration assay in a range of concentrations and the metabolic flux analysis permits interesting insights into the changes in the central metabolism of the cell upon exposure to drugs.

  18. Hydrotropic polymeric mixed micelles based on functional hyperbranched polyglycerol copolymers as hepatoma-targeting drug delivery system.

    PubMed

    Zhang, Xuejiao; Zhang, Xinge; Yu, Peien; Han, Yucai; Li, Yangguang; Li, Chaoxing

    2013-01-01

    Mixed copolymer nanoparticles (NPs) self-assembled from β-cyclodextrin-grafted hyperbranched polyglycerol (HPG-g-CD) and lactobionic acid (LA)-grafted hyperbranched polyglycerol (HPG-g-LA) were applied as carriers for a hydrophobic antitumor drug, paclitaxel (PTX), achieving hepatocellular carcinoma-targeted delivery. The resulting NPs exhibited high drug loading capacity and substantial stability in aqueous solution. In vitro drug release studies demonstrated a controlled drug release profile with increased release at acidic pH. Remarkably, tumor proliferation assays showed that PTX-loaded mixed copolymer NPs inhibited asialoglycoprotein (ASGP) receptor positive HepG2 cell proliferation in a concentration-dependent manner in comparison with ASGP receptor negative BGC-823 cells. Moreover, the competition assay demonstrated that the small molecular LA inhibited the cellular uptake of the PTX-loaded mixed copolymer NPs, indicating the ASGP receptor-mediated endocytosis in HepG2 cells. In addition, the intracellular uptake tests by confocal laser scanning microscopy showed that the mixed copolymer NPs were more efficiently taken up by HepG2 cells compared with HPG-g-CD NPs. These results suggest a feasible application of the mixed copolymer NPs as nanocarriers for hepatoma-targeted delivery of potent antitumor drugs.

  19. Cancer stem-like cells can be induced through dedifferentiation under hypoxic conditions in glioma, hepatoma and lung cancer

    PubMed Central

    Wang, Pan; Wan, Wen-wu; Xiong, Shuang-Long; Feng, Hua; Wu, Nan

    2017-01-01

    Traditional studies have shown that transcription factors, including SOX-2, OCT-4, KLF-4, Nanog and Lin-28A, contribute to the dedifferentiation and reprogramming process in normal tissues. Hypoxia is a physiological phenomenon that exists in tumors and promotes the expression of SOX-2, OCT-4, KLF-4, Nanog and Lin-28A. Therefore, an interesting question is whether hypoxia as a stimulating factor promotes the process of dedifferentiation and induces the formation of cancer stem-like cells. Studies have shown that OCT-4 and Nanog overexpression induced the formation of cancer stem cell-like cells through dedifferentiation and enhanced malignancy in lung adenocarcinoma, and reprogramming SOX-2 in pancreatic cancer cells also promoted the dedifferentiation process. Therefore, we investigated this phenomenon in glioma, lung cancer and hepatoma cells and found that the transcription factors mentioned above were highly expressed under hypoxic conditions and induced the formation of spheres, which exhibited asymmetric division and cell cycle arrest. The dedifferentiation process induced by hypoxia highlights a new pattern of cancer development and recurrence, demonstrating that all kinds of cancer cells and the hypoxic microenvironment should be taken into consideration when developing tumor therapies. PMID:28179999

  20. Mutation of N-linked glycosylation at Asn548 in CD133 decreases its ability to promote hepatoma cell growth.

    PubMed

    Liu, Ying; Ren, Shifang; Xie, Liqi; Cui, Chunhong; Xing, Yang; Liu, Chanjuan; Cao, Benjin; Yang, Fan; Li, Yinan; Chen, Xiaoning; Wei, Yuanyan; Lu, Haojie; Jiang, Jianhai

    2015-08-21

    The membrane glycoprotein CD133 is a popular marker for cancer stem cells and contributes to cancer initiation and invasion in a number of tumor types. CD133 promotes tumorigenesis partly through an interaction between its phosphorylated Y828 residue and the PI3K regulatory subunit p85, and the interaction with β-catenin. Although CD133 glycosylation is supposed to be associated with its function, the contribution of N-glycosylation to its functions remains unclear. Here we analyzed the exact site(s) of N-glycosylation in CD133 by mass spectrometry and found that all eight potential N-glycosylation sites of CD133 could be indeed occupied by N-glycans. Loss of individual N-glycosylation sites had no effect on the level of expression or membrane localization of CD133. However, mutation at glycosylation site Asn548 significantly decreased the ability of CD133 to promote hepatoma cell growth. Furthermore, mutation of Asn548 reduced the interaction between CD133 and β-catenin and inhibited the activation of β-catenin signaling by CD133 overexpression. Our results identified the characteristics and function of CD133 glycosylation sites. These data could potentially shed light on molecular regulation of CD133 by glycosylation and enhance our understanding of the utility of glycosylated CD133 as a target for cancer therapies.

  1. Preparation of carotenoids and chlorophylls from Gynostemma pentaphyllum (Thunb.) Makino and their antiproliferation effect on hepatoma cell.

    PubMed

    Tsai, Yu-Chian; Wu, Wen-Bin; Chen, Bing-Huei

    2010-12-01

    A preparative column chromatographic method for isolation of carotenoids and chlorophylls from Gynostemma pentaphyllum, a traditional Chinese herb, was developed to evaluate their antiproliferative effects on the hepatoma cell Hep3B. An open column containing 70 g of magnesium oxide-diatomaceous earth (1:2.5, wt/wt) was used to elute carotenoid with 2% ethanol in ethyl acetate and chlorophyll with 50% ethanol in acetone. After high-performance liquid chromatography-mass spectrometry analysis, the carotenoid fraction was composed of all-trans- and cis-isomers of lutein, α-carotene, and β-carotene as well as epoxy-containing carotenoids, while the chlorophyll fraction consisted of chlorophylls a and b and their derivatives. Both carotenoid and chlorophyll fractions as well as lutein and chlorophyll a standards at 50-100 μg/mL were effective against Hep3B cells with a dose-dependent response with the following order: carotenoid fraction > chlorophyll fraction > lutein > chlorophyll a. For all treatments, the cell cycle was arrested in the G₀/G₁ phase, with Hep3B cells undergoing necrosis or apoptosis.

  2. Genotoxicity of marine sediments in the fish hepatoma cell line PLHC-1 as assessed by the Comet assay.

    PubMed

    Šrut, Maja; Traven, Luka; Štambuk, Anamaria; Kralj, Sonja; Žaja, Roko; Mićović, Vladimir; Klobučar, Göran I V

    2011-02-01

    The main goal of this study was to test the usefulness of the Comet assay in the PLHC-1 hepatoma fish cell line as a tool for detecting the presence of genotoxic compounds in contaminated marine sediments. The system has been tested using both model chemicals (benzo[a]pyrene (B[a]P) and ethyl methanesulfonate (EMS)) and extracts of sediment samples obtained with solvent dichloromethane/methanol. For all of the analysed sediment extracts as well as for the model chemicals a concentration dependent genotoxic effect was observed. The sediment with the highest observed genotoxic potential was additionally extracted using various solvents in order to test which class of compounds, according to their polarity, is most responsible for the observed genotoxic effect. Non-polar solvents (cyclohexane and dichloromethane) yielded stronger genotoxic effect but the highest level of DNA damage was determined after exposure to sediment extract obtained with the solvent mixture dichloromethane/methanol which extracts a wide range of contaminants. Our results indicate that the PLHC-1 cell line is a suitable in vitro model in sediment genotoxicity assessment and encourage the use of fish cell lines as versatile tools in ecogenotoxicology.

  3. Synthesis of a novel adamantyl nitroxide derivative with potent anti-hepatoma activity in vitro and in vivo.

    PubMed

    Sun, Jin; Wang, Shan; Bu, Wei; Wei, Meng-Ying; Li, Wei-Wei; Yao, Min-Na; Ma, Zhong-Ying; Lu, Cheng-Tao; Li, Hui-Hui; Hu, Na-Ping; Zhang, En-Hu; Yang, Guo-Dong; Wen, Ai-Dong; Zhu, Xiao-He

    2016-01-01

    In this study, a novel adamantyl nitroxide derivative was synthesized and its antitumor activities in vitro and in vivo were investigated. The adamantyl nitroxide derivative 4 displayed a potent anticancer activity against all the tested human hepatoma cells, especially with IC50 of 68.1 μM in Bel-7404 cells, compared to the positive control 5-FU (IC50=607.7 μM). The significant inhibition of cell growth was also observed in xenograft mouse model, with low toxicity. Compound 4 suppressed the cell migration and invasion, induced the G2/M phase arrest. Further mechanistic studies revealed that compound 4 induced cell death, which was accompanied with damaging mitochondria, increasing the generation of intracellular reactive oxygen species, cleavages of caspase-9 and caspase-3, as well as activations of Bax and Bcl-2. These results confirmed that adamantyl nitroxide derivative exhibited selective antitumor activities via mitochondrial apoptosis pathway in Bel-7404 cells, and would be a potential anticancer agent for liver cancer.

  4. CD147 stimulates hepatoma cells escaping from immune surveillance of T cells by interaction with Cyclophilin A.

    PubMed

    Ren, Yi-Xin; Wang, Shu-Jing; Fan, Jian-Hui; Sun, Shi-Jie; Li, Xia; Padhiar, Arshad Ahmed; Zhang, Jia-Ning

    2016-05-01

    T cells play an important role in tumor immune surveillance. CD147 is a member of immunoglobulin superfamily present on the surface of many tumor cells and mediates malignant cell behaviors. Cyclophilin A (CypA) is an intracellular protein promoting inflammation when released from cells. CypA is a natural ligand for CD147. In this study, CD147 specific short hairpin RNAs (shRNA) were transfected into murine hepatocellular carcinoma Hepa1-6 cells to assess the effects of CD147 on hepatoma cells escaping from immune surveillance of T cells. We found extracellular CypA stimulated cell proliferation through CD147 by activating ERK1/2 signaling pathway. Downregulation of CD147 expression on Hepa1-6 cells significantly suppressed tumor progression in vivo, and decreased cell viability when co-cultured with T cells in vitro. Importantly, knockdown of CD147 on Hepa1-6 cells resulted in significantly increased T cells chemotaxis induced by CypA both in vivo and in vitro. These findings provide novel mechanisms how tumor cells escaping from immune surveillance of T cells. We provide a potential therapy for hepatocellular carcinoma by targeting CD147 or CD147-CypA interactions.

  5. Selenium methylselenocysteine protects human hepatoma HepG2 cells against oxidative stress induced by tert-butyl hydroperoxide.

    PubMed

    Cuello, Susana; Ramos, Sonia; Mateos, Raquel; Martín, M Angeles; Madrid, Yolanda; Cámara, Carmen; Bravo, Laura; Goya, Luis

    2007-12-01

    Selenium methylselenocysteine (Se-MeSeCys) is a common selenocompound in the diet with a tested chemopreventive effect. This study investigated the potential protective effect of Se-MeSeCys against a chemical oxidative stress induced by tert-butyl hydroperoxide (t-BOOH) on human hepatoma HepG2 cells. Speciation of selenium derivatives by liquid chromatography-inductively coupled plasma mass spectrometry depicts Se-MeSeCys as the only selenocompound in the cell culture. Cell viability (lactate dehydrogenase) and markers of oxidative status--concentration of reduced glutathione (GSH) and malondialdehyde (MDA), generation of reactive oxygen species (ROS) and activity of the antioxidant enzymes glutathione peroxidase (GPx) and glutathione reductase (GR)--were evaluated. Pretreatment of cells with Se-MeSeCys for 20 h completely prevented the enhanced cell damage, MDA concentration and GR and GPx activity and the decreased GSH induced by t-BOOH but did not prevent increased ROS generation. The results show that treatment of HepG2 cells with concentrations of Se-MeSeCys in the nanomolar to micromolar range confers a significant protection against an oxidative insult.

  6. Quercetin modulates NF-kappa B and AP-1/JNK pathways to induce cell death in human hepatoma cells.

    PubMed

    Granado-Serrano, Ana Belén; Martín, María Angeles; Bravo, Laura; Goya, Luis; Ramos, Sonia

    2010-01-01

    Quercetin, a dietary flavonoid, has been shown to possess anticarcinogenic properties, but the precise molecular mechanisms of action are not thoroughly elucidated. The aim of this study was to investigate the regulatory effect of quercetin (50 microM) on two main transcription factors (NF-kappa B and AP-1) related to survival/proliferation pathways in a human hepatoma cell line (HepG2) over time. Quercetin induced a significant time-dependent inactivation of the NF-kappa B pathway consistent with a downregulation of the NF-kappa B binding activity (from 15 min onward). These features were in concert with a time-dependent activation (starting at 15 min and maintained up to 18 h) of the AP-1/JNK pathway, which played an important role in the control of the cell death induced by the flavonoid and contributed to the regulation of survival/proliferation (AKT, ERK) and death (caspase-3, p38, unbalance of Bcl-2 proapoptotic and antiapoptotic proteins) signals. These data suggest that NF-kappa B and AP-1 play a main role in the tight regulation of survival/proliferation pathways exerted by quercetin and that the sustained JNK/AP-1 activation and inhibition of NF-kappa B provoked by the flavonoid induced HepG2 death.

  7. Role of intracellular Ca2+ signal in the ascorbate-induced apoptosis in a human hepatoma cell line.

    PubMed

    Lee, Yong Soo

    2004-12-01

    Although ascorbate (vitamin C) has been shown to have anti-cancer actions, its effect on human hepatoma cells has not yet been investigated, and thus, the exact mechanism of this action is not fully understood. In this study, the mechanism by which ascorbate induces apoptosis using HepG2 human hepatoblastoma cells is investigated. Ascorbate induced apoptotic cell death in a dose-dependent manner in the cells, was assessed through flow cytometric analysis. Contrary to expectation, ascorbate did not alter the cellular redox status, and treatment with antioxidants (N-acetyl cysteine and N,N-diphenyl-p-phenylenediamine) had no influence on the ascorbate-induced apoptosis. However, ascorbate induced a rapid and sustained increase in intracellular Ca2+ concentration. EGTA, an extracellular Ca2+ chelator did not significantly alter the ascorbate-induced intracellular Ca2+ increase and apoptosis, whereas dantrolene, an intracellular Ca2+ release blocker, completely blocked these actions of ascorbate. In addition, phospholipase C (PLC) inhibitors (U-73122 and manoalide) significantly suppressed the intracellular Ca2+ release and apoptosis induced by ascorbate. Collectively, these results suggest that ascorbate induced apoptosis without changes in the cellular redox status in HepG2 cells, and that the PLC-coupled intracellular Ca2+ release mechanism may mediate ascorbate-induced apoptosis.

  8. Mutation of N-linked glycosylation at Asn548 in CD133 decreases its ability to promote hepatoma cell growth

    PubMed Central

    Xie, Liqi; Cui, Chunhong; Xing, Yang; Liu, Chanjuan; Cao, Benjin; Yang, Fan; Li, Yinan; Chen, Xiaoning; Wei, Yuanyan; Lu, Haojie; Jiang, Jianhai

    2015-01-01

    The membrane glycoprotein CD133 is a popular marker for cancer stem cells and contributes to cancer initiation and invasion in a number of tumor types. CD133 promotes tumorigenesis partly through an interaction between its phosphorylated Y828 residue and the PI3K regulatory subunit p85, and the interaction with β-catenin. Although CD133 glycosylation is supposed to be associated with its function, the contribution of N-glycosylation to its functions remains unclear. Here we analyzed the exact site(s) of N-glycosylation in CD133 by mass spectrometry and found that all eight potential N-glycosylation sites of CD133 could be indeed occupied by N-glycans. Loss of individual N-glycosylation sites had no effect on the level of expression or membrane localization of CD133. However, mutation at glycosylation site Asn548 significantly decreased the ability of CD133 to promote hepatoma cell growth. Furthermore, mutation of Asn548 reduced the interaction between CD133 and β-catenin and inhibited the activation of β-catenin signaling by CD133 overexpression. Our results identified the characteristics and function of CD133 glycosylation sites. These data could potentially shed light on molecular regulation of CD133 by glycosylation and enhance our understanding of the utility of glycosylated CD133 as a target for cancer therapies. PMID:26029999

  9. Anti-proliferative and pro-apoptotic effect of Smilax glabra Roxb. extract on hepatoma cell lines.

    PubMed

    Sa, Fei; Gao, Jian-Li; Fung, Kwok-Pui; Zheng, Ying; Lee, Simon Ming-Yuen; Wang, Yi-Tao

    2008-01-10

    Smilax glabra Roxb. (SGR) is the root of a traditional Chinese herb, referred to as tu fu ling in Chinese medicine. It is an inexpensive traditional Chinese medicine commonly used for the treatment of liver diseases, and a few studies have indicated that SGR has anti-hepatocarcinogenic and anti-cancer growth activities. In the current study, raw SGR plant was extracted with Accelerate Solvent Extractor, and the molecular mechanism by which S. glabra Roxb. extract (SGRE) has an anti-proliferative effect on the human hepatoma cell lines, HepG2 and Hep3B, was determined. We showed that SGRE inhibited HepG2 and Hep3B cell growth by causing cell-cycle arrest at either S phase or S/G2 transition and induced apoptosis, as evidenced by a DNA fragmentation assay. SGRE-induced apoptosis by alternation of mitochondrial transmembrane depolarization, release of mitochondrial cytochrome c, activation of caspase-3, and cleavage of poly(ADP-ribose) polymerase. The SGRE-mediated mitochondria-caspase dependent apoptotic pathway also involved activation of p38, JNK, and ERK mitogen-activated protein kinase signaling. Isometric compounds of astilbin (flavonoids) and smilagenin (saponin) have been identified as the main chemical constituents in SGRE by HPLC-MS/MS. These results have identified, for the first time, the biological activity of SGRE in HepG2 and Hep3B cells and should lead to further development of SGR for liver disease therapy.

  10. Composition of Lycium barbarum polysaccharides and their apoptosis-inducing effect on human hepatoma SMMC-7721 cells

    PubMed Central

    Zhang, Qian; Lv, Xiaoling; Wu, Tao; Ma, Qian; Teng, Anguo; Zhang, Ying; Zhang, Min

    2015-01-01

    Background Lycium barbarum polysaccharide (LBP) is a natural functional component that has a variety of biological activities. The molecular structures and apoptosis-inducing activities on human hepatoma SMMC-7721 cells of two LBP fractions, LBP-d and LBP-e, were investigated. Results The results showed that LBP-d and LBP-e both consist of protein, uronic acid, and neutral sugars in different proportions. The structure of LBP was characterized by gas chromatography, periodate oxidation, and Smith degradation. LBP-d was composed of eight kinds of monosaccharides (fucose, ribose, rhamnose, arabinose, xylose, mannose, galactose, and glucose), while LBP-e was composed of six kinds of monosaccharides (fucose, rhamnose, arabinose, mannose, galactose, and glucose). LBP-d and LBP-e blocked SMMC-7721 cells at the G0/G1 and S phases with an inhibition ratio of 26.70 and 45.13%, respectively, and enhanced the concentration of Ca2+ in the cytoplasm of SMMC-7721. Conclusion The contents of protein, uronic acid, and galactose in LBP-e were much higher than those in LBP-d, which might responsible for their different bioactivities. The results showed that LBP can be provided as a potential chemotherapeutic agent drug to treat cancer. PMID:26563650

  11. Synthesis of a novel adamantyl nitroxide derivative with potent anti-hepatoma activity in vitro and in vivo

    PubMed Central

    Sun, Jin; Wang, Shan; Bu, Wei; Wei, Meng-Ying; Li, Wei-Wei; Yao, Min-Na; Ma, Zhong-Ying; Lu, Cheng-Tao; Li, Hui-Hui; Hu, Na-Ping; Zhang, En-Hu; Yang, Guo-Dong; Wen, Ai-Dong; Zhu, Xiao-He

    2016-01-01

    In this study, a novel adamantyl nitroxide derivative was synthesized and its antitumor activities in vitro and in vivo were investigated. The adamantyl nitroxide derivative 4 displayed a potent anticancer activity against all the tested human hepatoma cells, especially with IC50 of 68.1 μM in Bel-7404 cells, compared to the positive control 5-FU (IC50=607.7 μM). The significant inhibition of cell growth was also observed in xenograft mouse model, with low toxicity. Compound 4 suppressed the cell migration and invasion, induced the G2/M phase arrest. Further mechanistic studies revealed that compound 4 induced cell death, which was accompanied with damaging mitochondria, increasing the generation of intracellular reactive oxygen species, cleavages of caspase-9 and caspase-3, as well as activations of Bax and Bcl-2. These results confirmed that adamantyl nitroxide derivative exhibited selective antitumor activities via mitochondrial apoptosis pathway in Bel-7404 cells, and would be a potential anticancer agent for liver cancer. PMID:27429843

  12. Leptin Deficiency and Its Effects on Tibial and Vertebral Bone Mechanical Properties in Mature Genetically Lean and Obese JCR:LA-Corpulent Rats.

    PubMed

    Reimer, Raylene A; Lamothe, Jeremy M; Zernicke, Ronald F

    2012-01-01

    Leptin signaling deficient rodents have emerged as models of obesity/insulin resistance syndrome. Altered leptin signaling, however, can affect axial and appendicular bone geometrical properties differently, and, thus, we hypothesized that leptin-deficiency would differentially influence mechanical properties of vertebrae and tibiae compared to lean rats. Mature (9 mo) leptin receptor deficient obese (cp/cp; n = 8) and lean (+/?; n = 7) male JCR:LA-corpulent rats were used to test that hypothesis. Tibiae and the sixth lumbar vertebrae (L(6)) were scanned with micro-CT and were broken in three point-bending (tibiae) or axial loading (L(6)). Supporting the hypothesis, vertebrae and tibiae were differentially affected by leptin signaling deficiency. Tibiae, but not vertebrae, were significantly shorter in obese rats and achieved a significantly greater load (>18%), displacement (>15%), and stress (>18%) at the proportional limit, relative to the lean rats. Conversely, L(6) in obese rats had significantly reduced displacement (>25%) and strain (>32%) at proportional limit, relative to the lean rats. Those combined results suggest that the etiology and duration of obesity may be important determinants of bone mechanical properties, and axial and appendicular bones may be affected differently.

  13. Intermedilysin is essential for the invasion of hepatoma HepG2 cells by Streptococcus intermedius.

    PubMed

    Sukeno, Akiko; Nagamune, Hideaki; Whiley, Robert A; Jafar, Syed I; Aduse-Opoku, Joseph; Ohkura, Kazuto; Maeda, Takuya; Hirota, Katsuhiko; Miyake, Yoichiro; Kourai, Hiroki

    2005-01-01

    Streptococcus intermedius causes endogenous infections leading to abscesses. This species produces intermedilysin (ILY), a human-specific cytolysin. Because of the significant correlation between higher ILY production levels by S. intermedius and deep-seated abscesses, we constructed ily knockout mutant UNS38 B3 and complementation strain UNS38 B3R1 in order to investigate the role of ILY in deep-seated infections. Strain UNS38 reduced the viability of human liver cell line HepG2 at infection but not of rat liver cell line BRL3A. Isogenic mutant strain UNS38 B3 was not cytotoxic in either cell line. Quantification of S. intermedius revealed that in infected HepG2 cells UNS38 but not UNS38 B3 increased intracellularly concomitantly with increasing cell damage. This difference between UNS38 and UNS38 B3 was not observed with UNS38 B3R1. Invasion and proliferation in BRL3A cells was not observed. Masking UNS38 or UNS38 B3R1 with ILY antibody drastically decreased adherence and invasion of HepG2. Moreover, coating strain UNS38 B3 with ILY partially restored adherence to HepG2 but without subsequent bacterial growth. At 1 day post-infection, many intact UNS38 were detected in the damaged phagosomes of HepG2 with bacterial proliferation observed in the cytoplasm of dead HepG2 after an additional 2 day incubation. These results indicate that surface-bound ILY on S. intermedius is an important factor for invasion of human cells by this bacterium and that secretion of ILY within host cells is essential for subsequent host cell death. These data strongly implicate ILY as an important factor in the pathogenesis of abscesses in vivo by this streptococcus.

  14. The dietary flavonoid kaempferol effectively inhibits HIF-1 activity and hepatoma cancer cell viability under hypoxic conditions

    SciTech Connect

    Mylonis, Ilias; Lakka, Achillia; Tsakalof, Andreas; Simos, George

    2010-07-16

    Research highlights: {yields} Kaempferol inhibits HIF-1 activity in hepatocarcinoma cells; {yields} Kaempferol causes cytoplasmic mislocalization of HIF-1{alpha} by impairing the MAPK pathway. {yields} Viability of hepatocarcinoma cells under hypoxia is reduced by kaempferol. -- Abstract: Hepatocellular carcinoma (HCC) is characterized by high mortality rates and resistance to conventional treatment. HCC tumors usually develop local hypoxia, which stimulates proliferation of cancer cells and renders them resilient to chemotherapy. Adaptation of tumor cells to the hypoxic conditions depends on the hypoxia-inducible factor 1 (HIF-1). Over-expression of its regulated HIF-1{alpha} subunit, an important target of anti-cancer therapy, is observed in many cancers including HCC and is associated with severity of tumor growth and poor patient prognosis. In this report we investigate the effect of the dietary flavonoid kaempferol on activity, expression levels and localization of HIF-1{alpha} as well as viability of human hepatoma (Huh7) cancer cells. Treatment of Huh7 cells with kaempferol under hypoxic conditions (1% oxygen) effectively inhibited HIF-1 activity in a dose-dependent manner (IC{sub 50} = 5.16 {mu}M). The mechanism of this inhibition did not involve suppression of HIF-1{alpha} protein levels but rather its mislocalization into the cytoplasm due to inactivation of p44/42 MAPK by kaempferol (IC{sub 50} = 4.75 {mu}M). Exposure of Huh7 cells to 10 {mu}{Mu} kaempferol caused significant reduction of their viability, which was remarkably more evident under hypoxic conditions. In conclusion, kaempferol, a non-toxic natural food component, inhibits both MAPK and HIF-1 activity at physiologically relevant concentrations (5-10 {mu}M) and suppresses hepatocarcinoma cell survival more efficiently under hypoxia. It has, therefore, potential as a therapeutic or chemopreventive anti-HCC agent.

  15. Comparison of primary human hepatocytes and hepatoma cell line Hepg2 with regard to their biotransformation properties.

    PubMed

    Wilkening, Stefan; Stahl, Frank; Bader, Augustinus

    2003-08-01

    Cultures of primary hepatocytes and hepatoma cell line HepG2 are frequently used in in vitro models for human biotransformation studies. In this study, we characterized and compared the capacity of these model systems to indicate the presence of different classes of promutagens. Genotoxic sensitivity, enzyme activity, and gene expression were monitored in response to treatment with food promutagens benzo[a]pyrene, dimethylnitrosamine (DMN), and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). DNA damage could be detected reliably with the comet assay in primary human hepatocytes, which were maintained in sandwich culture. All three promutagens caused DNA damage in primary cells, but in HepG2 no genotoxic effects of DMN and PhIP could be detected. We supposed that the lack of specific enzymes accounts for their inability to process these promutagens. Therefore, we quantified the expression of a broad range of genes coding for drug-metabolizing enzymes with real-time reverse transcription-polymerase chain reaction. The genes code for cytochromes p450 and, in addition, for a series of important phase II enzymes. The expression level of these genes in human hepatocytes was similar to those previously reported for human liver samples. On the other hand, expression levels in HepG2 differed significantly from that in human. Activity and expression, especially of phase I enzymes, were demonstrated to be extremely low in HepG2 cells. Up-regulation of specific genes by test substances was similar in both cell types. In conclusion, human hepatocytes are the preferred model for biotransformation in human liver, whereas HepG2 cells may be useful to study regulation of drug-metabolizing enzymes.

  16. Complex regulation of transcription from the hepatitis B virus major surface antigen promoter in human hepatoma cell lines.

    PubMed Central

    Raney, A K; Milich, D R; McLachlan, A

    1991-01-01

    A detailed mutational analysis of the regulatory DNA sequence elements that control expression of the hepatitis B virus major surface antigen gene was performed in the human hepatoma cell lines HepG2.1 and Huh7, using transient transfection assays. Seven regions (A to G) of the major surface antigen promoter located within 200 nucleotides of the RNA initiation site have been identified which influence the level of transcription from this promoter. The three distal regions (A to C), located between -188 and -68, appear to possess a level of redundancy in their ability to influence the transcriptional activity from the major surface antigen promoter. The simultaneous deletion of regions A, B, and C resulted in an approximately fourfold reduction in transcription from the major surface antigen promoter. Region D, located between -67 and -49, is an essential element of the major surface antigen promoter. The three proximal regions (E to G) are located within 45 nucleotides of the major transcription initiation site. Region E prevents the negative influence of region F and can compensate for the effect of mutation of region G on transcription from the major surface antigen promoter. Region G can compensate for the effect of the loss of a functional region E sequence on the transcriptional activity of the major surface antigen promoter only in the absence of a functional region F sequence. These results imply that the level of expression of the major surface antigen gene is controlled by the complex interplay between a minimum of six transcription factors which activate and one transcription factor which represses transcription from this gene. PMID:1651407

  17. Metabolic profiling reveals that PNPLA3 induces widespread effects on metabolism beyond triacylglycerol remodeling in Huh-7 hepatoma cells

    PubMed Central

    Min, Hae-Ki; Sookoian, Silvia; Pirola, Carlos J.; Cheng, Jianfeng; Mirshahi, Faridoddin

    2014-01-01

    PNPLA3 was recently associated with the susceptibility to nonalcoholic fatty liver disease, a common cause of chronic liver disease characterized by abnormal triglyceride accumulation. Although it is established that PNPLA3 has both triacylglycerol lipase and acylglycerol O-acyltransferase activities, is still unknown whether the gene has any additional role in the modulation of the human liver metabolome. To uncover the functional role of PNPLA3 on liver metabolism, we performed high-throughput metabolic profiling of PNPLA3 siRNA-silencing and overexpression of wild-type and mutant Ile148Met variants (isoleucine/methionine substitution at codon 148) in Huh-7 cells. Metabolomic analysis was performed by using GC/MS and LC/MS platforms. Silencing of PNPLA3 was associated with a global perturbation of Huh-7 hepatoma cells that resembled a catabolic response associated with protein breakdown. A significant decrease in amino- and γ-glutamyl-amino acids and dipeptides and a significant increase in cysteine sulfinic acid, myo-inositol, lysolipids, sphingolipids, and polyunsaturated fatty acids were observed. Overexpression of the PNPLA3 Met148 variant mirrored many of the metabolic changes observed during gene silencing, but in the opposite direction. These findings were replicated by the exploration of canonical pathways associated with PNPLA3 silencing and Met148 overexpression. Overexpression of the PNPLA3 Met148 variant was associated with a 1.75-fold increase in lactic acid, suggesting a shift to anaerobic metabolism and mitochondrial dysfunction. Together, these results suggest a critical role of PNPLA3 in the modulation of liver metabolism beyond its classical participation in triacylglycerol remodeling. PMID:24763554

  18. The effect of zinc and D-penicillamine in a stable human hepatoma ATP7B knockout cell line.

    PubMed

    Chandhok, Gursimran; Schmitt, Nadine; Sauer, Vanessa; Aggarwal, Annu; Bhatt, Mohit; Schmidt, Hartmut H J

    2014-01-01

    Mutations in the copper (Cu) transporter gene ATP7B, the primary cause of Wilson disease (WD), result in high liver Cu and death of hepatocytes. Cu chelators and zinc salts are the two most important drugs used in the treatment of WD patients; however, the molecular mechanisms of the drugs with regard to ATP7B expression have not been determined. A targeted knockout of ATP7B (KO) was established in the most widely used human hepatoma cell line, HepG2 for molecular studies of the pathogenesis and treatment of the disease. KO cells showed similar growth, Cu uptake, release, and gene expression as compared to parental cells. However, in the presence of Cu, morphological changes, oxidative stress, apoptosis, and loss of viability were observed. Induction of metallothionein (MT1X) after Cu exposure was significantly reduced in KO cells. Following zinc treatment, MT1X expression was strongly induced and a high percentage of KO cells could be rescued from Cu induced toxicity. D-penicillamine treatment had a minor effect on the viability of KO cells whereas the parental cell line showed a pronounced improvement. Combined treatment displayed a highly synergistic effect in KO cells. The data suggest that zinc has a previously unrecognized effect on the viability of hepatocytes that lack ATP7B due to a high induction of MT1X expression that compensates low gene expression after Cu exposure. A combination therapy that simultaneously targets at MT1X induction and Cu chelation improves the overall survival of hepatocytes for most efficient therapy of patients having WD.

  19. Gene expression profiling and differentiation assessment in primary human hepatocyte cultures, established hepatoma cell lines, and human liver tissues

    SciTech Connect

    Olsavsky, Katy M.; Page, Jeanine L.; Johnson, Mary C.; Zarbl, Helmut; Strom, Stephen C.; Omiecinski, Curtis J. . E-mail: cjo10@psu.edu

    2007-07-01

    Frequently, primary hepatocytes are used as an in vitro model for the liver in vivo. However, the culture conditions reported vary considerably, with associated variability in performance. In this study, we characterized the differentiation character of primary human hepatocytes cultured using a highly defined, serum-free two-dimensional sandwich system, one that configures hepatocytes with collagen I as the substratum together with a dilute extracellular matrix (Matrigel{sup TM}) overlay combined with a defined serum-free medium containing nanomolar levels of dexamethasone. Gap junctional communication, indicated by immunochemical detection of connexin 32 protein, was markedly enhanced in hepatocytes cultured in the Matrigel sandwich configuration. Whole genome expression profiling enabled direct comparison of liver tissues to hepatocytes and to the hepatoma-derived cell lines, HepG2 and Huh7. PANTHER database analyses were used to identify biological processes that were comparatively over-represented among probe sets expressed in the in vitro systems. The robustness of the primary hepatocyte cultures was reflected by the extent of unchanged expression character when compared directly to liver, with more than 77% of the probe sets unchanged in each of the over-represented categories, representing such genes as C/EBP{alpha}, HNF4{alpha}, CYP2D6, and ABCB1. In contrast, HepG2 and Huh7 cells were unchanged from the liver tissues for fewer than 48% and 55% of these probe sets, respectively. Further, hierarchical clustering of the hepatocytes, but not the cell lines, shifted from donor-specific to treatment-specific when the probe sets were filtered to focus on phenobarbital-inducible genes, indicative of the highly differentiated nature of the hepatocytes when cultured in a highly defined two-dimensional sandwich system.

  20. Antimutagenic activity and in vitro anticancer effects of bamboo salt on HepG2 human hepatoma cells.

    PubMed

    Zhao, Xin; Ju, Jaehyun; Kim, Hyung-Min; Park, Kun-Young

    2013-01-01

    Bamboo salt is a traditional Korean baked solar salt processed by packing the solar salt in bamboo joint cases and heating it several times to high temperatures. The antimutagenic activity and in vitro anticancer effects of bamboo salt on HepG2 human hepatoma cells were investigated and compared to those of other salt samples. Although solar salt and purified salt exhibited comutagenicity with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) in the Salmonella typhimurium TA100 strain, bamboo salt was associated with a lower degree of comutagenicity or antimutagenic activity. Bamboo salt baked nine times (9×) showed a greater increase in antimutagenic activity than salts baked once (1×) or three times (3×). At a concentration of 1%, the growth rate of HepG2 cells treated with 9× bamboo salt determined by a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MIT) assay was reduced by 65%; this rate of inhibition was higher than that achieved with 1× baked bamboo salt (40%). Purified and solar salts had relatively lower inhibitory effects on growth rate (25% and 29%, respectively). Compared to the other salt samples, 9× bamboo salt significantly (p<0.05) induced apoptosis as determined by 4,6-diamidino-2-phenylindole (DAPI) staining and flow cytometry analysis. It also upregulated the expression of Bax, caspase-9 and caspase-3; and downregulated Bcl-2 expression. The bamboo salts, especially 9× bamboo salt, also significantly (p<0.05) downregulated the expression of inflammation-related NF-κB, iNOS, and COX-2, and upregulated the gene expression of IκB-α compared to the other salt sample.

  1. Determining oxidative and non-oxidative genotoxic effects driven by estuarine sediment contaminants on a human hepatoma cell line.

    PubMed

    Pinto, M; Costa, P M; Louro, H; Costa, M H; Lavinha, J; Caeiro, S; Silva, M J

    2014-04-15

    Estuarine sediments may be reservoirs of hydrophilic and hydrophobic pollutants, many of which are acknowledged genotoxicants, pro-mutagens and even potential carcinogens for humans. Still, studies aiming at narrowing the gap between ecological and human health risk of sediment-bound contaminant mixtures are scarce. Taking an impacted estuary as a case study (the Sado, SW Portugal), HepG2 (human hepatoma) cells were exposed in vitro for 48 h to extracts of sediments collected from two areas (urban/industrial and Triverine/agricultural), both contaminated by distinct mixtures of organic and inorganic toxicants, among which are found priority mutagens such as benzo[a]pyrene. Comparatively to a control test, extracts of sediments from both impacted areas produced deleterious effects in a dose-response manner. However, sediment extracts from the industrial area caused lower replication index plus higher cytotoxicity and genotoxicity (concerning total DNA strand breakage and clastogenesis), with emphasis on micronucleus induction. On the other hand, extracts from the rural area induced the highest oxidative damage to DNA, as revealed by the FPG (formamidopyrimidine-DNA glycosylase) enzyme in the Comet assay. Although the estuary, on its whole, has been classified as moderately contaminated, the results suggest that the sediments from the industrial area are significantly genotoxic and, furthermore, elicit permanent chromosome damage, thus potentially being more mutagenic than those from the rural area. The results are consistent with contamination by pro-mutagens like polycyclic aromatic hydrocarbons (PAHs), potentiated by metals. The sediments from the agriculture-influenced area likely owe their genotoxic effects to metals and other toxicants, probably pesticides and fertilizers, and able to induce reactive oxygen species without the formation of DNA strand breakage. The findings suggest that the mixtures of contaminants present in the assayed sediments are genotoxic

  2. XPC is essential for nucleotide excision repair of zidovudine-induced DNA damage in human hepatoma cells

    SciTech Connect

    Wu Qiangen; Beland, Frederick A.; Chang, Ching-Wei; Fang Jialong

    2011-03-01

    Zidovudine (3'-azido-3'-dexoythymidine, AZT), a nucleoside reverse transcriptase inhibitor, can be incorporated into DNA and cause DNA damage. The mechanisms underlying the repair of AZT-induced DNA damage are unknown. To investigate the pathways involved in the recognition and repair of AZT-induced DNA damage, human hepatoma HepG2 cells were incubated with AZT for 2 weeks and the expression of DNA damage signaling pathways was determined using a pathway-based real-time PCR array. Compared to control cultures, damaged DNA binding and nucleotide excision repair (NER) pathways showed significantly increased gene expression. Further analysis indicated that AZT treatment increased the expression of genes associated with NER, including XPC, XPA, RPA1, GTF2H1, and ERCC1. Western blot analysis demonstrated that the protein levels of XPC and GTF2H1 were also significantly up-regulated. To explore further the function of XPC in the repair of AZT-induced DNA damage, XPC expression was stably knocked down by 71% using short hairpin RNA interference. In the XPC knocked-down cells, 100 {mu}M AZT treatment significantly increased [{sup 3}H]AZT incorporation into DNA, decreased the total number of viable cells, increased the release of lactate dehydrogenase, induced apoptosis, and caused a more extensive G2/M cell cycle arrest when compared to non-transfected HepG2 cells or HepG2 cells transfected with a scrambled short hairpin RNA sequence. Overall, these data indicate that XPC plays an essential role in the NER repair of AZT-induced DNA damage.

  3. Expression of cytochromes P450, conjugating enzymes and nuclear receptors in human hepatoma HepaRG cells.

    PubMed

    Aninat, Caroline; Piton, Amélie; Glaise, Denise; Le Charpentier, Typhen; Langouët, Sophie; Morel, Fabrice; Guguen-Guillouzo, Christiane; Guillouzo, André

    2006-01-01

    Most human hepatocyte cell lines lack a substantial set of liver-specific functions, especially major cytochrome P450 (P450)-related enzyme activities, making them unrepresentative of in vivo hepatocytes. We have used the HepaRG cells, derived from a human hepatocellular carcinoma, which exhibit a high differentiation pattern after 2 weeks at confluency to determine whether they could mimic human hepatocytes for drug metabolism and toxicity studies. We show that when passaged at low density, these cells reversed to an undifferentiated morphology, actively divided, and, after having reached confluency, formed typical hepatocyte-like colonies surrounded by biliary epithelial-like cells. By contrast, when seeded at high density, hepatocyte-like clusters retained their typical differentiated morphology. Transcripts of various nuclear receptors (aryl hydrocarbon receptor, pregnane X receptor, constitutive androstane receptor, peroxisome proliferator-activated receptor alpha), P450s (CYP1A2, 2C9, 2D6, 2E1, 3A4), phase 2 enzymes (UGT1A1, GSTA1, GSTA4, GSTM1), and other liver-specific functions were estimated by reverse transcriptase-quantitative polymerase chain reaction and were found to be expressed, for most of them, at comparable levels in both confluent differentiated and high-density differentiated HepaRG cells and in cultured primary human hepatocytes. For several transcripts, the levels were strongly increased in the presence of 2% dimethyl sulfoxide. Measurement of basal activities of several P450s and their response to prototypical inducers as well as analysis of metabolic profiles and cytotoxicity of several compounds confirmed the functional resemblance of HepaRG cells to primary cultured human hepatocytes. In conclusion, HepaRG cells constitute the first human hepatoma cell line expressing high levels of the major P450s involved in xenobiotic metabolism and represent a reliable surrogate to human hepatocytes for drug metabolism and toxicity studies.

  4. Antitumor and immunomodulatory effects of low-dose 5-FU on hepatoma 22 tumor-bearing mice

    PubMed Central

    CAO, ZHIYUN; ZHANG, ZHIDENG; HUANG, ZHENGRONG; WANG, RONGPING; YANG, AILIAN; LIAO, LIANMING; DU, JIAN

    2014-01-01

    Low-dose 5-fluorouracil (5-FU), a widely used chemotherapeutic, has been reported to have immunomodulatory effects. This study aimed to evaluate the optimal dose of 5-FU that produces antitumor and immunomodulatory effects. In a hepatoma 22 tumor-bearing mouse model, 0, 10, 20 and 40 mg/kg 5-FU (i.p.) was administered for 10 days. Tumor weight and volume were measured, thymus index (TI) and spleen index (SI) were calculated, and the number of white blood cells (WBCs) and lymphocytes (LYs) were counted following treatment. The percentages of CD3+, CD4+, CD8+ and natural killer (NK) cells were measured by flow cytometry. In addition, the body weights of the mice were measured and the average diet consumption was calculated. Administration of 5-FU produced a potent antitumor effect in a dose-dependent manner (P<0.01). At 20 and 40 mg/kg, a significant reduction of body weight and food consumption was observed. TI and SI decreased in the 20- and 40-mg/kg groups (P<0.01) for 10 days. The number of WBCs significantly decreased in each group (P<0.01); however, the number of LYs only decreased in the 40-mg/kg group (P<0.01). Percentages of CD3+ and CD4+ cells were increased in the 10- and 20-mg/kg groups (P<0.01). Thus, 5-FU at 10 mg/kg inhibits tumor growth while maintaining the immune function of the mice. 5-FU may exert its antitumor effect at a low dose with low toxicity and stimulate the host immune system. Future clinical trials taking into account the immunostimulatory capacity of chemotherapeutic agents are desirable for certain patients. PMID:24660037

  5. Physiological roles revealed by ghrelin and ghrelin receptor deficient mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ghrelin is a hormone made in the stomach and known primarily for its growth hormone releasing and orexigenic properties. Nevertheless, ghrelin through its receptor, the GHS-R1a, has been shown to exert many roles including regulation of glucose homeostasis, memory & learning, food addiction and neur...

  6. Obesity and diabetes in TNF-alpha receptor- deficient mice.

    PubMed Central

    Schreyer, S A; Chua, S C; LeBoeuf, R C

    1998-01-01

    TNF-alpha may play a role in mediating insulin resistance associated with obesity. This concept is based on studies of obese rodents and humans, and cell culture models. TNF elicits cellular responses via two receptors called p55 and p75. Our purpose was to test the involvement of TNF in glucose homeostasis using mice lacking one or both TNF receptors. C57BL/6 mice lacking p55 (p55(-)/-), p75, (p75(-)/-), or both receptors (p55(-)/-p75(-)/-) were fed a high-fat diet to induce obesity. Marked fasting hyperinsulinemia was seen for p55(-)/-p75(-)/- males between 12 and 16 wk of feeding the high-fat diet. Insulin levels were four times greater than wild-type mice. In contrast, p55(-)/- and p75(-)/- mice exhibited insulin levels that were similar or reduced, respectively, as compared with wild-type mice. In addition, high-fat diet-fed p75(-)/- mice had the lowest body weights and leptin levels, and improved insulin sensitivity. Obese (db/db) mice, which are not responsive to leptin, were used to study the role of p55 in severe obesity. Male p55(-)/-db/db mice exhibited threefold higher insulin levels and twofold lower glucose levels at 20 wk of age than control db/db expressing p55. All db/db mice remained severely insulin resistant based on fasting plasma glucose and insulin levels, and glucose and insulin tolerance tests. Our data do not support the concept that TNF, acting via its receptors, is a major contributor to obesity-associated insulin resistance. In fact, data suggest that the two TNF receptors work in concert to protect against diabetes. PMID:9664082

  7. Toxicity of teriflunomide in aryl hydrocarbon receptor deficient mice.

    PubMed

    Redaelli, Chiara; Gaffarogullari, Ece Cazibe; Brune, Maik; Pilz, Caroline; Becker, Simon; Sonner, Jana; Jäschke, Andres; Gröne, Hermann-Josef; Wick, Wolfgang; Platten, Michael; Lanz, Tobias Volker

    2015-12-01

    The intracellular transcription factor aryl hydrocarbon receptor (AHR) is bound and activated by xenobiotics, thereby promoting their catabolism by inducing expression of cytochrome P450 oxidase (CYP) genes through binding xenobiotic response elements (XRE) in their promoter region. In addition, it is involved in several cellular pathways like cell proliferation, differentiation, regeneration, tumor invasiveness and immune responses. Several pharmaceutical compounds like benzimidazoles activate the AHR and induce their own metabolic degradation. Using newly generated XRE-reporter mice, which allow in vivo bioluminescence imaging of AHR activation, we show here that the AHR is activated in vivo by teriflunomide (TER), which has recently been approved for the treatment of multiple sclerosis. While we did not find any evidence that the AHR mediates the immunomodulatory effects of TER, AHR activation led to metabolism and detoxification of teriflunomide, most likely via CYP. Mice deficient for the AHR show higher blood levels of teriflunomide, suffer from enhanced thrombo- and leukopenia and elevated liver enzymes as well as from severe gastrointestinal ulcers and bleeding which are lethal after 8-11 days of treatment. Leukopenia, acute liver damage and diarrhea have also been described as common side effects in human trials with TER. These data suggest that the AHR is relevant for detoxification not only of environmental toxins but also of drugs in clinical use, with potential implications for the application of AHR-modifying therapies in conjunction to TER in humans. The XRE-reporter mouse is a useful novel tool for monitoring AHR activation using in vivo imaging.

  8. Role of reactive oxygen species-mediated mitochondrial dysregulation in 3-bromopyruvate induced cell death in hepatoma cells : ROS-mediated cell death by 3-BrPA.

    PubMed

    Kim, Ji Su; Ahn, Keun Jae; Kim, Jeong-Ah; Kim, Hye Mi; Lee, Jong Doo; Lee, Jae Myun; Kim, Se Jong; Park, Jeon Han

    2008-12-01

    Hexokinase type II (HK II) is the key enzyme for maintaining increased glycolysis in cancer cells where it is overexpressed. 3-bromopyruvate (3-BrPA), an inhibitor of HK II, induces cell death in cancer cells. To elucidate the molecular mechanism of 3-BrPA-induced cell death, we used the hepatoma cell lines SNU449 (low expression of HKII) and Hep3B (high expression of HKII). 3-BrPA induced ATP depletion-dependent necrosis and apoptosis in both cell lines. 3-BrPA increased intracellular reactive oxygen species (ROS) leading to mitochondrial dysregulation. NAC (N-acetyl-L: -cysteine), an antioxidant, blocked 3-BrPA-induced ROS production, loss of mitochondrial membrane potential and cell death. 3-BrPA-mediated oxidative stress not only activated poly-ADP-ribose (PAR) but also translocated AIF from the mitochondria to the nucleus. Taken together, 3-BrPA induced ATP depletion-dependent necrosis and apoptosis and mitochondrial dysregulation due to ROS production are involved in 3-BrPA-induced cell death in hepatoma cells.

  9. Size-dependent cytotoxicity of Fe3O4 nanoparticles induced by biphasic regulation of oxidative stress in different human hepatoma cells.

    PubMed

    Xie, Yuexia; Liu, Dejun; Cai, Chenlei; Chen, Xiaojing; Zhou, Yan; Wu, Liangliang; Sun, Yongwei; Dai, Huili; Kong, Xianming; Liu, Peifeng

    2016-01-01

    The application of Fe3O4 nanoparticles (NPs) has made great progress in the diagnosis of disease and in the drug delivery system for cancer therapy, but the relative mechanisms of potential toxicity induced by Fe3O4 have not kept pace with its development in the application, which has hampered its further clinical application. In this article, we used two kinds of human hepatoma cell lines, SK-Hep-1 and Hep3B, to investigate the cytotoxic effects and the involved mechanisms of small Fe3O4 NPs with different diameters (6 nm, 9 nm, and 14 nm). Results showed that the size of NPs effectively influences the cytotoxicity of hepatoma cells: 6 nm Fe3O4 NPs exhibited negligible cytotoxicity and 9 nm Fe3O4 NPs affected cytotoxicity via cellular mitochondrial dysfunction and by inducing necrosis mediated through the mitochondria-dependent intracellular reactive oxygen species generation. Meanwhile, 14 nm Fe3O4 NPs induced cytotoxicity by impairing the integrity of plasma membrane and promoting massive lactate dehydrogenase leakage. These results explain the detailed mechanism of different diameters of small Fe3O4 NPs-induced cytotoxicity. We anticipate that this study will provide different insights into the cytotoxicity mechanism of Fe3O4 NPs, so as to make them safer to use in clinical application.

  10. The Chinese medicine Bu-Zhong-Yi-Qi-Tang inhibited proliferation of hepatoma cell lines by inducing apoptosis via G0/G1 arrest.

    PubMed

    Kao, S T; Yeh, C C; Hsieh, C C; Yang, M D; Lee, M R; Liu, H S; Lin, J G

    2001-08-17

    Bu-Zhong-Yi-Qi-Tang (BZYQT), a Chinese herbal medicine, inhibited the proliferation of human hepatoma cell lines (Hep3B, HepG2 and HA22T) dose-dependently. The IC50s of BZYQT on the proliferation of Hep3B, HepG2 and HA22T were 432.5+/-31.8 microg/ml, 455.4+/-24.2 microg/ml, and 2284.3+/-77.2 microg/ml respectively on day 3. However, BZYQT did not significantly inhibit the proliferation of normal human hepatocytes (Chang liver, CCL-13) at the concentration under 5,000 microg/ml. Major compounds of BZYQT, including astragaloside IV, ginsenoside Rb1 and Rg1, saikosaponin a and c, and glycyrrhizin, have been identified. To investigate the key inhibitors of BZYQT. Hep3B cells were treated with BZYQT, individual major compounds of BZYQT, and mixture of major compounds in the same ratio as present in BZYQT. Significant inhibition of proliferation was detected in BZYQT and its major compounds mixture in a comparable level. Not any individual major compound examined could suppress the proliferation of Hep3B cells. This data indicated that there could be synergistic or additive effects of the ingredients in BZYQT. BrdU incorporation, cell cycle analysis and DNA fragmentation assay revealed that BZYQT suppressed the proliferation of hepatoma cells via G0/G1 cell cycle arrest and inhibition of DNA synthesis followed by apoptosis.

  11. Glutamine, insulin and glucocorticoids regulate glutamine synthetase expression in C2C12 myotubes, Hep G2 hepatoma cells and 3T3 L1 adipocytes.

    PubMed

    Wang, Yanxin; Watford, Malcolm

    2007-04-01

    The cell-specific regulation of glutamine synthetase expression was studied in three cell lines. In C2C12 myotubes, glucocorticoids increased the abundance of both glutamine synthetase protein and mRNA. Culture in the absence of glutamine also resulted in very high glutamine synthetase protein abundance but mRNA levels were unchanged. Glucocorticoids also increased the abundance of glutamine synthetase mRNA in Hep G2 hepatoma cells but this was not reflected in changes in protein abundance. Culture of Hep G2 cells without glutamine resulted in very high levels of protein, again with no change in mRNA abundance. Insulin was without effect in both C2C12 and Hep G2 cells. In 3T3 L1 adipocytes glucocorticoids increased the abundance of both glutamine synthetase mRNA and protein, insulin added alone had no effect but in the presence of glucocorticoids resulted in lower mRNA levels than seen with glucocorticoids alone, although protein levels remained high under such conditions. In contrast to the other cell lines glutamine synthetase protein levels were relatively unchanged by culture in the absence of glutamine. The results support the hypothesis that in myocytes, and hepatomas, but not in adipocytes, glutamine acts to moderate glutamine synthetase induction by glucocorticoids.

  12. Size-dependent cytotoxicity of Fe3O4 nanoparticles induced by biphasic regulation of oxidative stress in different human hepatoma cells

    PubMed Central

    Xie, Yuexia; Liu, Dejun; Cai, Chenlei; Chen, Xiaojing; Zhou, Yan; Wu, Liangliang; Sun, Yongwei; Dai, Huili; Kong, Xianming; Liu, Peifeng

    2016-01-01

    The application of Fe3O4 nanoparticles (NPs) has made great progress in the diagnosis of disease and in the drug delivery system for cancer therapy, but the relative mechanisms of potential toxicity induced by Fe3O4 have not kept pace with its development in the application, which has hampered its further clinical application. In this article, we used two kinds of human hepatoma cell lines, SK-Hep-1 and Hep3B, to investigate the cytotoxic effects and the involved mechanisms of small Fe3O4 NPs with different diameters (6 nm, 9 nm, and 14 nm). Results showed that the size of NPs effectively influences the cytotoxicity of hepatoma cells: 6 nm Fe3O4 NPs exhibited negligible cytotoxicity and 9 nm Fe3O4 NPs affected cytotoxicity via cellular mitochondrial dysfunction and by inducing necrosis mediated through the mitochondria-dependent intracellular reactive oxygen species generation. Meanwhile, 14 nm Fe3O4 NPs induced cytotoxicity by impairing the integrity of plasma membrane and promoting massive lactate dehydrogenase leakage. These results explain the detailed mechanism of different diameters of small Fe3O4 NPs-induced cytotoxicity. We anticipate that this study will provide different insights into the cytotoxicity mechanism of Fe3O4 NPs, so as to make them safer to use in clinical application. PMID:27536098

  13. Hepatitis B Virus X Protein Driven Alpha Fetoprotein Expression to Promote Malignant Behaviors of Normal Liver Cells and Hepatoma Cells

    PubMed Central

    Zhu, Mingyue; Lu, Yan; Li, Wei; Guo, Junli; Dong, Xu; Lin, Bo; Chen, Yi; Xie, Xieju; Li, Mengsen

    2016-01-01

    Background: The infection of Hepatitis B virus (HBV) is closely associated with the development of hepatocellular carcinoma(HCC), HBV-X protein(HBx) is able to induce expression of alpha-fetoprotein(AFP) in normal liver cells, and AFP harbors a function to promote malignant transformation of normal liver cells, but the role AFP playing in malignant behaviors of HCC cells is still unclear. Methods: Fifty-six liver tissue samples were collected from the clinical patients through hepatectomy(include normal liver tissues, HBV-related hepatitis liver tissues and HBV-related HCC tissues), and diagnosis of these tissues by pathology section, expression of AFP, Ras and CXCR4 were evidenced by immunohisochemical staining and Western blotting; The proliferation of human normal liver cells line L-02 cells and human hepatoma cells line, HLE cells(non AFP-producing) were performed by MTT method; Repaired capacity of L-02 and HLE cells were compared by wound healing assay; Migration and invasion of these cells were analyzed by Transwell chamber assay; HBx expressed vectors(pcDNA3.1-HBx) were constructed and transfected into L-02 and HLE cells, effects of pcDNA3.1-HBx on the malignant behaviors were also detected by MTT, Transwell chamber assay and the expression of AFP, Ras and CXCR4 were evidenced by Western blotting. Results: we found that expression of AFP, Ras and CXCR4 in HBV-related HCC and lymph nodes metastasis tissues were significantly elevated compared with HBV-related HCC, non metastasis tissues and HBV-related hepatitis tissues; Expression of AFP, Ras and CXCR4 in HBV-related hepatitis tissues were significantly enhanced compared with normal liver tissues; The growth ratio, migratory and invasive ability, expression of AFP, Ras and CXCR4 of the cells were outstanding promoted while L-02 and HLE cells were transfected with pcDNA3.1-HBx vectors. The proliferation ratio, migration and invasion ability, and expression of Ras and CXCR4 were significantly inhibited while

  14. Internalization and degradation of recombinant human coagulation factor VIIa by the human hepatoma cell line HuH7.

    PubMed

    Chang, G T; Kisiel, W

    1995-02-01

    Previous studies demonstrated that several normal and transformed cultured human cell lines specifically bind human coagulation factors VII and VIIa via tissue factor. In the present study, we show that 125I-radiolabeled recombinant human factor VIIa (125I-rFVIIa) binds to a human hepatoma cell line (HuH7). In the presence of rabbit polyclonal anti-human tissue factor apoprotein IgG, binding of 125I-rFVIIa to the HuH7 cells was decreased approximately 60%, suggesting of tissue factor-independent binding sites for 125I-rFVIIa on these cells. The binding isotherm of 125I-rFVIIa for the HuH7 cells in the presence of anti-tissue factor IgG exhibited a hyperbolic profile and was time-, temperature- and calcium-dependent. Furthermore, binding at 4 degrees C was specific, dose-dependent and saturable. Scatchard analysis of the binding data demonstrated a single class of binding sites with a dissociation constant (Kd) of 3.2 nM and 27,000 binding sites per cell. At 4 degrees C, 125I-rFVIIa bound to, and eluted from, the cell was indistinguishable from offered 125I-rFVIIa as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by autoradiography. The molecular properties of the tissue factor-independent binding protein were studied by using the cleavable cross-linking agent 3,3'-dithiobis(sulfosuccinimidylpropionate). A cross-linking product of 125I-rFVIIa and a cell surface protein with an apparent M(r) approximately 100,000 was observed. The cross-linking reaction was strongly inhibited by a 100-fold molar excess of unlabeled rFVIIa, but not by rabbit polyclonal anti-human tissue factor apoprotein IgG, indicating that cross-linking does not involve the extracellular domain of tissue factor.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. The aryl hydrocarbon receptor mediates raloxifene-induced apoptosis in estrogen receptor-negative hepatoma and breast cancer cells

    PubMed Central

    O'Donnell, E F; Koch, D C; Bisson, W H; Jang, H S; Kolluri, S K

    2014-01-01

    Identification of new molecular targets for the treatment of breast cancer is an important clinical goal, especially for triple-negative breast cancer, which is refractory to existing targeted treatments. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor known primarily as the mediator of dioxin toxicity. However, the AhR can also inhibit cellular proliferation in a ligand-dependent manner and act as a tumor suppressor in mice, and thus may be a potential anticancer target. To investigate the AhR as an anticancer target, we conducted a small molecule screen to discover novel AhR ligands with anticancer properties. We identified raloxifene, a selective estrogen receptor (ER) modulator currently used in the clinic for prevention of ER-positive breast cancer and osteoporosis in post-menopausal women, as an AhR activator. Raloxifene directly bound the AhR and induced apoptosis in ER-negative mouse and human hepatoma cells in an AhR-dependent manner, indicating that the AhR is a molecular target of raloxifene and mediates raloxifene-induced apoptosis in the absence of ER. Raloxifene selectively induced apoptosis of triple-negative MDA-MB-231 breast cancer cells compared with non-transformed mammary epithelial cells via the AhR. Combined with recent data showing that raloxifene inhibits triple-negative breast cancer xenografts in vivo (Int J Oncol. 43(3):785-92, 2013), our results support the possibility of repurposing of raloxifene as an AhR-targeted therapeutic for triple-negative breast cancer patients. To this end, we also evaluated the role of AhR expression on survival of patients diagnosed with breast cancer. We found that higher expression of the AhR is significantly associated with increased overall survival and distant metastasis-free survival in both hormone-dependent (ER-positive) and hormone-independent (ER and progesterone receptor (PR)-negative) breast cancers. Together, our data strongly support the possibility of using the Ah

  16. Inhibition of glutathione synthesis eliminates the adaptive response of ascitic hepatoma 22 cells to nedaplatin that targets thioredoxin reductase

    SciTech Connect

    Wang, Yijun; Lu, Hongjuan; Wang, Dongxu; Li, Shengrong; Sun, Kang; Wan, Xiaochun; Taylor, Ethan Will; Zhang, Jinsong

    2012-12-15

    Thioredoxin reductase (TrxR) is a target for cancer therapy and the anticancer mechanism of cisplatin involves TrxR inhibition. We hypothesize that the anticancer drug nedaplatin (NDP), an analogue of cisplatin and a second-generation platinum complex, also targets TrxR. Furthermore, we investigate whether the therapeutic efficacy of NDP can be enhanced by simultaneous modulation of 1) TrxR, via NDP, and 2) glutathione (GSH), via the GSH synthesis inhibitor buthionine sulfoximine (BSO). Mice bearing ascitic hepatoma 22 (H22) cells were treated with NDP alone or NDP plus BSO. TrxR activity of H22 cells was inhibited by NDP in a dose-dependent manner. A high correlation between the inhibition of TrxR activity at 6 h and the inhibition of ascitic fluid volume at 72 h was established (r = 0.978, p < 0.01). As an adaptive response, the viable ascitic cancer cells after NDP treatment displayed an enlarged cell phenotype, assembled with several-fold more antioxidant enzymes and GSH-predominant non-protein free thiols. This adaptive response was largely eliminated when BSO was co-administered with NDP, leading to the decimation of the H22 cell population without enhancing renal toxicity, since at this dose, NDP did not inhibit renal TrxR activity. In conclusion, the pharmacological effect of NDP involves TrxR inhibition, and the adaptive response of NDP-treated ascitic H22 cells can be efficiently counteracted by BSO. Simultaneous modulation of TrxR and GSH on ascitic H22 cells using NDP plus BSO greatly enhances therapeutic efficacy as compared with the single modulation of TrxR using NDP alone. -- Highlights: ► Nedaplatin at a pharmacological dose inhibits TrxR in cancer cells but not in kidney. ► The nedaplatin-treated cancer cells exhibit adaptive response. ► Buthionine sulfoximine inhibits glutathione in both cancer cells and kidney. ► Buthionine sulfoximine counteracts the adaptive response to the nedaplatin treatment. ► Buthionine sulfoximine does not

  17. The aryl hydrocarbon receptor mediates raloxifene-induced apoptosis in estrogen receptor-negative hepatoma and breast cancer cells.

    PubMed

    O'Donnell, E F; Koch, D C; Bisson, W H; Jang, H S; Kolluri, S K

    2014-01-30

    Identification of new molecular targets for the treatment of breast cancer is an important clinical goal, especially for triple-negative breast cancer, which is refractory to existing targeted treatments. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor known primarily as the mediator of dioxin toxicity. However, the AhR can also inhibit cellular proliferation in a ligand-dependent manner and act as a tumor suppressor in mice, and thus may be a potential anticancer target. To investigate the AhR as an anticancer target, we conducted a small molecule screen to discover novel AhR ligands with anticancer properties. We identified raloxifene, a selective estrogen receptor (ER) modulator currently used in the clinic for prevention of ER-positive breast cancer and osteoporosis in post-menopausal women, as an AhR activator. Raloxifene directly bound the AhR and induced apoptosis in ER-negative mouse and human hepatoma cells in an AhR-dependent manner, indicating that the AhR is a molecular target of raloxifene and mediates raloxifene-induced apoptosis in the absence of ER. Raloxifene selectively induced apoptosis of triple-negative MDA-MB-231 breast cancer cells compared with non-transformed mammary epithelial cells via the AhR. Combined with recent data showing that raloxifene inhibits triple-negative breast cancer xenografts in vivo (Int J Oncol. 43(3):785-92, 2013), our results support the possibility of repurposing of raloxifene as an AhR-targeted therapeutic for triple-negative breast cancer patients. To this end, we also evaluated the role of AhR expression on survival of patients diagnosed with breast cancer. We found that higher expression of the AhR is significantly associated with increased overall survival and distant metastasis-free survival in both hormone-dependent (ER-positive) and hormone-independent (ER and progesterone receptor (PR)-negative) breast cancers. Together, our data strongly support the possibility of using the Ah

  18. Association of topoisomerase II with the hepatoma cell nuclear matrix: the role of intermolecular disulfide bond formation.

    PubMed

    Kaufmann, S H; Shaper, J H

    1991-02-01

    Previous studies have resulted in conflicting data regarding the recovery of the nuclear enzymes topoisomerase (topo) II and topo I in the nuclear matrix fraction. In the present study we have assessed the effect of systematically altering a single extraction procedure on the distribution of these enzymes during the subfractionation of nuclei from HTC hepatoma tissue culture cells. When nuclear monolayers (prepared by treating attached cells in situ with the neutral detergent Nonidet-P40 at 4 degrees C) were isolated in the presence of the irreversible sulfhydryl blocking reagent iodoacetamide, subsequent treatment with DNase I and RNase A followed by 1.6 M NaCl resulted in structures which were extensively depleted of intranuclear components as assessed by phase contrast microscopy and conventional transmission electron microscopy. These structures contained 12 +/- 4% of the total protein present in the original nuclear monolayers. The lamins and polypeptides with molecular weights comparable to those of actin and vimentin were the predominant polypeptides present on SDS-polyacrylamide gels. Western blotting revealed that less than 5% of the total nuclear topo II molecules were present in these structures. In contrast, when the sulfhydryl cross-linking reagent sodium tetrathionate (NaTT) was substituted for iodoacetamide, the same extraction procedure yielded structures containing components of the nucleolus and an extensive intranuclear network. These structures contained a wide variety of nonlamin, nonhistone nuclear polypeptides including 23 +/- 4% of the total nuclear topo II. SDS-polyacrylamide gel electrophoresis performed under nonreducing conditions revealed that topo II in these nuclear matrices was present as part of a large disulfide cross-linked complex. Treatment of these structures with reducing agents in 1.6 M NaCl released the topo II. In contrast, topo I did not form disulfide cross-linked oligomers and was not detectable in any of these nuclease

  19. Different Contribution of Redox-Sensitive Transient Receptor Potential Channels to Acetaminophen-Induced Death of Human Hepatoma Cell Line

    PubMed Central

    Badr, Heba; Kozai, Daisuke; Sakaguchi, Reiko; Numata, Tomohiro; Mori, Yasuo

    2016-01-01

    Acetaminophen (APAP) is a safe analgesic antipyretic drug at prescribed doses. Its overdose, however, can cause life-threatening liver damage. Though, involvement of oxidative stress is widely acknowledged in APAP-induced hepatocellular death, the mechanism of this increased oxidative stress and the associated alterations in Ca2+ homeostasis are still unclear. Among members of transient receptor potential (TRP) channels activated in response to oxidative stress, we here identify that redox-sensitive TRPV1, TRPC1, TRPM2, and TRPM7 channels underlie Ca2+ entry and downstream cellular damages induced by APAP in human hepatoma (HepG2) cells. Our data indicate that APAP treatment of HepG2 cells resulted in increased reactive oxygen species (ROS) production, glutathione (GSH) depletion, and Ca2+ entry leading to increased apoptotic cell death. These responses were significantly suppressed by pretreatment with the ROS scavengers N-acetyl-L-cysteine (NAC) and 4,5-dihydroxy-1,3-benzene disulfonic acid disodium salt monohydrate (Tiron), and also by preincubation of cells with the glutathione inducer Dimethylfumarate (DMF). TRP subtype-targeted pharmacological blockers and siRNAs strategy revealed that suppression of either TRPV1, TRPC1, TRPM2, or TRPM7 reduced APAP-induced ROS formation, Ca2+ influx, and cell death; the effects of suppression of TRPV1 or TRPC1, known to be activated by oxidative cysteine modifications, were stronger than those of TRPM2 or TRPM7. Interestingly, TRPV1 and TRPC1 were labeled by the cysteine-selective modification reagent, 5,5′-dithiobis (2-nitrobenzoic acid)-2biotin (DTNB-2Bio), and this was attenuated by pretreatment with APAP, suggesting that APAP and/or its oxidized metabolites act directly on the modification target cysteine residues of TRPV1 and TRPC1 proteins. In human liver tissue, TRPV1, TRPC1, TRPM2, and TRPM7 channels transcripts were localized mainly to hepatocytes and Kupffer cells. Our findings strongly suggest that APAP

  20. Regucalcin and metabolic disorders: osteoporosis and hyperlipidemia are induced in regucalcin transgenic rats.

    PubMed

    Yamaguchi, Masayoshi

    2010-08-01

    Regucalcin transgenic (TG) rat has been generated to determine the role in metabolic disorders. Regucalcin homozygote male and female rats induce a prominent increase in regucalcin protein in the various tissues. Bone loss has been found to induce in regucalcin TG rats with growing (5 weeks old) and aging (50 weeks old). Osteoclastogenesis has been shown to stimulate in culture with the bone marrow cells obtained from regucalcin TG rats. Exogenous regucalcin stimulates osteoclastogenesis in mouse marrow culture in vitro. Regucalcin has a suppressive effect on the differentiation and mineralization in osteoblastic MC3T3-E1 cells in vitro. The mechanism by which regucalcin TG rat induces bone loss may result from the enhancement of osteoclastic bone resorption and the suppression of osteoblastic bone formation. Moreover, regucalcin TG rat has been found to induce hyperlipidemia with increasing age (14-50 weeks); serum triglyceride, high-density lipoprotein (HDL)-cholesterol, free fatty acid, albumin and calcium concentrations are markedly increased in regucalcin TG male and female rats with increasing age. The decrease in lipid and glycogen contents in liver tissues is induced in regucalcin TG rats. The gene expression of leptin and adiponectin is suppressed in the TG rats. Overexpression of regucalcin has been shown to enhance glucose utilization and lipid production in the cloned rat hepatoma H4-II-E cells in vitro, and insulin resistance is seen in the cells. The expression of glucose transporter 2 mRNA is increased in the transfectants, while it has been shown to suppress insulin receptor and phosphatidylinositol 3-kinase mRNA expressions that are involved in insulin signaling. This review proposes that regucalcin relates in osteoporosis and hyperlipidemia, and that the regucalcin TG rat model may be useful in determining the pathophysiologic state and the development of therapeutic tool for osteoporosis and hyperlipidemia.

  1. Effects of insulin, dexamethasone and cytokines on {alpha}{sub 1}-acid glycoprotein gene expression in primary cultures of normal rat hepatocytes

    SciTech Connect

    Barraud, B.; Balavoine, S.; Feldmann, G.; Lardeux, B.

    1996-04-01

    While the effects of insulin, dexamethasone and cytokines on {alpha}{sub 1}-acid glycoprotein gene expression have been investigated in various hepatoma cell lines, the individual and combined effects of these components on the expression of this gene have been rarely studied in cultured normal rat hepatocytes. In this cell model, we have shown that mRNA levels of {alpha}{sub 1}-acid glycoprotein were not decreased at least during the first 24 h of culture under basal conditions. During these short-term cultures, the expression of {alpha}{sub 1}-acid glycoprotein in normal hepatocytes showed a high degree of responsiveness to dexamethasone alone (20-fold increase) and to dexamethasone associated with various cytokines (interleukin-1{beta}, interleukin-6 and tumor necrosis factor {alpha}) with a 40 to 100-fold increase depending on the cytokine. Insulin alone did not modify {alpha}{sub 1}-acid glycoprotein mRNA; however, this hormone exerted a positive effect (about 50% increase) in the presence of dexamethasone or dexamethasone with cytokines. These results indicate that the regulation of {alpha}{sub 1}-acid glycoprotein in cultured normal rat hepatocytes presents major differences when compared to reported observations in rat hepatoma cell lines. 49 refs., 2 figs., 2 tabs.

  2. Mitochondrial aquaporin-8 knockdown in human hepatoma HepG2 cells causes ROS-induced mitochondrial depolarization and loss of viability

    SciTech Connect

    Marchissio, Maria Julia; Francés, Daniel Eleazar Antonio; Carnovale, Cristina Ester; Marinelli, Raúl Alberto

    2012-10-15

    Human aquaporin-8 (AQP8) channels facilitate the diffusional transport of H{sub 2}O{sub 2} across membranes. Since AQP8 is expressed in hepatic inner mitochondrial membranes, we studied whether mitochondrial AQP8 (mtAQP8) knockdown in human hepatoma HepG2 cells impairs mitochondrial H{sub 2}O{sub 2} release, which may lead to organelle dysfunction and cell death. We confirmed AQP8 expression in HepG2 inner mitochondrial membranes and found that 72 h after cell transfection with siRNAs targeting two different regions of the human AQP8 molecule, mtAQP8 protein specifically decreased by around 60% (p < 0.05). Studies in isolated mtAQP8-knockdown mitochondria showed that H{sub 2}O{sub 2} release, assessed by Amplex Red, was reduced by about 45% (p < 0.05), an effect not observed in digitonin-permeabilized mitochondria. mtAQP8-knockdown cells showed an increase in mitochondrial ROS, assessed by dichlorodihydrofluorescein diacetate (+ 120%, p < 0.05) and loss of mitochondrial membrane potential (− 80%, p < 0.05), assessed by tetramethylrhodamine-coupled quantitative fluorescence microscopy. The mitochondria-targeted antioxidant MitoTempol prevented ROS accumulation and dissipation of mitochondrial membrane potential. Cyclosporin A, a mitochondrial permeability transition pore blocker, also abolished the mtAQP8 knockdown-induced mitochondrial depolarization. Besides, the loss of viability in mtAQP8 knockdown cells verified by MTT assay, LDH leakage, and trypan blue exclusion test could be prevented by cyclosporin A. Our data on human hepatoma HepG2 cells suggest that mtAQP8 facilitates mitochondrial H{sub 2}O{sub 2} release and that its defective expression causes ROS-induced mitochondrial depolarization via the mitochondrial permeability transition mechanism, and cell death. -- Highlights: ► Aquaporin-8 is expressed in mitochondria of human hepatoma HepG2 cells. ► Aquaporin-8 knockdown impairs mitochondrial H{sub 2}O{sub 2} release and increases ROS. ► Aquaporin

  3. MicroRNA-148a suppresses the epithelial-mesenchymal transition and metastasis of hepatoma cells by targeting Met/Snail signaling.

    PubMed

    Zhang, J-P; Zeng, C; Xu, L; Gong, J; Fang, J-H; Zhuang, S-M

    2014-07-31

    Metastasis is responsible for the rapid recurrence and poor survival of malignancies. Epithelial-mesenchymal transition (EMT) has a critical role in metastasis. Increasing evidence indicates that EMT can be regulated by microRNAs (miRNAs). miR-148a is a liver-abundant miRNA. However, the role of miR-148a in the development of liver cancer remains largely unknown. In this study, we found that, compared with normal livers, miR-148a was significantly decreased in hepatocellular carcinoma (HCC) tissues, especially in those with the portal vein tumor thrombus. An in vitro transwell assay and an in vivo orthotopic liver xenograft model showed that the restoration of miR-148a expression significantly repressed the migration and pulmonary metastasis of hepatoma cells. Linear regression analysis revealed a positive correlation between the expression of miR-148a and the mRNA level of E-cadherin gene in human HCC tissues. Both gain- and loss-of-function studies disclosed that miR-148a promoted the expression of epithelial marker (E-cadherin) and reduced the levels of mesenchymal markers (N-cadherin, fibronectin or vimentin) in hepatoma cells. These data suggest that miR-148a may suppress EMT and cancer metastasis. Further mechanistic investigations showed that miR-148a directly inhibited Met expression by binding to its 3'-UTR. Moreover, the reintroduction of miR-148a attenuated the downstream signaling of Met, like activated phosphorylation of AKT-Ser473 and inhibitory phosphorylation of GSK-3β-Ser9, and consequently reduced the nuclear accumulation of Snail, a transcription factor that promotes EMT. Taken together, miR-148a may negatively regulate Met/Snail signaling and therefore inhibit the EMT and metastasis of hepatoma cells. These findings highlight the significance of miR-148a downregulation in tumor progression and implicate miR-148a as an attractive candidate for cancer therapy.

  4. Sulphation of proteins secreted by a human hepatoma-derived cell line. Sulphation of N-linked oligosaccharides on alpha 2HS-glycoprotein.

    PubMed Central

    Hortin, G; Green, E D; Baenziger, J U; Strauss, A W

    1986-01-01

    Several human glycoproteins, including alpha 1-antitrypsin, alpha 1-acid glycoprotein, transferrin, caeruloplasmin and alpha 2HS-glycoprotein, synthesized by the hepatoma-derived cell line HepG2 were observed to contain covalently linked sulphate. These proteins were estimated to contain about 0.1 mol of sulphate/mol of protein. The most abundant of the sulphated glycoproteins, alpha 2HS-glycoprotein, was analysed in detail. All of the sulphate on this protein was attached to N-linked oligosaccharides which contained sialic acid and resisted release by endoglycosidase H. Several independent analytical approaches established that approx. 10% of the molecules of alpha 2HS-glycoprotein contained sulphate. Our results suggest that a number of human plasma proteins contain small amounts of sulphate linked to oligosaccharides. Images Fig. 1. Fig. 2. Fig. 3. PMID:3017304

  5. Monocyte-conditioned medium, interleukin-1, and tumor necrosis factor stimulate the acute phase response in human hepatoma cells in vitro

    PubMed Central

    1986-01-01

    Human hepatoma cells mimic the acute phase response after treatment with monocyte-conditioned medium. Levels of secreted fibrinogen, alpha- 1 acid glycoprotein, C-reactive protein, haptoglobin, and the third component of complement were elevated compared with control levels after 48 h of incubation with conditioned supernatant medium from an enriched fraction of normal peripheral monocytes. Albumin levels declined and alpha-1 antitrypsin remained unchanged. Levels of specific mRNA were measured by hybridization to slot blots and Northern blots and changed in correspondence with protein alterations. Interleukin-1 and tumor necrosis factor stimulated the third component of complement, but did not elevate any other member of the acute phase group and were therefore only partially active in this system. The identification of an in vitro model of the human acute phase response will permit analysis of the molecular basis for coordinate regulation of this group of facultative genes. PMID:3017995

  6. Long chain acyl-CoA synthetase 3-mediated phosphatidylcholine synthesis is required for assembly of very low density lipoproteins in human hepatoma Huh7 cells.

    PubMed

    Yao, Hongbing; Ye, Jin

    2008-01-11

    Hepatocytes play a crucial role in regulating lipid metabolism by exporting cholesterol and triglyceride into plasma through secretion of very low density lipoproteins (VLDL). VLDL production is also required for release of hepatitis C virus (HCV) from infected hepatocytes. Here, we show that long chain acyl-CoA synthetase 3 (ACSL3) plays a crucial role in secretion of VLDL and HCV from hepatocytes. In cultured human hepatoma Huh7 cells, ACSL3 is specifically required for incorporation of fatty acids into phosphatidylcholine. In cells receiving small interfering RNA targeting ACSL3, secretion of apolipoprotein B, the major protein component of VLDL, was inhibited and the lipoprotein was rapidly degraded. This inhibition in secretion was completely eliminated when these cells were treated with phosphatidylcholine. Treatment of cells with small interfering RNA targeting ACSL3 also inhibited secretion of HCV from Huh7-derived cells. These results identify ACSL3 as a new enzymatic target to limit VLDL secretion and HCV infection.

  7. Synthesis of spirolactone-type diterpenoid derivatives from kaurene-type oridonin with improved antiproliferative effects and their apoptosis-inducing activity in human hepatoma Bel-7402 cells.

    PubMed

    Li, Dahong; Cai, Hao; Jiang, Bowen; Liu, Guyue; Wang, Yuetong; Wang, Lei; Yao, Hequan; Wu, Xiaoming; Sun, Yijun; Xu, Jinyi

    2013-01-01

    A series of novel spirolactone-type diterpenoid derivatives of oridonin (12a-j) were designed and synthesized. All the target compounds showed improved anti-proliferative activity against a panel of human cancer cell lines and the most effective compound 12j was more potent than positive control Taxol in K562 and Bel-7402 cells with IC(50) values of 0.39 μM and 1.39 μM, respectively. The cellular mechanisms showed that compound 12j induced apoptosis at low micromolar concentrations in human hepatoma Bel-7402 cells. These results demonstrate that the spirolactone-type diterpenoid derivatives of oridonin have optimized growth inhibitory activity against cancer cells and interesting apoptosis-inducing ability.

  8. Comparative cytotoxicity induced by bulk and nanoparticulated ZnO in the fish and human hepatoma cell lines PLHC-1 and Hep G2.

    PubMed

    Fernández-Cruz, Maria Luisa; Lammel, Tobias; Connolly, Mona; Conde, Estefania; Barrado, Ana Isabel; Derick, Sylvain; Perez, Yolanda; Fernandez, Marta; Furger, Christophe; Navas, Jose Maria

    2013-08-01

    The increasing presence of ZnO nanoparticles (NPs) in consumer products may be having a dramatic impact in aquatic environments. The evaluation of ZnO NP toxicity represents a great challenge. This study aimed at evaluating the cytotoxic effect of micro- and nanosized ZnO in a fish and a mammalian hepatoma cell line. A detailed characterisation of the particles in exposure media showed that ZnO NPs formed large aggregates. ZnO cytotoxicity was evaluated with a battery of in vitro assays including LUCS, a new approach based on DNA alteration measurements. In fish cells, ZnO NP aggregates contributed substantially to the cytotoxic effects whereas toxicity in the human cells appeared to be mainly produced by the dissolved fraction. ROS production did not contribute to the observed cytotoxicity. This work also showed that measuring concentrations of NPs is essential to understand the mechanisms underlying their toxicity.

  9. Gypenosides induce apoptosis by ca2+ overload mediated by endoplasmic-reticulum and store-operated ca2+ channels in human hepatoma cells.

    PubMed

    Sun, Da-Peng; Li, Xiao-Xi; Liu, Xin-Li; Zhao, Dan; Qiu, Feng-Qi; Li, Yan; Ma, Ping

    2013-05-01

    Gypenosides (Gyps) are triterpenoid saponins contained in an extract from Gynostemma pentaphyllum Makino and reported to induce apoptosis in human hepatoma cells through Ca(2+)-implicated endoplasmic reticulum (ER) stress and mitochondria-dependent pathways. The mechanism underlying the Gyp-increased intracellular Ca(2+) concentration ([Ca(2+)]i) is unclear. Here, we examined Gyp-induced necrosis and apoptosis in human hepatoma HepG2 cells. Gyp-induced apoptotic cell death was accompanied by a sustained increase in [Ca(2+)]i level. Gyp-increased [Ca(2+)]i level was partly inhibited by removal of extracellular Ca(2+) by Ca(2+) chelator EGTA, store-operated Ca(2+) channel (SOC) inhibitor 2- aminoethoxydiphenyl borate (2-APB), and ER Ca(2+)-release-antagonist 3,4,5-trimethoxybenzoic acid 8-(diethylamino) octyl ester (TMB-8). The strongest inhibitory effect was observed with TMB-8. EGTA, 2-APB, and TMB-8 also protected against Gyp-induced apoptosis in HepG2 cells. The combination of 2-APB and TMB-8 almost completely abolished the Gyp-induced Ca(2+) response and apoptosis. In contrast, the sarco/endoplasmic-reticulum-Ca(2+)-ATPase (SERCA) inhibitor thapsigargin slightly elevated Gyp-induced [Ca(2+)]i increase and apoptosis in HepG2 cells. Exposure to 300 μg/mL Gyp for 24 hours upregulated protein levels of inositol 1,4,5-trisphosphate receptor and SOC and downregulated that of SERCA for at least 72 hours. Thus, Gyp-induced increase in [Ca(2+)]i level and consequent apoptosis in HepG2 cells may be mainly due to enhanced Ca(2+) release from ER stores and increased store-operated Ca(2+) entry.

  10. The role of inorganic metals and metalloporphyrins in the induction of haem oxygenase and heat-shock protein 70 in human hepatoma cells.

    PubMed Central

    Mitani, K; Fujita, H; Fukuda, Y; Kappas, A; Sassa, S

    1993-01-01

    The role of inorganic metals and metalloporphyrins in the induction of mRNAs for haem oxygenase and heat-shock protein 70 (hsp70), the two heat-shock proteins, was examined in human HepG2 and Hep3B hepatoma cells. SnCl2, but not Sn-protoporphyrin, was found to be a potent inducer of both haem oxygenase and hsp70 mRNAs. In contrast, CoCl2, ZnCl2 and FeCl2 caused little induction of haem oxygenase and hsp70 mRNAs, whereas the porphyrin complexes of these metals strongly induced haem oxygenase mRNA, without influencing the level of hsp70 mRNA. The induction process was largely transcriptional, as judged by the inhibition of induction by actinomycin D, but not by cycloheximide, and by increased transcription demonstrated by nuclear run-off analysis. Since CoCl2 is a potent inducer of haem oxygenase in vivo in animals, the possibility of the biosynthesis of Co-protoporphyrin was examined in human hepatoma cells by incubating them with CoCl2 and protoporphyrin, or delta-aminolaevulinate (ALA), the precursor of protoporphyrin. Both types of treatment led to a potent induction of haem oxygenase mRNA. Co-protoporphyrin formation was also spectrally demonstrated in cells incubated with the metal and ALA. The results of this study indicate that certain metals, e.g. SnCl2, may directly induce haem oxygenase mRNA, whereas with other elements, incorporation of the metal into the porphyrin macrocycle is necessary for induction. Therefore CoCl2, like haemin, may activate the haem oxygenase gene via a haem-responsive transcription factor, whereas SnCl2 may exert its effect via a metal-responsive transcription factor. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8384446

  11. HAb18G/CD147 inhibits starvation-induced autophagy in human hepatoma cell SMMC7721 with an involvement of Beclin 1 down-regulation.

    PubMed

    Gou, Xingchun; Ru, Qiang; Zhang, Hongxin; Chen, Yanke; Li, Ling; Yang, Hushan; Xing, Jinliang; Chen, Zhinan

    2009-05-01

    HAb18G/CD147, a transmembrane glycoprotein highly expressed in various types of malignant cells, mainly functions as an inducer of matrix metalloproteinases to promote tumor growth, invasion and metastasis. However, whether there are other mechanisms underlying the role of HAb18G/CD147 in tumor progression remains to be elucidated. In this study, we investigated the functional effects of HAb18G/CD147 on autophagy in hepatoma cell line SMMC7721 using immunofluorescence staining, Western blot and transmission electronmicroscopy. Our data showed that specific small interference RNA (siRNA) considerably down-regulated the expression of HAb18G/CD147 in SMMC7721 cells at both messenger RNA (mRNA) and protein levels. The down-regulation of HAb18G/CD147 significantly promoted starvation-induced autophagy in a dose-dependent manner. Using trypan blue exclusion assay, we found that HAb18G/CD147 notably enhanced the survival of SMMC7721 cells through inhibiting starvation-induced autophagy. In addition, we demonstrated that HAb18G/CD147 down-regulated the expression of autophagy-regulating protein Beclin 1 in SMMC7721 cells. Furthermore, our data indicated that HAb18G siRNA-transfected SMMC7721 cells had a significantly decreased level of phosphorylated serine/threonine protein kinase B (pAkt) and the expression of Beclin 1 was inversely associated with the level of pAkt, suggesting that the Class I phosphatidylinositol 3 kinase-Akt pathway may be involved in the down-regulation of Beclin 1 by HAb18G/CD147. Overall, we provide the first experimental evidence to show that HAb18G/CD147 may play an important role in the inhibitory regulation of autophagy. Therefore, our data suggest a new molecular mechanism for HAb18G-mediated hepatoma progression.

  12. Icaritin inhibits the expression of alpha-fetoprotein in hepatitis B virus-infected hepatoma cell lines through post-transcriptional regulation

    PubMed Central

    Zhang, Chao; Li, Hui; Jiang, Wei; Zhang, Xiaowei; Li, Gang

    2016-01-01

    Although it has showed that icaritin can apparently suppress growth of HCC by reducing the level of AFP, the intrinsic mechanism remains unclear. In this study, we explored the possible mechanism of miRNAs on post-transcriptional regulation of AFP gene, as well as the effects of HBV infection and icaritin in hepatoma cells. The results showed that miR-620, miR-1236 and miR-1270 could bind target sites in the range of 9–18 nt and 131–151 nt downstream of the stop codon in the AFP mRNA 3′-UTR to suppress the expression of AFP. Mutation of these target sites could reverse the effects of these miRNAs. Icaritin (10 μM) might reduce the stability and translational activity of AFP mRNA by increasing the expression levels of these mentioned miRNAs. HBV infection resulted in apparent decreases of these miRNAs and, consequently, increased AFP expression. The results indicated that miR-620, miR-1236 and miR-1270 are critical factors in the post-transcriptional regulation of AFP. Icaritin can counteract the effect of HBV. These findings will contribute to full understanding of the regulatory mechanism of AFP expression in hepatoma cells. And also it revealed a synergistic mechanism of HBV infection and elevation of AFP in the pathogenesis of HCC, as well as the potential clinical significance of icaritin on the therapy of HCC induced by HBV. PMID:27835879

  13. Preparation of novel butyryl galactose ester-modified coix component microemulsions and evaluation on hepatoma-targeting in vitro and in vivo.

    PubMed

    Liu, Ming Jian; Qu, Ding; Chen, Yan; Liu, Cong Yan; Liu, Yu Ping; Ding, Xue Fang

    2016-11-01

    The butyryl galactose ester-modified coix component microemulsions (But-Gal-CMEs) was developed for enhanced liver tumor-specific targeting. The study was aimed to evaluate the hepatoma-targeting potential of But-Gal-CMEs in vitro and in vivo. But-Gal-CMEs with a uniform spherical shape exhibited a small particle size (56.68 ± 0.07 nm), a narrow polydispersity (PDI, 0.144 ± 0.005) and slightly negative surface charge (-0.102 ± 0.008 mV). In the cell uptake studies, But-Gal-CMEs showed a significant enhancement on the intracellular fluorescent intensity on HepG2 cells model, which was 1.93-fold higher relative to coix component microemulsions (CMEs). The IC50 of But-Gal-CMEs against HepG2 cells was 64.250 μg/mL, which was notably stronger than that of CMEs. In the cell apoptosis studies, compared with CMEs, But-Gal-CMEs (50 μg/mL) treatment resulted in a 1.34-fold rise in total apoptosis cells of HepG2. In the biodistribution studies in vivo, the intratumorous fluorescence of Cy5-loaded But-Gal-CMEs was 1.43-fold higher relative to that of Cy5-loaded CMEs, suggesting an obviously enhanced accumulation in the tumor sites. Taken as together, But-Gal could be incorporated into the coix component microemulsions as a novel ligand for realizing hepatoma-targeting drugs delivery.

  14. Trace element profiles of the oxyanions of selenium in the development of murine hepatoma and the effect of Se supplementation on the essential trace element concentrations

    SciTech Connect

    Tariq, M.A.

    1992-01-01

    To determine trace quantities of selenium in tissue samples a simplified pre-concentration procedure is developed based upon sample digestion and separation of selenium from the bulk by solvent extraction and its determination by radioisotope induced x-ray fluorescence (RIXRF) spectrometry. Signal to background ratio is improved and interference from Br and As peaks is significantly reduced. Submicrogram quantities of selenium in animal tissues can be analyzed. The distribution and retention of selenate and selenite in C57L/J mice was investigated using intra-ocular injection of [sup 75]Se. The distribution and retention of species were studied during the progression of BBW756 murine hepatoma. Comparison is made with the normal distribution of selenium studied by RIXRF method. The distribution of the two oxidation states measured as activity of [sup 75]Se was almost identical but differed from the normal trace elemental profile, TEP. The excretion rates of the two selenium species in the initial phase are different with more selenate being excreted than selenite in the first two days. The whole body excretion rates followed a pure first order pattern after day two. This was not true for the individual organs of the animals. Selenium has shown both inhibiting and enhancing effects on the development of various cancer types. The effects of selenium supplementation on the development of BW7756 murine hepatoma have been monitored. Various non-lethal levels of Se are administrated in either drinking water or by intraperitoneal injection. The inhibitory effects are not specific to any stage of tumor development and the decrease in tumor growth is related to the general toxicity of the element. Supplementation of selenium at 2 [mu]g/ml level in the drinking water of the mice strongly influenced the concentration levels of Fe, Cu, Zn, Br, and Rb. The effect of selenite supplementation on the tissue levels of these elements is significantly different than that of selenate.

  15. Antcin K, an active triterpenoid from the fruiting bodies of basswood cultivated Antrodia cinnamomea, induces mitochondria and endoplasmic reticulum stress-mediated apoptosis in human hepatoma cells

    PubMed Central

    Lai, Chiao-I.; Chu, Yung-Lin; Ho, Chi-Tang; Su, Yu-Cheng; Kuo, Yueh-Hsiung; Sheen, Lee-Yan

    2015-01-01

    Liver cancer is the second leading cause of cancer deaths in Taiwan as per the 2011 statistics and ranks fourth in cancer-related mortality in the world. Recent researches have shown that Antrodia cinnamomea, a Taiwan-specific medicinal mushroom, has biological activities, including hepatoprotection, anti-inflammation, antihepatitis B virus activity, and anticancer activity. In the present study, the antiproliferative activity and molecular mechanisms of antcin K, the most abundant ergostane triterpenoid from the fruiting bodies of basswood cultivated A. cinnamomea, were investigated using human hepatoma Hep 3B cells. The results showed that antcin K effectively reduced Hep 3B cells viability within 48 hours. Antcin K induced phosphatidylserine exposure, chromatin condensation, and DNA damage, but did not significantly increase autophagosome content or cause cell expansion and cell lysis. Thus, the principal mode of Hep 3B cells death induced by antcin K was apoptosis, rather than autophagy or necrosis. In-depth investigation of the molecular mechanisms revealed that antcin K first promoted reactive oxygen species generation and adenosine triphosphate depletion, leading to endoplasmic reticulum stress and resulting in mitochondrial membrane permeability changes. After losing the mitochondrial membrane potential, caspase-independent and caspase-dependent apoptosis-related proteins were released, including HtrA2, apoptotic-induced factor, endonuclease G, and cytochrome c. Cytochrome c activated caspase-9 and caspase-3, and cut downstream protein PARP, ultimately leading to cell apoptosis. These results suggested that antcin K induced mitochondrial and endoplasmic reticulum stress-mediated apoptosis in human hepatoma cells. Coupled with these findings, antcin K has a potential to be a complementary agent in liver cancer therapy. PMID:26870680

  16. Evidence for expression of the facilitated glucose transporter in rat hepatocytes.

    PubMed Central

    Rhoads, D B; Takano, M; Gattoni-Celli, S; Chen, C C; Isselbacher, K J

    1988-01-01

    The eukaryotic facilitated glucose transporter (GT) is expressed by many cell types, with the notable exception of hepatocytes; however, GT is expressed by several hepatoma cell lines, including the well-differentiated lines Fao, Hep3B, and HepG2. We report on studies carried out to determine the aspect(s) of the transformed phenotype that might be responsible for activating GT expression. Using RNA blot analysis with probes derived from rat GT cDNA, we found that GT was expressed by rat hepatocytes under two conditions (i) in vitro, when isolated hepatocytes were placed in cell culture, and (ii) in vivo, when rats were subjected to starvation for greater than or equal to 2 days. However, GT expression was not an obligatory feature of hepatomas, since two primary hepatocellular carcinomas did not express any GT mRNA. GT expression in hepatocytes was reduced by addition of dimethyl sulfoxide or sodium butyrate to the culture medium. Since these reagents are known to promote differentiation in some cell culture systems, their effect on hepatocytes may be to maintain the GT repression normally observed in vivo. Inclusion or exclusion in the culture medium of several other agents that enhance hepatocyte viability (serum, insulin, corticosteroids, epidermal growth factor, or triiodothyronine) did not affect GT expression. It is unclear whether the two conditions that led to GT expression in hepatocytes are related by a common signaling mechanism. Possibly, both cases involve a "stress" response: in vivo, a normal physiological response to starvation; in vitro, a response to a major alteration in the cellular environment. Images PMID:3194405

  17. CHARACTERIZATION OF THE H4IIE RAT HEPATOMA CELL BIOASSAY AS A TOOL FOR ASSESSING TOXIC POTENCY OF PLANAR HALOGENATED HYDROCARBONS IN ENVIRONMENTAL SAMPLES. (R823881)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  18. Leptin rapidly suppresses insulin release from insulinoma cells, rat and human islets and, in vivo, in mice.

    PubMed Central

    Kulkarni, R N; Wang, Z L; Wang, R M; Hurley, J D; Smith, D M; Ghatei, M A; Withers, D J; Gardiner, J V; Bailey, C J; Bloom, S R

    1997-01-01

    Obesity is associated with diabetes, and leptin is known to be elevated in obesity. To investigate whether leptin has a direct effect on insulin secretion, isolated rat and human islets and cultured insulinoma cells were studied. In all cases, mouse leptin inhibited insulin secretion at concentrations within the plasma range reported in humans. Insulin mRNA expression was also suppressed in the cultured cells and rat islets. The long form of the leptin receptor (OB-Rb) mRNA was present in the islets and insulinoma cell lines. To determine the significance of these findings in vivo, normal fed mice were injected with two doses of leptin. A significant decrease in plasma insulin and associated rise in glucose concentration were observed. Fasted normal and leptin receptor-deficient db/db mice showed no response to leptin. A dose of leptin, which mimicked that found in normal mice, was administered to leptin-deficient, hyperinsulinemic ob/ob mice. This caused a marked lowering of plasma insulin concentration and a doubling of plasma glucose. Thus, leptin has a powerful acute inhibitory effect on insulin secretion. These results suggest that the action of leptin may be one mechanism by which excess adipose tissue could acutely impair carbohydrate metabolism. PMID:9389736

  19. Measurement of peroxiredoxin-4 serum levels in rat tissue and its use as a potential marker for hepatic disease.

    PubMed

    Ito, Ritsu; Takahashi, Motoko; Ihara, Hideyuki; Tsukamoto, Hiroki; Fujii, Junichi; Ikeda, Yoshitaka

    2012-08-01

    Peroxiredoxin (Prx)-4, a secretable endoplasmic reticulum (ER)-resident isoform of the mammalian Prx family, functions as a thioredoxin-dependent peroxidase. It is acknowledged that Prx-4 plays a role in the detoxification of hydrogen peroxide, and potentially other peroxides, which may be generated during the oxidative folding of proteins and oxidative stress in the ER. The present study was undertaken in order to specifically quantify the tissue levels of Prx-4. To accomplish this, an enzyme-linked immunosorbent assay was developed using a specific polyclonal antibody produced by immunizing a rabbit with native recombinant rat Prx-4 protein. The assay was used to detect Prx-4 in the range of 0.1 and 10 ng/ml, and to investigate tissue distribution in rats. Using this immunoassay, we found that the serum levels of Prx-4 were substantially lower in asymptomatic Long-Evans Cinnamon rats, a rat model of Wilson's disease, compared to normal rats. In addition, the treatment of rat hepatoma cells with N-acetylcysteine led to a significant increase in the release of Prx-4 protein into the medium; thus, it appears likely that the secretion of Prx-4 is associated with the redox state within cells. These results suggest that serum Prx-4 has potential for use as a biomarker for hepatic oxidative stress.

  20. Direct cytochemical localization of catalytic subunits dissociated from cAMP-dependent protein kinase in Reuber H-35 hepatoma cells. II. Temporal and spatial kinetics

    PubMed Central

    1982-01-01

    The activation of cyclic AMP-dependent protein kinase has been found to be the predominant mode by which cyclic AMP (cAMP) leads to alterations of a large variety of cellular functions. The activation of the kinase results in the release of the catalytic subunit which as the free enzyme possesses phosphotransferase activity for a variety of specific protein substrates. Using a sensitive and specific cytofluorometric technique we monitored the appearance of free catalytic subunit in Reuber H35 hepatoma cells in culture after incubation with N6-1'-O- dibutyryl-cyclic AMP (DBcAMP), 8-bromoadenosine-3':5'-cyclic monophosphate (8-BrcAMP), and glucagon. The cytochemical method employs the heat-stable inhibitor of the free catalytic subunit which has been conjugated to fluorescein isothiocyanate (F:PKI) and was validated as described in the companion paper (Fletcher and Byus. 1982. J. Cell Biol. 93:719-726). Here we studied the temporal and spatial kinetics of the free catalytic subunit following activation of cAMP-dependent protein kinase by increasing concentrations of DBcAMP,8-BrcAMP, and glucagon. Under similar conditions protein kinase activation was also assessed biochemically in H35 cell supernatants by assaying the protein kinase activity ratio. Incubation of the hepatoma cells with DBcAMP (0.1 mM) led to an increase in the activity ratio from 0.2 in control cultures to a value of nearly 1.0 within a 1- to 2-h period. During this same period using the F:PKI probe, a significant increase in cytoplasmic and nucleolar fluorescence indicative of the release of the free catalytic subunit was coincidentally observed. In contrast to the rapid appearance of catalytic subunit in the cytoplasm and nucleolus of the cell within 5-15 min of the addition of DBcAMP, discernible nucleoplasmic fluorescence did not occur until after 1 h. H35 cell cultures incubated with 8-BrcAMP (0.01-1.0 mM) exhibited a more rapid activation of the protein kinase measured cytochemically compared

  1. Cocaine- and amphetamine-regulated transcript (CART) peptide immunoreactivity in feeding- and reward-related brain areas of young OLETF rats.

    PubMed

    Armbruszt, Simon; Abraham, Hajnalka; Figler, Maria; Kozicz, Tamas; Hajnal, Andras

    2013-05-01

    Cocaine- and amphetamine-regulated transcript (CART) peptide is expressed in brain areas involved in the control of appetite, drug reward and homeostatic regulation and it has an overall anorexigenic effect. Recently, we have shown that CART peptide immunoreactivity was significantly reduced in the rostral part of the nucleus accumbens and in the rostro-medial part of the nucleus of the solitary tract in adult CCK-1 receptor deficient obese diabetic Otsuka Long Evans Tokushima Fatty (OLETF) rats compared to Long Evans Tokushima Otsuka (LETO) lean controls. It is not clear, however, whether altered CART expression is caused primarily by the deficiency in CCK-1 signaling or whether is related to the obese and diabetic phenotype of the OLETF strain which develops at a later age. Therefore, in the present study, CART-immunoreaction in feeding-related areas of the brain was compared in young, age-matched (6-7 weeks old) non-obese, non-diabetic OLETF rats and in LETO controls. We found that, young, non-diabetic OLETF rats revealed unaltered distribution of CART-peptide expressing neurons and axons throughout the brain when compared to age-matched LETO rats. In contrast to previous results observed in the obese diabetic adult rats, intensity of CART immunoreaction did not differ in the areas related to control of food-intake and reward in the young OLETFs compared to young LETO rats. Our findings suggest that factors secondary to obesity and/or diabetes rather than impaired CCK-1 receptor signaling may contribute to altered CART expression in the OLETF strain.

  2. Development and characterization of P-glycoprotein 1 (Pgp1, ABCB1)-mediated doxorubicin-resistant PLHC-1 hepatoma fish cell line

    SciTech Connect

    Zaja, Roko; Caminada, Daniel; Loncar, Jovica; Fent, Karl; Smital, Tvrtko

    2008-03-01

    The development of the multidrug resistance (MDR) phenotype in mammals is often mediated by the overexpression of the P-glycoprotein1 (Pgp, ABCB1) or multidrug resistance-associated protein (MRP)-like ABC transport proteins. A similar phenomenon has also been observed and considered as an important part of the multixenobiotic resistance (MXR) defence system in aquatic organisms. We have recently demonstrated the presence of ABC transporters in the widely used in vitro fish model, the PLHC-1 hepatoma cell line. In the present study we were able to select a highly resistant PLHC-1 sub-clone (PLHC-1/dox) by culturing the wild-type cells in the presence of 1 {mu}M doxorubicin. Using quantitative PCR a 42-fold higher expression of ABCB1 gene was determined in the PLHC-1/dox cells compared to non-selected wild-type cells (PLHC-1/wt). The efflux rates of model fluorescent Pgp1 substrates rhodamine 123 and calcein-AM were 3- to 4-fold higher in the PLHC-1/dox in comparison to the PLHC-1/wt cells. PLHC-1/dox were 45-fold more resistant to doxorubicin cytotoxicity than PLHC-1/wt. Similarly to mammalian cell lines, typical cross-resistance to cytotoxicity of other chemotherapeutics such as daunorubicin, vincristine, vinblastine, etoposide and colchicine, occurred. Furthermore, cyclosporine A, verapamil and PSC833, specific inhibitors of Pgp1 transport activity, completely reversed resistance of PLHC-1/dox cells to all tested drugs, resulting in EC50 values similar to the EC50 values found for PLHC-1/wt. In contrast, MK571, a specific inhibitor of MRP type of efflux transporters, sensitized PLHC-1/dox cells, neither to doxorubicin, nor to any other of the chemotherapeutics used in the study. These data demonstrate for the first time that a specific Pgp1-mediated doxorubicin resistance mechanism is present in the PLHC-1 fish hepatoma cell line. In addition, the fact that low micromolar concentrations of specific inhibitors may completely reverse a highly expressed doxorubicin

  3. MiR-520b suppresses proliferation of hepatoma cells through targeting ten-eleven translocation 1 (TET1) mRNA

    SciTech Connect

    Zhang, Weiying; Lu, Zhanping; Gao, Yuen; Ye, Lihong; Song, Tianqiang; Zhang, Xiaodong

    2015-05-08

    Accumulating evidence indicates that microRNAs are able to act as oncogenes or tumor suppressor genes in human cancer. We previously reported that miR-520b was down-regulated in hepatocellular carcinoma (HCC) and its deregulation was involved in hepatocarcinogenesis. In the present study, we report that miR-520b suppresses cell proliferation in HCC through targeting the ten-eleven translocation 1 (TET1) mRNA. Notably, we identified that miR-520b was able to target 3′-untranslated region (3′UTR) of TET1 mRNA by luciferase reporter gene assays. Then, we revealed that miR-520b was able to reduce the expression of TET1 at the levels of mRNA and protein using reverse transcription-polymerase chain reaction and Western blotting analysis. In terms of function, 5-ethynyl-2-deoxyuridine (EdU) incorporation and colony formation assays demonstrated that the forced miR-520b expression remarkably inhibited proliferation of hepatoma cells, but TET1 overexpression could rescue the inhibition of cell proliferation mediated by miR-520b. Furthermore, anti-miR-520b enhanced proliferation of hepatoma cells, whereas silencing of TET1 abolished anti-miR-520b-induced acceleration of cell proliferation. Then, we validated that the expression levels of miR-520b were negatively related to those of TET1 mRNA in clinical HCC tissues. Thus, we conclude that miR-520b depresses proliferation of liver cancer cells through targeting 3′UTR of TET1 mRNA. Our finding provides new insights into the mechanism of hepatocarcinogenesis. - Highlights: • TET1 is a novel target gene of miR-520b. • TET1 is upregulated in clinical HCC tissues. • MiR-520b is negatively correlated with TET1 in clinical HCC tissues. • MiR-520b depresses the proliferation of HCC cells through targeting TET1 mRNA.

  4. CYP1A1 and CYP1A2 expression: Comparing 'humanized' mouse lines and wild-type mice; comparing human and mouse hepatoma-derived cell lines

    SciTech Connect

    Uno, Shigeyuki; Endo, Kaori; Ishida, Yuji; Tateno, Chise; Makishima, Makoto; Yoshizato, Katsutoshi; Nebert, Daniel W.

    2009-05-15

    Human and rodent cytochrome P450 (CYP) enzymes sometimes exhibit striking species-specific differences in substrate preference and rate of metabolism. Human risk assessment of CYP substrates might therefore best be evaluated in the intact mouse by replacing mouse Cyp genes with human CYP orthologs; however, how 'human-like' can human gene expression be expected in mouse tissues? Previously a bacterial-artificial-chromosome-transgenic mouse, carrying the human CYP1A1{sub C}YP1A2 locus and lacking the mouse Cyp1a1 and Cyp1a2 orthologs, was shown to express robustly human dioxin-inducible CYP1A1 and basal versus inducible CYP1A2 (mRNAs, proteins, enzyme activities) in each of nine mouse tissues examined. Chimeric mice carrying humanized liver have also been generated, by transplanting human hepatocytes into a urokinase-type plasminogen activator(+/+){sub s}evere-combined-immunodeficiency (uPA/SCID) line with most of its mouse hepatocytes ablated. Herein we compare basal and dioxin-induced CYP1A mRNA copy numbers, protein levels, and four enzymes (benzo[a]pyrene hydroxylase, ethoxyresorufin O-deethylase, acetanilide 4-hydroxylase, methoxyresorufin O-demethylase) in liver of these two humanized mouse lines versus wild-type mice; we also compare these same parameters in mouse Hepa-1c1c7 and human HepG2 hepatoma-derived established cell lines. Most strikingly, mouse liver CYP1A1-specific enzyme activities are between 38- and 170-fold higher than human CYP1A1-specific enzyme activities (per unit of mRNA), whereas mouse versus human CYP1A2 enzyme activities (per unit of mRNA) are within 2.5-fold of one another. Moreover, both the mouse and human hepatoma cell lines exhibit striking differences in CYP1A mRNA levels and enzyme activities. These findings are relevant to risk assessment involving human CYP1A1 and CYP1A2 substrates, when administered to mice as environmental toxicants or drugs.

  5. Inactivation of PEMT2 in hepatocytes initiated by DENA in fasted/refed rats

    SciTech Connect

    Marengo, Barbara; Bottini, Consuelo; La Porta, C.A.M.; Domenicotti, Cinzia; Tessitore, Luciana . E-mail: tessitore@pharm.unipmn.it

    2006-07-21

    Phosphatidylethanolamine N-methyltransferase (PEMT) is the enzyme that converts phosphatidylethanolamine (PE) into phosphatidylcholine. We have previously shown that PEMT suppressed hepatoma growth by triggering apoptosis. We investigate whether PEMT controlled cell death and cell proliferation triggered by fasting/refeeding and whether it is a marker of early preneoplastic lesions. The induction of programmed cell death and suppression of cell proliferation by fasting were associated with enhanced PEMT expression and activity, and with a decrease in CTP:phosphocholine cytidylyltransferase expression. Refeeding returned the liver growth and expression of CTP:phosphocholine cytidylyltransferase to control levels, while the expression of PEMT decreased to below control values. After DENA administration, PEMT protein, evaluated by Western blotting, slightly increased, but it remained below control levels. The treatment with 20 mg/kg DENA to refed rats induced the appearance of initiated hepatocytes that were negative for PEMT expression. Present findings indicate that PEMT is a novel tumour marker for early liver preneoplastic lesions.

  6. Structural differences in ferritins from normal and malignant rat tissues.

    PubMed

    Linder, M C; Moor, J R; Munro, H N; Morris, H P

    1975-04-29

    Ferritins purified from several normal and malignant rat tissues were examined for amino acid composition, content of tryptic peptides, available sulfhydryl groups and subunit sizes and proportion. Ferritin extracted from adult kidney, neonatal liver and hepatic and renal tumors differed from the ferritin of adult rat liver in migration on electrophoretic gels and in antibody affinity, but did not differ among themselves. Nevertheless, they showed distinctive differences in amino acid composition and tryptic peptide content. All of them and also adult liver ferritin contained two major species of subunits differing in molecular weight. The proportions of subunits, and the available sulfhydryl groups of the intact ferritin molecules, differed among these tissue ferritins. On the basis of amino acid and peptide content, the ferritins of hepatomas and the renal tumor analyzed showec the greatest similarity but not identity. The ferritin of neonatal liver was next most similar. Kidney ferritin differed considerably in composition from tumor and neonatal ferritins, while adult liver ferritin was the most extremely divergent of the series examined. A similar progressive difference was found on examining the proportions of subunits and sulfhydryl groups in these ferritins. However, changes in subunit proportion cannot explain the amino acid and peptide compositional changes.

  7. Activation of ras oncogene in aflatoxin-induced rat liver carcinogenesis.

    PubMed Central

    Sinha, S; Webber, C; Marshall, C J; Knowles, M A; Proctor, A; Barrass, N C; Neal, G E

    1988-01-01

    The presence of activated transforming genes was investigated in four primary aflatoxin-induced rat liver tumors in male Fischer rats, in two cell lines generated from such tumors, in an epithelial liver-derived nontransformed cell line, and in the latter cell line after transformation by aflatoxin B1 in vitro. When DNA extracted from these sources was transfected into NIH 3T3 cells, negative results were obtained from focus assays. Cotransfection of these DNA samples with a gene for resistance to G418, followed by selection for resistance to that antibiotic, and tumorigenicity testing in nude mice demonstrated DNA-mediated transfer of the neoplastic phenotype in all cases except for DNA from the nontransformed cell line. DNA extracted from these primary nude mouse tumors used in a secondary round of transfection with NIH 3T3 cells gave positive results in focus assays, which were conserved through succeeding rounds of transfection. By use of appropriate radiolabeled probes, activated ras oncogenes were detected in all samples. N-ras activation was detected in three of the primary rat liver tumors and both hepatoma cell lines. Ki-ras activation was detected in one primary rat liver tumor, and Ha-ras activation was detected in the cell line transformed in vitro with activated aflatoxin B1. The activated Ki-ras oncogene was further characterized by use of synthetic oligonucleotide probes and was shown to contain a G----A transition at the second nucleotide in codon 12. Images PMID:3287372

  8. Effect of polyphenols on 3-hydroxy-3-methylglutaryl-coenzyme A lyase activity in human hepatoma HepG2 cell extracts.

    PubMed

    Nakagawa, Saori; Kojima, Yuko; Sekino, Koichi; Yamato, Susumu

    2013-01-01

    When carbohydrate metabolism is impaired, fatty acid metabolism is activated. Excess acetyl-coenzyme A (CoA) is generated from fatty acids by β-oxidation and is used for the formation of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) and subsequently for acetoacetate. High levels of secreted ketone bodies (acetoacetate and 3β-hydroxybutyrate) lower the pH of blood and urine, resulting in ketoacidosis. HMG-CoA lyase in hepatic cells is a rate-limiting enzyme catalyzing the cleavage of HMG-CoA to acetoacetate, and thus inhibition of this enzyme results in reduced acetoacetate production, in other words, impaired ketoacidosis. Inhibition of HMG-CoA lyase activity possibly prevents ketoacidosis and should be the therapeutic target. Polyphenols are common and abundant dietary constituents with beneficial effects on human health. We examined the inhibitory effects of dietary polyphenols on HMG-CoA lyase activity in cellular extracts of human hepatoma HepG2 cells. Of the nine representative dietary polyphenols tested, (-)-epigallocatechin (EGC), (-)-epigallocatechin gallate (EGCG), and gallic acid (GA) effectively inhibited HMG-CoA lyase activity. Lineweaver-Burk analysis revealed that EGC and EGCG are likely to be mixed-type noncompetitive inhibitors. Pyrogallol with the gallyl structure also inhibited HMG-CoA lyase activity, suggesting that the gallyl moiety of polyphenols is important for the inhibition of HMG-CoA lyase activity.

  9. Inhibition of hypoxia-inducible factor via upregulation of von Hippel-Lindau protein induces “angiogenic switch off” in a hepatoma mouse model

    PubMed Central

    Iwamoto, Hideki; Nakamura, Toru; Koga, Hironori; Izaguirre-Carbonell, Jesus; Kamisuki, Shinji; Sugawara, Fumio; Abe, Mitsuhiko; Iwabata, Kazuki; Ikezono, Yu; Sakaue, Takahiko; Masuda, Atsutaka; Yano, Hirohisa; Ohta, Keisuke; Nakano, Masahito; Shimose, Shigeo; Shirono, Tomotake; Torimura, Takuji

    2015-01-01

    “Angiogenic switch off” is one of the ideal therapeutic concepts in the treatment of cancer. However, the specific molecules which can induce “angiogenic switch off” in tumor have not been identified yet. In this study, we focused on von Hippel-Lindau protein (pVHL) in hepatocellular carcinoma (HCC) and investigated the effects of sulfoquinovosyl-acylpropanediol (SQAP), a novel synthetic sulfoglycolipid, for HCC. We examined mutation ratio of VHL gene in HCC using 30 HCC samples and we treated the HCC-implanted mice with SQAP. Thirty clinical samples showed no VHL genetic mutation in HCC. SQAP significantly inhibited tumor growth by inhibiting angiogenesis in a hepatoma mouse model. SQAP induced tumor “angiogenic switch off” by decreasing hypoxia-inducible factor (HIF)-1, 2α protein via pVHL upregulation. pVHL upregulation decreased HIFα protein levels through different multiple mechanisms: (i) increasing pVHL-dependent HIFα protein degradation; (ii) decreasing HIFα synthesis with decrease of NF-κB expression; and (iii) decrease of tumor hypoxia by vascular normalization. We confirmed these antitumor effects of SQAP by the loss-of-function experiments. We found that SQAP directly bound to and inhibited transglutaminase 2. This study provides evidence that upregulation of tumor pVHL is a promising target, which can induce “angiogenic switch off” in HCC. PMID:27119112

  10. Inversely repeating integrated hepatitis B virus DNA and cellular flanking sequences in the human hepatoma-derived cell line huSP.

    PubMed Central

    Mizusawa, H; Taira, M; Yaginuma, K; Kobayashi, M; Yoshida, E; Koike, K

    1985-01-01

    Among recombinant phages carrying integrated hepatitis B virus (HBV) DNA sequences cloned from the human hepatoma-derived cell line huSP, one clone, lambda hu-489, revealed some unusual features. The 2.25-kilobase Eco D fragment from the insert of this clone hybridized to the HBV DNA probe only and its nucleotide sequence was determined. The viral sequence, as well as a cellular flanking sequence, showed extensive rearrangement accompanied by inverted repetition. The Eco D fragment contained HBV DNA from the 5'-end region of gene S to the middle of gene X, followed by a long cellular flanking sequence. Moreover, a part of gene X was found inversely repeated at the head of the same gene S in a head-to-head configuration truncated by the same cellular sequence. Therefore, the same junction sequence of viral DNA and the cellular sequence was found at two different sites in the Eco D fragment in opposite polarities. Images PMID:2982143

  11. Anti-Inflammatory Activity of Cyanobacterial Serine Protease Inhibitors Aeruginosin 828A and Cyanopeptolin 1020 in Human Hepatoma Cell Line Huh7 and Effects in Zebrafish (Danio rerio)

    PubMed Central

    Faltermann, Susanne; Hutter, Simon; Christen, Verena; Hettich, Timm; Fent, Karl

    2016-01-01

    Intensive growth of cyanobacteria in freshwater promoted by eutrophication can lead to release of toxic secondary metabolites that may harm aquatic organisms and humans. The serine protease inhibitor aeruginosin 828A was isolated from a microcystin-deficient Planktothrix strain. We assessed potential molecular effects of aeruginosin 828A in comparison to another cyanobacterial serine protease inhibitor, cyanopeptolin 1020, in human hepatoma cell line Huh7, in zebrafish embryos and liver organ cultures. Aeruginosin 828A and cyanopeptolin 1020 promoted anti-inflammatory activity, as indicated by transcriptional down-regulation of interleukin 8 and tumor necrosis factor α in stimulated cells at concentrations of 50 and 100 µmol·L−1 aeruginosin 828A, and 100 µmol·L−1 cyanopeptolin 1020. Aeruginosin 828A induced the expression of CYP1A in Huh7 cells but did not affect enzyme activity. Furthermore, hatched zebrafish embryos and zebrafish liver organ cultures were exposed to aeruginosin 828A. The transcriptional responses were compared to those of cyanopeptolin 1020 and microcystin-LR. Aeruginosin 828A had only minimal effects on endoplasmic reticulum stress. In comparison to cyanopeptolin 1020 our data indicate that transcriptional effects of aeruginosin 828A in zebrafish are very minor. The data further demonstrate that pathways that are influenced by microcystin-LR are not affected by aeruginosin 828A. PMID:27428998

  12. Induction apoptosis of luteolin in human hepatoma HepG2 cells involving mitochondria translocation of Bax/Bak and activation of JNK

    SciTech Connect

    Lee, H.-J.; Wang, C.-J.; Kuo, H.-C.; Chou, F.-P.; Jean, L.-F.; Tseng, T.-H. . E-mail: tht@csmu.edu.tw

    2005-03-01

    Since hepatocellular carcinoma remains a major challenging clinical problem in many parts of the world including Eastern Asia and Southern Africa, it is imperative to develop more effective chemopreventive and chemotherapy agents. Herein, we present an investigation regarding the anticancer potential of luteolin, a natural flavonoid, and the mechanism of its action in human hepatoma HepG2 cells. Using DNA fragmentation assay and nuclear staining assay, it showed that luteolin induced apoptosis of HepG2 cells. Luteolin induced the cytosolic release of cytochrome c and activated CPP32. We found that Bax and Bak translocated to mitochondria apparently, whereas Fas ligand (FasL) was unchanged after a treatment with luteolin for 3 h. In addition, it showed that c-Jun NH{sub 2}-terminal kinase (JNK) was activated after the treatment of luteolin for 3-12 h. Further investigation showed that a specific JNK inhibitor, SP600125, reduced the activation of CPP 32, the mitochondrial translocation of Bax, as well as the cytosolic release of cytochrome c that induced by luteolin. Finally, the apoptosis induced by luteolin was suppressed by a pretreatment with SP600125 via evaluating annexin V-FITC binding assay. These data suggest that luteolin induced apoptosis via mechanisms involving mitochondria translocation of Bax/Bak and activation of JNK.

  13. Novel Pd(II)-salen complexes showing high in vitro anti-proliferative effects against human hepatoma cancer by modulating specific regulatory genes.

    PubMed

    Azam, Mohammad; Hussain, Zahid; Warad, Ismail; Al-Resayes, Saud I; Khan, Mohd Shahnawaz; Shakir, Mohammad; Trzesowska-Kruszynska, Agata; Kruszynski, Rafal

    2012-09-21

    We have reported the synthesis of a novel salen ligand and its mononuclear Pd-salen complexes derived from 2-{[2-hydroxy-3-{[(E)-(2-hydroxyphenyl)methylidene]amino}propyl)imino]methyl}phenol. The newly synthesized and isolated Pd(II) complexes have been identified and fully characterized by various physico-chemical studies viz., elemental analyses, IR, UV-Vis, (1)H, (13)C NMR spectroscopy, electron spray ionization mass spectrometry (ESI-MS) and TGA/DTA studies. The molecular structure of the salen ligand has been ascertained by single-crystal XRD and it is coordinated to Pd(II) ion through two nitrogen and two oxygen atoms. The UV-Vis data clearly suggest a square-planar environment around both the Pd(II) ions. The DNA binding studies of the synthesized compounds has been investigated by electron spectroscopy and fluorescence measurements. The results suggest that Pd(II) complexes bind to DNA strongly as compared to the free ligand. The free salen ligand and its Pd(II) complexes have also been tested against human hepatoma cancer cell line (Huh7) and results manifested exceptional anti-proliferative effects of the Pd(II) complexes. The anti-proliferative activity of Pd(II) complexes has been modulated by specific regulatory genes.

  14. Hepatoma-derived growth factor: A survival-related protein in prostate oncogenesis and a potential target for vitamin K2.

    PubMed

    Shetty, Aditya; Dasari, Subramanyam; Banerjee, Souresh; Gheewala, Taher; Zheng, Guoxing; Chen, Aoshuang; Kajdacsy-Balla, Andre; Bosland, Maarten C; Munirathinam, Gnanasekar

    2016-11-01

    Hepatoma-derived growth factor (HDGF) is a heparin-binding growth factor, which has previously been shown to be expressed in a variety of cancers. HDGF overexpression has also previously been correlated with a poor prognosis in several cancers. The significance of HDGF in prostate cancer, however, has not been investigated. Here, we show that HDGF is overexpressed in both androgen-sensitive LNCaP cells and androgen-insensitive DU145, 22RV1, and PC-3 cells. Forced overexpression enhanced cell viability of RWPE-1 cells, whereas HDGF knockdown reduced cell proliferation in human prostate cancer cells. We also show that HDGF may serve as a survival-related protein as ectopic overexpression of HDGF in RWPE cells up-regulated the expression of antiapoptosis proteins cyclin E and BCL-2, whereas simultaneously down-regulating proapoptotic protein BAX. Western blot analysis also showed that HDGF overexpression modulated the activity of phospho-AKT as well as NF-kB, and these results correlated with in vitro migration and invasion assays. We next assessed the therapeutic potential of HDGF inhibition with a HDGF monoclonal antibody and vitamin k2, showing reduced cell proliferation as well as inhibition of NF-kB expression in HDGF overexpressed RWPE cells treated with a HDGF monoclonal antibody and vitamin K2. Collectively, our results suggest that HDGF is a relevant protein in prostate oncogenesis and may serve as a potential therapeutic target in prostate cancer.

  15. The p53-inducible gene 3 involved in flavonoid-induced cytotoxicity through the reactive oxygen species-mediated mitochondrial apoptotic pathway in human hepatoma cells.

    PubMed

    Zhang, Qiang; Cheng, Guangdong; Qiu, Hongbin; Zhu, Liling; Ren, Zhongjuan; Zhao, Wei; Zhang, Tao; Liu, Lei

    2015-05-01

    Flavonoids have been reported to exhibit prooxidant cytotoxicity against cancer cells, but the underlying mechanism is still poorly understood. Here we investigated the potential mechanism that p53-inducible gene 3 (PIG3), a NADPH:quinone oxidoreductase, mediated the prooxidant cytotoxicity of flavonoids on human hepatoma HepG2 cells. The results showed that flavonoids (apigenin, luteolin, kaempferol, and quercetin) inhibited the growth of HepG2 cells in a dosage- and time-dependent manner, and induced the morphological changes characteristic of apoptosis in HepG2 cells. We also found that expression of PIG3 was increased markedly in HepG2 cells treated with flavonoids at both mRNA and protein levels, which was accompanied by increased intracellular ROS production and a decreased mitochondrial membrane potential (ΔΨm). All these effects were largely reversed through knockdown of the PIG3 gene in HepG2 cells. Western blotting indicated that flavonoids increased cytochrome c release, upregulated the ratio of Bax/Bcl-2, and activated the caspases-9 and -3. Moreover, knockdown of PIG3 could reverse the changes of these apoptotic-related proteins. These results suggest that PIG3 plays an important role in regulating the prooxidant activity and apoptosis-inducing action of flavonoids on HepG2 cells though the ROS-triggered mitochondrial apoptotic pathway.

  16. Profiling of promoter occupancy by the SND1 transcriptional coactivator identifies downstream glycerolipid metabolic genes involved in TNFα response in human hepatoma cells

    PubMed Central

    Arretxe, Enara; Armengol, Sandra; Mula, Sarai; Chico, Yolanda; Ochoa, Begoña; Martínez, María José

    2015-01-01

    The NF-κB-inducible Staphylococcal nuclease and tudor domain-containing 1 gene (SND1) encodes a coactivator involved in inflammatory responses and tumorigenesis. While SND1 is known to interact with certain transcription factors and activate client gene expression, no comprehensive mapping of SND1 target genes has been reported. Here, we have approached this question by performing ChIP-chip assays on human hepatoma HepG2 cells and analyzing SND1 binding modulation by proinflammatory TNFα. We show that SND1 binds 645 gene promoters in control cells and 281 additional genes in TNFα-treated cells. Transcription factor binding site analysis of bound probes identified motifs for established partners and for novel transcription factors including HSF, ATF, STAT3, MEIS1/AHOXA9, E2F and p300/CREB. Major target genes were involved in gene expression and RNA metabolism regulation, as well as development and cellular metabolism. We confirmed SND1 binding to 21 previously unrecognized genes, including a set of glycerolipid genes. Knocking-down experiments revealed that SND1 deficiency compromises the glycerolipid gene reprogramming and lipid phenotypic responses to TNFα. Overall, our findings uncover an unexpected large set of potential SND1 target genes and partners and reveal SND1 to be a determinant downstream effector of TNFα that contributes to support glycerophospholipid homeostasis in human hepatocellular carcinoma during inflammation. PMID:26323317

  17. Camel milk triggers apoptotic signaling pathways in human hepatoma HepG2 and breast cancer MCF7 cell lines through transcriptional mechanism.

    PubMed

    Korashy, Hesham M; Maayah, Zaid H; Abd-Allah, Adel R; El-Kadi, Ayman O S; Alhaider, Abdulqader A

    2012-01-01

    Few published studies have reported the use of crude camel milk in the treatment of stomach infections, tuberculosis and cancer. Yet, little research was conducted on the effect of camel milk on the apoptosis and oxidative stress associated with human cancer. The present study investigated the effect and the underlying mechanisms of camel milk on the proliferation of human cancer cells using an in vitro model of human hepatoma (HepG2) and human breast (MCF7) cancer cells. Our results showed that camel milk, but not bovine milk, significantly inhibited HepG2 and MCF7 cells proliferation through the activation of caspase-3 mRNA and activity levels, and the induction of death receptors in both cell lines. In addition, Camel milk enhanced the expression of oxidative stress markers, heme oxygenase-1 and reactive oxygen species production in both cells. Mechanistically, the increase in caspase-3 mRNA levels by camel milk was completely blocked by the transcriptional inhibitor, actinomycin D; implying that camel milk increased de novo RNA synthesis. Furthermore, Inhibition of the mitogen activated protein kinases differentially modulated the camel milk-induced caspase-3 mRNA levels. Taken together, camel milk inhibited HepG2 and MCF7 cells survival and proliferation through the activation of both the extrinsic and intrinsic apoptotic pathways.

  18. Proteolysis of integrin alpha5 and beta1 subunits involved in retinoic acid-induced apoptosis in human hepatoma Hep3B cells.

    PubMed

    Hsu, S L; Cheng, C C; Shi, Y R; Chiang, C W

    2001-06-26

    Our previous report demonstrated that all-trans-retinoic acid (ATRA) induces detachment and death under serum starvation in several human tumor cell lines. In this study, we examined the influence of cell-extracellular matrix interaction on the ability of ATRA to induce apoptosis. Plating of human hepatoma Hep3B cells onto poly-hydroxyethylmethacrylate-coated plates in the absence of serum resulted in the acceleration of ATRA-induced apoptosis. In contrast, ATRA-induced apoptosis was significantly suppressed by plating cells onto Matrigel-coated plates but not suppressed by culturing onto collagen-, laminin-, vitronectin-, or fibronectin-coated plates. Exogenously added soluble collagen, laminin, fibronectin, vitronectin or Matrigel failed to suppress ATRA-induced apoptosis. Results from the adhesion assay indicated that the cell attachment to fibronectin was significantly inhibited by ATRA. Treatment with perturbing antibody against integrin alpha5 or beta1 subunits resulted in promotion of ATRA-induced apoptosis. Moreover, the proteolytic cleavage of alpha5beta1 integrin and focal adhesion kinase (FAK) proteins is linked to the early phase of the ATRA-induced apoptotic process. Furthermore, ATRA-induced detachment, death, and cleavage of alpha5beta1 integrin and FAK were drastically suppressed by plating cells onto Matrigel-coated plates. These findings provide evidence that abrogation of cell adhesion, through proteolysis of alpha5beta1 integrin and FAK, is closely linked to ATRA-induced apoptosis in Hep3B cells.

  19. Comparative effects of food-derived polyphenols on the viability and apoptosis of a human hepatoma cell line (HepG2).

    PubMed

    Ramos, Sonia; Alía, Mario; Bravo, Laura; Goya, Luis

    2005-02-23

    Consumption of fruits and vegetables, which are rich in polyphenols, has been associated with a reduced risk of chronic diseases such as cancer. Dietary polyphenols have antioxidant and antiproliferative properties that might explain their beneficial effect on cancer prevention. The aim of this study was to investigate the effects of different pure polyphenols [quercetin, chlorogenic acid, and (-)-epicatechin] and natural fruit extracts (strawberry and plum) on viability or apoptosis of human hepatoma HepG2 cells. The treatment of cells for 18 h with quercetin and fruit extracts reduced cell viability in a dose-dependent manner; however, chlorogenic acid and (-)-epicatechin had no prominent effects on the cell death rate. Similarly, quercetin and strawberry and plum extracts, rather than chlorogenic acid and (-)-epicatechin, induced apoptosis in HepG2 cells. Moreover, quercetin and fruit extracts arrested the G1 phase in the cell cycle progression prior to apoptosis. Quercetin and strawberry and plum extracts may induce apoptosis and contribute to a reduced cell viability in HepG2 cells.

  20. Molecular mechanisms of (-)-epicatechin and chlorogenic acid on the regulation of the apoptotic and survival/proliferation pathways in a human hepatoma cell line.

    PubMed

    Granado-Serrano, Ana Belén; Martín, María Angeles; Izquierdo-Pulido, María; Goya, Luis; Bravo, Laura; Ramos, Sonia

    2007-03-07

    Dietary polyphenols have been associated with reduced risk of chronic diseases, but the precise molecular mechanisms of protection remain unclear. This work was aimed at studying the effect of (-)-epicatechin (EC) and chlorogenic acid (CGA) on the regulation of apoptotic and survival/proliferation pathways in a human hepatoma cell line (HepG2). EC or CGA treatment for 18 h had a slight effect on cell viability and decreased reactive oxygen species formation, and EC alone promoted cell proliferation, whereas CGA increased glutathione levels. Phenols neither induced the caspase cascade for apoptosis nor affected expression levels of Bcl-xL or Bax. A sustained activation of the major survival signals AKT/PI-3-kinase and ERK was shown in EC-treated cells, rather than in CGA-exposed cells. These data suggest that EC and CGA have no effect on apoptosis and enhance the intrinsic cellular tolerance against oxidative insults either by activating survival/proliferation pathways or by increasing antioxidant potential in HepG2.

  1. Antiproliferative activity of Humulus lupulus extracts on human hepatoma (Hep3B), colon (HT-29) cancer cells and proteases, tyrosinase, β-lactamase enzyme inhibition studies.

    PubMed

    Cömert Önder, Ferah; Ay, Mehmet; Aydoğan Türkoğlu, Sümeyye; Tura Köçkar, Feray; Çelik, Ayhan

    2016-01-01

    The aims of this study were to examine the antiproliferation of Humulus lupulus extracts on human hepatoma carcinoma (Hep3B) and human colon carcinoma (HT-29) cell lines along with enzyme inhibitory effects of the crude extracts. Potential cell cytotoxicity of six different H. lupulus extracts were assayed on various cancer cells using MTT assay at 24, 48 and 72 h intervals. Methanol-1 extract has inhibited the cell proliferation with doses of 0.6-1 mg/mL in a time dependent (48 and 72 hours) manner in Hep3B cells with 70% inhibition, while inhibitory effect was not seen in colon cancer cells. Acetone extract has increased the cell proliferation at low doses of 0.1 mg/mL for 72 h in Hep3B cells and 0.1-0.2 mg/mL for 48 and 72 h in HT29 cells. The inhibitory effects of the extracts were compared by relative maximum activity values (V(max)) using proteases such as α-chymotrypsin, trypsin and papain, tyrosinase and β-lactamase (penicillinase).

  2. In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride.

    PubMed

    Fotakis, George; Timbrell, John A

    2006-01-05

    The aim of this study was to compare four in vitro cytotoxicity assays and determine their ability to detect early cytotoxic events. Two hepatoma cell lines, namely HTC and HepG2 cells, were exposed to cadmium chloride (0-300 microM) for 3, 5 and 8 h. Following exposure to the toxic metal cytotoxicity was determined with the lactate dehydrogenase leakage assay (LDH), a protein assay, the neutral red assay and the methyl tetrazolium (MTT) assay. In HTC cells no toxicity was observed for any incubation period when the LDH leakage, the MTT and the protein assay were employed whereas the neutral red assay revealed early cytotoxicity starting after incubation of HTC cells with CdCl(2) for 3 h. In the case of HepG2 cells the MTT assay reveals cytotoxicity due to CdCl(2) exposure after 3 h whereas no such effect is seen with the other three assays. Following 5 h exposure of HepG2 cells to CdCl(2), toxicity is observed with the MTT assay at lower concentrations compared to the ones required for detection of toxicity with the LDH leakage and the neutral red assay. In conclusion different sensitivity was observed for each assay with the neutral red and the MTT assay being the most sensitive in detecting cytotoxic events compared to the LDH leakage and the protein assay.

  3. Depletion of hepatoma-derived growth factor-related protein-3 induces apoptotic sensitization of radioresistant A549 cells via reactive oxygen species-dependent p53 activation

    SciTech Connect

    Yun, Hong Shik; Hong, Eun-Hee; Lee, Su-Jae; Baek, Jeong-Hwa; Lee, Chang-Woo; Yim, Ji-Hye; Um, Hong-Duck; Hwang, Sang-Gu

    2013-09-27

    Highlights: •HRP-3 is a radiation- and anticancer drug-responsive protein in A549 cells. •Depletion of HRP-3 induces apoptosis of radio- and chemoresistant A549 cells. •Depletion of HRP-3 promotes ROS generation via inhibition of the Nrf2/HO-1 pathway. •Depletion of HRP-3 enhances ROS-dependent p53 activation and PUMA expression. -- Abstract: Biomarkers based on functional signaling have the potential to provide greater insight into the pathogenesis of cancer and may offer additional targets for anticancer therapeutics. Here, we identified hepatoma-derived growth factor-related protein-3 (HRP-3) as a radioresistance-related gene and characterized the molecular mechanism by which its encoded protein regulates the radio- and chemoresistant phenotype of lung cancer-derived A549 cells. Knockdown of HRP-3 promoted apoptosis of A549 cells and potentiated the apoptosis-inducing action of radio- and chemotherapy. This increase in apoptosis was associated with a substantial generation of reactive oxygen species (ROS) that was attributable to inhibition of the Nrf2/HO-1 antioxidant pathway and resulted in enhanced ROS-dependent p53 activation and p53-dependent expression of PUMA (p53 upregulated modulator of apoptosis). Therefore, the HRP-3/Nrf2/HO-1/ROS/p53/PUMA cascade is an essential feature of the A549 cell phenotype and a potential radiotherapy target, extending the range of targets in multimodal therapies against lung cancer.

  4. Radiosensitivity of hepatoma cell lines and human normal liver cell lines exposed in vitro to carbon ions and argon ions at the HIRFL

    NASA Astrophysics Data System (ADS)

    Jing, Xigang; Li, Wenjian; Wang, Zhuanzi; Wei, Wei; Guo, Chuanling; Lu, Dong; Yang, Jianshe

    2009-05-01

    Human hepatoma (SMMC-7721) and normal liver (L02) cells were irradiated with γ-rays, 12C 6+ and 36Ar 18+ ion beams at the Heavy Ion Research Facility in Lanzhou (HIRFL). By using the Calyculin-A induced premature chromosome condensation technique, chromatid-type breaks and isochromatid-type breaks were scored separately. Tumor cells irradiated with heavy ions produced a majority of isochromatid break, while chromatid breaks were dominant when cells were exposed to γ-rays. The relative biological effectiveness (RBE) for irradiation-induced chromatid breaks were 3.6 for L02 and 3.5 for SMMC-7721 cell lines at the LET peak of 96 keVμm -112C 6+ ions, and 2.9 for both of the two cell lines of 512 keVμm -136Ar 18+ ions. It suggested that the RBE of isochromatid-type breaks was pretty high when high-LET radiations were induced. Thus we concluded that the high production of isochromatid-type breaks, induced by the densely ionizing track structure, could be regarded as a signature of high-LET radiation exposure.

  5. The synergistic radiosensitizing effect of tirapazamine-conjugated gold nanoparticles on human hepatoma HepG2 cells under X-ray irradiation

    PubMed Central

    Liu, Xi; Liu, Yan; Zhang, Pengcheng; Jin, Xiaodong; Zheng, Xiaogang; Ye, Fei; Chen, Weiqiang; Li, Qiang

    2016-01-01

    Reductive drug-functionalized gold nanoparticles (AuNPs) have been proposed to enhance the damage of X-rays to cells through improving hydroxyl radical production by secondary electrons. In this work, polyethylene glycol-capped AuNPs were conjugated with tirapazamine (TPZ) moiety, and then thioctyl TPZ (TPZs)-modified AuNPs (TPZs-AuNPs) were synthesized. The TPZs-AuNPs were characterized by transmission electron microscopy, ultraviolet-visible spectra, dynamic light scattering, and inductively coupled plasma mass spectrometry to have a size of 16.6±2.1 nm in diameter and a TPZs/AuNPs ratio of ~700:1. In contrast with PEGylated AuNPs, the as-synthesized TPZs-AuNPs exhibited 20% increment in hydroxyl radical production in water at 2.0 Gy, and 19% increase in sensitizer enhancement ratio at 10% survival fraction for human hepatoma HepG2 cells under X-ray irradiation. The production of reactive oxygen species in HepG2 cells exposed to X-rays in vitro demonstrated a synergistic radiosensitizing effect of AuNPs and TPZ moiety. Thus, the reductive drug-conjugated TPZs-AuNPs as a kind of AuNP radiosensitizer with low gold loading provide a new strategy for enhancing the efficacy of radiation therapy. PMID:27555772

  6. Genotoxicity assessment of membrane concentrates of landfill leachate treated with Fenton reagent and UV-Fenton reagent using human hepatoma cell line.

    PubMed

    Wang, Guifang; Lu, Gang; Yin, Pinghe; Zhao, Ling; Yu, Qiming Jimmy

    2016-04-15

    Membrane concentrates of landfill leachates contain organic and inorganic contaminants that could be highly toxic and carcinogenic. In this paper, the genotoxicity of membrane concentrates before and after Fenton and UV-Fenton reagent was assessed. The cytotoxicity and genotoxicity was determined by using the methods of methyltetrazolium (MTT), cytokinesis-block micronucleus (CBMN) and comet assay in human hepatoma cells. MTT assay showed a cytotoxicity of 75% after 24h of exposure to the highest tested concentration of untreated concentrates, and no cytotoxocity for UV-Fenton and Fenton treated concentrates. Both CBMN and comet assays showed increased levels of genotoxicity in cells exposed to untreated concentrates, compared to those occurred in cells exposed to UV-Fenton and Fenton reagent treated concentrates. There was no significant difference between negative control and UV-Fenton treated concentrates for micronucleus and comet assay parameters. UV-Fenton and Fenton treatment, especially the former, were effective methods for degradation of bisphenol A and nonylphenol in concentrates. These findings showed UV-Fenton and Fenton reaction were effective methods for treatment of such complex concentrates, UV-Fenton reagent provided toxicological safety of the treated effluent, and the genotoxicity assays were found to be feasible tools for assessment of toxicity risks of complex concentrates.

  7. The inducibility of human cytochrome P450 1A by environmental-relevant xenobiotics in the human hepatoma derived cell line HepG2.

    PubMed

    Rudzok, Susanne; Schmücking, Eike; Graebsch, Carolin; Herbarth, Olf; Bauer, Mario

    2009-11-01

    Overexpression of the CYP1 family, independent of gender, is focal to the evaluation of the risk of human cancer. We have analysed the ability of 17 anthropogenic environmental xenobiotics widely used in Europe within households and agriculture to induce the human cytochrome P450 1A (CYP1A) in the human hepatoma derived cell line HepG2. The xenobiotics were potent to concomitantly induce both CYP1A mRNA and CYP1A activity in a dose-response relationship. Exceptions were shown by the organophosphate insecticide chlorpyrifos and the imidazole fungicide prochloraz in high concentrations which were capable of both inhibiting the basal or abolishing the initially induced CYP1A activity, respectively. A CYP1A induction has been shown for the first time by the aromatic xenobiotics irgasan, permethrin and azoxystrobin, the nonaromatic tributyltinoxide and for humans by the piperonylbutoxide. The xenobiotics additionally differed by their induced CYP1A isoenzyme pattern. A pronounced CYP1A1 and CYP1A2 mRNA induction was given by the phenyl urea herbicide diuron and benzodiazole insecticide piperonylbutoxide, respectively. In conclusion, out of the environmental xenobiotics, we described new members of human CYP1A inducers which extend chemical structures of biotransformation activators.

  8. Separation and quantitation of hepatoma-associated gamma-glutamyltransferase by affinity chromatography with Affi-Gel blue and Con A-Sepharose.

    PubMed

    Izumi, M; Taketa, K

    1983-01-01

    Isozymes of serum gamma-glutamyltransferase (GGT) in patients with hepatocellular carcinoma (HCC) and other liver diseases were separated into two groups by double-affinity column chromatography with Affi-Gel blue and Con A-Sepharose, one recovered in the unbound fraction and the other in the bound fraction. Upon electrophoresis with polyacrylamide gradient gel slabs, the unbound fraction gave a GGTI1 band and a faint II1 band and the bound fraction gave a GGT I band and faint bands of GGT I", II' and X, when the original serum contained hepatoma-associated GGT (I1, I" and II') and high-molecular-weight lipid-protein complex, GGT(X). GGT I was present in all cases as a common isozyme. Other lipoprotein-associated GGT isozymes, III-IX, were removed by passing through Affi-Gel blue. GGT activities of unbound fraction in patients with HCC were generally higher than those in patients with non-HCC liver diseases, although the difference was not significant. When the percent of GGT activity of unbound (unbound + bound) was taken, 54% of patients with HCC had a ratio greater than 22%, whereas none of the healthy subjects or patients with other liver diseases gave values greater than this. The present technique may prove to be a useful clinical test for the diagnosis of HCC.

  9. Microarray data and pathway analyses for primary human activated hepatic stellate cells compared to HepG2 human hepatoma cells.

    PubMed

    Hetherington, Alexandra M; Sawyez, Cynthia G; Borradaile, Nica M

    2017-02-01

    As nonalcoholic fatty liver disease progresses to end-stage diseases, including fibrosis, cirrhosis and hepatocellular carcinoma, fibrotic activated hepatic stellate cells and cancerous epithelial cells can become abundant, changing the cellular composition of this organ. Despite potentially residing within the same diseased tissue, direct comparisons of global gene expression between activated hepatic stellate cells and hepatocellular carcinoma cells are lacking. Here we provide data collected using Affymetrix GeneChip microarrays to identify differential gene expression in cultured primary human activated hepatic stellate cells compared to HepG2 human hepatoma cells. The dataset includes many genes involved in intermediary metabolism which were investigated in greater depth in our associated article (A.M. Hetherington, C.G. Sawyez, E. Zilberman, A.M. Stoianov, D.L. Robson, J.M. Hughes-Large, et al., 2016) [1]. Pathway analyses of known protein coding genes down-regulated or up-regulated by greater than 2.0-fold are also provided.

  10. Genotoxic potential of montmorillonite clay mineral and alteration in the expression of genes involved in toxicity mechanisms in the human hepatoma cell line HepG2.

    PubMed

    Maisanaba, Sara; Hercog, Klara; Filipic, Metka; Jos, Ángeles; Zegura, Bojana

    2016-03-05

    Montmorillonite, also known as Cloisite(®)Na(+) (CNa(+)), is a natural clay with a wide range of well-documented and novel applications, such as pharmaceutical products or food packaging. Although considered a low toxic product, the expected increased exposure to CNa(+) arises concern on the potential consequences on human and environmental health especially as its genotoxicity has scarcely been investigated so far. Thus, we investigated, for the first time, the influence of non-cytotoxic concentrations of CNa(+) (15.65, 31.25 and 62.5 μg/mL) on genomic instability of human hepatoma cell line (HepG2) by determining the formation of micronuclei (MNi), nucleoplasmic bridges (NPBs) and nuclear buds (NBUDs) with the Cytokinesis block micronucleus cytome assay. Further on we studied the influence of CNa(+) on the expression of several genes involved in toxicity mechanisms using the real-time quantitative PCR. The results showed that CNa(+) increased the number of MNi, while the numbers of NBUDs and NPBs were not affected. In addition it deregulated genes in all the groups studied, mainly after longer time of exposure. These findings provide the evidence that CNa(+) is potentially genotoxic. Therefore further studies that will elucidate the molecular mechanisms involved in toxic activity of CNa(+) are needed for hazard identification and human safety assessment.

  11. 3-Nitrobenzanthrone (3-NBA) induced micronucleus formation and DNA damage in human hepatoma (HepG2) cells.

    PubMed

    Lamy, Evelyn; Kassie, Fekadu; Gminski, Richard; Schmeiser, Heinz H; Mersch-Sundermann, Volker

    2004-01-15

    3-Nitrobenzanthrone (3-NBA), identified in diesel exhaust and in airborne particulate matter, is a potent mutagen in Salmonella, induces micronuclei formation in mice and in human cells and DNA adducts in rats. In the present study, we investigated the genotoxic potency of 3-NBA in human HepG2 cells using the micronucleus (MN) assay and the single cell gel electrophoresis (SCGE). 3-NBA caused a genotoxic effect at concentrations > or =12 nM in both assays. In the micronucleus assay, we found 98.7+/-10.3 MN/1000 BNC at a concentration of 100 nM 3-NBA in comparison to 27.3+/-0.6 MN/1000 BNC with the negative control. At the same concentration, the DNA-migration (SCGE) showed an Olive tail moment (OTM) of 2.7+/-0.45 and %DNA in the tail of 8.28+/-0.76; OTM and %DNA in the tail of cells treated with the negative control were 0.73+/-0.08 and 2.81+/-0.30, respectively. The results are discussed under consideration of former studies.

  12. Robinetinidol-flavone attenuates cholesterol synthesis in hepatoma cells via inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A reductase.

    PubMed

    Niu, Hai; Chao, Yu; Li, Ke; Li, Junxiang; Gong, Weihong; Huang, Wen

    2015-01-01

    Robinetinidol-(4β,2')-tetrahydroxy-flavone (RBF) is an oligomeric condensed polyphenol that has been shown to exhibit anti-obesity effects in mice. However, little is know regarding its effect on cholesterol synthesis. The present study therefore aimed to investigate the effect of RBF on cholesterol synthesis. It was determined that RBF decreased serum total cholesterol and low density lipoprotein cholesterol in rats by 25.9 and 50.8%, respectively (P<0.001). These results strengthen evidence for the hypothesis that RBF exerts anti-atherogenic effects in vivo. Furthermore, RBF decreased cholesterol synthesis by 72%, when measured using a 3 h period of radiolabeled acetate incorporation into cholesterol, but not when using radiolabelled mevalonate, suggesting that RBF-mediated inhibition occurred largely at or above the level of 3-hydroxy-3-methylglutaryl-coenzymeA (HMG-CoA) reductase. The mechanism by which RBF inactivates HMG-CoA reductase may be attributed to the induction of phosphorylation of adenosine monophosphate (AMP)-kinase, since these results showed that RBF increased phosphorylation of AMP-kinase and HMG-CoA reductase by 2.1- and 3.2-fold, respectively, within 30 min of addition. These results suggest that RBF may be a potential therapeutic agent for hypercholesteremia.

  13. Oligomeric TTR V30M aggregates compromise cell viability, erythropoietin gene expression and promoter activity in the human hepatoma cell line Hep3B.

    PubMed

    Moreira, Luciana; Beirão, João Melo; Beirão, Idalina; Pinho e Costa, Paulo

    2015-01-01

    Familial amyloidotic polyneuropathy, ATTRV30M (p. TTRV50M) amyloidosis, is a neurodegenerative disease characterized by systemic extracellular amyloid deposition of a mutant transthyretin, TTR V30M. Anemia, with low erythropoietin (EPO) levels and spared kidney function, affects about 25% of symptomatic patients, suggesting a blockage of EPO-producing cells. Early non-fibrillar TTR aggregates are highly cytotoxic, inducing oxidative stress, the expression of apoptosis-related molecules and secretion of pro-inflammatory cytokines, factors capable of inhibiting EPO production. Low EPO levels in these patients are not related to renal amyloid deposition or the presence of circulating TTR V30M. However, the role of early non-fibrillar TTR aggregates remains unexplored. We used the EPO producing Hep3B human hepatoma cell line to study the effect of TTR oligomeric aggregates on EPO expression. Hep3B cells were incubated with soluble and oligomeric TTR V30M, and cell proliferation as well as caspase 3/7 activation was evaluated. Relative quantification of EPO mRNA transcripts was performed by real-time PCR. Significant reductions in cell viability (13 ± 7.3%) and activation of caspases 3/7 were seen after 24 h in the presence of oligomeric TTR V30M. Also, EPO expression was significantly reduced (50 ± 2.8%), in normoxic conditions. A reporter assay was constructed with a PCR fragment of the EPO promoter linked to the luciferase gene to evaluate the role of transcription factors targeting the promoter. A significant reduction of EPO promoter activity (53 ± 6.5%) was observed in transfected cells exposed to TTR oligomers. Our results show that oligomeric TTR V30M reduces EPO expression, at least in part through inhibition of promoter activity.

  14. Bystander effect in human hepatoma HepG2 cells caused by medium transfers at different times after high-LET carbon ion irradiation

    NASA Astrophysics Data System (ADS)

    Wu, Qingfeng; Li, Qiang; Jin, Xiaodong; Liu, Xinguo; Dai, Zhongying

    2011-01-01

    Although radiation-induced bystander effects have been well documented in a variety of biological systems, whether irradiated cells have the ability to generate bystander signaling persistently is still unclear and the clinical relevance of bystander effects in radiotherapy remains to be elucidated. This study examines tumor cellular bystander response to autologous medium from cell culture irradiated with high-linear energy transfer (LET) heavy ions at a therapeutically relevant dose in terms of clonogenic cell survival. In vitro experiments were performed using human hepatoma HepG2 cell line exposed to 100 keV/μm carbon ions at a dose of 2 Gy. Two different periods (2 and 12 h) after irradiation, irradiated cell conditioned medium (ICCM) and replenished fresh medium were harvested and then transferred to unirradiated bystander cells. Cellular bystander responses were measured with the different medium transfer protocols. Significant higher survival fractions of unirradiated cells receiving the media from the irradiated cultures at the different times post-irradiation than those of the control were observed. Even replenishing fresh medium for unirradiated cells which had been exposed to the ICCM for 12 h could not prevent the bystander cells from the increased survival fraction. These results suggest that the irradiated cells could release unidentified signal factor(s), which induced the increase in survival fraction for the unirradiated bystander cells, into the media sustainedly and the carbon ions triggered a cascade of signaling events in the irradiated cells rather than secreting the soluble signal factor(s) just at a short period after irradiation. Based on the observations in this study, the importance of bystander effect in clinical radiotherapy was discussed and incorporating the bystander effect into the current radiobiological models, which are applicable to heavy ion radiotherapy, is needed urgently.

  15. Octanoyl galactose ester-modified microemulsion system self-assembled by coix seed components to enhance tumor targeting and hepatoma therapy

    PubMed Central

    Qu, Ding; Liu, Mingjian; Huang, Mengmeng; Wang, Lixiang; Chen, Yan; Liu, Congyan; Liu, Yuping

    2017-01-01

    A nanosized drug delivery platform with a combination of rational components and tumor targeting is significant for enhancement of anticancer therapy and reduction of side effects. In this study, we developed a octanoyl galactose ester-modified microemulsion system self-assembled by coix seed components (Gal(oct)-C-MEs), which improved the tumor accumulation through asialoglycoprotein receptor-mediated endocytosis and promoted the antitumor efficacy through multicomponent-mediated synergistic effect. Octanoyl galactose ester (Gal(oct)) with a yield of 82.3% was synthesized through a green enzymatic reaction and multidimensional characterization. Gal(oct)-C-MEs with a spherical shape had a small and uniform particle size (58.49±1.03 nm), narrow polydispersity index (0.09±0.01) and neutral surface charge (−5.82±0.57 mV). In the cellular uptake studies, the internalized Gal(oct)-C-ME was 2.28-fold higher relative to that of coix seed component-based microemulsions (C-MEs). The half-maximal inhibitory concentration of Gal(oct)-C-MEs against HepG2 cells was 46.5±2.4 μg/mL, which was notably higher than that of C-MEs. Importantly, the intratumor fluorescence of HepG2 xenograft-bearing nude mice treated with Cy5/Gal(oct)-C-MEs was 1.9-fold higher relative to treatment with Cy5/C-MEs. In the study of antitumor efficacy in vivo, HepG2 xenograft-bearing nude mice intragastrically administered Gal(oct)-C-MEs for 14 days exhibited the strongest inhibition of tumor growth and the lowest toxicity against liver and kidney among all the treatments. In summary, Gal(oct)-C-ME, as a highly effective and safe anticancer drug delivery system, showed promising potential for hepatoma therapy. PMID:28352174

  16. A combination hepatoma-targeted therapy based on nanotechnology: pHRE-Egr1-HSV-TK/131I-antiAFPMcAb-GCV/MFH

    PubMed Central

    Lin, Mei; Huang, Junxing; Jiang, Xingmao; Zhang, Jia; Yu, Hong; Ye, Jun; Zhang, Dongsheng

    2016-01-01

    Combination targeted therapy is a promising cancer therapeutic strategy. Here, using PEI-Mn0.5Zn0.5Fe2O4 nanoparticles (PEI-MZF-NPs) as magnetic media for MFH (magnetic fluid hyperthermia) and gene transfer vector for gene-therapy, a combined therapy, pHRE-Egr1-HSV-TK/131I-antiAFPMcAb-GCV/MFH, for hepatoma is developed. AntiAFPMcAb (Monoclonal antibody AFP) is exploited for targeting. The plasmids pHRE-Egr1-HSV-TK are achieved by incorporation of pEgr1-HSV-TK and pHRE-Egr1-EGFP. Restriction enzyme digestion and PCR confirm the recombinant plasmids pHRE-Egr1-HSV-TK are successfully constructed. After exposure to the magnetic field, PEI-MZF-NPs/pHRE-Egr1-EGFP fluid is warmed rapidly and then the temperature is maintained at 43 °C or so, which is quite appropriate for cancer treatment. The gene expression reaches the peak when treated with 200 μCi 131I for 24 hours, indicating that the dose of 200 μCi might be the optimal dose for irradiation and 24 h irradiation later is the best time to initiate MFH. The in vitro and in vivo experiments demonstrate that pHRE-Egr1-HSV-TK/131I-antiAFPMcAb-GCV/MFH can greatly suppress hepatic tumor cell proliferation and induce cell apoptosis and necrosis and effectively inhibit the tumor growth, much better than any monotherapy does alone. Furthermore, the combination therapy has few or no adverse effects. It might be applicable as a strategy to treat hepatic cancer. PMID:27642033

  17. Sphingoid bases from sea cucumber induce apoptosis in human hepatoma HepG2 cells through p-AKT and DR5.

    PubMed

    Hossain, Zakir; Sugawara, Tatsuya; Hirata, Takashi

    2013-03-01

    Biofunctional marine compounds have recently received substantial attention for their nutraceutical characteristics. In this study, we investigated the apoptosis-inducing effects of sphingoid bases prepared from sea cucumber using human hepatoma HepG2 cells. Apoptotic effects were determined by cell viability assay, DNA fragmentation assay, caspase-3 and caspase-8 activities. The expression levels of apoptosis-inducing death receptor-5 (DR5) and p-AKT were assayed by western blot analysis, and mRNA expression of bax, GADD45 and PPARγ was assayed by quantitative RT-PCR analysis. Sphingoid bases from sea cucumber markedly reduced the cell viability of HepG2 cells. DNA fragmentation indicative of apoptosis was observed in a dose-dependent manner. The expression levels of the apoptosis inducer protein Bax were increased by the sphingoid bases from sea cucumber. GADD45, which plays an important role in apoptosis-inducing pathways, was markedly upregulated by sphingoid bases from sea cucumber. Upregulation of PPARγ mRNA was also observed during apoptosis induced by the sphingoid bases. The expression levels of DR5 and p-AKT proteins were increased and decreased, respectively, as a result of the effects of sphingoid bases from sea cucumber. The results indicate that sphingoid bases from sea cucumber induce apoptosis in HepG2 cells through upregulation of DR5, Bax, GADD45 and PPARγ and downregulation of p-AKT. Our results show for the first time the functional properties of marine sphingoid bases as inducers of apoptosis in HepG2 cells.

  18. Involvement of the p38 MAPK signaling pathway in S-phase cell-cycle arrest induced by Furazolidone in human hepatoma G2 cells.

    PubMed

    Sun, Yu; Tang, Shusheng; Jin, Xi; Zhang, Chaoming; Zhao, Wenxia; Xiao, Xilong

    2013-12-01

    Given the previously described essential role for the p38 mitogen-activation protein kinase (p38 MAPK) signaling pathway in human hepatoma G2 cells (HepG2), we undertook the present study to investigate the role of the p38 MAPK signaling pathway in cell-cycle arrest induced by Furazolidone (FZD). The aim of this study was to determine the effects of FZD on HepG2 cells by activating and inhibiting the p38 MAPK signaling pathway. The cell cycle and proliferation of HepG2 cells treated with FZD were detected by flow cytometry and MTT assay in the presence or absence of p38 MAPK inhibitors (SB203580), respectively. Cyclin D1, cyclin D3 and CDK6 were detected by quantitative real-time PCR and western blot analysis. Our data showed that p38 MAPK became phosphorylated after stimulation with FZD. Activation of p38 MAPK could arise S-phase cell-cycle arrest and suppress cell proliferation. Simultaneously, inhibition of the p38 MAPK signaling pathway significantly prevented S-phase cell-cycle arrest, increased the percentage of cell viability and decreased the expression of cyclin D1, cyclin D3 and CDK6. These results demonstrated that FZD arose S-phase cell-cycle arrest via activating the p38 MAPK signaling pathway in HepG2 cells. Cyclin D1, cyclin D3 and CDK6 are target genes functioning at the downstream of p38 MAPK in HepG2 cells induced by FZD.

  19. Different apoptotic effects of triterpenoid saponin-rich Gypsophila oldhamiana root extract on human hepatoma SMMC-7721 and normal human hepatic L02 cells.

    PubMed

    Zhang, Wei; Luo, Jian-Guang; Zhang, Chao; Kong, Ling-Yi

    2013-01-01

    The roots of Gypsophila oldhamiana are rich in triterpenoid saponins with antitumor properties. Although previous reports have revealed the anticancer potency of some Gypsophila species, the underlying molecular mechanisms of this activity have not been studied in detail. The purpose of the present study was to prepare a triterpenoid saponin-rich G. oldhamiana root extract (TGOE) determined by LC-electrospray ionization (ESI)-MS(n) for biological studies and to evaluate the different anti-proliferative activities and apoptotic effects of TGOE on human hepatoma SMMC-7721 and normal human hepatic L02 cells. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that TGOE selectively inhibited the proliferation of SMMC-7721 cells in a dose-dependent manner with IC50 value of 19.50±3.63 µg/mL, while the cytotoxic effects of TGOE on L02 cells were much lower with IC50 value of 40.48±3.74 µg/mL. Analysis of apoptotic morphological changes and flow cytometry indicated that TGOE might preferentially induce apoptosis in SMMC-7721 cells, while exhibited much lower effects on L02 cells. Western blot analysis showed that the different apoptotic effects of TGOE on SMMC-7721 and L02 cells were due to different protein regulation of caspase-3 and mitogen activated protein kinases (MAPKs). TGOE significantly activated caspase-3 and increased the phosphorylation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), while decreased the phosphorylation of p38 in SMMC-7721 cells. However, the expression of these proteins was not statistically changed in L02 cells, except for the up-regulation of p38 phosphorylation. These results suggest that TGOE may have potential beneficial effects against hepatocellular carcinoma.

  20. Guava Leaf Extract Inhibits Quorum-Sensing and Chromobacterium violaceum Induced Lysis of Human Hepatoma Cells: Whole Transcriptome Analysis Reveals Differential Gene Expression

    PubMed Central

    Tiwary, Bipransh Kumar; Kumar, Anoop

    2014-01-01

    Quorum sensing (QS) is a process mediated via small molecules termed autoinducers (AI) that allow bacteria to respond and adjust according to the cell population density by altering the expression of multitudinous genes. Since QS governs numerous bioprocesses in bacteria, including virulence, its inhibition promises to be an ideal target for the development of novel therapeutics. We found that the aqueous leaf extract of Psidium guajava (GLE) exhibited anti-QS properties as evidenced by inhibition of violacein production in Chromobacterium violaceum and swarming motility of Pseudomonas aeruginosa. The gram-negative bacterium, C. violaceum is a rare pathogen with high mortality rate. In this study, perhaps for the first time, we identified the target genes of GLE in C. violaceum MTCC 2656 by whole transcriptome analysis on Ion Torrent. Our data revealed that GLE significantly down-regulated 816 genes at least three fold, with p value≤0.01, which comprises 19% of the C. violaceum MTCC 2656 genome. These genes were distributed throughout the genome and were associated with virulence, motility and other cellular processes, many of which have been described as quorum regulated in C. violaceum and other gram negative bacteria. Interestingly, GLE did not affect the growth of the bacteria. However, consistent with the gene expression pattern, GLE treated C. violaceum cells were restrained from causing lysis of human hepatoma cell line, HepG2, indicating a positive relationship between the QS-regulated genes and pathogenicity. Overall, our study proposes GLE as a QS inhibitor (QSI) with the ability to attenuate virulence without affecting growth. To the best of our knowledge, this is the first report which provides with a plausible set of candidate genes regulated by the QS system in the neglected pathogen C. violaceum. PMID:25229331

  1. Identification of Replication-competent HSV-1 Cgal+ Strain Signaling Targets in Human Hepatoma Cells by Functional Organelle Proteomics*S⃞

    PubMed Central

    Santamaría, Enrique; Mora, María I.; Potel, Corinne; Fernández-Irigoyen, Joaquín; Carro-Roldán, Elvira; Hernández-Alcoceba, Rubén; Prieto, Jesús; Epstein, Alberto L.; Corrales, Fernando J.

    2009-01-01

    In the present work, we have attempted a comprehensive analysis of cytosolic and microsomal proteomes to elucidate the signaling pathways impaired in human hepatoma (Huh7) cells upon herpes simplex virus type 1 (HSV-1; Cgal+) infection. Using a combination of differential in-gel electrophoresis and nano liquid chromatography/tandem mass spectrometry, 18 spots corresponding to 16 unique deregulated cellular proteins were unambiguously identified, which were involved in the regulation of essential processes such as apoptosis, mRNA processing, cellular structure and integrity, signal transduction, and endoplasmic-reticulum-associated degradation pathway. Based on our proteomic data and additional functional studies target proteins were identified indicating a late activation of apoptotic pathways in Huh7 cells upon HSV-1 Cgal+ infection. Additionally to changes on RuvB-like 2 and Bif-1, down-regulation of Erlin-2 suggests stimulation of Ca2+-dependent apoptosis. Moreover, activation of the mitochondrial apoptotic pathway results from a time-dependent multi-factorial impairment as inferred from the stepwise characterization of constitutive pro- and anti-apoptotic factors. Activation of serine-threonine protein phosphatase 2A (PP2A) was also found in Huh7 cells upon HSV-1 Cgal+ infection. In addition, PP2A activation paralleled dephosphorylation and inactivation of downstream mitogen-activated protein (MAP) kinase pathway (MEK½, ERK½) critical to cell survival and activation of proapoptotic Bad by dephosphorylation of Ser-112. Taken together, our results provide novel molecular information that contributes to define in detail the apoptotic mechanisms triggered by HSV-1 Cgal+ in the host cell and lead to the implication of PP2A in the transduction of cell death signals and cell survival pathway arrest. PMID:19098277

  2. Measuring and modeling of binary mixture effects of pharmaceuticals and nickel on cell viability/cytotoxicity in the human hepatoma derived cell line HepG2

    SciTech Connect

    Rudzok, S.; Schlink, U.; Herbarth, O.; Bauer, M.

    2010-05-01

    The interaction of drugs and non-therapeutic xenobiotics constitutes a central role in human health risk assessment. Still, available data are rare. Two different models have been established to predict mixture toxicity from single dose data, namely, the concentration addition (CA) and independent action (IA) model. However, chemicals can also act synergistic or antagonistic or in dose level deviation, or in a dose ratio dependent deviation. In the present study we used the MIXTOX model (EU project ENV4-CT97-0507), which incorporates these algorithms, to assess effects of the binary mixtures in the human hepatoma cell line HepG2. These cells possess a liver-like enzyme pattern and a variety of xenobiotic-metabolizing enzymes (phases I and II). We tested binary mixtures of the metal nickel, the anti-inflammatory drug diclofenac, and the antibiotic agent irgasan and compared the experimental data to the mathematical models. Cell viability was determined by three different methods the MTT-, AlamarBlue (registered) and NRU assay. The compounds were tested separately and in combinations. We could show that the metal nickel is the dominant component in the mixture, affecting an antagonism at low-dose levels and a synergism at high-dose levels in combination with diclofenac or irgasan, when using the NRU and the AlamarBlue assay. The dose-response surface of irgasan and diclofenac indicated a concentration addition. The experimental data could be described by the algorithms with a regression of up to 90%, revealing the HepG2 cell line and the MIXTOX model as valuable tool for risk assessment of binary mixtures for cytotoxic endpoints. However the model failed to predict a specific mode of action, the CYP1A1 enzyme activity.

  3. Cytotoxic and genotoxic potential of Cr(VI), Cr(III)-nitrate and Cr(III)-EDTA complex in human hepatoma (HepG2) cells.

    PubMed

    Novotnik, Breda; Ščančar, Janez; Milačič, Radmila; Filipič, Metka; Žegura, Bojana

    2016-07-01

    Chromium (Cr) and ethylenediaminetetraacetate (EDTA) are common environmental pollutants and can be present in high concentrations in surface waters at the same time. Therefore, chelation of Cr with EDTA can occur and thereby stable Cr(III)-EDTA complex is formed. Since there are no literature data on Cr(III)-EDTA toxicity, the aim of our work was to evaluate and compare Cr(III)-EDTA cytotoxic and genotoxic activity with those of Cr(VI) and Cr(III)-nitrate in human hepatoma (HepG2) cell line. First the effect of Cr(VI), Cr(III)-nitrate and Cr(III)-EDTA on cell viability was studied in the concentration range from 0.04 μg mL(-1) to 25 μg mL(-1) after 24 h exposure. Further the influence of non-cytotoxic concentrations of Cr(VI), Cr(III)-nitrate and Cr(III)-EDTA on DNA damage and genomic stability was determined with the comet assay and cytokinesis block micronucleus cytome assay, respectively. Cell viability was decreased only by Cr(VI) at concentrations above 1.0 μg mL(-1). Cr(VI) at ≥0.2 μg mL(-1) and Cr(III) at ≥1.0 μg mL(-1) induced DNA damage, while after Cr(III)-EDTA exposure no formation DNA strand breaks was determined. Statistically significant formation of micronuclei was induced only by Cr(VI) at ≥0.2 μg mL(-1), while no influence on the frequency of nuclear buds nor nucleoplasmic bridges was observed at any exposure. This study provides the first evidence that Cr(III)-EDTA did not induce DNA damage and had no influence on the genomic stability of HepG2 cells.

  4. A combination hepatoma-targeted therapy based on nanotechnology: pHRE-Egr1-HSV-TK/131I-antiAFPMcAb-GCV/MFH

    NASA Astrophysics Data System (ADS)

    Lin, Mei; Huang, Junxing; Jiang, Xingmao; Zhang, Jia; Yu, Hong; Ye, Jun; Zhang, Dongsheng

    2016-09-01

    Combination targeted therapy is a promising cancer therapeutic strategy. Here, using PEI-Mn0.5Zn0.5Fe2O4 nanoparticles (PEI-MZF-NPs) as magnetic media for MFH (magnetic fluid hyperthermia) and gene transfer vector for gene-therapy, a combined therapy, pHRE-Egr1-HSV-TK/131I-antiAFPMcAb-GCV/MFH, for hepatoma is developed. AntiAFPMcAb (Monoclonal antibody AFP) is exploited for targeting. The plasmids pHRE-Egr1-HSV-TK are achieved by incorporation of pEgr1-HSV-TK and pHRE-Egr1-EGFP. Restriction enzyme digestion and PCR confirm the recombinant plasmids pHRE-Egr1-HSV-TK are successfully constructed. After exposure to the magnetic field, PEI-MZF-NPs/pHRE-Egr1-EGFP fluid is warmed rapidly and then the temperature is maintained at 43 °C or so, which is quite appropriate for cancer treatment. The gene expression reaches the peak when treated with 200 μCi 131I for 24 hours, indicating that the dose of 200 μCi might be the optimal dose for irradiation and 24 h irradiation later is the best time to initiate MFH. The in vitro and in vivo experiments demonstrate that pHRE-Egr1-HSV-TK/131I-antiAFPMcAb-GCV/MFH can greatly suppress hepatic tumor cell proliferation and induce cell apoptosis and necrosis and effectively inhibit the tumor growth, much better than any monotherapy does alone. Furthermore, the combination therapy has few or no adverse effects. It might be applicable as a strategy to treat hepatic cancer.

  5. Effects of fucoidan on proliferation, AMP-activated protein kinase, and downstream metabolism- and cell cycle-associated molecules in poorly differentiated human hepatoma HLF cells.

    PubMed

    Kawaguchi, Takumi; Hayakawa, Masako; Koga, Hironori; Torimura, Takuji

    2015-05-01

    Survival rates are low in patients with poorly differentiated hepatocellular carcinoma (HCC). Fucoidan, a sulfated polysaccharide derived from brown seaweed, has anticancer activity; however, the effects of fucoidan on poorly differentiated HCC remain unclear. In this study, we investigated the effects of fucoidan on AMP-activated protein kinase (AMPK), a proliferation regulator, and its downstream metabolism- and cell cycle-related molecules in a poorly differentiated human hepatoma HLF cell line. HLF cells were treated with fucoidan (10, 50, or 100 µg/ml; n=4) or phosphate buffered saline (control; n=4) for 96 h. Proliferation was evaluated by counting cells every 24 h. AMPK, TSC2, mTOR, GSK3β, acetyl-CoA carboxylase (ACC), ATP-citrate lyase, p53, cyclin D1, cyclin-dependent kinase (CDK) 4, and CDK6 expression and/or phosphorylation were examined by immunoblotting 24 h after treatment with 100 µg/ml fucoidan. Cell cycle progression was analyzed by fluorescence-activated cell sorter 48 h after treatment. Treatment with 50 or 100 µg/ml fucoidan significantly and dose- and time-dependently suppressed HLF cell proliferation (P<0.0001). Fucoidan induced AMPK phosphorylation on Ser172 24 h after treatment. Although no differences were seen in expression and phosphorylation levels of TSC2, mTOR, GSK3β, ATP-citrate lyase, and p53 between the control and fucoidan-treated HLF cells, fucoidan induced ACC phosphorylation on Ser79. Moreover, fucoidan decreased cyclin D1, CDK4 and CDK6 expression 24 h after treatment. Furthermore, HLF cells were arrested in the G1/S phase 48 h after fucoidan treatment. We demonstrated that fucoidan suppressed HLF cell proliferation with AMPK phosphorylation. We showed that fucoidan phosphorylated ACC and downregulated cyclin D1, CDK4 and CDK6 expression. Our findings suggest that fucoidan inhibits proliferation through AMPK-associated suppression of fatty acid synthesis and G1/S transition in HLF cells.

  6. Differential Cytotoxicity of Acetaminophen in Mouse Macrophage J774.2 and Human Hepatoma HepG2 Cells: Protection by Diallyl Sulfide

    PubMed Central

    Raza, Haider; John, Annie

    2015-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs), including acetaminophen (APAP), have been reported to induce cytotoxicity in cancer and non-cancerous cells. Overdose of acetaminophen (APAP) causes liver injury in humans and animals. Hepatic glutathione (GSH) depletion followed by oxidative stress and mitochondrial dysfunction are believed to be the main causes of APAP toxicity. The precise molecular mechanism of APAP toxicity in different cellular systems is, however, not clearly understood. Our previous studies on mouse macrophage J774.2 cells treated with APAP strongly suggest induction of apoptosis associated with mitochondrial dysfunction and oxidative stress. In the present study, using human hepatoma HepG2 cells, we have further demonstrated that macrophages are a more sensitive target for APAP—induced toxicity than HepG2 cells. Using similar dose- and time-point studies, a marked increase in apoptosis and DNA fragmentation were seen in macrophages compared to HepG2 cells. Differential effects of APAP on mitochondrial respiratory functions and oxidative stress were observed in the two cell lines which are presumably dependent on the varying degree of drug metabolism by the different cytochrome P450s and detoxification by glutathione S-transferase enzyme systems. Our results demonstrate a marked increase in the activity and expression of glutathione transferase (GST) and multidrug resistance (MDR1) proteins in APAP-treated HepG2 cells compared to macrophages. This may explain the apparent resistance of HepG2 cells to APAP toxicity. However, treatment of these cells with diallyl sulfide (DAS, 200 μM), a known chemopreventive agent from garlic extract, 24 h prior to APAP (10 μmol/ml for 18h) exhibited comparable cytoprotective effects in the two cell lines. These results may help in better understanding the mechanism of cytotoxicity caused by APAP and cytoprotection by chemopreventive agents in cancer and non-cancerous cellular systems. PMID:26714183

  7. HBV polymerase overexpression due to large core gene deletion enhances hepatoma cell growth by binding inhibition of microRNA-100

    PubMed Central

    Huang, Ya-Hui; Tseng, Ying-Hsin; Lin, Wey-Ran; Hung, George; Chen, Tse-Ching; Wang, Tong-Hong; Lee, Wei-Chen; Yeh, Chau-Ting

    2016-01-01

    Different types of hepatitis B virus (HBV) core gene deletion mutants were identified in chronic hepatitis B patients. However, their clinical roles in different stages of natural chronic HBV infection remained unclear. To address this issue, HBV core genes were sequenced in three gender- and age-matched patient groups diagnosed as chronic hepatitis, cirrhosis and hepatocellular carcinoma (HCC), respectively. Functional analysis of the identified mutants was performed. A novel type of large-fragment core gene deletion (LFCD) was identified exclusively in HCC patients and significantly associated with unfavorable postoperative survival. The presence of LFCDs resulted in generation of precore-polymerase fusion protein or brought the polymerase reading frame under direct control of HBV precore/core promoter, leading to its over-expression. Enhanced cell proliferation and increased tumorigenicity in nude mice were found in hepatoma cells expressing LFCDs. Because of the epsilon-binding ability of HBV polymerase, we hypothesized that the over-expressed polymerase carrying aberrant amino-terminal sequence could bind to cellular microRNAs. Screening of a panel of microRNAs revealed physical association of a precore-polymerase fusion protein with microRNA-100. A binding inhibition effect on microRNA-100 by the precore-polymerase fusion protein with up-regulation of its target, polo-like kinase 1 (PLK1), was discovered. The binding inhibition and growth promoting effects could be reversed by overexpressing microRNA-100. Together, HCC patients carrying hepatitis B large-fragment core gene deletion mutants had an unfavorable postoperative prognosis. The growth promoting effect was partly due to polymerase overexpression, leading to binding inhibition of microRNA-100 and up-regulation of PLK1. PMID:26824500

  8. Differential Cytotoxicity of Acetaminophen in Mouse Macrophage J774.2 and Human Hepatoma HepG2 Cells: Protection by Diallyl Sulfide.

    PubMed

    Raza, Haider; John, Annie

    2015-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs), including acetaminophen (APAP), have been reported to induce cytotoxicity in cancer and non-cancerous cells. Overdose of acetaminophen (APAP) causes liver injury in humans and animals. Hepatic glutathione (GSH) depletion followed by oxidative stress and mitochondrial dysfunction are believed to be the main causes of APAP toxicity. The precise molecular mechanism of APAP toxicity in different cellular systems is, however, not clearly understood. Our previous studies on mouse macrophage J774.2 cells treated with APAP strongly suggest induction of apoptosis associated with mitochondrial dysfunction and oxidative stress. In the present study, using human hepatoma HepG2 cells, we have further demonstrated that macrophages are a more sensitive target for APAP-induced toxicity than HepG2 cells. Using similar dose- and time-point studies, a marked increase in apoptosis and DNA fragmentation were seen in macrophages compared to HepG2 cells. Differential effects of APAP on mitochondrial respiratory functions and oxidative stress were observed in the two cell lines which are presumably dependent on the varying degree of drug metabolism by the different cytochrome P450s and detoxification by glutathione S-transferase enzyme systems. Our results demonstrate a marked increase in the activity and expression of glutathione transferase (GST) and multidrug resistance (MDR1) proteins in APAP-treated HepG2 cells compared to macrophages. This may explain the apparent resistance of HepG2 cells to APAP toxicity. However, treatment of these cells with diallyl sulfide (DAS, 200 μM), a known chemopreventive agent from garlic extract, 24 h prior to APAP (10 μmol/ml for 18h) exhibited comparable cytoprotective effects in the two cell lines. These results may help in better understanding the mechanism of cytotoxicity caused by APAP and cytoprotection by chemopreventive agents in cancer and non-cancerous cellular systems.

  9. Phyllanthin of Standardized Phyllanthus amarus Extract Attenuates Liver Oxidative Stress in Mice and Exerts Cytoprotective Activity on Human Hepatoma Cell Line

    PubMed Central

    Krithika, Rajesh; Verma, Ramtej J; Shrivastav, Pranav S; Suguna, Lonchin

    2011-01-01

    Background Phyllanthus amarus, a traditional herbal liver-protecting medicine, is known to contain an active ingredient phyllanthin. Many research studies and clinical trials performed in the past using this plant have given contentious results which clearly accentuates the need for the standardization of the extracts. Aim In this study, P. amarus extract was standardized for phyllanthin content by high performance thin layer chromatography (HPTLC) and high performance liquid chromatography (HPLC) analysis. The preventive role of a standardized extract of P. amarus against CC14-induced hepatotoxicity in vivo and in vitro using mice model and human hepatoma HepG2 cell line, respectively, was investigated. Methods Phyllanthin was used as a marker phytochemical for the standardization of P. amarus extract. The extracts were verified for phyllanthin content by HPTLC and HPLC. Female mice were orally administered with CCl4 either with or without standardized P. amarus extract in three different doses. Similarly, the cytoprotective role of the standardized extract in vitro was studied in HepG2 cell line. Results Oral administration of CCl4 resulted in increased oxidative stress, decreased antioxidative defense, and liver injury. Treatment with P. amarus along with CCl4 significantly mitigated the increase in activities of liver marker enzymes, lipid peroxidation, and bilirubin content. It also increased the antioxidant enzymatic and non-enzymatic defense parameter levels. The results of the in vitro study conducted in HepG2 cells indicated that the hepatotoxin lowered 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (Mil) metabolism and increased the release of transaminases which were corrected with co-incubation with P. amarus. Conclusion: The study established a significant liver-protecting role of standardized P. amarus extract due to the presence of active ingredient phyllanthin. PMID:25755316

  10. Cheese can reduce indexes that estimate fatty acid desaturation. Results from the Oslo Health Study and from experiments with human hepatoma cells.

    PubMed

    Høstmark, Arne T; Lunde, Marianne S H

    2012-02-01

    Previously, cheese intake was shown to be inversely related to serum triglycerides, raising the possibility that cheese might inhibit triglyceride synthesis, which is governed by fatty acid desaturases. Therefore, analyses were done to study whether cheese intake was associated with indexes that reflect fatty acid desaturation in 121 healthy ethnic Norwegians aged 40-45 years, a subsample from the Oslo Health Study (N = 18 777). Experiments with human hepatoma cells (HepG2) were done to clarify whether cheese might have a causal effect on desaturases. Fatty acid distribution in lipids of human sera and HepG2 cells was determined by gas chromatography. Δ9-Desaturase was estimated by the (16:1,n-7)/(16:0) and (18:1,n-9)/(18:0) ratios, abbreviated ds9_1 and ds9_2, and Δ5-desaturase (ds5) by the (20:4,n-6)/(18:2,n-6) ratio. Correlation, ANOVA, and multiple linear regression models were used to study associations. Oslo Health Study: Subjects with cheese intake >4-6 times per week had 33% lower ds9_1 and 16% lower ds5 than subjects with intake ≤ 4-6 times per week. The cheese intake vs. ds5 association prevailed when adjusting for sex, time since last meal, fatty fish, vegetables, fruit-berries, fruit juice, cod liver oil, coffee, alcohol, body mass index, physical activity, length of education, and smoking. HepG2 cells: An ethanol extract of Jarlsberg cheese lowered the desaturase indexes. Inhibition of ds9_1 increased with increasing amount cheese extract added. Thus, cheese may contain inhibitors of desaturases, thereby providing an explanation for the previously reported negative association between cheese intake and triglycerides.

  11. Potentiating effect of graphene nanomaterials on aromatic environmental pollutant-induced cytochrome P450 1A expression in the topminnow fish hepatoma cell line PLHC-1.

    PubMed

    Lammel, Tobias; Boisseaux, Paul; Navas, José M

    2015-09-01

    Graphene and its derivatives are an emerging class of carbon nanomaterial with great potential for a broad range of industrial and consumer applications. However, their increasing production and use is expected to result in release of nano-sized graphene platelets into the environment, where they may interact with chemical pollutants modifying their fate and toxic potential. The objective of this study was to assess whether graphene nanoplatelets can act as vector for aromatic environmental pollutants increasing their cellular uptake and associated hazardous effects in vitro. For this purpose, cell cultures of the topminnow fish (Poeciliopsis lucida) hepatoma cell line PLHC-1 were simultaneously (and successively) exposed to graphene nanoplatelets (graphene oxide (GO) or carboxyl graphene (CXYG)) and an aryl hydrocarbon receptor (AhR) agonist (β-naphthoflavone (β-NF), benzo(k)fluoranthene (BkF) or 3,3',4,4',5,5'-hexachlorobiphenyl (PCB169)). Following exposure cytochrome P450 1A (Cyp1A) induction was assessed by measuring cyp1A mRNA expression levels using reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) and Cyp1A-dependent ethoxyresorufin-O-deethylase (EROD) activity. It was observed that pre- and co-exposure of cells to GO and CXYG nanoplatelets had a potentiating effect on β-NF, BkF, and PCB169-dependent Cyp1A induction suggesting that graphene nanoplatelets increase the effective concentration of AhR agonists by facilitating their passive diffusion into the cells by damaging the cells' plasma membrane and/or by transporting them over the plasma membrane via a Trojan horse-like mechanism. The results demonstrate the existence of combination effects between nanomaterials and environmental pollutants and stress the importance of considering these effects when evaluating their respective hazard.

  12. Guava leaf extract inhibits quorum-sensing and Chromobacterium violaceum induced lysis of human hepatoma cells: whole transcriptome analysis reveals differential gene expression.

    PubMed

    Ghosh, Runu; Tiwary, Bipransh Kumar; Kumar, Anoop; Chakraborty, Ranadhir

    2014-01-01

    Quorum sensing (QS) is a process mediated via small molecules termed autoinducers (AI) that allow bacteria to respond and adjust according to the cell population density by altering the expression of multitudinous genes. Since QS governs numerous bioprocesses in bacteria, including virulence, its inhibition promises to be an ideal target for the development of novel therapeutics. We found that the aqueous leaf extract of Psidium guajava (GLE) exhibited anti-QS properties as evidenced by inhibition of violacein production in Chromobacterium violaceum and swarming motility of Pseudomonas aeruginosa. The gram-negative bacterium, C. violaceum is a rare pathogen with high mortality rate. In this study, perhaps for the first time, we identified the target genes of GLE in C. violaceum MTCC 2656 by whole transcriptome analysis on Ion Torrent. Our data revealed that GLE significantly down-regulated 816 genes at least three fold, with p value ≤ 0.01, which comprises 19% of the C. violaceum MTCC 2656 genome. These genes were distributed throughout the genome and were associated with virulence, motility and other cellular processes, many of which have been described as quorum regulated in C. violaceum and other gram negative bacteria. Interestingly, GLE did not affect the growth of the bacteria. However, consistent with the gene expression pattern, GLE treated C. violaceum cells were restrained from causing lysis of human hepatoma cell line, HepG2, indicating a positive relationship between the QS-regulated genes and pathogenicity. Overall, our study proposes GLE as a QS inhibitor (QSI) with the ability to attenuate virulence without affecting growth. To the best of our knowledge, this is the first report which provides with a plausible set of candidate genes regulated by the QS system in the neglected pathogen C. violaceum.

  13. A novel AP-1/miR-101 regulatory feedback loop and its implication in the migration and invasion of hepatoma cells.

    PubMed

    Liu, Jing-Jing; Lin, Xue-Jia; Yang, Xiao-Jing; Zhou, Liangji; He, Shuai; Zhuang, Shi-Mei; Yang, Jine

    2014-10-29

    MicroRNA-101 (miR-101) is frequently downregulated in various cancers. To date, the regulatory networks of miR-101 remain obscure. In this study, we demonstrated that miR-101 was mainly transcribed from human miR-101-2 and mouse miR-101bgene loci. Subsequent analyses revealed that activator protein-1 (AP-1) directly binded to the -17.4 to -16.4 k region upstream of pre-miR-101-2 and activated the expression of miR-101. On the other hand, miR-101 could inhibit the expression of ERK2 and c-Fos, two key factors of the AP-1 pathway, by binding to their 3'-UTRs. Furthermore, reintroduction of miR-101 efficiently suppressed the AP-1 activity and pri-miR-101-2 transcription. These data thus suggest a novel AP-1/miR-101 regulatory circuitry, that is, AP-1 promotes the transcription of miR-101, whereas the expression of miR-101 reduces the level of ERK2 and c-Fos and thereby attenuates the AP-1 signaling. Further investigation disclosed that the AP-1 activator TPA-induced MMP9 activity and the TPA-promoted migration and invasion of hepatoma cells were significantly attenuated by miR-101 but were enhanced by miR-101 inhibitor. Our results suggest that the AP-1/miR-101 feedback loop may prevent the excessive activation of metastatic signals imposed by ERK2/AP-1 and highlight the biological significance of miR-101 downregulation in cancer metastasis.

  14. Proteomic profiling revealed the functional networks associated with mitotic catastrophe of HepG2 hepatoma cells induced by 6-bromine-5-hydroxy-4-methoxybenzaldehyde

    SciTech Connect

    Zhang Bo; Huang Bo; Guan Hua; Zhang Shimeng; Xu Qinzhi; He Xingpeng; Liu Xiaodan; Wang Yu; Shang Zengfu; Zhou Pingkun

    2011-05-01

    Mitotic catastrophe, a form of cell death resulting from abnormal mitosis, is a cytotoxic death pathway as well as an appealing mechanistic strategy for the development of anti-cancer drugs. In this study, 6-bromine-5-hydroxy-4-methoxybenzaldehyde was demonstrated to induce DNA double-strand break, multipolar spindles, sustain mitotic arrest and generate multinucleated cells, all of which indicate mitotic catastrophe, in human hepatoma HepG2 cells. We used proteomic profiling to identify the differentially expressed proteins underlying mitotic catastrophe. A total of 137 differentially expressed proteins (76 upregulated and 61 downregulated proteins) were identified. Some of the changed proteins have previously been associated with mitotic catastrophe, such as DNA-PKcs, FoxM1, RCC1, cyclin E, PLK1-pT210, 14-3-3{sigma} and HSP70. Multiple isoforms of 14-3-3, heat-shock proteins and tubulin were upregulated. Analysis of functional significance revealed that the 14-3-3-mediated signaling network was the most significantly enriched for the differentially expressed proteins. The modulated proteins were found to be involved in macromolecule complex assembly, cell death, cell cycle, chromatin remodeling and DNA repair, tubulin and cytoskeletal organization. These findings revealed the overall molecular events and functional signaling networks associated with spindle disruption and mitotic catastrophe. - Graphical abstract: Display Omitted Research highlights: > 6-bromoisovanillin induced spindle disruption and sustained mitotic arrest, consequently resulted in mitotic catastrophe. > Proteomic profiling identified 137 differentially expressed proteins associated mitotic catastrophe. > The 14-3-3-mediated signaling network was the most significantly enriched for the altered proteins. > The macromolecule complex assembly, cell cycle, chromatin remodeling and DNA repair, tubulin organization were also shown involved in mitotic catastrophe.

  15. Phosphatidylcholine synthesis in the rat: The substrate for methylation and regulation by choline

    SciTech Connect

    Datko, A.H.; Aksamit, R.R.; Mudd, S.H. )

    1990-03-01

    Two lines of evidence led us to reexamine the possibility that methylation of phosphoethanolamine and its partially methylated derivatives, in addition to methylation of the corresponding phosphatidyl derivatives, plays a role in mammalian phosphatidylcholine biosynthesis: (a) Results obtained by Salerno and Beeler with rat appear to strongly support such a role for methylation of phosphobases; (b) Such reactions have recently been shown to play major roles in phosphatidylcholine synthesis by higher plants. We found that, following continuous labeling of rat liver with L-(methyl-3H)methionine for 10.4 min (intraperitoneal administration) or for 0.75 min (intraportal administration), virtually no 3H was detected in methylated derivatives of phosphoethanolamine, but readily detectable amounts of 3H were present in the base moiety of each methylated derivative of phosphatidylethanolamine. Thus, there was no indication that phospho-base methylation makes a significant contribution. Studies of cultured rat hepatoma cells showed definitively for the first time in a mammalian system that choline deprivation up-regulates the rate of flow of methyl groups originating in methionine into phosphatidylethanolamine and derivatives. Even under these conditions, methylation of phosphoethanolamine bases appeared to play a negligible role.

  16. Nucleoside uptake in rat liver parenchymal cells.

    PubMed Central

    Mercader, J; Gomez-Angelats, M; del Santo, B; Casado, F J; Felipe, A; Pastor-Anglada, M

    1996-01-01

    Rat liver parenchymal cells express Na(+)-dependent and Na(+)- independent nucleoside transport activity. The Na(+)-dependent component shows kinetic properties and substrate specificity similar to those reported for plasma membrane vesicles [Ruiz-Montasell, Casado, Felipe and Pastor-Anglada (1992) J. Membr. Biol. 128, 227-233]. This transport activity shows apparent K(m) values for uridine in the range 8-13 microM and a Vmax of 246 pmol of uridine per 3 min per 10(5) cells. Most nucleosides, including the analogue formycin B, cis-inhibit Na(+)-dependent uridine transport, although thymidine and cytidine are poor inhibitors. Inosine and adenosine inhibit Na(+)-dependent uridine uptake in a dose-dependent manner, reaching total inhibition. Guanosine also inhibits Na(+)-dependent uridine uptake, although there is some residual transport activity (35% of the control values) that is resistant to high concentrations of guanosine but may be inhibited by low concentrations of adenosine. The transport activity that is inhibited by high concentrations of thymidine is similar to the guanosine-resistant fraction. These observations are consistent with the presence of at least two Na(+)-dependent transport systems. Na(+)-dependent uridine uptake is sensitive to N-ethylmaleimide treatment, but Na(+)-independent transport is not. Nitrobenzylthioinosine (NBTI) stimulates Na(+)-dependent uridine uptake. The NBTI effect involves a change in Vmax, it is rapid, dose-dependent, does not need preincubation and can be abolished by depleting the Na+ transmembrane electrochemical gradient. Na(+)-independent uridine transport seems to be insensitive to NBTI. Under the same experimental conditions, NBTI effectively blocks most of the Na(+)-independent uridine uptake in hepatoma cells. Thus the stimulatory effect of NBTI on the concentrative nucleoside transporter of liver parenchymal cells cannot be explained by inhibition of nucleoside efflux. PMID:8760370

  17. Tumor necrosis factor-alpha mediates changes in tissue protein turnover in a rat cancer cachexia model.

    PubMed Central

    Costelli, P; Carbó, N; Tessitore, L; Bagby, G J; Lopez-Soriano, F J; Argilés, J M; Baccino, F M

    1993-01-01

    Rats bearing the Yoshida AH-130 ascites hepatoma showed enhanced fractional rates of protein degradation in gastrocnemius muscle, heart, and liver, while fractional synthesis rates were similar to those in non-tumor bearing rats. This hypercatabolic pattern was associated with marked perturbations of the hormonal homeostasis and presence of tumor necrosis factor in the circulation. The daily administration of a goat anti-murine TNF IgG to tumor-bearing rats decreased protein degradation rates in skeletal muscle, heart, and liver as compared with tumor-bearing rats receiving a nonimmune goat IgG. The anti-TNF treatment was also effective in attenuating early perturbations in insulin and corticosterone homeostasis. Although these results suggest that tumor necrosis factor plays a significant role in mediating the changes in protein turnover and hormone levels elicited by tumor growth, the inability of such treatment to prevent a reduction in body weight implies that other mediators or tumor-related events were also involved. PMID:8254032

  18. An endothelial growth factor involved in rat renal development.

    PubMed Central

    Oliver, J A; Al-Awqati, Q

    1998-01-01

    In the kidney, there is a close and intricate association between epithelial and endothelial cells, suggesting that a complex reciprocal interaction may exist between these two cell types during renal ontogeny. Thus, we examined whether metanephrogenic mesenchymal cells secrete endothelial mitogens. With an endothelial mitogenic assay and sequential chromatography of the proteins in the media conditioned by a cell line of rat metanephrogenic mesenchymal cells (7.1.1 cells), we isolated a protein whose amino acid analysis identified it as hepatoma-derived growth factor (HDGF). Media conditioned with Cos-7 cell transfected with HDGF cDNA stimulated endothelial DNA synthesis. With immunoaffinity purified antipeptide antibodies, we found that HDGF was widely distributed in the renal anlage at early stages of development but soon concentrated at sites of active morphogenesis and, except for some renal tubules, disappeared from the adult kidney. From a 7.1.1 cells cDNA library, a clone of most of the translatable region of HDGF was obtained and used to synthesize digoxigenin-labeled riboprobes. In situ hybridization showed that during kidney development mRNA for HDGF was most abundant at sites of nephron morphogenesis and in ureteric bud cells while in the adult kidney transcripts disappeared except for a small population of distal tubules. Thus, HDGF is an endothelial mitogen that is present in embryonic kidney, and its expression is synchronous with nephrogenesis. PMID:9739055

  19. Differential entry of ricin into malignant and normal rat hepatocytes

    SciTech Connect

    Decastel, M.; Haentjens, G.; Aubery, M.; Goussault, Y. )

    1989-02-01

    The authors have compared the mechanisms of ricin binding to and entry into Zajdela hepatoma cells (ZHC) and normal rat hepatocytes (HyC). Lactose but not mannan was found to inhibit ricin binding to and toxicity on ZHC and HyC. This finding suggests that ricin binding, entry, and toxicity are expressed only through the galactose binding sites on ZHC and HyC. Nevertheless, the characteristics of ricin binding and its entry pathway appeared to be different in several respects in ZHC and HyC. Scatchard analysis of equilibrium data determined over a wide range of {sup 125}I-labeled ricin concentrations yielded a curvilinear plot for ZHC, while a straight line was obtained for HyC. These results indicate that only ZHC possess high-affinity receptors for ricin. Analysis of ricin toxicity of ZHC and HyC, in the presence of ammonium chloride or after K{sup +}-depletion in both cell types, suggests that the ricin bound to galactose receptors entered through neutral vesicles in ZHC, and through both neutral and acidic vesicles in HyC. The qualitative and quantitative differences found between the process of receptor-mediated endocytosis of ricin in ZHC and HyC might explain the differential sensitivity of the two cell types toward the toxin.

  20. Co-operation of the transcription factor hepatocyte nuclear factor-4 with Sp1 or Sp3 leads to transcriptional activation of the human haem oxygenase-1 gene promoter in a hepatoma cell line.

    PubMed

    Takahashi, Shigeru; Matsuura, Naomi; Kurokawa, Takako; Takahashi, Yuji; Miura, Takashi

    2002-11-01

    We reported previously that the 5'-flanking region (nucleotides -1976 to -1655) of the human haem oxygenase-1 ( hHO-1 ) gene enhances hHO-1 promoter activity in human hepatoma HepG2 cells, but not in HeLa cells [Takahashi, Takahashi, Ito, Nagano, Shibahara and Miura (1999) Biochim. Biophys. Acta 1447, 231-235]. To define more precisely the regulatory elements involved, in the present study we have functionally dissected this region and localized the enhancer to a 50 bp fragment (-1793 to -1744). Site-direct mutagenesis analysis revealed that two regions were responsible for this enhancer activity, i.e. a hepatocyte nuclear factor-4 (HNF-4) homologous region and a GC box motif homologous region. Mutation in either region alone moderately decreased enhancer activity. However, mutations in both regions reduced promoter activity to the basal level. Electrophoretic mobility-shift assays demonstrated that the P5-2 fragment (-1793 to -1744) interacted with at least two nuclear factors, i.e. HNF-4 and Sp1/Sp3. Co-transfection experiments using Drosophila SL2 cells revealed that HNF-4 and Sp1/Sp3 synergistically stimulated the enhancer activity of the P5-2 fragment. These results indicate that co-operation of HNF-4 with Sp1 or Sp3 leads to the activation of hHO-1 gene expression in hepatoma cells.

  1. Involvement of p38 MAPK and Nrf2 in phenolic acid-induced P-form phenol sulfotransferase expression in human hepatoma HepG2 cells.

    PubMed

    Yeh, Chi-Tai; Yen, Gow-Chin

    2006-05-01

    Phenolic acids have significant biological and pharmacological properties and some have demonstrated remarkable ability to alter sulfate conjugation. However, the modulation mechanisms of phenolic acids on phenol sulfotransferase expression have not been described. In the present study, we investigated the effects of phenolic acids on the expression of the Phase II P-form of phenol sulfotransferase (PST-P) in human hepatoma HepG2 cells. RT-PCR and western blot data revealed that gallic acid induced increase in PST-P expression at the mRNA and protein levels, respectively. This induction was also marked by an increase in PST-P activity. Actinomycin D and cycloheximide inhibited gallic acid-responsive PST-P mRNA expression, indicating that gallic acid is a requirement for transcription and de novo protein synthesis. Transient transfection of HepG2 cells with a reporter plasmid of the upstream region of the human PST gene caused a significant increase in reporter gene activity after gallic acid exposure. Moreover, gallic acid increased the nuclear levels of Nrf2, a transcription factor governing antioxidant response element (ARE). Electrophoretic mobility shift assay showed increased binding of nuclear proteins to ARE consensus sequence after treatment with gallic acid. While investigating the signaling pathways responsible for PST-P induction, we observed that gallic acid activated the p38 mitogen-activated protein kinase (MAPK) pathway. SB203580, a specific inhibitor of p38 MAPK, abolished gallic acid-induced PST-P protein expression. Similarly, gallic acid also caused an accumulation of Nrf2. Moreover, the protective effects of gallic acid on tert-butyl hydroperoxide-induced toxicity was partially blocked by p38 MAPK and PST-P inhibitors, further demonstrating that gallic acid attenuates oxidative stress through a pathway that involves p38 MAPK and PST-P. These results indicate that gallic acid is a potent inducer of PST-P and that PST-P induction is responsible

  2. Passive and active hepatoma tumor targeting of new N-(2-hydroxypropyl)methacrylamide copolymer conjugates: synthesis, characterization, and evaluation in vitro and in vivo.

    PubMed

    Yuan, Jianchao; Yuan, Bingnian; Guo, Hongyun; Zeng, Xianwu; Wang, Xiaoqi; Liao, Shiqi; Li, Jing; Jia, Zong; Song, Fengying; Wang, Fuzhou

    2013-01-01

    as the potential macromolecular targeting carrier for hepatoma carcinoma in mice.

  3. Cell bioenergetics in Leghorn male hepatoma cells and immortalized chicken liver cells in response to 4-hydroxy 2-nonenal-induced oxidative stress.

    PubMed

    Piekarski, A L; Kong, B-W; Lassiter, K; Hargis, B M; Bottje, W G

    2014-11-01

    The major objectives of this study were to compare cell bioenergetics in 2 avian liver cell lines under control conditions and in response to oxidative stress imposed by 4-hydroxy 2-nonenal (4-HNE). Cells in this study were from a chemically immortalized Leghorn male hepatoma (LMH) cell line and a spontaneously immortalized chicken liver (CELi) cell line. Oxygen consumption rate (OCR) was monitored in specialized microtiter plates using an XF24 Flux Analyzer (Seahorse Bioscience, Billerica, MA). Cell bioenergetics was assessed by sequential additions of oligomycin, carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), and antimycin-A that enables the determination of a) OCR linked to adenosine triphosphate (ATP) synthase activity, b) mitochondrial oxygen reserve capacity, c) proton leak, and d) nonmitochondrial cytochrome c oxidase activity. Under control (unchallenged) conditions, LMH cells exhibited higher basal OCR and higher OCR attributed to each of the bioenergetic components listed above compared with CELi cells. When expressed as a percentage of maximal OCR (following uncoupling with FCCP), LMH cells exhibited higher OCR due to ATP synthase and proton leak activity, but lower mitochondrial oxygen reserve capacity compared with CELi cells; there were no differences in OCR associated with nonmitochondrial cytochrome c oxidase activity. Whereas the LMH cells exhibited robust ATP synthase activity up to 50 μM 4-HNE, CELi cells exhibited a progressive decline in ATP synthase activity with 10, 20, and 30 μM 4-HNE. The CELi cells exhibited higher mitochondrial oxygen reserve capacity compared with LMH cells with 0 and 20 μM 4-HNE but not with 30 μM 4-HNE. Both cell lines exhibited inducible proton leak in response to increasing levels of 4-HNE that was evident with 30 μM 4-HNE for CELi cells and with 40 and 50 μM 4-HNE in LMH cells. The results of these studies demonstrate fundamental differences in cell bioenergetics in 2 avian liver-derived cell lines

  4. Flavin-containing monooxygenase-3: induction by 3-methylcholanthrene and complex regulation by xenobiotic chemicals in hepatoma cells and mouse liver.

    PubMed

    Celius, Trine; Pansoy, Andrea; Matthews, Jason; Okey, Allan B; Henderson, Marilyn C; Krueger, Sharon K; Williams, David E

    2010-08-15

    Flavin-containing monooxygenases often are thought not to be inducible but we recently demonstrated aryl hydrocarbon receptor (AHR)-dependent induction of FMO mRNAs in mouse liver by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (Celius et al., Drug Metab Dispos 36:2499, 2008). We now evaluated FMO induction by other AHR ligands and xenobiotic chemicals in vivo and in mouse Hepa1c1c7 hepatoma cells (Hepa-1). In mouse liver, 3-methylcholanthrene (3MC) induced FMO3 mRNA 8-fold. In Hepa-1 cells, 3MC and benzo[a]pyrene (BaP) induced FMO3 mRNA >30-fold. Induction by 3MC and BaP was AHR dependent but, surprisingly, the potent AHR agonist, TCDD, did not induce FMO3 mRNA in Hepa-1 cells nor did chromatin immunoprecipitation assays detect recruitment of AHR or ARNT to Fmo3 regulatory elements after exposure to 3MC in liver or in Hepa-1 cells. However, in Hepa-1, 3MC and BaP (but not TCDD) caused recruitment of p53 protein to a p53 response element in the 5'-flanking region of the Fmo3 gene. We tested the possibility that FMO3 induction in Hepa-1 cells might be mediated by Nrf2/anti-oxidant response pathways, but agents known to activate Nrf2 or to induce oxidative stress did not affect FMO3 mRNA levels. The protein synthesis inhibitor, cycloheximide (which causes "superinduction" of CYP1A1 mRNA in TCDD-treated cells), by itself caused dramatic upregulation (>300-fold) of FMO3 mRNA in Hepa-1 suggesting that cycloheximide prevents synthesis of a labile protein that suppresses FMO3 expression. Although FMO3 mRNA is highly induced by 3MC or TCDD in mouse liver and in Hepa-1 cells, FMO protein levels and FMO catalytic function showed only modest elevation.

  5. Flavin-containing monooxygenase-3: Induction by 3-methylcholanthrene and complex regulation by xenobiotic chemicals in hepatoma cells and mouse liver

    SciTech Connect

    Celius, Trine; Pansoy, Andrea; Matthews, Jason; Okey, Allan B.; Henderson, Marilyn C.; Krueger, Sharon K.; Williams, David E.

    2010-08-15

    Flavin-containing monooxygenases often are thought not to be inducible but we recently demonstrated aryl hydrocarbon receptor (AHR)-dependent induction of FMO mRNAs in mouse liver by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (Celius et al., Drug Metab Dispos 36:2499, 2008). We now evaluated FMO induction by other AHR ligands and xenobiotic chemicals in vivo and in mouse Hepa1c1c7 hepatoma cells (Hepa-1). In mouse liver, 3-methylcholanthrene (3MC) induced FMO3 mRNA 8-fold. In Hepa-1 cells, 3MC and benzo[a]pyrene (BaP) induced FMO3 mRNA > 30-fold. Induction by 3MC and BaP was AHR dependent but, surprisingly, the potent AHR agonist, TCDD, did not induce FMO3 mRNA in Hepa-1 cells nor did chromatin immunoprecipitation assays detect recruitment of AHR or ARNT to Fmo3 regulatory elements after exposure to 3MC in liver or in Hepa-1 cells. However, in Hepa-1, 3MC and BaP (but not TCDD) caused recruitment of p53 protein to a p53 response element in the 5'-flanking region of the Fmo3 gene. We tested the possibility that FMO3 induction in Hepa-1 cells might be mediated by Nrf2/anti-oxidant response pathways, but agents known to activate Nrf2 or to induce oxidative stress did not affect FMO3 mRNA levels. The protein synthesis inhibitor, cycloheximide (which causes 'superinduction' of CYP1A1 mRNA in TCDD-treated cells), by itself caused dramatic upregulation (> 300-fold) of FMO3 mRNA in Hepa-1 suggesting that cycloheximide prevents synthesis of a labile protein that suppresses FMO3 expression. Although FMO3 mRNA is highly induced by 3MC or TCDD in mouse liver and in Hepa-1 cells, FMO protein levels and FMO catalytic function showed only modest elevation.

  6. Rats! Oh No, Not Rats!

    ERIC Educational Resources Information Center

    Strong, Gary E.

    1987-01-01

    Examples of problems encountered in a new library building--including rats and humidity--and a description of the library's collections provide a framework for this presentation of the California State Library's emergency management planning. Current preservation efforts are documented and the library's disaster and security plans are described.…

  7. Involvement of aberrant DNA methylation on reduced expression of lysophosphatidic acid receptor-1 gene in rat tumor cell lines

    SciTech Connect

    Tsujiuchi, Toshifumi . E-mail: ttujiuch@life.kindai.ac.jp; Shimizu, Kyoko; Onishi, Mariko; Sugata, Eriko; Fujii, Hiromasa; Mori, Toshio; Honoki, Kanya; Fukushima, Nobuyuki

    2006-10-27

    Lysophosphatidic acid (LPA) is a bioactive phospholipid that stimulates cell proliferation, migration, and protects cells from apoptosis. It interacts with specific G protein-coupled transmembrane receptors. Recently, it has been reported that alterations of LPA receptor expression might be important in the malignant transformation of tumor cells. Therefore, to assess an involvement of DNA methylation in reduced expression of the LPA receptor-1 (lpa1) gene, we investigated the expression of the lpa1 gene and its DNA methylation patterns in rat tumor cell lines. Both rat brain-derived neuroblastoma B103 and liver-derived hepatoma RH7777 cells used in this study indicated no expression of lpa1. For the analysis of methylation status, bisulfite sequencing was performed with B103 and RH7777 cells, comparing with other lpa1 expressed cells and normal tissues of brain and liver. The lpa1 expressed cells and tissues were all unmethylated in this region of lpa1. In contrast, both B103 and RH7777 cells were highly methylated, correlating with reduced expression of the lpa1. Treatment with 5-aza 2'-deoxycytidine induced expression of lpa1 gene in B103 and RH7777 cells after 24 h. In RH7777 cells treated with 5-aza 2'-deoxycytidine, stress fiber formation was also observed in response to LPA in RH7777 cells, but not in untreated RH7777 cells. These results suggest that aberrant DNA methylation of the lpa1 gene may be involved in its reduced expression in rat tumor cells.

  8. Effects of kava alkaloid, pipermethystine, and kavalactones on oxidative stress and cytochrome P450 in F-344 rats.

    PubMed

    Lim, Steven T S; Dragull, Klaus; Tang, Chung-Shih; Bittenbender, Harry C; Efird, Jimmy T; Nerurkar, Pratibha V

    2007-05-01

    Kava-containing products remain popular in the United States and continue to be sold in health food stores and ethnic markets regardless of the fact that it was banned in Western countries such as Germany, France, Switzerland, Australia, and Canada, following reports of alleged hepatotoxicity. It is therefore critical to establish efficacy and verify adverse effects and/or herb-drug interactions for kava-kava (Piper methysticum). We have previously demonstrated that kava alkaloid, pipermethystine (PM), abundant in leaves and stem peelings, induces mitochondrial toxicity in human hepatoma cells, HepG2, as compared with the bioactive components, kavalactones (KL), abundant in the rhizome. The current study compared short-term toxic effects of PM in Fischer-344 (F-344) rats to acetone-water extracts of kava rhizome (KRE). Treatment of F-344 rats with PM (10 mg/kg) and KRE (100 mg/kg) for 2 weeks failed to elicit any significant changes in liver function tests or cause severe hepatic toxicity as measured by lipid peroxidation and apoptosis markers such as malondialdehyde, Bax, and Bcl-2. However, PM-treated rats demonstrated a significant increase in hepatic glutathione, cytosolic superoxide dismutase (Cu/ZnSOD), tumor necrosis factor alpha mRNA expression, and cytochrome P450 (CYP) 2E1 and 1A2, suggesting adaptation to oxidative stress and possible drug-drug interactions.

  9. Phenolic-containing organic extracts of mulberry (Morus alba L.) leaves inhibit HepG2 hepatoma cells through G2/M phase arrest, induction of apoptosis, and inhibition of topoisomerase IIα activity.

    PubMed

    Naowaratwattana, Wanlaya; De-Eknamkul, Wanchai; De Mejia, Elvira Gonzalez

    2010-10-01

    The entire plant of Morus alba L. (Family Moraceae), or mulberry, possesses medical benefits, including anticancer properties. In this study, we investigated the effect of mulberry leaf extracts on the human hepatoma HepG2 cell line, which is related to hepatocellular carcinoma. Mulberry leaf extracts were prepared using four solvents, each with different polarities: 100% methanol (MeOH), 50% aqueous MeOH, 1-butanol (BuOH), and hot water (W). The phenolic profile, total polyphenol content, antioxidant capacity, and effect on human hepatoma HepG2 cells of the leaf extracts were analyzed by examining cytotoxicity, cell cycle progression, apoptosis, expression of topoisomerase IIα, and proteins involved in cell cycle progression. High-performance liquid chromatography-mass spectrometry analysis revealed that 100% MeOH, 50% MeOH, and BuOH extracts contained rutin, isoquercetin, and various derivatives of kaempferol and quercetin glycosides as their major constituents; the W extract contained primarily chlorogenic acid and caffeoylquinic acid derivatives. Total phenolic content based on rutin equivalents was 17.1%, 9.6%, 8.3%, and 6.5% of dry 100% MeOH, 50% MeOH, BuOH, and W extracts, respectively. 2,2-Diphenyl-1-picrylhydrazyl radical scavenging activities were 70.0%, 45.8%, 41.0%, and 33.6%, and 50% inhibitory concentration values were 33.1, 79.4, 35.6, and 204.2 μg/mL for HepG2 cell proliferation inhibition for 100% MeOH, 50% MeOH, BuOH, and W extracts, respectively. MeOH extracts caused cell cycle G2/M arrest and induced the caspase cascade and apoptosis, but the W extract had very little effect on cell cycle progression. MeOH extracts reduced the level of topoisomerase IIα but increased the level of p27(Kip1), with no significant effect on p21(Cip1/waf1). Therefore, we concluded that phenolic-containing organic extracts of mulberry leaves inhibit the growth of HepG2 hepatoma cells through coordinated actions of inducing cell cycle arrest in the G2/M phase (with

  10. Simple steatosis sensitizes cholestatic rats to liver injury and dysregulates bile salt synthesis and transport

    PubMed Central

    Lionarons, Daniël A.; Heger, Michal; van Golen, Rowan F.; Alles, Lindy K.; van der Mark, Vincent A.; Kloek, Jaap J.; de Waart, Dirk R.; Marsman, Hendrik A.; Rusch, Henny; Verheij, Joanne; Beuers, Ulrich; Paulusma, Coen C.; van Gulik, Thomas M.

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder. It is uncertain if simple steatosis, the initial and prevailing form of NAFLD, sensitizes the liver to cholestasis. Here, we compared the effects of obstructive cholestasis in rats with a normal liver versus rats with simple steatosis induced by a methionine/choline-deficient diet. We found that plasma liver enzymes were higher and hepatic neutrophil influx, inflammation, and fibrosis were more pronounced in animals with combined steatosis and cholestasis compared to cholestasis alone. Circulating bile salt levels were markedly increased and hepatic bile salt composition shifted from hydrophilic tauro-β-muricholate to hydrophobic taurocholate. This shift was cytotoxic for HepG2 hepatoma cells. Gene expression analysis revealed induction of the rate-limiting enzyme in bile salt synthesis, cytochrome P450 7a1 (CYP7A1), and modulation of the hepatic bile salt transport system. In conclusion, simple steatosis sensitizes the liver to cholestatic injury, inflammation, and fibrosis in part due to a cytotoxic shift in bile salt composition. Plasma bile salt levels were elevated, linked to dysregulation of bile salt synthesis and enhanced trafficking of bile salts from the liver to the systemic circulation. PMID:27535001

  11. Changes in concentrations of methylglyoxal, D-lactate and glyoxalase activities in liver and plasma of rats fed a 3'-methyl-4-dimethylaminoazobenzene-rich diet.

    PubMed

    Kawase, M; Tada, M; Akagi, S; Ohmori, S

    1996-01-01

    Donryu male albino rats were fed a diet containing 0.064% 3'-methyl-4-dimethylaminoazobenzene (MDAB) for 21 weeks. During the ensuing rat liver carcinogenesis, changes in the concentrations of methylglyoxal, D-lactate and glutathione as well as activities of glyoxalase I and II in liver and plasma were examined. After the start of the diet, hepatic contents of methylglyoxal and D-lactate increased to about 7 and 3 times that of the control, respectively. However, after 21 weeks the D-lactate content decreased from the elevated level, but remained at a higher level of 1.4 times the control. The hepatic glyoxalase I activity increased 1.2 to 1.7 times over the control during carcinogenesis, while glyoxalase II activity increased 160% during the precancerous state and decreased to 55% of control at 21 weeks. the hepatic level of reduced glutathione (GSH) increased and peaked after 4 weeks of the MDAB diet and decreased thereafter to 57% of the control level after 21 weeks. Both pyruvate and L-lactate levels increased in the liver and plasma of MDAB-fed rats when rats had obvious symptoms of hepatoma.

  12. Knockdown of hepatoma-derived growth factor-related protein-3 induces apoptosis of H1299 cells via ROS-dependent and p53-independent NF-κB activation.

    PubMed

    Yun, Hong Shik; Baek, Jeong-Hwa; Yim, Ji-Hye; Lee, Su-Jae; Lee, Chang-Woo; Song, Jie-Young; Um, Hong-Duck; Park, Jong Kuk; Park, In-Chul; Hwang, Sang-Gu

    2014-07-11

    We previously identified hepatoma-derived growth factor-related protein-3 (HRP-3) as a radioresistant biomarker in p53 wild-type A549 cells and found that p53-dependent induction of the PUMA pathway was a critical event in regulating the radioresistant phenotype. Here, we found that HRP-3 knockdown regulates the radioresistance of p53-null H1299 cells through a distinctly different molecular mechanism. HRP-3 depletion was sufficient to cause apoptosis of H1299 cells by generating substantial levels of reactive oxygen species (ROS) through inhibition of the Nrf2/HO-1 antioxidant pathway. Subsequent, ROS-dependent and p53-independent NF-κB activation stimulated expression of c-Myc and Noxa proteins, thereby inducing the apoptotic machinery. Our results thus extend the range of targets for the development of new drugs to treat both p53 wild-type or p53-null radioresistant lung cancer cells.

  13. Esculetin-induced protection of human hepatoma HepG2 cells against hydrogen peroxide is associated with the Nrf2-dependent induction of the NAD(P)H: Quinone oxidoreductase 1 gene

    SciTech Connect

    Subramaniam, Sudhakar R.; Ellis, Elizabeth M.

    2011-01-15

    Esculetin (6,7-dihydroxy coumarin), is a potent antioxidant that is present in several plant species. The aim of this study was to investigate the mechanism of protection of esculetin in human hepatoma HepG2 cells against reactive oxygen species (ROS) induced by hydrogen peroxide. Cell viability, cell integrity, intracellular glutathione levels, generation of reactive oxygen species and expression of antioxidant enzymes were used as markers to measure cellular oxidative stress and response to ROS. The protective effect of esculetin was compared to a well-characterized chemoprotective compound quercetin. Pre-treatment of HepG2 cells with sub-lethal (10-25 {mu}M) esculetin for 8 h prevented cell death and maintained cell integrity following exposure to 0.9 mM hydrogen peroxide. An increase in the generation of ROS following hydrogen peroxide treatment was significantly attenuated by 8 h pre-treatment with esculetin. In addition, esculetin ameliorated the decrease in intracellular glutathione caused by hydrogen peroxide exposure. Moreover, treatment with 25 {mu}M esculetin for 8 h increased the expression of NAD(P)H: quinone oxidoreductase (NQO1) at both protein and mRNA levels significantly, by 12-fold and 15-fold, respectively. Esculetin treatment also increased nuclear accumulation of Nrf2 by 8-fold indicating that increased NQO1 expression is Nrf2-mediated. These results indicate that esculetin protects human hepatoma HepG2 cells from hydrogen peroxide induced oxidative injury and that this protection is provided through the induction of protective enzymes as part of an adaptive response mediated by Nrf2 nuclear accumulation.

  14. Characterization of rat serum amyloid A4 (SAA4): A novel member of the SAA superfamily

    PubMed Central

    Rossmann, Christine; Windpassinger, Christian; Brunner, Daniela; Kovacevic, Alenka; Schweighofer, Natascha; Malli, Roland; Schuligoi, Rufina; Prokesch, Andreas; Kluve-Beckerman, Barbara; Graier, Wolfgang F.; Kratky, Dagmar; Sattler, Wolfgang; Malle, Ernst

    2014-01-01

    The serum amyloid A (SAA) family of proteins is encoded by multiple genes, which display allelic variation and a high degree of homology in mammals. The SAA1/2 genes code for non-glycosylated acute-phase SAA1/2 proteins, that may increase up to 1000-fold during inflammation. The SAA4 gene, well characterized in humans (hSAA4) and mice (mSaa4) codes for a SAA4 protein that is glycosylated only in humans. We here report on a previously uncharacterized SAA4 gene (rSAA4) and its product in Rattus norvegicus, the only mammalian species known not to express acute-phase SAA. The exon/intron organization of rSAA4 is similar to that reported for hSAA4 and mSaa4. By performing 5′- and 3′RACE, we identified a 1830-bases containing rSAA4 mRNA (including a GA-dinucleotide tandem repeat). Highest rSAA4 mRNA expression was detected in rat liver. In McA-RH7777 rat hepatoma cells, rSAA4 transcription was significantly upregulated in response to LPS and IL-6 while IL-1α/β and TNFα were without effect. Luciferase assays with promoter-truncation constructs identified three proximal C/EBP-elements that mediate expression of rSAA4 in McA-RH7777 cells. In line with sequence prediction a 14-kDa non-glycosylated SAA4 protein is abundantly expressed in rat liver. Fluorescence microscopy revealed predominant localization of rSAA4-GFP-tagged fusion protein in the ER. PMID:25044109

  15. Heterologous expression, purification and characterization of rat class theta glutathione transferase T2-2.

    PubMed Central

    Jemth, P; Stenberg, G; Chaga, G; Mannervik, B

    1996-01-01

    Rat glutathione transferase (GST) T2-2 of class Theta (rGST T2-2), previously known as GST 12-12 and GST Yrs-Yrs, has been heterologously expressed in Escherichia coli XLI-Blue. The corresponding cDNA was isolated from a rat hepatoma cDNA library, ligated into and expressed from the plasmid pKK-D. The sequence is the same as that of the previously reported cDNA of GST Yrs-Yrs. The enzyme was purified using ion-exchange chromatography followed by affinity chromatography with immobilized ferric ions, and the yield was approx. 200 mg from a 1 litre bacterial culture. The availability of a stable recombinant rGST T2-2 has paved the way for a more accurate characterization of the enzyme. The functional properties of the recombinant rGST T2-2 differ significantly from those reported earlier for the enzyme isolated from rat tissues. These differences probably reflect the difficulties in obtaining fully active enzyme from sources where it occurs in relatively low concentrations, which has been the case in previous studies. 1-Chloro-2,4-dinitrobenzene, a substrate often used with GSTs of classes Alpha, Mu and Pi, is a substrate also for rGST T2-2, but the specific activity is relatively low. The Km value for glutathione was determined with four different electrophiles and was found to be in the range 0.3 mM-0.8 mM. The Km values for some electrophilic substrates were found to be in the micromolar range, which is low compared with those determined for GSTs of other classes. The highest catalytic efficiency was obtained with menaphthyl sulphate, which gave a Kcat/Km value of 2.3 x 10(6) s-1.M-1 and a rate enhancement over the uncatalysed reaction of 3 x 10(10). PMID:8645195

  16. Distribution of sterol carrier protein/sub 2/ (SCP/sub 2/) in rat tissues and evidence for slow turnover in liver and adrenal cortex

    SciTech Connect

    Kharroubi, A., Chanderbhan, R.; Fiskum, G.; Noland, B.J.; Scallen, T.J.; Vahouny, G.V.

    1986-03-05

    Sterol carrier protein/sub 2/ (SCP/sub 2/) has been implicated in the regulation of the terminal stages of hepatic cholesterol biosynthesis, and in sterol utilization for adrenal steroid hormone and hepatic bile acid synthesis. In the present studies, a highly sensitive radioimmunoassay, using (/sup 125/I) SCP/sub 2/, has been developed. Highest levels of SCP/sub 2/ were found in rat liver with progressively lower levels in intestinal mucosa, adrenal, kidney, lung and testis. SCP/sub 2/ levels were low or absent in heart, brain, skeletal muscle and serum. Liver SCP/sub 2/ was largely (44%) associated with the microsomal fraction, while in adrenal, 46% was associated with mitochondria, a distribution which is consistent with the proposed roles for SCP/sub 2/ in these tissues. Levels of SCP/sub 2/ in AS 30D hepatoma cells were only 5% of those in normal liver. In liver there was no indication of diurnal rhythm of SCP/sub 2/ in the cytosol and only slight variation of the microsomal SCP/sub 2/ levels. Fasting has only slight effects on SCP/sub 2/ concentration of rat liver microsomes and cytosol. Neither ACTH nor cycloheximide treatment of rats had a significant effect on SCP/sub 2/ distribution in the adrenal. In general, these findings indicate that SCP/sub 2/ has a low turn-over rate.

  17. Synergistic activation of serum amyloid A (SAA) by IL-6 and IL-1 in combination on human Hep 3B hepatoma cell line. Role of PGE2 and IL-1 receptor antagonist.

    PubMed

    Conti, P; Bartle, L; Barbacane, R C; Reale, M; Placido, F C; Sipe, J

    1995-03-01

    Serum amyloid A (SAA) protein is a major acute phase reactant in human and many other species. Infections and traumatic inflammation are characterized by a rapid increase of SAA; its concentration in the plasma may augment many-fold. Cytokines such as IL-1 and IL-6 are considered mediators of acute phase protein synthesis. The most accredited mechanism of action of IL-1 in inflammatory diseases is the stimulation of PGE2 release, which is highly dependent on the concentration of IL-1. In this study we found that human Hep 3B hepatoma cells treated with the combination of hrIL-6 (10ng/ml) plus hrIL-1 (1ng/ml) produced an augmentation in steady-state levels of SAA mRNA (87%) compared to hrIL-6 (10ng/ml) plus PGE2 (5 microM), which induced an increase of only 33%, compared to IL-6 alone, while cells treated with hrIL-6 plus PGE2 (0.5 microM) had a similar effect as hrIL-6 did alone. Moreover, the addition of exogenous PGE2 (5 microM) to the cell cultures produced no significant increase in concentration of SAA mRNA compared to the control. In addition, according to the data obtained by the blot analysis we also found, by ELISA method, that hrIL-6 acts in synergism with hrIL-1 on SAA protein secretion in human Hep 3B hepatoma cell cultures after 48 h incubation. In fact, the cell cultures treated with hrIL-6 plus hrIL-1 caused a higher release approximately 1.5-4-fold of SAA protein than the cells treated with IL-6 plus PGE2 5 microM or IL-1 + PGE2 5 microM, respectively. The synergistic effect of hrIL-6 plus hrIL-1 beta was inhibited by hrIL-1 receptor antagonist (hrIL-1ra) 50 micrograms/ml, a protein which specifically binds to the IL-1 receptor and is structurally similar to IL-1 beta but with no IL-1-like activity; while indomethacin (5 microM) was ineffective. These results strongly suggest that the synergism between hrIL-6 plus hrIL-1 on the transcription and the protein release of SAA release is not due to a PGE2-dependent process in human Hep 3B hepatoma cells

  18. NADPH oxidase 4 protects against development of endothelial dysfunction and atherosclerosis in LDL receptor deficient mice

    PubMed Central

    Langbein, Heike; Brunssen, Coy; Hofmann, Anja; Cimalla, Peter; Brux, Melanie; Bornstein, Stefan R.; Deussen, Andreas; Koch, Edmund; Morawietz, Henning

    2016-01-01

    Aims Endothelial dysfunction is an early step in the development of atherosclerosis. Increased formation of superoxide anions by NADPH oxidase Nox1, 2, and 5 reduces nitric oxide availability and can promote endothelial dysfunction. In contrast, recent evidence supports a vasoprotective role of H2O2 produced by main endothelial isoform Nox4. Therefore, we analysed the impact of genetic deletion of Nox4 on endothelial dysfunction and atherosclerosis in the low-density lipoprotein receptor (Ldlr) knockout model. Methods and results Ex vivo analysis of endothelial function by Mulvany myograph showed impaired endothelial function in thoracic aorta of Nox4−/−/Ldlr−/− mice. Further progression of endothelial dysfunction due to high-fat diet increased atherosclerotic plaque burden and galectin-3 staining in Nox4−/−/Ldlr−/− mice compared with Ldlr−/− mice. Under physiological conditions, loss of Nox4 does not influence aortic vascular function. In this setting, loss of Nox4-derived H2O2 production could be partially compensated for by nNOS upregulation. Using an innovative optical coherence tomography approach, we were able to analyse endothelial function by flow-mediated vasodilation in the murine saphenous artery in vivo. This new approach revealed an altered flow-mediated dilation in Nox4−/− mice, indicating a role for Nox4 under physiological conditions in peripheral arteries in vivo. Conclusions Nox4 plays an important role in maintaining endothelial function under physiological and pathological conditions. Loss of Nox4-derived H2O2 could be partially compensated for by nNOS upregulation, but severe endothelial dysfunction is not reversible. This leads to increased atherosclerosis under atherosclerotic prone conditions. PMID:26578199

  19. Aryl hydrocarbon receptor deficiency in T cells suppresses the development of collagen-induced arthritis

    PubMed Central

    Nakahama, Taisuke; Kimura, Akihiro; Nguyen, Nam Trung; Chinen, Ichino; Hanieh, Hamza; Nohara, Keiko; Fujii-Kuriyama, Yoshiaki; Kishimoto, Tadamitsu

    2011-01-01

    The contributions of aryl hydrocarbon receptor (Ahr) to the pathogenesis of rheumatoid arthritis have not been elucidated. Here, we show that Ahr deficiency ameliorated collagen-induced arthritis, a mouse model of RA. Collagen-immunized Ahr KO mice showed decreased serum levels of such proinflammatory cytokines as IL-1β and IL-6. The Th17 and Th1 cell populations in lymph nodes from these mice decreased and increased, respectively, whereas the percentage of regulatory T cells was unchanged. Interestingly, a lack of Ahr specifically in T cells significantly suppressed collagen-induced arthritis development, whereas Ahr deficiency in macrophages had no effect. These finding indicate that the development of experimental autoimmune arthritis depends on the presence of Ahr in T cells, and that Th1/Th17 balance may be particularly important for this process. PMID:21825138

  20. Susceptibility to Apoptosis in Insulin-like Growth Factor-I Receptor-deficient Brown Adipocytes

    PubMed Central

    Valverde, Angela M.; Mur, Cecilia; Brownlee, Michael; Benito, Manuel

    2004-01-01

    Fetal brown adipocytes are insulin-like growth factor-I (IGF-I) target cells. To assess the importance of the IGF-I receptor (IGF-IR) in brown adipocytes during fetal life, we have generated immortalized brown adipocyte cell lines from the IGF-IR-/- mice. Using this experimental model, we demonstrate that the lack of IGF-IR in fetal brown adipocytes increased the susceptibility to apoptosis induced by serum withdrawal. Culture of cells in the absence of serum and growth factors produced rapid DNA fragmentation (4 h) in IGF-IR-/- brown adipocytes, compared with the wild type (16 h). Consequently, cell viability was decreased more rapidly in fetal brown adipocytes in the absence of IGF-IR. Furthermore, caspase-3 activity was induced much earlier in cells lacking IGF-IR. At the molecular level, IGF-IR deficiency in fetal brown adipocytes altered the balance of the expression of several proapoptotic (Bcl-xS and Bim) and antiapoptotic (Bcl-2 and Bcl-xL) members of the Bcl-2 family. This imbalance was irreversible even though in IGF-IR-reconstituted cells. Likewise, cytosolic cytochrome c levels increased rapidly in IGF-IR-deficient cells compared with the wild type. A rapid entry of Foxo1 into the nucleus accompanied by a rapid exit from the cytosol and an earlier activation of caspase-8 were observed in brown adipocytes lacking IGF-IR upon serum deprivation. Activation of caspase-8 was inhibited by 50% in both cell types by neutralizing anti-Fas-ligand antibody. Adenoviral infection of wild-type brown adipocytes with constitutively active Foxol (ADA) increased the expression of antiapoptotic genes, decreased Bcl-xL and induced caspase-8 and -3 activities, with the final outcome of DNA fragmentation. Up-regulation of uncoupling protein-1 (UCP-1) expression in IGF-IR-deficient cells by transduction with PGC-1α or UCP-1 ameliorated caspase-3 activation, thereby retarding apoptosis. Finally, insulin treatment prevented apoptosis in both cell types. However, the survival effect of insulin on IGF-IR-/- brown adipocytes was elicited even in the absence of phosphatidylinositol 3-kinase/Akt signaling. Thus, our results demonstrate for the first time the unique role of IGF-IR in maintaining the balance of death and survival in fetal brown adipocytes. PMID:15356271

  1. Impaired wake-promoting mechanisms in ghrelin receptor-deficient mice.

    PubMed

    Esposito, Matthew; Pellinen, Jacob; Kapás, Levente; Szentirmai, Éva

    2012-01-01

    Ghrelin receptors are expressed by key components of the arousal system. Exogenous ghrelin induces behavioral activation, promotes wakefulness and stimulates eating. We hypothesized that ghrelin-sensitive mechanisms play a role in the arousal system. To test this, we investigated the responsiveness of ghrelin receptor knockout (KO) mice to two natural wake-promoting stimuli. Additionally, we assessed the integrity of their homeostatic sleep-promoting system using sleep deprivation. There was no significant difference in the spontaneous sleep-wake activity between ghrelin receptor KO and wild-type (WT) mice. WT mice mounted robust arousal responses to a novel environment and food deprivation. Wakefulness increased for 6 h after cage change accompanied by increases in body temperature and locomotor activity. Ghrelin receptor KO mice completely lacked the wake and body temperature responses to new environment. When subjected to 48 h food deprivation, WT mice showed marked increases in their waking time during the dark periods of both days. Ghrelin receptor KO mice failed to mount an arousal response on the first night and wake increases were attenuated on the second day. The responsiveness to sleep deprivation did not differ between the two genotypes. These results indicate that the ghrelin-receptive mechanisms play an essential role in the function of the arousal system but not in homeostatic sleep-promoting mechanisms.

  2. Interferon Type I Receptor-Deficient Mice have Altered Disease Symptoms in Response to Influenza Virus

    PubMed Central

    Traynor, Tim R.; Majde, Jeannine A.; Bohnet, Stewart G.; Krueger, James M.

    2007-01-01

    The role of type I interferons (IFNs) in mediation of acute viral symptoms (fever, somnolence, anorexia, etc.) is unknown. To determine the role of type I IFN in selected symptom development, body temperature and sleep responses to a marginally lethal dose of X-31 influenza virus were examined in mice with a targeted mutation of the IFN receptor type I (IFN-RI knockouts) and compared to wild-type 129 SvEv control mice. Mice were monitored for 48 hr to determine baseline temperature and sleep profiles prior to infection, and then for 9 days following infection. Hypothermic responses to virus were perceptible beginning at 64 hr post-infection (PI) and were more marked in KO mice until 108 hr, when hypothermia became more exaggerated in wild-type controls. Temperatures of wild-type mice continued to decline through day 9 while temperatures in IFN-RI KO mice stabilized. Time spent in non-rapid eye movement sleep (NREMS) increased in KO mice when hypothermia was marked and then returned to baseline levels, while NREMS continued to increase in wild-type mice through day 9. Other sleep parameters [time spent in rapid eye movement sleep (REMS), relative NREMS EEG slow wave activity, NREMS EEG power density] were all reduced in wild-type mice compared to KOs from days 3 to 8 while REMS low frequency EEG power density increased in wild-type relative to KOs. In conclusion, our results indicate that the presence of functional type I IFN slightly ameliorates disease symptoms early in the X-31 infection while exacerbating disease symptoms later in the infection. PMID:17098395

  3. P2Y2 receptor deficiency aggravates chronic kidney disease progression

    PubMed Central

    Potthoff, Sebastian A.; Stegbauer, Johannes; Becker, Jan; Wagenhaeuser, P. Johannes; Duvnjak, Blanka; Rump, Lars C.; Vonend, Oliver

    2013-01-01

    Purinergic signaling is involved in a variety of physiological states. P2 receptors are mainly activated by adenosine triphosphate (ATP). Activation of specific P2Y receptor subtypes might influence progression of kidney disease. To investigate the in vivo effect of a particular P2 receptor subtype on chronic kidney disease progression, subtotal nephrectomy was performed on wild type (WT) and P2Y2 receptor knockout (KO) mice. During the observational period of 56 ± 2 days, survival of KO mice was inferior compared to WT mice after SNX. Subtotal nephrectomy reduced creatinine clearance in both groups of mice, but the decrease was significantly more pronounced in KO compared to WT mice (53.9 ± 7.7 vs. 84.3 ± 8.7μl/min at day 56). The KO mice also sustained a greater increase in systolic blood pressure after SNX compared to WT mice (177 ± 2 vs. 156 ± 7 mmHg) and a 2.5-fold increase in albuminuria compared to WT. In addition, WT kidneys showed a significant increase in remnant kidney mass 56 days after SNX, but significant attenuation of hypertrophy in KO mice was observed. In line with the observed hypertrophy in WT SNX mice, a significant dose-dependent increase in DNA synthesis, a marker of proliferation, was present in cultured WT glomerular epithelial cells upon ATP stimulation. Markers for tissue damage (TGF-β 1, PAI-1) and proinflammatory target genes (MCP1) were significantly upregulated in KO mice after SNX compared to WT SNX mice. In summary, deletion of the P2Y2 receptor leads to greater renal injury after SNX compared to WT mice. Higher systolic blood pressure and inability of compensatory hypertrophy in KO mice are likely causes for the accelerated progression of chronic kidney disease. PMID:24065922

  4. Glucose-Dependent Insulinotropic Polypeptide Receptor Deficiency Leads to Impaired Bone Marrow Hematopoiesis.

    PubMed

    Mantelmacher, Fernanda Dana; Fishman, Sigal; Cohen, Keren; Pasmanik Chor, Metsada; Yamada, Yuichiro; Zvibel, Isabel; Varol, Chen

    2017-04-15

    The bone marrow (BM) contains controlled specialized microenvironments, or niches, that regulate the quiescence, proliferation, and differentiation of hematopoietic stem and progenitor cells (HSPC). The glucose-dependent insulinotropic polypeptide (GIP) is a gut-derived incretin hormone that mediates postprandial insulin secretion and has anabolic effects on adipose tissue. Previous studies demonstrated altered bone microarchitecture in mice deficient for GIP receptor (Gipr(-/-) ), as well as the expression of high-affinity GIP receptor by distinct cells constructing the BM HSPC niche. Nevertheless, the involvement of GIP in the process of BM hematopoiesis remains elusive. In this article, we show significantly reduced representation and proliferation of HSPC and myeloid progenitors in the BM of Gipr(-/-) mice. This was further manifested by reduced levels of BM and circulating differentiated immune cells in young and old adult mice. Moreover, GIP signaling was required for the establishment of supportive BM HSPC niches during HSPC repopulation in radioablated BM chimera mice. Finally, molecular profiling of various factors involved in retention, survival, and expansion of HSPC revealed significantly lower expression of the Notch-receptor ligands Jagged 1 and Jagged 2 in osteoblast-enriched bone extracts from Gipr(-/-) mice, which are important for HSPC expansion. In addition, there was increased expression of CXCL12, a factor important for HSPC retention and quiescence, in whole-BM extracts from Gipr(-/-) mice. Collectively, our data suggest that the metabolic hormone GIP plays an important role in BM hematopoiesis.

  5. β1-Adrenergic receptor deficiency in ghrelin-expressing cells causes hypoglycemia in susceptible individuals

    PubMed Central

    Mani, Bharath K.; Osborne-Lawrence, Sherri; Vijayaraghavan, Prasanna; Hepler, Chelsea; Zigman, Jeffrey M.

    2016-01-01

    Ghrelin is an orexigenic gastric peptide hormone secreted when caloric intake is limited. Ghrelin also regulates blood glucose, as emphasized by the hypoglycemia that is induced by caloric restriction in mouse models of deficient ghrelin signaling. Here, we hypothesized that activation of β1-adrenergic receptors (β1ARs) localized to ghrelin cells is required for caloric restriction–associated ghrelin release and the ensuing protective glucoregulatory response. In mice lacking the β1AR specifically in ghrelin-expressing cells, ghrelin secretion was markedly blunted, resulting in profound hypoglycemia and prevalent mortality upon severe caloric restriction. Replacement of ghrelin blocked the effects of caloric restriction in β1AR-deficient mice. We also determined that treating calorically restricted juvenile WT mice with beta blockers led to reduced plasma ghrelin and hypoglycemia, the latter of which is similar to the life-threatening, fasting-induced hypoglycemia observed in infants treated with beta blockers. These findings highlight the critical functions of ghrelin in preventing hypoglycemia and promoting survival during severe caloric restriction and the requirement for ghrelin cell–expressed β1ARs in these processes. Moreover, these results indicate a potential role for ghrelin in mediating beta blocker–associated hypoglycemia in susceptible individuals, such as young children. PMID:27548523

  6. Obesity, diabetes and cancer: insight into the relationship from a cohort with growth hormone receptor deficiency.

    PubMed

    Guevara-Aguirre, Jaime; Rosenbloom, Arlan L

    2015-01-01

    Obesity with insulin-resistant diabetes and increased cancer risk is a global problem. We consider the alterations of metabolism attendant on the underlying pathogenic overnutrition and the role of the growth hormone (GH)-IGF-1 axis in this interaction. Obesity-induced insulin resistance is a determinant of diabetes. Excess glucose, and an elevated concentration of insulin acting through its own receptors along with complex interactions with the IGF-1 system, will add extra fuel and fuel signalling for malignant growth and induce anti-apoptotic activities, permitting proliferation of forbidden clones. In Ecuador there are ~100 living adults with lifelong IGF-1 deficiency caused by a GH receptor (GHR) mutation who, despite a high percentage of body fat, have markedly increased insulin sensitivity compared with age- and BMI-matched control relatives, and no instances of diabetes, which is present in 6% of unaffected relatives. Only 1 of 20 deceased individuals with GHR deficiency died of cancer vs 20% of ~1,500 relatives. Fewer DNA breaks and increased apoptosis occurred in cell cultures exposed to oxidant agents following addition of serum from GHR-deficient individuals vs serum from control relatives. These changes were reversible by adding IGF-1 to the serum from the GHR-deficient individuals. The reduction in central regulators of pro-ageing signalling thus appears to be the result of an absence of GHR function. The complex inter-relationship of obesity, diabetes and cancer risk is related to excess insulin and fuel supply, in the presence of heightened anti-apoptosis and uninhibited DNA damage when GHR function is normal.

  7. Reduced Anticipatory Locomotor Responses to Scheduled Meals in Ghrelin Receptor Deficient Mice

    PubMed Central

    Blum, Ian D.; Patterson, Zack; Khazall, Rim; Lamont, Elaine Waddington; Sleeman, Mark W.; Horvath, Tamas L.; Abizaid, Alfonso

    2009-01-01

    Ghrelin, an orexigenic hormone produced by the stomach, is secreted in anticipation of scheduled meals and in correlation with anticipatory locomotor activity. We hypothesized that ghrelin is directly implicated in stimulating locomotor activity in anticipation of scheduled meals. To test this hypothesis, we observed 24 hr patterns of locomotor activity in mice with targeted mutations of the ghrelin receptor gene (GHSR KO) and wild-type littermates, all given access to food for four hours daily for 14 days. While WT and GHSR KO mice produced increases in anticipatory locomotor activity, anticipatory locomotor activity in GHSR KO mice was attenuated (p.< 0.05). These behavioral measures correlated with attenuated levels of Fos immunoreactivity in a number of hypothalamic nuclei from GHSR KO placed on the same restricted feeding schedule for seven days and sacrificed at ZT4. Interestingly, seven daily intraperitoeneal ghrelin injections mimicked hypothalamic Fos expression patterns to those seen in mice under restricted feeding schedules. These data suggest that ghrelin acts in the hypothalamus to augment locomotor activity in anticipation of scheduled meals. PMID:19666088

  8. Normal host defense during systemic candidiasis in mannose receptor-deficient mice.

    PubMed

    Lee, Sena J; Zheng, Nai-Ying; Clavijo, Monica; Nussenzweig, Michel C

    2003-01-01

    Pathogen pattern recognition receptors (PRRs) recognize common structural and molecular motifs present on microbial surfaces and contribute to induction of innate immune responses. The mannose receptor (MR), a carbohydrate-binding receptor expressed on subsets of macrophages, is considered one such PRR. In vitro experiments have implicated the MR in phagocytosis of mannose-bearing microbes, including Candida albicans, and enhancement of antifungal response by macrophages. However, the significance of the MR's contribution to immune response during systemic C. albicans infection has never been directly demonstrated. Using MR-deficient mice in an in vivo infection experiment, we examined the role of the MR in immune response during disseminated candidiasis. MR(-/-) and wild-type control mice were challenged intraperitoneally with C. albicans, and the survival rates, tissue fungal burden, inflammatory cell recruitment, and specific antibody production after infection were evaluated. We found no significant difference in survival between the two mouse strains. MR(-/-) mice had higher average fungal burdens in some of the organs on days 7 and 21 but exhibited competence in inflammatory cell recruitment and antibody production. We also observed in vitro that MR(-/-) peritoneal cavity macrophages were equally capable of C. albicans uptake and that phagocytosis could be blocked with beta-glucan. We conclude that the MR is not required for the normal host defense during disseminated candidiasis or for the phagocytosis of C. albicans and that a beta-glucan receptor may be required for C. albicans phagocytosis.

  9. Absence of serum growth hormone binding protein in patients with growth hormone receptor deficiency (Laron dwarfism)

    SciTech Connect

    Daughaday, W.H.; Trivedi, B.

    1987-07-01

    It has recently been recognized that human serum contains a protein that specifically binds human growth hormone (hGH). This protein has the same restricted specificity for hGH as the membrane-bound GH receptor. To determine whether the GH-binding protein is a derivative of, or otherwise related to, the GH receptor, the authors have examined the serum of three patients with Laron-type dwarfism, a condition in which GH refractoriness has been attributed to a defect in the GH receptor. The binding of /sup 125/I-labeled hGH incubated with serum has been measured after gel filtration of the serum through an Ultrogel AcA 44 minicolumn. Results are expressed as percent of specifically bound /sup 125/I-hGH and as specific binding relative to that of a reference serum after correction is made for endogenous GH. The mean +/- SEM of specific binding of sera from eight normal adults (26-46 years of age) was 21.6 +/- 0.45%, and the relative specific binding was 101.1 +/- 8.6%. Sera from 11 normal children had lower specific binding of 12.5 +/- 1.95% and relative specific binding of 56.6 +/- 9.1%. Sera from three children with Laron-type dwarfism lacked any demonstrable GH binding, whereas sera from 10 other children with other types of nonpituitary short stature had normal relative specific binding. They suggest that the serum GH-binding protein is a soluble derivative of the GH receptor. Measurement of the serum GH-binding protein may permit recognition of other abnormalities of the GH receptor.

  10. Interferon α/β Receptor-Deficient Mice as a Model for Ebola Virus Disease.

    PubMed

    Brannan, Jennifer M; Froude, Jeffery W; Prugar, Laura I; Bakken, Russell R; Zak, Samantha E; Daye, Sharon P; Wilhelmsen, Catherine E; Dye, John M

    2015-10-01

    A major obstacle in ebolavirus research is the lack of a small-animal model for Sudan virus (SUDV), as well as other wild-type (WT) ebolaviruses. Here, we expand on research by Bray and by Lever et al suggesting that WT ebolaviruses are pathogenic in mice deficient for the type 1 interferon (IFN) α/β receptor (IFNα/βR-/-). We examined the disease course of several WT ebolaviruses: Boneface (SUDV/Bon) and Gulu variants of SUDV, Ebola virus (EBOV), Bundibugyo virus (BDBV), Taï Forest virus, and Reston virus (RESTV). We determined that exposure to WT SUDV or EBOV results in reproducible signs of disease in IFNα/βR-/- mice, as measured by weight loss and partial lethality. Vaccination with the SUDV or EBOV glycoprotein (GP)-expressing Venezuelan equine encephalitis viral replicon particle vaccine protected these mice from SUDV/Bon and EBOV challenge, respectively. Treatment with SUDV- or EBOV-specific anti-GP antibodies protected mice from challenge when delivered 1-3 days after infection. Serial sampling experiments revealed evidence of disseminated intravascular coagulation in the livers of mice infected with the Boneface variant of SUDV, EBOV, and BDBV. Taken together, these data solidify the IFNα/βR-/- mouse as an important and useful model for the study of WT EBOV disease.

  11. GABAB receptor deficiency causes failure of neuronal homeostasis in hippocampal networks.

    PubMed

    Vertkin, Irena; Styr, Boaz; Slomowitz, Edden; Ofir, Nir; Shapira, Ilana; Berner, David; Fedorova, Tatiana; Laviv, Tal; Barak-Broner, Noa; Greitzer-Antes, Dafna; Gassmann, Martin; Bettler, Bernhard; Lotan, Ilana; Slutsky, Inna

    2015-06-23

    Stabilization of neuronal activity by homeostatic control systems is fundamental for proper functioning of neural circuits. Failure in neuronal homeostasis has been hypothesized to underlie common pathophysiological mechanisms in a variety of brain disorders. However, the key molecules regulating homeostasis in central mammalian neural circuits remain obscure. Here, we show that selective inactivation of GABAB, but not GABA(A), receptors impairs firing rate homeostasis by disrupting synaptic homeostatic plasticity in hippocampal networks. Pharmacological GABA(B) receptor (GABA(B)R) blockade or genetic deletion of the GB(1a) receptor subunit disrupts homeostatic regulation of synaptic vesicle release. GABA(B)Rs mediate adaptive presynaptic enhancement to neuronal inactivity by two principle mechanisms: First, neuronal silencing promotes syntaxin-1 switch from a closed to an open conformation to accelerate soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex assembly, and second, it boosts spike-evoked presynaptic calcium flux. In both cases, neuronal inactivity removes tonic block imposed by the presynaptic, GB(1a)-containing receptors on syntaxin-1 opening and calcium entry to enhance probability of vesicle fusion. We identified the GB(1a) intracellular domain essential for the presynaptic homeostatic response by tuning intermolecular interactions among the receptor, syntaxin-1, and the Ca(V)2.2 channel. The presynaptic adaptations were accompanied by scaling of excitatory quantal amplitude via the postsynaptic, GB(1b)-containing receptors. Thus, GABA(B)Rs sense chronic perturbations in GABA levels and transduce it to homeostatic changes in synaptic strength. Our results reveal a novel role for GABA(B)R as a key regulator of population firing stability and propose that disruption of homeostatic synaptic plasticity may underlie seizure's persistence in the absence of functional GABA(B)Rs.

  12. Hypersensitivity of Aryl Hydrocarbon Receptor-Deficient Mice to Lipopolysaccharide-Induced Septic Shock▿ †

    PubMed Central

    Sekine, Hiroki; Mimura, Junsei; Oshima, Motohiko; Okawa, Hiromi; Kanno, Jun; Igarashi, Katsuhide; Gonzalez, Frank J.; Ikuta, Togo; Kawajiri, Kaname; Fujii-Kuriyama, Yoshiaki

    2009-01-01

    Aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, is known to mediate a wide variety of pharmacological and toxicological effects caused by polycyclic aromatic hydrocarbons. Recent studies have revealed that AhR is involved in the normal development and homeostasis of many organs. Here, we demonstrate that AhR knockout (AhR KO) mice are hypersensitive to lipopolysaccharide (LPS)-induced septic shock, mainly due to the dysfunction of their macrophages. In response to LPS, bone marrow-derived macrophages (BMDM) of AhR KO mice secreted an enhanced amount of interleukin-1β (IL-1β). Since the enhanced IL-1β secretion was suppressed by supplementing Plasminogen activator inhibitor-2 (Pai-2) expression through transduction with Pai-2-expressing adenoviruses, reduced Pai-2 expression could be a cause of the increased IL-1β secretion by AhR KO mouse BMDM. Analysis of gene expression revealed that AhR directly regulates the expression of Pai-2 through a mechanism involving NF-κB but not AhR nuclear translocator (Arnt), in an LPS-dependent manner. Together with the result that administration of the AhR ligand 3-methylcholanthrene partially protected mice with wild-type AhR from endotoxin-induced death, these results raise the possibility that an appropriate AhR ligand may be useful for treating patients with inflammatory disorders. PMID:19822660

  13. Curcumin modulation of high fat diet-induced atherosclerosis and steatohepatosis in LDL receptor deficient mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Consuming curcumin may benefit health by modulating lipid metabolism and suppressing atherogenesis. Fatty acid binding proteins (FABP-4/aP2) and CD36 expression are key factors in lipid accumulation in macrophages and foam cell formation in atherogenesis. Our earlier observations suggest that curcum...

  14. Effects of Combined Tristetraprolin/Tumor Necrosis Factor Receptor Deficiency on the Splenic Transcriptome

    PubMed Central

    Patial, Sonika; Stumpo, Deborah J.; Young, W. Scott; Ward, James M.; Flake, Gordon P.

    2016-01-01

    Tristetraprolin (TTP) acts by binding to AU-rich elements in certain mRNAs, such as tumor necrosis factor (TNF) mRNA, and increasing their decay rates. TTP knockout mice exhibit a profound inflammatory syndrome that is largely due to increased TNF levels. Although TTP's effects on gene expression have been well studied in cultured cells, little is known about its functions in intact tissues. We performed deep RNA sequencing on spleens from TTP knockout mice that were also deficient in both TNF receptors (“triple knockout” mice) to remove the secondary effects of excess TNF activity. To help identify posttranscriptionally regulated transcripts, we also compared changes in mature mRNA levels to levels of transiently expressed pre-mRNA. In the triple knockout spleens, levels of 3,014 transcripts were significantly affected by 1.5-fold or more, but only a small fraction exhibited differential mRNA/pre-mRNA changes suggestive of increased mRNA stability. Transferrin receptor mRNA, which contains two highly conserved potential TTP binding sites, was significantly upregulated relative to its pre-mRNA. This was reflected in increased transferrin receptor expression and increased splenic iron/hemosiderin deposition. Our results suggest that TTP deficiency has profound effects on the splenic transcriptome, even in the absence of secondary increases in TNF activity. PMID:26976640

  15. Impaired glucose and lipid metabolism in ageing aryl hydrocarbon receptor deficient mice

    PubMed Central

    Biljes, Daniel; Hammerschmidt-Kamper, Christiane; Kadow, Stephanie; Diel, Patrick; Weigt, Carmen; Burkart, Volker; Esser, Charlotte

    2015-01-01

    Disturbed homeostasis of glucose and lipid metabolism are dominant features of the so-called metabolic syndrome (MetS) and can increase the risk for the development of type 2 diabetes (T2D), a severe metabolic disease. T2D prevalence increases with age. The aryl hydrocarbon receptor (AHR) is a sensor of small molecules including dietary components. AHR has been identified as potential regulator of glucose homeostasis and lipid metabolism. Epidemiologically, exposure to xenobiotic AHR ligands such as polycyclic aromatic hydrocarbons is linked to T2D. We assess here the potential role of the AHR in disturbances of glucose and lipid metabolism in young (age 2-5 months) and old (age > 1,5 years) AHR-deficient (AHR KO) mice. Fasted young wildtype (WT) and AHR-KO mice displayed similar blood glucose kinetics after challenge with intra-peritoneal glucose injection. However, old AHR-KO mice showed lower tolerance than WT to i.p. administered glucose, i.e. glucose levels rose higher and returned more slowly to normal levels. Old mice had overall higher insulin levels than young mice, and old AHR-KO had a somewhat disturbed insulin kinetic in the serum after glucose challenge. Surprisingly, young AHR-KO mice had significantly lower triglycerides, cholesterol, high density lipoprotein values than WT, i.e., a dyslipidemic profile. With ageing, AHR-KO and WT mice did not differ in these lipid levels, except for slightly reduced levels of triglycerides and cholesterol. In conclusion, our findings in AHR KO mice suggest that AHR expression is relevant for the maintenance of glucose and lipid homeostasis in old mice. PMID:26664351

  16. Decreased motivation to eat in mu-opioid receptor-deficient mice.

    PubMed

    Papaleo, Francesco; Kieffer, Brigitte L; Tabarin, Antoine; Contarino, Angelo

    2007-06-01

    Altered motivational processes might participate to the physiopathology of eating-related disorders. The endogenous opioid system is thought to mediate the hedonic properties of food intake. To assess the role for the micro-opioid receptor (MOR) pathway in the motivational properties of food intake, in the present study we tested wild-type and MOR-deficient mice (MOR-/-) in a nose-poke operant paradigm for chow or sucrose pellets. To avoid confounding factors linked to food restriction/deprivation experience, mice were always provided with food ad libitum. Although less MOR-/- than wild-type mice initiated operant behaviour, under a fixed ratio-1 (FR-1) reinforcement schedule the two genotypes showed similar patterns of food-driven nose-poking, indicating preserved cognitive abilities in MOR-deficient mice. However, during FR-3 and progressive ratio (PR) reinforcement experiments, MOR-/- mice showed lower levels of nose-poking for either chow or sucrose pellets than wild-type mice, indicating a crucial role for the MOR pathway in the motivational properties of food intake. Moreover, under the PR reinforcement schedule mice nose-poking for sucrose pellets showed higher genotype-independent breakpoint levels than mice working for chow pellets, indicating that the MOR pathway is not essential for hedonic processing of palatable food intake. Finally, MOR-/- mice did not differ from wild-type mice in the rate of operant responding extinction, further supporting the notion of unaltered cognitive abilities in the MOR-deficient mice. The present findings strongly indicate that the MOR pathway mediates the motivational properties of food intake, but it is not essential for hedonic processing of ingestive behaviour.

  17. Impact of asialoglycoprotein receptor deficiency on the development of liver injury

    PubMed Central

    Lee, Serene ML; Casey, Carol A; McVicker, Benita L

    2009-01-01

    The asialoglycoprotein (ASGP) receptor is a well-characterized hepatic receptor that is recycled via the common cellular process of receptor-mediated endocytosis (RME). The RME process plays an integral part in the proper trafficking and routing of receptors and ligands in the healthy cell. Thus, the mis-sorting or altered transport of proteins during RME is thought to play a role in several diseases associated with hepatocyte and liver dysfunction. Previously, we examined in detail alterations that occur in hepatocellular RME and associated receptor functions as a result of one particular liver injury, alcoholic liver disease (ALD). The studies revealed profound ethanol-mediated impairments to the ASGP receptor and the RME process, indicating the importance of this receptor and the maintenance of proper endocytic events in normal tissue. To further clarify these observations, studies were performed utilizing knockout mice (lacking a functional ASGP receptor) to which were administered several liver toxicants. In addition to alcohol, we examined the effects following administration of anti-Fas (CD95) antibody, carbon tetrachloride (CCl4) and lipopolysaccharide (LPS)/galactosamine. The results of these studies demonstrated that the knockout mice sustained enhanced liver injury in response to all of the treatments, as shown by increased indices of liver damage, such as enhancement of serum enzyme levels, histopathological scores, as well as hepatocellular death. Overall, the work completed to date suggests a possible link between hepatic receptors and liver injury. In particular, adequate function and content of the ASGP receptor may provide protection against various toxin-mediated liver diseases. PMID:19291819

  18. Myeloid mineralocorticoid receptor deficiency inhibits aortic constriction-induced cardiac hypertrophy in mice.

    PubMed

    Li, Chao; Zhang, Yu Yao; Frieler, Ryan A; Zheng, Xiao Jun; Zhang, Wu Chang; Sun, Xue Nan; Yang, Qing Zhen; Ma, Shu Min; Huang, Baozhuan; Berger, Stefan; Wang, Wang; Wu, Yong; Yu, Ying; Duan, Sheng Zhong; Mortensen, Richard M

    2014-01-01

    Mineralocorticoid receptor (MR) blockade has been shown to suppress cardiac hypertrophy and remodeling in animal models of pressure overload (POL). This study aims to determine whether MR deficiency in myeloid cells modulates aortic constriction-induced cardiovascular injuries. Myeloid MR knockout (MMRKO) mice and littermate control mice were subjected to abdominal aortic constriction (AAC) or sham operation. We found that AAC-induced cardiac hypertrophy and fibrosis were significantly attenuated in MMRKO mice. Expression of genes important in generating reactive oxygen species was decreased in MMRKO mice, while that of manganese superoxide dismutase increased. Furthermore, expression of genes important in cardiac metabolism was increased in MMRKO hearts. Macrophage infiltration in the heart was inhibited and expression of inflammatory genes was decreased in MMRKO mice. In addition, aortic fibrosis and inflammation were attenuated in MMRKO mice. Taken together, our data indicated that MR deficiency in myeloid cells effectively attenuated aortic constriction-induced cardiac hypertrophy and fibrosis, as well as aortic fibrosis and inflammation.

  19. Increased male-male courtship in ecdysone receptor deficient adult flies.

    PubMed

    Ganter, Geoffrey K; Walton, Kelsey L; Merriman, Jacob O; Salmon, Mark V; Brooks, Krista M; Maddula, Swathi; Kravitz, Edward A

    2007-05-01

    Male-male courtship is infrequent among mature adult Drosophila melanogaster. After pairs of mature adult males expressing a temperature-sensitive allele of the ecdysone receptor (EcR) gene were treated at a restrictive temperature, however, they engaged in elevated levels of male-male courtship. EcR-deficient males courted wildtype males and females, but were not courted by wildtype males. These results suggest that the ecdysone steroid hormone system may have a role in courtship initiation by adult male fruit flies.

  20. ASC-associated inflammation promotes cecal tumorigenesis in aryl hydrocarbon receptor-deficient mice.

    PubMed

    Ikuta, Togo; Kobayashi, Yasuhito; Kitazawa, Masato; Shiizaki, Kazuhiro; Itano, Naoki; Noda, Tetsuo; Pettersson, Sven; Poellinger, Lorenz; Fujii-Kuriyama, Yoshiaki; Taniguchi, Shun'ichiro; Kawajiri, Kaname

    2013-07-01

    The aryl hydrocarbon receptor (AhR) plays a suppressive role in cecal carcinogenesis by CUL4B/AhR-mediated ubiquitylation and degradation of β-catenin, which is activated by xenobiotics and natural ligands. AhR-deficient (AhR(-)(/-)) mice develop cecal tumors with severe inflammation. To elucidate whether the tumors develop autonomously in AhR(-/-) mice due to impaired β-catenin degradation or in association with accelerated inflammation, we performed two kinds of experiments using germ-free (GF) AhR(-/-) mice and compound mutant mice lacking genes for AhR and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), which plays an essential role in caspase-1 activation in inflammasomes. Both GF AhR(-/-) and AhR(-/-)•ASC(-/-) mice showed considerably reduced tumor development compared with that in AhR(-/-) mice albeit in a 'cancer-prone' state with aberrant β-catenin accumulation. Blocking of the interleukin (IL)-1β signaling pathway by treatment with a caspase-1 inhibitor, YVAD, reduced cecal tumorigenesis in AhR(-/-) mice. Signal transducers and activators of transcription 3 (STAT3) activation was detected in the cecal epithelium of the AhR(-/-) mice due to enhanced IL-6 production. An inhibitor of the STAT3 signaling pathway, AG490 suppressed the tumor formation. ASC-mediated inflammation was also found to play a critical role in tumor development in Apc(Min/+) mice, a mouse model of familial adenomatous polyposis. Collectively, these results revealed an important role of the bacteria-triggered or ASC-mediated inflammation signaling pathway in the intestinal tumorigenesis of mice and suggest a possible chemical therapeutic intervention, including AhR ligands and inhibitors of the inflammation pathway.

  1. Farnesoid X Receptor Deficiency Improves Glucose Homeostasis in Mouse Models of Obesity

    PubMed Central

    Prawitt, Janne; Abdelkarim, Mouaadh; Stroeve, Johanna H.M.; Popescu, Iuliana; Duez, Helene; Velagapudi, Vidya R.; Dumont, Julie; Bouchaert, Emmanuel; van Dijk, Theo H.; Lucas, Anthony; Dorchies, Emilie; Daoudi, Mehdi; Lestavel, Sophie; Gonzalez, Frank J.; Oresic, Matej; Cariou, Bertrand; Kuipers, Folkert; Caron, Sandrine; Staels, Bart

    2011-01-01

    OBJECTIVE Bile acids (BA) participate in the maintenance of metabolic homeostasis acting through different signaling pathways. The nuclear BA receptor farnesoid X receptor (FXR) regulates pathways in BA, lipid, glucose, and energy metabolism, which become dysregulated in obesity. However, the role of FXR in obesity and associated complications, such as dyslipidemia and insulin resistance, has not been directly assessed. RESEARCH DESIGN AND METHODS Here, we evaluate the consequences of FXR deficiency on body weight development, lipid metabolism, and insulin resistance in murine models of genetic and diet-induced obesity. RESULTS FXR deficiency attenuated body weight gain and reduced adipose tissue mass in both models. Surprisingly, glucose homeostasis improved as a result of an enhanced glucose clearance and adipose tissue insulin sensitivity. In contrast, hepatic insulin sensitivity did not change, and liver steatosis aggravated as a result of the repression of β-oxidation genes. In agreement, liver-specific FXR deficiency did not protect from diet-induced obesity and insulin resistance, indicating a role for nonhepatic FXR in the control of glucose homeostasis in obesity. Decreasing elevated plasma BA concentrations in obese FXR-deficient mice by administration of the BA sequestrant colesevelam improved glucose homeostasis in a FXR-dependent manner, indicating that the observed improvements by FXR deficiency are not a result of indirect effects of altered BA metabolism. CONCLUSIONS Overall, FXR deficiency in obesity beneficially affects body weight development and glucose homeostasis. PMID:21593203

  2. CRF₂ receptor-deficiency reduces recognition memory deficits and vulnerability to stress induced by cocaine withdrawal.

    PubMed

    Morisot, Nadège; Le Moine, Catherine; Millan, Mark J; Contarino, Angelo

    2014-12-01

    Psychostimulant drug abuse, dependence and withdrawal are associated with cognitive dysfunction and impact stress-sensitive systems. The corticotropin-releasing factor (CRF) system orchestrates stress responses via CRF1 and CRF2 receptors and is implicated in substance use disorders. However, CRF2 role in psychostimulant drug-induced cognitive dysfunction remains to be elucidated. In the present study, wild-type and CRF2-/- mice are injected with cocaine and memory assessed by the novel object recognition (NOR) task throughout relatively long periods of drug withdrawal. Following recovery from the drug-induced memory deficits, the mice are stressed prior to the NOR task and brain gene expression evaluated by in situ hybridization. Cocaine impairs NOR memory in wild-type and CRF2-/- mice. However, following cocaine withdrawal NOR memory deficits last less time in CRF2-/- than in wild-type mice. Furthermore, a relatively mild stressor induces the re-emergence of NOR deficits in long-term cocaine-withdrawn wild-type but not CRF2-/- mice. Cocaine-withdrawn mice show a genotype-independent higher c-fos expression in the NOR memory-relevant perirhinal cortex than drug-naïve mice. However neither genotype nor drug withdrawal affect the expression of tyrosine hydroxylase in the ventral tegmental area or the locus coeruleus and CRF in the central nucleus of the amygdala or the paraventricular nucleus of the hypothalamus, brain regions implicated in stress and drug responses. These data indicate a new role for the CRF2 receptor in cognitive deficits induced by cocaine withdrawal, both as regards to their duration and their re-induction by stress. Interestingly, prototypical brain stress systems other than CRF do not appear to be involved.

  3. Familial hypercholesterolemia in a rhesus monkey pedigree: molecular basis of low density lipoprotein receptor deficiency.

    PubMed Central

    Hummel, M; Li, Z G; Pfaffinger, D; Neven, L; Scanu, A M

    1990-01-01

    We have recently identified a family of rhesus monkeys with members exhibiting a spontaneous hypercholesterolemia associated with a low density lipoprotein receptor (LDLR) deficiency. By using the polymerase chain reaction, we now show that the affected monkeys are heterozygous for a nonsense mutation in exon 6 of the LDLR gene. This mutation changes the sequence of the codon for amino acid 284 (tryptophan) from TGG to TAG, thereby generating a nonsense codon potentially resulting in a truncated 283-amino acid protein, which needs documentation, however. This G----A mutation also creates a site for the restriction endonuclease Spe I. Using this site as a marker for this nonsense mutation, we have shown that the mutation is present in all of the affected members of the pedigree and absent in unaffected members and that the mutation segregates with the phenotype of spontaneous hypercholesterolemia through three generations. Quantitative analyses of RNA obtained from liver biopsies show that the abundance of the LDLR RNA is also reduced by about 50%. Thus, we have identified a primate model for human familial hypercholesterolemia which will be useful for studying the relationship between the LDLR and lipoprotein metabolism and for assessing the efficacy of diets and drugs in the treatment of human familial hypercholesterolemia. Images PMID:2326270

  4. Nogo-B receptor deficiency causes cerebral vasculature defects during embryonic development in mice

    PubMed Central

    Rana, Ujala; Liu, Zhong; Kumar, Suresh N.; Zhao, Baofeng; Hu, Wenquan; Bordas, Michelle; Cossette, Stephanie; Szabo, Sara; Foeckler, Jamie; Weiler, Hartmut; Chrzanowska-Wodnicka, Magdalena; Holtz, Mary L.; Misra, Ravindra P.; Salato, Valerie; North, Paula; Ramchandran, Ramani; Miao, Qing Robert

    2016-01-01

    Nogo-B receptor (NgBR) was identified as a receptor specific for Nogo-B. Our previous work has shown that Nogo-B and its receptor (NgBR) are essential for chemotaxis and morphogenesis of endothelial cells in vitro and intersomitic vessel formation via Akt pathway in zebrafish. Here, we further demonstrated the roles of NgBR in regulating vasculature development in mouse embryo and primitive blood vessel formation in embryoid body culture systems, respectively. Our results showed that NgBR homozygous knockout mice are embryonically lethal at E7.5 or earlier, and Tie2Cre-mediated endothelial cell-specific NgBR knockout (NgBR ecKO) mice die at E11.5 and have severe blood vessel assembly defects in embryo. In addition, mutant embryos exhibit dilation of cerebral blood vessel, resulting in thin-walled endothelial caverns. The similar vascular defects also were detected in Cdh5(PAC)-CreERT2 NgBR inducible ecKO mice. Murine NgBR gene-targeting embryonic stem cells (ESC) were generated by homologous recombination approaches. Homozygous knockout of NgBR in ESC results in cell apoptosis. Heterozygous knockout of NgBR does not affect ESC cell survival, but reduces the formation and branching of primitive blood vessels in embryoid body culture systems. Mechanistically, NgBR knockdown not only decreases both Nogo-B and VEGF-stimulated endothelial cell migration by abolishing Akt phosphorylation, but also decreases the expression of CCM1 and CCM2 proteins. Furthermore, we performed immunofluorescence (IF) staining of NgBR in human cerebral cavernous malformation patient tissue sections. The quantitative analysis results showed that NgBR expression levels in CD31 positive endothelial cells is significantly decreased in patient tissue sections. These results suggest that NgBR may be one of important genes coordinating the cerebral vasculature development. PMID:26746789

  5. Increased hepatic Igf2 gene expression involves C/EBPβ in TCDD-induced teratogenesis in rats.

    PubMed

    Wang, Jun; Liu, Xiaoliang; Li, Tingting; Liu, Caixia; Zhao, Yanyan

    2011-11-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a widespread environmental contaminant for reproductive toxicity that was suggested to be linked to growth factors. Insulin-like growth factor 2 (Igf2) has great effects on the control of fetal growth. We hypothesize it might participate in the TCDD-induced toxic events. The expression of Igf2 in TCDD-induced fetal rat and rat hepatoma BRL-3A cells was monitored by real-time quantitative RT-PCR and Western blotting. Electrophoresis mobility shift assay and chromatin immunoprecipitation were performed to identify the CCAAT/enhancer binding protein β (C/EBPβ) responsive element in the Igf2 P3-promoter. The transcriptional activity of the Igf2 P3-promoter was detected by luciferase assay. Pregnant rats exposed to TCDD showed a modest incidence of fetal death, fetal growth restriction and fetal malformation. The levels of Igf2 mRNA and IGF2 protein were elevated in TCDD-exposed fetal liver. Temporal expression of Igf2 was also induced by TCDD in BRL-3A cells. A C/EBPβ responsive element was identified at position -743 to -732 of the Igf2 P3-promoter, and its binding was enhanced by TCDD exposure through upregulation of the C/EBPβ protein. The transcriptional activity of the Igf2 P3-promoter was also augmented by TCDD. Our results showed that TCDD may induce Igf2 gene expression through the transactivation of C/EBPβ, which may be linked to the developmental effects of TCDD in rats.

  6. Combination of PEI-Mn0.5Zn0.5Fe2O4 nanoparticles and pHsp 70-HSV-TK/GCV with magnet-induced heating for treatment of hepatoma

    PubMed Central

    Tang, Qiusha; Lu, Mudan; Chen, Daozhen; Liu, Peidang

    2015-01-01

    Background To explore a new combination of thermal treatment and gene therapy for hepatoma, a heat-inducible herpes simplex virus thymidine kinase/ganciclovir (HSV-TK/GCV) gene therapy system was developed in which thermal energy generated by Mn0.5Zn0.5Fe2O4 nanoparticles (MZF-NPs) under an alternating magnetic field was used to activate gene expression. Methods First, a recombinant eukaryotic plasmid, pHsp 70-HSV-TK, was constructed as a target gene for therapy. This recombinant plasmid was used to transfect SMMC-7721 hepatoma cells and the gene expression was evaluated. Magnet-induced heating was then applied to cells to assess the antihepatoma effects of the polyethylenimine (PEI)-MZF-NPs/pHsp 70-HSV-TK/GCV complex, in vitro and in vivo. Results The results showed that cells were successfully transfected with pHsp 70-HSV-TK and that expression levels of HSV-TK remained stable. Both in vitro and in vivo results indicated that the combination of gene therapy and heat treatment resulted in better therapeutic effects than heating-alone group. The rates of apoptosis and necrosis in the combined treatment group were 49.0% and 7.21%, respectively. The rate of inhibition of cell proliferation in the combined treatment group was significantly higher (87.5%) than that in the heating-alone group (65.8%; P<0.01). The tumor volume and mass inhibition rates of the combined treatment group were 91.3% and 87.91%, respectively, and were significantly higher than the corresponding rates of the heating-alone group (70.41% and 57.14%; P<0.01). The expression levels of Stat3 and Bcl-xL messenger RNA and p-Stat3 and Bcl-xL protein in the combined treatment group were significantly lower than those in the other groups (P<0.01). The expression levels of Bax messenger RNA and protein in the recombinant plasmid group were significantly higher than those in the other groups (P<0.01). Conclusion It can therefore be concluded that the combined application of heat treatment and gene therapy

  7. Low energy scatter due to in-situ irradiation of solid tumors in laboratory rats

    SciTech Connect

    Ritenour, E.R. Jr.

    1980-01-01

    A study of the pattern of scattered radiation in laboratory rat cadavers during irradiation of solid tumors on the animals' flanks was performed. The animals were wrapped in a lead shield having a circular cutout through which the tumor protruded. Irradiations were performed with a 250 kVp 15ma X-ray machine with a measured half value layer of 1.39 mmCu. Lead shielding was of sufficient thickness to attenuate essentially all of the beam. The absorbed dose measured in the animal was then due to internal scatter from the tumor. Arrays of thermoluminescent dosimeters (TLDs) were placed beneath the skin of 17 animals bearing a solid tumor (hepatoma H-4-II-E). Absorbed dose was seen to vary isotropically, decreasing as the inverse distance squared from the tumor. Analysis of experimental error played a major role in this study. A pilot study resulted in standard errors that were 35% of the mean absorbed dose measurements. A careful reassessment of methods of manipulating the animals and the dosimetry system resulted in a reduction in standard error to 14% of the mean for small groups (less than 10 animals).

  8. Suppressive effects of estradiol on 2,3,7,8-tetrachlorodibenzo-p-dioxin-mediated transcriptional activation of murine Cyp1a-1 in mouse hepatoma Hepa 1c1c7 cells.

    PubMed

    Jeong, H G; Lee, S S

    1998-11-27

    Cultured mouse hepatoma Hepa lclc7 cells were treated with either estradiol or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or in combination to assess the role of estradiol in the process of Cypla-1 induction. Estradiol at a concentration as high as 1 microM slightly increased the activity of Cypla-1-specific 7-ethoxyresorufin O-deethylase (EROD); in contrast, TCDD-induced EROD activity and Cypla-1 mRNA levels were markedly reduced in the concomitant treatment of TCDD and estradiol in a dose-dependent manner. Treatment with tamoxifen, an anti-estrogen which acts through the estrogen receptor, did not affect the suppressive effects of estradiol on TCDD-induced EROD activity. Electrophoretic mobility shift assay using nuclear extract of cells revealed that estradiol reduced transformation of the Ah receptor to the form capable of specifically binding to an oligonucleotide containing dioxin-response element (DRE) sequence. Consistent with this, estradiol decreased TCDD-induced increased chloramphenicol acetyltransferase (CAT) activity from a DRE-containing CAT reporter plasmid after transient transfection into the cells. The levels of the cytosolic [3H]TCDD-Ah receptor complex were reduced by estradiol in competitive Ah receptor binding assay using [3H]TCDD. This study demonstrated that estradiol acts as an antagonist to TCDD and can regulate Cyp1a-1 expression in an Ah receptor-dependent manner but not through estradiol receptor in Hepa 1c1c7 cells.

  9. Suppressive effects of alpha-Hederin on 2,3,7,8-tetrachlorodibenzo-p-dioxin-mediated murine Cyp1a-1 expression in the mouse hepatoma Hepa-1c1c7 cells.

    PubMed

    Jeong, H G; Lee, S S

    1999-04-26

    Cultured mouse hepatoma cell line Hepa-1c1c7 cells were treated with alpha-Hederin to assess the role of alpha-Hederin in the process of Cyp1a-1 induction. Treatment of Hepa-1c1c7 cultures with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced Cyp1a-1, as indicated by analysis of 7-ethoxyresorufin O-deethylation (EROD) activity and Cyp1a-1 protein. When alpha-Hederin and TCDD were both added to cultures, TCDD-inducible EROD activity was greatly suppressed by alpha-Hederin in a dose-dependent manner. TCDD-induced Cyp1a-1 protein and mRNA levels were markedly reduced in the concomitant treatment of TCDD and alpha-Hederin consistent with EROD activity. Electrophoretic mobility shift assay using nuclear extraction of cells revealed that alpha-Hederin reduced transformation of the Ah receptor to a form capable of specifically binding to an oligonucleotide containing a dioxin-response element (DRE) sequence of the Cyp1a-1 gene. These results suggest that the suppressive effect of alpha-Hederin on TCDD-induced Cyp1a-1 gene expression in Hepa-1c1c7 cells might be an antagonist of the DNA binding potential of a nuclear Ah receptor.

  10. Possible reduction of hepatoma formation by Smmu 7721 cells in SCID mice and metastasis formation by B16F10 melanoma cells in C57BL/6 mice by Agaricus blazei murill extract.

    PubMed

    Wu, Ming-Fang; Lu, Hsu-Feng; Hsu, Yu-Ming; Tang, Ming-Chu; Chen, Hsueh-Chin; Lee, Ching-Sung; Yang, Yi-Yuan; Yeh, Ming-Yang; Chung, Hsiung-Kwang; Huang, Yi-Ping; Wu, Chih-Chung; Chung, Jing-Gung

    2011-01-01

    Agaricus blazei Murill extract (ABM) has been reported to possess antitumor effects. In this study, the role of ABM in tumor growth and metastasis in vivo was evaluated in experimental Smmu 7721 hepatoma cells in severe combined immunodeficiency (SCID) mice and B16F10 melanoma cells lung metastasis in C57BL/6 mice. For the tumor growth model, the size of the liver tumor mass was about 10 mm to 20 mm in the control group. In comparison with the control group, the tumor mass seem to grow slowly with ABM treatment, especially at the high dose. For the tumor metastasis model, after a six-week treatment, the survival rates of B6 mice were 0%, 30%, 10% and 50% for control group, low, median and high concentration ABM treatment groups, respectively. The survival rate showed that pretreatment of C57BL/6 (B6) mice with ABM lengthened their lifespan after tumor cell inoculation, which supports the notion that ABM successfully reduced lung metastasis formation by B16F10 melanoma cells. The treatment effect was dependent on the concentration of ABM for tumor growth and metastasis in these models.

  11. Beta-glucan extracted from the medicinal mushroom Agaricus blazei prevents the genotoxic effects of benzo[a]pyrene in the human hepatoma cell line HepG2.

    PubMed

    Angeli, José Pedro Friedmann; Ribeiro, Lúcia Regina; Bellini, Marilanda Ferreira; Mantovani, Mário Sérgio

    2009-01-01

    The mushroom Agaricus blazei is studied for its nutraceutical potential and as a medicinal supplement. The aim of the present study was to investigate the chemoprotective effect of beta-glucan extracted from the mushroom A. blazei against DNA damage induced by benzo[a]pyrene (B[a]P), using the comet assay (genotoxicity) and micronucleus assay with cytokinesis block (mutagenicity) in a human hepatoma cell line (HepG2). To elucidate the possible beta-glucan mechanism of action, desmutagenesis or bioantimutagenesis types, three treatment protocols were tested: simultaneous, pre-treatment, and presimultaneous. The results showed that beta-glucan does not exert genotoxic or mutagenic effect, but that it does protect against DNA damage caused by B[a]P in every protocol tested. The data suggest that beta-glucan acts through binding to B[a]P or the capture of free radicals produced during its activation. On the other hand, the pre-treatment results also suggest the possibility that beta-glucan modulates cell metabolism.

  12. The effect of WSEWS pentapeptide and WSEWS-specific monoclonal antibodies on constitutive and IL-6 induced acute-phase protein production by a human hepatoma cell line, HEPG-2.

    PubMed

    Biró, J; Bösze, S; Hudecz, F; Nagy, Z; Rajnavölgyi, E; Schmidt, B; Rákász, E; Falus, A

    1995-05-01

    Interleukin-6 receptor (IL-6R) is a member of the cytokine receptor superfamily characterised by the obligatory presence of WSXWS (Trp-Ser-X-Trp-Ser) sequence motif near the transmembrane domain. To more clearly understand the role of this motif, we treated the HepG2 hepatoma cell line with synthetic WSEWS peptide (E is glutamic acid) and checked the spontaneous and IL-6-induced production of acute-phase protein fibrinogen and C1-inhibitor (C1-INH). The peptide revealed a definitely stimulatory effect both on the constitutive synthesis of C1-INH and on the IL-6-induced fibrinogen synthesis of HepG2 cells. Monoclonal antibody specific for WSEWS pentapeptide was stimulatory for the spontaneous secretion of both fibrinogen and C1-INH. However, the IL-6-induced elevations of these acute-phase proteins were oppositely regulated, since the anti-WSEWS monoclonal antibody was inhibitory on the production of fibrinogen induced by IL-6 but strongly augmented the IL-6 induced production of C1-INH. Our study indicates that the WSEWS motif is critical in the effect of IL-6 on the acute-phase protein production influencing either the ligand binding by the WSEWS-containing receptor molecule or the signal transduction.

  13. Synthesis of new N,N'-bis[1-aryl-3-(piperidine-1-yl)propylidene]hydrazine dihydrochlorides and evaluation of their cytotoxicity against human hepatoma and breast cancer cells.

    PubMed

    Kucukoglu, Kaan; Gul, H Inci; Cetin-Atalay, Rengul; Baratli, Yosra; Charles, Anne-Laure; Sukuroglu, Murat; Gul, Mustafa; Geny, Bernard

    2014-06-01

    N,N'-Bis[1-aryl-3-(piperidine-1-yl)propylidene]hydrazine dihydrochlorides were synthesized by the reaction of 2 mols of 1-aryl-3-(piperidine-1-yl)-1-propanone hydrochlorides with 1 mol of hydrazine hydrate. Aryl part was C₆H₅ (P1), 4-CH₃C₆H₄ (P2), 4-CH₃OC₆H₄ (P3), 4-HOC₆H₄ (P4), 4-ClC₆H₄ (P5), 3-CH₃OC₆H₄ (P6), 4-FC₆H₄ (P7) and 4-BrC₆H₄ (P8). Except P1, all compounds were reported for the first time. The chemical structures were confirmed by UV, (1)H NMR, (13)C NMR and HRMS spectra. P1, P2, P7 and P8 against human hepatoma (Huh7) cells and P1, P2, P4, P5, P6, P7 and P8 against breast cancer (T47D) cells have shown cytotoxicity. P1, P2 and P7 had more potent cytotoxicity against Huh7 cells than the reference compound 5-FU, whereas only P2 was more potent than the 5-FU against T47D cells. Representative compound P7 inhibited the mitochondrial respiration at 144, 264 and 424 µM concentrations dose-dependantly in liver homogenates. The results suggest that P1, P2, P7 and P8 may serve as model compounds for further synthetic studies.

  14. Quercetin induces apoptosis via caspase activation, regulation of Bcl-2, and inhibition of PI-3-kinase/Akt and ERK pathways in a human hepatoma cell line (HepG2).

    PubMed

    Granado-Serrano, Ana Belén; Martín, María Angeles; Bravo, Laura; Goya, Luis; Ramos, Sonia

    2006-11-01

    Dietary polyphenols have been associated with the reduced risk of chronic diseases such as cancer, but the precise underlying mechanism of protection remains unclear. The aim of this study was to investigate the effect of quercetin on the activation of the apoptotic pathway in a human hepatoma cell line (HepG2). Treatment of cells for 18 h with quercetin induced cell death in a dose-dependent manner; however, a shorter treatment (4 h) had no effect on cell viability. Incubation of HepG2 cells with quercetin for 18 h induced apoptosis by the activation of caspase-3 and -9, but not caspase-8. Moreover, this flavonoid decreased the Bcl-xL:Bcl-xS ratio and increased translocation of Bax to the mitochondrial membrane. A sustained inhibition of the major survival signals, Akt and extracellular regulated kinase (ERK), also occurred in quercetin-treated cells. These data suggest that quercetin may induce apoptosis by direct activation of caspase cascade (mitochondrial pathway) and by inhibiting survival signaling in HepG2.

  15. Comparison of DNA damage in human-derived hepatoma line (HepG2) exposed to the fifteen drinking water disinfection byproducts using the single cell gel electrophoresis assay.

    PubMed

    Zhang, Li; Xu, Liang; Zeng, Qiang; Zhang, Shao-Hui; Xie, Hong; Liu, Ai-Lin; Lu, Wen-Qing

    2012-01-24

    Disinfection of drinking water reduces pathogenic infection, but generates disinfection by-products (DBPs) in drinking water. In this study, the effect of fifteen DBPs on DNA damage in human-derived hepatoma line (HepG2) was investigated by the single cell gel electrophoresis (SCGE) assay. These fifteen DBPs are: four trihalomethanes (THMs), six haloacetic acides (HAAs), three haloacetonitriles (HANs), 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX), and chloral hydrate (CH). Based on the minimal effective concentration (MEC) at which DBPs induced significant increase in olive tail moment (OTM), the rank order of DNA-damaging potency is: bromodichloromethane (BDCM)>dibromochloromethane (DBCM)>tribromomethane (TBM)>trichloromethane (TCM) of the four THMs; iodoacetic acid (IA)>bromoacetic acid (BA)>dibromoacetic acid (DBA)>dichloracetic acid (DCA)>trichloroacetic acid (TCA) of the five HAAs; dibromoacetonitrile (DBN)approximately dichloroacetonitrile (DCN)>trichloroacetonitrile (TCN) of the three HANs. The DNA damaging potency of MX and CH is similar to TCA and DCA, respectively. IA is the most genotoxic DBP in the fifteen DBPs, followed by BA. Chloroacetic acid (CA) is not genotoxic in this assay. Our findings indicated that HepG2/SCGE is a sensitive tool to evaluate the genotoxicity of DBPs and iodinated DBPs are more genotoxic than brominated DBPs, but chlorinated DBPs are less genotoxic than brominated DBPs.

  16. Optimal design of Ig 5' primers for construction of diverse phage antibody library established to select anti-HAb18GEF and anti-DOTA-Y Fabs for hepatoma pretargeting RIT.

    PubMed

    Zhang, Sihe; Xing, Jinliang; Zhang, Qing; Song, Fei; Li, Yu; Yang, Xiangmin; Chen, Zhinan

    2006-05-01

    Phage antibody library yields antibodies with higher affinity against different antigens, if diverse IgV gene repertoires can be amplified. As the currently available Fab primer sets cannot guarantee efficient amplification with high diversity, and because rare cloning sites can be found in certain Ig genes, here, we present an optimal set of Ig 5' primers, compatible with Fd 5' clone site replaced pComb3 vector, for diverse Fab phage display library construction. These novel Fab primes designed based on the newly classified IgV families, not only have best match and highest coverage for IgV family with minimized N-terminal amino acid changes, but also present good amplification diversity and efficiency of Ig gene from mice immunized with different forms of antigens (HAb18GEF, KLH-DOTA-Y, and HAb18G/pcDNA3). A high quality immune phage library with good diversity was constructed based on the mixed Ig repertoire, and five high affinity Fab antibodies were selected to specifically bind to HAb18GEF, DOTA-Y and an irrelevant antigen gamma-sm, respectively. This novel Fab primers set can be applied to the construction of diverse phage antibody library and the anti-HAb18GEF and anti-DOTA-Y Fab antibodies lay a solid foundation for radioimmunotherapy of hepatoma.

  17. Knockdown of hepatoma-derived growth factor-related protein-3 induces apoptosis of H1299 cells via ROS-dependent and p53-independent NF-κB activation

    SciTech Connect

    Yun, Hong Shik; Baek, Jeong-Hwa; Yim, Ji-Hye; Lee, Su-Jae; Lee, Chang-Woo; Song, Jie-Young; Um, Hong-Duck; Park, Jong Kuk; Park, In-Chul; Hwang, Sang-Gu

    2014-07-11

    Highlights: • HRP-3 is a radiation- and anticancer drug-responsive protein in H1299 cells. • Depletion of HRP-3 induces apoptosis of radio- and chemoresistant H1299 cells. • Depletion of HRP-3 promotes ROS generation via inhibition of the Nrf2/HO-1 pathway. • ROS generation enhances NF-κB activity, which acts as an upstream signal in the c-Myc/Noxa apoptotic pathway. - Abstract: We previously identified hepatoma-derived growth factor-related protein-3 (HRP-3) as a radioresistant biomarker in p53 wild-type A549 cells and found that p53-dependent induction of the PUMA pathway was a critical event in regulating the radioresistant phenotype. Here, we found that HRP-3 knockdown regulates the radioresistance of p53-null H1299 cells through a distinctly different molecular mechanism. HRP-3 depletion was sufficient to cause apoptosis of H1299 cells by generating substantial levels of reactive oxygen species (ROS) through inhibition of the Nrf2/HO-1 antioxidant pathway. Subsequent, ROS-dependent and p53-independent NF-κB activation stimulated expression of c-Myc and Noxa proteins, thereby inducing the apoptotic machinery. Our results thus extend the range of targets for the development of new drugs to treat both p53 wild-type or p53-null radioresistant lung cancer cells.

  18. The effect of oleuropein from olive leaf (Olea europaea) extract on Ca²⁺ homeostasis, cytotoxicity, cell cycle distribution and ROS signaling in HepG2 human hepatoma cells.

    PubMed

    Cheng, Jin-Shiung; Chou, Chiang-Ting; Liu, Yuan-Yuarn; Sun, Wei-Chih; Shieh, Pochuen; Kuo, Daih-Huang; Kuo, Chun-Chi; Jan, Chung-Ren; Liang, Wei-Zhe

    2016-05-01

    Oleuropein, a phenolic compound found in the olive leaf (Olea europaea), has been shown to have biological activities in different models. However, the effects of oleuropein on Ca(2+) homeostasis, cytotoxicity, cell cycle distribution and ROS signaling in liver cells have not been analyzed. Oleuropein induced [Ca(2+)]i rises only in HepG2 cells but not in AML12, HA22T or HA59T cells due to the different status of 3-hydroxy-3-methylglutaryl-CoA reductase expression. In HepG2 cells, this Ca(2+) signaling response was reduced by removing extracellular Ca(2+), and was inhibited by the store-operated Ca(2+) channel blockers 2-APB and SKF96365. In Ca(2+)-free medium, pretreatment with the ER Ca(2+) pump inhibitor thapsigargin abolished oleuropein-induced [Ca(2+)]i rises. Oleuropein induced cell cycle arrest which was associated with the regulation of p53, p21, CDK1 and cyclin B1 levels. Furthermore, oleuropein elevated intracellular ROS levels but reduced GSH levels. Treatment with the intracellular Ca(2+) chelator BAPTA-AM or the antioxidant NAC partially reversed oleuropein-induced cytotoxicity. Together, in HepG2 cells, oleuropein induced [Ca(2+)]i rises by releasing Ca(2+) from the ER and causing Ca(2+) influx through store-operated Ca(2+) channels. Moreover, oleuropein induced Ca(2+)-associated cytotoxicity that involved ROS signaling and cell cycle arrest. This compound may offer a potential therapy for treatment of human hepatoma.

  19. Enhanced trimethylation of histone h3 mediates impaired expression of hepatic glucose 6-phosphatase expression in offspring from rat dams exposed to hypoxia during pregnancy.

    PubMed

    Osumek, Jessica E; Revesz, Andrew; Morton, Jude S; Davidge, Sandra T; Hardy, Daniel B

    2014-01-01

    Given that hepatic glucose 6-phosphatase (G6Pase, involved in gluconeogenesis) has been demonstrated to be altered long term in animal models of intrauterine growth restriction (IUGR), we hypothesized that hypoxia in utero may regulate G6Pase expression via epigenetic mechanisms. To address this further, a rat model of maternal hypoxia leading to IUGR and impaired liver growth was utilized. In the 12-month-old male offspring of pregnant rat dams exposed to 11.5% atmospheric oxygen from gestational day (gd) 15 to gd 21, nonfasting glucose was lower in association with decreased hepatic G6Pase messenger RNA and protein levels. This was concomitant with enhanced methylation of histone H3 [K9] surrounding the promoter of G6Pase. Moreover, when McA-RH7777 hepatoma cells were exposed to various concentrations of oxygen for 48 hours, we observed an oxygen-dependent decrease in G6Pase expression associated with enhanced histone H3 [K9] methylation. Collectively, these results indicate that hypoxia directly and indirectly impairs G6Pase expression through enhanced methylation of histone H3 [K9].

  20. Cytochrome P4501A induction, benzo[a]pyrene metabolism, and nucleotide adduct formation in fish hepatoma cells: Effect of preexposure to 3,3',4,4',5-pentachlorobiphenyl

    USGS Publications Warehouse

    Smeets, J.M.W.; Voormolen, A.; Tillitt, D.E.; Everaarts, J.M.; Seinen, W.; Vanden Berg, M.D.

    1999-01-01

    In PLHC-1 hepatoma cells, benzo[a]pyrene (B[a]P) caused a maximum induction of cytochrome P4501A (CYP1A) activity, measured as ethoxyresorufin O-deethylation (EROD), after 4 to 8 h of exposure, depending on the B[a]P concentration. The decline of EROD activity at longer exposure times was probably caused by the rapid metabolism of B[a]P in this system (57% metabolism within 4 h incubation). In subsequent experiments, PLHC-1 cells were preinduced with PCB 126 for 24 h and then received a dose of 10, 100, or 1,000 nM 3H-B[a]P. A 1-nM concentration of PCB 126 caused an 80-fold induction of CYP1A activity, resulting in an increase in B[a]P metabolism of less than 10%, except at the highest concentration of B[a]P (1,000 nM), where a 50% increase was observed. In another experiment, an 80-fold induction of CYP1A activity caused a 20% increase in the metabolism of B[a]P (100 nM), and RNA adduct formation was increased approximately twofold. These results indicate that, at exposure concentrations up to 100 nM B[a]P, CYP1A activity is not rate limiting for B[a]P metabolism. Furthermore, CYP1A seems to also he specifically involved in B[a]P activation in PLHC-1 cells. However, CYP1A induction causes only a relatively small increase in activation, probably because of the action of other enzymes involved in B[a]P activation and deactivation.

  1. Bitter gourd (Momordica charantia) extract activates peroxisome proliferator-activated receptors and upregulates the expression of the acyl CoA oxidase gene in H4IIEC3 hepatoma cells.

    PubMed

    Chao, Che-Yi; Huang, Ching-jang

    2003-01-01

    Peroxisome proliferator-activated receptor alpha (PPARalpha) is a ligand-dependent transcription factor that regulates the expression of genes involved in lipid metabolism and transport. Ligands/activators of PPARalpha, like fibrate-type drugs, may have hypolipidemic effects. To identify food that contains activators of PPARalpha, a transactivation assay employing a clone of CHO-K1 cells stably transfected with a (UAS)(4)-tk-alkaline phosphatase reporter and a chimeric receptor of Gal4-rPPARalpha LBD was used to screen ethyl acetate (EA) extracts of a large variety of food materials. It was found that the EA extract of bitter gourd (Momordica charantia), a common oriental vegetable, activated PPARalpha to an extent that was equivalent to or even higher than 10 microM Wy-14643, a known ligand of PPARalpha. This extract also activated PPARgamma to a significant extent which was comparable to 0.5 microM BRL-49653. The activity toward PPARalpha was mainly in the soluble fraction of the organic solvent. The EA extract prepared from the whole fruit showed significantly higher activity than that from seeds or flesh alone. The bitter gourd EA extract was then incorporated into the medium for treatment of a peroxisome proliferator-responsive murine hepatoma cell line, H4IIEC3, for 72 h. Treated cells showed significantly higher activity of acyl CoA oxidase and higher expressions of mRNA of this enzyme and fatty acid-binding protein, indicating that the bitter gourd EA extract was able to act on a natural PPARalpha signaling pathway in this cell line. It is thus worth further investigating the PPAR-associated health benefits of bitter gourd.

  2. Camel milk modulates the expression of aryl hydrocarbon receptor-regulated genes, Cyp1a1, Nqo1, and Gsta1, in murine hepatoma Hepa 1c1c7 cells.

    PubMed

    Korashy, Hesham M; El Gendy, Mohamed A M; Alhaider, Abdulqader A; El-Kadi, Ayman O

    2012-01-01

    There is a traditional belief in the Middle East that camel milk may aid in prevention and treatment of numerous cases of cancer yet, the exact mechanism was not investigated. Therefore, we examined the ability of camel milk to modulate the expression of a well-known cancer-activating gene, Cytochrome P450 1a1 (Cyp1a1), and cancer-protective genes, NAD(P)H:quinone oxidoreductase 1 (Nqo1) and glutathione S-transferase a1 (Gsta1), in murine hepatoma Hepa 1c1c7 cell line. Our results showed that camel milk significantly inhibited the induction of Cyp1a1 gene expression by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the most potent Cyp1a1 inducer and known carcinogenic chemical, at mRNA, protein, and activity levels in a concentration-dependent manner. In addition, camel milk significantly decreased the xenobiotic responsive element (XRE)-dependent luciferase activity, suggesting a transcriptional mechanism is involved. Furthermore, this inhibitory effect of camel milk was associated with a proportional increase in heme oxygenase 1. On the other hand, camel milk significantly induced Nqo1 and Gsta1 mRNA expression level in a concentration-dependent fashion. The RNA synthesis inhibitor, actinomycin D, completely blocked the induction of Nqo1 mRNA by camel milk suggesting the requirement of de novo RNA synthesis through a transcriptional mechanism. In conclusion, camel milk modulates the expression of Cyp1a1, Nqo1, and Gsta1 at the transcriptional and posttranscriptional levels.

  3. Vildagliptin and its metabolite M20.7 induce the expression of S100A8 and S100A9 in human hepatoma HepG2 and leukemia HL-60 cells.

    PubMed

    Asakura, Mitsutoshi; Karaki, Fumika; Fujii, Hideaki; Atsuda, Koichiro; Itoh, Tomoo; Fujiwara, Ryoichi

    2016-10-19

    Vildagliptin is a potent, orally active inhibitor of dipeptidyl peptidase-4 (DPP-4) for the treatment of type 2 diabetes mellitus. It has been reported that vildagliptin can cause hepatic dysfunction in patients. However, the molecular-mechanism of vildagliptin-induced liver dysfunction has not been elucidated. In this study, we employed an expression microarray to determine hepatic genes that were highly regulated by vildagliptin in mice. We found that pro-inflammatory S100 calcium-binding protein (S100) a8 and S100a9 were induced more than 5-fold by vildagliptin in the mouse liver. We further examined the effects of vildagliptin and its major metabolite M20.7 on the mRNA expression levels of S100A8 and S100A9 in human hepatoma HepG2 and leukemia HL-60 cells. In HepG2 cells, vildagliptin, M20.7, and sitagliptin - another DPP-4 inhibitor - induced S100A9 mRNA. In HL-60 cells, in contrast, S100A8 and S100A9 mRNAs were significantly induced by vildagliptin and M20.7, but not by sitagliptin. The release of S100A8/A9 complex in the cell culturing medium was observed in the HL-60 cells treated with vildagliptin and M20.7. Therefore, the parental vildagliptin- and M20.7-induced release of S100A8/A9 complex from immune cells, such as neutrophils, might be a contributing factor of vildagliptin-associated liver dysfunction in humans.

  4. Cinnamaldehyde-induced apoptosis in human hepatoma PLC/PRF/5 cells involves the mitochondrial death pathway and is sensitive to inhibition by cyclosporin A and z-VAD-fmk.

    PubMed

    Lin, Liang-Tzung; Tai, Chen-Jei; Chang, Shun-Pang; Chen, Jin-Liang; Wu, Shu-Jing; Lin, Chun-Ching

    2013-12-01