Science.gov

Sample records for receptor-dependent signaling response

  1. Adenosine receptor-dependent signaling is not obligatory for normobaric and hypobaric hypoxia-induced cerebral vasodilation in humans.

    PubMed

    Hoiland, Ryan L; Bain, Anthony R; Tymko, Michael M; Rieger, Mathew G; Howe, Connor A; Willie, Christopher K; Hansen, Alex B; Flück, Daniela; Wildfong, Kevin W; Stembridge, Mike; Subedi, Prajan; Anholm, James; Ainslie, Philip N

    2017-04-01

    Hypoxia increases cerebral blood flow (CBF) with the underlying signaling processes potentially including adenosine. A randomized, double-blinded, and placebo-controlled design, was implemented to determine if adenosine receptor antagonism (theophylline, 3.75 mg/Kg) would reduce the CBF response to normobaric and hypobaric hypoxia. In 12 participants the partial pressures of end-tidal oxygen ([Formula: see text]) and carbon dioxide ([Formula: see text]), ventilation (pneumotachography), blood pressure (finger photoplethysmography), heart rate (electrocardiogram), CBF (duplex ultrasound), and intracranial blood velocities (transcranial Doppler ultrasound) were measured during 5-min stages of isocapnic hypoxia at sea level (98, 90, 80, and 70% [Formula: see text]). Ventilation, [Formula: see text] and [Formula: see text], blood pressure, heart rate, and CBF were also measured upon exposure (128 ± 31 min following arrival) to high altitude (3,800 m) and 6 h following theophylline administration. At sea level, although the CBF response to hypoxia was unaltered pre- and postplacebo, it was reduced following theophylline (P < 0.01), a finding explained by a lower [Formula: see text] (P < 0.01). Upon mathematical correction for [Formula: see text], the CBF response to hypoxia was unaltered following theophylline. Cerebrovascular reactivity to hypoxia (i.e., response slope) was not different between trials, irrespective of [Formula: see text] At high altitude, theophylline (n = 6) had no effect on CBF compared with placebo (n = 6) when end-tidal gases were comparable (P > 0.05). We conclude that adenosine receptor-dependent signaling is not obligatory for cerebral hypoxic vasodilation in humans.NEW & NOTEWORTHY The signaling pathways that regulate human cerebral blood flow in hypoxia remain poorly understood. Using a randomized, double-blinded, and placebo-controlled study design, we determined that adenosine receptor-dependent signaling is not obligatory for the

  2. Aldosterone-induced brain MAPK signaling and sympathetic excitation are angiotensin II type-1 receptor dependent.

    PubMed

    Zhang, Zhi-Hua; Yu, Yang; Wei, Shun-Guang; Felder, Robert B

    2012-02-01

    Angiotensin II (ANG II)-induced mitogen-activated protein kinase (MAPK) signaling upregulates angiotensin II type-1 receptors (AT(1)R) in hypothalamic paraventricular nucleus (PVN) and contributes to AT(1)R-mediated sympathetic excitation in heart failure. Aldosterone has similar effects to increase AT(1)R expression in the PVN and sympathetic drive. The present study was undertaken to determine whether aldosterone also activates the sympathetic nervous system via MAPK signaling and, if so, whether its effect is independent of ANG II and AT(1)R. In anesthetized rats, a 4-h intravenous infusion of aldosterone induced increases (P < 0.05) in phosphorylated (p-) p44/42 MAPK in PVN, PVN neuronal excitation, renal sympathetic nerve activity (RSNA), mean blood pressure (MBP), and heart rate (HR). Intracerebroventricular or bilateral PVN microinjection of the p44/42 MAPK inhibitor PD-98059 reduced the aldosterone-induced RSNA, HR, and MBP responses. Intracerebroventricular pretreatment (5 days earlier) with pooled small interfering RNAs targeting p44/42 MAPK reduced total and p-p44/42 MAPK, aldosterone-induced c-Fos expression in the PVN, and the aldosterone-induced increases in RSNA, HR, and MBP. Intracerebroventricular infusion of either the mineralocorticoid receptor antagonist RU-28318 or the AT(1)R antagonist losartan blocked aldosterone-induced phosphorylation of p44/42 MAPK and prevented the increases in RSNA, HR, and MBP. These data suggest that aldosterone-induced sympathetic excitation depends upon that AT(1)R-induced MAPK signaling in the brain. The short time course of this interaction suggests a nongenomic mechanism, perhaps via an aldosterone-induced transactivation of the AT(1)R as described in peripheral tissues.

  3. Transit of hormonal and EGF receptor-dependent signals through cholesterol-rich membranes.

    PubMed

    Freeman, Michael R; Cinar, Bekir; Kim, Jayoung; Mukhopadhyay, Nishit K; Di Vizio, Dolores; Adam, Rosalyn M; Solomon, Keith R

    2007-02-01

    The functional consequences of changes in membrane lipid composition that coincide with malignant growth are poorly understood. Sufficient data have been acquired from studies of lipid binding proteins, post-translational modifications of signaling proteins, and biochemical inhibition of lipidogenic pathways to indicate that growth and survival pathways might be substantially re-directed by alterations in the lipid content of membranes. Cholesterol and glycosphingolipids segregate into membrane patches that exhibit a liquid-ordered state in comparison to membrane domains containing relatively lower amounts of these classes of lipids. These "lipid raft" structures, which may vary in size and stability in different cell types, both accumulate and exclude signaling proteins and have been implicated in signal transduction through a number of cancer-relevant pathways. In prostate cancer cells, signaling from epidermal growth factor receptor (EGFR) to the serine-threonine kinase Akt1, as well as from IL-6 to STAT3, have been demonstrated to be influenced by experimental interventions that target cholesterol homeostasis. The recent finding that classical steroid hormone receptors also reside in these microdomains, and thus may function within these structures in a signaling capacity independent of their role as nuclear factors, suggests a novel means of cross-talk between receptor tyrosine kinase-derived and steroidogenic signals. Potential points of intersection between components of the EGFR family of receptor tyrosine kinases and androgen receptor signaling pathways, which may be sensitive to disruptions in cholesterol metabolism, are discussed. Understanding the manner in which these pathways converge within cholesterol-rich membranes may present new avenues for therapeutic intervention in hormone-dependent cancers.

  4. Sphingosine-1-Phosphate Elicits Receptor-Dependent Calcium Signaling in Retinal Amacrine Cells

    PubMed Central

    Crousillac, Scott; Colonna, Jeremy; McMains, Emily; Dewey, Jill Sayes

    2009-01-01

    Evidence is emerging indicating that sphingosine-1-phosphate (S1P) participates in signaling in the retina. To determine whether S1P might be involved in signaling in the inner retina specifically, we examine the effects of this sphingolipid on cultured retinal amacrine cells. Whole cell voltage-clamp recordings reveal that S1P activates a cation current that is dependent on signaling through Gi and phospholipase C. These observations are consistent with the involvement of members of the S1P receptor family of G-protein-coupled receptors in the production of the current. Immunocytochemistry and PCR amplification provide evidence for the expression of S1P1R and S1P3R in amacrine cells. The receptor-mediated channel activity is shown to be highly sensitive to blockade by lanthanides consistent with the behavior of transient receptor potential canonical (TRPC) channels. PCR products amplified from amacrine cells reveal that TRPCs 1 and 3–7 channel subunits have the potential to be expressed. Because TRPC channels provide a Ca2+ entry pathway, we asked whether S1P caused cytosolic Ca2+ elevations in amacrine cells. We show that S1P-dependent Ca2+ elevations do occur in these cells and that they might be mediated by S1P1R and S1P3R. The Ca2+ elevations are partially due to release from internal stores, but the largest contribution is from influx across the plasma membrane. The effect of inhibition of sphingosine kinase suggests that the production of cytosolic S1P underlies the sustained nature of the Ca2+ elevations. Elucidation of the downstream effects of these signals will provide clues to the role of S1P in regulating inner retinal function. PMID:19776367

  5. Tributyltin and triphenyltin inhibit osteoclast differentiation through a retinoic acid receptor-dependent signaling pathway

    SciTech Connect

    Yonezawa, Takayuki; Hasegawa, Shin-ichi; Ahn, Jae-Yong; Cha, Byung-Yoon; Teruya, Toshiaki; Hagiwara, Hiromi; Nagai, Kazuo; Woo, Je-Tae; E-mail: jwoo@isc.chubu.ac.jp

    2007-03-30

    Organotin compounds, such as tributyltin (TBT) and triphenyltin (TPT), have been widely used in agriculture and industry. Although these compounds are known to have many toxic effects, including endocrine-disrupting effects, their effects on bone resorption are unknown. In this study, we investigated the effects of organotin compounds, such as monobutyltin (MBT), dibutyltin (DBT), TBT, and TPT, on osteoclast differentiation using mouse monocytic RAW264.7 cells. MBT and DBT had no effects, whereas TBT and TPT dose-dependently inhibited osteoclast differentiation at concentrations of 3-30 nM. Treatment with a retinoic acid receptor (RAR)-specific antagonist, Ro41-5253, restored the inhibition of osteoclastogenesis by TBT and TPT. TBT and TPT reduced receptor activator of nuclear factor-{kappa}B ligand (RANKL) induced nuclear factor of activated T cells (NFAT) c1 expression, and the reduction in NFATc1 expression was recovered by Ro41-5253. Our results suggest that TBT and TPT suppress osteoclastogenesis by inhibiting RANKL-induced NFATc1 expression via an RAR-dependent signaling pathway.

  6. Oxandrolone blocks glucocorticoid signaling in an androgen receptor-dependent manner.

    PubMed

    Zhao, Jingbo; Bauman, William A; Huang, Ruojun; Caplan, Avrom J; Cardozo, Christopher

    2004-05-01

    The anabolic steroid oxandrolone is increasingly used to preserve or restore muscle mass in those with HIV infection or serious burns. These effects are mediated, in part, by the androgen receptor (AR). Anti-glucocorticoid effects have also been reported for some anabolic steroids, and the goal of our studies was to determine whether oxandrolone had a similar mechanism of action. Studies with in vitro translated glucocorticoid receptor (GR), however, showed no inhibition of cortisol binding by oxandrolone. Conversely, experiments in cell culture systems demonstrated significant antagonism of cortisol-induced transcriptional activation by oxandrolone in cells expressing both the AR and GR. Inhibition was not overcome by increased cortisol concentration, and no inhibition by oxandrolone was observed in cells expressing GR alone, confirming that non-competitive mechanisms were involved. AR-dependent repression of transcriptional activation by oxandrolone was also observed with the synthetic glucocorticoids dexamethasone and methylprednisolone. Furthermore, the AR antagonists 2-hydroxyflutamide and DDE also repressed GR transactivation in an AR-dependent manner. A mutant AR lacking a functional nuclear localization signal (AR(4RKM)) was active in oxandrolone-mediated repression of GR even though oxandrolone-bound AR(4RKM) failed to enter the nucleus and did not affect nuclear import of GR. These data indicate a novel action of oxandrolone to suppress glucocorticoid action via crosstalk between AR and GR.

  7. EGF receptor-dependent mechanism may be involved in the Tamm-Horsfall glycoprotein-enhanced PMN phagocytosis via activating Rho family and MAPK signaling pathway.

    PubMed

    Li, Ko-Jen; Siao, Sue-Cien; Wu, Cheng-Han; Shen, Chieh-Yu; Wu, Tsai-Hung; Tsai, Chang-Youh; Hsieh, Song-Chou; Yu, Chia-Li

    2014-01-21

    Our previous studies showed that urinary Tamm-Horsfall glycoprotein (THP) potently enhanced polymorphonuclear neutrophil (PMN) phagocytosis. However, the domain structure(s), signaling pathway and the intracellular events responsible for THP-enhanced PMN phagocytosis remain to be elucidated. THP was purified from normal human urine. The human promyelocytic leukemia cell line HL-60 was induced to differentiate into PMNs by all-trans retinoid acid. Pretreatment with different MAPK and PI3K inhibitors was used to delineate signaling pathways in THP-enhanced PMN phagocytosis. Phosphorylation of molecules responsible for PMN phagocytosis induced by bacterial lipopolysaccharide (LPS), THP, or human recombinant epidermal growth factor (EGF) was evaluated by western blot. A p38 MAPK inhibitor, SB203580, effectively inhibited both spontaneous and LPS- and THP-induced PMN phagocytosis. Both THP and LPS enhanced the expression of the Rho family proteins Cdc42 and Rac that may lead to F-actin re-arrangement. Further studies suggested that THP and EGF enhance PMN and differentiated HL-60 cell phagocytosis in a similar pattern. Furthermore, the EGF receptor inhibitor GW2974 significantly suppressed THP- and EGF-enhanced PMN phagocytosis and p38 and ERK1/2 phosphorylation in differentiated HL-60 cells. We conclude that EGF receptor-dependent signaling may be involved in THP-enhanced PMN phagocytosis by activating Rho family and MAP kinase.

  8. Metabotropic glutamate receptor signaling is required for NMDA receptor-dependent ocular dominance plasticity and LTD in visual cortex

    PubMed Central

    Sidorov, Michael S.; Kaplan, Eitan S.; Osterweil, Emily K.; Lindemann, Lothar; Bear, Mark F.

    2015-01-01

    A feature of early postnatal neocortical development is a transient peak in signaling via metabotropic glutamate receptor 5 (mGluR5). In visual cortex, this change coincides with increased sensitivity of excitatory synapses to monocular deprivation (MD). However, loss of visual responsiveness after MD occurs via mechanisms revealed by the study of long-term depression (LTD) of synaptic transmission, which in layer 4 is induced by acute activation of NMDA receptors (NMDARs) rather than mGluR5. Here we report that chronic postnatal down-regulation of mGluR5 signaling produces coordinated impairments in both NMDAR-dependent LTD in vitro and ocular dominance plasticity in vivo. The data suggest that ongoing mGluR5 signaling during a critical period of postnatal development establishes the biochemical conditions that are permissive for activity-dependent sculpting of excitatory synapses via the mechanism of NMDAR-dependent LTD. PMID:26417096

  9. β-Adrenergic Receptor-Mediated Cardiac Contractility is Inhibited via Vasopressin Type 1A-Receptor-Dependent Signaling

    PubMed Central

    Tilley, Douglas G.; Zhu, Weizhong; Myers, Valerie D.; Barr, Larry A.; Gao, Erhe; Li, Xue; Song, Jianliang; Carter, Rhonda L.; Makarewich, Catherine A.; Yu, Daohai; Troupes, Constantine D.; Grisanti, Laurel A.; Coleman, Ryan C.; Koch, Walter J.; Houser, Steven R.; Cheung, Joseph Y.; Feldman, Arthur M.

    2014-01-01

    Background Enhanced arginine vasopressin (AVP) levels are associated with increased mortality during end-stage human heart failure (HF), and cardiac AVP type 1A receptor (V1AR) expression becomes increased. Additionally, mice with cardiac-restricted V1AR overexpression develop cardiomyopathy and decreased β-adrenergic receptor (βAR) responsiveness. This led us to hypothesize that V1AR signaling regulated βAR responsiveness and in doing so contributes to HF development. Methods and Results Transaortic constriction resulted in decreased cardiac function and βAR density and increased cardiac V1AR expression, effects reversed by a V1AR-selective antagonist. Molecularly, V1AR stimulation led to decreased βAR ligand affinity, as well as βAR-induced Ca2+ mobilization and cAMP generation in isolated adult cardiomyocytes, effects recapitulated via ex vivo Langendorff analysis. V1AR-mediated regulation of βAR responsiveness was demonstrated to occur in a previously unrecognized Gq protein-independent/GRK-dependent manner. Conclusions This newly discovered relationship between cardiac V1AR and βAR may be informative for the treatment of patients with acute decompensated HF and elevated AVP. PMID:25205804

  10. Prenatal ethanol exposure persistently impairs N-methyl-D-aspartate receptor-dependent activation of extracellular signal-regulated kinase in the mouse dentate gyrus

    PubMed Central

    Samudio-Ruiz, Sabrina L.; Allan, Andrea M.; Valenzuela, C. Fernando; Perrone-Bizzozero, Nora I.; Caldwell, Kevin K.

    2009-01-01

    The dentate gyrus (DG) is the central input region to the hippocampus and is known to play an important role in learning and memory. Previous studies have shown that prenatal alcohol is associated with hippocampal-dependent learning deficits and a decreased ability to elicit long term potentiation (LTP) in the DG in adult animals. Given that activation of the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling cascade by N-methyl-D-aspartate (NMDA) receptors is required for various forms of learning and memory, as well as LTP, in hippocampal regions, including the DG, we hypothesized that fetal alcohol-exposed (FAE) adult animals would have deficits in hippocampal NMDA receptor-dependent ERK1/2 activation. We used immunoblotting and immunohistochemistry techniques to detect NMDA-stimulated ERK1/2 activation in acute hippocampal slices prepared from adult FAE mice. We present the first evidence linking prenatal alcohol exposure to deficits in NMDA receptor-dependent ERK1/2 activation specifically in the DG of adult offspring. This deficit may account for the LTP deficits previously observed in the DG, as well as the life-long cognitive deficits, associated with prenatal alcohol exposure. PMID:19317851

  11. Fibroblast Growth Factor Receptor-Dependent and -Independent Paracrine Signaling by Sunitinib-Resistant Renal Cell Carcinoma

    PubMed Central

    Tran, Tram Anh; Leong, Hon Sing; Pavia-Jimenez, Andrea; Fedyshyn, Slavic; Yang, Juan; Kucejova, Blanka; Sivanand, Sharanya; Spence, Patrick; Xie, Xian-Jin; Peña-Llopis, Samuel; Power, Nicholas

    2016-01-01

    Antiangiogenic therapies, such as sunitinib, have revolutionized renal cell carcinoma (RCC) treatment. However, a precarious understanding of how resistance emerges and a lack of tractable experimental systems hinder progress. We evaluated the potential of primary RCC cultures (derived from tumors and tumor grafts) to signal to endothelial cells (EC) and fibroblasts in vitro and to stimulate angiogenesis ex vivo in chorioallantoic membrane (CAM) assays. From 65 patients, 27 primary cultures, including several from patients with sunitinib-resistant RCC, were established. RCC cells supported EC survival in coculture assays and induced angiogenesis in CAM assays. RCC-induced EC survival was sensitive to sunitinib in half of the tumors and was refractory in tumors from resistant patients. Sunitinib sensitivity correlated with vascular endothelial growth factor (VEGF) production. RCC induced paracrine extracellular signal-regulated kinase (ERK) activation in EC which was inhibited by sunitinib in sensitive but not in resistant tumors. As determined by fibroblast growth factor receptor substrate 2 (FRS2) phosphorylation in fibroblasts, RCC broadly induced low-level fibroblast growth factor receptor (FGFR) signaling. Whereas ERK activation in EC was uniformly inhibited by combined VEGF/platelet-derived growth factor (PDGF)/FGF receptor inhibitors, paracrine ERK activation in fibroblasts was blocked in only a fraction of tumors. Our data show that RCC activates EC through VEGF-dependent and -independent pathways, that sunitinib sensitivity correlates with VEGF-mediated ERK activation, and that combined inhibition of VEGF/PDGF/FGF receptors is sufficient to inhibit mitogenic signaling in EC but not in fibroblasts. PMID:27141054

  12. An Fcγ receptor-dependent mechanism drives antibody-mediated target-receptor signaling in cancer cells.

    PubMed

    Wilson, Nicholas S; Yang, Becky; Yang, Annie; Loeser, Stefanie; Marsters, Scot; Lawrence, David; Li, Yun; Pitti, Robert; Totpal, Klara; Yee, Sharon; Ross, Sarajane; Vernes, Jean-Michel; Lu, Yanmei; Adams, Cam; Offringa, Rienk; Kelley, Bob; Hymowitz, Sarah; Daniel, Dylan; Meng, Gloria; Ashkenazi, Avi

    2011-01-18

    Antibodies to cell-surface antigens trigger activatory Fcγ receptor (FcγR)-mediated retrograde signals in leukocytes to control immune effector functions. Here, we uncover an FcγR mechanism that drives antibody-dependent forward signaling in target cells. Agonistic antibodies to death receptor 5 (DR5) induce cancer-cell apoptosis and are in clinical trials; however, their mechanism of action in vivo is not fully defined. Interaction of the DR5-agonistic antibody drozitumab with leukocyte FcγRs promoted DR5-mediated tumor-cell apoptosis. Whereas the anti-CD20 antibody rituximab required activatory FcγRs for tumoricidal function, drozitumab was effective in the context of either activatory or inhibitory FcγRs. A CD40-agonistic antibody required similar FcγR interactions to stimulate nuclear factor-κB activity in B cells. Thus, FcγRs can drive antibody-mediated receptor signaling in target cells.

  13. A novel NHE1-centered signaling cassette drives epidermal growth factor receptor-dependent pancreatic tumor metastasis and is a target for combination therapy.

    PubMed

    Cardone, Rosa Angela; Greco, Maria Raffaella; Zeeberg, Katrine; Zaccagnino, Angela; Saccomano, Mara; Bellizzi, Antonia; Bruns, Philipp; Menga, Marta; Pilarsky, Christian; Schwab, Albrecht; Alves, Frauke; Kalthoff, Holger; Casavola, Valeria; Reshkin, Stephan Joel

    2015-02-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers principally because of early invasion and metastasis. The epidermal growth factor receptor (EGFR) is essential for PDAC development even in the presence of Kras, but its inhibition with erlotinib gives only a modest clinical response, making the discovery of novel EGFR targets of critical interest. Here, we revealed by mining a human pancreatic gene expression database that the metastasis promoter Na(+)/H(+) exchanger (NHE1) associates with the EGFR in PDAC. In human PDAC cell lines, we confirmed that NHE1 drives both basal and EGF-stimulated three-dimensional growth and early invasion via invadopodial extracellular matrix digestion. EGF promoted the complexing of EGFR with NHE1 via the scaffolding protein Na+/H+ exchanger regulatory factor 1, engaging EGFR in a negative transregulatory loop that controls the extent and duration of EGFR oncogenic signaling and stimulates NHE1. The specificity of NHE1 for growth or invasion depends on the segregation of the transient EGFR/Na+/H+ exchanger regulatory factor 1/NHE1 signaling complex into dimeric subcomplexes in different lipid raftlike membrane domains. This signaling complex was also found in tumors developed in orthotopic mice. Importantly, the specific NHE1 inhibitor cariporide reduced both three-dimensional growth and invasion independently of PDAC subtype and synergistically sensitized these behaviors to low doses of erlotinib.

  14. T cell receptor-dependent activation of mTOR signaling in T cells is mediated by Carma1 and MALT1, but not Bcl10.

    PubMed

    Hamilton, Kristia S; Phong, Binh; Corey, Catherine; Cheng, Jing; Gorentla, Balachandra; Zhong, Xiaoping; Shiva, Sruti; Kane, Lawrence P

    2014-06-10

    Signaling to the mechanistic target of rapamycin (mTOR) regulates diverse cellular processes, including protein translation, cellular proliferation, metabolism, and autophagy. Most models place Akt upstream of the mTOR complex, mTORC1; however, in T cells, Akt may not be necessary for mTORC1 activation. We found that the adaptor protein Carma1 [caspase recruitment domain (CARD)-containing membrane-associated protein 1] and at least one of its associated proteins, the paracaspase MALT1 (mucosa-associated lymphoid tissue lymphoma translocation protein 1), were required for optimal activation of mTOR in T cells in response to stimulation of the T cell receptor (TCR) and the co-receptor CD28. However, Bcl10, which binds to Carma1 and MALT1 to form a complex that mediates signals from the TCR to the transcription factor NF-κB (nuclear factor κB), was not required. The catalytic activity of MALT1 was required for the proliferation of stimulated CD4+ T cells, but not for early TCR-dependent activation events. Consistent with an effect on mTOR, MALT1 activity was required for the increased metabolic flux in activated CD4+ T cells. Together, our data suggest that Carma1 and MALT1 play previously unappreciated roles in the activation of mTOR signaling in T cells after engagement of the TCR.

  15. Long-term treatment with fluoxetine induces desensitization of 5-HT4 receptor-dependent signalling and functionality in rat brain.

    PubMed

    Vidal, Rebeca; Valdizán, Elsa M; Mostany, Ricardo; Pazos, Angel; Castro, Elena

    2009-08-01

    The mode of action of antidepressant drugs may be related to mechanisms of monoamines receptor adaptation, including serotonin 5-HT(4) receptor subtypes. Here we investigated the effects of repeated treatment with the selective serotonin reuptake inhibitor fluoxetine for 21 days (5 and 10 mg/kg, p.o., once daily) on the sensitivity of 5-HT(4) receptors by using receptor autoradiography, adenylate cyclase assays and extracellular recording techniques in rat brain. Fluoxetine treatment decreased the density of 5-HT(4) receptor binding in the CA1 field of hippocampus as well as in several areas of the striatum over the doses of 5-10 mg/kg. In a similar way, we found a significant lower response to zacopride-stimulated adenylate cyclase activity in the fluoxetine 10 mg/kg/day treated group. Furthermore, post-synaptic 5-HT(4) receptor activity in hippocampus-measured as the excitatory action of zacopride in the pyramidal cells of CA1 evoked by Schaffer collateral stimulation was attenuated in rats treated with both doses of fluoxetine. Taken together, these results support the concept that a net decrease in the signalization pathway of 5-HT(4) receptors occurs after chronic selective serotonin reuptake inhibitor treatment: this effect may underlie the therapeutic efficacy of these drugs.

  16. Signals and Responses

    PubMed Central

    Lee, Angie

    2006-01-01

    The nitrogen-fixing symbiosis between bacteria in the family Rhizobiaceae and members of the legume family (Fabaceae) has been well studied, particularly from the perspective of the early signaling and recognition events. Recent studies of non-nodulating legume mutants have resulted in the identification of a number of genes that are responsive to signal molecules from the bacteria. However, a second group of nodule-forming bacteria, completely unrelated to the Rhizobiaceae, which are α-Proteobacteria, has been discovered. These bacteria belong to the β-Proteobacteria and have been designated β-rhizobia to distinguish them from the better-known α-rhizobia. Here, we review what is known in this economically important symbiosis about the interaction between legumes and α-rhizobia, and we incorporate information, where known, about the β-rhizobia. PMID:19521481

  17. Stimulation of α₁-adrenoceptor or angiotensin type 1 receptor enhances DNA synthesis in human-induced pluripotent stem cells via Gq-coupled receptor-dependent signaling pathways.

    PubMed

    Ishizuka, Toshiaki; Goshima, Hazuki; Ozawa, Ayako; Watanabe, Yasuhiro

    2013-08-15

    Stimulation of either α₁-adrenoceptor or angiotensin type 1 receptor (AT₁ receptor) induces proliferation of mouse induced pluripotent stem (iPS) cells. Both α₁-adrenoceptor and AT₁ receptor are guanine nucleotide-binding protein q polypeptide (Gq)-coupled receptors. However, it is not fully understood whether stimulation of these Gq-coupled receptors exert a similar effect in human iPS cells, i.e. proliferation of human iPS cells. In this study, we evaluated the involvement of α₁-adrenoceptor and AT₁ receptor in the DNA synthesis of human iPS cells. Treatment with either l-phenylephrine (a selective α₁-adrenoceptor agonist) or angiotensin II (Ang II) significantly increased DNA synthesis in human iPS cells. Enhanced DNA synthesis was significantly inhibited by pretreatment with protein kinase C (PKC) inhibitors, mitogen-activated protein kinase kinase (MEK) inhibitor, or phosphatidylinositol-3 phosphate kinase (PI3K) inhibitor. Treatment with either l-phenylephrine or Ang II significantly increased Akt and p44/42 MAPK phosphorylation. Short interfering RNA (siRNA) directed against Gq significantly inhibited DNA synthesis and phosphorylation of Akt and p44/42 MAPK enhanced by l-phenylephrine or Ang II. These results suggest that stimulation of α₁-adrenoceptor or AT₁ receptor may enhance DNA synthesis in human iPS cells via Gq-coupled receptor-dependent signaling pathways.

  18. Modeling Response Signal and Response Time Data

    ERIC Educational Resources Information Center

    Ratcliff, Roger

    2006-01-01

    The diffusion model (Ratcliff, 1978) and the leaky competing accumulator model (LCA, Usher & McClelland, 2001) were tested against two-choice data collected from the same subjects with the standard response time procedure and the response signal procedure. In the response signal procedure, a stimulus is presented and then, at one of a number of…

  19. Ubiquitin signaling in immune responses

    PubMed Central

    Hu, Hongbo; Sun, Shao-Cong

    2016-01-01

    Ubiquitination has emerged as a crucial mechanism that regulates signal transduction in diverse biological processes, including different aspects of immune functions. Ubiquitination regulates pattern-recognition receptor signaling that mediates both innate immune responses and dendritic cell maturation required for initiation of adaptive immune responses. Ubiquitination also regulates the development, activation, and differentiation of T cells, thereby maintaining efficient adaptive immune responses to pathogens and immunological tolerance to self-tissues. Like phosphorylation, ubiquitination is a reversible reaction tightly controlled by the opposing actions of ubiquitin ligases and deubiquitinases. Deregulated ubiquitination events are associated with immunological disorders, including autoimmune and inflammatory diseases. PMID:27012466

  20. IL-10 mediates sigma 1 receptor-dependent suppression of antitumor immunity.

    PubMed

    Zhu, Li X; Sharma, Sherven; Gardner, Brian; Escuadro, Brian; Atianzar, Kimberly; Tashkin, Donald P; Dubinett, Steven M

    2003-04-01

    Sigma receptors are unique endoplasmic reticulum proteins that mediate signaling for a variety of drugs. We determined the effect of sigma(1) receptor agonists on immune responses in a syngeneic lung cancer model. Sigma(1) receptor agonists, including cocaine, up-regulated splenocyte IL-10 mRNA and protein production in vitro in a sigma receptor-dependent, pertussis toxin-sensitive manner. In vivo, sigma(1) receptor agonists promoted tumor growth and induced IL-10 at the tumor site. Increased tumor growth was prevented by administration of specific Abs to IL-10 or by administration of specific sigma(1) receptor antagonists. We report that sigma(1) receptor ligands, including cocaine, augment tumor growth through an IL-10 dependent mechanism.

  1. Optically isolated signal coupler with linear response

    DOEpatents

    Kronberg, James W.

    1994-01-01

    An optocoupler for isolating electrical signals that translates an electrical input signal linearly to an electrical output signal. The optocoupler comprises a light emitter, a light receiver, and a light transmitting medium. The light emitter, preferably a blue, silicon carbide LED, is of the type that provides linear, electro-optical conversion of electrical signals within a narrow wavelength range. Correspondingly, the light receiver, which converts light signals to electrical signals and is preferably a cadmium sulfide photoconductor, is linearly responsive to light signals within substantially the same wavelength range as the blue LED.

  2. All-trans retinoic acid converts E2F into a transcriptional suppressor and inhibits the growth of normal human bronchial epithelial cells through a retinoic acid receptor- dependent signaling pathway.

    PubMed Central

    Lee, H Y; Dohi, D F; Kim, Y H; Walsh, G L; Consoli, U; Andreeff, M; Dawson, M I; Hong, W K; Kurie, J M

    1998-01-01

    Retinoids, including retinol and retinoic acid derivatives, maintain the normal growth and differentiation of human bronchial epithelial (HBE) cells and are under investigation as agents for lung cancer prevention. In this study, we examined the biologic effects of retinoids on normal HBE cells and the molecular mechanisms of retinoid actions. At a dose of 10(-6) M, all-trans retinoic acid (t-RA) suppressed the proliferation of normal HBE cells, which accumulated in the G0 phase. No evidence of programmed cell death was observed. The class of retinoid nuclear receptor that mediated the growth arrest was explored. Normal HBE cell growth was suppressed by a retinoid that selectively activates retinoic acid receptors but not by one that activates retinoid X receptors. The E2F transcription factor has demonstrated a role in G0 entry through transcriptional suppression of genes that induce cell cycle progression. To investigate the role of E2F in retinoid signaling, transient transfection assays were performed using reporter plasmids containing E2F-binding sites. Findings from these experiments suggested that t-RA treatment converted E2F into a transcriptional suppressor. Supporting this possibility, t-RA inhibited the expression of the E2F target genes B-myb, cyclin A, and cyclin E. Further, t-RA increased the levels of nuclear E2F-4, p107, and p130 and enhanced the binding of E2F-4 to p107, which have been associated with the conversion of E2F into a transcriptional suppressor in other cells. These findings point to retinoic acid receptor- and E2F-dependent pathways as potential mediators of retinoid-induced growth arrest in normal HBE cells and have implications for the use of retinoids in clinical trials on the prevention of lung cancer. PMID:9486971

  3. Low Density Lipoprotein Receptor-related Protein 1 (LRP1) Modulates N-Methyl-d-aspartate (NMDA) Receptor-dependent Intracellular Signaling and NMDA-induced Regulation of Postsynaptic Protein Complexes*

    PubMed Central

    Nakajima, Chikako; Kulik, Akos; Frotscher, Michael; Herz, Joachim; Schäfer, Michael; Bock, Hans H.; May, Petra

    2013-01-01

    The lipoprotein receptor LRP1 is essential in neurons of the central nervous system, as was revealed by the analysis of conditional Lrp1-deficient mouse models. The molecular basis of its neuronal functions, however, is still incompletely understood. Here we show by immunocytochemistry, electron microscopy, and postsynaptic density preparation that LRP1 is located postsynaptically. Basal and NMDA-induced phosphorylation of the transcription factor cAMP-response element-binding protein (CREB) as well as NMDA target gene transcription are reduced in LRP1-deficient neurons. In control neurons, NMDA promotes γ-secretase-dependent release of the LRP1 intracellular domain (LRP1-ICD). However, pull-down and chromatin immunoprecipitation (ChIP) assays showed no direct interaction between the LRP1-ICD and either CREB or target gene promoters. On the other hand, NMDA-induced degradation of the postsynaptic scaffold protein PSD-95 was impaired in the absence of LRP1, whereas its ubiquitination was increased, indicating that LRP1 influences the composition of postsynaptic protein complexes. Accordingly, NMDA-induced internalization of the AMPA receptor subunit GluA1 was impaired in LRP1-deficient neurons. These results show a role of LRP1 in the regulation and turnover of synaptic proteins, which may contribute to the reduced dendritic branching and to the neurological phenotype observed in the absence of LRP1. PMID:23760271

  4. Damage signals in the insect immune response

    PubMed Central

    Krautz, Robert; Arefin, Badrul; Theopold, Ulrich

    2014-01-01

    Insects and mammals share an ancient innate immune system comprising both humoral and cellular responses. The insect immune system consists of the fat body, which secretes effector molecules into the hemolymph and several classes of hemocytes, which reside in the hemolymph and of protective border epithelia. Key features of wound- and immune responses are shared between insect and mammalian immune systems including the mode of activation by commonly shared microbial (non-self) patterns and the recognition of these patterns by dedicated receptors. It is unclear how metazoan parasites in insects, which lack these shared motifs, are recognized. Research in recent years has demonstrated that during entry into the insect host, many eukaryotic pathogens leave traces that alert potential hosts of the damage they have afflicted. In accordance with terminology used in the mammalian immune systems, these signals have been dubbed danger- or damage-associated signals. Damage signals are necessary byproducts generated during entering hosts either by mechanical or proteolytic damage. Here, we briefly review the current stage of knowledge on how wound closure and wound healing during mechanical damage is regulated and how damage-related signals contribute to these processes. We also discuss how sensors of proteolytic activity induce insect innate immune responses. Strikingly damage-associated signals are also released from cells that have aberrant growth, including tumor cells. These signals may induce apoptosis in the damaged cells, the recruitment of immune cells to the aberrant tissue and even activate humoral responses. Thus, this ensures the removal of aberrant cells and compensatory proliferation to replace lost tissue. Several of these pathways may have been co-opted from wound healing and developmental processes. PMID:25071815

  5. Dose response signal detection under model uncertainty.

    PubMed

    Dette, Holger; Titoff, Stefanie; Volgushev, Stanislav; Bretz, Frank

    2015-12-01

    We investigate likelihood ratio contrast tests for dose response signal detection under model uncertainty, when several competing regression models are available to describe the dose response relationship. The proposed approach uses the complete structure of the regression models, but does not require knowledge of the parameters of the competing models. Standard likelihood ratio test theory is applicable in linear models as well as in nonlinear regression models with identifiable parameters. However, for many commonly used nonlinear dose response models the regression parameters are not identifiable under the null hypothesis of no dose response and standard arguments cannot be used to obtain critical values. We thus derive the asymptotic distribution of likelihood ratio contrast tests in regression models with a lack of identifiability and use this result to simulate the quantiles based on Gaussian processes. The new method is illustrated with a real data example and compared to existing procedures using theoretical investigations as well as simulations.

  6. Signalling and responses to strigolactones and karrikins.

    PubMed

    Smith, Steven M; Li, Jiayang

    2014-10-01

    Strigolactone (SL) and karrikin (KAR) signalling control many aspects of plant growth and development through similar mechanisms employing related α/β-fold hydrolase-receptors and a common F-box protein named MORE AXILARY GROWTH2 (MAX2) in Arabidopsis or DWARF3 (D3) in rice. D3 mediates SL-dependent ubiquitination and proteolysis of DWARF53 (D53) protein, thought to be involved in the control of gene expression, while a related protein SUPPRESSOR OF MAX2-1 (SMAX1) is implicated in the response to KAR in Arabidopsis. Different members of the D53/SMAX1 multigene family likely mediate different responses in plant growth and development. Analysis of responses to SL or KAR has identified many genes regulated by these compounds. Crosstalk with other signalling systems including light, hormones and abiotic stress has also been identified. Here we critically analyse how to progress towards a clearer understanding of the targets and functions of the SL and KAR signalling systems.

  7. Linear ubiquitination signals in adaptive immune responses.

    PubMed

    Ikeda, Fumiyo

    2015-07-01

    Ubiquitin can form eight different linkage types of chains using the intrinsic Met 1 residue or one of the seven intrinsic Lys residues. Each linkage type of ubiquitin chain has a distinct three-dimensional topology, functioning as a tag to attract specific signaling molecules, which are so-called ubiquitin readers, and regulates various biological functions. Ubiquitin chains linked via Met 1 in a head-to-tail manner are called linear ubiquitin chains. Linear ubiquitination plays an important role in the regulation of cellular signaling, including the best-characterized tumor necrosis factor (TNF)-induced canonical nuclear factor-κB (NF-κB) pathway. Linear ubiquitin chains are specifically generated by an E3 ligase complex called the linear ubiquitin chain assembly complex (LUBAC) and hydrolyzed by a deubiquitinase (DUB) called ovarian tumor (OTU) DUB with linear linkage specificity (OTULIN). LUBAC linearly ubiquitinates critical molecules in the TNF pathway, such as NEMO and RIPK1. The linear ubiquitin chains are then recognized by the ubiquitin readers, including NEMO, which control the TNF pathway. Accumulating evidence indicates an importance of the LUBAC complex in the regulation of apoptosis, development, and inflammation in mice. In this article, I focus on the role of linear ubiquitin chains in adaptive immune responses with an emphasis on the TNF-induced signaling pathways.

  8. System proportions fluid-flow in response to demand signals

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Control system provides proportioned fluid flow rates in response to demand signals. It compares a digital signal, representing a flow demand, with a reference signal to yield a control voltage to one or more solenoid valves connected to orifices of a predetermined size.

  9. Kalirin-7 is necessary for normal NMDA receptor-dependent synaptic plasticity

    PubMed Central

    2011-01-01

    Background Dendritic spines represent the postsynaptic component of the vast majority of excitatory synapses present in the mammalian forebrain. The ability of spines to rapidly alter their shape, size, number and receptor content in response to stimulation is considered to be of paramount importance during the development of synaptic plasticity. Indeed, long-term potentiation (LTP), widely believed to be a cellular correlate of learning and memory, has been repeatedly shown to induce both spine enlargement and the formation of new dendritic spines. In our studies, we focus on Kalirin-7 (Kal7), a Rho GDP/GTP exchange factor (Rho-GEF) localized to the postsynaptic density that plays a crucial role in the development and maintenance of dendritic spines both in vitro and in vivo. Previous studies have shown that mice lacking Kal7 (Kal7KO) have decreased dendritic spine density in the hippocampus as well as focal hippocampal-dependent learning impairments. Results We have performed a detailed electrophysiological characterization of the role of Kal7 in hippocampal synaptic plasticity. We show that loss of Kal7 results in impaired NMDA receptor-dependent LTP and long-term depression, whereas a NMDA receptor-independent form of LTP is shown to be normal in the absence of Kal7. Conclusions These results indicate that Kal7 is an essential and selective modulator of NMDA receptor-dependent synaptic plasticity in the hippocampus. PMID:22182308

  10. Systematic quantitative characterization of cellular responses induced by multiple signals

    PubMed Central

    2011-01-01

    Background Cells constantly sense many internal and environmental signals and respond through their complex signaling network, leading to particular biological outcomes. However, a systematic characterization and optimization of multi-signal responses remains a pressing challenge to traditional experimental approaches due to the arising complexity associated with the increasing number of signals and their intensities. Results We established and validated a data-driven mathematical approach to systematically characterize signal-response relationships. Our results demonstrate how mathematical learning algorithms can enable systematic characterization of multi-signal induced biological activities. The proposed approach enables identification of input combinations that can result in desired biological responses. In retrospect, the results show that, unlike a single drug, a properly chosen combination of drugs can lead to a significant difference in the responses of different cell types, increasing the differential targeting of certain combinations. The successful validation of identified combinations demonstrates the power of this approach. Moreover, the approach enables examining the efficacy of all lower order mixtures of the tested signals. The approach also enables identification of system-level signaling interactions between the applied signals. Many of the signaling interactions identified were consistent with the literature, and other unknown interactions emerged. Conclusions This approach can facilitate development of systems biology and optimal drug combination therapies for cancer and other diseases and for understanding key interactions within the cellular network upon treatment with multiple signals. PMID:21624115

  11. Green light signaling and adaptive response.

    PubMed

    Zhang, Tingting; Folta, Kevin M

    2012-01-01

    To a plant, the sun's light is not exclusively energy for photosynthesis, it also provides information about time and prevailing conditions. The plant's surroundings may dampen or filter solar energies, presenting plants with different spectral profiles of their light environment. Plants use this information to adjust form and physiology, tailoring gene expression to best match ambient conditions. Extensive literature exists on how blue, red and far-red light contribute to plant adaptive responses. A growing body of work identifies effects of green light (500-565 nm) that also shape plant biology. Green light responses are known to be either mediated through, or independent of, the cryptochrome blue light receptors. Responses to green light share a general tendency to oppose blue- or red-light-induced responses, including stem growth rate inhibition, anthocyanin accumulation and chloroplast gene expression. Recent evidence demonstrates a role for green light in sensing a shaded environment, independent from far-red shade responses.

  12. Activation of DNA damage response signaling by condensed chromatin.

    PubMed

    Burgess, Rebecca C; Burman, Bharat; Kruhlak, Michael J; Misteli, Tom

    2014-12-11

    The DNA damage response (DDR) occurs in the context of chromatin, and architectural features of chromatin have been implicated in DNA damage signaling and repair. Whereas a role of chromatin decondensation in the DDR is well established, we show here that chromatin condensation is integral to DDR signaling. We find that, in response to DNA damage chromatin regions transiently expand before undergoing extensive compaction. Using a protein-chromatin-tethering system to create defined chromatin domains, we show that interference with chromatin condensation results in failure to fully activate DDR. Conversely, forced induction of local chromatin condensation promotes ataxia telangiectasia mutated (ATM)- and ATR-dependent activation of upstream DDR signaling in a break-independent manner. Whereas persistent chromatin compaction enhanced upstream DDR signaling from irradiation-induced breaks, it reduced recovery and survival after damage. Our results demonstrate that chromatin condensation is sufficient for activation of DDR signaling and is an integral part of physiological DDR signaling.

  13. Ethylene signaling and regulation in plant growth and stress responses.

    PubMed

    Wang, Feifei; Cui, Xiankui; Sun, Yue; Dong, Chun-Hai

    2013-07-01

    Gaseous phytohormone ethylene affects many aspects of plant growth and development. The ethylene signaling pathway starts when ethylene binds to its receptors. Since the cloning of the first ethylene receptor ETR1 from Arabidopsis, a large number of studies have steadily improved our understanding of the receptors and downstream components in ethylene signal transduction pathway. This article reviews the regulation of ethylene receptors, signal transduction, and the posttranscriptional modulation of downstream components. Functional roles and importance of the ethylene signaling components in plant growth and stress responses are also discussed. Cross-reactions of ethylene with auxin and other phytohormones in plant organ growth will be analyzed. The studies of ethylene signaling in plant growth, development, and stress responses in the past decade greatly advanced our knowledge of how plants respond to endogenous signals and environmental factors.

  14. HES1 Is a Master Regulator of Glucocorticoid Receptor-Dependent Gene Expression

    PubMed Central

    Revollo, Javier R.; Oakley, Robert H.; Lu, Nick Z.; Kadmiel, Mahita; Gandhavadi, Maheer; Cidlowski, John A.

    2014-01-01

    Hairy and enhancer of split-1 (HES1) is a basic helix-loop-helix transcription factor that is a key regulator of development and organogenesis. However, little is known about the role of HES1 after birth. Glucocorticoids, primary stress hormones that are essential for life, regulate numerous homeostatic processes that permit vertebrates to cope with physiological challenges. The molecular actions of glucocorticoids are mediated by glucocorticoid receptor-dependent regulation of nearly 25% of the genome. We now establish a genome wide molecular link between HES1 and glucocorticoid receptors that controls the ability of cells and animals to respond to stress. Glucocorticoid signaling rapidly and robustly silenced HES1 expression. This glucocorticoid-dependent repression of HES1 was necessary for the glucocorticoid receptor to regulate many of its target genes. Mice with conditional knockout of HES1 in the liver exhibited an expanded glucocorticoid receptor signaling profile and aberrant metabolic phenotype. Our results indicate that HES1 acts as a master repressor, the silencing of which is required for proper glucocorticoid signaling. PMID:24300895

  15. Ultrasensitive response motifs: basic amplifiers in molecular signalling networks

    PubMed Central

    Zhang, Qiang; Bhattacharya, Sudin; Andersen, Melvin E.

    2013-01-01

    Multi-component signal transduction pathways and gene regulatory circuits underpin integrated cellular responses to perturbations. A recurring set of network motifs serve as the basic building blocks of these molecular signalling networks. This review focuses on ultrasensitive response motifs (URMs) that amplify small percentage changes in the input signal into larger percentage changes in the output response. URMs generally possess a sigmoid input–output relationship that is steeper than the Michaelis–Menten type of response and is often approximated by the Hill function. Six types of URMs can be commonly found in intracellular molecular networks and each has a distinct kinetic mechanism for signal amplification. These URMs are: (i) positive cooperative binding, (ii) homo-multimerization, (iii) multistep signalling, (iv) molecular titration, (v) zero-order covalent modification cycle and (vi) positive feedback. Multiple URMs can be combined to generate highly switch-like responses. Serving as basic signal amplifiers, these URMs are essential for molecular circuits to produce complex nonlinear dynamics, including multistability, robust adaptation and oscillation. These dynamic properties are in turn responsible for higher-level cellular behaviours, such as cell fate determination, homeostasis and biological rhythm. PMID:23615029

  16. Ionic signaling in plant gravity and touch responses

    NASA Technical Reports Server (NTRS)

    Massa, Gioia D.; Fasano, Jeremiah M.; Gilroy, Simon

    2003-01-01

    Plant roots are optimized to exploit resources from the soil and as each root explores this environment it will encounter a range of biotic and abiotic stimuli to which it must respond. Therefore, each root must possess a sensory array capable of monitoring and integrating these diverse stimuli to direct the appropriate growth response. Touch and gravity represent two of the biophysical stimuli that plants must integrate. As sensing both of these signals requires mechano-transduction of biophysical forces to biochemical signaling events, it is likely that they share signal transduction elements. These common signaling components may allow for cross-talk and so integration of thigmotropic and gravitropic responses. Indeed, signal transduction events in both plant touch and gravity sensing are thought to include Ca(2+)- and pH-dependent events. Additionally, it seems clear that the systems responsible for root touch and gravity response interact to generate an integrated growth response. Thus, primary and lateral roots of Arabidopsis respond to mechanical stimuli by eliciting tropic growth that is likely part of a growth strategy employed by the root to circumvent obstacles in the soil. Also, the mechano-signaling induced by encountering an obstacle apparently down-regulates the graviperception machinery to allow this kind of avoidance response. The challenge for future research will be to define how the cellular signaling events in the root cap facilitate this signal integration and growth regulation. In addition, whether other stimuli are likewise integrated with the graviresponse via signal transduction system cross-talk is an important question that remains to be answered.

  17. Changing the light environment: chloroplast signalling and response mechanisms.

    PubMed

    Spetea, Cornelia; Rintamäki, Eevi; Schoefs, Benoît

    2014-04-19

    Light is an essential environmental factor required for photosynthesis, but it also mediates signals to control plant development and growth and induces stress tolerance. The photosynthetic organelle (chloroplast) is a key component in the signalling and response network in plants. This theme issue of Philosophical Transactions of the Royal Society of London B: Biology provides updates, highlights and summaries of the most recent findings on chloroplast-initiated signalling cascades and responses to environmental changes, including light and biotic stress. Besides plant molecular cell biology and physiology, the theme issue includes aspects from the cross-disciplinary fields of environmental adaptation, ecology and agronomy.

  18. Effects of age, signal level, and signal rate on the auditory middle latency response.

    PubMed

    Tucker, D A; Ruth, R A

    1996-04-01

    The effects of age, signal rate, and signal level on the maturing auditory middle latency response (AMLR) were evaluated in 50 normal-hearing subjects ranging in age from 2 days to 35 years. Ipsilateral and contralateral AMLR waveforms were recorded in newborns (n = 10), children (n = 10), preteens (n = 10), teens (n = 10), and adults (n = 10). The AMLR Pa waveform was obtained in 70 to 100 percent of all subjects. The variables of age, signal level, and site of recording significantly affected Pa peak amplitude and absolute latency. However, stimulus rate did not significantly affect the response.

  19. Agrobacterium tumefaciens responses to plant-derived signaling molecules.

    PubMed

    Subramoni, Sujatha; Nathoo, Naeem; Klimov, Eugene; Yuan, Ze-Chun

    2014-01-01

    As a special phytopathogen, Agrobacterium tumefaciens infects a wide range of plant hosts and causes plant tumors also known as crown galls. The complexity of Agrobacterium-plant interaction has been studied for several decades. Agrobacterium pathogenicity is largely attributed to its evolved capabilities of precise recognition and response to plant-derived chemical signals. Agrobacterium perceives plant-derived signals to activate its virulence genes, which are responsible for transferring and integrating its Transferred DNA (T-DNA) from its Tumor-inducing (Ti) plasmid into the plant nucleus. The expression of T-DNA in plant hosts leads to the production of a large amount of indole-3-acetic acid (IAA), cytokinin (CK), and opines. IAA and CK stimulate plant growth, resulting in tumor formation. Agrobacterium utilizes opines as nutrient sources as well as signals in order to activate its quorum sensing (QS) to further promote virulence and opine metabolism. Intriguingly, Agrobacterium also recognizes plant-derived signals including γ-amino butyric acid and salicylic acid (SA) to activate quorum quenching that reduces the level of QS signals, thereby avoiding the elicitation of plant defense and preserving energy. In addition, Agrobacterium hijacks plant-derived signals including SA, IAA, and ethylene to down-regulate its virulence genes located on the Ti plasmid. Moreover, certain metabolites from corn (Zea mays) also inhibit the expression of Agrobacterium virulence genes. Here we outline the responses of Agrobacterium to major plant-derived signals that impact Agrobacterium-plant interactions.

  20. Ionic signaling in plant responses to gravity and touch

    NASA Technical Reports Server (NTRS)

    Fasano, Jeremiah M.; Massa, Gioia D.; Gilroy, Simon

    2002-01-01

    Touch and gravity are two of the many stimuli that plants must integrate to generate an appropriate growth response. Due to the mechanical nature of both of these signals, shared signal transduction elements could well form the basis of the cross-talk between these two sensory systems. However, touch stimulation must elicit signaling events across the plasma membrane whereas gravity sensing is thought to represent transformation of an internal force, amyloplast sedimentation, to signal transduction events. In addition, factors such as turgor pressure and presence of the cell wall may also place unique constraints on these plant mechanosensory systems. Even so, the candidate signal transduction elements in both plant touch and gravity sensing, changes in Ca2+, pH and membrane potential, do mirror the known ionic basis of signaling in animal mechanosensory cells. Distinct spatial and temporal signatures of Ca2+ ions may encode information about the different mechanosignaling stimuli. Signals such as Ca2+ waves or action potentials may also rapidly transfer information perceived in one cell throughout a tissue or organ leading to the systemic reactions characteristic of plant touch and gravity responses. Longer-term growth responses are likely sustained via changes in gene expression and asymmetries in compounds such as inositol-1,4,5-triphosphate (IP3) and calmodulin. Thus, it seems likely that plant mechanoperception involves both spatial and temporal encoding of information at all levels, from the cell to the whole plant. Defining this patterning will be a critical step towards understanding how plants integrate information from multiple mechanical stimuli to an appropriate growth response.

  1. Danger signals activating the immune response after trauma.

    PubMed

    Hirsiger, Stefanie; Simmen, Hans-Peter; Werner, Clément M L; Wanner, Guido A; Rittirsch, Daniel

    2012-01-01

    Sterile injury can cause a systemic inflammatory response syndrome (SIRS) that resembles the host response during sepsis. The inflammatory response following trauma comprises various systems of the human body which are cross-linked with each other within a highly complex network of inflammation. Endogenous danger signals (danger-associated molecular patterns; DAMPs; alarmins) as well as exogenous pathogen-associated molecular patterns (PAMPs) play a crucial role in the initiation of the immune response. With popularization of the "danger theory," numerous DAMPs and PAMPs and their corresponding pathogen-recognition receptors have been identified. In this paper, we highlight the role of the DAMPs high-mobility group box protein 1 (HMGB1), interleukin-1α (IL-1α), and interleukin-33 (IL-33) as unique dual-function mediators as well as mitochondrial danger signals released upon cellular trauma and necrosis.

  2. Iron sensors and signals in response to iron deficiency.

    PubMed

    Kobayashi, Takanori; Nishizawa, Naoko K

    2014-07-01

    The transcription of genes involved in iron acquisition in plants is induced under iron deficiency, but our understanding of iron sensors and signals remains limited. Iron Deficiency-responsive Element-binding Factor 1 (IDEF1) and Hemerythrin motif-containing Really Interesting New Gene- and Zinc-finger proteins (HRZs)/BRUTUS (BTS) have recently emerged as candidate iron sensors because of their functions as potent regulators of iron deficiency responses and their iron-binding properties. IDEF1 is a central transcriptional regulator of graminaceous genes involved in iron uptake and utilization, predominantly during the early stages of iron deficiency. HRZs/BTS are E3 ubiquitin ligases and negative regulators of iron deficiency responses in both graminaceous and non-graminaceous plants. Rice OsHRZ1 and OsHRZ2 are also potent regulators of iron accumulation. Characterizing these putative iron sensors also provides clues to understanding the nature of iron signals, which may involve ionized iron itself, other metals, oxygen, redox status, heme and iron-sulfur clusters, in addition to metabolites affected by iron deficiency. Systemic iron responses may also be regulated by phloem-mobile iron and its chelators such as nicotianamine. Iron sensors and signals will be identified by demonstration of signal transmission by IDEF1, HRZs/BTS, or unknown factors.

  3. The response to inositol: regulation of glycerolipid metabolism and stress response signaling in yeast

    PubMed Central

    Henry, Susan A.; Gaspar, Maria L.; Jesch, Stephen A.

    2014-01-01

    This article focuses on discoveries of the mechanisms governing the regulation of glycerolipid metabolism and stress response signaling in response to the phospholipid precursor, inositol. The regulation of glycerolipid lipid metabolism in yeast in response to inositol is highly complex, but increasingly well understood, and the roles of individual lipids in stress response are also increasingly well characterized. Discoveries that have emerged over several decades of genetic, molecular and biochemical analyses of metabolic, regulatory and signaling responses of yeast cells, both mutant and wild type, to the availability of the phospholipid precursor, inositol are discussed. PMID:24418527

  4. Interpreting Frequency Responses to Dose-Conserved Pulsatile Input Signals in Simple Cell Signaling Motifs

    PubMed Central

    Fletcher, Patrick A.; Clément, Frédérique; Vidal, Alexandre; Tabak, Joel; Bertram, Richard

    2014-01-01

    Many hormones are released in pulsatile patterns. This pattern can be modified, for instance by changing pulse frequency, to encode relevant physiological information. Often other properties of the pulse pattern will also change with frequency. How do signaling pathways of cells targeted by these hormones respond to different input patterns? In this study, we examine how a given dose of hormone can induce different outputs from the target system, depending on how this dose is distributed in time. We use simple mathematical models of feedforward signaling motifs to understand how the properties of the target system give rise to preferences in input pulse pattern. We frame these problems in terms of frequency responses to pulsatile inputs, where the amplitude or duration of the pulses is varied along with frequency to conserve input dose. We find that the form of the nonlinearity in the steady state input-output function of the system predicts the optimal input pattern. It does so by selecting an optimal input signal amplitude. Our results predict the behavior of common signaling motifs such as receptor binding with dimerization, and protein phosphorylation. The findings have implications for experiments aimed at studying the frequency response to pulsatile inputs, as well as for understanding how pulsatile patterns drive biological responses via feedforward signaling pathways. PMID:24748217

  5. An NMDA Receptor-Dependent Mechanism Underlies Inhibitory Synapse Development.

    PubMed

    Gu, Xinglong; Zhou, Liang; Lu, Wei

    2016-01-26

    In the mammalian brain, GABAergic synaptic transmission provides inhibitory balance to glutamatergic excitatory drive and controls neuronal output. The molecular mechanisms underlying the development of GABAergic synapses remain largely unclear. Here, we report that NMDA-type ionotropic glutamate receptors (NMDARs) in individual immature neurons are the upstream signaling molecules essential for GABAergic synapse development, which requires signaling via Calmodulin binding motif in the C0 domain of the NMDAR GluN1 subunit. Interestingly, in neurons lacking NMDARs, whereas GABAergic synaptic transmission is strongly reduced, the tonic inhibition mediated by extrasynaptic GABAA receptors is increased, suggesting a compensatory mechanism for the lack of synaptic inhibition. These results demonstrate a crucial role for NMDARs in specifying the development of inhibitory synapses, and suggest an important mechanism for controlling the establishment of the balance between synaptic excitation and inhibition in the developing brain.

  6. Spectral responses of gravel beaches to tidal signals

    NASA Astrophysics Data System (ADS)

    Geng, Xiaolong; Boufadel, Michel C.

    2017-01-01

    Tides have been recognized as a major driving forcing affecting coastal aquifer system, and deterministic modeling has been very effective in elucidating mechanisms caused by tides. However, such modeling does not lend itself to capture embedded information in the signal, and rather focuses on the primary processes. Here, using yearlong data sets measured at beaches in Alaska Prince William Sound, we performed spectral and correlation analyses to identify temporal behavior of pore-water pressure, temperature and salinity. We found that the response of the beach system was characterized by fluctuations of embedded diurnal, semidiurnal, terdiurnal and quarterdiurnal tidal components. Hydrodynamic dispersion of salinity and temperature, and the thermal conductivity greatly affected pore water signals. Spectral analyses revealed a faster dissipation of the semi-diurnal component with respect to the diurnal components. Correlation functions showed that salinity had a relatively short memory of the tidal signal when inland freshwater recharge was large. In contrast, the signature of the tidal signal on pore-water temperature persisted for longer times, up to a week. We also found that heterogeneity greatly affected beach response. The response varied from a simple linear mapping in the frequency domain to complete modulation and masking of the input frequencies.

  7. Spectral responses of gravel beaches to tidal signals

    PubMed Central

    Geng, Xiaolong; Boufadel, Michel C.

    2017-01-01

    Tides have been recognized as a major driving forcing affecting coastal aquifer system, and deterministic modeling has been very effective in elucidating mechanisms caused by tides. However, such modeling does not lend itself to capture embedded information in the signal, and rather focuses on the primary processes. Here, using yearlong data sets measured at beaches in Alaska Prince William Sound, we performed spectral and correlation analyses to identify temporal behavior of pore-water pressure, temperature and salinity. We found that the response of the beach system was characterized by fluctuations of embedded diurnal, semidiurnal, terdiurnal and quarterdiurnal tidal components. Hydrodynamic dispersion of salinity and temperature, and the thermal conductivity greatly affected pore water signals. Spectral analyses revealed a faster dissipation of the semi-diurnal component with respect to the diurnal components. Correlation functions showed that salinity had a relatively short memory of the tidal signal when inland freshwater recharge was large. In contrast, the signature of the tidal signal on pore-water temperature persisted for longer times, up to a week. We also found that heterogeneity greatly affected beach response. The response varied from a simple linear mapping in the frequency domain to complete modulation and masking of the input frequencies. PMID:28084455

  8. Signalling network construction for modelling plant defence response.

    PubMed

    Miljkovic, Dragana; Stare, Tjaša; Mozetič, Igor; Podpečan, Vid; Petek, Marko; Witek, Kamil; Dermastia, Marina; Lavrač, Nada; Gruden, Kristina

    2012-01-01

    Plant defence signalling response against various pathogens, including viruses, is a complex phenomenon. In resistant interaction a plant cell perceives the pathogen signal, transduces it within the cell and performs a reprogramming of the cell metabolism leading to the pathogen replication arrest. This work focuses on signalling pathways crucial for the plant defence response, i.e., the salicylic acid, jasmonic acid and ethylene signal transduction pathways, in the Arabidopsis thaliana model plant. The initial signalling network topology was constructed manually by defining the representation formalism, encoding the information from public databases and literature, and composing a pathway diagram. The manually constructed network structure consists of 175 components and 387 reactions. In order to complement the network topology with possibly missing relations, a new approach to automated information extraction from biological literature was developed. This approach, named Bio3graph, allows for automated extraction of biological relations from the literature, resulting in a set of (component1, reaction, component2) triplets and composing a graph structure which can be visualised, compared to the manually constructed topology and examined by the experts. Using a plant defence response vocabulary of components and reaction types, Bio3graph was applied to a set of 9,586 relevant full text articles, resulting in 137 newly detected reactions between the components. Finally, the manually constructed topology and the new reactions were merged to form a network structure consisting of 175 components and 524 reactions. The resulting pathway diagram of plant defence signalling represents a valuable source for further computational modelling and interpretation of omics data. The developed Bio3graph approach, implemented as an executable language processing and graph visualisation workflow, is publically available at http://ropot.ijs.si/bio3graph/and can be utilised for

  9. New Modeling Approaches to Investigate Cell Signaling in Radiation Response

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Cucinotta, Francis A.; Ponomarev, Artem L.

    2011-01-01

    Ionizing radiation damages individual cells and tissues leading to harmful biological effects. Among many radiation-induced lesions, DNA double-strand breaks (DSB) are considered the key precursors of most early and late effects [1] leading to direct mutation or aberrant signal transduction processes. In response to damage, a flow of information is communicated to cells not directly hit by the radiation through signal transduction pathways [2]. Non-targeted effects (NTE), which includes bystander effects and genomic instability in the progeny of irradiated cells and tissues, may be particularly important for space radiation risk assessment [1], because astronauts are exposed to a low fluence of heavy ions and only a small fraction of cells are traversed by an ion. NTE may also have important consequences clinical radiotherapy [3]. In the recent years, new simulation tools and modeling approaches have become available to study the tissue response to radiation. The simulation of signal transduction pathways require many elements such as detailed track structure calculations, a tissue or cell culture model, knowledge of biochemical pathways and Brownian Dynamics (BD) propagators of the signaling molecules in their micro-environment. Recently, the Monte-Carlo simulation code of radiation track structure RITRACKS was used for micro and nano-dosimetry calculations [4]. RITRACKS will be used to calculate the fraction of cells traversed by an ion and delta-rays and the energy deposited in cells in a tissue model. RITRACKS also simulates the formation of chemical species by the radiolysis of water [5], notably the .OH radical. This molecule is implicated in DNA damage and in the activation of the transforming growth factor beta (TGF), a signaling molecule involved in NTE. BD algorithms for a particle near a membrane comprising receptors were also developed and will be used to simulate trajectories of signaling molecules in the micro-environment and characterize autocrine

  10. Transcriptional responses to hyperplastic MRL signalling in Drosophila

    PubMed Central

    Dodgson, Lauren; Mason, David; Falciani, Francesco

    2017-01-01

    Recent work has implicated the actin cytoskeleton in tissue size control and tumourigenesis, but how changes in actin dynamics contribute to hyperplastic growth is still unclear. Overexpression of Pico, the only Drosophila Mig-10/RIAM/Lamellipodin adapter protein family member, has been linked to tissue overgrowth via its effect on the myocardin-related transcription factor (Mrtf), an F-actin sensor capable of activating serum response factor (SRF). Transcriptional changes induced by acute Mrtf/SRF signalling have been largely linked to actin biosynthesis and cytoskeletal regulation. However, by RNA profiling, we find that the common response to chronic mrtf and pico overexpression in wing discs was upregulation of ribosome protein and mitochondrial genes, which are conserved targets for Mrtf/SRF and are known growth drivers. Consistent with their ability to induce a common transcriptional response and activate SRF signalling in vitro, we found that both pico and mrtf stimulate expression of an SRF-responsive reporter gene in wing discs. In a functional genetic screen, we also identified deterin, which encodes Drosophila Survivin, as a putative Mrtf/SRF target that is necessary for pico-mediated tissue overgrowth by suppressing proliferation-associated cell death. Taken together, our findings raise the possibility that distinct targets of Mrtf/SRF may be transcriptionally induced depending on the duration of upstream signalling. PMID:28148822

  11. Phylogenetic signals and ecotoxicological responses: potential implications for aquatic biomonitoring.

    PubMed

    Carew, Melissa E; Miller, Adam D; Hoffmann, Ary A

    2011-05-01

    Macroinvertebrates can be successfully used as biomonitors of pollutants and environmental health because some groups are sensitive whereas, others are relatively tolerant to pollutants. An issue of ongoing debate is what constitutes an appropriate group for biomonitoring; should the group represent species, genera or higher taxonomic levels? A phylogenetic framework can provide new insights into this issue. By developing phylogenies for chironomids and mayflies, this investigation shows that there is strong phylogenetic signal for pollution responses, and that phylogenetic nodes are common to tolerant and sensitive groups of species. A phylogenetic analysis of biotic indices developed for mayflies based on their response to organic pollution shows that mayfly families varied in pollution tolerance. In contrast, based on sediment zinc concentrations as an indicator of pollution tolerance, Australian chironomids tend to vary in tolerance at lower taxonomic levels. Published data on North American chironomids shows much of the signal for pollution responses is contained within genera rather than sub-families. Tools are now available to distinguish whether this signal reflects historical evolutionary constraints or environmental effects leading to common evolved responses. This suggests that ideally higher taxonomic levels should be used for biomonitoring when there are strong phylogenetic constraints at higher levels. Evolutionary considerations can therefore help to guide the development of macroinvertebrate biomonitors and provide insights into processes that produce sensitive and tolerant taxa.

  12. β-caryophyllene ameliorates cisplatin-induced nephrotoxicity in a cannabinoid 2 receptor-dependent manner

    PubMed Central

    Horváth, Béla; Mukhopadhyay, Partha; Kechrid, Malek; Patel, Vivek; Tanashian, Galin; Wink, David A.; Gertsch, Jürg; Pacher, Pál

    2012-01-01

    (E)-β-caryophyllene (BCP) is a natural sequiterpene found in many essential oils of spice (best known for contributing to the spiciness of black pepper) and food plants with recognized anti-inflammatory properties. Recently it was shown that BCP is a natural agonist of endogenous cannabinoid 2 (CB2) receptors, which are expressed in immune cells and mediate anti-inflammatory effects. In this study we aimed to test the effects of BCP in a clinically relevant murine model of nephropathy (induced by the widely used antineoplastic drug cisplatin) in which the tubular injury is largely dependent on inflammation and oxidative/nitrative stress. β-caryophyllene dose-dependently ameliorated cisplatin-induced kidney dysfunction, morphological damage, and renal inflammatory response (chemokines MCP-1 and MIP-2, cytokines TNF-α and IL-1β, adhesion molecule ICAM-1, and neutrophil and macrophage infiltration). It also markedly mitigated oxidative/nitrative stress (NOX-2, NOX-4 expression, 4-HNE and 3-NT content) and cell death. The protective effects of BCP against biochemical and histological markers of nephropathy were absent in CB2 knockout mice. Thus, BCP may be an excellent therapeutic agent to prevent cisplatin-induced nephrotoxicity through a CB2 receptor dependent pathway. Given the excellent safety profile of BCP in humans it has tremendous therapeutic potential in multitude of diseases associated with inflammation and oxidative stress. PMID:22326488

  13. β-Caryophyllene ameliorates cisplatin-induced nephrotoxicity in a cannabinoid 2 receptor-dependent manner.

    PubMed

    Horváth, Béla; Mukhopadhyay, Partha; Kechrid, Malek; Patel, Vivek; Tanchian, Galin; Wink, David A; Gertsch, Jürg; Pacher, Pál

    2012-04-15

    (E)-β-caryophyllene (BCP) is a natural sesquiterpene found in many essential oils of spice (best known for contributing to the spiciness of black pepper) and food plants with recognized anti-inflammatory properties. Recently it was shown that BCP is a natural agonist of endogenous cannabinoid 2 (CB(2)) receptors, which are expressed in immune cells and mediate anti-inflammatory effects. In this study we aimed to test the effects of BCP in a clinically relevant murine model of nephropathy (induced by the widely used antineoplastic drug cisplatin) in which the tubular injury is largely dependent on inflammation and oxidative/nitrative stress. β-caryophyllene dose-dependently ameliorated cisplatin-induced kidney dysfunction, morphological damage, and renal inflammatory response (chemokines MCP-1 and MIP-2, cytokines TNF-α and IL-1β, adhesion molecule ICAM-1, and neutrophil and macrophage infiltration). It also markedly mitigated oxidative/nitrative stress (NOX-2 and NOX-4 expression, 4-HNE and 3-NT content) and cell death. The protective effects of BCP against biochemical and histological markers of nephropathy were absent in CB(2) knockout mice. Thus, BCP may be an excellent therapeutic agent to prevent cisplatin-induced nephrotoxicity through a CB(2) receptor-dependent pathway. Given the excellent safety profile of BCP in humans it has tremendous therapeutic potential in a multitude of diseases associated with inflammation and oxidative stress.

  14. Melatonin as a signaling molecule for metabolism regulation in response to hypoxia in the crab Neohelice granulata.

    PubMed

    Maciel, Fábio Everton; Geihs, Márcio Alberto; Cruz, Bruno Pinto; Vargas, Marcelo Alves; Allodi, Silvana; Marins, Luis Fernando; Nery, Luiz Eduardo Maia

    2014-12-04

    Melatonin has been identified in a variety of crustacean species, but its function is not as well understood as in vertebrates. The present study investigates whether melatonin has an effect on crustacean hyperglycemic hormone (CHH) gene expression, oxygen consumption (VO2) and circulating glucose and lactate levels, in response to different dissolved-oxygen concentrations, in the crab Neohelice granulata, as well as whether these possible effects are eyestalk- or receptor-dependent. Melatonin decreased CHH expression in crabs exposed for 45 min to 6 (2, 200 or 20,000 pmol·crab-1) or 2 mgO2·L-1 (200 pmol·crab-1). Since luzindole (200 nmol·crab-1) did not significantly (p > 0.05) alter the melatonin effect, its action does not seem to be mediated by vertebrate-typical MT1 and MT2 receptors. Melatonin (200 pmol·crab-1) increased the levels of glucose and lactate in crabs exposed to 6 mgO2·L-1, and luzindole (200 nmol·crab-1) decreased this effect, indicating that melatonin receptors are involved in hyperglycemia and lactemia. Melatonin showed no effect on VO2. Interestingly, in vitro incubation of eyestalk ganglia for 45 min at 0.7 mgO2·L-1 significantly (p < 0.05) increased melatonin production in this organ. In addition, injections of melatonin significantly increased the levels of circulating melatonin in crabs exposed for 45 min to 6 (200 or 20,000 pmol·crab-1), 2 (200 and 20,000 pmol·crab-1) and 0.7 (200 or 20,000 pmol·crab-1) mgO2·L-1. Therefore, melatonin seems to have an effect on the metabolism of N. granulata. This molecule inhibited the gene expression of CHH and caused an eyestalk- and receptor-dependent hyperglycemia, which suggests that melatonin may have a signaling role in metabolic regulation in this crab.

  15. Melatonin as a Signaling Molecule for Metabolism Regulation in Response to Hypoxia in the Crab Neohelice granulata

    PubMed Central

    Maciel, Fábio Everton; Geihs, Márcio Alberto; Cruz, Bruno Pinto; Vargas, Marcelo Alves; Allodi, Silvana; Marins, Luis Fernando; Nery, Luiz Eduardo Maia

    2014-01-01

    Melatonin has been identified in a variety of crustacean species, but its function is not as well understood as in vertebrates. The present study investigates whether melatonin has an effect on crustacean hyperglycemic hormone (CHH) gene expression, oxygen consumption (VO2) and circulating glucose and lactate levels, in response to different dissolved-oxygen concentrations, in the crab Neohelice granulata, as well as whether these possible effects are eyestalk- or receptor-dependent. Melatonin decreased CHH expression in crabs exposed for 45 min to 6 (2, 200 or 20,000 pmol·crab−1) or 2 mgO2·L−1 (200 pmol·crab−1). Since luzindole (200 nmol·crab−1) did not significantly (p > 0.05) alter the melatonin effect, its action does not seem to be mediated by vertebrate-typical MT1 and MT2 receptors. Melatonin (200 pmol·crab−1) increased the levels of glucose and lactate in crabs exposed to 6 mgO2·L−1, and luzindole (200 nmol·crab−1) decreased this effect, indicating that melatonin receptors are involved in hyperglycemia and lactemia. Melatonin showed no effect on VO2. Interestingly, in vitro incubation of eyestalk ganglia for 45 min at 0.7 mgO2·L−1 significantly (p < 0.05) increased melatonin production in this organ. In addition, injections of melatonin significantly increased the levels of circulating melatonin in crabs exposed for 45 min to 6 (200 or 20,000 pmol·crab−1), 2 (200 and 20,000 pmol·crab−1) and 0.7 (200 or 20,000 pmol·crab−1) mgO2·L−1. Therefore, melatonin seems to have an effect on the metabolism of N. granulata. This molecule inhibited the gene expression of CHH and caused an eyestalk- and receptor-dependent hyperglycemia, which suggests that melatonin may have a signaling role in metabolic regulation in this crab. PMID:25486055

  16. Scenarios for Consuming Standardized Automated Demand Response Signals

    SciTech Connect

    Koch, Ed; Piette, Mary Ann

    2008-10-03

    Automated Demand Response (DR) programs require that Utility/ISO's deliver DR signals to participants via a machine to machine communications channel. Typically these DR signals constitute business logic information (e.g. prices and reliability/shed levels) as opposed to commands to control specific loads in the facility. At some point in the chain from the Utility/ISO to the loads in a facility, the business level information sent by the Utility/ISO must be processed and used to execute a DR strategy for the facility. This paper explores the various scenarios and types of participants that may utilize DR signals from the Utility/ISO. Specifically it explores scenarios ranging from single end user facility, to third party facility managers and DR Aggregators. In each of these scenarios it is pointed out where the DR signal sent from the Utility/ISO is processed and turned into the specific load control commands that are part of a DR strategy for a facility. The information in these signals is discussed. In some cases the DR strategy will be completely embedded in the facility while in others it may be centralized at a third party (e.g. Aggregator) and part of an aggregated set of facilities. This paper also discusses the pros and cons of the various scenarios and discusses how the Utility/ISO can use an open standardized method (e.g. Open Automated Demand Response Communication Standards) for delivering DR signals that will promote interoperability and insure that the widest range of end user facilities can participate in DR programs regardless of which scenario they belong to.

  17. Prostacyclin receptor-dependent modulation of pulmonary vascular remodeling.

    PubMed

    Hoshikawa, Y; Voelkel, N F; Gesell, T L; Moore, M D; Morris, K G; Alger, L A; Narumiya, S; Geraci, M W

    2001-07-15

    Prostacyclin (PGI(2)) reduces pulmonary vascular resistance and attenuates vascular smooth muscle cell proliferation through signal transduction following ligand binding to its receptor. Because patients with severe pulmonary hypertension have a reduced PGI(2) receptor (PGI-R) expression in the remodeled pulmonary arterial smooth muscle, we hypothesized that pulmonary vascular remodeling may be modified PGI-R dependently. To test this hypothesis, PGI-R knockout (KO) and wild-type (WT) mice were subjected to a simulated altitude of 17,000 ft or Denver altitude for 3 wk, and right ventricular pressure and lung histology were assessed. The PGI-R KO mice developed more severe pulmonary hypertension and vascular remodeling after chronic hypoxic exposure when compared to the WT mice. Our results indicate that PGI(2) and its receptor play an important role in the regulation of hypoxia-induced pulmonary vascular remodeling, and that the absence of a functional receptor worsens pulmonary hypertension.

  18. Bacteria-Induced Uroplakin Signaling Mediates Bladder Response to Infection

    PubMed Central

    Thumbikat, Praveen; Berry, Ruth E.; Zhou, Ge; Billips, Benjamin K.; Yaggie, Ryan E.; Zaichuk, Tetiana; Sun, Tung-Tien; Schaeffer, Anthony J.; Klumpp, David J.

    2009-01-01

    Urinary tract infections are the second most common infectious disease in humans and are predominantly caused by uropathogenic E. coli (UPEC). A majority of UPEC isolates express the type 1 pilus adhesin, FimH, and cell culture and murine studies demonstrate that FimH is involved in invasion and apoptosis of urothelial cells. FimH initiates bladder pathology by binding to the uroplakin receptor complex, but the subsequent events mediating pathogenesis have not been fully characterized. We report a hitherto undiscovered signaling role for the UPIIIa protein, the only major uroplakin with a potential cytoplasmic signaling domain, in bacterial invasion and apoptosis. In response to FimH adhesin binding, the UPIIIa cytoplasmic tail undergoes phosphorylation on a specific threonine residue by casein kinase II, followed by an elevation of intracellular calcium. Pharmacological inhibition of these signaling events abrogates bacterial invasion and urothelial apoptosis in vitro and in vivo. Our studies suggest that bacteria-induced UPIIIa signaling is a critical mediator of bladder responses to insult by uropathogenic E. coli. PMID:19412341

  19. AKT Regulates BRCA1 Stability in Response to Hormone Signaling

    PubMed Central

    Nelson, Andrew C.; Lyons, Traci R.; Young, Christian D.; Hansen, Kirk C.; Anderson, Steven M.; Holt, Jeffrey T.

    2015-01-01

    BRCA1, with its binding partner BARD1, regulates the cellular response to DNA damage in multiple tissues, yet inherited mutations within BRCA1 result specifically in breast and ovarian cancers. This observation, along with several other lines of evidence, suggests a functional relationship may exist between hormone signaling and BRCA1 function. Our data demonstrates that AKT activation promotes the expression of BRCA1 in response to estrogen and IGF-1 receptor signaling. Further, we have identified a novel AKT phosphorylation site in BRCA1 at S694 which is responsive to activation of these signaling pathways. This rapid increase in BRCA1 protein levels appears to occur independently of new protein synthesis and treatment with the clinically utilized proteasome inhibitor bortezomib similarly leads to a rapid increase in BRCA1 protein levels. Together, these data suggest that AKT phosphorylation of BRCA1 increases total protein expression by preventing proteasomal degradation. AKT activation also appears to support nuclear localization of BRCA1, and co-expression of activated AKT with BRCA1 decreases radiation sensitivity, suggesting this interaction has functional consequences for BRCA1's role in DNA repair. We conclude that AKT regulates BRCA1 protein stability and function through direct phosphorylation of BRCA1. Further, the responsiveness of the AKT-BRCA1 regulatory pathway to hormone signaling may, in part, underlie the tissue specificity of BRCA1 mutant cancers. Pharmacological targets within this pathway could provide strategies for modulation of BRCA1 protein, which may prove therapeutically beneficial for the treatment of breast and ovarian cancers. PMID:20085797

  20. Subjective diffuseness of music signals convolved with binaural impulse responses

    NASA Astrophysics Data System (ADS)

    Shimokura, Ryota; Tronchin, Lamberto; Cocchi, Alessandro; Soeta, Yoshiharu

    2011-07-01

    The spatial impression of sound in a hall can be quantified using sound field factors such as the interaural cross-correlation coefficient (IACC) calculated from binaural impulse response (BIR), henceforth denoted by IACC IR. The subjective diffuseness for the listener is a spatial attribute which depends on factors associated both with the source signal and with the actual sound field, and is quantified using the IACC of the signal received by the listener, henceforth denoted by IACC SR. Therefore, the subjective diffuseness in a given hall may change with the music. The aims of this study are to estimate the IACC SR from the IACC IR and the factors, which is obtained from autocorrelation function (ACF) of music signal, and to evaluate the subjective diffuseness by these factors. First, the relationship between the IACC IR and IACC SR was investigated. Second, subjective diffuseness was measured by a psycho-acoustical experiment. As a result, the IACC SR could be estimated from the IACC IR of the BIR and the effective duration ( τe) from the ACF of music signal. It was found that the effects of BIRs on subjective diffuseness could be evaluated by IACC IR for almost all subjects, while the effects of music signals could be evaluated by the τe and the width of the peak at τ=0 ( Wϕ(0) ) of the ACF.

  1. Signal transduction in the wound response of tomato plants.

    PubMed Central

    Bowles, D

    1998-01-01

    The wound response of tomato plants has been extensively studied, and provides a useful model to understand signal transduction events leading from injury to marker gene expression. The principal markers that have been used in these studies are genes encoding proteinase inhibitor (pin) proteins. Activation of pin genes occurs in the wounded leaf and in distant unwounded leaves of the plant. This paper reviews current understanding of signalling pathways in the wounded leaf, and in the systemically responding unwounded leaves. First, the nature of known elicitors and their potential roles in planta are discussed, in particular, oligogalacturonides, jasmonates and the peptide signal, systemin. Inhibitors of wound-induced proteinase inhibitor (pin) expression are also reviewed, with particular reference to phenolics, sulphydryl reagents and fusicoccin. In each section, results obtained from the bioassay are considered within the wider context of data from mutants and from transgenic plants with altered levels of putative signalling components. Following this introduction, current models for pin gene regulation are described and discussed, together with a summary for the involvement of phosphorylation-dephosphorylation in wound signalling. Finally, a new model for wound-induced pin gene expression is presented, arising from recent data from the author's laboratory. PMID:9800210

  2. Genetic Demonstration of a Role for Stathmin in Adult Hippocampal Neurogenesis, Spinogenesis, and NMDA Receptor-Dependent Memory

    PubMed Central

    Martel, Guillaume; Uchida, Shusaku; Hevi, Charles; Chévere-Torres, Itzamarie; Fuentes, Ileana; Park, Young Jin; Hafeez, Hannah; Yamagata, Hirotaka; Watanabe, Yoshifumi

    2016-01-01

    Neurogenesis and memory formation are essential features of the dentate gyrus (DG) area of the hippocampus, but to what extent the mechanisms responsible for both processes overlap remains poorly understood. Stathmin protein, whose tubulin-binding and microtubule-destabilizing activity is negatively regulated by its phosphorylation, is prominently expressed in the DG. We show here that stathmin is involved in neurogenesis, spinogenesis, and memory formation in the DG. tTA/tetO-regulated bitransgenic mice, expressing the unphosphorylatable constitutively active Stathmin4A mutant (Stat4A), exhibit impaired adult hippocampal neurogenesis and reduced spine density in the DG granule neurons. Although Stat4A mice display deficient NMDA receptor-dependent memory in contextual discrimination learning, which is dependent on hippocampal neurogenesis, their NMDA receptor-independent memory is normal. Confirming NMDA receptor involvement in the memory deficits, Stat4A mutant mice have a decrease in the level of synaptic NMDA receptors and a reduction in learning-dependent CREB-mediated gene transcription. The deficits in neurogenesis, spinogenesis, and memory in Stat4A mice are not present in mice in which tTA/tetO-dependent transgene transcription is blocked by doxycycline through their life. The memory deficits are also rescued within 3 d by intrahippocampal infusion of doxycycline, further indicating a role for stathmin expressed in the DG in contextual memory. Our findings therefore point to stathmin and microtubules as a mechanistic link between neurogenesis, spinogenesis, and NMDA receptor-dependent memory formation in the DG. SIGNIFICANCE STATEMENT In the present study, we aimed to clarify the role of stathmin in neuronal and behavioral functions. We characterized the neurogenic, behavioral, and molecular consequences of the gain-of-function stathmin mutation using a bitransgenic mouse expressing a constitutively active form of stathmin. We found that stathmin plays an

  3. Stromal response to Hedgehog signaling restrains pancreatic cancer progression.

    PubMed

    Lee, John J; Perera, Rushika M; Wang, Huaijun; Wu, Dai-Chen; Liu, X Shawn; Han, Shiwei; Fitamant, Julien; Jones, Phillip D; Ghanta, Krishna S; Kawano, Sally; Nagle, Julia M; Deshpande, Vikram; Boucher, Yves; Kato, Tomoyo; Chen, James K; Willmann, Jürgen K; Bardeesy, Nabeel; Beachy, Philip A

    2014-07-29

    Pancreatic ductal adenocarcinoma (PDA) is the most lethal of common human malignancies, with no truly effective therapies for advanced disease. Preclinical studies have suggested a therapeutic benefit of targeting the Hedgehog (Hh) signaling pathway, which is activated throughout the course of PDA progression by expression of Hh ligands in the neoplastic epithelium and paracrine response in the stromal fibroblasts. Clinical trials to test this possibility, however, have yielded disappointing results. To further investigate the role of Hh signaling in the formation of PDA and its precursor lesion, pancreatic intraepithelial neoplasia (PanIN), we examined the effects of genetic or pharmacologic inhibition of Hh pathway activity in three distinct genetically engineered mouse models and found that Hh pathway inhibition accelerates rather than delays progression of oncogenic Kras-driven disease. Notably, pharmacologic inhibition of Hh pathway activity affected the balance between epithelial and stromal elements, suppressing stromal desmoplasia but also causing accelerated growth of the PanIN epithelium. In striking contrast, pathway activation using a small molecule agonist caused stromal hyperplasia and reduced epithelial proliferation. These results indicate that stromal response to Hh signaling is protective against PDA and that pharmacologic activation of pathway response can slow tumorigenesis. Our results provide evidence for a restraining role of stroma in PDA progression, suggesting an explanation for the failure of Hh inhibitors in clinical trials and pointing to the possibility of a novel type of therapeutic intervention.

  4. Evolutionary origin of phytochrome responses and signaling in land plants.

    PubMed

    Inoue, Keisuke; Nishihama, Ryuichi; Kohchi, Takayuki

    2017-01-18

    Phytochromes comprise one of the major photoreceptor families in plants, and they regulate many aspects of plant growth and development throughout the plant life cycle. A canonical land plant phytochrome originated in the common ancestor of streptophytes. Phytochromes have diversified in seed plants and some basal land plants because of lineage-specific gene duplications that occurred during the course of land plant evolution. Molecular genetic analyses using Arabidopsis thaliana suggested that there are two types of phytochromes in angiosperms, light-labile type I and light-stable type II, which have different signaling mechanisms and which regulate distinct responses. In basal land plants, little is known about molecular mechanisms of phytochrome signaling, although red light/far-red photoreversible physiological responses and the distribution of phytochrome genes are relatively well documented. Recent advances in molecular genetics using the moss Physcomitrella patens and the liverwort Marchantia polymorpha revealed that basal land plants show far-red-induced responses and that the establishment of phytochrome-mediated transcriptional regulation dates back to at least the common ancestor of land plants. In this review, we summarize our knowledge concerning functions of land plant phytochromes, especially in basal land plants, and discuss subfunctionalization/neofunctionalization of phytochrome signaling during the course of land plant evolution.

  5. Endothelin-1 induces proliferation of human lung fibroblasts and IL-11 secretion through an ET(A) receptor-dependent activation of MAP kinases.

    PubMed

    Gallelli, Luca; Pelaia, Girolamo; D'Agostino, Bruno; Cuda, Giovanni; Vatrella, Alessandro; Fratto, Donatella; Gioffrè, Vincenza; Galderisi, Umberto; De Nardo, Marilisa; Mastruzzo, Claudio; Salinaro, Elisa Trovato; Maniscalco, Mauro; Sofia, Matteo; Crimi, Nunzio; Rossi, Francesco; Caputi, Mario; Costanzo, Francesco S; Maselli, Rosario; Marsico, Serafino A; Vancheri, Carlo

    2005-11-01

    Endothelin-1 (ET-1) is implicated in the fibrotic responses characterizing interstitial lung diseases, as well as in the airway remodeling process occurring in asthma. Within such a context, the aim of our study was to investigate, in primary cultures of normal human lung fibroblasts (NHLFs), the ET-1 receptor subtypes, and the intracellular signal transduction pathways involved in the proliferative effects of this peptide. Therefore, cells were exposed to ET-1 in the presence or absence of an overnight pre-treatment with either ET(A) or ET(B) selective receptor antagonists. After cell lysis, immunoblotting was performed using monoclonal antibodies against the phosphorylated, active forms of mitogen-activated protein kinases (MAPK). ET-1 induced a significant increase in MAPK phosphorylation pattern, and also stimulated fibroblast proliferation and IL-6/IL-11 release into cell culture supernatants. All these effects were inhibited by the selective ET(A) antagonist BQ-123, but not by the specific ET(B) antagonist BQ-788. The stimulatory influence of ET-1 on IL-11, but not on IL-6 secretion, was prevented by MAPK inhibitors. Therefore, such results suggest that in human lung fibroblasts ET-1 exerts a profibrogenic action via an ET(A) receptor-dependent, MAPK-mediated induction of IL-11 release and cell proliferation.

  6. Only signaling modules that discriminate sharply between stimulatory and nonstimulatory inputs require basal signaling for fast cellular responses

    NASA Astrophysics Data System (ADS)

    Artomov, Mykyta; Kardar, Mehran; Chakraborty, Arup K.

    2010-09-01

    In many types of cells, binding of molecules to their receptors enables cascades of intracellular chemical reactions to take place (signaling). However, a low level of signaling also occurs in most unstimulated cells. Such basal signaling in resting cells can have many functions, one of which is that it is thought to be required for fast cellular responses to external stimuli. A mechanistic understanding of why this is true and which features of cellular signaling networks make basal signaling necessary for fast responses is unknown. We address this issue by obtaining the time required for activation of common types of cell signaling modules with and without basal signaling. Our results show that the absence of basal signaling does not have any dramatic effects on the response time for signaling modules that exhibit a graded response to increasing stimulus levels. In sharp contrast, signaling modules that exhibit sharp dose-response curves which discriminate sensitively between stimuli to which the cell needs to respond and low-grade inputs (or stochastic noise) require basal signaling for fast cellular responses. In such cases, we find that an optimal level of basal signaling balances the requirements for fast cellular responses while minimizing spurious activation without appropriate stimulation.

  7. Signal-Response Modeling of Partial Hormone Feedback Networks

    PubMed Central

    Johnson, Michael L.; Veldhuis, Paula P.; Evans, William S.

    2009-01-01

    Background Endocrine feedback control networks are typically complex and contain multiple hormones, pools, and compartments. The hormones themselves commonly interact via multiple pathways and targets within the networks, and a complete description of such relationships may involve hundreds of parameters. In addition, it is often difficult, if not impossible, to collect experimental data pertaining to every component within the network. Therefore, the complete simultaneous analysis of such networks is challenging. Nevertheless, an understanding of these networks is critical for furthering our knowledge of hormonal regulation in both physiologic and pathophysiologic conditions. Methods We propose a novel approach for the analysis of dose-response relationships of subsets of hormonal feedback networks. The algorithm and signal-response quantification (SRQuant) software is based on convolution integrals, and tests whether several discretely measured input signals can be individually delayed, spread in time, transformed, combined, and discretely convolved with an elimination function to predict the time course of the concentration of an output hormone. Signal-response quantification is applied to examples from the endocrine literature to demonstrate its applicability to the analysis of the different endocrine networks. Results In one example, SRQuant determines the dose-response relationship by which one hormone regulates another, highlighting its advantages over other traditional methods. In a second example, for the first time (to the best of our knowledge), we show that the secretion of glucagon may be jointly controlled by the β and the δ cells. Conclusion We have developed a novel convolution integral-based approach, algorithm, and software (SRQuant) for the analysis of dose-response relationships within subsets of complex endocrine feedback control networks. PMID:20046649

  8. S-nitrosothiols signal the ventilatory response to hypoxia.

    PubMed

    Lipton, A J; Johnson, M A; Macdonald, T; Lieberman, M W; Gozal, D; Gaston, B

    2001-09-13

    Increased ventilation in response to hypoxia has been appreciated for over a century, but the biochemistry underlying this response remains poorly understood. Here we define a pathway in which increased minute ventilation (&Vdot;E ) is signalled by deoxyhaemoglobin-derived S-nitrosothiols (SNOs). Specifically, we demonstrate that S-nitrosocysteinyl glycine (CGSNO) and S-nitroso-l-cysteine (l-CSNO)-but not S-nitroso-d-cysteine (d-CSNO)-reproduce the ventilatory effects of hypoxia at the level of the nucleus tractus solitarius (NTS). We show that plasma from deoxygenated, but not from oxygenated, blood produces the ventilatory effect of both SNOs and hypoxia. Further, this activity is mediated by S-nitrosoglutathione (GSNO), and GSNO activation by gamma-glutamyl transpeptidase (gamma-GT) is required. The normal response to hypoxia is impaired in a knockout mouse lacking gamma-GT. These observations suggest that S-nitrosothiol biochemistry is of central importance to the regulation of breathing.

  9. DNA damage response and sphingolipid signaling in liver diseases

    PubMed Central

    Matsuda, Yasunobu; Moro, Kazuki; Tsuchida, Junko; Soma, Daiki; Hirose, Yuki; Kobayashi, Takashi; Kosugi, Shin-ichi; Takabe, Kazuaki; Komatsu, Masaaki; Wakai, Toshifumi

    2016-01-01

    Patients with unresectable hepatocellular carcinoma (HCC) cannot generally be cured by systemic chemotherapy or radiotherapy due to their poor response to conventional therapeutic agents. The development of novel and efficient targeted therapies to increase their treatment options depends on the elucidation of the molecular mechanisms that underlie the pathogenesis of HCC. The DNA damage response (DDR) is a network of cell-signaling events that are triggered by DNA damage. Its dysregulation is thought to be one of the key mechanisms underlying the generation of HCC. Sphingosine-1-phosphate (S1P), a lipid mediator, has emerged as an important signaling molecule that has been found to be involved in many cellular functions. In the liver, the alteration of S1P signaling potentially affects the DDR pathways. In this review, we explore the role of the DDR in hepatocarcinogenesis of various etiologies, including hepatitis B and C infection and non-alcoholic steatohepatitis. Furthermore, we discuss the metabolism and functions of S1P that may affect the hepatic DDR. The elucidation of the pathogenic role of S1P may create new avenues of research into therapeutic strategies for patients with HCC. PMID:26514817

  10. Cell responses to FGFR3 signalling: growth, differentiation and apoptosis

    SciTech Connect

    L'Hote, Corine G.M. . E-mail: Corine.LHote@cancer.org.uk; Knowles, Margaret A.

    2005-04-01

    FGFR3 is a receptor tyrosine kinase (RTK) of the FGF receptor family, known to have a negative regulatory effect on long bone growth. Fgfr3 knockout mice display longer bones and, accordingly, most germline-activating mutations in man are associated with dwarfism. Somatically, some of the same activating mutations are associated with the human cancers multiple myeloma, cervical carcinoma and carcinoma of the bladder. How signalling through FGFR3 can lead to either chondrocyte apoptosis or cancer cell proliferation is not fully understood. Although FGFR3 can be expressed as two main splice isoforms (IIIb or IIIc), there is no apparent link with specific cell responses, which may rather be associated with the cell type or its differentiation status. Depending on cell type, differential activation of STAT proteins has been observed. STAT1 phosphorylation seems to be involved in inhibition of chondrocyte proliferation while activation of the ERK pathway inhibits chondrocyte differentiation and B-cell proliferation (as in multiple myeloma). The role of FGFR3 in epithelial cancers (bladder and cervix) is not known. Some of the cell specificity may arise via modulation of signalling by crosstalk with other signalling pathways. Recently, inhibition of the ERK pathway in achondroplastic mice has provided hope for an approach to the treatment of dwarfism. Further understanding of the ability of FGFR3 to trigger different responses depending on cell type and cellular context may lead to treatments for both skeletal dysplasias and cancer.

  11. A Step Response Based Mixed-Signal BIST Approach

    NASA Technical Reports Server (NTRS)

    Walker, Alvernon

    2001-01-01

    A new Mixed-Signal Built-in Self-test approach that is based upon the step response of a reconfigurable (or multifunction) analog block is presented in this paper. The technique requires the overlapping step response of the Circuit Under Test (CUT) for two circuit configurations. Each configuration can be realized by changing the topology of the CUT or by sampling two CUT nodes with differing step responses. The technique can effectively detect both soft and hard faults and does not require an analog-to-digital converter (ADC) and/or digital-to-analog converter( DAC). It also does not require any precision voltage sources or comparators. The approach does not require any additional analog circuits to realize the test signal generator and a two input analog multiplexer for CUT test node sampling. The paper is concluded with the application of the proposed approach to a circuit found in the work of Epstein et a1 and two ITC 97 analog benchmark circuits.

  12. Response of Plasmonic Terahertz Detectors to Modulated Signals

    NASA Astrophysics Data System (ADS)

    Rudin, Sergey; Rupper, Greg; Reed, Meredith; Shur, Michael

    We present theoretical study of the response of two-dimensional gated electron gas to an amplitude modulated signals with carrier frequency in the terahertz range. Our model is based on complete hydrodynamic equations, and includes effects of viscosity, pressure gradients and thermal transport in the conduction channel of a high electron mobility semiconductor transistor. The modulation response was evaluated as a function of modulation frequency for a range of mobility values in different semiconductor materials. Maximum modulation frequency was evaluated as a function of channel mobility, with typical values in the subterahertz range of frequencies. Our analysis shows that short channel field effect transistors operating in the plasmonic regime meets the requirements for applications as terahertz detectors and modulators in high-speed wireless communication circuits.

  13. Response of plasmonic terahertz detectors to amplitude modulated signals

    NASA Astrophysics Data System (ADS)

    Rupper, Greg; Rudin, Sergey; Shur, Michael

    2015-09-01

    We present theoretical study of the response of two-dimensional gated electron gas to an amplitude modulated signals with carrier frequency in the terahertz range. The model is based on complete hydrodynamic equations, and includes effects of viscosity, pressure gradients and thermal transport in the conduction channel of a high electron mobility semiconductor transistor (HEMT). The modulation response was evaluated as a function of modulation frequency fM for a wide range of mobility values. Maximum modulation frequency fMAX was evaluated as a function of channel mobility, with typical values of fMAX in the subterahertz range of frequencies. Our analysis shows that short channel field effect transistors operating in the plasmonic regime can meet all the requirements for applications as terahertz detectors and modulators in ultra high-speed wireless communication circuits.

  14. Neuropeptide signals cell non-autonomous mitochondrial unfolded protein response

    PubMed Central

    Shao, Li-Wa; Niu, Rong; Liu, Ying

    2016-01-01

    Neurons have a central role in the systemic coordination of mitochondrial unfolded protein response (UPRmt) and the cell non-autonomous modulation of longevity. However, the mechanism by which the nervous system senses mitochondrial stress and communicates to the distal tissues to induce UPRmt remains unclear. Here we employ the tissue-specific CRISPR-Cas9 approach to disrupt mitochondrial function only in the nervous system of Caenorhabditis elegans, and reveal a cell non-autonomous induction of UPRmt in peripheral cells. We further show that a neural sub-circuit composed of three types of sensory neurons, and one interneuron is required for sensing and transducing neuronal mitochondrial stress. In addition, neuropeptide FLP-2 functions in this neural sub-circuit to signal the non-autonomous UPRmt. Taken together, our results suggest a neuropeptide coordination of mitochondrial stress response in the nervous system. PMID:27767096

  15. PEGylation of a Maltose Biosensor Promotes Enhanced Signal Response

    SciTech Connect

    Dattelbaum, Andrew; Baker, Gary A; Fox, John M; Iyer, Srinivas; Dattelbaum, Jonathan

    2009-01-01

    A robust method to immobilize a maltose biosensor is described using an engineered maltose periplasmic binding protein (PBP) covalently coupled to NBDamide, an environmentally sensitive fluorophore. A mesoporous silica sol-gel derived from diglycerylsilane (DGS) was constructed to embed the maltose biosensor, and the ligand reporting fluorescence properties were meas red. When sequestered in the DGS-derived silica matrix, the biosensor retained maltose-dependent fluorescence sensing capability with micromolar affinity, which is consistent with the protein free in solution. The MBP-NBD conjugate was further modified by covalent conjugation with poly(ethylene glycol)-5000 (PEG) to promote the retention of water molecules around the protein and to reduce possible steric effects between the silica matrix and protein. Bioconjugation with PEG molecules does not significantly affect the signaling response of the protein in solution. When immobilized in the DGS polymer, a consistent increase in fluorescence intensity was observed as compared to the protein not functionalized with PEG. To our knowledge, this report presents the first successful method to embed a PBP biosensor in a polymerized matrix and retain signaling response using an environmentally sensitive probe. The immobilization method presented here should be easily adaptable to all conformation-dependent biosensors.

  16. Measuring Social Motivation Using Signal Detection and Reward Responsiveness

    PubMed Central

    Chevallier, Coralie; Tonge, Natasha; Safra, Lou; Kahn, David; Kohls, Gregor; Miller, Judith; Schultz, Robert T.

    2016-01-01

    Background Recent trends in psychiatry have emphasized the need for a shift from categorical to dimensional approaches. Of critical importance to this transformation is the availability of tools to objectively quantify behaviors dimensionally. The present study focuses on social motivation, a dimension of behavior that is central to a range of psychiatric conditions but for which a particularly small number of assays currently exist. Methods In Study 1 (N = 48), healthy adults completed a monetary reward task and a social reward task, followed by completion of the Chapman Physical and Social Anhedonia Scales. In Study 2 (N = 26), an independent sample was recruited to assess the robustness of Study 1’s findings. Results The reward tasks were analyzed using signal detection theory to quantify how much reward cues bias participants’ responses. In both Study 1 and Study 2, social anhedonia scores were negatively correlated with change in response bias in the social reward task but not in the monetary reward task. A median split on social anhedonia scores confirmed that participants with high social anhedonia showed less change in response bias in the social reward task compared to participants with low social anhedonia. Conclusions This study confirms that social anhedonia selectively affects how much an individual changes their behavior based on the presence of socially rewarding cues and establishes a tool to quantify social reward responsiveness dimensionally. PMID:27907025

  17. Specificity in stress response: epidermal keratinocytes exhibit specialized UV-responsive signal transduction pathways.

    PubMed

    Adachi, Makoto; Gazel, Alix; Pintucci, Giuseppe; Shuck, Alyssa; Shifteh, Shiva; Ginsburg, Dov; Rao, Laxmi S; Kaneko, Takehiko; Freedberg, Irwin M; Tamaki, Kunihiko; Blumenberg, Miroslav

    2003-10-01

    UV light, a paradigmatic initiator of cell stress, invokes responses that include signal transduction, activation of transcription factors, and changes in gene expression. Consequently, in epidermal keratinocytes, its principal and frequent natural target, UV regulates transcription of a distinctive set of genes. Hypothesizing that UV activates distinctive epidermal signal transduction pathways, we compared the UV-responsive activation of the JNK and NFkappaB pathways in keratinocytes, with the activation of the same pathways by other agents and in other cell types. Using of inhibitors and antisense oligonucleotides, we found that in keratinocytes only UVB/UVC activate JNK, while in other cell types UVA, heat shock, and oxidative stress do as well. Keratinocytes express JNK-1 and JNK-3, which is unexpected because JNK-3 expression is considered brain-specific. In keratinocytes, ERK1, ERK2, and p38 are activated by growth factors, but not by UV. UVB/UVC in keratinocytes activates Elk1 and AP1 exclusively through the JNK pathway. JNKK1 is essential for UVB/UVC activation of JNK in keratinocytes in vitro and in human skin in vivo. In contrast, in HeLa cells, used as a control, crosstalk among signal transduction pathways allows considerable laxity. In parallel, UVB/UVC and TNFalpha activate the NFkappaB pathway via distinct mechanisms, as shown using antisense oligonucleotides targeted against IKKbeta, the active subunit of IKK. This implies a specific UVB/UVC responsive signal transduction pathway independent from other pathways. Our results suggest that in epidermal keratinocytes specific signal transduction pathways respond to UV light. Based on these findings, we propose that the UV light is not a genetic stress response inducer in these cells, but a specific agent to which epidermis developed highly specialized responses.

  18. Aryl hydrocarbon receptor-dependent liver development and hepatotoxicity are mediated by different cell types.

    PubMed

    Walisser, Jacqueline A; Glover, Edward; Pande, Kalyan; Liss, Adam L; Bradfield, Christopher A

    2005-12-06

    The aryl hydrocarbon receptor (AHR) plays a role in three areas of biology that include the adaptive metabolism of xenobiotics, the toxic responses associated with exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin), and vascular remodeling of the developing embryo. To test the hypothesis that receptor signaling in different cell types is responsible for these aspects of AHR biology, we generated a conditional Ahr allele where exon 2 is flanked by loxP sites. Through the use of Cre-lox technology, we then investigated the role of AHR signaling in hepatocytes or endothelial cells in mediating prototypical endpoints of adaptive, toxic, or developmental signaling. Using this model, we provide evidence that AHR signaling in endothelial/hematopoietic cells is necessary for developmental closure of the ductus venosus, whereas AHR signaling in hepatocytes is necessary to generate adaptive and toxic responses of the liver in response to dioxin exposure. Taken together, these data illustrate the importance of cell-specific receptor signaling for the generation of distinct AHR-dependent physiological outcomes.

  19. Oxidative stress response and Nrf2 signaling in aging

    PubMed Central

    Zhang, Hongqiao; Davies, Kelvin J. A.; Forman, Henry Jay

    2015-01-01

    Increasing oxidative stress, a major characteristic of aging, has been implicated in variety of age-related pathologies. In aging, oxidant production from several sources is increased while antioxidant enzymes, the primary lines of defense, are decreased. Repair systems, including the proteasomal degradation of damaged proteins also declines. Importantly, the adaptive response to oxidative stress declines with aging. Nrf2/EpRE signaling regulates the basal and inducible expression of many antioxidant enzymes and the proteasome. Nrf2/EpRE activity is regulated at several levels including transcription, post-translation, and interaction with other proteins. This review summarizes current studies on age-related impairment of Nrf2/EpRE function and discusses the change of Nrf2 regulatory mechanisms with aging. PMID:26066302

  20. Systemic corazonin signalling modulates stress responses and metabolism in Drosophila

    PubMed Central

    Kubrak, Olga I.; Lushchak, Oleh V.; Zandawala, Meet

    2016-01-01

    Stress triggers cellular and systemic reactions in organisms to restore homeostasis. For instance, metabolic stress, experienced during starvation, elicits a hormonal response that reallocates resources to enable food search and readjustment of physiology. Mammalian gonadotropin-releasing hormone (GnRH) and its insect orthologue, adipokinetic hormone (AKH), are known for their roles in modulating stress-related behaviour. Here we show that corazonin (Crz), a peptide homologous to AKH/GnRH, also alters stress physiology in Drosophila. The Crz receptor (CrzR) is expressed in salivary glands and adipocytes of the liver-like fat body, and CrzR knockdown targeted simultaneously to both these tissues increases the fly's resistance to starvation, desiccation and oxidative stress, reduces feeding, alters expression of transcripts of Drosophila insulin-like peptides (DILPs), and affects gene expression in the fat body. Furthermore, in starved flies, CrzR-knockdown increases circulating and stored carbohydrates. Thus, our findings indicate that elevated systemic Crz signalling during stress coordinates increased food intake and diminished energy stores to regain metabolic homeostasis. Our study suggests that an ancient stress-peptide in Urbilateria evolved to give rise to present-day GnRH, AKH and Crz signalling systems. PMID:27810969

  1. Photosynthesis, photorespiration, and light signalling in defence responses.

    PubMed

    Kangasjärvi, Saijaliisa; Neukermans, Jenny; Li, Shengchun; Aro, Eva-Mari; Noctor, Graham

    2012-02-01

    Visible light is the basic energetic driver of plant biomass production through photosynthesis. The constantly fluctuating availability of light and other environmental factors means that the photosynthetic apparatus must be able to operate in a dynamic fashion appropriate to the prevailing conditions. Dynamic regulation is achieved through an array of homeostatic control mechanisms that both respond to and influence cellular energy and reductant status. In addition, light availability and quality are continuously monitored by plants through photoreceptors. Outside the laboratory growth room, it is within the context of complex changes in energy and signalling status that plants must regulate pathways to deal with biotic challenges, and this can be influenced by changes in the highly energetic photosynthetic pathways and in the turnover of the photosynthetic machinery. Because of this, defence responses are neither simple nor easily predictable, but rather conditioned by the nutritional and signalling status of the plant cell. This review discusses recent data and emerging concepts of how recognized defence pathways interact with and are influenced by light-dependent processes. Particular emphasis is placed on the potential roles of the chloroplast, photorespiration, and photoreceptor-associated pathways in regulating the outcome of interactions between plants and pathogenic organisms.

  2. Effects of Response-Signal Temporal Separation on Behavior Maintained under Temporally Defined Schedules of Delayed Signaled Reinforcement

    ERIC Educational Resources Information Center

    Pulido, Marco A.; Martinez, Guillermo

    2010-01-01

    The present study assessed the effects of systematically separating the cue from the response in temporally defined schedules of delayed signaled reinforcement. Identical schedules were used to study the effects of the independent variable on response acquisition and response maintenance. In the first experiment, 8 groups of 3 naive rats were…

  3. KATP channels process nucleotide signals in muscle thermogenic response

    PubMed Central

    Reyes, Santiago; Park, Sungjo; Terzic, Andre; Alekseev, Alexey E.

    2014-01-01

    Uniquely gated by intracellular adenine nucleotides, sarcolemmal ATP-sensitive K+ (KATP) channels have been typically assigned to protective cellular responses under severe energy insults. More recently, KATP channels have been instituted in the continuous control of muscle energy expenditure under non-stressed, physiological states. These advances raised the question of how KATP channels can process trends in cellular energetics within a milieu where each metabolic system is set to buffer nucleotide pools. Unveiling the mechanistic basis of the KATP channel-driven thermogenic response in muscles thus invites the concepts of intracellular compartmentalization of energy and proteins, along with nucleotide signaling over diffusion barriers. Furthermore, it requires gaining insight into the properties of reversibility of intrinsic ATPase activity associated with KATP channel complexes. Notwithstanding the operational paradigm, the homeostatic role of sarcolemmal KATP channels can be now broadened to a wider range of environmental cues affecting metabolic well-being. In this way, under conditions of energy deficit such as ischemic insult or adrenergic stress, the operation of KATP channel complexes would result in protective energy saving, safeguarding muscle performance and integrity. Under energy surplus, downregulation of KATP channel function may find potential implications in conditions of energy imbalance linked to obesity, cold intolerance and associated metabolic disorders. PMID:20925594

  4. Signal response metrology (SRM): a new approach for lithography metrology

    NASA Astrophysics Data System (ADS)

    Pandev, Stilian; Fang, Fang; Kim, Young Ki; Tsai, Jamie; Vaid, Alok; Subramany, Lokesh; Sanko, Dimitry; Ramanathan, Vidya; Zhou, Ren; Venkataraman, Kartik; Haupt, Ronny

    2015-03-01

    CD uniformity requirements at 20nm and more advanced nodes have challenged the precision limits of CD-SEM metrology, conventionally used for scanner qualification and in-line focus/dose monitoring on product wafers. Optical CD metrology has consequently gained adoption for these applications because of its superior precision, but has been limited adopted, due to challenges with long time-to-results and robustness to process variation. Both of these challenges are due to the limitations imposed by geometric modeling of the photoresist (PR) profile as required by conventional RCWA-based scatterometry. Signal Response Metrology (SRM) is a new technique that obviates the need for geometric modeling by directly correlating focus, dose, and CD to the spectral response of a scatterometry tool. Consequently, it suggests superior accuracy and robustness to process variation for focus/dose monitoring, as well as reducing the time to set up a new measurement recipe from days to hours. This work describes the fundamental concepts of SRM and the results of its application to lithography metrology and control. These results include time to results and measurement performance data on Focus, Dose and CD measurements performed on real devices and on design rule metrology targets.

  5. A calcineurin/AKAP complex is required for NMDA receptor-dependent long-term depression.

    PubMed

    Jurado, Sandra; Biou, Virginie; Malenka, Robert C

    2010-09-01

    AKAP79/150 is a protein scaffold that is thought to position specific kinases (protein kinase A and C) and phosphatases (calcineurin) in appropriate synaptic domains so that their activities can regulate excitatory synaptic strength. Using a viral-mediated molecular replacement strategy in rat hippocampal slices, we found that AKAP is required for NMDA receptor-dependent long-term depression solely because of its interaction with calcineurin.

  6. The BDNF Val66Met polymorphism impairs NMDA receptor-dependent synaptic plasticity in the hippocampus.

    PubMed

    Ninan, Ipe; Bath, Kevin G; Dagar, Karishma; Perez-Castro, Rosalia; Plummer, Mark R; Lee, Francis S; Chao, Moses V

    2010-06-30

    The Val66Met polymorphism in the brain-derived neurotrophic factor (BDNF) gene results in a defect in regulated release of BDNF and affects episodic memory and affective behaviors. However, the precise role of the BDNF Val66Met polymorphism in hippocampal synaptic transmission and plasticity has not yet been studied. Therefore, we examined synaptic properties in the hippocampal CA3-CA1 synapses of BDNF(Met/Met) mice and matched wild-type mice. Although basal glutamatergic neurotransmission was normal, both young and adult mice showed a significant reduction in NMDA receptor-dependent long-term potentiation. We also found that NMDA receptor-dependent long-term depression was decreased in BDNF(Met/Met) mice. However, mGluR-dependent long-term depression was not affected by the BDNF Val66Met polymorphism. Consistent with the NMDA receptor-dependent synaptic plasticity impairment, we observed a significant decrease in NMDA receptor neurotransmission in the CA1 pyramidal neurons of BDNF(Met/Met) mice. Thus, these results show that the BDNF Val66Met polymorphism has a direct effect on NMDA receptor transmission, which may account for changes in synaptic plasticity in the hippocampus.

  7. Changes in mGlu5 receptor-dependent synaptic plasticity and coupling to homer proteins in the hippocampus of Ube3A hemizygous mice modeling angelman syndrome.

    PubMed

    Pignatelli, Marco; Piccinin, Sonia; Molinaro, Gemma; Di Menna, Luisa; Riozzi, Barbara; Cannella, Milena; Motolese, Marta; Vetere, Gisella; Catania, Maria Vincenza; Battaglia, Giuseppe; Nicoletti, Ferdinando; Nisticò, Robert; Bruno, Valeria

    2014-03-26

    Angelman syndrome (AS) is caused by the loss of Ube3A, an ubiquitin ligase that commits specific proteins to proteasomal degradation. How this defect causes autism and other pathological phenotypes associated with AS is unknown. Long-term depression (LTD) of excitatory synaptic transmission mediated by type 5 metabotropic glutamate (mGlu5) receptors was enhanced in hippocampal slices of Ube3A(m-/p+) mice, which model AS. No changes were found in NMDA-dependent LTD induced by low-frequency stimulation. mGlu5 receptor-dependent LTD in AS mice was sensitive to the protein synthesis inhibitor anisomycin, and relied on the same signaling pathways as in wild-type mice, e.g., the mitogen-activated protein kinase (MAPK) pathway, the phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycine pathway, and protein tyrosine phosphatase. Neither the stimulation of MAPK and PI3K nor the increase in Arc (activity-regulated cytoskeleton-associated protein) levels in response to mGlu5 receptor activation were abnormal in hippocampal slices from AS mice compared with wild-type mice. mGlu5 receptor expression and mGlu1/5 receptor-mediated polyphosphoinositide hydrolysis were also unchanged in the hippocampus of AS mice. In contrast, AS mice showed a reduced expression of the short Homer protein isoform Homer 1a, and an increased coupling of mGlu5 receptors to Homer 1b/c proteins in the hippocampus. These findings support the link between Homer proteins and monogenic autism, and lay the groundwork for the use of mGlu5 receptor antagonists in AS.

  8. The Arabidopsis MAP kinase kinase 7: A crosstalk point between Auxin signaling and defense responses?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant-pathogen interaction induces a complex host response that coordinates various signaling pathways through multiple signal molecules. Besides the well-documented signal molecules salicylic acid (SA), ethylene and jasmonic acid, auxin is emerging as an important player in this response. We recent...

  9. Role of Standard Demand Response Signals for Advanced Automated Aggregation

    SciTech Connect

    Lawrence Berkeley National Laboratory; Kiliccote, Sila

    2011-11-18

    Emerging standards such as OpenADR enable Demand Response (DR) Resources to interact directly with Utilities and Independent System Operators to allow their facility automation equipment to respond to a variety of DR signals ranging from day ahead to real time ancillary services. In addition, there are Aggregators in today’s markets who are capable of bringing together collections of aggregated DR assets and selling them to the grid as a single resource. However, in most cases these aggregated resources are not automated and when they are, they typically use proprietary technologies. There is a need for a framework for dealing with aggregated resources that supports the following requirements: • Allows demand-side resources to participate in multiple DR markets ranging from wholesale ancillary services to retail tariffs without being completely committed to a single entity like an Aggregator; • Allow aggregated groups of demand-side resources to be formed in an ad hoc fashion to address specific grid-side issues and support the optimization of the collective response of an aggregated group along a number of different dimensions. This is important in order to taylor the aggregated performance envelope to the needs to of the grid; • Allow aggregated groups to be formed in a hierarchical fashion so that each group can participate in variety of markets from wholesale ancillary services to distribution level retail tariffs. This paper explores the issues of aggregated groups of DR resources as described above especially within the context of emerging smart grid standards and the role they will play in both the management and interaction of various grid-side entities with those resources.

  10. Improving OCD time to solution using Signal Response Metrology

    NASA Astrophysics Data System (ADS)

    Fang, Fang; Zhang, Xiaoxiao; Vaid, Alok; Pandev, Stilian; Sanko, Dimitry; Ramanathan, Vidya; Venkataraman, Kartik; Haupt, Ronny

    2016-03-01

    In recent technology nodes, advanced process and novel integration scheme have challenged the precision limits of conventional metrology; with critical dimensions (CD) of device reduce to sub-nanometer region. Optical metrology has proved its capability to precisely detect intricate details on the complex structures, however, conventional RCWA-based (rigorous coupled wave analysis) scatterometry has the limitations of long time-to-results and lack of flexibility to adapt to wide process variations. Signal Response Metrology (SRM) is a new metrology technique targeted to alleviate the consumption of engineering and computation resources by eliminating geometric/dispersion modeling and spectral simulation from the workflow. This is achieved by directly correlating the spectra acquired from a set of wafers with known process variations encoded. In SPIE 2015, we presented the results of SRM application in lithography metrology and control [1], accomplished the mission of setting up a new measurement recipe of focus/dose monitoring in hours. This work will demonstrate our recent field exploration of SRM implementation in 20nm technology and beyond, including focus metrology for scanner control; post etch geometric profile measurement, and actual device profile metrology.

  11. Inflammasomes bridge signalling between pathogen identification and the immune response

    PubMed Central

    Abdul-Sater, Ali A.; Saïd-Sadier, Najwane; Ojcius, David M.; Yilmaz, Özlem; Kelly, Kathy A.

    2010-01-01

    Microbial organisms express pathogen-associated molecular patterns (PAMPs) that can stimulate expression of pro-inflammatory mediators following ligation of pathogen recognition receptors. However, both commensal organisms and pathogens can express PAMPs. The immune system can distinguish between commensals and pathogens in part through secretion of the key inflammatory cytokines IL-1β and IL-18. A PAMP such as lipopolysaccharide can induce production of intracellular pro-IL-1β and pro-IL-18, but not their secretion. A second “danger signal”, derived from host-cell molecules that are released from stressed or infected cells, or detected as a PAMP that is present in the cytosol, can stimulate assembly of an inflammasome that activates the protease caspase-1. Caspase-1, in turn, is responsible for processing and secretion of the mature IL-1β and IL-18. Many diverse ligands leading to inflammasome activation have been identified, but the cell signaling pathways initiated by the ligands tend to converge on a small set of common mechanisms. PMID:20011701

  12. Allergen-encoded signals that control allergic responses

    PubMed Central

    Tung, Hui-Ying; Landers, Cameron; Li, Evan; Porter, Paul; Kheradmand, Farrah; Corry, David B.

    2016-01-01

    Purpose of review The purpose is to review the important recent advances made in how innate immune cells, microbes, and the environment contribute to the expression of allergic disease, emphasizing the allergen-related signals that drive allergic responses. Recent findings The last few years have seen crucial advances in how innate immune cells such as innate lymphoid cells group 2 and airway epithelial cells and related molecular pathways through organismal proteinases and innate immune cytokines, such as thymic stromal lymphopoietin, IL-25, and IL-33 contribute to allergy and asthma. Simultaneously with these advances, important progress has been made in our understanding of how the environment, and especially pathogenic organisms, such as bacteria, viruses, helminths, and especially fungi derived from the natural and built environments, either promote or inhibit allergic inflammation and disease. Of specific interest are how lipopolysaccharide mediates its antiallergic effect through the ubiquitin modifying factor A20 and the antiallergic activity of both helminths and protozoa. Summary Innate immune cells and molecular pathways, often activated by allergen-derived proteinases acting on airway epithelium and macrophages as well as additional unknown factors, are essential to the expression of allergic inflammation and disease. These findings suggest numerous future research opportunities and new opportunities for therapeutic intervention in allergic disease. PMID:26658015

  13. Epigenetic Mechanisms of Serotonin Signaling.

    PubMed

    Holloway, Terrell; González-Maeso, Javier

    2015-07-15

    Histone modifications and DNA methylation represent central dynamic and reversible processes that regulate gene expression and contribute to cellular phenotypes. These epigenetic marks have been shown to play fundamental roles in a diverse set of signaling and behavioral outcomes. Serotonin is a monoamine that regulates numerous physiological responses including those in the central nervous system. The cardinal signal transduction mechanisms via serotonin and its receptors are well established, but fundamental questions regarding complex interactions between the serotonin system and heritable epigenetic modifications that exert control on gene function remain a topic of intense research and debate. This review focuses on recent advances and contributions to our understanding of epigenetic mechanisms of serotonin receptor-dependent signaling, with focus on psychiatric disorders such as schizophrenia and depression.

  14. Correction of frequency response of infrared photodetector signal path

    NASA Astrophysics Data System (ADS)

    Opalska, Katarzyna

    2016-09-01

    The paper presents the investigations targeted at broadening the bandwidth of the high speed photodector signal path. Photodetector output signal is formed in the signal path composed of the photodiode with appropriate cooling circuitry, short segment of transmission line and a high-speed amplifier. Bandwidth widening is achieved by including extra circuits in the signal tract (lossless and possibly also lossy one), which - together with inevitable mismatch at both ends of the transmission line - enable correction of the frequency characteristic. The trade-offs between gain, ripples of the AC characteristic and bandwidth are studied and presented in the paper.

  15. Ethylene Response Factors: A Key Regulatory Hub in Hormone and Stress Signaling.

    PubMed

    Müller, Maren; Munné-Bosch, Sergi

    2015-09-01

    Ethylene is essential for many developmental processes and a key mediator of biotic and abiotic stress responses in plants. The ethylene signaling and response pathway includes Ethylene Response Factors (ERFs), which belong to the transcription factor family APETALA2/ERF. It is well known that ERFs regulate molecular response to pathogen attack by binding to sequences containing AGCCGCC motifs (the GCC box), a cis-acting element. However, recent studies suggest that several ERFs also bind to dehydration-responsive elements and act as a key regulatory hub in plant responses to abiotic stresses. Here, we review some of the recent advances in our understanding of the ethylene signaling and response pathway, with emphasis on ERFs and their role in hormone cross talk and redox signaling under abiotic stresses. We conclude that ERFs act as a key regulatory hub, integrating ethylene, abscisic acid, jasmonate, and redox signaling in the plant response to a number of abiotic stresses.

  16. Ethylene Response Factors: A Key Regulatory Hub in Hormone and Stress Signaling1

    PubMed Central

    Müller, Maren; Munné-Bosch, Sergi

    2015-01-01

    Ethylene is essential for many developmental processes and a key mediator of biotic and abiotic stress responses in plants. The ethylene signaling and response pathway includes Ethylene Response Factors (ERFs), which belong to the transcription factor family APETALA2/ERF. It is well known that ERFs regulate molecular response to pathogen attack by binding to sequences containing AGCCGCC motifs (the GCC box), a cis-acting element. However, recent studies suggest that several ERFs also bind to dehydration-responsive elements and act as a key regulatory hub in plant responses to abiotic stresses. Here, we review some of the recent advances in our understanding of the ethylene signaling and response pathway, with emphasis on ERFs and their role in hormone cross talk and redox signaling under abiotic stresses. We conclude that ERFs act as a key regulatory hub, integrating ethylene, abscisic acid, jasmonate, and redox signaling in the plant response to a number of abiotic stresses. PMID:26103991

  17. Speed of signal transfer in the chloroplast accumulation response.

    PubMed

    Tsuboi, Hidenori; Wada, Masamitsu

    2010-05-01

    Chloroplast photorelocation movement is important for plants to perform efficient photosynthesis. Phototropins were identified as blue-light receptors for chloroplast movement in Arabidopsis thaliana and in the fern Adiantum capillus-veneris, whereas neochrome functions as a dual red/blue light receptor in the latter. However, the signal transduction pathways involved in chloroplast movement remain to be clarified. To investigate the kinetic properties of signalling from these photoreceptors to the chloroplasts, we deduced the speed of signal transfer using Adiantum capillus-veneris gametophytes. When a region of dark-adapted gametophyte cells was subjected to microbeam irradiation, chloroplasts moved towards the irradiated area even in subsequent darkness. We therefore recorded the movement and calculated the speeds of signal transfer by time-lapse imaging. Movement speeds under red or blue light were similar, e.g., about 1.0 microm min(-1) in prothallial cells. However, speeds varied according to cell polarity in protonemal cells. The speed of signal transfer from the protonemal apex to the base was approximately 0.7 microm min(-1), but roughly 2.3 microm min(-1) in the opposite direction. The speed of signal transfer in Arabidopsis thaliana mesophyll cells was approximately 0.8 microm min(-1) by comparison. Surprisingly, chloroplasts located farthest away from the microbeam were found to move faster than those in close proximity to the site of irradiation both in Adiantum capillus-veneris and A. thaliana.

  18. Neuronal ERK signaling in response to graphene oxide in nematode Caenorhabditis elegans.

    PubMed

    Qu, Man; Li, Yunhui; Wu, Qiuli; Xia, Yankai; Wang, Dayong

    2017-04-03

    ERK signaling is one of the important mitogen activated protein kinases (MAPKs). However, the role of ERK signaling in the regulation of response to engineered nanomaterial exposure is still largely unclear. In this study, using in vivo assay system of Caenorhabditis elegans, we investigated the function of ERK signaling in response to graphene oxide (GO) exposure and the underlying molecular mechanism. GO exposure increased the expression of MEK-2/MEK and MPK-1/ERK in the ERK signaling pathway. Mutation of mek-2 or mpk-1 resulted in a susceptibility to GO toxicity. Both the MEK-2 and the MPK-1 acted in neurons to regulate the response to GO exposure, and the neuronal expression of MEK-2 or MPK-1 caused a resistance to GO toxicity. In the neurons, SKN-1b/Nrf acted downstream of the MPK-1, and AEX-3, a guanine exchange factor for GTPase, further acted downstream of the SKN-1b to regulate the response to GO exposure. Therefore, a signaling cascade of MEK-2-MPK-1-SKN-1b/-AEX-3 was identified in the neurons required for the regulation of response to GO exposure. Moreover, genetic interaction assay demonstrated that the neuronal ERK signaling-mediated signaling pathway and the intestinal p38 MAPK-mediated signaling pathway functioned synergistically in the regulation of response to GO exposure. Our results highlight the crucial function of the neuronal ERK signaling in the regulation of response to nanomaterial exposure in organisms.

  19. Behavioral Response of Dolphins to Signals Simulating Mid-Frequency Sonar

    DTIC Science & Technology

    2011-09-30

    similar to tactical sonar signals; (2) apply a scoring analysis to qualitative descriptors of the observed responses; (3) calculate a behavioral dose ... response function (DRF) for delphinid and otariid species exposed to mid-frequency signals; (4) record heart rate on a subset of the dolphins and sea

  20. Proactive Adjustments of Response Strategies in the Stop-Signal Paradigm

    ERIC Educational Resources Information Center

    Verbruggen, Frederick; Logan, Gordon D.

    2009-01-01

    In the stop-signal paradigm, fast responses are harder to inhibit than slow responses, so subjects must balance speed is the go task with successful stopping in the stop task. In theory, subjects achieve this balance by adjusting response thresholds for the go task, making proactive adjustments in response to instructions that indicate that…

  1. Stochastic Responses May Allow Genetically Diverse Cell Populations to Optimize Performance with Simpler Signaling Networks

    PubMed Central

    Govern, Christopher C.; Chakraborty, Arup K.

    2013-01-01

    Two theories have emerged for the role that stochasticity plays in biological responses: first, that it degrades biological responses, so the performance of biological signaling machinery could be improved by increasing molecular copy numbers of key proteins; second, that it enhances biological performance, by enabling diversification of population-level responses. Using T cell biology as an example, we demonstrate that these roles for stochastic responses are not sufficient to understand experimental observations of stochastic response in complex biological systems that utilize environmental and genetic diversity to make cooperative responses. We propose a new role for stochastic responses in biology: they enable populations to make complex responses with simpler biochemical signaling machinery than would be required in the absence of stochasticity. Thus, the evolution of stochastic responses may be linked to the evolvability of different signaling machineries. PMID:23950860

  2. Signal inference with unknown response: Calibration-uncertainty renormalized estimator

    NASA Astrophysics Data System (ADS)

    Dorn, Sebastian; Enßlin, Torsten A.; Greiner, Maksim; Selig, Marco; Boehm, Vanessa

    2015-01-01

    The calibration of a measurement device is crucial for every scientific experiment, where a signal has to be inferred from data. We present CURE, the calibration-uncertainty renormalized estimator, to reconstruct a signal and simultaneously the instrument's calibration from the same data without knowing the exact calibration, but its covariance structure. The idea of the CURE method, developed in the framework of information field theory, is to start with an assumed calibration to successively include more and more portions of calibration uncertainty into the signal inference equations and to absorb the resulting corrections into renormalized signal (and calibration) solutions. Thereby, the signal inference and calibration problem turns into a problem of solving a single system of ordinary differential equations and can be identified with common resummation techniques used in field theories. We verify the CURE method by applying it to a simplistic toy example and compare it against existent self-calibration schemes, Wiener filter solutions, and Markov chain Monte Carlo sampling. We conclude that the method is able to keep up in accuracy with the best self-calibration methods and serves as a noniterative alternative to them.

  3. Signal inference with unknown response: calibration-uncertainty renormalized estimator.

    PubMed

    Dorn, Sebastian; Enßlin, Torsten A; Greiner, Maksim; Selig, Marco; Boehm, Vanessa

    2015-01-01

    The calibration of a measurement device is crucial for every scientific experiment, where a signal has to be inferred from data. We present CURE, the calibration-uncertainty renormalized estimator, to reconstruct a signal and simultaneously the instrument's calibration from the same data without knowing the exact calibration, but its covariance structure. The idea of the CURE method, developed in the framework of information field theory, is to start with an assumed calibration to successively include more and more portions of calibration uncertainty into the signal inference equations and to absorb the resulting corrections into renormalized signal (and calibration) solutions. Thereby, the signal inference and calibration problem turns into a problem of solving a single system of ordinary differential equations and can be identified with common resummation techniques used in field theories. We verify the CURE method by applying it to a simplistic toy example and compare it against existent self-calibration schemes, Wiener filter solutions, and Markov chain Monte Carlo sampling. We conclude that the method is able to keep up in accuracy with the best self-calibration methods and serves as a noniterative alternative to them.

  4. Supreme EnLIGHTenment: damage recognition and signaling in the mammalian UV response.

    PubMed

    Herrlich, Peter; Karin, Michael; Weiss, Carsten

    2008-02-15

    Like their prokaryotic counterparts, mammalian cells can sense light, especially in the ultraviolet (UV) range of the spectrum. After UV exposure, cells mount an elaborate response--called the UV response--that mimics physiological signaling responses except that it targets multiple pathways, thereby lacking the defined specificity of receptor-triggered signal transduction. Despite many years of research, it is still not fully clear how UV radiation is sensed and converted into the "language of cells"--signal reception and transduction. This review focuses on how photonic energy and its primary cellular products are sensed to elicit the UV response.

  5. Epidermal growth factor receptor-dependent stimulation of amphiregulin expression in androgen-stimulated human prostate cancer cells.

    PubMed Central

    Sehgal, I; Bailey, J; Hitzemann, K; Pittelkow, M R; Maihle, N J

    1994-01-01

    Amphiregulin is a heparin-binding epidermal growth factor (EGF)-related peptide that binds to the EGF receptor (EGF-R) with high affinity. In this study, we report a role for amphiregulin in androgen-stimulated regulation of prostate cancer cell growth. Androgen is known to enhance EGF-R expression in the androgen-sensitive LNCaP human prostate carcinoma cell line, and it has been suggested that androgenic stimuli may regulate proliferation, in part, through autocrine mechanisms involving the EGF-R. In this study, we demonstrate that LNCaP cells express amphiregulin mRNA and peptide and that this expression is elevated by androgenic stimulation. We also show that ligand-dependent EGF-R stimulation induces amphiregulin expression and that androgenic effects on amphiregulin synthesis are mediated through this EGF-R pathway. Parallel studies using the estrogen-responsive breast carcinoma cell line, MCF-7, suggest that regulation of amphiregulin by estrogen may also be mediated via an EGF-R pathway. In addition, heparin treatment of LNCaP cells inhibits androgen-stimulated cell growth further suggesting that amphiregulin can mediate androgen-stimulated LNCaP proliferation. Together, these results implicate an androgen-regulated autocrine loop composed of amphiregulin and its receptor in prostate cancer cell growth and suggest that the mechanism of steroid hormone regulation of amphiregulin synthesis may occur through androgen upregulation of the EGF-R and subsequent receptor-dependent pathways. Images PMID:8049525

  6. NMDA-receptor-dependent plasticity in the bed nucleus of the stria terminalis triggers long-term anxiolysis

    PubMed Central

    Glangetas, Christelle; Massi, Léma; Fois, Giulia R.; Jalabert, Marion; Girard, Delphine; Diana, Marco; Yonehara, Keisuke; Roska, Botond; Xu, Chun; Lüthi, Andreas; Caille, Stéphanie; Georges, François

    2017-01-01

    Anxiety is controlled by multiple neuronal circuits that share robust and reciprocal connections with the bed nucleus of the stria terminalis (BNST), a key structure controlling negative emotional states. However, it remains unknown how the BNST integrates diverse inputs to modulate anxiety. In this study, we evaluated the contribution of infralimbic cortex (ILCx) and ventral subiculum/CA1 (vSUB/CA1) inputs in regulating BNST activity at the single-cell level. Using trans-synaptic tracing from single-electroporated neurons and in vivo recordings, we show that vSUB/CA1 stimulation promotes opposite forms of in vivo plasticity at the single-cell level in the anteromedial part of the BNST (amBNST). We find that an NMDA-receptor-dependent homosynaptic long-term potentiation is instrumental for anxiolysis. These findings suggest that the vSUB/CA1-driven LTP in the amBNST is involved in eliciting an appropriate response to anxiogenic context and dysfunction of this compensatory mechanism may underlie pathologic anxiety states. PMID:28218243

  7. Common pathways regulate Type III TGFβ receptor-dependent cell invasion in epicardial and endocardial cells.

    PubMed

    Clark, Cynthia R; Robinson, Jamille Y; Sanchez, Nora S; Townsend, Todd A; Arrieta, Julian A; Merryman, W David; Trykall, David Z; Olivey, Harold E; Hong, Charles C; Barnett, Joey V

    2016-06-01

    Epithelial-Mesenchymal Transformation (EMT) and the subsequent invasion of epicardial and endocardial cells during cardiac development is critical to the development of the coronary vessels and heart valves. The transformed cells give rise to cardiac fibroblasts and vascular smooth muscle cells or valvular interstitial cells, respectively. The Type III Transforming Growth Factor β (TGFβR3) receptor regulates EMT and cell invasion in both cell types, but the signaling mechanisms downstream of TGFβR3 are not well understood. Here we use epicardial and endocardial cells in in vitro cell invasion assays to identify common mechanisms downstream of TGFβR3 that regulate cell invasion. Inhibition of NF-κB activity blocked cell invasion in epicardial and endocardial cells. NF-κB signaling was found to be dysregulated in Tgfbr3(-/-) epicardial cells which also show impaired cell invasion in response to ligand. TGFβR3-dependent cell invasion is also dependent upon Activin Receptor-Like Kinase (ALK) 2, ALK3, and ALK5 activity. A TGFβR3 mutant that contains a threonine to alanine substitution at residue 841 (TGFβR3-T841A) induces ligand-independent cell invasion in both epicardial and endocardial cells in vitro. These findings reveal a role for NF-κB signaling in the regulation of epicardial and endocardial cell invasion and identify a mutation in TGFβR3 which stimulates ligand-independent signaling.

  8. Estrogen Receptor-Dependent Regulation of Dendritic Cell Development and Function

    PubMed Central

    Laffont, Sophie; Seillet, Cyril; Guéry, Jean-Charles

    2017-01-01

    Autoimmunity, infectious diseases and cancer affect women and men differently. Because they tend to develop more vigorous adaptive immune responses than men, women are less susceptible to some infectious diseases but also at higher risk of autoimmunity. The regulation of immune responses by sex-dependent factors probably involves several non-redundant mechanisms. A privileged area of study, however, concerns the role of sex steroid hormones in the biology of innate immune cells, especially dendritic cells (DCs). In recent years, our understanding of the lineage origin of DC populations has expanded, and the lineage-committing transcription factors shaping peripheral DC subsets have been identified. Both progenitor cells and mature DC subsets express estrogen receptors (ERs), which are ligand-dependent transcription factors. This suggests that estrogens may contribute to the reported sex differences in immunity by regulating DC biology. Here, we review the recent literature and highlight evidence that estrogen-dependent activation of ERα regulates the development or the functional responses of particular DC subsets. The in vitro model of GM-CSF-induced DC differentiation shows that CD11c+ CD11bint Ly6cneg cells depend on ERα activation by estrogen for their development, and for the acquisition of competence to activate naive CD4+ T lymphocytes and mount a robust pro-inflammatory cytokine response to CD40 stimulation. In this model, estrogen signaling in conjunction with GM-CSF is necessary to promote early interferon regulatory factor (Irf)-4 expression in macrophage-DC progenitors and their subsequent differentiation into IRF-4hi CD11c+ CD11bint Ly6cneg cells, closely related to the cDC2 subset. The Flt3L-induced model of DC differentiation in turn shows that ERα signaling promotes the development of conventional DC (cDC) and plasmacytoid DC (pDC) with higher capability of pro-inflammatory cytokine production in response to TLR stimulation. Likewise, cell

  9. Male Responses to Conspecific Advertisement Signals in the Field Cricket Gryllus rubens (Orthoptera: Gryllidae)

    PubMed Central

    Jang, Yikweon

    2011-01-01

    In many species males aggregate and produce long-range advertisement signals to attract conspecific females. The majority of the receivers of these signals are probably other males most of the time, and male responses to competitors' signals can structure the spatial and temporal organization of the breeding aggregation and affect male mating tactics. I quantified male responses to a conspecific advertisement stimulus repeatedly over three age classes in Gryllus rubens (Orthoptera: Gryllidae) in order to estimate the type and frequency of male responses to the broadcast stimulus and to determine the factors affecting them. Factors tested included body size, wing dimorphism, age, and intensity of the broadcast stimulus. Overall, males employed acoustic response more often than positive phonotactic response. As males aged, the frequency of positive phonotactic response decreased but that of the acoustic response increased. That is, males may use positive phonotaxis in the early stages of their adult lives, possibly to find suitable calling sites or parasitize calling males, and then later in life switch to acoustic responses in response to conspecific advertisement signals. Males with smaller body size more frequently exhibited acoustic responses. This study suggests that individual variation, more than any factors measured, is critical for age-dependent male responses to conspecific advertisement signals. PMID:21283758

  10. Male responses to conspecific advertisement signals in the field cricket Gryllus rubens (Orthoptera: Gryllidae).

    PubMed

    Jang, Yikweon

    2011-01-20

    In many species males aggregate and produce long-range advertisement signals to attract conspecific females. The majority of the receivers of these signals are probably other males most of the time, and male responses to competitors' signals can structure the spatial and temporal organization of the breeding aggregation and affect male mating tactics. I quantified male responses to a conspecific advertisement stimulus repeatedly over three age classes in Gryllus rubens (Orthoptera: Gryllidae) in order to estimate the type and frequency of male responses to the broadcast stimulus and to determine the factors affecting them. Factors tested included body size, wing dimorphism, age, and intensity of the broadcast stimulus. Overall, males employed acoustic response more often than positive phonotactic response. As males aged, the frequency of positive phonotactic response decreased but that of the acoustic response increased. That is, males may use positive phonotaxis in the early stages of their adult lives, possibly to find suitable calling sites or parasitize calling males, and then later in life switch to acoustic responses in response to conspecific advertisement signals. Males with smaller body size more frequently exhibited acoustic responses. This study suggests that individual variation, more than any factors measured, is critical for age-dependent male responses to conspecific advertisement signals.

  11. Response Inhibition Is Facilitated by a Change to Red Over Green in the Stop Signal Paradigm

    PubMed Central

    Blizzard, Shawn; Fierro-Rojas, Adriela; Fallah, Mazyar

    2017-01-01

    Actions are informed by the complex interactions of response execution and inhibition networks. These networks integrate sensory information with internal states and behavioral goals to produce an appropriate action or to update an ongoing action. Recent investigations have shown that, behaviorally, attention is captured through a hierarchy of colors. These studies showed how the color hierarchy affected visual processing. To determine whether the color hierarchy can be extended to higher level executive functions such as response execution and inhibition, we conducted several experiments using the stop-signal task (SST). In the first experiment, we modified the classic paradigm so that the go signals could vary in task-irrelevant color, with an auditory stop signal. We found that the task-irrelevant color of the go signals did not differentially affect response times. In the second experiment we determined that making the color of the go signal relevant for response selection still did not affect reaction times(RTs) and, thus, execution. In the third experiment, we modified the paradigm so that the stop signal was a task relevant change in color of the go signal. The mean RT to the red stop signal was approximately 25 ms faster than to the green stop signal. In other words, red stop signals facilitated response inhibition more than green stop signals, however, there was no comparative facilitation of response execution. These findings suggest that response inhibition, but not execution, networks are sensitive to differences in color salience. They also suggest that the color hierarchy is based on attentional networks and not simply on early sensory processing. PMID:28101011

  12. Response Inhibition Is Facilitated by a Change to Red Over Green in the Stop Signal Paradigm.

    PubMed

    Blizzard, Shawn; Fierro-Rojas, Adriela; Fallah, Mazyar

    2016-01-01

    Actions are informed by the complex interactions of response execution and inhibition networks. These networks integrate sensory information with internal states and behavioral goals to produce an appropriate action or to update an ongoing action. Recent investigations have shown that, behaviorally, attention is captured through a hierarchy of colors. These studies showed how the color hierarchy affected visual processing. To determine whether the color hierarchy can be extended to higher level executive functions such as response execution and inhibition, we conducted several experiments using the stop-signal task (SST). In the first experiment, we modified the classic paradigm so that the go signals could vary in task-irrelevant color, with an auditory stop signal. We found that the task-irrelevant color of the go signals did not differentially affect response times. In the second experiment we determined that making the color of the go signal relevant for response selection still did not affect reaction times(RTs) and, thus, execution. In the third experiment, we modified the paradigm so that the stop signal was a task relevant change in color of the go signal. The mean RT to the red stop signal was approximately 25 ms faster than to the green stop signal. In other words, red stop signals facilitated response inhibition more than green stop signals, however, there was no comparative facilitation of response execution. These findings suggest that response inhibition, but not execution, networks are sensitive to differences in color salience. They also suggest that the color hierarchy is based on attentional networks and not simply on early sensory processing.

  13. Mnk Kinases in Cytokine Signaling and Regulation of Cytokine Responses

    PubMed Central

    Joshi, Sonali; Platanias, Leonidas C.

    2013-01-01

    The kinases Mnk1 and Mnk2 are activated downstream of the p38 MAPK and MEK/ERK signaling pathways. Extensive work over the years has shown that these kinases control phosphorylation of the eukaryotic initiation factor 4E (eIF4E) and regulate engagement of other effector elements, including hnRNPA1 and PSF. Mnk kinases are ubiquitously expressed and play critical roles in signaling for various cytokine receptors, while there is emerging evidence that they have important functions as mediators of pro-inflammatory cytokine production. In this review the mechanisms of activation of MNK pathways by cytokine receptors are addressed and their roles in diverse cytokine-dependent biological processes are reviewed. The clinical-translational implications of such work and the relevance of future development of specific MNK inhibitors for the treatment of malignancies and auto-immune disorders are discussed. PMID:23710261

  14. Brain response to injury and neurodegeneration: endogenous neuroprotective signaling.

    PubMed

    Bazan, Nicolas G; Marcheselli, Victor L; Cole-Edwards, Kasie

    2005-08-01

    Synaptic activity and ischemia/injury promote lipid messenger formation through phospholipase-mediated cleavage of specific phospholipids from membrane reservoirs. Lipid messengers modulate signaling cascades, contributing to development, differentiation, function (e.g., memory), protection, regeneration, and repair of neurons and overall regulation of neuronal, glial, and endothelial cell functional integrity. Oxidative stress disrupts lipid signaling and promotes lipid peroxidation and neurodegeneration. Lipid signaling at the neurovascular unit (neurons, astrocytes, oligodendrocytes, microglia, and cells of the microvasculature) is altered in early cerebrovascular and neurodegenerative disease. We discuss how lipid signaling regulates critical events in neuronal survival. Aberrant synaptic plasticity (e.g., epileptogenesis) is highlighted to show how gene expression may drive synaptic circuitry formation in the "wrong" direction. Docosahexaenoic acid has been implicated in memory, photoreceptor cell biogenesis and function, and neuroprotection. Free docosahexaenoic acid released in the brain during experimental stroke leads to the synthesis of stereospecific messengers through oxygenation pathways. One messenger, 10,17S-docosatriene (neuroprotectin D1; NPD1), counteracts leukocyte infiltration and proinflammatory gene expression in brain ischemia-reperfusion. In retina, photoreceptor survival depends on retinal pigment epithelial (RPE) cell integrity. NPD1 is synthesized in RPE cells undergoing oxidative stress, potently counteracts oxidative stress-triggered apoptotic DNA damage in RPE, upregulates antiapoptotic proteins Bcl-2 and Bcl-x(L), and decreases proapoptotic Bax and Bad expression. These findings expand our understanding of how the nervous system counteracts redox disturbances, mitochondrial dysfunction, and proinflammatory conditions. The specificity and potency of NPD1 indicate a potential target for therapeutic intervention for stroke, age

  15. Defining Treatment Response in Trichotillomania: A Signal Detection Analysis

    PubMed Central

    Houghton, David C.; Capriotti, Matthew R.; De Nadai, Alessandro S.; Compton, Scott N.; Twohig, Michael P.; Neal-Barnett, Angela M.; Saunders, Stephen M.; Franklin, Martin E.; Woods, Douglas W.

    2015-01-01

    The Massachusetts General Hospital Hairpulling Scale (MGH-HPS) and the NIMH Trichotillomania Severity Scale (NIMH-TSS) are two widely used measures of trichotillomania severity. Despite their popular use, currently no empirically-supported guidelines exist to determine the degrees of change on these scales that best indicate treatment response. Determination of such criteria could aid in clinical decision-making by defining clinically significant treatment response/recovery and producing accurate power analyses for use in clinical trials research. Adults with trichotillomania (N = 69) participated in a randomized controlled trial of psychotherapy and were assessed before and after treatment. Response status was measured via the Clinical Global Impressions-Improvement Scale, and remission status was measured via the Clinical Global Impressions-Severity Scale. For treatment response, a 45% reduction or 7-point raw score change on the MGH-HPS was the best indicator of clinically significant treatment response, and on the NIMH-TSS, a 30–40% reduction or 6-point raw score difference was most effective cutoff. For disorder remission, a 55–60% reduction or 7-point raw score change on the MGH-HPS was the best predictor, and on the NIMH-TSS, a 65% reduction or 6-point raw score change was the best indicator of disorder remission. Implications of these findings are discussed. PMID:26422605

  16. Microbial Degradation of Cellular Kinases Impairs Innate Immune Signaling and Paracrine TNFα Responses.

    PubMed

    Barth, Kenneth; Genco, Caroline Attardo

    2016-10-04

    The NFκB and MAPK signaling pathways are critical components of innate immunity that orchestrate appropriate immune responses to control and eradicate pathogens. Their activation results in the induction of proinflammatory mediators, such as TNFα a potent bioactive molecule commonly secreted by recruited inflammatory cells, allowing for paracrine signaling at the site of an infection. In this study we identified a novel mechanism by which the opportunistic pathogen Porphyromonas gingivalis dampens innate immune responses by disruption of kinase signaling and degradation of inflammatory mediators. The intracellular immune kinases RIPK1, TAK1, and AKT were selectively degraded by the P. gingivalis lysine-specific gingipain (Kgp) in human endothelial cells, which correlated with dysregulated innate immune signaling. Kgp was also observed to attenuate endothelial responsiveness to TNFα, resulting in a reduction in signal flux through AKT, ERK and NFκB pathways, as well as a decrease in downstream proinflammatory mRNA induction of cytokines, chemokines and adhesion molecules. A deficiency in Kgp activity negated decreases to host cell kinase protein levels and responsiveness to TNFα. Given the essential role of kinase signaling in immune responses, these findings highlight a unique mechanism of pathogen-induced immune dysregulation through inhibition of cell activation, paracrine signaling, and dampened cellular proinflammatory responses.

  17. Microbial Degradation of Cellular Kinases Impairs Innate Immune Signaling and Paracrine TNFα Responses

    PubMed Central

    Barth, Kenneth; Genco, Caroline Attardo

    2016-01-01

    The NFκB and MAPK signaling pathways are critical components of innate immunity that orchestrate appropriate immune responses to control and eradicate pathogens. Their activation results in the induction of proinflammatory mediators, such as TNFα a potent bioactive molecule commonly secreted by recruited inflammatory cells, allowing for paracrine signaling at the site of an infection. In this study we identified a novel mechanism by which the opportunistic pathogen Porphyromonas gingivalis dampens innate immune responses by disruption of kinase signaling and degradation of inflammatory mediators. The intracellular immune kinases RIPK1, TAK1, and AKT were selectively degraded by the P. gingivalis lysine-specific gingipain (Kgp) in human endothelial cells, which correlated with dysregulated innate immune signaling. Kgp was also observed to attenuate endothelial responsiveness to TNFα, resulting in a reduction in signal flux through AKT, ERK and NFκB pathways, as well as a decrease in downstream proinflammatory mRNA induction of cytokines, chemokines and adhesion molecules. A deficiency in Kgp activity negated decreases to host cell kinase protein levels and responsiveness to TNFα. Given the essential role of kinase signaling in immune responses, these findings highlight a unique mechanism of pathogen-induced immune dysregulation through inhibition of cell activation, paracrine signaling, and dampened cellular proinflammatory responses. PMID:27698456

  18. Nitric oxide signaling in plant responses to abiotic stresses.

    PubMed

    Qiao, Weihua; Fan, Liu-Min

    2008-10-01

    Nitric oxide (NO) plays important roles in diverse physiological processes in plants. NO can provoke both beneficial and harmful effects, which depend on the concentration and location of NO in plant cells. This review is focused on NO synthesis and the functions of NO in plant responses to abiotic environmental stresses. Abiotic stresses mostly induce NO production in plants. NO alleviates the harmfulness of reactive oxygen species, and reacts with other target molecules, and regulates the expression of stress responsive genes under various stress conditions.

  19. Is bone's response to mechanical signals dominated by gravitational loading?

    PubMed

    Judex, Stefan; Carlson, Kristian J

    2009-11-01

    During locomotion and exercise, bone is subjected to forces induced by gravitational loading and muscle loading. The inherent link between these modes of loading has confounded emergence of either one as the principal anabolic or anticatabolic signal in bone. A paradigm has emerged in the literature stipulating that muscle loading is the larger of the two, and therefore, bone morphology is predominantly determined by muscle loads. In spite of the intuitive appeal of a muscle-bone unit tuned to the magnitude of contractile forces, little evidence exists for the relatively few, large-magnitude muscle contractions arising during daily activities to dominate the mechanosensory input of bone. Moreover, a review of the literature raises several inconsistencies in this paradigm and indicates that the alternative--gravitational loading--can have a significant role in determining bone mass and morphology. Certainly, the relative contribution of each type of loading will depend on the specific activity, the location of the bone within the skeleton, and whether the bone is weight-bearing or not. Most likely, a more comprehensive paradigm for explaining sensitivity of bone to loading will have to include not only large-magnitude gravitational and muscle loads, but also other factors such as high-frequency, low-magnitude signals generated by the muscles during postural adjustments.

  20. Brushless DC motor control system responsive to control signals generated by a computer or the like

    NASA Astrophysics Data System (ADS)

    Packard, D. T.

    1985-04-01

    A control system for a brushless DC motor responsive to digital control signals is disclosed. The motor includes a multiphase wound stator and a permanent magnet rotor. The motor is arranged so that each phase winding, when energized from a DC source, will drive the rotor through a predetermined angular position or step. A commutation signal generator responsive to the shaft position provides a commutation signal for each winding. A programmable control signal generator such as a computer or microprocessor produces individual digital control signals for each phase winding. The control signals and commutation signals associated with each winding are applied to an AND gate for that phase winding. Each gate controls a switch connected in series with the associated phase winding and the DC source so that each phase winding is energized only when the commutation signal and the control signal associated with that phase winding are present. The motor shaft may be advanced one step at a time to a desired position by applying a predetermined number of control signals in the proper sequence to the AND gates and the torque generated by the motor be regulated by applying a separate control signal and each AND gate which is pulse width modulated to control the total time that each switch connects its associated winding to the DC source during each commutation period.

  1. Brushless DC motor control system responsive to control signals generated by a computer or the like

    NASA Technical Reports Server (NTRS)

    Packard, D. T. (Inventor)

    1985-01-01

    A control system for a brushless DC motor responsive to digital control signals is disclosed. The motor includes a multiphase wound stator and a permanent magnet rotor. The motor is arranged so that each phase winding, when energized from a DC source, will drive the rotor through a predetermined angular position or step. A commutation signal generator responsive to the shaft position provides a commutation signal for each winding. A programmable control signal generator such as a computer or microprocessor produces individual digital control signals for each phase winding. The control signals and commutation signals associated with each winding are applied to an AND gate for that phase winding. Each gate controls a switch connected in series with the associated phase winding and the DC source so that each phase winding is energized only when the commutation signal and the control signal associated with that phase winding are present. The motor shaft may be advanced one step at a time to a desired position by applying a predetermined number of control signals in the proper sequence to the AND gates and the torque generated by the motor be regulated by applying a separate control signal and each AND gate which is pulse width modulated to control the total time that each switch connects its associated winding to the DC source during each commutation period.

  2. Brushless DC motor control system responsive to control signals generated by a computer or the like

    NASA Technical Reports Server (NTRS)

    Packard, Douglas T. (Inventor); Schmitt, Donald E. (Inventor)

    1987-01-01

    A control system for a brushless DC motor responsive to digital control signals is disclosed. The motor includes a multiphase wound stator and a permanent magnet rotor. The rotor is arranged so that each phase winding, when energized from a DC source, will drive the rotor through a predetermined angular position or step. A commutation signal generator responsive to the shaft position provides a commutation signal for each winding. A programmable control signal generator such as a computer or microprocessor produces individual digital control signals for each phase winding. The control signals and commutation signals associated with each winding are applied to an AND gate for that phase winding. Each gate controls a switch connected in series with the associated phase winding and the DC source so that each phase winding is energized only when the commutation signal and the control signal associated with that phase winding are present. The motor shaft may be advanced one step at a time to a desired position by applying a predetermined number of control signals in the proper sequence to the AND gates and the torque generated by the motor may be regulated by applying a separate control signal to each AND gate which is pulse width modulated to control the total time that each switch connects its associated winding to the DC source during each commutation period.

  3. Insulin signaling genes modulate nicotine-induced behavioral responses in C. elegans

    PubMed Central

    Wescott, Seth A.; Ronan, Elizabeth A.; Xu, X.Z. Shawn

    2015-01-01

    Insulin signaling has been suggested to modulate nicotine dependence, but the underlying genetic evidence has been lacking. Here, we used the nematode, C. elegans, to investigate whether genetic alterations in the insulin signaling pathway affect behavioral responses to nicotine. To do so, we challenged drug-naïve C. elegans with an acute dose of nicotine [100 μM] while recording changes in their locomotion speed. While nicotine treatment stimulated locomotion speed in wild-type C. elegans, the same treatment reduced locomotion speed in mutants defective in insulin signaling. This phenotype could be suppressed by mutations in daf-16, a gene encoding a FOXO transcription factor that acts downstream of insulin signaling. Our data suggest that insulin signaling genes, daf-2, age-1, pdk-1, akt-1, and akt-2 modulate behavioral responses to nicotine in C. elegans, revealing a genetic link between nicotine behavior and insulin signaling. PMID:26317299

  4. Early redox, Src family kinase, and calcium signaling integrate wound responses and tissue regeneration in zebrafish.

    PubMed

    Yoo, Sa Kan; Freisinger, Christina M; LeBert, Danny C; Huttenlocher, Anna

    2012-10-15

    Tissue injury can lead to scar formation or tissue regeneration. How regenerative animals sense initial tissue injury and transform wound signals into regenerative growth is an unresolved question. Previously, we found that the Src family kinase (SFK) Lyn functions as a redox sensor in leukocytes that detects H(2)O(2) at wounds in zebrafish larvae. In this paper, using zebrafish larval tail fins as a model, we find that wounding rapidly activated SFK and calcium signaling in epithelia. The immediate SFK and calcium signaling in epithelia was important for late epimorphic regeneration of amputated fins. Wound-induced activation of SFKs in epithelia was dependent on injury-generated H(2)O(2). A SFK member, Fynb, was responsible for fin regeneration. This work provides a new link between early wound responses and late regeneration and suggests that redox, SFK, and calcium signaling are immediate "wound signals" that integrate early wound responses and late epimorphic regeneration.

  5. Group VII Ethylene Response Factors Coordinate Oxygen and Nitric Oxide Signal Transduction and Stress Responses in Plants.

    PubMed

    Gibbs, Daniel J; Conde, Jorge Vicente; Berckhan, Sophie; Prasad, Geeta; Mendiondo, Guillermina M; Holdsworth, Michael J

    2015-09-01

    The group VII ethylene response factors (ERFVIIs) are plant-specific transcription factors that have emerged as important regulators of abiotic and biotic stress responses, in particular, low-oxygen stress. A defining feature of ERFVIIs is their conserved N-terminal domain, which renders them oxygen- and nitric oxide (NO)-dependent substrates of the N-end rule pathway of targeted proteolysis. In the presence of these gases, ERFVIIs are destabilized, whereas an absence of either permits their accumulation; ERFVIIs therefore coordinate plant homeostatic responses to oxygen availability and control a wide range of NO-mediated processes. ERFVIIs have a variety of context-specific protein and gene interaction partners, and also modulate gibberellin and abscisic acid signaling to regulate diverse developmental processes and stress responses. This update discusses recent advances in our understanding of ERFVII regulation and function, highlighting their role as central regulators of gaseous signal transduction at the interface of ethylene, oxygen, and NO signaling.

  6. Endocannabinoid Signaling in the Stress Response of Male and Female Songbirds

    PubMed Central

    Dickens, Molly J.; Vecchiarelli, Haley A.; Hill, Matthew N.

    2015-01-01

    Endocannabinoid (eCB) signaling plays an important role in the stress response pathways of the mammalian brain, yet its role in the avian stress response has not been described. Understanding eCB signaling in avian species (such as the European starling, Sturnus vulgaris) allows a model system that exhibits natural attenuation of hypothalamic-pituitary-adrenal (HPA) responsiveness to stressors. Specifically, seasonally breeding birds exhibit the highest HPA activity during the breeding season and subsequently exhibit a robust HPA down-regulation during molt. Because eCB signaling in mammals has an overall inhibitory effect on HPA activity, we expected shifts in eCB signaling to regulate the seasonal HPA down-regulation during molt. However, our data did not support a role for eCB signaling in the molt-related suppression of HPA activity. For example, injection of the cannabinoid receptor (CB1) antagonist, AM251, did not potentiate molt-suppressed HPA activity. Instead, our data suggest eCB regulation of HPA plasticity as birds transition from breeding to molt. In support of this hypothesis, birds in the late breeding season demonstrated a more dynamic response at the level of avian amygdala eCB content in response to acute stress. The response and directionality of this effect match that seen in mammals. Overall, our data suggest that eCB signaling may allow for a dynamic range in HPA responsiveness (eg, breeding), but the signaling pathway's role may be limited when the HPA response is restrained (eg, molt). This first characterization of eCB signaling in the avian stress response also emphasizes that although the system functions similarly to other species, its exact role may be species specific. PMID:26431225

  7. Individuals with increased inflammatory response to ozone demonstrate muted signaling of immune cell trafficking pathways

    EPA Science Inventory

    Background Exposure to ozone activates innate immune function and causes neutrophilic (PMN) airway inflammation that in some individuals is robustly elevated. The interplay between immunoinflammatory function and genomic signaling in those with heightened inflammatory responsive...

  8. Endothelial cells decode VEGF-mediated Ca2+ signaling patterns to produce distinct functional responses

    PubMed Central

    Noren, David P.; Chou, Wesley H.; Lee, Sung Hoon; Qutub, Amina A.; Warmflash, Aryeh; Wagner, Daniel S.; Popel, Aleksander S.; Levchenko, Andre

    2017-01-01

    A single extracellular stimulus can promote diverse behaviors among isogenic cells by differentially regulated signaling networks. We examined Ca2+ signaling in response to VEGF (vascular endothelial growth factor), a growth factor that can stimulate different behaviors in endothelial cells. We found that altering the amount of VEGF signaling in endothelial cells by stimulating them with different VEGF concentrations triggered distinct and mutually exclusive dynamic Ca2+ signaling responses that correlated with different cellular behaviors. These behaviors were cell proliferation involving the transcription factor NFAT (nuclear factor of activated T cells) and cell migration involving MLCK (myosin light chain kinase). Further analysis suggested that this signal decoding was robust to the noisy nature of the signal input. Using probabilistic modeling, we captured both the stochastic and deterministic aspects of Ca2+ signal decoding and accurately predicted cell responses in VEGF gradients, which we used to simulate different amounts of VEGF signaling. Ca2+ signaling patterns associated with proliferation and migration were detected during angiogenesis in developing zebrafish. PMID:26905425

  9. Multiple signaling pathways coordinate to induce a threshold response in a chordate embryo.

    PubMed

    Ohta, Naoyuki; Satou, Yutaka

    2013-01-01

    In animal development, secreted signaling molecules evoke all-or-none threshold responses of target gene transcription to specify cell fates. In the chordate Ciona intestinalis, the neural markers Otx and Nodal are induced at early embryonic stages by Fgf9/16/20 signaling. Here we show that three additional signaling molecules act negatively to generate a sharp expression boundary for neural genes. EphrinA signaling antagonizes FGF signaling by inhibiting ERK phosphorylation more strongly in epidermal cells than in neural cells, which accentuates differences in the strength of ERK activation. However, even weakly activated ERK activates Otx and Nodal transcription occasionally, probably because of the inherently stochastic nature of signal transduction processes and binding of transcription factors to target sequences. This occasional and undesirable activation of neural genes by weak residual ERK activity is directly repressed by Smad transcription factors activated by Admp and Gdf1/3-like signaling, further sharpening the differential responses of cells to FGF signaling. Thus, these signaling pathways coordinate to evoke a threshold response that delineates a sharp expression boundary.

  10. Ligand-Induced Protein Responses and Mechanical Signal Propagation Described by Linear Response Theories

    PubMed Central

    Yang, Lee-Wei; Kitao, Akio; Huang, Bang-Chieh; Gō, Nobuhiro

    2014-01-01

    In this study, a general linear response theory (LRT) is formulated to describe time-dependent and -independent protein conformational changes upon CO binding with myoglobin. Using the theory, we are able to monitor protein relaxation in two stages. The slower relaxation is found to occur from 4.4 to 81.2 picoseconds and the time constants characterized for a couple of aromatic residues agree with those observed by UV Resonance Raman (UVRR) spectrometry and time resolved x-ray crystallography. The faster “early responses”, triggered as early as 400 femtoseconds, can be best described by the theory when impulse forces are used. The newly formulated theory describes the mechanical propagation following ligand-binding as a function of time, space and types of the perturbation forces. The “disseminators”, defined as the residues that propagate signals throughout the molecule the fastest among all the residues in protein when perturbed, are found evolutionarily conserved and the mutations of which have been shown to largely change the CO rebinding kinetics in myoglobin. PMID:25229149

  11. EdnrB governs regenerative response of melanocyte stem cells by crosstalk with Wnt signaling

    PubMed Central

    Takeo, Makoto; Lee, Wendy; Rabbani, Piul; Sun, Qi; Hu, Hai; Lim, Chae Ho; Manga, Prashiela; Ito, Mayumi

    2017-01-01

    Delineating the crosstalk between distinct signaling pathways is key to understanding the diverse and dynamic responses of adult stem cells during tissue regeneration. Here we demonstrate that the Edn/EdnrB signaling pathway can interact with other signaling pathways to elicit distinct stem cell functions during tissue regeneration. EdnrB signaling promotes proliferation and differentiation of melanocyte stem cells (McSCs), dramatically enhancing the regeneration of hair and epidermal melanocytes. This effect is dependent upon active Wnt signaling that is initiated by Wnt ligand secretion from the hair follicle epithelial niche. Further, this Wnt-dependent EdnrB signaling can rescue the defects in melanocyte regeneration caused by Mc1R loss. This suggests that targeting Edn/EdnrB signaling in McSCs can be a therapeutic approach to promote photoprotective-melanocyte regeneration, which may be useful for those with increased risk of skin cancers due to Mc1R variants. PMID:27134165

  12. PRMT5 modulates the metabolic response to fasting signals.

    PubMed

    Tsai, Wen-Wei; Niessen, Sherry; Goebel, Naomi; Yates, John R; Guccione, Ernesto; Montminy, Marc

    2013-05-28

    Under fasting conditions, increases in circulating glucagon maintain glucose balance by promoting hepatic gluconeogenesis. Triggering of the cAMP pathway stimulates gluconeogenic gene expression through the PKA-mediated phosphorylation of the cAMP response element binding (CREB) protein and via the dephosphorylation of the latent cytoplasmic CREB regulated transcriptional coactivator 2 (CRTC2). CREB and CRTC2 activities are increased in insulin resistance, in which they promote hyperglycemia because of constitutive induction of the gluconeogenic program. The extent to which CREB and CRTC2 are coordinately up-regulated in response to glucagon, however, remains unclear. Here we show that, following its activation, CRTC2 enhances CREB phosphorylation through an association with the protein arginine methyltransferase 5 (PRMT5). In turn, PRMT5 was found to stimulate CREB phosphorylation via increases in histone H3 Arg2 methylation that enhanced chromatin accessibility at gluconeogenic promoters. Because depletion of PRMT5 lowers hepatic glucose production and gluconeogenic gene expression, these results demonstrate how a chromatin-modifying enzyme regulates a metabolic program through epigenetic changes that impact the phosphorylation of a transcription factor in response to hormonal stimuli.

  13. Effects of signaling on temporal control of behavior in response-initiated fixed intervals.

    PubMed

    Fox, Adam E; Kyonka, Elizabeth G E

    2016-11-01

    Behavior and events distributed in time can serve as markers that signal delays to future events. The majority of timing research has focused on how behavior changes as the time to some event, usually food availability, decreases. The primary objective of the two experiments presented here was to assess how behavior changes as time passes between two time markers when the first time marker was manipulated but the second, food delivery, was held constant. Pigeons were exposed to fixed-interval, response-initiated fixed-interval, and signaled response-initiated fixed-interval 15- and 30-s schedules of reinforcement. In Experiment 1, first-response latencies were systematically shorter in the signaled response-initiated schedules than response-initiated schedules, suggesting that the first response was a more effective time marker when it was signaled. In Experiment 2, responding in no-food (i.e. "peak") trials indicated that timing accuracy was equivalent in the three schedule types. Compared to fixed interval schedules, timing precision was reduced in the signaled response-initiated schedules and was lowest in response-initiated schedules. Results from Experiments 1 and 2 coupled with previous research suggest that the overall "informativeness" of a time marker relative to other events and behaviors in the environment may determine its efficacy.

  14. Plant perception and response to the signal in gravity resistance

    NASA Astrophysics Data System (ADS)

    Hoson, Takayuki; Soga, Kouichi; Wakabayashi, Kazuyuki; Kamisaka, Seiichiro; Zhang, Yan; Otomi, Yasuhiro; Hashimoto, Takashi; Iida, Hidetoshi

    2012-07-01

    Gravity resistance, mechanical resistance to the gravitational force, is a principal graviresponse in plants, distinct from gravitropism. Plants increase the rigidity of their cell walls in the final step of gravity resistance. We studied cellular events leading to or related to the cell wall changes under hypergravity conditions produced by centrifugation and under microgravity conditions in space. The involvement of mechanosensitive ion channels (mechanoreceptors) in signal perception in gravity resistance has been suggested by experiments with inhibitors. As a candidate for the mechanoreceptor, we identified MCA1 and MCA2 in Arabidopsis. mca-null and MCA-overexpressing seedlings were normal in growth in the dark at 1 g. However, suppression by hypergravity of elongation growth was reduced in hypocotyls of mca-null seedlings. On the contrary, MCA-overexpressing seedlings were hypersensitive to hypergravity. These results suggest that MCAs act as the mechanoreceptor in signal perception of gravity resistance. Cortical microtubules play an essential role in maintenance of normal growth phenotype under hypergravity conditions. In Space Seed experiment in the Kibo Module (PI: S. Kamisaka), we examined the effects of microgravity on growth phenotypes of Arabidopsis tubulin mutant, tua6. Inflorescences of the mutant emerged earlier and elongated rapidly under microgravity conditions than under on-orbit or ground 1 g conditions. Also, the inflorescences grown under microgravity conditions showed higher cell wall extensibilities than the controls. The tubulin mutant thus grew and developed more or less normally under microgravity conditions, supporting the principal role of microtubules also in plant resistance to 1 g gravity. On the other hand, the cellular osmotic properties, as well as the cell wall properties, are important factors determining the rigidity of plant body. Azuki bean epicotyls were capable of maintaining osmoregulation even under hypergravity

  15. The role of membrane ERα signaling in bone and other major estrogen responsive tissues

    PubMed Central

    Gustafsson, K. L.; Farman, H.; Henning, P.; Lionikaite, V.; Movérare-Skrtic, S.; Wu, J.; Ryberg, H.; Koskela, A.; Gustafsson, J.-Å.; Tuukkanen, J.; Levin, E. R.; Ohlsson, C.; Lagerquist, M. K.

    2016-01-01

    Estrogen receptor α (ERα) signaling leads to cellular responses in several tissues and in addition to nuclear ERα-mediated effects, membrane ERα (mERα) signaling may be of importance. To elucidate the significance, in vivo, of mERα signaling in multiple estrogen-responsive tissues, we have used female mice lacking the ability to localize ERα to the membrane due to a point mutation in the palmitoylation site (C451A), so called Nuclear-Only-ER (NOER) mice. Interestingly, the role of mERα signaling for the estrogen response was highly tissue-dependent, with trabecular bone in the axial skeleton being strongly dependent (>80% reduction in estrogen response in NOER mice), cortical and trabecular bone in long bones, as well as uterus and thymus being partly dependent (40–70% reduction in estrogen response in NOER mice) and effects on liver weight and total body fat mass being essentially independent of mERα (<35% reduction in estrogen response in NOER mice). In conclusion, mERα signaling is important for the estrogenic response in female mice in a tissue-dependent manner. Increased knowledge regarding membrane initiated ERα actions may provide means to develop new selective estrogen receptor modulators with improved profiles. PMID:27388455

  16. The stressed host response to infection: the disruptive signals and rhythms of systemic inflammation.

    PubMed

    Lowry, Stephen F

    2009-04-01

    The cognate signals from sterile or pathogen-induced sources converge on the same recognition or response pathways. In the surgical patient, a systemic response to infection most often occurs in the context of ongoing inflammatory stress. Such an inflammatory response is modulated initially by the magnitude of injury and by patient-specific (endogenous) factors, such as confounding illness, age, and genetic variation. Over an extended period of stress, treatmentrelated (exogenous) factors add unpredictability to host responses to subsequent challenges, such as acquired infection. The host response is discussed in the context of how existing sterile stressors may modify the response to acquired infection in surgical patients.

  17. Behavioral Response of Dolphins to Signals Simulating Mid-Frequency Sonar

    DTIC Science & Technology

    2010-09-30

    dose - response function (DRF) for delphinid and otariid species exposed to mid-frequency signals. 2) Record heart rate on a subset of the dolphins and sea lions involved in the behavioral response study to determine whether an acute stress response occurs in response to the mid-frequency sound exposure. The response will be related to the exposure characteristics of the sound received by the animal to determine if there is a relationship between the sound exposure and the magnitude and duration of the response. 3) Collect blood samples from a subset of the dolphins prior

  18. The Odorant Receptor-Dependent Role of Olfactory Marker Protein in Olfactory Receptor Neurons

    PubMed Central

    Dibattista, Michele

    2016-01-01

    Olfactory receptor neurons (ORNs) in the nasal cavity detect and transduce odorants into action potentials to be conveyed to the olfactory bulb. Odorants are delivered to ORNs via the inhaled air at breathing frequencies that can vary from 2 to 10 Hz in the mouse. Thus olfactory transduction should occur at sufficient speed such that it can accommodate repetitive and frequent stimulation. Activation of odorant receptors (ORs) leads to adenylyl cyclase III activation, cAMP increase, and opening of cyclic nucleotide-gated channels. This makes the kinetic regulation of cAMP one of the important determinants for the response time course. We addressed the dynamic regulation of cAMP during the odorant response and examined how basal levels of cAMP are controlled. The latter is particularly relevant as basal cAMP depends on the basal activity of the expressed OR and thus varies across ORNs. We found that olfactory marker protein (OMP), a protein expressed in mature ORNs, controls both basal and odorant-induced cAMP levels in an OR-dependent manner. Lack of OMP increases basal cAMP, thus abolishing differences in basal cAMP levels between ORNs expressing different ORs. Moreover, OMP speeds up signal transduction for ORNs to better synchronize their output with high-frequency stimulation and to perceive brief stimuli. Last, OMP also steepens the dose–response relation to improve concentration coding although at the cost of losing responses to weak stimuli. We conclude that OMP plays a key regulatory role in ORN physiology by controlling multiple facets of the odorant response. SIGNIFICANCE STATEMENT Odorant receptors (ORs) form the largest family of G-protein-coupled receptors in mammals and are expressed in olfactory receptor neurons (ORNs). In this paper we show how the olfactory system ensures that monogenic expression of ORs dictates the response profile and the basal noise of ORNs. Olfactory marker protein (OMP), a protein long known to be expressed in mature ORNs

  19. Bidirectional coupling of splicing and ATM signaling in response to transcription-blocking DNA damage

    PubMed Central

    Tresini, Maria; Marteijn, Jurgen A.; Vermeulen, Wim

    2016-01-01

    ABSTRACT In response to DNA damage cells activate intricate protein networks to ensure genomic fidelity and tissue homeostasis. DNA damage response signaling pathways coordinate these networks and determine cellular fates, in part, by modulating RNA metabolism. Here we discuss a replication-independent pathway activated by transcription-blocking DNA lesions, which utilizes the ATM signaling kinase to regulate spliceosome function in a reciprocal manner. We present a model according to which, displacement of co-transcriptional spliceosomes from lesion-arrested RNA polymerases, culminates in R-loop formation and non-canonical ATM activation. ATM signals in a feed-forward fashion to further impede spliceosome organization and regulates UV-induced gene expression and alternative splicing genome-wide. This reciprocal coupling between ATM and the spliceosome highlights the importance of ATM signaling in the cellular response to transcription-blocking lesions and supports a key role of the splicing machinery in this process. PMID:26913497

  20. Chemical genetics reveals negative regulation of abscisic acid signaling by a plant immune response pathway.

    PubMed

    Kim, Tae-Houn; Hauser, Felix; Ha, Tracy; Xue, Shaowu; Böhmer, Maik; Nishimura, Noriyuki; Munemasa, Shintaro; Hubbard, Katharine; Peine, Nora; Lee, Byeong-Ha; Lee, Stephen; Robert, Nadia; Parker, Jane E; Schroeder, Julian I

    2011-06-07

    Coordinated regulation of protection mechanisms against environmental abiotic stress and pathogen attack is essential for plant adaptation and survival. Initial abiotic stress can interfere with disease-resistance signaling [1-6]. Conversely, initial plant immune signaling may interrupt subsequent abscisic acid (ABA) signal transduction [7, 8]. However, the processes involved in this crosstalk between these signaling networks have not been determined. By screening a 9600-compound chemical library, we identified a small molecule [5-(3,4-dichlorophenyl)furan-2-yl]-piperidine-1-ylmethanethione (DFPM) that rapidly downregulates ABA-dependent gene expression and also inhibits ABA-induced stomatal closure. Transcriptome analyses show that DFPM also stimulates expression of plant defense-related genes. Major early regulators of pathogen-resistance responses, including EDS1, PAD4, RAR1, and SGT1b, are required for DFPM-and notably also for Pseudomonas-interference with ABA signal transduction, whereas salicylic acid, EDS16, and NPR1 are not necessary. Although DFPM does not interfere with early ABA perception by PYR/RCAR receptors or ABA activation of SnRK2 kinases, it disrupts cytosolic Ca(2+) signaling and downstream anion channel activation in a PAD4-dependent manner. Our findings provide evidence that activation of EDS1/PAD4-dependent plant immune responses rapidly disrupts ABA signal transduction and that this occurs at the level of Ca(2+) signaling, illuminating how the initial biotic stress pathway interferes with ABA signaling.

  1. Phagocytosis of aggregated lipoprotein by macrophages: Low density lipoprotein receptor-dependent foam-cell formation

    SciTech Connect

    Suits, A.G.; Chait, A.; Aviram, M.; Heinecke, J.W. )

    1989-04-01

    Low density lipoprotein (LDL) modified by incubation with phospholipase C (PLC-LDL) aggregates in solution and is rapidly taken up and degraded by human and mouse macrophages, producing foam cells in vitro. Human, mouse, and rabbit macrophages degraded {sup 125}I-labeled PLC-LDL ({sup 125}I-PLC-LDL) more rapidly than native {sup 125}I-labeled LDL ({sup 125}I-LDL), while nonphagocytic cells such as human fibroblasts and bovine aortic endothelial cells degraded {sup 125}I-PLC-LDL more slowly than {sup 125}I-LDL. This suggested the mechanism for internalization of PLC-LDL was phagocytosis. When examined by electron microscopy, mouse peritoneal macrophages appeared to be phagocytosing PLC-LDL. The uptake and degradation of {sup 125}I-PLC-LDL by human macrophages was inhibited >80% by the monoclonal antibody C7 (IgG2b) produced by hybridoma C7, which blocks the ligand binding domain of the LDL receptor. Similarly, methylation of {sup 125}I-LDL ({sup 125}I-MeLDL) prior to treatment with phospholipase C decreased its subsequent uptake and degradation by human macrophages by >90%. The uptake and degradation of phospholipase C-modified {sup 125}I-MeLDL by macrophages could be restored by incubation of the methylated lipoprotein with apoprotein E, a ligand recognized by the LDL receptor. These results indicate that macrophages internalize PLC-LDL by LDL receptor-dependent phagocytosis.

  2. The receptor-dependent LQTA-QSAR: application to a set of trypanothione reductase inhibitors

    NASA Astrophysics Data System (ADS)

    Barbosa, Euzébio G.; Pasqualoto, Kerly Fernanda M.; Ferreira, Márcia M. C.

    2012-09-01

    A new Receptor- Dependent LQTA- QSAR approach, RD- LQTA- QSAR, is proposed as a new 4D-QSAR method. It is an evolution of receptor independent LQTA-QSAR. This approach uses the free GROMACS package to carry out molecular dynamics simulations and generates a conformational ensemble profile for each compound. Such an ensemble is used to build molecular interaction field-based QSAR models, as in CoMFA. To show the potential of this methodology, a set of 38 phenothiazine derivatives that are specific competitive T. cruzi trypanothione reductase inhibitors, was chosen. Using a combination of molecular docking and molecular dynamics simulations, the binding mode of the phenotiazine derivatives was evaluated in a simulated induced fit approach. The ligands alignments were performed using both ligand and binding site atoms, enabling unbiased alignment. The models obtained were extensively validated by leave- N-out cross-validation and y-randomization techniques to test for their robustness and absence of chance correlation. The final model presented Q 2 LOO of 0.87 and R² of 0.92 and a suitable external prediction of Q_{ext}2 = 0.78. The adapted binding site obtained is useful to perform virtual screening and ligand structure-based design and the descriptors in the final model can aid in the design new inhibitors.

  3. Stat5 signaling specifies basal versus stress erythropoietic responses through distinct binary and graded dynamic modalities.

    PubMed

    Porpiglia, Ermelinda; Hidalgo, Daniel; Koulnis, Miroslav; Tzafriri, Abraham R; Socolovsky, Merav

    2012-08-01

    Erythropoietin (Epo)-induced Stat5 phosphorylation (p-Stat5) is essential for both basal erythropoiesis and for its acceleration during hypoxic stress. A key challenge lies in understanding how Stat5 signaling elicits distinct functions during basal and stress erythropoiesis. Here we asked whether these distinct functions might be specified by the dynamic behavior of the Stat5 signal. We used flow cytometry to analyze Stat5 phosphorylation dynamics in primary erythropoietic tissue in vivo and in vitro, identifying two signaling modalities. In later (basophilic) erythroblasts, Epo stimulation triggers a low intensity but decisive, binary (digital) p-Stat5 signal. In early erythroblasts the binary signal is superseded by a high-intensity graded (analog) p-Stat5 response. We elucidated the biological functions of binary and graded Stat5 signaling using the EpoR-HM mice, which express a "knocked-in" EpoR mutant lacking cytoplasmic phosphotyrosines. Strikingly, EpoR-HM mice are restricted to the binary signaling mode, which rescues these mice from fatal perinatal anemia by promoting binary survival decisions in erythroblasts. However, the absence of the graded p-Stat5 response in the EpoR-HM mice prevents them from accelerating red cell production in response to stress, including a failure to upregulate the transferrin receptor, which we show is a novel stress target. We found that Stat5 protein levels decline with erythroblast differentiation, governing the transition from high-intensity graded signaling in early erythroblasts to low-intensity binary signaling in later erythroblasts. Thus, using exogenous Stat5, we converted later erythroblasts into high-intensity graded signal transducers capable of eliciting a downstream stress response. Unlike the Stat5 protein, EpoR expression in erythroblasts does not limit the Stat5 signaling response, a non-Michaelian paradigm with therapeutic implications in myeloproliferative disease. Our findings show how the binary and

  4. Regulation of the BMP Signaling-Responsive Transcriptional Network in the Drosophila Embryo

    PubMed Central

    Saunders, Abbie; Wilcockson, Scott G.; Zeef, Leo A. H.; Donaldson, Ian J.; Ashe, Hilary L.

    2016-01-01

    The BMP signaling pathway has a conserved role in dorsal-ventral axis patterning during embryonic development. In Drosophila, graded BMP signaling is transduced by the Mad transcription factor and opposed by the Brinker repressor. In this study, using the Drosophila embryo as a model, we combine RNA-seq with Mad and Brinker ChIP-seq to decipher the BMP-responsive transcriptional network underpinning differentiation of the dorsal ectoderm during dorsal-ventral axis patterning. We identify multiple new BMP target genes, including positive and negative regulators of EGF signaling. Manipulation of EGF signaling levels by loss- and gain-of-function studies reveals that EGF signaling negatively regulates embryonic BMP-responsive transcription. Therefore, the BMP gene network has a self-regulating property in that it establishes a balance between its activity and that of the antagonistic EGF signaling pathway to facilitate correct patterning. In terms of BMP-dependent transcription, we identify key roles for the Zelda and Zerknüllt transcription factors in establishing the resulting expression domain, and find widespread binding of insulator proteins to the Mad and Brinker-bound genomic regions. Analysis of embryos lacking the BEAF-32 insulator protein shows reduced transcription of a peak BMP target gene and a reduction in the number of amnioserosa cells, the fate specified by peak BMP signaling. We incorporate our findings into a model for Mad-dependent activation, and discuss its relevance to BMP signal interpretation in vertebrates. PMID:27379389

  5. Interaction between hormonal and mitochondrial signalling during growth, development and in plant defence responses.

    PubMed

    Berkowitz, Oliver; De Clercq, Inge; Van Breusegem, Frank; Whelan, James

    2016-05-01

    Mitochondria play a central role in plant metabolism as they are a major source of ATP through synthesis by the oxidative phosphorylation pathway and harbour key metabolic reactions such as the TCA cycle. The energy and building blocks produced by mitochondria are essential to drive plant growth and development as well as to provide fuel for responses to abiotic and biotic stresses. The majority of mitochondrial proteins are encoded in the nuclear genome and have to be imported into the organelle. For the regulation of the corresponding genes intricate signalling pathways exist to adjust their expression. Signals directly regulate nuclear gene expression (anterograde signalling) to adjust the protein composition of the mitochondria to the needs of the cell. In parallel, mitochondria communicate back their functional status to the nucleus (retrograde signalling) to prompt transcriptional regulation of responsive genes via largely unknown signalling mechanisms. Plant hormones are the major signalling components regulating all layers of plant development and cellular functions. Increasing evidence is now becoming available that plant hormones are also part of signalling networks controlling mitochondrial function and their biogenesis. This review summarizes recent advances in understanding the interaction of mitochondrial and hormonal signalling pathways.

  6. Regulation of the BMP Signaling-Responsive Transcriptional Network in the Drosophila Embryo.

    PubMed

    Deignan, Lisa; Pinheiro, Marco T; Sutcliffe, Catherine; Saunders, Abbie; Wilcockson, Scott G; Zeef, Leo A H; Donaldson, Ian J; Ashe, Hilary L

    2016-07-01

    The BMP signaling pathway has a conserved role in dorsal-ventral axis patterning during embryonic development. In Drosophila, graded BMP signaling is transduced by the Mad transcription factor and opposed by the Brinker repressor. In this study, using the Drosophila embryo as a model, we combine RNA-seq with Mad and Brinker ChIP-seq to decipher the BMP-responsive transcriptional network underpinning differentiation of the dorsal ectoderm during dorsal-ventral axis patterning. We identify multiple new BMP target genes, including positive and negative regulators of EGF signaling. Manipulation of EGF signaling levels by loss- and gain-of-function studies reveals that EGF signaling negatively regulates embryonic BMP-responsive transcription. Therefore, the BMP gene network has a self-regulating property in that it establishes a balance between its activity and that of the antagonistic EGF signaling pathway to facilitate correct patterning. In terms of BMP-dependent transcription, we identify key roles for the Zelda and Zerknüllt transcription factors in establishing the resulting expression domain, and find widespread binding of insulator proteins to the Mad and Brinker-bound genomic regions. Analysis of embryos lacking the BEAF-32 insulator protein shows reduced transcription of a peak BMP target gene and a reduction in the number of amnioserosa cells, the fate specified by peak BMP signaling. We incorporate our findings into a model for Mad-dependent activation, and discuss its relevance to BMP signal interpretation in vertebrates.

  7. The Dictyostelium MAPK ERK1 is phosphorylated in a secondary response to early developmental signaling.

    PubMed

    Schwebs, David J; Hadwiger, Jeffrey A

    2015-01-01

    Previous reports have suggested that the two mitogen-activated protein kinases (MAPKs) in Dictyostelium discoideum, ERK1 and ERK2, can be directly activated in response to external cAMP even though these MAPKs play different roles in the developmental life cycle. To better characterize MAPK regulation, the levels of phosphorylated MAPKs were analyzed in response to external signals. Only ERK2 was rapidly phosphorylated in response to the chemoattractants, cAMP and folate. In contrast, the phosphorylation of ERK1 occurred as a secondary or indirect response to these stimuli and this phosphorylation was enhanced by cell-cell interactions, suggesting that other external signals can activate ERK1. The phosphorylation of ERK1 or ERK2 did not require the function of the other MAPK in these responses. Folate stimulation of a chimeric population of erk1- and gα4- cells revealed that the phosphorylation of ERK1 could be mediated through an intercellular signal other than folate. Loss of ERK1 function suppressed the developmental delay and the deficiency in anterior cell localization associated with gα5- mutants suggesting that ERK1 function can be down regulated through Gα5 subunit-mediated signaling. However, no major changes in the phosphorylation of ERK1 were observed in gα5- cells suggesting that the Gα5 subunit signaling pathway does not regulate the phosphorylation of ERK1. These findings suggest that the activation of ERK1 occurs as a secondary response to chemoattractants and that other cell-cell signaling mechanisms contribute to this activation. Gα5 subunit signaling can down regulate ERK1 function to promote prestalk cell development but not through major changes to the level of phosphorylated ERK1.

  8. The Yeast Retrograde Response as a Model of Intracellular Signaling of Mitochondrial Dysfunction

    PubMed Central

    Jazwinski, S. Michal; Kriete, Andres

    2012-01-01

    Mitochondrial dysfunction activates intracellular signaling pathways that impact yeast longevity, and the best known of these pathways is the retrograde response. More recently, similar responses have been discerned in other systems, from invertebrates to human cells. However, the identity of the signal transducers is either unknown or apparently diverse, contrasting with the well-established signaling module of the yeast retrograde response. On the other hand, it has become equally clear that several other pathways and processes interact with the retrograde response, embedding it in a network responsive to a variety of cellular states. An examination of this network supports the notion that the master regulator NFκB aggregated a variety of mitochondria-related cellular responses at some point in evolution and has become the retrograde transcription factor. This has significant consequences for how we view some of the deficits associated with aging, such as inflammation. The support for NFκB as the retrograde response transcription factor is not only based on functional analyses. It is bolstered by the fact that NFκB can regulate Myc–Max, which is activated in human cells with dysfunctional mitochondria and impacts cellular metabolism. Myc–Max is homologous to the yeast retrograde response transcription factor Rtg1–Rtg3. Further research will be needed to disentangle the pro-aging from the anti-aging effects of NFκB. Interestingly, this is also a challenge for the complete understanding of the yeast retrograde response. PMID:22629248

  9. Order in the classroom: graded responses to instructive Hh signaling in the CNS.

    PubMed

    Matise, Michael P

    2007-05-15

    In many animals, the secreted Hedgehog (Hh) signaling proteins play important roles during development and in adults. Studies in both flies and vertebrates indicate that Hh functions as a morphogen to elicit different responses at distinct concentration thresholds. In vertebrates, Gli proteins are the primary transcriptional mediators of Hh target genes. However, the mechanisms that implement specific genetic responses to graded Hh-Gli signaling are only just beginning to be understood. In particular, it is unclear whether target gene responses are determined solely by the ambient levels of pathway activity, or if other pathways or factors function to amplify or attenuate the response to this signal to provide an additional level of context that permits a more fine-tuned outcome. Here, I will review recent evidence suggesting that the response of some Hh-Gli target genes in the CNS is regulated by the activity of another important extracellular signal, the canonical Wnt pathway. The possibility that the Hh and Wnt pathways interact at the transcriptional level has broad significance for understanding normal embryogenesis and diagnosing and treating the numerous developmental disorders and cancers that involve these two pathways. Thus, while Hh-Gli signals provide important information, it is likely that they receive assistance from other "instructors".

  10. Comparison of signaling interactions determining annual and perennial plant growth in response to low temperature

    PubMed Central

    Wingler, Astrid

    2015-01-01

    Low temperature inhibits plant growth despite the fact that considerable rates of photosynthetic activity can be maintained. Instead of lower rates of photosynthesis, active inhibition of cell division and expansion is primarily responsible for reduced growth. This results in sink limitation and enables plants to accumulate carbohydrates that act as compatible solutes or are stored throughout the winter to enable re-growth in spring. Regulation of growth in response to temperature therefore requires coordination with carbon metabolism, e.g., via the signaling metabolite trehalose-6-phosphate. The phytohormones gibberellin (GA) and jasmonate (JA) play an important role in regulating growth in response to temperature. Growth restriction at low temperature is mainly mediated by DELLA proteins, whose degradation is promoted by GA. For annual plants, it has been shown that the GA/DELLA pathway interacts with JA signaling and C-repeat binding factor dependent cold acclimation, but these interactions have not been explored in detail for perennials. Growth regulation in response to seasonal factors is, however, particularly important in perennials, especially at high latitudes. In autumn, growth cessation in trees is caused by shortening of the daylength in interaction with phytohormone signaling. In perennial grasses seasonal differences in the sensitivity to GA may enable enhanced growth in spring. This review provides an overview of the signaling interactions that determine plant growth at low temperature and highlights gaps in our knowledge, especially concerning the seasonality of signaling responses in perennial plants. PMID:25628637

  11. Hydrogen Peroxide Signaling in Plant Development and Abiotic Responses: Crosstalk with Nitric Oxide and Calcium.

    PubMed

    Niu, Lijuan; Liao, Weibiao

    2016-01-01

    Hydrogen peroxide (H2O2), as a reactive oxygen species, is widely generated in many biological systems. It has been considered as an important signaling molecule that mediates various physiological and biochemical processes in plants. Normal metabolism in plant cells results in H2O2 generation, from a variety of sources. Also, it is now clear that nitric oxide (NO) and calcium (Ca(2+)) function as signaling molecules in plants. Both H2O2 and NO are involved in plant development and abiotic responses. A wide range of evidences suggest that NO could be generated under similar stress conditions and with similar kinetics as H2O2. The interplay between H2O2 and NO has important functional implications to modulate transduction processes in plants. Moreover, close interaction also exists between H2O2 and Ca(2+) in response to development and abiotic stresses in plants. Cellular responses to H2O2 and Ca(2+) signaling systems are complex. There is quite a bit of interaction between H2O2 and Ca(2+) signaling in responses to several stimuli. This review aims to introduce these evidences in our understanding of the crosstalk among H2O2, NO, and Ca(2+) signaling which regulates plant growth and development, and other cellular and physiological responses to abiotic stresses.

  12. Hydrogen Peroxide Signaling in Plant Development and Abiotic Responses: Crosstalk with Nitric Oxide and Calcium

    PubMed Central

    Niu, Lijuan; Liao, Weibiao

    2016-01-01

    Hydrogen peroxide (H2O2), as a reactive oxygen species, is widely generated in many biological systems. It has been considered as an important signaling molecule that mediates various physiological and biochemical processes in plants. Normal metabolism in plant cells results in H2O2 generation, from a variety of sources. Also, it is now clear that nitric oxide (NO) and calcium (Ca2+) function as signaling molecules in plants. Both H2O2 and NO are involved in plant development and abiotic responses. A wide range of evidences suggest that NO could be generated under similar stress conditions and with similar kinetics as H2O2. The interplay between H2O2 and NO has important functional implications to modulate transduction processes in plants. Moreover, close interaction also exists between H2O2 and Ca2+ in response to development and abiotic stresses in plants. Cellular responses to H2O2 and Ca2+ signaling systems are complex. There is quite a bit of interaction between H2O2 and Ca2+ signaling in responses to several stimuli. This review aims to introduce these evidences in our understanding of the crosstalk among H2O2, NO, and Ca2+ signaling which regulates plant growth and development, and other cellular and physiological responses to abiotic stresses. PMID:26973673

  13. Clarifying CB2 receptor-dependent and independent effects of THC on human lung epithelial cells

    SciTech Connect

    Sarafian, Theodore Montes, Cindy; Harui, Airi; Beedanagari, Sudheer R.; Kiertscher, Sylvia; Stripecke, Renata; Hossepian, Derik; Kitchen, Christina; Kern, Rita; Belperio, John; Roth, Michael D.

    2008-09-15

    Marijuana smoking is associated with a number of abnormal findings in the lungs of habitual smokers. Previous studies revealed that {delta}{sup 9}-tetrahydrocannabinol (THC) caused mitochondrial injury in primary lung epithelial cells and in the cell line, A549 [Sarafian, T. A., Kouyoumjian, S., Khoshaghideh, F., Tashkin, D. P., and Roth, M. D. (2003). Delta 9-tetrahydrocannabinol disrupts mitochondrial function and cell energetics. Am J Physiol Lung Cell Mol Physiol 284, L298-306; Sarafian, T., Habib, N., Mao, J. T., Tsu, I. H., Yamamoto, M. L., Hsu, E., Tashkin, D. P., and Roth, M. D. (2005). Gene expression changes in human small airway epithelial cells exposed to Delta9-tetrahydrocannabinol. Toxicol Lett 158, 95-107]. The role of cannabinoid receptors in this injury was unclear, as was the potential impact on cell function. In order to investigate these questions, A549 cells were engineered to over-express the type 2 cannabinoid receptor (CB2R) using a self-inactivating lentiviral vector. This transduction resulted in a 60-fold increase in CB2R mRNA relative to cells transduced with a control vector. Transduced cell lines were used to study the effects of THC on chemotactic activity and mitochondrial function. Chemotaxis in response to a 10% serum gradient was suppressed in a concentration-dependent manner by exposure to THC. CB2R-transduced cells exhibited less intrinsic chemotactic activity (p < 0.05) and were 80- to 100-fold more sensitive to the inhibitory effects of THC. Studies using SR144528, a selective CB2R antagonist, verified that these effects were mediated by the CB2R. Marijuana smoke extract, but not smoke extracts from tobacco or placebo marijuana cigarettes, reproduced these effects (p < 0.05). THC decreased ATP level and mitochondrial membrane potential ({psi}{sub m}) in both control and CB2R-transduced cells. However, these decreases did not play a significant role in chemotaxis inhibition since cyclosporine A, which protected against ATP loss

  14. Cannabidiol potentiates pharmacological effects of Delta(9)-tetrahydrocannabinol via CB(1) receptor-dependent mechanism.

    PubMed

    Hayakawa, Kazuhide; Mishima, Kenichi; Hazekawa, Mai; Sano, Kazunori; Irie, Keiichi; Orito, Kensuke; Egawa, Takashi; Kitamura, Yoshihisa; Uchida, Naoki; Nishimura, Ryoji; Egashira, Nobuaki; Iwasaki, Katsunori; Fujiwara, Michihiro

    2008-01-10

    Cannabidiol, a non-psychoactive component of cannabis, has been reported to have interactions with Delta(9)-tetrahydrocannabinol (Delta(9)-THC). However, such interactions have not sufficiently been clear and may have important implications for understanding the pharmacological effects of marijuana. In the present study, we investigated whether cannabidiol modulates the pharmacological effects of Delta(9)-THC on locomotor activity, catalepsy-like immobilisation, rectal temperature and spatial memory in the eight-arm radial maze task in mice. In addition, we measured expression level of cannabinoid CB(1) receptor at striatum, cortex, hippocampus and hypothalamus. Delta(9)-THC (1, 3, 6 and 10 mg/kg) induced hypoactivity, catalepsy-like immobilisation and hypothermia in a dose-dependent manner. In addition, Delta(9)-THC (1, 3 and 6 mg/kg) dose-dependently impaired spatial memory in eight-arm radial maze. On the other hand, cannabidiol (1, 3, 10, 25 and 50 mg/kg) did not affect locomotor activity, catalepsy-like immobilisation, rectal temperature and spatial memory on its own. However, higher dose of cannabidiol (10 or 50 mg/kg) exacerbated pharmacological effects of lower dose of Delta(9)-THC, such as hypoactivity, hypothermia and impairment of spatial memory. Moreover, cannabidiol (50 mg/kg) with Delta(9)-THC (1 mg/kg) enhanced the expression level of CB(1) receptor expression in hippocampus and hypothalamus. Cannabidiol potentiated pharmacological effects of Delta(9)-THC via CB(1) receptor-dependent mechanism. These findings may contribute in setting the basis for interaction of cannabinoids and to find a cannabinoid mechanism in central nervous system.

  15. Blueberry-enriched diet ameliorates age-related declines in NMDA receptor-dependent LTP

    PubMed Central

    Bickford, Paula C.; Browning, Michael D.

    2008-01-01

    NMDA receptor-dependent long-term potentiation (LTP) in the hippocampus is widely accepted as a cellular substrate for memory formation. Age-related declines in the expression of both NMDAR-dependent LTP and NMDAR subunit proteins in the CA1 region of the hippocampus have been well characterized and likely underlie age-related memory impairment. In the current study, we examined NMDAR-dependent LTP in young Fischer 344 rats (4 months old) and aged rats (24 months old) given either a control diet or a diet supplemented with blueberry extract for 6–8 weeks. NMDAR-dependent LTP was evoked by high-frequency stimulation (HFS) in the presence of nifedipine, to eliminate voltage-gated calcium channel LTP. Field excitatory postsynaptic potentials (fEPSPs) were increased by 57% 1 h after HFS in young animals, but this potentiation was reduced to 31% in aged animals. Supplementation of the diet with blueberry extract elevated LTP (63%) in aged animals to levels seen in young. The normalization of LTP may be due to the blueberry diet preventing a decline in synaptic strength, as measured by the slope of the fEPSP for a given fiber potential. The blueberry diet did not prevent age-related declines in NMDAR protein expression. However, phosphorylation of a key tyrosine residue on the NR2B subunit, important for increasing NMDAR function, was enhanced by the diet, suggesting that an increase in NMDAR function might overcome the loss in protein. This report provides evidence that dietary alterations later in life may prevent or postpone the cognitive declines associated with aging. PMID:19424850

  16. Characterizing the Response of Commercial and Industrial Facilities to Dynamic Pricing Signals from the Utility

    SciTech Connect

    Mathieu, Johanna L.; Gadgil, Ashok J.; Callaway, Duncan S.; Price, Phillip N.; Kiliccote, Sila

    2010-07-01

    We describe a method to generate statistical models of electricity demand from Commercial and Industrial (C&I) facilities including their response to dynamic pricing signals. Models are built with historical electricity demand data. A facility model is the sum of a baseline demand model and a residual demand model; the latter quantifies deviations from the baseline model due to dynamic pricing signals from the utility. Three regression-based baseline computation methods were developed and analyzed. All methods performed similarly. To understand the diversity of facility responses to dynamic pricing signals, we have characterized the response of 44 C&I facilities participating in a Demand Response (DR) program using dynamic pricing in California (Pacific Gas and Electric's Critical Peak Pricing Program). In most cases, facilities shed load during DR events but there is significant heterogeneity in facility responses. Modeling facility response to dynamic price signals is beneficial to the Independent System Operator for scheduling supply to meet demand, to the utility for improving dynamic pricing programs, and to the customer for minimizing energy costs.

  17. Primary Cilia Modulate IHH Signal Transduction in Response to Hydrostatic Loading of Growth Plate Chondrocytes

    PubMed Central

    Shao, Y, Yvonne Y.; Wang, Lai; Welter, J, Jean F.; Ballock, R. Tracy

    2011-01-01

    Indian Hedgehog (Ihh) is a key component of the regulatory apparatus governing chondrocyte proliferation and differentiation in the growth plate. Recent studies have demonstrated that the primary cilium is the site of Ihh signaling within the cell, and that primary cilia are essential for bone and cartilage formation. Primary cilia are also postulated to act as mechanosensory organelles that transduce mechanical forces acting on the cell into biological signals. In this study, we used a hydrostatic compression system to examine Ihh signal transduction under the influence of mechanical load. Our results demonstrate that hydrostatic compression increased both Ihh gene expression and Ihh-responsive Gli-luciferase activity. These increases were aborted by disrupting the primary cilia structure with chloral hydrate. These results suggest that growth plate chondrocytes respond to hydrostatic loading by increasing Ihh signaling, and that the primary cilium is required for this mechano-biological signal transduction to occur. PMID:21930256

  18. Adaptations in endocannabinoid signaling in response to repeated homotypic stress: a novel mechanism for stress habituation.

    PubMed

    Patel, Sachin; Hillard, Cecilia J

    2008-06-01

    Daily life stressors are a major environmental factor contributing to precipitation and exacerbation of mental illness. Animal models using repeated homotypic stress induce anxious and depressive phenotypes and are used to study the pathophysiology of affective disorders. Here we discuss data demonstrating that repeated homotypic stress produces temporally and anatomically distinct changes in endocannabinoid signaling components within stress-responsive brain regions. We also present evidence describing the neural and behavioral correlates of these adaptations in endocannabinoid signaling. These data support a role for endocannabinoid signaling in the central nervous system response to chronic, homotypic stress, and specifically in the process of stress-response habituation. The clinical implications of these findings for the pathophysiology and treatment of affective disorders are discussed.

  19. Cellular Notch responsiveness is defined by phosphoinositide 3-kinase-dependent signals

    PubMed Central

    Mckenzie, Grahame; Ward, George; Stallwood, Yvette; Briend, Emmanuel; Papadia, Sofia; Lennard, Andrew; Turner, Martin; Champion, Brian; Hardingham, Giles E

    2006-01-01

    Background Notch plays a wide-ranging role in controlling cell fate, differentiation and development. The PI3K-Akt pathway is a similarly conserved signalling pathway which regulates processes such as differentiation, proliferation and survival. Mice with disrupted Notch and PI3K signalling show phenotypic similarities during haematopoietic cell development, suggesting functional interaction between these pathways. Results We show that cellular responsiveness to Notch signals depends on the activity of the PI3K-Akt pathway in cells as diverse as CHO cells, primary T-cells and hippocampal neurons. Induction of the endogenous PI3K-Akt pathway in CHO cells (by the insulin pathway), in T-cells (via TCR activation) or in neurons (via TrKB activation) potentiates Notch-dependent responses. We propose that the PI3K-Akt pathway exerts its influence on Notch primarily via inhibition of GSK3-beta, a kinase known to phosphorylate and regulate Notch signals. Conclusion The PI3K-Akt pathway acts as a "gain control" for Notch signal responses. Since physiological levels of intracellular Notch are often low, coincidence with PI3K-activation may be crucial for induction of Notch-dependent responses. PMID:16507111

  20. Regulation of striatal dopamine responsiveness by Notch/RBP-J signaling.

    PubMed

    Toritsuka, M; Kimoto, S; Muraki, K; Kitagawa, M; Kishimoto, T; Sawa, A; Tanigaki, K

    2017-03-07

    Dopamine signaling is essential for reward learning and fear-related learning, and thought to be involved in neuropsychiatric diseases. However, the molecular mechanisms underlying the regulation of dopamine responsiveness is unclear. Here we show the critical roles of Notch/RBP-J signaling in the regulation of dopamine responsiveness in the striatum. Notch/RBP-J signaling regulates various neural cell fate specification, and neuronal functions in the adult central nervous system. Conditional deletion of RBP-J specifically in neuronal cells causes enhanced response to apomorphine, a non-selective dopamine agonist, and SKF38393, a D1 agonist, and impaired dopamine-dependent instrumental avoidance learning, which is corrected by SCH23390, a D1 antagonist. RBP-J deficiency drastically reduced dopamine release in the striatum and caused a subtle decrease in the number of dopaminergic neurons. Lentivirus-mediated gene transfer experiments showed that RBP-J deficiency in the striatum was sufficient for these deficits. These findings demonstrated that Notch/RBP-J signaling regulates dopamine responsiveness in the striatum, which may explain the mechanism whereby Notch/RBP-J signaling affects an individual's susceptibility to neuropsychiatric disease.

  1. Change in the signal-response sequence responsible for asymmetric isolation between Drosophila planitibia and Drosophila silvestris.

    PubMed Central

    Hoikkala, A; Kaneshiro, K

    1993-01-01

    Drosophila planitibia and Drosophila silvestris form a species pair that is an example of species diverged through a founder event. These species exhibit asymmetric sexual isolation, courtships between D. planitibia males and D. silvestris females being more successful than courtships between D. silvestris males and D. planitibia females. When analyzing the signal-response courtship sequence in these species, we found that D. silvestris females responded to male circling by standing or preening while D. planitibia females required further signals from the male to stop walking. The main reason for the reduced mating success rate of D. silvestris males with D. planitibia females was that the females responded to male circling by walking and the males did not proceed to the head-under-wings (HUW) position of a walking female. Another critical phase in these courtships was the HUW position in D. silvestris, where males proceeded almost immediately to wing and leg vibration. The courtships between D. planitibia male and D. silvestris female proceeded in a signal-response coordination until the male went to the HUW position, where he fanned his wings for too long a period before proceeding to wing and leg vibration. Thus, it seems that the asymmetric isolation between D. planitibia (ancestral species) and D. silvestris (derived species) is mainly due to a loss of transitions in the signal-response chain of D. silvestris. A change in the behavior of the males in the HUW position has caused further isolation between the species in both directions. PMID:8516334

  2. Mechanical Stimulation of Piezo1 Receptors Depends on Extracellular Matrix Proteins and Directionality of Force.

    PubMed

    Gaub, Benjamin M; Müller, Daniel J

    2017-02-08

    Piezo receptors convert mechanical forces into electrical signals. In mammals, they play important roles in basic physiological functions including proprioception, sensation of touch, and vascular development. However, basic receptor properties like the gating mechanism, the interaction with extracellular matrix (ECM) proteins, and the response to mechanical stimulation, remain poorly understood. Here, we establish an atomic force microscopy (AFM)-based assay to mechanically stimulate Piezo1 receptors in living animal cells, while monitoring receptor activation in real-time using functional calcium imaging. Our experiments show that in the absence of ECM proteins Piezo1 receptors are relatively insensitive to mechanical forces pushing the cellular membrane, whereas they can hardly be activated by mechanically pulling the membrane. Yet, if conjugated with Matrigel, a mix of ECM proteins, the receptors become sensitized. Thereby, forces pulling the cellular membrane activate the receptor much more efficiently compared to pushing forces. Finally, we found that collagen IV, a component of the basal lamina, which forms a cohesive network and mechanical connection between cells, sensitizes Piezo1 receptors to mechanical pulling.

  3. Astrocyte-to-neuron signaling in response to photostimulation with a femtosecond laser

    NASA Astrophysics Data System (ADS)

    Zhao, Yuan; Liu, Xiuli; Zhou, Wei; Zeng, Shaoqun

    2010-08-01

    Conventional stimulation techniques used in studies of astrocyte-to-neuron signaling are invasive or dependent on additional electrical devices or chemicals. Here, we applied photostimulation with a femtosecond laser to selectively stimulate astrocytes in the hippocampal neural network, and the neuronal responses were examined. The results showed that, after photostimulation, cell-specific astrocyte-to-neuron signaling was triggered; sometimes the neuronal responses were even synchronous. Since photostimulation with a femtosecond laser is noninvasive, agent-free, and highly precise, this method has been proved to be efficient in activating astrocytes for investigations of astrocytic functions in neural networks.

  4. Ethylene signaling pathway is not linear, however its lateral part is responsible for sensing and signaling of sulfur status in plants

    PubMed Central

    Moniuszko, Grzegorz

    2015-01-01

    A secondary, non-linear, lateral part of ethylene signaling pathway has been anticipated and speculated before. Recently, it has been found that part of the proteomic response of Eruca sativa to silver nitrate (which is an inhibitor of ethylene signaling) is related to sulfur metabolism. Using public Arabidopsis thaliana microarray data, I show that silver nitrate mimics the signal of sulfur starvation at the transcriptome level. This, combined with data mined from literature, indicates that ethylene receptors are localized at the beginning of the response to sulfur deficiency in plants. This means that the non-linear, lateral part of ethylene signaling pathway exists and is responsible for transduction of the signal of sulfur deficit. Here, I present a model of such a pathway and anticipate it to be the starting point for more detailed analysis of the lateral part of ethylene signaling pathway and the exact mechanism of sulfur status sensing in plants. PMID:26340594

  5. Ethylene signaling pathway is not linear, however its lateral part is responsible for sensing and signaling of sulfur status in plants.

    PubMed

    Moniuszko, Grzegorz

    2015-01-01

    A secondary, non-linear, lateral part of ethylene signaling pathway has been anticipated and speculated before. Recently, it has been found that part of the proteomic response of Eruca sativa to silver nitrate (which is an inhibitor of ethylene signaling) is related to sulfur metabolism. Using public Arabidopsis thaliana microarray data, I show that silver nitrate mimics the signal of sulfur starvation at the transcriptome level. This, combined with data mined from literature, indicates that ethylene receptors are localized at the beginning of the response to sulfur deficiency in plants. This means that the non-linear, lateral part of ethylene signaling pathway exists and is responsible for transduction of the signal of sulfur deficit. Here, I present a model of such a pathway and anticipate it to be the starting point for more detailed analysis of the lateral part of ethylene signaling pathway and the exact mechanism of sulfur status sensing in plants.

  6. Sphingosine-1-Phosphate Signaling Regulates Myogenic Responsiveness in Human Resistance Arteries

    PubMed Central

    Slack, Daniel L.; Burnstein, Marcus J.; Errett, Lee; Bonneau, Daniel; Latter, David; Rotstein, Ori D.; Bolz, Steffen-Sebastian; Lidington, Darcy; Voigtlaender-Bolz, Julia

    2015-01-01

    We recently identified sphingosine-1-phosphate (S1P) signaling and the cystic fibrosis transmembrane conductance regulator (CFTR) as prominent regulators of myogenic responsiveness in rodent resistance arteries. However, since rodent models frequently exhibit limitations with respect to human applicability, translation is necessary to validate the relevance of this signaling network for clinical application. We therefore investigated the significance of these regulatory elements in human mesenteric and skeletal muscle resistance arteries. Mesenteric and skeletal muscle resistance arteries were isolated from patient tissue specimens collected during colonic or cardiac bypass surgery. Pressure myography assessments confirmed endothelial integrity, as well as stable phenylephrine and myogenic responses. Both human mesenteric and skeletal muscle resistance arteries (i) express critical S1P signaling elements, (ii) constrict in response to S1P and (iii) lose myogenic responsiveness following S1P receptor antagonism (JTE013). However, while human mesenteric arteries express CFTR, human skeletal muscle resistance arteries do not express detectable levels of CFTR protein. Consequently, modulating CFTR activity enhances myogenic responsiveness only in human mesenteric resistance arteries. We conclude that human mesenteric and skeletal muscle resistance arteries are a reliable and consistent model for translational studies. We demonstrate that the core elements of an S1P-dependent signaling network translate to human mesenteric resistance arteries. Clear species and vascular bed variations are evident, reinforcing the critical need for further translational study. PMID:26367262

  7. HYAL-2–WWOX–SMAD4 Signaling in Cell Death and Anticancer Response

    PubMed Central

    Hsu, Li-Jin; Chiang, Ming-Fu; Sze, Chun-I; Su, Wan-Pei; Yap, Ye Vone; Lee, I-Ting; Kuo, Hsiang-Ling; Chang, Nan-Shan

    2016-01-01

    Hyaluronidase HYAL-2 is a membrane-anchored protein and also localizes, in part, in the lysosome. Recent study from animal models revealed that both HYAL-1 and HYAL-2 are essential for the metabolism of hyaluronan (HA). Hyal-2 deficiency is associated with chronic thrombotic microangiopathy with hemolytic anemia in mice due to over accumulation of high molecular size HA. HYAL-2 is essential for platelet generation. Membrane HYAL-2 degrades HA bound by co-receptor CD44. Also, in a non-canonical signal pathway, HYAL-2 serves as a receptor for transforming growth factor beta (TGF-β) to signal with downstream tumor suppressors WWOX and SMAD4 to control gene transcription. When SMAD4 responsive element is overly driven by the HYAL-2–WWOX–SMAD4 signaling complex, cell death occurs. When rats are subjected to traumatic brain injury, over accumulation of a HYAL-2–WWOX complex occurs in the nucleus to cause neuronal death. HA induces the signaling of HYAL-2–WWOX–SMAD4 and relocation of the signaling complex to the nucleus. If the signaling complex is overexpressed, bubbling cell death occurs in WWOX-expressing cells. In addition, a small synthetic peptide Zfra (zinc finger-like protein that regulates apoptosis) binds membrane HYAL-2 of non-T/non-B spleen HYAL-2+ CD3− CD19− Z lymphocytes and activates the cells to generate memory anticancer response against many types of cancer cells in vivo. Whether the HYAL-2–WWOX–SMAD4 signaling complex is involved is discussed. In this review and opinion article, we have updated the current knowledge of HA, HYAL-2 and WWOX, HYAL-2–WWOX–SMAD4 signaling, bubbling cell death, and Z cell activation for memory anticancer response. PMID:27999774

  8. Modeling Cellular Noise Underlying Heterogeneous Cell Responses in the Epidermal Growth Factor Signaling Pathway

    PubMed Central

    Iwamoto, Kazunari; Shindo, Yuki; Takahashi, Koichi

    2016-01-01

    Cellular heterogeneity, which plays an essential role in biological phenomena, such as drug resistance and migration, is considered to arise from intrinsic (i.e., reaction kinetics) and extrinsic (i.e., protein variability) noise in the cell. However, the mechanistic effects of these types of noise to determine the heterogeneity of signal responses have not been elucidated. Here, we report that the output of epidermal growth factor (EGF) signaling activity is modulated by cellular noise, particularly by extrinsic noise of particular signaling components in the pathway. We developed a mathematical model of the EGF signaling pathway incorporating regulation between extracellular signal-regulated kinase (ERK) and nuclear pore complex (NPC), which is necessary for switch-like activation of the nuclear ERK response. As the threshold of switch-like behavior is more sensitive to perturbations than the graded response, the effect of biological noise is potentially critical for cell fate decision. Our simulation analysis indicated that extrinsic noise, but not intrinsic noise, contributes to cell-to-cell heterogeneity of nuclear ERK. In addition, we accurately estimated variations in abundance of the signal proteins between individual cells by direct comparison of experimental data with simulation results using Apparent Measurement Error (AME). AME was constant regardless of whether the protein levels varied in a correlated manner, while covariation among proteins influenced cell-to-cell heterogeneity of nuclear ERK, suppressing the variation. Simulations using the estimated protein abundances showed that each protein species has different effects on cell-to-cell variation in the nuclear ERK response. In particular, variability of EGF receptor, Ras, Raf, and MEK strongly influenced cellular heterogeneity, while others did not. Overall, our results indicated that cellular heterogeneity in response to EGF is strongly driven by extrinsic noise, and that such heterogeneity

  9. Teratogen-mediated inhibition of target tissue response to Shh signaling.

    PubMed

    Cooper, M K; Porter, J A; Young, K E; Beachy, P A

    1998-06-05

    Veratrum alkaloids and distal inhibitors of cholesterol biosynthesis have been studied for more than 30 years as potent teratogens capable of inducing cyclopia and other birth defects. Here, it is shown that these compounds specifically block the Sonic hedgehog (Shh) signaling pathway. These teratogens did not prevent the sterol modification of Shh during autoprocessing but rather inhibited the response of target tissues to Shh, possibly acting through the sterol sensing domain within the Patched protein regulator of Shh response.

  10. Divergence in mating signals correlates with genetic distance and behavioural responses to playback.

    PubMed

    Sosa-López, J R; Martínez Gómez, J E; Mennill, D J

    2016-02-01

    Animals use acoustic signals to defend resources against rivals and attract breeding partners. As with many biological traits, acoustic signals may reflect ancestry; closely related species often produce more similar signals than do distantly related species. Whether this similarity in acoustic signals is biologically relevant to animals is poorly understood. We conducted a playback experiment to measure the physical and vocal responses of male songbirds to the songs of both conspecific and allopatric-congeneric animals that varied in their acoustic and genetic similarity. Our subjects were territorial males of four species of neotropical Troglodytes wrens: Brown-throated Wrens (Troglodytes brunneicollis), Cozumel Wrens (T. beani), Clarion Wrens (T. tanneri) and Socorro Wrens (T. sissonii). Our results indicate that birds respond to playback of both conspecific and allopatric-congeneric animals; that acoustic differences increase with genetic distance; and that genetic divergence predicts the strength of behavioural responses to playback, after removing the effects of acoustic similarity between subjects' songs and playback stimuli. Collectively, these results demonstrate that the most distantly related species have the most divergent songs; that male wrens perceive divergence in fine structural characteristics of songs; and that perceptual differences between species reflect evolutionary history. This study offers novel insight into the importance of acoustic divergence of learned signals and receiver responses in species recognition.

  11. Microbial signature-triggered plant defense responses and early signaling mechanisms.

    PubMed

    Wu, Shujing; Shan, Libo; He, Ping

    2014-11-01

    It has long been observed that microbial elicitors can trigger various cellular responses in plants. Microbial elicitors have recently been referred to as pathogen or microbe-associated molecular patterns (PAMPs or MAMPs) and remarkable progress has been made on research of their corresponding receptors, signaling mechanisms and critical involvement in disease resistance. Plants also generate endogenous signals due to the damage or wounds caused by microbes. These signals were originally called endogenous elicitors and subsequently renamed damage-associated molecular patterns (DAMPs) that serve as warning signals for infections. The cellular responses induced by PAMPs and DAMPs include medium alkalinization, ion fluxes across the membrane, reactive oxygen species (ROS) and ethylene production. They collectively contribute to plant pattern-triggered immunity (PTI) and play an important role in plant basal defense against a broad spectrum of microbial infections. In this review, we provide an update on multiple PTI responses and early signaling mechanisms and discuss its potential applications to improve crop disease resistance.

  12. Ebola Virus Altered Innate and Adaptive Immune Response Signalling Pathways: Implications for Novel Therapeutic Approaches.

    PubMed

    Kumar, Anoop

    2016-01-01

    Ebola virus (EBOV) arise attention for their impressive lethality by the poor immune response and high inflammatory reaction in the patients. It causes a severe hemorrhagic fever with case fatality rates of up to 90%. The mechanism underlying this lethal outcome is poorly understood. In 2014, a major outbreak of Ebola virus spread amongst several African countries, including Leone, Sierra, and Guinea. Although infections only occur frequently in Central Africa, but the virus has the potential to spread globally. Presently, there is no vaccine or treatment is available to counteract Ebola virus infections due to poor understanding of its interaction with the immune system. Accumulating evidence indicates that the virus actively alters both innate and adaptive immune responses and triggers harmful inflammatory responses. In the literature, some reports have shown that alteration of immune signaling pathways could be due to the ability of EBOV to interfere with dendritic cells (DCs), which link innate and adaptive immune responses. On the other hand, some reports have demonstrated that EBOV, VP35 proteins act as interferon antagonists. So, how the Ebola virus altered the innate and adaptive immune response signaling pathways is still an open question for the researcher to be explored. Thus, in this review, I try to summarize the mechanisms of the alteration of innate and adaptive immune response signaling pathways by Ebola virus which will be helpful for designing effective drugs or vaccines against this lethal infection. Further, potential targets, current treatment and novel therapeutic approaches have also been discussed.

  13. Transcellular chaperone signaling: an organismal strategy for integrated cell stress responses

    PubMed Central

    van Oosten-Hawle, Patricija; Morimoto, Richard I.

    2014-01-01

    The ability of each cell within a metazoan to adapt to and survive environmental and physiological stress requires cellular stress-response mechanisms, such as the heat shock response (HSR). Recent advances reveal that cellular proteostasis and stress responses in metazoans are regulated by multiple layers of intercellular communication. This ensures that an imbalance of proteostasis that occurs within any single tissue ‘at risk’ is protected by a compensatory activation of a stress response in adjacent tissues that confers a community protective response. While each cell expresses the machinery for heat shock (HS) gene expression, the HSR is regulated cell non-autonomously in multicellular organisms, by neuronal signaling to the somatic tissues, and by transcellular chaperone signaling between somatic tissues and from somatic tissues to neurons. These cell non-autonomous processes ensure that the organismal HSR is orchestrated across multiple tissues and that transmission of stress signals between tissues can also override the neuronal control to reset cell- and tissue-specific proteostasis. Here, we discuss emerging concepts and insights into the complex cell non-autonomous mechanisms that control stress responses in metazoans and highlight the importance of intercellular communication for proteostasis maintenance in multicellular organisms. PMID:24353212

  14. Co-ordination of osmotic stress responses through osmosensing and signal transduction events in fishes.

    PubMed

    Evans, T G

    2010-05-01

    This review centres upon the molecular regulation of osmotic stress responses in fishes, focusing on how osmosensing and signal transduction events co-ordinate changes in the activity and abundance of effector proteins during osmotic stress and how these events integrate into osmotic stress responses of varying magnitude. The concluding sections discuss the relevance of osmosensory signal transduction to the evolution of euryhalinity and present experimental approaches that may best stimulate future research. Iterating the importance of osmosensing and signal transduction during fish osmoregulation may be pertinent amidst the increased use of genomic technologies that typically focus solely on changes in the abundances of gene products, and may limit insight into critical upstream events that occur mainly through post-translational mechanisms.

  15. Unique responsiveness of angiosperm stomata to elevated CO2 explained by calcium signalling.

    PubMed

    Brodribb, Timothy J; McAdam, Scott A M

    2013-01-01

    Angiosperm and conifer tree species respond differently when exposed to elevated CO2, with angiosperms found to dynamically reduce water loss while conifers appear insensitive. Such distinct responses are likely to affect competition between these tree groups as atmospheric CO2 concentration rises. Seeking the mechanism behind this globally important phenomenon we targeted the Ca(2+)-dependent signalling pathway, a mediator of stomatal closure in response to elevated CO2, as a possible explanation for the differentiation of stomatal behaviours. Sampling across the diversity of vascular plants including lycophytes, ferns, gymnosperms and angiosperms we show that only angiosperms possess the stomatal behaviour and prerequisite genetic coding, linked to Ca(2+)-dependent stomatal signalling. We conclude that the evolution of Ca(2+)-dependent stomatal signalling gives angiosperms adaptive benefits in terms of highly efficient water use, but that stomatal sensitivity to high CO2 may penalise angiosperm productivity relative to other plant groups in the current era of soaring atmospheric CO2.

  16. JAK/STAT signaling in Drosophila muscles controls the cellular immune response against parasitoid infection.

    PubMed

    Yang, Hairu; Kronhamn, Jesper; Ekström, Jens-Ola; Korkut, Gül Gizem; Hultmark, Dan

    2015-12-01

    The role of JAK/STAT signaling in the cellular immune response of Drosophila is not well understood. Here, we show that parasitoid wasp infection activates JAK/STAT signaling in somatic muscles of the Drosophila larva, triggered by secretion of the cytokines Upd2 and Upd3 from circulating hemocytes. Deletion of upd2 or upd3, but not the related os (upd1) gene, reduced the cellular immune response, and suppression of the JAK/STAT pathway in muscle cells reduced the encapsulation of wasp eggs and the number of circulating lamellocyte effector cells. These results suggest that JAK/STAT signaling in muscles participates in a systemic immune defense against wasp infection.

  17. Photodynamic therapy-induced angiogenic signaling: consequences and solutions to improve therapeutic response

    PubMed Central

    Gallagher-Colombo, Shannon M.; Maas, Amanda L.; Yuan, Min; Busch, Theresa M.

    2015-01-01

    Photodynamic therapy (PDT) can be a highly effective treatment for diseases ranging from actinic keratosis to cancer. While use of this therapy shows great promise in preclinical and clinical studies, understanding the molecular consequences of PDT is critical to designing better treatment protocols. A number of publications have documented alteration in angiogenic factors and growth factor receptors following PDT, which could abrogate treatment effect by inducing angiogenesis and re-establishment of the tumor vasculature. In response to these findings, work over the past decade has examined the efficacy of combining PDT with molecular targeting drugs, such as anti-angiogenic compounds, in an effort to combat these PDT-induced molecular changes. These combinatorial approaches increase rates of apoptosis, impair pro-tumorigenic signaling, and enhance tumor response. This report will examine the current understanding of PDT-induced angiogenic signaling and address molecular-based approaches to abrogate this signaling or its consequences thereby enhancing PDT efficacy. PMID:26109742

  18. Arm-in-Arm Response Regulator Dimers Promote Intermolecular Signal Transduction

    PubMed Central

    Baker, Anna W.; Satyshur, Kenneth A.; Moreno Morales, Neydis

    2016-01-01

    ABSTRACT Bacteriophytochrome photoreceptors (BphPs) and their cognate response regulators make up two-component signal transduction systems which direct bacteria to mount phenotypic responses to changes in environmental light quality. Most of these systems utilize single-domain response regulators to transduce signals through unknown pathways and mechanisms. Here we describe the photocycle and autophosphorylation kinetics of RtBphP1, a red light-regulated histidine kinase from the desert bacterium Ramlibacter tataouinensis. RtBphP1 undergoes red to far-red photoconversion with rapid thermal reversion to the dark state. RtBphP1 is autophosphorylated in the dark; this activity is inhibited under red light. The RtBphP1 cognate response regulator, the R. tataouinensis bacteriophytochrome response regulator (RtBRR), and a homolog, AtBRR from Agrobacterium tumefaciens, crystallize unexpectedly as arm-in-arm dimers, reliant on a conserved hydrophobic motif, hFWAhL (where h is a hydrophobic M, V, L, or I residue). RtBRR and AtBRR dimerize distinctly from four structurally characterized phytochrome response regulators found in photosynthetic organisms and from all other receiver domain homodimers in the Protein Data Bank. A unique cacodylate-zinc-histidine tag metal organic framework yielded single-wavelength anomalous diffraction phases and may be of general interest. Examination of the effect of the BRR stoichiometry on signal transduction showed that phosphorylated RtBRR is accumulated more efficiently than the engineered monomeric RtBRR (RtBRRmon) in phosphotransfer reactions. Thus, we conclude that arm-in-arm dimers are a relevant signaling intermediate in this class of two-component regulatory systems. IMPORTANCE BphP histidine kinases and their cognate response regulators comprise widespread red light-sensing two-component systems. Much work on BphPs has focused on structural understanding of light sensing and on enhancing the natural infrared fluorescence of these

  19. HY5, a positive regulator of light signaling, negatively controls the unfolded protein response in Arabidopsis

    PubMed Central

    Nawkar, Ganesh M.; Kang, Chang Ho; Maibam, Punyakishore; Park, Joung Hun; Jung, Young Jun; Chae, Ho Byoung; Chi, Yong Hun; Jung, In Jung; Kim, Woe Yeon; Yun, Dae-Jin; Lee, Sang Yeol

    2017-01-01

    Light influences essentially all aspects of plant growth and development. Integration of light signaling with different stress response results in improvement of plant survival rates in ever changing environmental conditions. Diverse environmental stresses affect the protein-folding capacity of the endoplasmic reticulum (ER), thus evoking ER stress in plants. Consequently, the unfolded protein response (UPR), in which a set of molecular chaperones is expressed, is initiated in the ER to alleviate this stress. Although its underlying molecular mechanism remains unknown, light is believed to be required for the ER stress response. In this study, we demonstrate that increasing light intensity elevates the ER stress sensitivity of plants. Moreover, mutation of the ELONGATED HYPOCOTYL 5 (HY5), a key component of light signaling, leads to tolerance to ER stress. This enhanced tolerance of hy5 plants can be attributed to higher expression of UPR genes. HY5 negatively regulates the UPR by competing with basic leucine zipper 28 (bZIP28) to bind to the G-box–like element present in the ER stress response element (ERSE). Furthermore, we found that HY5 undergoes 26S proteasome-mediated degradation under ER stress conditions. Conclusively, we propose a molecular mechanism of crosstalk between the UPR and light signaling, mediated by HY5, which positively mediates light signaling, but negatively regulates UPR gene expression. PMID:28167764

  20. Calcium signaling in response to fluid flow by chondrocytes in 3D alginate culture.

    PubMed

    Degala, Satish; Williams, Rebecca; Zipfel, Warren; Bonassar, Lawrence J

    2012-05-01

    Quantifying the effects of mechanical loading on the metabolic response of chondrocytes is difficult due to complicated structure of cartilage ECM and the coupled nature of the mechanical stimuli presented to the cells. In this study we describe the effects of fluid flow, particularly hydrostatic pressure and wall shear stress, on the Ca(2+) signaling response of bovine articular chondrocytes in 3D culture. Using well-established alginate hydrogel system to maintain spherical chondrocyte morphology, we altered solid volume fraction to change scaffold mechanics. Fluid velocities in the bulk of the scaffolds were directly measured via an optical technique and scaffold permeability and aggregate modulus was characterized to quantify the mechanical stimuli presented to cells. Ca(2+) signaling response to direct perfusion of chondrocyte-seeded scaffolds increased monotonically with flow rate and was found more directly dependent on fluid velocity rather than shear stress or hydrostatic pressure. Chondrocytes in alginate scaffolds responded to fluid flow at velocities and shear stresses 2-3 orders of magnitude lower than seen in previous monolayer studies. Our data suggest that flow-induced Ca(2+) signaling response of chondrocytes in alginate culture may be due to mechanical signaling pathways, which is influenced by the 3D nature of cell shape.

  1. Noise and interlocking signaling pathways promote distinct transcription factor dynamics in response to different stresses

    PubMed Central

    Petrenko, Natalia; Chereji, Raˇzvan V.; McClean, Megan N.; Morozov, Alexandre V.; Broach, James R.

    2013-01-01

    All cells perceive and respond to environmental stresses through elaborate stress-sensing networks. Yeast cells sense stress through diverse signaling pathways that converge on the transcription factors Msn2 and Msn4, which respond by initiating rapid, idiosyncratic cycles into and out of the nucleus. To understand the role of Msn2/4 nuclear localization dynamics, we combined time-lapse studies of Msn2-GFP localization in living cells with computational modeling of stress-sensing signaling networks. We find that several signaling pathways, including Ras/protein kinase A, AMP-activated kinase, the high-osmolarity response mitogen-activated protein kinase pathway, and protein phosphatase 1, regulate activation of Msn2 in distinct ways in response to different stresses. Moreover, we find that bursts of nuclear localization elicit a more robust transcriptional response than does sustained nuclear localization. Using stochastic modeling, we reproduce in silico the responses of Msn2 to different stresses, and demonstrate that bursts of localization arise from noise in the signaling pathways amplified by the small number of Msn2 molecules in the cell. This noise imparts diverse behaviors to genetically identical cells, allowing cell populations to “hedge their bets” in responding to an uncertain future, and to balance growth and survival in an unpredictable environment. PMID:23615444

  2. Jasmonate signaling in plant development and defense response to multiple (a)biotic stresses.

    PubMed

    Santino, Angelo; Taurino, Marco; De Domenico, Stefania; Bonsegna, Stefania; Poltronieri, Palmiro; Pastor, Victoria; Flors, Victor

    2013-07-01

    Plants frequently live in environments characterized by the presence of simultaneous and different stresses. The intricate and finely tuned molecular mechanisms activated by plants in response to abiotic and biotic environmental factors are not well understood, and less is known about the integrative signals and convergence points activated by plants in response to multiple (a)biotic stresses. Phytohormones play a key role in plant development and response to (a)biotic stresses. Among these, one of the most important signaling molecules is an oxylipin, the plant hormone jasmonic acid. Oxylipins are derived from oxygenation of polyunsaturated fatty acids. Jasmonic acid and its volatile derivative methyl jasmonate have been considered for a long time to be the bioactive forms due to their physiological effects and abundance in the plant. However, more recent studies showed unambiguously that they are only precursors of the active forms represented by some amino acid conjugates. Upon developmental or environmental stimuli, jasmonates are synthesized and accumulate transiently. Upon perception, jasmonate signal transduction process is finely tuned by a complex mechanism comprising specific repressor proteins which in turn control a number of transcription factors regulating the expression of jasmonate responsive genes. We discuss the latest discoveries about the role of jasmonates in plants resistance mechanism against biotic and abiotic stresses. Finally, the deep interplay of different phytohormones in stresses signaling will be also discussed.

  3. Development of the Poplar-Laccaria bicolor Ectomycorrhiza Modifies Root Auxin Metabolism, Signaling, and Response1

    PubMed Central

    Vayssières, Alice; Pěnčík, Ales; Felten, Judith; Kohler, Annegret; Ljung, Karin; Martin, Francis; Legué, Valérie

    2015-01-01

    Root systems of host trees are known to establish ectomycorrhizae (ECM) interactions with rhizospheric fungi. This mutualistic association leads to dramatic developmental modifications in root architecture, with the formation of numerous short and swollen lateral roots ensheathed by a fungal mantle. Knowing that auxin plays a crucial role in root development, we investigated how auxin metabolism, signaling, and response are affected in poplar (Populus spp.)-Laccaria bicolor ECM roots. The plant-fungus interaction leads to the arrest of lateral root growth with simultaneous attenuation of the synthetic auxin response element DR5. Measurement of auxin-related metabolites in the free-living partners revealed that the mycelium of L. bicolor produces high concentrations of the auxin indole-3-acetic acid (IAA). Metabolic profiling showed an accumulation of IAA and changes in the indol-3-pyruvic acid-dependent IAA biosynthesis and IAA conjugation and degradation pathways during ECM formation. The global analysis of auxin response gene expression and the regulation of AUXIN SIGNALING F-BOX PROTEIN5, AUXIN/IAA, and AUXIN RESPONSE FACTOR expression in ECM roots suggested that symbiosis-dependent auxin signaling is activated during the colonization by L. bicolor. Taking all this evidence into account, we propose a model in which auxin signaling plays a crucial role in the modification of root growth during ECM formation. PMID:26084921

  4. HY5, a positive regulator of light signaling, negatively controls the unfolded protein response in Arabidopsis.

    PubMed

    Nawkar, Ganesh M; Kang, Chang Ho; Maibam, Punyakishore; Park, Joung Hun; Jung, Young Jun; Chae, Ho Byoung; Chi, Yong Hun; Jung, In Jung; Kim, Woe Yeon; Yun, Dae-Jin; Lee, Sang Yeol

    2017-02-21

    Light influences essentially all aspects of plant growth and development. Integration of light signaling with different stress response results in improvement of plant survival rates in ever changing environmental conditions. Diverse environmental stresses affect the protein-folding capacity of the endoplasmic reticulum (ER), thus evoking ER stress in plants. Consequently, the unfolded protein response (UPR), in which a set of molecular chaperones is expressed, is initiated in the ER to alleviate this stress. Although its underlying molecular mechanism remains unknown, light is believed to be required for the ER stress response. In this study, we demonstrate that increasing light intensity elevates the ER stress sensitivity of plants. Moreover, mutation of the ELONGATED HYPOCOTYL 5 (HY5), a key component of light signaling, leads to tolerance to ER stress. This enhanced tolerance of hy5 plants can be attributed to higher expression of UPR genes. HY5 negatively regulates the UPR by competing with basic leucine zipper 28 (bZIP28) to bind to the G-box-like element present in the ER stress response element (ERSE). Furthermore, we found that HY5 undergoes 26S proteasome-mediated degradation under ER stress conditions. Conclusively, we propose a molecular mechanism of crosstalk between the UPR and light signaling, mediated by HY5, which positively mediates light signaling, but negatively regulates UPR gene expression.

  5. Development of the Poplar-Laccaria bicolor Ectomycorrhiza Modifies Root Auxin Metabolism, Signaling, and Response.

    PubMed

    Vayssières, Alice; Pěnčík, Ales; Felten, Judith; Kohler, Annegret; Ljung, Karin; Martin, Francis; Legué, Valérie

    2015-09-01

    Root systems of host trees are known to establish ectomycorrhizae (ECM) interactions with rhizospheric fungi. This mutualistic association leads to dramatic developmental modifications in root architecture, with the formation of numerous short and swollen lateral roots ensheathed by a fungal mantle. Knowing that auxin plays a crucial role in root development, we investigated how auxin metabolism, signaling, and response are affected in poplar (Populus spp.)-Laccaria bicolor ECM roots. The plant-fungus interaction leads to the arrest of lateral root growth with simultaneous attenuation of the synthetic auxin response element DR5. Measurement of auxin-related metabolites in the free-living partners revealed that the mycelium of L. bicolor produces high concentrations of the auxin indole-3-acetic acid (IAA). Metabolic profiling showed an accumulation of IAA and changes in the indol-3-pyruvic acid-dependent IAA biosynthesis and IAA conjugation and degradation pathways during ECM formation. The global analysis of auxin response gene expression and the regulation of AUXIN SIGNALING F-BOX PROTEIN5, AUXIN/IAA, and AUXIN RESPONSE FACTOR expression in ECM roots suggested that symbiosis-dependent auxin signaling is activated during the colonization by L. bicolor. Taking all this evidence into account, we propose a model in which auxin signaling plays a crucial role in the modification of root growth during ECM formation.

  6. Reinforcement Delay Fading during Differential Reinforcement of Communication: The Effects of Signals on Response Maintenance

    ERIC Educational Resources Information Center

    Kelley, Michael E.; Lerman, Dorothea C.; Fisher, Wayne W.; Roane, Henry S.; Zangrillo, Amanda N.

    2011-01-01

    Signals during delays to reinforcement may lessen reductions in responding that typically occur when there is a delay between a response and its reinforcer. Sparse applied research has been devoted to understanding the conditions under which responding may be maintained when delays to reinforcement are introduced. We evaluated the extent to which…

  7. Emergency Spatiotemporal Shift: The Response of Protein Kinase D to Stress Signals in the Cardiovascular System

    PubMed Central

    Wood, Brent M.; Bossuyt, Julie

    2017-01-01

    Protein Kinase D isoforms (PKD 1-3) are key mediators of neurohormonal, oxidative, and metabolic stress signals. PKDs impact a wide variety of signaling pathways and cellular functions including actin dynamics, vesicle trafficking, cell motility, survival, contractility, energy substrate utilization, and gene transcription. PKD activity is also increasingly linked to cancer, immune regulation, pain modulation, memory, angiogenesis, and cardiovascular disease. This increasing complexity and diversity of PKD function, highlights the importance of tight spatiotemporal control of the kinase via protein–protein interactions, post-translational modifications or targeting via scaffolding proteins. In this review, we focus on the spatiotemporal regulation and effects of PKD signaling in response to neurohormonal, oxidant and metabolic signals that have implications for myocardial disease. Precise targeting of these mechanisms will be crucial in the design of PKD-based therapeutic strategies. PMID:28174535

  8. Correction of complex nonlinear signal response from a pixel array detector

    DOE PAGES

    van Driel, Tim Brandt; Herrmann, Sven; Carini, Gabriella; ...

    2015-04-22

    The pulsed free-electron laser light sources represent a new challenge to photon area detectors due to the intrinsic spontaneous X-ray photon generation process that makes single-pulse detection necessary. Intensity fluctuations up to 100% between individual pulses lead to high linearity requirements in order to distinguish small signal changes. In real detectors, signal distortions as a function of the intensity distribution on the entire detector can occur. Here a robust method to correct this nonlinear response in an area detector is presented for the case of exposures to similar signals. The method is tested for the case of diffuse scattering frommore » liquids where relevant sub-1% signal changes appear on the same order as artifacts induced by the detector electronics.« less

  9. Very long chain fatty acid and lipid signaling in the response of plants to pathogens

    PubMed Central

    Raffaele, Sylvain; Leger, Amandine

    2009-01-01

    Recent findings indicate that lipid signaling is essential for plant resistance to pathogens. Besides oxylipins and unsaturated fatty acids known to play important signaling functions during plant-pathogen interactions, the very long chain fatty acid (VLCFA) biosynthesis pathway has been recently associated to plant defense through different aspects. VLCFAs are indeed required for the biosynthesis of the plant cuticle and the generation of sphingolipids. Elucidation of the roles of these lipids in biotic stress responses is the result of the use of genetic approaches together with the identification of the genes/proteins involved in their biosynthesis. This review focuses on recent observations which revealed the complex function of the cuticle and cuticle-derived signals, and the key role of sphingolipids as bioactive molecules involved in signal transduction and cell death regulation during plant-pathogen interactions. PMID:19649180

  10. Correction of complex nonlinear signal response from a pixel array detector

    PubMed Central

    van Driel, Tim Brandt; Herrmann, Sven; Carini, Gabriella; Nielsen, Martin Meedom; Lemke, Henrik Till

    2015-01-01

    The pulsed free-electron laser light sources represent a new challenge to photon area detectors due to the intrinsic spontaneous X-ray photon generation process that makes single-pulse detection necessary. Intensity fluctuations up to 100% between individual pulses lead to high linearity requirements in order to distinguish small signal changes. In real detectors, signal distortions as a function of the intensity distribution on the entire detector can occur. Here a robust method to correct this nonlinear response in an area detector is presented for the case of exposures to similar signals. The method is tested for the case of diffuse scattering from liquids where relevant sub-1% signal changes appear on the same order as artifacts induced by the detector electronics. PMID:25931072

  11. Correction of complex nonlinear signal response from a pixel array detector

    SciTech Connect

    van Driel, Tim Brandt; Herrmann, Sven; Carini, Gabriella; Nielsen, Martin Meedom; Lemke, Henrik Till

    2015-04-22

    The pulsed free-electron laser light sources represent a new challenge to photon area detectors due to the intrinsic spontaneous X-ray photon generation process that makes single-pulse detection necessary. Intensity fluctuations up to 100% between individual pulses lead to high linearity requirements in order to distinguish small signal changes. In real detectors, signal distortions as a function of the intensity distribution on the entire detector can occur. Here a robust method to correct this nonlinear response in an area detector is presented for the case of exposures to similar signals. The method is tested for the case of diffuse scattering from liquids where relevant sub-1% signal changes appear on the same order as artifacts induced by the detector electronics.

  12. Regulation of Arabidopsis defense responses against Spodoptera littoralis by CPK-mediated calcium signaling

    PubMed Central

    2010-01-01

    Background Plant Ca2+ signals are involved in a wide array of intracellular signaling pathways after pest invasion. Ca2+-binding sensory proteins such as Ca2+-dependent protein kinases (CPKs) have been predicted to mediate the signaling following Ca2+ influx after insect herbivory. However, until now this prediction was not testable. Results To investigate the roles CPKs play in a herbivore response-signaling pathway, we screened the characteristics of Arabidopsis CPK mutants damaged by a feeding generalist herbivore, Spodoptera littoralis. Following insect attack, the cpk3 and cpk13 mutants showed lower transcript levels of plant defensin gene PDF1.2 compared to wild-type plants. The CPK cascade was not directly linked to the herbivory-induced signaling pathways that were mediated by defense-related phytohormones such as jasmonic acid and ethylene. CPK3 was also suggested to be involved in a negative feedback regulation of the cytosolic Ca2+ levels after herbivory and wounding damage. In vitro kinase assays of CPK3 protein with a suite of substrates demonstrated that the protein phosphorylates transcription factors (including ERF1, HsfB2a and CZF1/ZFAR1) in the presence of Ca2+. CPK13 strongly phosphorylated only HsfB2a, irrespective of the presence of Ca2+. Furthermore, in vivo agroinfiltration assays showed that CPK3-or CPK13-derived phosphorylation of a heat shock factor (HsfB2a) promotes PDF1.2 transcriptional activation in the defense response. Conclusions These results reveal the involvement of two Arabidopsis CPKs (CPK3 and CPK13) in the herbivory-induced signaling network via HsfB2a-mediated regulation of the defense-related transcriptional machinery. This cascade is not involved in the phytohormone-related signaling pathways, but rather directly impacts transcription factors for defense responses. PMID:20504319

  13. Molecular signal networks and regulating mechanisms of the unfolded protein response*

    PubMed Central

    Gong, Jing; Wang, Xing-zhi; Wang, Tao; Chen, Jiao-jiao; Xie, Xiao-yuan; Hu, Hui; Yu, Fang; Liu, Hui-lin; Jiang, Xing-yan; Fan, Han-dong

    2017-01-01

    Within the cell, several mechanisms exist to maintain homeostasis of the endoplasmic reticulum (ER). One of the primary mechanisms is the unfolded protein response (UPR). In this review, we primarily focus on the latest signal webs and regulation mechanisms of the UPR. The relationships among ER stress, apoptosis, and cancer are also discussed. Under the normal state, binding immunoglobulin protein (BiP) interacts with the three sensors (protein kinase RNA-like ER kinase (PERK), activating transcription factor 6 (ATF6), and inositol-requiring enzyme 1α (IRE1α)). Under ER stress, misfolded proteins interact with BiP, resulting in the release of BiP from the sensors. Subsequently, the three sensors dimerize and autophosphorylate to promote the signal cascades of ER stress. ER stress includes a series of positive and negative feedback signals, such as those regulating the stabilization of the sensors/BiP complex, activating and inactivating the sensors by autophosphorylation and dephosphorylation, activating specific transcription factors to enable selective transcription, and augmenting the ability to refold and export. Apart from the three basic pathways, vascular endothelial growth factor (VEGF)-VEGF receptor (VEGFR)-phospholipase C-γ (PLCγ)-mammalian target of rapamycin complex 1 (mTORC1) pathway, induced only in solid tumors, can also activate ATF6 and PERK signal cascades, and IRE1α also can be activated by activated RAC-alpha serine/threonine-protein kinase (AKT). A moderate UPR functions as a pro-survival signal to return the cell to its state of homeostasis. However, persistent ER stress will induce cells to undergo apoptosis in response to increasing reactive oxygen species (ROS), Ca2+ in the cytoplasmic matrix, and other apoptosis signal cascades, such as c-Jun N-terminal kinase (JNK), signal transducer and activator of transcription 3 (STAT3), and P38, when cellular damage exceeds the capacity of this adaptive response. PMID:28070992

  14. Luminance and chromatic signals interact differently with melanopsin activation to control the pupil light response

    PubMed Central

    Barrionuevo, Pablo A.; Cao, Dingcai

    2016-01-01

    Intrinsically photosensitive retinal ganglion cells (ipRGCs) express the photopigment melanopsin. These cells receive afferent inputs from rods and cones, which provide inputs to the postreceptoral visual pathways. It is unknown, however, how melanopsin activation is integrated with postreceptoral signals to control the pupillary light reflex. This study reports human flicker pupillary responses measured using stimuli generated with a five-primary photostimulator that selectively modulated melanopsin, rod, S-, M-, and L-cone excitations in isolation, or in combination to produce postreceptoral signals. We first analyzed the light adaptation behavior of melanopsin activation and rod and cones signals. Second, we determined how melanopsin is integrated with postreceptoral signals by testing with cone luminance, chromatic blue-yellow, and chromatic red-green stimuli that were processed by magnocellular (MC), koniocellular (KC), and parvocellular (PC) pathways, respectively. A combined rod and melanopsin response was also measured. The relative phase of the postreceptoral signals was varied with respect to the melanopsin phase. The results showed that light adaptation behavior for all conditions was weaker than typical Weber adaptation. Melanopsin activation combined linearly with luminance, S-cone, and rod inputs, suggesting the locus of integration with MC and KC signals was retinal. The melanopsin contribution to phasic pupil responses was lower than luminance contributions, but much higher than S-cone contributions. Chromatic red-green modulation interacted with melanopsin activation nonlinearly as described by a “winner-takes-all” process, suggesting the integration with PC signals might be mediated by a postretinal site. PMID:27690169

  15. The Dendritic Cell Response to Classic, Emerging, and Homeostatic Danger Signals. Implications for Autoimmunity

    PubMed Central

    Gallo, Paul M.; Gallucci, Stefania

    2013-01-01

    Dendritic cells (DCs) initiate and control immune responses, participate in the maintenance of immunological tolerance and are pivotal players in the pathogenesis of autoimmunity. In patients with autoimmune disease and in experimental animal models of autoimmunity, DCs show abnormalities in both numbers and activation state, expressing immunogenic levels of costimulatory molecules and pro-inflammatory cytokines. Exogenous and endogenous danger signals activate DCs to stimulate the immune response. Classic endogenous danger signals are released, activated, or secreted by host cells and tissues experiencing stress, damage, and non-physiologic cell death; and are therefore referred to as damage-associated molecular patterns (DAMPs). Some DAMPs are released from cells, where they are normally sequestered, during necrosis (e.g., heat shock proteins, uric acid, ATP, HMGB1, mitochondria-derived molecules). Others are actively secreted, like Type I Interferons. Here we discuss important DAMPs in the context of autoimmunity. For some, there is a clear pathogenic link (e.g., nucleic acids and lupus). For others, there is less evidence. Additionally, we explore emerging danger signals. These include inorganic materials and man-made technologies (e.g., nanomaterials) developed as novel therapeutic approaches. Some nanomaterials can activate DCs and may trigger unintended inflammatory responses. Finally, we will review “homeostatic danger signals,” danger signals that do not derive directly from pathogens or dying cells but are associated with perturbations of tissue/cell homeostasis and may signal pathological stress. These signals, like acidosis, hypoxia, and changes in osmolarity, also play a role in inflammation and autoimmunity. PMID:23772226

  16. The yeast Sks1p kinase signaling network regulates pseudohyphal growth and glucose response.

    PubMed

    Johnson, Cole; Kweon, Hye Kyong; Sheidy, Daniel; Shively, Christian A; Mellacheruvu, Dattatreya; Nesvizhskii, Alexey I; Andrews, Philip C; Kumar, Anuj

    2014-03-01

    The yeast Saccharomyces cerevisiae undergoes a dramatic growth transition from its unicellular form to a filamentous state, marked by the formation of pseudohyphal filaments of elongated and connected cells. Yeast pseudohyphal growth is regulated by signaling pathways responsive to reductions in the availability of nitrogen and glucose, but the molecular link between pseudohyphal filamentation and glucose signaling is not fully understood. Here, we identify the glucose-responsive Sks1p kinase as a signaling protein required for pseudohyphal growth induced by nitrogen limitation and coupled nitrogen/glucose limitation. To identify the Sks1p signaling network, we applied mass spectrometry-based quantitative phosphoproteomics, profiling over 900 phosphosites for phosphorylation changes dependent upon Sks1p kinase activity. From this analysis, we report a set of novel phosphorylation sites and highlight Sks1p-dependent phosphorylation in Bud6p, Itr1p, Lrg1p, Npr3p, and Pda1p. In particular, we analyzed the Y309 and S313 phosphosites in the pyruvate dehydrogenase subunit Pda1p; these residues are required for pseudohyphal growth, and Y309A mutants exhibit phenotypes indicative of impaired aerobic respiration and decreased mitochondrial number. Epistasis studies place SKS1 downstream of the G-protein coupled receptor GPR1 and the G-protein RAS2 but upstream of or at the level of cAMP-dependent PKA. The pseudohyphal growth and glucose signaling transcription factors Flo8p, Mss11p, and Rgt1p are required to achieve wild-type SKS1 transcript levels. SKS1 is conserved, and deletion of the SKS1 ortholog SHA3 in the pathogenic fungus Candida albicans results in abnormal colony morphology. Collectively, these results identify Sks1p as an important regulator of filamentation and glucose signaling, with additional relevance towards understanding stress-responsive signaling in C. albicans.

  17. Phenological responses to climate change do not exhibit phylogenetic signal in a subalpine plant community.

    PubMed

    CaraDonna, Paul J; Inouye, David W

    2015-02-01

    Phylogenetic relationships may underlie species-specific phenological sensitivities to abiotic variation and may help to predict these responses to climate change. Although shared evolutionary history may mediate both phenology and phenological sensitivity to abiotic variation, few studies have explicitly investigated whether this is the case. We explore phylogenetic signal in flowering phenology and in phenological sensitivity to temperature and snowmelt using a 39-year record of flowering from the Colorado Rocky Mountains, USA that includes dates of first, peak, and last flowering, and flowering duration for 60 plant species in a subalpine plant community. Consistent with other studies, we found evidence in support of phylogenetic signal in first flowering date. However, the strength and significance of that signal were inconsistent across other measures of flowering in this plant community: peak flowering date exhibited the strongest phylogenetic signal, followed by first flowering date; last flowering date and duration of flowering exhibited patterns indistinguishable from random trait evolution. In contrast to first and peak flowering date, phenological sensitivities of all flowering measures to temperature and snowmelt did not exhibit a phylogenetic signal. These findings show that within ecological communities, phylogenetic signal in phenology does not necessarily imply phylogenetic signal in phenological sensitivities to abiotic variation.

  18. Single-cell E. coli response to an instantaneously applied chemotactic signal.

    PubMed

    Sagawa, Takashi; Kikuchi, Yu; Inoue, Yuichi; Takahashi, Hiroto; Muraoka, Takahiro; Kinbara, Kazushi; Ishijima, Akihiko; Fukuoka, Hajime

    2014-08-05

    In response to an attractant or repellant, an Escherichia coli cell controls the rotational direction of its flagellar motor by a chemotaxis system. When an E. coli cell senses an attractant, a reduction in the intracellular concentration of a chemotaxis protein, phosphorylated CheY (CheY-P), induces counterclockwise (CCW) rotation of the flagellar motor, and this cellular response is thought to occur in several hundred milliseconds. Here, to measure the signaling process occurring inside a single E. coli cell, including the recognition of an attractant by a receptor cluster, the inactivation of histidine kinase CheA, and the diffusion of CheY and CheY-P molecules, we applied a serine stimulus by instantaneous photorelease from a caged compound and examined the cellular response at a temporal resolution of several hundred microseconds. We quantified the clockwise (CW) and CCW durations immediately after the photorelease of serine as the response time and the duration of the response, respectively. The results showed that the response time depended on the distance between the receptor and motor, indicating that the decreased CheY-P concentration induced by serine propagates through the cytoplasm from the receptor-kinase cluster toward the motor with a timing that is explained by the diffusion of CheY and CheY-P molecules. The response time included 240 ms for enzymatic reactions in addition to the time required for diffusion of the signaling molecule. The measured response time and duration of the response also revealed that the E. coli cell senses a similar serine concentration regardless of whether the serine concentration is increasing or decreasing. These detailed quantitative findings increase our understanding of the signal transduction process that occurs inside cells during bacterial chemotaxis.

  19. Transcriptional Profiling of the Oral Pathogen Streptococcus mutans in Response to Competence Signaling Peptide XIP

    PubMed Central

    Wenderska, Iwona B.; Latos, Andrew; Pruitt, Benjamin; Palmer, Sara; Spatafora, Grace

    2017-01-01

    ABSTRACT In the cariogenic Streptococcus mutans, competence development is regulated by the ComRS signaling system comprised of the ComR regulator and the ComS prepeptide to the competence signaling peptide XIP (ComX-inducing peptide). Aside from competence development, XIP signaling has been demonstrated to regulate cell lysis, and recently, the expression of bacteriocins, small antimicrobial peptides used by bacteria to inhibit closely related species. Our study further explores the effect of XIP signaling on the S. mutans transcriptome. RNA sequencing revealed that XIP induction resulted in a global change in gene expression that was consistent with a stress response. An increase in several membrane-bound regulators, including HdrRM and BrsRM, involved in bacteriocin production, and the VicRKX system, involved in acid tolerance and biofilm formation, was observed. Furthermore, global changes in gene expression corresponded to changes observed during the stringent response to amino acid starvation. Effects were also observed on genes involved in sugar transport and carbon catabolite repression and included the levQRST and levDEFG operons. Finally, our work identified a novel heat shock-responsive intergenic region, encoding a small RNA, with a potential role in competence shutoff. IMPORTANCE Genetic competence provides bacteria with an opportunity to increase genetic diversity or acquire novel traits conferring a survival advantage. In the cariogenic pathogen Streptococcus mutans, DNA transformation is regulated by the competence stimulating peptide XIP (ComX-inducing peptide). The present study utilizes high-throughput RNA sequencing (RNAseq) to provide a greater understanding of how global gene expression patterns change in response to XIP. Overall, our work demonstrates that in S. mutans, XIP signaling induces a response that resembles the stringent response to amino acid starvation. We further identify a novel heat shock-responsive intergenic region with a

  20. Distinct immune responses of recombinant plasmid DNA replicon vaccines expressing two types of antigens with or without signal sequences.

    PubMed

    Yu, Yun-Zhou; Li, Na; Wang, Wen-Bin; Wang, Shuang; Ma, Yao; Yu, Wei-Yuan; Sun, Zhi-Wei

    2010-11-03

    Here, DNA replicon vaccines encoding the Hc domain of botulinum neurotoxin serotype A (AHc) or the receptor binding domain of anthrax protective antigen (PA4) with or without signal sequences were evaluated in mice. Strong antibody and protective responses were elicited only from AHc DNA vaccines with an Ig κ signal sequence or tissue plasminogen activator signal sequence. Meanwhile, there were no differences in total antibody responses or isotypes, lymphocyte proliferative responses, cytokine profiles and protective immune responses with the PA4 DNA vaccines with or without a signal sequence. Therefore, use of targeting sequences in designing DNA replicon vaccines depends on the specific antigen.

  1. Response of autaptic Hodgkin-Huxley neuron with noise to subthreshold sinusoidal signals

    NASA Astrophysics Data System (ADS)

    Wang, Hengtong; Chen, Yong

    2016-11-01

    In this work, we investigated the response of a stochastic Hodgkin-Huxley (HH) neuron with an autapse to subthreshold sinusoidal signals. It is found that the autapse not only adjusts the stochastic responses, but also improves the detection of subthreshold signals. In the case of weak noise, the autapse facilitates the response of neuron to the subthreshold sinusoidal signals with a small parameter region in tdelay- ω space. The increased noise intensity enlarges this parameter region and increases the corresponding response frequency in such range. As the autaptic intensity increases, however, this parameter region shrunks. We also observed that there is an optimal range of the delay time of autapse, within which the stochastic HH neuron fires action potentials with high frequency. The corresponding response spike train for the optimal delay time is nearly a regular sequence with the interspike intervals approximated to the delay time. The current results reveal a novel resonance phenomenon facilitated by autapse, named autaptic delay-induced coherence resonance.

  2. Sustained Inhibition of Proliferative Response After Transient FGF Stimulation Is Mediated by Interleukin 1 Signaling.

    PubMed

    Poole, Ashleigh; Kacer, Doreen; Cooper, Emily; Tarantini, Francesca; Prudovsky, Igor

    2016-03-01

    Transient FGF stimulation of various cell types results in FGF memory--a sustained blockage of efficient proliferative response to FGF and other growth factors. FGF memory establishment requires HDAC activity, indicating its epigenetic character. FGF treatment stimulates proinflammatory NFκB signaling, which is also critical for FGF memory formation. The search for FGF-induced mediators of FGF memory revealed that FGF stimulates HDAC-dependent expression of the inflammatory cytokine IL1α. Similarly to FGF, transient cell treatment with recombinant IL1α inhibits the proliferative response to further FGF and EGF stimulation, but does not prevent FGF receptor-mediated signaling. Interestingly, like cells pretreated with FGF1, cells pretreated with IL1α exhibit enhanced restructuring of actin cytoskeleton and increased migration in response to FGF stimulation. IRAP, a specific inhibitor of IL 1 receptor, and a neutralizing anti-IL1α antibody prevent the formation of FGF memory and rescue an efficient proliferative response to FGF restimulation. A similar effect results following treatment with the anti-inflammatory agents aspirin and dexamethasone. Thus, FGF memory is mediated by proinflammatory IL1 signaling. It may play a role in the limitation of proliferative response to tissue damage and prevention of wound-induced hyperplasia.

  3. A Step Response Based Mixed-Signal BIST Approach for Continuous-time Linear Circuits

    NASA Technical Reports Server (NTRS)

    Walker, Alvernon; Lala, P. K.

    2001-01-01

    A new Mixed-Signal Built-in self-test approach that is based upon the step response of a reconfigurable (or multifunction) analog block is presented in this paper. The technique requires the overlapping step response of the Circuit Under Test (CUT) for two circuit configurations. Each configuration can be realized by changing the topology of the CUT or by sampling two CUT nodes with differing step responses. The technique can effectively detect both soft and hard faults and does not require an analog-to-digital converter (ADC) and/or digital-to-analog converter(DAC). It also does not require any precision voltage sources or comparators. This approach does not require any additional analog circuits to realize the test signal generator and sample circuits. The paper is concluded with the application of the proposed approach to a circuit found in the work of Epstein et al and two ITC 97 analog benchmark circuits.

  4. Drug-induced death signaling strategy rapidly predicts cancer response to chemotherapy

    PubMed Central

    Montero, Joan; Sarosiek, Kristopher A.; DeAngelo, Joseph D.; Maertens, Ophélia; Ryan, Jeremy; Ercan, Dalia; Piao, Huiying; Horowitz, Neil S.; Berkowitz, Ross S.; Matulonis, Ursula; Jänne, Pasi A.; Amrein, Philip C.; Cichowski, Karen; Drapkin, Ronny; Letai, Anthony

    2015-01-01

    SUMMARY There is a lack of effective predictive biomarkers to precisely assign optimal therapy to cancer patients. While most efforts are directed at inferring drug response phenotype based on genotype, there is very focused and useful phenotypic information to be gained from directly perturbing the patient’s living cancer cell with the drug(s) in question. To satisfy this unmet need we developed the Dynamic BH3 Profiling technique to measure early changes in net pro-apoptotic signaling at the mitochondrion (‘priming’) induced by chemotherapeutic agents in cancer cells, not requiring prolonged ex vivo culture. We find in cell line and clinical experiments that early drug-induced death signaling measured by Dynamic BH3 Profiling predicts chemotherapy response across many cancer types and many agents, including combinations of chemotherapies. We propose that Dynamic BH3 Profiling can be used as a broadly applicable predictive biomarker to predict cytotoxic response of cancers to chemotherapeutics in vivo. PMID:25723171

  5. TNFα signals through specialized factories where responsive coding and miRNA genes are transcribed

    PubMed Central

    Papantonis, Argyris; Kohro, Takahide; Baboo, Sabyasachi; Larkin, Joshua D; Deng, Binwei; Short, Patrick; Tsutsumi, Shuichi; Taylor, Stephen; Kanki, Yasuharu; Kobayashi, Mika; Li, Guoliang; Poh, Huay-Mei; Ruan, Xiaoan; Aburatani, Hiroyuki; Ruan, Yijun; Kodama, Tatsuhiko; Wada, Youichiro; Cook, Peter R

    2012-01-01

    Tumour necrosis factor alpha (TNFα) is a potent cytokine that signals through nuclear factor kappa B (NFκB) to activate a subset of human genes. It is usually assumed that this involves RNA polymerases transcribing responsive genes wherever they might be in the nucleus. Using primary human endothelial cells, variants of chromosome conformation capture (including 4C and chromatin interaction analysis with paired-end tag sequencing), and fluorescence in situ hybridization to detect single nascent transcripts, we show that TNFα induces responsive genes to congregate in discrete ‘NFκB factories'. Some factories further specialize in transcribing responsive genes encoding micro-RNAs that target downregulated mRNAs. We expect all signalling pathways to contain this extra leg, where responding genes are transcribed in analogous specialized factories. PMID:23103767

  6. Two spatially and temporally distinct Ca(2+) signals convey Arabidopsis thaliana responses to K(+) deficiency.

    PubMed

    Behera, Smrutisanjita; Long, Yu; Schmitz-Thom, Ina; Wang, Xue-Ping; Zhang, Chunxia; Li, Hong; Steinhorst, Leonie; Manishankar, Prabha; Ren, Xiao-Ling; Offenborn, Jan Niklas; Wu, Wei-Hua; Kudla, Jörg; Wang, Yi

    2017-01-01

    In plants, potassium (K(+) ) homeostasis is tightly regulated and established against a concentration gradient to the environment. Despite the identification of Ca(2+) -regulated kinases as modulators of K(+) channels, the immediate signaling and adaptation mechanisms of plants to low-K(+) conditions are only partially understood. To assess the occurrence and role of Ca(2+) signals in Arabidopsis thaliana roots, we employed ratiometric analyses of Ca(2+) dynamics in plants expressing the Ca(2+) reporter YC3.6 in combination with patch-clamp analyses of root cells and two-electrode voltage clamp (TEVC) analyses in Xenopus laevis oocytes. K(+) deficiency triggers two successive and distinct Ca(2+) signals in roots exhibiting spatial and temporal specificity. A transient primary Ca(2+) signature arose within 1 min in the postmeristematic stelar tissue of the elongation zone, while a secondary Ca(2+) response occurred after several hours as sustained Ca(2+) elevation in defined tissues of the elongation and root hair differentiation zones. Patch-clamp and TEVC analyses revealed Ca(2+) dependence of the activation of the K(+) channel AKT1 by the CBL1-CIPK23 Ca(2+) sensor-kinase complex. Together, these findings identify a critical role of cell group-specific Ca(2+) signaling in low K(+) responses and indicate an essential and direct role of Ca(2+) signals for AKT1 K(+) channel activation in roots.

  7. Dopaminergic signaling mediates the motivational response underlying the opponent process to chronic but not acute nicotine.

    PubMed

    Grieder, Taryn E; Sellings, Laurie H; Vargas-Perez, Hector; Ting-A-Kee, Ryan; Siu, Eric C; Tyndale, Rachel F; van der Kooy, Derek

    2010-03-01

    The mesolimbic dopamine (DA) system is implicated in the processing of the positive reinforcing effect of all drugs of abuse, including nicotine. It has been suggested that the dopaminergic system is also involved in the aversive motivational response to drug withdrawal, particularly for opiates, however, the role for dopaminergic signaling in the processing of the negative motivational properties of nicotine withdrawal is largely unknown. We hypothesized that signaling at dopaminergic receptors mediates chronic nicotine withdrawal aversions and that dopaminergic signaling would differentially mediate acute vs dependent nicotine motivation. We report that nicotine-dependent rats and mice showed conditioned place aversions to an environment paired with abstinence from chronic nicotine that were blocked by the DA receptor antagonist alpha-flupenthixol (alpha-flu) and in DA D(2) receptor knockout mice. Conversely, alpha-flu pretreatment had no effect on preferences for an environment paired with abstinence from acute nicotine. Taken together, these results suggest that dopaminergic signaling is necessary for the opponent motivational response to nicotine in dependent, but not non-dependent, rodents. Further, signaling at the DA D(2) receptor is critical in mediating withdrawal aversions in nicotine-dependent animals. We suggest that the alleviation of nicotine withdrawal primarily may be driving nicotine motivation in dependent animals.

  8. Uranium perturbs signaling and iron uptake response in Arabidopsis thaliana roots.

    PubMed

    Doustaly, Fany; Combes, Florence; Fiévet, Julie B; Berthet, Serge; Hugouvieux, Véronique; Bastien, Olivier; Aranjuelo, Iker; Leonhardt, Nathalie; Rivasseau, Corinne; Carrière, Marie; Vavasseur, Alain; Renou, Jean-Pierre; Vandenbrouck, Yves; Bourguignon, Jacques

    2014-04-01

    Uranium is a natural element which is mainly redistributed in the environment due to human activity, including accidents and spillages. Plants may be useful in cleaning up after incidents, although little is yet known about the relationship between metal speciation and plant response. Here, J-Chess modeling was used to predict U speciation and exposure conditions affecting U bioavailability for plants. The model was confirmed by exposing Arabidopsis thaliana plants to U under hydroponic conditions. The early root response was characterized using complete Arabidopsis transcriptome microarrays (CATMA). Expression of 111 genes was modified at the three timepoints studied. The associated biological processes were further examined by real-time quantitative RT-PCR. Annotation revealed that oxidative stress, cell wall and hormone biosynthesis, and signaling pathways (including phosphate signaling) were affected by U exposure. The main actors in iron uptake and signaling (IRT1, FRO2, AHA2, AHA7 and FIT1) were strongly down-regulated upon exposure to uranyl. A network calculated using IRT1, FRO2 and FIT1 as bait revealed a set of genes whose expression levels change under U stress. Hypotheses are presented to explain how U perturbs the iron uptake and signaling response. These results give preliminary insights into the pathways affected by uranyl uptake, which will be of interest for engineering plants to help clean areas contaminated with U.

  9. Metabotropic glutamate receptor-mediated signaling dampens the HPA axis response to restraint stress.

    PubMed

    Evanson, Nathan K; Herman, James P

    2015-10-15

    Glutamate is an important neurotransmitter in the regulation of the neural portion of hypothalamus-pituitary-adrenal (HPA) axis activity, and signals through ionotropic and metabotropic receptors. In the current studies we investigated the role of hypothalamic paraventricular group I metabotropic glutamate receptors in the regulation of the HPA axis response to restraint stress in rats. Direct injection of the group I metabotropic glutamate receptor agonist 3,5-dihydroxyphenylglycine (DHPG) into the PVN prior to restraint leads to blunting of the HPA axis response in awake animals. Consistent with this result, infusion of the group I receptor antagonist hexyl-homoibotenic acid (HIBO) potentiates the HPA axis response to restraint. The excitatory effect of blocking paraventricular group I metabotropic glutamate signaling is blocked by co-administration of dexamethasone into the PVN. However, the inhibitory effect of DHPG is not affected by co-administration of the cannabinoid CB1 receptor antagonist AM-251 into the PVN. Together, these results suggest that paraventricular group I metabotropic glutamate receptor signaling acts to dampen HPA axis reactivity. This effect appears to be similar to the rapid inhibitory effect of glucocorticoids at the PVN, but is not mediated by endocannabinoid signaling.

  10. Target of Rapamycin (TOR) Regulates Growth in Response to Nutritional Signals.

    PubMed

    Weisman, Ronit

    2016-10-01

    All organisms can respond to the availability of nutrients by regulating their metabolism, growth, and cell division. Central to the regulation of growth in response to nutrient availability is the target of rapamycin (TOR) signaling that is composed of two structurally distinct complexes: TOR complex 1 (TORC1) and TOR complex 2 (TORC2). The TOR genes were first identified in yeast as target of rapamycin, a natural product of a soil bacterium, which proved beneficial as an immunosuppressive and anticancer drug and is currently being tested for a handful of other pathological conditions including diabetes, neurodegeneration, and age-related diseases. Studies of the TOR pathway unraveled a complex growth-regulating network. TOR regulates nutrient uptake, transcription, protein synthesis and degradation, as well as metabolic pathways, in a coordinated manner that ensures that cells grow or cease growth in response to nutrient availability. The identification of specific signals and mechanisms that stimulate TOR signaling is an active and exciting field of research that has already identified nitrogen and amino acids as key regulators of TORC1 activity. The signals, as well as the cellular functions of TORC2, are far less well understood. Additional open questions in the field concern the relationships between TORC1 and TORC2, as well as the links with other nutrient-responsive pathways. Here I review the main features of TORC1 and TORC2, with a particular focus on yeasts as model organisms.

  11. WRKY Proteins: Signaling and Regulation of Expression during Abiotic Stress Responses

    PubMed Central

    Banerjee, Aditya

    2015-01-01

    WRKY proteins are emerging players in plant signaling and have been thoroughly reported to play important roles in plants under biotic stress like pathogen attack. However, recent advances in this field do reveal the enormous significance of these proteins in eliciting responses induced by abiotic stresses. WRKY proteins act as major transcription factors, either as positive or negative regulators. Specific WRKY factors which help in the expression of a cluster of stress-responsive genes are being targeted and genetically modified to induce improved abiotic stress tolerance in plants. The knowledge regarding the signaling cascade leading to the activation of the WRKY proteins, their interaction with other proteins of the signaling pathway, and the downstream genes activated by them are altogether vital for justified targeting of the WRKY genes. WRKY proteins have also been considered to generate tolerance against multiple abiotic stresses with possible roles in mediating a cross talk between abiotic and biotic stress responses. In this review, we have reckoned the diverse signaling pattern and biological functions of WRKY proteins throughout the plant kingdom along with the growing prospects in this field of research. PMID:25879071

  12. Visible light communications using predistortion signal to enhance the response of passive optical receiver

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Chen, Hung-Yu; Liang, Kevin; Wei, Liang-Yu; Chow, Chi-Wai; Yeh, Chien-Hung

    2016-01-01

    Traditional visible light communication (VLC) uses positive-intrinsic-negative photodiode (PD) or avalanche PD as the optical receivers (Rx). We demonstrate using a solar cell as the VLC Rx. The solar cell is flexible and low cost and converts the optical signal into an electrical signal directly without the need of external power supply. In addition to acting as the VLC passive Rx, the converted electrical signal from the solar cell can charge up the battery of the Rx nodes. Hence, the proposed scheme can be a promising candidate for the future Internet of Things network. However, a solar cell acting as a VLC Rx is very challenging, since the response of the solar cell is limited. Here, we propose and demonstrate using predistortion to significantly enhance the solar cell Rx response for the first time up to the authors' knowledge. Experimental results show that the response of the solar cell Rx is significantly enhanced; and the original 2-kHz detection bandwidth of the solar cell can be enhanced by 250 times for receiving 500-kbit/s VLC signal at a transmission distance of 1 m. The operation principle, the generated voltage by the solar cell, and the maximum data rates achieved at different transmission distances are also studied.

  13. Guanabenz Downregulates Inflammatory Responses via eIF2α Dependent and Independent Signaling

    PubMed Central

    Takigawa, Shinya; Chen, Andy; Nishimura, Akinobu; Liu, Shengzhi; Li, Bai-Yan; Sudo, Akihiro; Yokota, Hiroki; Hamamura, Kazunori

    2016-01-01

    Integrated stress responses (ISR) may lead to cell death and tissue degeneration via eukaryotic translation initiation factor 2 α (eIF2α)-mediated signaling. Alleviating ISR by modulating eIF2α phosphorylation can reduce the symptoms associated with various diseases. Guanabenz is known to elevate the phosphorylation level of eIF2α and reduce pro-inflammatory responses. However, the mechanism of its action is not well understood. In this study, we investigated the signaling pathway through which guanabenz induces anti-inflammatory effects in immune cells, in particular macrophages. Genome-wide mRNA profiling followed by principal component analysis predicted that colony stimulating factor 2 (Csf2, or GM-CSF as granulocyte macrophage colony stimulating factor) is involved in the responses to guanabenz. A partial silencing of Csf2 or eIF2α by RNA interference revealed that Interleukin-6 (IL6), Csf2, and Cyclooxygenase-2 (Cox2) are downregulated by guanabenz-driven phosphorylation of eIF2α. Although expression of IL1β and Tumor Necrosis Factor-α (TNFα) was suppressed by guanabenz, their downregulation was not directly mediated by eIF2α signaling. Collectively, the result herein indicates that anti-inflammatory effects by guanabenz are mediated by not only eIF2α-dependent but also eIF2α-independent signaling. PMID:27164082

  14. Immune signaling pathways activated in response to different pathogenic micro-organisms in Bombyx mori.

    PubMed

    Liu, Wei; Liu, Jiabin; Lu, Yahong; Gong, Yongchang; Zhu, Min; Chen, Fei; Liang, Zi; Zhu, Liyuan; Kuang, Sulan; Hu, Xiaolong; Cao, Guangli; Xue, Renyu; Gong, Chengliang

    2015-06-01

    The JAK/STAT, Toll, Imd, and RNAi pathways are the major signaling pathways associated with insect innate immunity. To explore the different immune signaling pathways triggered in response to pathogenic micro-organism infections in the silkworm, Bombyx mori, the expression levels of the signal transducer and activator of transcription (BmSTAT), spatzle-1 (Bmspz-1), peptidoglycan-recognition protein LB (BmPGRP-LB), peptidoglycan-recognition protein LE (BmPGRP-LE), argonaute 2 (Bmago2), and dicer-2 (Bmdcr2) genes after challenge with Escherichia coli (E. coli), Serratiamarcescens (Sm), Bacillus bombyseptieus (Bab), Beauveriabassiana (Beb), nucleopolyhedrovirus (BmNPV), cypovirus (BmCPV), bidensovirus (BmBDV), or Nosemabombycis (Nb) were determined using real-time PCR. We found that the JAK/STAT pathway could be activated by challenge with BmNPV and BmBDV, the Toll pathway could be most robustly induced by challenge with Beb, the Imd pathway was mainly activated in response to infection by E. coli and Sm, and the RNAi pathway was not activated by viral infection, but could be triggered by some bacterial infections. These findings yield insights into the immune signaling pathways activated in response to different pathogenic micro-organisms in the silkworm.

  15. Plant responses to insect herbivory: interactions between photosynthesis, reactive oxygen species and hormonal signalling pathways.

    PubMed

    Kerchev, Pavel I; Fenton, Brian; Foyer, Christine H; Hancock, Robert D

    2012-02-01

    Under herbivore attack plants mount a defence response characterized by the accumulation of secondary metabolites and inhibitory proteins. Significant changes are observed in the transcriptional profiles of genes encoding enzymes of primary metabolism. Such changes have often been interpreted in terms of a requirement for an increased investment of resources to 'fuel' the synthesis of secondary metabolites. While enhanced secondary metabolism undoubtedly exerts an influence on primary metabolism, accumulating evidence suggests that rather than stimulating photosynthesis insect herbivory reduces photosynthetic carbon fixation and this response occurs by a re-programming of gene expression. Within this context, reactive oxygen species (ROS) and reductant/oxidant (redox) signalling play a central role. Accumulating evidence suggests that ROS signalling pathways are closely interwoven with hormone-signalling pathways in plant-insect interactions. Here we consider how insect infestation impacts on the stress signalling network through effects on ROS and cellular redox metabolism with particular emphasis on the roles of ROS in the plant responses to phloem-feeding insects.

  16. Influence of intermediate aminodextran layers on the signal response of surface acoustic wave biosensors.

    PubMed

    Länge, Kerstin; Rapp, Michael

    2008-06-15

    Surface acoustic wave (SAW) devices based on horizontally polarized surface shear waves enable direct and label-free detection of proteins in real time. Binding reactions on the sensor surface are detected by determining changes in surface wave velocity caused mainly by mass adsorption or change of viscoelasticity in the sensing layer. Intermediate hydrogel layers have been proven to be useful to immobilize capture molecules or ligands corresponding to the analyte. However, the SAW signal response strongly depends on the morphology of the hydrogel due to different relative changes of its acoustomechanical parameters such as viscoelasticity and density. In this work five aminodextrans (AMD) and one diamino polyethylene glycol (DA-PEG) were used as intermediate hydrogel layers. Sensors with immobilized streptavidin and samples containing biotinylated bovine serum albumin were used to exemplify affinity assays based on immobilized capture molecules for protein detection. The effects of the three-dimensional AMDs and the two-dimensional (2D) DA-PEG on the SAW signal response were investigated. The signal height decreased with increasing molar mass and increasing amount of immobilized AMD. Consequently, thin hydrogel layers are ideal to obtain optimum signal responses in this type of assay, whereas it is not necessarily a 2D hydrogel that gives the best results.

  17. fNIRS derived hemodynamic signals and electrodermal responses in a sequential risk-taking task.

    PubMed

    Holper, Lisa; ten Brincke, Robert H W; Wolf, Martin; Murphy, Ryan O

    2014-04-04

    The study measured cortical hemodynamic signals and peripheral correlates of decision makers during a dynamic risky task, the Just One More task (JOM), in which the risky decision entails choosing whether to incrementally increase accumulated earnings at the risk of ruin (going bust ending up with nothing). Twenty subjects participated in multiple instantiations of this task in which the probability of ruin and size of the stakes varied. Physiological correlates were simultaneously quantified by functional near-infrared spectroscopy (fNIRS) over dorsolateral prefrontal cortex (DLPFC) and electrodermal activity (EDA). First, in the task decision phase (i.e., when subjects are contemplating options before making a choice) probability of ruin had a dissociating effect on fNIRS and EDA. fNIRS derived DLPFC hemodynamic signals reflected a subjective value signal, correlating positively with individual risk attitude. Contrary, EDA reflected the probability of ruin in terms of a common affective measure, irrespective of individuals׳ risk attitude. Second, during the task outcome phase (i.e., the time after subjects have made a choice and observed the outcomes) fNIRS and EDA revealed opposite patterns. While fNIRS derived DLPFC hemodynamic signals were larger in response to gains, EDA signals were larger in response to losses; both patterns were statistically independent of individual risk attitude. Lastly, fNIRS derived DLPFC hemodynamic signals in the decision phase correlated positively with the mean round earnings, providing a measure of the quality of the individual decision-making performance. Together with the positive correlation with individual risk attitude, our findings indicate that fNIRS signals, but not EDA, could be taken as a useful method for studying individual risk attitude and task performance in dynamic risky decision-making.

  18. Chloroplasts extend stromules independently and in response to internal redox signals.

    PubMed

    Brunkard, Jacob O; Runkel, Anne M; Zambryski, Patricia C

    2015-08-11

    A fundamental mystery of plant cell biology is the occurrence of "stromules," stroma-filled tubular extensions from plastids (such as chloroplasts) that are universally observed in plants but whose functions are, in effect, completely unknown. One prevalent hypothesis is that stromules exchange signals or metabolites between plastids and other subcellular compartments, and that stromules are induced during stress. Until now, no signaling mechanisms originating within the plastid have been identified that regulate stromule activity, a critical missing link in this hypothesis. Using confocal and superresolution 3D microscopy, we have shown that stromules form in response to light-sensitive redox signals within the chloroplast. Stromule frequency increased during the day or after treatment with chemicals that produce reactive oxygen species specifically in the chloroplast. Silencing expression of the chloroplast NADPH-dependent thioredoxin reductase, a central hub in chloroplast redox signaling pathways, increased chloroplast stromule frequency, whereas silencing expression of nuclear genes related to plastid genome expression and tetrapyrrole biosynthesis had no impact on stromules. Leucoplasts, which are not photosynthetic, also made more stromules in the daytime. Leucoplasts did not respond to the same redox signaling pathway but instead increased stromule formation when exposed to sucrose, a major product of photosynthesis, although sucrose has no impact on chloroplast stromule frequency. Thus, different types of plastids make stromules in response to distinct signals. Finally, isolated chloroplasts could make stromules independently after extraction from the cytoplasm, suggesting that chloroplast-associated factors are sufficient to generate stromules. These discoveries demonstrate that chloroplasts are remarkably autonomous organelles that alter their stromule frequency in reaction to internal signal transduction pathways.

  19. Phylogeny of Toll-Like Receptor Signaling: Adapting the Innate Response

    PubMed Central

    Roach, Jeffrey M.; Racioppi, Luigi; Jones, Corbin D.; Masci, Anna Maria

    2013-01-01

    The Toll-like receptors represent a largely evolutionarily conserved pathogen recognition machinery responsible for recognition of bacterial, fungal, protozoan, and viral pathogen associated microbial patterns and initiation of inflammatory response. Structurally the Toll-like receptors are comprised of an extracellular leucine rich repeat domain and a cytoplasmic Toll/Interleukin 1 receptor domain. Recognition takes place in the extracellular domain where as the cytoplasmic domain triggers a complex signal network required to sustain appropriate immune response. Signal transduction is regulated by the recruitment of different intracellular adaptors. The Toll-like receptors can be grouped depending on the usage of the adaptor, MyD88, into MyD88-dependent and MyD88 independent subsets. Herein, we present a unique phylogenetic analysis of domain regions of these receptors and their cognate signaling adaptor molecules. Although previously unclear from the phylogeny of full length receptors, these analyses indicate a separate evolutionary origin for the MyD88-dependent and MyD88-independent signaling pathway and provide evidence of a common ancestor for the vertebrate and invertebrate orthologs of the adaptor molecule MyD88. Together these observations suggest a very ancient origin of the MyD88-dependent pathway Additionally we show that early duplications gave rise to several adaptor molecule families. In some cases there is also strong pattern of parallel duplication between adaptor molecules and their corresponding TLR. Our results further support the hypothesis that phylogeny of specific domains involved in signaling pathway can shed light on key processes that link innate to adaptive immune response. PMID:23326591

  20. Identifying the Ion Channels Responsible for Signaling Gastro-Intestinal Based Pain

    PubMed Central

    Brierley, Stuart M.; Hughes, Patrick A.; Harrington, Andrea M.; Rychkov, Grigori Y.; Blackshaw, L. Ashley

    2010-01-01

    We are normally unaware of the complex signalling events which continuously occur within our internal organs. Most of us only become cognisant when sensations of hunger, fullness, urgency or gas arise. However, for patients with organic and functional bowel disorders pain is an unpleasant and often debilitating reminder. Furthermore, chronic pain still represents a large unmet need for clinical treatment. Consequently, chronic pain has a considerable economic impact on health care systems and the afflicted individuals. In order to address this need we must understand how symptoms are generated within the gut, the molecular pathways responsible for generating these signals and how this process changes in disease states. PMID:27713376

  1. Leukotriene E4 is a full functional agonist for human cysteinyl leukotriene type 1 receptor-dependent gene expression

    PubMed Central

    Foster, Holly R.; Fuerst, Elisabeth; Branchett, William; Lee, Tak H.; Cousins, David J.; Woszczek, Grzegorz

    2016-01-01

    Leukotriene E4 (LTE4) the most stable of the cysteinyl leukotrienes (cysLTs) binds poorly to classical type 1 (CysLT1) and 2 (CysLT2) receptors although it induces potent responses in human airways in vivo, such as bronchoconstriction, airway hyperresponsiveness and inflammatory cell influx suggesting the presence of a novel receptor that preferentially responds to LTE4. To identify such a receptor two human mast cell lines, LAD2 and LUVA, were selected that differentially responded to LTE4 when analysed by intracellular signalling and gene expression. Comparative transcriptome analysis and recombinant gene overexpression experiments revealed CysLT1 as a receptor responsible for potent LTE4-induced response in LAD2 but not in LUVA cells, an observation confirmed further by gene knockdown and selective inhibitors. Lentiviral overexpression of CysLT1 in LUVA cells augmented intracellular calcium signalling induced by LTE4 but did not restore full agonist responses at the gene expression level. Our data support a model where both an increased expression of Gαq-coupled CysLT1, and sustained intracellular calcium mobilisation and extracellular signal-regulated kinase (Erk) activation, are required for LTE4-mediated regulation of gene expression in human cells. Our study shows for the first time that CysLT1 expression is critically important for responsiveness to LTE4 within a human cell system. PMID:26830450

  2. Role of Paraventricular Nucleus Glutamate Signaling in Regulation of HPA Axis Stress Responses.

    PubMed

    Evanson, Nathan K; Herman, James P

    The hypothalamus-pituitary-adrenal (HPA) axis is the main neuroendocrine arm of the stress response, activation of which leads to the production of glucocorticoid hormones. Glucocorticoids are steroid hormones that are secreted from the adrenal cortex, and have a variety of effects on the body, including modulation of the immune system, suppression of reproductive hormones maintenance of blood glucose levels, and maintenance of blood pressure. Glutamate plays an important role in coordination of HPA axis output. There is strong evidence that glutamate drives HPA axis stress responses through excitatory signaling via ionotropic glutamate receptor signaling. However, glutamate signaling via kainate receptors and group I metabotropic receptors inhibit HPA drive, probably via presynaptic inhibitory mechanisms. Notably, kainate receptors are also localized in the median eminence, and appear to play an excitatory role in control of CRH release at the nerve terminals. Finally, glutamate innervation of the PVN undergoes neuroplastic changes under conditions of chronic stress, and may be involved in sensitization of HPA axis responses. Altogether, the data suggest that glutamate plays a complex role in excitation of CRH neurons, acting at multiple levels to both drive HPA axis responses and limit over-activation.

  3. RIG-I Signaling Is Critical for Efficient Polyfunctional T Cell Responses during Influenza Virus Infection

    PubMed Central

    Kandasamy, Matheswaran; Suryawanshi, Amol; Tundup, Smanla; Perez, Jasmine T.; Schmolke, Mirco; Manicassamy, Santhakumar; Manicassamy, Balaji

    2016-01-01

    Retinoic acid inducible gene-I (RIG-I) is an innate RNA sensor that recognizes the influenza A virus (IAV) RNA genome and activates antiviral host responses. Here, we demonstrate that RIG-I signaling plays a crucial role in restricting IAV tropism and regulating host immune responses. Mice deficient in the RIG-I-MAVS pathway show defects in migratory dendritic cell (DC) activation, viral antigen presentation, and priming of CD8+ and CD4+ T cell responses during IAV infection. These defects result in decreased frequency of polyfunctional effector T cells and lowered protection against heterologous IAV challenge. In addition, our data show that RIG-I activation is essential for protecting epithelial cells and hematopoietic cells from IAV infection. These diverse effects of RIG-I signaling are likely imparted by the actions of type I interferon (IFN), as addition of exogenous type I IFN is sufficient to overcome the defects in antigen presentation by RIG-I deficient BMDC. Moreover, the in vivo T cell defects in RIG-I deficient mice can be overcome by the activation of MDA5 –MAVS via poly I:C treatment. Taken together, these findings demonstrate that RIG-I signaling through MAVS is critical for determining the quality of polyfunctional T cell responses against IAV and for providing protection against subsequent infection from heterologous or novel pandemic IAV strains. PMID:27438481

  4. The nexus between growth and defence signalling: auxin and cytokinin modulate plant immune response pathways.

    PubMed

    Naseem, Muhammad; Kaltdorf, Martin; Dandekar, Thomas

    2015-08-01

    Plants deploy a finely tuned balance between growth and defence responses for better fitness. Crosstalk between defence signalling hormones such as salicylic acid (SA) and jasmonates (JAs) as well as growth regulators plays a significant role in mediating the trade-off between growth and defence in plants. Here, we specifically discuss how the mutual antagonism between the signalling of auxin and SA impacts on plant growth and defence. Furthermore, the synergism between auxin and JA benefits a class of plant pathogens. JA signalling also poses growth cuts through auxin. We discuss how the effect of cytokinins (CKs) is multifaceted and is effective against a broad range of pathogens in mediating immunity. The synergism between CKs and SA promotes defence against biotrophs. Reciprocally, SA inhibits CK-mediated growth responses. Recent reports show that CKs promote JA responses; however, in a feedback loop, JA suppresses CK responses. We also highlight crosstalk between auxin and CKs and discuss their antagonistic effects on plant immunity. Efforts to minimize the negative effects of auxin on immunity and a reduction in SA- and JA-mediated growth losses should lead to better sustainable plant protection strategies.

  5. RIG-I Signaling Is Critical for Efficient Polyfunctional T Cell Responses during Influenza Virus Infection.

    PubMed

    Kandasamy, Matheswaran; Suryawanshi, Amol; Tundup, Smanla; Perez, Jasmine T; Schmolke, Mirco; Manicassamy, Santhakumar; Manicassamy, Balaji

    2016-07-01

    Retinoic acid inducible gene-I (RIG-I) is an innate RNA sensor that recognizes the influenza A virus (IAV) RNA genome and activates antiviral host responses. Here, we demonstrate that RIG-I signaling plays a crucial role in restricting IAV tropism and regulating host immune responses. Mice deficient in the RIG-I-MAVS pathway show defects in migratory dendritic cell (DC) activation, viral antigen presentation, and priming of CD8+ and CD4+ T cell responses during IAV infection. These defects result in decreased frequency of polyfunctional effector T cells and lowered protection against heterologous IAV challenge. In addition, our data show that RIG-I activation is essential for protecting epithelial cells and hematopoietic cells from IAV infection. These diverse effects of RIG-I signaling are likely imparted by the actions of type I interferon (IFN), as addition of exogenous type I IFN is sufficient to overcome the defects in antigen presentation by RIG-I deficient BMDC. Moreover, the in vivo T cell defects in RIG-I deficient mice can be overcome by the activation of MDA5 -MAVS via poly I:C treatment. Taken together, these findings demonstrate that RIG-I signaling through MAVS is critical for determining the quality of polyfunctional T cell responses against IAV and for providing protection against subsequent infection from heterologous or novel pandemic IAV strains.

  6. Response of plasmonic terahertz detector to large signals: theory and experiment

    NASA Astrophysics Data System (ADS)

    Rudin, S.; Rupper, G.; Gutin, A.; Shur, M.

    2013-05-01

    In the Dyakonov-Shur terahertz (THz) detector, nonlinearities in the plasma wave propagation in the conduction channel of a heterostructure High Electron Mobility Transistor (HEMT) lead to a constant source-to-drain voltage providing the detector output. For a small signal, the perturbation theory treatment shows that the response is proportional to the intensity of the radiation. The proportionality factor can have a resonant or a broad dependence on the signal frequency. For submicron HEMTs, the typical measured response falls within the range of 0.1 to 4.5 THz. The deviations from this relation have been studied and reported in the approximation of the local Ohm's law and transmission line model for the non-resonant response. Here we present the results obtained with the hydrodynamic model using the electron plasma Navier-Stokes equation, thus fully accounting for the hydrodynamic non-linearity, the viscosity and pressure gradients in the detector response. The model is applicable to both resonant and broadband operations of the HEMT based plasmonic detectors. The relation between the electron channel density and gate voltage was modeled by the unified charge control model applicable both above and below the threshold voltage. The theoretical results are compared with the response measured in the short channel InGaAs HEMT and the analytical approximation. The THz source was operating at 1.63 THz and the response was measured at varying signal intensities. The response of the detector operated in the open drain mode was measured above and below the threshold. The theoretical and experimental results are in good agreement.

  7. Glucose, nitrogen, and phosphate repletion in Saccharomyces cerevisiae: common transcriptional responses to different nutrient signals.

    PubMed

    Conway, Michael K; Grunwald, Douglas; Heideman, Warren

    2012-09-01

    Saccharomyces cerevisiae are able to control growth in response to changes in nutrient availability. The limitation for single macronutrients, including nitrogen (N) and phosphate (P), produces stable arrest in G1/G0. Restoration of the limiting nutrient quickly restores growth. It has been shown that glucose (G) depletion/repletion very rapidly alters the levels of more than 2000 transcripts by at least 2-fold, a large portion of which are involved with either protein production in growth or stress responses in starvation. Although the signals generated by G, N, and P are thought to be quite distinct, we tested the hypothesis that depletion and repletion of any of these three nutrients would affect a common core set of genes as part of a generalized response to conditions that promote growth and quiescence. We found that the response to depletion of G, N, or P produced similar quiescent states with largely similar transcriptomes. As we predicted, repletion of each of the nutrients G, N, or P induced a large (501) common core set of genes and repressed a large (616) common gene set. Each nutrient also produced nutrient-specific transcript changes. The transcriptional responses to each of the three nutrients depended on cAMP and, to a lesser extent, the TOR pathway. All three nutrients stimulated cAMP production within minutes of repletion, and artificially increasing cAMP levels was sufficient to replicate much of the core transcriptional response. The recently identified transceptors Gap1, Mep1, Mep2, and Mep3, as well as Pho84, all played some role in the core transcriptional responses to N or P. As expected, we found some evidence of cross talk between nutrient signals, yet each nutrient sends distinct signals.

  8. Model-based synthesis of locally contingent responses to global market signals

    NASA Astrophysics Data System (ADS)

    Magliocca, N. R.

    2015-12-01

    Rural livelihoods and the land systems on which they depend are increasingly influenced by distant markets through economic globalization. Place-based analyses of land and livelihood system sustainability must then consider both proximate and distant influences on local decision-making. Thus, advancing land change theory in the context of economic globalization calls for a systematic understanding of the general processes as well as local contingencies shaping local responses to global signals. Synthesis of insights from place-based case studies of land and livelihood change is a path forward for developing such systematic knowledge. This paper introduces a model-based synthesis approach to investigating the influence of local socio-environmental and agent-level factors in mediating land-use and livelihood responses to changing global market signals. A generalized agent-based modeling framework is applied to six case-study sites that differ in environmental conditions, market access and influence, and livelihood settings. The largest modeled land conversions and livelihood transitions to market-oriented production occurred in sties with relatively productive agricultural land and/or with limited livelihood options. Experimental shifts in the distributions of agents' risk tolerances generally acted to attenuate or amplify responses to changes in global market signals. Importantly, however, responses of agents at different points in the risk tolerance distribution varied widely, with the wealth gap growing wider between agents with higher or lower risk tolerance. These results demonstrate model-based synthesis is a promising approach to overcome many of the challenges of current synthesis methods in land change science, and to identify generalized as well as locally contingent responses to global market signals.

  9. Systemic and Local Responses to Repeated HL Stress-Induced Retrograde Signaling in Arabidopsis

    PubMed Central

    Gordon, Matthew J.; Carmody, Melanie; Albrecht, Verónica; Pogson, Barry

    2013-01-01

    Chloroplasts of leaves under high light stress initiate signals to the nuclei of both exposed and distal leaves in order to acclimate against the potential threat of oxidative damage: a process known as high light systemic acquired acclimation (HL SAA). This study explores the nature of HL SAA, synergistic interactions with other environmental stresses, and the impact of repeated HL stress on the acclimation response of exposed and distal leaves. This necessitated the development of novel experimental systems to investigate the initiation, perception, and response to HL SAA. These systems were used to investigate the HL SAA response by monitoring the induction of mRNA in distal leaves not exposed to the HL stress. Acclimation to HL is induced within minutes and the response is proportionally dependent on the quality and quantity of light. HL SAA treatments in conjunction with variations in temperature and humidity reveal HL SAA is influenced by fluctuations in humidity. These treatments also result in changes in auxin accumulation and auxin-responsive genes. A key question in retrograde signaling is the extent to which transient changes in light intensity result in a “memory” of the event leading to acclimation responses. Repeated exposure to short term HL resulted in acclimation of the exposed tissue and that of emerging and young leaves (but not older leaves) to HL and oxidative stress. PMID:23335929

  10. Systemic and Local Responses to Repeated HL Stress-Induced Retrograde Signaling in Arabidopsis.

    PubMed

    Gordon, Matthew J; Carmody, Melanie; Albrecht, Verónica; Pogson, Barry

    2012-01-01

    CHLOROPLASTS OF LEAVES UNDER HIGH LIGHT STRESS INITIATE SIGNALS TO THE NUCLEI OF BOTH EXPOSED AND DISTAL LEAVES IN ORDER TO ACCLIMATE AGAINST THE POTENTIAL THREAT OF OXIDATIVE DAMAGE: a process known as high light systemic acquired acclimation (HL SAA). This study explores the nature of HL SAA, synergistic interactions with other environmental stresses, and the impact of repeated HL stress on the acclimation response of exposed and distal leaves. This necessitated the development of novel experimental systems to investigate the initiation, perception, and response to HL SAA. These systems were used to investigate the HL SAA response by monitoring the induction of mRNA in distal leaves not exposed to the HL stress. Acclimation to HL is induced within minutes and the response is proportionally dependent on the quality and quantity of light. HL SAA treatments in conjunction with variations in temperature and humidity reveal HL SAA is influenced by fluctuations in humidity. These treatments also result in changes in auxin accumulation and auxin-responsive genes. A key question in retrograde signaling is the extent to which transient changes in light intensity result in a "memory" of the event leading to acclimation responses. Repeated exposure to short term HL resulted in acclimation of the exposed tissue and that of emerging and young leaves (but not older leaves) to HL and oxidative stress.

  11. Auditory Responses in the Barn Owl's Nucleus Laminaris to Clicks: Impulse Response and Signal Analysis of Neurophonic Potential

    PubMed Central

    Wagner, Hermann; Brill, Sandra; Kempter, Richard; Carr, Catherine E.

    2009-01-01

    We used acoustic clicks to study the impulse response of the neurophonic potential in the barn owl's nucleus laminaris. Clicks evoked a complex oscillatory neural response with a component that reflected the best frequency measured with tonal stimuli. The envelope of this component was obtained from the analytic signal created using the Hilbert transform. The time courses of the envelope and carrier waveforms were characterized by fitting them with filters. The envelope was better fitted with a Gaussian than with the envelope of a gamma-tone function. The carrier was better fitted with a frequency glide than with a constant instantaneous frequency. The change of the instantaneous frequency with time was better fitted with a linear fit than with a saturating nonlinearity. Frequency glides had not been observed in the bird's auditory system before. The glides were similar to those observed in the mammalian auditory nerve. Response amplitude, group delay, frequency, and phase depended in a systematic way on click level. In most cases, response amplitude decreased linearly as stimulus level decreased, while group delay, phase, and frequency increased linearly as level decreased. Thus the impulse response of the neurophonic potential in the nucleus laminaris of barn owls reflects many characteristics also observed in responses of the basilar membrane and auditory nerve in mammals. PMID:19535487

  12. Jasmonates: An Update on Biosynthesis, Signal Transduction and Action in Plant Stress Response, Growth and Development

    PubMed Central

    Wasternack, C.

    2007-01-01

    Background Jasmonates are ubiquitously occurring lipid-derived compounds with signal functions in plant responses to abiotic and biotic stresses, as well as in plant growth and development. Jasmonic acid and its various metabolites are members of the oxylipin family. Many of them alter gene expression positively or negatively in a regulatory network with synergistic and antagonistic effects in relation to other plant hormones such as salicylate, auxin, ethylene and abscisic acid. Scope This review summarizes biosynthesis and signal transduction of jasmonates with emphasis on new findings in relation to enzymes, their crystal structure, new compounds detected in the oxylipin and jasmonate families, and newly found functions. Conclusions Crystal structure of enzymes in jasmonate biosynthesis, increasing number of jasmonate metabolites and newly identified components of the jasmonate signal-transduction pathway, including specifically acting transcription factors, have led to new insights into jasmonate action, but its receptor(s) is/are still missing, in contrast to all other plant hormones. PMID:17513307

  13. Thioredoxin-dependent Redox Regulation of Cellular Signaling and Stress Response through Reversible Oxidation of Methionines

    SciTech Connect

    Bigelow, Diana J.; Squier, Thomas C.

    2011-06-01

    Generation of reactive oxygen species (ROS) is a common feature of many forms of stress to which plants are exposed. Successful adaptation to changing environmental conditions requires sensitive sensors of ROS such as protein-bound methionines that are converted to their corresponding methionine sulfoxides, which in turn can influence cellular signaling pathways. Such a signaling protein is calmodulin, which represents an early and central point in calcium signaling pathways important to stress response in plants. We describe recent work elucidating fundamental mechanisms of reversible methionine oxidation within calmodulin, including the sensitivity of individual methionines within plant and animal calmodulin to ROS, the structural and functional consequences of their oxidation, and the interactions of oxidized calmodulin with methionine sulfoxide reductase enzymes.

  14. A mathematical model of pulse-coded hormone signal responses in pituitary gonadotroph cells

    PubMed Central

    Magill, John C.; Ciccone, Nick A.; Kaiser, Ursula B.

    2014-01-01

    Cells in the pituitary that synthesize luteinizing and follicle-stimulating hormones regulate the relative production of these two key reproductive hormones in response to signals from the hypothalamus. These signals are encoded in the frequency of gonadotrophin-releasing-hormone pulses. In vitro experiments with a murine-derived cell line have identified key elements of the processes that decode the signal to regulate transcription of the subunits encoding these hormones. The mathematical model described in this paper is based on the results of those experiments and advances quantitative understanding of the biochemical decoder. The model consists of non-linear differential equations for each of six processes that lead to the synthesis of follicle-stimulating hormone. Simulations of the model exhibit key characteristics found in the experiments, including a preference for follicle-stimulating hormone synthesis at low pulse frequencies and a loss of this characteristic when a mutation is introduced. PMID:24095971

  15. Combining in silico evolution and nonlinear dimensionality reduction to redesign responses of signaling networks.

    PubMed

    Prescott, Aaron M; Abel, Steven M

    2017-01-13

    The rational design of network behavior is a central goal of synthetic biology. Here, we combine in silico evolution with nonlinear dimensionality reduction to redesign the responses of fixed-topology signaling networks and to characterize sets of kinetic parameters that underlie various input-output relations. We first consider the earliest part of the T cell receptor (TCR) signaling network and demonstrate that it can produce a variety of input-output relations (quantified as the level of TCR phosphorylation as a function of the characteristic TCR binding time). We utilize an evolutionary algorithm (EA) to identify sets of kinetic parameters that give rise to: (i) sigmoidal responses with the activation threshold varied over 6 orders of magnitude, (ii) a graded response, and (iii) an inverted response in which short TCR binding times lead to activation. We also consider a network with both positive and negative feedback and use the EA to evolve oscillatory responses with different periods in response to a change in input. For each targeted input-output relation, we conduct many independent runs of the EA and use nonlinear dimensionality reduction to embed the resulting data for each network in two dimensions. We then partition the results into groups and characterize constraints placed on the parameters by the different targeted response curves. Our approach provides a way (i) to guide the design of kinetic parameters of fixed-topology networks to generate novel input-output relations and (ii) to constrain ranges of biological parameters using experimental data. In the cases considered, the network topologies exhibit significant flexibility in generating alternative responses, with distinct patterns of kinetic rates emerging for different targeted responses.

  16. Combining in silico evolution and nonlinear dimensionality reduction to redesign responses of signaling networks

    NASA Astrophysics Data System (ADS)

    Prescott, Aaron M.; Abel, Steven M.

    2016-12-01

    The rational design of network behavior is a central goal of synthetic biology. Here, we combine in silico evolution with nonlinear dimensionality reduction to redesign the responses of fixed-topology signaling networks and to characterize sets of kinetic parameters that underlie various input-output relations. We first consider the earliest part of the T cell receptor (TCR) signaling network and demonstrate that it can produce a variety of input-output relations (quantified as the level of TCR phosphorylation as a function of the characteristic TCR binding time). We utilize an evolutionary algorithm (EA) to identify sets of kinetic parameters that give rise to: (i) sigmoidal responses with the activation threshold varied over 6 orders of magnitude, (ii) a graded response, and (iii) an inverted response in which short TCR binding times lead to activation. We also consider a network with both positive and negative feedback and use the EA to evolve oscillatory responses with different periods in response to a change in input. For each targeted input-output relation, we conduct many independent runs of the EA and use nonlinear dimensionality reduction to embed the resulting data for each network in two dimensions. We then partition the results into groups and characterize constraints placed on the parameters by the different targeted response curves. Our approach provides a way (i) to guide the design of kinetic parameters of fixed-topology networks to generate novel input-output relations and (ii) to constrain ranges of biological parameters using experimental data. In the cases considered, the network topologies exhibit significant flexibility in generating alternative responses, with distinct patterns of kinetic rates emerging for different targeted responses.

  17. The UVR8 UV-B Photoreceptor: Perception, Signaling and Response

    PubMed Central

    Tilbrook, Kimberley; Arongaus, Adriana B.; Binkert, Melanie; Heijde, Marc; Yin, Ruohe; Ulm, Roman

    2013-01-01

    Ultraviolet-B radiation (UV-B) is an intrinsic part of sunlight that is accompanied by significant biological effects. Plants are able to perceive UV-B using the UV-B photoreceptor UVR8 which is linked to a specific molecular signaling pathway and leads to UV-B acclimation. Herein we review the biological process in plants from initial UV-B perception and signal transduction through to the known UV-B responses that promote survival in sunlight. The UVR8 UV-B photoreceptor exists as a homodimer that instantly monomerises upon UV-B absorption via specific intrinsic tryptophans which act as UV-B chromophores. The UVR8 monomer interacts with COP1, an E3 ubiquitin ligase, initiating a molecular signaling pathway that leads to gene expression changes. This signaling output leads to UVR8-dependent responses including UV-B-induced photomorphogenesis and the accumulation of UV-B-absorbing flavonols. Negative feedback regulation of the pathway is provided by the WD40-repeat proteins RUP1 and RUP2, which facilitate UVR8 redimerization, disrupting the UVR8-COP1 interaction. Despite rapid advancements in the field of recent years, further components of UVR8 UV-B signaling are constantly emerging, and the precise interplay of these and the established players UVR8, COP1, RUP1, RUP2 and HY5 needs to be defined. UVR8 UV-B signaling represents our further understanding of how plants are able to sense their light environment and adjust their growth accordingly. PMID:23864838

  18. Unfolded protein response (UPR) signaling regulates arsenic trioxide-mediated macrophage innate immune function disruption

    SciTech Connect

    Srivastava, Ritesh K.; Li, Changzhao; Chaudhary, Sandeep C.; Ballestas, Mary E.; Elmets, Craig A.; Robbins, David J.; Matalon, Sadis; Deshane, Jessy S.; Afaq, Farrukh; Bickers, David R.; Athar, Mohammad

    2013-11-01

    Arsenic exposure is known to disrupt innate immune functions in humans and in experimental animals. In this study, we provide a mechanism by which arsenic trioxide (ATO) disrupts macrophage functions. ATO treatment of murine macrophage cells diminished internalization of FITC-labeled latex beads, impaired clearance of phagocytosed fluorescent bacteria and reduced secretion of pro-inflammatory cytokines. These impairments in macrophage functions are associated with ATO-induced unfolded protein response (UPR) signaling pathway characterized by the enhancement in proteins such as GRP78, p-PERK, p-eIF2α, ATF4 and CHOP. The expression of these proteins is altered both at transcriptional and translational levels. Pretreatment with chemical chaperon, 4-phenylbutyric acid (PBA) attenuated the ATO-induced activation in UPR signaling and afforded protection against ATO-induced disruption of macrophage functions. This treatment also reduced ATO-mediated reactive oxygen species (ROS) generation. Interestingly, treatment with antioxidant N-acetylcysteine (NAC) prior to ATO exposure, not only reduced ROS production and UPR signaling but also improved macrophage functions. These data demonstrate that UPR signaling and ROS generation are interdependent and are involved in the arsenic-induced pathobiology of macrophage. These data also provide a novel strategy to block the ATO-dependent impairment in innate immune responses. - Highlights: • Inorganic arsenic to humans and experimental animals disrupt innate immune responses. • The mechanism underlying arsenic impaired macrophage functions involves UPR signaling. • Chemical chaperon attenuates arsenic-mediated macrophage function impairment. • Antioxidant, NAC blocks impairment in arsenic-treated macrophage functions.

  19. Using raw star signals in the monitoring of GOES imager visible-channel responsivities

    NASA Astrophysics Data System (ADS)

    Chang, I.-Lok; Dean, Charles; Weinreb, Michael; Wu, Xiangqian; Han, Dejiang; Mitchell, Kenneth; Li, Zhenping; Sindic-Rancic, Gordana; Yu, Fanfang

    2008-08-01

    Stars are regularly observed in the visible channels of the GOES Imagers for real-time navigation operations. However, we have been also using star observations off-line to deduce the rate of degradation of the responsivity of the visible channels. We estimate degradation rates from the time series of the intensities of the Imagers' output signals when viewing stars, available in the GOES Orbit and Attitude Tracking System (OATS). We begin by showing our latest results in monitoring the responsivities of the visible channels of the Imagers on GOES-8, -9, -10, -11 and -12. Unfortunately, the OATS computes the intensities of the star signals with approximations suitable for navigation, not for estimating accurate signal strengths, and thus we had to develop objective criteria for screening out unsuitable data. With several layers of screening, our most recent trending method yields smoother time series of star signals, but the time series are populated by a smaller pool of stars. With the goal of simplifying the task of data selection and to retrieve stars that have been rejected in the screening, we tested a technique that accessed the raw star measurements before they were processed by the OATS. We developed formulations that not only produced star signals more suitable for monitoring the changes in the Imager's outputs from views of constant-irradiance stellar sources, but also gave more information on the radiometric characteristics of the visible channels. We present specifics of this technique together with sample results. We discuss improvements in the quality of the time series that allow for more reliable inferences on the gradually changing responsivities of the visible channels. We describe further contributions of this method to monitoring of other performance characteristics of the visible channel of an Imager.

  20. Insulin secretion and signaling in response to dietary restriction and subsequent re-alimentation in cattle.

    PubMed

    Keogh, Kate; Kenny, David A; Kelly, Alan K; Waters, Sinéad M

    2015-08-01

    The objectives of this study were to examine systemic insulin response to a glucose tolerance test (GTT) and transcript abundance of genes of the insulin signaling pathway in skeletal muscle, during both dietary restriction and re-alimentation-induced compensatory growth. Holstein Friesian bulls were blocked to one of two groups: 1) restricted feed allowance for 125 days (period 1) (RES, n = 15) followed by ad libitum feeding for 55 days (period 2) or 2) ad libitum access to feed throughout (periods 1 and 2) (ADLIB, n = 15). On days 90 and 36 of periods 1 and 2, respectively, a GTT was performed. M. longissimus dorsi biopsies were harvested from all bulls on days 120 and 15 of periods 1 and 2, respectively, and RNA-Seq analysis was performed. RES displayed a lower growth rate during period 1 (RES: 0.6 kg/day, ADLIB: 1.9 kg/day; P < 0.001), subsequently gaining more during re-alimentation (RES: 2.5 kg/day, ADLIB: 1.4 kg/day; P < 0.001). Systemic insulin response to glucose administration was lower in RES in period 1 (P < 0.001) with no difference observed during period 2. The insulin signaling pathway in M. longissimus dorsi was enriched (P < 0.05) in response to dietary restriction but not during re-alimentation (P > 0.05). Genes differentially expressed in the insulin signaling pathway suggested a greater sensitivity to insulin in skeletal muscle, with pleiotropic effects of insulin signaling interrupted during dietary restriction. Collectively, these results indicate increased sensitivity to glucose clearance and skeletal muscle insulin signaling during dietary restriction; however, no overall role for insulin was apparent in expressing compensatory growth.

  1. Time-dependent regulation of muscle caveolin activation and insulin signalling in response to high-fat diet.

    PubMed

    Gómez-Ruiz, Ana; de Miguel, Carlos; Campión, Javier; Martínez, J Alfredo; Milagro, Fermín I

    2009-10-06

    We studied the effect of high-fat diet on the expression and activation of the three caveolins in rat skeletal muscle and their association with the insulin signalling cascade. Initial response was characterized by increased signalling through Cav-1 and Cav-3 phosphorylation, suggesting that both participate in an initial acute response to the calorie surplus. Afterwards, Cav-1 signalling was slightly reduced, whereas Cav-3 remained active. Late chronic phase signalling through both proteins was impaired inducing a prediabetic state. Summarizing, caveolins seem to mediate a time-dependent regulation of insulin cascade in response to high-fat diet in muscle.

  2. Purinergic signaling in inflammatory cells: P2 receptor expression, functional effects, and modulation of inflammatory responses.

    PubMed

    Jacob, Fenila; Pérez Novo, Claudina; Bachert, Claus; Van Crombruggen, Koen

    2013-09-01

    Extracellular ATP and related nucleotides promote a wide range of pathophysiological responses via activation of cell surface purinergic P2 receptors. Almost every cell type expresses P2 receptors and/or exhibit regulated release of ATP. In this review, we focus on the purinergic receptor distribution in inflammatory cells and their implication in diverse immune responses by providing an overview of the current knowledge in the literature related to purinergic signaling in neutrophils, macrophages, dendritic cells, lymphocytes, eosinophils, and mast cells. The pathophysiological role of purinergic signaling in these cells include among others calcium mobilization, actin polymerization, chemotaxis, release of mediators, cell maturation, cytotoxicity, and cell death. We finally discuss the therapeutic potential of P2 receptor subtype selective drugs in inflammatory conditions.

  3. Cutting edge: the mechanism of invariant NKT cell responses to viral danger signals.

    PubMed

    Tyznik, Aaron J; Tupin, Emmanuel; Nagarajan, Niranjana A; Her, Min J; Benedict, Chris A; Kronenberg, Mitchell

    2008-10-01

    Invariant NK T (iNKT) cells influence the response to viral infections, although the mechanisms are poorly defined. In this study we show that these innate-like lymphocytes secrete IFN-gamma upon culture with CpG oligodeoxynucleotide-stimulated dendritic cells (DCs) from mouse bone marrow. This requires TLR9 signaling and IL-12 secretion by the activated DCs, but it does not require CD1d expression. iNKT cells also produce IFN-gamma in response to mouse CMV infection. Their mechanism of mouse CMV detection is quite similar to that of CpG, requiring both TLR9 signaling and IL-12 secretion, while the need for CD1d expression is relatively minor. Consequently, iNKT cells have the ability to respond to a variety of microbes, including viruses, in an Ag-independent manner, suggesting they may play a broad role in antipathogen defenses despite their limited TCR repertoire.

  4. RAD18, WRNIP1 and ATMIN promote ATM signalling in response to replication stress

    PubMed Central

    Kanu, Nnennaya; Zhang, Tianyi; Burrell, Rebecca A.; Chakraborty, Atanu; Cronshaw, Janet; Da Costa, Clive; Grönroos, Eva; Pemberton, Helen N.; Anderton, Emma; Gonzalez, Laure; Sabbioneda, Simone; Ulrich, Helle D.; Swanton, Charles; Behrens, Axel

    2015-01-01

    The DNA replication machinery invariably encounters obstacles that slow replication fork progression, and threaten to prevent complete replication and faithful segregation of sister chromatids. The resulting replication stress activates ATR, the major kinase involved in resolving impaired DNA replication. In addition, replication stress also activates the related kinase ATM, which is required to prevent mitotic segregation errors. However, the molecular mechanism of ATM activation by replication stress is not defined. Here we show that monoubiquitinated Proliferating Cell Nuclear Antigen (PCNA), a marker of stalled replication forks, interacts with the ATM cofactor ATMIN via WRN interacting protein 1 (WRNIP1). ATMIN, WRNIP1 and RAD18, the E3 ligase responsible for PCNA monoubiquitination, are specifically required for ATM signalling and 53BP1 focus formation induced by replication stress, not ionising radiation. Thus, WRNIP1 connects PCNA monoubiquitination with ATMIN/ATM to activate ATM signalling in response to replication stress and contribute to the maintenance of genomic stability. PMID:26549024

  5. Somatic and axonal LIGHT signaling elicit degenerative and regenerative responses in motoneurons, respectively

    PubMed Central

    Otsmane, Belkacem; Moumen, Anice; Aebischer, Julianne; Coque, Emmanuelle; Sar, Chamroeun; Sunyach, Claire; Salsac, Céline; Valmier, Jean; Salinas, Sara; Bowerman, Melissa; Raoul, Cédric

    2014-01-01

    A receptor–ligand interaction can evoke a broad range of biological activities in different cell types depending on receptor identity and cell type-specific post-receptor signaling intermediates. Here, we show that the TNF family member LIGHT, known to act as a death-triggering factor in motoneurons through LT-βR, can also promote axon outgrowth and branching in motoneurons through the same receptor. LIGHT-induced axonal elongation and branching require ERK and caspase-9 pathways. This distinct response involves a compartment-specific activation of LIGHT signals, with somatic activation-inducing death, while axonal stimulation promotes axon elongation and branching in motoneurons. Following peripheral nerve damage, LIGHT increases at the lesion site through expression by invading B lymphocytes, and genetic deletion of Light significantly delays functional recovery. We propose that a central and peripheral activation of the LIGHT pathway elicits different functional responses in motoneurons. PMID:24668263

  6. Frequency response testing at Experimental Breeder Reactor II using discrete-level periodic signals

    SciTech Connect

    Rhodes, W.D.; Larson, H.A. . Coll. of Engineering); Dean, E.M. )

    1990-01-01

    The Experimental Breeder Reactor 2 (EBR-2) reactivity-to-power frequency-response function was measured with pseudo-random, discrete-level, periodic signals. The reactor power deviation was small with insignificant perturbation of normal operation and in-place irradiation experiments. Comparison of results with measured rod oscillator data and with theoretical predictions show good agreement. Moreover, measures of input signal quality (autocorrelation function and energy spectra) confirm the ability to enable this type of frequency response determination at EBR-2. Measurements were made with the pseudo-random binary sequence, quadratic residue binary sequence, pseudo-random ternary sequence, and the multifrequency binary sequence. 10 refs., 7 figs., 3 tabs.

  7. Quorum-Sensing Signal-Response Systems in Gram-Negative Bacteria

    PubMed Central

    Papenfort, Kai; Bassler, Bonnie

    2016-01-01

    Abstract / Preface Bacteria use quorum sensing to orchestrate gene expression programmes that underlie collective behaviours. Quorum sensing relies on the production, release, detection and group-level response to extracellular signalling molecules, which are called autoinducers. Recent work has discovered new autoinducers in Gram-negative bacteria, shown how these molecules are recognized by cognate receptors, revealed new regulatory components that are embedded in canonical signalling circuits and identified novel regulatory network designs. In this Review we examine how, together, these features of quorum sensing signal–response systems combine to control collective behaviours in Gram-negative bacteria and we discuss the implications for host–microbial associations and antibacterial therapy. PMID:27510864

  8. Responses of macrophages to the danger signals released from necrotic cells.

    PubMed

    Kimura, Toshifumi; Kobayashi, Shuhei; Hanihara-Tatsuzawa, Fumito; Sayama, Aoi; MaruYama, Takashi; Muta, Tatsushi

    2014-12-01

    The immune system maintains homeostasis by recognizing and responding to cell death caused by various stresses. The immune response is considered to be elicited by 'danger signals' released from necrotic cells. However, the identity of the danger signals remains elusive. In this study, we focused on the expression of chemokines by macrophages stimulated with necrotic cells. In mouse bone-marrow-derived macrophages, the chemokine monocyte chemoattractant protein (MCP)-3 was induced at both the mRNA and protein levels in response to heat-killed murine cells. The induction of MCP-3 was also observed in MyD88-deficient macrophages, indicating that Toll-like receptors and the IL-1 receptor are not involved in this response. Consistent with this observation, the activation of NF-κB was not detected in RAW264.7 macrophages stimulated with necrotic cells. Treatments with proteinase K, DNaseI or RNaseA did not affect the ' STIMULATING ACTIVITY': of necrotic cells. In contrast, treatment with apyrase, which removes phosphates from nucleoside tri- and di-phosphates, abolished the inducing activity. Purified UDP at 30 µM concentration elicited similar induction of MCP-3 in RAW264.7 macrophages. Small interfering RNA-mediated knock-down of the UDP receptor P2Y6 in RAW264.7 cells significantly reduced the induction of MCP-3 in response to necrotic cells, but not its induction by lipopolysaccharide. Furthermore, ectopic expression of the P2Y6 receptor in HEK293 cells conferred responsiveness to necrotic cells. These results suggest that UDP released by necrotic cells plays a critical role as an endogenous danger signal and that P2Y6 is required for the induction of MCP-3 in response to necrotic cells.

  9. Mechanisms of extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signal transduction pathway in depressive disorder.

    PubMed

    Wang, Hongyan; Zhang, Yingquan; Qiao, Mingqi

    2013-03-25

    The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signal transduction pathway plays an important role in the mechanism of action of antidepressant drugs and has dominated recent studies on the pathogenesis of depression. In the present review we summarize the known roles of extracellular signal-regulated kinase, cAMP response element-binding protein and brain-derived neurotrophic factor in the pathogenesis of depression and in the mechanism of action of antidepressant medicines. The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor pathway has potential to be used as a biological index to help diagnose depression, and as such it is considered as an important new target in the treatment of depression.

  10. Wingless signaling leads to an asymmetric response to decapentaplegic-dependent signaling during sense organ patterning on the notum of Drosophila melanogaster.

    PubMed

    Phillips, R G; Warner, N L; Whittle, J R

    1999-03-01

    Wnt and Decapentaplegic cell signaling pathways act synergistically in their contribution to macrochaete (sense organ) patterning on the notum of Drosophila melanogaster. The Wingless-signaling pathway was ectopically activated by removing Shaggy activity (the homologue of vertebrate glycogen synthase kinase 3) in mosaics. Proneural activity is asymmetric within the Shaggy-deficient clone of cells and shows a fixed "polarity" with respect to body axis, independent of the precise location of the clone. This asymmetric response indicates the existence in the epithelium of a second signal, which we suggest is Decapentaplegic. Ectopic expression of Decapentaplegic induces extra macrochaetes only in cells which also receive the Wingless signal. Activation of Hedgehog signaling generates a long-range signal which can promote macrochaete formation in the Wingless activity domain. This signal depends upon decapentaplegic function. Autonomous activation of the Wingless signal response in cells causes them to attenuate or sequester this signal. Our results suggest a novel patterning mechanism which determines sense organ positioning in Drosophila.

  11. AUXIN RESPONSE FACTOR 2 Intersects Hormonal Signals in the Regulation of Tomato Fruit Ripening.

    PubMed

    Breitel, Dario A; Chappell-Maor, Louise; Meir, Sagit; Panizel, Irina; Puig, Clara Pons; Hao, Yanwei; Yifhar, Tamar; Yasuor, Hagai; Zouine, Mohamed; Bouzayen, Mondher; Granell Richart, Antonio; Rogachev, Ilana; Aharoni, Asaph

    2016-03-01

    The involvement of ethylene in fruit ripening is well documented, though knowledge regarding the crosstalk between ethylene and other hormones in ripening is lacking. We discovered that AUXIN RESPONSE FACTOR 2A (ARF2A), a recognized auxin signaling component, functions in the control of ripening. ARF2A expression is ripening regulated and reduced in the rin, nor and nr ripening mutants. It is also responsive to exogenous application of ethylene, auxin and abscisic acid (ABA). Over-expressing ARF2A in tomato resulted in blotchy ripening in which certain fruit regions turn red and possess accelerated ripening. ARF2A over-expressing fruit displayed early ethylene emission and ethylene signaling inhibition delayed their ripening phenotype, suggesting ethylene dependency. Both green and red fruit regions showed the induction of ethylene signaling components and master regulators of ripening. Comprehensive hormone profiling revealed that altered ARF2A expression in fruit significantly modified abscisates, cytokinins and salicylic acid while gibberellic acid and auxin metabolites were unaffected. Silencing of ARF2A further validated these observations as reducing ARF2A expression let to retarded fruit ripening, parthenocarpy and a disturbed hormonal profile. Finally, we show that ARF2A both homodimerizes and interacts with the ABA STRESS RIPENING (ASR1) protein, suggesting that ASR1 might be linking ABA and ethylene-dependent ripening. These results revealed that ARF2A interconnects signals of ethylene and additional hormones to co-ordinate the capacity of fruit tissue to initiate the complex ripening process.

  12. Scopolamine rapidly increases mTORC1 signaling, synaptogenesis, and antidepressant behavioral responses

    PubMed Central

    Voleti, Bhavya; Navarria, Andrea; Liu, Rong-Jian; Banasr, Mounira; Li, Nanxin; Terwilliger, Rose; Sanacora, Gerard; Eid, Tore; Aghajanian, George; Duman, Ronald S.

    2013-01-01

    Background Clinical studies report that scopolamine, an acetylcholine muscarinic receptor antagonist, produces rapid antidepressant effects in depressed patients, but the mechanisms underlying the therapeutic response have not been determined. The present study examines the role of the mammalian target of rapamycin complex 1 (mTORC1) and synaptogenesis, which have been implicated in the rapid actions of NMDA receptor antagonists. Methods The influence of scopolamine on mTORC1 signaling was determined by analysis of the phosphorylated and activated forms of mTORC1 signaling proteins in the prefrontal cortex (PFC). The numbers and function of spine synapses were analyzed by whole cell patch clamp recording and 2-photon image analysis of PFC neurons. The actions of scopolamine were examined in the forced swim test in the absence or presence of selective mTORC1 and AMPA receptor inhibitors. Results The results demonstrate that a single, low dose of scopolamine rapidly increases mTORC1 signaling and the number and function of spine synapses in layer V pyramidal neurons in the PFC. Scopolamine administration also produces an antidepressant response in the forced swim test that is blocked by pretreatment with the mTORC1 inhibitor or by a glutamate AMPA receptor antagonist. Conclusions Taken together, the results demonstrate that the antidepressant actions of scopolamine require mTORC1 signaling and are associated with increased glutamate transmission, and synaptogenesis, similar to NMDA receptor antagonists. These findings provide novel targets for safer and more efficacious rapid acting antidepressant agents. PMID:23751205

  13. AUXIN RESPONSE FACTOR 2 Intersects Hormonal Signals in the Regulation of Tomato Fruit Ripening

    PubMed Central

    Meir, Sagit; Panizel, Irina; Puig, Clara Pons; Hao, Yanwei; Yifhar, Tamar; Yasuor, Hagai; Zouine, Mohamed; Bouzayen, Mondher; Granell Richart, Antonio; Rogachev, Ilana; Aharoni, Asaph

    2016-01-01

    The involvement of ethylene in fruit ripening is well documented, though knowledge regarding the crosstalk between ethylene and other hormones in ripening is lacking. We discovered that AUXIN RESPONSE FACTOR 2A (ARF2A), a recognized auxin signaling component, functions in the control of ripening. ARF2A expression is ripening regulated and reduced in the rin, nor and nr ripening mutants. It is also responsive to exogenous application of ethylene, auxin and abscisic acid (ABA). Over-expressing ARF2A in tomato resulted in blotchy ripening in which certain fruit regions turn red and possess accelerated ripening. ARF2A over-expressing fruit displayed early ethylene emission and ethylene signaling inhibition delayed their ripening phenotype, suggesting ethylene dependency. Both green and red fruit regions showed the induction of ethylene signaling components and master regulators of ripening. Comprehensive hormone profiling revealed that altered ARF2A expression in fruit significantly modified abscisates, cytokinins and salicylic acid while gibberellic acid and auxin metabolites were unaffected. Silencing of ARF2A further validated these observations as reducing ARF2A expression let to retarded fruit ripening, parthenocarpy and a disturbed hormonal profile. Finally, we show that ARF2A both homodimerizes and interacts with the ABA STRESS RIPENING (ASR1) protein, suggesting that ASR1 might be linking ABA and ethylene-dependent ripening. These results revealed that ARF2A interconnects signals of ethylene and additional hormones to co-ordinate the capacity of fruit tissue to initiate the complex ripening process. PMID:26959229

  14. Plant volatiles in a polluted atmosphere: stress response and signal degradation

    PubMed Central

    Blande, James D.; Holopainen, Jarmo K.; Niinemets, Ülo

    2014-01-01

    Plants emit a plethora of volatile organic compounds, which provide detailed information on the physiological condition of emitters. Volatiles induced by herbivore-feeding are among the best studied plant responses to stress and may constitute an informative message to the surrounding community and function in the process of plant defence. However, under natural conditions, plants are potentially exposed to multiple concurrent stresses, which can have complex effects on the volatile emissions. Atmospheric pollutants are an important facet of the abiotic environment and can impinge on a plant’s volatile-mediated defences in multiple ways at multiple temporal scales. They can exert changes in volatile emissions through oxidative stress, as is the case with ozone pollution. They may also react with volatiles in the atmosphere; such is the case for ozone, nitrogen oxides, hydroxyl radicals and other oxidizing atmospheric species. These reactions result in breakdown products, which may themselves be perceived by community members as informative signals. In this review we demonstrate the complex interplay between stress, emitted signals and modification in signal strength and composition by the atmosphere, collectively determining the responses of the biotic community to elicited signals. PMID:24738697

  15. Dissociating Consciousness from Inhibitory Control: Evidence for Unconsciously Triggered Response Inhibition in the Stop-Signal Task

    ERIC Educational Resources Information Center

    van Gaal, Simon; Ridderinkhof, K. Richard; van den Wildenberg, Wery P. M.; Lamme, Victor A. F.

    2009-01-01

    Theories about the functional relevance of consciousness commonly posit that higher order cognitive control functions, such as response inhibition, require consciousness. To test this assertion, the authors designed a masked stop-signal paradigm to examine whether response inhibition could be triggered and initiated by masked stop signals, which…

  16. Effect of sleep deprivation on response threshold for signal detectability parameter, beta.

    PubMed

    Polzella, D J

    1978-12-01

    In contrast to a previous study (Deaton, Tobias, & Wilkinson, 1971), data are presented which demonstrate significant decreases in response bias (beta) as well as sensitivity (d') following one night of sleep deprivation. It is argued that previous failures to observe significant decreases in beta may be related to the disparity in the number of noise and signal-plus-noise trials in these experiments. The use of parametric analysis to test the effect of sleep deprivation on d' and beta is recommended.

  17. Brain Tissue Responses to Neural Implants Impact Signal Sensitivity and Intervention Strategies

    PubMed Central

    2015-01-01

    Implantable biosensors are valuable scientific tools for basic neuroscience research and clinical applications. Neurotechnologies provide direct readouts of neurological signal and neurochemical processes. These tools are generally most valuable when performance capacities extend over months and years to facilitate the study of memory, plasticity, and behavior or to monitor patients’ conditions. These needs have generated a variety of device designs from microelectrodes for fast scan cyclic voltammetry (FSCV) and electrophysiology to microdialysis probes for sampling and detecting various neurochemicals. Regardless of the technology used, the breaching of the blood–brain barrier (BBB) to insert devices triggers a cascade of biochemical pathways resulting in complex molecular and cellular responses to implanted devices. Molecular and cellular changes in the microenvironment surrounding an implant include the introduction of mechanical strain, activation of glial cells, loss of perfusion, secondary metabolic injury, and neuronal degeneration. Changes to the tissue microenvironment surrounding the device can dramatically impact electrochemical and electrophysiological signal sensitivity and stability over time. This review summarizes the magnitude, variability, and time course of the dynamic molecular and cellular level neural tissue responses induced by state-of-the-art implantable devices. Studies show that insertion injuries and foreign body response can impact signal quality across all implanted central nervous system (CNS) sensors to varying degrees over both acute (seconds to minutes) and chronic periods (weeks to months). Understanding the underlying biological processes behind the brain tissue response to the devices at the cellular and molecular level leads to a variety of intervention strategies for improving signal sensitivity and longevity. PMID:25546652

  18. Response of a matrix photodetector into components of an optical signal with different spatial frequencies

    NASA Astrophysics Data System (ADS)

    Greisukh, G. I.; Ezhov, E. G.; Kazin, S. V.; Stepanov, S. A.

    2017-02-01

    We have used the method of direct evaluation of energy incident on each pixel of a photosensitive array to assess the distortions of a matrix photodetector response into a sinusoidal spatial signal. Using the data obtained, we have formulated recommendations for selecting a resolution of a matrix photodetector as a function of a maximum spatial frequency in the recorded interference pattern, as well as for matching of the resolutions of an objective and a photodetector of a digital camera or camcorder.

  19. Unfolding the Role of Stress Response Signaling in Endocrine Resistant Breast Cancers

    PubMed Central

    Clarke, Robert; Cook, Katherine L.

    2015-01-01

    The unfolded protein response (UPR) is an ancient stress response that enables a cell to manage the energetic stress that accompanies protein folding. There has been a significant recent increase in our understanding of the UPR, how it integrates physiological processes within cells, and how this integration can affect cancer cells and cell fate decisions. Recent publications have highlighted the role of UPR signaling components on mediating various cell survival pathways, cellular metabolism and bioenergenics, and autophagy. We address the role of UPR on mediating endocrine therapy resistance and estrogen receptor-positive breast cancer cell survival. PMID:26157705

  20. Chronic intermittent alcohol disrupts the GluN2B-associated proteome and specifically regulates group I mGlu receptor-dependent long-term depression.

    PubMed

    Wills, Tiffany A; Baucum, Anthony J; Holleran, Katherine M; Chen, Yaoyi; Pasek, Johanna G; Delpire, Eric; Tabb, David L; Colbran, Roger J; Winder, Danny G

    2017-03-01

    N-Methyl-d-aspartate receptors (NMDARs) are major targets of both acute and chronic alcohol, as well as regulators of plasticity in a number of brain regions. Aberrant plasticity may contribute to the treatment resistance and high relapse rates observed in alcoholics. Recent work suggests that chronic alcohol treatment preferentially modulates both the expression and subcellular localization of NMDARs containing the GluN2B subunit. Signaling through synaptic and extrasynaptic GluN2B-NMDARs has already been implicated in the pathophysiology of various other neurological disorders. NMDARs interact with a large number of proteins at the glutamate synapse, and a better understanding of how alcohol modulates this proteome is needed. We employed a discovery-based proteomic approach in subcellular fractions of hippocampal tissue from chronic intermittent alcohol (CIE)-exposed C57Bl/6J mice to gain insight into alcohol-induced changes in GluN2B signaling complexes. Protein enrichment analyses revealed changes in the association of post-synaptic proteins, including scaffolding, glutamate receptor and PDZ-domain binding proteins with GluN2B. In particular, GluN2B interaction with metabotropic glutamate (mGlu)1/5 receptor-dependent long-term depression (LTD)-associated proteins such as Arc and Homer 1 was increased, while GluA2 was decreased. Accordingly, we found a lack of mGlu1/5 -induced LTD while α1 -adrenergic receptor-induced LTD remained intact in hippocampal CA1 following CIE. These data suggest that CIE specifically disrupts mGlu1/5 -LTD, representing a possible connection between NMDAR and mGlu receptor signaling. These studies not only demonstrate a new way in which alcohol can modulate plasticity in the hippocampus but also emphasize the utility of this discovery-based proteomic approach to generate new hypotheses regarding alcohol-related mechanisms.

  1. Crosstalk among Jasmonate, Salicylate and Ethylene Signaling Pathways in Plant Disease and Immune Responses.

    PubMed

    Yang, You-Xin; Ahammed, Golam J; Wu, Caijun; Fan, Shu-ying; Zhou, Yan-Hong

    2015-01-01

    Phytohormone crosstalk is crucial for plant defenses against pathogens and insects in which salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) play key roles. These low molecular mass signals critically trigger and modulate plant resistance against biotrophic as well as necrotrophic pathogens through a complex signaling network that even involves participation of other hormones. Crosstalk among SA, JA and ET is mediated by different molecular players, considered as integral part of these crosscommunicating signal transduction pathways. Recent progress has revealed that the positive versus negative interactions among those pathways ultimately enable a plant to fine-tune its defense against specific aggressors. On the other hand, pathogens have evolved strategies to manipulate the signaling network to their favour in order to intensify virulence on host plant. Here we review recent advances and current knowledge on the role of classical primary defense hormones SA, JA and ET as well as their synergistic and antagonistic interaction in plant disease and immune responses. Crosstalk with other hormones such as abscisic acid, auxin, brassinosteroids, cytokinins and melatonin is also discussed mainly in plant disease resistance. In addition to our keen focus on hormonal crosstalk, this review also highlights potential implication of positive and negative regulatory interactions for developing an efficient disease management strategy through manipulation of hormone signaling in plant.

  2. Differential usage of signal transduction pathways defines two types of serum response factor target gene.

    PubMed

    Gineitis, D; Treisman, R

    2001-07-06

    Activation of the transcription factor serum response factor (SRF) is dependent on Rho-controlled changes in actin dynamics. We used pathway-specific inhibitors to compare the roles of actin dynamics, extracellular signal-regulated kinase (ERK) signaling, and phosphatidylinositol 3-kinase in signaling either to SRF itself or to four cellular SRF target genes. Serum, lysophosphatidic acid, platelet-derived growth factor, and phorbol 12-myristate 13-acetate (PMA) each activated transcription of a stably integrated SRF reporter gene dependent on functional RhoA GTPase. Inhibition of mitogen-activated protein kinase-ERK kinase (MEK) signalling reduced activation of the SRF reporter by all stimuli by about 50%, except for PMA, which was effectively blocked. Inhibition of phosphatidylinositol 3-kinase slightly reduced reporter activation by serum and lysophosphatidic acid but substantially inhibited activation by platelet-derived growth factor and PMA. Reporter induction by all stimuli was absolutely dependent on actin dynamics. Regulation of the SRF (srf) and vinculin (vcl) genes was similar to that of the SRF reporter gene; activation by all stimuli was Rho-dependent and required actin dynamics but was largely independent of MEK activity. In contrast, activation of fos and egr1 occurred independently of RhoA and actin polymerization but was almost completely dependent on MEK activation. These results show that at least two classes of SRF target genes can be distinguished on the basis of their relative sensitivity to RhoA-actin and MEK-ERK signaling pathways.

  3. Danger signals in the initiation of the inflammatory response after myocardial infarction.

    PubMed

    de Haan, J J; Smeets, M B; Pasterkamp, G; Arslan, F

    2013-01-01

    During myocardial infarction, sterile inflammation occurs. The danger model is a solid theoretic framework that explains this inflammation as danger associated molecular patterns activate the immune system. The innate immune system can sense danger signals through different pathogen recognition receptors (PRR) such as toll-like receptors, nod-like receptors and receptors for advanced glycation endproducts. Activation of a PRR results in the production of cytokines and the recruitment of leukocytes to the site of injury. Due to tissue damage and necrosis of cardiac cells, danger signals such as extracellular matrix (ECM) breakdown products, mitochondrial DNA, heat shock proteins and high mobility box 1 are released. Matricellular proteins are non-structural proteins expressed in the ECM and are upregulated upon injury. Some members of the matricellular protein family (like tenascin-C, osteopontin, CCN1 and the galectins) have been implicated in the inflammatory and reparative responses following myocardial infarction and may function as danger signals. In a clinical setting, danger signals can function as prognostic and/or diagnostic biomarkers and for drug targeting. In this review we will provide an overview of the established knowledge on the role of danger signals in myocardial infarction and we will discuss areas of interest for future research.

  4. [Lipid signaling pathways in plants and their roles in response to water constraints].

    PubMed

    Leprince, Anne-Sophie; Savouré, Arnould

    2010-01-01

    Plants are sessile organisms that have developed the capacity to detect slight variations of their environment. They are able to perceive these environmental signals and to transduce them by signaling pathways in order to trigger adaptative responses. Lipid signaling elements play a central role in these pathways in plants. A key element is phosphatidic acid (PA), which can be produced by two pathways. In the first one, phospholipids are hydrolysed by phospholipase D (PLD) to release PA. In the second one, PA is produced through the activity of phospholipase C (PLC) to produce diacylglycerol (DAG) which is then phosphorylated by DAG kinase (DAGK). The amount of PA in the cell is regulated by PA kinase, which phosphorylates PA to produce diacylglycerolpyrophosphate (DGPP), considered as a second messenger as well. PLCs play a dual role in cell signaling by regulating the amount of intracellular Ca(2+), another essential second messenger. Phosphoinositides, such as PI3P, PI4P and PI(4,5)P(2), are substrates of PLCs and PLDs and are considered as second messengers also. In this review, we present recent data regarding the specific features of these lipid signaling pathways in plant compared with other eukaryotes.

  5. Molecular Signaling Network Motifs Provide a Mechanistic Basis for Cellular Threshold Responses

    PubMed Central

    Bhattacharya, Sudin; Conolly, Rory B.; Clewell, Harvey J.; Kaminski, Norbert E.; Andersen, Melvin E.

    2014-01-01

    Background: Increasingly, there is a move toward using in vitro toxicity testing to assess human health risk due to chemical exposure. As with in vivo toxicity testing, an important question for in vitro results is whether there are thresholds for adverse cellular responses. Empirical evaluations may show consistency with thresholds, but the main evidence has to come from mechanistic considerations. Objectives: Cellular response behaviors depend on the molecular pathway and circuitry in the cell and the manner in which chemicals perturb these circuits. Understanding circuit structures that are inherently capable of resisting small perturbations and producing threshold responses is an important step towards mechanistically interpreting in vitro testing data. Methods: Here we have examined dose–response characteristics for several biochemical network motifs. These network motifs are basic building blocks of molecular circuits underpinning a variety of cellular functions, including adaptation, homeostasis, proliferation, differentiation, and apoptosis. For each motif, we present biological examples and models to illustrate how thresholds arise from specific network structures. Discussion and Conclusion: Integral feedback, feedforward, and transcritical bifurcation motifs can generate thresholds. Other motifs (e.g., proportional feedback and ultrasensitivity)produce responses where the slope in the low-dose region is small and stays close to the baseline. Feedforward control may lead to nonmonotonic or hormetic responses. We conclude that network motifs provide a basis for understanding thresholds for cellular responses. Computational pathway modeling of these motifs and their combinations occurring in molecular signaling networks will be a key element in new risk assessment approaches based on in vitro cellular assays. Citation: Zhang Q, Bhattacharya S, Conolly RB, Clewell HJ III, Kaminski NE, Andersen ME. 2014. Molecular signaling network motifs provide a

  6. Models of response inhibition in the stop-signal and stop-change paradigms.

    PubMed

    Verbruggen, Frederick; Logan, Gordon D

    2009-05-01

    The stop-signal paradigm is very useful for the study of response inhibition. Stop-signal performance is typically described as a race between a go process, triggered by a go stimulus, and a stop process, triggered by the stop signal. Response inhibition depends on the relative finishing time of these two processes. Numerous studies have shown that the independent horse-race model of Logan and Cowan [Logan, G.D., Cowan, W.B., 1984. On the ability to inhibit thought and action: a theory of an act of control. Psychological Review 91, 295-327] accounts for the data very well. In the present article, we review the independent horse-race model and related models, such as the interactive horse-race model [Boucher, L., Palmeri, T.J., Logan, G.D., Schall, J.D., 2007. Inhibitory control in mind and brain: an interactive race model of countermanding saccades. Psychological Review 114, 376-397]. We present evidence that favors the independent horse-race model but also some evidence that challenges the model. We end with a discussion of recent models that elaborate the role of a stop process in inhibiting a response.

  7. IL-1 signaling inhibits Trichophyton rubrum conidia development and modulates the IL-17 response in vivo.

    PubMed

    Yoshikawa, Fábio Seiti Yamada; Ferreira, Lucas Gonçalves; de Almeida, Sandro Rogério

    2015-01-01

    Dermatophytosis are one of the most common fungal infections in the world. They compromise keratinized tissues and the main etiological agent is Trichophyton rubrum. Macrophages are key cells in innate immunity and prominent sources of IL-1β, a potent inflammatory cytokine whose main production pathway is by the activation of inflammasomes and caspase-1. However, the role of inflammasomes and IL-1 signaling against T.rubrum has not been reported. In this work, we observed that bone marrow-derived macrophages produce IL-1β in response to T.rubrum conidia in a NLRP3-, ASC- and caspase-1-dependent fashion. Curiously, lack of IL-1 signaling promoted hyphae development, uncovering a protective role for IL-1β in macrophages. In addition, mice lacking IL-1R showed reduced IL-17 production, a key cytokine in the antifungal defense, in response to T.rubrum. Our findings point to a prominent role of IL-1 signaling in the immune response to T.rubrum, opening the venue for the study of this pathway in other fungal infections.

  8. Axon degeneration induces glial responses through Draper-TRAF4-JNK signalling

    PubMed Central

    Lu, Tsai-Yi; MacDonald, Jennifer M.; Neukomm, Lukas J.; Sheehan, Amy E.; Bradshaw, Rachel; Logan, Mary A.; Freeman, Marc R.

    2017-01-01

    Draper/Ced-1/MEGF-10 is an engulfment receptor that promotes clearance of cellular debris in C. elegans, Drosophila and mammals. Draper signals through an evolutionarily conserved Src family kinase cascade to drive cytoskeletal rearrangements and target engulfment through Rac1. Glia also alter gene expression patterns in response to axonal injury but pathways mediating these responses are poorly defined. We show Draper is cell autonomously required for glial activation of transcriptional reporters after axonal injury. We identify TNF receptor associated factor 4 (TRAF4) as a novel Draper binding partner that is required for reporter activation and phagocytosis of axonal debris. TRAF4 and misshapen (MSN) act downstream of Draper to activate c-Jun N-terminal kinase (JNK) signalling in glia, resulting in changes in transcriptional reporters that are dependent on Drosophila AP-1 (dAP-1) and STAT92E. Our data argue injury signals received by Draper at the membrane are important regulators of downstream transcriptional responses in reactive glia. PMID:28165006

  9. Cell-surface signaling in Pseudomonas: stress responses, iron transport, and pathogenicity.

    PubMed

    Llamas, María A; Imperi, Francesco; Visca, Paolo; Lamont, Iain L

    2014-07-01

    Membrane-spanning signaling pathways enable bacteria to alter gene expression in response to extracytoplasmic stimuli. Many such pathways are cell-surface signaling (CSS) systems, which are tripartite molecular devices that allow Gram-negative bacteria to transduce an extracellular stimulus into a coordinated transcriptional response. Typically, CSS systems are composed of the following: (1) an outer membrane receptor, which senses the extracellular stimulus; (2) a cytoplasmic membrane-spanning protein involved in signal transduction from the periplasm to the cytoplasm; and (3) an extracytoplasmic function (ECF) sigma factor that initiates expression of the stimulus-responsive gene(s). Members of genus Pseudomonas provide a paradigmatic example of how CSS systems contribute to the global control of gene expression. Most CSS systems enable self-regulated uptake of iron via endogenous (pyoverdine) or exogenous (xenosiderophores, heme, and citrate) carriers. Some are also implicated in virulence, biofilm formation, and cell-cell interactions. Incorporating insights from the well-characterized alginate regulatory circuitry, this review will illustrate common themes and variations at the level of structural and functional properties of Pseudomonas CSS systems. Control of the expression and activity of ECF sigma factors are central to gene regulation via CSS, and the variety of intrinsic and extrinsic factors influencing these processes will be discussed.

  10. Regulatory function of Arabidopsis lipid transfer protein 1 (LTP1) in ethylene response and signaling.

    PubMed

    Wang, Honglin; Sun, Yue; Chang, Jianhong; Zheng, Fangfang; Pei, Haixia; Yi, Yanjun; Chang, Caren; Dong, Chun-Hai

    2016-07-01

    Ethylene as a gaseous plant hormone is directly involved in various processes during plant growth and development. Much is known regarding the ethylene receptors and regulatory factors in the ethylene signal transduction pathway. In Arabidopsis thaliana, REVERSION-TO-ETHYLENE SENSITIVITY1 (RTE1) can interact with and positively regulates the ethylene receptor ETHYLENE RESPONSE1 (ETR1). In this study we report the identification and characterization of an RTE1-interacting protein, a putative Arabidopsis lipid transfer protein 1 (LTP1) of unknown function. Through bimolecular fluorescence complementation, a direct molecular interaction between LTP1 and RTE1 was verified in planta. Analysis of an LTP1-GFP fusion in transgenic plants and plasmolysis experiments revealed that LTP1 is localized to the cytoplasm. Analysis of ethylene responses showed that the ltp1 knockout is hypersensitive to 1-aminocyclopropanecarboxylic acid (ACC), while LTP1 overexpression confers insensitivity. Analysis of double mutants etr1-2 ltp1 and rte1-3 ltp1 demonstrates a regulatory function of LTP1 in ethylene receptor signaling through the molecular association with RTE1. This study uncovers a novel function of Arabidopsis LTP1 in the regulation of ethylene response and signaling.

  11. TNFα induces sustained signaling and a prolonged and unremitting inflammatory response in synovial fibroblasts

    PubMed Central

    Lee, Angela; Qiao, Yu; Grigoriev, Galina; Chen, Janice; Park-Min, Kyung-Hyun; Park, Sung Ho; Ivashkiv, Lionel B.; Kalliolias, George D.

    2013-01-01

    Objective The non resolving character of synovial inflammation in rheumatoid arthritis (RA) is a conundrum. To identify the contribution of fibroblast-like synoviocytes (FLS) to the perpetuation of synovitis, we investigated the molecular mechanisms that govern the TNFα-driven inflammatory program in human FLS. Methods FLS obtained from synovial tissues of patients with RA or osteoarthritis were stimulated with TNFα and assayed for gene expression and cytokine production by qPCR and ELISA. NF-κB signaling was evaluated using Western blotting. Histone acetylation, chromatin accessibility, and NF-κB p65 and RNA polymerase II (Pol II) occupancy at the IL6 promoter were measured by chromatin immunoprecipitation and restriction enzyme accessibility assays. Results In FLS, TNFα induced prolonged transcription of IL6 and progressive accumulation of IL-6 protein over four days. Similarly, induction of CXCL8/IL-8, CCL5/RANTES, MMP1 and MMP3 mRNA after TNFα stimulation was sustained for several days. This contrasted with the macrophage response to TNFα, which characteristically involved a transient increase in the expression of pro-inflammatory genes. In FLS, TNFα induced prolonged activation of NF-κB signaling and sustained transcriptional activity indicated by increased histone acetylation, chromatin accessibility, and p65 and Pol II occupancy at the IL6 promoter. Furthermore, FLS expressed low levels of the feedback inhibitors ABIN3, IRAK-M, SOCS3 and ATF3 that terminate inflammatory responses in macrophages. Conclusions TNFα signaling is not effectively terminated in FLS, leading to an uncontrolled inflammatory response. The results suggest that prolonged and sustained inflammatory responses by FLS, in response to synovial TNFα, contribute to the persistence of synovial inflammation in RA. PMID:23335080

  12. Subthreshold membrane responses underlying sparse spiking to natural vocal signals in auditory cortex

    PubMed Central

    Perks, Krista Eva; Gentner, Timothy Q.

    2015-01-01

    Natural acoustic communication signals, such as speech, are typically high-dimensional with a wide range of co-varying spectro-temporal features at multiple timescales. The synaptic and network mechanisms for encoding these complex signals are largely unknown. We are investigating these mechanisms in high-level sensory regions of the songbird auditory forebrain, where single neurons show sparse, object-selective spiking responses to conspecific songs. Using whole-cell in-vivo patch clamp techniques in the caudal mesopallium and the caudal nidopallium of starlings, we examine song-driven subthreshold and spiking activity. We find that both the subthreshold and the spiking activity are reliable (i.e., the same song drives a similar response each time it is presented) and specific (i.e. responses to different songs are distinct). Surprisingly, however, the reliability and specificity of the sub-threshold response was uniformly high regardless of when the cell spiked, even for song stimuli that drove no spikes. We conclude that despite a selective and sparse spiking response, high-level auditory cortical neurons are under continuous, non-selective, stimulus-specific synaptic control. To investigate the role of local network inhibition in this synaptic control, we then recorded extracellularly while pharmacologically blocking local GABA-ergic transmission. This manipulation modulated the strength and the reliability of stimulus-driven spiking, consistent with a role for local inhibition in regulating the reliability of network activity and the stimulus specificity of the subthreshold response in single cells. We discuss these results in the context of underlying computations that could generate sparse, stimulus-selective spiking responses, and models for hierarchical pooling. PMID:25728189

  13. Genetic variants associated with autoimmunity drive NFκB signaling and responses to inflammatory stimuli

    PubMed Central

    Housley, William J.; Fernandez, Salvador D.; Vera, Kenneth; Murikinati, Sasidhar R.; Grutzendler, Jaime; Cuerdon, Nicole; Glick, Laura; De Jager, Phillip L.; Mitrovic, Mitja; Cotsapas, Chris; Hafler, David A.

    2015-01-01

    The transcription factor NFκB is a central regulator of inflammation and genome-wide association studies in subjects with autoimmune disease have identified a number of variants within the NFκB signaling cascade. In addition, causal variant fine-mapping has demonstrated that autoimmune disease susceptibility variants for multiple sclerosis (MS) and ulcerative colitis are strongly enriched within binding sites for NFkB. Here, we report that MS-associated variants proximal to NFκB1 and in an intron of TNFRSF1A (TNFR1) are associated with increased NFκB signaling after TNFα stimulation. Both variants result in increased degradation of IκBα, a negative regulator of NFκB, and nuclear translocation of p65 NFκB. The variant proximal to NFκB1 controls signaling responses by altering expression of NFκB itself, with the GG risk genotype expressing 20-fold more p50 NFκB and diminished expression of the negative regulators of the NFκB pathway TNFAIP3, BCL3, and CIAP1. Finally naïve CD4 T cells from patients with MS express enhanced activation of p65 NFκB. These results demonstrate that genetic variants associated with risk of developing MS alter NFκB signaling pathways, resulting in enhanced NFκB activation and greater responsiveness to inflammatory stimuli. As such, this suggests that rapid genetic screening for variants associated with NFκB signaling may identify individuals amenable to NFκB or cytokine blockade. PMID:26062845

  14. Projecting boreal bird responses to climate change: the signal exceeds the noise.

    PubMed

    Stralberg, D; Matsuoka, S M; Hamann, A; Bayne, E M; Sólymos, P; Schmiegelow, F K A; Wang, X; Cumming, S G; Song, S J

    2015-01-01

    For climate change projections to be useful, the magnitude of change must be understood relative to the magnitude of uncertainty in model predictions. We quantified the signal-to-noise ratio in projected distributional responses of boreal birds to climate change, and compared sources of uncertainty. Boosted regression tree models of abundance were generated for 80 boreal-breeding bird species using a comprehensive data set of standardized avian point counts (349,629 surveys at 122,202 unique locations) and 4-km climate, land use, and topographic data. For projected changes in abundance, we calculated signal-to-noise ratios and examined variance components related to choice of global climate model (GCM) and two sources of species distribution model (SDM) uncertainty: sampling error and variable selection. We also evaluated spatial, temporal, and interspecific variation in these sources of uncertainty. The mean signal-to-noise ratio across species increased over time to 2.87 by the end of the 21st century, with the signal greater than the noise for 88% of species. Across species, climate change represented the largest component (0.44) of variance in projected abundance change. Among sources of uncertainty evaluated, choice of GCM (mean variance component = 0.17) was most important for 66% of species, sampling error (mean= 0.12) for 29% of species, and variable selection (mean =0.05) for 5% of species. Increasing the number of GCMs from four to 19 had minor effects on these results. The range of projected changes and uncertainty characteristics across species differed markedly, reinforcing the individuality of species' responses to climate change and the challenges of one-size-fits-all approaches to climate change adaptation. We discuss the usefulness of different conservation approaches depending on the strength of the climate change signal relative to the noise, as well as the dominant source of prediction uncertainty.

  15. Serotonergic chemosensory neurons modify the C. elegans immune response by regulating G-protein signaling in epithelial cells.

    PubMed

    Anderson, Alexandra; Laurenson-Schafer, Henry; Partridge, Frederick A; Hodgkin, Jonathan; McMullan, Rachel

    2013-01-01

    The nervous and immune systems influence each other, allowing animals to rapidly protect themselves from changes in their internal and external environment. However, the complex nature of these systems in mammals makes it difficult to determine how neuronal signaling influences the immune response. Here we show that serotonin, synthesized in Caenorhabditis elegans chemosensory neurons, modulates the immune response. Serotonin released from these cells acts, directly or indirectly, to regulate G-protein signaling in epithelial cells. Signaling in these cells is required for the immune response to infection by the natural pathogen Microbacterium nematophilum. Here we show that serotonin signaling suppresses the innate immune response and limits the rate of pathogen clearance. We show that C. elegans uses classical neurotransmitters to alter the immune response. Serotonin released from sensory neurons may function to modify the immune system in response to changes in the animal's external environment such as the availability, or quality, of food.

  16. Ethylene response factor 6 is a regulator of reactive oxygen species signaling in Arabidopsis.

    PubMed

    Sewelam, Nasser; Kazan, Kemal; Thomas-Hall, Skye R; Kidd, Brendan N; Manners, John M; Schenk, Peer M

    2013-01-01

    Reactive oxygen species (ROS) are produced in plant cells in response to diverse biotic and abiotic stresses as well as during normal growth and development. Although a large number of transcription factor (TF) genes are up- or down-regulated by ROS, currently very little is known about the functions of these TFs during oxidative stress. In this work, we examined the role of ERF6 (ETHYLENE RESPONSE FACTOR6), an AP2/ERF domain-containing TF, during oxidative stress responses in Arabidopsis. Mutant analyses showed that NADPH oxidase (RbohD) and calcium signaling are required for ROS-responsive expression of ERF6. erf6 insertion mutant plants showed reduced growth and increased H2O2 and anthocyanin levels. Expression analyses of selected ROS-responsive genes during oxidative stress identified several differentially expressed genes in the erf6 mutant. In particular, a number of ROS responsive genes, such as ZAT12, HSFs, WRKYs, MAPKs, RBOHs, DHAR1, APX4, and CAT1 were more strongly induced by H2O2 in erf6 plants than in wild-type. In contrast, MDAR3, CAT3, VTC2 and EX1 showed reduced expression levels in the erf6 mutant. Taken together, our results indicate that ERF6 plays an important role as a positive antioxidant regulator during plant growth and in response to biotic and abiotic stresses.

  17. Methylglyoxal: An Emerging Signaling Molecule in Plant Abiotic Stress Responses and Tolerance

    PubMed Central

    Hoque, Tahsina S.; Hossain, Mohammad A.; Mostofa, Mohammad G.; Burritt, David J.; Fujita, Masayuki; Tran, Lam-Son P.

    2016-01-01

    The oxygenated short aldehyde methylglyoxal (MG) is produced in plants as a by-product of a number of metabolic reactions, including elimination of phosphate groups from glycolysis intermediates dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. MG is mostly detoxified by the combined actions of the enzymes glyoxalase I and glyoxalase II that together with glutathione make up the glyoxalase system. Under normal growth conditions, basal levels of MG remain low in plants; however, when plants are exposed to abiotic stress, MG can accumulate to much higher levels. Stress-induced MG functions as a toxic molecule, inhibiting different developmental processes, including seed germination, photosynthesis and root growth, whereas MG, at low levels, acts as an important signaling molecule, involved in regulating diverse events, such as cell proliferation and survival, control of the redox status of cells, and many other aspects of general metabolism and cellular homeostases. MG can modulate plant stress responses by regulating stomatal opening and closure, the production of reactive oxygen species, cytosolic calcium ion concentrations, the activation of inward rectifying potassium channels and the expression of many stress-responsive genes. MG appears to play important roles in signal transduction by transmitting and amplifying cellular signals and functions that promote adaptation of plants growing under adverse environmental conditions. Thus, MG is now considered as a potential biochemical marker for plant abiotic stress tolerance, and is receiving considerable attention by the scientific community. In this review, we will summarize recent findings regarding MG metabolism in plants under abiotic stress, and evaluate the concept of MG signaling. In addition, we will demonstrate the importance of giving consideration to MG metabolism and the glyoxalase system, when investigating plant adaptation and responses to various environmental stresses. PMID:27679640

  18. Capicua DNA-binding sites are general response elements for RTK signaling in Drosophila.

    PubMed

    Ajuria, Leiore; Nieva, Claudia; Winkler, Clint; Kuo, Dennis; Samper, Núria; Andreu, María José; Helman, Aharon; González-Crespo, Sergio; Paroush, Ze'ev; Courey, Albert J; Jiménez, Gerardo

    2011-03-01

    RTK/Ras/MAPK signaling pathways play key functions in metazoan development, but how they control expression of downstream genes is not well understood. In Drosophila, it is generally assumed that most transcriptional responses to RTK signal activation depend on binding of Ets-family proteins to specific cis-acting sites in target enhancers. Here, we show that several Drosophila RTK pathways control expression of downstream genes through common octameric elements that are binding sites for the HMG-box factor Capicua, a transcriptional repressor that is downregulated by RTK signaling in different contexts. We show that Torso RTK-dependent regulation of terminal gap gene expression in the early embryo critically depends on Capicua octameric sites, and that binding of Capicua to these sites is essential for recruitment of the Groucho co-repressor to the huckebein enhancer in vivo. We then show that subsequent activation of the EGFR RTK pathway in the neuroectodermal region of the embryo controls dorsal-ventral gene expression by downregulating the Capicua protein, and that this control also depends on Capicua octameric motifs. Thus, a similar mechanism of RTK regulation operates during subdivision of the anterior-posterior and dorsal-ventral embryonic axes. We also find that identical DNA octamers mediate Capicua-dependent regulation of another EGFR target in the developing wing. Remarkably, a simple combination of activator-binding sites and Capicua motifs is sufficient to establish complex patterns of gene expression in response to both Torso and EGFR activation in different tissues. We conclude that Capicua octamers are general response elements for RTK signaling in Drosophila.

  19. Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport.

    PubMed

    Umezawa, Taishi; Nakashima, Kazuo; Miyakawa, Takuya; Kuromori, Takashi; Tanokura, Masaru; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2010-11-01

    ABA is a major phytohormone that regulates a broad range of plant traits and is especially important for adaptation to environmental conditions. Our understanding of the molecular basis of ABA responses in plants improved dramatically in 2009 and 2010, banner years for ABA research. There are three major components; PYR/PYL/ RCAR (an ABA receptor), type 2C protein phosphatase (PP2C; a negative regulator) and SNF1-related protein kinase 2 (SnRK2; a positive regulator), and they offer a double negative regulatory system, [PYR/PYL/RCAR-| PP2C-| SnRK2]. In the absence of ABA, PP2C inactivates SnRK2 by direct dephosphorylation. In response to environmental or developmental cues, ABA promotes the interaction of PYR/PYL/RCAR and PP2C, resulting in PP2C inhibition and SnRK2 activation. This signaling complex can work in both the nucleus and cytosol, as it has been shown that SnRK2 phosphorylates basic-domain leucine zipper (bZIP) transcription factors or membrane proteins. Several structural analyses of PYR/PYL/RCAR have provided the mechanistic basis for this 'core signaling' model, by elucidating the mechanism of ABA binding of receptors, or the 'gate-latch-lock' mechanism of interaction with PP2C in inhibiting activity. On the other hand, intercellular ABA transport had remained a major issue, as had intracellular ABA signaling. Recently, two plasma membrane-type ABC transporters were identified and shed light on the influx/efflux system of ABA, resolving how ABA is transported from cell to cell in plants. Our knowledge of ABA responses in plants has been greatly expanded from intracellular signaling to intercellular transport of ABA.

  20. Electrical signaling, stomatal conductance, ABA and ethylene content in avocado trees in response to root hypoxia.

    PubMed

    Gil, Pilar M; Gurovich, Luis; Schaffer, Bruce; García, Nicolás; Iturriaga, Rodrigo

    2009-02-01

    Avocado (Persea americana Mill.) trees are among the most sensitive of fruit tree species to root hypoxia as a result of flooded or poorly drained soil. Similar to drought stress, an early physiological response to root hypoxia in avocado is a reduction of stomatal conductance. It has been previously determined in avocado trees that an extracellular electrical signal between the base of stem and leaves is produced and related to reductions in stomatal conductance in response to drought stress. The current study was designed to determine if changes in the extracellular electrical potential between the base of the stem and leaves in avocado trees could also be detected in response to short-term (min) or long-term (days) root hypoxia, and if these signals could be related to stomatal conductance (gs), root and leaf ABA and ACC concentrations, ethylene emission from leaves and leaf abscission. In contrast to previous observations for drought-stressed trees, short-term or long-term root hypoxia did not stimulate an electrical potential difference between the base of the stem and leaves. Short-term hypoxia did not result in a significant decrease in gs compared with plants in the control treatment, and no differences in ABA concentration were found between plants subjected to hypoxia and control plants. Long-term hypoxia in the root zone resulted in a significant decrease in gs, increased leaf ethylene and increased leaf abscission. The results indicate that for avocado trees exposed to root hypoxia, electrical signals do not appear to be the primary root-to-shoot communication mechanism involved in signaling for stomatal closure as a result of hypoxia in the root zone.

  1. Electrical signaling, stomatal conductance, ABA and Ethylene content in avocado trees in response to root hypoxia

    PubMed Central

    Gurovich, Luis; Schaffer, Bruce; García, Nicolás; Iturriaga, Rodrigo

    2009-01-01

    Avocado (Persea americana Mill.) trees are among the most sensitive of fruit tree species to root hypoxia as a result of flooded or poorly drained soil. Similar to drought stress, an early physiological response to root hypoxia in avocado is a reduction of stomatal conductance. It has been previously determined in avocado trees that an extracellular electrical signal between the base of stem and leaves is produced and related to reductions in stomatal conductance in response to drought stress. The current study was designed to determine if changes in the extracellular electrical potential between the base of the stem and leaves in avocado trees could also be detected in response to short-term (min) or long-term (days) root hypoxia, and if these signals could be related to stomatal conductance (gs), root and leaf ABA and ACC concentrations, ethylene emission from leaves and leaf abscission. In contrast to previous observations for drought-stressed trees, short-term or long-term root hypoxia did not stimulate an electrical potential difference between the base of the stem and leaves. Short-term hypoxia did not result in a significant decrease in gs compared with plants in the control treatment, and no differences in ABA concentration were found between plants subjected to hypoxia and control plants. Long-term hypoxia in the root zone resulted in a significant decrease in gs, increased leaf ethylene and increased leaf abscission. The results indicate that for avocado trees exposed to root hypoxia, electrical signals do not appear to be the primary root-to-shoot communication mechanism involved in signaling for stomatal closure as a result of hypoxia in the root zone. PMID:19649181

  2. GABAergic signaling induces divergent neuronal Ca2+ responses in the suprachiasmatic nucleus network

    PubMed Central

    Allen, Charles N.

    2013-01-01

    Intercellular communication between γ-aminobutyric acid (GABA)ergic suprachiasmatic nucleus (SCN) neurons facilitates light-induced phase changes and synchronization of individual neural oscillators within the SCN network. We used ratiometric Ca2+ imaging techniques to record changes in the intracellular calcium concentration ([Ca2+]i) to study the role of GABA in interneuronal communication and the response of the SCN neuronal network to optic nerve stimulations that mimic entraining light signals. Stimulation of the retinohypothalamic tract (RHT) evoked divergent Ca2+ responses in neurons that varied regionally within the SCN with a pattern that correlated with those evoked by pharmacological GABA applications. GABAA and GABAB receptor agonists and antagonists were used to evaluate components of the GABA-induced changes in [Ca2+]i. Application of the GABAA receptor antagonist gabazine induced changes in baseline [Ca2+]i in a direction opposite to that evoked by GABA, and similarly altered the RHT stimulation-induced Ca2+ response. GABA application induced Ca2+ responses varied in time and region within the SCN network. The NKCC1 cotransporter blocker, bumetanide, and L-type calcium channel blocker, nimodipine, attenuated the GABA-induced rise of [Ca2+]i. These results suggest that physiological GABA induces opposing effects on [Ca2+]i based on the chloride equilibrium potential, and may play an important role in neuronal Ca2+ balance, synchronization and modulation of light input signaling in the SCN network. PMID:19821838

  3. Systems approach to characterizing cell signaling in host-pathogen response to staphylococcus toxin.

    SciTech Connect

    Ambrosiano, J. J.; Gupta, G.; Gray, P. C.; Hush, D. R.; Fugate, M. L.; Cleland, T. J.; Roberts, R. M.; Hlavacek, W. S.; Smith, J. L.

    2002-01-01

    The mammalian immune system is capable of highly sensitive and specific responses when challenged by pathogens. It is believed that the human immune repertoire - the total number of distinct antigens that can be recognized - is between 10{sup 9} and 10{sup 11}. The most specific responses are cell mediated and involve complex and subtle communications among the immune cells via small proteins known as cytokines. The details of host-pathogen response are exceedingly complex, involving both intracellular and extracellular mechanisms. These include the presentation of antigen by B cells to helper T cells and subsequent stimulation of signal transduction pathways and gene expression within both B and T-cell populations. These in turn lead to the secretion of cytokines and receptor expression. Intercellular cytokine signaling can trigger a host of immune responses including the proliferation and specialization of naive immune cells and the marshaling of effector cells to combat infection. In the ever-evolving game of threat and countermeasure played out by pathogens and their intended hosts, there are direct assaults aimed at subverting the immune system's ability to recognize antigens and respond effectively to challenge by pathogens. Staphylococcus is one of these. Staph bacteria secrete a variety of toxins known generically as superantigens. Superantigen molecules bind simultaneously to the MHC receptors of antigen presenting cells and the TCR receptors of helper T cells, locking them in place and leading to overstimulation. This strategy can effectively burn out the immune system in a matter of days.

  4. β-Arrestin biosensors reveal a rapid, receptor-dependent activation/deactivation cycle

    PubMed Central

    Nuber, Susanne; Zabel, Ulrike; Lorenz, Kristina; Nuber, Andreas; Milligan, Graeme; Tobin, Andrew B.; Lohse, Martin J.; Hoffmann, Carsten

    2016-01-01

    (β-)Arrestins are important regulators of G-protein-coupled receptors (GPCRs)1–3. They bind to active, phosphorylated GPCRs and thereby shut off ‘classical’ signalling to G proteins3,4, trigger internalization of GPCRs via interaction with the clathrin machinery5–7 and mediate signalling via ‘non-classical’ pathways1,2. In addition to two visual arrestins that bind to rod and cone photoreceptors (termed arrestin1 and arrestin4), there are only two (non-visual) β-arrestin proteins (β-arrestin1 and β-arrestin2, also termed arrestin2 and arrestin3), which regulate hundreds of different (non-visual) GPCRs. Binding of these proteins to GPCRs usually requires the active form of the receptors plus their phosphorylation by G-protein-coupled receptor kinases (GRKs)1,3,4. The binding of receptors or their carboxy terminus as well as certain truncations induce active conformations of (β-)arrestins that have recently been solved by X-ray crystallography8–10. Here we investigate both the interaction of β-arrestin with GPCRs, and the β-arrestin conformational changes in real time and in living human cells, using a series of fluorescence resonance energy transfer (FRET)-based β-arrestin2 biosensors. We observe receptor-specific patterns of conformational changes in β-arrestin2 that occur rapidly after the receptor–β-arrestin2 interaction. After agonist removal, these changes persist for longer than the direct receptor interaction. Our data indicate a rapid, receptor-type-specific, two-step binding and activation process between GPCRs and β-arrestins. They further indicate that β-arrestins remain active after dissociation from receptors, allowing them to remain at the cell surface and presumably signal independently. Thus, GPCRs trigger a rapid, receptor-specific activation/deactivation cycle of β-arrestins, which permits their active signalling. PMID:27007855

  5. Simultaneous imaging of intrinsic optical signals and cerebral vessel responses during cortical spreading depression in rats

    NASA Astrophysics Data System (ADS)

    Li, Pengcheng; Chen, Shangbin; Luo, Weihua; Luo, Qingming

    2003-12-01

    Cortical spreading depression (CSD) is an important disease model for migraine and cerebral ischemia. We investigated the spatio-temporal characteristics of the intrinsic optical signals (IOS) at 570 nm and the cerebral blood vessel responses during CSD simultaneously by optical reflectance imaging in vivo. The CSD were induced by pinprick in 10 α-chloralose/urethane anesthetized Sprague-Dawley rats. A four-phasic IOS response was observed at pial arteries and parenchymal sites in all experimental animals and an initial slight pial arteries dilation (21.5%+/-13.6%) and constriction (-4.2%+/-3.5%) precedes the dramatic dilation (69.2%+/-26.1%) of pial arterioles was recorded. Our experimental results show a high correlation (r = 0.89+/-0.025) between the IOS response and the diameter changes of the cerebral blood vessels during CSD in rats.

  6. Jasmonate signaling is activated in the very early stages of iron deficiency responses in rice roots.

    PubMed

    Kobayashi, Takanori; Itai, Reiko Nakanishi; Senoura, Takeshi; Oikawa, Takaya; Ishimaru, Yasuhiro; Ueda, Minoru; Nakanishi, Hiromi; Nishizawa, Naoko K

    2016-07-01

    Under low iron availability, plants induce the expression of various genes involved in iron uptake and translocation at the transcriptional level. This iron deficiency response is affected by various plant hormones, but the roles of jasmonates in this response are not well-known. We investigated the involvement of jasmonates in rice iron deficiency responses. High rates of jasmonate-inducible genes were induced during the very early stages of iron deficiency treatment in rice roots. Many jasmonate-inducible genes were also negatively regulated by the ubiquitin ligases OsHRZ1 and OsHRZ2 and positively regulated by the transcription factor IDEF1. Ten out of 35 genes involved in jasmonate biosynthesis and signaling were rapidly induced at 3 h of iron deficiency treatment, and this induction preceded that of known iron deficiency-inducible genes involved in iron uptake and translocation. Twelve genes involved in jasmonate biosynthesis and signaling were also upregulated in HRZ-knockdown roots. Endogenous concentrations of jasmonic acid and jasmonoyl isoleucine tended to be rapidly increased in roots in response to iron deficiency treatment, whereas these concentrations were higher in HRZ-knockdown roots under iron-sufficient conditions. Analysis of the jasmonate-deficient cpm2 mutant revealed that jasmonates repress the expression of many iron deficiency-inducible genes involved in iron uptake and translocation under iron sufficiency, but this repression is partly canceled under an early stage of iron deficiency. These results indicate that jasmonate signaling is activated during the very early stages of iron deficiency, which is partly regulated by IDEF1 and OsHRZs.

  7. Lipopolysaccharide activates innate immune responses in murine intestinal myofibroblasts through multiple signaling pathways

    PubMed Central

    Walton, Kristen L. W.; Holt, Lisa; Sartor, R. Balfour

    2009-01-01

    Myofibroblasts (MF) play an important role in intestinal wound healing. A compromised epithelial barrier exposes intestinal subepithelial MF to luminal bacterial products. However, responses of murine intestinal MF to bacterial adjuvants and potential roles of intestinal MF in innate immune responses are not well defined. Our aims in this study were to determine innate immune responses and intracellular signaling pathways of intestinal MF exposed to LPS, a prototypic Toll-like receptor (TLR) ligand. Expression of TLR4 in primary murine intestinal MF cultures was confirmed by RT-PCR and Western blotting. LPS-induced secretion of prostaglandin E2 (PGE2), interleukin (IL)-6, and keratinocyte-derived chemokines (KC) was measured by ELISA. Intracellular responses to LPS were assessed by Western blotting for NF-κB p65, Iκ-Bα, Akt, p38 MAP kinase, and cyclooxygenase-2 (COX-2). LPS induced rapid phosphorylation of NF-κB p65, Akt, and p38 MAPK and degradation of Iκ-Bα. LPS induced expression of COX-2 and secretion of PGE2 (2.0 ± 0.8-fold induction vs. unstimulated cells), IL-6 (6.6 ± 0.4-fold induction), and KC (12.5 ± 0.4-fold induction). Inhibition of phosphoinositide-3 (PI3)-kinase, p38 MAPK, or NF-κB pathways reduced LPS-induced PGE2, IL-6, and KC secretion. These studies show that primary murine intestinal MF respond to LPS, evidenced by activation of NF-κB, PI3-kinase, and MAPK signaling pathways and secretion of proinflammatory molecules. Inhibition of these pathways attenuated LPS-dependent PGE2, IL-6, and KC production, indicating that LPS activates MF by multiple signaling pathways. These data support the hypothesis that MF are a component of the innate immune system and may exert paracrine effects on adjacent epithelial and immune cells by responding to luminal bacterial adjuvants. PMID:19136385

  8. One pair of hands is not like another: caudate BOLD response in dogs depends on signal source and canine temperament

    PubMed Central

    Cook, Peter F.; Spivak, Mark

    2014-01-01

    Having previously used functional MRI to map the response to a reward signal in the ventral caudate in awake unrestrained dogs, here we examined the importance of signal source to canine caudate activation. Hand signals representing either incipient reward or no reward were presented by a familiar human (each dog’s respective handler), an unfamiliar human, and via illustrated images of hands on a computer screen to 13 dogs undergoing voluntary fMRI. All dogs had received extensive training with the reward and no-reward signals from their handlers and with the computer images and had minimal exposure to the signals from strangers. All dogs showed differentially higher BOLD response in the ventral caudate to the reward versus no reward signals, and there was a robust effect at the group level. Further, differential response to the signal source had a highly significant interaction with a dog’s general aggressivity as measured by the C-BARQ canine personality assessment. Dogs with greater aggressivity showed a higher differential response to the reward signal versus no-reward signal presented by the unfamiliar human and computer, while dogs with lower aggressivity showed a higher differential response to the reward signal versus no-reward signal from their handler. This suggests that specific facets of canine temperament bear more strongly on the perceived reward value of relevant communication signals than does reinforcement history, as each of the dogs were reinforced similarly for each signal, regardless of the source (familiar human, unfamiliar human, or computer). A group-level psychophysiological interaction (PPI) connectivity analysis showed increased functional coupling between the caudate and a region of cortex associated with visual discrimination and learning on reward versus no-reward trials. Our findings emphasize the sensitivity of the domestic dog to human social interaction, and may have other implications and applications pertinent to the training

  9. TGFβ upregulates PAR-1 expression and signalling responses in A549 lung adenocarcinoma cells

    PubMed Central

    Smoktunowicz, Natalia; Platé, Manuela; Stern, Alejandro Ortiz; D'Antongiovanni, Vanessa; Robinson, Eifion; Chudasama, Vijay; Caddick, Stephen; Scotton, Chris J.; Jarai, Gabor; Chambers, Rachel C.

    2016-01-01

    The major high-affinity thrombin receptor, proteinase activated receptor-1 (PAR-1) is expressed at low levels by the normal epithelium but is upregulated in many types of cancer, including lung cancer. The thrombin-PAR-1 signalling axis contributes to the activation of latent TGFβ in response to tissue injury via an αvβ6 integrin-mediated mechanism. TGFβ is a pleiotropic cytokine that acts as a tumour suppressor in normal and dysplastic cells but switches into a tumour promoter in advanced tumours. In this study we demonstrate that TGFβ is a positive regulator of PAR-1 expression in A549 lung adenocarcinoma cells, which in turn increases the sensitivity of these cells to thrombin signalling. We further demonstrate that this effect is Smad3-, ERK1/2- and Sp1-dependent. We also show that TGFβ-mediated PAR-1 upregulation is accompanied by increased expression of integrin αv and β6 subunits. Finally, TGFβ pre-stimulation promotes increased migratory potential of A549 to thrombin. These data have important implications for our understanding of the interplay between coagulation and TGFβ signalling responses in lung cancer. PMID:27566553

  10. Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology

    NASA Technical Reports Server (NTRS)

    Ingber, Donald E.

    2002-01-01

    Great advances have been made in the identification of the soluble angiogenic factors, insoluble extracellular matrix (ECM) molecules, and receptor signaling pathways that mediate control of angiogenesis--the growth of blood capillaries. This review focuses on work that explores how endothelial cells integrate these chemical signals with mechanical cues from their local tissue microenvironment so as to produce functional capillary networks that exhibit specialized form as well as function. These studies have revealed that ECM governs whether an endothelial cell will switch between growth, differentiation, motility, or apoptosis programs in response to a soluble stimulus based on its ability to mechanically resist cell tractional forces and thereby produce cell and cytoskeletal distortion. Transmembrane integrin receptors play a key role in this mechanochemical transduction process because they both organize a cytoskeletal signaling complex within the focal adhesion and preferentially focus mechanical forces on this site. Molecular filaments within the internal cytoskeleton--microfilaments, microtubules, and intermediate filaments--also contribute to the cell's structural and functional response to mechanical stress through their role as discrete support elements within a tensegrity-stabilized cytoskeletal array. Importantly, a similar form of mechanical control also has been shown to be involved in the regulation of contractility in vascular smooth muscle cells and cardiac myocytes. Thus, the mechanism by which cells perform mechanochemical transduction and the implications of these findings for morphogenetic control are discussed in the wider context of vascular development and cardiovascular physiology.

  11. CCL5/RANTES contributes to hypothalamic insulin signaling for systemic insulin responsiveness through CCR5

    PubMed Central

    Chou, Szu-Yi; Ajoy, Reni; Changou, Chun Austin; Hsieh, Ya-Ting; Wang, Yang-Kao; Hoffer, Barry

    2016-01-01

    Many neurodegenerative diseases are accompanied by metabolic disorders. CCL5/RANTES, and its receptor CCR5 are known to contribute to neuronal function as well as to metabolic disorders such as type 2 diabetes mellitus, obesity, atherosclerosis and metabolic changes after HIV infection. Herein, we found that the lack of CCR5 or CCL5 in mice impaired regulation of energy metabolism in hypothalamus. Immunostaining and co-immunoprecipitation revealed the specific expression of CCR5, associated with insulin receptors, in the hypothalamic arcuate nucleus (ARC). Both ex vivo stimulation and in vitro tissue culture studies demonstrated that the activation of insulin, and PI3K-Akt pathways were impaired in CCR5 and CCL5 deficient hypothalamus. The inhibitory phosphorylation of insulin response substrate-1 at Ser302 (IRS-1S302) but not IRS-2, by insulin was markedly increased in CCR5 and CCL5 deficient animals. Elevating CCR5/CCL5 activity induced GLUT4 membrane translocation and reduced phospho-IRS-1S302 through AMPKα-S6 Kinase. Blocking CCR5 using the antagonist, MetCCL5, abolished the de-phosphorylation of IRS-1S302 and insulin signal activation. In addition, intracerebroventricular delivery of MetCCL5 interrupted hypothalamic insulin signaling and elicited peripheral insulin responsiveness and glucose intolerance. Taken together, our data suggest that CCR5 regulates insulin signaling in hypothalamus which contributes to systemic insulin sensitivity and glucose metabolism. PMID:27898058

  12. The Role of Signaling via Aqueous Pore Formation in Resistance Responses to Amphotericin B

    PubMed Central

    2016-01-01

    Drug resistance studies have played an important role in the validation of antibiotic targets. In the case of the polyene antibiotic amphotericin B (AmB), such studies have demonstrated the essential role that depletion of ergosterol plays in the development of AmB-resistant (AmB-R) organisms. However, AmB-R strains also occur in fungi and parasitic protozoa that maintain a normal level of ergosterol at the plasma membrane. Here, I review evidence that shows not only that there is increased protection against the deleterious consequences of AmB-induced ion leakage across the membrane in these resistant pathogens but also that a set of events are activated that block the cell signaling responses that trigger the oxidative damage produced by the antibiotic. Such signaling events appear to be the consequence of a membrane-thinning effect that is exerted upon lipid-anchored Ras proteins by the aqueous pores formed by AmB. A similar membrane disturbance effect may also explain the activity of AmB on mammalian cells containing Toll-like receptors. These resistance mechanisms expand our current understanding of the role that the formation of AmB aqueous pores plays in triggering signal transduction responses in both pathogens and host immune cells. PMID:27381391

  13. CCL5/RANTES contributes to hypothalamic insulin signaling for systemic insulin responsiveness through CCR5.

    PubMed

    Chou, Szu-Yi; Ajoy, Reni; Changou, Chun Austin; Hsieh, Ya-Ting; Wang, Yang-Kao; Hoffer, Barry

    2016-11-29

    Many neurodegenerative diseases are accompanied by metabolic disorders. CCL5/RANTES, and its receptor CCR5 are known to contribute to neuronal function as well as to metabolic disorders such as type 2 diabetes mellitus, obesity, atherosclerosis and metabolic changes after HIV infection. Herein, we found that the lack of CCR5 or CCL5 in mice impaired regulation of energy metabolism in hypothalamus. Immunostaining and co-immunoprecipitation revealed the specific expression of CCR5, associated with insulin receptors, in the hypothalamic arcuate nucleus (ARC). Both ex vivo stimulation and in vitro tissue culture studies demonstrated that the activation of insulin, and PI3K-Akt pathways were impaired in CCR5 and CCL5 deficient hypothalamus. The inhibitory phosphorylation of insulin response substrate-1 at Ser302 (IRS-1(S302)) but not IRS-2, by insulin was markedly increased in CCR5 and CCL5 deficient animals. Elevating CCR5/CCL5 activity induced GLUT4 membrane translocation and reduced phospho-IRS-1(S302) through AMPKα-S6 Kinase. Blocking CCR5 using the antagonist, (Met)CCL5, abolished the de-phosphorylation of IRS-1(S302) and insulin signal activation. In addition, intracerebroventricular delivery of (Met)CCL5 interrupted hypothalamic insulin signaling and elicited peripheral insulin responsiveness and glucose intolerance. Taken together, our data suggest that CCR5 regulates insulin signaling in hypothalamus which contributes to systemic insulin sensitivity and glucose metabolism.

  14. Constraints to herbivore-induced systemic responses: bidirectional signaling along orthostichies in Nicotiana attenuata.

    PubMed

    Schittko, Ursula; Baldwin, Ian T

    2003-03-01

    We investigated the impact of leaf vascular connections on systemically transmitted herbivore-induced gene expression in Nicotiana attenuata. Although systemic signaling is clearly associated with the plant vascular system, few studies consider vascular architecture when measuring systemically induced defenses. N. attenuata is a plant with dispersed phyllotaxis approximating 3/8 in the rosette stage of growth. We mimicked Manduca sexta herbivory by introducing larval regurgitant to wounds produced with a standardized continuous mechanical wounding and investigated mRNA accumulation of genes. Herbivory in N. attenuata induces the expression of genes coding for a proteinase inhibitor protein (PI), threonine deaminase (TD, EC 4.3.1.19), a luminal-binding protein (BiP), and an alpha-dioxygenase (alpha-DOX). We measured the systemic response of sink leaves when orthostichous (growing at an angular distance of 0 degrees) source leaves were treated, and vice versa, and compared it to the systemic response of leaves growing at the maximum angular distance of 180 degrees. Vascular architecture clearly controlled the intensity of systemic mRNA accumulation within the 4-hr time frame of the experiment. In addition, we found signal translocation to be bidirectional, travelling from source to sink as well as from sink to source leaves, which argues against a phloem-based assimilate-linked signal identity.

  15. Evc regulates a symmetrical response to Shh signaling in molar development.

    PubMed

    Nakatomi, M; Hovorakova, M; Gritli-Linde, A; Blair, H J; MacArthur, K; Peterka, M; Lesot, H; Peterkova, R; Ruiz-Perez, V L; Goodship, J A; Peters, H

    2013-03-01

    Tooth morphogenesis involves patterning through the activity of epithelial signaling centers that, among other molecules, secrete Sonic hedgehog (Shh). While it is known that Shh responding cells need intact primary cilia for signal transduction, the roles of individual cilia components for tooth morphogenesis are poorly understood. The clinical features of individuals with Ellis-van Creveld syndrome include various dental anomalies, and we show here that absence of the cilial protein Evc in mice causes various hypo- and hyperplasia defects during molar development. During first molar development, the response to Shh signaling is progressively lost in Evc-deficient embryos and, unexpectedly, the response consistently disappears in a buccal to lingual direction. The important role of Evc for establishing the buccal-lingual axis of the developing first molar is also supported by a displaced activity of the Wnt pathway in Evc mutants. The observed growth abnormalities eventually manifest in first molar microdontia, disruption of molar segmentation and symmetry, root fusions, and delayed differentiation. Analysis of our data indicates that both spatially and temporally disrupted activities of the Shh pathway are the primary cause for the variable dental anomalies seen in patients with Ellis-van Creveld syndrome or Weyers acrodental dysostosis.

  16. Lysophosphatidic Acid (LPA) Receptor 5 Inhibits B Cell Antigen Receptor Signaling and Antibody Response1

    PubMed Central

    Shotts, Kristin; Donovan, Erin E.; Strauch, Pamela; Pujanauski, Lindsey M.; Victorino, Francisco; Al-Shami, Amin; Fujiwara, Yuko; Tigyi, Gabor; Oravecz, Tamas; Pelanda, Roberta; Torres, Raul M.

    2014-01-01

    Lysophospholipids have emerged as biologically important chemoattractants capable of directing lymphocyte development, trafficking and localization. Lysophosphatidic acid (LPA) is a major lysophospholipid found systemically and whose levels are elevated in certain pathological settings such as cancer and infections. Here, we demonstrate that BCR signal transduction by mature murine B cells is inhibited upon LPA engagement of the LPA5 (GPR92) receptor via a Gα12/13 – Arhgef1 pathway. The inhibition of BCR signaling by LPA5 manifests by impaired intracellular calcium store release and most likely by interfering with inositol 1,4,5-trisphosphate receptor activity. We further show that LPA5 also limits antigen-specific induction of CD69 and CD86 expression and that LPA5-deficient B cells display enhanced antibody responses. Thus, these data show that LPA5 negatively regulates BCR signaling, B cell activation and immune response. Our findings extend the influence of lysophospholipids on immune function and suggest that alterations in LPA levels likely influence adaptive humoral immunity. PMID:24890721

  17. Induction of in vivo antipolysaccharide immunoglobulin responses to intact Streptococcus pneumoniae is more heavily dependent on Btk-mediated B-cell receptor signaling than antiprotein responses.

    PubMed

    Khan, Abdul Q; Sen, Goutam; Guo, Shuling; Witte, Owen N; Snapper, Clifford M

    2006-02-01

    The relative role of Btk-dependent B-cell receptor (BCR) signaling in the induction of antipolysaccharide (anti-PS) and antiprotein immunoglobulin (Ig) responses to an intact extracellular bacterium in vivo is unknown. Btklow mice exhibit reduced BCR signaling but largely restore B-cell development. Btklow mice immunized with intact Streptococcus pneumoniae elicit reduced anti-PS but normal antiprotein Ig responses. Immunization of Btklow mice with PS-protein conjugate in saline results in an even more profound defect in the anti-PS but not antiprotein response, which is largely restored by use of a CpG-containing oligodeoxynucleotide as an adjuvant. These data demonstrate a greater dependence on Btk-mediated BCR signaling for physiologic anti-PS relative to antiprotein responses, as well as the existence of a compensatory Toll-like-receptor-mediated signaling pathway naturally triggered in response to intact bacterial pathogens.

  18. Signaling pathways involved in PDGF-evoked cellular responses in human RPE cells

    SciTech Connect

    Hollborn, Margrit . E-mail: hollbm@medizin.uni-leipzig.de; Bringmann, Andreas; Faude, Frank; Wiedemann, Peter; Kohen, Leon

    2006-06-09

    We examined whether PDGF may directly stimulate the expression of VEGF by retinal pigment epithelial (RPE) cells in vitro, and the involvement of three signal transduction pathways in the regulation of PDGF-evoked cell proliferation, migration, and production of VEGF-A was investigated. PDGF stimulated the gene and protein expression of VEGF-A by RPE cells, and increased cell proliferation and chemotaxis. PDGF activated all signaling pathways investigated, as determined by increased phosphorylation levels of ERK1/2, p38, and Akt proteins. The three signaling pathways were involved in the mediation of PDGF-evoked cell proliferation, while p38 and PI3K mediated cell migration, and PI3K mediated secretion of VEGF-A. In addition to VEGF-A, the cells expressed mRNAs for various members of the VEGF family and for their receptors, including VEGF-B, -C, -D, flt-1, and KDR. The data indicate that PDGF selectively stimulates the expression of VEGF-A in RPE cells. PDGF evokes at least three signal transduction pathways which are differentially involved in various cellular responses.

  19. Electrical signaling along the phloem and its physiological responses in the maize leaf

    PubMed Central

    Fromm, Jörg; Hajirezaei, Mohammad-Reza; Becker, Verena K.; Lautner, Silke

    2013-01-01

    To elucidate the role of electrical signaling in the phloem of maize the tips of attached leaves were stimulated by chilling and wounding. Two different signals were detected in the phloem at the middle of the leaf using the aphid stylet technique: (1) action potentials (AP) arose in the phloem after chilling; and (2) variation potentials (VPs) were evoked after wounding the leaf tip. Combined electric potential and gas exchange measurements showed that while the wound-induced VP moved rapidly towards the middle of the leaf to induce a reduction in both the net-CO2 uptake rate and the stomatal conductance, there was no response in the gas exchange to the cold-induced AP. To determine if electrical signaling had any impact on assimilate transport the middle of the leaf was exposed to 14CO2. Autoradiography of labeled assimilates provided evidence that phloem and intercellular transport of assimilates from mesophyll to bundle sheath cells was strongly reduced while the cold-induced AP moved through. In contrast, wound-induced VP did not inhibit assimilate translocation but did reduce the amount of the labeled assimilate in phloem and bundle sheath cells. Biochemical analysis revealed that callose content increased significantly in chilled leaves while starch increased in chilled but decreased in wounded leaves. The results led to the conclusion that different stimulation types incite characteristic phloem-transmitted electrical signals, each with a specific influence on gas exchange and assimilate transport. PMID:23847642

  20. The cell envelope stress response of Bacillus subtilis: from static signaling devices to dynamic regulatory network.

    PubMed

    Radeck, Jara; Fritz, Georg; Mascher, Thorsten

    2017-02-01

    The cell envelope stress response (CESR) encompasses all regulatory events that enable a cell to protect the integrity of its envelope, an essential structure of any bacterial cell. The underlying signaling network is particularly well understood in the Gram-positive model organism Bacillus subtilis. It consists of a number of two-component systems (2CS) and extracytoplasmic function σ factors that together regulate the production of both specific resistance determinants and general mechanisms to protect the envelope against antimicrobial peptides targeting the biogenesis of the cell wall. Here, we summarize the current picture of the B. subtilis CESR network, from the initial identification of the corresponding signaling devices to unraveling their interdependence and the underlying regulatory hierarchy within the network. In the course of detailed mechanistic studies, a number of novel signaling features could be described for the 2CSs involved in mediating CESR. This includes a novel class of so-called intramembrane-sensing histidine kinases (IM-HKs), which-instead of acting as stress sensors themselves-are activated via interprotein signal transfer. Some of these IM-HKs are involved in sensing the flux of antibiotic resistance transporters, a unique mechanism of responding to extracellular antibiotic challenge.

  1. A signal subspace approach for modeling the hemodynamic response function in fMRI.

    PubMed

    Hossein-Zadeh, Gholam-Ali; Ardekani, Babak A; Soltanian-Zadeh, Hamid

    2003-10-01

    Many fMRI analysis methods use a model for the hemodynamic response function (HRF). Common models of the HRF, such as the Gaussian or Gamma functions, have parameters that are usually selected a priori by the data analyst. A new method is presented that characterizes the HRF over a wide range of parameters via three basis signals derived using principal component analysis (PCA). Covering the HRF variability, these three basis signals together with the stimulation pattern define signal subspaces which are applicable to both linear and nonlinear modeling and identification of the HRF and for various activation detection strategies. Analysis of simulated fMRI data using the proposed signal subspace showed increased detection sensitivity compared to the case of using a previously proposed trigonometric subspace. The methodology was also applied to activation detection in both event-related and block design experimental fMRI data using both linear and nonlinear modeling of the HRF. The activated regions were consistent with previous studies, indicating the ability of the proposed approach in detecting brain activation without a priori assumptions about the shape parameters of the HRF. The utility of the proposed basis functions in identifying the HRF is demonstrated by estimating the HRF in different activated regions.

  2. Hedgehog signaling enables nutrition-responsive inhibition of an alternative morph in a polyphenic beetle

    PubMed Central

    Kijimoto, Teiya; Moczek, Armin P.

    2016-01-01

    The recruitment of modular developmental genetic components into new developmental contexts has been proposed as a central mechanism enabling the origin of novel traits and trait functions without necessitating the origin of novel pathways. Here, we investigate the function of the hedgehog (Hh) signaling pathway, a highly conserved pathway best understood for its role in patterning anterior/posterior (A/P) polarity of diverse traits, in the developmental evolution of beetle horns, an evolutionary novelty, and horn polyphenisms, a highly derived form of environment-responsive trait induction. We show that interactions among pathway members are conserved during development of Onthophagus horned beetles and have retained the ability to regulate A/P polarity in traditional appendages, such as legs. At the same time, the Hh signaling pathway has acquired a novel and highly unusual role in the nutrition-dependent regulation of horn polyphenisms by actively suppressing horn formation in low-nutrition males. Down-regulation of Hh signaling lifts this inhibition and returns a highly derived sigmoid horn body size allometry to its presumed ancestral, linear state. Our results suggest that recruitment of the Hh signaling pathway may have been a key step in the evolution of trait thresholds, such as those involved in horn polyphenisms and the corresponding origin of alternative phenotypes and complex allometries. PMID:27162357

  3. TFAP2C controls hormone response in breast cancer cells through multiple pathways of estrogen signaling.

    PubMed

    Woodfield, George W; Horan, Annamarie D; Chen, Yizhen; Weigel, Ronald J

    2007-09-15

    Breast cancers expressing estrogen receptor-alpha (ERalpha) are associated with a favorable biology and are more likely to respond to hormonal therapy. In addition to ERalpha, other pathways of estrogen response have been identified including ERbeta and GPR30, a membrane receptor for estrogen, and the key mechanisms regulating expression of ERs and hormone response remain controversial. Herein, we show that TFAP2C is the key regulator of hormone responsiveness in breast carcinoma cells through the control of multiple pathways of estrogen signaling. TFAP2C regulates the expression of ERalpha directly by binding to the ERalpha promoter and indirectly via regulation of FoxM1. In so doing, TFAP2C controls the expression of ERalpha target genes, including pS2, MYB, and RERG. Furthermore, TFAP2C controlled the expression of GPR30. In distinct contrast, TFAP2A, a related factor expressed in breast cancer, was not involved in estrogen-mediated pathways but regulated expression of genes controlling cell cycle arrest and apoptosis including p21(CIP1) and IGFBP-3. Knockdown of TFAP2C abrogated the mitogenic response to estrogen exposure and decreased hormone-responsive tumor growth of breast cancer xenografts. We conclude that TFAP2C is a central control gene of hormone response and is a novel therapeutic target in the design of new drug treatments for breast cancer.

  4. A Decline in Response Variability Improves Neural Signal Detection during Auditory Task Performance.

    PubMed

    von Trapp, Gardiner; Buran, Bradley N; Sen, Kamal; Semple, Malcolm N; Sanes, Dan H

    2016-10-26

    The detection of a sensory stimulus arises from a significant change in neural activity, but a sensory neuron's response is rarely identical to successive presentations of the same stimulus. Large trial-to-trial variability would limit the central nervous system's ability to reliably detect a stimulus, presumably affecting perceptual performance. However, if response variability were to decrease while firing rate remained constant, then neural sensitivity could improve. Here, we asked whether engagement in an auditory detection task can modulate response variability, thereby increasing neural sensitivity. We recorded telemetrically from the core auditory cortex of gerbils, both while they engaged in an amplitude-modulation detection task and while they sat quietly listening to the identical stimuli. Using a signal detection theory framework, we found that neural sensitivity was improved during task performance, and this improvement was closely associated with a decrease in response variability. Moreover, units with the greatest change in response variability had absolute neural thresholds most closely aligned with simultaneously measured perceptual thresholds. Our findings suggest that the limitations imposed by response variability diminish during task performance, thereby improving the sensitivity of neural encoding and potentially leading to better perceptual sensitivity.

  5. Cardioprotective mIGF-1/SIRT1 signaling induces hypertension, leukocytosis and fear response in mice.

    PubMed

    Bolasco, Giulia; Calogero, Raffaele; Carrara, Matteo; Banchaabouchi, Mumna Al; Bilbao, Daniel; Mazzoccoli, Gianluigi; Vinciguerra, Manlio

    2012-06-01

    Locally acting insulin growth factor isoform (mIGF-1) and the NAD+-dependent protein deacetylase SIRT1 are implicated in life and health span. Heart failure is associated with aging and is a major cause of death. mIGF-1 protects the heart from oxidative stresses via SIRT1. SIRT1 subcellular localization and its genomic regulation by mIGF-1 are unknown. We show here that SIRT1 is located in the nuclei of a significant fraction of cardiomyocytes. Using high throughput sequencing approaches in mIGF-1 transgenic mice, we identified new targets of the mIGF-1/SIRT1 signaling. In addition to its potent cardioprotective properties, cardiac-restricted mIGF-1 transgene induced systemic changes such as high blood pressure, leukocytosis and an enhanced fear response, in a SIRT1-dependent manner. Cardiac mIGF-1/ SIRT1 signaling may thus modulate disparate systemic functions.

  6. Immune response and insulin signalling alter mosquito feeding behaviour to enhance malaria transmission potential

    PubMed Central

    Cator, Lauren J.; Pietri, Jose E.; Murdock, Courtney C.; Ohm, Johanna R.; Lewis, Edwin E.; Read, Andrew F.; Luckhart, Shirley; Thomas, Matthew B.

    2015-01-01

    Malaria parasites alter mosquito feeding behaviour in a way that enhances parasite transmission. This is widely considered a prime example of manipulation of host behaviour to increase onward transmission, but transient immune challenge in the absence of parasites can induce the same behavioural phenotype. Here, we show that alterations in feeding behaviour depend on the timing and dose of immune challenge relative to blood ingestion and that these changes are functionally linked to changes in insulin signalling in the mosquito gut. These results suggest that altered phenotypes derive from insulin signalling-dependent host resource allocation among immunity, blood feeding, and reproduction in a manner that is not specific to malaria parasite infection. We measured large increases in mosquito survival and subsequent transmission potential when feeding patterns are altered. Leveraging these changes in physiology, behaviour and life history could promote effective and sustainable control of female mosquitoes responsible for transmission. PMID:26153094

  7. Immune response and insulin signalling alter mosquito feeding behaviour to enhance malaria transmission potential.

    PubMed

    Cator, Lauren J; Pietri, Jose E; Murdock, Courtney C; Ohm, Johanna R; Lewis, Edwin E; Read, Andrew F; Luckhart, Shirley; Thomas, Matthew B

    2015-07-08

    Malaria parasites alter mosquito feeding behaviour in a way that enhances parasite transmission. This is widely considered a prime example of manipulation of host behaviour to increase onward transmission, but transient immune challenge in the absence of parasites can induce the same behavioural phenotype. Here, we show that alterations in feeding behaviour depend on the timing and dose of immune challenge relative to blood ingestion and that these changes are functionally linked to changes in insulin signalling in the mosquito gut. These results suggest that altered phenotypes derive from insulin signalling-dependent host resource allocation among immunity, blood feeding, and reproduction in a manner that is not specific to malaria parasite infection. We measured large increases in mosquito survival and subsequent transmission potential when feeding patterns are altered. Leveraging these changes in physiology, behaviour and life history could promote effective and sustainable control of female mosquitoes responsible for transmission.

  8. Impaired calcium calmodulin kinase signaling and muscle adaptation response in the absence of calpain 3.

    PubMed

    Kramerova, I; Kudryashova, E; Ermolova, N; Saenz, A; Jaka, O; López de Munain, A; Spencer, M J

    2012-07-15

    Mutations in the non-lysosomal, cysteine protease calpain 3 (CAPN3) result in the disease limb girdle muscular dystrophy type 2A (LGMD2A). CAPN3 is localized to several subcellular compartments, including triads, where it plays a structural, rather than a proteolytic, role. In the absence of CAPN3, several triad components are reduced, including the major Ca(2+) release channel, ryanodine receptor (RyR). Furthermore, Ca(2+) release upon excitation is impaired in the absence of CAPN3. In the present study, we show that Ca-calmodulin protein kinase II (CaMKII) signaling is compromised in CAPN3 knockout (C3KO) mice. The CaMK pathway has been previously implicated in promoting the slow skeletal muscle phenotype. As expected, the decrease in CaMKII signaling that was observed in the absence of CAPN3 is associated with a reduction in the slow versus fast muscle fiber phenotype. We show that muscles of WT mice subjected to exercise training activate the CaMKII signaling pathway and increase expression of the slow form of myosin; however, muscles of C3KO mice do not exhibit these adaptive changes to exercise. These data strongly suggest that skeletal muscle's adaptive response to functional demand is compromised in the absence of CAPN3. In agreement with our mouse studies, RyR levels were also decreased in biopsies from LGMD2A patients. Moreover, we observed a preferential pathological involvement of slow fibers in LGMD2A biopsies. Thus, impaired CaMKII signaling and, as a result, a weakened muscle adaptation response identify a novel mechanism that may underlie LGMD2A and suggest a pharmacological target that should be explored for therapy.

  9. ITIM-dependent negative signaling pathways for the control of cell-mediated xenogeneic immune responses.

    PubMed

    del Rio, Maria-Luisa; Seebach, Jörg D; Fernández-Renedo, Carlos; Rodriguez-Barbosa, Jose-Ignacio

    2013-01-01

    Xenotransplantation is an innovative field of research with the potential to provide us with an alternative source of organs to face the severe shortage of human organ donors. For several reasons, pigs have been chosen as the most suitable source of organs and tissues for transplantation in humans. However, porcine xenografts undergo cellular immune responses representing a major barrier to their acceptance and normal functioning. Innate and adaptive xenogeneic immunity is mediated by both the recognition of xenogeneic tissue antigens and the lack of inhibition due to molecular cross-species incompatibilities of regulatory pathways. Therefore, the delivery of immunoreceptor tyrosine-based inhibitory motif (ITIM)-dependent and related negative signals to control innate (NK cells, macrophages) and adaptive T and B cells might overcome cell-mediated xenogeneic immunity. The proof of this concept has already been achieved in vitro by the transgenic overexpression of human ligands of several inhibitory receptors in porcine cells resulting in their resistance against xenoreactivity. Consequently, several transgenic pigs expressing tissue-specific human ligands of inhibitory coreceptors (HLA-E, CD47) or soluble competitors of costimulation (belatacept) have already been generated. The development of these robust and innovative approaches to modulate human anti-pig cellular immune responses, complementary to conventional immunosuppression, will help to achieve long-term xenograft survival. In this review, we will focus on the current strategies to enhance negative signaling pathways for the regulation of undesirable cell-mediated xenoreactive immune responses.

  10. AHNAK deficiency promotes browning and lipolysis in mice via increased responsiveness to β-adrenergic signalling

    PubMed Central

    Shin, Jae Hoon; Lee, Seo Hyun; Kim, Yo Na; Kim, Il Yong; Kim, Youn Ju; Kyeong, Dong Soo; Lim, Hee Jung; Cho, Soo Young; Choi, Junhee; Wi, Young Jin; Choi, Jae-Hoon; Yoon, Yeo Sung; Bae, Yun Soo; Seong, Je Kyung

    2016-01-01

    In adipose tissue, agonists of the β3-adrenergic receptor (ADRB3) regulate lipolysis, lipid oxidation, and thermogenesis. The deficiency in the thermogenesis induced by neuroblast differentiation-associated protein AHNAK in white adipose tissue (WAT) of mice fed a high-fat diet suggests that AHNAK may stimulate energy expenditure via development of beige fat. Here, we report that AHNAK deficiency promoted browning and thermogenic gene expression in WAT but not in brown adipose tissue of mice stimulated with the ADRB3 agonist CL-316243. Consistent with the increased thermogenesis, Ahnak−/− mice exhibited an increase in energy expenditure, accompanied by elevated mitochondrial biogenesis in WAT depots in response to CL-316243. Additionally, AHNAK-deficient WAT contained more eosinophils and higher levels of type 2 cytokines (IL-4/IL-13) to promote browning of WAT in response to CL-316243. This was associated with enhanced sympathetic tone in the WAT via upregulation of adrb3 and tyrosine hydroxylase (TH) in response to β-adrenergic activation. CL-316243 activated PKA signalling and enhanced lipolysis, as evidenced by increased phosphorylation of hormone-sensitive lipase and release of free glycerol in Ahnak−/− mice compared to wild-type mice. Overall, these findings suggest an important role of AHNAK in the regulation of thermogenesis and lipolysis in WAT via β-adrenergic signalling. PMID:26987950

  11. Expression of Vibrio cholerae virulence genes in response to environmental signals.

    PubMed

    Peterson, Kenneth M

    2002-09-01

    Vibrio cholerae, the causative agent of Asiatic cholera, is a gram-negative motile bacterial species acquired via oral ingestion of contaminated food or water sources. The O1 serogroup of V. cholerae is responsible for pandemic cholera and is divided into two biotypes, classical and El Tor (Butterton and Calderwood, 1995; Mekalanos, 1985). The El Tor biotype is responsible for the current cholera pandemic. In the absence of disease, the vibrio life cycle consists of a free-swimming phase in marine and estuarine environments in association with zooplankton, crustaceans, insects, and water plants. Vibrios interact with various surfaces found in the environment to generate biofilms which may promote survival (Watnick etaL, 1999). Within the host the motile vibrios must evade the innate host defense mechanisms, penetrate the mucus layer covering the intestinal villi, adhere to and colonize the epithelial surface of the small intestine, assume a non-motile phase, replicate and cause disease by secreting numerous exoproteins at the site of infection (Oliver and Kaper, 1997). The voluminous diarrhea associated with cholera infection leads to the dissemination of the vibrios back into a watery environment and thus a continuation of the environmental phase of the life cycle. The host phase of the vibrio life cycle is only possible through the action of a group of virulence genes (ToxR-regulon) controlled by a complex and incompletely understood regulatory cascade. The ToxR regulon colonization and toxin genes are coordinately expressed in response to specific host signals that have yet to be completely defined (Skorupsky and Taylor 1997). Although little is known regarding the host signals that impact the ToxR regulatory cascade, it is clear that these intraintestinal signals play an important role in maximizing the ability of the vibrios to survive and multiply within the host. Key to understanding the complex events involved in the pathogenesis of V. cholerae will be

  12. An Ancestral Role for CONSTITUTIVE TRIPLE RESPONSE1 Proteins in Both Ethylene and Abscisic Acid Signaling.

    PubMed

    Yasumura, Yuki; Pierik, Ronald; Kelly, Steven; Sakuta, Masaaki; Voesenek, Laurentius A C J; Harberd, Nicholas P

    2015-09-01

    Land plants have evolved adaptive regulatory mechanisms enabling the survival of environmental stresses associated with terrestrial life. Here, we focus on the evolution of the regulatory CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) component of the ethylene signaling pathway that modulates stress-related changes in plant growth and development. First, we compare CTR1-like proteins from a bryophyte, Physcomitrella patens (representative of early divergent land plants), with those of more recently diverged lycophyte and angiosperm species (including Arabidopsis [Arabidopsis thaliana]) and identify a monophyletic CTR1 family. The fully sequenced P. patens genome encodes only a single member of this family (PpCTR1L). Next, we compare the functions of PpCTR1L with that of related angiosperm proteins. We show that, like angiosperm CTR1 proteins (e.g. AtCTR1 of Arabidopsis), PpCTR1L modulates downstream ethylene signaling via direct interaction with ethylene receptors. These functions, therefore, likely predate the divergence of the bryophytes from the land-plant lineage. However, we also show that PpCTR1L unexpectedly has dual functions and additionally modulates abscisic acid (ABA) signaling. In contrast, while AtCTR1 lacks detectable ABA signaling functions, Arabidopsis has during evolution acquired another homolog that is functionally distinct from AtCTR1. In conclusion, the roles of CTR1-related proteins appear to have functionally diversified during land-plant evolution, and angiosperm CTR1-related proteins appear to have lost an ancestral ABA signaling function. Our study provides new insights into how molecular events such as gene duplication and functional differentiation may have contributed to the adaptive evolution of regulatory mechanisms in plants.

  13. GABA[sub A] Receptor-Dependent Synchronization Leads to Ictogenesis in the Human Dysplastic Cortex

    ERIC Educational Resources Information Center

    D'Antuono, M.; Louvel, J.; Kohling, R.; Mattia, D.; Bernasconi, A.; Olivier, A.; Turak, B.; Devaux, A.; Pumain, R.; Avoli, M.

    2004-01-01

    Patients with Taylor's type focal cortical dysplasia (FCD) present with seizures that are often medically intractable. Here, we attempted to identify the cellular and pharmacological mechanisms responsible for this epileptogenic state by using field potential and K[superscript +]-selective recordings in neocortical slices obtained from epileptic…

  14. Chronic social isolation suppresses proplastic response and promotes proapoptotic signalling in prefrontal cortex of Wistar rats.

    PubMed

    Djordjevic, Ana; Adzic, Miroslav; Djordjevic, Jelena; Radojcic, Marija B

    2010-08-15

    Successful adaptation to stress involves synergized actions of glucocorticoids and catecholamines at several levels of the CNS, including the prefrontal cortex (PFC). Inside the PFC, hormonal signals trigger concerted actions of transcriptional factors, such as glucocorticoid receptor (GR) and nuclear factor kappa B (NFkappaB), culminating in a balanced, proadaptive expression of their common genes, such as proplastic NCAM and/or apoptotic Bax and Bcl-2. In the present study, we hypothesized that chronic stress may compromise the balance between GR and NFkappaB signals and lead to an altered/maladaptive expression of their cognate genes in the PFC. Our results obtained with Wistar rats exposed to chronic social isolation indicated alterations of the GR relative to the NFkappaB, in favor of the GR, in both the cytoplasmic and the nuclear compartments of the PFC. Although these alterations did not affect the induction of proplastic NCAM gene, they decreased the NCAM sialylation necessary for plastic response and caused marked relocation of the mitochondrial membrane antiapoptotic Bcl-2 protein to its cytoplasmic form. Moreover, the compromised PSA-NCAM plastic response found under chronic stress was sustained after exposure of animals to the subsequent acute stress, whereas the proapoptotic signals were further emphasized. It is concluded that chronic social isolation of Wistar animals leads to a maladaptive response of the PFC, considering the diminishment of its plastic potential and potentiating of apoptosis. Such conditions in the PFC are likely to compromise its ability to interact with other CNS structures, such as the hippocampus, which is necessary for successful adaptation to stress.

  15. Regulation of the STARS signaling pathway in response to endurance and resistance exercise and training.

    PubMed

    Lamon, Séverine; Wallace, Marita A; Stefanetti, Renae J; Rahbek, Stine K; Vendelbo, Mikkel H; Russell, Aaron P; Vissing, Kristian

    2013-09-01

    The striated muscle activator of Rho signaling (STARS) protein and members of its downstream signaling pathway, including myocardin-related transcription factor-A (MRTF-A) and SRF, are increased in response to prolonged resistance exercise training but also following a single bout of endurance cycling. The aim of the present study was to measure and compare the regulation of STARS, MRTF-A and SRF mRNA and protein following 10 weeks of endurance training (ET) versus resistance training (RT), as well as before and following a single bout of endurance (EE) versus resistance exercise (RE). Following prolonged training, STARS, MRTF-A and SRF mRNA levels were all increased by similar magnitude, irrespective of training type. In the training-habituated state, STARS mRNA increased following a single-bout RE when measured 2.5 and 5 h post-exercise and had returned to resting level by 22 h following exercise. MRTF-A and SRF mRNA levels were decreased by 2.5, 5, and 22 h following a single bout of RE and EE exercise when compared to their respective basal levels, with no significant difference seen between the groups at any of the time points. No changes in protein levels were observed following the two modes of exercise training or a single bout of exercise. This study demonstrates that the stress signals elicited by ET and RT result in a comparable regulation of members of the STARS pathway. In contrast, a single bout of EE and RE, performed in the trained state, elicit different responses. These observations suggest that in the trained state, the acute regulation of the STARS pathway following EE or RE may be responsible for exercise-specific muscle adaptations.

  16. Functional Proteomic Analysis of Signaling Networks and Response to Targeted Therapy

    DTIC Science & Technology

    2007-03-01

    determines dynamics of the mammalian MAPK1,2 signaling network: bi-fan motif regulation of C-Raf and B-Raf isoforms by FGFR and MC1R . Submitted...mens, J.M., Tsui, L.-C., Scherer, S.W.: Identification of Sonic hedgehog as a candidate gene responsible for holopro-sencephaly. Nature Genetics 14, 353...refinement of gene regulatory pathways on a network of physical interactions. Genome Biology 6(7), R62 (2005) 22. Yen, J.Y.: Finding the K Shortest Loopless Paths in a Network. Management Science 17(11), 712–716 (1971)

  17. Root gravitropism in response to a signal originating outside of the cap

    NASA Technical Reports Server (NTRS)

    Wolverton, Chris; Mullen, Jack L.; Ishikawa, Hideo; Evans, Michael L.

    2002-01-01

    We have developed image analysis software linked to a rotating stage, allowing constraint of any user-selected region of a root at a prescribed angle during root gravitropism. This device allows the cap of a graviresponding root to reach vertical while maintaining a selected region within the elongation zone at a gravistimulated angle. Under these conditions gravitropic curvature of roots of Zea mays L. continues long after the root cap reaches vertical, indicating that a signal from outside of the cap can contribute to the curvature response.

  18. Presynaptic c-Jun N-terminal Kinase 2 regulates NMDA receptor-dependent glutamate release

    PubMed Central

    Nisticò, Robert; Florenzano, Fulvio; Mango, Dalila; Ferraina, Caterina; Grilli, Massimo; Di Prisco, Silvia; Nobili, Annalisa; Saccucci, Stefania; D'Amelio, Marcello; Morbin, Michela; Marchi, Mario; Mercuri, Nicola B.; Davis, Roger J.; Pittaluga, Anna; Feligioni, Marco

    2015-01-01

    Activation of c-Jun N-terminal kinase (JNK) signaling pathway is a critical step for neuronal death occurring in several neurological conditions. JNKs can be activated via receptor tyrosine kinases, cytokine receptors, G-protein coupled receptors and ligand-gated ion channels, including the NMDA glutamate receptors. While JNK has been generally associated with postsynaptic NMDA receptors, its presynaptic role remains largely unexplored. Here, by means of biochemical, morphological and functional approaches, we demonstrate that JNK and its scaffold protein JIP1 are also expressed at the presynaptic level and that the NMDA-evoked glutamate release is controlled by presynaptic JNK-JIP1 interaction. Moreover, using knockout mice for single JNK isoforms, we proved that JNK2 is the essential isoform in mediating this presynaptic event. Overall the present findings unveil a novel JNK2 localization and function, which is likely to play a role in different physiological and pathological conditions. PMID:25762148

  19. Development of an ultra low noise, miniature signal conditioning device for vestibular evoked response recordings

    PubMed Central

    2014-01-01

    Background Inner ear evoked potentials are small amplitude (<1 μVpk) signals that require a low noise signal acquisition protocol for successful extraction; an existing such technique is Electrocochleography (ECOG). A novel variant of ECOG called Electrovestibulography (EVestG) is currently investigated by our group, which captures vestibular responses to a whole body tilt. The objective is to design and implement a bio-signal amplifier optimized for ECOG and EVestG, which will be superior in noise performance compared to low noise, general purpose devices available commercially. Method A high gain configuration is required (>85 dB) for such small signal recordings; thus, background power line interference (PLI) can have adverse effects. Active electrode shielding and driven-right-leg circuitry optimized for EVestG/ECOG recordings were investigated for PLI suppression. A parallel pre-amplifier design approach was investigated to realize low voltage, and current noise figures for the bio-signal amplifier. Results In comparison to the currently used device, PLI is significantly suppressed by the designed prototype (by >20 dB in specific test scenarios), and the prototype amplifier generated noise was measured to be 4.8 nV/Hz @ 1 kHz (0.45 μVRMS with bandwidth 10 Hz-10 kHz), which is lower than the currently used device generated noise of 7.8 nV/Hz @ 1 kHz (0.76 μVRMS). A low noise (<1 nV/Hz) radio frequency interference filter was realized to minimize noise contribution from the pre-amplifier, while maintaining the required bandwidth in high impedance measurements. Validation of the prototype device was conducted for actual ECOG recordings on humans that showed an increase (p < 0.05) of ~5 dB in Signal-to-Noise ratio (SNR), and for EVestG recordings using a synthetic ear model that showed a ~4% improvement (p < 0.01) over the currently used amplifier. Conclusion This paper presents the design and evaluation of an ultra-low noise and miniaturized bio-signal

  20. Single exposure to cocaine impairs aspartate uptake in the pre-frontal cortex via dopamine D1-receptor dependent mechanisms.

    PubMed

    Sathler, Matheus Figueiredo; Stutz, Bernardo; Martins, Robertta Silva; Dos Santos Pereira, Maurício; Pecinalli, Ney Roner; Santos, Luis E; Taveira-da-Silva, Rosilane; Lowe, Jennifer; de Freitas, Isis Grigorio; de Melo Reis, Ricardo Augusto; Manhães, Alex C; Kubrusly, Regina C C

    2016-08-04

    Dopamine and glutamate play critical roles in the reinforcing effects of cocaine. We demonstrated that a single intraperitoneal administration of cocaine induces a significant decrease in [(3)H]-d-aspartate uptake in the pre-frontal cortex (PFC). This decrease is associated with elevated dopamine levels, and requires dopamine D1-receptor signaling (D1R) and adenylyl cyclase activation. The effect was observed within 10min of cocaine administration and lasted for up to 30min. This rapid response is related to D1R-mediated cAMP-mediated activation of PKA and phosphorylation of the excitatory amino acid transporters EAAT1, EAAT2 and EAAT3. We also demonstrated that cocaine exposure increases extracellular d-aspartate, l-glutamate and d-serine in the PFC. Our data suggest that cocaine activates dopamine D1 receptor signaling and PKA pathway to regulate EAATs function and extracellular EAA level in the PFC.

  1. Open probability of homomeric murine 5-HT3A serotonin receptors depends on subunit occupancy

    PubMed Central

    Mott, David D; Erreger, Kevin; Banke, Tue G; Traynelis, Stephen F

    2001-01-01

    The time course of macroscopic current responses of homomeric murine serotonin 5-HT3A receptors was studied in whole cells and excised membrane patches under voltage clamp in response to rapid application of serotonin. Serotonin activated whole cell currents with an EC50 value for the peak response of 2 μm and a Hill slope of 3.0 (n = 12), suggesting that the binding of at least three agonist molecules is required to open the channel. Homomeric 5-HT3A receptors in excised membrane patches had a slow activation time course (mean ±s.e.m. 10-90 % rise time 12.5 ± 1.6 ms; n = 9 patches) for 100 μm serotonin. The apparent activation rate was estimated by fitting an exponential function to the rising phase of responses to supramaximal serotonin to be 136 s−1. The 5-HT3A receptor response to 100 μm serotonin in outside-out patches (n = 19) and whole cells (n = 41) desensitized with a variable rate that accelerated throughout the experiment. The time course for desensitization was described by two exponential components (for patches τslow 1006 ± 139 ms, amplitude 31 % τfast 176 ± 25 ms, amplitude 69 %). Deactivation of the response following serotonin removal from excised membrane patches (n = 8) and whole cells (n = 29) was described by a dual exponential time course with time constants similar to those for desensitization (for patches τslow 838 ± 217 ms, 55 % amplitude; τfast 213 ± 44 ms, 45 % amplitude). In most patches (6 of 8), the deactivation time course in response to a brief 1-5 ms pulse of serotonin was similar to or slower than desensitization. This suggests that the continued presence of agonist can induce desensitization with a similar or more rapid time course than agonist unbinding. The difference between the time course for deactivation and desensitization was voltage independent over the range -100 to -40 mV in patches (n = 4) and -100 to +50 mV in whole cells (n = 4), suggesting desensitization of these receptors in the presence of

  2. Aryl hydrocarbon receptor-independent activation of estrogen receptor-dependent transcription by 3-methylcholanthrene.

    PubMed

    Shipley, Jonathan M; Waxman, David J

    2006-06-01

    Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that stimulates transcription directed by xenobiotic response elements upstream of target genes. Recently, AhR ligands were reported to induce formation of an AhR-estrogen receptor (ER) complex, which can bind to estrogen response elements (EREs) and stimulate transcription of ER target genes. Presently, we investigate the effect of the AhR ligands 3-methylcholanthrene (3MC), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and 3,3',4,4',5-pentachlorobiphenyl (BZ126) on ERE-regulated luciferase reporter activity and endogenous ER target gene expression. In MCF-7 human breast cancer cells, 3MC induced transcription of ER reporter genes containing native promoter sequences of the ER-responsive genes complement 3 and pS2 and heterologous promoters regulated by isolated EREs. Dose-response studies revealed that the concentration of 3MC required to half-maximally activate transcription (EC(50)) was >100-fold higher for an ER reporter (27-57 muM) than for an AhR reporter (86-250 nM) in both MCF-7 cells and in human endometrial cancer Ishikawa cells. 3MC also stimulated expression of the endogenous ER target genes amphiregulin, cathepsin D and progesterone receptor, albeit to a much lower extent than was achieved following stimulation with 17beta-estradiol. In Ishikawa cells, 3MC, but not BZ126 or TCDD, stimulated ERalpha-dependent reporter activity but did not induce expression of endogenous ER target genes. Finally, studies carried out in the AhR-positive rat hepatoma cell line 5L and the AhR-deficient variant BP8 demonstrated that ER reporter activity could be induced by 3MC in a manner that was independent of AhR and thus distinct from the AhR-ER 'hijacking' mechanism described recently. 3MC may thus elicit estrogenic activity by multiple mechanisms.

  3. A Conserved Structural Module Regulates Transcriptional Responses to Diverse Stress Signals in Bacteria

    PubMed Central

    Campbell, Elizabeth A.; Greenwell, Roger; Anthony, Jennifer R.; Wang, Sheng; Lim, Lionel; Das, Kalyan; Sofia, Heidi J.; Donohue, Timothy J.; Darst, Seth A.

    2008-01-01

    SUMMARY A transcriptional response to singlet oxygen in Rhodobacter sphaeroides is controlled by the group IV σ factor σE and its cognate anti-σ ChrR. Crystal structures of the σE/ChrR complex reveal a modular, two-domain architecture for ChrR. The ChrR N-terminal anti-σ domain (ASD) binds a Zn2+ ion, contacts σE, and is sufficient to inhibit σE-dependent transcription. The ChrR C-terminal domain adopts a cupin fold, can coordinate an additional Zn2+, and is required for the transcriptional response to singlet oxygen. Structure-based sequence analyses predict that the ASD defines a common structural fold among predicted group IV antiσs. These ASDs are fused to diverse C-terminal domains that are likely involved in responding to specific environmental signals that control the activity of their cognate σ factor. PMID:17803943

  4. Validated Models for Radiation Response and Signal Generation in Scintillators: Final Report

    SciTech Connect

    Kerisit, Sebastien N.; Gao, Fei; Xie, YuLong; Campbell, Luke W.; Van Ginhoven, Renee M.; Wang, Zhiguo; Prange, Micah P.; Wu, Dangxin

    2014-12-01

    This Final Report presents work carried out at Pacific Northwest National Laboratory (PNNL) under the project entitled “Validated Models for Radiation Response and Signal Generation in Scintillators” (Project number: PL10-Scin-theor-PD2Jf) and led by Drs. Fei Gao and Sebastien N. Kerisit. This project was divided into four tasks: 1) Electronic response functions (ab initio data model) 2) Electron-hole yield, variance, and spatial distribution 3) Ab initio calculations of information carrier properties 4) Transport of electron-hole pairs and scintillation efficiency Detailed information on the results obtained in each of the four tasks is provided in this Final Report. Furthermore, published peer-reviewed articles based on the work carried under this project are included in Appendix. This work was supported by the National Nuclear Security Administration, Office of Nuclear Nonproliferation Research and Development (DNN R&D/NA-22), of the U.S. Department of Energy (DOE).

  5. Electrical signals in avocado trees: responses to light and water availability conditions.

    PubMed

    Oyarce, Patricio; Gurovich, Luis

    2010-01-01

    Plant responses to environmental changes are associated with electrical excitability and signaling; automatic and continuous measurements of electrical potential differences (DeltaEP) between plant tissues can be effectively used to study information transport mechanisms and physiological responses that result from external stimuli on plants. The generation and conduction of electrochemical impulses within plant different tissues and organs, resulting from abiotic and biotic changes in environmental conditions is reported. In this work, electrical potential differences are monitored continuously using Ag/AgCl microelectrodes, inserted 5 mm deep into sapwood at two positions in the trunks of several Avocado trees. Electrodes are referenced to a non polarisable Ag/AgCl microelectrode installed 20 cm deep in the soil. Systematic patterns of DeltaEP during absolute darkness, day-night cycles and different conditions of soil water availability are discussed as alternative tools to assess early plant stress conditions.

  6. Sensor–response regulator interactions in a cross-regulated signal transduction network

    PubMed Central

    Huynh, TuAnh Ngoc; Chen, Li-Ling

    2015-01-01

    Two-component signal transduction involves phosphoryl transfer between a histidine kinase sensor and a response regulator effector. The nitrate-responsive two-component signal transduction systems in Escherichia coli represent a paradigm for a cross-regulation network, in which the paralogous sensor–response regulator pairs, NarX–NarL and NarQ–NarP, exhibit both cognate (e.g. NarX–NarL) and non-cognate (e.g. NarQ–NarL) interactions to control output. Here, we describe results from bacterial adenylate cyclase two-hybrid (BACTH) analysis to examine sensor dimerization as well as interaction between sensor–response regulator cognate and non-cognate pairs. Although results from BACTH analysis indicated that the NarX and NarQ sensors interact with each other, results from intragenic complementation tests demonstrate that they do not form functional heterodimers. Additionally, intragenic complementation shows that both NarX and NarQ undergo intermolecular autophosphorylation, deviating from the previously reported correlation between DHp (dimerization and histidyl phosphotransfer) domain loop handedness and autophosphorylation mode. Results from BACTH analysis revealed robust interactions for the NarX–NarL, NarQ–NarL and NarQ–NarP pairs but a much weaker interaction for the NarX–NarP pair. This demonstrates that asymmetrical cross-regulation results from differential binding affinities between different sensor–regulator pairs. Finally, results indicate that the NarL effector (DNA-binding) domain inhibits NarX–NarL interaction. Missense substitutions at receiver domain residue Ser-80 enhanced NarX–NarL interaction, apparently by destabilizing the NarL receiver–effector domain interface. PMID:25873583

  7. Electric signalling in fruit trees in response to water applications and light-darkness conditions.

    PubMed

    Gurovich, Luis A; Hermosilla, Paulo

    2009-02-15

    A fundamental property of all living organisms is the generation and conduction of electrochemical impulses throughout their different tissues and organs, resulting from abiotic and biotic changes in environmental conditions. In plants and animals, signal transmission can occur over long and short distances, and it can correspond to intra- and inter-cellular communication mechanisms that determine the physiological behaviour of the organism. Rapid plant and animal responses to environmental changes are associated with electrical excitability and signalling. The same molecules and pathways are used to drive physiological responses, which are characterized by movement (physical displacement) in animals and by continuous growth in plants. In the field of environmental plant electrophysiology, automatic and continuous measurements of electrical potential differences (DeltaEP) between plant tissues can be effectively used to study information transport mechanisms and physiological responses that result from external stimuli on plants. A critical mass of data on electrical behaviour in higher plants has accumulated in the last 5 years, establishing plant neurobiology as the most recent discipline of plant science. In this work, electrical potential differences were monitored continuously using Ag/AgCl microelectrodes, which were inserted 15mm deep into sapwood at various positions in the trunks of several fruit-bearing trees. Electrodes were referenced to an unpolarisable Ag/AgCl microelectrode, which was installed 5cm deep in the soil. Systematic patterns of DeltaEP during day-night cycles and at different conditions of soil water availability are discussed as alternative tools to assess early plant stress conditions. This research relates to the adaptive response of trees to soil water availability and light-darkness cycles.

  8. Signaling and Dynamic Actin Responses of B Cells on Topographical Substrates

    NASA Astrophysics Data System (ADS)

    Ketchum, Christina; Sun, Xiaoyu; Fourkas, John; Song, Wenxia; Upadhyaya, Arpita

    B cells become activated upon physical contact with antigen on the surface of antigen presenting cells, such as dendritic cells. Binding of the B cell receptor with antigen initiates actin-mediated spreading of B cells, signaling cascades and eventually infection fighting antibodies. Lymphocytes, including B cells and T cells, have been shown to be responsive to the physical parameters of the contact surface, such as antigen mobility and substrate stiffness. However the roll of surface topography on lymphocyte function is unknown. Here we investigate the degree to which substrate topography controls actin-mediated spreading and B cell activation using nano-fabricated surfaces and live cell imaging. The model topographical system consists of 600 nanometer tall ridges with spacing varying between 800 nanometers and 5 micrometers. Using TIRF imaging we observe actin dynamics, B cell receptor motion and calcium signaling of B cells as they spread on the ridged substrates. We show that the spacing between ridges had a strong effect on the dynamics of actin and calcium influx on B cells. Our results indicate that B cells are highly sensitive to surface topography during cell spreading and signaling activation.

  9. The role of astrocytes in the hypothalamic response and adaptation to metabolic signals.

    PubMed

    Chowen, Julie A; Argente-Arizón, Pilar; Freire-Regatillo, Alejandra; Frago, Laura M; Horvath, Tamas L; Argente, Jesús

    2016-09-01

    The hypothalamus is crucial in the regulation of homeostatic functions in mammals, with the disruption of hypothalamic circuits contributing to chronic conditions such as obesity, diabetes mellitus, hypertension, and infertility. Metabolic signals and hormonal inputs drive functional and morphological changes in the hypothalamus in attempt to maintain metabolic homeostasis. However, the dramatic increase in the incidence of obesity and its secondary complications, such as type 2 diabetes, have evidenced the need to better understand how this system functions and how it can go awry. Growing evidence points to a critical role of astrocytes in orchestrating the hypothalamic response to metabolic cues by participating in processes of synaptic transmission, synaptic plasticity and nutrient sensing. These glial cells express receptors for important metabolic signals, such as the anorexigenic hormone leptin, and determine the type and quantity of nutrients reaching their neighboring neurons. Understanding the mechanisms by which astrocytes participate in hypothalamic adaptations to changes in dietary and metabolic signals is fundamental for understanding the neuroendocrine control of metabolism and key in the search for adequate treatments of metabolic diseases.

  10. Stress-activated signaling responses leading to apoptosis following photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Oleinick, Nancy L.; He, Jin; Xue, Liang-yan; Separovic, Duska

    1998-05-01

    Photodynamic treatment with the phthalocyanine Pc 4, a mitochondrially localizing photosensitizer, is an efficient inducer of cell death by apoptosis, a cell suicide pathway that can be triggered by physiological stimuli as well as by various types of cellular damage. Upon exposure of the dye- loaded cells to red light, several stress signalling pathways are rapidly activated. In murine L5178Y-R lymphoblasts, caspase activation and other hallmarks of the final phase of apoptosis are observed within a few minutes post-PDT. In Chinese hamster CHO-K1 cells, the first signs of apoptosis are not observed for 1 - 2 hours. The possible involvement of three parallel mitogen-activated protein kinase (MAPK) signalling pathways has been investigated. The extracellular- regulated kinases (ERK-1 and ERK-2), that are thought to promote cell growth, are not appreciably altered by PDT. However, PDT causes marked activation of the stress-activated protein kinase (SAPK) cascade in both cell types and of the p38/HOG-type kinase in CHO cells. Both of these latter pathways have been demonstrated to be associated with apoptosis. A specific inhibitor of the ERK pathway did not alter PDT-induced apoptosis; however, an inhibitor of the p38 pathway partially blocked PDT-induced apoptosis. Blockage of the SAPK pathway is being pursued by a genetic approach. It appears that the SAPK and p38 pathways may participate in signaling apoptosis in response to PDT with Pc 4.

  11. How do shared-representations and emotional processes cooperate in response to social threat signals?

    PubMed

    Grèzes, Julie; Dezecache, Guillaume

    2014-03-01

    Research in social cognition has mainly focused on the detection and comprehension of others' mental and emotional states. Doing so, past studies have adopted a "contemplative" view of the role of the observer engaged in a social interaction. However, the adaptive problem posed by the social environment is first and foremost that of coordination, which demands more of social cognition beyond mere detection and comprehension of others' hidden states. Offering a theoretical framework that takes into account the dynamical aspect of social interaction - notably by accounting for constant interplay between emotional appraisal and motor processes in socially engaged human brain - thus constitutes an important challenge for the field of social cognition. Here, we propose that our social environment can be seen as presenting opportunities for actions regarding others. Within such a framework, non-verbal social signals such as emotional displays are considered to have evolved to influence the observer in consistent ways. Consequently, social signals can modulate motor responses in observers. In line with this theoretical framework we provide evidence that emotional and motor processes are actually tightly linked during the perception of threat signals. This is ultimately reflected in the human brain by constant interplay between limbic and motor areas.

  12. Distinct CCR7 glycosylation pattern shapes receptor signaling and endocytosis to modulate chemotactic responses.

    PubMed

    Hauser, Mark A; Kindinger, Ilona; Laufer, Julia M; Späte, Anne-Katrin; Bucher, Delia; Vanes, Sarah L; Krueger, Wolfgang A; Wittmann, Valentin; Legler, Daniel F

    2016-06-01

    The homeostatic chemokines CCL19 and CCL21 and their common cognate chemokine receptor CCR7 orchestrate immune cell trafficking by eliciting distinct signaling pathways. Here, we demonstrate that human CCR7 is N-glycosylated on 2 specific residues in the N terminus and the third extracellular loop. Conceptually, CCR7 glycosylation adds steric hindrance to the receptor N terminus and extracellular loop 3, acting as a "swinging door" to regulate receptor sensitivity and cell migration. We found that freshly isolated human B cells, as well as expanded T cells, but not naïve T cells, express highly sialylated CCR7. Moreover, we identified that human dendritic cells imprint T cell migration toward CCR7 ligands by secreting enzymes that deglycosylate CCR7, thereby boosting CCR7 signaling on T cells, permitting enhanced T cell locomotion, while simultaneously decreasing receptor endocytosis. In addition, dendritic cells proteolytically convert immobilized CCL21 to a soluble form that is more potent in triggering chemotactic movement and does not desensitize the receptor. Furthermore, we demonstrate that soluble CCL21 functionally resembles neither the CCL19 nor the CCL21 phenotype but acts as a chemokine with unique features. Thus, we advance the concept of dendritic cell-dependent generation of micromilieus and lymph node conditioning by demonstrating a novel layer of CCR7 regulation through CCR7 sialylation. In summary, we demonstrate that leukocyte subsets express distinct patterns of CCR7 sialylation that contribute to receptor signaling and fine-tuning chemotactic responses.

  13. Isorhamnetin ameliorates LPS-induced inflammatory response through downregulation of NF-κB signaling.

    PubMed

    Li, Yang; Chi, Gefu; Shen, Bingyu; Tian, Ye; Feng, Haihua

    2016-08-01

    Isorhamnetin, a flavonoid mainly found in Hippophae fhamnoides L. fruit, has been known for its antioxidant activity and its ability to regulate immune response. In this study, we investigated whether isorhamnetin exerts potent antiinflammatory effects in RAW264.7 cell and mouse model stimulated by LPS. The cytokine (TNF-α, IL-1β, and IL-6) levels were determined. In the mouse model of acute lung injury, the phosphorylation of NF-κB proteins was analyzed and inhibitor of NF-κB signaling (PDTC) was used on mice. Our results showed that isorhamnetin markedly decreased TNF-α, IL-1β, and IL-6 concentrations and suppressed the activation of NF-κB signaling. Meanwhile, isorhamnetin reduced the amount of inflammatory cells, the lung wet-to-dry weight ratio, protein leakage, and myeloperoxidase activity. Interference with specific inhibitor revealed that isorhamnetin-mediated suppression of cytokines and protein was via NF-κB signaling. So, it suggests that isorhamnetin might be a potential therapeutic agent for preventing inflammatory diseases.

  14. Aryl hydrocarbon receptor-independent activation of estrogen receptor-dependent transcription by 3-methycholanthrene

    SciTech Connect

    Shipley, Jonathan M.; Waxman, David J. . E-mail: djw@bu.edu

    2006-06-01

    Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that stimulates transcription directed by xenobiotic response elements upstream of target genes. Recently, AhR ligands were reported to induce formation of an AhR-estrogen receptor (ER) complex, which can bind to estrogen response elements (EREs) and stimulate transcription of ER target genes. Presently, we investigate the effect of the AhR ligands 3-methylcholanthrene (3MC), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and 3,3',4,4',5-pentachlorobiphenyl (BZ126) on ERE-regulated luciferase reporter activity and endogenous ER target gene expression. In MCF-7 human breast cancer cells, 3MC induced transcription of ER reporter genes containing native promoter sequences of the ER-responsive genes complement 3 and pS2 and heterologous promoters regulated by isolated EREs. Dose-response studies revealed that the concentration of 3MC required to half-maximally activate transcription (EC{sub 5}) was >100-fold higher for an ER reporter (27-57 {mu}M) than for an AhR reporter (86-250 nM) in both MCF-7 cells and in human endometrial cancer Ishikawa cells. 3MC also stimulated expression of the endogenous ER target genes amphiregulin, cathepsin D and progesterone receptor, albeit to a much lower extent than was achieved following stimulation with 17{beta}-estradiol. In Ishikawa cells, 3MC, but not BZ126 or TCDD, stimulated ER{alpha}-dependent reporter activity but did not induce expression of endogenous ER target genes. Finally, studies carried out in the AhR-positive rat hepatoma cell line 5L and the AhR-deficient variant BP8 demonstrated that ER reporter activity could be induced by 3MC in a manner that was independent of AhR and thus distinct from the AhR-ER 'hijacking' mechanism described recently. 3MC may thus elicit estrogenic activity by multiple mechanisms.

  15. Extended Synaptotagmin Interaction with the Fibroblast Growth Factor Receptor Depends on Receptor Conformation, Not Catalytic Activity.

    PubMed

    Tremblay, Michel G; Herdman, Chelsea; Guillou, François; Mishra, Prakash K; Baril, Joëlle; Bellenfant, Sabrina; Moss, Tom

    2015-06-26

    We previously demonstrated that ESyt2 interacts specifically with the activated FGF receptor and is required for a rapid phase of receptor internalization and for functional signaling via the ERK pathway in early Xenopus embryos. ESyt2 is one of the three-member family of Extended Synaptotagmins that were recently shown to be implicated in the formation of endoplasmic reticulum (ER)-plasma membrane (PM) junctions and in the Ca(2+) dependent regulation of these junctions. Here we show that ESyt2 is directed to the ER by its putative transmembrane domain, that the ESyts hetero- and homodimerize, and that ESyt2 homodimerization in vivo requires a TM adjacent sequence but not the SMP domain. ESyt2 and ESyt3, but not ESyt1, selectively interact in vivo with activated FGFR1. In the case of ESyt2, this interaction requires a short TM adjacent sequence and is independent of receptor autophosphorylation, but dependent on receptor conformation. The data show that ESyt2 recognizes a site in the upper kinase lobe of FGFR1 that is revealed by displacement of the kinase domain activation loop during receptor activation.

  16. IP receptor-dependent activation of PPAR{gamma} by stable prostacyclin analogues

    SciTech Connect

    Falcetti, Emilia; Flavell, David M.; Staels, Bart; Tinker, Andrew; Haworth, Sheila G.; Clapp, Lucie H. . E-mail: l.clapp@ucl.ac.uk

    2007-09-07

    Stable prostacyclin analogues can signal through cell surface IP receptors or by ligand binding to nuclear peroxisome proliferator-activated receptors (PPARs). So far these agents have been reported to activate PPAR{alpha} and PPAR{delta} but not PPAR{gamma}. Given PPAR{gamma} agonists and prostacyclin analogues both inhibit cell proliferation, we postulated that the IP receptor might elicit PPAR{gamma} activation. Using a dual luciferase reporter gene assay in HEK-293 cells stably expressing the IP receptor or empty vector, we found that prostacyclin analogues only activated PPAR{gamma} in the presence of the IP receptor. Moreover, the novel IP receptor antagonist, RO1138452, but not inhibitors of the cyclic AMP pathway, prevented activation. Likewise, the anti-proliferative effects of treprostinil observed in IP receptor expressing cells, were partially inhibited by the PPAR{gamma} antagonist, GW9662. We conclude that PPAR{gamma} is activated through the IP receptor via a cyclic AMP-independent mechanism and contributes to the anti-growth effects of prostacyclin analogues.

  17. Immunotoxin Therapies for the Treatment of Epidermal Growth Factor Receptor-Dependent Cancers

    PubMed Central

    Simon, Nathan; FitzGerald, David

    2016-01-01

    Many epithelial cancers rely on enhanced expression of the epidermal growth factor receptor (EGFR) to drive proliferation and survival pathways. Development of therapeutics to target EGFR signaling has been of high importance, and multiple examples have been approved for human use. However, many of the current small molecule or antibody-based therapeutics are of limited effectiveness due to the inevitable development of resistance and toxicity to normal tissues. Recombinant immunotoxins are therapeutic molecules consisting of an antibody or receptor ligand joined to a protein cytotoxin, combining the specific targeting of a cancer-expressed receptor with the potent cell killing of cytotoxic enzymes. Over the decades, many bacterial- or plant-based immunotoxins have been developed with the goal of targeting the broad range of cancers reliant upon EGFR overexpression. Many examples demonstrate excellent anti-cancer properties in preclinical development, and several EGFR-targeted immunotoxins have progressed to human trials. This review summarizes much of the past and current work in the development of immunotoxins for targeting EGFR-driven cancers. PMID:27153091

  18. DNA barcodes reveal microevolutionary signals in fire response trait in two legume genera

    PubMed Central

    Bello, Abubakar; Daru, Barnabas H.; Stirton, Charles H.; Chimphango, Samson B. M.; van der Bank, Michelle; Maurin, Olivier; Muasya, A. Muthama

    2015-01-01

    Large-scale DNA barcoding provides a new technique for species identification and evaluation of relationships across various levels (populations and species) and may reveal fundamental processes in recently diverged species. Here, we analysed DNA sequence variation in the recently diverged legumes from the Psoraleeae (Fabaceae) occurring in the Cape Floristic Region (CFR) of southern Africa to test the utility of DNA barcodes in species identification and discrimination. We further explored the phylogenetic signal on fire response trait (reseeding and resprouting) at species and generic levels. We showed that Psoraleoid legumes of the CFR exhibit a barcoding gap yielding the combination of matK and rbcLa (matK + rbcLa) data set as a better barcode than single regions. We found a high score (100 %) of correct identification of individuals to their respective genera but a very low score (<50 %) in identifying them to species. We found a considerable match (54 %) between genetic species and morphologically delimited species. We also found that different lineages showed a weak but significant phylogenetic conservatism in their response to fire as reseeders or resprouters, with more clustering of resprouters than would be expected by chance. These novel microevolutionary patterns might be acting continuously over time to produce multi-scale regularities of biodiversity. This study provides the first insight into the DNA barcoding campaign of land plants in species identification and detection of the phylogenetic signal in recently diverged lineages of the CFR. PMID:26507570

  19. Melatonin as a signal molecule triggering defense responses against pathogen attack in Arabidopsis and tobacco.

    PubMed

    Lee, Hyoung Yool; Byeon, Yeong; Back, Kyoungwhan

    2014-10-01

    Melatonin plays pleiotropic roles in both animals and plants. The possible role of melatonin in plant innate immune responses was recently discovered. As an initial study, we employed Arabidopsis to determine whether melatonin is involved in defense against the virulent bacterial pathogen Pseudomonas syringae DC3000. The application of a 10 μM concentration of melatonin on Arabidopsis and tobacco leaves induced various pathogenesis-related (PR) genes, as well as a series of defense genes activated by salicylic acid (SA) and ethylene (ET), two key factors involved in plant defense response, compared to mock-treated leaves. The induction of these defense-related genes in melatonin-treated Arabidopsis matched an increase in resistance against the bacterium by suppressing its multiplication about ten-fold relative to the mock-treated Arabidopsis. Like melatonin, N-acetylserotonin also plays a role in inducing a series of defense genes, although serotonin does not. Furthermore, melatonin-induced PR genes were almost completely or partially suppressed in the npr1, ein2, and mpk6 Arabidopsis mutants, indicative of SA and ET dependency in melatonin-induced plant defense signaling. This suggests that melatonin may be a novel defense signaling molecule in plant-pathogen interactions.

  20. Geographical matching of volatile signals and pollinator olfactory responses in a cycad brood-site mutualism

    PubMed Central

    Suinyuy, Terence N.; Donaldson, John S.; Johnson, Steven D.

    2015-01-01

    Brood-site mutualisms represent extreme levels of reciprocal specialization between plants and insect pollinators, raising questions about whether these mutualisms are mediated by volatile signals and whether these signals and insect responses to them covary geographically in a manner expected from coevolution. Cycads are an ancient plant lineage in which almost all extant species are pollinated through brood-site mutualisms with insects. We investigated whether volatile emissions and insect olfactory responses are matched across the distribution range of the African cycad Encephalartos villosus. This cycad species is pollinated by the same beetle species across its distribution, but cone volatile emissions are dominated by alkenes in northern populations, and by monoterpenes and a pyrazine compound in southern populations. In reciprocal choice experiments, insects chose the scent of cones from the local region over that of cones from the other region. Antennae of beetles from northern populations responded mainly to alkenes, while those of beetles from southern populations responded mainly to pyrazine. In bioassay experiments, beetles were most strongly attracted to alkenes in northern populations and to the pyrazine compound in southern populations. Geographical matching of cone volatiles and pollinator olfactory preference is consistent with coevolution in this specialized mutualism. PMID:26446814

  1. Host plant defense signaling in response to a coevolved herbivore combats introduced herbivore attack

    PubMed Central

    Woodard, Anastasia M; Ervin, Gary N; Marsico, Travis D

    2012-01-01

    Defense-free space resulting from coevolutionarily naïve host plants recently has been implicated as a factor facilitating invasion success of some insect species. Host plants, however, may not be entirely defenseless against novel herbivore threats. Volatile chemical-mediated defense signaling, which allows plants to mount specific, rapid, and intense responses, may play a role in systems experiencing novel threats. Here we investigate defense responses of host plants to a native and exotic herbivore and show that (1) host plants defend more effectively against the coevolved herbivore, (2) plants can be induced to defend against a newly-associated herbivore when in proximity to plants actively defending against the coevolved species, and (3) these defenses affect larval performance. These findings highlight the importance of coevolved herbivore-specific defenses and suggest that naïveté or defense limitations can be overcome via defense signaling. Determining how these findings apply across various host–herbivore systems is critical to understand mechanisms of successful herbivore invasion. PMID:22837849

  2. Geographical matching of volatile signals and pollinator olfactory responses in a cycad brood-site mutualism.

    PubMed

    Suinyuy, Terence N; Donaldson, John S; Johnson, Steven D

    2015-10-07

    Brood-site mutualisms represent extreme levels of reciprocal specialization between plants and insect pollinators, raising questions about whether these mutualisms are mediated by volatile signals and whether these signals and insect responses to them covary geographically in a manner expected from coevolution. Cycads are an ancient plant lineage in which almost all extant species are pollinated through brood-site mutualisms with insects. We investigated whether volatile emissions and insect olfactory responses are matched across the distribution range of the African cycad Encephalartos villosus. This cycad species is pollinated by the same beetle species across its distribution, but cone volatile emissions are dominated by alkenes in northern populations, and by monoterpenes and a pyrazine compound in southern populations. In reciprocal choice experiments, insects chose the scent of cones from the local region over that of cones from the other region. Antennae of beetles from northern populations responded mainly to alkenes, while those of beetles from southern populations responded mainly to pyrazine. In bioassay experiments, beetles were most strongly attracted to alkenes in northern populations and to the pyrazine compound in southern populations. Geographical matching of cone volatiles and pollinator olfactory preference is consistent with coevolution in this specialized mutualism.

  3. TLR2 Signaling is Required for the Innate, but Not Adaptive Response to LVS clpB

    PubMed Central

    Roberts, Lydia M.; Ledvina, Hannah E.; Sempowski, Gregory D.; Frelinger, Jeffrey A.

    2014-01-01

    Toll-like receptor 2 (TLR2) is the best-characterized pattern-recognition receptor for the highly pathogenic intracellular bacterium, Francisella tularensis. We previously identified a mutant in the live vaccine strain (LVS) of Francisella, LVS clpB, which is attenuated, but induces a protective immune response. We sought to determine whether TLR2 signaling was required during the immune response to LVS clpB. TLR2 knock-out (TLR2 KO) mice previously infected with LVS clpB are completely protected during a lethal challenge with LVS. Furthermore, the kinetics and magnitude of the primary T-cell response in B6 and TLR2 KO mice are similar indicating that TLR2 signaling is dispensable for the adaptive immune response to LVS clpB. TLR2 signaling was important, however, for the innate immune response to LVS clpB. We identified three classes of cytokines/chemokines that differ in their dependence on TLR2 signaling for production on day 3 post-inoculation in the bronchoalveolar lavage fluid. IL-1α, IL-1β, IL-2, IL-17, MIP-1α, and TNF-α production depended on TLR2 signaling, while GM-CSF, IFN-γ, and VEGF production were completely independent of TLR2 signaling. IL-6, IL-12, IP-10, KC, and MIG production were partially dependent on TLR2 signaling. Together our data indicate that the innate immune response to LVS clpB requires TLR2 signaling for the maximal innate response, whereas TLR2 is not required for the adaptive immune response. PMID:25250027

  4. TLR2 Signaling is Required for the Innate, but Not Adaptive Response to LVS clpB.

    PubMed

    Roberts, Lydia M; Ledvina, Hannah E; Sempowski, Gregory D; Frelinger, Jeffrey A

    2014-01-01

    Toll-like receptor 2 (TLR2) is the best-characterized pattern-recognition receptor for the highly pathogenic intracellular bacterium, Francisella tularensis. We previously identified a mutant in the live vaccine strain (LVS) of Francisella, LVS clpB, which is attenuated, but induces a protective immune response. We sought to determine whether TLR2 signaling was required during the immune response to LVS clpB. TLR2 knock-out (TLR2 KO) mice previously infected with LVS clpB are completely protected during a lethal challenge with LVS. Furthermore, the kinetics and magnitude of the primary T-cell response in B6 and TLR2 KO mice are similar indicating that TLR2 signaling is dispensable for the adaptive immune response to LVS clpB. TLR2 signaling was important, however, for the innate immune response to LVS clpB. We identified three classes of cytokines/chemokines that differ in their dependence on TLR2 signaling for production on day 3 post-inoculation in the bronchoalveolar lavage fluid. IL-1α, IL-1β, IL-2, IL-17, MIP-1α, and TNF-α production depended on TLR2 signaling, while GM-CSF, IFN-γ, and VEGF production were completely independent of TLR2 signaling. IL-6, IL-12, IP-10, KC, and MIG production were partially dependent on TLR2 signaling. Together our data indicate that the innate immune response to LVS clpB requires TLR2 signaling for the maximal innate response, whereas TLR2 is not required for the adaptive immune response.

  5. Extracellular matrix hyaluronan signals via its CD44 receptor in the increased responsiveness to mechanical stimulation.

    PubMed

    Ferrari, L F; Araldi, D; Bogen, O; Levine, J D

    2016-06-02

    We propose that the extracellular matrix (ECM) signals CD44, a hyaluronan receptor, to increase the responsiveness to mechanical stimulation in the rat hind paw. We report that intradermal injection of hyaluronidase induces mechanical hyperalgesia, that is inhibited by co-administration of a CD44 receptor antagonist, A5G27. The intradermal injection of low (LMWH) but not high (HMWH) molecular weight hyaluronan also induces mechanical hyperalgesia, an effect that was attenuated by pretreatment with HMWH or A5G27. Pretreatment with HMWH also attenuated the hyperalgesia induced by hyaluronidase. Similarly, intradermal injection of A6, a CD44 receptor agonist, produced hyperalgesia that was inhibited by HMWH and A5G27. Inhibitors of protein kinase A (PKA) and Src, but not protein kinase C (PKC), significantly attenuated the hyperalgesia induced by both A6 and LMWH. Finally, to determine if CD44 receptor signaling is involved in a preclinical model of inflammatory pain, we evaluated the effect of A5G27 and HMWH on the mechanical hyperalgesia associated with the inflammation induced by carrageenan. Both A5G27 and HMWH attenuated carrageenan-induced mechanical hyperalgesia. Thus, while LMWH acts at its cognate receptor, CD44, to induce mechanical hyperalgesia, HMWH acts at the same receptor as an antagonist. That the local administration of HMWH or A5G27 inhibits carrageenan-induced hyperalgesia supports the suggestion that carrageenan produces changes in the ECM that contributes to inflammatory pain. These studies define a clinically relevant role for signaling by the hyaluronan receptor, CD44, in increased responsiveness to mechanical stimulation.

  6. Behavioral responses of California sea lions to mid-frequency (3250-3450 Hz) sonar signals.

    PubMed

    Houser, Dorian S; Martin, Stephen W; Finneran, James J

    2013-12-01

    Military sonar has the potential to negatively impact marine mammals. To investigate factors affecting behavioral disruption in California sea lions (Zalophus californianus), fifteen sea lions participated in a controlled exposure study using a simulated tactical sonar signal (1 s duration, 3250-3450 Hz) as a stimulus. Subjects were placed into groups of three and each group received a stimulus exposure of 125, 140, 155, 170, or 185 dB re: 1 μPa (rms). Each subject was trained to swim across an enclosure, touch a paddle, and return to the start location. Sound exposures occurred at the mid-point of the enclosure. Control and exposure sessions were run consecutively and each consisted of ten, 30-s trials. The occurrence and severity of behavioral responses were used to create acoustic dose-response and dose-severity functions. Age of the subject significantly affected the dose-response relationship, but not the dose-severity relationship. Repetitive exposures did not affect the dose-response relationship.

  7. Theory and measurement of plasmonic terahertz detector response to large signals

    NASA Astrophysics Data System (ADS)

    Rudin, S.; Rupper, G.; Gutin, A.; Shur, M.

    2014-02-01

    Electron gas in the conduction channel of a Field Effect Transistor (FET) can support collective plasma oscillations tunable by the gate voltage. In the Dyakonov-Shur terahertz (THz) detector, nonlinearities in the plasma wave propagation in the gated channel of a FET lead to a constant source-to-drain voltage providing the detector output. We present the detector theory in the frame of the hydrodynamic model using the electron plasma Navier-Stokes and thermal transport equations, thus fully accounting for the hydrodynamic non-linearity, the viscosity, and pressure gradients in the detector response. Both resonant and broadband operations of the high electron mobility transistor (HEMT) based plasmonic detectors are described by this model. The relation between the electron channel density and gate voltage was modeled by the unified charge control model applicable both above and below the threshold voltage. The theoretical results are compared with the response measured in the short channel InGaAs HEMT and the analytical approximation. The THz source was operating at 1.63 THz, and the response was measured at varying signal intensities. The response of the detector operated in the open drain mode was measured above and below the threshold, and the theoretical and experimental results are shown to be in good agreement.

  8. Optimization of stress response through the nuclear receptor-mediated cortisol signalling network

    PubMed Central

    Kolodkin, Alexey; Sahin, Nilgun; Phillips, Anna; Hood, Steve R.; Bruggeman, Frank J.; Westerhoff, Hans V.; Plant, Nick

    2013-01-01

    It is an accepted paradigm that extended stress predisposes an individual to pathophysiology. However, the biological adaptations to minimize this risk are poorly understood. Using a computational model based upon realistic kinetic parameters we are able to reproduce the interaction of the stress hormone cortisol with its two nuclear receptors, the high-affinity glucocorticoid receptor and the low-affinity pregnane X-receptor. We demonstrate that regulatory signals between these two nuclear receptors are necessary to optimize the body’s response to stress episodes, attenuating both the magnitude and duration of the biological response. In addition, we predict that the activation of pregnane X-receptor by multiple, low-affinity endobiotic ligands is necessary for the significant pregnane X-receptor-mediated transcriptional response observed following stress episodes. This integration allows responses mediated through both the high and low-affinity nuclear receptors, which we predict is an important strategy to minimize the risk of disease from chronic stress. PMID:23653204

  9. Activation of the mitochondrial signaling pathway in response to organic solvent stress in yeast.

    PubMed

    Nishida-Aoki, Nao; Mori, Hitoshi; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2015-05-01

    In Saccharomyces cerevisiae, we have demonstrated that organic solvent stress activated the pleiotropic drug resistance (PDR) pathway, which involves the transcription factors Pdr1p and Pdr3p. Pdr1p and Pdr3p are functionally homologous in multidrug resistance, although Pdr3p has been reported to have some distinct functions. Here, we analyzed the functions of Pdr1p and Pdr3p during the cellular response to isooctane, as a representative of organic solvents, and observed the differential functions of Pdr1p and Pdr3p. In response to organic solvent stress, only Pdr3p contributed to the regulation of downstream genes of the PDR pathway, while Pdr1p had a rather inhibitory role on transcriptional induction through competition with Pdr3p for binding to their recognition sequence, pleiotropic drug response element. Our results demonstrated that organic solvent stress was likely to damage mitochondria, causing generation of reactive oxygen species and mitochondrial fragmentation, and to activate retrograde signaling pathway via Pdr3p to upregulate PDR5 expression. Therefore, the unique function of Pdr3p in organic solvent stress distinguishes this pathway from the multidrug response.

  10. Tobacco LSU-like protein couples sulphur-deficiency response with ethylene signalling pathway

    PubMed Central

    Sirko, Agnieszka

    2013-01-01

    Most genes from the plant-specific family encoding Response to Low Sulphur (LSU)-like proteins are strongly induced in sulphur (S)-deficient conditions. The exact role of these proteins remains unclear; however, some data suggest their importance for plants’ adjustment to nutrient deficiency and other environmental stresses. This work established that the regulation of ethylene signalling is a part of plants’ response to S deficiency and showed the interaction between UP9C, a tobacco LSU family member, and one of the tobacco isoforms of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO2A). Increase in ethylene level induced by S deficiency does not take place in tobacco plants with UP9C expressed in an antisense orientation. Based on transcriptomics data, this work also demonstrated that the majority of tobacco’s response to S deficiency is misregulated in plants expressing UP9C-antisense. A link between response to S deficiency, ethylene sensing, and LSU-like proteins was emphasized by changes in expression of the genes encoding ethylene receptors and F-box proteins specific for the ethylene pathway. PMID:24085579

  11. Tobacco LSU-like protein couples sulphur-deficiency response with ethylene signalling pathway.

    PubMed

    Moniuszko, Grzegorz; Skoneczny, Marek; Zientara-Rytter, Katarzyna; Wawrzyńska, Anna; Głów, Dawid; Cristescu, Simona M; Harren, Frans J M; Sirko, Agnieszka

    2013-11-01

    Most genes from the plant-specific family encoding Response to Low Sulphur (LSU)-like proteins are strongly induced in sulphur (S)-deficient conditions. The exact role of these proteins remains unclear; however, some data suggest their importance for plants' adjustment to nutrient deficiency and other environmental stresses. This work established that the regulation of ethylene signalling is a part of plants' response to S deficiency and showed the interaction between UP9C, a tobacco LSU family member, and one of the tobacco isoforms of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO2A). Increase in ethylene level induced by S deficiency does not take place in tobacco plants with UP9C expressed in an antisense orientation. Based on transcriptomics data, this work also demonstrated that the majority of tobacco's response to S deficiency is misregulated in plants expressing UP9C-antisense. A link between response to S deficiency, ethylene sensing, and LSU-like proteins was emphasized by changes in expression of the genes encoding ethylene receptors and F-box proteins specific for the ethylene pathway.

  12. Questing activity in bed bug populations: male and female responses to host signals.

    PubMed

    Aak, Anders; Rukke, Bjørn A; Soleng, Arnulf; Rosnes, Marte K

    2014-09-01

    A large-arena bioassay is used to examine sex differences in spatiotemporal patterns of bed bug Cimex lectularius L. behavioural responses to either a human host or CO2 gas. After release in the centre of the arena, 90% of newly-fed bed bugs move to hiding places in the corners within 24 h. They require 3 days to settle down completely in the arena, with generally low activity levels and the absence of responses to human stimuli for 5 days. After 8-9 days, persistent responses can be recorded. Sex differences are observed, in which females are more active during establishment, respond faster after feeding, expose themselves more than males during the daytime, and respond more strongly to the host signal. The number of bed bugs that rest in harbourages is found to vary significantly according to light setting and sex. Both sexes stay inside harbourages more in daylight compared with night, and males hide more than females during the daytime but not during the night. The spatial distribution of the bed bugs is also found to change with the presence of CO2, and peak aggregation around the odour source is observed after 24 min. Both male and female bed bugs move from hiding places or the border of the arena toward the centre where CO2 is released. Peak responses are always highest during the night. Bed bug behaviour and behaviour-regulating features are discussed in the context of control methods.

  13. Questing activity in bed bug populations: male and female responses to host signals

    PubMed Central

    Aak, Anders; Rukke, Bjørn A; Soleng, Arnulf; Rosnes, Marte K

    2014-01-01

    A large-arena bioassay is used to examine sex differences in spatiotemporal patterns of bed bug Cimex lectularius L. behavioural responses to either a human host or CO2 gas. After release in the centre of the arena, 90% of newly-fed bed bugs move to hiding places in the corners within 24 h. They require 3 days to settle down completely in the arena, with generally low activity levels and the absence of responses to human stimuli for 5 days. After 8–9 days, persistent responses can be recorded. Sex differences are observed, in which females are more active during establishment, respond faster after feeding, expose themselves more than males during the daytime, and respond more strongly to the host signal. The number of bed bugs that rest in harbourages is found to vary significantly according to light setting and sex. Both sexes stay inside harbourages more in daylight compared with night, and males hide more than females during the daytime but not during the night. The spatial distribution of the bed bugs is also found to change with the presence of CO2, and peak aggregation around the odour source is observed after 24 min. Both male and female bed bugs move from hiding places or the border of the arena toward the centre where CO2 is released. Peak responses are always highest during the night. Bed bug behaviour and behaviour-regulating features are discussed in the context of control methods. PMID:26166936

  14. Inhibition of TGFbeta1 Signaling Attenutates ATM Activity inResponse to Genotoxic Stress

    SciTech Connect

    Kirshner, Julia; Jobling, Michael F.; Pajares, Maria Jose; Ravani, Shraddha A.; Glick, Adam B.; Lavin, Martin J.; Koslov, Sergei; Shiloh, Yosef; Barcellos-Hoff, Mary Helen

    2006-09-15

    Ionizing radiation causes DNA damage that elicits a cellular program of damage control coordinated by the kinase activity of ataxia telangiectasia mutated protein (ATM). Transforming growth factor {beta}1 (TGF{beta}), which is activated by radiation, is a potent and pleiotropic mediator of physiological and pathological processes. Here we show that TGF{beta} inhibition impedes the canonical cellular DNA damage stress response. Irradiated Tgf{beta}1 null murine epithelial cells or human epithelial cells treated with a small molecule inhibitor of TGF{beta} type I receptor kinase exhibit decreased phosphorylation of Chk2, Rad17 and p53, reduced {gamma}H2AX radiation-induced foci, and increased radiosensitivity compared to TGF{beta} competent cells. We determined that loss of TGF{beta} signaling in epithelial cells truncated ATM autophosphorylation and significantly reduced its kinase activity, without affecting protein abundance. Addition of TGF{beta} restored functional ATM and downstream DNA damage responses. These data reveal a heretofore undetected critical link between the microenvironment and ATM that directs epithelial cell stress responses, cell fate and tissue integrity. Thus, TGF{beta}1, in addition to its role in homoeostatic growth control, plays a complex role in regulating responses to genotoxic stress, the failure of which would contribute to the development of cancer; conversely, inhibiting TGF{beta} may be used to advantage in cancer therapy.

  15. A fasting-responsive signaling pathway that extends life span in C. elegans.

    PubMed

    Uno, Masaharu; Honjoh, Sakiko; Matsuda, Mitsuhiro; Hoshikawa, Haruka; Kishimoto, Saya; Yamamoto, Tomohito; Ebisuya, Miki; Yamamoto, Takuya; Matsumoto, Kunihiro; Nishida, Eisuke

    2013-01-31

    Intermittent fasting is one of the most effective dietary restriction regimens that extend life span in C. elegans and mammals. Fasting-stimulus responses are key to the longevity response; however, the mechanisms that sense and transduce the fasting stimulus remain largely unknown. Through a comprehensive transcriptome analysis in C. elegans, we find that along with the FOXO transcription factor DAF-16, AP-1 (JUN-1/FOS-1) plays a central role in fasting-induced transcriptional changes. KGB-1, one of the C. elegans JNKs, acts as an activator of AP-1 and is activated in response to fasting. KGB-1 and AP-1 are involved in intermittent fasting-induced longevity. Fasting-induced upregulation of the components of the SCF E3 ubiquitin ligase complex via AP-1 and DAF-16 enhances protein ubiquitination and reduces protein carbonylation. Our results thus identify a fasting-responsive KGB-1/AP-1 signaling pathway, which, together with DAF-16, causes transcriptional changes that mediate longevity, partly through regulating proteostasis.

  16. Mouse hypothalamic growth hormone-releasing hormone and somatostatin responses to probes of signal transduction systems.

    PubMed

    Sato, M; Downs, T R; Frohman, L A

    1993-01-01

    Signal transduction mechanisms involved in mouse growth hormone-releasing hormone (GRH) and somatostatin (SRIH) release were investigated using an in vitro perifusion system. Hypothalamic fragments were exposed to depolarizing agents, protein kinase A and C activators, and a calcium ionophore. The depolarizing agents, KCl (60 mM) and veratridine (50 microM), induced similar patterns of GRH and SRIH release. Somatostatin release in response to both agents was twofold greater than that of GRH. Forskolin (10 microM and 100 microM), an adenylate cyclase activator, stimulated both GRH and SRIH release, though with different secretory profiles. The SRIH response was prolonged and persisted beyond removal of the drug from the system, while the GRH response was brief, ending even prior to forskolin removal. Neither GRH nor SRIH were stimulated by 1,9-dideoxy-forskolin (100 microM), a forskolin analog with cAMP-independent actions. A23187 (5 microM), a calcium ionophore, stimulated the release of SRIH to a much greater extent than that of GRH. The GRH and SRIH secretory responses to PMA (1 microM), a protein kinase C activator, were similar, though delayed. The results suggest that 1) GRH and SRIH secretion are regulated by both protein kinase A and C pathways, and 2) depolarizing agents are important for the release of both hormones.

  17. Signaling network of dendritic cells in response to pathogens: a community-input supported knowledgebase

    PubMed Central

    2010-01-01

    Background Dendritic cells are antigen-presenting cells that play an essential role in linking the innate and adaptive immune systems. Much research has focused on the signaling pathways triggered upon infection of dendritic cells by various pathogens. The high level of activity in the field makes it desirable to have a pathway-based resource to access the information in the literature. Current pathway diagrams lack either comprehensiveness, or an open-access editorial interface. Hence, there is a need for a dependable, expertly curated knowledgebase that integrates this information into a map of signaling networks. Description We have built a detailed diagram of the dendritic cell signaling network, with the goal of providing researchers with a valuable resource and a facile method for community input. Network construction has relied on comprehensive review of the literature and regular updates. The diagram includes detailed depictions of pathways activated downstream of different pathogen recognition receptors such as Toll-like receptors, retinoic acid-inducible gene-I-like receptors, C-type lectin receptors and nucleotide-binding oligomerization domain-like receptors. Initially assembled using CellDesigner software, it provides an annotated graphical representation of interactions stored in Systems Biology Mark-up Language. The network, which comprises 249 nodes and 213 edges, has been web-published through the Biological Pathway Publisher software suite. Nodes are annotated with PubMed references and gene-related information, and linked to a public wiki, providing a discussion forum for updates and corrections. To gain more insight into regulatory patterns of dendritic cell signaling, we analyzed the network using graph-theory methods: bifan, feedforward and multi-input convergence motifs were enriched. This emphasis on activating control mechanisms is consonant with a network that subserves persistent and coordinated responses to pathogen detection

  18. Feline mediastinal lymphoma: a retrospective study of signalment, retroviral status, response to chemotherapy and prognostic indicators.

    PubMed

    Fabrizio, Francesca; Calam, Amy E; Dobson, Jane M; Middleton, Stephanie A; Murphy, Sue; Taylor, Samantha S; Schwartz, Anita; Stell, Anneliese J

    2014-08-01

    Historically, feline mediastinal lymphoma has been associated with young age, positive feline leukaemia virus (FeLV) status, Siamese breed and short survival times. Recent studies following widespread FeLV vaccination in the UK are lacking. The aim of this retrospective multi-institutional study was to re-evaluate the signalment, retroviral status, response to chemotherapy, survival and prognostic indicators in feline mediastinal lymphoma cases in the post-vaccination era. Records of cats with clinical signs associated with a mediastinal mass and cytologically/histologically confirmed lymphoma were reviewed from five UK referral centres (1998-2010). Treatment response, survival and prognostic indicators were assessed in treated cats with follow-up data. Fifty-five cases were reviewed. The median age was 3 years (range, 0.5-12 years); 12 cats (21.8%) were Siamese; and the male to female ratio was 3.2:1.0. Five cats were FeLV-positive and two were feline immunodeficiency-positive. Chemotherapy response and survival was evaluated in 38 cats. Overall response was 94.7%; complete (CR) and partial response (PR) rates did not differ significantly between protocols: COP (cyclophosphamide, vincristine, prednisone) (n = 26, CR 61.5%, PR 34.0%); Madison-Wisconsin (MW) (n = 12, CR 66.7%, PR 25.0%). Overall median survival was 373 days (range, 20-2015 days) (COP 484 days [range, 20-980 days]; MW 211 days [range, 24-2015 days] [P = 0.892]). Cats achieving CR survived longer (980 days vs 42 days for PR; P = 0.032). Age, breed, sex, location (mediastinal vs mediastinal plus other sites), retroviral status and glucocorticoid pretreatment did not affect response or survival. Feline mediastinal lymphoma cases frequently responded to chemotherapy with durable survival times, particularly in cats achieving CR. The prevalence of FeLV-antigenaemic cats was low; males and young Siamese cats appeared to be over-represented.

  19. Epidermal Growth Factor Receptor-Dependent Mutual Amplification between Netrin-1 and the Hepatitis C Virus

    PubMed Central

    Plissonnier, Marie-Laure; Lahlali, Thomas; Michelet, Maud; Lebossé, Fanny; Cottarel, Jessica; Beer, Melanie; Neveu, Grégory; Durantel, David; Bartosch, Birke; Accardi, Rosita; Clément, Sophie; Paradisi, Andrea; Devouassoux-Shisheboran, Mojgan; Einav, Shirit; Mehlen, Patrick; Zoulim, Fabien; Parent, Romain

    2016-01-01

    Hepatitis C virus (HCV) is an oncogenic virus associated with the onset of hepatocellular carcinoma (HCC). The present study investigated the possible link between HCV infection and Netrin-1, a ligand for dependence receptors that sustains tumorigenesis, in particular in inflammation-associated tumors. We show that Netrin-1 expression is significantly elevated in HCV+ liver biopsies compared to hepatitis B virus (HBV+) and uninfected samples. Furthermore, Netrin-1 was upregulated in all histological stages of HCV+ hepatic lesions, from minimal liver fibrosis to cirrhosis and HCC, compared to histologically matched HCV- tissues. Both cirrhosis and HCV contributed to the induction of Netrin-1 expression, whereas anti-HCV treatment resulted in a reduction of Netrin-1 expression. In vitro, HCV increased the level and translation of Netrin-1 in a NS5A-La-related protein 1 (LARP1)-dependent fashion. Knockdown and forced expression experiments identified the receptor uncoordinated receptor-5 (UNC5A) as an antagonist of the Netrin-1 signal, though it did not affect the death of HCV-infected cells. Netrin-1 enhanced infectivity of HCV particles and promoted viral entry by increasing the activation and decreasing the recycling of the epidermal growth factor receptor (EGFR), a protein that is dysregulated in HCC. Netrin-1 and HCV are, therefore, reciprocal inducers in vitro and in patients, as seen from the increase in viral morphogenesis and viral entry, both phenomena converging toward an increase in the level of infectivity of HCV virions. This functional association involving a cancer-related virus and Netrin-1 argues for evaluating the implication of UNC5 receptor ligands in other oncogenic microbial species. PMID:27031829

  20. Endothelial protein C receptor-dependent antichemotactic effects of canine protein C.

    PubMed

    Wong, Valerie M; Côté, Olivier; Bienzle, Dorothee; Hayes, M Anthony; Wood, R Darren

    2017-02-01

    OBJECTIVE To determine whether canine protein C (CnPC) had antichemotactic effects on canine neutrophils, whether endothelial protein C receptor (EPCR) was expressed on canine neutrophils, and the role of EPCR in neutrophil chemotaxis. SAMPLE Neutrophils isolated from blood samples from healthy dogs (n = 6) and sick dogs with (2) or without (3) an inflammatory leukogram. PROCEDURES Neutrophils were analyzed by reverse transcriptase PCR assay and flow cytometry for detection of EPCR mRNA and protein expression, respectively. Neutrophils were incubated with CnPC zymogen or canine activated protein C (CnAPC), with or without RCR-379 (an anti-human EPCR antibody). Neutrophils were then allowed to migrate through a filter membrane toward a chemokine. Untreated neutrophils served as positive control samples. Migration was quantified by fluorescence measurement, and chemotaxis index (Chx) values (fluorescence of test sample/fluorescence of positive control sample) were computed. RESULTS The cDNA for EPCR was amplified, and EPCR expression was detected on neutrophil surfaces. Obtained Chx values were significantly higher in cells treated with RCR-379 than in cells treated with CnPC or CnAPC alone. The Chx values for neutrophils treated with RCR-379 were not significantly different from 1, whereas those for neutrophils treated without RCR-379 were significantly less than 1. The effects of RCR-379 on neutrophil migration were independent of concentration or activation status of protein C. CONCLUSIONS AND CLINICAL RELEVANCE Canine neutrophils expressed EPCR, and inhibition of neutrophil chemotaxis by CnPC and CnAPC depended on EPCR. Interventions with EPCR signaling may have therapeutic application in dogs.

  1. Metabotropic glutamate receptor dependent long-term depression in the cortex

    PubMed Central

    Kang, Sukjae Joshua

    2016-01-01

    Metabotropic glutamate receptor (mGluR)-dependent long-term depression (LTD), a type of synaptic plasticity, is characterized by a reduction in the synaptic response, mainly at the excitatory synapses of the neurons. The hippocampus and the cerebellum have been the most extensively studied regions in mGluR-dependent LTD, and Group 1 mGluR has been reported to be mainly involved in this synaptic LTD at excitatory synapses. However, mGluR-dependent LTD in other brain regions may be involved in the specific behaviors or diseases. In this paper, we focus on five cortical regions and review the literature that implicates their contribution to the pathogenesis of several behaviors and specific conditions associated with mGluR-dependent LTD. PMID:27847432

  2. Ankyrin repeat-rich membrane spanning protein (kidins220) is required for neurotrophin and ephrin receptor-dependent dendrite development.

    PubMed

    Chen, Yu; Fu, Wing-Yu; Ip, Jacque P K; Ye, Tao; Fu, Amy K Y; Chao, Moses V; Ip, Nancy Y

    2012-06-13

    Dendrites are the primary sites on neurons for receiving and integrating inputs from their presynaptic partners. Defects in dendrite development perturb the formation of neural circuitry and impair information processing in the brain. Extracellular cues are important for shaping the dendritic morphogenesis, but the underlying molecular mechanisms are not well understood. In this study, we examined the role of ARMS (ankyrin repeat-rich membrane spanning protein), also known as Kidins220 (kinase D-interacting substrate of 220 kDa), previously identified as a downstream target of neurotrophin and ephrin receptors, in dendrite development. We report here that knockdown of ARMS/Kidins220 by in utero electroporation impairs dendritic branching in mouse cerebral cortex, and silencing of ARMS/Kidins220 in primary rat hippocampal neurons results in a significant decrease in the length, number, and complexity of the dendritic arbors. Overexpression of cell surface receptor tyrosine kinases, including TrkB and EphB2, in ARMS/Kidins220-deficient neurons can partially rescue the defective dendritic phenotype. More importantly, we show that PI3K (phosphoinositide-3-kinase)- and Akt-mediated signaling pathway is crucial for ARMS/Kidins220-dependent dendrite development. Furthermore, loss of ARMS/Kidins220 significantly reduced the clustering of EphB2 receptor signaling complex in neurons. Our results collectively suggest that ARMS/Kidins220 is a key player in organizing the signaling complex to transduce the extracellular stimuli to cellular responses during dendrite development.

  3. Food restriction promotes signaling effort in response to social challenge in a short-lived electric fish.

    PubMed

    Gavassa, Sat; Stoddard, Philip K

    2012-09-01

    Vertebrates exposed to stressful conditions release glucocorticoids to sustain energy expenditure. In most species elevated glucocorticoids inhibit reproduction. However individuals with limited remaining reproductive opportunities cannot afford to forgo reproduction and should resist glucocorticoid-mediated inhibition of reproductive behavior. The electric fish Brachyhypopomus gauderio has a single breeding season in its lifetime, thus we expect males to resist glucocorticoid-mediated inhibition of their sexual advertisement signals. We studied stress resistance in male B. gauderio (i) by examining the effect of exogenous cortisol administration on the signal waveform and (ii) by investigating the effect of food limitation on androgen and cortisol levels, the amplitude of the electric signal waveform, the responsiveness of the electric signal waveform to social challenge, and the amount of feeding activity. Exogenous cortisol administration did reduce signal amplitude and pulse duration, but endogenous cortisol levels did not rise with food limitation or social challenge. Despite food limitation, males responded to social challenges by further increasing androgen levels and enhancing the amplitude and duration of their electric signal waveforms. Food-restricted males increased androgen levels and signal pulse duration more than males fed ad libitum. Socially challenged fish increased food consumption, probably to compensate for their elevated energy expenditure. Previous studies showed that socially challenged males of this species simultaneously elevate testosterone and cortisol in proportion to signal amplitude. Thus, B. gauderio appears to protect its cortisol-sensitive electric advertisement signal by increasing food intake, limiting cortisol release, and offsetting signal reduction from cortisol with signal-enhancing androgens.

  4. Histamine enhances inhibitory avoidance memory consolidation through a H2 receptor-dependent mechanism.

    PubMed

    da Silva, Weber C; Bonini, Juliana S; Bevilaqua, Lia R M; Izquierdo, Iván; Cammarota, Martín

    2006-07-01

    Several evidences suggest that brain histamine is involved in memory consolidation but the actual contribution of the hippocampal histaminergic system to this process remains controversial. Here, we show that when infused into the CA1 region of the dorsal hippocampus immediately after training in an inhibitory avoidance task, but not later, histamine induced a dose-dependent promnesic effect without altering locomotor activity, exploratory behavior, anxiety state or retrieval of the avoidance response. The facilitatory effect of intra-CA1 histamine was mimicked by the histamine N-methyltransferase inhibitor SKF-91844 as well as by the H2 receptor agonist dimaprit and it was blocked completely by the H2 receptor antagonist ranitidine. Conversely, the promnesic action of histamine was unaffected by the H1 receptor antagonist pyrilamine, the H3 receptor antagonist, thioperamide, and the NMDAr polyamine-binding site antagonist ifenprodil. By themselves, ranitidine, pyrilamine, thioperamide, and ifenprodil did not affect IA memory consolidation. Our data indicate that, when given into CA1, histamine enhances memory consolidation through a mechanism that involves activation of H2 receptors; however, endogenous CA1 histamine does not seem to participate in the consolidation of IA memory at least at the post-training times analyzed.

  5. Melittin modulates keratinocyte function through P2 receptor-dependent ADAM activation.

    PubMed

    Sommer, Anselm; Fries, Anja; Cornelsen, Isabell; Speck, Nancy; Koch-Nolte, Friedrich; Gimpl, Gerald; Andrä, Jörg; Bhakdi, Sucharit; Reiss, Karina

    2012-07-06

    Melittin, the major component of the bee venom, is an amphipathic, cationic peptide with a wide spectrum of biological properties that is being considered as an anti-inflammatory and anti-cancer agent. It modulates multiple cellular functions but the underlying mechanisms are not clearly understood. Here, we report that melittin activates disintegrin-like metalloproteases (ADAMs) and that downstream events likely contribute to the biological effects evoked by the peptide. Melittin stimulated the proteolysis of ADAM10 and ADAM17 substrates in human neutrophil granulocytes, endothelial cells and murine fibroblasts. In human HaCaT keratinocytes, melittin induced shedding of the adhesion molecule E-cadherin and release of TGF-α, which was accompanied by transactivation of the EGF receptor and ERK1/2 phosphorylation. This was followed by functional consequences such as increased keratinocyte proliferation and enhanced cell migration. Evidence is provided that ATP release and activation of purinergic P2 receptors are involved in melittin-induced ADAM activation. E-cadherin shedding and EGFR phosphorylation were dose-dependently reduced in the presence of ATPases or P2 receptor antagonists. The involvement of P2 receptors was underscored in experiments with HEK cells, which lack the P2X7 receptor and showed strikingly increased response to melittin stimulation after transfection with this receptor. Our study provides new insight into the mechanism of melittin function which should be of interest particularly in the context of its potential use as an anti-inflammatory or anti-cancer agent.

  6. Uncoupling High Light Responses from Singlet Oxygen Retrograde Signaling and Spatial-Temporal Systemic Acquired Acclimation1[OPEN

    PubMed Central

    Gordon, Matthew; Havaux, Michel; Albrecht-Borth, Verónica

    2016-01-01

    Distinct ROS signaling pathways initiated by singlet oxygen (1O2) or superoxide and hydrogen peroxide have been attributed to either cell death or acclimation, respectively. Recent studies have revealed that more complex antagonistic and synergistic relationships exist within and between these pathways. As specific chloroplastic ROS signals are difficult to study, rapid systemic signaling experiments using localized high light (HL) stress or ROS treatments were used in this study to uncouple signals required for direct HL and ROS perception and distal systemic acquired acclimation (SAA). A qPCR approach was chosen to determine local perception and distal signal reception. Analysis of a thylakoidal ascorbate peroxidase mutant (tapx), the 1O2-retrograde signaling double mutant (ex1/ex2), and an apoplastic signaling double mutant (rbohD/F) revealed that tAPX and EXECUTER 1 are required for both HL and systemic acclimation stress perception. Apoplastic membrane-localized RBOHs were required for systemic spread of the signal but not for local signal induction in directly stressed tissues. Endogenous ROS treatments revealed a very strong systemic response induced by a localized 1 h induction of 1O2 using the conditional flu mutant. A qPCR time course of 1O2 induced systemic marker genes in directly and indirectly connected leaves revealed a direct vascular connection component of both immediate and longer term SAA signaling responses. These results reveal the importance of an EXECUTER-dependent 1O2 retrograde signal for both local and long distance RBOH-dependent acclimation signaling that is distinct from other HL signaling pathways, and that direct vascular connections have a role in spatial-temporal SAA induction. PMID:27288360

  7. The Response of wnt/ ß-Catenin Signaling Pathway in Osteocytes Under Simulated Microgravity

    NASA Astrophysics Data System (ADS)

    Yang, Xiao; Sun, Lian-Wen; Liang, Meng; Wang, Xiao-Nan; Fan, Yu-Bo

    2015-11-01

    Osteocytes were considered as potential sensors of mechanical loading and orchestrate the bone remodeling adapted to mechanical loading. On the other hand, osteocytes are also considered as the unloading sensors in vivo. Previous studies showed that the mechanosensation and mechanotransduction of osteocytes may play an essential role in mediating bone response to microgravity, and one of the most important molecular signaling pathway involved in the mechanotransduction is the Wnt/ ß-catenin signaling pathway. In order to investigate the effect of simulated microgravity on the Wnt/ ß-catenin signaling pathway in osteocytes, MLO-Y4 cells (an osteocyte-like cell line) were cultured under controlled rotation to simulate microgravity for 5 days. The cytoskeleton and ß-catenin nuclear translocation of MLO-Y4 cells were detected by laser scanning confocal microscope and the fluorescence intensity was quantified; the mRNA expressions of upstream and downstream key components in Wnt canonical signaling were detected with RT-PCR. Two regulators of the Wnt/ ß-catenin pathway, NMP4/CIZ and Smads, were also investigated by RT-PCR; finally the expression of Wnt target genes and Sost protein level were detected with the absence or presence of the Sclerostin antibody (Scl-AbI) under simulated microgravity. The results showed that under simulated microgravity, (1) F-actin filaments were disassembled and some short dendritic processes appeared at the cell periphery; (2) the gene expression of Wnt3a, Wnt5a, DKK1, CyclinD1, LEF-1 and CX43 in the simulated microgravity group were significantly lower whereas Wnt1 and Sost in the simulated microgravity group were significantly higher than the control group; (3) the gene and protein level of ß-catenin were reduced, and no ß-catenin nuclear translocation observed; (4) the gene expression of Smad1, Smad4 and Smad7 were significantly lower whereas NMP4/CIZ and Smad3 in the simulated microgravity were significantly higher than the

  8. δ 13C response surface resolves humidity and temperature signals in trees

    NASA Astrophysics Data System (ADS)

    Edwards, T. W. D.; Graf, W.; Trimborn, P.; Stichler, W.; Lipp, J.; Payer, H. D.

    2000-01-01

    Stem cellulose of bean plants ( Vicia faba) grown under controlled conditions exhibits inverse linear carbon-isotope reactions to changes in both relative humidity (RH) and temperature (T), readily mappable as a planar δ 13C response surface in RH-T space. The analogous response surface for annual late-wood cellulose δ 13C from a field calibration using fir trees ( Abies alba) in the Black Forest, southern Germany, also supports resolution of independent δ-RH and δ-T effects. The response of cellulose δ 13C to RH and T derived from this new calibration differs markedly from estimates based on univariate linear regression analysis: The sensitivity of δ 13C to RH is stronger than that inferred previously ( c. -0.17‰/% vs. -0.12‰/%, respectively), whereas the δ-T coefficient is weaker and reversed in sign ( c. -0.15‰/K vs. +0.36‰/K). This new perspective on the coupled influence of moisture and temperature changes on tree-ring cellulose δ 13C helps to unify divergent observations about carbon-isotope signals in trees, especially the broad range of apparent δ-T relations obtained in calibration studies, which are often used as paleoclimate transfer functions. Although this highlights the large potential uncertainties surrounding paleoclimate reconstruction based solely on δ 13C data, coupling of the carbon-isotope response-surface approach with equivalent response surfaces for hydrogen or oxygen isotopes may afford new opportunities for investigating the nature of past climate variability and change from tree-ring sequences.

  9. Equation of motion and general solution for the one-dimensional complex cell response in the signal-tuned approach.

    PubMed

    Torreão, José R A

    2015-10-01

    A signal-tuned approach has been recently introduced for modeling stimulus-dependent cortical receptive fields. The approach is based on signal-tuned Gabor functions, which are Gaussian-modulated sinusoids whose parameters are obtained from a "tuning" signal. Given a stimulus to a cell, it is taken as the tuning signal for the Gabor function modeling the cell's receptive field, and the inner product of the stimulus and the stimulus-dependent field produces the cell's response. Here, we derive and solve the equation of motion for the signal-tuned complex cell response r(x,τ), where x and τ are receptive-field parameters: its center, and the delay with which it adapts to a change in input. The motion equation can be mapped onto the Schrödinger equation for a system with time-dependent imaginary mass and time-dependent complex potential, and yields a plane-wave solution and an Airy-packet solution. The plane-wave solution replicates responses previously obtained for temporally modulated and translating signals, and yields responses which seem compatible with apparent-motion effects, when the stimulus is a pair of alternating pulses. The Airy-packet solution can lead to long-range propagating responses.

  10. GABAergic influences on ORX receptor-dependent abnormal motor behaviors and neurodegenerative events in fish.

    PubMed

    Facciolo, Rosa Maria; Crudo, Michele; Giusi, Giuseppina; Canonaco, Marcello

    2010-02-15

    At date the major neuroreceptors i.e. gamma-aminobutyric acid(A) (GABA(A)R) and orexin (ORXR) systems are beginning to be linked to homeostasis, neuroendocrine and emotional states. In this study, intraperitoneal treatment of the marine teleost Thalassoma pavo with the highly selective GABA(A)R agonist (muscimol, MUS; 0.1 microg/g body weight) and/or its antagonist bicuculline (BIC; 1 microg/g body weight) have corroborated a GABA(A)ergic role on motor behaviors. In particular, MUS induced moderate (p<0.05) and great (p<0.01) increases of swimming towards food sources and resting states after 24 (1 dose) and 96 (4 doses) h treatment sessions, respectively, when compared to controls. Conversely, BIC caused a very strong (p<0.001) reduction of the former behavior and in some cases convulsive swimming. From the correlation of BIC-dependent behavioral changes to neuronal morphological and ORXR transcriptional variations, it appeared that the disinhibitory action of GABA(A)R was very likely responsible for very strong and strong ORXR mRNA reductions in cerebellum valvula and torus longitudinalis, respectively. Moreover these effects were linked to evident ultra-structural changes such as shrunken cell membranes and loss of cytoplasmic architecture. In contrast, MUS supplied a very low, if any, argyrophilic reaction in hypothalamic and mesencephalic regions plus a scarce level of ultra-structural damages. Interestingly, combined administrations of MUS+BIC were not related to consistent damages, aside mild neuronal alterations in motor-related areas such as optic tectum. Overall it is tempting to suggest, for the first time, a neuroprotective role of GABA(A)R inhibitory actions against the overexcitatory ORXR-dependent neurodegeneration and consequently abnormal swimming events in fish.

  11. Melittin Modulates Keratinocyte Function through P2 Receptor-dependent ADAM Activation*

    PubMed Central

    Sommer, Anselm; Fries, Anja; Cornelsen, Isabell; Speck, Nancy; Koch-Nolte, Friedrich; Gimpl, Gerald; Andrä, Jörg; Bhakdi, Sucharit; Reiss, Karina

    2012-01-01

    Melittin, the major component of the bee venom, is an amphipathic, cationic peptide with a wide spectrum of biological properties that is being considered as an anti-inflammatory and anti-cancer agent. It modulates multiple cellular functions but the underlying mechanisms are not clearly understood. Here, we report that melittin activates disintegrin-like metalloproteases (ADAMs) and that downstream events likely contribute to the biological effects evoked by the peptide. Melittin stimulated the proteolysis of ADAM10 and ADAM17 substrates in human neutrophil granulocytes, endothelial cells and murine fibroblasts. In human HaCaT keratinocytes, melittin induced shedding of the adhesion molecule E-cadherin and release of TGF-α, which was accompanied by transactivation of the EGF receptor and ERK1/2 phosphorylation. This was followed by functional consequences such as increased keratinocyte proliferation and enhanced cell migration. Evidence is provided that ATP release and activation of purinergic P2 receptors are involved in melittin-induced ADAM activation. E-cadherin shedding and EGFR phosphorylation were dose-dependently reduced in the presence of ATPases or P2 receptor antagonists. The involvement of P2 receptors was underscored in experiments with HEK cells, which lack the P2X7 receptor and showed strikingly increased response to melittin stimulation after transfection with this receptor. Our study provides new insight into the mechanism of melittin function which should be of interest particularly in the context of its potential use as an anti-inflammatory or anti-cancer agent. PMID:22613720

  12. GABAergic influences on ORX receptor-dependent abnormal motor behaviors and neurodegenerative events in fish

    SciTech Connect

    Facciolo, Rosa Maria; Crudo, Michele; Giusi, Giuseppina; Canonaco, Marcello

    2010-02-15

    At date the major neuroreceptors i.e. gamma-aminobutyric acid{sub A} (GABA{sub A}R) and orexin (ORXR) systems are beginning to be linked to homeostasis, neuroendocrine and emotional states. In this study, intraperitoneal treatment of the marine teleost Thalassoma pavo with the highly selective GABA{sub A}R agonist (muscimol, MUS; 0,1 mug/g body weight) and/or its antagonist bicuculline (BIC; 1 mug/g body weight) have corroborated a GABA{sub A}ergic role on motor behaviors. In particular, MUS induced moderate (p < 0.05) and great (p < 0.01) increases of swimming towards food sources and resting states after 24 (1 dose) and 96 (4 doses) h treatment sessions, respectively, when compared to controls. Conversely, BIC caused a very strong (p < 0.001) reduction of the former behavior and in some cases convulsive swimming. From the correlation of BIC-dependent behavioral changes to neuronal morphological and ORXR transcriptional variations, it appeared that the disinhibitory action of GABA{sub A}R was very likely responsible for very strong and strong ORXR mRNA reductions in cerebellum valvula and torus longitudinalis, respectively. Moreover these effects were linked to evident ultra-structural changes such as shrunken cell membranes and loss of cytoplasmic architecture. In contrast, MUS supplied a very low, if any, argyrophilic reaction in hypothalamic and mesencephalic regions plus a scarce level of ultra-structural damages. Interestingly, combined administrations of MUS + BIC were not related to consistent damages, aside mild neuronal alterations in motor-related areas such as optic tectum. Overall it is tempting to suggest, for the first time, a neuroprotective role of GABA{sub A}R inhibitory actions against the overexcitatory ORXR-dependent neurodegeneration and consequently abnormal swimming events in fish.

  13. Distinct Signaling Pathways and Transcriptome Response Signatures Differentiate Ammonium- and Nitrate-supplied Plants

    PubMed Central

    Patterson, Kurt; Cakmak, Turgay; Cooper, Andrew; Lager, Ida; Rasmusson, Allan G.; Escobar, Matthew A.

    2010-01-01

    Nitrogen is the only macronutrient that is commonly available to plants in both oxidized and reduced forms, mainly nitrate and ammonium. The physiological and molecular effects of nitrate supply have been well studied, but comparatively little is known about ammonium nutrition and its differential effects on cell function and gene expression. We have used a physiologically realistic hydroponic growth system to compare the transcriptomes and redox status of the roots of ammonium- and nitrate-supplied Arabidopsis thaliana plants. While ~60% of nitrogen-regulated genes displayed common responses to both ammonium and nitrate, significant “nitrate-specific” and “ammonium-specific” gene sets were identified. Pathways involved in cytokinin response and reductant generation/distribution were specifically altered by nitrate, while a complex biotic stress response and changes in nodulin gene expression were characteristic of ammonium-supplied plants. Nitrate supply was associated with a rapid decrease in H2O2 production, potentially due to an increased export of reductant from the mitochondrial matrix. The underlying basis of the nitrate- and ammonium-specific patterns of gene expression appears to be different signals elaborated from each nitrogen source, including alterations in extracellular pH that are associated with ammonium uptake, downstream metabolites in the ammonium assimilation pathway, and the presence or absence of the nitrate ion. PMID:20444219

  14. Conserved versatile master regulators in signalling pathways in response to stress in plants

    PubMed Central

    Balderas-Hernández, Victor E.; Alvarado-Rodríguez, Miguel; Fraire-Velázquez, Saúl

    2013-01-01

    From the first land plants to the complex gymnosperms and angiosperms of today, environmental conditions have forced plants to develop molecular strategies to surpass natural obstacles to growth and proliferation, and these genetic gains have been transmitted to the following generations. In this long natural process, novel and elaborate mechanisms have evolved to enable plants to cope with environmental limitations. Elements in many signalling cascades enable plants to sense different, multiple and simultaneous ambient cues. A group of versatile master regulators of gene expression control plant responses to stressing conditions. For crop breeding purposes, the task is to determine how to activate these key regulators to enable accurate and optimal reactions to common stresses. In this review, we discuss how plants sense biotic and abiotic stresses, how and which master regulators are implied in the responses to these stresses, their evolution in the life kingdoms, and the domains in these proteins that interact with other factors to lead to a proper and efficient plant response. PMID:24147216

  15. Conserved versatile master regulators in signalling pathways in response to stress in plants.

    PubMed

    Balderas-Hernández, Victor E; Alvarado-Rodríguez, Miguel; Fraire-Velázquez, Saúl

    2013-01-01

    From the first land plants to the complex gymnosperms and angiosperms of today, environmental conditions have forced plants to develop molecular strategies to surpass natural obstacles to growth and proliferation, and these genetic gains have been transmitted to the following generations. In this long natural process, novel and elaborate mechanisms have evolved to enable plants to cope with environmental limitations. Elements in many signalling cascades enable plants to sense different, multiple and simultaneous ambient cues. A group of versatile master regulators of gene expression control plant responses to stressing conditions. For crop breeding purposes, the task is to determine how to activate these key regulators to enable accurate and optimal reactions to common stresses. In this review, we discuss how plants sense biotic and abiotic stresses, how and which master regulators are implied in the responses to these stresses, their evolution in the life kingdoms, and the domains in these proteins that interact with other factors to lead to a proper and efficient plant response.

  16. Tissue-Specific Regulation of Gibberellin Signaling Fine-Tunes Arabidopsis Iron-Deficiency Responses.

    PubMed

    Wild, Michael; Davière, Jean-Michel; Regnault, Thomas; Sakvarelidze-Achard, Lali; Carrera, Esther; Lopez Diaz, Isabel; Cayrel, Anne; Dubeaux, Guillaume; Vert, Grégory; Achard, Patrick

    2016-04-18

    Iron is an essential element for most living organisms. Plants acquire iron from the rhizosphere and have evolved different biochemical and developmental responses to adapt to a low-iron environment. In Arabidopsis, FIT encodes a basic helix-loop-helix transcription factor that activates the expression of iron-uptake genes in root epidermis upon iron deficiency. Here, we report that the gibberellin (GA)-signaling DELLA repressors contribute substantially in the adaptive responses to iron-deficient conditions. When iron availability decreases, DELLAs accumulate in the root meristem, thereby restraining root growth, while being progressively excluded from epidermal cells in the root differentiation zone. Such DELLA exclusion from the site of iron acquisition relieves FIT from DELLA-dependent inhibition and therefore promotes iron uptake. Consistent with this mechanism, expression of a non-GA-degradable DELLA mutant protein in root epidermis interferes with iron acquisition. Hence, spatial distribution of DELLAs in roots is essential to fine-tune the adaptive responses to iron availability.

  17. Light and circadian regulation of clock components aids flexible responses to environmental signals

    PubMed Central

    Dixon, Laura E; Hodge, Sarah K; van Ooijen, Gerben; Troein, Carl; Akman, Ozgur E; Millar, Andrew J

    2014-01-01

    The circadian clock measures time across a 24 h period, increasing fitness by phasing biological processes to the most appropriate time of day. The interlocking feedback loop mechanism of the clock is conserved across species; however, the number of loops varies. Mathematical and computational analyses have suggested that loop complexity affects the overall flexibility of the oscillator, including its responses to entrainment signals. We used a discriminating experimental assay, at the transition between different photoperiods, in order to test this proposal in a minimal circadian network (in Ostreococcus tauri) and a more complex network (in Arabidopsis thaliana). Transcriptional and translational reporters in O. tauri primarily tracked dawn or dusk, whereas in A. thaliana, a wider range of responses were observed, consistent with its more flexible clock. Model analysis supported the requirement for this diversity of responses among the components of the more complex network. However, these and earlier data showed that the O. tauri network retains surprising flexibility, despite its simple circuit. We found that models constructed from experimental data can show flexibility either from multiple loops and/or from multiple light inputs. Our results suggest that O. tauri has adopted the latter strategy, possibly as a consequence of genomic reduction. PMID:24842166

  18. Cytosolic acidification as a signal mediating hyperosmotic stress responses in Dictyostelium discoideum

    PubMed Central

    Pintsch, Tanja; Satre, Michel; Klein, Gérard; Martin, Jean-Baptiste; Schuster, Stephan C

    2001-01-01

    Background Dictyostelium cells exhibit an unusual response to hyperosmolarity that is distinct from the response in other organisms investigated: instead of accumulating compatible osmolytes as it has been described for a wide range of organisms, Dictyostelium cells rearrange their cytoskeleton and thereby build up a rigid network which is believed to constitute the major osmoprotective mechanism in this organism. To gain more insight into the osmoregulation of this amoeba, we investigated physiological processes affected under hyperosmotic conditions in Dictyostelium. Results We determined pH changes in response to hyperosmotic stress using FACS or 31P-NMR. Hyperosmolarity was found to acidify the cytosol from pH 7.5 to 6.8 within 5 minutes, whereas the pH of the endo-lysosomal compartment remained constant. Fluid-phase endocytosis was identified as a possible target of cytosolic acidification, as the inhibition of endocytosis observed under hypertonic conditions can be fully attributed to cytosolic acidification. In addition, a deceleration of vesicle mobility and a decrease in the NTP pool was observed. Conclusion Together, these results indicate that hyperosmotic stress triggers pleiotropic effects, which are partially mediated by a pH signal and which all contribute to the downregulation of cellular activity. The comparison of our results with the effect of hyperosmolarity and intracellular acidification on receptor-mediated endocytosis in mammalian cells reveals striking similarities, suggesting the hypothesis of the same mechanism of inhibition by low internal pH. PMID:11415467

  19. Cocaine withdrawal impairs metabotropic glutamate receptor-dependent long-term depression in the nucleus accumbens.

    PubMed

    Huang, Chiung-Chun; Yeh, Che-Ming; Wu, Mei-Ying; Chang, Alice Y W; Chan, Julie Y H; Chan, Samuel H H; Hsu, Kuei-Sen

    2011-03-16

    Neuroadaptation in the nucleus accumbens (NAc), a central component of the mesolimbic dopamine (DA) system, has been implicated in the development of cocaine-induced psychomotor sensitization and relapse to cocaine seeking. However, little is known about the cellular and synaptic mechanisms underlying such adaptation. Using a mouse model of behavioral sensitization, we show that animals withdrawn from repeated cocaine exposure have a selective deficit in the ability to elicit metabotropic glutamate receptor (mGluR)-dependent long-term depression (LTD) in the shell of the NAc in response to bath application of the group I mGluR agonist (S)-3,5-dihydroxyphenylglycine (DHPG). Experiments conducted in the presence of the selective mGluR1 antagonists 7-(hydroxyimino)cyclopropachromen-carboxylate ethyl ester and (S)-(+)-α-amino-4-carboxy-2-methylbenzeneacetic acid, or the mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine, demonstrated that the impaired DHPG-LTD is likely attributable to a loss of mGluR5 function. Quantitative real-time reverse transcriptase-PCR and Western blot analysis revealed significant downregulation of mGluR5, but not mGluR1, mRNA and protein levels in the NAc shell. The inhibitory effect of repeated cocaine exposure on DHPG-LTD was selectively prevented when cocaine was coadministered with the selective D(1)-like DA receptor antagonist (R)-(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine. Furthermore, the levels of brain-derived neurotrophic factor (BDNF) protein in the NAc shell increased progressively after cocaine withdrawal, and the impairment of DHPG-LTD in the NAc shell was not found in slices from BDNF-knock-out mice after cocaine withdrawal. These results suggest that withdrawal from repeated cocaine exposure may result in increased BDNF levels in the NAc shell, which leads to a selective downregulation of mGluR5 and thereby impairs the induction of mGluR-dependent LTD.

  20. Global Role of Cyclic AMP Signaling in pH-Dependent Responses in Candida albicans

    PubMed Central

    Hollomon, Jeffrey M.; Grahl, Nora; Willger, Sven D.; Koeppen, Katja

    2016-01-01

    ABSTRACT Candida albicans behaviors are affected by pH, an important environmental variable. Filamentous growth is a pH-responsive behavior, where alkaline conditions favor hyphal growth and acid conditions favor growth as yeast. We employed filamentous growth as a tool to study the impact of pH on the hyphal growth regulator Cyr1, and we report that downregulation of cyclic AMP (cAMP) signaling by acidic pH contributes to the inhibition of hyphal growth in minimal medium with GlcNAc. Ras1 and Cyr1 are generally required for efficient hyphal growth, and the effects of low pH on Ras1 proteolysis and GTP binding are consistent with diminished cAMP output. Active alleles of ras1 do not suppress the hyphal growth defect at low pH, while dibutyryl cAMP partially rescues filamentous growth at low pH in a cyr1 mutant. These observations are consistent with Ras1-independent downregulation of Cyr1 by low pH. We also report that extracellular pH leads to rapid and prolonged decreases in intracellular pH, and these changes may contribute to reduced cAMP signaling by reducing intracellular bicarbonate pools. Transcriptomics analyses found that the loss of Cyr1 at either acidic or neutral pH leads to increases in transcripts involved in carbohydrate catabolism and protein translation and glycosylation and decreases in transcripts involved in oxidative metabolism, fluconazole transport, metal transport, and biofilm formation. Other pathways were modulated in pH-dependent ways. Our findings indicate that cAMP has a global role in pH-dependent responses, and this effect is mediated, at least in part, through Cyr1 in a Ras1-independent fashion. IMPORTANCE Candida albicans is a human commensal and the causative agent of candidiasis, a potentially invasive and life-threatening infection. C. albicans experiences wide changes in pH during both benign commensalism (a common condition) and pathogenesis, and its morphology changes in response to this stimulus. Neutral pH is considered an

  1. Global Role of Cyclic AMP Signaling in pH-Dependent Responses in Candida albicans.

    PubMed

    Hollomon, Jeffrey M; Grahl, Nora; Willger, Sven D; Koeppen, Katja; Hogan, Deborah A

    2016-01-01

    Candida albicans behaviors are affected by pH, an important environmental variable. Filamentous growth is a pH-responsive behavior, where alkaline conditions favor hyphal growth and acid conditions favor growth as yeast. We employed filamentous growth as a tool to study the impact of pH on the hyphal growth regulator Cyr1, and we report that downregulation of cyclic AMP (cAMP) signaling by acidic pH contributes to the inhibition of hyphal growth in minimal medium with GlcNAc. Ras1 and Cyr1 are generally required for efficient hyphal growth, and the effects of low pH on Ras1 proteolysis and GTP binding are consistent with diminished cAMP output. Active alleles of ras1 do not suppress the hyphal growth defect at low pH, while dibutyryl cAMP partially rescues filamentous growth at low pH in a cyr1 mutant. These observations are consistent with Ras1-independent downregulation of Cyr1 by low pH. We also report that extracellular pH leads to rapid and prolonged decreases in intracellular pH, and these changes may contribute to reduced cAMP signaling by reducing intracellular bicarbonate pools. Transcriptomics analyses found that the loss of Cyr1 at either acidic or neutral pH leads to increases in transcripts involved in carbohydrate catabolism and protein translation and glycosylation and decreases in transcripts involved in oxidative metabolism, fluconazole transport, metal transport, and biofilm formation. Other pathways were modulated in pH-dependent ways. Our findings indicate that cAMP has a global role in pH-dependent responses, and this effect is mediated, at least in part, through Cyr1 in a Ras1-independent fashion. IMPORTANCECandida albicans is a human commensal and the causative agent of candidiasis, a potentially invasive and life-threatening infection. C. albicans experiences wide changes in pH during both benign commensalism (a common condition) and pathogenesis, and its morphology changes in response to this stimulus. Neutral pH is considered an activator

  2. Nonmonotonic dose response curves (NMDRCs) are common after Estrogen or Androgen signaling pathway disruption. Fact or Falderal?##

    EPA Science Inventory

    Nonmonotonic dose response curves (NMDRCs) are common after Estrogen or Androgen signaling pathway disruption. Fact or Falderal? Leon Earl Gray Jr, USEPA, ORD, NHEERL, TAD, RTB. RTP, NC, USA The shape of the dose response curve in the low dose region has been debated since th...

  3. On the Use of Covariates in a Latent Class Signal Detection Model, with Applications to Constructed Response Scoring

    ERIC Educational Resources Information Center

    Wang, Zijian Gerald

    2012-01-01

    A latent class signal detection (SDT) model was recently introduced as an alternative to traditional item response theory (IRT) methods in the analysis of constructed response data. This class of models can be represented as restricted latent class models and differ from the IRT approach in the way the latent construct is conceptualized. One…

  4. Stochastic kinetic model of two component system signalling reveals all-or-none, graded and mixed mode stochastic switching responses.

    PubMed

    Kierzek, Andrzej M; Zhou, Lu; Wanner, Barry L

    2010-03-01

    Two-component systems (TCSs) are prevalent signal transduction systems in bacteria that control innumerable adaptive responses to environmental cues and host-pathogen interactions. We constructed a detailed stochastic kinetic model of two component signalling based on published data. Our model has been validated with flow cytometry data and used to examine reporter gene expression in response to extracellular signal strength. The model shows that, depending on the actual kinetic parameters, TCSs exhibit all-or-none, graded or mixed mode responses. In accordance with other studies, positively autoregulated TCSs exhibit all-or-none responses. Unexpectedly, our model revealed that TCSs lacking a positive feedback loop exhibit not only graded but also mixed mode responses, in which variation of the signal strength alters the level of gene expression in induced cells while the regulated gene continues to be expressed at the basal level in a substantial fraction of cells. The graded response of the TCS changes to mixed mode response by an increase of the translation initiation rate of the histidine kinase. Thus, a TCS is an evolvable design pattern capable of implementing deterministic regulation and stochastic switches associated with both graded and threshold responses. This has implications for understanding the emergence of population diversity in pathogenic bacteria and the design of genetic circuits in synthetic biology applications. The model is available in systems biology markup language (SBML) and systems biology graphical notation (SBGN) formats and can be used as a component of large-scale biochemical reaction network models.

  5. Life in a changing world: TCH gene regulation of expression and responses to environmental signals

    NASA Technical Reports Server (NTRS)

    Braam, J.; Sistrunk, M. L.; Polisensky, D. H.; Xu, W.; Purugganan, M. M.; Antosiewicz, D. M.; Campbell, P.; Johnson, K. A.

    1996-01-01

    The Arabidopsis TCH genes were discovered as a consequence of their marked upregulation of expression in response to seemingly innocuous stimuli such as touch. Further analyses have indicated that these genes are upregulated by a variety of diverse stimuli. Understanding the mechanism(s) and factors that control TCH gene regulation will shed light on the signaling pathways that enable plants to respond to changing environmental conditions. The TCH proteins include calmodulin, calmodulin-related proteins and a xyloglucan endotransglycosylase. Expression analyses and localization of protein accumulation indicate that the potential sites of TCH protein function include expanding cells and tissues under mechanical strain. We hypothesize that the TCH proteins may collaborate in cell wall biogenesis.

  6. Mechanistic Basis for Plant Responses to Drought Stress : Regulatory Mechanism of Abscisic Acid Signaling

    NASA Astrophysics Data System (ADS)

    Miyakawa, Takuya; Tanokura, Masaru

    The phytohormone abscisic acid (ABA) plays a key role in the rapid adaptation of plants to environmental stresses such as drought and high salinity. Accumulated ABA in plant cells promotes stomatal closure in guard cells and transcription of stress-tolerant genes. Our understanding of ABA responses dramatically improved by the discovery of both PYR/PYL/RCAR as a soluble ABA receptor and inhibitory complex of a protein phospatase PP2C and a protein kinase SnRK2. Moreover, several structural analyses of PYR/PYL/RCAR revealed the mechanistic basis for the regulatory mechanism of ABA signaling, which provides a rational framework for the design of alternative agonists in future.

  7. The Stress Response Mediator ATF3 Represses Androgen Signaling by Binding the Androgen Receptor

    PubMed Central

    Wang, Hongbo; Jiang, Ming; Cui, Hongmei; Chen, Mengqian; Buttyan, Ralph; Hayward, Simon W.; Hai, Tsonwin; Wang, Zhengxin

    2012-01-01

    Activating transcription factor 3 (ATF3) is a common mediator of cellular stress response signaling and is often aberrantly expressed in prostate cancer. We report here that ATF3 can directly bind the androgen receptor (AR) and consequently repress AR-mediated gene expression. The ATF3-AR interaction requires the leucine zipper domain of ATF3 that independently binds the DNA-binding and ligand-binding domains of AR, and the interaction prevents AR from binding to cis-acting elements required for expression of androgen-dependent genes while inhibiting the AR N- and C-terminal interaction. The functional consequences of the loss of ATF3 expression include increased transcription of androgen-dependent genes in prostate cancer cells that correlates with increased ability to grow in low-androgen-containing medium and increased proliferative activity of the prostate epithelium in ATF3 knockout mice that is associated with prostatic hyperplasia. Our results thus demonstrate that ATF3 is a novel repressor of androgen signaling that can inhibit AR functions, allowing prostate cells to restore homeostasis and maintain integrity in the face of a broad spectrum of intrinsic and environmental insults. PMID:22665497

  8. TLR2 signaling and Th2 responses drive Tannerella forsythia-induced periodontal bone loss.

    PubMed

    Myneni, Srinivas R; Settem, Rajendra P; Connell, Terry D; Keegan, Achsah D; Gaffen, Sarah L; Sharma, Ashu

    2011-07-01

    Periodontal disease (PD) is a chronic inflammation of the tooth-supporting soft tissue and alveolar bone due to infection by a select group of gram-negative microbes, which leads to tooth loss if untreated. Because mice deficient in CD4(+) cells are resistant to infection-induced alveolar bone loss, Th cells have been implicated in bone-destructive processes during PD. However, the extent to which different Th cell subtypes play roles in pathogenesis or host protection remains to be defined and is likely to vary depending on the dominant microorganism involved. By far, Porphyromonas gingivalis is the best-studied periodontal microbe in PD. Although the gram-negative anaerobe Tannerella forsythia is also a vital contributor to periodontal bone loss, almost nothing is known about immune responses to this organism. Previous studies from our laboratory revealed that T. forsythia induces periodontal bone loss in mice and that this bone loss depends on the bacterially expressed BspA protein. In this study, we showed that T. forsythia activates murine APCs primarily through TLR2-dependent signaling via BspA. Furthermore, T. forsythia infection causes a pronounced Th2 bias, evidenced by T cell expression of IL-5, but not IFN-γ or IL-17, in draining lymph nodes. Consistently, deficiencies in TLR2 or STAT6 result in resistance to T. forsythia-induced alveolar bone loss. Thus, TLR2 signaling and Th2 cells play pathogenic roles in T. forsythia-induced alveolar bone destruction.

  9. [Salt Stress Response in Arabidopsis thaliana Plants with Defective Jasmonate Signaling].

    PubMed

    Yastreb, T O; Kolupayev, Yu E; Shvidenko, A A; Lugovaya, A A; Dmitriev, A P

    2015-01-01

    The effects of exogenous jasmonic acid (JA) on antioxidant enzymes in four-week-old leaves of wild-type Arabidopsis thaliana L. (Columbia-0) and jin1 (jasmonate insensitive 1) mutant plants with defective jasmonate signaling were investigated under normal conditions and under salt stress (200 mM NaCl, 24 h). The wild-type plants responded to JA by an increase in the activities of Cu/Zn superoxide dismutase, catalase, and guaiacol peroxidase, while there was no change in the case of the mutant plants. In response to the salt stress of both the wild-type and mutant genotypes, the activities of superoxide dismutase, catalase, and guaiacol peroxidase were unchanged, decreased, and increased, respectively. The JA-treated wild type plants showed the highest activity of all three enzymes as compared with the mutant plants. Salinity caused a decrease in chlorophyll content in the wild-type and jin 1 plants. Preliminary JA treatment of the Col-0 plants resulted in a normal content of photosynthetic pigments after the salt stress, while the positive JA effect was insignificant in the jin 1 mutants. It was concluded that the MYC2/JIN 1 protein is involved in the JA signal transduction and plant adaptation to salt stress.

  10. Potentiation of the early visual response to learned danger signals in adults and adolescents

    PubMed Central

    Howsley, Philippa; Jordan, Jeff; Johnston, Pat

    2015-01-01

    The reinforcing effects of aversive outcomes on avoidance behaviour are well established. However, their influence on perceptual processes is less well explored, especially during the transition from adolescence to adulthood. Using electroencephalography, we examined whether learning to actively or passively avoid harm can modulate early visual responses in adolescents and adults. The task included two avoidance conditions, active and passive, where two different warning stimuli predicted the imminent, but avoidable, presentation of an aversive tone. To avoid the aversive outcome, participants had to learn to emit an action (active avoidance) for one of the warning stimuli and omit an action for the other (passive avoidance). Both adults and adolescents performed the task with a high degree of accuracy. For both adolescents and adults, increased N170 event-related potential amplitudes were found for both the active and the passive warning stimuli compared with control conditions. Moreover, the potentiation of the N170 to the warning stimuli was stable and long lasting. Developmental differences were also observed; adolescents showed greater potentiation of the N170 component to danger signals. These findings demonstrate, for the first time, that learned danger signals in an instrumental avoidance task can influence early visual sensory processes in both adults and adolescents. PMID:24652856

  11. Mondo complexes regulate TFEB via TOR inhibition to promote longevity in response to gonadal signals.

    PubMed

    Nakamura, Shuhei; Karalay, Özlem; Jäger, Philipp S; Horikawa, Makoto; Klein, Corinna; Nakamura, Kayo; Latza, Christian; Templer, Sven E; Dieterich, Christoph; Antebi, Adam

    2016-03-22

    Germline removal provokes longevity in several species and shifts resources towards survival and repair. Several Caenorhabditis elegans transcription factors regulate longevity arising from germline removal; yet, how they work together is unknown. Here we identify a Myc-like HLH transcription factor network comprised of Mondo/Max-like complex (MML-1/MXL-2) to be required for longevity induced by germline removal, as well as by reduced TOR, insulin/IGF signalling and mitochondrial function. Germline removal increases MML-1 nuclear accumulation and activity. Surprisingly, MML-1 regulates nuclear localization and activity of HLH-30/TFEB, a convergent regulator of autophagy, lysosome biogenesis and longevity, by downregulating TOR signalling via LARS-1/leucyl-transfer RNA synthase. HLH-30 also upregulates MML-1 upon germline removal. Mammalian MondoA/B and TFEB show similar mutual regulation. MML-1/MXL-2 and HLH-30 transcriptomes show both shared and preferential outputs including MDL-1/MAD-like HLH factor required for longevity. These studies reveal how an extensive interdependent HLH transcription factor network distributes responsibility and mutually enforces states geared towards reproduction or survival.

  12. Mondo complexes regulate TFEB via TOR inhibition to promote longevity in response to gonadal signals

    PubMed Central

    Nakamura, Shuhei; Karalay, Özlem; Jäger, Philipp S.; Horikawa, Makoto; Klein, Corinna; Nakamura, Kayo; Latza, Christian; Templer, Sven E.; Dieterich, Christoph; Antebi, Adam

    2016-01-01

    Germline removal provokes longevity in several species and shifts resources towards survival and repair. Several Caenorhabditis elegans transcription factors regulate longevity arising from germline removal; yet, how they work together is unknown. Here we identify a Myc-like HLH transcription factor network comprised of Mondo/Max-like complex (MML-1/MXL-2) to be required for longevity induced by germline removal, as well as by reduced TOR, insulin/IGF signalling and mitochondrial function. Germline removal increases MML-1 nuclear accumulation and activity. Surprisingly, MML-1 regulates nuclear localization and activity of HLH-30/TFEB, a convergent regulator of autophagy, lysosome biogenesis and longevity, by downregulating TOR signalling via LARS-1/leucyl-transfer RNA synthase. HLH-30 also upregulates MML-1 upon germline removal. Mammalian MondoA/B and TFEB show similar mutual regulation. MML-1/MXL-2 and HLH-30 transcriptomes show both shared and preferential outputs including MDL-1/MAD-like HLH factor required for longevity. These studies reveal how an extensive interdependent HLH transcription factor network distributes responsibility and mutually enforces states geared towards reproduction or survival. PMID:27001890

  13. Tyrosine phosphorylated c-Cbl regulates platelet functional responses mediated by outside-in signaling.

    PubMed

    Buitrago, Lorena; Langdon, Wallace Y; Sanjay, Archana; Kunapuli, Satya P

    2011-11-17

    c-Cbl protein functions as an E3 ligase and scaffolding protein, where 3 residues, Y700, Y731, and Y774, upon phosphorylation, have been shown to initiate several signaling cascades. In this study, we investigated the role of these phospho-tyrosine residues in the platelet functional responses after integrin engagement. We observed that c-Cbl Y700, Y731 and Y774 undergo phosphorylation upon platelet adhesion to immobilized fibrinogen, which was inhibited in the presence of PP2, a pan-src family kinase (SFK) inhibitor, suggesting that c-Cbl is phosphorylated downstream of SFKs. However, OXSI-2, a Syk inhibitor, significantly reduced c-Cbl phosphorylation at residues Y774 and Y700, without affecting Y731 phosphorylation. Interestingly, PP2 inhibited both platelet-spreading on fibrinogen as well as clot retraction, whereas OXSI-2 blocked only platelet-spreading, suggesting a differential role of these tyrosine residues. The physiologic role of c-Cbl and Y731 was studied using platelets from c-Cbl KO and c-Cbl(YF/YF) knock-in mice. c-Cbl KO and c-Cbl(YF/YF) platelets had a significantly reduced spreading over immobilized fibrinogen. Furthermore, clot retraction with c-Cbl KO and c-Cbl(YF/YF) platelets was drastically delayed. These results indicate that c-Cbl and particularly its phosphorylated residue Y731 plays an important role in platelet outside-in signaling contributing to platelet-spreading and clot retraction.

  14. Insulin signalling mediates the response to male-induced harm in female Drosophila melanogaster

    PubMed Central

    Sepil, Irem; Carazo, Pau; Perry, Jennifer C.; Wigby, Stuart

    2016-01-01

    Genetic manipulations in nutrient-sensing pathways are known to both extend lifespan and modify responses to environmental stressors (e.g., starvation, oxidative and thermal stresses), suggesting that similar mechanisms regulate lifespan and stress resistance. However, despite being a key factor reducing female lifespan and affecting female fitness, male-induced harm has rarely been considered as a stressor mediated by nutrient sensing pathways. We explored whether a lifespan-extending manipulation also modifies female resistance to male-induced harm. To do so, we used long-lived female Drosophila melanogaster that had their insulin signalling pathway downregulated by genetically ablating the median neurosecretory cells (mNSC). We varied the level of exposure to males for control and ablated females and tested for interacting effects on female lifespan and fitness. As expected, we found that lifespan significantly declined with exposure to males. However, mNSC-ablated females maintained significantly increased lifespan across all male exposure treatments. Furthermore, lifespan extension and relative fitness of mNSC-ablated females were maximized under intermediate exposure to males, and minimized under low and high exposure to males. Overall, our results suggest that wild-type levels of insulin signalling reduce female susceptibility to male-induced harm under intense sexual conflict, and may also protect females when mating opportunities are sub-optimally low. PMID:27457757

  15. MAPK signaling – a key element in plant defense response to insects

    PubMed Central

    Hettenhausen, Christian; Schuman, Meredith C.; Wu, Jianqiang

    2016-01-01

    Insects have long been the most abundant herbivores, and plants have evolved sophisticated mechanisms to defend against their attack. In particular, plants can perceive specific patterns of tissue damage associated with insect herbivory. Some plant species can perceive certain elicitors in insect oral secretions (OS) that enter wounds during feeding, and rapidly activate a series of intertwined signaling pathways to orchestrate the biosynthesis of various defensive metabolites. Mitogen-activated protein kinases (MAPKs), common to all eukaryotes, are involved in the orchestration of many cellular processes, including development and stress responses. In plants, at least two MAPKs, salicylic acid-induced protein kinase (SIPK) and wound-induced protein kinase (WIPK), are rapidly activated by wounding or insect OS; importantly, genetic studies using transgenic or mutant plants impaired in MAPK signaling indicated that MAPKs play critical roles in regulating the herbivory-induced dynamics of phytohormones, such as jasmonic acid, ethylene, and salicylic acid, and MAPKs are also required for transcriptional activation of herbivore defense-related genes and accumulation of defensive metabolites. In this review, we summarize recent developments in understanding the functions of MAPKs in plant resistance to insect herbivores. PMID:24753304

  16. Cross Talk between H2O2 and Interacting Signal Molecules under Plant Stress Response

    PubMed Central

    Saxena, Ina; Srikanth, Sandhya; Chen, Zhong

    2016-01-01

    It is well established that oxidative stress is an important cause of cellular damage. During stress conditions, plants have evolved regulatory mechanisms to adapt to various environmental stresses. One of the consequences of stress is an increase in the cellular concentration of reactive oxygen species, which is subsequently converted to H2O2. H2O2 is continuously produced as the byproduct of oxidative plant aerobic metabolism. Organelles with a high oxidizing metabolic activity or with an intense rate of electron flow, such as chloroplasts, mitochondria, or peroxisomes are major sources of H2O2 production. H2O2 acts as a versatile molecule because of its dual role in cells. Under normal conditions, H2O2 immerges as an important factor during many biological processes. It has been established that it acts as a secondary messenger in signal transduction networks. In this review, we discuss potential roles of H2O2 and other signaling molecules during various stress responses. PMID:27200043

  17. Final Report [The c-Abl signaling network in the radioadaptive response

    SciTech Connect

    Chi-Min, Yuan

    2014-01-28

    The radioadaptive response, or radiation hormesis, i.e. a low dose of radiation can protect cells and organisms from the effects of a subsequent higher dose, is a widely recognized phenomenon. Mechanisms underlying such radiation hormesis, however, remain largely unclear. Preliminary studies indicate an important role of c-Abl signaling in mediating the radioadaptive response. We propose to investigate how c-Abl regulates the crosstalk between p53 and NFκB in response to low doses irradiation. We found in our recent study that low dose IR induces a reciprocal p53 suppression and NFκB activation, which induces HIF-a and subsequently a metabolic reprogramming resulting in a transition from oxidative phosphorylation to glycolysis. Of importance is that this glycolytic switch is essential for the radioadaptive response. This low-dose radiationinduced HIF1α activation was in sharp contrast with the high-dose IR-induced p53 activation and HIF1α inhibition. HIF1α and p53 seem to play distinct roles in mediating the radiation dose-dependent metabolic response. The induction of HIF1α-mediated glycolysis is restricted to a low dose range of radiation, which may have important implications in assessing the level of radiation exposure and its potential health risk. Our results support a dose-dependent metabolic response to IR. When IR doses are below the threshold of causing detectable DNA damage (<0.2Gy) and thus little p53 activation, HIF1α is induced resulting in induction of glycolysis and increased radiation resistance. When the radiation dose reaches levels eliciting DNA damage, p53 is activated and diminishes the activity of HIF1α and glycolysis, leading to the induction of cell death. Our work challenges the LNT model of radiation exposure risk and provides a metabolic mechanism of radioadaptive response. The study supports a need for determining the p53 and HIF1α activity as a potential reliable biological readout of radiation exposure in humans. The

  18. NMDA-dependent mechanisms only affect the BOLD response in the rat dentate gyrus by modifying local signal processing

    PubMed Central

    Tiede, Regina; Krautwald, Karla; Fincke, Anja; Angenstein, Frank

    2012-01-01

    The role of N-methyl--aspartate (NMDA) receptor-mediated mechanisms in the formation of a blood oxygen level-dependent (BOLD) response was studied using electrical stimulation of the right perforant pathway. Stimulation of this fiber bundle triggered BOLD responses in the right hippocampal formation and in the left entorhinal cortex. The perforant pathway projects to and activates the dentate gyrus monosynaptically, activation in the contralateral entorhinal cortex is multisynaptic and requires forwarding and processing of signals. Application of the NMDA receptor antagonist MK801 during stimulation had no effect on BOLD responses in the right dentate gyrus, but reduced the BOLD responses in the left entorhinal cortex. In contrast, application of MK801 before the first stimulation train reduced the BOLD response in both regions. Electrophysiological recordings revealed that the initial stimulation trains changed the local processing of the incoming signals in the dentate gyrus. This altered electrophysiological response was not further changed by a subsequent application of MK801, which is in agreement with an unchanged BOLD response. When MK801 was present during the first stimulation train, a dissimilar electrophysiological response pattern was observed and corresponds to an altered BOLD response, indicating that NMDA-dependent mechanisms indirectly affect the BOLD response, mainly via modifying local signal processing and subsequent propagation. PMID:22167232

  19. The Pepper CaOSR1 Protein Regulates the Osmotic Stress Response via Abscisic Acid Signaling

    PubMed Central

    Park, Chanmi; Lim, Chae Woo; Lee, Sung Chul

    2016-01-01

    Plants are sessile organisms, and their growth and development is detrimentally affected by environmental stresses such as drought and high salinity. Defense mechanisms are tightly regulated and complex processes, which respond to changing environmental conditions; however, the precise mechanisms that function under adverse conditions remain unclear. Here, we report the identification and functional characterization of the CaOSR1 gene, which functions in the adaptive response to abiotic stress. We found that CaOSR1 gene expression in pepper leaves was up-regulated after exposure to abscisic acid (ABA), drought, and high salinity. In addition, we demonstrated that the fusion protein of CaOSR1 with green fluorescent protein (GFP) is localized in the nucleus. We used CaOSR1-silenced pepper plants and CaOSR1-OX-overexpressing (OX) transgenic Arabidopsis plants to show that the CaOSR1 protein regulates the osmotic stress response. CaOSR1-silenced pepper plants showed increased drought susceptibility, and this was accompanied by a high transpiration rate. CaOSR1-OX plants displayed phenotypes that were hypersensitive to ABA and hyposensitive to osmotic stress, during the seed germination and seedling growth stages; furthermore, these plants exhibited enhanced drought tolerance at the adult stage, and this was characterized by higher leaf temperatures and smaller stomatal apertures because of ABA hypersensitivity. Taken together, our data indicate that CaOSR1 positively regulates osmotic stress tolerance via ABA-mediated cell signaling. These findings suggest an involvement of a novel protein in ABA and osmotic stress signalings in plants. PMID:27446121

  20. Increased Sucrose Accumulation Regulates Iron-Deficiency Responses by Promoting Auxin Signaling in Arabidopsis Plants.

    PubMed

    Lin, Xian Yong; Ye, Yi Quan; Fan, Shi Kai; Jin, Chong Wei; Zheng, Shao Jian

    2016-02-01

    Previous studies have identified that auxins acts upstream of nitric oxide in regulating iron deficiency responses in roots, but the upstream signaling molecule of auxins remains unknown. In this study, we showed that Fe deficiency increased sucrose (Suc) level in roots of Arabidopsis (Arabidopsis thaliana). Exogenous application of Suc further stimulated Fe deficiency-induced ferric-chelate-reductase (FCR) activity and expression of Fe acquisition-related genes FRO2, IRT1, and FIT in roots. The opposite patterns were observed in the dark treatment. In addition, FCR activity and expression of Fe acquisition-related genes were higher in the Suc high-accumulating transgenic plant 35S::SUC2 but were lower in the Suc low-accumulating mutant suc2-5 compared with wild-type plants under Fe-deficient conditions. Consequently, Fe deficiency tolerance was enhanced in 35S::SUC2 but was compromised in suc2-5. Exogenous Suc also increased root β-glucuronidase (GUS) activity in auxin-inducible reporter DR5-GUS transgenic plants under Fe deficiency. However, exogenous Suc failed to increase FCR activity and expression of Fe acquisition-related genes in the auxin transport-impaired mutants aux1-7 and pin1-1 as well as in the wild-type plants treated with an auxin transport inhibitor under Fe deficiency. In summary, we found that increased Suc accumulation is required for regulating Fe deficiency responses in plants, with auxins acting downstream in transmitting the Fe deficiency signal.

  1. Increased Sucrose Accumulation Regulates Iron-Deficiency Responses by Promoting Auxin Signaling in Arabidopsis Plants1

    PubMed Central

    Lin, Xian Yong; Ye, Yi Quan; Fan, Shi Kai

    2016-01-01

    Previous studies have identified that auxins acts upstream of nitric oxide in regulating iron deficiency responses in roots, but the upstream signaling molecule of auxins remains unknown. In this study, we showed that Fe deficiency increased sucrose (Suc) level in roots of Arabidopsis (Arabidopsis thaliana). Exogenous application of Suc further stimulated Fe deficiency-induced ferric-chelate-reductase (FCR) activity and expression of Fe acquisition-related genes FRO2, IRT1, and FIT in roots. The opposite patterns were observed in the dark treatment. In addition, FCR activity and expression of Fe acquisition-related genes were higher in the Suc high-accumulating transgenic plant 35S::SUC2 but were lower in the Suc low-accumulating mutant suc2-5 compared with wild-type plants under Fe-deficient conditions. Consequently, Fe deficiency tolerance was enhanced in 35S::SUC2 but was compromised in suc2-5. Exogenous Suc also increased root β-glucuronidase (GUS) activity in auxin-inducible reporter DR5-GUS transgenic plants under Fe deficiency. However, exogenous Suc failed to increase FCR activity and expression of Fe acquisition-related genes in the auxin transport-impaired mutants aux1-7 and pin1-1 as well as in the wild-type plants treated with an auxin transport inhibitor under Fe deficiency. In summary, we found that increased Suc accumulation is required for regulating Fe deficiency responses in plants, with auxins acting downstream in transmitting the Fe deficiency signal. PMID:26644507

  2. The Pepper CaOSR1 Protein Regulates the Osmotic Stress Response via Abscisic Acid Signaling.

    PubMed

    Park, Chanmi; Lim, Chae Woo; Lee, Sung Chul

    2016-01-01

    Plants are sessile organisms, and their growth and development is detrimentally affected by environmental stresses such as drought and high salinity. Defense mechanisms are tightly regulated and complex processes, which respond to changing environmental conditions; however, the precise mechanisms that function under adverse conditions remain unclear. Here, we report the identification and functional characterization of the CaOSR1 gene, which functions in the adaptive response to abiotic stress. We found that CaOSR1 gene expression in pepper leaves was up-regulated after exposure to abscisic acid (ABA), drought, and high salinity. In addition, we demonstrated that the fusion protein of CaOSR1 with green fluorescent protein (GFP) is localized in the nucleus. We used CaOSR1-silenced pepper plants and CaOSR1-OX-overexpressing (OX) transgenic Arabidopsis plants to show that the CaOSR1 protein regulates the osmotic stress response. CaOSR1-silenced pepper plants showed increased drought susceptibility, and this was accompanied by a high transpiration rate. CaOSR1-OX plants displayed phenotypes that were hypersensitive to ABA and hyposensitive to osmotic stress, during the seed germination and seedling growth stages; furthermore, these plants exhibited enhanced drought tolerance at the adult stage, and this was characterized by higher leaf temperatures and smaller stomatal apertures because of ABA hypersensitivity. Taken together, our data indicate that CaOSR1 positively regulates osmotic stress tolerance via ABA-mediated cell signaling. These findings suggest an involvement of a novel protein in ABA and osmotic stress signalings in plants.

  3. Extracellular ATP activates MAPK and ROS signaling during injury response in the fungus Trichoderma atroviride

    PubMed Central

    Medina-Castellanos, Elizabeth; Esquivel-Naranjo, Edgardo U.; Heil, Martin; Herrera-Estrella, Alfredo

    2014-01-01

    The response to mechanical damage is crucial for the survival of multicellular organisms, enabling their adaptation to hostile environments. Trichoderma atroviride, a filamentous fungus of great importance in the biological control of plant diseases, responds to mechanical damage by activating regenerative processes and asexual reproduction (conidiation). During this response, reactive oxygen species (ROS) are produced by the NADPH oxidase complex. To understand the underlying early signaling events, we evaluated molecules such as extracellular ATP (eATP) and Ca2+ that are known to trigger wound-induced responses in plants and animals. Concretely, we investigated the activation of mitogen-activated protein kinase (MAPK) pathways by eATP, Ca2+, and ROS. Indeed, application of exogenous ATP and Ca2+ triggered conidiation. Furthermore, eATP promoted the Nox1-dependent production of ROS and activated a MAPK pathway. Mutants in the MAPK-encoding genes tmk1 and tmk3 were affected in wound-induced conidiation, and phosphorylation of both Tmk1 and Tmk3 was triggered by eATP. We conclude that in this fungus, eATP acts as a damage-associated molecular pattern (DAMP). Our data indicate the existence of an eATP receptor and suggest that in fungi, eATP triggers pathways that converge to regulate asexual reproduction genes that are required for injury-induced conidiation. By contrast, Ca2+ is more likely to act as a downstream second messenger. The early steps of mechanical damage response in T. atroviride share conserved elements with those known from plants and animals. PMID:25484887

  4. Probing Mechanistic Similarities Between Response Regulator Signaling Proteins and HAD Phosphatases

    PubMed Central

    Immormino, Robert M.; Starbird, Chrystal; Silversmith, Ruth E.; Bourret, Robert B.

    2015-01-01

    Response regulator signaling proteins and phosphatases of the haloacid dehalogenase (HAD) superfamily share strikingly similar folds, active site geometries, and reaction chemistry. Proteins from both families catalyze the transfer of a phosphoryl group from a substrate to one of their own aspartyl residues, and subsequent hydrolysis of the phosphoprotein. Notable differences include an additional Asp that functions as an acid/base catalyst and an active site well-structured prior to phosphorylation in HAD phosphatases. Both features contribute to substantially faster reactions than for response regulators. To investigate mechanisms underlying the functional differences between response regulators and HAD phosphatases, we characterized five double mutants of the response regulator CheY designed to mimic HAD phosphatases. Each mutant contained the extra Asp paired with a phosphatase-inspired substitution to potentially position the Asp properly. Only CheY DR (Arg as anchor) exhibited enhanced rates of both autophosphorylation with phosphoramidate and autodephosphorylation compared to wild type CheY. Crystal structures of CheY DR complexed with MoO42− or WO42− revealed active site hydrogen-bonding networks similar to those in HAD·substrate complexes, with the extra Asp positioned for direct interaction with a leaving group (phosphorylation) or nucleophile (dephosphorylation). However, CheY DR reaction kinetics did not exhibit the pH sensitivities expected for acid/base catalysis. Biochemical analysis indicated CheY DR had an enhanced propensity to adopt the active conformation without phosphorylation, but a crystal structure revealed unphosphorylated CheY DR was not locked in the active conformation. Thus, the enhanced reactivity of CheY DR reflected partial acquisition of catalytic and structural features of HAD phosphatases. PMID:25928369

  5. Grouper (Epinephelus coioides) TCR signaling pathway was involved in response against Cryptocaryon irritans infection.

    PubMed

    Li, Ze-Xiang; Li, Yan-Wei; Xu, Shun; Xu, Yang; Mo, Ze-Quan; Dan, Xue-Ming; Luo, Xiao-Chun

    2017-03-07

    T cell activation is a complicated process accompanying with the activation of T cell receptor (TCR) signaling pathway, which is not well described in teleost fish. The initiation of this pathway depends on the interaction of membrane TCR co-receptors (e.g. CD4/8, CD3 and CD45) and a series of cytoplasmic protein tyrosine kinases (e.g. Lck, Fyn and ZAP70). Cyptocaryon irritans is a ciliate pathogen of marine fish white spot disease causing huge economic lost in marine aquaculture. This parasite can infect fish gill and skin and is considered to be a good pathogen model for fish gill and skin mucosal immunity. Our previous studies showed the locally mucosal antibody response was important for fish defense against this parasite. While how TCR signaling pathway involved in T cell activation to help B cell activation in C. irritans infected fish is still not known. In the present study, we cloned a grouper TCR co-receptor gene EcCD3ε (537 bp) and its three kinase genes, including EcLck (1512 bp), EcFyn (1605 bp) and EcZAP70 (1893 bp). Homology analysis showed that they all shared the highest identity with corresponding genes from Takifugu rubripes (EcCD3ε 41%, EcLck 88%, EcFyn 98% and EcZAP70 93%), and their conserved motifs involved in the signaling transduction were analyzed. The tissue distribution analysis showed these four genes were high expressed in thymus, and it is interesting to find their comparative high expression in skin, gill and midgut mucosal immune tissues. In C. irritans infected grouper, the expression of three TCR co-receptors (EcCD4-1, EcCD3ε and EcCD45) and three kinases (EcLck, EcFyn and EcZAP70) was tested in skin, gill, head kidney and spleen at 0, 12 h, 24 h, 2 d, 3 d, 5 d and 7 d. All six genes were significantly up-regulated in skin at most tested time points, which indicate the possibility of skin local T cell activation to support the local antibody response. Compared to three TCR co-receptors, significantly up-regulation of three

  6. Electroacupuncture pretreatment attenuates spinal cord ischemia-reperfusion injury via inhibition of high-mobility group box 1 production in a LXA4 receptor-dependent manner.

    PubMed

    Zhu, Xiao-Ling; Chen, Xin; Wang, Wei; Li, Xu; Huo, Jia; Wang, Yu; Min, Yu-Yuan; Su, Bin-Xiao; Pei, Jian-Ming

    2017-03-15

    Paraplegia caused by spinal cord ischemia is a severe complication following surgeries in the thoracic aneurysm. HMGB1 has been recognized as a key mediator in spinal inflammatory response after spinal cord injury. Electroacupuncture (EA) pretreatment could provide neuroprotection against cerebral ischemic injury through inhibition of HMGB1 release. Therefore, the present study aims to test the hypothesis that EA pretreatment protects against spinal cord ischemia-reperfusion (I/R) injury via inhibition of HMGB1 release. Animals were pre-treated with EA stimulations 30min daily for 4 successive days, followed by 20-min spinal cord ischemia induced by using a balloon catheter placed into the aorta. We found that spinal I/R significantly increased mRNA and cytosolic protein levels of HMGB1 after reperfusion in the spinal cord. The EA-pretreated animals displayed better motor performance after reperfusion along with the decrease of apoptosis, HMGB1, TNF-α and IL-1β expressions in the spinal cord, whereas these effects by EA pretreatment was reversed by rHMGB1 administration. Furthermore, EA pretreatment attenuated the down-regulation of LXA4 receptor (ALX) expression induced by I/R injury, while the decrease of HMGB1 release in EA-pretreated rats was reversed by the combined BOC-2 (an inhibitor of LXA4 receptor) treatment. In conclusion, EA pretreatment may promote spinal I/R injury through the inhibition of HMGB1 release in a LXA4 receptor-dependent manner. Our data may represent a new therapeutic technique for treating spinal cord ischemia-reperfusion injury.

  7. Slm35 links mitochondrial stress response and longevity through TOR signaling pathway

    PubMed Central

    Jose, L. Aguilar-Lopez; Laboy, Raymond; Fabiola, Jaimes-Miranda; Garay, Erika; Alexander, DeLuna; Funes, Soledad

    2016-01-01

    In most eukaryotic cells mitochondria are essential organelles involved in a great variety of cellular functions. One of the physiological processes linked to mitochondria is aging, a gradual process of damage accumulation that eventually promotes cell death. Aging depends on a balance between mitochondrial biogenesis, function and degradation. It has been previously shown that Tor1, Sch9 and Ras2 are activated in response to nutrient availability and regulate cell growth and division. A deficiency in any of these genes promotes lifespan extension and cell protection during oxidative and heat shock stress. In this work we report that in Saccharomyces cerevisiae, the uncharacterized mitochondrial protein Slm35 is functionally linked with the TOR signaling pathway. A Δtor1Δslm35 strain shows a severe decrease in lifespan and is unable to contend with oxidative and heat shock stresses. Specifically, this mutant shows decreased catalase activity indicating a misregulation of ROS scavenging mechanisms. In this study we show that Slm35 is also relevant for mitochondrial network dynamics and mitophagy. The results presented here suggest that Slm35 plays an important role connecting mitochondrial function with cytosolic responses and cell adaptation to stress and aging. PMID:27922823

  8. Slm35 links mitochondrial stress response and longevity through TOR signaling pathway.

    PubMed

    Aguilar-Lopez, Jose L; Laboy, Raymond; Jaimes-Miranda, Fabiola; Garay, Erika; DeLuna, Alexander; Funes, Soledad

    2016-12-02

    In most eukaryotic cells mitochondria are essential organelles involved in a great variety of cellular functions. One of the physiological processes linked to mitochondria is aging, a gradual process of damage accumulation that eventually promotes cell death. Aging depends on a balance between mitochondrial biogenesis, function and degradation. It has been previously shown that Tor1, Sch9 and Ras2 are activated in response to nutrient availability and regulate cell growth and division. A deficiency in any of these genes promotes lifespan extension and cell protection during oxidative and heat shock stress. In this work we report that in Saccharomyces cerevisiae, the uncharacterized mitochondrial protein Slm35 is functionally linked with the TOR signaling pathway. A Δtor1Δslm35 strain shows a severe decrease in lifespan and is unable to contend with oxidative and heat shock stresses. Specifically, this mutant shows decreased catalase activity indicating a misregulation of ROS scavenging mechanisms. In this study we show that Slm35 is also relevant for mitochondrial network dynamics and mitophagy. The results presented here suggest that Slm35 plays an important role connecting mitochondrial function with cytosolic responses and cell adaptation to stress and aging.

  9. Construction of a Miniaturized Chromatic Acclimation Sensor from Cyanobacteria with Reversed Response to a Light Signal

    NASA Astrophysics Data System (ADS)

    Nakajima, Mitsuharu; Ferri, Stefano; Rögner, Matthias; Sode, Koji

    2016-11-01

    Cyanobacteria harbor unique photoreceptors, designated as cyanobacteriochromes (CBCRs). In this study, we attempted to engineer the chromatic acclimation sensor CcaS, a CBCR derived from the cyanobacterium Synechocystis sp. PCC 6803. The wild-type CcaS induces gene expression under green light illumination and represses it under red light illumination. We focused on the domain structure of CcaS, which consists of an N-terminal transmembrane helix; a GAF domain, which serves as the sensor domain; a linker region (L1); two PAS domains; a second linker region (L2); and a C-terminal histidine kinase (HK) domain. Truncated versions of the photoreceptor were constructed by removing the L1 linker region and the two PAS domains, and fusing the GAF and HK domains with a truncated linker region. Thus constructed “miniaturized CcaSs” were grouped into four distinct categories according to their responses toward green and red light illumination, with some showing improved gene regulation compared to the wild type. Remarkably, one of the miniaturized CcaSs induced gene expression under red light and repressed it under green light, a reversed response to the light signal compared to wild type CcaS. These characteristics of engineered photoreceptors were discussed by analyzing the CcaS structural model.

  10. A Conserved Structural Module Regulates Transcriptional Responses to Diverse Stress Signals in Eubacteria

    SciTech Connect

    Campbell,E.; Greenwell, R.; Anthony, J.; Wang, S.; Lim, L.; Das, K.; Sofia, H.; Donohue, T.; Darst, S.

    2007-01-01

    A transcriptional response to singlet oxygen in Rhodobacter sphaeroides is controlled by the group IV {sigma} factor {sigma}{sup E} and its cognate anti-{sigma} ChrR. Crystal structures of the {sigma}{sup E}/ChrR complex reveal a modular, two-domain architecture for ChrR. The ChrR N-terminal anti-{sigma} domain (ASD) binds a Zn{sup 2+} ion, contacts {sigma}{sup E}, and is sufficient to inhibit {sigma}{sup E}-dependent transcription. The ChrR C-terminal domain adopts a cupin fold, can coordinate an additional Zn{sup 2+}, and is required for the transcriptional response to singlet oxygen. Structure-based sequence analyses predict that the ASD defines a common structural fold among predicted group IV anti-{sigma}s. These ASDs are fused to diverse C-terminal domains that are likely involved in responding to specific environmental signals that control the activity of their cognate {sigma} factor.

  11. Construction of a Miniaturized Chromatic Acclimation Sensor from Cyanobacteria with Reversed Response to a Light Signal

    PubMed Central

    Nakajima, Mitsuharu; Ferri, Stefano; Rögner, Matthias; Sode, Koji

    2016-01-01

    Cyanobacteria harbor unique photoreceptors, designated as cyanobacteriochromes (CBCRs). In this study, we attempted to engineer the chromatic acclimation sensor CcaS, a CBCR derived from the cyanobacterium Synechocystis sp. PCC 6803. The wild-type CcaS induces gene expression under green light illumination and represses it under red light illumination. We focused on the domain structure of CcaS, which consists of an N-terminal transmembrane helix; a GAF domain, which serves as the sensor domain; a linker region (L1); two PAS domains; a second linker region (L2); and a C-terminal histidine kinase (HK) domain. Truncated versions of the photoreceptor were constructed by removing the L1 linker region and the two PAS domains, and fusing the GAF and HK domains with a truncated linker region. Thus constructed “miniaturized CcaSs” were grouped into four distinct categories according to their responses toward green and red light illumination, with some showing improved gene regulation compared to the wild type. Remarkably, one of the miniaturized CcaSs induced gene expression under red light and repressed it under green light, a reversed response to the light signal compared to wild type CcaS. These characteristics of engineered photoreceptors were discussed by analyzing the CcaS structural model. PMID:27883080

  12. Statistical mechanics of tuned cell signalling: sensitive collective response by synthetic biological circuits

    NASA Astrophysics Data System (ADS)

    Voliotis, M.; Liverpool, T. B.

    2017-03-01

    Living cells sense and process environmental cues through noisy biochemical mechanisms. This apparatus limits the scope of engineering cells as viable sensors. Here, we highlight a mechanism that enables robust, population-wide responses to external stimulation based on cellular communication, known as quorum sensing. We propose a synthetic circuit consisting of two mutually repressing quorum sensing modules. At low cell densities the system behaves like a genetic toggle switch, while at higher cell densities the behaviour of nearby cells is coupled via diffusible quorum sensing molecules. We show by systematic coarse graining that at large length and timescales that the system can be described using the Ising model of a ferromagnet. Thus, in analogy with magnetic systems, the sensitivity of the population-wide response, or its ‘susceptibility’ to a change in the external signal, is highly enhanced for a narrow range of cell–cell coupling close to a critical value. We expect that our approach will be used to enhance the sensitivity of synthetic bio-sensing networks.

  13. Inter-regulation of the unfolded protein response and auxin signaling.

    PubMed

    Chen, Yani; Aung, Kyaw; Rolčík, Jakub; Walicki, Kathryn; Friml, Jiří; Brandizzi, Federica

    2014-01-01

    The unfolded protein response (UPR) is a signaling network triggered by overload of protein-folding demand in the endoplasmic reticulum (ER), a condition termed ER stress. The UPR is critical for growth and development; nonetheless, connections between the UPR and other cellular regulatory processes remain largely unknown. Here, we identify a link between the UPR and the phytohormone auxin, a master regulator of plant physiology. We show that ER stress triggers down-regulation of auxin receptors and transporters in Arabidopsis thaliana. We also demonstrate that an Arabidopsis mutant of a conserved ER stress sensor IRE1 exhibits defects in the auxin response and levels. These data not only support that the plant IRE1 is required for auxin homeostasis, they also reveal a species-specific feature of IRE1 in multicellular eukaryotes. Furthermore, by establishing that UPR activation is reduced in mutants of ER-localized auxin transporters, including PIN5, we define a long-neglected biological significance of ER-based auxin regulation. We further examine the functional relationship of IRE1 and PIN5 by showing that an ire1 pin5 triple mutant enhances defects of UPR activation and auxin homeostasis in ire1 or pin5. Our results imply that the plant UPR has evolved a hormone-dependent strategy for coordinating ER function with physiological processes.

  14. Prenatal testosterone exposure induces hypertension in adult females via androgen receptor-dependent protein kinase Cδ-mediated mechanism.

    PubMed

    Blesson, Chellakkan S; Chinnathambi, Vijayakumar; Hankins, Gary D; Yallampalli, Chandra; Sathishkumar, Kunju

    2015-03-01

    Prenatal exposure to excess testosterone induces hyperandrogenism in adult females and predisposes them to hypertension. We tested whether androgens induce hypertension through transcriptional regulation and signaling of protein kinase C (PKC) in the mesenteric arteries. Pregnant Sprague-Dawley rats were injected with vehicle or testosterone propionate (0.5 mg/kg per day from gestation days 15 to 19, SC) and their 6-month-old adult female offspring were examined. Plasma testosterone levels (0.84±0.04 versus 0.42±0.09 ng/mL) and blood pressures (111.6±1.3 versus 104.5±2.4 mm Hg) were significantly higher in prenatal testosterone-exposed rats compared with controls. This was accompanied with enhanced expression of PKCδ mRNA (1.5-fold) and protein (1.7-fold) in the mesenteric arteries of prenatal testosterone-exposed rats. In addition, mesenteric artery contractile responses to PKC activator, phorbol-12,13-dibutyrate, was significantly greater in prenatal testosterone-exposed rats. Treatment with androgen receptor antagonist flutamide (10 mg/kg, SC, BID for 10 days) significantly attenuated hypertension, PKCδ expression, and the exaggerated vasoconstriction in prenatal testosterone-exposed rats. In vitro exposure of testosterone to cultured mesenteric artery smooth muscle cells dose dependently upregulated PKCδ expression. Analysis of PKCδ gene revealed a putative androgen responsive element in the promoter upstream to the transcription start site and an enhancer element in intron-1. Chromatin immunoprecipitation assays showed that androgen receptors bind to these elements in response to testosterone stimulation. Furthermore, luciferase reporter assays showed that the enhancer element is highly responsive to androgens and treatment with flutamide reverses reporter activity. Our studies identified a novel androgen-mediated mechanism for the control of PKCδ expression via transcriptional regulation that controls vasoconstriction and blood pressure.

  15. Mycobacterium indicus pranii and Mycobacterium bovis BCG lead to differential macrophage activation in Toll-like receptor-dependent manner.

    PubMed

    Kumar, Pawan; Tyagi, Rohit; Das, Gobardhan; Bhaskar, Sangeeta

    2014-10-01

    Mycobacterium indicus pranii (MIP) is an atypical mycobacterial species possessing strong immunomodulatory properties. It is a potent vaccine candidate against tuberculosis, promotes Th1 immune response and protects mice from tumours. In previous studies, we demonstrated higher protective efficacy of MIP against experimental tuberculosis as compared with bacillus Calmette-Guérin (BCG). Since macrophages play an important role in the pathology of mycobacterial diseases and cancer, in the present study, we evaluated the MIP in live and killed form for macrophage activation potential, compared it with BCG and investigated the underlying mechanisms. High levels of tumour necrosis factor-α, interleukin-12p40 (IL-12p40), IL-6 and nitric oxide were produced by MIP-stimulated macrophages as compared with BCG-stimulated macrophages. Prominent up-regulation of co-stimulatory molecules CD40, CD80 and CD86 was also observed in response to MIP. Loss of response in MyD88-deficient macrophages showed that both MIP and BCG activate the macrophages in a MyD88-dependent manner. MyD88 signalling pathway culminates in nuclear factor-κB/activator protein-1 (NF-κB/AP-1) activation and higher activation of NF-κB/AP-1 was observed in response to MIP. With the help of pharmacological inhibitors and Toll-like receptor (TLR) -deficient macrophages, we observed the role of TLR2, TLR4 and intracellular TLRs in MIP-mediated macrophage activation. Stimulation of HEK293 cells expressing TLR2 in homodimeric or heterodimeric form showed that MIP has a distinctly higher level of TLR2 agonist activity compared with BCG. Further experiments suggested that TLR2 ligands are well exposed in MIP whereas they are obscured in BCG. Our findings establish the higher macrophage activation potential of MIP compared with BCG and delineate the underlying mechanism.

  16. Estrogen contributes to regulating iron metabolism through governing ferroportin signaling via an estrogen response element.

    PubMed

    Qian, Yi; Yin, Chunyang; Chen, Yue; Zhang, Shuping; Jiang, Li; Wang, Fudi; Zhao, Meirong; Liu, Sijin

    2015-05-01

    Ferroportin (FPN) is the only known iron exporter in mammalian cells, and is universally expressed in most types of cells. FPN signaling plays a crucial role in maintaining iron homeostasis through governing the level of intracellular iron. Serum iron storage is conversely related with the estrogen level in the female bodies, and women in post-menopause are possibly subjected to iron retention. However, the potential effects of estrogen on iron metabolism are not clearly understood. Here, FPN mRNA transcription in all selected estrogen receptor positive (ER+) cells was significantly reduced upon 17β-estradiol (E2) treatment; and this inhibitory effect could be attenuated by ER antagonist tamoxifen. Likewise, in murine bone marrow-derived macrophages (BMDMs), FPN reduction with elevated intracellular iron (reflected by increased ferritin) was observed in response to E2; however, ferritin level barely responded to E2 in FPN-null BMDMs. The observation of inhibition of FPN mRNA expression was not replicated in ER(-) cells upon E2. A functional estrogen response element (ERE) was identified within the promoter of FPN, and this ERE was responsible for the suppressive effect of E2 on FPN expression. Moreover, ovariectomized (OVX) and sham-operated (SHAM) mice were used to further confirm the in vitro finding. The expression of hepatic FPN was induced in OVX mice, compared to that in the SHAM mice. Taken together, our results demonstrated that estrogen is involved in regulating FPN expression through a functional ERE on its promoter, providing additional insights into a vital role of estrogen in iron metabolism.

  17. Iron is a signal for Stenotrophomonas maltophilia biofilm formation, oxidative stress response, OMPs expression, and virulence

    PubMed Central

    García, Carlos A.; Alcaraz, Eliana S.; Franco, Mirta A.; Passerini de Rossi, Beatriz N.

    2015-01-01

    Stenotrophomonas maltophilia is an emerging nosocomial pathogen. In many bacteria iron availability regulates, through the Fur system, not only iron homeostasis but also virulence. The aim of this work was to assess the role of iron on S. maltophilia biofilm formation, EPS production, oxidative stress response, OMPs regulation, quorum sensing (QS), and virulence. Studies were done on K279a and its isogenic fur mutant F60 cultured in the presence or absence of dipyridyl. This is the first report of spontaneous fur mutants obtained in S. maltophilia. F60 produced higher amounts of biofilms than K279a and CLSM analysis demonstrated improved adherence and biofilm organization. Under iron restricted conditions, K279a produced biofilms with more biomass and enhanced thickness. In addition, F60 produced higher amounts of EPS than K279a but with a similar composition, as revealed by ATR-FTIR spectroscopy. With respect to the oxidative stress response, MnSOD was the only SOD isoenzyme detected in K279a. F60 presented higher SOD activity than the wt strain in planktonic and biofilm cultures, and iron deprivation increased K279a SOD activity. Under iron starvation, SDS-PAGE profile from K279a presented two iron-repressed proteins. Mass spectrometry analysis revealed homology with FepA and another putative TonB-dependent siderophore receptor of K279a. In silico analysis allowed the detection of potential Fur boxes in the respective coding genes. K279a encodes the QS diffusible signal factor (DSF). Under iron restriction K279a produced higher amounts of DSF than under iron rich condition. Finally, F60 was more virulent than K279a in the Galleria mellonella killing assay. These results put in evidence that iron levels regulate, likely through the Fur system, S. maltophilia biofilm formation, oxidative stress response, OMPs expression, DSF production and virulence. PMID:26388863

  18. Promiscuous Diffusible Signal Factor Production and Responsiveness of the Xylella fastidiosa Rpf System

    PubMed Central

    Ionescu, Michael; Yokota, Kenji; Antonova, Elena; Garcia, Angelica; Beaulieu, Ellen; Hayes, Terry; Iavarone, Anthony T.

    2016-01-01

    ABSTRACT Cell density-dependent regulation of gene expression in Xylella fastidiosa that is crucial to its switching between plant hosts and insect vectors is dependent on RpfF and its production of 2-enoic acids known as diffusible signal factor (DSF). We show that X. fastidiosa produces a particularly large variety of similar, relatively long-chain-length 2-enoic acids that are active in modulating gene expression. Both X. fastidiosa itself and a Pantoea agglomerans surrogate host harboring X. fastidiosa RpfF (XfRpfF) is capable of producing a variety of both saturated and unsaturated free fatty acids. However, only 2-cis unsaturated acids were found to be biologically active in X. fastidiosa. X. fastidiosa produces, and is particularly responsive to, a novel DSF species, 2-cis-hexadecanoic acid that we term XfDSF2. It is also responsive to other, even longer 2-enoic acids to which other taxa such as Xanthomonas campestris are unresponsive. The 2-enoic acids that are produced by X. fastidiosa are strongly affected by the cellular growth environment, with XfDSF2 not detected in culture media in which 2-tetradecenoic acid (XfDSF1) had previously been found. X. fastidiosa is responsive to much lower concentrations of XfDSF2 than XfDSF1. Apparently competitive interactions can occur between various saturated and unsaturated fatty acids that block the function of those agonistic 2-enoic fatty acids. By altering the particular 2-enoic acids produced and the relative balance of free enoic and saturated fatty acids, X. fastidiosa might modulate the extent of DSF-mediated quorum sensing. PMID:27435463

  19. Transgenic Zebrafish Reveal Tissue-Specific Differences in Estrogen Signaling in Response to Environmental Water Samples

    PubMed Central

    Iwanowicz, Luke R.; Hung, Alice L.; Blazer, Vicki S.; Halpern, Marnie E.

    2014-01-01

    Background: Environmental endocrine disruptors (EEDs) are exogenous chemicals that mimic endogenous hormones such as estrogens. Previous studies using a zebrafish transgenic reporter demonstrated that the EEDs bisphenol A and genistein preferentially activate estrogen receptors (ERs) in the larval heart compared with the liver. However, it was not known whether the transgenic zebrafish reporter was sensitive enough to detect estrogens from environmental samples, whether environmental estrogens would exhibit tissue-specific effects similar to those of BPA and genistein, or why some compounds preferentially target receptors in the heart. Methods: We tested surface water samples using a transgenic zebrafish reporter with tandem estrogen response elements driving green fluorescent protein expression (5xERE:GFP). Reporter activation was colocalized with tissue-specific expression of ER genes by RNA in situ hybridization. Results: We observed selective patterns of ER activation in transgenic fish exposed to river water samples from the Mid-Atlantic United States, with several samples preferentially activating receptors in embryonic and larval heart valves. We discovered that tissue specificity in ER activation was due to differences in the expression of ER subtypes. ERα was expressed in developing heart valves but not in the liver, whereas ERβ2 had the opposite profile. Accordingly, subtype-specific ER agonists activated the reporter in either the heart valves or the liver. Conclusion: The use of 5xERE:GFP transgenic zebrafish revealed an unexpected tissue-specific difference in the response to environmentally relevant estrogenic compounds. Exposure to estrogenic EEDs in utero was associated with adverse health effects, with the potentially unanticipated consequence of targeting developing heart valves. Citation: Gorelick DA, Iwanowicz LR, Hung AL, Blazer VS, Halpern ME. 2014. Transgenic zebrafish reveal tissue-specific differences in estrogen signaling in response to

  20. Sampling frequency, response times and embedded signal filtration in fast, high efficiency liquid chromatography: A tutorial.

    PubMed

    Wahab, M Farooq; Dasgupta, Purnendu K; Kadjo, Akinde F; Armstrong, Daniel W

    2016-02-11

    With increasingly efficient columns, eluite peaks are increasingly narrower. To take full advantage of this, choice of the detector response time and the data acquisition rate a.k.a. detector sampling frequency, have become increasingly important. In this work, we revisit the concept of data sampling from the theorem variously attributed to Whittaker, Nyquist, Kotelnikov, and Shannon. Focusing on time scales relevant to the current practice of high performance liquid chromatography (HPLC) and optical absorbance detection (the most commonly used method), even for very narrow simulated peaks Fourier transformation shows that theoretical minimum sampling frequency is still relatively low (<10 Hz). However, this consideration alone may not be adequate for real chromatograms when an appreciable amount of noise is present. Further, depending on the instrument, the manufacturer's choice of a particular data bunching/integration/response time condition may be integrally coupled to the sampling frequency. In any case, the exact nature of signal filtration often occurs in a manner neither transparent to nor controllable by the user. Using fast chromatography on a state-of-the-art column (38,000 plates), we evaluate the responses produced by different present generation instruments, each with their unique black box digital filters. We show that the common wisdom of sampling 20 points per peak can be inadequate for high efficiency columns and that the sampling frequency and response choices do affect the peak shape. If the sampling frequency is too low or response time is too large, the observed peak shapes will not remain as narrow as they really are - this is especially true for high efficiency and high speed separations. It is shown that both sampling frequency and digital filtering affect the retention time, noise amplitude, peak shape and width in a complex fashion. We show how a square-wave driven light emitting diode source can reveal the nature of the embedded filter

  1. Measles virus hemagglutinin triggers intracellular signaling in CD150-expressing dendritic cells and inhibits immune response

    PubMed Central

    Romanets-Korbut, Olga; Kovalevska, Larysa M.; Seya, Tsukasa; Sidorenko, Svetlana P.; Horvat, Branka

    2016-01-01

    Measles virus (MV) is highly contagious pathogen, which causes a profound immunosuppression, resulting in high infant mortality. This virus infects dendritic cells (DCs) following the binding of MV hemagglutinin (MV-H) to CD150 receptor and alters DC functions by a mechanism that is not completely understood. We have analyzed the effect of MV-H interaction with CD150-expressing DCs on the DC signaling pathways and consequent phenotypic and functional changes in the absence of infectious context. We demonstrated that contact between CD150 on human DCs and MV-H expressed on membrane of transfected CHO cells was sufficient to modulate the activity of two major regulatory pathways of DC differentiation and function: to stimulate Akt and inhibit p38 MAPK phosphorylation, without concomitant ERK1/2 activation. Furthermore, interaction with MV-H decreased the expression level of DC activation markers CD80, CD83, CD86, and HLA-DR and strongly downregulated IL-12 production but did not modulate IL-10 secretion. Moreover, contact with MV-H suppressed DC-mediated T-cell alloproliferation, demonstrating profound alteration of DC maturation and functions. Finally, engagement of CD150 by MV-H in mice transgenic for human CD150 decreased inflammatory responses, showing the immunosuppressive effect of CD150–MV-H interaction in vivo. Altogether, these results uncover novel mechanism of MV-induced immunosuppression, implicating modulation of cell signaling pathways following MV-H interaction with CD150-expressing DCs and reveal anti-inflammatory effects of CD150 stimulation. PMID:26073466

  2. Cortical sensory map rearrangement after spinal cord injury: fMRI responses linked to Nogo signalling.

    PubMed

    Endo, Toshiki; Spenger, Christian; Tominaga, Teiji; Brené, Stefan; Olson, Lars

    2007-11-01

    Cortical sensory maps can reorganize in the adult brain in an experience-dependent manner. We monitored somatosensory cortical reorganization after sensory deafferentation using functional magnetic resonance imaging (fMRI) in rats subjected to complete transection of the mid-thoracic spinal cord. Cortical representation in response to spared forelimb stimulation was observed to enlarge and invade adjacent sensory-deprived hind limb territory in the primary somatosensory cortex as early as 3 days after injury. Functional MRI also demonstrated long-term cortical plasticity accompanied by increased thalamic activation. To support the notion that alterations of cortical neuronal circuitry after spinal cord injury may underlie the fMRI changes, we quantified transcriptional activities of several genes related to cortical plasticity including the Nogo receptor (NgR), its co-receptor LINGO-1 and brain derived neurotrophic factor (BDNF), using in situ hybridization. We demonstrate that NgR and LINGO-1 are down-regulated specifically in cortical areas deprived of sensory input and in adjacent cortex from 1 day after injury, while BDNF is up-regulated. Our results demonstrate that cortical neurons react to sensory deprivation by decreasing transcriptional activities of genes encoding the Nogo receptor components in the sensory deprived and the anatomically adjacent non-deprived area. Combined with the BDNF up-regulation, these changes presumably allow structural changes in the neuropil. Our observations therefore suggest an involvement of Nogo signalling in cortical activity-dependent plasticity in the somatosensory system. In spinal cord injury, cortical reorganization as shown here can become a disadvantage, much like the situation in amblyopia or phantom sensation. Successful strategies to repair sensory pathways at the spinal cord level may not lead to proper reestablishment of cortical connections, once deprived hind limb cortical areas have been reallocated to forelimb

  3. Profile of select hepatic insulin signaling pathway genes in response to 2-aminoanthracene dietary ingestion.

    PubMed

    Mattis, N D; Jay, J W; Barnett, G W; Rosaldo, J J; Howerth, E W; Means, J C; Gato, W E

    2014-01-01

    Some genes that regulate various processes such as insulin signaling, glucose metabolism, fatty acid, and lipid biosynthesis were profiled. The objective of the current investigation is to examine the mRNA expression of some genes that mediate insulin signaling due to 2AA toxicity. 2AA is a polycyclic aromatic hydrocarbon (PAH) that has been detected in broiled food and tobacco smoke. Twenty-four post-weaning 3-4-week-old F344 male rats were exposed to 0 mg/kg-diet, 50 mg/kg-diet, 75 mg/kg-diet, and 100 mg/kgdiet 2AA for 2 weeks and 4 weeks. The mRNA expression of AKT1, G6PC, GCK, GLUT4, INSR, IRS1, PP1R3C, PAMPK, SOCS 2, and SREBF1 was determined by qRTPCR followed by the quantification of G6PC and AMPK via ELISA. The results suggest that 2AA modulates these genes depending on the length of exposure. Up-regulation of AMPK and SOCS2 genes in animals treated with 100 mg/kg-diet and 50 mg/kg-diet, respectively, during 14 days of feeding was noted. G6PC expression was inhibited in the 2-week group while being dose-dependently increased in the 4-week group. Hepatic activity of G6PC was enhanced significantly in the livers of rats that ingested 2AA. It appears that 2AA intoxication leads to the activation of irs1 and akt1 genes in the liver. Quantified AMPK amounts increased significantly in the short-term treatment group. Dose-dependent rise of AMPK in animals treated to 2AA showed an increased production of hepatic AMPK in response to the toxicity of 2AA in order to maintain cellular homeostasis. In contrast, the reduction in AMPK concentration in treated animals within the 4-week set indicated an adaptive recovery.

  4. Role of nitric oxide and cyclic GMP signaling in melanocyte response to hypergravity

    NASA Astrophysics Data System (ADS)

    Ivanova, Krassimira; Lambers, Britta; Tsiockas, Wasiliki; Block, Ingrid; Gerzer, Rupert

    Nitric oxide (NO) has a prominent role in many (patho)physiological processes in the skin including erythema, inflammation, and cancerogenesis. The soluble guanylyl cyclase (sGC), a key transducer in NO signaling, catalyzes the formation of the second messenger guanosine 3´,5´-cyclic monophosphate (cyclic cGMP or cGMP). For human melanocytes, which are responsible for skin pigmentation by synthesizing the pigment melanin, it has been reported that the NO/sGC/cGMP pathway is involved in UVB-induced melanogenesis. Melanin acts as a scavenger for free radicals that may arise during metabolic stress. It may also act as a photosensitizer that generates active oxygen species upon UV irradiation, which may initiate hypopigmentary disorders (e.g., vitiligo) as well as UV-induced oncogene cell transformation. In addition, melanoma, a deadly skin cancer, which arises from transformed melanocytes, is characterized by a resistance to chemotherapy. In our studies we have shown that NO can induce perturbation of melanocyte-extracellular matrix component interactions, which may contribute to loss of melanocytes or melanoma metastasis. Such NO effects appear to be modulated partly via cGMP. Moreover, we found that different guanylyl cyclase isoforms are responsible for cGMP synthesis in melanocytic cells. Normal human melanocytes and nonmetastatic melanoma cells predominantly express sGC, which appears to be associated with melanogenesis, whereas absence of NO-sensitive GC, but up-regulated activities of the natriuretic peptide-sensitive membrane guanylyl cyclase isoforms were found in highly metastatic phenotypes. Due to the growing interest in the regulation of signaling activities in normal and transformed cells under altered gravity conditions, we have further investigated whether the NO/cGMP signaling is involved in melanocyte response to gravitational stress. We found that normal human melanocytes and non-metastatic melanoma cell lines, but not highly metastatic cells

  5. JAK/STAT signaling pathway-mediated immune response in silkworm (Bombyx mori) challenged by Beauveria bassiana.

    PubMed

    Geng, Tao; Lv, Ding-Ding; Huang, Yu-Xia; Hou, Cheng-Xiang; Qin, Guang-Xing; Guo, Xi-Jie

    2016-12-20

    Innate immunity was critical in insects defensive system and able to be induced by Janus kinase/signal transducer and activator of transcription cascade transduction (JAK/STAT) signaling pathway. Currently, it had been identified many JAK/STAT signaling pathway-related genes in silkworm, but little function was known on insect innate immunity. To explore the roles of JAK/STAT pathway in antifungal immune response in silkworm (Bombyx mori) against Beauveria bassiana infection, the expression patterns of B. mori C-type lectin 5 (BmCTL5) and genes encoding 6 components of JAK/STAT signaling pathway in silkworm challenged by B. bassiana were analyzed using quantitative real time PCR. Meanwhile the activation of JAK/STAT signaling pathway by various pathogenic micro-organisms and the affect of JAK/STAT signaling pathway inhibitors on antifungal activity in silkworm hemolymph was also detected. Moreover, RNAi assay of BmCTL5 and the affect on expression levels of signaling factors were also analyzed. We found that JAK/STAT pathway could be obviously activated in silkworm challenged with B. bassiana and had no response to bacteria and B. mori cytoplasmic polyhedrosis virus (BmCPV). However, the temporal expression patterns of JAK/STAT signaling pathway related genes were significantly different. B. mori downstream receptor kinase (BmDRK) might be a positive regulator of JAK/STAT signaling pathway in silkworm against B. bassiana infection. Moreover, antifungal activity assay showed that the suppression of JAK/STAT signaling pathway by inhibitors could significantly inhibit the antifungal activity in hemolymph and resulted in increased sensitivity of silkworm to B. bassiana infection, indicating that JAK/STAT signaling pathway might be involved in the synthesis and secretion of antifungal substances. The results of RNAi assays suggested that BmCTL5 might be one pattern recognition receptors for JAK/STAT signaling pathway in silkworm. These findings yield insights for better

  6. Prostaglandin I2 Signaling and Inhibition of Group 2 Innate Lymphoid Cell Responses

    PubMed Central

    Zhou, Weisong; Toki, Shinji; Zhang, Jian; Goleniewksa, Kasia; Newcomb, Dawn C.; Cephus, Jacqueline Y.; Dulek, Daniel E.; Bloodworth, Melissa H.; Stier, Matthew T.; Polosuhkin, Vasiliy; Gangula, Rama D.; Mallal, Simon A.; Broide, David H.

    2016-01-01

    Rationale: Group 2 innate lymphoid cells (ILC2s) robustly produce IL-5 and IL-13, cytokines central to the asthma phenotype; however, the effect of prostaglandin (PG) I2 on ILC2 function is unknown. Objectives: To determine the effect of PGI2 on mouse and human ILC2 cytokine expression in vitro and the effect of endogenous PGI2 and the PGI2 analog cicaprost on lung ILC2s in vivo. Methods: Flow-sorted bone marrow ILC2s of wild-type (WT) and PGI2 receptor–deficient (IP−/−) mice were cultured with IL-33 and treated with the PGI2 analog cicaprost. WT and IP−/− mice were challenged intranasally with Alternaria alternata extract for 4 consecutive days to induce ILC2 responses, and these were quantified. Prior to A. alternata extract, challenged WT mice were treated with cicaprost. Human flow-sorted peripheral blood ILC2s were cultured with IL-33 and IL-2 and treated with the PGI2 analog cicaprost. Measurement and Main Results: We demonstrate that PGI2 inhibits IL-5 and IL-13 protein expression by IL-33–stimulated ILC2s purified from mouse bone marrow in a manner that was dependent on signaling through the PGI2 receptor IP. In a mouse model of 4 consecutive days of airway challenge with an extract of A. alternata, a fungal aeroallergen associated with severe asthma exacerbations, endogenous PGI2 signaling significantly inhibited lung IL-5 and IL-13 protein expression, and reduced the number of lung IL-5– and IL-13–expressing ILC2s, as well as the mean fluorescence intensity of IL-5 and IL-13 staining. In addition, exogenous administration of a PGI2 analog inhibited Alternaria extract–induced lung IL-5 and IL-13 protein expression, and reduced the number of lung IL-5– and IL-13–expressing ILC2s and the mean fluorescence intensity of IL-5 and IL-13 staining. Finally, a PGI2 analog inhibited IL-5 and IL-13 expression by human ILC2s that were stimulated with IL-2 and IL-33. Conclusions: These results suggest that PGI2 may be a potential therapy to reduce

  7. Distinctive Responsiveness to Stromal Signaling Accompanies Histologic Grade Programming of Cancer Cells

    PubMed Central

    Sayeed, Aejaz; Champion, Stacey; Goodson, William H.; Jeffrey, Stefanie S.; Xiao, Wenzhong; Mindrinos, Michael; Davis, Ronald W.; Dairkee, Shanaz H.

    2011-01-01

    Whether stromal components facilitate growth, invasion, and dissemination of cancer cells or suppress neoplastic lesions from further malignant progression is a continuing conundrum in tumor biology. Conceptualizing a dynamic picture of tumorigenesis is complicated by inter-individual heterogeneity. In the post genomic era, unraveling such complexity remains a challenge for the cancer biologist. Towards establishing a functional association between cellular crosstalk and differential cancer aggressiveness, we identified a signature of malignant breast epithelial response to stromal signaling. Proximity to fibroblasts resulted in gene transcript alterations of >2-fold for 107 probes, collectively designated as Fibroblast Triggered Gene Expression in Tumor (FTExT). The hazard ratio predicted by the FTExT classifier for distant relapse in patients with intermediate and high grade breast tumors was significant compared to routine clinical variables (dataset 1, n = 258, HR – 2.11, 95% CI 1.17–3.80, p-value 0.01; dataset 2, n = 171, HR - 3.07, 95% CI 1.21–7.83, p-value 0.01). Biofunctions represented by FTExT included inflammatory signaling, free radical scavenging, cell death, and cell proliferation. Unlike genes of the ‘proliferation cluster’, which are overexpressed in aggressive primary tumors, FTExT genes were uniquely repressed in such cases. As proof of concept for our correlative findings, which link stromal-epithelial crosstalk and tumor behavior, we show a distinctive differential in stromal impact on prognosis-defining functional endpoints of cell cycle progression, and resistance to therapy-induced growth arrest and apoptosis in low vs. high grade cancer cells. Our experimental data thus reveal aspects of ‘paracrine cooperativity’ that are exclusively contingent upon the histopathologically defined grade of interacting tumor epithelium, and demonstrate that epithelial responsiveness to the tumor microenvironment is a deterministic factor

  8. Neonatal overfeeding disrupts pituitary ghrelin signalling in female rats long-term; Implications for the stress response

    PubMed Central

    Ziko, Ilvana; Spencer, Sarah J.

    2017-01-01

    The hypothalamic-pituitary-adrenal (HPA) axis responses to psychological stress are exacerbated in adult female but not male rats made obese due to overfeeding in early life. Ghrelin, traditionally known for its role in energy homeostasis, has been recently recognised for its role in coordinating the HPA responses to stress, particularly by acting directly at the anterior pituitary where the growth hormone secretagogue receptor (GHSR), the receptor for acyl ghrelin, is abundantly expressed. We therefore hypothesised that neonatal overfeeding in female rats would compromise pituitary responsiveness to ghrelin, contributing to a hyperactive central stress responsiveness. Unlike in males where hypothalamic ghrelin signalling is compromised by neonatal overfeeding, there was no effect of early life diet on circulating ghrelin or hypothalamic ghrelin signalling in females, indicating hypothalamic feeding and metabolic ghrelin circuitry remains intact. However, neonatal overfeeding did lead to long-term alterations in the pituitary ghrelin system. The neonatally overfed females had increased neonatal and reduced adult expression of GHSR and ghrelin-O-acyl transferase (GOAT) in the pituitary as well as reduced pituitary responsiveness to exogenous acyl ghrelin-induced adrenocorticotropic hormone (ACTH) release in vitro. These data suggest that neonatal overfeeding dysregulates pituitary ghrelin signalling long-term in females, potentially accounting for the hyper-responsive HPA axis in these animals. These findings have implications for how females may respond to stress throughout life, suggesting the way ghrelin modifies the stress response at the level of the pituitary may be less efficient in the neonatally overfed. PMID:28282447

  9. Dopamine D2 receptors gate generalization of conditioned threat responses through mTORC1 signaling in the extended amygdala

    PubMed Central

    De Bundel, Dimitri; Zussy, Charleine; Espallergues, Julie; Gerfen, Charles R; Girault, Jean-Antoine; Valjent, Emmanuel

    2016-01-01

    Overgeneralization of conditioned threat responses is a robust clinical marker of anxiety disorders. In overgeneralization, responses that are appropriate to threat-predicting cues are evoked by perceptually similar safety-predicting cues. Inappropriate learning of conditioned threat responses may thus form an etiological basis for anxiety disorders. The role of dopamine (DA) in memory encoding is well established. Indeed by signaling salience and valence, DA is thought to facilitate discriminative learning between stimuli representing safety or threat. However, the neuroanatomical and biochemical substrates through which DA modulates overgeneralization of threat responses remain poorly understood. Here we report that the modulation of DA D2 receptor (D2R) signaling bidirectionally regulates the consolidation of fear responses. While the blockade of D2R induces generalized fear responses, its stimulation facilitates discriminative learning between stimuli representing safety or threat. Moreover, we show that controlled fear generalization requires the coordinated activation of D2R in the bed nucleus of the stria terminalis (BNST) and the central amygdala (CEA). Finally, we identify the mTORC1 cascade activation as an important molecular event by which D2R mediates its effects. These data reveal that D2R signaling in the extended amygdala constitutes an important checkpoint through which DA participates in the control of threat processing and the emergence of overgeneralized fear responses. PMID:26782052

  10. WASP plays a novel role in regulating platelet responses dependent on alphaIIbbeta3 integrin outside-in signalling.

    PubMed

    Shcherbina, Anna; Cooley, Jessica; Lutskiy, Maxim I; Benarafa, Charaf; Gilbert, Gary E; Remold-O'Donnell, Eileen

    2010-02-01

    The most consistent feature of Wiskott Aldrich syndrome (WAS) is profound thrombocytopenia with small platelets. The responsible gene encodes WAS protein (WASP), which functions in leucocytes as an actin filament nucleating agent -yet- actin filament nucleation proceeds normally in patient platelets regarding shape change, filopodia and lamellipodia generation. Because WASP localizes in the platelet membrane skeleton and is mobilized by alphaIIbbeta3 integrin outside-in signalling, we questioned whether its function might be linked to integrin. Agonist-induced alphaIIbbeta3 activation (PAC-1 binding) was normal for patient platelets, indicating normal integrin inside-out signalling. Inside-out signalling (fibrinogen, JON/A binding) was also normal for wasp-deficient murine platelets. However, adherence/spreading on immobilized fibrinogen was decreased for patient platelets and wasp-deficient murine platelets, indicating decreased integrin outside-in responses. Another integrin outside-in dependent response, fibrin clot retraction, involving contraction of the post-aggregation actin cytoskeleton, was also decreased for patient platelets and wasp-deficient murine platelets. Rebleeding from tail cuts was more frequent for wasp-deficient mice, suggesting decreased stabilisation of the primary platelet plug. In contrast, phosphatidylserine exposure, a pro-coagulant response, was enhanced for WASP-deficient patient and murine platelets. The collective results reveal a novel function for WASP in regulating pro-aggregatory and pro-coagulant responses downstream of integrin outside-in signalling.

  11. Blockade of PD-1 Signaling Enhances Th2 Cell Responses and Aggravates Liver Immunopathology in Mice with Schistosomiasis japonica

    PubMed Central

    Zhou, Sha; Jin, Xin; Li, Yalin; Li, Wei; Chen, Xiaojun; Xu, Lei; Zhu, Jifeng; Xu, Zhipeng; Zhang, Yang; Liu, Feng; Su, Chuan

    2016-01-01

    Background More than 220 million people worldwide are chronically infected with schistosomes, causing severe disease or even death. The major pathological damage occurring in schistosomiasis is attributable to the granulomatous inflammatory response and liver fibrosis induced by schistosome eggs. The inflammatory response is tightly controlled and parallels immunosuppressive regulation, constantly maintaining immune homeostasis and limiting excessive immunopathologic damage in important host organs. It is well known that the activation of programmed death 1 (PD-1) signaling causes a significant suppression of T cell function. However, the roles of PD-1 signaling in modulating CD4+ T cell responses and immunopathology during schistosome infection, have yet to be defined. Methodology/Principal Findings Here, we show that PD-1 is upregulated in CD4+ T cells in Schistosoma japonicum (S. japonicum)-infected patients. We also show the upregulation of PD-1 expression in CD4+ T cells in the spleens, mesenteric lymph nodes, and livers of mice with S. japonicum infection. Finally, we found that the blockade of PD-1 signaling enhanced CD4+ T helper 2 (Th2) cell responses and led to more severe liver immunopathology in mice with S. japonicum infection, without a reduction of egg production or deposition in the host liver. Conclusions/Significance Overall, our study suggests that PD-1 signaling is specifically induced to control Th2-associated inflammatory responses during schistosome infection and is beneficial to the development of PD-1-based control of liver immunopathology. PMID:27792733

  12. Rac1 protein signaling is required for DNA damage response stimulated by topoisomerase II poisons.

    PubMed

    Huelsenbeck, Stefanie C; Schorr, Anne; Roos, Wynand P; Huelsenbeck, Johannes; Henninger, Christian; Kaina, Bernd; Fritz, Gerhard

    2012-11-09

    To investigate the potency of the topoisomerase II (topo II) poisons doxorubicin and etoposide to stimulate the DNA damage response (DDR), S139 phosphorylation of histone H2AX (γH2AX) was analyzed using rat cardiomyoblast cells (H9c2). Etoposide caused a dose-dependent increase in the γH2AX level as shown by Western blotting. By contrast, the doxorubicin response was bell-shaped with high doses failing to increase H2AX phosphorylation. Identical results were obtained by immunohistochemical analysis of γH2AX focus formation, comet assay-based DNA strand break analysis, and measuring the formation of the topo II-DNA cleavable complex. At low dose, doxorubicin activated ataxia telangiectasia mutated (ATM) but not ATM and Rad3-related (ATR). Both the lipid-lowering drug lovastatin and the Rac1-specific inhibitor NSC23766 attenuated doxorubicin- and etoposide-stimulated H2AX phosphorylation, induction of DNA strand breaks, and topo II-DNA complex formation. Lovastatin and NSC23766 acted in an additive manner. They did not attenuate doxorubicin-induced increase in p-ATM and p-Chk2 levels. DDR stimulated by topo II poisons was partially blocked by inhibition of type I p21-associated kinases. DDR evoked by the topoisomerase I poison topotecan remained unaffected by lovastatin. The data show that the mechanisms involved in DDR stimulated by topo II poisons are agent-specific with anthracyclines lacking DDR-stimulating activity at high doses. Pharmacological inhibition of Rac1 signaling counteracts doxorubicin- and etoposide-stimulated DDR by disabling the formation of the topo II-DNA cleavable complex. Based on the data we suggest that Rac1-regulated mechanisms are required for DNA damage induction and subsequent activation of the DDR following treatment with topo II but not topo I poisons.

  13. Characterization of Amphioxus IFN Regulatory Factor Family Reveals an Archaic Signaling Framework for Innate Immune Response.

    PubMed

    Yuan, Shaochun; Zheng, Tingting; Li, Peiyi; Yang, Rirong; Ruan, Jie; Huang, Shengfeng; Wu, Zhenxin; Xu, Anlong

    2015-12-15

    The IFN regulatory factor (IRF) family encodes transcription factors that play important roles in immune defense, stress response, reproduction, development, and carcinogenesis. Although the origin of the IRF family has been dated back to multicellular organisms, invertebrate IRFs differ from vertebrate IRFs in genomic structure and gene synteny, and little is known about their functions. Through comparison of multiple amphioxus genomes, in this study we suggested that amphioxus contains nine IRF members, whose orthologs are supposed to be shared among three amphioxus species. As the orthologs to the vertebrate IRF1 and IRF4 subgroups, Branchiostoma belcheri tsingtauense (bbt)IRF1 and bbtIRF8 bind the IFN-stimulated response element (ISRE) and were upregulated when amphioxus intestinal cells were stimulated with poly(I:C). As amphioxus-specific IRFs, both bbtIRF3 and bbtIRF7 bind ISRE. When activated, they can be phosphorylated by bbtTBK1 and then translocate into nucleus for target gene transcription. As transcriptional repressors, bbtIRF2 and bbtIRF4 can inhibit the transcriptional activities of bbtIRF1, 3, 7, and 8 by competing for the binding of ISRE. Interestingly, amphioxus IRF2, IRF8, and Rel were identified as target genes of bbtIRF1, bbtIRF7, and bbtIRF3, respectively, suggesting a dynamic feedback regulation among amphioxus IRF and NF-κB. Collectively, to our knowledge we present for the first time an archaic IRF signaling framework in a basal chordate, shedding new insights into the origin and evolution of vertebrate IFN-based antiviral networks.

  14. Purinergic Signaling Regulates the Transforming Growth Factor-β3-Induced Chondrogenic Response of Mesenchymal Stem Cells to Hydrostatic Pressure.

    PubMed

    Steward, Andrew J; Kelly, Daniel J; Wagner, Diane R

    2016-06-01

    Although hydrostatic pressure (HP) is known to regulate chondrogenic differentiation of mesenchymal stromal/stem cells (MSCs), improved insight into the mechanotransduction of HP may form the basis for novel tissue engineering strategies. Previously, we demonstrated that matrix stiffness and calcium ion (Ca(++)) mobility regulate the mechanotransduction of HP; however, the mechanisms, by which these Ca(++) signaling pathways are initiated, are currently unknown. The purinergic pathway, in which adenosine triphosphate (ATP) is released and activates P-receptors to initiate Ca(++) signaling, plays a key role in the mechanotransduction of compression, but has yet to be investigated with regard to HP. Therefore, the objective of this study was to investigate the interplay between purinergic signaling, matrix stiffness, and the chondrogenic response of MSCs to HP. Porcine bone marrow-derived MSCs were seeded into soft or stiff agarose hydrogels and subjected to HP (10 MPa at 1 Hz for 4 h/d for 21 days) or kept in free swelling conditions. Stiff constructs were incubated with pharmacological inhibitors of extracellular ATP, P2 receptors, or hemichannels, or without any inhibitors as a control. As with other loading modalities, HP significantly increased ATP release in the control group; however, inhibition of hemichannels completely abrogated this response. The increase in sulfated glycosaminoglycan (sGAG) synthesis and vimentin reorganization observed in the control group in response to HP was suppressed in the presence of all three inhibitors, suggesting that purinergic signaling is involved in the mechanoresponse of MSCs to HP. Interestingly, ATP was released from both soft and stiff hydrogels in response to HP, but HP only enhanced chondrogenesis in the stiff hydrogels, indicating that matrix stiffness may act downstream of purinergic signaling to regulate the mechanoresponse of MSCs to HP. Addition of exogenous ATP did not replicate the effects of HP on

  15. NANOG Expression as a Responsive Biomarker during Treatment with Hedgehog Signal Inhibitor in Acute Myeloid Leukemia

    PubMed Central

    Kakiuchi, Seiji; Minami, Yosuke; Miyata, Yoshiharu; Mizutani, Yu; Goto, Hideaki; Kawamoto, Shinichiro; Yakushijin, Kimikazu; Kurata, Keiji; Matsuoka, Hiroshi; Minami, Hironobu

    2017-01-01

    Aberrant activation of the Hedgehog (Hh) signaling pathway is involved in the maintenance of leukemic stem cell (LSCs) populations. PF-0444913 (PF-913) is a novel inhibitor that selectively targets Smoothened (SMO), which regulates the Hh pathway. Treatment with PF-913 has shown promising results in an early phase study of acute myeloid leukemia (AML). However, a detailed mode of action for PF-913 and relevant biomarkers remain to be elucidated. In this study, we examined bone marrow samples derived from AML patients under PF-913 monotherapy. Gene set enrichment analysis (GSEA) revealed that PF-913 treatment affected the self-renewal signature and cell-cycle regulation associated with LSC-like properties. We then focused on the expression of a pluripotency factor, NANOG, because previous reports showed that a downstream effector in the Hh pathway, GLI, directly binds to the NANOG promoter and that the GLI-NANOG axis promotes stemness and growth in several cancers. In this study, we found that a change in NANOG transcripts was closely associated with GLI-target genes and NANOG transcripts can be a responsive biomarker during PF-913 therapy. Additionally, the treatment of AML with PF-913 holds promise, possibly through inducing quiescent leukemia stem cells toward cell cycling. PMID:28245563

  16. TGF-β1 accelerates the DNA damage response in epithelial cells via Smad signaling.

    PubMed

    Lee, Jeeyong; Kim, Mi-Ra; Kim, Hyun-Ji; An, You Sun; Yi, Jae Youn

    2016-08-05

    The evidence suggests that transforming growth factor-beta (TGF-β) regulates the DNA-damage response (DDR) upon irradiation, and we previously reported that TGF-β1 induced DNA ligase IV (Lig4) expression and enhanced the nonhomologous end-joining repair pathway in irradiated cells. In the present study, we investigated the effects of TGF-β1 on the irradiation-induced DDRs of A431 and HaCaT cells. Cells were pretreated with or without TGF-β1 and irradiated. At 30 min post-irradiation, DDRs were detected by immunoblotting of phospho-ATM, phospho-Chk2, and the presence of histone foci (γH2AX). The levels of all three factors were similar right after irradiation regardless of TGF-β1 pretreatment. However, they soon thereafter exhibited downregulation in TGF-β1-pretreated cells, indicating the acceleration of the DDR. Treatment with a TGF-β type I receptor inhibitor (SB431542) or transfections with siRNAs against Smad2/3 or DNA ligase IV (Lig4) reversed this acceleration of the DDR. Furthermore, the frequency of irradiation-induced apoptosis was decreased by TGF-β1 pretreatment in vivo, but this effect was abrogated by SB431542. These results collectively suggest that TGF-β1 could enhance cell survival by accelerating the DDR via Smad signaling and Lig4 expression.

  17. Astrocytes increase ATP exocytosis mediated calcium signaling in response to microgroove structures.

    PubMed

    Singh, Ajay V; Raymond, Michael; Pace, Fabiano; Certo, Anthony; Zuidema, Jonathan M; McKay, Christopher A; Gilbert, Ryan J; Lu, X Lucas; Wan, Leo Q

    2015-01-19

    Following central nervous system (CNS) injury, activated astrocytes form glial scars, which inhibit axonal regeneration, leading to long-term functional deficits. Engineered nanoscale scaffolds guide cell growth and enhance regeneration within models of spinal cord injury. However, the effects of micro-/nanosize scaffolds on astrocyte function are not well characterized. In this study, a high throughput (HTP) microscale platform was developed to study astrocyte cell behavior on micropatterned surfaces containing 1 μm spacing grooves with a depth of 250 or 500 nm. Significant changes in cell and nuclear elongation and alignment on patterned surfaces were observed, compared to on flat surfaces. The cytoskeleton components (particularly actin filaments and focal adhesions) and nucleus-centrosome axis were aligned along the grooved direction as well. More interestingly, astrocytes on micropatterned surfaces showed enhanced mitochondrial activity with lysosomes localized at the lamellipodia of the cells, accompanied by enhanced adenosine triphosphate (ATP) release and calcium activities. These data indicate that the lysosome-mediated ATP exocytosis and calcium signaling may play an important role in astrocytic responses to substrate topology. These new findings have furthered our understanding of the biomechanical regulation of astrocyte cell-substrate interactions, and may benefit the optimization of scaffold design for CNS healing.

  18. Polymodal Responses in C. elegans Phasmid Neurons Rely on Multiple Intracellular and Intercellular Signaling Pathways

    PubMed Central

    Zou, Wenjuan; Cheng, Hankui; Li, Shitian; Yue, Xiaomin; Xue, Yadan; Chen, Sixi; Kang, Lijun

    2017-01-01

    Animals utilize specialized sensory neurons enabling the detection of a wide range of environmental stimuli from the presence of toxic chemicals to that of touch. However, how these neurons discriminate between different kinds of stimuli remains poorly understood. By combining in vivo calcium imaging and molecular genetic manipulation, here we investigate the response patterns and the underlying mechanisms of the C. elegans phasmid neurons PHA/PHB to a variety of sensory stimuli. Our observations demonstrate that PHA/PHB neurons are polymodal sensory neurons which sense harmful chemicals, hyperosmotic solutions and mechanical stimulation. A repulsive concentration of IAA induces calcium elevations in PHA/PHB and both OSM-9 and TAX-4 are essential for IAA-sensing in PHA/PHB. Nevertheless, the PHA/PHB neurons are inhibited by copper and post-synaptically activated by copper removal. Neuropeptide is likely involved in copper removal-induced calcium elevations in PHA/PHB. Furthermore, mechanical stimulation activates PHA/PHB in an OSM-9-dependent manner. Our work demonstrates how PHA/PHB neurons respond to multiple environmental stimuli and lays a foundation for the further understanding of the mechanisms of polymodal signaling, such as nociception, in more complex organisms. PMID:28195191

  19. Zinc triggers signaling mechanisms and defense responses promoting resistance to Alternaria brassicicola in Arabidopsis thaliana.

    PubMed

    Martos, Soledad; Gallego, Berta; Cabot, Catalina; Llugany, Mercè; Barceló, Juan; Poschenrieder, Charlotte

    2016-08-01

    According to the elemental defense hypothesis the accumulation of trace elements by plants may substitute for organic defenses, while the joint effects hypothesis proposes that trace elements and organic defenses can have additive or synergistic effects against pathogens or herbivores. To evaluate these hypotheses the response of the pathosystem Alternaria brassicicola-Arabidopsis thaliana to control (2μM) and surplus (12μM) Zn was evaluated using the camalexin deficient mutant pad3-1 and mtp1-1, a mutant with impaired Zn vacuolar storage, along with the corresponding wildtypes. In vitro, a 50% inhibition of fungal growth was achieved by 440μM Zn. A. thaliana leaves could accumulate equivalent concentrations without harm. In fact, surplus Zn enhanced the resistance of A. thaliana to fungal attack in Columbia (Col-0), Wassilewskija (WS), and mtp1-1. However, surplus Zn was unable to protect pad3-1 demonstrating that Zn cannot substitute for camalexin, the main organic defense in A. thaliana. High, non phytotoxic leaf Zn concentrations enhanced the resistance to A. brassicicola of A. thaliana genotypes able to produce camalexin. This was mainly due to Zn-induced enhancement of the JA/ETH signaling pathway leading to enhanced PAD3 expression. These results support the joint effects hypothesis and highlight the importance of adequate Zn supply for reinforced pathogen resistance.

  20. WIP1 modulates responsiveness to Sonic Hedgehog signaling in neuronal precursor cells and medulloblastoma

    PubMed Central

    Wen, Jing; Lee, Juhyun; Malhotra, Anshu; Nahta, Rita; Arnold, Amanda R.; Buss, Meghan C.; Brown, Briana D.; Maier, Caroline; Kenney, Anna M.; Remke, Marc; Ramaswamy, Vijay; Taylor, Michael D.; Castellino, Robert C.

    2016-01-01

    High-level amplification of the protein phosphatase PPM1D (WIP1) is present in a subset of medulloblastomas (MBs) that have an expression profile consistent with active Sonic Hedgehog (SHH) signaling. We found that WIP1 overexpression increased expression of Shh target genes and cell proliferation in response to Shh stimulation in NIH3T3 and cerebellar granule neuron precursor (cGNP) cells in a p53-independent manner. Thus, we developed a mouse in which WIP1 is expressed in the developing brain under control of the Neurod2 promoter (ND2:WIP1). The external granule layer in early post-natal ND2:WIP1 mice exhibited increased proliferation and expression of Shh downstream targets. MB incidence increased and survival decreased when ND2:WIP1 mice were crossed with a Shh-activated MB mouse model. Conversely, Wip1 knock out significantly suppressed MB formation in two independent mouse models of Shh-activated MB. Furthermore, Wip1 knock-down or treatment with a WIP1 inhibitor suppressed the effects of Shh stimulation and potentiated the growth inhibitory effects of SHH pathway-inhibiting drugs in Shh-activated MB cells in vitro. This suggests an important cross-talk between SHH and WIP1 pathways that accelerates tumorigenesis and supports WIP1 inhibition as a potential treatment strategy for MB. PMID:27086929

  1. WIP1 modulates responsiveness to Sonic Hedgehog signaling in neuronal precursor cells and medulloblastoma.

    PubMed

    Wen, J; Lee, J; Malhotra, A; Nahta, R; Arnold, A R; Buss, M C; Brown, B D; Maier, C; Kenney, A M; Remke, M; Ramaswamy, V; Taylor, M D; Castellino, R C

    2016-10-20

    High-level amplification of the protein phosphatase PPM1D (WIP1) is present in a subset of medulloblastomas (MBs) that have an expression profile consistent with active Sonic Hedgehog (SHH) signaling. We found that WIP1 overexpression increased expression of Shh target genes and cell proliferation in response to Shh stimulation in NIH3T3 and cerebellar granule neuron precursor cells in a p53-independent manner. Thus, we developed a mouse in which WIP1 is expressed in the developing brain under control of the Neurod2 promoter (ND2:WIP1). The external granule layer (EGL) in early postnatal ND2:WIP1 mice exhibited increased proliferation and expression of Shh downstream targets. MB incidence increased and survival decreased when ND2:WIP1 mice were crossed with an Shh-activated MB mouse model. Conversely, Wip1 knockout significantly suppressed MB formation in two independent mouse models of Shh-activated MB. Furthermore, Wip1 knockdown or treatment with a WIP1 inhibitor suppressed the effects of Shh stimulation and potentiated the growth inhibitory effects of SHH pathway-inhibiting drugs in Shh-activated MB cells in vitro. This suggests an important cross-talk between SHH and WIP1 pathways that accelerates tumorigenesis and supports WIP1 inhibition as a potential treatment strategy for MB.

  2. The analysis on IP signals in TEM response based on SVD

    NASA Astrophysics Data System (ADS)

    Yu, Chuan-Tao; Liu, Hong-Fu; Zhang, Xin-Jun; Yang, De-Yi; Li, Zi-Hong

    2013-03-01

    During transient electromagnetic method (TEM) exploration of a copper mine, we detected the late-channel TEM signal reversal phenomenon (a voltage change from positive to negative) caused by the influence of the induced polarization (IP) effect, which affects the depth and precision of the TEM detection. The conventional inversion method is inefficient because it is difficult to process the data. In this paper, the Cole-Cole model is adopted to analyze the effect of Dc resistivity, chargeability, time constant, and frequency exponent on the TEM response in an homogeneous half space model. Singular Value Decomposition (SVD) is used to invert the measured TEM data, and the Dc resistivity, chargeability, time constant and frequency exponent were extracted from the measured TEM data in the mine area. The extracted parameters are used for interpreting the detection result as a supplement. This reveals why the TEM data acquired in the area has a low resolution. It was found that the DC resistivity and time constant do not significantly change the results, however, the chargeability and frequency exponent have a significant effect. Because of these influences, the SVD method is more accurate than the conventional method in the apparent resistivity profile. The area of the copper mine is confined accurately based on the SVD inverted data. The conclusion has been verified by drill and is identical to the practical geological situation.

  3. Simulated hypogravity impairs the angiogenic response of endothelium by up-regulating apoptotic signals

    SciTech Connect

    Morbidelli, Lucia . E-mail: morbidelli@unisi.it; Monici, Monica; Marziliano, Nicola; Cogoli, Augusto; Fusi, Franco; Waltenberger, Johannes; Ziche, Marina

    2005-08-26

    Health hazards in astronauts are represented by cardiovascular problems and impaired bone healing. These disturbances are characterized by a common event, the loss of function by vascular endothelium, leading to impaired angiogenesis. We investigated whether the exposure of cultured endothelial cells to hypogravity condition could affect their behaviour in terms of functional activity, biochemical responses, morphology, and gene expression. Simulated hypogravity conditions for 72 h produced a reduction of cell number. Genomic analysis of endothelial cells exposed to hypogravity revealed that proapoptotic signals increased, while antiapoptotic and proliferation/survival genes were down-regulated by modelled low gravity. Activation of apoptosis was accompanied by morphological changes with mitochondrial disassembly and organelles/cytoplasmic NAD(P)H redistribution, as evidenced by autofluorescence analysis. In this condition cells were not able to respond to angiogenic stimuli in terms of migration and proliferation. Our study documents functional, morphological, and transcription alterations in vascular endothelium exposed to simulated low gravity conditions, thus providing insights on the occurrence of vascular tissue dysregulation in crewmen during prolonged space flights. Moreover, the alteration of vascular endothelium can intervene as a concause in other systemic effects, like bone remodelling, observed in weightlessness.

  4. Lipopolysaccharides with acylation defects potentiate TLR4 signaling and shape T cell responses.

    PubMed

    Martirosyan, Anna; Ohne, Yoichiro; Degos, Clara; Gorvel, Laurent; Moriyón, Ignacio; Oh, Sangkon; Gorvel, Jean-Pierre

    2013-01-01

    Lipopolysaccharides or endotoxins are components of Gram-negative enterobacteria that cause septic shock in mammals. However, a LPS carrying hexa-acyl lipid A moieties is highly endotoxic compared to a tetra-acyl LPS and the latter has been considered as an antagonist of hexa-acyl LPS-mediated TLR4 signaling. W