Science.gov

Sample records for receptor-like kinase interacts

  1. ERECTA and BAK1 Receptor Like Kinases Interact to Regulate Immune Responses in Arabidopsis.

    PubMed

    Jordá, Lucía; Sopeña-Torres, Sara; Escudero, Viviana; Nuñez-Corcuera, Beatriz; Delgado-Cerezo, Magdalena; Torii, Keiko U; Molina, Antonio

    2016-01-01

    ERECTA (ER) receptor-like kinase (RLK) regulates Arabidopsis thaliana organ growth, and inflorescence and stomatal development by interacting with the ERECTA-family genes (ERf) paralogs, ER-like 1 (ERL1) and ERL2, and the receptor-like protein (RLP) TOO MANY MOUTHS (TMM). ER also controls immune responses and resistance to pathogens such as the bacterium Pseudomonas syringae pv. tomato DC3000 (Pto) and the necrotrophic fungus Plectosphaerella cucumerina BMM (PcBMM). We found that er null-mutant plants overexpressing an ER dominant-negative version lacking the cytoplasmic kinase domain (ERΔK) showed an enhanced susceptibility to PcBMM, suggesting that ERΔK associates and forms inactive complexes with additional RLKs/RLPs required for PcBMM resistance. Genetic analyses demonstrated that ER acts in a combinatorial specific manner with ERL1, ERL2, and TMM to control PcBMM resistance. Moreover, BAK1 (BRASSINOSTEROID INSENSITIVE 1-associated kinase 1) RLK, which together with ERf/TMM regulates stomatal patterning and resistance to Pto, was also found to have an unequal contribution with ER in regulating immune responses and resistance to PcBMM. Co-immunoprecipitation experiments in Nicotiana benthamiana further demonstrated BAK1-ER protein interaction. The secreted epidermal pattern factor peptides (EPF1 and EPF2), which are perceived by ERf members to specify stomatal patterning, do not seem to regulate ER-mediated immunity to PcBMM, since their inducible overexpression in A. thaliana did not impact on PcBMM resistance. Our results indicate that the multiproteic receptorsome formed by ERf, TMM and BAK1 modulates A. thaliana resistance to PcBMM, and suggest that the cues underlying ERf/TMM/BAK1-mediated immune responses are distinct from those regulating stomatal pattering.

  2. ERECTA and BAK1 Receptor Like Kinases Interact to Regulate Immune Responses in Arabidopsis

    PubMed Central

    Jordá, Lucía; Sopeña-Torres, Sara; Escudero, Viviana; Nuñez-Corcuera, Beatriz; Delgado-Cerezo, Magdalena; Torii, Keiko U.; Molina, Antonio

    2016-01-01

    ERECTA (ER) receptor-like kinase (RLK) regulates Arabidopsis thaliana organ growth, and inflorescence and stomatal development by interacting with the ERECTA-family genes (ERf) paralogs, ER-like 1 (ERL1) and ERL2, and the receptor-like protein (RLP) TOO MANY MOUTHS (TMM). ER also controls immune responses and resistance to pathogens such as the bacterium Pseudomonas syringae pv. tomato DC3000 (Pto) and the necrotrophic fungus Plectosphaerella cucumerina BMM (PcBMM). We found that er null-mutant plants overexpressing an ER dominant-negative version lacking the cytoplasmic kinase domain (ERΔK) showed an enhanced susceptibility to PcBMM, suggesting that ERΔK associates and forms inactive complexes with additional RLKs/RLPs required for PcBMM resistance. Genetic analyses demonstrated that ER acts in a combinatorial specific manner with ERL1, ERL2, and TMM to control PcBMM resistance. Moreover, BAK1 (BRASSINOSTEROID INSENSITIVE 1-associated kinase 1) RLK, which together with ERf/TMM regulates stomatal patterning and resistance to Pto, was also found to have an unequal contribution with ER in regulating immune responses and resistance to PcBMM. Co-immunoprecipitation experiments in Nicotiana benthamiana further demonstrated BAK1-ER protein interaction. The secreted epidermal pattern factor peptides (EPF1 and EPF2), which are perceived by ERf members to specify stomatal patterning, do not seem to regulate ER-mediated immunity to PcBMM, since their inducible overexpression in A. thaliana did not impact on PcBMM resistance. Our results indicate that the multiproteic receptorsome formed by ERf, TMM and BAK1 modulates A. thaliana resistance to PcBMM, and suggest that the cues underlying ERf/TMM/BAK1-mediated immune responses are distinct from those regulating stomatal pattering. PMID:27446127

  3. Interactions in the pollen-specific receptor-like kinases-containing signaling network.

    PubMed

    Löcke, Susanne; Fricke, Inka; Mucha, Elena; Humpert, Marie-Luise; Berken, Antje

    2010-12-01

    The pollen-specific receptor-like kinases (PRKs) from Solanum lycopersicum, LePRK1 and LePRK2, are believed to be involved in the regulation of pollen germination and pollen tube growth. They appear to be part of a multimeric complex in which the transmembranic LePRKs presumably have a key position in transducing exogenous signals through the plasma membrane. Here, we focused on extra- and intracellular interactions involving the LePRKs. We show in yeast two-hybrid experiments a cross-interaction of putative PRK-ligands, the oligomerization of LePRK2 and a direct contact of LePRKs to activated Rho proteins of plants (ROPs). Moreover, we observed that pollen-specific RopGEFs, which catalyze ROP activation and may be regulated by PRK interaction, are active in vitro while autoinhibition seems to occur in vivo. We suggest that activation of RopGEFs as a checkpoint in PRK signal transduction is a more complex event including further components in planta. Our findings point to some new aspects in PRK-mediated signal transduction implying a LePRK2 complex with different signaling activity and a further direct control of LePRKs by activated ROP.

  4. Receptor-Like Kinase RUPO Interacts with Potassium Transporters to Regulate Pollen Tube Growth and Integrity in Rice.

    PubMed

    Liu, Lingtong; Zheng, Canhui; Kuang, Baijan; Wei, Liqin; Yan, Longfeng; Wang, Tai

    2016-07-01

    During sexual reproduction of flowering plants, the pollen tube grows fast and over a long distance within the pistil to deliver two sperms for double fertilization. Growing plant cells need to communicate constantly with external stimuli as well as monitor changes in surface tension of the cell wall and plasma membrane to coordinate these signals and internal growth machinery; however, the underlying mechanisms remain largely unknown. Here we show that the rice member of plant-specific receptor-like kinase CrRLK1Ls subfamily, Ruptured Pollen tube (RUPO), is specifically expressed in rice pollen. RUPO localizes to the apical plasma membrane and vesicle of pollen tubes and is required for male gamete transmission. K+ levels were greater in pollen of homozygous CRISPR-knockout lines than wild-type plants, and pollen tubes burst shortly after germination. We reveal the interaction of RUPO with high-affinity potassium transporters. Phosphorylation of RUPO established and dephosphorylation abolished the interaction. These results have revealed the receptor-like kinase as a regulator of high-affinity potassium transporters via phosphorylation-dependent interaction, and demonstrated a novel receptor-like kinase signaling pathway that mediates K+ homeostasis required for pollen tube growth and integrity.

  5. Receptor-Like Kinase RUPO Interacts with Potassium Transporters to Regulate Pollen Tube Growth and Integrity in Rice

    PubMed Central

    Liu, Lingtong; Zheng, Canhui; Kuang, Baijan; Wei, Liqin; Yan, Longfeng; Wang, Tai

    2016-01-01

    During sexual reproduction of flowering plants, the pollen tube grows fast and over a long distance within the pistil to deliver two sperms for double fertilization. Growing plant cells need to communicate constantly with external stimuli as well as monitor changes in surface tension of the cell wall and plasma membrane to coordinate these signals and internal growth machinery; however, the underlying mechanisms remain largely unknown. Here we show that the rice member of plant-specific receptor-like kinase CrRLK1Ls subfamily, Ruptured Pollen tube (RUPO), is specifically expressed in rice pollen. RUPO localizes to the apical plasma membrane and vesicle of pollen tubes and is required for male gamete transmission. K+ levels were greater in pollen of homozygous CRISPR-knockout lines than wild-type plants, and pollen tubes burst shortly after germination. We reveal the interaction of RUPO with high-affinity potassium transporters. Phosphorylation of RUPO established and dephosphorylation abolished the interaction. These results have revealed the receptor-like kinase as a regulator of high-affinity potassium transporters via phosphorylation-dependent interaction, and demonstrated a novel receptor-like kinase signaling pathway that mediates K+ homeostasis required for pollen tube growth and integrity. PMID:27447945

  6. Two SERK Receptor-Like Kinases Interact with EMS1 to Control Anther Cell Fate Determination1[OPEN

    PubMed Central

    Wang, Yao; Ahsan, Nagib; Biener, Gabriel; Paprocki, Joel

    2017-01-01

    Cell signaling pathways mediated by leucine-rich repeat receptor-like kinases (LRR-RLKs) are essential for plant growth, development, and defense. The EMS1 (EXCESS MICROSPOROCYTES1) LRR-RLK and its small protein ligand TPD1 (TAPETUM DETERMINANT1) play a fundamental role in somatic and reproductive cell differentiation during early anther development in Arabidopsis (Arabidopsis thaliana). However, it is unclear whether other cell surface molecules serve as coregulators of EMS1. Here, we show that SERK1 (SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE1) and SERK2 LRR-RLKs act redundantly as coregulatory and physical partners of EMS1. The SERK1/2 genes function in the same genetic pathway as EMS1 in anther development. Bimolecular fluorescence complementation, Förster resonance energy transfer, and coimmunoprecipitation approaches revealed that SERK1 interacted biochemically with EMS1. Transphosphorylation of EMS1 by SERK1 enhances EMS1 kinase activity. Among 12 in vitro autophosphorylation and transphosphorylation sites identified by tandem mass spectrometry, seven of them were found to be critical for EMS1 autophosphorylation activity. Furthermore, complementation test results suggest that phosphorylation of EMS1 is required for its function in anther development. Collectively, these data provide genetic and biochemical evidence of the interaction and phosphorylation between SERK1/2 and EMS1 in anther development. PMID:27920157

  7. Identification of a novel receptor-like protein kinase that interacts with a geminivirus nuclear shuttle protein.

    PubMed

    Mariano, Andrea C; Andrade, Maxuel O; Santos, Anésia A; Carolino, Sonia M B; Oliveira, Marli L; Baracat-Pereira, Maria Cristina; Brommonshenkel, Sergio H; Fontes, Elizabeth P B

    2004-01-05

    Despite extensive studies in plant virus-host interactions, the molecular mechanisms of geminivirus movement and interactions with host components remain largely unknown. A tomato kinase protein and its soybean homolog were found to interact specifically with the nuclear shuttle protein (NSP) of Tomato golden mosaic virus (TGMV) and Tomato crinkle leaf yellows virus (TCrLYV) through yeast two-hybrid screening and in vitro protein binding assays. These proteins, designated LeNIK (Lycopersicon esculentum NSP-Interacting Kinase) and GmNIK (Glycine max NIK), belong to the LRR-RLK (leucine rich-repeat receptor-like kinase) family that is involved in plant developmental processes and/or resistance response. As such, NIK is structurally organized into characteristic domains, including a serine/threonine kinase domain with a nucleotide binding site at the C-terminal region, an internal transmembrane segment and leucine-rich repeats (LRR) at the N-terminal portion. The potential significance of the NSP-NIK interaction is discussed.

  8. Receptor-like kinases as surface regulators for RAC/ROP-mediated pollen tube growth and interaction with the pistil

    PubMed Central

    Zou, Yanjiao; Aggarwal, Mini; Zheng, Wen-Guang; Wu, Hen-Ming; Cheung, Alice Y.

    2011-01-01

    Background RAC/ROPs are RHO-type GTPases and are known to play diverse signalling roles in plants. Cytoplasmic RAC/ROPs are recruited to the cell membrane and activated in response to extracellular signals perceived and mediated by cell surface-located signalling assemblies, transducing the signals to regulate cellular processes. More than any other cell types in plants, pollen tubes depend on continuous interactions with an extracellular environment produced by their surrounding tissues as they grow within the female organ pistil to deliver sperm to the female gametophyte for fertilization. Scope We review studies on pollen tube growth that provide compelling evidence indicating that RAC/ROPs are crucial for regulating the cellular processes that underlie the polarized cell growth process. Efforts to identify cell surface regulators that mediate extracellular signals also point to RAC/ROPs being the molecular switches targeted by growth-regulating female factors for modulation to mediate pollination and fertilization. We discuss a large volume of work spanning more than two decades on a family of pollen-specific receptor kinases and some recent studies on members of the FERONIA family of receptor-like kinases (RLKs). Significance The research described shows the crucial roles that two RLK families play in transducing signals from growth regulatory factors to the RAC/ROP switch at the pollen tube apex to mediate and target pollen tube growth to the female gametophyte and signal its disintegration to achieve fertilization once inside the female chamber. PMID:22476487

  9. Novel Protein Interactions with Endoglin and Activin Receptor-like Kinase 1: Potential Role in Vascular Networks*

    PubMed Central

    Xu, Guoxiong; Barrios-Rodiles, Miriam; Jerkic, Mirjana; Turinsky, Andrei L.; Nadon, Robert; Vera, Sonia; Voulgaraki, Despina; Wrana, Jeffrey L.; Toporsian, Mourad; Letarte, Michelle

    2014-01-01

    Endoglin and activin receptor-like kinase 1 are specialized transforming growth factor-beta (TGF-β) superfamily receptors, primarily expressed in endothelial cells. Mutations in the corresponding ENG or ACVRL1 genes lead to hereditary hemorrhagic telangiectasia (HHT1 and HHT2 respectively). To discover proteins interacting with endoglin, ACVRL1 and TGF-β receptor type 2 and involved in TGF-β signaling, we applied LUMIER, a high-throughput mammalian interactome mapping technology. Using stringent criteria, we identified 181 novel unique and shared interactions with ACVRL1, TGF-β receptor type 2, and endoglin, defining potential novel important vascular networks. In particular, the regulatory subunit B-beta of the protein phosphatase PP2A (PPP2R2B) interacted with all three receptors. Interestingly, the PPP2R2B gene lies in an interval in linkage disequilibrium with HHT3, for which the gene remains unidentified. We show that PPP2R2B protein interacts with the ACVRL1/TGFBR2/endoglin complex and recruits PP2A to nitric oxide synthase 3 (NOS3). Endoglin overexpression in endothelial cells inhibits the association of PPP2R2B with NOS3, whereas endoglin-deficient cells show enhanced PP2A-NOS3 interaction and lower levels of endogenous NOS3 Serine 1177 phosphorylation. Our data suggest that endoglin regulates NOS3 activation status by regulating PPP2R2B access to NOS3, and that PPP2R2B might be the HHT3 gene. Furthermore, endoglin and ACVRL1 contribute to several novel networks, including TGF-β dependent and independent ones, critical for vascular function and potentially defective in HHT. PMID:24319055

  10. Receptor-like kinases shape the plant.

    PubMed

    De Smet, Ive; Voss, Ute; Jürgens, Gerd; Beeckman, Tom

    2009-10-01

    To generate the various tissues and organs that build up the adult body, plants and animals require organized formative cell divisions and correct cell specification. In plants, these processes are controlled mainly by phytohormones and transcriptional networks. Recently, ligand-receptor-like kinase signalling pathways have been revealed as additional potentially crucial regulators of cell specification in plants. We review here the importance of such signalling cascades for plant growth and development, and we discuss, where possible, similarities to well-investigated cascades in animals.

  11. Interaction of Medicago truncatula Lysin Motif Receptor-Like Kinases, NFP and LYK3, Produced in Nicotiana benthamiana Induces Defence-Like Responses

    PubMed Central

    Pietraszewska-Bogiel, Anna; Lefebvre, Benoit; Koini, Maria A.; Klaus-Heisen, Dörte; Takken, Frank L. W.; Geurts, René; Cullimore, Julie V.; Gadella, Theodorus W.J.

    2013-01-01

    Receptor(-like) kinases with Lysin Motif (LysM) domains in their extracellular region play crucial roles during plant interactions with microorganisms; e.g. Arabidopsis thaliana CERK1 activates innate immunity upon perception of fungal chitin/chitooligosaccharides, whereas Medicago truncatula NFP and LYK3 mediate signalling upon perception of bacterial lipo-chitooligosaccharides, termed Nod factors, during the establishment of mutualism with nitrogen-fixing rhizobia. However, little is still known about the exact activation and signalling mechanisms of MtNFP and MtLYK3. We aimed at investigating putative molecular interactions of MtNFP and MtLYK3 produced in Nicotiana benthamiana. Surprisingly, heterologous co-production of these proteins resulted in an induction of defence-like responses, which included defence-related gene expression, accumulation of phenolic compounds, and cell death. Similar defence-like responses were observed upon production of AtCERK1 in N. benthamiana leaves. Production of either MtNFP or MtLYK3 alone or their co-production with other unrelated receptor(-like) kinases did not induce cell death in N. benthamiana, indicating that a functional interaction between these LysM receptor-like kinases is required for triggering this response. Importantly, structure-function studies revealed that the MtNFP intracellular region, specific features of the MtLYK3 intracellular region (including several putative phosphorylation sites), and MtLYK3 and AtCERK1 kinase activity were indispensable for cell death induction, thereby mimicking the structural requirements of nodulation or chitin-induced signalling. The observed similarity of N. benthamiana response to MtNFP and MtLYK3 co-production and AtCERK1 production suggests the existence of parallels between Nod factor-induced and chitin-induced signalling mediated by the respective LysM receptor(-like) kinases. Notably, the conserved structural requirements for MtNFP and MtLYK3 biological activity in M

  12. SENESCENCE-SUPPRESSED PROTEIN PHOSPHATASE Directly Interacts with the Cytoplasmic Domain of SENESCENCE-ASSOCIATED RECEPTOR-LIKE KINASE and Negatively Regulates Leaf Senescence in Arabidopsis1[OPEN

    PubMed Central

    Xiao, Dong; Cui, Yanjiao; Xu, Fan; Xu, Xinxin; Gao, Guanxiao; Wang, Yaxin; Guo, Zhaoxia; Wang, Dan; Wang, Ning Ning

    2015-01-01

    Reversible protein phosphorylation mediated by protein kinases and phosphatases plays an important role in the regulation of leaf senescence. We previously reported that the leucine-rich repeat receptor-like kinase SENESCENCE-ASSOCIATED RECEPTOR-LIKE KINASE (AtSARK) positively regulates leaf senescence in Arabidopsis (Arabidopsis thaliana). Here, we report the involvement of a protein serine/threonine phosphatase 2C-type protein phosphatase, SENESCENCE-SUPPRESSED PROTEIN PHOSPHATASE (SSPP), in the negative regulation of Arabidopsis leaf senescence. SSPP transcript levels decreased greatly during both natural senescence and SARK-induced precocious senescence. Overexpression of SSPP significantly delayed leaf senescence in Arabidopsis. Protein pull-down and bimolecular fluorescence complementation assays demonstrated that the cytosol-localized SSPP could interact with the cytoplasmic domain of the plasma membrane-localized AtSARK. In vitro assays showed that SSPP has protein phosphatase function and can dephosphorylate the cytosolic domain of AtSARK. Consistent with these observations, overexpression of SSPP effectively rescued AtSARK-induced precocious leaf senescence and changes in hormonal responses. All our results suggested that SSPP functions in sustaining proper leaf longevity and preventing early senescence by suppressing or perturbing SARK-mediated senescence signal transduction. PMID:26304848

  13. Xanthomonas T3S Effector XopN Suppresses PAMP-Triggered Immunity and Interacts with a Tomato Atypical Receptor-Like Kinase and TFT1.

    PubMed

    Kim, Jung-Gun; Li, Xinyan; Roden, Julie Anne; Taylor, Kyle W; Aakre, Chris D; Su, Bessie; Lalonde, Sylvie; Kirik, Angela; Chen, Yanhui; Baranage, Gayathri; McLane, Heather; Martin, Gregory B; Mudgett, Mary Beth

    2009-04-01

    XopN is a virulence factor from Xanthomonas campestris pathovar vesicatoria (Xcv) that is translocated into tomato (Solanum lycopersicum) leaf cells by the pathogen's type III secretion system. Xcv DeltaxopN mutants are impaired in growth and have reduced ability to elicit disease symptoms in susceptible tomato leaves. We show that XopN action in planta reduced pathogen-associated molecular pattern (PAMP)-induced gene expression and callose deposition in host tissue, indicating that XopN suppresses PAMP-triggered immune responses during Xcv infection. XopN is predicted to have irregular, alpha-helical repeats, suggesting multiple protein-protein interactions in planta. Consistent with this prediction, XopN interacted with the cytosolic domain of a Tomato Atypical Receptor-Like Kinase1 (TARK1) and four Tomato Fourteen-Three-Three isoforms (TFT1, TFT3, TFT5, and TFT6) in yeast. XopN/TARK1 and XopN/TFT1 interactions were confirmed in planta by bimolecular fluorescence complementation and pull-down analysis. Xcv DeltaxopN virulence defects were partially suppressed in transgenic tomato leaves with reduced TARK1 mRNA levels, indicating that TARK1 plays an important role in the outcome of Xcv-tomato interactions. These data provide the basis for a model in which XopN binds to TARK1 to interfere with TARK1-dependent signaling events triggered in response to Xcv infection.

  14. The receptor-like kinase SOBIR1 interacts with Brassica napus LepR3 and is required for Leptosphaeria maculans AvrLm1-triggered immunity

    PubMed Central

    Ma, Lisong; Borhan, M. Hossein

    2015-01-01

    The fungus Leptosphaeria maculans (L. maculans) is the causal agent of blackleg disease of canola/oilseed rape (Brassica napus) worldwide. We previously reported cloning of the B. napus blackleg resistance gene, LepR3, which encodes a receptor-like protein. LepR3 triggers localized cell death upon recognition of its cognate Avr protein, AvrLm1. Here, we exploited the Nicotiana benthamiana model plant to investigate the recognition mechanism of AvrLm1 by LepR3. Co-expression of the LepR3/AvrLm1 gene pair in N. benthamiana resulted in development of a hypersensitive response (HR). However, a truncated AvrLm1 lacking its indigenous signal peptide was compromised in its ability to induce LepR3-mediated HR, indicating that AvrLm1 is perceived by LepR3 extracellularly. Structure-function analysis of the AvrLm1 protein revealed that the C-terminal region of AvrLm1 was required for LepR3-mediated HR in N. benthamiana and for resistance to L. maculans in B. napus. LepR3 was shown to be physically interacting with the B. napus receptor like kinase, SOBIR1 (BnSOBIR1). Silencing of NbSOBIR1 or NbSERK3 (BAK1) compromised LepR3-AvrLm1-dependent HR in N. benthamiana, suggesting that LepR3-mediated resistance to L. maculans in B. napus requires SOBIR1 and BAK1/SERK3. Using this model system, we determined that BnSOBIR1 and SERK3/BAK1 are essential partners in the LepR3 signaling complex and were able to define the AvrLm1 effector domain. PMID:26579176

  15. CLE14/CLE20 peptides may interact with CLAVATA2/CORYNE receptor-like kinases to irreversibly inhibit cell division in the root meristem of Arabidopsis

    PubMed Central

    Meng, Ling

    2010-01-01

    Towards an understanding of the interacting nature of the CLAVATA (CLV) complex, we predicted the 3D structures of CLV3/ESR-related (CLE) peptides and the ectodomain of their potential receptor proteins/kinases, and docking models of these molecules. The results show that the ectodomain of CLV1 can form homodimers and that the 12-/13-amino-acid CLV3 peptide fits into the binding clefts of the CLV1 dimers. Our results also demonstrate that the receptor domain of CORYNE (CRN), a recently identified receptor-like kinase, binds tightly to the ectodomain of CLV2, and this likely leads to an increased possibility for docking with CLV1. Furthermore, our docking models reveal that two CRN-CLV2 ectodomain heterodimers are able to form a tetramer receptor complex. Peptides of CLV3, CLE14, CLE19, and CLE20 are also able to bind a potential CLV2-CRN heterodimer or heterotetramer complex. Using a cell-division reporter line, we found that synthetic 12-amino-acid CLE14 and CLE20 peptides inhibit, irreversibly, root growth by reducing cell division rates in the root apical meristem, resulting in a short-root phenotype. Intriguingly, we observed that exogenous application of cytokinin can partially rescue the short-root phenotype induced by over-expression of either CLE14 or CLE20 in planta. However, cytokinin treatment does not rescue the short-root phenotype caused by exogenous application of the synthetic CLE14/CLE20 peptides, suggesting a requirement for a condition provided only in living plants. These results therefore imply that the CLE14/CLE20 peptides may act through the CLV2-CRN receptor kinase, and that their availabilities and/or abundances may be affected by cytokinin activity in planta. PMID:20697738

  16. GLYCINE-RICH RNA-BINDING PROTEIN1 interacts with RECEPTOR-LIKE CYTOPLASMIC PROTEIN KINASE1 and suppresses cell death and defense responses in pepper (Capsicum annuum).

    PubMed

    Kim, Dae Sung; Kim, Nak Hyun; Hwang, Byung Kook

    2015-01-01

    Plants use a variety of innate immune regulators to trigger cell death and defense responses against pathogen attack. We identified pepper (Capsicum annuum) GLYCINE-RICH RNA-BINDING PROTEIN1 (CaGRP1) as a RECEPTOR-LIKE CYTOPLASMIC PROTEIN KINASE1 (CaPIK1)-interacting partner, based on bimolecular fluorescence complementation and coimmunoprecipitation analyses as well as gene silencing and transient expression analysis. CaGRP1 contains an N-terminal RNA recognition motif and a glycine-rich region at the C-terminus. The CaGRP1 protein had DNA- and RNA-binding activity in vitro. CaGRP1 interacted with CaPIK1 in planta. CaGRP1 and CaGRP1-CaPIK1 complexes were localized to the nucleus in plant cells. CaPIK1 phosphorylated CaGRP1 in vitro and in planta. Transient coexpression of CaGRP1 with CaPIK1 suppressed the CaPIK1-triggered cell death response, accompanied by a reduced CaPIK1-triggered reactive oxygen species (ROS) burst. The RNA recognition motif region of CaGRP1 was responsible for the nuclear localization of CaGRP1 as well as the suppression of the CaPIK1-triggered cell death response. CaGRP1 silencing in pepper conferred enhanced resistance to Xanthomonas campestris pv vesicatoria (Xcv) infection; however, CaPIK1-silenced plants were more susceptible to Xcv. CaGRP1 interacts with CaPIK1 and negatively regulates CaPIK1-triggered cell death and defense responses by suppressing ROS accumulation.

  17. CAST AWAY, a membrane-associated receptor-like kinase, inhibits organ abscission in Arabidopsis.

    PubMed

    Burr, Christian A; Leslie, Michelle E; Orlowski, Sara K; Chen, Iris; Wright, Catherine E; Daniels, Mark J; Liljegren, Sarah J

    2011-08-01

    Receptor-like kinase-mediated cell signaling pathways play fundamental roles in many aspects of plant growth and development. A pair of Arabidopsis (Arabidopsis thaliana) leucine-rich repeat receptor-like kinases (LRR-RLKs), HAESA (HAE) and HAESA-LIKE2 (HSL2), have been shown to activate the cell separation process that leads to organ abscission. Another pair of LRR-RLKs, EVERSHED (EVR) and SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE1, act as inhibitors of abscission, potentially by modulating HAE/HSL2 activity. Cycling of these RLKs to and from the cell surface may be regulated by NEVERSHED (NEV), a membrane trafficking regulator that is essential for organ abscission. We report here the characterization of CAST AWAY (CST), a receptor-like cytoplasmic kinase that acts as a spatial inhibitor of cell separation. Disruption of CST suppresses the abscission defects of nev mutant flowers and restores the discrete identity of the trans-Golgi network in nev abscission zones. After organ shedding, enlarged abscission zones with obscured boundaries are found in nev cst flowers. We show that CST is a dual-specificity kinase in vitro and that myristoylation at its amino terminus promotes association with the plasma membrane. Using the bimolecular fluorescence complementation assay, we have detected interactions of CST with HAE and EVR at the plasma membrane of Arabidopsis protoplasts and hypothesize that CST negatively regulates cell separation signaling directly and indirectly. A model integrating the potential roles of receptor-like kinase signaling and membrane trafficking during organ separation is presented.

  18. Tackling Drought Stress: RECEPTOR-LIKE KINASES Present New Approaches

    PubMed Central

    Marshall, Alex; Aalen, Reidunn B.; Audenaert, Dominique; Beeckman, Tom; Broadley, Martin R.; Butenko, Melinka A.; Caño-Delgado, Ana I.; de Vries, Sacco; Dresselhaus, Thomas; Felix, Georg; Graham, Neil S.; Foulkes, John; Granier, Christine; Greb, Thomas; Grossniklaus, Ueli; Hammond, John P.; Heidstra, Renze; Hodgman, Charlie; Hothorn, Michael; Inzé, Dirk; Østergaard, Lars; Russinova, Eugenia; Simon, Rüdiger; Skirycz, Aleksandra; Stahl, Yvonne; Zipfel, Cyril; De Smet, Ive

    2012-01-01

    Global climate change and a growing population require tackling the reduction in arable land and improving biomass production and seed yield per area under varying conditions. One of these conditions is suboptimal water availability. Here, we review some of the classical approaches to dealing with plant response to drought stress and we evaluate how research on RECEPTOR-LIKE KINASES (RLKs) can contribute to improving plant performance under drought stress. RLKs are considered as key regulators of plant architecture and growth behavior, but they also function in defense and stress responses. The available literature and analyses of available transcript profiling data indeed suggest that RLKs can play an important role in optimizing plant responses to drought stress. In addition, RLK pathways are ideal targets for nontransgenic approaches, such as synthetic molecules, providing a novel strategy to manipulate their activity and supporting translational studies from model species, such as Arabidopsis thaliana, to economically useful crops. PMID:22693282

  19. Plant cell wall signalling and receptor-like kinases.

    PubMed

    Wolf, Sebastian

    2017-02-15

    Communication between the extracellular matrix and the cell interior is essential for all organisms as intrinsic and extrinsic cues have to be integrated to co-ordinate development, growth, and behaviour. This applies in particular to plants, the growth and shape of which is governed by deposition and remodelling of the cell wall, a rigid, yet dynamic, extracellular network. It is thus generally assumed that cell wall surveillance pathways exist to monitor the state of the wall and, if needed, elicit compensatory responses such as altered expression of cell wall remodelling and biosynthesis genes. Here, I highlight recent advances in the field of cell wall signalling in plants, with emphasis on the role of plasma membrane receptor-like kinase complexes. In addition, possible roles for cell wall-mediated signalling beyond the maintenance of cell wall integrity are discussed. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  20. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases

    PubMed Central

    Shiu, Shin-Han; Bleecker, Anthony B.

    2001-01-01

    Plant receptor-like kinases (RLKs) are proteins with a predicted signal sequence, single transmembrane region, and cytoplasmic kinase domain. Receptor-like kinases belong to a large gene family with at least 610 members that represent nearly 2.5% of Arabidopsis protein coding genes. We have categorized members of this family into subfamilies based on both the identity of the extracellular domains and the phylogenetic relationships between the kinase domains of subfamily members. Surprisingly, this structurally defined group of genes is monophyletic with respect to kinase domains when compared with the other eukaryotic kinase families. In an extended analysis, animal receptor kinases, Raf kinases, plant RLKs, and animal receptor tyrosine kinases form a well supported group sharing a common origin within the superfamily of serine/threonine/tyrosine kinases. Among animal kinase sequences, Drosophila Pelle and related cytoplasmic kinases fall within the plant RLK clade, which we now define as the RLK/Pelle family. A survey of expressed sequence tag records for land plants reveals that mosses, ferns, conifers, and flowering plants have similar percentages of expressed sequence tags representing RLK/Pelle homologs, suggesting that the size of this gene family may have been close to the present-day level before the diversification of land plant lineages. The distribution pattern of four RLK subfamilies on Arabidopsis chromosomes indicates that the expansion of this gene family is partly a consequence of duplication and reshuffling of the Arabidopsis genome and of the generation of tandem repeats. PMID:11526204

  1. Novel receptor-like kinases in cacao contain PR-1 extracellular domains.

    PubMed

    Teixeira, Paulo José Pereira Lima; Costa, Gustavo Gilson Lacerda; Fiorin, Gabriel Lorencini; Pereira, Gonçalo Amarante Guimarães; Mondego, Jorge Maurício Costa

    2013-08-01

    Members of the pathogenesis-related protein 1 (PR-1) family are well-known markers of plant defence responses, forming part of the arsenal of the secreted proteins produced on pathogen recognition. Here, we report the identification of two cacao (Theobroma cacao L.) PR-1s that are fused to transmembrane regions and serine/threonine kinase domains, in a manner characteristic of receptor-like kinases (RLKs). These proteins (TcPR-1f and TcPR-1g) were named PR-1 receptor kinases (PR-1RKs). Phylogenetic analysis of RLKs and PR-1 proteins from cacao indicated that PR-1RKs originated from a fusion between sequences encoding PR-1 and the kinase domain of a LecRLK (Lectin Receptor-Like Kinase). Retrotransposition marks surround TcPR-1f, suggesting that retrotransposition was involved in the origin of PR-1RKs. Genes with a similar domain architecture to cacao PR-1RKs were found in rice (Oryza sativa), barrel medic (Medicago truncatula) and a nonphototrophic bacterium (Herpetosiphon aurantiacus). However, their kinase domains differed from those found in LecRLKs, indicating the occurrence of convergent evolution. TcPR-1g expression was up-regulated in the biotrophic stage of witches' broom disease, suggesting a role for PR-1RKs during cacao defence responses. We hypothesize that PR-1RKs transduce a defence signal by interacting with a PR-1 ligand. © 2013 BSPP AND JOHN WILEY & SONS LTD.

  2. A novel Glycine soja cysteine proteinase inhibitor GsCPI14, interacting with the calcium/calmodulin-binding receptor-like kinase GsCBRLK, regulated plant tolerance to alkali stress.

    PubMed

    Sun, Xiaoli; Yang, Shanshan; Sun, Mingzhe; Wang, Sunting; Ding, Xiaodong; Zhu, Dan; Ji, Wei; Cai, Hua; Zhao, Chaoyue; Wang, Xuedong; Zhu, Yanming

    2014-05-01

    It has been well demonstrated that cystatins regulated plant stress tolerance through inhibiting the cysteine proteinase activity under environmental stress. However, there was limited information about the role of cystatins in plant alkali stress response, especially in wild soybean. Here, in this study, we focused on the biological characterization of a novel Glycine soja cystatin protein GsCPI14, which interacted with the calcium/calmodulin-binding receptor-like kinase GsCBRLK and positively regulated plant alkali stress tolerance. The protein-protein interaction between GsCBRLK and GsCPI14 was confirmed by using split-ubiquitin based membrane yeast two-hybrid analysis and bimolecular fluorescence complementation assay. Expression of GsCPI14 was greatly induced by salt, ABA and alkali stress in G. soja, and GsCBRLK overexpression (OX) in Glycine max promoted the stress induction of GmCPI14 expression under stress conditions. Furthermore, we found that GsCPI14-eGFP fusion protein localized in the entire Arabidopsis protoplast and onion epidermal cell, and GsCPI14 showed ubiquitous expression in different tissues of G. soja. In addition, we gave evidence that the GST-GsCPI14 fusion protein inhibited the proteolytic activity of papain in vitro. At last, we demonstrated that OX of GsCPI14 in Arabidopsis promoted the seed germination under alkali stress, as evidenced by higher germination rates. GsCPI14 transgenic Arabidopsis seedlings also displayed better growth performance and physiological index under alkali stress. Taken together, results presented in this study demonstrated that the G. soja cysteine proteinase inhibitor GsCPI14 interacted with the calcium/calmodulin-binding receptor-like kinase GsCBRLK and regulated plant tolerance to alkali stress.

  3. Expansion of the Receptor-Like Kinase/Pelle Gene Family and Receptor-Like Proteins in Arabidopsis1[w

    PubMed Central

    Shin-Han, Shiu; Bleecker, Anthony B.

    2003-01-01

    Receptor-like kinases (RLKs) are a family of transmembrane proteins with versatile N-terminal extracellular domains and C-terminal intracellular kinases. They control a wide range of physiological responses in plants and belong to one of the largest gene families in the Arabidopsis genome with more than 600 members. Interestingly, this gene family constitutes 60% of all kinases in Arabidopsis and accounts for nearly all transmembrane kinases in Arabidopsis. Analysis of four fungal, six metazoan, and two Plasmodium sp. genomes indicates that the family was represented in all but fungal genomes, indicating an ancient origin for the family with a more recent expansion only in the plant lineages. The RLK/Pelle family can be divided into several subfamilies based on three independent criteria: the phylogeny based on kinase domain sequences, the extracellular domain identities, and intron locations and phases. A large number of receptor-like proteins (RLPs) resembling the extracellular domains of RLKs are also found in the Arabidopsis genome. However, not all RLK subfamilies have corresponding RLPs. Several RLK/Pelle subfamilies have undergone differential expansions. More than 33% of the RLK/Pelle members are found in tandem clusters, substantially higher than the genome average. In addition, 470 of the RLK/Pelle family members are located within the segmentally duplicated regions in the Arabidopsis genome and 268 of them have a close relative in the corresponding regions. Therefore, tandem duplications and segmental/whole-genome duplications represent two of the major mechanisms for the expansion of the RLK/Pelle family in Arabidopsis. PMID:12805585

  4. Immunoprecipitation of Plasma Membrane Receptor-Like Kinases for Identification of Phosphorylation Sites and Associated Proteins.

    PubMed

    Kadota, Yasuhiro; Macho, Alberto P; Zipfel, Cyril

    2016-01-01

    Membrane proteins are difficult to study for numerous reasons. The surface of membrane proteins is relatively hydrophobic and sometimes very unstable, additionally requiring detergents for their extraction from the membrane. This leads to challenges at all levels, including expression, solubilization, purification, identification of associated proteins, and the identification of post-translational modifications. However, recent advances in immunoprecipitation technology allow to isolate membrane proteins efficiently, facilitating the study of protein-protein interactions, the identification of novel associated proteins, and to identify post-translational modifications, such as phosphorylation. Here, we describe an optimized immunoprecipitation protocol for plant plasma membrane receptor-like kinases.

  5. Genome-wide analysis of lectin receptor-like kinases in Populus

    DOE PAGES

    Yang, Yongil; Labbé, Jessy; Muchero, Wellington; ...

    2016-09-01

    Receptor-like kinases (RLKs) belong to a large protein family with over 600 members in Arabidopsis and over 1000 in rice. Among RLKs, the lectin receptor-like kinases (LecRLKs) possess a characteristic extracellular carbohydrate-binding lectin domain and play important roles in plant development and innate immunity. In addition, there are 75 and 173 LecRLKs in Arabidopsis and rice, respectively. However, little is known about LecRLKs in perennial woody plants.

  6. Genome-wide analysis of lectin receptor-like kinases in Populus

    SciTech Connect

    Yang, Yongil; Labbé, Jessy; Muchero, Wellington; Yang, Xiaohan; Jawdy, Sara S.; Kennedy, Megan; Johnson, Jenifer; Sreedasyam, Avinash; Schmutz, Jeremy; Tuskan, Gerald A.; Chen, Jin -Gui

    2016-09-01

    Receptor-like kinases (RLKs) belong to a large protein family with over 600 members in Arabidopsis and over 1000 in rice. Among RLKs, the lectin receptor-like kinases (LecRLKs) possess a characteristic extracellular carbohydrate-binding lectin domain and play important roles in plant development and innate immunity. In addition, there are 75 and 173 LecRLKs in Arabidopsis and rice, respectively. However, little is known about LecRLKs in perennial woody plants.

  7. Carbonic Anhydrases Function in Anther Cell Differentiation Downstream of the Receptor-Like Kinase EMS1.

    PubMed

    Huang, Jian; Li, Zhiyong; Biener, Gabriel; Xiong, Erhui; Malik, Shikha; Eaton, Nathan; Zhao, Catherine Z; Raicu, Valerica; Kong, Hongzhi; Zhao, Dazhong

    2017-06-01

    Plants extensively employ leucine-rich repeat receptor-like kinases (LRR-RLKs), the largest family of RLKs, to control a wide range of growth and developmental processes as well as defense responses. To date, only a few direct downstream effectors for LRR-RLKs have been identified. We previously showed that the LRR-RLK EMS1 (EXCESS MICROSPOROCYTES1) and its ligand TPD1 (TAPETUM DETERMINANT1) are required for the differentiation of somatic tapetal cells and reproductive microsporocytes during early anther development in Arabidopsis thaliana Here, we report the identification of β-carbonic anhydrases (βCAs) as the direct downstream targets of EMS1. EMS1 biochemically interacts with βCA proteins. Loss of function of βCA genes caused defective tapetal cell differentiation, while overexpression of βCA1 led to the formation of extra tapetal cells. EMS1 phosphorylates βCA1 at four sites, resulting in increased βCA1 activity. Furthermore, phosphorylation-blocking mutations impaired the function of βCA1 in tapetal cell differentiation; however, a phosphorylation mimic mutation promoted the formation of tapetal cells. βCAs are also involved in pH regulation in tapetal cells. Our findings highlight the role of βCA in controlling cell differentiation and provide insights into the posttranslational modification of carbonic anhydrases via receptor-like kinase-mediated phosphorylation. © 2017 American Society of Plant Biologists. All rights reserved.

  8. Avr4 promotes Cf-4 receptor-like protein association with the BAK1/SERK3 receptor-like kinase to initiate receptor endocytosis and plant immunity.

    PubMed

    Postma, Jelle; Liebrand, Thomas W H; Bi, Guozhi; Evrard, Alexandre; Bye, Ruby R; Mbengue, Malick; Kuhn, Hannah; Joosten, Matthieu H A J; Robatzek, Silke

    2016-04-01

    The first layer of plant immunity is activated by cell surface receptor-like kinases (RLKs) and proteins (RLPs) that detect infectious pathogens. Constitutive interaction with the SUPPRESSOR OF BIR1 (SOBIR1) RLK contributes to RLP stability and kinase activity. As RLK activation requires transphosphorylation with a second associated RLK, it remains elusive how RLPs initiate downstream signaling. We employed live-cell imaging, gene silencing and coimmunoprecipitation to investigate the requirement of associated kinases for functioning and ligand-induced subcellular trafficking of Cf RLPs that mediate immunity of tomato against Cladosporium fulvum. Our research shows that after elicitation with matching effector ligands Avr4 and Avr9, BRI1-ASSOCIATED KINASE 1/SOMATIC EMBRYOGENESIS RECEPTOR KINASE 3 (BAK1/SERK3) associates with Cf-4 and Cf-9. BAK1/SERK3 is required for the effector-triggered hypersensitive response and resistance of tomato against C. fulvum. Furthermore, Cf-4 interacts with SOBIR1 at the plasma membrane and is recruited to late endosomes upon Avr4 trigger, also depending on BAK1/SERK3. These observations indicate that RLP-mediated resistance and endocytosis require ligand-induced recruitment of BAK1/SERK3, reminiscent of BAK1/SERK3 interaction and subcellular fate of the FLAGELLIN SENSING 2 (FLS2) RLK. This reveals that diverse classes of cell surface immune receptors share common requirements for initiation of resistance and endocytosis. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  9. The Capsicum annuum class IV chitinase ChitIV interacts with receptor-like cytoplasmic protein kinase PIK1 to accelerate PIK1-triggered cell death and defence responses.

    PubMed

    Kim, Dae Sung; Kim, Nak Hyun; Hwang, Byung Kook

    2015-04-01

    The pepper receptor-like cytoplasmic protein kinase, CaPIK1, which mediates signalling of plant cell death and defence responses was previously identified. Here, the identification of a class IV chitinase, CaChitIV, from pepper plants (Capsicum annuum), which interacts with CaPIK1 and promotes CaPIK1-triggered cell death and defence responses, is reported. CaChitIV contains a signal peptide, chitin-binding domain, and glycol hydrolase domain. CaChitIV expression was up-regulated by Xanthomonas campestris pv. vesicatoria (Xcv) infection. Notably, avirulent Xcv infection rapidly induced CaChitIV expression in pepper leaves. Bimolecular fluorescence complementation and co-immunoprecipitation revealed that CaPIK1 interacts with CaChitIV in planta, and that the CaPIK1-CaChitIV complex is localized mainly in the cytoplasm and plasma membrane. CaChitIV is also localized in the endoplasmic reticulum. Transient co-expression of CaChitIV with CaPIK1 enhanced CaPIK1-triggered cell death response and reactive oxygen species (ROS) and nitric oxide (NO) bursts. Co-silencing of both CaChitIV and CaPIK1 in pepper plants conferred enhanced susceptibility to Xcv infection, which was accompanied by a reduced induction of cell death response, ROS and NO bursts, and defence response genes. Ectopic expression of CaPIK1 in Arabidopsis enhanced basal resistance to Hyaloperonospora arabidopsidis infection. Together, the results suggest that CaChitIV positively regulates CaPIK1-triggered cell death and defence responses through its interaction with CaPIK1. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  10. The Capsicum annuum class IV chitinase ChitIV interacts with receptor-like cytoplasmic protein kinase PIK1 to accelerate PIK1-triggered cell death and defence responses

    PubMed Central

    Kim, Dae Sung; Kim, Nak Hyun; Hwang, Byung Kook

    2015-01-01

    The pepper receptor-like cytoplasmic protein kinase, CaPIK1, which mediates signalling of plant cell death and defence responses was previously identified. Here, the identification of a class IV chitinase, CaChitIV, from pepper plants (Capsicum annuum), which interacts with CaPIK1 and promotes CaPIK1-triggered cell death and defence responses, is reported. CaChitIV contains a signal peptide, chitin-binding domain, and glycol hydrolase domain. CaChitIV expression was up-regulated by Xanthomonas campestris pv. vesicatoria (Xcv) infection. Notably, avirulent Xcv infection rapidly induced CaChitIV expression in pepper leaves. Bimolecular fluorescence complementation and co-immunoprecipitation revealed that CaPIK1 interacts with CaChitIV in planta, and that the CaPIK1–CaChitIV complex is localized mainly in the cytoplasm and plasma membrane. CaChitIV is also localized in the endoplasmic reticulum. Transient co-expression of CaChitIV with CaPIK1 enhanced CaPIK1-triggered cell death response and reactive oxygen species (ROS) and nitric oxide (NO) bursts. Co-silencing of both CaChitIV and CaPIK1 in pepper plants conferred enhanced susceptibility to Xcv infection, which was accompanied by a reduced induction of cell death response, ROS and NO bursts, and defence response genes. Ectopic expression of CaPIK1 in Arabidopsis enhanced basal resistance to Hyaloperonospora arabidopsidis infection. Together, the results suggest that CaChitIV positively regulates CaPIK1-triggered cell death and defence responses through its interaction with CaPIK1. PMID:25694549

  11. A receptor-like kinase from Arabidopsis thaliana is a calmodulin-binding protein.

    PubMed Central

    Charpenteau, Martine; Jaworski, Krzysztof; Ramirez, Bertha C; Tretyn, Andrzej; Ranjeva, Raoul; Ranty, Benoît

    2004-01-01

    Screening a cDNA expression library with a radiolabelled calmodulin (CaM) probe led to the isolation of AtCaMRLK, a receptor-like kinase (RLK) of Arabidopsis thaliana. AtCaMRLK polypeptide sequence shows a modular organization consisting of the four distinctive domains characteristic of receptor kinases: an amino terminal signal sequence, a domain containing seven leucine-rich repeats, a single putative membrane-spanning segment and a protein kinase domain. Using truncated versions of the protein and a synthetic peptide, we demonstrated that a region of 23 amino acids, located near the kinase domain of AtCaMRLK, binds CaM in a calcium-dependent manner. Real-time binding experiments showed that AtCaMRLK interacted in vitro with AtCaM1, a canonical CaM, but not with AtCaM8, a divergent isoform of the Ca2+ sensor. The bacterially expressed kinase domain of the protein was able to autophosphorylate and to phosphorylate the myelin basic protein, using Mn2+ preferentially to Mg2+ as an ion activator. Site-directed mutagenesis of the conserved lysine residue (Lys423) to alanine, in the kinase subdomain II, resulted in a complete loss of kinase activity. CaM had no influence on the autophosphorylation activity of AtCaMRLK. AtCaMRLK was expressed in reproductive and vegetative tissues of A. thaliana, except in leaves. Disruption in the AtCaMRLK coding sequence by insertion of a DsG transposable element in an Arabidopsis mutant did not generate a discernible phenotype. The CaM-binding motif of AtCaMRLK was found to be conserved in several other members of the plant RLK family, suggesting a role for Ca2+/CaM in the regulation of RLK-mediated pathways. PMID:14720124

  12. Crystal structure of the plant receptor-like kinase TDR in complex with the TDIF peptide

    PubMed Central

    Morita, Junko; Kato, Kazuki; Nakane, Takanori; Kondo, Yuki; Fukuda, Hiroo; Nishimasu, Hiroshi; Ishitani, Ryuichiro; Nureki, Osamu

    2016-01-01

    In plants, leucine-rich repeat receptor-like kinases (LRR-RKs) perceive ligands, including peptides and small molecules, to regulate various physiological processes. TDIF, a member of the CLE peptide family, specifically interacts with the LRR-RK TDR to inhibit meristem differentiation into tracheary elements, and promotes cell proliferation. Here we report the crystal structure of the extracellular domain of TDR in complex with the TDIF peptide. The extracellular domain of TDR adopts a superhelical structure comprising 22 LRRs, and specifically recognizes TDIF by its inner concave surface. Together with our biochemical and sequence analyses, our structure reveals a conserved TDIF-recognition mechanism of TDR among plant species. Furthermore, a structural comparison of TDR with other plant LRR-RKs suggested the activation mechanism of TDR by TDIF. The structure of this CLE peptide receptor provides insights into the recognition mechanism of the CLE family peptides. PMID:27498761

  13. Pepper suppressor of the G2 allele of skp1 interacts with the receptor-like cytoplasmic kinase1 and type III effector AvrBsT and promotes the hypersensitive cell death response in a phosphorylation-dependent manner.

    PubMed

    Kim, Nak Hyun; Kim, Dae Sung; Chung, Eui Hwan; Hwang, Byung Kook

    2014-05-01

    Xanthomonas campestris pv vesicatoria type III effector protein, AvrBsT, triggers hypersensitive cell death in pepper (Capsicum annuum). Here, we have identified the pepper SGT1 (for suppressor of the G2 allele of skp1) as a host interactor of AvrBsT and also the pepper PIK1 (for receptor-like cytoplasmic kinase1). PIK1 specifically phosphorylates SGT1 and AvrBsT in vitro. AvrBsT specifically binds to the CHORD-containing protein and SGT1 domain of SGT1, resulting in the inhibition of PIK1-mediated SGT1 phosphorylation and subsequent nuclear transport of the SGT1-PIK1 complex. Liquid chromatography-tandem mass spectrometry of the proteolytic peptides of SGT1 identified the residues serine-98 and serine-279 of SGT1 as the major PIK1-mediated phosphorylation sites. Site-directed mutagenesis of SGT1 revealed that the identified SGT1 phosphorylation sites are responsible for the activation of AvrBsT-triggered cell death in planta. SGT1 forms a heterotrimeric complex with both AvrBsT and PIK1 exclusively in the cytoplasm. Agrobacterium tumefaciens-mediated coexpression of SGT1 and PIK1 with avrBsT promotes avrBsT-triggered cell death in Nicotiana benthamiana, dependent on PIK1. Virus-induced silencing of SGT1 and/or PIK1 compromises avrBsT-triggered cell death, hydrogen peroxide production, defense gene induction, and salicylic acid accumulation, leading to the enhanced bacterial pathogen growth in pepper. Together, these results suggest that SGT1 interacts with PIK1 and the bacterial effector protein AvrBsT and promotes the hypersensitive cell death associated with PIK1-mediated phosphorylation in plants.

  14. Control of anther cell differentiation: a teamwork of receptor-like kinases.

    PubMed

    Zhao, Dazhong

    2009-12-01

    Successful sexual reproduction depends on normal cell differentiation during early anther development in flowering plants. The anther typically has four lobes, each of which contains highly specialized reproductive (microsporocyte) and somatic cells (epidermis, endothecium, middle layer, and tapetum). To date, six leucine-rich repeat receptor-like protein kinases (LRR-RLK) have been identified to have roles in regulation of anther cell patterning in Arabidopsis thaliana. EXCESS MICROSPOROCYTES1 (EMS1)/EXTRA SPOROGENOUS CELLS (EXS) and SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASES1/2 (SERK1/2) signal the differentiation of the tapetum. BARELY ANY MERISTEM1/2 (BAM1/2) defines anther somatic cell layers, including the endothecium, middle layer, and tapetum. Moreover, RECEPTOR-LIKE PROTEIN KINASE2 (RPK2) is required for the differentiation of middle layer cells. In addition to process of anther cell differentiation, conserved regulation of anther cell differentiation in different plant species, this review mainly discusses how these receptor-like kinases and other regulators work together to control anther cell fate determination in Arabidopsis.

  15. Evolutionary Dynamics of the Leucine-Rich Repeat Receptor-Like Kinase (LRR-RLK) Subfamily in Angiosperms.

    PubMed

    Fischer, Iris; Diévart, Anne; Droc, Gaetan; Dufayard, Jean-François; Chantret, Nathalie

    2016-03-01

    Gene duplications are an important factor in plant evolution, and lineage-specific expanded (LSE) genes are of particular interest. Receptor-like kinases expanded massively in land plants, and leucine-rich repeat receptor-like kinases (LRR-RLK) constitute the largest receptor-like kinases family. Based on the phylogeny of 7,554 LRR-RLK genes from 31 fully sequenced flowering plant genomes, the complex evolutionary dynamics of this family was characterized in depth. We studied the involvement of selection during the expansion of this family among angiosperms. LRR-RLK subgroups harbor extremely contrasting rates of duplication, retention, or loss, and LSE copies are predominantly found in subgroups involved in environmental interactions. Expansion rates also differ significantly depending on the time when rounds of expansion or loss occurred on the angiosperm phylogenetic tree. Finally, using a dN/dS-based test in a phylogenetic framework, we searched for selection footprints on LSE and single-copy LRR-RLK genes. Selective constraint appeared to be globally relaxed at LSE genes, and codons under positive selection were detected in 50% of them. Moreover, the leucine-rich repeat domains, and specifically four amino acids in them, were found to be the main targets of positive selection. Here, we provide an extensive overview of the expansion and evolution of this very large gene family.

  16. Evolutionary Dynamics of the Leucine-Rich Repeat Receptor-Like Kinase (LRR-RLK) Subfamily in Angiosperms1[OPEN

    PubMed Central

    Dufayard, Jean-François; Chantret, Nathalie

    2016-01-01

    Gene duplications are an important factor in plant evolution, and lineage-specific expanded (LSE) genes are of particular interest. Receptor-like kinases expanded massively in land plants, and leucine-rich repeat receptor-like kinases (LRR-RLK) constitute the largest receptor-like kinases family. Based on the phylogeny of 7,554 LRR-RLK genes from 31 fully sequenced flowering plant genomes, the complex evolutionary dynamics of this family was characterized in depth. We studied the involvement of selection during the expansion of this family among angiosperms. LRR-RLK subgroups harbor extremely contrasting rates of duplication, retention, or loss, and LSE copies are predominantly found in subgroups involved in environmental interactions. Expansion rates also differ significantly depending on the time when rounds of expansion or loss occurred on the angiosperm phylogenetic tree. Finally, using a dN/dS-based test in a phylogenetic framework, we searched for selection footprints on LSE and single-copy LRR-RLK genes. Selective constraint appeared to be globally relaxed at LSE genes, and codons under positive selection were detected in 50% of them. Moreover, the leucine-rich repeat domains, and specifically four amino acids in them, were found to be the main targets of positive selection. Here, we provide an extensive overview of the expansion and evolution of this very large gene family. PMID:26773008

  17. LysM receptor-like kinases to improve plant defense response against fungal pathogens

    DOEpatents

    Wan, Jinrong; Stacey, Gary; Stacey, Minviluz; Zhang, Xuecheng

    2013-10-15

    Perception of chitin fragments (chitooligosaccharides) is an important first step in plant defense response against fungal pathogen. LysM receptor-like kinases (LysM RLKs) are instrumental in this perception process. LysM RLKs also play a role in activating transcription of chitin-responsive genes (CRGs) in plants. Mutations in the LysM kinase receptor genes or the downstream CRGs may affect the fungal susceptibility of a plant. Mutations in LysM RLKs or transgenes carrying the same may be beneficial in imparting resistance against fungal pathogens.

  18. LysM receptor-like kinases to improve plant defense response against fungal pathogens

    DOEpatents

    Wan, Jinrong [Columbia, MO; Stacey, Gary [Columbia, MO; Stacey, Minviluz [Columbia, MO; Zhang, Xuecheng [Columbia, MO

    2012-01-17

    Perception of chitin fragments (chitooligosaccharides) is an important first step in plant defense response against fungal pathogen. LysM receptor-like kinases (LysM RLKs) are instrumental in this perception process. LysM RLKs also play a role in activating transcription of chitin-responsive genes (CRGs) in plants. Mutations in the LysM kinase receptor genes or the downstream CRGs may affect the fungal susceptibility of a plant. Mutations in LysM RLKs or transgenes carrying the same may be beneficial in imparting resistance against fungal pathogens.

  19. Plant Lectins and Lectin Receptor-Like Kinases: How Do They Sense the Outside?

    PubMed

    Bellande, Kevin; Bono, Jean-Jacques; Savelli, Bruno; Jamet, Elisabeth; Canut, Hervé

    2017-05-31

    Lectins are fundamental to plant life and have important roles in cell-to-cell communication; development and defence strategies. At the cell surface; lectins are present both as soluble proteins (LecPs) and as chimeric proteins: lectins are then the extracellular domains of receptor-like kinases (LecRLKs) and receptor-like proteins (LecRLPs). In this review; we first describe the domain architectures of proteins harbouring G-type; L-type; LysM and malectin carbohydrate-binding domains. We then focus on the functions of LecPs; LecRLKs and LecRLPs referring to the biological processes they are involved in and to the ligands they recognize. Together; LecPs; LecRLKs and LecRLPs constitute versatile recognition systems at the cell surface contributing to the detection of symbionts and pathogens; and/or involved in monitoring of the cell wall structure and cell growth.

  20. An update on receptor-like kinase involvement in the maintenance of plant cell wall integrity.

    PubMed

    Engelsdorf, Timo; Hamann, Thorsten

    2014-10-01

    Plant cell walls form the interface between the cells and their environment. They perform different functions, such as protecting cells from biotic and abiotic stress and providing structural support during development. Maintenance of the functional integrity of cell walls during these different processes is a prerequisite that enables the walls to perform their particular functions. The available evidence suggests that an integrity maintenance mechanism exists in plants that is capable of both detecting wall integrity impairment caused by cell wall damage and initiating compensatory responses to maintain functional integrity. The responses involve 1-aminocyclopropane-1-carboxylic acid (ACC), jasmonic acid, reactive oxygen species and calcium-based signal transduction cascades as well as the production of lignin and other cell wall components. Experimental evidence implicates clearly different signalling molecules, but knowledge regarding contributions of receptor-like kinases to this process is less clear. Different receptor-like kinase families have been considered as possible sensors for perception of cell wall damage; however, strong experimental evidence that provides insights into functioning exists for very few kinases. This review examines the involvement of cell wall integrity maintenance in different biological processes, defines what constitutes plant cell wall damage that impairs functional integrity, clarifies which stimulus perception and signal transduction mechanisms are required for integrity maintenance and assesses the available evidence regarding the functions of receptor-like kinases during cell wall integrity maintenance. The review concludes by discussing how the plant cell wall integrity maintenance mechanism could form an essential component of biotic stress responses and of plant development, functions that have not been fully recognized to date. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany

  1. Ligand-induced dynamics of heterotrimeric G protein-coupled receptor-like kinase complexes

    DOE PAGES

    Tunc-Ozdemir, Meral; Jones, Alan M.

    2017-02-10

    Background Arabidopsis, 7-transmembrane Regulator of G signaling protein 1 (AtRGS1) modulates canonical G protein signaling by promoting the inactive state of heterotrimeric G protein complex on the plasma membrane. It is known that plant leucine-rich repeat receptor-like kinases (LRR RLKs) phosphorylate AtRGS1 in vitro but little is known about the in vivo interaction, molecular dynamics, or the cellular consequences of this interaction. Methods Therefore, a subset of the known RLKs that phosphorylate AtRGS1 were selected for elucidation, namely, BAK1, BIR1, FLS2. Several microscopies for both static and dynamic protein-protein interactions were used to follow in vivo interactions between the RLKsmore » and AtRGS1 after the presentation of the Pathogen-associated Molecular Pattern, Flagellin 22 (Flg22). These microscopies included FoÈrster Resonance Energy Transfer, Bimolecular Fluoresence Complementation, and Cross Number and Brightness fluorescence Correlation Spectroscopy. In addition, reactive oxygen species and calcium changes in living cells were quantitated using luminometry and R-GECO1 microscopy. Results The LRR RLKs BAK1 and BIR1, interact with AtRGS1 at the plasma membrane. The RLK ligand flg22 sets BAK1 in motion toward AtRGS1 and BIR1 away, both returning to the baseline orientations by 10 minutes. The C-terminal tail of AtRGS1 is important for the interaction with BAK1 and for the tempo of the AtRGS1/BIR1 dynamics. This window of time corresponds to the flg22-induced transient production of reactive oxygen species and calcium release which are both attenuated in the rgs1 and the bak1 null mutants. Conclusions A temporal model of these interactions is proposed. flg22 binding induces nearly instantaneous dimerization between FLS2 and BAK1. Phosphorylated BAK1 interacts with and enables AtRGS1 to move away from BIR1 and AtRGS1 becomes phosphorylated leading to its endocytosis thus leading to de-repression by permitting AtGPA1 to exchange GDP for GTP

  2. Uterine activin receptor-like kinase 5 is crucial for blastocyst implantation and placental development

    PubMed Central

    Peng, Jia; Monsivais, Diana; You, Ran; Zhong, Hua; Pangas, Stephanie A.; Matzuk, Martin M.

    2015-01-01

    Members of the transforming growth factor β (TGF-β) superfamily are key regulators in most developmental and physiological processes. However, the in vivo roles of TGF-β signaling in female reproduction remain uncertain. Activin receptor-like kinase 5 (ALK5) is the major type 1 receptor for the TGF-β subfamily. Absence of ALK5 leads to early embryonic lethality because of severe defects in vascular development. In this study, we conditionally ablated uterine ALK5 using progesterone receptor-cre mice to define the physiological roles of ALK5 in female reproduction. Despite normal ovarian functions and artificial decidualization in conditional knockout (cKO) mice, absence of uterine ALK5 resulted in substantially reduced female reproduction due to abnormalities observed at different stages of pregnancy, including implantation defects, disorganization of trophoblast cells, fewer uterine natural killer (uNK) cells, and impairment of spiral artery remodeling. In our microarray analysis, genes encoding proteins involved in cytokine–cytokine receptor interactions and NK cell-mediated cytotoxicity were down-regulated in cKO decidua compared with control decidua. Flow cytometry confirmed a 10-fold decrease in uNK cells in cKO versus control decidua. According to these data, we hypothesize that TGF-β acts on decidual cells via ALK5 to induce expression of other growth factors and cytokines, which are key regulators in luminal epithelium proliferation, trophoblast development, and uNK maturation during pregnancy. Our findings not only generate a mouse model to study TGF-β signaling in female reproduction but also shed light on the pathogenesis of many pregnancy complications in human, such as recurrent spontaneous abortion, preeclampsia, and intrauterine growth restriction. PMID:26305969

  3. Uterine activin receptor-like kinase 5 is crucial for blastocyst implantation and placental development.

    PubMed

    Peng, Jia; Monsivais, Diana; You, Ran; Zhong, Hua; Pangas, Stephanie A; Matzuk, Martin M

    2015-09-08

    Members of the transforming growth factor β (TGF-β) superfamily are key regulators in most developmental and physiological processes. However, the in vivo roles of TGF-β signaling in female reproduction remain uncertain. Activin receptor-like kinase 5 (ALK5) is the major type 1 receptor for the TGF-β subfamily. Absence of ALK5 leads to early embryonic lethality because of severe defects in vascular development. In this study, we conditionally ablated uterine ALK5 using progesterone receptor-cre mice to define the physiological roles of ALK5 in female reproduction. Despite normal ovarian functions and artificial decidualization in conditional knockout (cKO) mice, absence of uterine ALK5 resulted in substantially reduced female reproduction due to abnormalities observed at different stages of pregnancy, including implantation defects, disorganization of trophoblast cells, fewer uterine natural killer (uNK) cells, and impairment of spiral artery remodeling. In our microarray analysis, genes encoding proteins involved in cytokine-cytokine receptor interactions and NK cell-mediated cytotoxicity were down-regulated in cKO decidua compared with control decidua. Flow cytometry confirmed a 10-fold decrease in uNK cells in cKO versus control decidua. According to these data, we hypothesize that TGF-β acts on decidual cells via ALK5 to induce expression of other growth factors and cytokines, which are key regulators in luminal epithelium proliferation, trophoblast development, and uNK maturation during pregnancy. Our findings not only generate a mouse model to study TGF-β signaling in female reproduction but also shed light on the pathogenesis of many pregnancy complications in human, such as recurrent spontaneous abortion, preeclampsia, and intrauterine growth restriction.

  4. Spontaneous symbiotic reprogramming of plant roots triggered by receptor-like kinases

    PubMed Central

    Ried, Martina Katharina; Antolín-Llovera, Meritxell; Parniske, Martin

    2014-01-01

    Symbiosis Receptor-like Kinase (SYMRK) is indispensable for the development of phosphate-acquiring arbuscular mycorrhiza (AM) as well as nitrogen-fixing root nodule symbiosis, but the mechanisms that discriminate between the two distinct symbiotic developmental fates have been enigmatic. In this study, we show that upon ectopic expression, the receptor-like kinase genes Nod Factor Receptor 1 (NFR1), NFR5, and SYMRK initiate spontaneous nodule organogenesis and nodulation-related gene expression in the absence of rhizobia. Furthermore, overexpressed NFR1 or NFR5 associated with endogenous SYMRK in roots of the legume Lotus japonicus. Epistasis tests revealed that the dominant active SYMRK allele initiates signalling independently of either the NFR1 or NFR5 gene and upstream of a set of genes required for the generation or decoding of calcium-spiking in both symbioses. Only SYMRK but not NFR overexpression triggered the expression of AM-related genes, indicating that the receptors play a key role in the decision between AM- or root nodule symbiosis-development. DOI: http://dx.doi.org/10.7554/eLife.03891.001 PMID:25422918

  5. The SERK1 receptor-like kinase regulates organ separation in Arabidopsis flowers

    PubMed Central

    Lewis, Michael W.; Leslie, Michelle E.; Fulcher, Emilee H.; Darnielle, Lalitree; Healy, Patrick; Youn, Ji-Young; Liljegren, Sarah J.

    2010-01-01

    Summary Through a sensitized screen for novel components of pathways regulating organ separation in Arabidopsis flowers, we have found that the leucine-rich repeat receptor-like kinase SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE1 (SERK1) acts as a negative regulator of abscission. Mutations in SERK1 dominantly rescue abscission in flowers without functional NEVERSHED (NEV), an ADP-ribosylation factor GTPase-activating protein required for floral organ shedding. We previously reported that the organization of the Golgi apparatus and location of the trans-Golgi network (TGN) are altered in nev mutant flowers. Disruption of SERK1 restores Golgi structure and the close association of the TGN in nev flowers, suggesting that defects in these organelles may be responsible for the block in abscission. We have also found that the abscission zones of nev serk1 flowers are enlarged compared to wild-type. A similar phenotype was previously observed in plants constitutively expressing a putative ligand required for organ separation, INFLORESCENCE DEFICIENT IN ABSCISSION (IDA), suggesting that signaling through IDA and its proposed receptors, HAESA and HAESA-LIKE2, may be deregulated in nev serk1 abscission zone cells. Our studies indicate that in addition to its previously characterized roles in stamen development and brassinosteroid perception, SERK1 plays a unique role in modulating the loss of cell adhesion that occurs during organ abscission. PMID:20230490

  6. Spontaneous symbiotic reprogramming of plant roots triggered by receptor-like kinases.

    PubMed

    Ried, Martina Katharina; Antolín-Llovera, Meritxell; Parniske, Martin

    2014-11-25

    Symbiosis Receptor-like Kinase (SYMRK) is indispensable for the development of phosphate-acquiring arbuscular mycorrhiza (AM) as well as nitrogen-fixing root nodule symbiosis, but the mechanisms that discriminate between the two distinct symbiotic developmental fates have been enigmatic. In this study, we show that upon ectopic expression, the receptor-like kinase genes Nod Factor Receptor 1 (NFR1), NFR5, and SYMRK initiate spontaneous nodule organogenesis and nodulation-related gene expression in the absence of rhizobia. Furthermore, overexpressed NFR1 or NFR5 associated with endogenous SYMRK in roots of the legume Lotus japonicus. Epistasis tests revealed that the dominant active SYMRK allele initiates signalling independently of either the NFR1 or NFR5 gene and upstream of a set of genes required for the generation or decoding of calcium-spiking in both symbioses. Only SYMRK but not NFR overexpression triggered the expression of AM-related genes, indicating that the receptors play a key role in the decision between AM- or root nodule symbiosis-development.

  7. Two receptor-like kinases required together for the establishment of Arabidopsis cotyledon primordia.

    PubMed

    Nodine, Michael D; Tax, Frans E

    2008-02-01

    Inter-regional signaling coordinates pattern formation in Arabidopsis thaliana embryos. However, little is known regarding the cells and molecules involved in inter-regional communication. We have characterized two related leucine-rich repeat receptor-like kinases (LRR-RLKs), RECEPTOR-LIKE PROTEIN KINASE1 (RPK1) and TOADSTOOL2 (TOAD2), which are required together for patterning the apical embryonic domain cell types that generate cotyledon primordia. Central domain protoderm patterning defects were always observed subjacent to the defective cotyledon primordia cell types in mutant embryos. In addition, RPK1-GFP and TOAD2-GFP translational fusions were both localized to the central domain protodermal cells when cotyledon primordia were first recognizable. We propose that RPK1 and TOAD2 are primarily required to maintain central domain protoderm cell fate and that the loss of this key embryonic cell type in mutant embryos results in patterning defects in other regions of the embryo including the failure to initiate cotyledon primordia.

  8. Genomic screens identify a new phytobacterial microbe-associated molecular pattern and the cognate Arabidopsis receptor-like kinase that mediates its immune elicitation.

    PubMed

    Mott, G Adam; Thakur, Shalabh; Smakowska, Elwira; Wang, Pauline W; Belkhadir, Youssef; Desveaux, Darrell; Guttman, David S

    2016-05-09

    The recognition of microbe-associated molecular patterns during infection is central to the mounting of an effective immune response. In spite of their importance, it remains difficult to identify these molecules and the host receptors required for their perception, ultimately limiting our understanding of the role of these molecules in the evolution of host-pathogen relationships. We employ a comparative genomics screen to identify six new immune eliciting peptides from the phytopathogenic bacterium Pseudomonas syringae. We then perform a reverse genetic screen to identify Arabidopsis thaliana leucine-rich repeat receptor-like kinases required for the recognition of these elicitors. We test the six elicitors on 187 receptor-like kinase knock-down insertion lines using a high-throughput peroxidase-based immune assay and identify multiple lines that show decreased immune responses to specific peptides. From this primary screen data, we focused on the interaction between the xup25 peptide from a bacterial xanthine/uracil permease and the Arabidopsis receptor-like kinase xanthine/uracil permease sensing 1; a family XII protein closely related to two well-characterized receptor-like kinases. We show that xup25 treatment increases pathogenesis-related gene induction, callose deposition, seedling growth inhibition, and resistance to virulent bacteria, all in a xanthine/uracil permease sensing 1-dependent manner. Finally, we show that this kinase-like receptor can bind the xup25 peptide directly. These results identify xup25 as a P. syringae microbe-associated molecular pattern and xanthine/uracil permease sensing 1 as a receptor-like kinase that detects the xup25 epitope to activate immune responses. The present study demonstrates an efficient method to identify immune elicitors and the plant receptors responsible for their perception. Further exploration of these molecules will increase our understanding of plant-pathogen interactions and the basis for host specificity.

  9. Structure and evolution analysis of pollen receptor-like kinase in Zea mays and Arabidopsis thaliana.

    PubMed

    Wang, Dongxu; Wang, He; Irfan, Muhammad; Fan, Mingxia; Lin, Feng

    2014-08-01

    Receptor-like kinase (RLKs) is an important member in protein kinase family which is widely involved in plant growth, development and defense responses. It is significant to analyze the kinase structure and evolution of pollen RLKs in order to study their mechanisms. In our study, 64 and 73 putative pollen RLKs were chosen from maize and Arabidopsis. Phylogenetic analysis showed that the pollen RLKs were conservative and might had existed before divergence between monocot and dicot which were mainly concentrated in RLCK-VII and LRR-III two subfamilies. Chromosomal localization and gene duplication analysis showed the expansion of pollen RLKs were mainly caused by segmental duplication. By calculating Ka/Ks value of extracellular domain, intracellular domain and kinase domain in pollen RLKs, we found that the pollen RLKs duplicated genes had mainly experienced the purifying selection, while maize might have experienced weaker purifying selection. Meanwhile, extracellular domain might have experienced stronger diversifying selection than intracellular domain in both species. Estimation of duplication time showed that the duplication events of Arabidopsis have occurred approximately between 18 and 69 million years ago, compared to 0.67-170 million years ago of maize. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. The Arabidopsis thaliana cysteine-rich receptor-like kinases CRK6 and CRK7 protect against apoplastic oxidative stress.

    PubMed

    Idänheimo, Niina; Gauthier, Adrien; Salojärvi, Jarkko; Siligato, Riccardo; Brosché, Mikael; Kollist, Hannes; Mähönen, Ari Pekka; Kangasjärvi, Jaakko; Wrzaczek, Michael

    2014-03-07

    Receptor-like kinases are important regulators of many different processes in plants. Despite their large number only a few have been functionally characterized. One of the largest subgroups of receptor-like kinases in Arabidopsis is the cysteine-rich receptor like kinases (CRKs). High sequence similarity among the CRKs has been suggested as major cause for functional redundancy. The genomic localization of CRK genes in back-to-back repeats has made their characterization through mutant analysis unpractical. Expression profiling has linked the CRKs with reactive oxygen species, important signaling molecules in plants. Here we have investigated the role of two CRKs, CRK6 and CRK7, and analyzed their role in extracellular ROS signaling. CRK6 and CRK7 are active protein kinases with differential preference for divalent cations. Our results suggest that CRK7 is involved in mediating the responses to extracellular but not chloroplastic ROS production.

  11. Molecular dynamics simulations reveal the conformational dynamics of Arabidopsis thaliana BRI1 and BAK1 receptor-like kinases

    USDA-ARS?s Scientific Manuscript database

    Initiation of the brassinosteroid (BR) signaling pathway in plants, which is critical for control of growth and development, occurs through the ligand-induced association of BR-insensitive 1 (BRI1) and BRI1-associated kinase 1 (BAK1), receptor-like kinases on the plasma membrane. While a great deal ...

  12. Arabidopsis receptor-like protein30 and receptor-like kinase suppressor of BIR1-1/EVERSHED mediate innate immunity to necrotrophic fungi.

    PubMed

    Zhang, Weiguo; Fraiture, Malou; Kolb, Dagmar; Löffelhardt, Birgit; Desaki, Yoshitake; Boutrot, Freddy F G; Tör, Mahmut; Zipfel, Cyril; Gust, Andrea A; Brunner, Frédéric

    2013-10-01

    Effective plant defense strategies rely in part on the perception of non-self determinants, so-called microbe-associated molecular patterns (MAMPs), by transmembrane pattern recognition receptors leading to MAMP-triggered immunity. Plant resistance against necrotrophic pathogens with a broad host range is complex and yet not well understood. Particularly, it is unclear if resistance to necrotrophs involves pattern recognition receptors. Here, we partially purified a novel proteinaceous elicitor called sclerotinia culture filtrate elicitor1 (SCFE1) from the necrotrophic fungal pathogen Sclerotinia sclerotiorum that induces typical MAMP-triggered immune responses in Arabidopsis thaliana. Analysis of natural genetic variation revealed five Arabidopsis accessions (Mt-0, Lov-1, Lov-5, Br-0, and Sq-1) that are fully insensitive to the SCFE1-containing fraction. We used a forward genetics approach and mapped the locus determining SCFE1 sensitivity to receptor-like protein30 (RLP30). We also show that SCFE1-triggered immune responses engage a signaling pathway dependent on the regulatory receptor-like kinases brassinosteroid insensitive1-associated receptor kinase1 (BAK1) and Suppressor of BIR1-1/evershed (SOBIR1/EVR). Mutants of RLP30, BAK1, and SOBIR1 are more susceptible to S. sclerotiorum and the related fungus Botrytis cinerea. The presence of an elicitor in S. sclerotiorum evoking MAMP-triggered immune responses and sensed by RLP30/SOBIR1/BAK1 demonstrates the relevance of MAMP-triggered immunity in resistance to necrotrophic fungi.

  13. Receptor-like kinase ACR4 restricts formative cell divisions in the Arabidopsis root.

    PubMed

    De Smet, Ive; Vassileva, Valya; De Rybel, Bert; Levesque, Mitchell P; Grunewald, Wim; Van Damme, Daniël; Van Noorden, Giel; Naudts, Mirande; Van Isterdael, Gert; De Clercq, Rebecca; Wang, Jean Y; Meuli, Nicholas; Vanneste, Steffen; Friml, Jirí; Hilson, Pierre; Jürgens, Gerd; Ingram, Gwyneth C; Inzé, Dirk; Benfey, Philip N; Beeckman, Tom

    2008-10-24

    During the development of multicellular organisms, organogenesis and pattern formation depend on formative divisions to specify and maintain pools of stem cells. In higher plants, these activities are essential to shape the final root architecture because the functioning of root apical meristems and the de novo formation of lateral roots entirely rely on it. We used transcript profiling on sorted pericycle cells undergoing lateral root initiation to identify the receptor-like kinase ACR4 of Arabidopsis as a key factor both in promoting formative cell divisions in the pericycle and in constraining the number of these divisions once organogenesis has been started. In the root tip meristem, ACR4 shows a similar action by controlling cell proliferation activity in the columella cell lineage. Thus, ACR4 function reveals a common mechanism of formative cell division control in the main root tip meristem and during lateral root initiation.

  14. Characterization and expression analysis of somatic embryogenesis receptor-like kinase genes from Phalaenopsis.

    PubMed

    Huang, Y W; Tsai, Y J; Chen, F C

    2014-12-18

    Somatic embryogenesis receptor-like kinase (SERK) genes have been found to be involved in the somatic embryogenesis of several plant species. We identified and characterized 5 PhSERK genes in the Phalaenopsis orchid. The amino acid sequences of PhSERKs and other SERK proteins are highly conserved, with the highest homology observed in the leucine-rich repeat-receptor-like kinase domain. All 5 PhSERKs were expressed in all Phalaenopsis organs examined (root, leaf, shoot apical meristem, and flower), with the strongest expression, particularly for PhSERK1 and 3, in the shoot apical meristem of mature plants. Expression of all PhSERKs was downregulated during early floral bud development and was upregulated gradually until the semi-open flower stage was reached. All 5 PhSERKs were expressed during both seed germination and protocorm-like-body (PLB) development. In germinated seeds, quantitative real-time PCR revealed upregulation of all PhSERKs except PhSERK4 at 1 week and downregulation after 4 weeks. The 5 PhSERKs were differentially expressed in the early stage of PLB development and maintained substantial levels during PLB formation, with PhSERK1 and 5 upregulated 1 week after culture and PhSERK2, 3, and 4 downregulated over this period. Because physical wounding of PLB stimulates secondary PLB formation, the PhSERK5 expression peak at week 3 coincided with visible and fully developed secondary PLBs. PhSERK5 may be important in PLB induction and subsequent development. Our PhSERK expression analysis revealed that these genes have a broad role during orchid plant development.

  15. Enhanced Arabidopsis pattern-triggered immunity by overexpression of cysteine-rich receptor-like kinases

    PubMed Central

    Yeh, Yu-Hung; Chang, Yu-Hsien; Huang, Pin-Yao; Huang, Jing-Bo; Zimmerli, Laurent

    2015-01-01

    Upon recognition of microbe-associated molecular patterns (MAMPs) such as the bacterial flagellin (or the derived peptide flg22) by pattern-recognition receptors (PRRs) such as the FLAGELLIN SENSING2 (FLS2), plants activate the pattern-triggered immunity (PTI) response. The L-type lectin receptor kinase-VI.2 (LecRK-VI.2) is a positive regulator of Arabidopsis thaliana PTI. Cysteine-rich receptor-like kinases (CRKs) possess two copies of the C-X8-C-X2-C (DUF26) motif in their extracellular domains and are thought to be involved in plant stress resistance, but data about CRK functions are scarce. Here, we show that Arabidopsis overexpressing the LecRK-VI.2-responsive CRK4, CRK6, and CRK36 demonstrated an enhanced PTI response and were resistant to virulent bacteria Pseudomonas syringae pv. tomato DC3000. Notably, the flg22-triggered oxidative burst was primed in CRK4, CRK6, and CRK36 transgenics and up-regulation of the PTI-responsive gene FLG22-INDUCED RECEPTOR-LIKE 1 (FRK1) was potentiated upon flg22 treatment in CRK4 and CRK6 overexpression lines or constitutively increased by CRK36 overexpression. PTI-mediated callose deposition was not affected by overexpression of CRK4 and CRK6, while CRK36 overexpression lines demonstrated constitutive accumulation of callose. In addition, Pst DC3000-mediated stomatal reopening was blocked in CRK4 and CRK36 overexpression lines, while overexpression of CRK6 induced constitutive stomatal closure suggesting a strengthening of stomatal immunity. Finally, bimolecular fluorescence complementation and co-immunoprecipitation analyses in Arabidopsis protoplasts suggested that the plasma membrane localized CRK4, CRK6, and CRK36 associate with the PRR FLS2. Association with FLS2 and the observation that overexpression of CRK4, CRK6, and CRK36 boosts specific PTI outputs and resistance to bacteria suggest a role for these CRKs in Arabidopsis innate immunity. PMID:26029224

  16. Analysis of Phosphorylation of the Receptor-Like Protein Kinase HAESA during Arabidopsis Floral Abscission

    PubMed Central

    Taylor, Isaiah; Wang, Ying; Seitz, Kati; Baer, John; Bennewitz, Stefan; Mooney, Brian P.; Walker, John C.

    2016-01-01

    Receptor-like protein kinases (RLKs) are the largest family of plant transmembrane signaling proteins. Here we present functional analysis of HAESA, an RLK that regulates floral organ abscission in Arabidopsis. Through in vitro and in vivo analysis of HAE phosphorylation, we provide evidence that a conserved phosphorylation site on a region of the HAE protein kinase domain known as the activation segment positively regulates HAE activity. Additional analysis has identified another putative activation segment phosphorylation site common to multiple RLKs that potentially modulates HAE activity. Comparative analysis suggests that phosphorylation of this second activation segment residue is an RLK specific adaptation that may regulate protein kinase activity and substrate specificity. A growing number of RLKs have been shown to exhibit biologically relevant dual specificity toward serine/threonine and tyrosine residues, but the mechanisms underlying dual specificity of RLKs are not well understood. We show that a phospho-mimetic mutant of both HAE activation segment residues exhibits enhanced tyrosine auto-phosphorylation in vitro, indicating phosphorylation of this residue may contribute to dual specificity of HAE. These results add to an emerging framework for understanding the mechanisms and evolution of regulation of RLK activity and substrate specificity. PMID:26784444

  17. Functional analysis of related CrRLK1L receptor-like kinases in pollen tube reception.

    PubMed

    Kessler, Sharon A; Lindner, Heike; Jones, Daniel S; Grossniklaus, Ueli

    2015-01-01

    The Catharanthus roseus Receptor-Like Kinase 1-like (CrRLK1L) family of 17 receptor-like kinases (RLKs) has been implicated in a variety of signaling pathways in Arabidopsis, ranging from pollen tube (PT) reception and tip growth to hormonal responses. The extracellular domains of these RLKs have malectin-like domains predicted to bind carbohydrate moieties. Domain swap analysis showed that the extracellular domains of the three members analyzed (FER, ANX1, HERK1) are not interchangeable, suggesting distinct upstream components, such as ligands and/or co-factors. In contrast, their intercellular domains are functionally equivalent for PT reception, indicating that they have common downstream targets in their signaling pathways. The kinase domain is necessary for FER function, but kinase activity itself is not, indicating that other kinases may be involved in signal transduction during PT reception.

  18. Cloning and Characterization of a Receptor-Like Protein Kinase Gene Associated with Senescence

    PubMed Central

    Hajouj, Taleb; Michelis, Regina; Gepstein, Shimon

    2000-01-01

    Senescence-associated genes are up-regulated during plant senescence and many have been implicated in encoding enzymes involved in the metabolism of senescing tissues. Using the differential display technique, we identified a SAG in bean (Phaseolus vulgaris) leaf that was exclusively expressed during senescence and was designated senescence-associated receptor-like kinase (SARK). The deduced SARK polypeptide consists of a signal peptide, a leucine-rich repeat in the extracellular region, a single membrane-spanning domain, and the characteristic serine/threonine protein kinase domain. The mRNA level for SARK increased prior to the loss of chlorophyll and the decrease of chlorophyll a/b-binding protein mRNA. Detached mature bean leaves, which senesce at an accelerated rate compared with leaves on intact plants, showed a similar temporal pattern of SARK message accumulation. Light and cytokinin, which delayed the initiation of leaf senescence, also delayed SARK gene expression; in contrast, darkness and ethylene, which accelerated senescence, advanced the initial appearance of the SARK transcript. SARK protein accumulation exhibited a temporal pattern similar to that of its mRNA. A possible role for SARK in the regulation of leaf senescence was considered. PMID:11080306

  19. New Insights on Leucine-Rich Repeats Receptor-Like Kinase Orthologous Relationships in Angiosperms

    PubMed Central

    Dufayard, Jean-François; Bettembourg, Mathilde; Fischer, Iris; Droc, Gaetan; Guiderdoni, Emmanuel; Périn, Christophe; Chantret, Nathalie; Diévart, Anne

    2017-01-01

    Leucine-Rich Repeats Receptor-Like Kinase (LRR-RLK) genes represent a large and complex gene family in plants, mainly involved in development and stress responses. These receptors are composed of an LRR-containing extracellular domain (ECD), a transmembrane domain (TM) and an intracellular kinase domain (KD). To provide new perspectives on functional analyses of these genes in model and non-model plant species, we performed a phylogenetic analysis on 8,360 LRR-RLK receptors in 31 angiosperm genomes (8 monocots and 23 dicots). We identified 101 orthologous groups (OGs) of genes being conserved among almost all monocot and dicot species analyzed. We observed that more than 10% of these OGs are absent in the Brassicaceae species studied. We show that the ECD structural features are not always conserved among orthologs, suggesting that functions may have diverged in some OG sets. Moreover, we looked at targets of positive selection footprints in 12 pairs of OGs and noticed that depending on the subgroups, positive selection occurred more frequently either in the ECDs or in the KDs. PMID:28424707

  20. Activin receptor-like kinases: a diverse family playing an important role in cancer

    PubMed Central

    Loomans, Holli A; Andl, Claudia D

    2016-01-01

    The role and function of the members of the TGFβ superfamily has been a substantial area of research focus for the last several decades. During that time, it has become apparent that aberrations in TGFβ family signaling, whether through the BMP, Activin, or TGFβ arms of the pathway, can result in tumorigenesis or contribute to its progression. Downstream signaling regulates cellular growth under normal physiological conditions yet induces diverse processes during carcinogenesis, ranging from epithelial- to-mesenchymal transition to cell migration and invasion to angiogenesis. Due to these observations, the question has been raised how to utilize and target components of these signaling pathways in cancer therapy. Given that these cascades include both ligands and receptors, there are multiple levels at which to interfere. Activin receptor-like kinases (ALKs) are a group of seven type I receptors responsible for TGFβ family signal transduction and are utilized by many ligands within the superfamily. The challenge lies in specifically targeting the often-overlapping functional effects of BMP, Activin, or TGFβ signaling during cancer progression. This review focuses on the characteristic function of the individual receptors within each subfamily and their recognized roles in cancer. We next explore the clinical utility of therapeutically targeting ALKs as some have shown partial responses in Phase I clinical trials but disappointing outcomes when used in Phase II studies. Finally, we discuss the challenges and future directions of this body of work. PMID:27904762

  1. A receptor-like kinase mutant with absent endodermal diffusion barrier displays selective nutrient homeostasis defects

    PubMed Central

    Pfister, Alexandre; Barberon, Marie; Alassimone, Julien; Kalmbach, Lothar; Lee, Yuree; Vermeer, Joop EM; Yamazaki, Misako; Li, Guowei; Maurel, Christophe; Takano, Junpei; Kamiya, Takehiro; Salt, David E; Roppolo, Daniele; Geldner, Niko

    2014-01-01

    The endodermis represents the main barrier to extracellular diffusion in plant roots, and it is central to current models of plant nutrient uptake. Despite this, little is known about the genes setting up this endodermal barrier. In this study, we report the identification and characterization of a strong barrier mutant, schengen3 (sgn3). We observe a surprising ability of the mutant to maintain nutrient homeostasis, but demonstrate a major defect in maintaining sufficient levels of the macronutrient potassium. We show that SGN3/GASSHO1 is a receptor-like kinase that is necessary for localizing CASPARIAN STRIP DOMAIN PROTEINS (CASPs)—major players of endodermal differentiation—into an uninterrupted, ring-like domain. SGN3 appears to localize into a broader band, embedding growing CASP microdomains. The discovery of SGN3 strongly advances our ability to interrogate mechanisms of plant nutrient homeostasis and provides a novel actor for localized microdomain formation at the endodermal plasma membrane. DOI: http://dx.doi.org/10.7554/eLife.03115.001 PMID:25233277

  2. Reduced activin receptor-like kinase 1 activity promotes cardiac fibrosis in heart failure.

    PubMed

    Morine, Kevin J; Qiao, Xiaoying; Paruchuri, Vikram; Aronovitz, Mark J; Mackey, Emily E; Buiten, Lyanne; Levine, Jonathan; Ughreja, Keshan; Nepali, Prerna; Blanton, Robert M; Oh, S Paul; Karas, Richard H; Kapur, Navin K

    2017-07-18

    Activin receptor-like kinase 1 (ALK1) mediates signaling via the transforming growth factor beta-1 (TGFβ1), a pro-fibrogenic cytokine. No studies have defined a role for ALK1 in heart failure. We tested the hypothesis that reduced ALK1 expression promotes maladaptive cardiac remodeling in heart failure. In patients with advanced heart failure referred for left ventricular (LV) assist device implantation, LV Alk1 mRNA and protein levels were lower than control LV obtained from patients without heart failure. To investigate the role of ALK1 in heart failure, Alk1 haploinsufficient (Alk1(+/-)) and wild-type (WT) mice were studied 2 weeks after severe transverse aortic constriction (TAC). LV and lung weights were higher in Alk1(+/-) mice after TAC. Cardiomyocyte area and LV mRNA levels of brain natriuretic peptide and β-myosin heavy chain were increased similarly in Alk1(+/-) and WT mice after TAC. Alk-1 mice exhibited reduced Smad 1 phosphorylation and signaling compared to WT mice after TAC. Compared to WT, LV fibrosis and Type 1 collagen mRNA and protein levels were higher in Alk1(+/-) mice. LV fractional shortening was lower in Alk1(+/-) mice after TAC. Reduced expression of ALK1 promotes cardiac fibrosis and impaired LV function in a murine model of heart failure. Further studies examining the role of ALK1 and ALK1 inhibitors on cardiac remodeling are required. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Temperature-dependent shade avoidance involves the receptor-like kinase ERECTA.

    PubMed

    Patel, Dhaval; Basu, Manojit; Hayes, Scott; Majláth, Imre; Hetherington, Flora M; Tschaplinski, Timothy J; Franklin, Keara A

    2013-03-01

    Plants detect the presence of neighbouring vegetation by monitoring changes in the ratio of red (R) to far-red (FR) wavelengths (R:FR) in ambient light. Reductions in R:FR are perceived by the phytochrome family of plant photoreceptors and initiate a suite of developmental responses termed the shade avoidance syndrome. These include increased elongation growth of stems and petioles, enabling plants to overtop competing vegetation. The majority of shade avoidance experiments are performed at standard laboratory growing temperatures (>20°C). In these conditions, elongation responses to low R:FR are often accompanied by reductions in leaf development and accumulation of plant biomass. Here we investigated shade avoidance responses at a cooler temperature (16°C). In these conditions, Arabidopsis thaliana displays considerable low R:FR-mediated increases in leaf area, with reduced low R:FR-mediated petiole elongation and leaf hyponasty responses. In Landsberg erecta, these strikingly different shade avoidance phenotypes are accompanied by increased leaf thickness, increased biomass and an altered metabolite profile. At 16°C, low R:FR treatment results in the accumulation of soluble sugars and metabolites associated with cold acclimation. Analyses of natural genetic variation in shade avoidance responses at 16°C have revealed a regulatory role for the receptor-like kinase ERECTA.

  4. Extracellular signals and receptor-like kinases regulating ROP GTPases in plants

    PubMed Central

    Miyawaki, Kaori N.; Yang, Zhenbiao

    2014-01-01

    Rho-like GTPase from plants (ROPs) function as signaling switches that control a wide variety of cellular functions and behaviors including cell morphogenesis, cell division and cell differentiation. The Arabidopsis thaliana genome encodes 11 ROPs that form a distinct single subfamily contrarily to animal or fungal counterparts where multiple subfamilies of Rho GTPases exist. Since Rho proteins bind to their downstream effector proteins only in their GTP-bound “active” state, the activation of ROPs by upstream factor(s) is a critical step in the regulation of ROP signaling. Therefore, it is critical to examine the input signals that lead to the activation of ROPs. Recent findings showed that the plant hormone auxin is an important signal for the activation of ROPs during pavement cell morphogenesis as well as for other developmental processes. In contrast to auxin, another plant hormone, abscisic acid, negatively regulates ROP signaling. Calcium is another emerging signal in the regulation of ROP signaling. Several lines of evidence indicate that plasma membrane localized-receptor like kinases play a critical role in the transmission of the extracellular signals to intracellular ROP signaling pathways. This review focuses on how these signals impinge upon various direct regulators of ROPs to modulate various plant processes. PMID:25295042

  5. Extracellular signals and receptor-like kinases regulating ROP GTPases in plants.

    PubMed

    Miyawaki, Kaori N; Yang, Zhenbiao

    2014-01-01

    Rho-like GTPase from plants (ROPs) function as signaling switches that control a wide variety of cellular functions and behaviors including cell morphogenesis, cell division and cell differentiation. The Arabidopsis thaliana genome encodes 11 ROPs that form a distinct single subfamily contrarily to animal or fungal counterparts where multiple subfamilies of Rho GTPases exist. Since Rho proteins bind to their downstream effector proteins only in their GTP-bound "active" state, the activation of ROPs by upstream factor(s) is a critical step in the regulation of ROP signaling. Therefore, it is critical to examine the input signals that lead to the activation of ROPs. Recent findings showed that the plant hormone auxin is an important signal for the activation of ROPs during pavement cell morphogenesis as well as for other developmental processes. In contrast to auxin, another plant hormone, abscisic acid, negatively regulates ROP signaling. Calcium is another emerging signal in the regulation of ROP signaling. Several lines of evidence indicate that plasma membrane localized-receptor like kinases play a critical role in the transmission of the extracellular signals to intracellular ROP signaling pathways. This review focuses on how these signals impinge upon various direct regulators of ROPs to modulate various plant processes.

  6. A tomato LysM receptor-like kinase promotes immunity and its kinase activity is inhibited by AvrPtoB.

    PubMed

    Zeng, Lirong; Velásquez, André C; Munkvold, Kathy R; Zhang, Jingwei; Martin, Gregory B

    2012-01-01

    Resistance in tomato (Solanum lycopersicum) to infection by Pseudomonas syringae involves both detection of pathogen-associated molecular patterns (PAMPs) and recognition by the host Pto kinase of pathogen effector AvrPtoB which is translocated into the host cell and interferes with PAMP-triggered immunity (PTI). The N-terminal portion of AvrPtoB is sufficient for its virulence activity and for recognition by Pto. An amino acid substitution in AvrPtoB, F173A, abolishes these activities. To investigate the mechanisms of AvrPtoB virulence, we screened for tomato proteins that interact with AvrPtoB and identified Bti9, a LysM receptor-like kinase. Bti9 has the highest amino acid similarity to Arabidopsis CERK1 among the tomato LysM receptor-like kinases (RLKs) and belongs to a clade containing three other tomato proteins, SlLyk11, SlLyk12, and SlLyk13, all of which interact with AvrPtoB. The F173A substitution disrupts the interaction of AvrPtoB with Bti9 and SlLyk13, suggesting that these LysM-RLKs are its virulence targets. Two independent tomato lines with RNAi-mediated reduced expression of Bti9 and SlLyk13 were more susceptible to P. syringae. Bti9 kinase activity was inhibited in vitro by the N-terminal domain of AvrPtoB in an F173-dependent manner. These results indicate Bti9 and/or SlLyk13 play a role in plant immunity and the N-terminal domain of AvrPtoB may have evolved to interfere with their kinase activity. Finally, we found that Bti9 and Pto interact with AvrPtoB in a structurally similar although not identical fashion, suggesting that Pto may have evolved as a molecular mimic of LysM-RLK kinase domains. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  7. A nonRD receptor-like kinase prevents nodule early senescence and defense-like reactions during symbiosis.

    PubMed

    Berrabah, Fathi; Bourcy, Marie; Eschstruth, Alexis; Cayrel, Anne; Guefrachi, Ibtissem; Mergaert, Peter; Wen, Jiangqi; Jean, Viviane; Mysore, Kirankumar S; Gourion, Benjamin; Ratet, Pascal

    2014-09-01

    Rhizobia and legumes establish symbiotic interactions leading to the production of root nodules, in which bacteria fix atmospheric nitrogen for the plant's benefit. This symbiosis is efficient because of the high rhizobia population within nodules. Here, we investigated how legumes accommodate such bacterial colonization. We used a reverse genetic approach to identify a Medicago truncatula gene, SymCRK, which encodes a cysteine-rich receptor-like kinase that is required for rhizobia maintenance within the plant cells, and performed detailed phenotypic analyses of the corresponding mutant. The Medicago truncatula symCRK mutant developed nonfunctional and necrotic nodules. A nonarginine asparate (nonRD) motif, typical of receptors involved in innate immunity, is present in the SymCRK kinase domain. Similar to the dnf2 mutant, bacteroid differentiation defect, defense-like reactions and early senescence were observed in the symCRK nodules. However, the dnf2 and symCRK nodules differ by their degree of colonization, which is higher in symCRK. Furthermore, in contrast to dnf2, symCRK is not a conditional mutant. These results suggest that in M. truncatula at least two genes are involved in the symbiotic control of immunity. Furthermore, phenotype differences between the two mutants suggest that two distinct molecular mechanisms control suppression of plant immunity during nodulation.

  8. xopAC-triggered Immunity against Xanthomonas Depends on Arabidopsis Receptor-Like Cytoplasmic Kinase Genes PBL2 and RIPK

    PubMed Central

    Guy, Endrick; Lautier, Martine; Chabannes, Matthieu; Roux, Brice; Lauber, Emmanuelle; Arlat, Matthieu; Noël, Laurent D.

    2013-01-01

    Xanthomonas campestris pv. campestris (Xcc) colonizes the vascular system of Brassicaceae and ultimately causes black rot. In susceptible Arabidopsis plants, XopAC type III effector inhibits by uridylylation positive regulators of the PAMP-triggered immunity such as the receptor-like cytoplasmic kinases (RLCK) BIK1 and PBL1. In the resistant ecotype Col-0, xopAC is a major avirulence gene of Xcc. In this study, we show that both the RLCK interaction domain and the uridylyl transferase domain of XopAC are required for avirulence. Furthermore, xopAC can also confer avirulence to both the vascular pathogen Ralstonia solanacearum and the mesophyll-colonizing pathogen Pseudomonas syringae indicating that xopAC-specified effector-triggered immunity is not specific to the vascular system. In planta, XopAC-YFP fusions are localized at the plasma membrane suggesting that XopAC might interact with membrane-localized proteins. Eight RLCK of subfamily VII predicted to be localized at the plasma membrane and interacting with XopAC in yeast two-hybrid assays have been isolated. Within this subfamily, PBL2 and RIPK RLCK genes but not BIK1 are important for xopAC-specified effector-triggered immunity and Arabidopsis resistance to Xcc. PMID:23951354

  9. Specific activin receptor-like kinase 3 inhibitors enhance liver regeneration.

    PubMed

    Tsugawa, Daisuke; Oya, Yuki; Masuzaki, Ryota; Ray, Kevin; Engers, Darren W; Dib, Martin; Do, Nhue; Kuramitsu, Kaori; Ho, Karen; Frist, Audrey; Yu, Paul B; Bloch, Kenneth D; Lindsley, Craig W; Hopkins, Corey R; Hong, Charles C; Karp, Seth J

    2014-12-01

    Pharmacologic agents to enhance liver regeneration after injury would have wide therapeutic application. Based on previous work suggesting inhibition of bone morphogenetic protein (BMP) signaling stimulates liver regeneration, we tested known and novel BMP inhibitors for their ability to accelerate regeneration in a partial hepatectomy (PH) model. Compounds were produced based on the 3,6-disubstituted pyrazolo[1,5-a] pyrimidine core of the BMP antagonist dorsomorphin and evaluated for their ability to inhibit BMP signaling and enhance liver regeneration. Antagonists of the BMP receptor activin receptor-like kinase 3 (ALK3), including LDN-193189 (LDN; 4-[6-[4-(1-piperazinyl)phenyl]pyrazolo[1,5-a]pyrimidin-3-yl]-quinoline), DMH2 (4-(2-(4-(3-(quinolin-4-yl)pyrazolo[1,5-a]pyrimidin-6-yl)phenoxy)ethyl)morpholine; VU0364849), and the novel compound VU0465350 (7-(4-isopropoxyphenyl)-3-(1H-pyrazol-4-yl)imidazo[1,2-a]pyridine; VU5350), blocked SMAD phosphorylation in vitro and in vivo, and enhanced liver regeneration after PH. In contrast, an antagonist of the BMP receptor ALK2, VU0469381 (5-(6-(4-methoxyphenyl)pyrazolo[1,5-a]pyrimidin-3-yl)quinolone; 1LWY), did not affect liver regeneration. LDN did not affect liver synthetic or metabolic function. Mechanistically, LDN increased serum interleukin-6 levels and signal transducer and activator of transcription 3 phosphorylation in the liver, and modulated other factors known to be important for liver regeneration, including suppressor of cytokine signaling 3 and p53. These findings suggest that inhibition of ALK3 may be part of a therapeutic strategy for treating human liver disease.

  10. A rice lectin receptor-like kinase that is involved in innate immune responses also contributes to seed germination

    PubMed Central

    Cheng, Xiaoyan; Wu, Yan; Guo, Jianping; Du, Bo; Chen, Rongzhi; Zhu, Lili; He, Guangcun

    2013-01-01

    Seed germination and innate immunity both have significant effects on plant life spans because they control the plant's entry into the ecosystem and provide defenses against various external stresses, respectively. Much ecological evidence has shown that seeds with high vigor are generally more tolerant of various environmental stimuli in the field than those with low vigor. However, there is little genetic evidence linking germination and immunity in plants. Here, we show that the rice lectin receptor-like kinase OslecRK contributes to both seed germination and plant innate immunity. We demonstrate that knocking down the OslecRK gene depresses the expression of α–amylase genes, reducing seed viability and thereby decreasing the rate of seed germination. Moreover, it also inhibits the expression of defense genes, and so reduces the resistance of rice plants to fungal and bacterial pathogens as well as herbivorous insects. Yeast two-hybrid and co-immunoprecipitation experiments revealed that OslecRK interacts with an actin-depolymerizing factor (ADF) in vivo via its kinase domain. Moreover, the rice adf mutant exhibited a reduced seed germination rate due to the suppression of α–amylase gene expression. This mutant also exhibited depressed immune responses and reduced resistance to biotic stresses. Our results thus provide direct genetic evidence for a common physiological pathway connecting germination and immunity in plants. They also partially explain the common observation that high-vigor seeds often perform well in the field. The dual effects of OslecRK may be indicative of progressive adaptive evolution in rice. PMID:24033867

  11. A rice lectin receptor-like kinase that is involved in innate immune responses also contributes to seed germination.

    PubMed

    Cheng, Xiaoyan; Wu, Yan; Guo, Jianping; Du, Bo; Chen, Rongzhi; Zhu, Lili; He, Guangcun

    2013-11-01

    Seed germination and innate immunity both have significant effects on plant life spans because they control the plant's entry into the ecosystem and provide defenses against various external stresses, respectively. Much ecological evidence has shown that seeds with high vigor are generally more tolerant of various environmental stimuli in the field than those with low vigor. However, there is little genetic evidence linking germination and immunity in plants. Here, we show that the rice lectin receptor-like kinase OslecRK contributes to both seed germination and plant innate immunity. We demonstrate that knocking down the OslecRK gene depresses the expression of α-amylase genes, reducing seed viability and thereby decreasing the rate of seed germination. Moreover, it also inhibits the expression of defense genes, and so reduces the resistance of rice plants to fungal and bacterial pathogens as well as herbivorous insects. Yeast two-hybrid and co-immunoprecipitation experiments revealed that OslecRK interacts with an actin-depolymerizing factor (ADF) in vivo via its kinase domain. Moreover, the rice adf mutant exhibited a reduced seed germination rate due to the suppression of α-amylase gene expression. This mutant also exhibited depressed immune responses and reduced resistance to biotic stresses. Our results thus provide direct genetic evidence for a common physiological pathway connecting germination and immunity in plants. They also partially explain the common observation that high-vigor seeds often perform well in the field. The dual effects of OslecRK may be indicative of progressive adaptive evolution in rice.

  12. Specificity and Structure of a High Affinity Activin Receptor-like Kinase 1 (ALK1) Signaling Complex

    PubMed Central

    Townson, Sharon A.; Martinez-Hackert, Erik; Greppi, Chloe; Lowden, Patricia; Sako, Dianne; Liu, June; Ucran, Jeffrey A.; Liharska, Katia; Underwood, Kathryn W.; Seehra, Jasbir; Kumar, Ravindra; Grinberg, Asya V.

    2012-01-01

    Activin receptor-like kinase 1 (ALK1), an endothelial cell-specific type I receptor of the TGF-β superfamily, is an important regulator of normal blood vessel development as well as pathological tumor angiogenesis. As such, ALK1 is an important therapeutic target. Thus, several ALK1-directed agents are currently in clinical trials as anti-angiogenic cancer therapeutics. Given the biological and clinical importance of the ALK1 signaling pathway, we sought to elucidate the biophysical and structural basis underlying ALK1 signaling. The TGF-β family ligands BMP9 and BMP10 as well as the three type II TGF-β family receptors ActRIIA, ActRIIB, and BMPRII have been implicated in ALK1 signaling. Here, we provide a kinetic and thermodynamic analysis of BMP9 and BMP10 interactions with ALK1 and type II receptors. Our data show that BMP9 displays a significant discrimination in type II receptor binding, whereas BMP10 does not. We also report the crystal structure of a fully assembled ternary complex of BMP9 with the extracellular domains of ALK1 and ActRIIB. The structure reveals that the high specificity of ALK1 for BMP9/10 is determined by a novel orientation of ALK1 with respect to BMP9, which leads to a unique set of receptor-ligand interactions. In addition, the structure explains how BMP9 discriminates between low and high affinity type II receptors. Taken together, our findings provide structural and mechanistic insights into ALK1 signaling that could serve as a basis for novel anti-angiogenic therapies. PMID:22718755

  13. Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases.

    PubMed

    Radutoiu, Simona; Madsen, Lene Heegaard; Madsen, Esben Bjørn; Felle, Hubert H; Umehara, Yosuke; Grønlund, Mette; Sato, Shusei; Nakamura, Yasukazu; Tabata, Satoshi; Sandal, Niels; Stougaard, Jens

    2003-10-09

    Although most higher plants establish a symbiosis with arbuscular mycorrhizal fungi, symbiotic nitrogen fixation with rhizobia is a salient feature of legumes. Despite this host range difference, mycorrhizal and rhizobial invasion shares a common plant-specified genetic programme controlling the early host interaction. One feature distinguishing legumes is their ability to perceive rhizobial-specific signal molecules. We describe here two LysM-type serine/threonine receptor kinase genes, NFR1 and NFR5, enabling the model legume Lotus japonicus to recognize its bacterial microsymbiont Mesorhizobium loti. The extracellular domains of the two transmembrane kinases resemble LysM domains of peptidoglycan- and chitin-binding proteins, suggesting that they may be involved directly in perception of the rhizobial lipochitin-oligosaccharide signal. We show that NFR1 and NFR5 are required for the earliest physiological and cellular responses to this lipochitin-oligosaccharide signal, and demonstrate their role in the mechanism establishing susceptibility of the legume root for bacterial infection.

  14. Molecular dynamics simulations reveal the conformational dynamics of Arabidopsis thaliana BRI1 and BAK1 receptor-like kinases.

    PubMed

    Moffett, Alexander S; Bender, Kyle W; Huber, Steven C; Shukla, Diwakar

    2017-07-28

    The structural motifs responsible for activation and regulation of eukaryotic protein kinases in animals have been studied extensively in recent years, and a coherent picture of their activation mechanisms has begun to emerge. In contrast, non-animal eukaryotic protein kinases are not as well understood from a structural perspective, representing a large knowledge gap. To this end, we investigated the conformational dynamics of two key Arabidopsis thaliana receptor-like kinases, brassinosteroid-insensitive 1 (BRI1) and BRI1-associated kinase 1 (BAK1), through extensive molecular dynamics simulations of their fully phosphorylated kinase domains. Molecular dynamics simulations calculate the motion of each atom in a protein based on classical approximations of interatomic forces, giving researchers insight into protein function at unparalleled spatial and temporal resolutions. We found that in an otherwise "active" BAK1 the αC helix is highly disordered, a hallmark of deactivation, whereas the BRI1 αC helix is moderately disordered and displays swinging behavior similar to numerous animal kinases. An analysis of all known sequences in the A. thaliana kinome found that αC helix disorder may be a common feature of plant kinases. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity

    PubMed Central

    Lu, Dongping; Wu, Shujing; Gao, Xiquan; Zhang, Yulan; Shan, Libo; He, Ping

    2010-01-01

    Plants and animals rely on innate immunity to prevent infections by detection of microbe-associated molecular patterns (MAMPs) through pattern-recognition receptors (PRRs). The plant PRR FLS2, a leucine-rich repeat-receptor kinase, recognizes bacterial flagellin and initiates immune signaling by association with another leucine-rich repeat-receptor-like kinase, BAK1. It remains unknown how the FLS2/BAK1 receptor complex activates intracellular signaling cascades. Here we identified the receptor-like cytoplasmic kinase BIK1 that is rapidly phosphorylated upon flagellin perception, depending on both FLS2 and BAK1. BIK1 associates with FLS2 and BAK1 in vivo and in vitro. BIK1 is phosphorylated by BAK1, and BIK1 also directly phosphorylates BAK1 and FLS2 in vitro. The flagellin phosphorylation site Thr237 of BIK1 is required for its phosphorylation on BAK1 and FLS2, suggesting that BIK1 is likely first phosphorylated upon flagellin perception and subsequently transphosphorylates FLS2/BAK1 to propagate flagellin signaling. Importantly, bik1 mutants are compromised in diverse flagellin-mediated responses and immunity to the nonpathogenic bacterial infection. Thus, BIK1 is an essential component in MAMP signal transduction, which links the MAMP receptor complex to downstream intracellular signaling. PMID:20018686

  16. Ligand-induced dynamics of heterotrimeric G protein-coupled receptor-like kinase complexes

    PubMed Central

    Tunc-Ozdemir, Meral; Jones, Alan M.

    2017-01-01

    Background Arabidopsis, 7-transmembrane Regulator of G signaling protein 1 (AtRGS1) modulates canonical G protein signaling by promoting the inactive state of heterotrimeric G protein complex on the plasma membrane. It is known that plant leucine-rich repeat receptor–like kinases (LRR RLKs) phosphorylate AtRGS1 in vitro but little is known about the in vivo interaction, molecular dynamics, or the cellular consequences of this interaction. Methods Therefore, a subset of the known RLKs that phosphorylate AtRGS1 were selected for elucidation, namely, BAK1, BIR1, FLS2. Several microscopies for both static and dynamic protein-protein interactions were used to follow in vivo interactions between the RLKs and AtRGS1 after the presentation of the Pathogen-associated Molecular Pattern, Flagellin 22 (Flg22). These microscopies included Förster Resonance Energy Transfer, Bimolecular Fluoresence Complementation, and Cross Number and Brightness Fluorescence Correlation Spectroscopy. In addition, reactive oxygen species and calcium changes in living cells were quantitated using luminometry and R-GECO1 microscopy. Results The LRR RLKs BAK1 and BIR1, interact with AtRGS1 at the plasma membrane. The RLK ligand flg22 sets BAK1 in motion toward AtRGS1 and BIR1 away, both returning to the baseline orientations by 10 minutes. The C-terminal tail of AtRGS1 is important for the interaction with BAK1 and for the tempo of the AtRGS1/BIR1 dynamics. This window of time corresponds to the flg22-induced transient production of reactive oxygen species and calcium release which are both attenuated in the rgs1 and the bak1 null mutants. Conclusions A temporal model of these interactions is proposed. flg22 binding induces nearly instantaneous dimerization between FLS2 and BAK1. Phosphorylated BAK1 interacts with and enables AtRGS1 to move away from BIR1 and AtRGS1 becomes phosphorylated leading to its endocytosis thus leading to de-repression by permitting AtGPA1 to exchange GDP for GTP

  17. ANXUR Receptor-Like Kinases Coordinate Cell Wall Integrity with Growth at the Pollen Tube Tip Via NADPH Oxidases

    PubMed Central

    Boisson-Dernier, Aurélien; Lituiev, Dmytro S.; Nestorova, Anna; Franck, Christina Maria; Thirugnanarajah, Sharme; Grossniklaus, Ueli

    2013-01-01

    It has become increasingly apparent that the extracellular matrix (ECM), which in plants corresponds to the cell wall, can influence intracellular activities in ways that go far beyond their supposedly passive mechanical support. In plants, growing cells use mechanisms sensing cell wall integrity to coordinate cell wall performance with the internal growth machinery to avoid growth cessation or loss of integrity. How this coordination precisely works is unknown. Previously, we reported that in the tip-growing pollen tube the ANXUR receptor-like kinases (RLKs) of the CrRLK1L subfamily are essential to sustain growth without loss of cell wall integrity in Arabidopsis. Here, we show that over-expression of the ANXUR RLKs inhibits growth by over-activating exocytosis and the over-accumulation of secreted cell wall material. Moreover, the characterization of mutations in two partially redundant pollen-expressed NADPH oxidases coupled with genetic interaction studies demonstrate that the ANXUR RLKs function upstream of these NADPH oxidases. Using the H2O2-sensitive HyPer and the Ca2+-sensitive YC3.60 sensors in NADPH oxidase-deficient mutants, we reveal that NADPH oxidases generate tip-localized, pulsating H2O2 production that functions, possibly through Ca2+ channel activation, to maintain a steady tip-focused Ca2+ gradient during growth. Our findings support a model where ECM-sensing receptors regulate reactive oxygen species production, Ca2+ homeostasis, and exocytosis to coordinate ECM-performance with the internal growth machinery. PMID:24302886

  18. Evolution of S-domain receptor-like kinases in land plants and origination of S-locus receptor kinases in Brassicaceae

    PubMed Central

    2013-01-01

    Background The S-domain serine/threonine receptor-like kinases (SRLKs) comprise one of the largest and most rapidly expanding subfamilies in the plant receptor-like/Pelle kinase (RLKs) family. The founding member of this subfamily, the S-locus receptor kinase (SRK), functions as the female determinant of specificity in the self-incompatibility (SI) responses of crucifers. Two classes of proteins resembling the extracellular S domain (designated S-domain receptor-like proteins, SRLPs) or the intracellular kinase domain (designated S-domain receptor-like cytoplasmic kinases, SRLCKs) of SRK are also ubiquitous in land plants, indicating that the SRLKs are composite molecules that originated by domain fusion of the two component proteins. Here, we explored the origin and diversification of SRLKs by phylogenomic methods. Results Based on the distribution patterns of SRLKs and SRLCKs in a reconciled species-domain tree, a maximum parsimony model was then established for simultaneously inferring and dating gene duplication/loss and fusion /fission events in SRLK evolution. Various SRK alleles from crucifer species were then included in our phylogenetic analyses to infer the origination of SRKs by identifying the proper outgroups. Conclusions Two gene fusion events were inferred and the major gene fusion event occurred in the common ancestor of land plants generated almost all of extant SRLKs. The functional diversification of duplicated SRLKs was illustrated by molecular evolution analyses of SRKs. Our findings support that SRKs originated as two ancient haplotypes derived from a pair of tandem duplicate genes through random regulatory neo-/sub- functionalization in the common ancestor of the Brassicaceae. PMID:23510165

  19. Evolution of S-domain receptor-like kinases in land plants and origination of S-locus receptor kinases in Brassicaceae.

    PubMed

    Xing, Shilai; Li, Mengya; Liu, Pei

    2013-03-19

    The S-domain serine/threonine receptor-like kinases (SRLKs) comprise one of the largest and most rapidly expanding subfamilies in the plant receptor-like/Pelle kinase (RLKs) family. The founding member of this subfamily, the S-locus receptor kinase (SRK), functions as the female determinant of specificity in the self-incompatibility (SI) responses of crucifers. Two classes of proteins resembling the extracellular S domain (designated S-domain receptor-like proteins, SRLPs) or the intracellular kinase domain (designated S-domain receptor-like cytoplasmic kinases, SRLCKs) of SRK are also ubiquitous in land plants, indicating that the SRLKs are composite molecules that originated by domain fusion of the two component proteins. Here, we explored the origin and diversification of SRLKs by phylogenomic methods. Based on the distribution patterns of SRLKs and SRLCKs in a reconciled species-domain tree, a maximum parsimony model was then established for simultaneously inferring and dating gene duplication/loss and fusion /fission events in SRLK evolution. Various SRK alleles from crucifer species were then included in our phylogenetic analyses to infer the origination of SRKs by identifying the proper outgroups. Two gene fusion events were inferred and the major gene fusion event occurred in the common ancestor of land plants generated almost all of extant SRLKs. The functional diversification of duplicated SRLKs was illustrated by molecular evolution analyses of SRKs. Our findings support that SRKs originated as two ancient haplotypes derived from a pair of tandem duplicate genes through random regulatory neo-/sub- functionalization in the common ancestor of the Brassicaceae.

  20. Knowing your friends and foes--plant receptor-like kinases as initiators of symbiosis or defence.

    PubMed

    Antolín-Llovera, Meritxell; Petutsching, Elena Kristin; Ried, Martina Katharina; Lipka, Volker; Nürnberger, Thorsten; Robatzek, Silke; Parniske, Martin

    2014-12-01

    The decision between defence and symbiosis signalling in plants involves alternative and modular plasma membrane-localized receptor complexes. A critical step in their activation is ligand-induced homo- or hetero-oligomerization of leucine-rich repeat (LRR)- and/or lysin motif (LysM) receptor-like kinases (RLKs). In defence signalling, receptor complexes form upon binding of pathogen-associated molecular patterns (PAMPs), including the bacterial flagellin-derived peptide flg22, or chitin. Similar mechanisms are likely to operate during the perception of microbial symbiont-derived (lipo)-chitooligosaccharides. The structurally related chitin-oligomer ligands chitooctaose and chitotetraose trigger defence and symbiosis signalling, respectively, and their discrimination involves closely related, if not identical, LysM-RLKs. This illustrates the demand for and the challenges imposed on decision mechanisms that ensure appropriate signal initiation. Appropriate signalling critically depends on abundance and localization of RLKs at the cell surface. This is regulated by internalization, which also provides a mechanism for the removal of activated signalling RLKs. Abundance of the malectin-like domain (MLD)-LRR-RLK Symbiosis Receptor-like Kinase (SYMRK) is additionally controlled by cleavage of its modular ectodomain, which generates a truncated and rapidly degraded RLK fragment. This review explores LRR- and LysM-mediated signalling, the involvement of MLD-LRR-RLKs in symbiosis and defence, and the role of endocytosis in RLK function.

  1. Rapid induction by wounding and bacterial infection of an S gene family receptor-like kinase gene in Brassica oleracea.

    PubMed

    Pastuglia, M; Roby, D; Dumas, C; Cock, J M

    1997-01-01

    A receptor-like kinase, SRK, has been implicated in the autoincompatible response that leads to the rejection of self-pollen in Brassica plants. SRK is encoded by one member of a multigene family, which includes several receptor-like kinase genes with patterns of expression very different from that of SRK but of unknown function. Here, we report the characterization of a novel member of the Brassica S gene family, SFR2. RNA gel blot analysis demonstrated that SFR2 mRNA accumulated rapidly in response both to wounding and to infiltration with either of two bacteria: Xanthomonas campestris, a pathogen, and Escherichia coli, a saprophyte. SFR2 mRNA also accumulated rapidly after treatment with salicylic acid, a molecule that has been implicated in plant defense response signaling pathways. A SFR2 promoter and reporter gene fusion was introduced into tobacco and was shown to be induced by bacteria of another genus, Ralstonia (Pseudomonas) solanacearum. The accumulation of SFR2 mRNA in response to wounding and pathogen invasion is typical of a gene involved in the defense responses of the plant. The rapidity of SFR2 mRNA accumulation is consistent with SFR2 playing a role in the signal transduction pathway that leads to induction of plant defense proteins, such as pathogenesis-related proteins or enzymes of phenylpropanoid metabolism.

  2. Rapid induction by wounding and bacterial infection of an S gene family receptor-like kinase gene in Brassica oleracea.

    PubMed Central

    Pastuglia, M; Roby, D; Dumas, C; Cock, J M

    1997-01-01

    A receptor-like kinase, SRK, has been implicated in the autoincompatible response that leads to the rejection of self-pollen in Brassica plants. SRK is encoded by one member of a multigene family, which includes several receptor-like kinase genes with patterns of expression very different from that of SRK but of unknown function. Here, we report the characterization of a novel member of the Brassica S gene family, SFR2. RNA gel blot analysis demonstrated that SFR2 mRNA accumulated rapidly in response both to wounding and to infiltration with either of two bacteria: Xanthomonas campestris, a pathogen, and Escherichia coli, a saprophyte. SFR2 mRNA also accumulated rapidly after treatment with salicylic acid, a molecule that has been implicated in plant defense response signaling pathways. A SFR2 promoter and reporter gene fusion was introduced into tobacco and was shown to be induced by bacteria of another genus, Ralstonia (Pseudomonas) solanacearum. The accumulation of SFR2 mRNA in response to wounding and pathogen invasion is typical of a gene involved in the defense responses of the plant. The rapidity of SFR2 mRNA accumulation is consistent with SFR2 playing a role in the signal transduction pathway that leads to induction of plant defense proteins, such as pathogenesis-related proteins or enzymes of phenylpropanoid metabolism. PMID:9014364

  3. Genomic and Post-Translational Modification Analysis of Leucine-Rich-Repeat Receptor-Like Kinases in Brassica rapa

    PubMed Central

    Dhandapani, Vignesh; Yu, Xiaona; Choi, Su Ryun; Oh, Man-Ho; Lim, Yong Pyo

    2015-01-01

    Among several receptor-like kinases (RLKs), leucine-rich-repeat receptor-like kinases (LRR-RLKs) are a major group of genes that play crucial roles in growth, development and stress responses in plant systems. Given that they have several functional roles, it is important to investigate their roles in Brassica rapa. In the present study, 303 LRR-RLKs were identified in the genome of B. rapa and comparative phylogenetic analysis of 1213 combined LRR-RLKs of B. rapa, Arabidopsis thaliana, Oryza sativa and Populus trichocarpa helped us to categorize the gene family into 15 subfamilies based on their sequence and structural similarities. The chromosome localizations of 293 genes allowed the prediction of duplicates, and motif conservation and intron/exon patterns showed differences among the B. rapa LRR-RLK (BrLRR-RLK) genes. Additionally, computational function annotation and expression analysis was used to predict their possible functional roles in the plant system. Biochemical results for 11 selected genes showed variations in phosphorylation activity. Interestingly, BrBAK1 showed strong auto-phosphorylation and trans-phosphorylation on its tyrosine and threonine residues compared with AtBAK1 in previous studies. The AtBAK1 receptor kinase is involved in plant growth and development, plant innate immunity, and programmed cell death, and our results suggest that BrBAK1 might also be involved in the same functions. Another interesting result was that BrBAK1, BrBRI1, BrPEPR1 and BrPEPR2 showed activity with both anti-phosphotyrosine and anti-phosphothreonine antibodies, indicating that they might have dual-specificity kinase activity. This study provides comprehensive results for the BrLRR-RLKs, revealing expansion of the gene family through gene duplications, structural similarities and variations among the genes, and potential functional roles according to gene ontology, transcriptome profiling and biochemical analysis. PMID:26588465

  4. The Medicago truncatula lysin [corrected] motif-receptor-like kinase gene family includes NFP and new nodule-expressed genes.

    PubMed

    Arrighi, Jean-François; Barre, Annick; Ben Amor, Besma; Bersoult, Anne; Soriano, Lidia Campos; Mirabella, Rossana; de Carvalho-Niebel, Fernanda; Journet, Etienne-Pascal; Ghérardi, Michèle; Huguet, Thierry; Geurts, René; Dénarié, Jean; Rougé, Pierre; Gough, Clare

    2006-09-01

    Rhizobial Nod factors are key symbiotic signals responsible for starting the nodulation process in host legume plants. Of the six Medicago truncatula genes controlling a Nod factor signaling pathway, Nod Factor Perception (NFP) was reported as a candidate Nod factor receptor gene. Here, we provide further evidence for this by showing that NFP is a lysin [corrected] motif (LysM)-receptor-like kinase (RLK). NFP was shown both to be expressed in association with infection thread development and to be involved in the infection process. Consistent with deviations from conserved kinase domain sequences, NFP did not show autophosphorylation activity, suggesting that NFP needs to associate with an active kinase or has unusual functional characteristics different from classical kinases. Identification of nine new M. truncatula LysM-RLK genes revealed a larger family than in the nonlegumes Arabidopsis (Arabidopsis thaliana) or rice (Oryza sativa) of at least 17 members that can be divided into three subfamilies. Three LysM domains could be structurally predicted for all M. truncatula LysM-RLK proteins, whereas one subfamily, which includes NFP, was characterized by deviations from conserved kinase sequences. Most of the newly identified genes were found to be expressed in roots and nodules, suggesting this class of receptors may be more extensively involved in nodulation than was previously known.

  5. Overexpression of the leucine-rich receptor-like kinase gene LRK2 increases drought tolerance and tiller number in rice.

    PubMed

    Kang, Junfang; Li, Jianmin; Gao, Shuang; Tian, Chao; Zha, Xiaojun

    2017-02-09

    Drought represents a key limiting factor of global crop distribution. Receptor-like kinases play major roles in plant development and defense responses against stresses such as drought. In this study, LRK2, which encodes a leucine-rich receptor-like kinase, was cloned and characterized and found to be localized on the plasma membrane in rice. Promoter-GUS analysis revealed strong expression in tiller buds, roots, nodes and anthers. Transgenic plants overexpressing LRK2 exhibited enhanced tolerance to drought stress due to an increased number of lateral roots compared to the wild-type at the vegetative stage. Moreover, ectopic expression of LRK2 seedlings resulted in increased tiller development. Yeast two-hybrid screening and bimolecular fluorescence complementation (BiFC) indicated a possible interaction between LRK2 and elongation factor 1 alpha (OsEF1A) in vitro. These results suggest that LRK2 functions as a positive regulator of the drought stress response and tiller development via increased branch development in rice. These findings will aid our understanding of branch regulation in other grasses and support improvements in rice genetics. This article is protected by copyright. All rights reserved.

  6. Loss-of-function of Arabidopsis receptor-like kinase BIR1 activates cell death and defense responses mediated by BAK1 and SOBIR1.

    PubMed

    Liu, Yanan; Huang, Xingchuan; Li, Meng; He, Ping; Zhang, Yuelin

    2016-11-01

    The Arabidopsis receptor-like kinase (RLK) BIR1 (BAK1-INTERACTING RECEPTOR-LIKE KINASE 1) functions as a negative regulator of plant immunity. Previous work showed that loss-of-function of BIR1 leads to constitutive activation of cell death and defense responses. These autoimmune phenotypes are partially dependent on another RLK, SOBIR1. In order to identify additional components involved in the BIR1-regulated plant defense signaling pathway, a suppressor screen was carried out in the bir1-1 pad4-1 mutant background. Mutations in the suppressor mutants were identified by genetic mapping and re-sequencing of the mutant genomes. A number of suppressor mutants were found to carry mutations in an additional RLK, BAK1, indicating that BAK1 is required for activation of cell death and defense responses in bir1-1. Co-immunoprecipitation analysis revealed that BAK1 and SOBIR1 associate with each other in planta when the function of BIR1 is compromised. Although BAK1 was previously characterized as a negative regulator of cell death, our study highlights a novel role of BAK1 in promoting cell death and defense responses in conjunction with SOBIR1. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  7. The receptor-like pseudokinase MRH1 interacts with the voltage-gated potassium channel AKT2

    PubMed Central

    Sklodowski, Kamil; Riedelsberger, Janin; Raddatz, Natalia; Riadi, Gonzalo; Caballero, Julio; Chérel, Isabelle; Schulze, Waltraud; Graf, Alexander; Dreyer, Ingo

    2017-01-01

    The potassium channel AKT2 plays important roles in phloem loading and unloading. It can operate as inward-rectifying channel that allows H+-ATPase-energized K+ uptake. Moreover, through reversible post-translational modifications it can also function as an open, K+-selective channel, which taps a ‘potassium battery’, providing additional energy for transmembrane transport processes. Knowledge about proteins involved in the regulation of the operational mode of AKT2 is very limited. Here, we employed a large-scale yeast two-hybrid screen in combination with fluorescence tagging and null-allele mutant phenotype analysis and identified the plasma membrane localized receptor-like kinase MRH1/MDIS2 (AT4G18640) as interaction partner of AKT2. The phenotype of the mrh1-1 knockout plant mirrors that of akt2 knockout plants in energy limiting conditions. Electrophysiological analyses showed that MRH1/MDIS2 failed to exert any functional regulation on AKT2. Using structural protein modeling approaches, we instead gathered evidence that the putative kinase domain of MRH1/MDIS2 lacks essential sites that are indispensable for a functional kinase suggesting that MRH1/MDIS2 is a pseudokinase. We propose that MRH1/MDIS2 and AKT2 are likely parts of a bigger protein complex. MRH1 might help to recruit other, so far unknown partners, which post-translationally regulate AKT2. Additionally, MRH1 might be involved in the recognition of chemical signals. PMID:28300158

  8. The receptor-like pseudokinase MRH1 interacts with the voltage-gated potassium channel AKT2

    NASA Astrophysics Data System (ADS)

    Sklodowski, Kamil; Riedelsberger, Janin; Raddatz, Natalia; Riadi, Gonzalo; Caballero, Julio; Chérel, Isabelle; Schulze, Waltraud; Graf, Alexander; Dreyer, Ingo

    2017-03-01

    The potassium channel AKT2 plays important roles in phloem loading and unloading. It can operate as inward-rectifying channel that allows H+-ATPase-energized K+ uptake. Moreover, through reversible post-translational modifications it can also function as an open, K+-selective channel, which taps a ‘potassium battery’, providing additional energy for transmembrane transport processes. Knowledge about proteins involved in the regulation of the operational mode of AKT2 is very limited. Here, we employed a large-scale yeast two-hybrid screen in combination with fluorescence tagging and null-allele mutant phenotype analysis and identified the plasma membrane localized receptor-like kinase MRH1/MDIS2 (AT4G18640) as interaction partner of AKT2. The phenotype of the mrh1-1 knockout plant mirrors that of akt2 knockout plants in energy limiting conditions. Electrophysiological analyses showed that MRH1/MDIS2 failed to exert any functional regulation on AKT2. Using structural protein modeling approaches, we instead gathered evidence that the putative kinase domain of MRH1/MDIS2 lacks essential sites that are indispensable for a functional kinase suggesting that MRH1/MDIS2 is a pseudokinase. We propose that MRH1/MDIS2 and AKT2 are likely parts of a bigger protein complex. MRH1 might help to recruit other, so far unknown partners, which post-translationally regulate AKT2. Additionally, MRH1 might be involved in the recognition of chemical signals.

  9. The receptor-like pseudokinase MRH1 interacts with the voltage-gated potassium channel AKT2.

    PubMed

    Sklodowski, Kamil; Riedelsberger, Janin; Raddatz, Natalia; Riadi, Gonzalo; Caballero, Julio; Chérel, Isabelle; Schulze, Waltraud; Graf, Alexander; Dreyer, Ingo

    2017-03-16

    The potassium channel AKT2 plays important roles in phloem loading and unloading. It can operate as inward-rectifying channel that allows H(+)-ATPase-energized K(+) uptake. Moreover, through reversible post-translational modifications it can also function as an open, K(+)-selective channel, which taps a 'potassium battery', providing additional energy for transmembrane transport processes. Knowledge about proteins involved in the regulation of the operational mode of AKT2 is very limited. Here, we employed a large-scale yeast two-hybrid screen in combination with fluorescence tagging and null-allele mutant phenotype analysis and identified the plasma membrane localized receptor-like kinase MRH1/MDIS2 (AT4G18640) as interaction partner of AKT2. The phenotype of the mrh1-1 knockout plant mirrors that of akt2 knockout plants in energy limiting conditions. Electrophysiological analyses showed that MRH1/MDIS2 failed to exert any functional regulation on AKT2. Using structural protein modeling approaches, we instead gathered evidence that the putative kinase domain of MRH1/MDIS2 lacks essential sites that are indispensable for a functional kinase suggesting that MRH1/MDIS2 is a pseudokinase. We propose that MRH1/MDIS2 and AKT2 are likely parts of a bigger protein complex. MRH1 might help to recruit other, so far unknown partners, which post-translationally regulate AKT2. Additionally, MRH1 might be involved in the recognition of chemical signals.

  10. Genomic Dissection and Expression Profiling Revealed Functional Divergence in Triticum aestivum Leucine Rich Repeat Receptor Like Kinases (TaLRRKs).

    PubMed

    Shumayla; Sharma, Shailesh; Kumar, Rohit; Mendu, Venugopal; Singh, Kashmir; Upadhyay, Santosh K

    2016-01-01

    The leucine rich repeat receptor like kinases (LRRK) constitute the largest subfamily of receptor like kinases (RLK), which play critical roles in plant development and stress responses. Herein, we identified 531 TaLRRK genes in Triticum aestivum (bread wheat), which were distributed throughout the A, B, and D sub-genomes and chromosomes. These were clustered into 233 homologous groups, which were mostly located on either homeologous chromosomes from various sub-genomes or in proximity on the same chromosome. A total of 255 paralogous genes were predicted which depicted the role of duplication events in expansion of this gene family. Majority of TaLRRKs consisted of trans-membrane region and localized on plasma-membrane. The TaLRRKs were further categorized into eight phylogenetic groups with numerous subgroups on the basis of sequence homology. The gene and protein structure in terms of exon/intron ratio, domains, and motifs organization were found to be variably conserved across the different phylogenetic groups/subgroups, which indicated a potential divergence and neofunctionalization during evolution. High-throughput transcriptome data and quantitative real time PCR analyses in various developmental stages, and biotic and abiotic (heat, drought, and salt) stresses provided insight into modus operandi of TaLRRKs during these conditions. Distinct expression of majority of stress responsive TaLRRKs homologous genes suggested their specified role in a particular condition. These results provided a comprehensive analysis of various characteristic features including functional divergence, which may provide the way for future functional characterization of this important gene family in bread wheat.

  11. Receptor-like cytoplasmic kinase MARIS functions downstream of CrRLK1L-dependent signaling during tip growth

    PubMed Central

    Boisson-Dernier, Aurélien; Franck, Christina Maria; Lituiev, Dmytro S.; Grossniklaus, Ueli

    2015-01-01

    Growing plant cells need to rigorously coordinate external signals with internal processes. For instance, the maintenance of cell wall (CW) integrity requires the coordination of CW sensing with CW remodeling and biosynthesis to avoid growth arrest or integrity loss. Despite the involvement of receptor-like kinases (RLKs) of the Catharanthus roseus RLK1-like (CrRLK1L) subfamily and the reactive oxygen species-producing NADPH oxidases, it remains largely unknown how this coordination is achieved. ANXUR1 (ANX1) and ANX2, two redundant members of the CrRLK1L subfamily, are required for tip growth of the pollen tube (PT), and their closest homolog, FERONIA, controls root-hair tip growth. Previously, we showed that ANX1 overexpression mildly inhibits PT growth by oversecretion of CW material, whereas pollen tubes of anx1 anx2 double mutants burst spontaneously after germination. Here, we report the identification of suppressor mutants with improved fertility caused by the rescue of anx1 anx2 pollen tube bursting. Mapping of one these mutants revealed an R240C nonsynonymous substitution in the activation loop of a receptor-like cytoplasmic kinase (RLCK), which we named MARIS (MRI). We show that MRI is a plasma membrane-localized member of the RLCK-VIII subfamily and is preferentially expressed in both PTs and root hairs. Interestingly, mri-knockout mutants display spontaneous PT and root-hair bursting. Moreover, expression of the MRIR240C mutant, but not its wild-type form, partially rescues the bursting phenotypes of anx1 anx2 PTs and fer root hairs but strongly inhibits wild-type tip growth. Thus, our findings identify a novel positive component of the CrRLK1L-dependent signaling cascade that coordinates CW integrity and tip growth. PMID:26378127

  12. Origin and diversification of leucine-rich repeat receptor-like protein kinase (LRR-RLK) genes in plants.

    PubMed

    Liu, Ping-Li; Du, Liang; Huang, Yuan; Gao, Shu-Min; Yu, Meng

    2017-02-07

    Leucine-rich repeat receptor-like protein kinases (LRR-RLKs) are the largest group of receptor-like kinases in plants and play crucial roles in development and stress responses. The evolutionary relationships among LRR-RLK genes have been investigated in flowering plants; however, no comprehensive studies have been performed for these genes in more ancestral groups. The subfamily classification of LRR-RLK genes in plants, the evolutionary history and driving force for the evolution of each LRR-RLK subfamily remain to be understood. We identified 119 LRR-RLK genes in the Physcomitrella patens moss genome, 67 LRR-RLK genes in the Selaginella moellendorffii lycophyte genome, and no LRR-RLK genes in five green algae genomes. Furthermore, these LRR-RLK sequences, along with previously reported LRR-RLK sequences from Arabidopsis thaliana and Oryza sativa, were subjected to evolutionary analyses. Phylogenetic analyses revealed that plant LRR-RLKs belong to 19 subfamilies, eighteen of which were established in early land plants, and one of which evolved in flowering plants. More importantly, we found that the basic structures of LRR-RLK genes for most subfamilies are established in early land plants and conserved within subfamilies and across different plant lineages, but divergent among subfamilies. In addition, most members of the same subfamily had common protein motif compositions, whereas members of different subfamilies showed variations in protein motif compositions. The unique gene structure and protein motif compositions of each subfamily differentiate the subfamily classifications and, more importantly, provide evidence for functional divergence among LRR-RLK subfamilies. Maximum likelihood analyses showed that some sites within four subfamilies were under positive selection. Much of the diversity of plant LRR-RLK genes was established in early land plants. Positive selection contributed to the evolution of a few LRR-RLK subfamilies.

  13. Genomic Dissection and Expression Profiling Revealed Functional Divergence in Triticum aestivum Leucine Rich Repeat Receptor Like Kinases (TaLRRKs)

    PubMed Central

    Shumayla; Sharma, Shailesh; Kumar, Rohit; Mendu, Venugopal; Singh, Kashmir; Upadhyay, Santosh K.

    2016-01-01

    The leucine rich repeat receptor like kinases (LRRK) constitute the largest subfamily of receptor like kinases (RLK), which play critical roles in plant development and stress responses. Herein, we identified 531 TaLRRK genes in Triticum aestivum (bread wheat), which were distributed throughout the A, B, and D sub-genomes and chromosomes. These were clustered into 233 homologous groups, which were mostly located on either homeologous chromosomes from various sub-genomes or in proximity on the same chromosome. A total of 255 paralogous genes were predicted which depicted the role of duplication events in expansion of this gene family. Majority of TaLRRKs consisted of trans-membrane region and localized on plasma-membrane. The TaLRRKs were further categorized into eight phylogenetic groups with numerous subgroups on the basis of sequence homology. The gene and protein structure in terms of exon/intron ratio, domains, and motifs organization were found to be variably conserved across the different phylogenetic groups/subgroups, which indicated a potential divergence and neofunctionalization during evolution. High-throughput transcriptome data and quantitative real time PCR analyses in various developmental stages, and biotic and abiotic (heat, drought, and salt) stresses provided insight into modus operandi of TaLRRKs during these conditions. Distinct expression of majority of stress responsive TaLRRKs homologous genes suggested their specified role in a particular condition. These results provided a comprehensive analysis of various characteristic features including functional divergence, which may provide the way for future functional characterization of this important gene family in bread wheat. PMID:27713749

  14. Isolation and characterization of a novel wheat cysteine-rich receptor-like kinase gene induced by Rhizoctonia cerealis

    NASA Astrophysics Data System (ADS)

    Yang, Kun; Rong, Wei; Qi, Lin; Li, Jiarui; Wei, Xuening; Zhang, Zengyan

    2013-10-01

    Cysteine-rich receptor kinases (CRKs) belong to the receptor-like kinase family. Little is known about CRK genes in wheat. We isolated a wheat CRK gene TaCRK1 from Rhizoctonia cerealis-resistant wheat CI12633 based on a differentially expressed sequence identified by RNA-Sequencing (RNA-Seq) analysis. TaCRK1 was more highly expressed in CI12633 than in susceptible Wenmai 6. Transcription of TaCRK1 in wheat was induced in CI12633 after R. cerealis infection and exogenous abscisic acid (ABA) treatment. The deduced TaCRK1 protein contained a signal peptide, two DUF26 domains, a transmembrane domain, and a serine/threonine protein kinase domain. Transient expression of a green fluorescence protein fused with TaCRK1 in wheat and onion indicated that TaCRK1 may localize to plasma membranes. Characterization of TaCRK1 silencing induced by virus-mediated method in CI12633 showed that the downregulation of TaCRK1 transcript did not obviously impair resistance to R. cerealis. This study paves the way to further CRK research in wheat.

  15. The rice LysM receptor-like kinase OsCERK1 is required for the perception of short-chain chitin oligomers in arbuscular mycorrhizal signaling.

    PubMed

    Carotenuto, Gennaro; Chabaud, Mireille; Miyata, Kana; Capozzi, Martina; Takeda, Naoya; Kaku, Hanae; Shibuya, Naoto; Nakagawa, Tomomi; Barker, David G; Genre, Andrea

    2017-06-01

    The rice lysin-motif (LysM) receptor-like kinase OsCERK1 is now known to have a dual role in both pathogenic and symbiotic interactions. Following the recent discovery that the Oscerk1 mutant is unable to host arbuscular mycorrhizal (AM) fungi, we have examined whether OsCERK1 is directly involved in the perception of the short-chain chitin oligomers (Myc-COs) identified in AM fungal exudates and shown to activate nuclear calcium (Ca(2+) ) spiking in the rice root epidermis. An Oscerk1 knockout mutant expressing the cameleon NLS-YC2.60 was used to monitor nuclear Ca(2+) signaling following root treatment with either crude fungal exudates or purified Myc-COs. Compared with wild-type rice, Ca(2+) spiking responses to AM fungal elicitation were absent in root atrichoblasts of the Oscerk1 mutant. By contrast, rice lines mutated in OsCEBiP, encoding the LysM receptor-like protein which associates with OsCERK1 to perceive chitin elicitors of the host immune defense pathway, responded positively to Myc-COs. These findings provide direct evidence that the bi-functional OsCERK1 plays a central role in perceiving short-chain Myc-CO signals and activating the downstream conserved symbiotic signal transduction pathway. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  16. GsCBRLK, a calcium/calmodulin-binding receptor-like kinase, is a positive regulator of plant tolerance to salt and ABA stress.

    PubMed

    Yang, Liang; Ji, Wei; Zhu, Yanming; Gao, Peng; Li, Yong; Cai, Hua; Bai, Xi; Guo, Dianjing

    2010-05-01

    Calcium/calmodulin-dependent kinases play vital roles in protein phosphorylation in eukaryotes, yet little is known about the phosphorylation process of calcium/calmodulin-dependent protein kinase and its role in stress signal transduction in plants. A novel plant-specific calcium-dependent calmodulin-binding receptor-like kinase (GsCBRLK) has been isolated from Glycine soja. A subcellular localization study using GFP fusion protein indicated that GsCBRLK is localized in the plasma membrane. Binding assays demonstrated that calmodulin binds to GsCBRLK with an affinity of 25.9 nM in a calcium-dependent manner and the binding motif lies between amino acids 147 to169 within subdomain II of the kinase domain. GsCBRLK undergoes autophosphorylation and Myelin Basis Protein phosphorylation in the presence of calcium. It was also found that calcium/calmodulin positively regulates GsCBRLK kinase activity through direct interaction between the calmodulin-binding domain and calmodulin. So, it is likely that GsCBRLK responds to an environmental stimulus in two ways: by increasing the protein expression level and by regulating its kinase activity through the calcium/calmodulin complex. Furthermore, cold, salinity, drought, and ABA stress induce GsCBRLK gene transcripts. Over-expression of GsCBRLK in transgenic Arabidopsis resulted in enhanced plant tolerance to high salinity and ABA and increased the expression pattern of a number of stress gene markers in response to ABA and high salt. These results identify GsCBRLK as a molecular link between the stress- and ABA-induced calcium/calmodulin signal and gene expression in plant cells.

  17. Conserved Roles of CrRLK1L Receptor-Like Kinases in Cell Expansion and Reproduction from Algae to Angiosperms.

    PubMed

    Galindo-Trigo, Sergio; Gray, Julie E; Smith, Lisa M

    2016-01-01

    Receptor-like kinases (RLKs) are regulators of plant development through allowing cells to sense their extracellular environment. They facilitate detection of local endogenous signals, in addition to external biotic and abiotic stimuli. The Catharanthus roseus RLK1-like (CrRLK1L) protein kinase subfamily, which contains FERONIA, plays a central role in regulating fertilization and in cell expansion mechanisms such as cell elongation and tip growth, as well as having indirect links to plant-pathogen interactions. Several components of CrRLK1L signaling pathways have been identified, including an extracellular ligand, coreceptors, and downstream signaling elements. The presence and abundance of the CrRLK1L proteins in the plant kingdom suggest an origin within the Streptophyta lineage, with a notable increase in prevalence in the seeded land plants. Given the function of the sole CrRLK1L protein in a charophycean alga, the possibility of a conserved role in detection and/or regulation of cell wall integrity throughout the Strephtophytes is discussed. Orthologs of signaling pathway components are also present in extant representatives of non-vascular land plants and early vascular land plants including the liverwort Marchantia polymorpha, the moss Physcomitrella patens and the lycophyte Selaginella moellendorffii. Deciphering the roles in development of the CrRLK1L protein kinases in early diverging land plants will provide insights into their ancestral function, furthering our understanding of this diversified subfamily of receptors in higher plants.

  18. Conserved Roles of CrRLK1L Receptor-Like Kinases in Cell Expansion and Reproduction from Algae to Angiosperms

    PubMed Central

    Galindo-Trigo, Sergio; Gray, Julie E.; Smith, Lisa M.

    2016-01-01

    Receptor-like kinases (RLKs) are regulators of plant development through allowing cells to sense their extracellular environment. They facilitate detection of local endogenous signals, in addition to external biotic and abiotic stimuli. The Catharanthus roseus RLK1-like (CrRLK1L) protein kinase subfamily, which contains FERONIA, plays a central role in regulating fertilization and in cell expansion mechanisms such as cell elongation and tip growth, as well as having indirect links to plant–pathogen interactions. Several components of CrRLK1L signaling pathways have been identified, including an extracellular ligand, coreceptors, and downstream signaling elements. The presence and abundance of the CrRLK1L proteins in the plant kingdom suggest an origin within the Streptophyta lineage, with a notable increase in prevalence in the seeded land plants. Given the function of the sole CrRLK1L protein in a charophycean alga, the possibility of a conserved role in detection and/or regulation of cell wall integrity throughout the Strephtophytes is discussed. Orthologs of signaling pathway components are also present in extant representatives of non-vascular land plants and early vascular land plants including the liverwort Marchantia polymorpha, the moss Physcomitrella patens and the lycophyte Selaginella moellendorffii. Deciphering the roles in development of the CrRLK1L protein kinases in early diverging land plants will provide insights into their ancestral function, furthering our understanding of this diversified subfamily of receptors in higher plants. PMID:27621737

  19. Genome-wide identification, characterization and expression analysis of populus leucine-rich repeat receptor-like protein kinase genes

    PubMed Central

    2013-01-01

    Background Leucine-rich repeat receptor-like kinases (LRR-RLKs) comprise the largest group within the receptor-like kinase (RLK) superfamily in plants. This gene family plays critical and diverse roles in plant growth, development and stress response. Although the LRR-RLK families in Arabidopsis and rice have been previously analyzed, no comprehensive studies have been performed on this gene family in tree species. Results In this work, 379 LRR-RLK genes were retrieved from the Populus trichocarpa genome and further grouped into 14 subfamilies based on their structural and sequence similarities. Approximately 82% (312 out of 379) of the PtLRR-RLK genes are located in segmental duplication blocks indicating the role of duplication process in the expansion of this gene family. The conservation and variation in motif composition and intron/exon arrangement among PtLRR-RLK subfamilies were analyzed to provide additional support for their phylogenetic relationship and more importantly to indicate the potential divergence in their functions. Expression profiling of PtLRR-RLKs showed that they were differentially expressed in different organs and tissues and some PtLRR-RLKs were specifically expressed in meristem tissues, which indicated their potential involvement in tissue development and differentiation. For most AtLRR-RLKs with defined functions, Populus homologues exhibiting similar expression patterns could be identified, which might indicate the functional conservation during evolution. Among 12 types of environmental cues analyzed by the genome-wide microarray data, PtLRR-RLKs showed specific responses to shoot organogenesis, wounding, low ammonium feeding, hypoxia and seasonal dormancy, but not to drought, re-watering after drought, flooding, AlCl3 treatment and bacteria or fungi treatments. Conclusions This study provides the first comprehensive genomic analysis of the Populus LRR-RLK gene family. Segmental duplication contributes significantly to the expansion

  20. Overexpression of GbRLK, a putative receptor-like kinase gene, improved cotton tolerance to Verticillium wilt.

    PubMed

    Jun, Zhao; Zhang, Zhiyuan; Gao, Yulong; Zhou, Lei; Fang, Lei; Chen, Xiangdong; Ning, Zhiyuan; Chen, Tianzi; Guo, Wangzhen; Zhang, Tianzhen

    2015-10-08

    Verticillium dahliae is a causative fungal pathogen and only a few genes have been identified that exhibit critical roles in disease resistance and few has shown positive effects on the resistance to Verticillium wilt in transgenic cotton. We cloned a receptor-like kinase gene (GbRLK) induced by Verticillium dahliae (VD) in the disease-resistant cotton Gossypium barbadense cv. Hai7124. Northern blotting revealed that the GbRLK was induced by VD at 96 h after inoculation. The functional GbRLK is from D subgenome since a single base deletion results in a frameshift or dysfunctional homologue in the A subgenome in tetraploid cotton. To verify the function of GbRLK, we developed the overexpression transgenic GbRLK cotton and Arabidopsis lines, and found that they all showed the higher resistance to Verticillium in the greenhouse and field trial. The results of the expression profile using transgenic and non-transgenic Arabidopsis thaliana revealed that the GbRLK regulated expressions of a series genes associated with biotic and abiotic stresses. Therefore, we propose that the increased resistance to Verticillium dahliae infection in transgnic plants could result from reduction in the damage of water loss and regulation of defense gene expression.

  1. Overproduction of the membrane-bound receptor-like protein kinase 1, RPK1, enhances abiotic stress tolerance in Arabidopsis.

    PubMed

    Osakabe, Yuriko; Mizuno, Shinji; Tanaka, Hidenori; Maruyama, Kyonoshin; Osakabe, Keishi; Todaka, Daisuke; Fujita, Yasunari; Kobayashi, Masatomo; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2010-03-19

    RPK1 (receptor-like protein kinase 1) localizes to the plasma membrane and functions as a regulator of abscisic acid (ABA) signaling in Arabidopsis. In our current study, we investigated the effect of RPK1 disruption and overproduction upon plant responses to drought stress. Transgenic Arabidopsis overexpressing the RPK1 protein showed increased ABA sensitivity in their root growth and stomatal closure and also displayed less transpirational water loss. In contrast, a mutant lacking RPK1 function, rpk1-1, was found to be resistant to ABA during these processes and showed increased water loss. RPK1 overproduction in these transgenic plants thus increased their tolerance to drought stress. We performed microarray analysis of RPK1 transgenic plants and observed enhanced expression of several stress-responsive genes, such as Cor15a, Cor15b, and rd29A, in addition to H(2)O(2)-responsive genes. Consistently, the expression levels of ABA/stress-responsive genes in rpk1-1 had decreased compared with wild type. The results suggest that the overproduction of RPK1 enhances both the ABA and drought stress signaling pathways. Furthermore, the leaves of the rpk1-1 plants exhibit higher sensitivity to oxidative stress upon ABA-pretreatment, whereas transgenic plants overproducing RPK1 manifest increased tolerance to this stress. Our current data suggest therefore that RPK1 overproduction controls reactive oxygen species homeostasis and enhances both water and oxidative stress tolerance in Arabidopsis.

  2. Combining linkage and association mapping identifies RECEPTOR-LIKE PROTEIN KINASE1 as an essential Arabidopsis shoot regeneration gene

    PubMed Central

    Motte, Hans; Vercauteren, Annelies; Depuydt, Stephen; Landschoot, Sofie; Geelen, Danny; Werbrouck, Stefaan; Goormachtig, Sofie; Vuylsteke, Marnik; Vereecke, Danny

    2014-01-01

    De novo shoot organogenesis (i.e., the regeneration of shoots on nonmeristematic tissue) is widely applied in plant biotechnology. However, the capacity to regenerate shoots varies highly among plant species and cultivars, and the factors underlying it are still poorly understood. Here, we evaluated the shoot regeneration capacity of 88 Arabidopsis thaliana accessions and found that the process is blocked at different stages in different accessions. We show that the variation in regeneration capacity between the Arabidopsis accessions Nok-3 and Ga-0 is determined by five quantitative trait loci (QTL): REG-1 to REG-5. Fine mapping by local association analysis identified RECEPTOR-LIKE PROTEIN KINASE1 (RPK1), an abscisic acid-related receptor, as the most likely gene underlying REG-1, which was confirmed by quantitative failure of an RPK1 mutation to complement the high and low REG-1 QTL alleles. The importance of RPK1 in regeneration was further corroborated by mutant and expression analysis. Altogether, our results show that association mapping combined with linkage mapping is a powerful method to discover important genes implicated in a biological process as complex as shoot regeneration. PMID:24850864

  3. The receptor-like cytoplasmic kinase BSR1 mediates chitin-induced defense signaling in rice cells.

    PubMed

    Kanda, Yasukazu; Yokotani, Naoki; Maeda, Satoru; Nishizawa, Yoko; Kamakura, Takashi; Mori, Masaki

    2017-08-01

    Broad-Spectrum Resistance 1 (BSR1) encodes a rice receptor-like cytoplasmic kinase, and enhances disease resistance when overexpressed. Rice plants overexpressing BSR1 are highly resistant to diverse pathogens, including rice blast fungus. However, the mechanism responsible for this resistance has not been fully characterized. To analyze the BSR1 function, BSR1-knockout (BSR1-KO) plants were generated using a clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system. Experiments using suspension-cultured cells revealed that defense responses including H2O2 production (i.e. oxidative burst) and expression of defense-related genes induced by autoclaved conidia of the rice blast fungus significantly decreased in BSR1-KO cells. Furthermore, a treatment with chitin oligomers which function as microbe-associated molecular patterns (MAMPs) of the rice blast fungus resulted in considerably suppressed defense responses in BSR1-KO cells. These results suggest that BSR1 is important for the rice innate immunity triggered by the perception of chitin.

  4. The LysM receptor-like kinase SlLYK10 regulates the arbuscular mycorrhizal symbiosis in tomato.

    PubMed

    Buendia, Luis; Wang, Tongming; Girardin, Ariane; Lefebvre, Benoit

    2016-04-01

    Most plants have the ability to establish a symbiosis with arbuscular mycorrhizal (AM) fungi, which allows better plant nutrition. A plant signaling pathway, called the common symbiosis signaling pathway (CSSP), is essential for the establishment of both AM and root nodule symbioses. The CSSP is activated by microbial signals. Plant receptor(s) for AM fungal signals required for the activation of the CSSP and initial fungal penetration are currently unknown. We set up conditions to use virus-induced gene silencing (VIGS) in Solanum lycopersicum to study the genes potentially involved in AM. We show that the lysin motif receptor-like kinase SlLYK10, whose orthologs in legumes are essential for nodulation, but not for AM, and SlCCaMK, a component of the CSSP, are required for penetration of the AM fungus Rhizophagus irregularis into the roots of young tomato plants. Our results support the hypothesis that the SILYK10 ancestral gene originally played a role in AM and underwent duplication and neofunctionalization for a role in nodulation in legumes. Moreover, we conclude that VIGS is an efficient method for fast screening of genes playing major roles in AM. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  5. Local and Systemic Regulation of Plant Root System Architecture and Symbiotic Nodulation by a Receptor-Like Kinase

    PubMed Central

    Huault, Emeline; Laffont, Carole; Wen, Jiangqi; Mysore, Kirankumar S.; Ratet, Pascal; Duc, Gérard; Frugier, Florian

    2014-01-01

    In plants, root system architecture is determined by the activity of root apical meristems, which control the root growth rate, and by the formation of lateral roots. In legumes, an additional root lateral organ can develop: the symbiotic nitrogen-fixing nodule. We identified in Medicago truncatula ten allelic mutants showing a compact root architecture phenotype (cra2) independent of any major shoot phenotype, and that consisted of shorter roots, an increased number of lateral roots, and a reduced number of nodules. The CRA2 gene encodes a Leucine-Rich Repeat Receptor-Like Kinase (LRR-RLK) that primarily negatively regulates lateral root formation and positively regulates symbiotic nodulation. Grafting experiments revealed that CRA2 acts through different pathways to regulate these lateral organs originating from the roots, locally controlling the lateral root development and nodule formation systemically from the shoots. The CRA2 LRR-RLK therefore integrates short- and long-distance regulations to control root system architecture under non-symbiotic and symbiotic conditions. PMID:25521478

  6. A calcium/calmodulin-regulated member of the receptor-like kinase family confers cold tolerance in plants.

    PubMed

    Yang, Tianbao; Chaudhuri, Shubho; Yang, Lihua; Du, Liqun; Poovaiah, B W

    2010-03-05

    Cold is a limiting environmental factor that adversely affects plant growth and productivity. Calcium/calmodulin-mediated signaling is believed to play a pivotal role in plant response to cold stress, but its exact role is not clearly understood. Here, we report that CRLK1, a novel calcium/calmodulin-regulated receptor-like kinase, is crucial for cold tolerance in plants. CRLK1 has two calmodulin-binding sites with different affinities as follows: one located at residues 369-390 with a K(d) of 25 nm, and the other located at residues 28-112 with a K(d) of 160 nm. Calcium/calmodulin stimulated the kinase activity, but the addition of chlorpromazine, a calmodulin antagonist, blocked its stimulation. CRLK1 is mainly localized in the plasma membrane, and its expression is stimulated by cold and hydrogen peroxide treatments. Under normal growth conditions, there is no noticeable phenotypic difference between wild-type and crlk1 knock-out mutant plants. However, as compared with wild-type plants, the crlk1 knock-out mutants exhibited an increased sensitivity to chilling and freezing temperatures. Northern analysis showed that the induction of cold-responsive genes, including CBF1, RD29A, COR15a, and KIN1 in crlk1 mutants, is delayed as compared with wild-type plants. These results indicate that CRLK1 is a positive regulator of cold tolerance in plants. Furthermore, our results suggest that CRLK1 plays a role in bridging calcium/calmodulin signaling and cold signaling.

  7. Expression and functional analysis of genes encoding cytokinin receptor-like histidine kinase in maize (Zea mays L.).

    PubMed

    Wang, Bo; Chen, Yanhong; Guo, Baojian; Kabir, Muhammad Rezaul; Yao, Yingyin; Peng, Huiru; Xie, Chaojie; Zhang, Yirong; Sun, Qixin; Ni, Zhongfu

    2014-08-01

    Cytokinin signaling is vital for plant growth and development which function via the two-component system (TCS). As one of the key component of TCS, transmembrane histidine kinases (HK) are encoded by a small gene family in plants. In this study, we focused on expression and functional analysis of cytokinin receptor-like HK genes (ZmHK) in maize. Firstly, bioinformatics analysis revealed that seven cloned ZmHK genes have different expression patterns during maize development. Secondly, ectopic expression by CaMV35S promoter in Arabidopsis further revealed that functional differentiation exists among these seven members. Among them, the ZmHK1a2-OX transgenic line has the lowest germination rate in the dark, ZmHK1-OX and ZmHK2a2-OX can delay leaf senescence, and seed size of ZmHK1-OX, ZmHK1a2-OX, ZmHK2-OX, ZmHK3b-OX and ZmHK2a2-OX was obviously reduced as compared to wild type. Additionally, ZmHK genes play opposite roles in shoot and root development; all ZmHK-OX transgenic lines display obvious shorter root length and reduced number of lateral roots, but enhanced shoot development compared with the wild type. Most notably, Arabidopsis response regulator ARR5 gene was up-regulated in ZmHK1-OX, ZmHK1a2-OX, ZmHK2-OX, ZmHK3b-OX and ZmHK2a2-OX as compared to wild type. Although the causal link between ZmHK genes and cytokinin signaling pathway is still an area to be further elucidated, these findings reflected that the diversification of ZmHK genes expression patterns and functions occurred in the course of maize evolution, indicating that some ZmHK genes might play different roles during maize development.

  8. Cysteine-rich receptor-like kinase CRK5 as a regulator of growth, development, and ultraviolet radiation responses in Arabidopsis thaliana.

    PubMed

    Burdiak, Paweł; Rusaczonek, Anna; Witoń, Damian; Głów, Dawid; Karpiński, Stanisław

    2015-06-01

    In plants, receptor-like protein kinases play essential roles in signal transduction by recognizing extracellular stimuli and activating the downstream signalling pathways. Cysteine-rich receptor-like kinases (CRKs) constitute a large subfamily of receptor-like protein kinases, with 44 members in Arabidopsis thaliana. They are distinguished by the novel C-X8-C-X2-C motif (DUF26) in the extracellular domains. One of them, CRK5, is an important component of the biochemical machinery involved in the regulation of essential physiological processes. Functional characterization of crk5 mutant plants showed their clear phenotype, manifested by impaired stomatal conductance and accelerated senescence. This phenotype correlated with accumulation of reactive oxygen species, higher foliar levels of ethylene and salicylic acid, and increased transcript abundance for genes associated with signalling pathways corresponding to these hormones. Moreover, the crk5 plants displayed enhanced cell death and oxidative damage in response to ultraviolet radiation. Complementation of CRK5 mutation managed to recover the wild-type phenotype, indicating an essential role of this gene in the regulation of growth, development, and acclimatory responses. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  9. A genetic screen identifies a requirement for cysteine-rich–receptor-like kinases in rice NH1 (OsNPR1)-mediated immunity

    DOE PAGES

    Chern, Mawsheng; Xu, Qiufang; Bart, Rebecca S.; ...

    2016-05-13

    Systemic acquired resistance, mediated by the Arabidopsis NPR1 gene and the rice NH1 gene, confers broad-spectrum immunity to diverse pathogens. NPR1 and NH1 interact with TGA transcription factors to activate downstream defense genes. Despite the importance of this defense response, the signaling components downstream of NPR1/NH1 and TGA proteins are poorly defined. Here we report the identification of a rice mutant, snim1, which suppresses NH1-mediated immunity and demonstrate that two genes encoding previously uncharacterized cysteine-rich-receptor-like kinases (CRK6 and CRK10), complement the snim1 mutant phenotype. Silencing of CRK6 and CRK10 genes individually in the parental genetic background recreates the snim1 phenotype.more » We identified a rice mutant in the Kitaake genetic background with a frameshift mutation in crk10; this mutant also displays a compromised immune response highlighting the important role of crk10. We also show that elevated levels of NH1 expression lead to enhanced CRK10 expression and that the rice TGA2.1 protein binds to the CRK10 promoter. Furthermore, these experiments demonstrate a requirement for CRKs in NH1-mediated immunity and establish a molecular link between NH1 and induction of CRK10 expression.« less

  10. A Genetic Screen Identifies a Requirement for Cysteine-Rich–Receptor-Like Kinases in Rice NH1 (OsNPR1)-Mediated Immunity

    PubMed Central

    Chern, Mawsheng; Xu, Qiufang; Bart, Rebecca S.; Bai, Wei; Ruan, Deling; Sze-To, Wing Hoi; Canlas, Patrick E.; Jain, Rashmi; Chen, Xuewei; Ronald, Pamela C.

    2016-01-01

    Systemic acquired resistance, mediated by the Arabidopsis NPR1 gene and the rice NH1 gene, confers broad-spectrum immunity to diverse pathogens. NPR1 and NH1 interact with TGA transcription factors to activate downstream defense genes. Despite the importance of this defense response, the signaling components downstream of NPR1/NH1 and TGA proteins are poorly defined. Here we report the identification of a rice mutant, snim1, which suppresses NH1-mediated immunity and demonstrate that two genes encoding previously uncharacterized cysteine-rich-receptor-like kinases (CRK6 and CRK10), complement the snim1 mutant phenotype. Silencing of CRK6 and CRK10 genes individually in the parental genetic background recreates the snim1 phenotype. We identified a rice mutant in the Kitaake genetic background with a frameshift mutation in crk10; this mutant also displays a compromised immune response highlighting the important role of crk10. We also show that elevated levels of NH1 expression lead to enhanced CRK10 expression and that the rice TGA2.1 protein binds to the CRK10 promoter. These experiments demonstrate a requirement for CRKs in NH1-mediated immunity and establish a molecular link between NH1 and induction of CRK10 expression. PMID:27176732

  11. Modes of Action and Functions of ERECTA-family Receptor-like Kinases in Plant Organ Growth and Development

    SciTech Connect

    TORII, Keiko U.

    2012-05-01

    Higher plants constitute the central resource for renewable lignocellulose biomass that can supplement for the world's depleting stores of fossil fuels. As such, understanding the molecular and genetic mechanisms of plant organ growth will provide key knowledge and genetic resources that enables manipulation of plant biomass feedstock for better growth and productivity. The goal of this proposal is to understand how cell proliferation and growth are coordinated during aboveground organ morphogenesis, and how cell-cell signaling mediated by a family of receptor kinases coordinates plant organogenesis. The well-established model plant Arabidopsis thaliana is used for our research to facilitate rapid progress. Specifically, we focus on how ERECTA-family leucine-rich repeat receptor kinases (LRR-RLKs) interact in a synergistic manner to promote organogenesis and pattern formation in Arabidopsis. This project was highly successful, resulted in fourteen publications including nine peer-reviewed original research articles. One provisional US patent has been filed through this DOE funding. We have addressed the critical roles for a family of receptor kinases in coordinating proliferation and differentiation of plants, and we successfully elucidated the downstream targets of this signaling pathway in specifying stomatal patterning.

  12. A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis

    USDA-ARS?s Scientific Manuscript database

    Chitin, a polymer of N-acetyl-D-glucosamine, is found in fungal cell walls, but not in plants. Plant cells are capable of perceiving chitin fragments (chitooligosaccharides) to trigger plant defense. We identified a LysM receptor-like protein (AtLysM RLK1) that is required for the perception of chit...

  13. A LysM Receptor-like Kinase Plays a Critical Role in Chitin Signaling and Fungal Resistance in Arabidopsis

    USDA-ARS?s Scientific Manuscript database

    Chitin, a polymer of N-acetyl-D-glucosamine, is found in fungal cell walls, but not in plants. Plant cells are capable of perceiving chitin fragments (chitooligosaccharides) to trigger plant defense. We identified a LysM receptor-like protein (AtLysM RLK1) that is required for the perception of chit...

  14. Molecular characterisation of the STRUBBELIG-RECEPTOR FAMILY of genes encoding putative leucine-rich repeat receptor-like kinases in Arabidopsis thaliana

    PubMed Central

    Eyüboglu, Banu; Pfister, Karen; Haberer, Georg; Chevalier, David; Fuchs, Angelika; Mayer, Klaus FX; Schneitz, Kay

    2007-01-01

    Background Receptor-like kinases are a prominent class of surface receptors that regulate many aspects of the plant life cycle. Despite recent advances the function of most receptor-like kinases remains elusive. Therefore, it is paramount to investigate these receptors. The task is complicated by the fact that receptor-like kinases belong to a large monophyletic family with many sub-clades. In general, functional analysis of gene family members by reverse genetics is often obscured by several issues, such as redundancy, subtle or difficult to detect phenotypes in mutants, or by decision problems regarding suitable biological and biochemical assays. Therefore, in many cases additional strategies have to be employed to allow inference of hypotheses regarding gene function. Results We approached the function of genes encoding the nine-member STRUBBELIG-RECEPTOR FAMILY (SRF) class of putative leucine-rich repeat receptor-like kinases. Sequence comparisons show overall conservation but also divergence in predicted functional domains among SRF proteins. Interestingly, SRF1 undergoes differential splicing. As a result, SRF1 is predicted to exist in a standard receptor configuration and in a membrane-anchored receptor-like version that lacks most of the intracellular domain. Furthermore, SRF1 is characterised by a high degree of polymorphism between the Ler and Col accessions. Two independent T-DNA-based srf4 mutants showed smaller leaves while 35S::SRF4 plants displayed enlarged leaves. This is in addition to the strubbelig phenotype which has been described before. Additional single and several key double mutant combinations did not reveal obvious mutant phenotypes. Ectopic expression of several SRF genes, using the 35S promoter, resulted in male sterility. To gain possible insights into SRF gene function we employed a computational analysis of publicly available microarray data. We performed global expression profiling, coexpression analysis, and an analysis of the

  15. Overexpression of an Arabidopsis cysteine-rich receptor-like protein kinase, CRK5, enhances abscisic acid sensitivity and confers drought tolerance

    PubMed Central

    Lu, Kai; Liang, Shan; Wu, Zhen; Bi, Chao; Yu, Yong-Tao; Wang, Xiao-Fang; Zhang, Da-Peng

    2016-01-01

    Receptor-like kinases (RLKs) have been reported to regulate many developmental and defense process, but only a few members have been functionally characterized. In the present study, our observations suggest that one of the RLKs, a membrane-localized cysteine-rich receptor-like protein kinase, CRK5, is involved in abscisic acid (ABA) signaling in Arabidopsis thaliana. Overexpression of CRK5 increases ABA sensitivity in ABA-induced early seedling growth arrest and promotion of stomatal closure and inhibition of stomatal opening. Interestingly, and importantly, overexpression of CRK5 enhances plant drought tolerance without affecting plant growth at the mature stages and plant productivity. Transgenic lines overexpressing a mutated form of CRK5, CRK5 K372E with the change of the 372nd conserved amino acid residue from lysine to glutamic acid in its kinase domain, result in wild-type ABA and drought responses, supporting the role of CRK5 in ABA signaling. The loss-of-function mutation of the CRK5 gene does not affect the ABA response, while overexpression of two homologs of CRK5, CRK4 and CRK19, confers ABA responses, suggesting that these CRK members function redundantly. We further showed that WRKY18, WRKY40 and WRKY60 transcription factors repress the expression of CRK5, and that CRK5 likely functions upstream of ABI2 in ABA signaling. These findings help in understanding the complex ABA signaling network. PMID:27406784

  16. RGF1 INSENSITIVE 1 to 5, a group of LRR receptor-like kinases, are essential for the perception of root meristem growth factor 1 in Arabidopsis thaliana.

    PubMed

    Ou, Yang; Lu, Xiaoting; Zi, Quaner; Xun, Qingqing; Zhang, Jingjie; Wu, Yujun; Shi, Hongyong; Wei, Zhuoyun; Zhao, Baolin; Zhang, Xiaoyue; He, Kai; Gou, Xiaoping; Li, Chuanyou; Li, Jia

    2016-06-01

    RGF1, a secreted peptide hormone, plays key roles in root meristem development in Arabidopsis. Previous studies indicated that a functional RGF1 needs to be sulfated at a tyrosine residue by a tyrosylprotein sulfotransferase and that RGF1 regulates the root meristem activity mainly via two downstream transcription factors, PLETHORA 1 (PLT1) and PLT2. How extracellular RGF1 is perceived by a plant cell, however, is unclear. Using genetic approaches, we discovered a clade of leucine-rich repeat receptor-like kinases, designated as RGF1 INSENSITIVE 1 (RGI1) to RGI5, serving as receptors of RGF1. Two independent rgi1 rgi2 rgi3 rgi4 rgi5 quintuple mutants display a consistent short primary root phenotype with a small size of meristem. An rgi1 rgi2 rgi3 rgi4 quadruple mutant shows a significantly reduced sensitivity to RGF1, and the quintuple mutant is completely insensitive to RGF1. The expression of PLT1 and PLT2 is almost undetectable in the quintuple mutant. Ectopic expression of PLT2 driven by an RGI2 promoter in the quintuple mutant greatly rescued its root meristem defects. One of the RGIs, RGI1, was subsequently analyzed biochemically in detail. In vitro dot blotting and pull-down analyses indicated that RGI1 can physically interact with RGF1. Exogenous application of RGF1 can quickly and simultaneously induce the phosphorylation and ubiquitination of RGI1, indicating that RGI1 can perceive and transduce the RGF1 peptide signal. Yet, the activated RGI1 is likely turned over rapidly. These results demonstrate that RGIs, acting as the receptors of RGF1, play essential roles in RGF1-PLT-mediated root meristem development in Arabidopsis thaliana.

  17. A Glycine soja ABA-responsive receptor-like cytoplasmic kinase, GsRLCK, positively controls plant tolerance to salt and drought stresses.

    PubMed

    Sun, XiaoLi; Sun, Mingzhe; Luo, Xiao; Ding, XiaoDong; Ji, Wei; Cai, Hua; Bai, Xi; Liu, XiaoFei; Zhu, YanMing

    2013-06-01

    Receptor such as protein kinases are proposed to work as sensors to initiate signaling cascades in higher plants. However, little is known about the precise functions of receptor such as protein kinases in abiotic stress response in plants, especially in wild soybean. Here, we focused on characterization of the biological functions of a receptor-like cytoplasmic serine/threonine protein kinase gene, GsRLCK, which was previously identified as a putative salt-alkali stress-related gene from the transcriptome profiles of Glycine soja. Bioinformatic analysis showed that GsRLCK protein contained a conserved kinase catalytic domain and two transmembrane domains at the N-terminus, but no typical extracellular domain. Consistently, GsRLCK-eGFP fusion protein was observed on the plasma membrane, but eGFP alone was distributing throughout the cytoplasm in onion epidermal cells. Quantitative real-time PCR analysis revealed the induced expression of GsRLCK by ABA, salt, alkali, and drought stresses. However, the expression levels of GsRLCK seemed to be similar in different tissues, except soybean pod. Phenotypic assays demonstrated that GsRLCK overexpression decreased ABA sensitivity and altered expression levels of ABA-responsive genes. Furthermore, we also found that GsRLCK conferred increased tolerance to salt and drought stresses and increased expression levels of a handful of stress-responsive genes, when overexpressing in Arabidopsis. In a word, we gave exact evidence that GsRLCK was a novel receptor-like cytoplasmic protein kinase and played a crucial role in plant responses to ABA, salt, and drought stresses.

  18. The Medicago truncatula Lysine Motif-Receptor-Like Kinase Gene Family Includes NFP and New Nodule-Expressed Genes1[W

    PubMed Central

    Arrighi, Jean-François; Barre, Annick; Ben Amor, Besma; Bersoult, Anne; Soriano, Lidia Campos; Mirabella, Rossana; de Carvalho-Niebel, Fernanda; Journet, Etienne-Pascal; Ghérardi, Michèle; Huguet, Thierry; Geurts, René; Dénarié, Jean; Rougé, Pierre; Gough, Clare

    2006-01-01

    Rhizobial Nod factors are key symbiotic signals responsible for starting the nodulation process in host legume plants. Of the six Medicago truncatula genes controlling a Nod factor signaling pathway, Nod Factor Perception (NFP) was reported as a candidate Nod factor receptor gene. Here, we provide further evidence for this by showing that NFP is a lysine motif (LysM)-receptor-like kinase (RLK). NFP was shown both to be expressed in association with infection thread development and to be involved in the infection process. Consistent with deviations from conserved kinase domain sequences, NFP did not show autophosphorylation activity, suggesting that NFP needs to associate with an active kinase or has unusual functional characteristics different from classical kinases. Identification of nine new M. truncatula LysM-RLK genes revealed a larger family than in the nonlegumes Arabidopsis (Arabidopsis thaliana) or rice (Oryza sativa) of at least 17 members that can be divided into three subfamilies. Three LysM domains could be structurally predicted for all M. truncatula LysM-RLK proteins, whereas one subfamily, which includes NFP, was characterized by deviations from conserved kinase sequences. Most of the newly identified genes were found to be expressed in roots and nodules, suggesting this class of receptors may be more extensively involved in nodulation than was previously known. PMID:16844829

  19. Molecular cloning and characterization of two novel genes from hexaploid wheat that encode double PR-1 domains coupled with a receptor-like protein kinase.

    PubMed

    Lu, Shunwen; Faris, Justin D; Edwards, Michael C

    2017-04-01

    Hexaploid wheat (Triticum aestivum L.) contains at least 23 TaPr-1 genes encoding the group 1 pathogenesis-related (PR-1) proteins as identified in our previous work. Here, we report the cloning and characterization of TaPr-1-rk1 and TaPr-1-rk2, two novel genes closely related to the wheat PR-1 family. The two TaPr-1-rk genes are located on homoeologous chromosomes 3D and 3A, respectively, and each contains a large open reading frame (7385 or 6060 bp) that is interrupted by seven introns and subjected to alternative splicing (AS) with five or six isoforms of mRNA transcripts. The deduced full-length TaPR-1-RK1 and TaPR-1-RK2 proteins (95% identity) contain two repeat PR-1 domains, the second of which is fused via a transmembrane helix to a serine/threonine kinase catalytic (STKc) domain characteristic of receptor-like protein kinases. Phylogenetic analysis indicated that the two PR-1 domains of the TaPR-1-RK proteins form sister clades with their homologues identified in other monocot plants and are well separated from stand-alone PR-1 proteins, whereas the STKc domains may have originated from cysteine-rich receptor-like kinases (CRKs). Reverse-transcriptase-PCR analysis revealed that the TaPr-1-rk genes are predominantly expressed in wheat leaves and their expression levels are elevated in response to pathogen attack, such as infection by barley stripe mosaic virus (BSMV), and also to stress conditions, most obviously, to soil salinity. This is the first report of PR-1-CRK hybrid proteins in wheat. The data may shed new insights into the function/evolutionary origin of the PR-1 family and the STKc-mediated defense/stress response pathways in plants.

  20. The maize disease resistance gene Htn1 against northern corn leaf blight encodes a wall-associated receptor-like kinase

    PubMed Central

    Hurni, Severine; Scheuermann, Daniela; Krattinger, Simon G.; Kessel, Bettina; Wicker, Thomas; Herren, Gerhard; Fitze, Mirjam N.; Breen, James; Presterl, Thomas; Ouzunova, Milena; Keller, Beat

    2015-01-01

    Northern corn leaf blight (NCLB) caused by the hemibiotrophic fungus Exserohilum turcicum is an important foliar disease of maize that is mainly controlled by growing resistant maize cultivars. The Htn1 locus confers quantitative and partial NCLB resistance by delaying the onset of lesion formation. Htn1 represents an important source of genetic resistance that was originally introduced from a Mexican landrace into modern maize breeding lines in the 1970s. Using a high-resolution map-based cloning approach, we delimited Htn1 to a 131.7-kb physical interval on chromosome 8 that contained three candidate genes encoding two wall-associated receptor-like kinases (ZmWAK-RLK1 and ZmWAK-RLK2) and one wall-associated receptor-like protein (ZmWAK-RLP1). TILLING (targeting induced local lesions in genomes) mutants in ZmWAK-RLK1 were more susceptible to NCLB than wild-type plants, both in greenhouse experiments and in the field. ZmWAK-RLK1 contains a nonarginine-aspartate (non-RD) kinase domain, typically found in plant innate immune receptors. Sequence comparison showed that the extracellular domain of ZmWAK-RLK1 is highly diverse between different maize genotypes. Furthermore, an alternative splice variant resulting in a truncated protein was present at higher frequency in the susceptible parents of the mapping populations compared with in the resistant parents. Hence, the quantitative Htn1 disease resistance in maize is encoded by an unusual innate immune receptor with an extracellular wall-associated kinase domain. These results further highlight the importance of this protein family in resistance to adapted pathogens. PMID:26124097

  1. A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis.

    PubMed

    Wan, Jinrong; Zhang, Xue-Cheng; Neece, David; Ramonell, Katrina M; Clough, Steve; Kim, Sung-Yong; Stacey, Minviluz G; Stacey, Gary

    2008-02-01

    Chitin, a polymer of N-acetyl-d-glucosamine, is found in fungal cell walls but not in plants. Plant cells can perceive chitin fragments (chitooligosaccharides) leading to gene induction and defense responses. We identified a LysM receptor-like protein (LysM RLK1) required for chitin signaling in Arabidopsis thaliana. The mutation in this gene blocked the induction of almost all chitooligosaccharide-responsive genes and led to more susceptibility to fungal pathogens but had no effect on infection by a bacterial pathogen. Additionally, exogenously applied chitooligosaccharides enhanced resistance against both fungal and bacterial pathogens in the wild-type plants but not in the mutant. Together, our data indicate that LysM RLK1 is essential for chitin signaling in plants (likely as part of the receptor complex) and is involved in chitin-mediated plant innate immunity. The LysM RLK1-mediated chitin signaling pathway is unique, but it may share a conserved downstream pathway with the FLS2/flagellin- and EFR/EF-Tu-mediated signaling pathways. Additionally, our work suggests a possible evolutionary relationship between the chitin and Nod factor perception mechanisms due to the similarities between their potential receptors and between the signal molecules perceived by them.

  2. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of the LRR domain of the LePRK1 receptor-like kinase from tomato.

    PubMed

    Xu, Anbi; Huang, Laiqiang

    2014-02-01

    LePRK1 is a receptor-like kinase involved in successful fertilization in Lycopersicon esculentum (tomato). Importantly, the extracellular leucine-rich repeat (LRR) domain of LePRK1 mediates transmembrane signal transduction for pollen-tube growth and pollen germination. In this study, the N-terminal extracellular LRR domain of L. esculentum-derived LePRK1 was purified using an insect-cell secretion expression system and was crystallized by the vapour-diffusion method. The crystals diffracted X-rays to a resolution of 2.75 Å using synchrotron radiation. The crystals belonged to space group C2, with unit-cell parameters a = 136.53, b = 56.01, c = 62.93 Å, β = 108.99° and two molecules per asymmetric unit.

  3. Duplication and Divergence of Leucine-Rich Repeat Receptor-Like Protein Kinase (LRR-RLK) Genes in Basal Angiosperm Amborella trichopoda.

    PubMed

    Liu, Ping-Li; Xie, Lu-Lu; Li, Peng-Wei; Mao, Jian-Feng; Liu, Hui; Gao, Shu-Min; Shi, Peng-Hao; Gong, Jun-Qing

    2016-01-01

    Leucine-rich repeat receptor-like protein kinases (LRR-RLKs) are the largest group of receptor-like kinases, which are one of the largest protein superfamilies in plants, and play crucial roles in development and stress responses. Although the evolution of LRR-RLK families has been investigated in some eudicot and monocot plants, no comprehensive evolutionary studies have been performed for these genes in basal angiosperms like Amborella trichopoda. In this study, we identified 94 LRR-RLK genes in the genome of A. trichopoda. The number of LRR-RLK genes in the genome of A. trichopoda is only 17-50% of that of several eudicot and monocot species. Tandem duplication and whole-genome duplication have made limited contributions to the expansion of LRR-RLK genes in A. trichopoda. According to the phylogenetic analysis, all A. trichopoda LRR-RLK genes can be organized into 18 subfamilies, which roughly correspond to the LRR-RLK subfamilies defined in Arabidopsis thaliana. Most LRR-RLK subfamilies are characterized by highly conserved protein structures, motif compositions, and gene structures. The unique gene structure, protein structures, and protein motif compositions of each subfamily provide evidence for functional divergence among LRR-RLK subfamilies. Moreover, the expression data of LRR-RLK genes provided further evidence for the functional diversification of them. In addition, selection analyses showed that most LRR-RLK protein sites are subject to purifying selection. Our results contribute to a better understanding of the evolution of LRR-RLK gene family in angiosperm and provide a framework for further functional investigation on A. trichopoda LRR-RLKs.

  4. Transcriptional regulation of the CRK/DUF26 group of Receptor-like protein kinases by ozone and plant hormones in Arabidopsis

    PubMed Central

    2010-01-01

    Background Plant Receptor-like/Pelle kinases (RLK) are a group of conserved signalling components that regulate developmental programs and responses to biotic and abiotic stresses. One of the largest RLK groups is formed by the Domain of Unknown Function 26 (DUF26) RLKs, also called Cysteine-rich Receptor-like Kinases (CRKs), which have been suggested to play important roles in the regulation of pathogen defence and programmed cell death. Despite the vast number of RLKs present in plants, however, only a few of them have been functionally characterized. Results We examined the transcriptional regulation of all Arabidopsis CRKs by ozone (O3), high light and pathogen/elicitor treatment - conditions known to induce the production of reactive oxygen species (ROS) in various subcellular compartments. Several CRKs were transcriptionally induced by exposure to O3 but not by light stress. O3 induces an extracellular oxidative burst, whilst light stress leads to ROS production in chloroplasts. Analysis of publicly available microarray data revealed that the transcriptional responses of the CRKs to O3 were very similar to responses to microbes or pathogen-associated molecular patterns (PAMPs). Several mutants altered in hormone biosynthesis or signalling showed changes in basal and O3-induced transcriptional responses. Conclusions Combining expression analysis from multiple treatments with mutants altered in hormone biosynthesis or signalling suggest a model in which O3 and salicylic acid (SA) activate separate signaling pathways that exhibit negative crosstalk. Although O3 is classified as an abiotic stress to plants, transcriptional profiling of CRKs showed strong similarities between the O3 and biotic stress responses. PMID:20500828

  5. Duplication and Divergence of Leucine-Rich Repeat Receptor-Like Protein Kinase (LRR-RLK) Genes in Basal Angiosperm Amborella trichopoda

    PubMed Central

    Liu, Ping-Li; Xie, Lu-Lu; Li, Peng-Wei; Mao, Jian-Feng; Liu, Hui; Gao, Shu-Min; Shi, Peng-Hao; Gong, Jun-Qing

    2016-01-01

    Leucine-rich repeat receptor-like protein kinases (LRR-RLKs) are the largest group of receptor-like kinases, which are one of the largest protein superfamilies in plants, and play crucial roles in development and stress responses. Although the evolution of LRR-RLK families has been investigated in some eudicot and monocot plants, no comprehensive evolutionary studies have been performed for these genes in basal angiosperms like Amborella trichopoda. In this study, we identified 94 LRR-RLK genes in the genome of A. trichopoda. The number of LRR-RLK genes in the genome of A. trichopoda is only 17–50% of that of several eudicot and monocot species. Tandem duplication and whole-genome duplication have made limited contributions to the expansion of LRR-RLK genes in A. trichopoda. According to the phylogenetic analysis, all A. trichopoda LRR-RLK genes can be organized into 18 subfamilies, which roughly correspond to the LRR-RLK subfamilies defined in Arabidopsis thaliana. Most LRR-RLK subfamilies are characterized by highly conserved protein structures, motif compositions, and gene structures. The unique gene structure, protein structures, and protein motif compositions of each subfamily provide evidence for functional divergence among LRR-RLK subfamilies. Moreover, the expression data of LRR-RLK genes provided further evidence for the functional diversification of them. In addition, selection analyses showed that most LRR-RLK protein sites are subject to purifying selection. Our results contribute to a better understanding of the evolution of LRR-RLK gene family in angiosperm and provide a framework for further functional investigation on A. trichopoda LRR-RLKs. PMID:28066499

  6. A Receptor-Like Kinase Mediates Ammonium Homeostasis and Is Important for the Polar Growth of Root Hairs in Arabidopsis[W

    PubMed Central

    Bai, Ling; Ma, Xiaonan; Zhang, Guozeng; Song, Shufei; Zhou, Yun; Gao, Lijie; Miao, Yuchen; Song, Chun-Peng

    2014-01-01

    Ammonium (NH4+) is both a necessary nutrient and an important signal in plants, but can be toxic in excess. Ammonium sensing and regulatory mechanisms in plant cells have not been fully elucidated. To decipher the complex network of NH4+ signaling, we analyzed [Ca2+]cyt-associated protein kinase (CAP) genes, which encode signaling components that undergo marked changes in transcription levels in response to various stressors. We demonstrated that CAP1, a tonoplast-localized receptor-like kinase, regulates root hair tip growth by maintaining cytoplasmic Ca2+ gradients. A CAP1 knockout mutant (cap1-1) produced elevated levels of cytoplasmic NH4+. Furthermore, root hair growth of cap1-1 was inhibited on Murashige and Skoog medium, but NH4+ depletion reestablished the Ca2+ gradient necessary for normal growth. The lower net NH4+ influx across the vacuolar membrane and relatively alkaline cytosolic pH of cap1-1 root hairs implied that mutation of CAP1 increased NH4+ accumulation in the cytoplasm. Furthermore, CAP1 functionally complemented the npr1 (nitrogen permease reactivator protein) kinase yeast mutant, which is defective in high-affinity NH4+ uptake via MEP2 (methylammonium permease 2), distinguishing CAP1 as a cytosolic modulator of NH4+ levels that participates in NH4+ homeostasis-regulated root hair growth by modulating tip-focused cytoplasmic Ca2+ gradients. PMID:24769480

  7. A cell-free method for expressing and reconstituting membrane proteins enables functional characterization of the plant receptor-like protein kinase FERONIA.

    PubMed

    Minkoff, Benjamin B; Makino, Shin-Ichi; Haruta, Miyoshi; Beebe, Emily T; Wrobel, Russell L; Fox, Brian G; Sussman, Michael R

    2017-04-07

    There are more than 600 receptor-like kinases (RLKs) in Arabidopsis, but due to challenges associated with the characterization of membrane proteins, only a few have known biological functions. The plant RLK FERONIA is a peptide receptor and has been implicated in plant growth regulation, but little is known about its molecular mechanism of action. To investigate the properties of this enzyme, we used a cell-free wheat germ-based expression system in which mRNA encoding FERONIA was co-expressed with mRNA encoding the membrane scaffold protein variant MSP1D1. With the addition of the lipid cardiolipin, assembly of these proteins into nanodiscs was initiated. FERONIA protein kinase activity in nanodiscs was higher than that of soluble protein and comparable with other heterologously expressed protein kinases. Truncation experiments revealed that the cytoplasmic juxtamembrane domain is necessary for maximal FERONIA activity, whereas the transmembrane domain is inhibitory. An ATP analogue that reacts with lysine residues inhibited catalytic activity and labeled four lysines; mutagenesis demonstrated that two of these, Lys-565 and Lys-663, coordinate ATP in the active site. Mass spectrometric phosphoproteomic measurements further identified phosphorylation sites that were examined using phosphomimetic mutagenesis. The results of these experiments are consistent with a model in which kinase-mediated phosphorylation within the C-terminal region is inhibitory and regulates catalytic activity. These data represent a step further toward understanding the molecular basis for the protein kinase catalytic activity of FERONIA and show promise for future characterization of eukaryotic membrane proteins. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Cloning of a Conserved Receptor-Like Protein Kinase Gene and Its Use as a Functional Marker for Homoeologous Group-2 Chromosomes of the Triticeae Species

    PubMed Central

    Qin, Bi; Chen, Tingting; Cao, Aizhong; Wang, Haiyan; Xing, Liping; Ling, Hongqing; Wang, Daowen; Yu, Chunmei; Xiao, Jin; Ji, Jianhui; Chen, Xueluan; Chen, Peidu; Liu, Dajun; Wang, Xiue

    2012-01-01

    Receptor-like kinases (RLKs) play broad biological roles in plants. We report on a conserved receptor-like protein kinase (RPK) gene from wheat and other Triticeae species. The TaRPK1 was isolated from the Triticum aestivum cv. Prins - Triticum timopheevii introgression line IGVI-465 carrying the powdery mildew resistance gene Pm6. The TaRPK1 was mapped to homoeologous chromosomes 2A (TaRPK1-2A), 2D (TaRPK1-2D) and the Pm6-carrier chromosome 2G (TaRPK1-2G) of IGVI-465. Under the tested conditions, only the TaRPK1-2G allele was actively transcribed, producing two distinct transcripts via alternative splicing. The predicted 424-amino acid protein of TaRPK1-2G contained a signal peptide, a transmembrane domain and an intracellular serine/threonine kinase domain, but lacked a typical extracellular domain. The expression of TaRPK1-2G gene was up-regulated upon the infection by Blumeria graminis f.sp. tritici (Bgt) and treatment with methyl jasmonate (MeJA), but down-regulated in response to treatments of SA and ABA. Over-expression of TaRPK1-2G in the powdery mildew susceptible wheat variety Prins by a transient expression assay showed that it slightly reduced the haustorium index of the infected Bgt. These data indicated that TaRPK1-2G participated in the defense response to Bgt infection and in the JA signaling pathway. Phylogenetic analysis indicated that TaRPK1-2G was highly conserved among plant species, and the amino acid sequence similarity of TaRPK1-2G among grass species was more than 86%. Based on its conservation, the RPK gene-based STS primers were designed, and used to amplify the RPK orthologs from the homoeologous group-2 chromosomes of all the tested Triticeae species, such as chromosome 2G of T. timopheevii, 2R of Secale cereale, 2H of Hordeum vulgare, 2S of Aegilops speltoides, 2Sl of Ae. longissima, 2Mg of Ae. geniculata, 2Sp and 2Up of Ae. peregrina. The developed STS markers serve as conserved functional markers for the identification of

  9. Pea lectin receptor-like kinase functions in salinity adaptation without yield penalty, by alleviating osmotic and ionic stresses and upregulating stress-responsive genes.

    PubMed

    Vaid, Neha; Pandey, Prashant; Srivastava, Vineet Kumar; Tuteja, Narendra

    2015-05-01

    Lectin receptor-like kinases (LecRLKs) are members of RLK family composed of lectin-like extracellular recognition domain, transmembrane domain and cytoplasmic kinase domain. LecRLKs are plasma membrane proteins believed to be involved in signal transduction. However, most of the members of the protein family even in plants have not been functionally well characterized. Herein, we show that Pisum sativum LecRLK (PsLecRLK) localized in plasma membrane systems and/or other regions of the cell and its transcript upregulated under salinity stress. Overexpression of PsLecRLK in transgenic tobacco plants confers salinity stress tolerance by alleviating both the ionic as well the osmotic component of salinity stress. The transgenic plants show better tissue compartmentalization of Na(+) and higher ROS scavenging activity which probably results in lower membrane damage, improved growth and yield maintenance even under salinity stress. Also, expression of several genes involved in cellular homeostasis is perturbed by PsLecRLK overexpression. Alleviation of osmotic and ionic components of salinity stress along with reduced oxidative damage and upregulation of stress-responsive genes in transgenic plants under salinity stress conditions could be possible mechanism facilitating enhanced stress tolerance. This study presents PsLecRLK as a promising candidate for crop improvement and also opens up new avenue to investigate its signalling pathway.

  10. Activin Receptor-Like Kinase 7 Suppresses Lipolysis to Accumulate Fat in Obesity Through Downregulation of Peroxisome Proliferator–Activated Receptor γ and C/EBPα

    PubMed Central

    Yogosawa, Satomi; Mizutani, Shin; Ogawa, Yoshihiro; Izumi, Tetsuro

    2013-01-01

    We previously identified a quantitative trait locus for adiposity, non-insulin-dependent diabetes 5 (Nidd5), on mouse chromosome 2. In the current study, we identified the actual genetic alteration at Nidd5 as a nonsense mutation of the Acvr1c gene encoding activin receptor-like kinase 7 (ALK7), one of the type I transforming growth factor-β receptors, which results in a COOH-terminal deletion of the kinase domain. We further showed that the ALK7 dysfunction causes increased lipolysis in adipocytes and leads to decreased fat accumulation. Conversely, ALK7 activation inhibits lipolysis by suppressing the expression of adipose lipases. ALK7 and activated Smads repress those lipases by downregulating peroxisome proliferator–activated receptor γ (PPARγ) and CCAAT/enhancer binding protein (C/EBP) α. Although PPARγ and C/EBPα act as adipogenic transcription factors during adipocyte differentiation, they are lipolytic in sum in differentiated adipocytes and are downregulated by ALK7 in obesity to accumulate fat. Under the obese state, ALK7 deficiency improves glucose tolerance and insulin sensitivity by preferentially increasing fat combustion in mice. These findings have uncovered a net lipolytic function of PPARγ and C/EBPα in differentiated adipocytes and point to the ALK7-signaling pathway that is activated in obesity as a potential target of medical intervention. PMID:22933117

  11. XYLEM INTERMIXED WITH PHLOEM1, a leucine-rich repeat receptor-like kinase required for stem growth and vascular development in Arabidopsis thaliana.

    PubMed

    Bryan, Anthony C; Obaidi, Adam; Wierzba, Michael; Tax, Frans E

    2012-01-01

    The regulation of cell specification in plants is particularly important in vascular development. The vascular system is comprised two differentiated tissue types, the xylem and phloem, which form conductive elements for the transport of water, nutrients and signaling molecules. A meristematic layer, the procambium, is located between these two differentiated cell types and divides to initiate vascular growth. We report the identification of a receptor-like kinase (RLK) that is expressed in the vasculature. Histochemical analyses of mutants in this kinase display an aberrant accumulation of highly lignified cells, typical of xylem or fiber cells, within the phloem. In addition, phloem cells are sometimes located adjacent to xylem cells in these mutants. We, therefore, named this RLK XYLEM INTERMIXED WITH PHLOEM 1 (XIP1). Analyses of longitudinal profiles of xip1 mutant stems show malformed cell files, indicating defects in oriented cell divisions or cell morphology. We propose that XIP1 prevents ectopic lignification in phloem cells and is necessary to maintain the organization of cell files or cell morphology in conductive elements.

  12. Pea lectin receptor-like kinase promotes high salinity stress tolerance in bacteria and expresses in response to stress in planta.

    PubMed

    Joshi, Amita; Dang, Hung Quang; Vaid, Neha; Tuteja, Narendra

    2010-01-01

    The plant lectin receptor-like kinases (LecRLKs) are involved in various signaling pathways but their role in salinity stress tolerance has not heretofore been well described. Salinity stress negatively affects plant growth/productivity and threatens food security worldwide. Based on functional gene-mining assay, we have isolated 34 salinity tolerant genes out of one million Escherichia coli (SOLR) transformants containing pea cDNAs grown in 0.8 M NaCl. Sequence analysis of one of these revealed homology to LecRLK, which possesses N-myristilation and N-glycosylation sites thus corroborating the protein to be a glycoconjugate. The homology based computational modeling of the kinase domain suggested high degree of conservation with the protein already known to be stress responsive in plants. The NaCl tolerance provided by PsLecRLK to the above bacteria was further confirmed in E. coli (DH5alpha). In planta studies showed that the expression of PsLecRLK cDNA was significantly upregulated in response to NaCl as compared to K(+) and Li(+) ions, suggesting the Na(+) ion specific response. Transcript of the PsLecRLK gene accumulates mainly in roots and shoots. The purified 47 kDa recombinant PsLecRLK-KD (kinase domain) protein has been shown to phosphorylate general substrates like MBP and casein. This study not only suggests the conservation of the cellular response to high salinity stress across prokaryotes and plant kingdom but also provides impetus to develop novel concepts for better understanding of mechanism of stress tolerance in bacteria and plants. It also opens up new avenues for studying practical aspects of plant salinity tolerance for enhanced agricultural productivity.

  13. Molecular basis of lipo-chitooligosaccharide recognition by the lysin motif receptor-like kinase LYR3 in legumes.

    PubMed

    Malkov, Nikita; Fliegmann, Judith; Rosenberg, Charles; Gasciolli, Virginie; Timmers, Antonius C J; Nurisso, Alessandra; Cullimore, Julie; Bono, Jean-Jacques

    2016-05-15

    LYR3 [LysM (lysin motif) receptor-like kinase 3] of Medicago truncatula is a high-affinity binding protein for symbiotic LCO (lipo-chitooligosaccharide) signals, produced by rhizobia bacteria and arbuscular mycorrhizal fungi. The present study shows that LYR3 from several other legumes, but not from two Lupinus species which are incapable of forming the mycorrhizal symbiosis, bind LCOs with high affinity and discriminate them from COs (chitooligosaccharides). The biodiversity of these proteins and the lack of binding to the Lupinus proteins were used to identify features required for high-affinity LCO binding. Swapping experiments between each of the three LysMs of the extracellular domain of the M. truncatula and Lupinus angustifolius LYR3 proteins revealed the crucial role of the third LysM in LCO binding. Site-directed mutagenesis identified a tyrosine residue, highly conserved in all LYR3 LCO-binding proteins, which is essential for high-affinity binding. Molecular modelling suggests that it may be part of a hydrophobic tunnel able to accommodate the LCO acyl chain. The lack of conservation of these features in the binding site of plant LysM proteins binding COs provides a mechanistic explanation of how LCO recognition might differ from CO perception by structurally related LysM receptors.

  14. GATA6 Promotes Angiogenic Function and Survival in Endothelial Cells by Suppression of Autocrine Transforming Growth Factor β/Activin Receptor-like Kinase 5 Signaling*

    PubMed Central

    Froese, Natali; Kattih, Badder; Breitbart, Astrid; Grund, Andrea; Geffers, Robert; Molkentin, Jeffery D.; Kispert, Andreas; Wollert, Kai C.; Drexler, Helmut; Heineke, Joerg

    2011-01-01

    Understanding the transcriptional regulation of angiogenesis could lead to the identification of novel therapeutic targets. We showed here that the transcription factor GATA6 is expressed in different human primary endothelial cells as well as in vascular endothelial cells of mice in vivo. Activation of endothelial cells was associated with GATA6 nuclear translocation, chromatin binding, and enhanced GATA6-dependent transcriptional activation. siRNA-mediated down-regulation of GATA6 after growth factor stimulation led to a dramatically reduced capacity of macro- and microvascular endothelial cells to proliferate, migrate, or form capillary-like structures on Matrigel. Adenoviral overexpression of GATA6 in turn enhanced angiogenic function, especially in cardiac endothelial microvascular cells. Furthermore, GATA6 protected endothelial cells from undergoing apoptosis during growth factor deprivation. Mechanistically, down-regulation of GATA6 in endothelial cells led to increased expression of transforming growth factor (TGF) β1 and TGFβ2, whereas enhanced GATA6 expression, accordingly, suppressed Tgfb1 promoter activity. High TGFβ1/β2 expression in GATA6-depleted endothelial cells increased the activation of the activin receptor-like kinase 5 (ALK5) and SMAD2, and suppression of this signaling axis by TGFβ neutralizing antibody or ALK5 inhibition restored angiogenic function and survival in endothelial cells with reduced GATA6 expression. Together, these findings indicate that GATA6 plays a crucial role for endothelial cell function and survival, at least in part, by suppressing autocrine TGFβ expression and ALK5-dependent signaling. PMID:21127043

  15. An LRR/Malectin Receptor-Like Kinase Mediates Resistance to Non-adapted and Adapted Powdery Mildew Fungi in Barley and Wheat

    PubMed Central

    Rajaraman, Jeyaraman; Douchkov, Dimitar; Hensel, Götz; Stefanato, Francesca L.; Gordon, Anna; Ereful, Nelzo; Caldararu, Octav F.; Petrescu, Andrei-Jose; Kumlehn, Jochen; Boyd, Lesley A.; Schweizer, Patrick

    2016-01-01

    Pattern recognition receptors (PRRs) belonging to the multigene family of receptor-like kinases (RLKs) are the sensing devices of plants for microbe- or pathogen-associated molecular patterns released from microbial organisms. Here we describe Rnr8 (for Required for non-host resistance 8) encoding HvLEMK1, a LRR-malectin domain-containing transmembrane RLK that mediates non-host resistance of barley to the non-adapted wheat powdery mildew fungus Blumeria graminis f.sp. tritici. Transgenic barley lines with silenced HvLEMK1 allow entry and colony growth of the non-adapted pathogen, although sporulation was reduced and final colony size did not reach that of the adapted barley powdery mildew fungus B. graminis f.sp. hordei. Transient expression of the barley or wheat LEMK1 genes enhanced resistance in wheat to the adapted wheat powdery mildew fungus while expression of the same genes did not protect barley from attack by the barley powdery mildew fungus. The results suggest that HvLEMK1 is a factor mediating non-host resistance in barley and quantitative host resistance in wheat to the wheat powdery mildew fungus. PMID:28018377

  16. The receptor-like kinases GSO1 and GSO2 together regulate root growth in Arabidopsis through control of cell division and cell fate specification.

    PubMed

    Racolta, Adriana; Bryan, Anthony C; Tax, Frans E

    2014-02-01

    The root apical meristem of Arabidopsis is established post-embryonically as the main source of root cells, and its activity is maintained by complex bidirectional signaling between stem cells and mature cells. The receptor-like kinases GASSHO1 (GSO1) and GSO2 have been shown to regulate aerial epidermal function and seedling growth in Arabidopsis. Here we show that gso1; gso2 seedlings also have root growth and patterning defects. Analyses of mutant root morphology indicate abnormal numbers of cells in longitudinal files and radial cell layers, as well as aberrant stem cell division planes. gso1; gso2 double mutants misexpress markers for stem cells and differentiated root cell types. In addition, gso1; gso2 root growth defects, but not marker missexpression or patterning phenotypes, are rescued by growth on media containing metabolizable sugars. We conclude that GSO1 and GSO2 function together in intercellular signaling to positively regulate cell proliferation, differentiation of root cell types, and stem cell identity. In addition, GSO1 and GSO2 control seedling root growth by modulating sucrose response after germination. Copyright © 2013 Wiley Periodicals, Inc.

  17. Cyclin G2 Is Degraded through the Ubiquitin-Proteasome Pathway and Mediates the Antiproliferative Effect of Activin Receptor-like Kinase 7

    PubMed Central

    Xu, Guoxiong; Bernaudo, Stefanie; Fu, Guodong; Lee, Daniel Y.; Yang, Burton B.

    2008-01-01

    We have previously reported that Nodal, a member of the TGF-β superfamily, acts through activin receptor-like kinase 7 (ALK7) to inhibit ovarian cancer cell proliferation. To determine the mechanism underlying their effects, a cell cycle gene array was performed and cyclin G2 mRNA was found to be strongly up-regulated by Nodal and ALK7. To study the function and regulation of cyclin G2 in ovarian cancer cells, expression constructs were generated. We found that cyclin G2 protein level decreased rapidly after transfection, and this decrease was prevented by 26S proteasome inhibitors. Immunoprecipitation and pull-down studies showed that ubiquitin, Skp1, and Skp2 formed complexes with cyclin G2. Knockdown of Skp2 by siRNA increased, whereas overexpression of Skp2 decreased cyclin G2 levels. Nodal and ALK7 decreased the expression of Skp1 and Skp2 and increased cyclin G2 levels. Overexpression of cyclin G2 inhibited cell proliferation whereas cyclin G2-siRNA reduced the antiproliferative effect of Nodal and ALK7. Taken together, these findings provide strong evidence that cyclin G2 is degraded by the ubiquitin–proteasome pathway and that Skp2 plays a role in regulating cyclin G2 levels. Furthermore, our results also demonstrate that the antiproliferative effect of Nodal/ALK7 on ovarian cancer cells is in part mediated by cyclin G2. PMID:18784254

  18. Suppression of transient receptor potential melastatin 4 expression promotes conversion of endothelial cells into fibroblasts via transforming growth factor/activin receptor-like kinase 5 pathway.

    PubMed

    Echeverría, Cesar; Montorfano, Ignacio; Cabello-Verrugio, Claudio; Armisén, Ricardo; Varela, Diego; Simon, Felipe

    2015-05-01

    To study whether transient receptor potential melastatin 4 (TRPM4) participates in endothelial fibrosis and to investigate the underlying mechanism. Primary human endothelial cells were used and pharmacological and short interfering RNA-based approaches were used to test the transforming growth factor beta (TGF-β)/activin receptor-like kinase 5 (ALK5) pathway participation and contribution of TRPM7 ion channel. Suppression of TRPM4 expression leads to decreased endothelial protein expression and increased expression of fibrotic and extracellular matrix markers. Furthermore, TRPM4 downregulation increases intracellular Ca levels as a potential condition for fibrosis. The underlying mechanism of endothelial fibrosis shows that inhibition of TRPM4 expression induces TGF-β1 and TGF-β2 expression, which act through their receptor, ALK5, and the nuclear translocation of the profibrotic transcription factor smad4. TRPM4 acts to maintain endothelial features and its loss promotes fibrotic conversion via TGF-β production. The regulation of TRPM4 levels could be a target for preserving endothelial function during inflammatory diseases.

  19. Perception of the novel MAMP eMax from different Xanthomonas species requires the Arabidopsis receptor-like protein ReMAX and the receptor kinase SOBIR.

    PubMed

    Jehle, Anna Kristina; Fürst, Ursula; Lipschis, Martin; Albert, Markus; Felix, Georg

    2013-01-01

    As part of their innate immune system plants carry a number of pattern recognition receptors (PRRs) that can detect a broad range of microbe-associated molecular patterns (MAMPs). In a recently published article (1) we described a novel, proteinaceous MAMP termed eMax (enigmatic MAMP of Xanthomonas) that derives from Xanthomonas and gets recognized by the receptor-like protein ReMAX (RECEPTOR OF eMax) of Arabidopsis thaliana. ReMAX has no ortholog in Nicotiana benthamiana and this species does not respond to eMax even when transformed with ReMAX. However, interfamily transfer of eMax perception was successful with a chimeric form of ReMAX where the C-terminal part of the protein was replaced by the corresponding part of the tomato RLP EIX2 (ETHYLENE INDUCING XYLANASE2). In this addendum we describe the difficulties with the purification and identification of the MAMP eMax and we present data demonstrating that functionality of ReMAX, much like that of related RLPs, depends on the presence of the receptor kinase SOBIR (SUPPRESSOR OF BIR1-1).

  20. Lipo-chitooligosaccharidic symbiotic signals are recognized by LysM receptor-like kinase LYR3 in the legume Medicago truncatula.

    PubMed

    Fliegmann, Judith; Canova, Sophie; Lachaud, Christophe; Uhlenbroich, Sandra; Gasciolli, Virginie; Pichereaux, Carole; Rossignol, Michel; Rosenberg, Charles; Cumener, Marie; Pitorre, Delphine; Lefebvre, Benoit; Gough, Clare; Samain, Eric; Fort, Sébastien; Driguez, Hugues; Vauzeilles, Boris; Beau, Jean-Marie; Nurisso, Alessandra; Imberty, Anne; Cullimore, Julie; Bono, Jean-Jacques

    2013-09-20

    While chitooligosaccharides (COs) derived from fungal chitin are potent elicitors of defense reactions, structurally related signals produced by certain bacteria and fungi, called lipo-chitooligosaccharides (LCOs), play important roles in the establishment of symbioses with plants. Understanding how plants distinguish between friend and foe through the perception of these signals is a major challenge. We report the synthesis of a range of COs and LCOs, including photoactivatable probes, to characterize a membrane protein from the legume Medicago truncatula. By coupling photoaffinity labeling experiments with proteomics and transcriptomics, we identified the likely LCO-binding protein as LYR3, a lysin motif receptor-like kinase (LysM-RLK). LYR3, expressed heterologously, exhibits high-affinity binding to LCOs but not COs. Homology modeling, based on the Arabidopsis CO-binding LysM-RLK AtCERK1, suggests that LYR3 could accommodate the LCO in a conserved binding site. The identification of LYR3 opens up ways for the molecular characterization of LCO/CO discrimination.

  1. The phenome analysis of mutant alleles in Leucine-Rich Repeat Receptor-Like Kinase genes in rice reveals new potential targets for stress tolerant cereals.

    PubMed

    Dievart, Anne; Perin, Christophe; Hirsch, Judith; Bettembourg, Mathilde; Lanau, Nadège; Artus, Florence; Bureau, Charlotte; Noel, Nicolas; Droc, Gaétan; Peyramard, Matthieu; Pereira, Serge; Courtois, Brigitte; Morel, Jean-Benoit; Guiderdoni, Emmanuel

    2016-01-01

    Plants are constantly exposed to a variety of biotic and abiotic stresses that reduce their fitness and performance. At the molecular level, the perception of extracellular stimuli and the subsequent activation of defense responses require a complex interplay of signaling cascades, in which protein phosphorylation plays a central role. Several studies have shown that some members of the Leucine-Rich Repeat Receptor-Like Kinase (LRR-RLK) family are involved in stress and developmental pathways. We report here a systematic analysis of the role of the members of this gene family by mutant phenotyping in the monocotyledon model plant rice, Oryza sativa. We have then targeted 176 of the ∼320 LRR-RLK genes (55.7%) and genotyped 288 mutant lines. Position of the insertion was confirmed in 128 lines corresponding to 100 LRR-RLK genes (31.6% of the entire family). All mutant lines harboring homozygous insertions have been screened for phenotypes under normal conditions and under various abiotic stresses. Mutant plants have been observed at several stages of growth, from seedlings in Petri dishes to flowering and grain filling under greenhouse conditions. Our results show that 37 of the LRR-RLK rice genes are potential targets for improvement especially in the generation of abiotic stress tolerant cereals.

  2. An LRR/Malectin Receptor-Like Kinase Mediates Resistance to Non-adapted and Adapted Powdery Mildew Fungi in Barley and Wheat.

    PubMed

    Rajaraman, Jeyaraman; Douchkov, Dimitar; Hensel, Götz; Stefanato, Francesca L; Gordon, Anna; Ereful, Nelzo; Caldararu, Octav F; Petrescu, Andrei-Jose; Kumlehn, Jochen; Boyd, Lesley A; Schweizer, Patrick

    2016-01-01

    Pattern recognition receptors (PRRs) belonging to the multigene family of receptor-like kinases (RLKs) are the sensing devices of plants for microbe- or pathogen-associated molecular patterns released from microbial organisms. Here we describe Rnr8 (for Required for non-host resistance 8) encoding HvLEMK1, a LRR-malectin domain-containing transmembrane RLK that mediates non-host resistance of barley to the non-adapted wheat powdery mildew fungus Blumeria graminis f.sp. tritici. Transgenic barley lines with silenced HvLEMK1 allow entry and colony growth of the non-adapted pathogen, although sporulation was reduced and final colony size did not reach that of the adapted barley powdery mildew fungus B. graminis f.sp. hordei. Transient expression of the barley or wheat LEMK1 genes enhanced resistance in wheat to the adapted wheat powdery mildew fungus while expression of the same genes did not protect barley from attack by the barley powdery mildew fungus. The results suggest that HvLEMK1 is a factor mediating non-host resistance in barley and quantitative host resistance in wheat to the wheat powdery mildew fungus.

  3. The pepper receptor-like cytoplasmic protein kinase CaPIK1 is involved in plant signaling of defense and cell-death responses.

    PubMed

    Kim, Dae Sung; Hwang, Byung Kook

    2011-05-01

    Certain protein kinases have been shown to be crucial for plant cell signaling pathways associated with plant immune responses. Here we identified a pepper (Capsicum annuum) receptor-like cytoplasmic protein kinase (RLCK) gene (CaPIK1) that is transcriptionally activated by infection with Xanthomonas campestris pv. vesicatoria (Xcv). Silencing of CaPIK1 in pepper plants confers enhanced susceptibility to Xcv infection. Salicylic acid-dependent defense responses are attenuated in the CaPIK1-silenced plants, including expression of salicylic acid-dependent genes, but not of a jasmonic acid-regulated gene. Induction of salicylic acid accumulation by Xcv infection is compromised in CaPIK1-silenced plants. The functional CaPIK1 protein not only autophosphorylates, but also phosphorylates myelin basic protein. CaPIK1 exists in the cytoplasm and also localizes to the plasma membrane of plant cells via its N-terminus. Transient expression of CaPIK1 in pepper leaves leads to generation of reactive oxygen species (ROS), ultimately leading to hypersensitive cell death. Over-expression (OX) of CaPIK1 in Arabidopsis enhances the basal resistance to infection with Pseudomonas syringae pv. tomato and Hyaloperonospora arabidopsidis, associated with elevated ROS bursts. Salicylic acid levels in CaPIK1-OX plants are higher than those in wild-type plants. Together, these results suggest that CaPIK1 modulates the signaling required for the salicylic acid-dependent defense response to pathogen infection. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  4. Evaluation of the Role of the LysM Receptor-Like Kinase, OsNFR5/OsRLK2 for AM Symbiosis in Rice.

    PubMed

    Miyata, Kana; Hayafune, Masahiro; Kobae, Yoshihiro; Kaku, Hanae; Nishizawa, Yoko; Masuda, Yoshiki; Shibuya, Naoto; Nakagawa, Tomomi

    2016-11-01

    In legume-specific rhizobial symbiosis, host plants perceive rhizobial signal molecules, Nod factors, by a pair of LysM receptor-like kinases, NFR1/LYK3 and NFR5/NFP, and activate symbiotic responses through the downstream signaling components also required for arbuscular mycorrhizal (AM) symbiosis. Recently, the rice NFR1/LYK3 ortholog, OsCERK1, was shown to play crucial roles for AM symbiosis. On the other hand, the roles of the NFR5/NFP ortholog in rice have not been elucidated, while it has been shown that NFR5/NFP orthologs, Parasponia PaNFR5 and tomato SlRLK10, engage in AM symbiosis. OsCERK1 also triggers immune responses in combination with a receptor partner, OsCEBiP, against fungal or bacterial infection, thus regulating opposite responses against symbiotic and pathogenic microbes. However, it has not been elucidated how OsCERK1 switches these opposite functions. Here, we analyzed the function of the rice NFR5/NFP ortholog, OsNFR5/OsRLK2, as a possible candidate of the OsCERK1 partner for symbiotic signaling. Inoculation of AM fungi induced the expression of OsNFR5 in the rice root, and the chimeric receptor consisting of the extracellular domain of LjNFR5 and the intracellular domain of OsNFR5 complemented the Ljnfr5 mutant for rhizobial symbiosis, indicating that the intracellular kinase domain of OsNFR5 could activate symbiotic signaling in Lotus japonicus. Although these data suggested the possible involvement of OsNFR5 in AM symbiosis, osnfr5 knockout mutants were colonized by AM fungi similar to the wild-type rice. These observations suggested several possibilities including the presence of functionally redundant genes other than OsNFR5 or involvement of novel ligands, which do not require OsNFR5 for recognition.

  5. Targeting activin receptor-like kinase 1 inhibits angiogenesis and tumorigenesis through a mechanism of action complementary to anti-VEGF therapies.

    PubMed

    Hu-Lowe, Dana D; Chen, Enhong; Zhang, Lianglin; Watson, Katherine D; Mancuso, Patrizia; Lappin, Patrick; Wickman, Grant; Chen, Jeffrey H; Wang, Jianying; Jiang, Xin; Amundson, Karin; Simon, Ronald; Erbersdobler, Andreas; Bergqvist, Simon; Feng, Zheng; Swanson, Terri A; Simmons, Brett H; Lippincott, John; Casperson, Gerald F; Levin, Wendy J; Stampino, Corrado Gallo; Shalinsky, David R; Ferrara, Katherine W; Fiedler, Walter; Bertolini, Francesco

    2011-02-15

    Genetic and molecular studies suggest that activin receptor-like kinase 1 (ALK1) plays an important role in vascular development, remodeling, and pathologic angiogenesis. Here we investigated the role of ALK1 in angiogenesis in the context of common proangiogenic factors [PAF; VEGF-A and basic fibroblast growth factor (bFGF)]. We observed that PAFs stimulated ALK1-mediated signaling, including Smad1/5/8 phosphorylation, nuclear translocation and Id-1 expression, cell spreading, and tubulogenesis of endothelial cells (EC). An antibody specifically targeting ALK1 (anti-ALK1) markedly inhibited these events. In mice, anti-ALK1 suppressed Matrigel angiogenesis stimulated by PAFs and inhibited xenograft tumor growth by attenuating both blood and lymphatic vessel angiogenesis. In a human melanoma model with acquired resistance to a VEGF receptor kinase inhibitor, anti-ALK1 also delayed tumor growth and disturbed vascular normalization associated with VEGF receptor inhibition. In a human/mouse chimera tumor model, targeting human ALK1 decreased human vessel density and improved antitumor efficacy when combined with bevacizumab (anti-VEGF). Antiangiogenesis and antitumor efficacy were associated with disrupted co-localization of ECs with desmin(+) perivascular cells, and reduction of blood flow primarily in large/mature vessels as assessed by contrast-enhanced ultrasonography. Thus, ALK1 may play a role in stabilizing angiogenic vessels and contribute to resistance to anti-VEGF therapies. Given our observation of its expression in the vasculature of many human tumor types and in circulating ECs from patients with advanced cancers, ALK1 blockade may represent an effective therapeutic opportunity complementary to the current antiangiogenic modalities in the clinic.

  6. Direct binding of a plant LysM receptor-like kinase, LysM RLK1/CERK1, to chitin in vitro.

    PubMed

    Iizasa, Ei'ichi; Mitsutomi, Masaru; Nagano, Yukio

    2010-01-29

    Plants induce immune responses against fungal pathogens by recognition of chitin, which is a component of the fungal cell wall. Recent studies have revealed that LysM receptor-like kinase 1/chitin elicitor receptor kinase 1 (LysM RLK1/CERK1) is a critical component for the immune responses to chitin in Arabidopsis thaliana. However, the molecular mechanism of the chitin recognition by LysM RLK1 still remains unknown. Here, we present the first evidence for direct binding of LysM RLK1 to chitin. We expressed LysM RLK1 fused with yeast-enhanced green fluorescent protein (LysM RLK1-yEGFP) in yeast cells. Binding studies using the solubilized LysM RLK1-yEGFP and several insoluble polysaccharides having similar structures showed that LysM RLK1-yEGFP specifically binds to chitin. Subsequently, the fluorescence microscopic observation of the solubilized LysM RLK1-yEGFP binding to chitin beads revealed that the binding was saturable and had a high affinity, with a K(d) of approximately 82 nm. This binding was competed by the addition of soluble glycol chitin or high concentration of chitin oligosaccharides having 4-8 residues of N-acetyl glucosamine. However, the competition of these chitin oligosaccharides is weaker than that of glycol chitin. These data suggest that LysM RLK1 has a higher affinity for chitin having a longer residue of N-acetyl glucosamine. We also found that LysM RLK1-yEGFP was autophosphorylated in vitro and that chitin does not affect the phosphorylation of LysM RLK1-yEGFP. Our results provide a new dimension to chitin elicitor perception in plants.

  7. From defense to symbiosis: limited alterations in the kinase domain of LysM receptor-like kinases are crucial for evolution of legume-Rhizobium symbiosis.

    PubMed

    Nakagawa, Tomomi; Kaku, Hanae; Shimoda, Yoshikazu; Sugiyama, Akifumi; Shimamura, Masayuki; Takanashi, Kojiro; Yazaki, Kazufumi; Aoki, Toshio; Shibuya, Naoto; Kouchi, Hiroshi

    2011-01-01

    Nitrogen-fixing symbiosis between legumes and rhizobia is initiated by the recognition of rhizobial Nod factors (NFs) by host plants. NFs are diversely modified derivatives of chitin oligosaccharide, a fungal elicitor that induces defense responses in plants. Recent evidence has shown that both NFs and chitin elicitors are recognized by structurally related LysM receptor kinases. Transcriptome analyses of Lotus japonicus roots indicated that NFs not only activate symbiosis genes but also transiently activate defense-related genes through NF receptors. Conversely, chitin oligosaccharides were able to activate symbiosis genes independently of NF receptors. Analyses using chimeric genes consisting of the LysM receptor domain of a Lotus japonicus NF receptor, NFR1, and the kinase domain of an Arabidopsis chitin receptor, CERK1, demonstrated that substitution of a portion of the αEF helix in CERK1 with the amino acid sequence YAQ from the corresponding region of NFR1 enables L. japonicus nfr1 mutants to establish symbiosis with Mesorhizobium loti. We also showed that the kinase domains of two Lotus japonicus LysM receptor kinases, Lys6 and Lys7, which also possess the YAQ sequence, suppress the symbiotic defect of nfr1. These results strongly suggest that, in addition to adaptation of extracellular LysM domains to NFs, limited alterations in the kinase domain of chitin receptors have played a crucial role in shifting the intracellular signaling to symbiosis from defense responses, thus constituting one of the key genetic events in the evolution of root nodule symbiosis in legume plants. © 2010 The Authors. The Plant Journal © 2010 Blackwell Publishing Ltd.

  8. Endoglin and activin receptor-like kinase 1 heterozygous mice have a distinct pulmonary and hepatic angiogenic profile and response to anti-VEGF treatment.

    PubMed

    Ardelean, Daniela S; Jerkic, Mirjana; Yin, Melissa; Peter, Madonna; Ngan, Bo; Kerbel, Robert S; Foster, F Stuart; Letarte, Michelle

    2014-01-01

    Hereditary hemorrhagic telangiectasia (HHT) is a vascular dysplasia associated with dysregulated angiogenesis and arteriovascular malformations. The disease is caused by mutations in endoglin (ENG; HHT1) or activin receptor-like kinase 1 (ALK1; HHT2) genes, coding for transforming growth factor β (TGF-β) superfamily receptors. Vascular endothelial growth factor (VEGF) has been implicated in HHT and beneficial effects of anti-VEGF treatment were recently reported in HHT patients. To investigate the systemic angiogenic phenotype of Endoglin and Alk1 mutant mice and their response to anti-VEGF therapy, we assessed microvessel density (MVD) in multiple organs after treatment with an antibody to mouse VEGF or vehicle. Lungs were the only organ showing an angiogenic defect, with reduced peripheral MVD and secondary right ventricular hypertrophy (RVH), yet distinctly associated with a fourfold increase in thrombospondin-1 (TSP-1) in Eng (+/-) versus a rise in angiopoietin-2 (Ang-2) in Alk1 (+/-) mice. Anti-VEGF treatment did reduce lung VEGF levels but interestingly, led to an increase in peripheral pulmonary MVD and attenuation of RVH; it also normalized TSP-1 and Ang-2 expression. Hepatic MVD, unaffected in mutant mice, was reduced by anti-VEGF therapy in heterozygous and wild type mice, indicating a liver-specific effect of treatment. Contrast-enhanced micro-ultrasound demonstrated a reduction in hepatic microvascular perfusion after anti-VEGF treatment only in Eng (+/-) mice. Our findings indicate that the mechanisms responsible for the angiogenic imbalance and the response to anti-VEGF therapy differ between Eng and Alk1 heterozygous mice and raise the need for systemic monitoring of anti-angiogenic therapy effects in HHT patients.

  9. Crinkly4 receptor-like kinase is required to maintain the interlocking of the palea and lemma, and fertility in rice, by promoting epidermal cell differentiation.

    PubMed

    Pu, Cui-Xia; Ma, Yun; Wang, Jiao; Zhang, Yong-Cun; Jiao, Xue-Wen; Hu, Yu-Hong; Wang, Ling-Ling; Zhu, Zheng-Ge; Sun, Daye; Sun, Ying

    2012-06-01

    The palea and lemma are unique organs in grass plants that form a protective barrier around the floral organs and developing kernel. The interlocking of the palea and lemma is critical for maintaining fertility and seed yield in rice; however, the molecules that control the interlocking structure remain largely unknown. Here, we showed that when OsCR4 mRNA expression was knocked down in rice by RNA interference, the palea and lemma separated at later spikelet stages and gradually turned brown after heading, resulting in the severe interruption of pistil pollination and damage to the development of embryo and endosperm, with defects in aleurone. The irregular architecture of the palea and lemma was caused by tumour-like cell growth in the outer epidermis and wart-like cell masses in the inner epidermis. These abnormal cells showed discontinuous cuticles and uneven cell walls, leading to organ self-fusion that distorted the interlocking structures. Additionally, the faster leakage of chlorophyll, reduced silica content and elevated accumulation of anthocyanin in the palea and lemma indicated a lesion in the protective barrier, which also impaired seed quality. OsCR4 is an active receptor-like kinase associated with the membrane fraction. An analysis of promoter::GUS reporter plants showed that OsCR4 is specifically expressed in the epidermal cells of paleas and lemmas. Together, these results suggest that OsCR4 plays an essential role in maintaining the interlocking of the palea and lemma by promoting epidermal cell differentiation. © 2012 YING SUN. The Plant Journal © 2012 Blackwell Publishing Ltd.

  10. High expression of SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE coincides with initiation of various developmental pathways in in vitro culture of Trifolium nigrescens.

    PubMed

    Pilarska, Maria; Malec, Przemysław; Salaj, Jan; Bartnicki, Filip; Konieczny, Robert

    2016-03-01

    The aim of this study was to identify and examine the expression pattern of the ortholog of SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE gene from Trifolium nigrescens (TnSERK) in embryogenic and non-regenerative cultures of immature cotyledonary-stage zygotic embryos (CsZEs). In the presence of 1-naphthaleneacetic acid and N(6)-[2-isopentenyl]-adenine, the CsZE regenerated embryoids directly and in a lengthy culture produced callus which was embryogenic or remained non-regenerative. As revealed by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR), the TnSERK was expressed in both embryogenic and non-regenerative cultures, but the expression level was significantly higher in embryogenic ones. An in situ RNA hybridization assay revealed that the expression of TnSERK preceded the induction of cell division in explants, and then, it was maintained exclusively in actively dividing cells from which embryoids, embryo-like structures (ELSs), callus or tracheary elements were produced. However, the cells involved in different morphogenic events differed in intensity of hybridization signal which was the highest in embryogenic cells. The TnSERK was up-regulated during the development of embryoids, but in cotyledonary embryos, it was preferentially expressed in the regions of the apical meristems. The occurrence of morphological and anatomical abnormalities in embryoid development was preceded by a decline in TnSERK expression, and this coincided with the parenchymatization of the ground tissue in developing ELSs. TnSERK was also down-regulated during the maturation of parenchyma and xylem elements in CsZE and callus. Altogether, these data suggest the involvement of TnSERK in the induction of various developmental programs related to differentiation/transdifferentiation and totipotent state of cell(s).

  11. The FERONIA Receptor-like Kinase Mediates Male-Female Interactions During Pollen Tube Reception

    USDA-ARS?s Scientific Manuscript database

    Fertilization in higher plants requires intricate signaling between the male and female. The molecular details underlying this communication are of great interest, not only to understand plant reproduction but also to guide efforts in crossing plant species to generate new hybrids. On page 656 of th...

  12. Receptor-like Molecules on Human Intestinal Epithelial Cells Interact with an Adhesion Factor from Lactobacillus reuteri.

    PubMed

    Matsuo, Yosuke; Miyoshi, Yukihiro; Okada, Sanae; Satoh, Eiichi

    2012-01-01

    A surface protein of Lactobacillus reuteri, mucus adhesion-promoting protein (MapA), is considered to be an adhesion factor. MapA is expressed in L. reuteri strains and adheres to piglet gastric mucus, collagen type I, and human intestinal epithelial cells such as Caco-2. The aim of this study was to identify molecules that mediate the attachment of MapA from L. reuteri to the intestinal epithelial cell surface by investigating the adhesion of MapA to receptor-like molecules on Caco-2 cells. MapA-binding receptor-like molecules were detected in Caco-2 cell lysates by 2D-PAGE. Two proteins, annexin A13 (ANXA13) and paralemmin (PALM), were identified by MALDI TOF-MS. The results of a pull-down assay showed that MapA bound directly to ANXA13 and PALM. Fluorescence microscopy studies confirmed that MapA binding to ANXA13 and PALM was colocalized on the Caco-2 cell membrane. To evaluate whether ANXA13 and PALM are important for MapA adhesion, ANXA13 and PALM knockdown cell lines were established. The adhesion of MapA to the abovementioned cell lines was reduced compared with that to wild-type Caco-2 cells. These knockdown experiments established the importance of these receptor-like molecules in MapA adhesion.

  13. Receptor-like Molecules on Human Intestinal Epithelial Cells Interact with an Adhesion Factor from Lactobacillus reuteri

    PubMed Central

    MATSUO, Yosuke; MIYOSHI, Yukihiro; OKADA, Sanae; SATOH, Eiichi

    2012-01-01

    A surface protein of Lactobacillus reuteri, mucus adhesion-promoting protein (MapA), is considered to be an adhesion factor. MapA is expressed in L. reuteri strains and adheres to piglet gastric mucus, collagen type I, and human intestinal epithelial cells such as Caco-2. The aim of this study was to identify molecules that mediate the attachment of MapA from L. reuteri to the intestinal epithelial cell surface by investigating the adhesion of MapA to receptor-like molecules on Caco-2 cells. MapA-binding receptor-like molecules were detected in Caco-2 cell lysates by 2D-PAGE. Two proteins, annexin A13 (ANXA13) and paralemmin (PALM), were identified by MALDI TOF-MS. The results of a pull-down assay showed that MapA bound directly to ANXA13 and PALM. Fluorescence microscopy studies confirmed that MapA binding to ANXA13 and PALM was colocalized on the Caco-2 cell membrane. To evaluate whether ANXA13 and PALM are important for MapA adhesion, ANXA13 and PALM knockdown cell lines were established. The adhesion of MapA to the abovementioned cell lines was reduced compared with that to wild-type Caco-2 cells. These knockdown experiments established the importance of these receptor-like molecules in MapA adhesion. PMID:24936355

  14. Characterization of Drosophila GDNF Receptor-Like and Evidence for Its Evolutionarily Conserved Interaction with Neural Cell Adhesion Molecule (NCAM)/FasII

    PubMed Central

    Kallijärvi, Jukka; Stratoulias, Vassilis; Virtanen, Kristel; Hietakangas, Ville; Heino, Tapio I.; Saarma, Mart

    2012-01-01

    Background Glial cell line-derived neurotrophic factor (GDNF) family ligands are secreted growth factors distantly related to the TGF-β superfamily. In mammals, they bind to the GDNF family receptor α (Gfrα) and signal through the Ret receptor tyrosine kinase. In order to gain insight into the evolution of the Ret-Gfr-Gdnf signaling system, we have cloned and characterized the first invertebrate Gfr-like cDNA (DmGfrl) from Drosophila melanogaster and generated a DmGfrl mutant allele. Results We found that DmGfrl encodes a large GPI-anchored membrane protein with four GFR-like domains. In line with the fact that insects lack GDNF ligands, DmGfrl mediated neither Drosophila Ret phosphorylation nor mammalian RET phosphorylation. In situ hybridization analysis revealed that DmGfrl is expressed in the central and peripheral nervous systems throughout Drosophila development, but, surprisingly, DmGfrl and DmRet expression patterns were largely non-overlapping. We generated a DmGfrl null allele by genomic FLP deletion and found that both DmGfrl null females and males are viable but display fertility defects. The female fertility defect manifested as dorsal appendage malformation, small size and reduced viability of eggs laid by mutant females. In male flies DmGfrl interacted genetically with the Drosophila Ncam (neural cell adhesion molecule) homolog FasII to regulate fertility. Conclusion Our results suggest that Ret and Gfrl did not function as an in cis receptor-coreceptor pair before the emergence of GDNF family ligands, and that the Ncam-Gfr interaction predated the in cis Ret-Gfr interaction in evolution. The fertility defects that we describe in DmGfrl null flies suggest that GDNF receptor-like has an evolutionarily ancient role in regulating male fertility and a previously unrecognized role in regulating oogenesis. Significance These results shed light on the evolutionary aspects of the structure, expression and function of Ret-Gfrα and Ncam-Gfrα signaling

  15. GsLRPK, a novel cold-activated leucine-rich repeat receptor-like protein kinase from Glycine soja, is a positive regulator to cold stress tolerance.

    PubMed

    Yang, Liang; Wu, Kangcheng; Gao, Peng; Liu, Xiaojuan; Li, Guangpu; Wu, Zujian

    2014-02-01

    Plant LRR-RLKs serve as protein interaction platforms, and as regulatory modules of protein activation. Here, we report the isolation of a novel plant-specific LRR-RLK from Glycine soja (termed GsLRPK) by differential screening. GsLRPK expression was cold-inducible and shows Ser/Thr protein kinase activity. Subcellular localization studies using GFP fusion protein indicated that GsLRPK is localized in the plasma membrane. Real-time PCR analysis indicated that temperature, salt, drought, and ABA treatment can alter GsLRPK gene transcription in G. soja. However, just protein induced by cold stress not by salinity and ABA treatment in tobacco was found to possess kinase activity. Furthermore, we found that overexpression of GsLRPK in yeast and Arabidopsis can enhance resistance to cold stress and increase the expression of a number of cold responsive gene markers. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Receptor kinase signaling pathways in plant-microbe interactions.

    PubMed

    Antolín-Llovera, Meritxell; Ried, Martina K; Binder, Andreas; Parniske, Martin

    2012-01-01

    Plant receptor-like kinases (RLKs) function in diverse signaling pathways, including the responses to microbial signals in symbiosis and defense. This versatility is achieved with a common overall structure: an extracytoplasmic domain (ectodomain) and an intracellular protein kinase domain involved in downstream signal transduction. Various surfaces of the leucine-rich repeat (LRR) ectodomain superstructure are utilized for interaction with the cognate ligand in both plant and animal receptors. RLKs with lysin-motif (LysM) ectodomains confer recognitional specificity toward N-acetylglucosamine-containing signaling molecules, such as chitin, peptidoglycan (PGN), and rhizobial nodulation factor (NF), that induce immune or symbiotic responses. Signaling downstream of RLKs does not follow a single pattern; instead, the detailed analysis of brassinosteroid (BR) signaling, innate immunity, and symbiosis revealed at least three largely nonoverlapping pathways. In this review, we focus on RLKs involved in plant-microbe interactions and contrast the signaling pathways leading to symbiosis and defense.

  17. Vascular Injury Triggers Krüppel-Like Factor 6 (KLF6) Mobilization and Cooperation with Sp1 to Promote Endothelial Activation through Upregulation of the Activin Receptor-Like Kinase 1 (ALK1) Gene

    PubMed Central

    Garrido-Martín, Eva M.; Blanco, Francisco J.; Roquè, Mercé; Novensà, Laura; Tarocchi, Mirko; Lee, Ursula E.; Suzuki, Toru; Friedman, Scott L.; Botella, Luisa M.; Bernabéu, Carmelo

    2012-01-01

    Rationale Activin receptor-Like Kinase-1 (ALK1) is an endothelial TGF-β receptor involved in angiogenesis. ALK1 expression is high in the embryo vasculature, becoming less detectable in the quiescent endothelium of adult stages. However, ALK1 expression becomes rapidly increased after angiogenic stimuli such as vascular injury. Objective To characterize the molecular mechanisms underlying the regulation of ALK1 upon vascular injury. Methods and Results Alk1 becomes strongly upregulated in endothelial (EC) and vascular smooth muscle cells (vSMC) of mouse femoral arteries after wire-induced endothelial denudation. In vitro, denudation of monolayers of Human Umbilical Vein Endothelial Cells (HUVEC) also leads to an increase in ALK1. Interestingly, a key factor in tissue remodeling, Krüppel-like factor 6 (KLF6), translocates to the cell nucleus during wound healing, concomitantly with an increase in the ALK1 gene transcriptional rate. KLF6 knock down in HUVECs promotes ALK1 mRNA downregulation. Moreover, Klf6+/− mice have lower levels of Alk1 in their vasculature compared with their wild type siblings. Chromatin immunoprecipitation assays show that KLF6 interacts with ALK1 promoter in ECs, and this interaction is enhanced during wound healing. We demonstrate that KLF6 is transactivating ALK1 gene, and this transactivation occurs by a synergistic cooperative mechanism with Sp1. Finally, Alk1 levels in vSMCs are not directly upregulated in response to damage, but in response to soluble factors, such as IL-6, released from ECs after injury. Conclusions ALK1 is upregulated in ECs during vascular injury by a synergistic cooperative mechanism between KLF6 and Sp1, and in vSMCs by an EC-vSMC paracrine communication during vascular remodeling. PMID:23048070

  18. Novel type of receptor-like protein kinase from a higher plant (Catharanthus roseus). cDNA, gene, intramolecular autophosphorylation, and identification of a threonine important for auto- and substrate phosphorylation.

    PubMed

    Schulze-Muth, P; Irmler, S; Schröder, G; Schröder, J

    1996-10-25

    We characterize CrRLK1, a novel type of receptor-like kinase (RLK), from the plant Catharanthus roseus (Madagascar periwinkle). The protein (90.2 kDa) deduced from the complete genomic and cDNA sequences is a RLK by predicting a N-terminal signal peptide, a large extracytoplasmic domain, a membrane-spanning hydrophobic region followed by a transfer-stop signal, and a C-terminal cytoplasmic protein kinase with all 11 conserved subdomains. It is a novel RLK type because the predicted extracytoplasmic region shares no similarity with other RLKs. The autophosphorylation was investigated with affinity-purified proteins expressed in Escherichia coli. The activity was higher with Mn2+ than with Mg2+ and achieved half-maximal rates at 2-2.5 microM ATP. The phosphorylation was predominantly on Thr, less on Ser, and not on Tyr. In contrast to other plant RLK, the kinase used an intra- rather than an intermolecular phosphorylation mechanism. After protein cleavage with formic acid, most of the radioactivity was in a 14.1-kDa peptide located at the end of the kinase domain. Mutagenesis of the four Thr residues in this peptide identified Thr-720 in the subdomain XI as important for autophosphorylation and for phosphorylation of beta-casein. This Thr is conserved in other related kinases, suggesting a subfamily sharing common autophosphorylation mechanisms.

  19. Glutaredoxin GrxC2 catalyzes the glutathionylation and inactivation of Arabidopsis BRI1-ASSOCIATED RECEPTOR-LIKE KINASE 1 (BAK1) in vitro

    USDA-ARS?s Scientific Manuscript database

    Reversible protein phosphorylation, catalyzed by protein kinases, is the most widely studied post-translational modification (PTM) both in terms of its occurrence and the regulatory consequences of phosphorylation events on phosphorylated proteins. In addition to reversible phosphorylation, many pro...

  20. An S-Domain Receptor-Like Kinase, OsSIK2, Confers Abiotic Stress Tolerance and Delays Dark-Induced Leaf Senescence in Rice1[W][OPEN

    PubMed Central

    Chen, Li-Juan; Wuriyanghan, Hada; Zhang, Yu-Qin; Duan, Kai-Xuan; Chen, Hao-Wei; Li, Qing-Tian; Lu, Xiang; He, Si-Jie; Ma, Biao; Zhang, Wan-Ke; Lin, Qing; Chen, Shou-Yi; Zhang, Jin-Song

    2013-01-01

    Receptor-like kinases play important roles in plant development and defense responses; however, their functions in other processes remain unclear. Here, we report that OsSIK2, an S-domain receptor-like kinase from rice (Oryza sativa), is involved in abiotic stress and the senescence process. OsSIK2 is a plasma membrane-localized protein with kinase activity in the presence of Mn2+. OsSIK2 is expressed mainly in rice leaf and sheath and can be induced by NaCl, drought, cold, dark, and abscisic acid treatment. Transgenic plants overexpressing OsSIK2 and mutant sik2 exhibit enhanced and reduced tolerance to salt and drought stress, respectively, compared with the controls. Interestingly, a truncated version of OsSIK2 without most of the extracellular region confers higher salt tolerance than the full-length OsSIK2, likely through the activation of different sets of downstream genes. Moreover, seedlings of OsSIK2-overexpressing transgenic plants exhibit early leaf development and a delayed dark-induced senescence phenotype, while mutant sik2 shows the opposite phenotype. The downstream PR-related genes specifically up-regulated by full-length OsSIK2 or the DREB-like genes solely enhanced by truncated OsSIK2 are all induced by salt, drought, and dark treatments. These results indicate that OsSIK2 may integrate stress signals into a developmental program for better adaptive growth under unfavorable conditions. Manipulation of OsSIK2 should facilitate the improvement of production in rice and other crops. PMID:24143807

  1. Natural variation in host-specific nodulation of pea is associated with a haplotype of the SYM37 LysM-type receptor-like kinase.

    PubMed

    Li, Ronghui; Knox, Maggie R; Edwards, Anne; Hogg, Bridget; Ellis, T H Noel; Wei, Gehong; Downie, J Allan

    2011-11-01

    Rhizobium leguminosarum bv. viciae, which nodulates pea and vetch, makes a mixture of secreted nodulation signals (Nod factors) carrying either a C18:4 or a C18:1 N-linked acyl chain. Mutation of nodE blocks the formation of the C18:4 acyl chain, and nodE mutants, which produce only C18:1-containing Nod factors, are less efficient at nodulating pea. However, there is significant natural variation in the levels of nodulation of different pea cultivars by a nodE mutant of R. leguminosarum bv. viciae. Using recombinant inbred lines from two pea cultivars, one which nodulated relatively well and one very poorly by the nodE mutant, we mapped the nodE-dependent nodulation phenotype to a locus on pea linkage group I. This was close to Sym37 and PsK1, predicted to encode LysM-domain Nod-factor receptor-like proteins; the Sym2 locus that confers Nod-factor-specific nodulation is also in this region. We confirmed the map location using an introgression line carrying this region. Our data indicate that the nodE-dependent nodulation is not determined by the Sym2 locus. We identified several pea lines that are nodulated very poorly by the R. leguminosarum bv. viciae nodE mutant, sequenced the DNA of the predicted LysM-receptor domains of Sym37 and PsK1, and compared the sequences with those derived from pea cultivars that were relatively well nodulated by the nodE mutant. This revealed that one haplotype (encoding six conserved polymorphisms) of Sym37 is associated with very poor nodulation by the nodE mutant. There was no such correlation with polymorphisms at the PsK1 locus. We conclude that the natural variation in nodE-dependent nodulation in pea is most probably determined by the Sym37 haplotype.

  2. A Receptor-Like Kinase, Related to Cell Wall Sensor of Higher Plants, is Required for Sexual Reproduction in the Unicellular Charophycean Alga, Closterium peracerosum-strigosum-littorale Complex.

    PubMed

    Hirano, Naoko; Marukawa, Yuka; Abe, Jun; Hashiba, Sayuri; Ichikawa, Machiko; Tanabe, Yoichi; Ito, Motomi; Nishii, Ichiro; Tsuchikane, Yuki; Sekimoto, Hiroyuki

    2015-07-01

    Here, we cloned the CpRLK1 gene, which encodes a receptor-like protein kinase expressed during sexual reproduction, from the heterothallic Closterium peracerosum-strigosum-littorale complex, one of the closest unicellular alga to land plants. Mating-type plus (mt(+)) cells with knockdown of CpRLK1 showed reduced competence for sexual reproduction and formed an abnormally enlarged conjugation papilla after pairing with mt(-) cells. The knockdown cells were unable to release a naked gamete, which is indispensable for zygote formation. We suggest that the CpRLK1 protein is an ancient cell wall sensor that now functions to regulate osmotic pressure in the cell to allow proper gamete release. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Cell wall-associated ROOT HAIR SPECIFIC 10, a proline-rich receptor-like kinase, is a negative modulator of Arabidopsis root hair growth

    PubMed Central

    Hwang, Youra; Lee, Hyodong; Lee, Young-Sook; Cho, Hyung-Taeg

    2016-01-01

    Plant cell growth is restricted by the cell wall, and cell wall dynamics act as signals for the cytoplasmic and nuclear events of cell growth. Among various receptor kinases, ROOT HAIR SPECIFIC 10 (RHS10) belongs to a poorly known receptor kinase subfamily with a proline-rich extracellular domain. Here, we report that RHS10 defines the root hair length of Arabidopsis thaliana by negatively regulating hair growth. RHS10 modulates the duration of root hair growth rather than the growth rate. As poplar and rice RHS10 orthologs also showed a root hair-inhibitory function, this receptor kinase-mediated function appears to be conserved in angiosperms. RHS10 showed a strong association with the cell wall, most probably through its extracellular proline-rich domain (ECD). Deletion analysis of the ECD demonstrated that a minimal extracellular part, which includes a few proline residues, is required for RHS10-mediated root hair inhibition. RHS10 suppressed the accumulation of reactive oxygen species (ROS) in the root, which are necessary for root hair growth. A yeast two-hybrid screening identified an RNase (RNS2) as a putative downstream target of RHS10. Accordingly, RHS10 overexpression decreased and RHS10 loss increased RNA levels in the hair-growing root region. Our results suggest that RHS10 mediates cell wall-associated signals to maintain proper root hair length, at least in part by regulating RNA catabolism and ROS accumulation. PMID:26884603

  4. A Rice Kinase-Protein Interaction Map1[W][OA

    PubMed Central

    Ding, Xiaodong; Richter, Todd; Chen, Mei; Fujii, Hiroaki; Seo, Young Su; Xie, Mingtang; Zheng, Xianwu; Kanrar, Siddhartha; Stevenson, Rebecca A.; Dardick, Christopher; Li, Ying; Jiang, Hao; Zhang, Yan; Yu, Fahong; Bartley, Laura E.; Chern, Mawsheng; Bart, Rebecca; Chen, Xiuhua; Zhu, Lihuang; Farmerie, William G.; Gribskov, Michael; Zhu, Jian-Kang; Fromm, Michael E.; Ronald, Pamela C.; Song, Wen-Yuan

    2009-01-01

    Plants uniquely contain large numbers of protein kinases, and for the vast majority of the 1,429 kinases predicted in the rice (Oryza sativa) genome, little is known of their functions. Genetic approaches often fail to produce observable phenotypes; thus, new strategies are needed to delineate kinase function. We previously developed a cost-effective high-throughput yeast two-hybrid system. Using this system, we have generated a protein interaction map of 116 representative rice kinases and 254 of their interacting proteins. Overall, the resulting interaction map supports a large number of known or predicted kinase-protein interactions from both plants and animals and reveals many new functional insights. Notably, we found a potential widespread role for E3 ubiquitin ligases in pathogen defense signaling mediated by receptor-like kinases, particularly by the kinases that may have evolved from recently expanded kinase subfamilies in rice. We anticipate that the data provided here will serve as a foundation for targeted functional studies in rice and other plants. The application of yeast two-hybrid and TAPtag analyses for large-scale plant protein interaction studies is also discussed. PMID:19109415

  5. Multiple receptor-like kinase cDNAs from liverwort Marchantia polymorpha and two charophycean green algae, Closterium ehrenbergii and Nitella axillaris: Extensive gene duplications and gene shufflings in the early evolution of streptophytes.

    PubMed

    Sasaki, Go; Katoh, Kazutaka; Hirose, Nozomi; Suga, Hiroshi; Kuma, Kei-ichi; Miyata, Takashi; Su, Zhi-Hui

    2007-10-15

    Plant receptor-like kinases (RLKs) comprise a large family with more than several hundred members in vascular plants. The RLK family is thought to have diverged specifically in the plant kingdom, and no family member has been identified in other lineages except for animals and Plasmodium, both of which have RLK related families of small size. To know the time of divergence of RLK family members by gene duplications and domain shufflings, comprehensive isolations of RLK cDNAs were performed from a nonvascular plant, liverwort Marchantia polymorpha and two charophycean green algae, Closterium ehrenbergii, and Nitella axillaris, thought to be the closest relatives to land plants. We obtained twenty-nine, fourteen, and thirteen RLK related cDNAs from M. polymorpha, C. ehrenbergii, and N. axillaris, respectively. The amino acid sequences of these RLKs were compared with those of vascular plants, and phylogenetic trees were inferred by GAMT, a genetic algorithm-based maximum likelihood (ML) method that outputs multiple trees, together with best one. The inferred ML trees revealed ancient gene duplications generating subfamilies with different domain organizations, which occurred extensively at least before the divergence of vascular and nonvascular plants. Rather it remains possible that the extensive gene duplications occurred during the early evolution of streptophytes. Multicellular-specific somatic embryogenesis receptor kinase (SERK) involved in somatic embryogenesis was found in a unicellular alga C. ehrenbergii, suggesting the evolution of SERK by gene recruitment of a unicellular gene.

  6. Molecular Evolution of Receptor-Like Kinase Genes in Hexaploid Wheat. Independent Evolution of Orthologs after Polyploidization and Mechanisms of Local Rearrangements at Paralogous Loci1

    PubMed Central

    Feuillet, Catherine; Penger, Anja; Gellner, Klaus; Mast, Austin; Keller, Beat

    2001-01-01

    Hexaploid wheat is a young polyploid species and represents a good model to study mechanisms of gene evolution after polyploidization. Recent studies at the scale of the whole genome have suggested rapid genomic changes after polyploidization but so far the rearrangements that have occurred in terms of gene content and organization have not been analyzed at the microlevel in wheat. Here, we have isolated members of a receptor kinase (Lrk) gene family in hexaploid and diploid wheat, Aegilops tauschii, and barley (Hordeum vulgare). Phylogenetic analysis has allowed us to establish evolutionary relationships (orthology versus paralogy) between the different members of this gene family in wheat as well as with Lrk genes from barley. It also demonstrated that the sequences of the homoeologous Lrk genes evolved independently after polyploidization. In addition, we found evidence for gene loss during the evolution of wheat and barley. Analysis of large genomic fragments isolated from nonorthologous Lrk loci showed a high conservation of the gene content and gene organization at these loci on the homoeologous group 1 chromosomes of wheat and barley. Finally, sequence comparison of two paralogous fragments of chromosome 1B showed a large number of local events (sequence duplications, deletions, and insertions), which reveal rearrangements and mechanisms for genome enlargement at the microlevel. PMID:11244111

  7. PnLRR-RLK27, a novel leucine-rich repeats receptor-like protein kinase from the Antarctic moss Pohlia nutans, positively regulates salinity and oxidation-stress tolerance.

    PubMed

    Wang, Jing; Liu, Shenghao; Li, Chengcheng; Wang, Tailin; Zhang, Pengying; Chen, Kaoshan

    2017-01-01

    Leucine-rich repeats receptor-like kinases (LRR-RLKs) play important roles in plant growth and development as well as stress responses. Here, 56 LRR-RLK genes were identified in the Antarctic moss Pohlia nutans transcriptome, which were further classified into 11 subgroups based on their extracellular domain. Of them, PnLRR-RLK27 belongs to the LRR II subgroup and its expression was significantly induced by abiotic stresses. Subcellular localization analysis showed that PnLRR-RLK27 was a plasma membrane protein. The overexpression of PnLRR-RLK27 in Physcomitrella significantly enhanced the salinity and ABA tolerance in their gametophyte growth. Similarly, PnLRR-RLK27 heterologous expression in Arabidopsis increased the salinity and ABA tolerance in their seed germination and early root growth as well as the tolerance to oxidative stress. PnLRR-RLK27 overproduction in these transgenic plants increased the expression of salt stress/ABA-related genes. Furthermore, PnLRR-RLK27 increased the activities of reactive oxygen species (ROS) scavengers and reduced the levels of malondialdehyde (MDA) and ROS. Taken together, these results suggested that PnLRR-RLK27 as a signaling regulator confer abiotic stress response associated with the regulation of the stress- and ABA-mediated signaling network.

  8. PnLRR-RLK27, a novel leucine-rich repeats receptor-like protein kinase from the Antarctic moss Pohlia nutans, positively regulates salinity and oxidation-stress tolerance

    PubMed Central

    Wang, Jing; Liu, Shenghao; Li, Chengcheng; Wang, Tailin; Chen, Kaoshan

    2017-01-01

    Leucine-rich repeats receptor-like kinases (LRR-RLKs) play important roles in plant growth and development as well as stress responses. Here, 56 LRR-RLK genes were identified in the Antarctic moss Pohlia nutans transcriptome, which were further classified into 11 subgroups based on their extracellular domain. Of them, PnLRR-RLK27 belongs to the LRR II subgroup and its expression was significantly induced by abiotic stresses. Subcellular localization analysis showed that PnLRR-RLK27 was a plasma membrane protein. The overexpression of PnLRR-RLK27 in Physcomitrella significantly enhanced the salinity and ABA tolerance in their gametophyte growth. Similarly, PnLRR-RLK27 heterologous expression in Arabidopsis increased the salinity and ABA tolerance in their seed germination and early root growth as well as the tolerance to oxidative stress. PnLRR-RLK27 overproduction in these transgenic plants increased the expression of salt stress/ABA-related genes. Furthermore, PnLRR-RLK27 increased the activities of reactive oxygen species (ROS) scavengers and reduced the levels of malondialdehyde (MDA) and ROS. Taken together, these results suggested that PnLRR-RLK27 as a signaling regulator confer abiotic stress response associated with the regulation of the stress- and ABA-mediated signaling network. PMID:28241081

  9. Prosystemin overexpression induces transcriptional modifications of defense-related and receptor-like kinase genes and reduces the susceptibility to Cucumber mosaic virus and its satellite RNAs in transgenic tomato plants

    PubMed Central

    Bubici, Giovanni; Carluccio, Anna Vittoria; Stavolone, Livia

    2017-01-01

    Systemin is a plant signal peptide hormone involved in the responses to wounding and insect damage in the Solanaceae family. It works in the same signaling pathway of jasmonic acid (JA) and enhances the expression of proteinase inhibitors. With the aim of studying a role for systemin in plant antiviral responses, a tomato (Solanum lycopersicum) transgenic line overexpressing the prosystemin cDNA, i.e. the systemin precursor, was inoculated with Cucumber mosaic virus (CMV) strain Fny supporting either a necrogenic or a non-necrogenic satellite RNA (satRNA) variant. Transgenic plants showed reduced susceptibility to both CMV/satRNA combinations. While symptoms of the non-necrogenic inoculum were completely suppressed, a delayed onset of lethal disease occurred in about half of plants challenged with the necrogenic inoculum. RT-qPCR analysis showed a correlation between the systemin-mediated reduced susceptibility and the JA biosynthetic and signaling pathways (e.g. transcriptional alteration of lipoxygenase D and proteinase inhibitor II). Moreover, transgenically overexpressed systemin modulated the expression of a selected set of receptor-like protein kinase (RLK) genes, including some playing a known role in plant innate immunity. A significant correlation was found between the expression profiles of some RLKs and the systemin-mediated reduced susceptibility to CMV/satRNA. These results show that systemin can increase plant defenses against CMV/satRNA through transcriptional reprogramming of diverse signaling pathways. PMID:28182745

  10. The LysM receptor-like kinase LysM RLK1 is required to activate defense and abiotic-stress responses induced by overexpression of fungal chitinases in Arabidopsis plants.

    PubMed

    Brotman, Yariv; Landau, Udi; Pnini, Smadar; Lisec, Jan; Balazadeh, Salma; Mueller-Roeber, Bernd; Zilberstein, Aviah; Willmitzer, Lothar; Chet, Ilan; Viterbo, Ada

    2012-09-01

    Application of crab shell chitin or pentamer chitin oligosaccharide to Arabidopsis seedlings increased tolerance to salinity in wild-type but not in knockout mutants of the LysM Receptor-Like Kinase1 (CERK1/LysM RLK1) gene, known to play a critical role in signaling defense responses induced by exogenous chitin. Arabidopsis plants overexpressing the endochitinase chit36 and hexoaminidase excy1 genes from the fungus Trichoderma asperelleoides T203 showed increased tolerance to salinity, heavy-metal stresses, and Botrytis cinerea infection. Resistant lines, overexpressing fungal chitinases at different levels, were outcrossed to lysm rlk1 mutants. Independent homozygous hybrids lost resistance to biotic and abiotic stresses, despite enhanced chitinase activity. Expression analysis of 270 stress-related genes, including those induced by reactive oxygen species (ROS) and chitin, revealed constant up-regulation (at least twofold) of 10 genes in the chitinase-overexpressing line and an additional 76 salt-induced genes whose expression was not elevated in the lysm rlk1 knockout mutant or the hybrids harboring the mutation. These findings elucidate that chitin-induced signaling mediated by LysM RLK1 receptor is not limited to biotic stress response but also encompasses abiotic-stress signaling and can be conveyed by ectopic expression of chitinases in plants.

  11. Glycosylation of a Fasciclin-Like Arabinogalactan-Protein (SOS5) Mediates Root Growth and Seed Mucilage Adherence via a Cell Wall Receptor-Like Kinase (FEI1/FEI2) Pathway in Arabidopsis

    PubMed Central

    Basu, Debarati; Tian, Lu; Debrosse, Tayler; Poirier, Emily; Emch, Kirk; Herock, Hayley; Travers, Andrew; Showalter, Allan M.

    2016-01-01

    Fundamental processes that underpin plant growth and development depend crucially on the action and assembly of the cell wall, a dynamic structure that changes in response to both developmental and environmental cues. While much is known about cell wall structure and biosynthesis, much less is known about the functions of the individual wall components, particularly with respect to their potential roles in cellular signaling. Loss-of-function mutants of two arabinogalactan-protein (AGP)-specific galactosyltransferases namely, GALT2 and GALT5, confer pleiotropic growth and development phenotypes indicating the important contributions of carbohydrate moieties towards AGP function. Notably, galt2galt5 double mutants displayed impaired root growth and root tip swelling in response to salt, likely as a result of decreased cellulose synthesis. These mutants phenocopy a salt-overly sensitive mutant called sos5, which lacks a fasciclin-like AGP (SOS5/FLA4) as well as a fei1fei2 double mutant, which lacks two cell wall-associated leucine-rich repeat receptor-like kinases. Additionally, galt2gal5 as well as sos5 and fei2 showed reduced seed mucilage adherence. Quintuple galt2galt5sos5fei1fei2 mutants were produced and provided evidence that these genes act in a single, linear genetic pathway. Further genetic and biochemical analysis of the quintuple mutant demonstrated involvement of these genes with the interplay between cellulose biosynthesis and two plant growth regulators, ethylene and ABA, in modulating root cell wall integrity. PMID:26731606

  12. Crystallization and preliminary X-ray analysis of ginkbilobin-2 from Ginkgo biloba seeds: a novel antifungal protein with homology to the extracellular domain of plant cysteine-rich receptor-like kinases

    SciTech Connect

    Miyakawa, Takuya; Sawano, Yoriko; Miyazono, Ken-ichi; Hatano, Ken-ichi; Tanokura, Masaru

    2007-09-01

    Purification and crystallization of ginkbilobin-2 and its selenomethionine derivative allowed the collection of complete data to 2.38 Å resolution and multiwavelength anomalous diffraction data sets, respectively. The antifungal protein ginkbilobin-2 (Gnk2) from Ginkgo biloba seeds does not show homology to other pathogenesis-related proteins, but does show homology to the extracellular domain of plant cysteine-rich receptor-like kinases. Native Gnk2 purified from ginkgo nuts and the selenomethionine derivative of recombinant Gnk2 (SeMet-rGnk2) were crystallized by the sitting-drop vapour-diffusion method using different precipitants. X-ray diffraction data were collected from Gnk2 at 2.38 Å resolution and from SeMet-rGnk2 at 2.79 Å resolution using a synchrotron-radiation source. The crystals of both proteins belonged to the primitive cubic space group P2{sub 1}3, with unit-cell parameters a = b = c = 143.2 Å.

  13. Glycosylation of a Fasciclin-Like Arabinogalactan-Protein (SOS5) Mediates Root Growth and Seed Mucilage Adherence via a Cell Wall Receptor-Like Kinase (FEI1/FEI2) Pathway in Arabidopsis.

    PubMed

    Basu, Debarati; Tian, Lu; Debrosse, Tayler; Poirier, Emily; Emch, Kirk; Herock, Hayley; Travers, Andrew; Showalter, Allan M

    2016-01-01

    Fundamental processes that underpin plant growth and development depend crucially on the action and assembly of the cell wall, a dynamic structure that changes in response to both developmental and environmental cues. While much is known about cell wall structure and biosynthesis, much less is known about the functions of the individual wall components, particularly with respect to their potential roles in cellular signaling. Loss-of-function mutants of two arabinogalactan-protein (AGP)-specific galactosyltransferases namely, GALT2 and GALT5, confer pleiotropic growth and development phenotypes indicating the important contributions of carbohydrate moieties towards AGP function. Notably, galt2galt5 double mutants displayed impaired root growth and root tip swelling in response to salt, likely as a result of decreased cellulose synthesis. These mutants phenocopy a salt-overly sensitive mutant called sos5, which lacks a fasciclin-like AGP (SOS5/FLA4) as well as a fei1fei2 double mutant, which lacks two cell wall-associated leucine-rich repeat receptor-like kinases. Additionally, galt2gal5 as well as sos5 and fei2 showed reduced seed mucilage adherence. Quintuple galt2galt5sos5fei1fei2 mutants were produced and provided evidence that these genes act in a single, linear genetic pathway. Further genetic and biochemical analysis of the quintuple mutant demonstrated involvement of these genes with the interplay between cellulose biosynthesis and two plant growth regulators, ethylene and ABA, in modulating root cell wall integrity.

  14. Synergistic interaction of CLAVATA1, CLAVATA2, and RECEPTOR-LIKE PROTEIN KINASE 2 in cyst nematode parasitism of Arabidopsis

    USDA-ARS?s Scientific Manuscript database

    Plant-parasitic cyst nematodes secrete CLAVATA3 (CLV3)/ENDOSPERM SURROUNDING REGION (ESR) (CLE)-like effector proteins. These proteins act as ligand mimics of plant CLE peptides and are required for successful nematode infection. Previously, we showed that CLV2 and CORYNE (CRN), a heterodimer recept...

  15. Screening for resistance against Pseudomonas syringae in rice-FOX Arabidopsis lines identified a putative receptor-like cytoplasmic kinase gene that confers resistance to major bacterial and fungal pathogens in Arabidopsis and rice.

    PubMed

    Dubouzet, Joseph G; Maeda, Satoru; Sugano, Shoji; Ohtake, Miki; Hayashi, Nagao; Ichikawa, Takanari; Kondou, Youichi; Kuroda, Hirofumi; Horii, Yoko; Matsui, Minami; Oda, Kenji; Hirochika, Hirohiko; Takatsuji, Hiroshi; Mori, Masaki

    2011-05-01

    Approximately 20,000 of the rice-FOX Arabidopsis transgenic lines, which overexpress 13,000 rice full-length cDNAs at random in Arabidopsis, were screened for bacterial disease resistance by dip inoculation with Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). The identities of the overexpressed genes were determined in 72 lines that showed consistent resistance after three independent screens. Pst DC3000 resistance was verified for 19 genes by characterizing other independent Arabidopsis lines for the same genes in the original rice-FOX hunting population or obtained by reintroducing the genes into ecotype Columbia by floral dip transformation. Thirteen lines of these 72 selections were also resistant to the fungal pathogen Colletotrichum higginsianum. Eight genes that conferred resistance to Pst DC3000 in Arabidopsis have been introduced into rice for overexpression, and transformants were evaluated for resistance to the rice bacterial pathogen, Xanthomonas oryzae pv. oryzae. One of the transgenic rice lines was highly resistant to Xanthomonas oryzae pv. oryzae. Interestingly, this line also showed remarkably high resistance to Magnaporthe grisea, the fungal pathogen causing rice blast, which is the most devastating rice disease in many countries. The causal rice gene, encoding a putative receptor-like cytoplasmic kinase, was therefore designated as BROAD-SPECTRUM RESISTANCE 1. Our results demonstrate the utility of the rice-FOX Arabidopsis lines as a tool for the identification of genes involved in plant defence and suggest the presence of a defence mechanism common between monocots and dicots. © 2010 The Authors. Plant Biotechnology Journal © 2010 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  16. Downregulation of a barley (Hordeum vulgare) leucine-rich repeat, non-arginine-aspartate receptor-like protein kinase reduces expression of numerous genes involved in plant pathogen defense.

    PubMed

    Parrott, David L; Huang, Li; Fischer, Andreas M

    2016-03-01

    Pattern recognition receptors represent a first line of plant defense against pathogens. Comparing the flag leaf transcriptomes of barley (Hordeum vulgare L.) near-isogenic lines varying in the allelic state of a locus controlling senescence, we have previously identified a leucine-rich repeat receptor-like protein kinase gene (LRR-RLK; GenBank accession: AK249842), which was strongly upregulated in leaves of early-as compared to late-senescing germplasm. Bioinformatic analysis indicated that this gene codes for a subfamily XII, non-arginine-aspartate (non-RD) LRR-RLK. Virus-induced gene silencing resulted in a two-fold reduction of transcript levels as compared to controls. Transcriptomic comparison of leaves from untreated plants, from plants treated with virus only without any plant sequences (referred to as 'empty virus' control), and from plants in which AK249842 expression was knocked down identified numerous genes involved in pathogen defense. These genes were strongly induced in 'empty virus' as compared to untreated controls, but their expression was significantly reduced (again compared to 'empty virus' controls) when AK249842 was knocked down, indicating that their expression partially depends on the LRR-RLK investigated here. Expression analysis, using datasets from BarleyBase/PLEXdb, demonstrated that AK249842 transcript levels are heavily influenced by the allelic state of the well-characterized mildew resistance a (Mla) locus, and that the gene is induced after powdery mildew and stem rust infection. Together, our data suggest that AK249842 is a barley pattern recognition receptor with a tentative role in defense against fungal pathogens, setting the stage for its full functional characterization.

  17. Modular composition predicts kinase/substrate interactions

    PubMed Central

    2010-01-01

    Background Phosphorylation events direct the flow of signals and metabolites along cellular protein networks. Current annotations of kinase-substrate binding events are far from complete. In this study, we scanned the entire human protein sequences using the PROSITE domain annotation tool to identify patterns of domain composition in kinases and their substrates. We identified statistically enriched pairs of strings of domains (signature pairs) in kinase-substrate couples presented in the 2006 version of the PTM database. Results The signature pairs enriched in kinase - substrate binding interactions turned out to be highly specific to kinase subtypes. The resulting list of signature pairs predicted kinase-substrate interactions in validation dataset not used in learning with high statistical accuracy. Conclusions The method presented here produces predictions of protein phosphorylation events with high accuracy and mid-level coverage. Our method can be used in expanding the currently available drafts of cell signaling pathways and thus will be an important tool in the development of combination drug therapies targeting complex diseases. PMID:20579376

  18. A phase 2 study of dalantercept, an activin receptor-like kinase-1 ligand trap, in patients with recurrent or metastatic squamous cell carcinoma of the head and neck.

    PubMed

    Jimeno, Antonio; Posner, Marshall R; Wirth, Lori J; Saba, Nabil F; Cohen, Roger B; Popa, Elizabeta C; Argiris, Athanassios; Grossmann, Kenneth F; Sukari, Ammar; Wilson, Dawn; Zhang, Xiaosha; Sun, Jade; Glasser, Chad; Attie, Kenneth M; Sherman, Matthew L; Pandya, Susan S; Weiss, Jared

    2016-12-01

    Patients with platinum-refractory, recurrent or metastatic squamous cell carcinoma of the head and neck (RM-SCCHN) have limited options. Activin receptor-like kinase 1 (ALK1) is a type I receptor of the transforming growth factor β superfamily expressed on activated endothelial cells. Dalantercept is an ALK1 receptor fusion protein that acts as a ligand trap to block signaling through ALK1 and inhibits stages of angiogenesis involved in blood vessel maturation and stabilization. In a phase 1 study, dalantercept demonstrated clinical activity in patients with RM-SCCHN. The objective of the current study was to evaluate the activity of dalantercept in RM-SCCHN. Forty-six patients received dalantercept at doses of 80 mg (n = 2), 0.6 mg/kg (n = 13), or 1.2 mg/kg (n = 31) subcutaneously every 3 weeks. The primary endpoint was the overall response rate according to Response Evaluation Criteria in Solid Tumors (RECIST version 1.1). Secondary endpoints included progression-free survival and overall survival, safety and tolerability, and pharmacokinetic and pharmacodynamic assessments. Forty patients were evaluable for response (13 who received dalantercept 0.6 mg/kg and 27 who received dalantercept 1.2 mg/kg). The overall response rate was 5% (n = 2), and 35% of patients had stable disease; 44% of patients who received 1.2 mg/kg and 30.8% of those who received 0.6 mg/kg achieved disease control (partial response or stable disease). The median progression-fee survival was 1.4 months (95% confidence interval, 1.3-2.2 months), and the median overall survival was 7.1 months (95% confidence interval, 5.5-11.1 months). Drug-related adverse events (>15%) were anemia, fatigue, peripheral edema, headache, and hyponatremia. In an unselected, heavily pretreated population of patients with RM-SCCHN, dalantercept monotherapy resulted in a favorable safety profile but only modest dose-dependent activity, and it did not meet the primary efficacy objective

  19. The receptor like kinase at Rhg1-a/Rfs2 caused pleiotropic resistance to sudden death syndrome and soybean cyst nematode as a transgene by altering signaling responses.

    PubMed

    Srour, Ali; Afzal, Ahmed J; Blahut-Beatty, Laureen; Hemmati, Naghmeh; Simmonds, Daina H; Li, Wenbin; Liu, Miao; Town, Christopher D; Sharma, Hemlata; Arelli, Prakash; Lightfoot, David A

    2012-08-02

    Soybean (Glycine max (L. Merr.)) resistance to any population of Heterodera glycines (I.), or Fusarium virguliforme (Akoi, O'Donnell, Homma & Lattanzi) required a functional allele at Rhg1/Rfs2. H. glycines, the soybean cyst nematode (SCN) was an ancient, endemic, pest of soybean whereas F. virguliforme causal agent of sudden death syndrome (SDS), was a recent, regional, pest. This study examined the role of a receptor like kinase (RLK) GmRLK18-1 (gene model Glyma_18_02680 at 1,071 kbp on chromosome 18 of the genome sequence) within the Rhg1/Rfs2 locus in causing resistance to SCN and SDS. A BAC (B73p06) encompassing the Rhg1/Rfs2 locus was sequenced from a resistant cultivar and compared to the sequences of two susceptible cultivars from which 800 SNPs were found. Sequence alignments inferred that the resistance allele was an introgressed region of about 59 kbp at the center of which the GmRLK18-1 was the most polymorphic gene and encoded protein. Analyses were made of plants that were either heterozygous at, or transgenic (and so hemizygous at a new location) with, the resistance allele of GmRLK18-1. Those plants infested with either H. glycines or F. virguliforme showed that the allele for resistance was dominant. In the absence of Rhg4 the GmRLK18-1 was sufficient to confer nearly complete resistance to both root and leaf symptoms of SDS caused by F. virguliforme and provided partial resistance to three different populations of nematodes (mature female cysts were reduced by 30-50%). In the presence of Rhg4 the plants with the transgene were nearly classed as fully resistant to SCN (females reduced to 11% of the susceptible control) as well as SDS. A reduction in the rate of early seedling root development was also shown to be caused by the resistance allele of the GmRLK18-1. Field trials of transgenic plants showed an increase in foliar susceptibility to insect herbivory. The inference that soybean has adapted part of an existing pathogen recognition and

  20. The receptor like kinase at Rhg1-a/Rfs2 caused pleiotropic resistance to sudden death syndrome and soybean cyst nematode as a transgene by altering signaling responses

    PubMed Central

    2012-01-01

    Background Soybean (Glycine max (L. Merr.)) resistance to any population of Heterodera glycines (I.), or Fusarium virguliforme (Akoi, O’Donnell, Homma & Lattanzi) required a functional allele at Rhg1/Rfs2. H. glycines, the soybean cyst nematode (SCN) was an ancient, endemic, pest of soybean whereas F. virguliforme causal agent of sudden death syndrome (SDS), was a recent, regional, pest. This study examined the role of a receptor like kinase (RLK) GmRLK18-1 (gene model Glyma_18_02680 at 1,071 kbp on chromosome 18 of the genome sequence) within the Rhg1/Rfs2 locus in causing resistance to SCN and SDS. Results A BAC (B73p06) encompassing the Rhg1/Rfs2 locus was sequenced from a resistant cultivar and compared to the sequences of two susceptible cultivars from which 800 SNPs were found. Sequence alignments inferred that the resistance allele was an introgressed region of about 59 kbp at the center of which the GmRLK18-1 was the most polymorphic gene and encoded protein. Analyses were made of plants that were either heterozygous at, or transgenic (and so hemizygous at a new location) with, the resistance allele of GmRLK18-1. Those plants infested with either H. glycines or F. virguliforme showed that the allele for resistance was dominant. In the absence of Rhg4 the GmRLK18-1 was sufficient to confer nearly complete resistance to both root and leaf symptoms of SDS caused by F. virguliforme and provided partial resistance to three different populations of nematodes (mature female cysts were reduced by 30–50%). In the presence of Rhg4 the plants with the transgene were nearly classed as fully resistant to SCN (females reduced to 11% of the susceptible control) as well as SDS. A reduction in the rate of early seedling root development was also shown to be caused by the resistance allele of the GmRLK18-1. Field trials of transgenic plants showed an increase in foliar susceptibility to insect herbivory. Conclusions The inference that soybean has adapted part of an

  1. Activin Receptor-Like Kinase Receptors ALK5 and ALK1 Are Both Required for TGFβ-Induced Chondrogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells

    PubMed Central

    de Kroon, Laurie M. G.; Narcisi, Roberto; Blaney Davidson, Esmeralda N.; Cleary, Mairéad A.; van Beuningen, Henk M.; Koevoet, Wendy J. L. M.; van Osch, Gerjo J. V. M.; van der Kraan, Peter M.

    2015-01-01

    Introduction Bone marrow-derived mesenchymal stem cells (BMSCs) are promising for cartilage regeneration because BMSCs can differentiate into cartilage tissue-producing chondrocytes. Transforming Growth Factor β (TGFβ) is crucial for inducing chondrogenic differentiation of BMSCs and is known to signal via Activin receptor-Like Kinase (ALK) receptors ALK5 and ALK1. Since the specific role of these two TGFβ receptors in chondrogenesis is unknown, we investigated whether ALK5 and ALK1 are expressed in BMSCs and whether both receptors are required for chondrogenic differentiation of BMSCs. Materials & Methods ALK5 and ALK1 gene expression in human BMSCs was determined with RT-qPCR. To induce chondrogenesis, human BMSCs were pellet-cultured in serum-free chondrogenic medium containing TGFβ1. Chondrogenesis was evaluated by aggrecan and collagen type IIα1 RT-qPCR analysis, and histological stainings of proteoglycans and collagen type II. To overexpress constitutively active (ca) receptors, BMSCs were transduced either with caALK5 or caALK1. Expression of ALK5 and ALK1 was downregulated by transducing BMSCs with shRNA against ALK5 or ALK1. Results ALK5 and ALK1 were expressed in in vitro-expanded as well as in pellet-cultured BMSCs from five donors, but mRNA levels of both TGFβ receptors did not clearly associate with chondrogenic induction. TGFβ increased ALK5 and decreased ALK1 gene expression in chondrogenically differentiating BMSC pellets. Neither caALK5 nor caALK1 overexpression induced cartilage matrix formation as efficient as that induced by TGFβ. Moreover, short hairpin-mediated downregulation of either ALK5 or ALK1 resulted in a strong inhibition of TGFβ-induced chondrogenesis. Conclusion ALK5 as well as ALK1 are required for TGFβ-induced chondrogenic differentiation of BMSCs, and TGFβ not only directly induces chondrogenesis, but also modulates ALK5 and ALK1 receptor signaling in BMSCs. These results imply that optimizing cartilage formation by

  2. The lysin motif receptor-like kinase (LysM-RLK) CERK1 is a major chitin-binding protein in Arabidopsis thaliana and subject to chitin-induced phosphorylation.

    PubMed

    Petutschnig, Elena K; Jones, Alexandra M E; Serazetdinova, Liliya; Lipka, Ulrike; Lipka, Volker

    2010-09-10

    Plants detect potential pathogens by sensing microbe-associated molecular patterns via pattern recognition receptors. In the dicot model plant Arabidopsis, the lysin motif (LysM)-containing chitin elicitor receptor kinase 1 (CERK1) has been shown to be essential for perception of the fungal cell wall component chitin and for resistance to fungal pathogens. Recent in vitro studies with CERK1 protein expressed heterologously in yeast suggested direct chitin binding activity. Here we show in an affinity purification approach that CERK1 is a major chitin-binding protein of Arabidopsis cells, along with several known and putative chitinases. The ectodomain of CERK1 harbors three distinct LysM domains with potential ligand binding capacity. We demonstrate that the CERK1 ectodomain binds chitin and partially deacetylated chitosan directly without any requirement for interacting proteins and that all three LysM domains are necessary for chitin binding. Ligand-induced phosphorylation events are a general feature of animal and plant signal transduction pathways. Our studies show that chitin, chitin oligomers, and chitosan rapidly induce in vivo phosphorylation of CERK1 at multiple residues in the juxtamembrane and kinase domain. Functional analyses with a kinase dead variant provide evidence that kinase activity of CERK1 is required for its chitin-dependent in vivo phosphorylation, as well as for early defense responses and downstream signaling. Collectively, our data suggest that in Arabidopsis, CERK1 is a major chitin, chitosan, and chito-oligomer binding component and that chitin signaling depends on CERK1 post-translational modification and kinase activity.

  3. The tomato leucine-rich repeat receptor-like kinases SlSERK3A and SlSERK3B have overlapping functions in bacterial and nematode innate immunity.

    PubMed

    Peng, Hsuan-Chieh; Kaloshian, Isgouhi

    2014-01-01

    The Somatic Embryogenesis Receptor Kinase 3 (SERK3)/Brassinosteroid (BR) Insensitive 1-Associated Kinase 1 (BAK1) is required for pattern-triggered immunity (PTI) in Arabidopsis thaliana and Nicotiana benthamiana. Tomato (Solanum lycopersicum) has three SlSERK members. Two of them exhibit particularly high levels of sequence similarity to AtSERK3 and, therefore, were named SlSERK3A and SlSERK3B. To characterize a role for SlSERK3A and SlSERK3B in defense, we suppressed each gene individually or co-silenced both using virus-induced gene silencing (VIGS) in the tomato cv. Moneymaker. Co-silencing SlSERK3A and SlSERK3B resulted in spontaneous necrotic lesions and reduced sensitivity to exogenous BR treatment. Silencing either SlSERK3A or SlSERK3B resulted in enhanced susceptibility to root knot-nematode and to non-pathogenic Pseudomonas syringae pv. tomato (Pst) DC3000 hrcC indicating that both SlSERK3s are positive regulators of defense. Interestingly, silencing SlSERK3B, but not SlSERK3A, resulted in enhanced susceptibility to the pathogenic strain Pst DC3000 indicating distinct roles for these two SlSERK3 paralogs. SlSERK3A and SlSERK3B are active kinases, localized to the plasma membrane, and interact in vivo with the Flagellin Sensing 2 receptor in a flg22-dependent manner. Complementation of the Atserk3/bak1-4 mutant with either SlSERK3A or SlSERK3B partially rescued the mutant phenotype. Thus, SlSERK3A and SlSERK3B are likely to constitute tomato orthologs of BAK1.

  4. Nuclear Receptor-Like Structure and Interaction of Congenital Heart Disease-Associated Factors GATA4 and NKX2-5.

    PubMed

    Kinnunen, Sini; Välimäki, Mika; Tölli, Marja; Wohlfahrt, Gerd; Darwich, Rami; Komati, Hiba; Nemer, Mona; Ruskoaho, Heikki

    2015-01-01

    Transcription factor GATA4 is a dosage sensitive regulator of heart development and alterations in its level or activity lead to congenital heart disease (CHD). GATA4 has also been implicated in cardiac regeneration and repair. GATA4 action involves combinatorial interaction with other cofactors such as NKX2-5, another critical cardiac regulator whose mutations also cause CHD. Despite its critical importance to the heart and its evolutionary conservation across species, the structural basis of the GATA4-NKX2-5 interaction remains incompletely understood. A homology model was constructed and used to identify surface amino acids important for the interaction of GATA4 and NKX2-5. These residues were subjected to site-directed mutagenesis, and the mutant proteins were characterized for their ability to bind DNA and to physically and functionally interact with NKX2-5. The studies identify 5 highly conserved amino acids in the second zinc finger (N272, R283, Q274, K299) and its C-terminal extension (R319) that are critical for physical and functional interaction with the third alpha helix of NKX2-5 homeodomain. Integration of the experimental data with computational modeling suggests that the structural arrangement of the zinc finger-homeodomain resembles the architecture of the conserved DNA binding domain of nuclear receptors. The results provide novel insight into the structural basis for protein-protein interactions between two important classes of transcription factors. The model proposed will help to elucidate the molecular basis for disease causing mutations in GATA4 and NKX2-5 and may be relevant to other members of the GATA and NK classes of transcription factors.

  5. Nuclear Receptor-Like Structure and Interaction of Congenital Heart Disease-Associated Factors GATA4 and NKX2-5

    PubMed Central

    Tölli, Marja; Wohlfahrt, Gerd; Darwich, Rami; Komati, Hiba; Nemer, Mona; Ruskoaho, Heikki

    2015-01-01

    Aims Transcription factor GATA4 is a dosage sensitive regulator of heart development and alterations in its level or activity lead to congenital heart disease (CHD). GATA4 has also been implicated in cardiac regeneration and repair. GATA4 action involves combinatorial interaction with other cofactors such as NKX2-5, another critical cardiac regulator whose mutations also cause CHD. Despite its critical importance to the heart and its evolutionary conservation across species, the structural basis of the GATA4-NKX2-5 interaction remains incompletely understood. Methods and Results A homology model was constructed and used to identify surface amino acids important for the interaction of GATA4 and NKX2-5. These residues were subjected to site-directed mutagenesis, and the mutant proteins were characterized for their ability to bind DNA and to physically and functionally interact with NKX2-5. The studies identify 5 highly conserved amino acids in the second zinc finger (N272, R283, Q274, K299) and its C-terminal extension (R319) that are critical for physical and functional interaction with the third alpha helix of NKX2-5 homeodomain. Integration of the experimental data with computational modeling suggests that the structural arrangement of the zinc finger-homeodomain resembles the architecture of the conserved DNA binding domain of nuclear receptors. Conclusions The results provide novel insight into the structural basis for protein-protein interactions between two important classes of transcription factors. The model proposed will help to elucidate the molecular basis for disease causing mutations in GATA4 and NKX2-5 and may be relevant to other members of the GATA and NK classes of transcription factors. PMID:26642209

  6. Interaction of SNF1 Protein Kinase with Its Activating Kinase Sak1▿

    PubMed Central

    Liu, Yang; Xu, Xinjing; Carlson, Marian

    2011-01-01

    The Saccharomyces cerevisiae SNF1 protein kinase, a member of the SNF1/AMP-activated protein kinase (AMPK) family, is activated by three kinases, Sak1, Tos3, and Elm1, which phosphorylate the Snf1 catalytic subunit on Thr-210 in response to glucose limitation and other stresses. Sak1 is the primary Snf1-activating kinase and is associated with Snf1 in a complex. Here we examine the interaction of Sak1 with SNF1. We report that Sak1 coimmunopurifies with the Snf1 catalytic subunit from extracts of both glucose-replete and glucose-limited cultures and that interaction occurs independently of the phosphorylation state of Snf1 Thr-210, Snf1 catalytic activity, and other SNF1 subunits. Sak1 interacts with the Snf1 kinase domain, and nonconserved sequences C terminal to the Sak1 kinase domain mediate interaction with Snf1 and augment the phosphorylation and activation of Snf1. The Sak1 C terminus is modified in response to glucose depletion, dependent on SNF1 activity. Replacement of the C terminus of Elm1 (or Tos3) with that of Sak1 enhanced the ability of the Elm1 kinase domain to interact with and phosphorylate Snf1. These findings indicate that the C terminus of Sak1 confers its function as the primary Snf1-activating kinase and suggest that the physical association of Sak1 with SNF1 facilitates responses to environmental change. PMID:21216941

  7. Rational Redesign of a Functional Protein Kinase-Substrate Interaction

    PubMed Central

    2017-01-01

    Eukaryotic protein kinases typically phosphorylate substrates in the context of specific sequence motifs, contributing to specificity essential for accurate signal transmission. Protein kinases recognize their target sequences through complementary interactions within the active site cleft. As a step toward the construction of orthogonal kinase signaling systems, we have re-engineered the protein kinase Pim1 to alter its phosphorylation consensus sequence. Residues in the Pim1 catalytic domain interacting directly with a critical arginine residue in the substrate were substituted to produce a kinase mutant that instead accommodates a hydrophobic residue. We then introduced a compensating mutation into a Pim1 substrate, the pro-apoptotic protein BAD, to reconstitute phosphorylation both in vitro and in living cells. Coexpression of the redesigned kinase with its substrate in cells protected them from apoptosis. Such orthogonal kinase–substrate pairs provide tools to probe the functional consequences of specific phosphorylation events in living cells and to design synthetic signaling pathways. PMID:28314095

  8. Kinase-interacting substrate screening is a novel method to identify kinase substrates

    PubMed Central

    Amano, Mutsuki; Hamaguchi, Tomonari; Shohag, Md. Hasanuzzaman; Kozawa, Kei; Kato, Katsuhiro; Zhang, Xinjian; Yura, Yoshimitsu; Matsuura, Yoshiharu; Kataoka, Chikako; Nishioka, Tomoki

    2015-01-01

    Protein kinases play pivotal roles in numerous cellular functions; however, the specific substrates of each protein kinase have not been fully elucidated. We have developed a novel method called kinase-interacting substrate screening (KISS). Using this method, 356 phosphorylation sites of 140 proteins were identified as candidate substrates for Rho-associated kinase (Rho-kinase/ROCK2), including known substrates. The KISS method was also applied to additional kinases, including PKA, MAPK1, CDK5, CaMK1, PAK7, PKN, LYN, and FYN, and a lot of candidate substrates and their phosphorylation sites were determined, most of which have not been reported previously. Among the candidate substrates for Rho-kinase, several functional clusters were identified, including the polarity-associated proteins, such as Scrib. We found that Scrib plays a crucial role in the regulation of subcellular contractility by assembling into a ternary complex with Rho-kinase and Shroom2 in a phosphorylation-dependent manner. We propose that the KISS method is a comprehensive and useful substrate screen for various kinases. PMID:26101221

  9. Glycogen Synthase KinaseInteraction Protein Functions as an A-kinase Anchoring Protein*

    PubMed Central

    Hundsrucker, Christian; Skroblin, Philipp; Christian, Frank; Zenn, Hans-Michael; Popara, Viola; Joshi, Mangesh; Eichhorst, Jenny; Wiesner, Burkhard; Herberg, Friedrich W.; Reif, Bernd; Rosenthal, Walter; Klussmann, Enno

    2010-01-01

    A-kinase anchoring proteins (AKAPs) include a family of scaffolding proteins that target protein kinase A (PKA) and other signaling proteins to cellular compartments and thereby confine the activities of the associated proteins to distinct regions within cells. AKAPs bind PKA directly. The interaction is mediated by the dimerization and docking domain of regulatory subunits of PKA and the PKA-binding domain of AKAPs. Analysis of the interactions between the dimerization and docking domain and various PKA-binding domains yielded a generalized motif allowing the identification of AKAPs. Our bioinformatics and peptide array screening approaches based on this signature motif identified GSKIP (glycogen synthase kinaseinteraction protein) as an AKAP. GSKIP directly interacts with PKA and GSK3β (glycogen synthase kinase 3β). It is widely expressed and facilitates phosphorylation and thus inactivation of GSK3β by PKA. GSKIP contains the evolutionarily conserved domain of unknown function 727. We show here that this domain of GSKIP and its vertebrate orthologues binds both PKA and GSK3β and thereby provides a mechanism for the integration of PKA and GSK3β signaling pathways. PMID:20007971

  10. The Two Faces of Receptor Interacting Protein Kinase-1

    PubMed Central

    Weinlich, Ricardo; Green, Douglas R.

    2014-01-01

    Receptor Interacting Protein Kinase-1 (RIPK1), a key player in inflammation and cell death, assumes opposite functions depending on the cellular context and its posttranslational modifications. Genetic evidence supported by biochemical and cellular biology approaches shed light on the circumstances in which RIPK1 promotes or inhibits these processes. PMID:25459879

  11. Kinase Pathway Database: An Integrated Protein-Kinase and NLP-Based Protein-Interaction Resource

    PubMed Central

    Koike, Asako; Kobayashi, Yoshiyuki; Takagi, Toshihisa

    2003-01-01

    Protein kinases play a crucial role in the regulation of cellular functions. Various kinds of information about these molecules are important for understanding signaling pathways and organism characteristics. We have developed the Kinase Pathway Database, an integrated database involving major completely sequenced eukaryotes. It contains the classification of protein kinases and their functional conservation, ortholog tables among species, protein–protein, protein–gene, and protein–compound interaction data, domain information, and structural information. It also provides an automatic pathway graphic image interface. The protein, gene, and compound interactions are automatically extracted from abstracts for all genes and proteins by natural-language processing (NLP).The method of automatic extraction uses phrase patterns and the GENA protein, gene, and compound name dictionary, which was developed by our group. With this database, pathways are easily compared among species using data with more than 47,000 protein interactions and protein kinase ortholog tables. The database is available for querying and browsing at http://kinasedb.ontology.ims.u-tokyo.ac.jp/. PMID:12799355

  12. KLIFS: a structural kinase-ligand interaction database

    PubMed Central

    Kooistra, Albert J.; Kanev, Georgi K.; van Linden, Oscar P.J.; Leurs, Rob; de Esch, Iwan J.P.; de Graaf, Chris

    2016-01-01

    Protein kinases play a crucial role in cell signaling and are important drug targets in several therapeutic areas. The KLIFS database contains detailed structural kinase-ligand interaction information derived from all (>2900) structures of catalytic domains of human and mouse protein kinases deposited in the Protein Data Bank in order to provide insights into the structural determinants of kinase-ligand binding and selectivity. The kinase structures have been processed in a consistent manner by systematically analyzing the structural features and molecular interaction fingerprints (IFPs) of a predefined set of 85 binding site residues with bound ligands. KLIFS has been completely rebuilt and extended (>65% more structures) since its first release as a data set, including: novel automated annotation methods for (i) the assessment of ligand-targeted subpockets and the analysis of (ii) DFG and (iii) αC-helix conformations; improved and automated protocols for (iv) the generation of sequence/structure alignments, (v) the curation of ligand atom and bond typing for accurate IFP analysis and (vi) weekly database updates. KLIFS is now accessible via a website (http://klifs.vu-compmedchem.nl) that provides a comprehensive visual presentation of different types of chemical, biological and structural chemogenomics data, and allows the user to easily access, compare, search and download the data. PMID:26496949

  13. Coupling phosphoryl transfer and substrate interactions in protein kinases.

    PubMed

    Lieser, Scot A; Aubol, Brandon E; Wong, Lilly; Jennings, Patricia A; Adams, Joseph A

    2005-12-30

    Protein kinases control cell signaling events through the ATP-dependent phosphorylation of serine, threonine and tyrosine residues in protein targets. The recognition of these protein substrates by the kinases relies on two principal factors: proper subcellular co-localization and molecular interactions between the kinase and substrate. In this review, we will focus on the kinetic role of the latter in conveying favorable substrate recognition. Using rapid mixing technologies, we demonstrate that the intrinsic thermodynamic affinities of two protein substrates for their respective kinases (Csk with Src and Sky1p with Npl3) are weak compared to their apparent affinities measured in traditional steady-state kinetic assays (i.e.--Km < Kd). The source of the high apparent affinities rests in a very fast and highly favorable phosphoryl transfer step that serves as a clamp for substrate recognition. In this mechanism, both Csk and Sky1p utilize this step to draw the substrate toward product, thereby, converting a high Kd into a low Km. We propose that this one form of substrate recognition employed by protein kinases is advantageous since it simultaneously facilitates high apparent substrate affinity and fast protein turnover.

  14. Phosphorylation of the Kinase Interaction Motif in Mitogen-activated Protein (MAP) Kinase Phosphatase-4 Mediates Cross-talk between Protein Kinase A and MAP Kinase Signaling Pathways*

    PubMed Central

    Dickinson, Robin J.; Delavaine, Laurent; Cejudo-Marín, Rocío; Stewart, Graeme; Staples, Christopher J.; Didmon, Mark P.; Trinidad, Antonio Garcia; Alonso, Andrés; Pulido, Rafael; Keyse, Stephen M.

    2011-01-01

    MAP kinase phosphatase 4 (DUSP9/MKP-4) plays an essential role during placental development and is one of a subfamily of three closely related cytoplasmic dual-specificity MAPK phosphatases, which includes the ERK-specific enzymes DUSP6/MKP-3 and DUSP7/MKP-X. However, unlike DUSP6/MKP-3, DUSP9/MKP-4 also inactivates the p38α MAP kinase both in vitro and in vivo. Here we demonstrate that inactivation of both ERK1/2 and p38α by DUSP9/MKP-4 is mediated by a conserved arginine-rich kinase interaction motif located within the amino-terminal non-catalytic domain of the protein. Furthermore, DUSP9/MKP-4 is unique among these cytoplasmic MKPs in containing a conserved PKA consensus phosphorylation site 55RRXSer-58 immediately adjacent to the kinase interaction motif. DUSP9/MKP-4 is phosphorylated on Ser-58 by PKA in vitro, and phosphorylation abrogates the binding of DUSP9/MKP-4 to both ERK2 and p38α MAP kinases. In addition, although mutation of Ser-58 to either alanine or glutamic acid does not affect the intrinsic catalytic activity of DUSP9/MKP-4, phospho-mimetic (Ser-58 to Glu) substitution inhibits both the interaction of DUSP9/MKP-4 with ERK2 and p38α in vivo and its ability to dephosphorylate and inactivate these MAP kinases. Finally, the use of a phospho-specific antibody demonstrates that endogenous DUSP9/MKP-4 is phosphorylated on Ser-58 in response to the PKA agonist forskolin and is also modified in placental tissue. We conclude that DUSP9/MKP-4 is a bona fide target of PKA signaling and that attenuation of DUSP9/MKP-4 function can mediate cross-talk between the PKA pathway and MAPK signaling through both ERK1/2 and p38α in vivo. PMID:21908610

  15. Novel interaction partners of the TPR/MET tyrosine kinase.

    PubMed

    Schaaf, Christian P; Benzing, Jörg; Schmitt, Thomas; Erz, Dorothee H R; Tewes, Magdalena; Bartram, Claus R; Janssen, Johannes W G

    2005-02-01

    A large variety of biological processes is mediated by stimulation of the receptor tyrosine kinase MET. Screening a mouse embryo cDNA library, we were able to identify several novel, putative intracellular TPR/MET-substrates: SNAPIN, DCOHM, VAV-1, Sorting nexin 2, Death associated protein kinase 3, SMC-1, Centromeric protein C, and hTID-1. Interactions as identified by yeast two-hybrid analysis were validated in vitro and in vivo by mammalian two-hybrid studies, a far-western assay and coimmunoprecipitation. Participation in apoptosis-regulating mechanisms through interaction with DAPK-3 and cell cycle control via binding to nuclear proteins such as CENPC and SMC-1 are possible new aspects of intracellular MET signaling.

  16. Overexpression of the tomato pollen receptor kinase LePRK1 rewires pollen tube growth to a blebbling mode

    USDA-ARS?s Scientific Manuscript database

    The tubular growth of a pollen tube cell is crucial for the sexual reproduction of flowering plants. LePRK1 is a pollen-specific and plasma membrane–localized receptor-like kinase from tomato (Solanum lycopersicum). LePRK1 interacts with another receptor, LePRK2, and with KINASE PARTNER PROTEIN (KPP...

  17. Plant Aurora kinases interact with and phosphorylate transcription factors.

    PubMed

    Takagi, Mai; Sakamoto, Takuya; Suzuki, Ritsuko; Nemoto, Keiichirou; Obayashi, Takeshi; Hirakawa, Takeshi; Matsunaga, Tomoko M; Kurihara, Daisuke; Nariai, Yuko; Urano, Takeshi; Sawasaki, Tatsuya; Matsunaga, Sachihiro

    2016-11-01

    Aurora kinase (AUR) is a well-known mitotic serine/threonine kinase that regulates centromere formation, chromosome segregation, and cytokinesis in eukaryotes. In addition to regulating mitotic events, AUR has been shown to regulate protein dynamics during interphase in animal cells. In contrast, there has been no identification and characterization of substrates and/or interacting proteins during interphase in plants. The Arabidopsis thaliana genome encodes three AUR paralogues, AtAUR1, AtAUR2, and AtAUR3. Among them, AtAUR1 and AtAUR2 are considered to function redundantly. Here, we confirmed that both AtAUR1 and AtAUR3 are localized in the nucleus and cytoplasm during interphase, suggesting that they have functions during interphase. To identify novel interacting proteins, we used AlphaScreen to target 580 transcription factors (TFs) that are mainly functional during interphase, using recombinant A. thaliana TFs and AtAUR1 or AtAUR3. We found 133 and 32 TFs had high potential for interaction with AtAUR1 and AtAUR3, respectively. The highly AtAUR-interacting TFs were involved in various biological processes, suggesting the functions of the AtAURs during interphase. We found that AtAUR1 and AtAUR3 showed similar interaction affinity to almost all TFs. However, in some cases, the interaction affinity differed substantially between the two AtAUR homologues. These results suggest that AtAUR1 and AtAUR3 have both redundant and distinct functions through interactions with TFs. In addition, database analysis revealed that most of the highly AtAUR-interacting TFs contained a detectable phosphopeptide that was consistent with the consensus motifs for human AURs, suggesting that these TFs are substrates of the AtAURs. The AtAURs phosphorylated several highly interacting TFs in the AlphaScreen in vitro. Overall, in line with the regulation of TFs through interaction, our results indicate the possibility of phosphoregulation of several TFs by the AtAURs (280/300).

  18. Targeting chk2 kinase: molecular interaction maps and therapeutic rationale.

    PubMed

    Pommier, Yves; Sordet, Olivier; Rao, V Ashutosh; Zhang, Hongliang; Kohn, Kurt W

    2005-01-01

    Most anticancer drugs presently used clinically target genomic DNA. The selectivity of these anticancer drugs for tumor tissues is probably due to tumor-specific defects suppressing cell cycle checkpoints and DNA repair, and enhancing apoptotic response in the tumor. We will review the molecular interactions within the ATM-Chk2 pathway implicating the DNA damage sensor kinases (ATM, ATR and DNA-PK), the adaptor BRCT proteins (Nbs1, Brca1, 53BP1, MDC1) and the effector kinases (Chk2, Chk1, Plk3, JNK, p38). The molecular interaction map convention (MIM) will be used for presenting this molecular network (http://discover.nci.nih.gov/mim/). A characteristic of the ATM-Chk2 pathway is its redundancy. First, ATM and Chk2 phosphorylate common substrates including p53, E2F1, BRCA1, and Chk2 itself, which suggests that Chk2 (also known as CHECK2, Cds1 in fission yeast, and Dmchk2 or Dmnk or Loki in the fruit fly) acts as a relay for ATM and/or as a salvage pathway when ATM is inactivated. Secondly, redundancy is apparent for the substrates, which can be phosphorylated/activated at similar residues by Chk2, Chk1, and the polo kinases (Plk's). Functionally, Chk2 can activate both apoptosis (via p53, E2F1 and PML) and cell cycle checkpoint (via Cdc25A and Cdc25C, p53, and BRCA1). We will review the short list of published Chk2 inhibitors. We will also propose a novel paradigm for screening interfacial inhibitors of Chk2. Chk2 inhibitors might be used to enhance the tumor selectivity of DNA targeted agents in p53-deficient tumors, and for the treatment of tumors whose growth depends on enhanced Chk2 activity.

  19. Properties of the protein kinase C-phorbol ester interaction

    SciTech Connect

    Bazzi, M.D.; Nelsestuen, G.L. )

    1989-04-18

    The properties of the protein kinase C (PKC)-phorbol ester interaction were highly dependent on assay methods and conditions. Binding to cation-exchange materials or adsorption to gel matrices resulted in PKC that was capable of binding phorbol 12,13-dibutyrate (PDBu). The extraneous interactions were eliminated by measuring phorbol ester binding with a gel filtration chromatography assay in the presence of bovine serum albumin (BSA). In the absence of calcium, free PKC did not bind PDBu or phospholipids. Calcium caused structural changes in PKC which enhanced its interaction with surfaces such as the gel chromatography matrix. While BSA prevented this interaction, it did not interfere with PKC association with acidic phospholipids. Interaction of PKC with phospholipid resulted in two forms of membrane-associated PKC. Once PKC was inserted into a phospholipid bilayer, it bound PDBu in the presence and in the absence of Ca{sup 2+}. Calcium enhanced the affinity of PKC-PDBu interaction and decreased the dissociation rate. These results showed that dramatic changes occurred in the in vitro properties of PKC upon the formation of the irreversible PKC-membrane complex. These properties may be related to cellular events that induce formation of the chelator-resistant form of membrane-bound PKC.

  20. Protein-tyrosine phosphorylation interaction network in Bacillus subtilis reveals new substrates, kinase activators and kinase cross-talk

    PubMed Central

    Shi, Lei; Pigeonneau, Nathalie; Ventroux, Magali; Derouiche, Abderahmane; Bidnenko, Vladimir; Mijakovic, Ivan; Noirot-Gros, Marie-Françoise

    2014-01-01

    Signal transduction in eukaryotes is generally transmitted through phosphorylation cascades that involve a complex interplay of transmembrane receptors, protein kinases, phosphatases and their targets. Our previous work indicated that bacterial protein-tyrosine kinases and phosphatases may exhibit similar properties, since they act on many different substrates. To capture the complexity of this phosphorylation-based network, we performed a comprehensive interactome study focused on the protein-tyrosine kinases and phosphatases in the model bacterium Bacillus subtilis. The resulting network identified many potential new substrates of kinases and phosphatases, some of which were experimentally validated. Our study highlighted the role of tyrosine and serine/threonine kinases and phosphatases in DNA metabolism, transcriptional control and cell division. This interaction network reveals significant crosstalk among different classes of kinases. We found that tyrosine kinases can bind to several modulators, transmembrane or cytosolic, consistent with a branching of signaling pathways. Most particularly, we found that the division site regulator MinD can form a complex with the tyrosine kinase PtkA and modulate its activity in vitro. In vivo, it acts as a scaffold protein which anchors the kinase at the cell pole. This network highlighted a role of tyrosine phosphorylation in the spatial regulation of the Z-ring during cytokinesis. PMID:25374563

  1. Lectin Receptor Kinases Participate in Protein-Protein Interactions to Mediate Plasma Membrane-Cell Wall Adhesions in Arabidopsis1

    PubMed Central

    Gouget, Anne; Senchou, Virginie; Govers, Francine; Sanson, Arnaud; Barre, Annick; Rougé, Pierre; Pont-Lezica, Rafael; Canut, Hervé

    2006-01-01

    Interactions between plant cell walls and plasma membranes are essential for cells to function properly, but the molecules that mediate the structural continuity between wall and membrane are unknown. Some of these interactions, which are visualized upon tissue plasmolysis in Arabidopsis (Arabidopsis thaliana), are disrupted by the RGD (arginine-glycine-aspartic acid) tripeptide sequence, a characteristic cell adhesion motif in mammals. In planta induced-O (IPI-O) is an RGD-containing protein from the plant pathogen Phytophthora infestans that can disrupt cell wall-plasma membrane adhesions through its RGD motif. To identify peptide sequences that specifically bind the RGD motif of the IPI-O protein and potentially play a role in receptor recognition, we screened a heptamer peptide library displayed in a filamentous phage and selected two peptides acting as inhibitors of the plasma membrane RGD-binding activity of Arabidopsis. Moreover, the two peptides also disrupted cell wall-plasma membrane adhesions. Sequence comparison of the RGD-binding peptides with the Arabidopsis proteome revealed 12 proteins containing amino acid sequences in their extracellular domains common with the two RGD-binding peptides. Eight belong to the receptor-like kinase family, four of which have a lectin-like extracellular domain. The lectin domain of one of these, At5g60300, recognized the RGD motif both in peptides and proteins. These results imply that lectin receptor kinases are involved in protein-protein interactions with RGD-containing proteins as potential ligands, and play a structural and signaling role at the plant cell surfaces. PMID:16361528

  2. Lectin receptor kinases participate in protein-protein interactions to mediate plasma membrane-cell wall adhesions in Arabidopsis.

    PubMed

    Gouget, Anne; Senchou, Virginie; Govers, Francine; Sanson, Arnaud; Barre, Annick; Rougé, Pierre; Pont-Lezica, Rafael; Canut, Hervé

    2006-01-01

    Interactions between plant cell walls and plasma membranes are essential for cells to function properly, but the molecules that mediate the structural continuity between wall and membrane are unknown. Some of these interactions, which are visualized upon tissue plasmolysis in Arabidopsis (Arabidopsis thaliana), are disrupted by the RGD (arginine-glycine-aspartic acid) tripeptide sequence, a characteristic cell adhesion motif in mammals. In planta induced-O (IPI-O) is an RGD-containing protein from the plant pathogen Phytophthora infestans that can disrupt cell wall-plasma membrane adhesions through its RGD motif. To identify peptide sequences that specifically bind the RGD motif of the IPI-O protein and potentially play a role in receptor recognition, we screened a heptamer peptide library displayed in a filamentous phage and selected two peptides acting as inhibitors of the plasma membrane RGD-binding activity of Arabidopsis. Moreover, the two peptides also disrupted cell wall-plasma membrane adhesions. Sequence comparison of the RGD-binding peptides with the Arabidopsis proteome revealed 12 proteins containing amino acid sequences in their extracellular domains common with the two RGD-binding peptides. Eight belong to the receptor-like kinase family, four of which have a lectin-like extracellular domain. The lectin domain of one of these, At5g60300, recognized the RGD motif both in peptides and proteins. These results imply that lectin receptor kinases are involved in protein-protein interactions with RGD-containing proteins as potential ligands, and play a structural and signaling role at the plant cell surfaces.

  3. Protein interaction network of the mammalian Hippo pathway reveals mechanisms of kinase-phosphatase interactions.

    PubMed

    Couzens, Amber L; Knight, James D R; Kean, Michelle J; Teo, Guoci; Weiss, Alexander; Dunham, Wade H; Lin, Zhen-Yuan; Bagshaw, Richard D; Sicheri, Frank; Pawson, Tony; Wrana, Jeffrey L; Choi, Hyungwon; Gingras, Anne-Claude

    2013-11-19

    The Hippo pathway regulates organ size and tissue homeostasis in response to multiple stimuli, including cell density and mechanotransduction. Pharmacological inhibition of phosphatases can also stimulate Hippo signaling in cell culture. We defined the Hippo protein-protein interaction network with and without inhibition of serine and threonine phosphatases by okadaic acid. We identified 749 protein interactions, including 599 previously unrecognized interactions, and demonstrated that several interactions with serine and threonine phosphatases were phosphorylation-dependent. Mutation of the T-loop of MST2 (mammalian STE20-like protein kinase 2), which prevented autophosphorylation, disrupted its association with STRIPAK (striatin-interacting phosphatase and kinase complex). Deletion of the amino-terminal forkhead-associated domain of SLMAP (sarcolemmal membrane-associated protein), a component of the STRIPAK complex, prevented its association with MST1 and MST2. Phosphatase inhibition produced temporally distinct changes in proteins that interacted with MOB1A and MOB1B (Mps one binder kinase activator-like 1A and 1B) and promoted interactions with upstream Hippo pathway proteins, such as MST1 and MST2, and with the trimeric protein phosphatase 6 complex (PP6). Mutation of three basic amino acids that are part of a phospho-serine- and phospho-threonine-binding domain in human MOB1B prevented its interaction with MST1 and PP6 in cells treated with okadaic acid. Collectively, our results indicated that changes in phosphorylation orchestrate interactions between kinases and phosphatases in Hippo signaling, providing a putative mechanism for pathway regulation.

  4. Zipper-interacting protein kinase interacts with human cell division cycle 14A phosphatase.

    PubMed

    Wu, Wei; Hu, Haiying; Ye, Zi; Leong, Mancheong; He, Min; Li, Qin; Hu, Renming; Zhang, Shuo

    2015-04-01

    Zipper‑interacting protein kinase (ZIPK) is a novel serine/threonine protein kinase and a member of a large family of protein kinases, known as the death‑associated protein kinases. However, the function of ZIPK has yet to be fully elucidated, as few physiological substrates have currently been identified. In the present study, a yeast two‑hybrid screen was used and the human cell division cycle 14A (HsCdc14A) phosphatase was identified as a novel ZIPK binding protein. To the best of our knowledge, this is the first study to report the interaction between these proteins. The interaction between ZIPK and HsCdc14A was confirmed by in vitro experiments. In addition, ZIPK‑mediated phosphorylation was shown to activate the phosphatase activity of HsCdc14A. These findings indicated that ZIPK may also be involved in the regulation of the cell cycle in human cells, by interacting with HsCdc14A.

  5. Bacterial hybrid histidine kinases in plant-bacteria interactions.

    PubMed

    Borland, Stéphanie; Prigent-Combaret, Claire; Wisniewski-Dyé, Florence

    2016-10-01

    Two-component signal transduction systems are essential for many bacteria to maintain homeostasis and adapt to environmental changes. Two-component signal transduction systems typically involve a membrane-bound histidine kinase that senses stimuli, autophosphorylates in the transmitter region and then transfers the phosphoryl group to the receiver domain of a cytoplasmic response regulator that mediates appropriate changes in bacterial physiology. Although usually found on distinct proteins, the transmitter and receiver modules are sometimes fused into a so-called hybrid histidine kinase (HyHK). Such structure results in multiple phosphate transfers that are believed to provide extra-fine-tuning mechanisms and more regulatory checkpoints than classical phosphotransfers. HyHK-based regulation may be crucial for finely tuning gene expression in a heterogeneous environment such as the rhizosphere, where intricate plant-bacteria interactions occur. In this review, we focus on roles fulfilled by bacterial HyHKs in plant-associated bacteria, providing recent findings on the mechanistic of their signalling properties. Recent insights into understanding additive regulatory properties fulfilled by the tethered receiver domain of HyHKs are also addressed.

  6. Cytoskeletal Modulation of Lipid Interactions Regulates Lck Kinase Activity*

    PubMed Central

    Chichili, Gurunadh R.; Cail, Robert C.; Rodgers, William

    2012-01-01

    The actin cytoskeleton promotes clustering of proteins associated with cholesterol-dependent rafts, but its effect on lipid interactions that form and maintain rafts is not understood. We addressed this question by determining the effect of disrupting the cytoskeleton on co-clustering of dihexadecyl-(C16)-anchored DiO and DiI, which co-enrich in ordered lipid environments such as rafts. Co-clustering was assayed by fluorescence resonance energy transfer (FRET) in labeled T cells, where rafts function in the phosphoregulation of the Src family kinase Lck. Our results show that probe co-clustering was sensitive to depolymerization of actin filaments with latrunculin B (Lat B), inhibition of myosin II with blebbistatin, and treatment with neomycin to sequester phosphatidylinositol 4,5-bisphosphate. Cytoskeletal effects on lipid interactions were not restricted to order-preferring label because co-clustering of C16-anchored DiO with didodecyl (C12)-anchored DiI, which favors disordered lipids, was also reduced by Lat B and blebbistatin. Furthermore, conditions that disrupted probe co-clustering resulted in activation of Lck. These data show that the cytoskeleton globally modulates lipid interactions in the plasma membrane, and this property maintains rafts that function in Lck regulation. PMID:22613726

  7. AOP-1 interacts with cardiac-specific protein kinase TNNI3K and down-regulates its kinase activity.

    PubMed

    Feng, Yan; Liu, Dong-Qing; Wang, Zhen; Liu, Zhao; Cao, Hui-Qing; Wang, Lai-Yuan; Shi, Na; Meng, Xian-Min

    2007-11-01

    In the present study, a yeast two-hybrid screening system was used to identify the interaction partners of cardiac troponin I-interacting kinase (TNNI3K) that might serve as regulators or targets, and thus in turn to gain some insights on the roles of TNNI3K. After screening the adult heart cDNA library with a bait construct encoding the ANK motif of TNNI3K, antioxidant protein 1 (AOP-1) was isolated. The interaction between TNNI3K and AOP-1 was confirmed by the in vitro binding assay and coexpression experiments in vivo. The colocalization of TNNI3K and AOP-1 was clarified by confocal immunofluorescence. Moreover, coexpression of AOP-1 inhibited TNNI3K kinase activity in the in vitro kinase assay.

  8. Transmembrane neuregulins interact with LIM kinase 1, a cytoplasmic protein kinase implicated in development of visuospatial cognition.

    PubMed

    Wang, J Y; Frenzel, K E; Wen, D; Falls, D L

    1998-08-07

    The neuregulins are receptor tyrosine kinase ligands that play a critical role in the development of the heart, nervous system, and breast. Unlike many extracellular signaling molecules, such as the neurotrophins, most neuregulins are synthesized as transmembrane proteins. To determine the functions of the highly conserved neuregulin cytoplasmic tail, a yeast two-hybrid screen was performed to identify proteins that interact with the 157-amino acid sequence common to the cytoplasmic tails of all transmembrane neuregulin isoforms. This screen revealed that the neuregulin cytoplasmic tail interacts with the LIM domain region of the nonreceptor protein kinase LIM kinase 1 (LIMK1). Interaction between the neuregulin cytoplasmic tail and full-length LIMK1 was demonstrated by in vitro binding and co-immunoprecipitation assays. Transmembrane neuregulins with each of the three known neuregulin cytoplasmic tail isoforms interacted with LIMK1. In contrast, the cytoplasmic tail of TGF-alpha did not interact with LIMK1. In vivo, neuregulin and LIMK1 are co-localized at the neuromuscular synapse, suggesting that LIMK1, like neuregulin, may play a role in synapse formation and maintenance. To our knowledge, LIMK1 is the first identified protein shown to interact with the cytoplasmic tail of a receptor tyrosine kinase ligand.

  9. Receptor Kinases in Plant-Pathogen Interactions: More Than Pattern Recognition[OPEN

    PubMed Central

    2017-01-01

    Receptor-like kinases (RLKs) and Receptor-like proteins (RLPs) play crucial roles in plant immunity, growth, and development. Plants deploy a large number of RLKs and RLPs as pattern recognition receptors (PRRs) that detect microbe- and host-derived molecular patterns as the first layer of inducible defense. Recent advances have uncovered novel PRRs, their corresponding ligands, and mechanisms underlying PRR activation and signaling. In general, PRRs associate with other RLKs and function as part of multiprotein immune complexes at the cell surface. Innovative strategies have emerged for the rapid identification of microbial patterns and their cognate PRRs. Successful pathogens can evade or block host recognition by secreting effector proteins to “hide” microbial patterns or inhibit PRR-mediated signaling. Furthermore, newly identified pathogen effectors have been shown to manipulate RLKs controlling growth and development by mimicking peptide hormones of host plants. The ongoing studies illustrate the importance of diverse plant RLKs in plant disease resistance and microbial pathogenesis. PMID:28302675

  10. A double-mutant collection targeting MAP kinase related genes in Arabidopsis for studying genetic interactions.

    PubMed

    Su, Shih-Heng; Krysan, Patrick J

    2016-12-01

    Mitogen-activated protein kinase cascades are conserved in all eukaryotes. In Arabidopsis thaliana there are approximately 80 genes encoding MAP kinase kinase kinases (MAP3K), 10 genes encoding MAP kinase kinases (MAP2K), and 20 genes encoding MAP kinases (MAPK). Reverse genetic analysis has failed to reveal abnormal phenotypes for a majority of these genes. One strategy for uncovering gene function when single-mutant lines do not produce an informative phenotype is to perform a systematic genetic interaction screen whereby double-mutants are created from a large library of single-mutant lines. Here we describe a new collection of 275 double-mutant lines derived from a library of single-mutants targeting genes related to MAP kinase signaling. To facilitate this study, we developed a high-throughput double-mutant generating pipeline using a system for growing Arabidopsis seedlings in 96-well plates. A quantitative root growth assay was used to screen for evidence of genetic interactions in this double-mutant collection. Our screen revealed four genetic interactions, all of which caused synthetic enhancement of the root growth defects observed in a MAP kinase 4 (MPK4) single-mutant line. Seeds for this double-mutant collection are publicly available through the Arabidopsis Biological Resource Center. Scientists interested in diverse biological processes can now screen this double-mutant collection under a wide range of growth conditions in order to search for additional genetic interactions that may provide new insights into MAP kinase signaling.

  11. Nck-Interacting Ste20 Kinase Couples Eph Receptors to c-Jun N-Terminal Kinase and Integrin Activation

    PubMed Central

    Becker, Elena; Huynh-Do, Uyen; Holland, Sacha; Pawson, Tony; Daniel, Tom O.; Skolnik, Edward Y.

    2000-01-01

    The mammalian Ste20 kinase Nck-interacting kinase (NIK) specifically activates the c-Jun amino-terminal kinase (JNK) mitogen-activated protein kinase module. NIK also binds the SH3 domains of the SH2/SH3 adapter protein Nck. To determine whether Nck functions as an adapter to couple NIK to a receptor tyrosine kinase signaling pathway, we determined whether NIK is activated by Eph receptors (EphR). EphRs constitute the largest family of receptor tyrosine kinases (RTK), and members of this family play important roles in patterning of the nervous and vascular systems. In this report, we show that NIK kinase activity is specifically increased in cells stimulated by two EphRs, EphB1 and EphB2. EphB1 kinase activity and phosphorylation of a juxtamembrane tyrosine (Y594), conserved in all Eph receptors, are both critical for NIK activation by EphB1. Although pY594 in the EphB1R has previously been shown to bind the SH2 domain of Nck, we found that stimulation of EphB1 and EphB2 led predominantly to a complex between NIK/Nck, p62dok, RasGAP, and an unidentified 145-kDa tyrosine-phosphorylated protein. Tyrosine-phosphorylated p62dok most probably binds directly to the SH2 domain of Nck and RasGAP and indirectly to NIK bound to the SH3 domain of Nck. We found that NIK activation is also critical for coupling EphB1R to biological responses that include the activation of integrins and JNK by EphB1. Taken together, these findings support a model in which the recruitment of the Ste20 kinase NIK to phosphotyrosine-containing proteins by Nck is an important proximal step in the signaling cascade downstream of EphRs. PMID:10669731

  12. Interaction of phospholipase D1 with a casein-kinase-2-like serine kinase.

    PubMed Central

    Ganley, I G; Walker, S J; Manifava, M; Li, D; Brown, H A; Ktistakis, N T

    2001-01-01

    Phospholipase D (PLD)1 was phosphorylated in vivo and by an associated kinase in vitro following immunoprecipitation. Both phosphorylation events were greatly reduced in a catalytically inactive point mutant in which the serine residue at position 911 was converted into alanine (S911A). The kinase could be enriched from detergent-extracted brain membranes and bind and phosphorylate PLD1 that was immunoprecipitated from COS-7 cells. Using in-gel kinase assays we determined that the size of the kinase is approximately 40 kDa and that PLD1 is more effective than S911A in binding the kinase. Preliminary analysis of the phosphorylation sites on PLD1 suggested that the kinase belongs to the casein kinase 2 (CK2) family. Consistent with this, we found that the kinase could utilize GTP, and could be inhibited by heparin and 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB). Membrane fractions from Chinese hamster ovary (CHO) cell lines that inducibly express PLD1 contained an endogenous kinase activity that phosphorylated PLD1 using GTP and was inhibited by DRB. Direct evidence that the kinase is CK2 came from observations that immunoprecipitates using PLD1 antibodies contained immunoreactive CK2alpha, and immunoprecipitates using CK2alpha antibodies contained immunoreactive PLD1. Co-expression of PLD1 in COS-7 cells with the two recombinant CK2 subunits, alpha or beta, suggests that the association of PLD1 with the kinase is through the beta subunit. Supporting this, phosphorylation of PLD1 by purified recombinant CK2alpha was enhanced by purified recombinant CK2beta. Assays measuring PLD1 catalytic activity following phosphorylation by CK2 suggest that this phosphorylation event does not influence PLD1-mediated hydrolysis of phosphatidylcholine in vitro. PMID:11171116

  13. Huntingtin-Interacting Protein 1 Phosphorylation by Receptor Tyrosine Kinases

    PubMed Central

    Ames, Heather M.; Wang, Anmin A.; Coughran, Alanna; Evaul, Kristen; Huang, Sha; Graves, Chiron W.; Soyombo, Abigail A.

    2013-01-01

    Huntingtin-interacting protein 1 (HIP1) binds inositol lipids, clathrin, actin, and receptor tyrosine kinases (RTKs). HIP1 is elevated in many tumors, and its expression is prognostic in prostate cancer. HIP1 overexpression increases levels of the RTK epidermal growth factor receptor (EGFR) and transforms fibroblasts. Here we report that HIP1 is tyrosine phosphorylated in the presence of EGFR and platelet-derived growth factor β receptor (PDGFβR) as well as the oncogenic derivatives EGFRvIII, HIP1/PDGFβR (H/P), and TEL/PDGFβR (T/P). We identified a four-tyrosine “HIP1 phosphorylation motif” (HPM) in the N-terminal region of HIP1 that is required for phosphorylation mediated by both EGFR and PDGFβR but not by the oncoproteins H/P and T/P. We also identified a tyrosine residue (Y152) within the HPM motif of HIP1 that inhibits HIP1 tyrosine phosphorylation. The HPM tyrosines are conserved in HIP1's only known mammalian relative, HIP1-related protein (HIP1r), and are also required for HIP1r phosphorylation. Tyrosine-to-phenylalanine point mutations in the HPM of HIP1 result in proapoptotic activity, indicating that an intact HPM may be necessary for HIP1's role in cellular survival. These data suggest that phosphorylation of HIP1 by RTKs in an N-terminal region contributes to the promotion of cellular survival. PMID:23836884

  14. Protein-protein interactions of tandem affinity purification-tagged protein kinases in rice.

    PubMed

    Rohila, Jai S; Chen, Mei; Chen, Shuo; Chen, Johann; Cerny, Ronald; Dardick, Chris; Canlas, Patrick; Xu, Xia; Gribskov, Michael; Kanrar, Siddhartha; Zhu, Jian-Kang; Ronald, Pamela; Fromm, Michael E

    2006-04-01

    Forty-one rice cDNAs encoding protein kinases were fused to the tandem affinity purification (TAP) tag and expressed in transgenic rice plants. The TAP-tagged kinases and interacting proteins were purified from the T1 progeny of the transgenic rice plants and identified by mass spectrometry. Ninety-five percent of the TAP-tagged kinases were recovered. Fifty-six percent of the TAP-tagged kinases were found to interact with other rice proteins. A number of these interactions were consistent with known protein complexes found in other species, validating the TAP-tag method in rice plants. Phosphorylation sites were identified on four of the kinases that interacted with either 14-3-3 proteins or cyclins.

  15. A MAP Kinase Kinase Interacts with SymRK and Regulates Nodule Organogenesis in Lotus japonicus[C][W

    PubMed Central

    Chen, Tao; Zhu, Hui; Ke, Danxia; Cai, Kai; Wang, Chao; Gou, Honglan; Hong, Zonglie; Zhang, Zhongming

    2012-01-01

    The symbiosis receptor kinase, SymRK, is required for root nodule development. A SymRK-interacting protein (SIP2) was found to form protein complex with SymRK in vitro and in planta. The interaction between SymRK and SIP2 is conserved in legumes. The SIP2 gene was expressed in all Lotus japonicus tissues examined. SIP2 represents a typical plant mitogen-activated protein kinase kinase (MAPKK) and exhibited autophosphorylation and transphosphorylation activities. Recombinant SIP2 protein could phosphorylate casein and the Arabidopsis thaliana MAP kinase MPK6. SymRK and SIP2 could not use one another as a substrate for phosphorylation. Instead, SymRK acted as an inhibitor of SIP2 kinase when MPK6 was used as a substrate, suggesting that SymRK may serve as a negative regulator of the SIP2 signaling pathway. Knockdown expression of SIP2 via RNA interference (RNAi) resulted in drastic reduction of nodules formed in transgenic hairy roots. A significant portion of SIP2 RNAi hairy roots failed to form a nodule. In these roots, the expression levels of SIP2 and three marker genes for infection thread and nodule primordium formation were downregulated drastically, while the expression of two other MAPKK genes were not altered. These observations demonstrate an essential role of SIP2 in the early symbiosis signaling and nodule organogenesis. PMID:22353370

  16. Recognition of a PP2C interaction motif in several plant protein kinases.

    PubMed

    Chakraborty, Niranjan; Ohta, Masaru; Zhu, Jian-Kang

    2007-01-01

    Protein phosphatase 2Cs (PP2Cs) constitute a major class of phosphatases in plants. PP2Cs play important roles in many signaling pathways by countering the action of specific protein kinases. In addition to their role in several environmental stress-related signal transduction pathways, they are also involved in plant metabolism. Protein phosphatases often physically associate with their protein kinase counterparts. One approach to understanding PP2C function is to identify their interacting protein kinases. We describe a yeast two-hybrid assay system used in our lab to determine the interaction between members of the PP2C family and protein kinases in the SOS2 family. This chapter and the cited articles describing related work might be of help in discovering interactions between other protein phosphatases and kinases.

  17. Development of Heat Shock Protein (Hsp90) Inhibitors To Combat Resistance to Tyrosine Kinase Inhibitors through Hsp90-Kinase Interactions.

    PubMed

    Wang, Meining; Shen, Aijun; Zhang, Chi; Song, Zilan; Ai, Jing; Liu, Hongchun; Sun, Liping; Ding, Jian; Geng, Meiyu; Zhang, Ao

    2016-06-23

    Heat shock protein 90 (Hsp90) is a ubiquitous chaperone of all of the oncogenic tyrosine kinases. Many Hsp90 inhibitors, alone or in combination, have shown significant antitumor efficacy against the kinase-positive naïve and mutant models. However, clinical trials of these inhibitors are unsuccessful due to insufficient clinical benefits and nonoptimal safety profiles. Recently, much progress has been reported on the Hsp90-cochaperone-client complex, which will undoubtedly assist in the understanding of the interactions between Hsp90 and its clients. Meanwhile, Hsp90 inhibitors have shown promise against patients' resistance caused by early generation tyrosine kinase inhibitors (TKIs), and at least 13 Hsp90 inhibitors are being reevaluated in the clinic. In this regard, the objectives of the current perspective are to summarize the structure and function of the Hsp90-cochaperone-client complex, to analyze the structural and functional insights into the Hsp90-client interactions to address several existing unresolved problems with Hsp90 inhibitors, and to highlight the preclinical and clinical studies of Hsp90 inhibitors as an effective treatment against resistance to tyrosine kinase inhibitors.

  18. MEK kinases are regulated by EGF and selectively interact with Rac/Cdc42.

    PubMed Central

    Fanger, G R; Johnson, N L; Johnson, G L

    1997-01-01

    MEK kinases (MEKKs) 1, 2, 3 and 4 are members of sequential kinase pathways that regulate MAP kinases including c-Jun NH2-terminal kinases (JNKs) and extracellular regulated kinases (ERKs). Confocal immunofluorescence microscopy of COS cells demonstrated differential MEKK subcellular localization: MEKK1 was nuclear and in post-Golgi vesicular-like structures; MEKK2 and 4 were localized to distinct Golgi-associated vesicles that were dispersed by brefeldin A. MEKK1 and 2 were activated by EGF, and kinase-inactive mutants of each MEKK partially inhibited EGF-stimulated JNK activity. Kinase-inactive MEKK1, but not MEKK2, 3 or 4, strongly inhibited EGF-stimulated ERK activity. In contrast to MEKK2 and 3, MEKK1 and 4 specifically associated with Rac and Cdc42 and kinase-inactive mutants blocked Rac/Cdc42 stimulation of JNK activity. Inhibitory mutants of MEKK1-4 did not affect p21-activated kinase (PAK) activation of JNK, indicating that the PAK-regulated JNK pathway is independent of MEKKs. Thus, in different cellular locations, specific MEKKs are required for the regulation of MAPK family members, and MEKK1 and 4 are involved in the regulation of JNK activation by Rac/Cdc42 independent of PAK. Differential MEKK subcellular distribution and interaction with small GTP-binding proteins provides a mechanism to regulate MAP kinase responses in localized regions of the cell and to different upstream stimuli. PMID:9305638

  19. Functional Significance of Aurora Kinases-p53 Protein Family Interactions in Cancer.

    PubMed

    Sasai, Kaori; Treekitkarnmongkol, Warapen; Kai, Kazuharu; Katayama, Hiroshi; Sen, Subrata

    2016-01-01

    Aurora kinases play critical roles in regulating spindle assembly, chromosome segregation, and cytokinesis to ensure faithful segregation of chromosomes during mitotic cell division cycle. Molecular and cell biological studies have revealed that Aurora kinases, at physiological levels, orchestrate complex sequential cellular processes at distinct subcellular locations through functional interactions with its various substrates. Aberrant expression of Aurora kinases, on the other hand, cause defects in mitotic spindle assembly, checkpoint response activation, and chromosome segregation leading to chromosomal instability. Elevated expression of Aurora kinases correlating with chromosomal instability is frequently detected in human cancers. Recent genomic profiling of about 3000 human cancer tissue specimens to identify various oncogenic signatures in The Cancer Genome Atlas project has reported that recurrent amplification and overexpression of Aurora kinase-A characterize distinct subsets of human tumors across multiple cancer types. Besides the well-characterized canonical pathway interactions of Aurora kinases in regulating assembly of the mitotic apparatus and chromosome segregation, growing evidence also supports the notion that deregulated expression of Aurora kinases in non-canonical pathways drive transformation and genomic instability by antagonizing tumor suppressor and exacerbating oncogenic signaling through direct interactions with critical proteins. Aberrant expression of the Aurora kinases-p53 protein family signaling axes appears to be critical in the abrogation of p53 protein family mediated tumor suppressor pathways frequently deregulated during oncogenic transformation process. Recent findings reveal the existence of feedback regulatory loops in mRNA expression and protein stability of these protein families and their consequences on downstream effectors involved in diverse physiological functions, such as mitotic progression, checkpoint response

  20. Drug-drug interactions with tyrosine-kinase inhibitors: a clinical perspective.

    PubMed

    van Leeuwen, Roelof W F; van Gelder, Teun; Mathijssen, Ron H J; Jansman, Frank G A

    2014-07-01

    In the past decade, many tyrosine-kinase inhibitors have been introduced in oncology and haemato-oncology. Because this new class of drugs is extensively used, serious drug-drug interactions are an increasing risk. In this Review, we give a comprehensive overview of known or suspected drug-drug interactions between tyrosine-kinase inhibitors and other drugs. We discuss all haemato-oncological and oncological tyrosine-kinase inhibitors that had been approved by Aug 1, 2013, by the US Food and Drug Administration or the European Medicines Agency. Various clinically relevant drug interactions with tyrosine-kinase inhibitors have been identified. Most interactions concern altered bioavailability due to altered stomach pH, metabolism by cytochrome P450 isoenzymes, and prolongation of the QTc interval. To guarantee the safe use of tyrosine-kinase inhibitors, a drugs review for each patient is needed. This Review provides specific recommendations to guide haemato-oncologists, oncologists, and clinical pharmacists, through the process of managing drug-drug interactions during treatment with tyrosine-kinase inhibitors in daily clinical practice.

  1. Receptor kinase complex transmits RALF peptide signal to inhibit root growth in Arabidopsis

    PubMed Central

    Du, Changqing; Li, Xiushan; Chen, Jia; Chen, Weijun; Li, Bin; Li, Chiyu; Wang, Long; Li, Jianglin; Zhao, Xiaoying; Lin, Jianzhong; Liu, Xuanming; Luan, Sheng; Yu, Feng

    2016-01-01

    A number of hormones work together to control plant cell growth. Rapid Alkalinization Factor 1 (RALF1), a plant-derived small regulatory peptide, inhibits cell elongation through suppression of rhizosphere acidification in plants. Although a receptor-like kinase, FERONIA (FER), has been shown to act as a receptor for RALF1, the signaling mechanism remains unknown. In this study, we identified a receptor-like cytoplasmic kinase (RPM1-induced protein kinase, RIPK), a plasma membrane-associated member of the RLCK-VII subfamily, that is recruited to the receptor complex through interacting with FER in response to RALF1. RALF1 triggers the phosphorylation of both FER and RIPK in a mutually dependent manner. Genetic analysis of the fer-4 and ripk mutants reveals RIPK, as well as FER, to be required for RALF1 response in roots. The RALF1–FER–RIPK interactions may thus represent a mechanism for peptide signaling in plants. PMID:27930296

  2. Interactions between hematopoietic progenitor kinase 1 and its adaptor proteins (Review).

    PubMed

    Zhang, Qing; Ding, Shu; Zhang, Huilin

    2017-09-13

    Hematopoietic progenitor kinase 1 (HPK1), also known as mitogen‑activated protein kinase kinase kinase kinase 1 is a serine/threonine protein kinase. It is involved in various cellular events, including mitogen‑activated protein kinase signaling, nuclear factor‑κB signaling, cytokine signaling, cellular proliferation and apoptosis, T cell receptor/B cell receptor signaling and T/B/dendritic cell‑mediated immune responses. Therefore, HPK1 has variety of roles in immunity, and is associated with the pathogenesis of autoimmune diseases, cancer, and the inflammatory response. In these cellular and immune events, HPK1 interacts with several adaptor proteins, including caspase recruitment domain family, member 11, hematopoietic cell‑specific protein 1, HPK1‑interacting protein of 55 kDa, the growth factor receptor‑bound protein 2 family, linker for activated T‑cells, the SH2 domain‑containing leukocyte protein of 76 kDa family, the v‑crk avian sarcoma virus CT10 oncogene homolog family, B‑cell adaptor molecule of 32 kDa and non‑catalytic region of tyrosine kinase adaptor protein. These adaptor proteins can couple HPK1 with various effector molecules, leading to the transmission of upstream signals to downstream targets. They are crucial in regulating the relocation, phosphorylation, activation and functions of HPK1. HPK1 can also phosphorylate certain proteins, consequently modulating their functions. This review aims to describe the adaptor proteins, which interact with HPK1, particularly focusing on their modes of interaction with HPK1, and the effects that these interactions cause.

  3. BDNF stimulation of protein synthesis in cortical neurons requires the MAP kinase-interacting kinase MNK1.

    PubMed

    Genheden, Maja; Kenney, Justin W; Johnston, Harvey E; Manousopoulou, Antigoni; Garbis, Spiros D; Proud, Christopher G

    2015-01-21

    Although the MAP kinase-interacting kinases (MNKs) have been known for >15 years, their roles in the regulation of protein synthesis have remained obscure. Here, we explore the involvement of the MNKs in brain-derived neurotrophic factor (BDNF)-stimulated protein synthesis in cortical neurons from mice. Using a combination of pharmacological and genetic approaches, we show that BDNF-induced upregulation of protein synthesis requires MEK/ERK signaling and the downstream kinase, MNK1, which phosphorylates eukaryotic initiation factor (eIF) 4E. Translation initiation is mediated by the interaction of eIF4E with the m(7)GTP cap of mRNA and with eIF4G. The latter interaction is inhibited by the interactions of eIF4E with partner proteins, such as CYFIP1, which acts as a translational repressor. We find that BDNF induces the release of CYFIP1 from eIF4E, and that this depends on MNK1. Finally, using a novel combination of BONCAT and SILAC, we identify a subset of proteins whose synthesis is upregulated by BDNF signaling via MNK1 in neurons. Interestingly, this subset of MNK1-sensitive proteins is enriched for functions involved in neurotransmission and synaptic plasticity. Additionally, we find significant overlap between our subset of proteins whose synthesis is regulated by MNK1 and those encoded by known FMRP-binding mRNAs. Together, our data implicate MNK1 as a key component of BDNF-mediated translational regulation in neurons. Copyright © 2015 Genheden et al.

  4. Isoform-dependent interaction of BRDG1 with Tec kinase.

    PubMed

    Yokohari, K; Yamashita, Y; Okada, S; Ohya, K; Oda, S; Hatano, M; Mano, H; Hirasawa, H; Tokuhisa, T

    2001-11-30

    Tec is the prototype of an emerging family of protein-tyrosine kinases. Tec and Btk, another member of this family, together participate in the development of B-cell immune system. We previously identified one of the downstream messengers for human Tec kinase, BRDG1. BRDG1 is associated with Tec and becomes tyrosine-phosphorylated in B-cells by the engagement of B-cell antigen receptor (BCR). Here we show that overexpression of BRDG1 strongly augments BCR-mediated activation of cAMP-response element binding protein (CREB) but not that of c-Jun and the promoters of c-MYC and BCL-xL genes. Furthermore, we isolated the murine orthologue of BRDG1. Three isoforms of BRDG1 are generated by alternative splicing of the message. Two of them have a deletion of 33 amino acids in a Pleckstrin homology (PH) domain of BRDG1. Both the tyrosine-phosphorylation and CREB-activating ability of BRDG1 were isoform-dependent, suggesting a role of the PH domain of BRDG1. These data have identified a novel regulatory mechanism of CREB family of transcriptional factors.

  5. Do Src Kinase and Caveolin Interact Directly with Na,K-ATPase?

    PubMed

    Yosef, Eliyahu; Katz, Adriana; Peleg, Yoav; Mehlman, Tevie; Karlish, Steven J D

    2016-05-27

    Much evidence points to a role of Na,K-ATPase in ouabain-dependent signal transduction. Based on experiments with different cell lines and native tissue membranes, a current hypothesis postulates direct interactions between the Na,K-ATPase and Src kinase (non-receptor tyrosine kinase). Na,K-ATPase is proposed to bind Src kinase and inhibit its activity, whereas ouabain, the specific Na,K-ATPase inhibitor, binds and stabilizes the E2 conformation, thus exposing the Src kinase domain and its active site Tyr-418 for activation. Ouabain-dependent signaling is thought to be mediated within caveolae by a complex consisting of Na,K-ATPase, caveolin, and Src kinase. In the current work, we have looked for direct interactions utilizing purified recombinant Na,K-ATPase (human α1β1FXYD1 or porcine α1D369Nβ1FXYD1) and purified human Src kinase and human caveolin 1 or interactions between these proteins in native membrane vesicles isolated from rabbit kidney. By several independent criteria and techniques, no stable interactions were detected between Na,K-ATPase and purified Src kinase. Na,K-ATPase was found to be a substrate for Src kinase phosphorylation at Tyr-144. Clear evidence for a direct interaction between purified human Na,K-ATPase and human caveolin was obtained, albeit with a low molar stoichiometry (1:15-30 caveolin 1/Na,K-ATPase). In native renal membranes, a specific caveolin 14-5 oligomer (95 kDa) was found to be in direct interaction with Na,K-ATPase. We inferred that a small fraction of the renal Na,K-ATPase molecules is in a ∼1:1 complex with a caveolin 14-5 oligomer. Thus, overall, whereas a direct caveolin 1/Na,K-ATPase interaction is confirmed, the lack of direct Src kinase/Na,K-ATPase binding requires reassessment of the mechanism of ouabain-dependent signaling. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Tamoxifen Dependent Interaction Between the Estrogen Receptor and a Novel P21 Activated Kinase

    DTIC Science & Technology

    2002-06-01

    AD Award Number: DAMDl7-01-1-0149 TITLE: Tamoxifen Dependent Interaction Between the Estrogen Receptor and a Novel P21 Activated Kinase PRINCIPAL...Tamoxifen Dependent Interaction Between the DAMD17-00-1-0114 Estrogen Receptor and a Novel P21 Activated Kinase 6. AUTHOR(S) Steven P. Balk, M.D., Ph.D. 7...Z, Karas RH, nisms of androgen receptor activation and function. J Mendelsohn ME, Shaul PW 1999 Estrogen receptor a Steroid Biochem Mol Biol 69:307

  7. Direct interactions with the integrin β1 cytoplasmic tail activate the Abl2/Arg kinase.

    PubMed

    Simpson, Mark A; Bradley, William D; Harburger, David; Parsons, Maddy; Calderwood, David A; Koleske, Anthony J

    2015-03-27

    Integrins are heterodimeric α/β extracellular matrix adhesion receptors that couple physically to the actin cytoskeleton and regulate kinase signaling pathways to control cytoskeletal remodeling and adhesion complex formation and disassembly. β1 integrins signal through the Abl2/Arg (Abl-related gene) nonreceptor tyrosine kinase to control fibroblast cell motility, neuronal dendrite morphogenesis and stability, and cancer cell invasiveness, but the molecular mechanisms by which integrin β1 activates Arg are unknown. We report here that the Arg kinase domain interacts directly with a lysine-rich membrane-proximal segment in the integrin β1 cytoplasmic tail, that Arg phosphorylates the membrane-proximal Tyr-783 in the β1 tail, and that the Arg Src homology domain then engages this phosphorylated region in the tail. We show that these interactions mediate direct binding between integrin β1 and Arg in vitro and in cells and activate Arg kinase activity. These findings provide a model for understanding how β1-containing integrins interact with and activate Abl family kinases.

  8. Dataset of integrin-linked kinase protein: Protein interactions in cardiomyocytes identified by mass spectrometry.

    PubMed

    Traister, Alexandra; Lu, Mingliang; Coles, John G; Maynes, Jason T

    2016-06-01

    Using hearts from mice overexpressing integrin linked kinase (ILK) behind the cardiac specific promoter αMHC, we have performed immunoprecipitation and mass spectrometry to identify novel ILK protein:protein interactions that regulate cardiomyocyte activity and calcium flux. Integrin linked kinase complexes were captured from mouse heart lysates using a commercial antibody, with subsequent liquid chromatography tandem mass spectral analysis. Interacting partners were identified using the MASCOT server, and important interactions verified using reverse immunoprecipitation and mass spectrometry. All ILK interacting proteins were identified in a non-biased manner, and are stored in the ProteomeXchange Consortium via the PRIDE partner repository (reference ID PRIDE: PXD001053). The functional role of identified ILK interactions in cardiomyocyte function and arrhythmia were subsequently confirmed in human iPSC-cardiomyocytes.

  9. Interaction between protein kinase C and protein kinase A can modulate transmitter release at the rat neuromuscular synapse.

    PubMed

    Santafé, M M; Garcia, N; Lanuza, M A; Tomàs, M; Tomàs, J

    2009-02-15

    We used intracellular recording to investigate the functional interaction between protein kinase C (PKC) and protein kinase A (PKA) signal transduction cascades in the control of transmitter release in the neuromuscular synapses from adult rats. Our results indicate that: 1) PKA and PKC are independently involved in asynchronous release. 2) Evoked acetylcholine (ACh) release is enhanced with the PKA agonist Sp-8-BrcAMP and the PKC agonist phorbol ester (PMA). 3) PKA has a constitutive role in promoting a component of normal evoked transmitter release because, when the kinase is inhibited with H-89, the release diminishes. However, the PKC inhibitor calphostin C (CaC) does not affect ACh release. 4) PKA regulates neurotransmission without PKC involvement because, after PMA or CaC modulation of the PKC activity, coupling to the ACh release of PKA can normally be stimulated with Sp-8-BrcAMP or inhibited with H-89. 5) After PKA inhibition with H-89, PKC stimulation with PMA (or inhibition with CaC) does not lead to any change in evoked ACh release. However, in PKA-stimulated preparations with Sp-8-BrcAMP, PKC becomes tonically active, thus potentiating a component of release that can now be blocked with CaC. In normal conditions, therefore, PKA was able to modulate ACh release independently of PKC activity, whereas PKA stimulation caused the PKC coupling to evoked release. In contrast, PKA inhibition prevent PKC stimulation (with the phorbol ester) and coupling to ACh output. There was therefore some dependence of PKC on PKA activity in the fine control of the neuromuscular synaptic functionalism and ACh release.

  10. Germinal Center Kinases SmKIN3 and SmKIN24 Are Associated with the Sordaria macrospora Striatin-Interacting Phosphatase and Kinase (STRIPAK) Complex.

    PubMed

    Frey, Stefan; Reschka, Eva J; Pöggeler, Stefanie

    2015-01-01

    The striatin-interacting phosphatase and kinase (STRIPAK) complex is composed of striatin, protein phosphatase PP2A and protein kinases that regulate development in animals and fungi. In the filamentous ascomycete Sordaria macrospora, it is required for fruiting-body development and cell fusion. Here, we report on the presence and function of STRIPAK-associated kinases in ascomycetes. Using the mammalian germinal center kinases (GCKs) MST4, STK24, STK25 and MINK1 as query, we identified the two putative homologs SmKIN3 and SmKIN24 in S. macrospora. A BLASTP search revealed that both kinases are conserved among filamentous ascomycetes. The physical interaction of the striatin homolog PRO11 with SmKIN3 and SmKIN24 were verified by yeast two-hybrid (Y2H) interaction studies and for SmKIN3 by co-Immunoprecipitation (co-IP). In vivo localization found that both kinases were present at the septa and deletion of both Smkin3 and Smkin24 led to abnormal septum distribution. While deletion of Smkin3 caused larger distances between adjacent septa and increased aerial hyphae, deletion of Smkin24 led to closer spacing of septa and to sterility. Although phenotypically distinct, both kinases appear to function independently because the double-knockout strain ΔSmkin3/ΔSmkin24 displayed the combined phenotypes of each single-deletion strain.

  11. Germinal Center Kinases SmKIN3 and SmKIN24 Are Associated with the Sordaria macrospora Striatin-Interacting Phosphatase and Kinase (STRIPAK) Complex

    PubMed Central

    Frey, Stefan; Reschka, Eva J.; Pöggeler, Stefanie

    2015-01-01

    The striatin-interacting phosphatase and kinase (STRIPAK) complex is composed of striatin, protein phosphatase PP2A and protein kinases that regulate development in animals and fungi. In the filamentous ascomycete Sordaria macrospora, it is required for fruiting-body development and cell fusion. Here, we report on the presence and function of STRIPAK-associated kinases in ascomycetes. Using the mammalian germinal center kinases (GCKs) MST4, STK24, STK25 and MINK1 as query, we identified the two putative homologs SmKIN3 and SmKIN24 in S. macrospora. A BLASTP search revealed that both kinases are conserved among filamentous ascomycetes. The physical interaction of the striatin homolog PRO11 with SmKIN3 and SmKIN24 were verified by yeast two-hybrid (Y2H) interaction studies and for SmKIN3 by co-Immunoprecipitation (co-IP). In vivo localization found that both kinases were present at the septa and deletion of both Smkin3 and Smkin24 led to abnormal septum distribution. While deletion of Smkin3 caused larger distances between adjacent septa and increased aerial hyphae, deletion of Smkin24 led to closer spacing of septa and to sterility. Although phenotypically distinct, both kinases appear to function independently because the double-knockout strain ΔSmkin3/ΔSmkin24 displayed the combined phenotypes of each single-deletion strain. PMID:26418262

  12. SARS-CoV nucleocapsid protein interacts with cellular pyruvate kinase protein and inhibits its activity.

    PubMed

    Wei, Wei-Yen; Li, Hui-Chun; Chen, Chiung-Yao; Yang, Chee-Hing; Lee, Shen-Kao; Wang, Chia-Wen; Ma, Hsin-Chieh; Juang, Yue-Li; Lo, Shih-Yen

    2012-04-01

    The pathogenesis of SARS-CoV remains largely unknown. To study the function of the SARS-CoV nucleocapsid protein, we have conducted a yeast two-hybrid screening experiment to identify cellular proteins that may interact with the SARS-CoV nucleocapsid protein. Pyruvate kinase (liver) was found to interact with SARS-CoV nucleocapsid protein in this experiment. The binding domains of these two proteins were also determined using the yeast two-hybrid system. The physical interaction between the SARS-CoV nucleocapsid and cellular pyruvate kinase (liver) proteins was further confirmed by GST pull-down assay, co-immunoprecipitation assay and confocal microscopy. Cellular pyruvate kinase activity in hepatoma cells was repressed by SARS-CoV nucleocapsid protein in either transiently transfected or stably transfected cells. PK deficiency in red blood cells is known to result in human hereditary non-spherocytic hemolytic anemia. It is reasonable to assume that an inhibition of PKL activity due to interaction with SARS-CoV N protein is likely to cause the death of the hepatocytes, which results in the elevation of serum alanine aminotransferase and liver dysfunction noted in most SARS patients. Thus, our results suggest that SARS-CoV could reduce pyruvate kinase activity via its nucleocapsid protein, and this may in turn cause disease.

  13. A catalytically inactive form of protein kinase C-associated kinase/receptor interacting protein 4, a protein kinase C beta-associated kinase that mediates NF-kappa B activation, interferes with early B cell development.

    PubMed

    Cariappa, Annaiah; Chen, Luojing; Haider, Khaleda; Tang, Mei; Nebelitskiy, Eugene; Moran, Stewart T; Pillai, Shiv

    2003-08-15

    Protein kinase C-associated kinase (PKK)/receptor interacting protein 4 (RIP4) is a protein kinase C (PKC) beta-associated kinase that links PKC to NF-kappaB activation. The kinase domain of PKK is similar to that of RIP, RIP2, and RIP3. We show in this study that PKK is expressed early during lymphocyte development and can be detected in common lymphoid progenitor cells. Targeting of a catalytically inactive version of PKK to lymphoid cells resulted in a marked impairment in pro-B cell generation in the bone marrow. Although peripheral B cell numbers were markedly reduced, differentiation into follicular and marginal zone B cells was not defective in these mice. B-1a and B-1b B cells could not be detected in these mice, but this might be a reflection of the overall defect in B cell production observed in these animals. In keeping with a possible link to PKCbeta, peripheral B cells in these mice exhibit a defect in anti-IgM-mediated proliferation. These studies suggest that PKK may be required early in B cell development and for BCR-mediated B cell proliferation.

  14. Heartland virus NSs protein disrupts host defenses by blocking the TBK1 kinase-IRF3 transcription factor interaction and signaling required for interferon induction.

    PubMed

    Ning, Yun-Jia; Feng, Kuan; Min, Yuan-Qin; Deng, Fei; Hu, Zhihong; Wang, Hualin

    2017-10-06

    Heartland virus (HRTV) is a pathogenic phlebovirus related to the severe fever with thrombocytopenia syndrome virus (SFTSV), another phlebovirus causing life-threatening disease in humans. Previous findings have suggested that SFTSV can antagonize the host interferon (IFN) system via viral nonstructural protein (NSs)-mediated sequestration of antiviral signaling proteins into NSs-induced inclusion bodies. However, whether and how HRTV counteracts the host innate immunity is unknown. Here, we report that HRTV NSs (HNSs) also antagonizes IFN and cytokine induction and bolsters viral replication, although no noticeable inclusion body formation was observed in HNSs-expressing cells. Furthermore, HNSs inhibited the virus-triggered activation of IFN-β promoter by specifically targeting the IFN-stimulated response element but not the NF-κB response element. Consistently, HNSs blocked the phosphorylation and nuclear translocation of IFN regulatory factor 3 (IRF3, an IFN-stimulated response element-activating transcription factor). Reporter gene assays next showed that HNSs blockades the antiviral signaling mediated by RIG-I-like receptors likely at the level of TANK-binding kinase 1 (TBK1). Indeed, HNSs strongly interacts with TBK1 as indicated by confocal microscopy and pulldown analyses, and we also noted that the scaffold dimerization domain of TBK1 is required for the TBK1-HNSs interaction. Finally, pulldown assays demonstrated that HNSs expression dose-dependently diminishes a TBK1-IRF3 interaction, further explaining the mechanism for HNSs function. Collectively, these data suggest that HNSs, an antagonist of host innate immunity, interacts with TBK1 and thereby hinders the association of TBK1 with its substrate IRF3, thus blocking IRF3 activation and transcriptional induction of the cellular antiviral responses. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Activation of G Protein-Coupled Receptor Kinase 1 Involves Interactions between Its N-Terminal Region and Its Kinase Domain

    SciTech Connect

    Huang, Chih-chin; Orban, Tivadar; Jastrzebska, Beata; Palczewski, Krzysztof; Tesmer, John J.G.

    2012-03-16

    G protein-coupled receptor kinases (GRKs) phosphorylate activated G protein-coupled receptors (GPCRs) to initiate receptor desensitization. In addition to the canonical phosphoacceptor site of the kinase domain, activated receptors bind to a distinct docking site that confers higher affinity and activates GRKs allosterically. Recent mutagenesis and structural studies support a model in which receptor docking activates a GRK by stabilizing the interaction of its 20-amino acid N-terminal region with the kinase domain. This interaction in turn stabilizes a closed, more active conformation of the enzyme. To investigate the importance of this interaction for the process of GRK activation, we first validated the functionality of the N-terminal region in rhodopsin kinase (GRK1) by site-directed mutagenesis and then introduced a disulfide bond to cross-link the N-terminal region of GRK1 with its specific binding site on the kinase domain. Characterization of the kinetic and biophysical properties of the cross-linked protein showed that disulfide bond formation greatly enhances the catalytic efficiency of the peptide phosphorylation, but receptor-dependent phosphorylation, Meta II stabilization, and inhibition of transducin activation were unaffected. These data indicate that the interaction of the N-terminal region with the kinase domain is important for GRK activation but does not dictate the affinity of GRKs for activated receptors.

  16. The A-Kinase Anchoring Protein (AKAP) Glycogen Synthase KinaseInteraction Protein (GSKIP) Regulates β-Catenin through Its Interactions with Both Protein Kinase A (PKA) and GSK3β.

    PubMed

    Dema, Alessandro; Schröter, Micha Friedemann; Perets, Ekaterina; Skroblin, Philipp; Moutty, Marie Christine; Deàk, Veronika Anita; Birchmeier, Walter; Klussmann, Enno

    2016-09-09

    The A-kinase anchoring protein (AKAP) GSK3β interaction protein (GSKIP) is a cytosolic scaffolding protein binding protein kinase A (PKA) and glycogen synthase kinase 3β (GSK3β). Here we show that both the AKAP function of GSKIP, i.e. its direct interaction with PKA, and its direct interaction with GSK3β are required for the regulation of β-catenin and thus Wnt signaling. A cytoplasmic destruction complex targets β-catenin for degradation and thus prevents Wnt signaling. Wnt signals cause β-catenin accumulation and translocation into the nucleus, where it induces Wnt target gene expression. GSKIP facilitates control of the β-catenin stabilizing phosphorylation at Ser-675 by PKA. Its interaction with GSK3β facilitates control of the destabilizing phosphorylation of β-catenin at Ser-33/Ser-37/Thr-41. The influence of GSKIP on β-catenin is explained by its scavenger function; it recruits the kinases away from the destruction complex without forming a complex with β-catenin. The regulation of β-catenin by GSKIP is specific for this AKAP as AKAP220, which also binds PKA and GSK3β, did not affect Wnt signaling. We find that the binding domain of AKAP220 for GSK3β is a conserved GSK3β interaction domain (GID), which is also present in GSKIP. Our findings highlight an essential compartmentalization of both PKA and GSK3β by GSKIP, and ascribe a function to a cytosolic AKAP-PKA interaction as a regulatory factor in the control of canonical Wnt signaling. Wnt signaling controls different biological processes, including embryonic development, cell cycle progression, glycogen metabolism, and immune regulation; deregulation is associated with diseases such as cancer, type 2 diabetes, inflammatory, and Alzheimer's and Parkinson's diseases.

  17. Hsp90·Cdc37 Complexes with Protein Kinases Form Cooperatively with Multiple Distinct Interaction Sites.

    PubMed

    Eckl, Julia M; Scherr, Matthias J; Freiburger, Lee; Daake, Marina A; Sattler, Michael; Richter, Klaus

    2015-12-25

    Protein kinases are the most prominent group of heat shock protein 90 (Hsp90) clients and are recruited to the molecular chaperone by the kinase-specific cochaperone cell division cycle 37 (Cdc37). The interaction between Hsp90 and nematode Cdc37 is mediated by binding of the Hsp90 middle domain to an N-terminal region of Caenorhabditis elegans Cdc37 (CeCdc37). Here we map the binding site by NMR spectroscopy and define amino acids relevant for the interaction between CeCdc37 and the middle domain of Hsp90. Apart from these distinct Cdc37/Hsp90 interfaces, binding of the B-Raf protein kinase to the cochaperone is conserved between mammals and nematodes. In both cases, the C-terminal part of Cdc37 is relevant for kinase binding, whereas the N-terminal domain displaces the nucleotide from the kinase. This interaction leads to a cooperative formation of the ternary complex of Cdc37 and kinase with Hsp90. For the mitogen-activated protein kinase extracellular signal-regulated kinase 2 (Erk2), we observe that certain features of the interaction with Cdc37·Hsp90 are conserved, but the contribution of Cdc37 domains varies slightly, implying that different kinases may utilize distinct variations of this binding mode to interact with the Hsp90 chaperone machinery. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. SOcK, MiSTs, MASK and STicKs: the GCKIII (germinal centre kinase III) kinases and their heterologous protein-protein interactions.

    PubMed

    Sugden, Peter H; McGuffin, Liam J; Clerk, Angela

    2013-08-15

    The GCKIII (germinal centre kinase III) subfamily of the mammalian Ste20 (sterile 20)-like group of serine/threonine protein kinases comprises SOK1 (Ste20-like/oxidant-stress-response kinase 1), MST3 (mammalian Ste20-like kinase 3) and MST4. Initially, GCKIIIs were considered in the contexts of the regulation of mitogen-activated protein kinase cascades and apoptosis. More recently, their participation in multiprotein heterocomplexes has become apparent. In the present review, we discuss the structure and phosphorylation of GCKIIIs and then focus on their interactions with other proteins. GCKIIIs possess a highly-conserved, structured catalytic domain at the N-terminus and a less-well conserved C-terminal regulatory domain. GCKIIIs are activated by tonic autophosphorylation of a T-loop threonine residue and their phosphorylation is regulated primarily through protein serine/threonine phosphatases [especially PP2A (protein phosphatase 2A)]. The GCKIII regulatory domains are highly disorganized, but can interact with more structured proteins, particularly the CCM3 (cerebral cavernous malformation 3)/PDCD10 (programmed cell death 10) protein. We explore the role(s) of GCKIIIs (and CCM3/PDCD10) in STRIPAK (striatin-interacting phosphatase and kinase) complexes and their association with the cis-Golgi protein GOLGA2 (golgin A2; GM130). Recently, an interaction of GCKIIIs with MO25 has been identified. This exhibits similarities to the STRADα (STE20-related kinase adaptor α)-MO25 interaction (as in the LKB1-STRADα-MO25 heterotrimer) and, at least for MST3, the interaction may be enhanced by cis-autophosphorylation of its regulatory domain. In these various heterocomplexes, GCKIIIs associate with the Golgi apparatus, the centrosome and the nucleus, as well as with focal adhesions and cell junctions, and are probably involved in cell migration, polarity and proliferation. Finally, we consider the association of GCKIIIs with a number of human diseases, particularly

  19. Different designs of kinase-phosphatase interactions and phosphatase sequestration shapes the robustness and signal flow in the MAPK cascade

    PubMed Central

    2012-01-01

    Background The three layer mitogen activated protein kinase (MAPK) signaling cascade exhibits different designs of interactions between its kinases and phosphatases. While the sequential interactions between the three kinases of the cascade are tightly preserved, the phosphatases of the cascade, such as MKP3 and PP2A, exhibit relatively diverse interactions with their substrate kinases. Additionally, the kinases of the MAPK cascade can also sequester their phosphatases. Thus, each topologically distinct interaction design of kinases and phosphatases could exhibit unique signal processing characteristics, and the presence of phosphatase sequestration may lead to further fine tuning of the propagated signal. Results We have built four architecturally distinct types of models of the MAPK cascade, each model with identical kinase-kinase interactions but unique kinases-phosphatases interactions. Our simulations unravelled that MAPK cascade’s robustness to external perturbations is a function of nature of interaction between its kinases and phosphatases. The cascade’s output robustness was enhanced when phosphatases were sequestrated by their target kinases. We uncovered a novel implicit/hidden negative feedback loop from the phosphatase MKP3 to its upstream kinase Raf-1, in a cascade resembling the B cell MAPK cascade. Notably, strength of the feedback loop was reciprocal to the strength of phosphatases’ sequestration and stronger sequestration abolished the feedback loop completely. An experimental method to verify the presence of the feedback loop is also proposed. We further showed, when the models were activated by transient signal, memory (total time taken by the cascade output to reach its unstimulated level after removal of signal) of a cascade was determined by the specific designs of interaction among its kinases and phosphatases. Conclusions Differences in interaction designs among the kinases and phosphatases can differentially shape the robustness and

  20. Requirement for Interaction of PI3-Kinase p110α with RAS in Lung Tumor Maintenance

    PubMed Central

    Castellano, Esther; Sheridan, Clare; Thin, May Zaw; Nye, Emma; Spencer-Dene, Bradley; Diefenbacher, Markus E.; Moore, Christopher; Kumar, Madhu S.; Murillo, Miguel M.; Grönroos, Eva; Lassailly, Francois; Stamp, Gordon; Downward, Julian

    2013-01-01

    Summary RAS proteins directly activate PI3-kinases. Mice bearing a germline mutation in the RAS binding domain of the p110α subunit of PI3-kinse are resistant to the development of RAS-driven tumors. However, it is unknown whether interaction of RAS with PI3-kinase is required in established tumors. The need for RAS interaction with p110α in the maintenance of mutant Kras-driven lung tumors was explored using an inducible mouse model. In established tumors, removal of the ability of p110α to interact with RAS causes long-term tumor stasis and partial regression. This is a tumor cell-autonomous effect, which is improved significantly by combination with MEK inhibition. Total removal of p110α expression or activity has comparable effects, albeit with greater toxicities. PMID:24229709

  1. Protein-protein interactions of tandem affinity purified protein kinases from rice.

    PubMed

    Rohila, Jai S; Chen, Mei; Chen, Shuo; Chen, Johann; Cerny, Ronald L; Dardick, Christopher; Canlas, Patrick; Fujii, Hiroaki; Gribskov, Michael; Kanrar, Siddhartha; Knoflicek, Lucas; Stevenson, Becky; Xie, Mingtang; Xu, Xia; Zheng, Xianwu; Zhu, Jian-Kang; Ronald, Pamela; Fromm, Michael E

    2009-08-19

    Eighty-eight rice (Oryza sativa) cDNAs encoding rice leaf expressed protein kinases (PKs) were fused to a Tandem Affinity Purification tag (TAP-tag) and expressed in transgenic rice plants. The TAP-tagged PKs and interacting proteins were purified from the T1 progeny of the transgenic rice plants and identified by tandem mass spectrometry. Forty-five TAP-tagged PKs were recovered in this study and thirteen of these were found to interact with other rice proteins with a high probability score. In vivo phosphorylated sites were found for three of the PKs. A comparison of the TAP-tagged data from a combined analysis of 129 TAP-tagged rice protein kinases with a concurrent screen using yeast two hybrid methods identified an evolutionarily new rice protein that interacts with the well conserved cell division cycle 2 (CDC2) protein complex.

  2. Protein-Protein Interactions of Tandem Affinity Purified Protein Kinases from Rice

    PubMed Central

    Rohila, Jai S.; Chen, Mei; Chen, Shuo; Chen, Johann; Cerny, Ronald L.; Dardick, Christopher; Canlas, Patrick; Fujii, Hiroaki; Gribskov, Michael; Kanrar, Siddhartha; Knoflicek, Lucas; Stevenson, Becky; Xie, Mingtang; Xu, Xia; Zheng, Xianwu; Zhu, Jian-Kang; Ronald, Pamela; Fromm, Michael E.

    2009-01-01

    Eighty-eight rice (Oryza sativa) cDNAs encoding rice leaf expressed protein kinases (PKs) were fused to a Tandem Affinity Purification tag (TAP-tag) and expressed in transgenic rice plants. The TAP-tagged PKs and interacting proteins were purified from the T1 progeny of the transgenic rice plants and identified by tandem mass spectrometry. Forty-five TAP-tagged PKs were recovered in this study and thirteen of these were found to interact with other rice proteins with a high probability score. In vivo phosphorylated sites were found for three of the PKs. A comparison of the TAP-tagged data from a combined analysis of 129 TAP-tagged rice protein kinases with a concurrent screen using yeast two hybrid methods identified an evolutionarily new rice protein that interacts with the well conserved cell division cycle 2 (CDC2) protein complex. PMID:19690613

  3. Aurora kinase A interacts with H-Ras and potentiates Ras-MAPK signaling.

    PubMed

    Umstead, MaKendra; Xiong, Jinglin; Qi, Qi; Du, Yuhong; Fu, Haian

    2017-02-03

    In cancer, upregulated Ras promotes cellular transformation and proliferation in part through activation of oncogenic Ras-MAPK signaling. While directly inhibiting Ras has proven challenging, new insights into Ras regulation through protein-protein interactions may offer unique opportunities for therapeutic intervention. Here we report the identification and validation of Aurora kinase A (Aurora A) as a novel Ras binding protein. We demonstrate that the kinase domain of Aurora A mediates the interaction with the N-terminal domain of H-Ras. Further more, the interaction of Aurora A and H-Ras exists in a protein complex with Raf-1. We show that binding of H-Ras to Raf-1 and subsequent MAPK signaling is enhanced by Aurora A, and requires active H-Ras. Thus, the functional linkage between Aurora A and the H-Ras/Raf-1 protein complex may provide a mechanism for Aurora A's oncogenic activity through direct activation of the Ras/MAPK pathway.

  4. The Janus Kinase (JAK) FERM and SH2 Domains: Bringing Specificity to JAK–Receptor Interactions

    PubMed Central

    Ferrao, Ryan; Lupardus, Patrick J.

    2017-01-01

    The Janus kinases (JAKs) are non-receptor tyrosine kinases essential for signaling in response to cytokines and interferons and thereby control many essential functions in growth, development, and immune regulation. JAKs are unique among tyrosine kinases for their constitutive yet non-covalent association with class I and II cytokine receptors, which upon cytokine binding bring together two JAKs to create an active signaling complex. JAK association with cytokine receptors is facilitated by N-terminal FERM and SH2 domains, both of which are classical mediators of peptide interactions. Together, the JAK FERM and SH2 domains mediate a bipartite interaction with two distinct receptor peptide motifs, the proline-rich “Box1” and hydrophobic “Box2,” which are present in the intracellular domain of cytokine receptors. While the general sidechain chemistry of Box1 and Box2 peptides is conserved between receptors, they share very weak primary sequence homology, making it impossible to posit why certain JAKs preferentially interact with and signal through specific subsets of cytokine receptors. Here, we review the structure and function of the JAK FERM and SH2 domains in light of several recent studies that reveal their atomic structure and elucidate interaction mechanisms with both the Box1 and Box2 receptor motifs. These crystal structures demonstrate how evolution has repurposed the JAK FERM and SH2 domains into a receptor-binding module that facilitates interactions with multiple receptors possessing diverse primary sequences. PMID:28458652

  5. Kinase and channel activity of TRPM6 are co-ordinated by a dimerization motif and pocket interaction

    PubMed Central

    vanderWijst, Jenny; Blanchard, Maxime G.; Woodroof, Helen I.; Macartney, Thomas J.; Gourlay, Robert; Hoenderop, Joost G.; Bindels, René J.; Alessi, Dario R.

    2014-01-01

    Mutations in the gene that encodes the atypical channel-kinase TRPM6 (transient receptor potential melastatin 6) cause HSH (hypomagnesaemia with secondary hypocalcaemia), a disorder characterized by defective intestinal Mg2+ transport and impaired renal Mg2+ reabsorption. TRPM6, together with its homologue TRPM7, are unique proteins as they combine an ion channel domain with a C-terminally fused protein kinase domain. How TRPM6 channel and kinase activity are linked is unknown. Previous structural analysis revealed that TRPM7 possesses a non-catalytic dimerization motif preceding the kinase domain. This interacts with a dimerization pocket lying within the kinase domain. In the present study, we provide evidence that the dimerization motif in TRPM6 plays a critical role in regulating kinase activity as well as ion channel activity. We identify mutations within the TRPM6 dimerization motif (Leu1718 and Leu1721) or dimerization pocket (L1743A, Q1832K, A1836N, L1840A and L1919Q) that abolish dimerization and establish that these mutations inhibit protein kinase activity. We also demonstrate that kinase activity of a dimerization motif mutant can be restored by addition of a peptide encompassing the dimerization motif. Moreover, we observe that mutations that disrupt the dimerization motif and dimerization pocket interaction greatly diminish TRPM6 ion channel activity, in a manner that is independent of kinase activity. Finally, we analyse the impact on kinase activity of ten disease-causing missense mutations that lie outwith the protein kinase domain of TRPM6. This revealed that one mutation lying nearby the dimerization motif (S1754N), found previously to inhibit channel activity, abolished kinase activity. These results provide the first evidence that there is structural co-ordination between channel and kinase activity, which is mediated by the dimerization motif and pocket interaction. We discuss that modulation of this interaction could comprise a major

  6. Runx2 Trans-Activation Mediated by the Msx2-Interacting Nuclear Target Requires Homeodomain Interacting Protein Kinase-3

    PubMed Central

    Sierra, Oscar L.; Towler, Dwight A.

    2010-01-01

    Runt-related transcription factor 2 (Runx2) and muscle segment homeobox homolog 2-interacting nuclear target (MINT) (Spen homolog) are transcriptional regulators critical for mammalian development. MINT enhances Runx2 activation of osteocalcin (OC) fibroblast growth factor (FGF) response element in an FGF2-dependent fashion in C3H10T1/2 cells. Although the MINT N-terminal RNA recognition motif domain contributes, the muscle segment homeobox homolog 2-interacting domain is sufficient for Runx2 activation. Intriguingly, Runx1 cannot replace Runx2 in this assay. To better understand this Runx2 signaling cascade, we performed structure-function analysis of the Runx2-MINT trans-activation relationship. Systematic truncation and domain swapping in Runx1:Runx2 chimeras identified that the unique Runx2 activation domain 3 (AD3), encompassed by residues 316–421, conveys MINT+FGF2 trans-activation in transfection assays. Ala mutagenesis of Runx2 Ser/Thr residues identified that S301 and T326 in AD3 are necessary for full MINT+FGF2 trans-activation. Conversely, phosphomimetic Asp substitution of these AD3 Ser/Thr residues enhanced activation by MINT. Adjacent Pro residues implicated regulation by a proline-directed protein kinase (PDPK). Systematic screening with PDPK inhibitors identified that the casein kinase-2/homeodomain-interacting protein kinase (HIPK)/dual specificity tyrosine phosphorylation regulated kinase inhibitor 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT), but not ERK, c-Jun N-terminal kinase, p38MAPK, or other casein kinase-2 inhibitors, abrogated Runx2-, MINT-, and FGF2-activation. Systematic small interfering RNA-mediated silencing of DMAT-inhibited PDPKs revealed that HIPK3 depletion reduced MINT+FGF2-dependent activation of Runx2. HIPK3 and Runx2 coprecipitate after in vitro transcription-translation, and recombinant HIPK3 recognizes Runx2 AD3 as kinase substrate. Furthermore, DMAT treatment and HIPK3 RNAi inhibited MINT+FGF2 activation of

  7. Targeting the interaction of Aurora kinases and SIRT1 mediated by Wnt signaling pathway in colorectal cancer: A critical review.

    PubMed

    Subramaniyan, Boopathi; Jagadeesan, Kaviya; Ramakrishnan, Sabitha; Mathan, Ganeshan

    2016-08-01

    The Aurora kinases belong to the family of serine/threonine kinase, a central regulator of mitosis and their expression increased during G2/M phase. It is classified into Aurora A, B and C, each has distinct roles in cellular processes, which includes regulation of spindle assembly, function of centrosomes, cytoskeleton and cytokinesis. During cancer growth, their rapid increase makes most attractive marker for cancer treatment at present. However Aurora A kinase is known to be a marker for cancer therapy, the most important serine/threonine kinase of Aurora B kinase involvement in cancer is still inadequate. Subsequently, the recent findings revealed that the class III histone deacetylase of SIRT1 is a key regulator to activate Aurora kinases from S phase damaged DNA through Wnt signaling pathway. Even if both Aurora A kinase and SIRT1 serve as a marker for cancer therapy, the present review reveals it is interaction in Wnt signaling pathway that solely for colorectal cancer.

  8. Exact solutions to a spatially extended model of kinase-receptor interaction

    NASA Astrophysics Data System (ADS)

    Szopa, Piotr; Lipniacki, Tomasz; Kazmierczak, Bogdan

    2011-10-01

    B and Mast cells are activated by the aggregation of the immune receptors. Motivated by this phenomena we consider a simple spatially extended model of mutual interaction of kinases and membrane receptors. It is assumed that kinase activates membrane receptors and in turn the kinase molecules bound to the active receptors are activated by transphosphorylation. Such a type of interaction implies positive feedback and may lead to bistability. In this study we apply the Steklov eigenproblem theory to analyze the linearized model and find exact solutions in the case of non-uniformly distributed membrane receptors. This approach allows us to determine the critical value of receptor dephosphorylation rate at which cell activation (by arbitrary small perturbation of the inactive state) is possible. We found that cell sensitivity grows with decreasing kinase diffusion and increasing anisotropy of the receptor distribution. Moreover, these two effects are cooperating. We showed that the cell activity can be abruptly triggered by the formation of the receptor aggregate. Since the considered activation mechanism is not based on receptor crosslinking by polyvalent antigens, the proposed model can also explain B cell activation due to receptor aggregation following binding of monovalent antigens presented on the antigen presenting cell.

  9. Exact solutions to a spatially extended model of kinase-receptor interaction.

    PubMed

    Szopa, Piotr; Lipniacki, Tomasz; Kazmierczak, Bogdan

    2011-10-01

    B and Mast cells are activated by the aggregation of the immune receptors. Motivated by this phenomena we consider a simple spatially extended model of mutual interaction of kinases and membrane receptors. It is assumed that kinase activates membrane receptors and in turn the kinase molecules bound to the active receptors are activated by transphosphorylation. Such a type of interaction implies positive feedback and may lead to bistability. In this study we apply the Steklov eigenproblem theory to analyze the linearized model and find exact solutions in the case of non-uniformly distributed membrane receptors. This approach allows us to determine the critical value of receptor dephosphorylation rate at which cell activation (by arbitrary small perturbation of the inactive state) is possible. We found that cell sensitivity grows with decreasing kinase diffusion and increasing anisotropy of the receptor distribution. Moreover, these two effects are cooperating. We showed that the cell activity can be abruptly triggered by the formation of the receptor aggregate. Since the considered activation mechanism is not based on receptor crosslinking by polyvalent antigens, the proposed model can also explain B cell activation due to receptor aggregation following binding of monovalent antigens presented on the antigen presenting cell.

  10. Interactions and phosphorylation of postsynaptic density 93 (PSD-93) by extracellular signal-regulated kinase (ERK).

    PubMed

    Guo, Ming-Lei; Xue, Bing; Jin, Dao-Zhong; Mao, Li-Min; Wang, John Q

    2012-07-17

    Postsynaptic density 93 (PSD-93) is a protein enriched at postsynaptic sites. As a key scaffolding protein, PSD-93 forms complexes with the clustering of various synaptic proteins to construct postsynaptic signaling networks and control synaptic transmission. Extracellular signal-regulated kinase (ERK) is a prototypic member of a serine/threonine protein kinase family known as mitogen-activated protein kinase (MAPK). This kinase, especially ERK2 isoform, noticeably resides in peripheral structures of neurons, such as dendritic spines and postsynaptic density areas, in addition to its distribution in the cytoplasm and nucleus, although little is known about specific substrates of ERK at synaptic sites. In this study, we found that synaptic PSD-93 is a direct target of ERK. This was demonstrated by direct protein-protein interactions between purified ERK2 and PSD-93 in vitro. The accurate ERK2-binding region seems to locate at an N-terminal region of PSD-93. In adult rat striatal neurons in vivo, native ERK from synaptosomal fractions also associated with PSD-93. In phosphorylation assays, active ERK2 phosphorylated PSD-93. An accurate phosphorylation site was identified at a serine site (S323). In striatal neurons, immunoprecipitated PSD-93 showed basal phosphorylation at an ERK-sensitive site. Our data provide evidence supporting PSD-93 as a new substrate of the synaptic species of ERK. ERK2 possesses the ability to interact with PSD-93 and phosphorylate PSD-93 at a specific site. Published by Elsevier B.V.

  11. Conformation-selective ATP-competitive inhibitors control regulatory interactions and noncatalytic functions of mitogen-activated protein kinases.

    PubMed

    Hari, Sanjay B; Merritt, Ethan A; Maly, Dustin J

    2014-05-22

    Most potent protein kinase inhibitors act by competing with ATP to block the phosphotransferase activity of their targets. However, emerging evidence demonstrates that ATP-competitive inhibitors can affect kinase interactions and functions in ways beyond blocking catalytic activity. Here, we show that stabilizing alternative ATP-binding site conformations of the mitogen-activated protein kinases (MAPKs) p38α and Erk2 with ATP-competitive inhibitors differentially, and in some cases divergently, modulates the abilities of these kinases to interact with upstream activators and deactivating phosphatases. Conformation-selective ligands are also able to modulate Erk2's ability to allosterically activate the MAPK phosphatase DUSP6, highlighting how ATP-competitive ligands can control noncatalytic kinase functions. Overall, these studies underscore the relationship between the ATP-binding and regulatory sites of MAPKs and provide insight into how ATP-competitive ligands can be designed to confer graded control over protein kinase function.

  12. Conformational transitions and interactions underlying the function of membrane embedded receptor protein kinases.

    PubMed

    Bocharov, Eduard V; Sharonov, Georgy V; Bocharova, Olga V; Pavlov, Konstantin V

    2017-01-25

    Among membrane receptors, the single-span receptor protein kinases occupy a broad but specific functional niche determined by distinctive features of the underlying transmembrane signaling mechanisms that are briefly overviewed on the basis of some of the most representative examples, followed by a more detailed discussion of several hierarchical levels of organization and interactions involved. All these levels, including single-molecule interactions (e.g., dimerization, liganding, chemical modifications), local processes (e.g. lipid membrane perturbations, cytoskeletal interactions), and larger scale phenomena (e.g., effects of membrane surface shape or electrochemical potential gradients) appear to be closely integrated to achieve the observed diversity of the receptor functioning. Different species of receptor protein kinases meet their specific functional demands through different structural features defining their responses to stimulation, but certain common patterns exist. Signaling by receptor protein kinases is typically associated with the receptor dimerization and clustering, ligand-induced rearrangements of receptor domains through allosteric conformational transitions with involvement of lipids, release of the sequestered lipids, restriction of receptor diffusion, cytoskeleton and membrane shape remodeling. Understanding of complexity and continuity of the signaling processes can help identifying currently neglected opportunities for influencing the receptor signaling with potential therapeutic implications. This article is part of a Special Issue entitled: Interactions between membrane receptors in cellular membranes edited by Kalina Hristova.

  13. Homeodomain-interacting protein kinase (Hipk) phosphorylates the small SPOC family protein Spenito.

    PubMed

    Dewald, D N; Steinmetz, E L; Walldorf, U

    2014-12-01

    The Drosophila homeodomain-interacting protein kinase (Hipk) is a versatile regulator involved in a variety of pathways, such as Notch and Wingless signalling, thereby acting in processes including the promotion of eye development or control of cell numbers in the nervous system. In vertebrates, extensive studies have related its homologue HIPK2 to important roles in the control of p53-mediated apoptosis and tumour suppression. Spenito (Nito) belongs to the group of small SPOC family proteins and has a role, amongst others, as a regulator of Wingless signalling downstream of Armadillo. In the present study, we show that both proteins have an enzyme-substrate relationship, adding a new interesting component to the broad range of Hipk interactions, and we map several phosphorylation sites of Nito. Furthermore, we were able to define a preliminary consensus motif for Hipk target sites, which will simplify the identification of new substrates of this kinase.

  14. A novel calmodulin-β-PIX interaction and its implication in receptor tyrosine kinase regulation.

    PubMed

    Singh, Vinay K; Munro, Kim; Jia, Zongchao

    2012-09-01

    Calmodulin (CaM), a ubiquitous calcium-binding protein, regulates numerous cellular processes, primarily in response to calcium flux. We have identified and characterized a novel interaction between CaM and β-p21-activated kinase interacting exchange factor (β-PIX), a putative guanine exchange factor implicated in cell signaling, using affinity pull-down assays, co-immunoprecipitation, co-localization and circular dichroism studies. Fluorescence-based titration and isothermal titration calorimetry experiments revealed a Ca(2+)-dependent binding mechanism (K(D)≤10μM). Further, we show that CaM participates in a multi-protein complex involving β-PIX and E3 ubiquitin ligase c-Cbl (casitas B-cell lymphoma), which may play a critical role in receptor tyrosine kinase regulation and downstream signaling. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Making the Auroras glow: regulation of Aurora A and B kinase function by interacting proteins

    PubMed Central

    Carmena, Mar; Ruchaud, Sandrine; Earnshaw, William C

    2009-01-01

    The conserved Aurora family of protein kinases have emerged as crucial regulators of mitosis and cytokinesis. Despite their high degree of homology, Aurora A and B have very distinctive localisations and functions: Aurora A associates with the spindle poles to regulate entry into mitosis, centrosome maturation and spindle assembly; Aurora B is a member of the Chromosomal Passenger Complex (CPC) that transfers from the inner centromere in early mitosis to the spindle midzone, equatorial cortex and midbody in late mitosis and cytokinesis. Aurora B functions include regulation of chromosome–microtubule interactions, cohesion, spindle stability and cytokinesis. This review will focus on how interacting proteins make this functional diversity possible by targeting the kinases to different subcellular locations and regulating their activity. PMID:19836940

  16. Physical and functional interactions between ZIP kinase and UbcH5

    SciTech Connect

    Ohbayashi, Norihiko; Okada, Katsuya; Kawakami, Shiho; Togi, Sumihito; Sato, Noriko; Ikeda, Osamu; Kamitani, Shinya; Muromoto, Ryuta; Sekine, Yuichi; Kawai, Taro; Akira, Shizuo; Matsuda, Tadashi

    2008-08-08

    Zipper-interacting protein kinase (ZIPK) is a widely expressed serine/threonine kinase that has been implicated in cell death and transcriptional regulation, but its mechanism of regulation remains unknown. In our previous study, we showed that leukemia inhibitory factor stimulated threonine-265 phosphorylation of ZIPK, thereby leading to phosphorylation and activation of signal transducer and activator of transcription 3. Here, we identified UbcH5c as a novel ZIPK-binding partner by yeast two-hybrid screening. Importantly, we found that UbcH5c induced ubiquitination of ZIPK. Small-interfering RNA-mediated reduction of endogenous UbcH5 expression decreased ZIPK ubiquitination. Furthermore, coexpression of UbcH5c with ZIPK influenced promyelocytic leukemia protein nuclear body (PML-NB) formation. These results suggest that UbcH5 regulates ZIPK accumulation in PML-NBs by interacting with ZIPK and stimulating its ubiquitination.

  17. Making the Auroras glow: regulation of Aurora A and B kinase function by interacting proteins.

    PubMed

    Carmena, Mar; Ruchaud, Sandrine; Earnshaw, William C

    2009-12-01

    The conserved Aurora family of protein kinases have emerged as crucial regulators of mitosis and cytokinesis. Despite their high degree of homology, Aurora A and B have very distinctive localisations and functions: Aurora A associates with the spindle poles to regulate entry into mitosis, centrosome maturation and spindle assembly; Aurora B is a member of the Chromosomal Passenger Complex (CPC) that transfers from the inner centromere in early mitosis to the spindle midzone, equatorial cortex and midbody in late mitosis and cytokinesis. Aurora B functions include regulation of chromosome-microtubule interactions, cohesion, spindle stability and cytokinesis. This review will focus on how interacting proteins make this functional diversity possible by targeting the kinases to different subcellular locations and regulating their activity.

  18. Physcomitrella patens Has Kinase-LRR R Gene Homologs and Interacting Proteins

    PubMed Central

    Tanigaki, Yusuke; Ito, Kenji; Obuchi, Yoshiyuki; Kosaka, Akiko; Yamato, Katsuyuki T.; Okanami, Masahiro; Lehtonen, Mikko T.; Valkonen, Jari P. T.; Akita, Motomu

    2014-01-01

    Plant disease resistance gene (R gene)-like sequences were screened from the Physcomitrella patens genome. We found 603 kinase-like, 475 Nucleotide Binding Site (NBS)-like and 8594 Leucine Rich Repeat (LRR)-like sequences by homology searching using the respective domains of PpC24 (Accession No. BAD38895), which is a candidate kinase-NBS-LRR (kinase-NL) type R-like gene, as a reference. The positions of these domains in the genome were compared and 17 kinase-NLs were predicted. We also found four TIR-NBS-LRR (TIR-NL) sequences with homology to Arabidopsis TIR-NL (NM_001125847), but three out of the four TIR-NLs had tetratricopeptide repeats or a zinc finger domain in their predicted C-terminus. We also searched for kinase-LRR (KLR) type sequences by homology with rice OsXa21 and Arabidopsis thaliana FLS2. As a result, 16 KLRs with similarity to OsXa21 were found. In phylogenetic analysis of these 16 KLRs, PpKLR36, PpKLR39, PpKLR40, and PpKLR43 formed a cluster with OsXa21. These four PpKLRs had deduced transmembrane domain sequences and expression of all four was confirmed. We also found 14 homologs of rice OsXB3, which is known to interact with OsXa21 and is involved in signal transduction. Protein–protein interaction was observed between the four PpKLRs and at least two of the XB3 homologs in Y2H analysis. PMID:24748046

  19. Phosphorylation by casein kinase II affects the interaction of caldesmon with smooth muscle myosin and tropomyosin.

    PubMed Central

    Bogatcheva, N V; Vorotnikov, A V; Birukov, K G; Shirinsky, V P; Gusev, N B

    1993-01-01

    Smooth muscle caldesmon was phosphorylated by casein kinase II, and the effects of phosphorylation on the interaction of caldesmon and its chymotryptic peptides with myosin and tropomyosin were investigated. The N-terminal chymotryptic peptide of caldesmon of molecular mass 27 kDa interacted with myosin. Phosphorylation of Ser-73 catalysed by casein kinase II resulted in a 2-fold decrease in the affinity of the native caldesmon (or its 27 kDa N-terminal peptide) for smooth muscle myosin. At low ionic strength, caldesmon and its N-terminal peptides of molecular masses 25 and 27 kDa were retarded on a column of immobilized tropomyosin. Phosphorylation of Ser-73 led to a 2-4-fold decrease in the affinity of caldesmon (or its N-terminal peptides) for tropomyosin. Thus phosphorylation of Ser-73 catalysed by casein kinase II affects the interaction of caldesmon with both smooth muscle myosin and tropomyosin. Images Figure 1 Figure 2 Figure 3 PMID:8452532

  20. Inhibitory effects of homeodomain-interacting protein kinase 2 on the aorta-gonad-mapharsen hematopoiesis

    SciTech Connect

    Ohtsu, Naoki; Nobuhisa, Ikuo; Mochita, Miyuki; Taga, Tetsuya . E-mail: taga@kaiju.medic.kumamoto-u.ac.jp

    2007-01-01

    Definitive hematopoiesis starts in the aorta-gonad-mesonephros (AGM) region of the mouse embryo. Our previous studies revealed that STAT3, a gp130 downstream transcription factor, is required for AGM hematopoiesis and that homeodomain-interacting protein kinase 2 (HIPK2) phosphorylates serine-727 of STAT3. HIPK2 is a serine/threonine kinase known to be involved in transcriptional repression and apoptosis. In the present study, we examined the role of HIPK2 in hematopoiesis in mouse embryo. HIPK2 transcripts were found in fetal hematopoietic tissues such as the mouse AGM region and fetal liver. In cultured AGM cells, HIPK2 protein was detected in adherent cells. Functional analyses of HIPK2 were carried out by introducing wild-type and mutant HIPK2 constructs into AGM cultures. Production of CD45{sup +} hematopoietic cells was suppressed by forced expression of HIPK2 in AGM cultures. This suppression required the kinase domain and nuclear localization signals of HIPK2, but the kinase activity was dispensable. HIPK2-overexpressing AGM-derived nonadherent cells did not form cobblestone-like colonies in cultures with stromal cells. Furthermore, overexpression of HIPK2 in AGM cultures impeded the expansion of CD45{sup low}c-Kit{sup +} cells, which exhibit the immature hematopoietic progenitor phenotype. These data indicate that HIPK2 plays a negative regulatory role in AGM hematopoiesis in the mouse embryo.

  1. EphB4 cellular kinase activity assayed using an enzymatic protein interaction system.

    PubMed

    Wehrman, Tom; Nguyen, Mimi; Feng, Wei; Bader, Benjamin

    2013-05-01

    Receptor tyrosine kinases (RTKs) are important players in various cellular processes, including proliferation, migration, metabolism, and neuronal development. EphB4 RTK is essential for the development of a functional arterial-venous network in embryonic and adult neoangiogenesis. To develop novel inhibitors of EphB4 that might have applications in severe diseases like cancer and retinopathies, assays need to be in place that resemble, in a most physiological fashion, the activation and downstream function of the kinase. In addition, such assays need to be amenable to high-throughput screening to serve efficiently the modern drug discovery processes in the pharmaceutical industry. The authors have developed an enzyme fragment complementation assay that measures the interaction of a downstream docking protein to the activated and phosphorylated full-length EphB4 kinase in cells. The assay is specific, robust, and amenable to miniaturization and high-throughput screening. It covers most steps in the activation process of EphB4, including ligand binding, autophosphorylation, and docking of a downstream interactor. This assay format can be transferred to other RTKs and adds an important cell-based kinase assay option to researchers in the field.

  2. TrkA and TrkC neurotrophin receptor-like proteins in the lizard gut.

    PubMed

    Lucini, C; de Girolamo, P; Lamanna, C; Botte, V; Vega, J A; Castaldo, L

    2001-03-01

    The tyrosine kinase proteins (Trk), encoded by the trk family of proto-oncogenes, mediate, in mammals, the action of neurotrophins, a family of growth factors acting on the development and maintenance of the nervous system. Neurotrophins and their specific receptors, TrkA, TrkB and TrkC, seem to be phylogenetically well preserved but, in reptiles, data regarding the occurrence of Trk-like proteins are very scarce, especially in non-nervous organs. Western blot analysis demonstrated that the lizard gut contains TrkA- and TrkC-like, but not TrkB-like, proteins. Consistently, TrkA- and TrkC-like immunoreactivity were both observed in neurons of the anterior intestine, whereas endocrine cells of the stomach and anterior intestine only displayed TrkA-like immunoreactivity. These results demonstrate for the first time the occurrence of Trk-like proteins in non-neuronal tissues of reptilians and provide further evidence for the evolutionary preservation of the molecular mass and cell distribution of Trk neurotrophin receptor-like proteins in the gut of vertebrates.

  3. The PPLA motif of glycogen synthase kinase 3beta is required for interaction with Fe65.

    PubMed

    Lee, Eun Jeoung; Hyun, Sunghee; Chun, Jaesun; Shin, Sung Hwa; Lee, Kyung Eun; Yeon, Kwang Hum; Park, Tae Yoon; Kang, Sang Sun

    2008-07-31

    Glycogen synthase kinase 3beta (GSK 3 beta) is a serine/ threonine kinase that phosphorylates substrates such as beta-catenin and is involved in a variety of biological processes, including embryonic development, metabolism, tumorigenesis, and cell death. Here, we present evidence that human GSK 3beta is associated with Fe65, which has the characteristics of an adaptor protein, possessing a WW domain, and two phosphotyrosine interaction domains, PID1 and PID2. The GSK 3beta catalytic domain also contains a putative WW domain binding motif ((371)PPLA(374)), and we observed, using a pull down approach and co-immuno-precipitation, that it interacts physically with Fe65 via this motif. In addition, we detected co-localization of GSK 3beta and Fe65 by confocal microscopy, and this co-localization was disrupted by mutation of the putative WW domain binding motif of GSK 3beta.Finally, in transient transfection assays interaction of GSK 3 beta (wt) with Fe65 induced substantial cell apoptosis, whereas interaction with the GSK 3beta AALA mutant ((371)AALA(374)) did not, and we noted that phosphorylation of the Tyr 216 residue of the GSK 3beta AALA mutant was significantly reduced compared to that of GSK 3beta wild type. Thus, our observations indicate that GSK 3beta binds to Fe65 through its (371)PPLA(374) motif and that this interaction regulates apoptosis and phosphorylation of Tyr 216 of GSK 3beta.

  4. Discovery of Mer kinase inhibitors by Virtual Screening using Structural Protein-Ligand Interaction Fingerprints

    PubMed Central

    Da, C.; Stashko, M.; Jayakody, C.; Wang, X.; Janzen, W.; Frye, S.; Kireev, D.

    2015-01-01

    Mer is a receptor tyrosine kinase implicated in acute lymphoblastic leukemia (ALL), the most common malignancy in children. The currently available data provide a rationale for development of Mer kinase inhibitors as cancer therapeutics that can target both cell autologous and immune-modulatory anti-tumor effects. We have previously reported several series of potent Mer inhibitors and the objective of the current report is to identify a chemically dissimilar back-up series that might circumvent potential, but currently unknown, flaws inherent to the lead series. To this end, we virtually screened a database of ∼3.8 million commercially available compounds using high-throughput docking followed by a filter involving Structural Protein-Ligand Interaction Fingerprints (SPLIF). SPLIF permits a quantitative assessment of whether a docking pose interacts with the protein target similarly to an endogenous or known synthetic ligand, and therefore helps to improve both sensitivity and specificity with respect to the docking score alone. Of the total of 62 experimentally tested compounds, 15 demonstrated reliable dose-dependent responses in the Mer in vitro kinase activity assay with inhibitory potencies ranging from 0.46 μM to 9.9 μM. PMID:25638502

  5. Discovery of Mer kinase inhibitors by virtual screening using Structural Protein-Ligand Interaction Fingerprints.

    PubMed

    Da, C; Stashko, M; Jayakody, C; Wang, X; Janzen, W; Frye, S; Kireev, D

    2015-03-01

    Mer is a receptor tyrosine kinase implicated in acute lymphoblastic leukemia (ALL), the most common malignancy in children. The currently available data provide a rationale for development of Mer kinase inhibitors as cancer therapeutics that can target both cell autologous and immune-modulatory anti-tumor effects. We have previously reported several series of potent Mer inhibitors and the objective of the current report is to identify a chemically dissimilar back-up series that might circumvent potential, but currently unknown, flaws inherent to the lead series. To this end, we virtually screened a database of ∼3.8million commercially available compounds using high-throughput docking followed by a filter involving Structural Protein-Ligand Interaction Fingerprints (SPLIF). SPLIF permits a quantitative assessment of whether a docking pose interacts with the protein target similarly to an endogenous or known synthetic ligand, and therefore helps to improve both sensitivity and specificity with respect to the docking score alone. Of the total of 62 experimentally tested compounds, 15 demonstrated reliable dose-dependent responses in the Mer in vitro kinase activity assay with inhibitory potencies ranging from 0.46μM to 9.9μM.

  6. Catalytic mechanism and kinase interactions of ABA-signaling PP2C phosphatases.

    PubMed

    Zhou, X Edward; Soon, Fen-Fen; Ng, Ley-Moy; Kovach, Amanda; Suino-Powell, Kelly M; Li, Jun; Yong, Eu-Leong; Zhu, Jian-Kang; Xu, H Eric; Melcher, Karsten

    2012-05-01

    Abscisic acid (ABA) is an essential hormone that controls plant growth, development and responses to abiotic stresses. ABA signaling is mediated by type 2C protein phosphatases (PP2Cs), including HAB1 and ABI2, which inhibit stress-activated SnRK2 kinases and whose activity is regulated by ABA and ABA receptors. Based on biochemical data and our previously determined crystal structures of ABI2 and the SnRK2.6-HAB1 complex, we present the catalytic mechanism of PP2C and provide new insight into PP2C-SnRK2 interactions and possible roles of other SnRK2 kinases in ABA signaling.

  7. Insights into protein interaction networks reveal non-receptor kinases as significant druggable targets for psoriasis.

    PubMed

    Sundarrajan, Sudharsana; Lulu, Sajitha; Arumugam, Mohanapriya

    2015-07-25

    Psoriasis is a chronic disease of the skin characterized by hyper proliferation and inflammation of the epidermis and dermal components of the skin. T-cell-dependent inflammatory process in skin governs the pathogenesis of psoriasis. An in-silico search strategy was utilized to identify psoriatic therapeutic drug targets. The gene expression profiling of psoriatic skin identified a total of 427 differentially expressed genes (DEGs). Gene ontology investigation of DEGs identified genes involved in calcium binding, apoptosis, keratinisation, lipid transportation and homeostasis apart from immune mediated processes. The protein interaction networks identified proteins involved in various signaling mechanisms with high degree of interconnections. The gene modules derived from the main network were enriched with rich kinome. These sub-networks were dominated by the presence of non-receptor kinase family members which are major signal transmitters in immune response. The computational approach has aided in the identification of non-receptor kinases as potential targets for psoriasis drug development.

  8. The role of receptor-like protein kinases (RLKs) in abiotic stress response in plants.

    PubMed

    Ye, Yaoyao; Ding, Yanfei; Jiang, Qiong; Wang, Feijuan; Sun, Junwei; Zhu, Cheng

    2017-02-01

    We review and introduce recent studies on RLK s involved in the abiotic stress response and provide insights into potential regulatory mechanisms for alleviating abiotic stress. Abiotic stresses are important factors affecting plant growth and development, resulting in crop production reduction and even plant death. To survive, plants utilize different mechanisms to respond and adapt to continuously changing environmental factors. Understanding of the molecular mechanisms of plant response to various stresses will aid in improving tolerance of plants to abiotic stress through genetic engineering, which would greatly promote the development of modern agriculture. RLKs, the largest gene family in plants, play critical roles in the regulation of plant developmental processes, signaling networks and disease resistance. Many RLKs have been shown to be involved in abiotic stress responses, including the abscisic acid response, calcium signaling and antioxidant defense. This review summarizes recent studies on RLKs involved in plant responses to abiotic stress, including drought, salt, cold, toxic metals/metalloids and other stresses, and emphasizes the upstream and downstream factors in RLK signal transduction pathways under abiotic stress.

  9. An autophosphorylation site database for leucine-rich repeat receptor-like kinases in Arabidopsis thaliana

    USDA-ARS?s Scientific Manuscript database

    We conducted a family-wide study to identify and characterize sites of autophosphorylation in 73 representative LRR RLKs of the 223 member LRR RLK family in Arabidopsis thaliana. His-tagged constructs of intact cytoplasmic domains (CDs) for 73 of 223 A. thaliana LRR RLKs were cloned into E. coli BL-...

  10. The Potential for Signal Integration and Processing in Interacting Map Kinase Cascades

    PubMed Central

    Schwacke, John H.; Voit, Eberhard O.

    2009-01-01

    The cellular response to environmental stimuli requires biochemical information processing through which sensory inputs and cellular status are integrated and translated into appropriate responses by way of interacting networks of enzymes. One such network, the Mitogen Activated Protein (MAP) kinase cascade is a highly conserved signal transduction module that propagates signals from cell surface receptors to various cytosolic and nuclear targets by way of a phosphorylation cascade. We have investigated the potential for signal processing within a network of interacting feed-forward kinase cascades typified by the MAP kinase cascade. A genetic algorithm was used to search for sets of kinetic parameters demonstrating representative key input-output patterns of interest. We discuss two of the networks identified in our study, one implementing the exclusive-or function (XOR) and another implementing what we refer to as an in-band detector (IBD) or two-sided threshold. These examples confirm the potential for logic and amplitude-dependent signal processing in interacting MAP kinase cascades demonstrating limited cross-talk. Specifically, the XOR function allows the network to respond to either one, but not both signals simultaneously, while the IBD permits the network to respond exclusively to signals within a given range of strength, and to suppress signals below as well as above this range. The solution to the XOR problem is interesting in that it requires only two interacting pathways, crosstalk at only one layer, and no feedback or explicit inhibition. These types of responses are not only biologically relevant but constitute signal processing modules that can be combined to create other logical functions and that, in contrast to amplification, cannot be achieved with a single cascade or with two non-interacting cascades. Our computational results revealed surprising similarities between experimental data describing the JNK/MKK4/MKK7 pathway and the solution for

  11. Leucine leucine-37 uses formyl peptide receptor-like 1 to activate signal transduction pathways, stimulate oncogenic gene expression, and enhance the invasiveness of ovarian cancer cells.

    PubMed

    Coffelt, Seth B; Tomchuck, Suzanne L; Zwezdaryk, Kevin J; Danka, Elizabeth S; Scandurro, Aline B

    2009-06-01

    Emerging evidence suggests that the antimicrobial peptide, leucine leucine-37 (LL-37), could play a role in the progression of solid tumors. LL-37 is expressed as the COOH terminus of human cationic antimicrobial protein-18 (hCAP-18) in ovarian, breast, and lung cancers. Previous studies have shown that the addition of LL-37 to various cancer cell lines in vitro stimulates proliferation, migration, and invasion. Similarly, overexpression of hCAP-18/LL-37 in vivo accelerates tumor growth. However, the receptor or receptors through which these processes are mediated have not been thoroughly examined. In the present study, expression of formyl peptide receptor-like 1 (FPRL1) was confirmed on ovarian cancer cells. Proliferation assays indicated that LL-37 does not signal through a G protein-coupled receptor, such as FPRL1, to promote cancer cell growth. By contrast, FPRL1 was required for LL-37-induced invasion through Matrigel. The peptide stimulated mitogen-activated protein kinase and Janus-activated kinase/signal transducers and activators of transcription signaling cascades and led to the significant activation of several transcription factors, through both FPRL1-dependent and FPRL1-independent pathways. Likewise, expression of some LL-37-stimulated genes was attenuated by the inhibition of FPRL1. Increased expression of CXCL10, EGF, and PDGF-BB as well as other soluble factors was confirmed from conditioned medium of LL-37-treated cells. Taken together, these data suggest that LL-37 potentiates a more aggressive behavior from ovarian cancer cells through its interaction with FPRL1.

  12. Leucine-rich repeat kinase 2 interacts with p21-activated kinase 6 to control neurite complexity in mammalian brain.

    PubMed

    Civiero, Laura; Cirnaru, Maria Daniela; Beilina, Alexandra; Rodella, Umberto; Russo, Isabella; Belluzzi, Elisa; Lobbestael, Evy; Reyniers, Lauran; Hondhamuni, Geshanthi; Lewis, Patrick A; Van den Haute, Chris; Baekelandt, Veerle; Bandopadhyay, Rina; Bubacco, Luigi; Piccoli, Giovanni; Cookson, Mark R; Taymans, Jean-Marc; Greggio, Elisa

    2015-12-01

    Leucine-rich repeat kinase 2 (LRRK2) is a causative gene for Parkinson's disease, but the physiological function and the mechanism(s) by which the cellular activity of LRRK2 is regulated are poorly understood. Here, we identified p21-activated kinase 6 (PAK6) as a novel interactor of the GTPase/ROC domain of LRRK2. p21-activated kinases are serine-threonine kinases that serve as targets for the small GTP binding proteins Cdc42 and Rac1 and have been implicated in different morphogenetic processes through remodeling of the actin cytoskeleton such as synapse formation and neuritogenesis. Using an in vivo neuromorphology assay, we show that PAK6 is a positive regulator of neurite outgrowth and that LRRK2 is required for this function. Analyses of post-mortem brain tissue from idiopathic and LRRK2 G2019S carriers reveal an increase in PAK6 activation state, whereas knock-out LRRK2 mice display reduced PAK6 activation and phosphorylation of PAK6 substrates. Taken together, these results support a critical role of LRRK2 GTPase domain in cytoskeletal dynamics in vivo through the novel interactor PAK6, and provide a valuable platform to unravel the mechanism underlying LRRK2-mediated pathophysiology. We propose p21-activated kinase 6 (PAK6) as a novel interactor of leucine-rich repeat kinase 2 (LRRK2), a kinase involved in Parkinson's disease (PD). In health, PAK6 regulates neurite complexity in the brain and LRRK2 is required for its function, (a) whereas PAK6 is aberrantly activated in LRRK2-linked PD brain (b) suggesting that LRRK2 toxicity is mediated by PAK6.

  13. Reduced formation of advanced glycation endproducts via interactions between glutathione peroxidase 3 and dihydroxyacetone kinase 1.

    PubMed

    Lee, Hana; Chi, Seung Wook; Lee, Phil Young; Kang, Sunghyun; Cho, Sayeon; Lee, Chong-Kil; Bae, Kwang-Hee; Park, Byoung Chul; Park, Sung Goo

    2009-11-06

    Dihydroxyacetone (DHA) induces the formation of advanced glycation endproducts (AGEs), which are involved in several diseases. Earlier, we identified dihydroxyacetone kinase 1 (Dak1) as a candidate glutathione peroxidase 3 (Gpx3)-interacting protein in Saccharomyces cerevisiae. This finding is noteworthy, as no clear evidence on the involvement of oxidative stress systems in DHA-induced AGE formation has been found to date. Here, we demonstrate that Gpx3 interacts with Dak1, alleviates DHA-mediated stress by upregulating Dak activity, and consequently suppresses AGE formation. Based on these results, we propose that defense systems against oxidative stress and DHA-induced AGE formation are related via interactions between Gpx3 and Dak1.

  14. Protein tyrosine kinase signaling in the mouse oocyte cortex during sperm-egg interactions and anaphase resumption.

    PubMed

    McGinnis, Lynda K; Luo, Jinping; Kinsey, William H

    2013-04-01

    Fertilization triggers activation of a series of pre-programmed signal transduction pathways in the oocyte that establish a block to polyspermy, induce meiotic resumption, and initiate zygotic development. Fusion between sperm and oocyte results in rapid changes in oocyte intracellular free-calcium levels, which in turn activate multiple protein kinase cascades in the ooplasm. The present study examined the possibility that sperm-oocyte interaction involves localized activation of oocyte protein tyrosine kinases, which could provide an alternative signaling mechanism to that triggered by the fertilizing sperm. Confocal immunofluorescence analysis with antibodies to phosphotyrosine and phosphorylated protein tyrosine kinases allowed detection of minute signaling events localized to the site of sperm-oocyte interaction that were not amenable to biochemical analysis. The results provide evidence for localized accumulation of phosphotyrosine at the site of sperm contact, binding, or fusion, which suggests active protein tyrosine kinase signaling prior to and during sperm incorporation. The PYK2 kinase was found to be concentrated and activated at the site of sperm-oocyte interaction, and likely participates in this response. Widespread activation of PYK2 and FAK kinases was subsequently observed within the oocyte cortex, indicating that sperm incorporation is followed by more global signaling via these kinases during meiotic resumption. The results demonstrate an alternate signaling pathway triggered in mammalian oocytes by sperm contact, binding, or fusion with the oocyte.

  15. Identification of Polo-like kinase 1 interaction inhibitors using a novel cell-based assay

    PubMed Central

    Normandin, Karine; Lavallée, Jean-François; Futter, Marie; Beautrait, Alexandre; Duchaine, Jean; Guiral, Sébastien; Marinier, Anne; Archambault, Vincent

    2016-01-01

    Polo-like kinase 1 (Plk1) plays several roles in cell division and it is a recognized cancer drug target. Plk1 levels are elevated in cancer and several types of cancer cells are hypersensitive to Plk1 inhibition. Small molecule inhibitors of the kinase domain (KD) of Plk1 have been developed. Their selectivity is limited, which likely contributes to their toxicity. Polo-like kinases are characterized by a Polo-Box Domain (PBD), which mediates interactions with phosphorylation substrates or regulators. Inhibition of the PBD could allow better selectivity or result in different effects than inhibition of the KD. In vitro screens have been used to identify PBD inhibitors with mixed results. We developed the first cell-based assay to screen for PBD inhibitors, using Bioluminescence Resonance Energy Transfer (BRET). We screened through 112 983 compounds and characterized hits in secondary biochemical and biological assays. Subsequent Structure-Activity Relationship (SAR) analysis on our most promising hit revealed that it requires an alkylating function for its activity. In addition, we show that the previously reported PBD inhibitors thymoquinone and Poloxin are also alkylating agents. Our cell-based assay is a promising tool for the identification of new PBD inhibitors with more drug-like profiles using larger and more diverse chemical libraries. PMID:27874094

  16. Targeting protein–protein interactions in complexes organized by A kinase anchoring proteins

    PubMed Central

    Calejo, Ana I.; Taskén, Kjetil

    2015-01-01

    Cyclic AMP is a ubiquitous intracellular second messenger involved in the regulation of a wide variety of cellular processes, a majority of which act through the cAMP – protein kinase A (PKA) signaling pathway and involve PKA phosphorylation of specific substrates. PKA phosphorylation events are typically spatially restricted and temporally well controlled. A-kinase anchoring proteins (AKAPs) directly bind PKA and recruit it to specific subcellular loci targeting the kinase activity toward particular substrates, and thereby provide discrete spatiotemporal control of downstream phosphorylation events. AKAPs also scaffold other signaling molecules into multi-protein complexes that function as crossroads between different signaling pathways. Targeting AKAP coordinated protein complexes with high-affinity peptidomimetics or small molecules to tease apart distinct protein–protein interactions (PPIs) therefore offers important means to disrupt binding of specific components of the complex to better understand the molecular mechanisms involved in the function of individual signalosomes and their pathophysiological role. Furthermore, development of novel classes of small molecules involved in displacement of AKAP-bound signal molecules is now emerging. Here, we will focus on mechanisms for targeting PPI, disruptors that modulate downstream cAMP signaling and their role, especially in the heart. PMID:26441649

  17. Predicting a small molecule-kinase interaction map: A machine learning approach

    PubMed Central

    2011-01-01

    Background We present a machine learning approach to the problem of protein ligand interaction prediction. We focus on a set of binding data obtained from 113 different protein kinases and 20 inhibitors. It was attained through ATP site-dependent binding competition assays and constitutes the first available dataset of this kind. We extract information about the investigated molecules from various data sources to obtain an informative set of features. Results A Support Vector Machine (SVM) as well as a decision tree algorithm (C5/See5) is used to learn models based on the available features which in turn can be used for the classification of new kinase-inhibitor pair test instances. We evaluate our approach using different feature sets and parameter settings for the employed classifiers. Moreover, the paper introduces a new way of evaluating predictions in such a setting, where different amounts of information about the binding partners can be assumed to be available for training. Results on an external test set are also provided. Conclusions In most of the cases, the presented approach clearly outperforms the baseline methods used for comparison. Experimental results indicate that the applied machine learning methods are able to detect a signal in the data and predict binding affinity to some extent. For SVMs, the binding prediction can be improved significantly by using features that describe the active site of a kinase. For C5, besides diversity in the feature set, alignment scores of conserved regions turned out to be very useful. PMID:21708012

  18. Interacting factors and cellular localization of SR protein-specific kinase Dsk1

    SciTech Connect

    Tang, Zhaohua; Luca, Maria; Taggart-Murphy, Laura; Portillio, Jessica; Chang, Cathey; Guven, Ayse; Lin, Ren-Jang; Murray, Johanne; Carr, Antony

    2012-10-01

    Schizosaccharomyces pombe Dsk1 is an SR protein-specific kinase (SRPK), whose homologs have been identified in every eukaryotic organism examined. Although discovered as a mitotic regulator with protein kinase activity toward SR splicing factors, it remains largely unknown about what and how Dsk1 contributes to cell cycle and pre-mRNA splicing. In this study, we investigated the Dsk1 function by determining interacting factors and cellular localization of the kinase. Consistent with its reported functions, we found that pre-mRNA processing and cell cycle factors are prominent among the proteins co-purified with Dsk1. The identification of these factors led us to find Rsd1 as a novel Dsk1 substrate, as well as the involvement of Dsk1 in cellular distribution of poly(A){sup +} RNA. In agreement with its role in nuclear events, we also found that Dsk1 is mainly localized in the nucleus during G{sub 2} phase and at mitosis. Furthermore, we revealed the oscillation of Dsk1 protein in a cell cycle-dependent manner. This paper marks the first comprehensive analysis of in vivo Dsk1-associated proteins in fission yeast. Our results reflect the conserved role of SRPK family in eukaryotic organisms, and provide information about how Dsk1 functions in pre-mRNA processing and cell-division cycle.

  19. Decoding the Interactions Regulating the Active State Mechanics of Eukaryotic Protein Kinases

    PubMed Central

    Meharena, Hiruy S.; Fan, Xiaorui; Ahuja, Lalima G.; Keshwani, Malik M.; McClendon, Christopher L.; Chen, Angela M.; Adams, Joseph A.; Taylor, Susan S.

    2016-01-01

    Eukaryotic protein kinases regulate most cellular functions by phosphorylating targeted protein substrates through a highly conserved catalytic core. In the active state, the catalytic core oscillates between open, intermediate, and closed conformations. Currently, the intramolecular interactions that regulate the active state mechanics are not well understood. Here, using cAMP-dependent protein kinase as a representative model coupled with biochemical, biophysical, and computational techniques, we define a set of highly conserved electrostatic and hydrophobic interactions working harmoniously to regulate these mechanics. These include the previously identified salt bridge between a lysine from the β3-strand and a glutamate from the αC-helix as well as an electrostatic interaction between the phosphorylated activation loop and αC-helix and an ensemble of hydrophobic residues of the Regulatory spine and Shell. Moreover, for over three decades it was thought that the highly conserved β3-lysine was essential for phosphoryl transfer, but our findings show that the β3-lysine is not required for phosphoryl transfer but is essential for the active state mechanics. PMID:27902690

  20. Role of Domain Interactions in the Collective Motion of Phosphoglycerate Kinase

    PubMed Central

    Schay, Gusztáv; Herényi, Levente; Fidy, Judit; Osváth, Szabolcs

    2013-01-01

    Protein function is governed by the underlying conformational dynamics of the molecule. The experimental and theoretical work leading to contemporary understanding of enzyme dynamics was mostly restricted to the large-scale movements of single-domain proteins. Collective movements resulting from a regulatory interplay between protein domains is often crucial for enzymatic activity. It is not clear, however, how our knowledge could be extended to describe collective near-equilibrium motions of multidomain enzymes. We examined the effect of domain interactions on the low temperature near equilibrium dynamics of the native state, using phosphoglycerate kinase as model protein. We measured thermal activation of tryptophan phosphorescence quenching to explore millisecond-range protein motions. The two protein domains of phosphoglycerate kinase correspond to two dynamic units, but interdomain interactions link the motion of the two domains. The effect of the interdomain interactions on the activation of motions in the individual domains is asymmetric. As the temperature of the frozen protein is increased from the cryogenic, motions of the N domain are activated first. This is a partial activation, however, and the full dynamics of the domain becomes activated only after the activation of the C domain. PMID:23442918

  1. Role of domain interactions in the collective motion of phosphoglycerate kinase.

    PubMed

    Schay, Gusztáv; Herényi, Levente; Fidy, Judit; Osváth, Szabolcs

    2013-02-05

    Protein function is governed by the underlying conformational dynamics of the molecule. The experimental and theoretical work leading to contemporary understanding of enzyme dynamics was mostly restricted to the large-scale movements of single-domain proteins. Collective movements resulting from a regulatory interplay between protein domains is often crucial for enzymatic activity. It is not clear, however, how our knowledge could be extended to describe collective near-equilibrium motions of multidomain enzymes. We examined the effect of domain interactions on the low temperature near equilibrium dynamics of the native state, using phosphoglycerate kinase as model protein. We measured thermal activation of tryptophan phosphorescence quenching to explore millisecond-range protein motions. The two protein domains of phosphoglycerate kinase correspond to two dynamic units, but interdomain interactions link the motion of the two domains. The effect of the interdomain interactions on the activation of motions in the individual domains is asymmetric. As the temperature of the frozen protein is increased from the cryogenic, motions of the N domain are activated first. This is a partial activation, however, and the full dynamics of the domain becomes activated only after the activation of the C domain. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Functional interaction between nonreceptor tyrosine kinase c-Abl and SR-Rich protein RBM39

    SciTech Connect

    Mai, Sanyue; Qu, Xiuhua; Li, Ping; Ma, Qingjun; Liu, Xuan; Cao, Cheng

    2016-04-22

    RBM39, also known as splicing factor HCC1.4, acts as a transcriptional coactivator for the steroid nuclear receptors JUN/AP-1, ESR1/ER-α and ESR2/ER-β. RBM39 is involved in the regulation of the transcriptional responses of these steroid nuclear receptors and promotes transcriptional initiation. In this paper, we report that RBM39 interacts with the nonreceptor tyrosine kinase c-Abl. Both the Src homology (SH) 2 and SH3 domains of c-Abl interact with RBM39. The major tyrosine phosphorylation sites on RBM39 that are phosphorylated by c-Abl are Y95 and Y99, as demonstrated by liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS) and mutational analysis. c-Abl was shown boost the transcriptional coactivation activity of RBM39 for ERα and PRβ in a tyrosine kinase-dependent manner. The results suggest that mammalian c-Abl plays an important role in steroid hormone receptor-mediated transcription by regulating RBM39. - Highlights: • c-Abl interacts with RBM39. • RBM39 is phosphorylated by c-Abl. • c-Abl regulates transcriptional coactivation activity of RBM39 on the ERα and PRβ.

  3. Interaction of rhodopsin, G-protein and kinase in octopus photoreceptors.

    PubMed

    Tsuda, M; Hirata, H; Tsuda, T

    1992-12-01

    Light induced phosphorylation of octopus rhodopsin was greatly enhanced by guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S), suggesting that the kinases are involved in regulating interaction between rhodopsin and G-protein. We determined phosphorylated peptides of octopus rhodopsin in the presence or absence of GTP gamma S. Possible phosphorylation sites for octopus rhodopsin enhanced by GTP gamma S were Thr329, Thr330 and/or Thr336, which suggest that the G-protein associates with cytoplasmic loops including C-terminal peptide in the seventh helix of octopus rhodopsin.

  4. A Family of Plasmodesmal Proteins with Receptor-Like Properties for Plant Viral Movement Proteins

    PubMed Central

    Schmitt-Keichinger, Corinne; Fernandez-Calvino, Lourdes; Didier, Pascal; Lerich, Alexander; Mutterer, Jérome; Thomas, Carole L.; Heinlein, Manfred; Mély, Yves; Maule, Andrew J.; Ritzenthaler, Christophe

    2010-01-01

    Plasmodesmata (PD) are essential but poorly understood structures in plant cell walls that provide symplastic continuity and intercellular communication pathways between adjacent cells and thus play fundamental roles in development and pathogenesis. Viruses encode movement proteins (MPs) that modify these tightly regulated pores to facilitate their spread from cell to cell. The most striking of these modifications is observed for groups of viruses whose MPs form tubules that assemble in PDs and through which virions are transported to neighbouring cells. The nature of the molecular interactions between viral MPs and PD components and their role in viral movement has remained essentially unknown. Here, we show that the family of PD-located proteins (PDLPs) promotes the movement of viruses that use tubule-guided movement by interacting redundantly with tubule-forming MPs within PDs. Genetic disruption of this interaction leads to reduced tubule formation, delayed infection and attenuated symptoms. Our results implicate PDLPs as PD proteins with receptor-like properties involved the assembly of viral MPs into tubules to promote viral movement. PMID:20886105

  5. A family of plasmodesmal proteins with receptor-like properties for plant viral movement proteins.

    PubMed

    Amari, Khalid; Boutant, Emmanuel; Hofmann, Christina; Schmitt-Keichinger, Corinne; Fernandez-Calvino, Lourdes; Didier, Pascal; Lerich, Alexander; Mutterer, Jérome; Thomas, Carole L; Heinlein, Manfred; Mély, Yves; Maule, Andrew J; Ritzenthaler, Christophe

    2010-09-23

    Plasmodesmata (PD) are essential but poorly understood structures in plant cell walls that provide symplastic continuity and intercellular communication pathways between adjacent cells and thus play fundamental roles in development and pathogenesis. Viruses encode movement proteins (MPs) that modify these tightly regulated pores to facilitate their spread from cell to cell. The most striking of these modifications is observed for groups of viruses whose MPs form tubules that assemble in PDs and through which virions are transported to neighbouring cells. The nature of the molecular interactions between viral MPs and PD components and their role in viral movement has remained essentially unknown. Here, we show that the family of PD-located proteins (PDLPs) promotes the movement of viruses that use tubule-guided movement by interacting redundantly with tubule-forming MPs within PDs. Genetic disruption of this interaction leads to reduced tubule formation, delayed infection and attenuated symptoms. Our results implicate PDLPs as PD proteins with receptor-like properties involved the assembly of viral MPs into tubules to promote viral movement.

  6. A novel microfluidic assay reveals a key role for protein kinase C δ in regulating human neutrophil-endothelium interaction.

    PubMed

    Soroush, Fariborz; Zhang, Ting; King, Devon J; Tang, Yuan; Deosarkar, Sudhir; Prabhakarpandian, Balabhaskar; Kilpatrick, Laurie E; Kiani, Mohammad F

    2016-11-01

    A key step in neutrophil-mediated tissue damage is the migration of activated neutrophils across the vascular endothelium. Previously, we identified protein kinase C δ as a critical regulator of neutrophil migration in sepsis but did not identify specific steps in migration. In this study, we used our novel biomimetic microfluidic assay to delineate systematically the mechanism by which protein kinase C δ regulates individual steps in human neutrophil-endothelial interaction during inflammation. The biomimetic microfluidic assay includes a network of vascular channels, produced from in vivo images connected to a tissue compartment through a porous barrier. HUVECs cultured in vascular channels formed a complete lumen under physiologic shear flow. HUVECs were pretreated with TNF-α ± a protein kinase C δ inhibitor, and the tissue compartment was filled with a chemoattractant (fMLP or IL-8). Under physiologic shear flow, the role of protein kinase C δ on spatial and temporal neutrophil adherence/migration was quantified. Protein kinase C δ inhibition significantly reduced neutrophil adhesion in response to fMLP and IL-8 only under low shear rate and near bifurcations. Protein kinase C δ inhibition also decreased adherence to nonactivated HUVECs in response to fMLP or IL-8. Protein kinase C δ inhibition reduced neutrophil migration into the tissue compartment in response to fMLP and to a lesser degree, to IL-8. Antibody-coated microparticles demonstrated that protein kinase C δ inhibition down-regulated E-selectin and ICAM-1 but not VCAM-1 expression. With the use of a physiologically relevant in vitro model system, we demonstrate that protein kinase C δ plays an important role in the regulation of neutrophil adherence/migration during inflammation and identifies key steps regulated by protein kinase C δ in neutrophil-endothelial interactions.

  7. ASB9 interacts with ubiquitous mitochondrial creatine kinase and inhibits mitochondrial function

    PubMed Central

    2010-01-01

    Background The ankyrin repeat and suppressor of cytokine signalling (SOCS) box proteins (Asbs) are a large protein family implicated in diverse biological processes including regulation of proliferation and differentiation. The SOCS box of Asb proteins is important in a ubiquitination-mediated proteolysis pathway. Here, we aimed to evaluate expression and function of human Asb-9 (ASB9). Results We found that a variant of ASB9 that lacks the SOCS box (ASB9ΔSOCS) was naturally detected in human cell lines but not in peripheral blood mononuclear cells or normal hepatocytes. We also identified ubiquitous mitochondrial creatine kinase (uMtCK) as a new target of ASB9 in human embryonic kidney 293 (HEK293) cells. The ankyrin repeat domains of ASB9 can associate with the substrate binding site of uMtCK in a SOCS box-independent manner. The overexpression of ASB9, but not ASB9ΔSOCS, induces ubiquitination of uMtCK. ASB9 and ASB9ΔSOCS can interact and colocalise with uMtCK in the mitochondria. However, only expression of ASB9 induced abnormal mitochondrial structure and a decrease of mitochondrial membrane potential. Furthermore, the creatine kinase activities and cell growth were significantly reduced by ASB9 but not by ASB9ΔSOCS. Conclusions ASB9 interacts with the creatine kinase system and negatively regulates cell growth. The differential expression and function of ASB9 and ASB9ΔSOCS may be a key factor in the growth of human cell lines and primary cells. PMID:20302626

  8. Identification of a Novel Protein Interaction Motif in the Regulatory Subunit of Casein Kinase 2

    PubMed Central

    Cao, Jennifer Yinuo; Shire, Kathy; Landry, Cameron; Gish, Gerald D.; Pawson, Tony

    2014-01-01

    Casein kinase 2 (CK2) regulates multiple cellular processes and can promote oncogenesis. Interactions with the CK2β regulatory subunit of the enzyme target its catalytic subunit (CK2α or CK2α′) to specific substrates; however, little is known about the mechanisms by which these interactions occur. We previously showed that by binding CK2β, the Epstein-Barr virus (EBV) EBNA1 protein recruits CK2 to promyelocytic leukemia (PML) nuclear bodies, where increased CK2-mediated phosphorylation of PML proteins triggers their degradation. Here we have identified a KSSR motif near the dimerization interface of CK2β as forming part of a protein interaction pocket that mediates interaction with EBNA1. We show that the EBNA1-CK2β interaction is primed by phosphorylation of EBNA1 on S393 (within a polyserine region). This phosphoserine is critical for EBNA1-induced PML degradation but does not affect EBNA1 functions in EBV replication or segregation. Using comparative proteomics of wild-type (WT) and KSSR mutant CK2β, we identified an uncharacterized cellular protein, C18orf25/ARKL1, that also binds CK2β through the KSSR motif and show that this involves a polyserine sequence resembling the CK2β binding sequence in EBNA1. Therefore, we have identified a new mechanism of CK2 interaction used by viral and cellular proteins. PMID:24216761

  9. Rictor and integrin-linked kinase interact and regulate Akt phosphorylation and cancer cell survival.

    PubMed

    McDonald, Paul C; Oloumi, Arusha; Mills, Julia; Dobreva, Iveta; Maidan, Mykola; Gray, Virginia; Wederell, Elizabeth D; Bally, Marcel B; Foster, Leonard J; Dedhar, Shoukat

    2008-03-15

    An unbiased proteomic screen to identify integrin-linked kinase (ILK) interactors revealed rictor as an ILK-binding protein. This finding was interesting because rictor, originally identified as a regulator of cytoskeletal dynamics, is also a component of mammalian target of rapamycin complex 2 (mTORC2), a complex implicated in Akt phosphorylation. These functions overlap with known ILK functions. Coimmunoprecipitation analyses confirmed this interaction, and ILK and rictor colocalized in membrane ruffles and leading edges of cancer cells. Yeast two-hybrid assays showed a direct interaction between the NH(2)- and COOH-terminal domains of rictor and the ILK kinase domain. Depletion of ILK and rictor in breast and prostate cancer cell lines resulted in inhibition of Akt Ser(473) phosphorylation and induction of apoptosis, whereas, in several cell lines, depletion of mTOR increased Akt phosphorylation. Akt and Ser(473)P-Akt were detected in ILK immunoprecipitates and small interfering RNA-mediated depletion of rictor, but not mTOR, inhibited the amount of Ser(473)P-Akt in the ILK complex. Expression of the NH(2)-terminal (1-398 amino acids) rictor domain also resulted in the inhibition of ILK-associated Akt Ser(473) phosphorylation. These data show that rictor regulates the ability of ILK to promote Akt phosphorylation and cancer cell survival.

  10. Therapeutic potential of mitotic interaction between the nucleoporin Tpr and aurora kinase A.

    PubMed

    Kobayashi, Akiko; Hashizume, Chieko; Dowaki, Takayuki; Wong, Richard W

    2015-01-01

    Spindle poles are defined by centrosomes; therefore, an abnormal number or defective structural organization of centrosomes can lead to loss of spindle bipolarity and genetic integrity. Previously, we showed that Tpr (translocated promoter region), a component of the nuclear pore complex (NPC), interacts with Mad1 and dynein to promote proper chromosome segregation during mitosis. Tpr also associates with p53 to induce autophagy. Here, we report that Tpr depletion induces mitotic catastrophe and enhances the rate of tetraploidy and polyploidy. Mechanistically, Tpr interacts, via its central domain, with Aurora A but not Aurora B kinase. In Tpr-depleted cells, the expression levels, centrosomal localization and phosphorylation of Aurora A were all reduced. Surprisingly, an Aurora A inhibitor, Alisertib (MLN8237), also disrupted centrosomal localization of Tpr and induced mitotic catastrophe and cell death in a time- and dose-dependent manner. Strikingly, over-expression of Aurora A disrupted Tpr centrosomal localization only in cells with supernumerary centrosomes but not in bipolar cells. Our results highlight the mutual regulation between Tpr and Aurora A and further confirm the importance of nucleoporin function in spindle pole organization, bipolar spindle assembly, and mitosis; functions that are beyond the conventional nucleocytoplasmic transport and NPC structural roles of nucleoporins. Furthermore, the central coiled-coil domain of Tpr binds to and sequesters extra Aurora A to safeguard bipolarity. This Tpr domain merits further investigation for its ability to inhibit Aurora kinase and as a potential therapeutic agent in cancer treatment.

  11. Therapeutic potential of mitotic interaction between the nucleoporin Tpr and aurora kinase A

    PubMed Central

    Kobayashi, Akiko; Hashizume, Chieko; Dowaki, Takayuki; Wong, Richard W

    2015-01-01

    Spindle poles are defined by centrosomes; therefore, an abnormal number or defective structural organization of centrosomes can lead to loss of spindle bipolarity and genetic integrity. Previously, we showed that Tpr (translocated promoter region), a component of the nuclear pore complex (NPC), interacts with Mad1 and dynein to promote proper chromosome segregation during mitosis. Tpr also associates with p53 to induce autophagy. Here, we report that Tpr depletion induces mitotic catastrophe and enhances the rate of tetraploidy and polyploidy. Mechanistically, Tpr interacts, via its central domain, with Aurora A but not Aurora B kinase. In Tpr-depleted cells, the expression levels, centrosomal localization and phosphorylation of Aurora A were all reduced. Surprisingly, an Aurora A inhibitor, Alisertib (MLN8237), also disrupted centrosomal localization of Tpr and induced mitotic catastrophe and cell death in a time- and dose-dependent manner. Strikingly, over-expression of Aurora A disrupted Tpr centrosomal localization only in cells with supernumerary centrosomes but not in bipolar cells. Our results highlight the mutual regulation between Tpr and Aurora A and further confirm the importance of nucleoporin function in spindle pole organization, bipolar spindle assembly, and mitosis; functions that are beyond the conventional nucleocytoplasmic transport and NPC structural roles of nucleoporins. Furthermore, the central coiled-coil domain of Tpr binds to and sequesters extra Aurora A to safeguard bipolarity. This Tpr domain merits further investigation for its ability to inhibit Aurora kinase and as a potential therapeutic agent in cancer treatment. PMID:25789545

  12. Functional interaction between nonreceptor tyrosine kinase c-Abl and SR-Rich protein RBM39.

    PubMed

    Mai, Sanyue; Qu, Xiuhua; Li, Ping; Ma, Qingjun; Liu, Xuan; Cao, Cheng

    2016-04-22

    RBM39, also known as splicing factor HCC1.4, acts as a transcriptional coactivator for the steroid nuclear receptors JUN/AP-1, ESR1/ER-α and ESR2/ER-β. RBM39 is involved in the regulation of the transcriptional responses of these steroid nuclear receptors and promotes transcriptional initiation. In this paper, we report that RBM39 interacts with the nonreceptor tyrosine kinase c-Abl. Both the Src homology (SH) 2 and SH3 domains of c-Abl interact with RBM39. The major tyrosine phosphorylation sites on RBM39 that are phosphorylated by c-Abl are Y95 and Y99, as demonstrated by liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS) and mutational analysis. c-Abl was shown boost the transcriptional coactivation activity of RBM39 for ERα and PRβ in a tyrosine kinase-dependent manner. The results suggest that mammalian c-Abl plays an important role in steroid hormone receptor-mediated transcription by regulating RBM39.

  13. A kinase interacting protein (AKIP1) is a key regulator of cardiac stress

    PubMed Central

    Sastri, Mira; Haushalter, Kristofer J.; Panneerselvam, Mathivadhani; Chang, Philip; Fridolfsson, Heidi; Finley, J. Cameron; Ng, Daniel; Schilling, Jan M.; Miyanohara, Atsushi; Day, Michele E.; Hakozaki, Hiro; Petrosyan, Susanna; Koller, Antonius; King, Charles C.; Darshi, Manjula; Blumenthal, Donald K.; Ali, Sameh Saad; Roth, David M.; Patel, Hemal H.; Taylor, Susan S.

    2013-01-01

    cAMP-dependent protein kinase (PKA) regulates a myriad of functions in the heart, including cardiac contractility, myocardial metabolism, and gene expression. However, a molecular integrator of the PKA response in the heart is unknown. Here, we show that the PKA adaptor A-kinase interacting protein 1 (AKIP1) is up-regulated in cardiac myocytes in response to oxidant stress. Mice with cardiac gene transfer of AKIP1 have enhanced protection to ischemic stress. We hypothesized that this adaptation to stress was mitochondrial-dependent. AKIP1 interacted with the mitochondrial localized apoptosis inducing factor (AIF) under both normal and oxidant stress. When cardiac myocytes or whole hearts are exposed to oxidant and ischemic stress, levels of both AKIP1 and AIF were enhanced. AKIP1 is preferentially localized to interfibrillary mitochondria and up-regulated in this cardiac mitochondrial subpopulation on ischemic injury. Mitochondria isolated from AKIP1 gene-transferred hearts showed increased mitochondrial localization of AKIP1, decreased reactive oxygen species generation, enhanced calcium tolerance, decreased mitochondrial cytochrome C release, and enhance phosphorylation of mitochondrial PKA substrates on ischemic stress. These observations highlight AKIP1 as a critical molecular regulator and a therapeutic control point for stress adaptation in the heart. PMID:23319652

  14. Protein-Protein Interaction for the De Novo Design of Cyclin-Dependent Kinase Peptide Inhibitors.

    PubMed

    Arumugasamy, Karthiga; Tripathi, Sunil Kumar; Singh, Poonam; Singh, Sanjeev Kumar

    2016-01-01

    The homology of the inhibitor binding site regions on the surface of cyclin-dependent kinases (CDKs) makes actual CDK inhibitors unable to bind specifically to their molecular targets. Most of them are ATP competitive inhibitors with low specificity that also affect the phosphorylation mechanisms of other nontarget kinases giving rise to harmful side effects. So, the search of specific and potent inhibitors able to bind to the desired CDK target is still a pending issue. Structure based drug design minimized the erroneous binding and increased the affinity of the inhibitor interaction. In the case of CDKs their activation and regulation mechanisms mainly depend on protein-protein interactions (PPIs). The design of drugs targeting these PPIs makes feasible and promising towards the discovery of new and specific CDK inhibitors. Development of peptide inhibitors for a target protein is an emerging approach in computer aided drug designing. This chapter describes in detail methodology for use of the VitAL-Viterbi algorithm for de novo peptide design of CDK2 inhibitors.

  15. Interactions between beta-enolase and creatine kinase in the cytosol of skeletal muscle cells.

    PubMed Central

    Foucault, G; Vacher, M; Cribier, S; Arrio-Dupont, M

    2000-01-01

    We studied interactions in vivo between the cytosolic muscle isoform of creatine kinase (M-CK) and the muscle isoform of 2-phospho-D-glycerate hydrolyase (beta-enolase) in muscle sarcoplasm by incubating glycerol-skinned fibres with FITC-labelled beta-enolase in the presence or absence of free CK. A small amount of bound beta-enolase was observed in the presence of large concentrations of CK. The mobility of enolase was measured in cultured satellite cells by modulated-fringe-pattern photobleaching. FITC-labelled beta-enolase was totally mobile in both the presence and the absence of CK but its diffusion coefficient was slightly lower in the presence of CK. This suggests a weak interaction in vivo between enolase and CK. PMID:10657248

  16. Direct interaction between sensor kinase proteins mediates acute and chronic disease phenotypes in a bacterial pathogen

    PubMed Central

    Goodman, Andrew L.; Merighi, Massimo; Hyodo, Mamoru; Ventre, Isabelle; Filloux, Alain; Lory, Stephen

    2009-01-01

    The genome of the opportunistic pathogen Pseudomonas aeruginosa encodes over 60 two-component sensor kinases and uses several (including RetS and GacS) to reciprocally regulate the production of virulence factors involved in the development of acute or chronic infections. We demonstrate that RetS modulates the phosphorylation state of GacS by a direct and specific interaction between these two membrane-bound sensors. The RetS–GacS interaction can be observed in vitro, in heterologous systems in vivo, and in P. aeruginosa. This function does not require the predicted RetS phosphorelay residues and provides a mechanism for integrating multiple signals without cross-phosphorylation from sensors to noncognate response regulators. These results suggest that multiple two-component systems found in a single bacterium can form multisensor signaling networks while maintaining specific phosphorelay pathways that remain insulated from detrimental cross-talk. PMID:19171785

  17. Molecular Dynamics Analysis of Conserved Hydrophobic and Hydrophilic Bond Interaction Networks in ErbB Family Kinases

    PubMed Central

    Shih, Andrew J.; Telesco, Shannon E.; Choi, Sung Hee; Lemmon, Mark A.; Radhakrishnan, Ravi

    2011-01-01

    Synopsis The EGFR/ErbB/HER family of kinases contains four homologous receptor tyrosine kinases that are important regulatory elements in key signaling pathways. To elucidate the atomistic mechanisms of dimerization-dependent activation in the ErbB family, we have performed molecular dynamics simulations of the intracellular kinase domains of three members of the ErbB family (those with known kinase activity), namely EGFR, ErbB2 (HER2) and ErbB4 (HER4), in different molecular contexts: monomer vs. dimer, wildtype vs. mutant. Using bioinformatics and fluctuation analyses of the molecular dynamics trajectories, we relate sequence similarities to correspondence of specific bond-interaction networks and collective dynamical modes. We find that in the active conformation of the ErbB kinases, key subdomain motions are coordinated through conserved hydrophilic interactions: activating bond-networks consisting of hydrogen bonds and salt bridges. The inactive conformations also demonstrate conserved bonding patterns (albeit less extensive) that sequester key residues and disrupt the activating bond network. Both conformational states have distinct hydrophobic advantages through context-specific hydrophobic interactions. We show that the functional (activating) asymmetric kinase dimer interface forces a corresponding change in the hydrophobic and hydrophilic interactions that characterize the inactivating bond network, resulting in motion of the αC-helix through allostery. Several of the clinically identified activating kinase mutations of EGFR act in a similar fashion to disrupt the inactivating bond network. Our molecular dynamics study reveals a fundamental difference in the sequence of events in EGFR activation compared with that described for the Src kinase Hck. PMID:21426301

  18. Molecular dynamics analysis of conserved hydrophobic and hydrophilic bond-interaction networks in ErbB family kinases.

    PubMed

    Shih, Andrew J; Telesco, Shannon E; Choi, Sung-Hee; Lemmon, Mark A; Radhakrishnan, Ravi

    2011-06-01

    The EGFR (epidermal growth factor receptor)/ErbB/HER (human EGFR) family of kinases contains four homologous receptor tyrosine kinases that are important regulatory elements in key signalling pathways. To elucidate the atomistic mechanisms of dimerization-dependent activation in the ErbB family, we have performed molecular dynamics simulations of the intracellular kinase domains of three members of the ErbB family (those with known kinase activity), namely EGFR, ErbB2 (HER2) and ErbB4 (HER4), in different molecular contexts: monomer against dimer and wild-type against mutant. Using bioinformatics and fluctuation analyses of the molecular dynamics trajectories, we relate sequence similarities to correspondence of specific bond-interaction networks and collective dynamical modes. We find that in the active conformation of the ErbB kinases, key subdomain motions are co-ordinated through conserved hydrophilic interactions: activating bond-networks consisting of hydrogen bonds and salt bridges. The inactive conformations also demonstrate conserved bonding patterns (albeit less extensive) that sequester key residues and disrupt the activating bond network. Both conformational states have distinct hydrophobic advantages through context-specific hydrophobic interactions. We show that the functional (activating) asymmetric kinase dimer interface forces a corresponding change in the hydrophobic and hydrophilic interactions that characterize the inactivating bond network, resulting in motion of the αC-helix through allostery. Several of the clinically identified activating kinase mutations of EGFR act in a similar fashion to disrupt the inactivating bond network. The present molecular dynamics study reveals a fundamental difference in the sequence of events in EGFR activation compared with that described for the Src kinase Hck.

  19. Domain interactions direct misfolding and amyloid formation of yeast phosphoglycerate kinase.

    PubMed

    Osváth, Szabolcs; Jäckel, Márta; Agócs, Gergely; Závodszky, Péter; Köhler, Gottfried; Fidy, Judit

    2006-03-01

    There are proteins that are built of two structural domains and are deposited full-length in amyloid plaques formed in various diseases. In spite of the known differences in the mechanisms of folding of single- and multidomain proteins, no published studies can be found that address the role of the domain-domain interactions during misfolding and amyloid formation. By the discovery of the role of domain-domain interactions, here we provide important insight in the submolecular mechanism of amyloid formation. A model system based on yeast phosphoglycerate kinase was designed. This system includes the wild-type yeast phosphoglycerate kinase and single-tryptophan mutants of the individual N and C terminal domains and the complete protein. Electron microscopic measurements proved that amyloid fibrils grow from all mutants under identical conditions as for the wild-type protein. Misfolding and amyloid formation was followed in stopped-flow and manual mixing experiments on the 1 ms to 4 days timescale. Tryptophan fluorescence was used for selective detection of conformational changes accompanying the formation of the amyloidogenic intermediates and the growth of amyloid fibrils. The interactions between the polypeptide chains of the two domains direct the misfolding process from the early steps to the amyloid formation, and influence the final structure. The kinetics of misfolding is different for the individual domains, pointing to the significance of the amino acid sequence. Misfolding of the domains within the complete protein is synchronized indicating that domain-domain interactions direct the misfolding and amyloid formation mechanism. 2006 Wiley-Liss, Inc.

  20. Protein-Protein Interactions in the Yeast Pheromone Response Pathway: Ste5p Interacts with All Members of the Map Kinase Cascade

    PubMed Central

    Printen, J. A.; Sprague-Jr., G. F.

    1994-01-01

    We have used the two-hybrid system of Fields and Song to identify protein-protein interactions that occur in the pheromone response pathway of the yeast Saccharomyces cerevisiae. Pathway components Ste4p, Ste5p, Ste7p, Ste11p, Ste12p, Ste20p, Fus3p and Kss1p were tested in all pairwise combinations. All of the interactions we detected involved at least one member of the MAP kinase cascade that is a central element of the response pathway. Ste5p, a protein of unknown biochemical function, interacted with protein kinases that operate at each step of the MAP kinase cascade, specifically with Ste11p (an MEKK), Ste7p (an MEK), and Fus3p (a MAP kinase). This finding suggests that one role of Ste5p is to serve as a scaffold to facilitate interactions among members of the kinase cascade. In this role as facilitator, Ste5p may make both signal propagation and signal attenuation more efficient. Ste5p may also help minimize cross-talk with other MAP kinase cascades and thus ensure the integrity of the pheromone response pathway. We also found that both Ste11p and Ste7p interact with Fus3p and Kss1p. Finally, we detected an interaction between one of the MAP kinases, Kss1p, and a presumptive target, the transcription factor Ste12p. We failed to detect interactions of Ste4p or Ste20p with any other component of the response pathway. PMID:7851759

  1. [Interaction of 8-substituted derivatives and adenosine-3',5'-cyclophosphate esters with protein kinase from pig brain].

    PubMed

    Guliaev, N N; Tunitskaia, V L; Nesterova, M V; Mazurova, L A; Murtuzaev, I M

    1977-11-01

    A synthesis of previously unknown 8-substituted derivatives and alkyl esters of cyclic adenosine-3',5'-monophosphate, containing reactive groups, was carried out. The interaction of the compounds obtained with a homogeneous preparation of protein kinase from pig brain was studied. It was found that all compounds, with the exception of neutral esters of 3',5'-AMP, activate the enzyme and competitively inhibit 3H-labelled 3',5'-cAMP binding by the regulatory subunit of protein kinase. The activating effect and affinity of 8-(beta-aminoethylamino)-3',5'-cAMP for protein kinase was 10 times lower than that for 3',5'-cAMP and other 8-substituted derivatives of the cyclic nucleotide. It was found that 8-(N-chloroacetylaminoethylamino)-3',5'-cAMP interaction with the enzyme is of irreversible type, which suggest covalent blocking of the nucleophilic group of the 3',5'-cAMP binding site of protein kinase. The data obtained indicate that the 3',5'-cAMP molecule is bound to the regulatory site of protein kinase in the syn-conformation. The previously made assumption on the crucial importance of the negative charge in the 3',5'-cyclophosphate system for the interaction of cyclic AMP with the regulatory subunit of protein kinase has been thus confirmed.

  2. Enzyme- and transporter-mediated drug interactions with small molecule tyrosine kinase inhibitors.

    PubMed

    Shao, Jie; Markowitz, John S; Bei, Di; An, Guohua

    2014-12-01

    Among the novel and target-specific classes of anticancer drugs, small molecule tyrosine kinase inhibitors (TKIs) represent an extremely promising and rapidly expanding group. TKIs attack cancer-specific targets and therefore have a favorable safety profile. However, as TKIs are taken orally along with other medications on a daily basis, there is an elevated risk of potentially significant drug-drug interactions. Most TKIs are metabolized primarily through CYP3A4. In addition, many TKIs are also CYP3A4 inhibitors at the same time. In addition to drug metabolizing enzymes (DMEs), another determinant of TKI disposition are drug transporters. There is accumulating evidence showing that the majority of currently marketed TKIs interact with ATP-binding cassette transporters, particularly P-glycoprotein as well as Breast Cancer Resistance Protein and serve as both substrates and inhibitors. Considering the dual roles of TKIs on both DMEs and drug transporters, and the importance of these enzyme and transporters in drug disposition, the potential for enzyme- and transporter-mediated TKI-drug interactions in patients with cancer is an important consideration. This review provides a comprehensive overview of drug interactions with small molecule TKIs mediated by DMEs and drug transporters. The TKI-drug interactions with TKIs being victims and/or perpetrators are summarized.

  3. Kinase Substrate Sensor (KISS), a mammalian in situ protein interaction sensor.

    PubMed

    Lievens, Sam; Gerlo, Sarah; Lemmens, Irma; De Clercq, Dries J H; Risseeuw, Martijn D P; Vanderroost, Nele; De Smet, Anne-Sophie; Ruyssinck, Elien; Chevet, Eric; Van Calenbergh, Serge; Tavernier, Jan

    2014-12-01

    Probably every cellular process is governed by protein-protein interaction (PPIs), which are often highly dynamic in nature being modulated by in- or external stimuli. Here we present KISS, for KInase Substrate Sensor, a mammalian two-hybrid approach designed to map intracellular PPIs and some of the dynamic features they exhibit. Benchmarking experiments indicate that in terms of sensitivity and specificity KISS is on par with other binary protein interaction technologies while being complementary with regard to the subset of PPIs it is able to detect. We used KISS to evaluate interactions between different types of proteins, including transmembrane proteins, expressed at their native subcellular location. In situ analysis of endoplasmic reticulum stress-induced clustering of the endoplasmic reticulum stress sensor ERN1 and ligand-dependent β-arrestin recruitment to GPCRs illustrated the method's potential to study functional PPI modulation in complex cellular processes. Exploring its use as a tool for in cell evaluation of pharmacological interference with PPIs, we showed that reported effects of known GPCR antagonists and PPI inhibitors are properly recapitulated. In a three-hybrid setup, KISS was able to map interactions between small molecules and proteins. Taken together, we established KISS as a sensitive approach for in situ analysis of protein interactions and their modulation in a changing cellular context or in response to pharmacological challenges. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Kinase Substrate Sensor (KISS), a Mammalian In Situ Protein Interaction Sensor*

    PubMed Central

    Lievens, Sam; Gerlo, Sarah; Lemmens, Irma; De Clercq, Dries J. H.; Risseeuw, Martijn D. P.; Vanderroost, Nele; De Smet, Anne-Sophie; Ruyssinck, Elien; Chevet, Eric; Van Calenbergh, Serge; Tavernier, Jan

    2014-01-01

    Probably every cellular process is governed by protein-protein interaction (PPIs), which are often highly dynamic in nature being modulated by in- or external stimuli. Here we present KISS, for KInase Substrate Sensor, a mammalian two-hybrid approach designed to map intracellular PPIs and some of the dynamic features they exhibit. Benchmarking experiments indicate that in terms of sensitivity and specificity KISS is on par with other binary protein interaction technologies while being complementary with regard to the subset of PPIs it is able to detect. We used KISS to evaluate interactions between different types of proteins, including transmembrane proteins, expressed at their native subcellular location. In situ analysis of endoplasmic reticulum stress-induced clustering of the endoplasmic reticulum stress sensor ERN1 and ligand-dependent β-arrestin recruitment to GPCRs illustrated the method's potential to study functional PPI modulation in complex cellular processes. Exploring its use as a tool for in cell evaluation of pharmacological interference with PPIs, we showed that reported effects of known GPCR antagonists and PPI inhibitors are properly recapitulated. In a three-hybrid setup, KISS was able to map interactions between small molecules and proteins. Taken together, we established KISS as a sensitive approach for in situ analysis of protein interactions and their modulation in a changing cellular context or in response to pharmacological challenges. PMID:25154561

  5. Interaction between two rice mitogen activated protein kinases and its possible role in plant defense

    PubMed Central

    2013-01-01

    Background The canonical mitogen activated protein kinase (MAPK) signaling pathway plays a vital role in carrying out the normal growth and development of the plant. The pathway, connecting the upstreams signal with the downstream target is considered to be linear, mostly starting with a MAPKKK and ending in a MAPK. Results Here we report a novel interaction between two rice MAPKs, OsMPK20-4 and OsMPK3 suggesting the complex nature of the pathway rather than a linear one at individual steps. The interaction between OsMPK20-4 and OsMPK3 found by yeast two-hybrid analysis was confirmed in planta by co-immunoprecipitation and fluorescence resonance energy transfer (FRET) assays. The interaction is specific and is phosphorylation independent. The results suggest a role of the interaction between OsMPK20-4 and OsMPK3 in basic plant defense. Conclusions The current novel work showing the physical interaction between two plant MAPKs, OsMPK20-4 and OsMPK3 is the diversion from the dogma of a typical MAPK cascade thereby opening a new dimension to the MAPK signal transduction. PMID:23984709

  6. SUMOylation regulates polo-like kinase 1-interacting checkpoint helicase (PICH) during mitosis.

    PubMed

    Sridharan, Vinidhra; Park, Hyewon; Ryu, Hyunju; Azuma, Yoshiaki

    2015-02-06

    Mitotic SUMOylation has an essential role in faithful chromosome segregation in eukaryotes, although its molecular consequences are not yet fully understood. In Xenopus egg extract assays, we showed that poly(ADP-ribose) polymerase 1 (PARP1) is modified by SUMO2/3 at mitotic centromeres and that its enzymatic activity could be regulated by SUMOylation. To determine the molecular consequence of mitotic SUMOylation, we analyzed SUMOylated PARP1-specific binding proteins. We identified Polo-like kinase 1-interacting checkpoint helicase (PICH) as an interaction partner of SUMOylated PARP1 in Xenopus egg extract. Interestingly, PICH also bound to SUMOylated topoisomerase IIα (TopoIIα), a major centromeric small ubiquitin-like modifier (SUMO) substrate. Purified recombinant human PICH interacted with SUMOylated substrates, indicating that PICH directly interacts with SUMO, and this interaction is conserved among species. Further analysis of mitotic chromosomes revealed that PICH localized to the centromere independent of mitotic SUMOylation. Additionally, we found that PICH is modified by SUMO2/3 on mitotic chromosomes and in vitro. PICH SUMOylation is highly dependent on protein inhibitor of activated STAT, PIASy, consistent with other mitotic chromosomal SUMO substrates. Finally, the SUMOylation of PICH significantly reduced its DNA binding capability, indicating that SUMOylation might regulate its DNA-dependent ATPase activity. Collectively, our findings suggest a novel SUMO-mediated regulation of the function of PICH at mitotic centromeres.

  7. SUMOylation Regulates Polo-like Kinase 1-interacting Checkpoint Helicase (PICH) during Mitosis*

    PubMed Central

    Sridharan, Vinidhra; Park, Hyewon; Ryu, Hyunju; Azuma, Yoshiaki

    2015-01-01

    Mitotic SUMOylation has an essential role in faithful chromosome segregation in eukaryotes, although its molecular consequences are not yet fully understood. In Xenopus egg extract assays, we showed that poly(ADP-ribose) polymerase 1 (PARP1) is modified by SUMO2/3 at mitotic centromeres and that its enzymatic activity could be regulated by SUMOylation. To determine the molecular consequence of mitotic SUMOylation, we analyzed SUMOylated PARP1-specific binding proteins. We identified Polo-like kinase 1-interacting checkpoint helicase (PICH) as an interaction partner of SUMOylated PARP1 in Xenopus egg extract. Interestingly, PICH also bound to SUMOylated topoisomerase IIα (TopoIIα), a major centromeric small ubiquitin-like modifier (SUMO) substrate. Purified recombinant human PICH interacted with SUMOylated substrates, indicating that PICH directly interacts with SUMO, and this interaction is conserved among species. Further analysis of mitotic chromosomes revealed that PICH localized to the centromere independent of mitotic SUMOylation. Additionally, we found that PICH is modified by SUMO2/3 on mitotic chromosomes and in vitro. PICH SUMOylation is highly dependent on protein inhibitor of activated STAT, PIASy, consistent with other mitotic chromosomal SUMO substrates. Finally, the SUMOylation of PICH significantly reduced its DNA binding capability, indicating that SUMOylation might regulate its DNA-dependent ATPase activity. Collectively, our findings suggest a novel SUMO-mediated regulation of the function of PICH at mitotic centromeres. PMID:25564610

  8. The tomato I gene for Fusarium wilt resistance encodes an atypical leucine-rich repeat receptor-like protein whose function is nevertheless dependent on SOBIR1 and SERK3/BAK1.

    PubMed

    Catanzariti, Ann-Maree; Do, Huong T T; Bru, Pierrick; de Sain, Mara; Thatcher, Louise F; Rep, Martijn; Jones, David A

    2017-03-01

    We have identified the tomato I gene for resistance to the Fusarium wilt fungus Fusarium oxysporum f. sp. lycopersici (Fol) and show that it encodes a membrane-anchored leucine-rich repeat receptor-like protein (LRR-RLP). Unlike most other LRR-RLP genes involved in plant defence, the I gene is not a member of a gene cluster and contains introns in its coding sequence. The I gene encodes a loopout domain larger than those in most other LRR-RLPs, with a distinct composition rich in serine and threonine residues. The I protein also lacks a basic cytosolic domain. Instead, this domain is rich in aromatic residues that could form a second transmembrane domain. The I protein recognises the Fol Avr1 effector protein, but, unlike many other LRR-RLPs, recognition specificity is determined in the C-terminal half of the protein by polymorphic amino acid residues in the LRRs just preceding the loopout domain and in the loopout domain itself. Despite these differences, we show that I/Avr1-dependent necrosis in Nicotiana benthamiana depends on the LRR receptor-like kinases (RLKs) SERK3/BAK1 and SOBIR1. Sequence comparisons revealed that the I protein and other LRR-RLPs involved in plant defence all carry residues in their last LRR and C-terminal LRR capping domain that are conserved with SERK3/BAK1-interacting residues in the same relative positions in the LRR-RLKs BRI1 and PSKR1. Tyrosine mutations of two of these conserved residues, Q922 and T925, abolished I/Avr1-dependent necrosis in N. benthamiana, consistent with similar mutations in BRI1 and PSKR1 preventing their interaction with SERK3/BAK1.

  9. Association of IL33-IL-1 receptor-like 1 (IL1RL1) pathway polymorphisms with wheezing phenotypes and asthma in childhood.

    PubMed

    Savenije, Olga E; Mahachie John, Jestinah M; Granell, Raquel; Kerkhof, Marjan; Dijk, F Nicole; de Jongste, Johan C; Smit, Henriëtte A; Brunekreef, Bert; Postma, Dirkje S; Van Steen, Kristel; Henderson, John; Koppelman, Gerard H

    2014-07-01

    Genome-wide association studies identified IL33 and IL-1 receptor-like 1 (IL1RL1)/IL18R1 as asthma susceptibility loci. IL33 and IL1RL1 constitute a single ligand-receptor pathway. In 2 birth cohorts, the Prevalence and Incidence of Asthma and Mite Allergy (PIAMA) study and Avon Longitudinal Study of Parents and Children (ALSPAC), we analyzed associations of longitudinal wheezing phenotypes and asthma with single nucleotide polymorphisms (SNPs) of 8 genes encoding IL-33, IL1RL1, its coreceptor IL1RAcP, its adaptors myeloid differentiation primary response gene 88 (MyD88) and Toll-IL-11 receptor domain containing adaptor protein (TIRAP), and the downstream IL-1 receptor-associated kinase 1, IL-1 receptor-associated kinase 4, and TNF receptor-associated factor 6 (TRAF6). Furthermore, we investigated whether SNPs in this pathway show replicable evidence of gene-gene interaction. Ninety-four SNPs were investigated in 2007 children in the PIAMA study and 7247 children in ALSPAC. Associations with wheezing phenotypes and asthma at 8 years of age were analyzed in each cohort and subsequently meta-analyzed. Gene-gene interactions were assessed through model-based multifactor dimensionality reduction in the PIAMA study, and gene-gene interactions of 10 SNP pairs were further evaluated. Intermediate-onset wheeze was associated with SNPs in several genes in the IL33-IL1RL1 pathway after applying multiple testing correction in the meta-analysis: 2 IL33 SNPs (rs4742170 and rs7037276), 1 IL-1 receptor accessory protein (IL1RAP) SNP (rs10513854), and 1 TRAF6 SNP (rs5030411). Late-onset wheeze was associated with 2 IL1RL1 SNPs (rs10208293 and rs13424006), and persistent wheeze was associated with 1 IL33 SNP (rs1342326) and 1 IL1RAP SNP (rs9290936). IL33 and IL1RL1 SNPs were nominally associated with asthma. Three SNP pairs showed interaction for asthma in the PIAMA study but not in ALSPAC. IL33-IL1RL1 pathway polymorphisms are associated with asthma and specific wheezing

  10. PfIRR Interacts with HrIGF-I and Activates the MAP-kinase and PI3-kinase Signaling Pathways to Regulate Glycogen Metabolism in Pinctada fucata

    PubMed Central

    Shi, Yu; He, Mao-xian

    2016-01-01

    The insulin-induced mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) pathways are major intracellular signaling modules and conserved among eukaryotes that are known to regulate diverse cellular processes. However, they have not been investigated in the mollusk species Pinctada fucata. Here, we demonstrate that insulin-related peptide receptor of P. fucata (pfIRR) interacts with human recombinant insulin-like growth factor I (hrIGF-I), and stimulates the MAPK and PI3K signaling pathways in P. fucata oocytes. We also show that inhibition of pfIRR by the inhibitor PQ401 significantly attenuates the basal and hrIGF-I-induced phosphorylation of MAPK and PI3K/Akt at amino acid residues threonine 308 and serine 473. Furthermore, our experiments show that there is cross-talk between the MAPK and PI3K/Akt pathways, in which MAPK kinase positively regulates the PI3K pathway, and PI3K positively regulates the MAPK cascade. Intramuscular injection of hrIGF-I stimulates the PI3K and MAPK pathways to increase the expression of pfirr, protein phosphatase 1, glucokinase, and the phosphorylation of glycogen synthase, decreases the mRNA expression of glycogen synthase kinase-3 beta, decreases glucose levels in hemocytes, and increases glycogen levels in digestive glands. These results suggest that the MAPK and PI3K pathways in P. fucata transmit the hrIGF-I signal to regulate glycogen metabolism. PMID:26911653

  11. Receptor-interacting protein kinases modulate noise-induced sensory hair cell death

    PubMed Central

    Zheng, H-W; Chen, J; Sha, S-H

    2014-01-01

    Receptor-interacting protein (RIP) kinases promote the induction of necrotic cell death pathways. Here we investigated signaling pathways in outer hair cells (OHCs) of adult male CBA/J mice exposed to noise that causes permanent threshold shifts, with a particular focus on RIP kinase-regulated necroptosis. One hour after noise exposure, nuclei of OHCs in the basal region of the cochlea displayed both apoptotic and necrotic features. RIP1 and RIP3 protein levels increased and caspase-8 was activated. Treatment with pan-caspase inhibitor ZVAD blocked the activation of caspase-8 and reduced the number of apoptotic nuclei, while increasing levels of RIP1, RIP3, and necrotic OHCs. Conversely, treatment with necrosis inhibitor necrostatin-1 (Nec-1) or RIP3 siRNA (siRIP3) diminished noise-induced increases in RIP1 and RIP3, and decreased necrotic OHC nuclei. This treatment also increased the number of apoptotic nuclei without increasing activation of caspase-8. Consistent with the elevation of levels of RIP1 and RIP3, noise-induced active AMPKα levels increased with ZVAD treatment, but decreased with Nec-1 and siRIP3 treatment. Furthermore, treatment with siRIP3 did not alter the activation of caspase-8, but instead increased activation of caspase-9 and promoted endonuclease G translocation into OHC nuclei. Finally, auditory brainstem response functional measurements and morphological assessment of OHCs showed that ZVAD treatment reduces noise-induced deficits. This protective function is potentiated when combined with siRIP3 treatment. In conclusion, noise-induced OHC apoptosis and necrosis are modulated by caspases and RIP kinases, respectively. Inhibition of either pathway shifts the prevalence of OHC death to the alternative pathway. PMID:24874734

  12. Diacylglycerol kinase-zeta localization in skeletal muscle is regulated by phosphorylation and interaction with syntrophins.

    PubMed

    Abramovici, Hanan; Hogan, Angela B; Obagi, Christopher; Topham, Matthew K; Gee, Stephen H

    2003-11-01

    Syntrophins are scaffolding proteins that link signaling molecules to dystrophin and the cytoskeleton. We previously reported that syntrophins interact with diacylglycerol kinase-zeta (DGK-zeta), which phosphorylates diacylglycerol to yield phosphatidic acid. Here, we show syntrophins and DGK-zeta form a complex in skeletal muscle whose translocation from the cytosol to the plasma membrane is regulated by protein kinase C-dependent phosphorylation of the DGK-zeta MARCKS domain. DGK-zeta mutants that do not bind syntrophins were mislocalized, and an activated mutant of this sort induced atypical changes in the actin cytoskeleton, indicating syntrophins are important for localizing DGK-zeta and regulating its activity. Consistent with a role in actin organization, DGK-zeta and syntrophins were colocalized with filamentous (F)-actin and Rac in lamellipodia and ruffles. Moreover, extracellular signal-related kinase-dependent phosphorylation of DGK-zeta regulated its association with the cytoskeleton. In adult muscle, DGK-zeta was colocalized with syntrophins on the sarcolemma and was concentrated at neuromuscular junctions (NMJs), whereas in type IIB fibers it was found exclusively at NMJs. DGK-zeta was reduced at the sarcolemma of dystrophin-deficient mdx mouse myofibers but was specifically retained at NMJs, indicating that dystrophin is important for the sarcolemmal but not synaptic localization of DGK-zeta. Together, our findings suggest syntrophins localize DGK-zeta signaling complexes at specialized domains of muscle cells, which may be critical for the proper control of lipid-signaling pathways regulating actin organization. In dystrophic muscle, mislocalized DGK-zeta may cause abnormal cytoskeletal changes that contribute to disease pathogenesis.

  13. FHL-2 suppresses VEGF-induced phosphatidylinositol 3-kinase/Akt activation via interaction with sphingosine kinase-1.

    PubMed

    Hayashi, Hiroki; Nakagami, Hironori; Takami, Yoichi; Koriyama, Hiroshi; Mori, Masaki; Tamai, Katsuto; Sun, Jianxin; Nagao, Kaori; Morishita, Ryuichi; Kaneda, Yasufumi

    2009-06-01

    In the functional screening of a human heart cDNA library to identify a novel antiangiogenic factor, the prime candidate gene was "four-and-a-half LIM only protein-2" (FHL-2). The goal of this study is to clear the mechanism of antiangiogenic signaling of FHL-2 in endothelial cells (ECs). Overexpressed FHL-2 strongly inhibited vascular endothelial growth factor (VEGF)-induced EC migration. In the angiogenic signaling, we focused on sphingosine kinase-1 (SK1), which produces sphingosine-1-phosphate (S1P), a bioactive sphingolipid, as a potent angiogenic mediator in ECs. Immunoprecipitation and immunostaining analysis showed that FHL-2 might bind to SK1. Importantly, overexpression of FHL-2 in ECs inhibited VEGF-induced SK1 activity, phosphatidylinositol 3-kinase activity, and phosphorylation of Akt and eNOS. In contrast, overexpression of FHL-2 had no effect on S1P-induced Akt phosphorylation. Interestingly, VEGF stimulation decreased the binding of FHL-2 and SK1. Depletion of FHL-2 by siRNA increased EC migration accompanied with SK1 and Akt activation, and increased the expression of VEGF receptor-2 which further enhanced VEGF signaling. Furthermore, injection of FHL-2 mRNA into Xenopus embryos resulted in inhibition of vascular network development, assessed by in situ hybridization with endothelial markers. FHL-2 may regulate phosphatidylinositol 3-kinase/Akt via direct suppression of the SK1-S1P pathway in ECs.

  14. Tomato 14-3-3 protein TFT7 interacts with a MAP kinase kinase to regulate immunity-associated programmed cell death mediated by diverse disease resistance proteins.

    PubMed

    Oh, Chang-Sik; Martin, Gregory B

    2011-04-22

    Programmed cell death (PCD) associated with immunity is triggered when a plant disease resistance (R) protein recognizes a corresponding pathogen virulence protein. In tomato, detection by the host Pto kinase of the Pseudomonas syringae proteins AvrPto or AvrPtoB causes localized PCD. Previously, we reported that both MAPKKKα (mitogen-activated protein kinase kinase kinase) and the tomato 14-3-3 protein 7 (TFT7) positively regulate Pto-mediated PCD in tomato and Nicotiana benthamiana. In addition, in contrast to MAPKKKα, TFT7 is required for PCD mediated by four other R proteins. Here we investigate why TFT7 is required for PCD induced by diverse R proteins in plants. We discovered that a MAPKK, SlMKK2, which acts downstream of SlMAPKKKα, also interacts with TFT7 in plant cells. Gene silencing experiments revealed that the orthologous genes of both SlMKK2 and TFT7 in N. benthamiana are required for PCD mediated by the same set of R proteins. SlMKK2 and its orthologs contain a 14-3-3 binding site in their N terminus, and Thr(33) in this site is required for interaction with TFT7 in vivo. Like the structurally similar human 14-3-3ε protein, TFT7 forms a homodimer in vivo. Because TFT7 interacts with both SlMAPKKKα and SlMKK2 and also forms a homodimer, we propose that TFT7 may coordinately recruit these client proteins for efficient signal transfer, leading to PCD induction.

  15. Aurora-A kinase phosphorylation of Aurora-A kinase interacting protein (AIP) and stabilization of the enzyme-substrate complex.

    PubMed

    Katayama, Hiroshi; Sasai, Kaori; Czerniak, Bogdan A; Carter, Jennifer L; Sen, Subrata

    2007-12-01

    Aurora-A is an oncogenic kinase that plays essential roles in mitosis as well as cell survival. Aurora-A interacting protein (AIP) was identified as a negative regulator of Aurora-A with its ectopic over expression inducing destabilization of Aurora-A protein. Here we present evidence that in human cells, contrary to the earlier report, AIP functions in stabilizing rather than destabilizing Aurora-A. Furthermore, AIP is phosphorylated on Serine 70 by Aurora-A but not Aurora-B and expression of phosphorylation mimic mutant of AIP results in prolonged protein stability compared to unphosphorylatable mutant. We observed that when co-expressed with AIP, protein levels of both Aurora-A and Aurora-B are markedly elevated regardless of their kinase activities and phosphorylation state of AIP. Interaction of Aurora kinases with AIP is necessary for this elevated stability. This phenomenon is commonly detected in several human cancer cell lines used in this study. Depletion of AIP by RNA interference decreased Aurora-A but not Aurora-B in two of the three cell lines analyzed, indicating that under physiological condition, AIP functions in stabilization of Aurora-A but not Aurora-B, though this regulation may be dependent on additional factors as well. Further, AIP siRNA induced cell cycle arrest at G2/M, which is consistent with anticipated loss of function of Aurora-A in these cells. Thus, our study provides the first evidence of a role for AIP in G2/M cell cycle progression by cooperatively regulating protein stabilization of its up-stream regulator, Aurora-A kinase through protein-protein interaction as well as protein phosphorylation.

  16. Key Structures and Interactions for Binding of Mycobacterium tuberculosis Protein Kinase B Inhibitors from Molecular Dynamics Simulation.

    PubMed

    Punkvang, Auradee; Kamsri, Pharit; Saparpakorn, Patchreenart; Hannongbua, Supa; Wolschann, Peter; Irle, Stephan; Pungpo, Pornpan

    2015-07-01

    Substituted aminopyrimidine inhibitors have recently been introduced as antituberculosis agents. These inhibitors show impressive activity against protein kinase B, a Ser/Thr protein kinase that is essential for cell growth of M. tuberculosis. However, up to now, X-ray structures of the protein kinase B enzyme complexes with the substituted aminopyrimidine inhibitors are currently unavailable. Consequently, structural details of their binding modes are questionable, prohibiting the structural-based design of more potent protein kinase B inhibitors in the future. Here, molecular dynamics simulations, in conjunction with molecular mechanics/Poisson-Boltzmann surface area binding free-energy analysis, were employed to gain insight into the complex structures of the protein kinase B inhibitors and their binding energetics. The complex structures obtained by the molecular dynamics simulations show binding free energies in good agreement with experiment. The detailed analysis of molecular dynamics results shows that Glu93, Val95, and Leu17 are key residues responsible to the binding of the protein kinase B inhibitors. The aminopyrazole group and the pyrimidine core are the crucial moieties of substituted aminopyrimidine inhibitors for interaction with the key residues. Our results provide a structural concept that can be used as a guide for the future design of protein kinase B inhibitors with highly increased antagonistic activity.

  17. Interaction of ABC multidrug transporters with anticancer protein kinase inhibitors: substrates and/or inhibitors?

    PubMed

    Hegedus, Csilla; Ozvegy-Laczka, Csilla; Szakács, Gergely; Sarkadi, Balázs

    2009-05-01

    Protein kinase inhibitors (PKI) are becoming key agents in modern cancer chemotherapy, and combination of PKIs with classical chemotherapeutic drugs may help to overcome currently untreatable metastatic cancers. Since chemotherapy resistance is a recurrent problem, mechanisms of resistance should be clarified in order to help further drug development. Here we suggest that in addition to PKI resistance based on altered target structures, the active removal of these therapeutic agents by the MDR-ABC transporters should also be considered as a major cause of clinical resistance. We discuss the occurring systemic and cellular mechanisms, which may hamper PKI efficiency, and document the role of selected MDR-ABC transporters in these phenomena through their interactions with these anticancer agents. Moreover, we suggest that PKI interactions with ABC transporters may modulate overall drug metabolism, including the fate of diverse, chemically or target-wise unrelated drugs. These effects are based on multiple forms of MDR-ABC transporter interaction with PKIs, as these compounds may be both substrates and/or inhibitors of an ABC transporter. We propose that these interactions should be carefully considered in clinical application, and a combined MDR-ABC transporter and PKI effect may bring a major advantage in future drug development.

  18. Detecting protein–protein interactions based on kinase-mediated growth induction of mammalian cells

    PubMed Central

    Mabe, Satoru; Nagamune, Teruyuki; Kawahara, Masahiro

    2014-01-01

    Detection of protein–protein interactions (PPIs) is important for understanding numerous processes in mammalian cells; however, existing PPI detection methods often give significant background signals. Here, we propose a novel PPI-detection method based on kinase-mediated growth induction of mammalian cells. In this method, target proteins are fused to the intracellular domain of c-kit (c-kit ICD) and expressed in interleukin-3-dependent mammalian cells. The PPI induces dimerization and activation of c-kit ICDs, which leads to cell growth in the absence of interleukin-3. Using this system, we successfully detected the ligand-dependent homo-interaction of FKBPF36V and hetero-interaction of FKBP and FRBT2098L, as well as the constitutive interaction between MDM2 and a known peptide inhibitor. Intriguingly, cells expressing high-affinity peptide chimeras are selected from the mixture of the cell populations dominantly expressing low-affinity peptide chimeras. These results indicate that this method can detect PPIs with low background levels and is suitable for peptide inhibitor screening. PMID:25135216

  19. The von Hippel–Lindau tumour-suppressor protein interaction with protein kinase

    PubMed Central

    Iturrioz, Xavier; Durgan, Joanne; Calleja, Véronique; Larijani, Banafshé; Okuda, Heiwa; Whelan, Richard; Parker, Peter J.

    2006-01-01

    The VHL (von Hippel–Lindau) tumour-suppressor protein forms a multi-protein complex [VCB (pVHL–elongin C–elongin B)–Cul-2 (Cullin-2)] with elongin C, elongin B, Cul-2 and Rbx1, acting as a ubiquitin-ligase (E3) and directing proteasome-dependent degradation of targeted proteins. The α-subunit of Hif1α (hypoxia-inducible factor 1α) is the principal substrate for the VCB–Cul-2 complex; however, other substrates such as aPKC (atypical protein kinase C) have been reported. In the present study, we show with FRET (fluorescence resonance energy transfer) analysis measured by FLIM (fluorescence lifetime imaging microscopy) that PKCδ and pVHL (VHL protein) interact directly in cells. This occurs through the catalytic domain of PKCδ (residues 432–508), which appears to interact with two regions of pVHL, residues 113–122 and 130–154. Despite this robust interaction, analysis of the PMA-induced proteasome-dependent degradation of PKCδ in different RCC (renal cell carcinoma) lines (RCC4, UMRC2 and 786 O) shows that there is no correlation between the degradation of PKCδ and the presence of active pVHL. Thus, in contrast with aPKC, PKCδ is not a conventional substrate of the ubiquitin-ligase complex, VCB–Cul-2, and the observed interaction between these two proteins must underlie a distinct signalling output. PMID:16669786

  20. Short-Form Ron Promotes Spontaneous Breast Cancer Metastasis through Interaction with Phosphoinositide 3-Kinase

    PubMed Central

    Liu, Xuemei; Zhao, Ling; DeRose, Yoko S.; Lin, Yi-Chun; Bieniasz, Magdalena; Eyob, Henok; Buys, Saundra S.; Neumayer, Leigh

    2011-01-01

    Receptor tyrosine kinases (RTKs) have been the subject of intense investigation due to their widespread deregulation in cancer and the prospect of developing targeted therapeutics against these proteins. The Ron RTK has been implicated in tumor aggressiveness and is a developing target for therapy, but its function in tumor progression and metastasis is not fully understood. We examined Ron activity in human breast cancers and found striking predominance of an activated Ron isoform known as short-form Ron (sfRon), whose function in breast tumors has not been explored. We found that sfRon plays a significant role in aggressiveness of breast cancer in vitro and in vivo. sfRon expression was sufficient to convert slow-growing, nonmetastatic tumors into rapidly growing tumors that spontaneously metastasized to liver and bones. Mechanistic studies revealed that sfRon promotes epithelial-mesenchymal transition, invasion, tumor growth, and metastasis through interaction with p85, the regulatory subunit of phosphoinositide 3-kinase (PI3K). Inhibition of PI3K activity, or introduction of a single mutation in the p85 docking site on sfRon, completely eliminated the ability of sfRon to promote tumor growth, invasion, and metastasis. These findings reveal sfRon as an important new player in breast cancer and validate Ron and PI3K as therapeutic targets in this disease. PMID:22207901

  1. Homeodomain-interacting protein kinase 2 plays an important role in normal terminal erythroid differentiation.

    PubMed

    Hattangadi, Shilpa M; Burke, Karly A; Lodish, Harvey F

    2010-06-10

    Gene-targeting experiments report that the homeodomain-interacting protein kinases 1 and 2, Hipk1 and Hipk2, are essential but redundant in hematopoietic development because Hipk1/Hipk2 double-deficient animals exhibit severe defects in hematopoiesis and vasculogenesis, whereas the single knockouts do not. These serine-threonine kinases phosphorylate and consequently modify the functions of several important hematopoietic transcription factors and cofactors. Here we show that Hipk2 knockdown alone plays a significant role in terminal fetal liver erythroid differentiation. Hipk1 and Hipk2 are highly induced during primary mouse fetal liver erythropoiesis. Specific knockdown of Hipk2 inhibits terminal erythroid cell proliferation (explained in part by impaired cell-cycle progression as well as increased apoptosis) and terminal enucleation as well as the accumulation of hemoglobin. Hipk2 knockdown also reduces the transcription of many genes involved in proliferation and apoptosis as well as important, erythroid-specific genes involved in hemoglobin biosynthesis, such as alpha-globin and mitoferrin 1, demonstrating that Hipk2 plays an important role in some but not all aspects of normal terminal erythroid differentiation.

  2. Homeodomain-interacting protein kinase 2 regulates DNA damage response through interacting with heterochromatin protein 1γ.

    PubMed

    Akaike, Y; Kuwano, Y; Nishida, K; Kurokawa, K; Kajita, K; Kano, S; Masuda, K; Rokutan, K

    2015-06-01

    Homeodomain-interacting protein kinase 2 (HIPK2) is a potential tumor suppressor that has a crucial role in the DNA damage response (DDR) by regulating cell-cycle checkpoint activation and apoptosis. However, it is unclear whether HIPK2 exerts distinct roles in DNA damage repair. The aim of this study was to identify novel target molecule(s) of HIPK2, which mediates HIPK2-dependent DNA damage repair. HIPK2-knockdown human colon cancer cells (HCT116) or hipk1/hipk2 double-deficient mouse embryonic fibroblasts could not remove histone H2A.X phosphorylated at Ser139 (γH2A.X) after irradiation with a sublethal dose (10 J/m(2)) of ultraviolet (UV)-C, resulting in apoptosis. Knockdown of HIPK2 in p53-null HCT116 cells similarly promoted the UV-C-induced γH2A.X accumulation and apoptosis. Proteomic analysis of HIPK2-associated proteins using liquid chromatography-tandem mass spectrometry identified heterochromatin protein 1γ (HP1γ) as a novel target for HIPK2. Immunoprecipitation experiments with HCT116 cells expressing FLAG-tagged HIPK2 and one of the HA-tagged HP1 family members demonstrated that HIPK2 specifically associated with HP1γ, but not with HP1α or HP1β, through its chromo-shadow domain. Mutation of the HP1box motif (883-PTVSV-887) within HIPK2 abolished the association. HP1γ knockdown also enhanced accumulation of γH2A.X and apoptosis after sublethal UV-C irradiation. In vitro kinase assay demonstrated an HP1γ-phosphorylating activity of HIPK2. Sublethal UV-C irradiation phosphorylated HP1γ. This phosphorylation was absent in endogenous HIPK2-silenced cells with HIPK2 3'UTR siRNA. Overexpression of FLAG-HIPK2, but not the HP1box-mutated or kinase-dead HIPK2 mutant, in the HIPK2-silenced cells increased HP1γ binding to trimethylated (Lys9) histone H3 (H3K9me3), rescued the UV-C-induced phosphorylation of HP1γ, triggered release of HP1γ from histone H3K9me3 and suppressed γH2A.X accumulation. Our results suggest that HIPK2-dependent

  3. LRRK2 kinase activity mediates toxic interactions between genetic mutation and oxidative stress in a Drosophila model: suppression by curcumin.

    PubMed

    Yang, Dejun; Li, Tianxia; Liu, Zhaohui; Arbez, Nicolas; Yan, Jianqun; Moran, Timothy H; Ross, Christopher A; Smith, Wanli W

    2012-09-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by selective loss of dopaminergic neurons and the presence of Lewy bodies. The pathogenesis of PD is believed to involve both genetic susceptibility and environmental factors. Mutations in Leucine-rich repeat kinase 2 (LRRK2) cause genetic forms of PD, and the LRRK2 locus contributes to sporadic PD. Environmental toxins are believed to act in part by causing oxidative stress. Here we employed cell and Drosophila models to investigate the interaction between LRRK2 genetic mutations and oxidative stress. We found that H(2)O(2) increased LRRK2 kinase activity and enhanced LRRK2 cell toxicity in cultured cells and mouse primary cortical neurons. Furthermore, a sub-toxic dose of H(2)O(2) significantly shortened the survival of LRRK2 transgenic flies and augmented LRRK2-induced locomotor defects and dopamine neuron loss. Treatment with a LRRK2 kinase inhibitor (GW5074) or an anti-oxidant (curcumin) significantly suppressed these PD-like phenotypes in flies. Moreover, curcumin significantly reduced LRRK2 kinase activity and the levels of oxidized proteins, and thus acted as not only an antioxidant but also a LRRK2 kinase inhibitor. These results indicate that LRRK2 genetic alterations can interact with oxidative stress, converging on a pathogenic pathway that may be related to PD. These studies also identified curcumin as a LRRK2 kinase inhibitor that may be a useful candidate for LRRK2-linked PD intervention.

  4. Polo kinase interacts with RacGAP50C and is required to localize the cytokinesis initiation complex.

    PubMed

    Ebrahimi, Saman; Fraval, Hamilton; Murray, Michael; Saint, Robert; Gregory, Stephen L

    2010-09-10

    The assembly and constriction of an actomyosin contractile ring in cytokinesis is dependent on the activation of Rho at the equatorial cortex by a complex, here termed the cytokinesis initiation complex, between a microtubule-associated kinesin-like protein (KLP), a member of the RacGAP family, and the RhoGEF Pebble. Recently, the activity of the mammalian Polo kinase ortholog Plk1 has been implicated in the formation of this complex. We show here that Polo kinase interacts directly with the cytokinesis initiation complex by binding RacGAP50C. We find that a new domain of Polo kinase, termed the intermediate domain, interacts directly with RacGAP50C and that Polo kinase is essential for localization of the KLP-RacGAP centralspindlin complex to the cell equator and spindle midzone. In the absence of Polo kinase, RacGAP50C and Pav-KLP fail to localize normally, instead decorating microtubules along their length. Our results indicate that Polo kinase directly binds the conserved cytokinesis initiation complex and is required to trigger centralspindlin localization as a first step in cytokinesis.

  5. Arabidopsis CBL interacting protein kinase 3 interacts with ABR1, an APETALA2 domain transcription factor, to regulate ABA responses.

    PubMed

    Sanyal, Sibaji K; Kanwar, Poonam; Yadav, Akhilesh K; Sharma, Cheshta; Kumar, Ashish; Pandey, Girdhar K

    2017-01-01

    Calcium (Ca(2+)) plays a vital role as a second messenger in several signaling pathways in plants. The calcineurin B-like proteins (CBLs) represent a family of plant calcium-binding proteins that function in propagating Ca(2+) signals by interacting with CBL interacting protein kinases (CIPKs). Phosphorylation of CBL by CIPK is essential for the module to display full activity towards its target protein. Previous genetic analysis showed that the function of CBL9-CIPK3 module was implicated in negatively regulating seed germination and early development. In the present study, we have biochemically investigated the interaction of CBL9-CIPK3 module and our findings show that CBL9 is phosphorylated by CIPK3. Moreover, Abscisic acid repressor 1 (ABR1) is identified as the downstream target of CIPK3 and CIPK3-ABR1 function to regulate ABA responses during seed germination. Our study also indicates that the role of ABR1 is not limited to seed germination but it also regulates the ABA dependent processes in the adult stage of plant development. Combining our results, we conclude that the CBL9-CIPK3-ABR1 pathway functions to regulate seed germination and ABA dependent physiological processes in Arabidopsis.

  6. Interaction between protein kinase Cmu and the vanilloid receptor type 1.

    PubMed

    Wang, Yun; Kedei, Noemi; Wang, Min; Wang, Q Jane; Huppler, Anna R; Toth, Attila; Tran, Richard; Blumberg, Peter M

    2004-12-17

    The capsaicin receptor VR1 is a polymodal nociceptor activated by multiple stimuli. It has been reported that protein kinase C plays a role in the sensitization of VR1. Protein kinase D/PKCmu is a member of the protein kinase D serine/threonine kinase family that exhibits structural, enzymological, and regulatory features distinct from those of the PKCs, with which they are related. As part of our effort to optimize conditions for evaluating VR1 pharmacology, we found that treatment of Chinese hamster ovary (CHO) cells heterologously expressing rat VR1 (CHO/rVR1) with butyrate enhanced rVR1 expression and activity. The expression of PKCmu and PKCbeta1, but not of other PKC isoforms, was also enhanced by butyrate treatment, suggesting the possibility that these two isoforms might contribute to the enhanced activity of rVR1. In support of this hypothesis, we found the following. 1) Overexpression of PKCmu enhanced the response of rVR1 to capsaicin and low pH, and expression of a dominant negative variant of PKCmu reduced the response of rVR1. 2) Reduction of endogenous PKCmu using antisense oligonucleotides decreased the response of exogenous rVR1 expressed in CHO cells as well as of endogenous rVR1 in dorsal root ganglion neurons. 3) PKCmu localized to the plasma membrane when overexpressed in CHO/rVR1 cells. 4) PKCmu directly bound to rVR1 expressed in CHO cells as well as to endogenous rVR1 in dorsal root ganglia or to an N-terminal fragment of rVR1, indicating a direct interaction between PKCmu and rVR1. 5) PKCmu directly phosphorylated rVR1 or a longer N-terminal fragment (amino acids 1-118) of rVR1 but not a shorter one (amino acids 1-99). 6) Mutation of S116A in rVR1 blocked both the phosphorylation of rVR1 by PKCmu and the enhancement by PKCmu of the rVR1 response to capsaicin. We conclude that PKCmu functions as a direct modulator of rVR1.

  7. Phosphorylation of LRRK2 by casein kinase 1α regulates trans-Golgi clustering via differential interaction with ARHGEF7.

    PubMed

    Chia, Ruth; Haddock, Sara; Beilina, Alexandra; Rudenko, Iakov N; Mamais, Adamantios; Kaganovich, Alice; Li, Yan; Kumaran, Ravindran; Nalls, Michael A; Cookson, Mark R

    2014-12-15

    LRRK2, a gene relevant to Parkinson's disease, encodes a scaffolding protein with both GTPase and kinase activities. LRRK2 protein is itself phosphorylated and therefore is subject to regulation by cell signalling; however, the kinase(s) responsible for this event have not been definitively identified. Here using an unbiased siRNA kinome screen, we identify and validate casein kinase 1α (CK1α) as being responsible for LRRK2 phosphorylation, including in the adult mouse striatum. We further show that LRRK2 recruitment to TGN46-positive Golgi-derived vesicles is modulated by constitutive LRRK2 phosphorylation by CK1α. These effects are mediated by differential protein interactions of LRRK2 with a guanine nucleotide exchange factor, ARHGEF7. These pathways are therefore likely involved in the physiological maintenance of the Golgi in cells, which may play a role in the pathogenesis of Parkinson's disease.

  8. The Tyrosine Kinase c-Abl Promotes Homeodomain-interacting Protein Kinase 2 (HIPK2) Accumulation and Activation in Response to DNA Damage.

    PubMed

    Reuven, Nina; Adler, Julia; Porat, Ziv; Polonio-Vallon, Tilman; Hofmann, Thomas G; Shaul, Yosef

    2015-07-03

    The non-receptor tyrosine kinase c-Abl is activated in response to DNA damage and induces p73-dependent apoptosis. Here, we investigated c-Abl regulation of the homeodomain-interacting protein kinase 2 (HIPK2), an important regulator of p53-dependent apoptosis. c-Abl phosphorylated HIPK2 at several sites, and phosphorylation by c-Abl protected HIPK2 from degradation mediated by the ubiquitin E3 ligase Siah-1. c-Abl and HIPK2 synergized in activating p53 on apoptotic promoters in a reporter assay, and c-Abl was required for endogenous HIPK2 accumulation and phosphorylation of p53 at Ser(46) in response to DNA damage by γ- and UV radiation. Accumulation of HIPK2 in nuclear speckles and association with promyelocytic leukemia protein (PML) in response to DNA damage were also dependent on c-Abl activity. At high cell density, the Hippo pathway inhibits DNA damage-induced c-Abl activation. Under this condition, DNA damage-induced HIPK2 accumulation, phosphorylation of p53 at Ser(46), and apoptosis were attenuated. These data demonstrate a new mechanism for the induction of DNA damage-induced apoptosis by c-Abl and illustrate network interactions between serine/threonine and tyrosine kinases that dictate cell fate. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Aurora kinase A interacts with H-Ras and potentiates Ras-MAPK signaling | Office of Cancer Genomics

    Cancer.gov

    In cancer, upregulated Ras promotes cellular transformation and proliferation in part through activation of oncogenic Ras-MAPK signaling. While directly inhibiting Ras has proven challenging, new insights into Ras regulation through protein-protein interactions may offer unique opportunities for therapeutic intervention. Here we report the identification and validation of Aurora kinase A (Aurora A) as a novel Ras binding protein. We demonstrate that the kinase domain of Aurora A mediates the interaction with the N-terminal domain of H-Ras.

  10. Heart failure biomarkers: focus on interleukin-1 receptor-like 1-based blood tests.

    PubMed

    Broch, K; Ueland, T; Yndestad, A; Aukrust, P; Gullestad, L

    2012-07-01

    Heart failure is a leading cause of morbidity and mortality in the Western world. It is often a progressive disease, and the pathophysiology behind this adverse development is not completely understood. Biomarkers are of increasing importance in heart failure research. Despite a growing number of candidate markers, only a select few have made it into clinical practice. Interleukin-1 receptor-like 1 (IL1RL1), also known as protein ST2, is the receptor for interleukin-33 (IL-33), a cytokine involved in T-cell-mediated immune responses. IL1RL1 expression is induced by cardiomyocyte stretch, and IL1RL1 may thus reflect the activity of two interacting processes in heart failure: inflammation and hemodynamic stress. In recent years, the soluble, truncated IL1RL1 isoform B has been shown to provide prognostic information in heart failure. Although ILRL1 isoform B does not seem to aid in the diagnosis of the disease, an elevated plasma/serum concentration of this marker is firmly associated with adverse outcome in patients with heart failure. This association has been established in different heart failure cohorts and is independent of age, etiology of heart failure and left ventricular function. Ultimately, the IL-33/IL1RL1 pathway may become a therapeutic target in heart failure.

  11. Receptor protein kinase FERONIA controls leaf starch accumulation by interacting with glyceraldehyde-3-phosphate dehydrogenase.

    PubMed

    Yang, Tao; Wang, Long; Li, Chiyu; Liu, Ying; Zhu, Sirui; Qi, Yinyao; Liu, Xuanming; Lin, Qinglu; Luan, Sheng; Yu, Feng

    2015-09-11

    Cell expansion is coordinated by several cues, but available energy is the major factor determining growth. Receptor protein kinase FERONIA (FER) is a master regulator of cell expansion, but the details of its control mechanisms are not clear. Here we show that FER interacts with cytosolic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH, GAPC1 and GAPC2), that catalyzes a key reaction in glycolysis, which contributes to energy production. When there is an FER deficiency, there are corresponding decreases in the enzyme activity of GAPDH and increased amounts of starch. More importantly, gapc1/2 mutants mimic fer4 mutants. These data indicate that FER regulated starch content is an evolutionarily conserved function in plants that connects the cell expansion and energy metabolism pathways.

  12. Implications of promiscuous Pim-1 kinase fragment inhibitor hydrophobic interactions for fragment-based drug design.

    PubMed

    Good, Andrew C; Liu, Jinyu; Hirth, Bradford; Asmussen, Gary; Xiang, Yibin; Biemann, Hans-Peter; Bishop, Kimberly A; Fremgen, Trisha; Fitzgerald, Maria; Gladysheva, Tatiana; Jain, Annuradha; Jancsics, Katherine; Metz, Markus; Papoulis, Andrew; Skerlj, Renato; Stepp, J David; Wei, Ronnie R

    2012-03-22

    We have studied the subtleties of fragment docking and binding using data generated in a Pim-1 kinase inhibitor program. Crystallographic and docking data analyses have been undertaken using inhibitor complexes derived from an in-house surface plasmon resonance (SPR) fragment screen, a virtual needle screen, and a de novo designed fragment inhibitor hybrid. These investigations highlight that fragments that do not fill their binding pocket can exhibit promiscuous hydrophobic interactions due to the lack of steric constraints imposed on them by the boundaries of said pocket. As a result, docking modes that disagree with an observed crystal structure but maintain key crystallographically observed hydrogen bonds still have potential value in ligand design and optimization. This observation runs counter to the lore in fragment-based drug design that all fragment elaboration must be based on the parent crystal structure alone.

  13. A collective form of cell death requires homeodomain interacting protein kinase.

    PubMed

    Link, Nichole; Chen, Po; Lu, Wan-Jin; Pogue, Kristi; Chuong, Amy; Mata, Miguel; Checketts, Joshua; Abrams, John M

    2007-08-13

    We examined post-eclosion elimination of the Drosophila wing epithelium in vivo where collective "suicide waves" promote sudden, coordinated death of epithelial sheets without a final engulfment step. Like apoptosis in earlier developmental stages, this unique communal form of cell death is controlled through the apoptosome proteins, Dronc and Dark, together with the IAP antagonists, Reaper, Grim, and Hid. Genetic lesions in these pathways caused intervein epithelial cells to persist, prompting a characteristic late-onset blemishing phenotype throughout the wing blade. We leveraged this phenotype in mosaic animals to discover relevant genes and establish here that homeodomain interacting protein kinase (HIPK) is required for collective death of the wing epithelium. Extra cells also persisted in other tissues, establishing a more generalized requirement for HIPK in the regulation of cell death and cell numbers.

  14. Disruptions in asymmetric centrosome inheritance and WDR62-Aurora kinase B interactions in primary microcephaly

    PubMed Central

    Sgourdou, Paraskevi; Mishra-Gorur, Ketu; Saotome, Ichiko; Henagariu, Octavian; Tuysuz, Beyhan; Campos, Cynthia; Ishigame, Keiko; Giannikou, Krinio; Quon, Jennifer L.; Sestan, Nenad; Caglayan, Ahmet O.; Gunel, Murat; Louvi, Angeliki

    2017-01-01

    Recessive mutations in WD repeat domain 62 (WDR62) cause microcephaly and a wide spectrum of severe brain malformations. Disruption of the mouse ortholog results in microcephaly underlain by reduced proliferation of neocortical progenitors during late neurogenesis, abnormalities in asymmetric centrosome inheritance leading to neuronal migration delays, and altered neuronal differentiation. Spindle pole localization of WDR62 and mitotic progression are defective in patient-derived fibroblasts, which, similar to mouse neocortical progenitors, transiently arrest at prometaphase. Expression of WDR62 is closely correlated with components of the chromosome passenger complex (CPC), a key regulator of mitosis. Wild type WDR62, but not disease-associated mutant forms, interacts with the CPC core enzyme Aurora kinase B and staining of CPC components at centromeres is altered in patient-derived fibroblasts. Our findings demonstrate critical and diverse functions of WDR62 in neocortical development and provide insight into the mechanisms by which its disruption leads to a plethora of structural abnormalities. PMID:28272472

  15. Characterization of the interactions between the active site of a protein tyrosine kinase and a divalent metal activator

    PubMed Central

    Lin, Xiaofeng; Ayrapetov, Marina K; Sun, Gongqin

    2005-01-01

    Background Protein tyrosine kinases are important enzymes for cell signalling and key targets for anticancer drug discovery. The catalytic mechanisms of protein tyrosine kinase-catalysed phosphorylation are not fully understood. Protein tyrosine kinase Csk requires two Mg2+ cations for activity: one (M1) binds to ATP, and the other (M2) acts as an essential activator. Results Experiments in this communication characterize the interaction between M2 and Csk. Csk activity is sensitive to pH in the range of 6 to 7. Kinetic characterization indicates that the sensitivity is not due to altered substrate binding, but caused by the sensitivity of M2 binding to pH. Several residues in the active site with potential of binding M2 are mutated and the effect on metal activation studied. An active mutant of Asn319 is generated, and this mutation does not alter the metal binding characteristics. Mutations of Glu236 or Asp332 abolish the kinase activity, precluding a positive or negative conclusion on their role in M2 coordination. Finally, the ability of divalent metal cations to activate Csk correlates to a combination of ionic radius and the coordination number. Conclusion These studies demonstrate that M2 binding to Csk is sensitive to pH, which is mainly responsible for Csk activity change in the acidic arm of the pH response curve. They also demonstrate critical differences in the metal activator coordination sphere in protein tyrosine kinase Csk and a protein Ser/Thr kinase, the cAMP-dependent protein kinase. They shed light on the physical interactions between a protein tyrosine kinase and a divalent metal activator. PMID:16305747

  16. AMP-activated Protein Kinase Up-regulates Mitogen-activated Protein (MAP) Kinase-interacting Serine/Threonine Kinase 1a-dependent Phosphorylation of Eukaryotic Translation Initiation Factor 4E.

    PubMed

    Zhu, Xiaoqing; Dahlmans, Vivian; Thali, Ramon; Preisinger, Christian; Viollet, Benoit; Voncken, J Willem; Neumann, Dietbert

    2016-08-12

    AMP-activated protein kinase (AMPK) is a molecular energy sensor that acts to sustain cellular energy balance. Although AMPK is implicated in the regulation of a multitude of ATP-dependent cellular processes, exactly how these processes are controlled by AMPK as well as the identity of AMPK targets and pathways continues to evolve. Here we identify MAP kinase-interacting serine/threonine protein kinase 1a (MNK1a) as a novel AMPK target. Specifically, we show AMPK-dependent Ser(353) phosphorylation of the human MNK1a isoform in cell-free and cellular systems. We show that AMPK and MNK1a physically interact and that in vivo MNK1a-Ser(353) phosphorylation requires T-loop phosphorylation, in good agreement with a recently proposed structural regulatory model of MNK1a. Our data suggest a physiological role for MNK1a-Ser(353) phosphorylation in regulation of the MNK1a kinase, which correlates with increased eIF4E phosphorylation in vitro and in vivo. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. A Dual Role for Receptor-interacting Protein Kinase 2 (RIP2) Kinase Activity in Nucleotide-binding Oligomerization Domain 2 (NOD2)-dependent Autophagy*

    PubMed Central

    Homer, Craig R.; Kabi, Amrita; Marina-García, Noemí; Sreekumar, Arun; Nesvizhskii, Alexey I.; Nickerson, Kourtney P.; Chinnaiyan, Arul M.; Nuñez, Gabriel; McDonald, Christine

    2012-01-01

    Autophagy is triggered by the intracellular bacterial sensor NOD2 (nucleotide-binding, oligomerization domain 2) as an anti-bacterial response. Defects in autophagy have been implicated in Crohn's disease susceptibility. The molecular mechanisms of activation and regulation of this process by NOD2 are not well understood, with recent studies reporting conflicting requirements for RIP2 (receptor-interacting protein kinase 2) in autophagy induction. We examined the requirement of NOD2 signaling mediated by RIP2 for anti-bacterial autophagy induction and clearance of Salmonella typhimurium in the intestinal epithelial cell line HCT116. Our data demonstrate that NOD2 stimulates autophagy in a process dependent on RIP2 tyrosine kinase activity. Autophagy induction requires the activity of the mitogen-activated protein kinases MEKK4 and p38 but is independent of NFκB signaling. Activation of autophagy was inhibited by a PP2A phosphatase complex, which interacts with both NOD2 and RIP2. PP2A phosphatase activity inhibited NOD2-dependent autophagy but not activation of NFκB or p38. Upon stimulation of NOD2, the phosphatase activity of the PP2A complex is inhibited through tyrosine phosphorylation of the catalytic subunit in a process dependent on RIP2 activity. These findings demonstrate that RIP2 tyrosine kinase activity is not only required for NOD2-dependent autophagy but plays a dual role in this process. RIP2 both sends a positive autophagy signal through activation of p38 MAPK and relieves repression of autophagy mediated by the phosphatase PP2A. PMID:22665475

  18. Conformational instability of the MARK3 UBA domain compromises ubiquitin recognition and promotes interaction with the adjacent kinase domain

    SciTech Connect

    Murphy, James M.; Korzhnev, Dmitry M.; Ceccarelli, Derek F.; Briant, Douglas J.; Zarrine-Afsar, Arash; Sicheri, Frank; Kay, Lewis E.; Pawson, Tony

    2012-10-23

    The Par-1/MARK protein kinases play a pivotal role in establishing cellular polarity. This family of kinases contains a unique domain architecture, in which a ubiquitin-associated (UBA) domain is located C-terminal to the kinase domain. We have used a combination of x-ray crystallography and NMR dynamics experiments to understand the interaction of the human (h) MARK3 UBA domain with the adjacent kinase domain as compared with ubiquitin. The x-ray crystal structure of the linked hMARK3 kinase and UBA domains establishes that the UBA domain forms a stable intramolecular interaction with the N-terminal lobe of the kinase domain. However, solution-state NMR studies of the isolated UBA domain indicate that it is highly dynamic, undergoing conformational transitions that can be explained by a folding-unfolding equilibrium. NMR titration experiments indicated that the hMARK3 UBA domain has a detectable but extremely weak affinity for mono ubiquitin, which suggests that conformational instability of the isolated hMARK3 UBA domain attenuates binding to ubiquitin despite the presence of residues typically involved in ubiquitin recognition. Our data identify a molecular mechanism through which the hMARK3 UBA domain has evolved to bind the kinase domain, in a fashion that stabilizes an open conformation of the N- and C-terminal lobes, at the expense of its capacity to engage ubiquitin. These results may be relevant more generally to the 30% of UBA domains that lack significant ubiquitin-binding activity, and they suggest a unique mechanism by which interaction domains may evolve new binding properties.

  19. High-affinity interaction of tyrosine kinase inhibitors with the ABCG2 multidrug transporter.

    PubMed

    Ozvegy-Laczka, Csilla; Hegedus, Tamás; Várady, György; Ujhelly, Olga; Schuetz, John D; Váradi, András; Kéri, György; Orfi, László; Német, Katalin; Sarkadi, Balázs

    2004-06-01

    Tyrosine kinase inhibitors (TKIs) are promising new agents for specific inhibition of malignant cell growth and metastasis formation. Because most of the TKIs have to reach an intracellular target, specific membrane transporters may significantly modulate their effectiveness. In addition, the hydrophobic TKIs may interact with so-called multidrug transporters and thus alter the cellular distribution of unrelated pharmacological agents. In the present work, we show that certain TKIs, already in the clinical phase of drug development, directly interact with the ABCG2 multidrug transporter protein with a high affinity. We found that in several in vitro assay systems, STI-571 (Gleevec; imatinib mesylate), ZD1839 (Iressa; gefitinib), and N-[4-[(3-bromophenyl)amino]-6-quinazolinyl]-2-butynamide (EKI-785) interacted with ABCG2 at submicromolar concentrations, whereas other multidrug transporters, human multidrug resistance protein (P-glycoprotein, ABCB1) and human multidrug resistance protein 1 (ABCC1), showed much lower reactivity toward these agents. Low concentrations of the TKIs examined selectively modulated ABCG2-ATPase activity, inhibited ABCG2-dependent active drug extrusion, and significantly affected drug resistance patterns in cells expressing ABCG2. Our results indicate that multidrug resistance protein modulation by TKIs may be an important factor in the clinical treatment of cancer patients. These data also raise the possibility that an extrusion of TKIs by multidrug transporters, e.g., ABCG2, may be involved in tumor cell TKI resistance.

  20. In Vivo Consequences of Disrupting SH3-Mediated Interactions of the Inducible T-Cell Kinase

    PubMed Central

    Levytskyy, Roman M.; Hirve, Nupura; Guimond, David M.; Min, Lie; Andreotti, Amy H.; Tsoukas, Constantine D.

    2012-01-01

    ITK-SH3-mediated interactions, both with exogenous ligands and via intermolecular self-association with ITK-SH2, have been shown to be important for regulation of ITK activity. The biological significance of these competing SH3 interactions is not completely understood. A mutant of ITK where substitution of the SH3 domain with that of the related kinase BTK (ITK-BTK(SH3)) was used to disrupt intermolecular self-association of ITK while maintaining canonical binding to exogenous ligands such as SLP-76. ITK-BTK(SH3) displays reduced association with SLP-76 leading to inefficient transphosphorylation, reduced phosphorylation of PLCγ1, and diminished Th2 cytokine production. In contrast, ITK-BTK(SH3) displays no defect in its localization to the T-cell-APC contact site. Another mutation, Y511F, in the activation loop of ITK, impairs ITK activation. T cells expressing ITK-Y511F display defective phosphorylation of ITK and its downstream target PLCγ1, as well as significant inhibition of Th2 cytokines. In contrast, the inducible localization of ITK-Y511F to the T cell-APC contact site and its association with SLP-76 are not affected. The presented data lend further support to the hypothesis that precise interactions between ITK and its signaling partners are required to support ITK signaling downstream of the TCR. PMID:22649724

  1. In Vivo Consequences of Disrupting SH3-Mediated Interactions of the Inducible T-Cell Kinase.

    PubMed

    Levytskyy, Roman M; Hirve, Nupura; Guimond, David M; Min, Lie; Andreotti, Amy H; Tsoukas, Constantine D

    2012-01-01

    ITK-SH3-mediated interactions, both with exogenous ligands and via intermolecular self-association with ITK-SH2, have been shown to be important for regulation of ITK activity. The biological significance of these competing SH3 interactions is not completely understood. A mutant of ITK where substitution of the SH3 domain with that of the related kinase BTK (ITK-BTK((SH3))) was used to disrupt intermolecular self-association of ITK while maintaining canonical binding to exogenous ligands such as SLP-76. ITK-BTK((SH3)) displays reduced association with SLP-76 leading to inefficient transphosphorylation, reduced phosphorylation of PLCγ1, and diminished Th(2) cytokine production. In contrast, ITK-BTK((SH3)) displays no defect in its localization to the T-cell-APC contact site. Another mutation, Y511F, in the activation loop of ITK, impairs ITK activation. T cells expressing ITK-Y511F display defective phosphorylation of ITK and its downstream target PLCγ1, as well as significant inhibition of Th(2) cytokines. In contrast, the inducible localization of ITK-Y511F to the T cell-APC contact site and its association with SLP-76 are not affected. The presented data lend further support to the hypothesis that precise interactions between ITK and its signaling partners are required to support ITK signaling downstream of the TCR.

  2. Buprenorphine-induced antinociception is mediated by mu-opioid receptors and compromised by concomitant activation of opioid receptor-like receptors.

    PubMed

    Lutfy, Kabirullah; Eitan, Shoshana; Bryant, Camron D; Yang, Yu C; Saliminejad, Nazli; Walwyn, Wendy; Kieffer, Brigitte L; Takeshima, Hiroshi; Carroll, F Ivy; Maidment, Nigel T; Evans, Christopher J

    2003-11-12

    Buprenorphine is a mixed opioid receptor agonist-antagonist used clinically for maintenance therapy in opiate addicts and pain management. Dose-response curves for buprenorphine-induced antinociception display ceiling effects or are bell shaped, which have been attributed to the partial agonist activity of buprenorphine at opioid receptors. Recently, buprenorphine has been shown to activate opioid receptor-like (ORL-1) receptors, also known as OP4 receptors. Here we demonstrate that buprenorphine, but not morphine, activates mitogen-activated protein kinase and Akt via ORL-1 receptors. Because the ORL-1 receptor agonist orphanin FQ/nociceptin blocks opioid-induced antinociception, we tested the hypothesis that buprenorphine-induced antinociception might be compromised by concomitant activation of ORL-1 receptors. In support of this hypothesis, the antinociceptive effect of buprenorphine, but not morphine, was markedly enhanced in mice lacking ORL-1 receptors using the tail-flick assay. Additional support for a modulatory role for ORL-1 receptors in buprenorphine-induced antinociception was that coadministration of J-113397, an ORL-1 receptor antagonist, enhanced the antinociceptive efficacy of buprenorphine in wild-type mice but not in mice lacking ORL-1 receptors. The ORL-1 antagonist also eliminated the bell-shaped dose-response curve for buprenorphine-induced antinociception in wild-type mice. Although buprenorphine has been shown to interact with multiple opioid receptors, mice lacking micro-opioid receptors failed to exhibit antinociception after buprenorphine administration. Our results indicate that the antinociceptive effect of buprenorphine in mice is micro-opioid receptor-mediated yet severely compromised by concomitant activation of ORL-1 receptors.

  3. Multiple orphan histidine kinases interact directly with Spo0A to control the initiation of endospore formation in Clostridium acetobutylicum

    PubMed Central

    Steiner, Elisabeth; Dago, Angel E.; Young, Danielle I.; Heap, John T.; Minton, Nigel P.; Hoch, James A.

    2011-01-01

    The phosphorylated Spo0A transcription factor controls the initiation of endospore formation in Clostridium acetobutylicum, but genes encoding key phosphorelay components, Spo0F and Spo0B, are missing in the genome. We hypothesized that the five orphan histidine kinases of C. acetobutylicum interact directly with Spo0A to control its phosphorylation state. Sequential targeted gene disruption and gene expression profiling provided evidence for two pathways for Spo0A activation, one dependent on a histidine kinase encoded by cac0323, the other on both histidine kinases encoded by cac0903 and cac3319. Purified Cac0903 and Cac3319 kinases autophosphorylated and transferred phosphoryl groups to Spo0A in vitro, confirming their role in Spo0A activation in vivo. A cac0437 mutant hyper-sporulated, suggesting that Cac0437 is a modulator that prevents sporulation and maintains cellular Spo0A~P homeostasis during growth. Accordingly, Cac0437 has apparently lost the ability to autophosphorylate in vitro; instead it catalyses the ATP-dependent dephosphorylation of Spo0A~P releasing inorganic phosphate. Direct phosphorylation of Spo0A by histidine kinases and dephosphorylation by kinase-like proteins may be a common feature of the clostridia that may represent the ancestral state before the great oxygen event some 2.4 billion years ago, after which additional phosphorelay proteins were recruited in the evolutionary lineage that led to the bacilli. PMID:21401736

  4. Activation of the Stt7/STN7 Kinase through Dynamic Interactions with the Cytochrome b6f Complex1[OPEN

    PubMed Central

    Shapiguzov, Alexey; Chai, Xin; Fucile, Geoffrey; Longoni, Paolo; Zhang, Lixin

    2016-01-01

    Photosynthetic organisms have the ability to adapt to changes in light quality by readjusting the cross sections of the light-harvesting systems of photosystem II (PSII) and photosystem I (PSI). This process, called state transitions, maintains the redox poise of the photosynthetic electron transfer chain and ensures a high photosynthetic yield when light is limiting. It is mediated by the Stt7/STN7 protein kinase, which is activated through the cytochrome b6f complex upon reduction of the plastoquinone pool. Its probable major substrate, the light-harvesting complex of PSII, once phosphorylated, dissociates from PSII and docks to PSI, thereby restoring the balance of absorbed light excitation energy between the two photosystems. Although the kinase is known to be inactivated under high-light intensities, the molecular mechanisms governing its regulation remain unknown. In this study we monitored the redox state of a conserved and essential Cys pair of the Stt7/STN7 kinase and show that it forms a disulfide bridge. We could not detect any change in the redox state of these Cys during state transitions and high-light treatment. It is only after prolonged anaerobiosis that this disulfide bridge is reduced. It is likely to be mainly intramolecular, although kinase activation may involve a transient covalently linked kinase dimer with two intermolecular disulfide bonds. Using the yeast two-hybrid system, we have mapped one interaction site of the kinase on the Rieske protein of the cytochrome b6f complex. PMID:26941194

  5. The MADD-3 LAMMER Kinase Interacts with a p38 MAP Kinase Pathway to Regulate the Display of the EVA-1 Guidance Receptor in Caenorhabditis elegans.

    PubMed

    D'Souza, Serena A; Rajendran, Luckshika; Bagg, Rachel; Barbier, Louis; van Pel, Derek M; Moshiri, Houtan; Roy, Peter J

    2016-04-01

    The proper display of transmembrane receptors on the leading edge of migrating cells and cell extensions is essential for their response to guidance cues. We previously discovered that MADD-4, which is an ADAMTSL secreted by motor neurons in Caenorhabditis elegans, interacts with an UNC-40/EVA-1 co-receptor complex on muscles to attract plasma membrane extensions called muscle arms. In nematodes, the muscle arm termini harbor the post-synaptic elements of the neuromuscular junction. Through a forward genetic screen for mutants with disrupted muscle arm extension, we discovered that a LAMMER kinase, which we call MADD-3, is required for the proper display of the EVA-1 receptor on the muscle's plasma membrane. Without MADD-3, EVA-1 levels decrease concomitantly with a reduction of the late-endosomal marker RAB-7. Through a genetic suppressor screen, we found that the levels of EVA-1 and RAB-7 can be restored in madd-3 mutants by eliminating the function of a p38 MAP kinase pathway. We also found that EVA-1 and RAB-7 will accumulate in madd-3 mutants upon disrupting CUP-5, which is a mucolipin ortholog required for proper lysosome function. Together, our data suggests that the MADD-3 LAMMER kinase antagonizes the p38-mediated endosomal trafficking of EVA-1 to the lysosome. In this way, MADD-3 ensures that sufficient levels of EVA-1 are present to guide muscle arm extension towards the source of the MADD-4 guidance cue.

  6. The MADD-3 LAMMER Kinase Interacts with a p38 MAP Kinase Pathway to Regulate the Display of the EVA-1 Guidance Receptor in Caenorhabditis elegans

    PubMed Central

    D’Souza, Serena A.; Rajendran, Luckshika; Bagg, Rachel; van Pel, Derek M.; Moshiri, Houtan; Roy, Peter J.

    2016-01-01

    The proper display of transmembrane receptors on the leading edge of migrating cells and cell extensions is essential for their response to guidance cues. We previously discovered that MADD-4, which is an ADAMTSL secreted by motor neurons in Caenorhabditis elegans, interacts with an UNC-40/EVA-1 co-receptor complex on muscles to attract plasma membrane extensions called muscle arms. In nematodes, the muscle arm termini harbor the post-synaptic elements of the neuromuscular junction. Through a forward genetic screen for mutants with disrupted muscle arm extension, we discovered that a LAMMER kinase, which we call MADD-3, is required for the proper display of the EVA-1 receptor on the muscle’s plasma membrane. Without MADD-3, EVA-1 levels decrease concomitantly with a reduction of the late-endosomal marker RAB-7. Through a genetic suppressor screen, we found that the levels of EVA-1 and RAB-7 can be restored in madd-3 mutants by eliminating the function of a p38 MAP kinase pathway. We also found that EVA-1 and RAB-7 will accumulate in madd-3 mutants upon disrupting CUP-5, which is a mucolipin ortholog required for proper lysosome function. Together, our data suggests that the MADD-3 LAMMER kinase antagonizes the p38-mediated endosomal trafficking of EVA-1 to the lysosome. In this way, MADD-3 ensures that sufficient levels of EVA-1 are present to guide muscle arm extension towards the source of the MADD-4 guidance cue. PMID:27123983

  7. Protein Kinase D Interacts with Neuronal Nitric Oxide Synthase and Phosphorylates the Activatory Residue Serine1412

    PubMed Central

    García-Guerra, Lucía; Pose-Utrilla, Julia; Rodríguez-Crespo, Ignacio; Iglesias, Teresa

    2014-01-01

    Neuronal Nitric Oxide Synthase (nNOS) is the biosynthetic enzyme responsible for nitric oxide (·NO) production in muscles and in the nervous system. This constitutive enzyme, unlike its endothelial and inducible counterparts, presents an N-terminal PDZ domain known to display a preference for PDZ-binding motifs bearing acidic residues at -2 position. In a previous work, we discovered that the C-terminal end of two members of protein kinase D family (PKD1 and PKD2) constitutes a PDZ-ligand. PKD1 has been shown to regulate multiple cellular processes and, when activated, becomes autophosphorylated at Ser916, a residue located at -2 position of its PDZ-binding motif. Since nNOS and PKD are spatially enriched in postsynaptic densities and dendrites, the main objective of our study was to determine whether PKD1 activation could result in a direct interaction with nNOS through their respective PDZ-ligand and PDZ domain, and to analyze the functional consequences of this interaction. Herein we demonstrate that PKD1 associates with nNOS in neurons and in transfected cells, and that kinase activation enhances PKD1-nNOS co-immunoprecipitation and subcellular colocalization. However, transfection of mammalian cells with PKD1 mutants and yeast two hybrid assays showed that the association of these two enzymes does not depend on PKD1 PDZ-ligand but its pleckstrin homology domain. Furthermore, this domain was able to pull-down nNOS from brain extracts and bind to purified nNOS, indicating that it mediates a direct PKD1-nNOS interaction. In addition, using mass spectrometry we demonstrate that PKD1 specifically phosphorylates nNOS in the activatory residue Ser1412, and that this phosphorylation increases nNOS activity and ·NO production in living cells. In conclusion, these novel findings reveal a crucial role of PKD1 in the regulation of nNOS activation and synthesis of ·NO, a mediator involved in physiological neuronal signaling or neurotoxicity under pathological conditions

  8. Actin interaction and regulation of cyclin-dependent kinase 5/p35 complex activity.

    PubMed

    Xu, Jiqing; Tsutsumi, Koji; Tokuraku, Kiyotaka; Estes, Katherine A; Hisanaga, Shin-ichi; Ikezu, Tsuneya

    2011-01-01

    Cyclin-dependent kinase 5 (Cdk5) plays a critical role during neurodevelopment, synaptic plasticity, and neurodegeneration. Cdk5 activity depends on association with neuronal proteins p35 and p25, a proteolytic product of p35. Cdk5 regulates the actin cytoskeletal dynamics that are essential for neuronal migration, neuritic growth, and synaptogenesis. However, little is known about the interaction of actin and Cdk5 and its effect on neuronal Cdk5 activity. In a previous study, we observed that Cdk5/p35 activity is negatively correlated with co-immunoprecipitated F-actin (filamentous actin) amounts in the mouse brain, and suggested that F-actin inhibits the formation of the Cdk5/p35 complex [Journal of Neuroscience (2008) vol. 28, p. 14511]. The experiments reported here were undertaken to elucidate the relationship between actin and the formation of the Cdk5/p35 complex and its activity. Instead of an F-actin-mediated inhibition, we propose that G-actin (globular actin) in the F-actin preparations is responsible for inhibiting Cdk5/p35 and Cdk5/p25 kinase activity. We found that F-actin binds to p35 but not p25 or Cdk5. We have shown that G-actin binds directly to Cdk5 without disrupting the formation of the Cdk5/p35 or Cdk5/p25 complexes. G-actin potently suppressed Cdk5/p35 and Cdk5/p25 activity when either histone H1 or purified human tau protein were used as substrates, indicating a substrate-independent inhibitory effect of G-actin on Cdk5 activity. Finally, G-actin suppressed the activity of Cdk5 immunoprecipitated from wild type and p35-deficient mouse brain, suggesting that G-actin suppresses endogenous Cdk5 activity in a p35-independent manner. Together, these results suggest a novel mechanism of actin cytoskeletal regulation of Cdk5/p35 activity.

  9. Interactions between PTEN and receptor tyrosine kinase pathways and their implications for glioma therapy

    PubMed Central

    Abounader, Roger

    2009-01-01

    Gliomas are the most common and deadly form of malignant primary brain tumors. Loss of the tumor-suppressor PTEN and activation of the receptor tyrosine kinases (RTKs) EGF receptor, c-Met, PDGF receptor and VEGF receptor are among the most common molecular dysfunctions associated with glioma malignancy. PTEN interacts with RTK-dependent signaling at multiple levels. These include the ability of PTEN to counteract PI3K activation by RTKs, as well as possible effects of PTEN on RTK activation of the MAPK pathway and RTK-dependent gene-expression regulation. Consequently, PTEN expression affects RTK-induced malignancy. Importantly, the PTEN status was recently found to be critical for the outcome of RTK-targeted clinical therapies that have been developed recently. Combining RTK-targeted therapies with therapies aimed at counteracting the effects of PTEN loss, such as mTOR inhibition, might also have therapeutic advantage. This article reviews the known molecular and functional interactions between PTEN and RTK pathways and their implications for glioma therapy. PMID:19192961

  10. Interactions between double-stranded RNA regulators and the protein kinase DAI.

    PubMed Central

    Manche, L; Green, S R; Schmedt, C; Mathews, M B

    1992-01-01

    The interferon-induced protein kinase DAI, the double-stranded RNA (dsRNA)-activated inhibitor of translation, plays a key role in regulating protein synthesis in higher cells. Once activated, in a process that involves autophosphorylation, it phosphorylates the initiation factor eIF-2, leading to inhibition of polypeptide chain initiation. The activity of DAI is controlled by RNA regulators, including dsRNA activators and highly structured single-stranded RNAs which block activation by dsRNA. To elucidate the mechanism of activation, we studied the interaction of DAI with RNA duplexes of discrete sizes. Molecules shorter than 30 bp fail to bind stably and do not activate the enzyme, but at high concentrations they prevent activation by long dsRNA. Molecules longer than 30 bp bind and activate the enzyme, with an efficiency that increases with increasing chain length, reaching a maximum at about 85 bp. These dsRNAs fail to activate at high concentrations and also prevent activation by long dsRNA. Analysis of complexes between dsRNA and DAI suggests that at maximal packing the enzyme interacts with as little as a single helical turn of dsRNA (11 bp) but under conditions that allow activation the binding site protects about 80 bp of duplex. When the RNA-binding site is fully occupied with an RNA activator, the complex appears to undergo a conformational change. Images PMID:1357546

  11. Type IIalpha phosphatidylinositol phosphate kinase associates with the plasma membrane via interaction with type I isoforms.

    PubMed Central

    Hinchliffe, Katherine A; Giudici, Maria Luisa; Letcher, Andrew J; Irvine, Robin F

    2002-01-01

    The phosphatidylinositol phosphate kinases (PIPkins) are a family of enzymes involved in regulating levels of several functionally important inositol phospholipids within cells. The PIPkin family is subdivided into three on the basis of substrate specificity, each subtype presumably regulating levels of different subsets of the inositol lipids. The physiological function of the type II isoforms, which exhibit a preference for phosphatidylinositol 5-phosphate, a lipid about which very little is known, is particularly poorly understood. In the present study, we demonstrate interaction between, and co-immunoprecipitation of, type IIalpha PIPkin with the related, but biochemically and immunologically distinct, type I PIPkin isoforms. Type IIalpha PIPkin interacts with all three known type I PIPkins (alpha, beta and gamma), and in each case co-expression of the type I isoform with type IIalpha results in recruitment of the latter from the cytosol to the plasma membrane of the cell. This change in subcellular localization could result in improved access of the type IIalpha PIPkin to its lipid substrates. PMID:11964157

  12. Regulation of glycine receptor diffusion properties and gephyrin interactions by protein kinase C

    PubMed Central

    Specht, Christian G; Grünewald, Nora; Pascual, Olivier; Rostgaard, Nina; Schwarz, Günter; Triller, Antoine

    2011-01-01

    Glycine receptors (GlyRs) can dynamically exchange between synaptic and extrasynaptic locations through lateral diffusion within the plasma membrane. Their accumulation at inhibitory synapses depends on the interaction of the β-subunit of the GlyR with the synaptic scaffold protein gephyrin. An alteration of receptor–gephyrin binding could thus shift the equilibrium between synaptic and extrasynaptic GlyRs and modulate the strength of inhibitory neurotransmission. Using a combination of dynamic imaging and biochemical approaches, we have characterised the molecular mechanism that links the GlyR–gephyrin interaction with GlyR diffusion and synaptic localisation. We have identified a protein kinase C (PKC) phosphorylation site within the cytoplasmic domain of the β-subunit of the GlyR (residue S403) that causes a reduction of the binding affinity between the receptor and gephyrin. In consequence, the receptor's diffusion in the plasma membrane is accelerated and GlyRs accumulate less strongly at synapses. We propose that the regulation of GlyR dynamics by PKC thus contributes to the plasticity of inhibitory synapses and may be involved in maladaptive forms of synaptic plasticity. PMID:21829170

  13. Receptor-interacting protein kinase 3 promotes platelet activation and thrombosis.

    PubMed

    Zhang, Yiwen; Zhang, Jian; Yan, Rong; Tian, Jingluan; Zhang, Yang; Zhang, Jie; Chen, Mengxing; Cui, Qingya; Zhao, Lili; Hu, Renping; Jiang, Miao; Li, Zhenyu; Ruan, Changgeng; He, Sudan; Dai, Kesheng

    2017-03-14

    Previous studies have shown that receptor-interacting protein kinase 3 (RIP3) is involved in many important biological processes, including necroptosis, apoptosis, and inflammation. Here we show that RIP3 plays a critical role in regulating platelet functions and in vivo thrombosis and hemostasis. Tail bleeding times were significantly longer in RIP3-knockout (RIP3(-/-)) mice compared with their wild-type (WT) littermates. In an in vivo model of arteriole thrombosis, mice lacking RIP3 exhibited prolonged occlusion times. WT mice repopulated with RIP3(-/-) bone marrow-derived cells had longer occlusion times than RIP3(-/-) mice repopulated with WT bone marrow-derived cells, suggesting a role for RIP3-deficient platelets in arterial thrombosis. Consistent with these findings, we observed that RIP3 was expressed in both human and mice platelets. Deletion of RIP3 in mouse platelets caused a marked defect in aggregation and attenuated dense granule secretion in response to low doses of thrombin or a thromboxane A2 analog, U46619. Phosphorylation of Akt induced by U46619 or thrombin was diminished in RIP3(-/-) platelets. Moreover, RIP3 interacted with Gα13 Platelet spreading on fibrinogen and clot retraction were impaired in the absence of RIP3. RIP3 inhibitor dose-dependently inhibited platelet aggregation in vitro and prevented arterial thrombus formation in vivo. These data demonstrate a role for RIP3 in promoting in vivo thrombosis and hemostasis by amplifying platelet activation. RIP3 may represent a novel promising therapeutic target for thrombotic diseases.

  14. Wheat CBL-interacting protein kinase 25 negatively regulates salt tolerance in transgenic wheat

    PubMed Central

    Jin, Xia; Sun, Tao; Wang, Xiatian; Su, Peipei; Ma, Jingfei; He, Guangyuan; Yang, Guangxiao

    2016-01-01

    CBL-interacting protein kinases are involved in plant responses to abiotic stresses, including salt stress. However, the negative regulating mechanism of this gene family in response to salinity is less reported. In this study, we evaluated the role of TaCIPK25 in regulating salt response in wheat. Under conditions of high salinity, TaCIPK25 expression was markedly down-regulated in roots. Overexpression of TaCIPK25 resulted in hypersensitivity to Na+ and superfluous accumulation of Na+ in transgenic wheat lines. TaCIPK25 expression did not decline in transgenic wheat and remained at an even higher level than that in wild-type wheat controls under high-salinity treatment. Furthermore, transmembrane Na+/H+ exchange was impaired in the root cells of transgenic wheat. These results suggested that TaCIPK25 negatively regulated salt response in wheat. Additionally, yeast-one-hybrid, β-glucuronidase activity and DNA-protein-interaction-enzyme-linked-immunosorbent assays showed that the transcription factor TaWRKY9 bound W-box in the TaCIPK25 promoter region. Quantitative real-time polymerase chain reaction assays showed concomitantly inverted expression patterns of TaCIPK25 and TaWRKY9 in wheat roots under salt treatment, ABA application and inhibition of endogenous ABA condition. Overall, based on our results, in a salt stress condition, the negative salt response in wheat involved TaCIPK25 with the expression regulated by TaWRKY9. PMID:27358166

  15. Specific interactions among transmembrane 4 superfamily (TM4SF) proteins and phosphoinositide 4-kinase.

    PubMed Central

    Yauch, R L; Hemler, M E

    2000-01-01

    In earlier work we established that phosphoinositide 4-kinase (PI 4-kinase) may associate with transmembrane 4 superfamily (TM4SF, tetraspanin) proteins, but critical specificity issues were not addressed. Here we demonstrate that at least five different TM4SF proteins (CD9, CD63, CD81, CD151 and A15/TALLA1) can associate with a similar or identical 55 kDa type II PI 4-kinase. These associations were specific, since we found no evidence for other phosphoinositide kinases (e.g. phosphoinositide 3-kinase and phosphoinositide-4-phosphate 5-kinase) associating with TM4SF proteins, and many other TM4SF proteins (including CD82 and CD53) did not associate with PI 4-kinase. CD63-PI 4-kinase complexes were almost entirely intracellular, and thus are distinct from other TM4SF-PI 4-kinase complexes (e.g. involving CD9), which are largely located in the plasma membrane. These results suggest that a specific subset of TM4SF proteins may recruit PI 4-kinase to specific membrane locations, and thereby influence phosphoinositide-dependent signalling. PMID:11042117

  16. The origin of C1A-C2 interdomain interactions in protein kinase Calpha.

    PubMed

    Stahelin, Robert V; Wang, Jiyao; Blatner, Nichole R; Rafter, John D; Murray, Diana; Cho, Wonhwa

    2005-10-28

    The regulatory domain of protein kinase Calpha (PKCalpha) contains three membrane-targeting modules, two C1 domains (C1A and C1B) that bind diacylglycerol and phorbol ester, and the C2 domain that is responsible for the Ca2+-dependent membrane binding. Accumulating evidence suggests that C1A and C2 domains of PKCalpha are tethered in the resting state and that the tethering is released upon binding to the membrane containing phosphatidylserine. The homology modeling and the docking analysis of C1A and C2 domains of PKCalpha revealed a highly complementary interface that comprises Asp55-Arg252 and Arg42-Glu282 ion pairs and a Phe72-Phe255 aromatic pair. Mutations of these residues in the predicted C1A-C2 interface showed large effects on in vitro membrane binding, enzyme activity, phosphatidylserine selectivity, and cellular membrane translocation of PKCalpha, supporting their involvement in interdomain interactions. In particular, D55A (or D55K) and R252A (or R252E) mutants showed much higher basal membrane affinity and enzyme activity and faster subcellular translocation than wild type, whereas a double charge-reversal mutant (D55K/R252E) behaved analogously to wild type, indicating that a direct electrostatic interaction between the two residues is essential for the C1A-C2 tethering. Collectively, these studies provide new structural insight into PKCalpha C1A-C2 interdomain interactions and the mechanism of lipid-mediated PKCalpha activation.

  17. Receptor-Like Function of Heparin in the Binding and Uptake of Neutral Lipids

    NASA Astrophysics Data System (ADS)

    Bosner, Matthew S.; Gulick, Tod; Riley, D. J. S.; Spilburg, Curtis A.; Lange, Louis G.

    1988-10-01

    Molecular mechanisms regulating the binding, amphipathic stabilization, and metabolism of the major neutral lipids (e.g., cholesteryl esters, triglycerides, and fatty acids) are well studied, but the details of their movement from a binding compartment to a metabolic compartment deserve further attention. Since all neutral lipids must cross hydrophilic segments of plasma membranes during such movement, we postulate that a critical receptor-like site exists on the plasma membrane to mediate a step between binding and metabolism and that membrane-associated heparin is a key part of this mediator. For example, intestinal brush border membranes containing heparin bind homogeneous human pancreatic 125I-labeled cholesterol esterase (100 kDa) and 125I-labeled triglyceride lipase (52 kDa). This interaction is enzyme concentration-dependent, specific, and saturable and is reversed upon addition of soluble heparin. Scatchard analysis demonstrates a single class of receptors with a Kd of 100 nM and a Bmax of approximately 50-60 pmol per mg of vesicle protein. In contrast, enzymes associated with the hydrolysis of hydrophilic compounds such as amylase, phospholipase A2, and deoxyribonuclease do not bind to intestinal membranes in this manner. Human pancreatic cholesterol esterase also binds specifically and saturably to cultured intestinal epithelial cells (CaCo-2), and soluble heparin significantly diminishes the cellular uptake of the resultant hydrophobic reaction products (cholesterol and free fatty acids). We conclude that a physiological role for intestinal heparin is that of a mediator to bind neutral lipolytic enzymes at the brush border and thus promote absorption of the subsequent hydrolyzed nutrients in the intestine. This mechanism may be a generalizable pathway for transport of neutral lipids into endothelial and other cells.

  18. Identification of an interaction between EI and a histidine kinase-response regulator hybrid protein in Gluconobacter oxydans.

    PubMed

    Li, Shan; Ma, Yushu; Wei, Dongzhi

    2016-02-05

    Gluconobacter oxydans may contain an incomplete phosphoenolpyruvate: carbohydrate phosphotransferase system consisting of three components--EI, HPr and EIIA, while the function of individual members of the system remains unknown. In this research, a specific interaction between EI and a histidine kinase-response regulator hybrid protein was screened by yeast two-hybrid assay, and the interaction was further identified with GST pull-down assay and bimolecular fluorescence complementation assay in vitro and in vivo, respectively. As the histidine kinase-response regulator hybrid protein serves as a member of two-component system in G. oxydans, its interaction with EI implied that PTS may play certain roles in bacteria under stress.

  19. High-affinity AKAP7δ–protein kinase A interaction yields novel protein kinase A-anchoring disruptor peptides

    PubMed Central

    Hundsrucker, Christian; Krause, Gerd; Beyermann, Michael; Prinz, Anke; Zimmermann, Bastian; Diekmann, Oliver; Lorenz, Dorothea; Stefan, Eduard; Nedvetsky, Pavel; Dathe, Margitta; Christian, Frank; Mcsorley, Theresa; Krause, Eberhard; Mcconnachie, George; Herberg, Friedrich W.; Scott, John D.; Rosenthal, Walter; Klussmann, Enno

    2006-01-01

    PKA (protein kinase A) is tethered to subcellular compartments by direct interaction of its regulatory subunits (RI or RII) with AKAPs (A kinase-anchoring proteins). AKAPs preferentially bind RII subunits via their RII-binding domains. RII-binding domains form structurally conserved amphipathic helices with unrelated sequences. Their binding affinities for RII subunits differ greatly within the AKAP family. Amongst the AKAPs that bind RIIα subunits with high affinity is AKAP7δ [AKAP18δ; Kd (equilibrium dissociation constant) value of 31 nM]. An N-terminally truncated AKAP7δ mutant binds RIIα subunits with higher affinity than the full-length protein presumably due to loss of an inhibitory region [Henn, Edemir, Stefan, Wiesner, Lorenz, Theilig, Schmidtt, Vossebein, Tamma, Beyermann et al. (2004) J. Biol. Chem. 279, 26654–26665]. In the present study, we demonstrate that peptides (25 amino acid residues) derived from the RII-binding domain of AKAP7δ bind RIIα subunits with higher affinity (Kd=0.4±0.3 nM) than either full-length or N-terminally truncated AKAP7δ, or peptides derived from other RII binding domains. The AKAP7δ-derived peptides and stearate-coupled membrane-permeable mutants effectively disrupt AKAP–RII subunit interactions in vitro and in cell-based assays. Thus they are valuable novel tools for studying anchored PKA signalling. Molecular modelling indicated that the high affinity binding of the amphipathic helix, which forms the RII-binding domain of AKAP7δ, with RII subunits involves both the hydrophobic and the hydrophilic faces of the helix. Alanine scanning (25 amino acid peptides, SPOT technology, combined with RII overlay assays) of the RII binding domain revealed that hydrophobic amino acid residues form the backbone of the interaction and that hydrogen bond- and salt-bridge-forming amino acid residues increase the affinity of the interaction. PMID:16483255

  20. Cross-interactions of two p38 mitogen-activated protein (MAP) kinase inhibitors and two cholecystokinin (CCK) receptor antagonists with the CCK1 receptor and p38 MAP kinase.

    PubMed

    Morel, Caroline; Ibarz, Géraldine; Oiry, Catherine; Carnazzi, Eric; Bergé, Gilbert; Gagne, Didier; Galleyrand, Jean-Claude; Martinez, Jean

    2005-06-03

    Although SB202190 and SB203580 are described as specific p38 MAP kinase inhibitors, several reports have indicated that other enzymes are also sensitive to SB203580. Using a pharmacological approach, we report for the first time that compounds SB202190 and SB203580 were able to directly and selectively interact with a G-protein-coupled receptor, namely the cholecystokinin receptor subtype CCK1, but not with the CCK2 receptor. We demonstrated that these compounds were non-competitive antagonists of the CCK1 receptor at concentrations typically used to inhibit protein kinases. By chimeric construction of the CCK2 receptor, we determined the involvement of two CCK1 receptor intracellular loops in the binding of SB202190 and SB203580. We also showed that two CCK antagonists, L364,718 and L365,260, were able to regulate p38 mitogen-activated protein (MAP) kinase activity. Using a reporter gene strategy and immunoblotting experiments, we demonstrated that both CCK antagonists inhibited selectively the enzymatic activity of p38 MAP kinase. Kinase assays suggested that this inhibition resulted from a direct interaction with both CCK antagonists. Molecular modeling simulations suggested that this interaction occurs in the ATP binding pocket of p38 MAP kinase. These results suggest that SB202190 and SB203580 bind to the CCK1 receptor and, as such, these compounds should be used with caution in models that express this receptor. We also found that L364,718 and L365,260, two CCK receptor antagonists, directly interacted with p38 MAP kinase and inhibited its activity. These findings suggest that the CCK1 receptor shares structural analogies with the p38 MAP kinase ATP binding site. They open the way to potential design of either a new family of MAP kinase inhibitors from CCK1 receptor ligand structures or new CCK1 receptor ligands based on p38 MAP kinase inhibitor structures.

  1. Genetic Inhibition of Receptor Interacting Protein Kinase-1 Reduces Cell Death and Improves Functional Outcome After Intracerebral Hemorrhage in Mice.

    PubMed

    Lule, Sevda; Wu, Limin; McAllister, Lauren M; Edmiston, William J; Chung, Joon Yong; Levy, Emily; Zheng, Yi; Gough, Peter J; Bertin, John; Degterev, Alexei; Lo, Eng H; Whalen, Michael J

    2017-09-01

    Recent studies using cultured cells and rodent intracerebral hemorrhage (ICH) models have implicated RIPK1 (receptor interacting protein kinase-1) as a driver of programmed necrosis and secondary injury based on use of chemical inhibitors. However, these inhibitors have off-target effects and cannot be used alone to prove a role for RIPK1. The aim of the current study was to examine the effect of genetic inhibition of the kinase domain of RIPK1 in a mouse ICH model. We subjected 2 lines of mice with RIPK1 point mutations of the kinase domain (K45A and D138N), rendering them kinase inactive, to autologous blood ICH and measured acute cell death and functional outcome. Compared with wild-type controls, RIPK1(K45A/K45A) and RIPK1(D138N/D138N) had significantly less cells with plasmalemma permeability, less acute neuronal cell death, less weight loss and more rapid weight gain to baseline, and improved performance in a Morris water maze paradigm after autologous blood ICH. In addition, mice systemically administered GSK'963, a potent, specific, brain penetrant small molecule RIPK1 inhibitor, had reduced acute neuronal death at 24 hours after ICH. The data show that the kinase domain of RIPK1 is a disease driver of ICH, mediating both acute cell death and functional outcome, and support development of RIPK1 inhibitors as therapeutic agents for human ICH. © 2017 American Heart Association, Inc.

  2. The Arabidopsis SERK1 protein interacts with the AAA-ATPase AtCDC48, the 14-3-3 protein GF14lambda and the PP2C phosphatase KAPP.

    PubMed

    Rienties, Ingrid M; Vink, Josefien; Borst, Jan Willem; Russinova, Eugenia; de Vries, Sacco C

    2005-06-01

    Leucine-rich repeat (LRR)-containing transmembrane receptor-like kinases (RLKs) are important components of plant signal transduction. The Arabidopsis thaliana somatic embryogenesis receptor-like kinase 1 (AtSERK1) is an LRR-RLK proposed to participate in a signal transduction cascade involved in embryo development. By yeast two-hybrid screening we identified AtCDC48, a homologue of the mammalian AAA-ATPase p97 and GF14lambda, a member of the Arabidopsis family of 14-3-3 proteins as AtSERK1 interactors. In vitro, the AtSERK1 kinase domain is able to transphosphorylate and bind both AtCDC48 and GF14lambda. In yeast, AtCDC48 interacts with GF14lambda and with the PP2C phosphatase KAPP. In plant protoplasts AtSERK1 interacts with GF14lambda.

  3. Induction of viral, 7-methyl-guanosine cap-independent translation and oncolysis by mitogen-activated protein kinase-interacting kinase-mediated effects on the serine/arginine-rich protein kinase.

    PubMed

    Brown, Michael C; Bryant, Jeffrey D; Dobrikova, Elena Y; Shveygert, Mayya; Bradrick, Shelton S; Chandramohan, Vidyalakshmi; Bigner, Darell D; Gromeier, Matthias

    2014-11-01

    Protein synthesis, the most energy-consuming process in cells, responds to changing physiologic priorities, e.g., upon mitogen- or stress-induced adaptations signaled through the mitogen-activated protein kinases (MAPKs). The prevailing status of protein synthesis machinery is a viral pathogenesis factor, particularly for plus-strand RNA viruses, where immediate translation of incoming viral RNAs shapes host-virus interactions. In this study, we unraveled signaling pathways centered on the ERK1/2 and p38α MAPK-interacting kinases MNK1/2 and their role in controlling 7-methyl-guanosine (m(7)G) "cap"-independent translation at enterovirus type 1 internal ribosomal entry sites (IRESs). Activation of Raf-MEK-ERK1/2 signals induced viral IRES-mediated translation in a manner dependent on MNK1/2. This effect was not due to MNK's known functions as eukaryotic initiation factor (eIF) 4G binding partner or eIF4E(S209) kinase. Rather, MNK catalytic activity enabled viral IRES-mediated translation/host cell cytotoxicity through negative regulation of the Ser/Arg (SR)-rich protein kinase (SRPK). Our investigations suggest that SRPK activity is a major determinant of type 1 IRES competency, host cell cytotoxicity, and viral proliferation in infected cells. We are targeting unfettered enterovirus IRES activity in cancer with PVSRIPO, the type 1 live-attenuated poliovirus (PV) (Sabin) vaccine containing a human rhinovirus type 2 (HRV2) IRES. A phase I clinical trial of PVSRIPO with intratumoral inoculation in patients with recurrent glioblastoma (GBM) is showing early promise. Viral translation proficiency in infected GBM cells is a core requirement for the antineoplastic efficacy of PVSRIPO. Therefore, it is critically important to understand the mechanisms controlling viral cap-independent translation in infected host cells. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  4. Sorting Nexin 27 Protein Regulates Trafficking of a p21-activated Kinase (PAK) Interacting Exchange Factor (β-Pix)-G Protein-coupled Receptor Kinase Interacting Protein (GIT) Complex via a PDZ Domain Interaction*

    PubMed Central

    Valdes, Julie L.; Tang, Jingrong; McDermott, Mark I.; Kuo, Jean-Cheng; Zimmerman, Seth P.; Wincovitch, Stephen M.; Waterman, Clare M.; Milgram, Sharon L.; Playford, Martin P.

    2011-01-01

    Sorting nexin 27 (SNX27) is a 62-kDa protein localized to early endosomes and known to regulate the intracellular trafficking of ion channels and receptors. In addition to a PX domain, SNX27 is the only sorting family member that contains a PDZ domain. To identify novel SNX27-PDZ binding partners, we performed a proteomic screen in mouse principal kidney cortical collecting duct cells using a GST-SNX27 fusion construct as bait. We found that β-Pix (p21-activated kinase-interactive exchange factor), a guanine nucleotide exchange factor for the Rho family of small GTPases known to regulate cell motility directly interacted with SNX27. The association of β-Pix and SNX27 is specific for β-Pix isoforms terminating in the type-1 PDZ binding motif (ETNL). In the same screen we also identified Git1/2 as a potential SNX27 interacting protein. The interaction between SNX27 and Git1/2 is indirect and mediated by β-Pix. Furthermore, we show recruitment of the β-Pix·Git complex to endosomal sites in a SNX27-dependent manner. Finally, migration assays revealed that depletion of SNX27 from HeLa and mouse principal kidney cortical collecting duct cells significantly decreases cell motility. We propose a model by which SNX27 regulates trafficking of β-Pix to focal adhesions and thereby influences cell motility. PMID:21926430

  5. Sorting nexin 27 protein regulates trafficking of a p21-activated kinase (PAK) interacting exchange factor (β-Pix)-G protein-coupled receptor kinase interacting protein (GIT) complex via a PDZ domain interaction.

    PubMed

    Valdes, Julie L; Tang, Jingrong; McDermott, Mark I; Kuo, Jean-Cheng; Zimmerman, Seth P; Wincovitch, Stephen M; Waterman, Clare M; Milgram, Sharon L; Playford, Martin P

    2011-11-11

    Sorting nexin 27 (SNX27) is a 62-kDa protein localized to early endosomes and known to regulate the intracellular trafficking of ion channels and receptors. In addition to a PX domain, SNX27 is the only sorting family member that contains a PDZ domain. To identify novel SNX27-PDZ binding partners, we performed a proteomic screen in mouse principal kidney cortical collecting duct cells using a GST-SNX27 fusion construct as bait. We found that β-Pix (p21-activated kinase-interactive exchange factor), a guanine nucleotide exchange factor for the Rho family of small GTPases known to regulate cell motility directly interacted with SNX27. The association of β-Pix and SNX27 is specific for β-Pix isoforms terminating in the type-1 PDZ binding motif (ETNL). In the same screen we also identified Git1/2 as a potential SNX27 interacting protein. The interaction between SNX27 and Git1/2 is indirect and mediated by β-Pix. Furthermore, we show recruitment of the β-Pix·Git complex to endosomal sites in a SNX27-dependent manner. Finally, migration assays revealed that depletion of SNX27 from HeLa and mouse principal kidney cortical collecting duct cells significantly decreases cell motility. We propose a model by which SNX27 regulates trafficking of β-Pix to focal adhesions and thereby influences cell motility.

  6. Interactions of ABCG2 (BCRP) with epidermal growth factor receptor kinase inhibitors developed for molecular imaging.

    PubMed

    Qawasmi, Israa; Shmuel, Miriam; Eyal, Sara

    2014-01-01

    The objective of this study was to investigate in vitro the interactions between novel epidermal growth factor receptor kinase inhibitors (EGFRIs) developed for positron emission tomography (PET) imaging and the major efflux transporter breast cancer resistance protein (BCRP/ABCG2). Seven compounds were evaluated, using the ATPase activity assays and Madin-Darbey canine kidney (MDCK) cells overexpressing BCRP. Five of the tested compounds activated BCRP ATPase to various extent. Overexpression of BCRP conferred resistance to ML04, ML06, methoxy-Br-ML03, and PEG6-ML05 (IC50 values for inhibition of control cell proliferation 2.1 ± 0.6, 2.2 ± 0.7, 1.8 ± 1.2, and 2.8 ± 3.1 μM, respectively, compared to >50 μM in MDCK-BCRP cells). At submicromolar concentrations, none of the EGFRIs significantly inhibited BCRP. Immunoblotting studies indicated that BCRP expression is evident in cell lines utilized for in vivo tumor grafting in small animal PET imaging studies. Thus, the intensity of EGFRIs radioactivity signals previously observed in tumor xenografts reflects an interplay between transporter-mediated distribution of the probe into tumor cells and target binding. Concomitant use of efflux transporter inhibitors may help distinguish between the contribution of efflux transport and EGFR binding to the tissue signal.

  7. Interactions of ABCG2 (BCRP) with epidermal growth factor receptor kinase inhibitors developed for molecular imaging

    PubMed Central

    Qawasmi, Israa; Shmuel, Miriam; Eyal, Sara

    2014-01-01

    The objective of this study was to investigate in vitro the interactions between novel epidermal growth factor receptor kinase inhibitors (EGFRIs) developed for positron emission tomography (PET) imaging and the major efflux transporter breast cancer resistance protein (BCRP/ABCG2). Seven compounds were evaluated, using the ATPase activity assays and Madin-Darbey canine kidney (MDCK) cells overexpressing BCRP. Five of the tested compounds activated BCRP ATPase to various extent. Overexpression of BCRP conferred resistance to ML04, ML06, methoxy-Br-ML03, and PEG6-ML05 (IC50 values for inhibition of control cell proliferation 2.1 ± 0.6, 2.2 ± 0.7, 1.8 ± 1.2, and 2.8 ± 3.1 μM, respectively, compared to >50 μM in MDCK-BCRP cells). At submicromolar concentrations, none of the EGFRIs significantly inhibited BCRP. Immunoblotting studies indicated that BCRP expression is evident in cell lines utilized for in vivo tumor grafting in small animal PET imaging studies. Thus, the intensity of EGFRIs radioactivity signals previously observed in tumor xenografts reflects an interplay between transporter-mediated distribution of the probe into tumor cells and target binding. Concomitant use of efflux transporter inhibitors may help distinguish between the contribution of efflux transport and EGFR binding to the tissue signal. PMID:25484865

  8. Homeodomain-Interacting Protein Kinase (HPK-1) regulates stress responses and ageing in C. elegans

    PubMed Central

    Berber, Slavica; Wood, Mallory; Llamosas, Estelle; Thaivalappil, Priya; Lee, Karen; Liao, Bing Mana; Chew, Yee Lian; Rhodes, Aaron; Yucel, Duygu; Crossley, Merlin; Nicholas, Hannah R

    2016-01-01

    Proteins of the Homeodomain-Interacting Protein Kinase (HIPK) family regulate an array of processes in mammalian systems, such as the DNA damage response, cellular proliferation and apoptosis. The nematode Caenorhabditis elegans has a single HIPK homologue called HPK-1. Previous studies have implicated HPK-1 in longevity control and suggested that this protein may be regulated in a stress-dependent manner. Here we set out to expand these observations by investigating the role of HPK-1 in longevity and in the response to heat and oxidative stress. We find that levels of HPK-1 are regulated by heat stress, and that HPK-1 contributes to survival following heat or oxidative stress. Additionally, we show that HPK-1 is required for normal longevity, with loss of HPK-1 function leading to a faster decline of physiological processes that reflect premature ageing. Through microarray analysis, we have found that HPK-1-regulated genes include those encoding proteins that serve important functions in stress responses such as Phase I and Phase II detoxification enzymes. Consistent with a role in longevity assurance, HPK-1 also regulates the expression of age-regulated genes. Lastly, we show that HPK-1 functions in the same pathway as DAF-16 to regulate longevity and reveal a new role for HPK-1 in development. PMID:26791749

  9. Inhibition of Receptor Interacting Protein Kinases Attenuates Cardiomyocyte Hypertrophy Induced by Palmitic Acid

    PubMed Central

    Zhao, Mingyue; Lu, Lihui; Lei, Song; Chai, Hua; Wu, Siyuan; Tang, Xiaoju; Bao, Qinxue; Chen, Li; Wu, Wenchao; Liu, Xiaojing

    2016-01-01

    Palmitic acid (PA) is known to cause cardiomyocyte dysfunction. Cardiac hypertrophy is one of the important pathological features of PA-induced lipotoxicity, but the mechanism by which PA induces cardiomyocyte hypertrophy is still unclear. Therefore, our study was to test whether necroptosis, a receptor interacting protein kinase 1 and 3 (RIPK1 and RIPK3-) dependent programmed necrosis, was involved in the PA-induced cardiomyocyte hypertrophy. We used the PA-treated primary neonatal rat cardiac myocytes (NCMs) or H9c2 cells to study lipotoxicity. Our results demonstrated that cardiomyocyte hypertrophy was induced by PA treatment, determined by upregulation of hypertrophic marker genes and cell surface area enlargement. Upon PA treatment, the expression of RIPK1 and RIPK3 was increased. Pretreatment with the RIPK1 inhibitor necrostatin-1 (Nec-1), the PA-induced cardiomyocyte hypertrophy, was attenuated. Knockdown of RIPK1 or RIPK3 by siRNA suppressed the PA-induced myocardial hypertrophy. Moreover, a crosstalk between necroptosis and endoplasmic reticulum (ER) stress was observed in PA-treated cardiomyocytes. Inhibition of RIPK1 with Nec-1, phosphorylation level of AKT (Ser473), and mTOR (Ser2481) was significantly reduced in PA-treated cardiomyocytes. In conclusion, RIPKs-dependent necroptosis might be crucial in PA-induced myocardial hypertrophy. Activation of mTOR may mediate the effect of necroptosis in cardiomyocyte hypertrophy induced by PA. PMID:27057269

  10. Signaling between two interacting sensor kinases promotes biofilms and colonization by a bacterial symbiont.

    PubMed

    Norsworthy, Allison N; Visick, Karen L

    2015-04-01

    Cells acclimate to fluctuating environments by utilizing sensory circuits. One common sensory pathway used by bacteria is two-component signaling (TCS), composed of an environmental sensor [the sensor kinase (SK)] and a cognate, intracellular effector [the response regulator (RR)]. The squid symbiont Vibrio fischeri uses an elaborate TCS phosphorelay containing a hybrid SK, RscS, and two RRs, SypE and SypG, to control biofilm formation and host colonization. Here, we found that another hybrid SK, SypF, was essential for biofilms by functioning downstream of RscS to directly control SypE and SypG. Surprisingly, although wild-type SypF functioned as an SK in vitro, this activity was dispensable for colonization. In fact, only a single non-enzymatic domain within SypF, the HPt domain, was critical in vivo. Remarkably, this domain within SypF interacted with RscS to permit a bypass of RscS's own HPt domain and SypF's enzymatic function. This represents the first in vivo example of a functional SK that exploits the enzymatic activity of another SK, an adaptation that demonstrates the elegant plasticity in the arrangement of TCS regulators. © 2015 John Wiley & Sons Ltd.

  11. Signaling between two interacting sensor kinases promotes biofilms and colonization by a bacterial symbiont

    PubMed Central

    Norsworthy, Allison N.; Visick, Karen L.

    2015-01-01

    Summary Cells acclimate to fluctuating environments by utilizing sensory circuits. One common sensory pathway used by bacteria is two-component signaling (TCS), composed of an environmental sensor (the sensor kinase, SK) and a cognate, intracellular effector (the response regulator, RR). The squid symbiont Vibrio fischeri uses an elaborate TCS phosphorelay containing a hybrid SK, RscS, and two RRs, SypE and SypG, to control biofilm formation and host colonization. Here, we found that another hybrid SK, SypF, was essential for biofilms by functioning downstream of RscS to directly control SypE and SypG. Surprisingly, although wild-type SypF functioned as a SK in vitro, this activity was dispensable for colonization. In fact, only a single non-enzymatic domain within SypF, the HPt domain, was critical in vivo. Remarkably, this domain within SypF interacted with RscS to permit a bypass of RscS’s own HPt domain and SypF’s enzymatic function. This represents the first in vivo example of a functional SK that exploits the enzymatic activity of another SK, an adaptation that demonstrates the elegant plasticity in the arrangement of TCS regulators. PMID:25586643

  12. Inhibition of Receptor Interacting Protein Kinases Attenuates Cardiomyocyte Hypertrophy Induced by Palmitic Acid.

    PubMed

    Zhao, Mingyue; Lu, Lihui; Lei, Song; Chai, Hua; Wu, Siyuan; Tang, Xiaoju; Bao, Qinxue; Chen, Li; Wu, Wenchao; Liu, Xiaojing

    2016-01-01

    Palmitic acid (PA) is known to cause cardiomyocyte dysfunction. Cardiac hypertrophy is one of the important pathological features of PA-induced lipotoxicity, but the mechanism by which PA induces cardiomyocyte hypertrophy is still unclear. Therefore, our study was to test whether necroptosis, a receptor interacting protein kinase 1 and 3 (RIPK1 and RIPK3-) dependent programmed necrosis, was involved in the PA-induced cardiomyocyte hypertrophy. We used the PA-treated primary neonatal rat cardiac myocytes (NCMs) or H9c2 cells to study lipotoxicity. Our results demonstrated that cardiomyocyte hypertrophy was induced by PA treatment, determined by upregulation of hypertrophic marker genes and cell surface area enlargement. Upon PA treatment, the expression of RIPK1 and RIPK3 was increased. Pretreatment with the RIPK1 inhibitor necrostatin-1 (Nec-1), the PA-induced cardiomyocyte hypertrophy, was attenuated. Knockdown of RIPK1 or RIPK3 by siRNA suppressed the PA-induced myocardial hypertrophy. Moreover, a crosstalk between necroptosis and endoplasmic reticulum (ER) stress was observed in PA-treated cardiomyocytes. Inhibition of RIPK1 with Nec-1, phosphorylation level of AKT (Ser473), and mTOR (Ser2481) was significantly reduced in PA-treated cardiomyocytes. In conclusion, RIPKs-dependent necroptosis might be crucial in PA-induced myocardial hypertrophy. Activation of mTOR may mediate the effect of necroptosis in cardiomyocyte hypertrophy induced by PA.

  13. Asymmetric effect of domain interactions on the kinetics of folding in yeast phosphoglycerate kinase.

    PubMed

    Osváth, Szabolcs; Köhler, Gottfried; Závodszky, Péter; Fidy, Judit

    2005-06-01

    The aim of this work is to shed more light on the effect of domain-domain interactions on the kinetics and the pathway of protein folding. A model protein system consisting of several single-tryptophan variants of the two-domain yeast phosphoglycerate kinase (PGK) and its individual domains was studied. Refolding was initiated from the guanidine-unfolded state by stopped-flow or manual mixing and monitored by tryptophan fluorescence from 1 msec to 1000 sec. Denaturant titrations of both individual domains showed apparent two-state unfolding transitions. Refolding kinetics of the individual domains from different denaturant concentrations, however, revealed the presence of intermediate structures during titration for both domains. Refolding of the same domains within the complete protein showed that domain-domain interactions direct the folding of both domains, but in an asymmetric way. Folding of the N domain was already altered within 1 msec, while detectable changes in the folding of the C domain occurred only 60-100 msec after initiating refolding. All mutants showed a hyperfluorescent kinetic intermediate. Both the disappearance of this intermediate and the completion of the folding were significantly faster in the individual N domain than in the complete protein. On the contrary, folding of the individual C domain was slower than in the complete protein. The presence of the C domain directs the refolding of the N domain along a completely different pathway than that of the individual N domain, while folding of the individual C domain follows the same path as within the complete protein.

  14. Discovery of a Coregulatory Interaction between Kaposi's Sarcoma-Associated Herpesvirus ORF45 and the Viral Protein Kinase ORF36

    PubMed Central

    Avey, Denis; Tepper, Sarah; Pifer, Benjamin; Bahga, Amritpal; Williams, Hunter; Gillen, Joseph; Li, Wenwei; Ogden, Sarah

    2016-01-01

    ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of three human malignancies. KSHV ORF36 encodes a serine/threonine viral protein kinase, which is conserved throughout all herpesviruses. Although several studies have identified the viral and cellular substrates of conserved herpesvirus protein kinases (CHPKs), the precise functions of KSHV ORF36 during lytic replication remain elusive. Here, we report that ORF36 interacts with another lytic protein, ORF45, in a manner dependent on ORF36 kinase activity. We mapped the regions of ORF36 and ORF45 involved in the binding. Their association appears to be mediated by electrostatic interactions, since deletion of either the highly basic N terminus of ORF36 or an acidic patch of ORF45 abolished the binding. In addition, the dephosphorylation of ORF45 protein dramatically reduced its association with ORF36. Importantly, ORF45 enhances both the stability and kinase activity of ORF36. Consistent with previous studies of CHPK homologs, we detected ORF36 protein in extracellular virions. To investigate the roles of ORF36 in the context of KSHV lytic replication, we used bacterial artificial chromosome mutagenesis to engineer both ORF36-null and kinase-dead mutants. We found that ORF36-null/mutant virions are moderately defective in viral particle production and are further deficient in primary infection. In summary, our results uncover a functionally important interaction between ORF36 and ORF45 and indicate a significant role of ORF36 in the production of infectious progeny virions. IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is a human tumor virus with a significant public health burden. KSHV ORF36 encodes a serine/threonine viral protein kinase, whose functions throughout the viral life cycle have not been elucidated. Here, we report that ORF36 interacts with another KSHV protein, ORF45. We mapped the regions of ORF36 and ORF45 involved in their association and further

  15. Discovery of a Coregulatory Interaction between Kaposi's Sarcoma-Associated Herpesvirus ORF45 and the Viral Protein Kinase ORF36.

    PubMed

    Avey, Denis; Tepper, Sarah; Pifer, Benjamin; Bahga, Amritpal; Williams, Hunter; Gillen, Joseph; Li, Wenwei; Ogden, Sarah; Zhu, Fanxiu

    2016-07-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of three human malignancies. KSHV ORF36 encodes a serine/threonine viral protein kinase, which is conserved throughout all herpesviruses. Although several studies have identified the viral and cellular substrates of conserved herpesvirus protein kinases (CHPKs), the precise functions of KSHV ORF36 during lytic replication remain elusive. Here, we report that ORF36 interacts with another lytic protein, ORF45, in a manner dependent on ORF36 kinase activity. We mapped the regions of ORF36 and ORF45 involved in the binding. Their association appears to be mediated by electrostatic interactions, since deletion of either the highly basic N terminus of ORF36 or an acidic patch of ORF45 abolished the binding. In addition, the dephosphorylation of ORF45 protein dramatically reduced its association with ORF36. Importantly, ORF45 enhances both the stability and kinase activity of ORF36. Consistent with previous studies of CHPK homologs, we detected ORF36 protein in extracellular virions. To investigate the roles of ORF36 in the context of KSHV lytic replication, we used bacterial artificial chromosome mutagenesis to engineer both ORF36-null and kinase-dead mutants. We found that ORF36-null/mutant virions are moderately defective in viral particle production and are further deficient in primary infection. In summary, our results uncover a functionally important interaction between ORF36 and ORF45 and indicate a significant role of ORF36 in the production of infectious progeny virions. Kaposi's sarcoma-associated herpesvirus (KSHV) is a human tumor virus with a significant public health burden. KSHV ORF36 encodes a serine/threonine viral protein kinase, whose functions throughout the viral life cycle have not been elucidated. Here, we report that ORF36 interacts with another KSHV protein, ORF45. We mapped the regions of ORF36 and ORF45 involved in their association and further characterized the consequences

  16. An intramolecular interaction within the lipid kinase Fab1 regulates cellular phosphatidylinositol 3,5-bisphosphate lipid levels.

    PubMed

    Lang, Michael J; Strunk, Bethany S; Azad, Nadia; Petersen, Jason L; Weisman, Lois S

    2017-04-01

    Phosphorylated phosphoinositide lipids (PPIs) are low-abundance signaling molecules that control signal transduction pathways and are necessary for cellular homeostasis. The PPI phosphatidylinositol (3,5)-bisphosphate (PI(3,5)P2) is essential in multiple organ systems. PI(3,5)P2 is generated from PI3P by the conserved lipid kinase Fab1/PIKfyve. Defects in the dynamic regulation of PI(3,5)P2 are linked to human diseases. However, few mechanisms that regulate PI(3,5)P2 have been identified. Here we report an intramolecular interaction between the yeast Fab1 kinase region and an upstream conserved cysteine-rich (CCR) domain. We identify mutations in the kinase domain that lead to elevated levels of PI(3,5)P2 and impair the interaction between the kinase and CCR domain. We also identify mutations in the CCR domain that lead to elevated levels of PI(3,5)P2 Together these findings reveal a regulatory mechanism that involves the CCR domain of Fab1 and contributes to dynamic control of cellular PI(3,5)P2 synthesis.

  17. Cdc42p-Interacting Protein Bem4p Regulates the Filamentous-Growth Mitogen-Activated Protein Kinase Pathway

    PubMed Central

    Pitoniak, Andrew; Chavel, Colin A.; Chow, Jacky; Smith, Jeremy; Camara, Diawoye; Karunanithi, Sheelarani; Li, Boyang; Wolfe, Kennith H.

    2014-01-01

    The ubiquitous Rho (Ras homology) GTPase Cdc42p can function in different settings to regulate cell polarity and cellular signaling. How Cdc42p and other proteins are directed to function in a particular context remains unclear. We show that the Cdc42p-interacting protein Bem4p regulates the mitogen-activated protein kinase (MAPK) pathway that controls filamentous growth in Saccharomyces cerevisiae. Bem4p controlled the filamentous-growth pathway but not other MAPK pathways (mating or high-osmolarity glycerol response [HOG]) that also require Cdc42p and other shared components. Bem4p associated with the plasma membrane (PM) protein, Sho1p, to regulate MAPK activity and cell polarization under nutrient-limiting conditions that favor filamentous growth. Bem4p also interacted with the major activator of Cdc42p, the guanine nucleotide exchange factor (GEF) Cdc24p, which we show also regulates the filamentous-growth pathway. Bem4p interacted with the pleckstrin homology (PH) domain of Cdc24p, which functions in an autoinhibitory capacity, and was required, along with other pathway regulators, to maintain Cdc24p at polarized sites during filamentous growth. Bem4p also interacted with the MAPK kinase kinase (MAPKKK) Ste11p. Thus, Bem4p is a new regulator of the filamentous-growth MAPK pathway and binds to general proteins, like Cdc42p and Ste11p, to promote a pathway-specific response. PMID:25384973

  18. The tomato calcium sensor Cbl10 and its interacting protein kinase Cipk6 define a signaling pathway in plant immunity.

    PubMed

    de la Torre, Fernando; Gutiérrez-Beltrán, Emilio; Pareja-Jaime, Yolanda; Chakravarthy, Suma; Martin, Gregory B; del Pozo, Olga

    2013-07-01

    Ca(2+) signaling is an early and necessary event in plant immunity. The tomato (Solanum lycopersicum) kinase Pto triggers localized programmed cell death (PCD) upon recognition of Pseudomonas syringae effectors AvrPto or AvrPtoB. In a virus-induced gene silencing screen in Nicotiana benthamiana, we independently identified two components of a Ca(2+)-signaling system, Cbl10 (for calcineurin B-like protein) and Cipk6 (for calcineurin B-like interacting protein kinase), as their silencing inhibited Pto/AvrPto-elicited PCD. N. benthamiana Cbl10 and Cipk6 are also required for PCD triggered by other plant resistance genes and virus, oomycete, and nematode effectors and for host susceptibility to two P. syringae pathogens. Tomato Cipk6 interacts with Cbl10 and its in vitro kinase activity is enhanced in the presence of Cbl10 and Ca(2+), suggesting that tomato Cbl10 and Cipk6 constitute a Ca(2+)-regulated signaling module. Overexpression of tomato Cipk6 in N. benthamiana leaves causes accumulation of reactive oxygen species (ROS), which requires the respiratory burst homolog RbohB. Tomato Cbl10 and Cipk6 interact with RbohB at the plasma membrane. Finally, Cbl10 and Cipk6 contribute to ROS generated during effector-triggered immunity in the interaction of P. syringae pv tomato DC3000 and N. benthamiana. We identify a role for the Cbl/Cipk signaling module in PCD, establishing a mechanistic link between Ca(2+) and ROS signaling in plant immunity.

  19. A complex network of interactions between mitotic kinases, phosphatases and ESCRT proteins regulates septation and membrane trafficking in S. pombe.

    PubMed

    Bhutta, Musab S; Roy, Brinta; Gould, Gwyn W; McInerny, Christopher J

    2014-01-01

    Cytokinesis and cell separation are critical events in the cell cycle. We show that Endosomal Sorting Complex Required for Transport (ESCRT) genes are required for cell separation in Schizosaccharomyces pombe. We identify genetic interactions between ESCRT proteins and polo and aurora kinases and Cdc14 phosphatase that manifest as impaired growth and exacerbated defects in septation, suggesting that the encoded proteins function together to control these processes. Furthermore, we observed defective endosomal sorting in mutants of plo1, ark1 and clp1, as has been reported for ESCRT mutants, consistent with a role for these kinases in the control of ESCRT function in membrane traffic. Multiple observations indicate functional interplay between polo and ESCRT components: firstly, two-hybrid in vivo interactions are reported between Plo1p and Sst4p, Vps28p, Vps25p, Vps20p and Vps32p; secondly, co-immunoprecipitation of human homologues of Vps20p, Vps32p, Vps24p and Vps2p by human Plk1; and thirdly, in vitro phosphorylation of budding yeast Vps32p and Vps20p by polo kinase. Two-hybrid analyses also identified interactions between Ark1p and Vps20p and Vps32p, and Clp1p and Vps28p. These experiments indicate a network of interactions between ESCRT proteins, plo1, ark1 and clp1 that coordinate membrane trafficking and cell separation in fission yeast.

  20. Tyrosine kinase inhibition increases functional parkin-Beclin-1 interaction and enhances amyloid clearance and cognitive performance

    PubMed Central

    Lonskaya, Irina; Hebron, Michaeline L; Desforges, Nicole M; Franjie, Alexander; Moussa, Charbel E-H

    2013-01-01

    Tyrosine kinase inhibitors (TKIs) are effective therapies for leukaemia. Alzheimer is a neurodegenerative disease characterized by accumulation of β-amyloid (plaques) and hyper-phosphorylated Tau (tangles). Here we show that AD animals have high levels of insoluble parkin and decreased parkin-Beclin-1 interaction, while peripheral administration of TKIs, including Nilotinib and Bosutinib, increases soluble parkin leading to amyloid clearance and cognitive improvement. Blocking Beclin-1 expression with shRNA or parkin deletion prevents tyrosine kinase (TK) inhibition-induced amyloid clearance, suggesting that functional parkin-Beclin-1 interaction mediates amyloid degradation. Isolation of autophagic vacuoles (AVs) in AD mouse brain shows accumulation of parkin and amyloid, consistent with previous results in AD brains, while Bosutinib and Nilotinib increase parkin-Beclin-1 interaction and result in protein deposition in the lysosome. These data suggest that decreased parkin solubility impedes parkin-Beclin-1 interaction and amyloid clearance. We identified two FDA-approved anti-cancer drugs as potential treatment for AD. Two FDA-approved tyrosine kinase inhibitor drugs, Bosutinib and Nilotinib, are shown to ameliorate Alzheimer's disease pathology in mouse models by increasing soluble parkin and leading to amyloid clearance and cognitive improvement. PMID:23737459

  1. Prediction of Protein Kinase-Ligand Interactions through 2.5D Kinochemometrics.

    PubMed

    Bosc, Nicolas; Wroblowski, Berthold; Meyer, Christophe; Bonnet, Pascal

    2017-01-23

    So far, 518 protein kinases have been identified in the human genome. They share a common mechanism of protein phosphorylation and are involved in many critical biological processes of eukaryotic cells. Deregulation of the kinase phosphorylation function induces severe illnesses such as cancer, diabetes, or inflammatory diseases. Many actors in the pharmaceutical domain have made significant efforts to design potent and selective protein kinase inhibitors as new potential drugs. Because the ATP binding site is highly conserved in the protein kinase family, the design of selective inhibitors remains a challenge and has negatively impacted the progression of drug candidates to late-stage clinical development. The work presented here adopts a 2.5D kinochemometrics (KCM) approach, derived from proteochemometrics (PCM), in which protein kinases are depicted by a novel 3D descriptor and the ligands by 2D fingerprints. We demonstrate in two examples that the protein descriptor successfully classified protein kinases based on their group membership and their Asp-Phe-Gly (DFG) conformation. We also compared the performance of our models with those obtained from a full 2D KCM model and QSAR models. In both cases, the internal validation of the models demonstrated good capabilities to distinguish "active" from "inactive" protein kinase-ligand pairs. However, the external validation performed on two independent data sets showed that the two statistical models tended to overestimate the number of "inactive" pairs.

  2. Toxoplasma DJ-1 Regulates Organelle Secretion by a Direct Interaction with Calcium-Dependent Protein Kinase 1.

    PubMed

    Child, Matthew A; Garland, Megan; Foe, Ian; Madzelan, Peter; Treeck, Moritz; van der Linden, Wouter A; Oresic Bender, Kristina; Weerapana, Eranthie; Wilson, Mark A; Boothroyd, John C; Reese, Michael L; Bogyo, Matthew

    2017-02-28

    Human DJ-1 is a highly conserved and yet functionally enigmatic protein associated with a heritable form of Parkinson's disease. It has been suggested to be a redox-dependent regulatory scaffold, binding to proteins to modulate their function. Here we present the X-ray crystal structure of the Toxoplasma orthologue Toxoplasma gondii DJ-1 (TgDJ-1) at 2.1-Å resolution and show that it directly associates with calcium-dependent protein kinase 1 (CDPK1). The TgDJ-1 structure identifies an orthologously conserved arginine dyad that acts as a phospho-gatekeeper motif to control complex formation. We determined that the binding of TgDJ-1 to CDPK1 is sensitive to oxidation and calcium, and that this interaction potentiates CDPK1 kinase activity. Finally, we show that genetic deletion of TgDJ-1 results in upregulation of CDPK1 expression and that disruption of the CDPK1/TgDJ-1 complex in vivo prevents normal exocytosis of parasite virulence-associated organelles called micronemes. Overall, our data suggest that TgDJ-1 functions as a noncanonical kinase-regulatory scaffold that integrates multiple intracellular signals to tune microneme exocytosis in T. gondiiIMPORTANCE Apicomplexan parasites such as Toxoplasma and Plasmodium are obligate intracellular parasites that require the protective environment of a host cell in order to replicate and survive within a host organism. These parasites secrete effector proteins from specialized apical organelles to select and invade a chosen host cell. The secretion of these organelles is a tightly regulated process coordinated by endogenous small molecules and calcium-dependent protein kinases. We previously identified the Toxoplasma orthologue of the highly conserved protein DJ-1 as a regulator of microneme secretion, but the molecular basis for this was not known. We have now identified the molecular mechanism for how TgDJ-1 regulates microneme secretion. TgDJ-1 interacts with the kinase responsible for the secretion of these

  3. Glutathione S-Transferases Interact with AMP-Activated Protein Kinase: Evidence for S-Glutathionylation and Activation In Vitro

    PubMed Central

    Polge, Cécile; Ramirez, Sacnicte; Michelland, Sylvie; Sève, Michel; Vertommen, Didier; Rider, Mark; Lentze, Nicolas; Auerbach, Daniel; Schlattner, Uwe

    2013-01-01

    AMP-activated protein kinase (AMPK) is a cellular and whole body energy sensor with manifold functions in regulating energy homeostasis, cell morphology and proliferation in health and disease. Here we apply multiple, complementary in vitro and in vivo interaction assays to identify several isoforms of glutathione S-transferase (GST) as direct AMPK binding partners: Pi-family member rat GSTP1 and Mu-family members rat GSTM1, as well as Schistosoma japonicum GST. GST/AMPK interaction is direct and involves the N-terminal domain of the AMPK β-subunit. Complex formation of the mammalian GSTP1 and -M1 with AMPK leads to their enzymatic activation and in turn facilitates glutathionylation and activation of AMPK in vitro. GST-facilitated S-glutathionylation of AMPK may be involved in rapid, full activation of the kinase under mildly oxidative physiological conditions. PMID:23741294

  4. Interactions between the S-Domain Receptor Kinases and AtPUB-ARM E3 Ubiquitin Ligases Suggest a Conserved Signaling Pathway in Arabidopsis1[W][OA

    PubMed Central

    Samuel, Marcus A.; Mudgil, Yashwanti; Salt, Jennifer N.; Delmas, Frédéric; Ramachandran, Shaliny; Chilelli, Andrea; Goring, Daphne R.

    2008-01-01

    The Arabidopsis (Arabidopsis thaliana) genome encompasses multiple receptor kinase families with highly variable extracellular domains. Despite their large numbers, the various ligands and the downstream interacting partners for these kinases have been deciphered only for a few members. One such member, the S-receptor kinase, is known to mediate the self-incompatibility (SI) response in Brassica. S-receptor kinase has been shown to interact and phosphorylate a U-box/ARM-repeat-containing E3 ligase, ARC1, which, in turn, acts as a positive regulator of the SI response. In an effort to identify conserved signaling pathways in Arabidopsis, we performed yeast two-hybrid analyses of various S-domain receptor kinase family members with representative Arabidopsis plant U-box/ARM-repeat (AtPUB-ARM) E3 ligases. The kinase domains from S-domain receptor kinases were found to interact with ARM-repeat domains from AtPUB-ARM proteins. These kinase domains, along with M-locus protein kinase, a positive regulator of SI response, were also able to phosphorylate the ARM-repeat domains in in vitro phosphorylation assays. Subcellular localization patterns were investigated using transient expression assays in tobacco (Nicotiana tabacum) BY-2 cells and changes were detected in the presence of interacting kinases. Finally, potential links to the involvement of these interacting modules to the hormone abscisic acid (ABA) were investigated. Interestingly, AtPUB9 displayed redistribution to the plasma membrane of BY-2 cells when either treated with ABA or coexpressed with the active kinase domain of ARK1. As well, T-DNA insertion mutants for ARK1 and AtPUB9 lines were altered in their ABA sensitivity during germination and acted at or upstream of ABI3, indicating potential involvement of these proteins in ABA responses. PMID:18552232

  5. Hsp90 interaction with Cdc2 and Plo1 kinases contributes to actomyosin ring condensation in fission yeast.

    PubMed

    Santino, Andrea; Tallada, Victor A; Jimenez, Juan; Garzón, Andrés

    2012-08-01

    In Schizosaccharomyces pombe, cytokinesis occurs by ordered recruitment of actomyosin components at the division site, followed by lateral condensation to produce a ring-like structure early in anaphase, which eventually matures and contracts at the end of mitosis. We found that in temperature-sensitive hsp90-w1 mutant cells, encoding an Hsp90 mutant protein, ring components were recruited to form a cortical network at the division site, but this network failed to condense into a compact ring, suggesting a role for Hsp90 in this particular step. hsp90-w1 mutant shows strong genetic interaction with specific mutant alleles of the fission yeast cdc2, such as cdc2-33. Interestingly, actomyosin ring defects in hsp90-w1 cdc2-33 mutant cells resembled that of hsp90-w1 single mutant at restrictive temperature. Noteworthy, similar genetic interaction was found with a mutant allele of polo-like kinase, plo1-ts4, suggesting that Hsp90 collaborates with Cdc2 and Plo1 cell cycle kinases to condense medial ring components. In vitro analyses suggested that Cdc2 and Plo1 physically interact with Hsp90. Association of Cdc2 to Hsp90 was ATP independent, while Plo1 binds to this chaperone in an ATP-dependent manner, indicating that these two kinases interact with different Hsp90 complexes. Overall, our analyses of hsp90-w1 reveal a possible role for this chaperone in medial ring condensation in association with Cdc2 and Plo1 kinases.

  6. Fenretinide Perturbs Focal Adhesion Kinase in Premalignant and Malignant Human Oral Keratinocytes. Fenretinide's Chemopreventive Mechanisms Include ECM Interactions.

    PubMed

    Han, Byungdo B; Li, Suyang; Tong, Meng; Holpuch, Andrew S; Spinney, Richard; Wang, Daren; Border, Michael B; Liu, Zhongfa; Sarode, Sachin; Pei, Ping; Schwendeman, Steven P; Mallery, Susan R

    2015-05-01

    The membrane-associated protein, focal adhesion kinase (FAK), modulates cell-extracellular matrix interactions and also conveys prosurvival and proliferative signals. Notably, increased intraepithelial FAK levels accompany transformation of premalignant oral intraepithelial neoplasia (OIN) to oral squamous cell carcinoma (OSCC). OIN chemoprevention is a patient-centric, optimal strategy to prevent OSCC's comorbidities and mortality. The cancer chemopreventive and synthetic vitamin A derivative, fenretinide, has demonstrated protein-binding capacities, for example, mTOR- and retinol-binding protein interactions. These studies used a continuum of human oral keratinocytes (normal-HPV E6/E7-transduced-OSCC) to assess potential fenretinide-FAK drug protein interactions and functional consequences on cellular growth regulation and motility. Molecular modeling studies demonstrated that fenretinide has approximately 200-fold greater binding affinity relative to the natural ligand (ATP) at FAK's kinase domain. Fenretinide also shows intermediate binding at FAK's FERM domain and interacts at the ATP-binding site of the closest FAK analogue, PYK2. Fenretinide significantly suppressed proliferation via induction of apoptosis and G2-M cell-cycle blockade. Fenretinide-treated cells also demonstrated F-actin disruption, significant inhibition of both directed migration and invasion of a synthetic basement membrane, and decreased phosphorylation of growth-promoting kinases. A commercially available FAK inhibitor did not suppress cell invasion. Notably, although FAK's FERM domain directs cell invasion, FAK inhibitors target the kinase domain. In addition, FAK-specific siRNA-treated cells showed an intermediate cell migration capacity; data which suggest cocontribution of the established migrating-enhancing PYK2. Our data imply that fenretinide is uniquely capable of disrupting FAK's and PYK2's prosurvival and mobility-enhancing effects and further extend fenretinide

  7. Interactions between Type III receptor tyrosine phosphatases and growth factor receptor tyrosine kinases regulate tracheal tube formation in Drosophila.

    PubMed

    Jeon, Mili; Scott, Matthew P; Zinn, Kai

    2012-06-15

    The respiratory (tracheal) system of the Drosophila melanogaster larva is an intricate branched network of air-filled tubes. Its developmental logic is similar in some ways to that of the vertebrate vascular system. We previously described a unique embryonic tracheal tubulogenesis phenotype caused by loss of both of the Type III receptor tyrosine phosphatases (RPTPs), Ptp4E and Ptp10D. In Ptp4E Ptp10D double mutants, the linear tubes in unicellular and terminal tracheal branches are converted into bubble-like cysts that incorporate apical cell surface markers. This tube geometry phenotype is modulated by changes in the activity or expression of the epidermal growth factor receptor (Egfr) tyrosine kinase (TK). Ptp10D physically interacts with Egfr. Here we demonstrate that the Ptp4E Ptp10D phenotype is the consequence of the loss of negative regulation by the RPTPs of three growth factor receptor TKs: Egfr, Breathless and Pvr. Reducing the activity of any of the three kinases by tracheal expression of dominant-negative mutants suppresses cyst formation. By competing dominant-negative and constitutively active kinase mutants against each other, we show that the three RTKs have partially interchangeable activities, so that increasing the activity of one kinase can compensate for the effects of reducing the activity of another. This implies that SH2-domain downstream effectors that are required for the phenotype are likely to be able to interact with phosphotyrosine sites on all three receptor TKs. We also show that the phenotype involves increases in signaling through the MAP kinase and Rho GTPase pathways.

  8. Interactions between Type III receptor tyrosine phosphatases and growth factor receptor tyrosine kinases regulate tracheal tube formation in Drosophila

    PubMed Central

    Jeon, Mili; Scott, Matthew P.; Zinn, Kai

    2012-01-01

    Summary The respiratory (tracheal) system of the Drosophila melanogaster larva is an intricate branched network of air-filled tubes. Its developmental logic is similar in some ways to that of the vertebrate vascular system. We previously described a unique embryonic tracheal tubulogenesis phenotype caused by loss of both of the Type III receptor tyrosine phosphatases (RPTPs), Ptp4E and Ptp10D. In Ptp4E Ptp10D double mutants, the linear tubes in unicellular and terminal tracheal branches are converted into bubble-like cysts that incorporate apical cell surface markers. This tube geometry phenotype is modulated by changes in the activity or expression of the epidermal growth factor receptor (Egfr) tyrosine kinase (TK). Ptp10D physically interacts with Egfr. Here we demonstrate that the Ptp4E Ptp10D phenotype is the consequence of the loss of negative regulation by the RPTPs of three growth factor receptor TKs: Egfr, Breathless and Pvr. Reducing the activity of any of the three kinases by tracheal expression of dominant-negative mutants suppresses cyst formation. By competing dominant-negative and constitutively active kinase mutants against each other, we show that the three RTKs have partially interchangeable activities, so that increasing the activity of one kinase can compensate for the effects of reducing the activity of another. This implies that SH2-domain downstream effectors that are required for the phenotype are likely to be able to interact with phosphotyrosine sites on all three receptor TKs. We also show that the phenotype involves increases in signaling through the MAP kinase and Rho GTPase pathways. PMID:23213447

  9. LIM kinase 1 (LIMK1) interacts with tropomyosin-related kinase B (TrkB) and Mediates brain-derived neurotrophic factor (BDNF)-induced axonal elongation.

    PubMed

    Dong, Qing; Ji, Yun-Song; Cai, Chang; Chen, Zhe-Yu

    2012-12-07

    BDNF/TrkB signaling plays critical roles in axonal outgrowth of neurons, the process of which requires the remodeling of the cytoskeleton structure, including microtubules and filamentous actin. However, the mechanism by which BDNF/TrkB signaling regulates cytoskeleton reorganization is still unclear. Here, we identified a novel interaction between LIMK1 and TrkB, which is required for the BDNF-induced axonal elongation. We demonstrated that BDNF-induced TrkB dimerization led to LIMK1 dimerization and transphosphorylation independent of TrkB kinase activity, which could further enhance the activation and stabilization of LIMK1. Moreover, activated LIMK1 translocated to the membrane fraction and phosphorylated its substrate cofilin, thus promoting actin polymerization and axonal elongation. Our findings provided evidence of a novel mechanism for the BDNF-mediated signal transduction leading to axonal elongation.

  10. Epstein-Barr virus protein kinase BGLF4 targets the nucleus through interaction with nucleoporins.

    PubMed

    Chang, Chou-Wei; Lee, Chung-Pei; Huang, Yu-Hao; Yang, Pei-Wen; Wang, Jiin-Tarng; Chen, Mei-Ru

    2012-08-01

    BGLF4 of Epstein-Barr virus (EBV) encodes a serine/threonine protein kinase that phosphorylates multiple viral and cellular substrates to optimize the cellular environment for viral DNA replication and the nuclear egress of viral nucleocapsids. BGLF4 is expressed predominantly in the nucleus at early and late stages of virus replication, while a small portion of BGLF4 is distributed in the cytoplasm at the late stage of virus replication and packaged into the virion. Here, we analyzed systematically the functional domains crucial for nuclear localization of BGLF4 and found that both the N and C termini play important modulating roles. Analysis of amino acid substitution mutants revealed that the C terminus of BGLF4 does not contain a conventional nuclear localization signal (NLS). Additionally, deletion of the C-terminal putative helical regions at amino acids 386 to 393 and 410 to 419 diminished the nuclear translocation of BGLF4, indicating that the secondary structure of the C terminus is important for the localization of BGLF4. The green fluorescent protein-fused wild-type or C-terminal helical regions of BGLF4 associate with phenylalanine/glycine repeat-containing nucleoporins (Nups) in nuclear envelope fractionation. Both coimmunoprecipitation and in vitro pull-down assays further demonstrated that BGLF4 binds to Nup62 and Nup153. Remarkably, nuclear import assay with permeabilized HeLa cells demonstrated that BGLF4 translocated into nucleus independent of cytosolic factors. Data presented here suggest that BGLF4 employs a novel mechanism through direct interactions with nucleoporins for its nuclear targeting.

  11. Structure-based design of small peptide inhibitors of protein kinase CK2 subunit interaction

    PubMed Central

    Laudet, Béatrice; Barette, Caroline; Dulery, Vincent; Renaudet, Olivier; Dumy, Pascal; Metz, Alexandra; Prudent, Renaud; Deshiere, Alexandre; Dideberg, Otto; Filhol, Odile; Cochet, Claude

    2007-01-01

    X-ray crystallography studies, as well as live-cell fluorescent imaging, have recently challenged the traditional view of protein kinase CK2. Unbalanced expression of catalytic and regulatory CK2 subunits has been observed in a variety of tissues and tumours. Thus the potential intersubunit flexibility suggested by these studies raises the likely prospect that the CK2 holoenzyme complex is subject to disassembly and reassembly. In the present paper, we show evidence for the reversible multimeric organization of the CK2 holoenzyme complex in vitro. We used a combination of site-directed mutagenesis, binding experiments and functional assays to show that, both in vitro and in vivo, only a small set of primary hydrophobic residues of CK2β which contacts at the centre of the CK2α/CK2β interface dominates affinity. The results indicate that a double mutation in CK2β of amino acids Tyr188 and Phe190, which are complementary and fill up a hydrophobic pocket of CK2α, is the most disruptive to CK2α binding both in vitro and in living cells. Further characterization of hotspots in a cluster of hydrophobic amino acids centred around Tyr188–Phe190 led us to the structure-based design of small-peptide inhibitors. One conformationally constrained 11-mer peptide (Pc) represents a unique CK2β-based small molecule that was particularly efficient (i) to antagonize the interaction between the CK2 subunits, (ii) to inhibit the assembly of the CK2 holoenzyme complex, and (iii) to strongly affect its substrate preference. PMID:17714077

  12. The composition and function of the striatin-interacting phosphatases and kinases (STRIPAK) complex in fungi.

    PubMed

    Kück, Ulrich; Beier, Anna M; Teichert, Ines

    2016-05-01

    The striatin-interacting phosphatases and kinases (STRIPAK) complex is a highly conserved eukaryotic protein complex that was recently described for diverse animal and fungal species. Here, we summarize our current knowledge about the composition and function of the STRIPAK complex from the ascomycete Sordaria macrospora, which we discovered by investigating sexually sterile mutants (pro), having a defect in fruiting body development. Mass spectrometry and yeast two-hybrid analysis defined core subunits of the STRIPAK complex, which have structural homologs in animal and other fungal organisms. These subunits (and their mammalian homologs) are PRO11 (striatin), PRO22 (STRIP1/2), SmMOB3 (Mob3), PRO45 (SLMAP), and PP2AA, the structural, and PP2Ac, the catalytic subunits of protein phosphatase 2A (PP2A). Beside fruiting body formation, the STRIPAK complex controls vegetative growth and hyphal fusion in S. macrospora. Although the contribution of single subunits to diverse cellular and developmental processes is not yet fully understood, functional analysis has already shown that mammalian homologs are able to substitute the function of distinct fungal STRIPAK subunits. This underscores the view that fungal model organisms serve as useful tools to get a molecular insight into cellular and developmental processes of eukaryotes in general. Future work will unravel the precise localization of single subunits within the cell and decipher their STRIPAK-related and STRIPAK-independent functions. Finally, evidence is accumulating that there is a crosstalk between STRIPAK and various signaling pathways, suggesting that eukaryotic development is dependent on STRIPAK signaling. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Drug-Drug Interaction Potentials of Tyrosine Kinase Inhibitors via Inhibition of UDP-Glucuronosyltransferases

    PubMed Central

    Zhang, Nan; Liu, Yong; Jeong, Hyunyoung

    2015-01-01

    Tyrosine kinase inhibitors (TKIs) are anticancer drugs that may be co-administered with other drugs. The aims of this study are to investigate the inhibitory effects of TKIs on UDP-glucuronosyltransferase (UGT) activities, and to quantitatively evaluate their potential to cause drug-drug interactions (DDIs). Inhibition kinetic profiles of a panel of UGT enzymes (UGT1A1, 1A3, 1A4, 1A6, 1A7, 1A8, 1A9, 1A10, 2B4, 2B7, 2B15, and 2B17) by four TKIs (axitinib, imatinib, lapatinib and vandetanib) were characterized by using hepatic microsomes and recombinant proteins. Lapatinib exhibited potent competitive inhibition against UGT1A1 activity with a Ki of 0.5 μM. Imatinib was found to exhibit broad inhibition on several UGTs, particularly potent competitive inhibition against UGT2B17 with a Ki of 0.4 μM. The TKIs also exerted intermediate inhibition against several UGTs (i.e., UGT1A7 by lapatinib; UGT1A1 by imatinib; UGT1A4, 1A7 and 1A9 by axitinib; and UGT1A9 by vandetanib). Results from modeling for the quantitative prediction of DDI risk indicated that the coadministration of lapatinib or imatinib at clinical doses could result in a significant increase in AUC of drugs primarily cleared by UGT1A1 or 2B17. Lapatinib and imatinib may cause clinically significant DDIs when co-administered UGT1A1 or 2B17 substrates. PMID:26642944

  14. Calcineurin B-Like Protein-Interacting Protein Kinase CIPK21 Regulates Osmotic and Salt Stress Responses in Arabidopsis.

    PubMed

    Pandey, Girdhar K; Kanwar, Poonam; Singh, Amarjeet; Steinhorst, Leonie; Pandey, Amita; Yadav, Akhlilesh K; Tokas, Indu; Sanyal, Sibaji K; Kim, Beom-Gi; Lee, Sung-Chul; Cheong, Yong-Hwa; Kudla, Jörg; Luan, Sheng

    2015-09-01

    The role of calcium-mediated signaling has been extensively studied in plant responses to abiotic stress signals. Calcineurin B-like proteins (CBLs) and CBL-interacting protein kinases (CIPKs) constitute a complex signaling network acting in diverse plant stress responses. Osmotic stress imposed by soil salinity and drought is a major abiotic stress that impedes plant growth and development and involves calcium-signaling processes. In this study, we report the functional analysis of CIPK21, an Arabidopsis (Arabidopsis thaliana) CBL-interacting protein kinase, ubiquitously expressed in plant tissues and up-regulated under multiple abiotic stress conditions. The growth of a loss-of-function mutant of CIPK21, cipk21, was hypersensitive to high salt and osmotic stress conditions. The calcium sensors CBL2 and CBL3 were found to physically interact with CIPK21 and target this kinase to the tonoplast. Moreover, preferential localization of CIPK21 to the tonoplast was detected under salt stress condition when coexpressed with CBL2 or CBL3. These findings suggest that CIPK21 mediates responses to salt stress condition in Arabidopsis, at least in part, by regulating ion and water homeostasis across the vacuolar membranes.

  15. Ligation of human Fc receptor like-2 by monoclonal antibodies down-regulates B-cell receptor-mediated signalling

    PubMed Central

    Shabani, Mahdi; Bayat, Ali Ahmad; Jeddi-Tehrani, Mahmood; Rabbani, Hodjatallah; Hojjat-Farsangi, Mohammad; Ulivieri, Cristina; Amirghofran, Zahra; Baldari, Cosima Tatiana; Shokri, Fazel

    2014-01-01

    B-cell antigen receptor (BCR) signalling and its regulation through negative and positive regulators are critical for balancing B-cell response and function. Human Fc receptor like-2 (FCRL2), a member of the newly identified FCRL family, could influence B-cell signalling due to possession of both immunoreceptor tyrosine-based activation and inhibitory motifs (ITAM and ITIM). Since the natural ligand of FCRL2 has not been identified, we generated FCRL2-specific monoclonal antibodies (mAbs) and employed them to investigate the influence of FCRL2 stimulation on BCR signalling in an FCRL2-expressing B-cell line. Two anti-FCRL2 mAb-producing hybridoma clones (5A7-E7 and 3D8-G8) were selected. None of the mAbs displayed any cross-reactivity with the other members of the FCRL family including recombinant FCRL1, -3, -4 and -5, as tested by FACS and ELISA techniques. Engagement of the FCRL2 by these mAbs resulted in significant inhibition of BCR signalling mediators such as calcium mobilization and phosphorylation of the mitogen-activated protein kinases Erk, p38 and Jnk. These findings indicate that the FCRL2 ITIM motifs are functional and the anti-FCRL2 mAbs may mimic the natural ligand of FCRL2 by induction of inhibitory signals in B cells. PMID:24797767

  16. Kinome-wide interaction modelling using alignment-based and alignment-independent approaches for kinase description and linear and non-linear data analysis techniques

    PubMed Central

    2010-01-01

    Background Protein kinases play crucial roles in cell growth, differentiation, and apoptosis. Abnormal function of protein kinases can lead to many serious diseases, such as cancer. Kinase inhibitors have potential for treatment of these diseases. However, current inhibitors interact with a broad variety of kinases and interfere with multiple vital cellular processes, which causes toxic effects. Bioinformatics approaches that can predict inhibitor-kinase interactions from the chemical properties of the inhibitors and the kinase macromolecules might aid in design of more selective therapeutic agents, that show better efficacy and lower toxicity. Results We applied proteochemometric modelling to correlate the properties of 317 wild-type and mutated kinases and 38 inhibitors (12,046 inhibitor-kinase combinations) to the respective combination's interaction dissociation constant (Kd). We compared six approaches for description of protein kinases and several linear and non-linear correlation methods. The best performing models encoded kinase sequences with amino acid physico-chemical z-scale descriptors and used support vector machines or partial least- squares projections to latent structures for the correlations. Modelling performance was estimated by double cross-validation. The best models showed high predictive ability; the squared correlation coefficient for new kinase-inhibitor pairs ranging P2 = 0.67-0.73; for new kinases it ranged P2kin = 0.65-0.70. Models could also separate interacting from non-interacting inhibitor-kinase pairs with high sensitivity and specificity; the areas under the ROC curves ranging AUC = 0.92-0.93. We also investigated the relationship between the number of protein kinases in the dataset and the modelling results. Using only 10% of all data still a valid model was obtained with P2 = 0.47, P2kin = 0.42 and AUC = 0.83. Conclusions Our results strongly support the applicability of proteochemometrics for kinome-wide interaction modelling

  17. Analysis of A-kinase anchoring protein (AKAP) interaction with protein kinase A (PKA) regulatory subunits: PKA isoform specificity in AKAP binding.

    PubMed

    Herberg, F W; Maleszka, A; Eide, T; Vossebein, L; Tasken, K

    2000-04-28

    Compartmentalization of cAMP-dependent protein kinase (PKA) is in part mediated by specialized protein motifs in the dimerization domain of the regulatory (R)-subunits of PKA that participate in protein-protein interactions with an amphipathic helix region in A-kinase anchoring proteins (AKAPs). In order to develop a molecular understanding of the subcellular distribution and specific functions of PKA isozymes mediated by association with AKAPs, it is of importance to determine the apparent binding constants of the R-subunit-AKAP interactions. Here, we present a novel approach using surface plasmon resonance (SPR) to examine directly the association and dissociation of AKAPs with all four R-subunit isoforms immobilized on a modified cAMP surface with a high level of accuracy. We show that both AKAP79 and S-AKAP84/D-AKAP1 bind RIIalpha very well (apparent K(D) values of 0.5 and 2 nM, respectively). Both proteins also bind RIIbeta quite well, but with three- to fourfold lower affinities than those observed versus RIIalpha. However, only S-AKAP84/D-AKAP1 interacts with RIalpha at a nanomolar affinity (apparent K(D) of 185 nM). In comparison, AKAP95 binds RIIalpha (apparent K(D) of 5.9 nM) with a tenfold higher affinity than RIIbeta and has no detectable binding to RIalpha. Surface competition assays with increasing concentrations of a competitor peptide covering amino acid residues 493 to 515 of the thyroid anchoring protein Ht31, demonstrated that Ht31, but not a proline-substituted peptide, Ht31-P, competed binding of RIIalpha and RIIbeta to all the AKAPs examined (EC(50)-values from 6 to 360 nM). Furthermore, RIalpha interaction with S-AKAP84/D-AKAP1 was competed (EC(50) 355 nM) with the same peptide. Here we report for the first time an approach to determine apparent rate- and equilibria binding constants for the interaction of all PKA isoforms with any AKAP as well as a novel approach for characterizing peptide competitors that disrupt PKA-AKAP anchoring.

  18. Regulation of N-Formyl Peptide Receptor Signaling and Trafficking by Arrestin-Src Kinase Interaction.

    PubMed

    Wagener, Brant M; Marjon, Nicole A; Prossnitz, Eric R

    2016-01-01

    Arrestins were originally described as proteins recruited to ligand-activated, phosphorylated G protein-coupled receptors (GPCRs) to attenuate G protein-mediated signaling. It was later revealed that arrestins also mediate GPCR internalization and recruit a number of signaling proteins including, but not limited to, Src family kinases, ERK1/2, and JNK3. GPCR-arrestin binding and trafficking control the spatial and temporal activity of these multi-protein complexes. In previous reports, we concluded that N-formyl peptide receptor (FPR)-mediated apoptosis, which occurs upon receptor stimulation in the absence of arrestins, is associated with FPR accumulation in perinuclear recycling endosomes. Under these conditions, inhibition of Src kinase and ERK1/2 prevented FPR-mediated apoptosis. To better understand the role of Src kinase in this process, in the current study we employed a previously described arrestin-2 (arr2) mutant deficient in Src kinase binding (arr2-P91G/P121E). Unlike wild type arrestin, arr2-P91G/P121E did not inhibit FPR-mediated apoptosis, suggesting that Src binding to arrestin-2 prevents apoptotic signaling. However, in cells expressing this mutant, FPR-mediated apoptosis was still blocked by inhibition of Src kinase activity, suggesting that activation of Src independent of arrestin-2 binding is involved in FPR-mediated apoptosis. Finally, while Src kinase inhibition prevented FPR-mediated-apoptosis in the presence of arr2-P91G/P121E, it did not prevent FPR-arr2-P91G/P121E accumulation in the perinuclear recycling endosome. On the contrary, inhibition of Src kinase activity mediated the accumulation of activated FPR-wild type arrestin-2 in recycling endosomes without initiating FPR-mediated apoptosis. Based on these observations, we conclude that Src kinase has two independent roles following FPR activation that regulate both FPR-arrestin-2 signaling and trafficking.

  19. Sibiriline, a new small chemical inhibitor of receptor-interacting protein kinase 1, prevents immune-dependent hepatitis.

    PubMed

    Le Cann, Fabienne; Delehouzé, Claire; Leverrier-Penna, Sabrina; Filliol, Aveline; Comte, Arnaud; Delalande, Olivier; Desban, Nathalie; Baratte, Blandine; Gallais, Isabelle; Piquet-Pellorce, Claire; Faurez, Florence; Bonnet, Marion; Mettey, Yvette; Goekjian, Peter; Samson, Michel; Vandenabeele, Peter; Bach, Stéphane; Dimanche-Boitrel, Marie-Thérèse

    2017-09-01

    Necroptosis is a regulated form of cell death involved in several disease models including in particular liver diseases. Receptor-interacting protein kinases, RIPK1 and RIPK3, are the main serine/threonine kinases driving this cell death pathway. We screened a noncommercial, kinase-focused chemical library which allowed us to identify Sibiriline as a new inhibitor of necroptosis induced by tumor necrosis factor (TNF) in Fas-associated protein with death domain (FADD)-deficient Jurkat cells. Moreover, Sib inhibits necroptotic cell death induced by various death ligands in human or mouse cells while not protecting from caspase-dependent apoptosis. By using competition binding assay and recombinant kinase assays, we demonstrated that Sib is a rather specific competitive RIPK1 inhibitor. Molecular docking analysis shows that Sib is trapped closed to human RIPK1 adenosine triphosphate-binding site in a relatively hydrophobic pocket locking RIPK1 in an inactive conformation. In agreement with its RIPK1 inhibitory property, Sib inhibits both TNF-induced RIPK1-dependent necroptosis and RIPK1-dependent apoptosis. Finally, Sib protects mice from concanavalin A-induced hepatitis. These results reveal the small-molecule Sib as a new RIPK1 inhibitor potentially of interest for the treatment of immune-dependent hepatitis. © 2017 Federation of European Biochemical Societies.

  20. Protein kinase A RII-like (R2D2) proteins exhibit differential localization and AKAP interaction.

    PubMed

    Newell, Amy E Hanlon; Fiedler, Sarah E; Ruan, Jenny M; Pan, Jieyan; Wang, P Jeremy; Deininger, Jutta; Corless, Christopher L; Carr, Daniel W

    2008-07-01

    A-kinase anchoring proteins (AKAPs) bind to protein kinase A (PKA) via an amphipathic helix domain that interacts with a dimerization/docking domain on the regulatory (R) subunit of PKA. Four other mammalian proteins (ROPN1, ASP, SP17, and CABYR) also contain a highly conserved RII dimerization/docking (R2D2) domain, suggesting all four proteins may interact with all AKAPs in a manner similar to RII. All four of these proteins were originally detected in the flagellum of mammalian sperm. In this report, we demonstrate that all four R2D2 proteins are expressed in a wide variety of tissues and three of the proteins SP17, CABYR, and ASP are located in motile cilia of human bronchus and fallopian tubes. In addition, we detect SP17 in primary cilia. We also provide evidence that ROPN1 and ASP bind to a variety of AKAPs and this interaction can be disrupted with anchoring inhibitor peptides. The interaction of SP17 and CABYR with AKAPs appears to be much more limited. None of the R2D2 proteins appears to bind cAMP, a fundamental characteristic of the regulatory subunits of PKA. These observations suggest that R2D2 proteins utilize docking interactions with AKAPs to accomplish their function of regulating cilia and flagella. Based on location, affinity for AKAPs and lack of affinity for cAMP, it appears that each R2D2 protein has a unique role in this process.

  1. Identification of Novel Death-Associated Protein Kinase 2 Interaction Partners by Proteomic Screening Coupled with Bimolecular Fluorescence Complementation

    PubMed Central

    Zokouri, Zina; Hürlemann, Samuel; Gerrits, Bertran; Ausländer, David; Britschgi, Adrian; Tschan, Mario P.; Simon, Hans-Uwe; Fussenegger, Martin

    2015-01-01

    Death-associated protein kinase 2 (DAPK2) is a Ca2+/calmodulin-dependent Ser/Thr kinase that possesses tumor-suppressive functions and regulates programmed cell death, autophagy, oxidative stress, hematopoiesis, and motility. As only few binding partners of DAPK2 have been determined, the molecular mechanisms governing these biological functions are largely unknown. We report the identification of 180 potential DAPK2 interaction partners by affinity purification-coupled mass spectrometry, 12 of which are known DAPK binding proteins. A small subset of established and potential binding proteins detected in this screen was further investigated by bimolecular fluorescence complementation (BiFC) assays, a method to visualize protein interactions in living cells. These experiments revealed that α-actinin-1 and 14-3-3-β are novel DAPK2 binding partners. The interaction of DAPK2 with α-actinin-1 was localized at the plasma membrane, resulting in massive membrane blebbing and reduced cellular motility, whereas the interaction of DAPK2 with 14-3-3-β was localized to the cytoplasm, with no impact on blebbing, motility, or viability. Our results therefore suggest that DAPK2 effector functions are influenced by the protein's subcellular localization and highlight the utility of combining mass spectrometry screening with bimolecular fluorescence complementation to identify and characterize novel protein-protein interactions. PMID:26483415

  2. Numb-Associated Kinase Interacts with the Phosphotyrosine Binding Domain of Numb and Antagonizes the Function of Numb In Vivo

    PubMed Central

    Chien, Cheng-ting; Wang, Shuwen; Rothenberg, Michael; Jan, Lily Y.; Jan, Yuh Nung

    1998-01-01

    During asymmetric cell division, the membrane-associated Numb protein localizes to a crescent in the mitotic progenitor and is segregated predominantly to one of the two daughter cells. We have identified a putative serine/threonine kinase, Numb-associated kinase (Nak), which interacts physically with the phosphotyrosine binding (PTB) domain of Numb. The PTB domains of Shc and insulin receptor substrate bind to an NPXY motif which is not present in the region of Nak that interacts with Numb PTB domain. We found that the Numb PTB domain but not the Shc PTB domain interacts with Nak through a peptide of 11 amino acids, implicating a novel and specific protein-protein interaction. Overexpression of Nak in the sensory organs causes both daughters of a normally asymmetric cell division to adopt the same cell fate, a transformation similar to the loss of numb function phenotype and opposite the cell fate transformation caused by overexpression of Numb. The frequency of cell fate transformation is sensitive to the numb gene dosage, as expected from the physical interaction between Nak and Numb. These findings indicate that Nak may play a role in cell fate determination during asymmetric cell divisions. PMID:9418906

  3. Identification of Novel Death-Associated Protein Kinase 2 Interaction Partners by Proteomic Screening Coupled with Bimolecular Fluorescence Complementation.

    PubMed

    Geering, Barbara; Zokouri, Zina; Hürlemann, Samuel; Gerrits, Bertran; Ausländer, David; Britschgi, Adrian; Tschan, Mario P; Simon, Hans-Uwe; Fussenegger, Martin

    2016-01-01

    Death-associated protein kinase 2 (DAPK2) is a Ca(2+)/calmodulin-dependent Ser/Thr kinase that possesses tumor-suppressive functions and regulates programmed cell death, autophagy, oxidative stress, hematopoiesis, and motility. As only few binding partners of DAPK2 have been determined, the molecular mechanisms governing these biological functions are largely unknown. We report the identification of 180 potential DAPK2 interaction partners by affinity purification-coupled mass spectrometry, 12 of which are known DAPK binding proteins. A small subset of established and potential binding proteins detected in this screen was further investigated by bimolecular fluorescence complementation (BiFC) assays, a method to visualize protein interactions in living cells. These experiments revealed that α-actinin-1 and 14-3-3-β are novel DAPK2 binding partners. The interaction of DAPK2 with α-actinin-1 was localized at the plasma membrane, resulting in massive membrane blebbing and reduced cellular motility, whereas the interaction of DAPK2 with 14-3-3-β was localized to the cytoplasm, with no impact on blebbing, motility, or viability. Our results therefore suggest that DAPK2 effector functions are influenced by the protein's subcellular localization and highlight the utility of combining mass spectrometry screening with bimolecular fluorescence complementation to identify and characterize novel protein-protein interactions.

  4. Ceramide kinase-like (CERKL) interacts with neuronal calcium sensor proteins in the retina in a cation-dependent manner.

    PubMed

    Nevet, Mariela J; Vekslin, Sharon; Dizhoor, Alexander M; Olshevskaya, Elena V; Tidhar, Rotem; Futerman, Anthony H; Ben-Yosef, Tamar

    2012-07-10

    CERKL encodes for a ceramide kinase (CERK)-like protein. CERKL mutations are associated with severe retinal degeneration. Several studies have been conducted to prove a biochemical similarity between CERK and CERKL enzymatic activities. However, so far there has been no evidence that CERKL phosphorylates ceramide or any other lipid substrate in vitro or in vivo. The purpose of this work was to characterize CERKL's function by identification of CERKL-interacting proteins in the mammalian retina. CERKL-interacting proteins were identified implementing the Ras-recruitment system (RRS) on a bovine retina cDNA library. Co-immunoprecipitation (co-IP) in transfected cells and in photoreceptor outer segments was used to verify the identified interactions. Serial deletion constructs were used to map the interacting sites. CERKL's kinase activity was tested by a CERK activity assay. We identified an interaction between CERKL and several neuronal calcium sensor (NCS) proteins, including guanylate cyclase activating protein 1 (GCAP1), GCAP2, and recoverin. These interactions were confirmed by co-IP experiments in transfected mammalian cells. Moreover, the interaction between endogenous CERKL and GCAP2 was confirmed by co-IP in photoreceptor outer segments. We found that CERKL-GCAP interaction is cation dependent and is mediated by CERKL's N-terminal region and by GCAPs cation-binding domains (EF-hands 2-4). This study, which is the first to describe the interactions of CERKL with other retinal proteins, links CERKL to proteins involved in the photoresponse and Ca(2+) signaling, providing important clues for future research required in this direction.

  5. A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals.

    PubMed

    Madsen, Esben Bjørn; Madsen, Lene Heegaard; Radutoiu, Simona; Olbryt, Magdalena; Rakwalska, Magdalena; Szczyglowski, Krzysztof; Sato, Shusei; Kaneko, Takakazu; Tabata, Satoshi; Sandal, Niels; Stougaard, Jens

    2003-10-09

    Plants belonging to the legume family develop nitrogen-fixing root nodules in symbiosis with bacteria commonly known as rhizobia. The legume host encodes all of the functions necessary to build the specialized symbiotic organ, the nodule, but the process is elicited by the bacteria. Molecular communication initiates the interaction, and signals, usually flavones, secreted by the legume root induce the bacteria to produce a lipochitin-oligosaccharide signal molecule (Nod-factor), which in turn triggers the plant organogenic process. An important determinant of bacterial host specificity is the structure of the Nod-factor, suggesting that a plant receptor is involved in signal perception and signal transduction initiating the plant developmental response. Here we describe the cloning of a putative Nod-factor receptor kinase gene (NFR5) from Lotus japonicus. NFR5 is essential for Nod-factor perception and encodes an unusual transmembrane serine/threonine receptor-like kinase required for the earliest detectable plant responses to bacteria and Nod-factor. The extracellular domain of the putative receptor has three modules with similarity to LysM domains known from peptidoglycan-binding proteins and chitinases. Together with an atypical kinase domain structure this characterizes an unusual receptor-like kinase.

  6. A frequent kinase domain mutation that changes the interaction between PI3K[alpha] and the membrane

    SciTech Connect

    Mandelker, Diana; Gabelli, Sandra B.; Schmidt-Kittler, Oleg; Zhu, Jiuxiang; Cheong, Ian; Huang, Chuan-Hsiang; Kinzler, Kenneth W.; Vogelstein, Bert; Amzel, L. Mario

    2009-12-01

    Mutations in oncogenes often promote tumorigenesis by changing the conformation of the encoded proteins, thereby altering enzymatic activity. The PIK3CA oncogene, which encodes p110{alpha}, the catalytic subunit of phosphatidylinositol 3-kinase alpha (PI3K{alpha}), is one of the two most frequently mutated oncogenes in human cancers. We report the structure of the most common mutant of p110{alpha} in complex with two interacting domains of its regulatory partner (p85{alpha}), both free and bound to an inhibitor (wortmannin). The N-terminal SH2 (nSH2) domain of p85{alpha} is shown to form a scaffold for the entire enzyme complex, strategically positioned to communicate extrinsic signals from phosphopeptides to three distinct regions of p110{alpha}. Moreover, we found that Arg-1047 points toward the cell membrane, perpendicular to the orientation of His-1047 in the WT enzyme. Surprisingly, two loops of the kinase domain that contact the cell membrane shift conformation in the oncogenic mutant. Biochemical assays revealed that the enzymatic activity of the p110{alpha} His1047Arg mutant is differentially regulated by lipid membrane composition. These structural and biochemical data suggest a previously undescribed mechanism for mutational activation of a kinase that involves perturbation of its interaction with the cellular membrane.

  7. Retrograde Neurotrophic Signaling Requires a Protein Interacting with Receptor Tyrosine Kinases via C2H2 Zinc Fingers

    PubMed Central

    Fu, Xiaoqin; Zang, Keling; Zhou, Zhiwei; Reichardt, Louis F.

    2010-01-01

    Neurotrophins at axonal terminals signal to cell bodies to regulate neuronal development via signaling endosomes containing activated Trk receptor tyrosine kinases and mitogen-activated protein kinases (MAPKs). Requirements for the formation of signaling endosomes remain, however, poorly characterized. Here we show that a novel Trk-interacting protein, NTRAP (neurotrophic factor receptor–associated protein), plays a crucial role in this signaling process. NTRAP interacts with the Trk intracellular domain through its C2H2 zinc fingers in a kinase-dependent manner. It is associated with vesicles, some of which contain markers for signaling endosomes. Inhibition of NTRAP function suppresses neurotrophin-induced neurite outgrowth in PC12 cells by altering TrkA endocytic traffic, inhibiting the formation of endosomes containing persistently active MAPKs. In compartmentalized sensory neuron cultures, down-regulation of NTRAP abolishes the ability of neurotrophins applied to distal axons to activate the transcription factor adenosine 3′,5′-monophosphate response element-binding protein (CREB) and to promote neuronal survival. We propose that NTRAP regulates retrograde neurotrophic signaling by controlling the formation of signaling endosomes. PMID:19864463

  8. JMJD8 Regulates Angiogenic Sprouting and Cellular Metabolism by Interacting With Pyruvate Kinase M2 in Endothelial Cells.

    PubMed

    Boeckel, Jes-Niels; Derlet, Anja; Glaser, Simone F; Luczak, Annika; Lucas, Tina; Heumüller, Andreas W; Krüger, Marcus; Zehendner, Christoph M; Kaluza, David; Doddaballapur, Anuradha; Ohtani, Kisho; Treguer, Karine; Dimmeler, Stefanie

    2016-07-01

    Jumonji C (JmjC) domain-containing proteins modify histone and nonhistone proteins thereby controlling cellular functions. However, the role of JmjC proteins in angiogenesis is largely unknown. Here, we characterize the expression of JmjC domain-containing proteins after inducing endothelial differentiation of murine embryonic stem cells and study the function of JmjC domain-only proteins in endothelial cell (EC) functions. We identified a large number of JmjC domain-containing proteins regulated by endothelial differentiation of murine embryonic stem cells. Among the family of JmjC domain-only proteins, Jmjd8 was significantly upregulated on endothelial differentiation. Knockdown of Jmjd8 in ECs significantly decreased in vitro network formation and sprouting in the spheroid assay. JMJD8 is exclusively detectable in the cytoplasm, excluding a function as a histone-modifying enzyme. Mass spectrometry analysis revealed JMJD8-interacting proteins with known functions in cellular metabolism like pyruvate kinase M2. Accordingly, knockdown of pyruvate kinase M2 in human umbilical vein ECs decreased endothelial sprouting in the spheroid assay. Knockdown of JMJD8 caused a reduction of EC metabolism as measured by Seahorse Bioscience extracellular flux analysis. Conversely, overexpression of JMJD8 enhanced cellular oxygen consumption rate of ECs, reflecting an increased mitochondrial respiration. Jmjd8 is upregulated during endothelial differentiation and regulates endothelial sprouting and metabolism by interacting with pyruvate kinase M2. © 2016 American Heart Association, Inc.

  9. Inhibition of Mitogen-activated Protein Kinase (MAPK)-interacting Kinase (MNK) Preferentially Affects Translation of mRNAs Containing Both a 5'-Terminal Cap and Hairpin.

    PubMed

    Korneeva, Nadejda L; Song, Anren; Gram, Hermann; Edens, Mary Ann; Rhoads, Robert E

    2016-02-12

    The MAPK-interacting kinases 1 and 2 (MNK1 and MNK2) are activated by extracellular signal-regulated kinases 1 and 2 (ERK1/2) or p38 in response to cellular stress and extracellular stimuli that include growth factors, cytokines, and hormones. Modulation of MNK activity affects translation of mRNAs involved in the cell cycle, cancer progression, and cell survival. However, the mechanism by which MNK selectively affects translation of these mRNAs is not understood. MNK binds eukaryotic translation initiation factor 4G (eIF4G) and phosphorylates the cap-binding protein eIF4E. Using a cell-free translation system from rabbit reticulocytes programmed with mRNAs containing different 5'-ends, we show that an MNK inhibitor, CGP57380, affects translation of only those mRNAs that contain both a cap and a hairpin in the 5'-UTR. Similarly, a C-terminal fragment of human eIF4G-1, eIF4G(1357-1600), which prevents binding of MNK to intact eIF4G, reduces eIF4E phosphorylation and inhibits translation of only capped and hairpin-containing mRNAs. Analysis of proteins bound to m(7)GTP-Sepharose reveals that both CGP and eIF4G(1357-1600) decrease binding of eIF4E to eIF4G. These data suggest that MNK stimulates translation only of mRNAs containing both a cap and 5'-terminal RNA duplex via eIF4E phosphorylation, thereby enhancing the coupled cap-binding and RNA-unwinding activities of eIF4F. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Role of Interaction and Nucleoside Diphosphate Kinase B in Regulation of the Cystic Fibrosis Transmembrane Conductance Regulator Function by cAMP-Dependent Protein Kinase A

    PubMed Central

    Borthwick, Lee A.; Kerbiriou, Mathieu; Taylor, Christopher J.; Cozza, Giorgio; Lascu, Ioan; Postel, Edith H.; Cassidy, Diane; Trouvé, Pascal; Mehta, Anil; Robson, Louise; Muimo, Richmond

    2016-01-01

    Cystic fibrosis results from mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-dependent protein kinase A (PKA) and ATP-regulated chloride channel. Here, we demonstrate that nucleoside diphosphate kinase B (NDPK-B, NM23-H2) forms a functional complex with CFTR. In airway epithelia forskolin/IBMX significantly increases NDPK-B co-localisation with CFTR whereas PKA inhibitors attenuate complex formation. Furthermore, an NDPK-B derived peptide (but not its NDPK-A equivalent) disrupts the NDPK-B/CFTR complex in vitro (19-mers comprising amino acids 36–54 from NDPK-B or NDPK-A). Overlay (Far-Western) and Surface Plasmon Resonance (SPR) analysis both demonstrate that NDPK-B binds CFTR within its first nucleotide binding domain (NBD1, CFTR amino acids 351–727). Analysis of chloride currents reflective of CFTR or outwardly rectifying chloride channels (ORCC, DIDS-sensitive) showed that the 19-mer NDPK-B peptide (but not its NDPK-A equivalent) reduced both chloride conductances. Additionally, the NDPK-B (but not NDPK-A) peptide also attenuated acetylcholine-induced intestinal short circuit currents. In silico analysis of the NBD1/NDPK-B complex reveals an extended interaction surface between the two proteins. This binding zone is also target of the 19-mer NDPK-B peptide, thus confirming its capability to disrupt NDPK-B/CFTR complex. We propose that NDPK-B forms part of the complex that controls chloride currents in epithelia. PMID:26950439

  11. Receptor-Interacting Protein Kinase 3 Deficiency Delays Cutaneous Wound Healing.

    PubMed

    Godwin, Andrew; Sharma, Archna; Yang, Weng-Lang; Wang, Zhimin; Nicastro, Jeffrey; Coppa, Gene F; Wang, Ping

    2015-01-01

    Wound healing consists of a complex, dynamic and overlapping process involving inflammation, proliferation and tissue remodeling. A better understanding of wound healing process at the molecular level is needed for the development of novel therapeutic strategies. Receptor-interacting protein kinase 3 (RIPK3) controls programmed necrosis in response to TNF-α during inflammation and has been shown to be highly induced during cutaneous wound repair. However, its role in wound healing remains to be demonstrated. To study this, we created dorsal cutaneous wounds on male wild-type (WT) and RIPK3-deficient (Ripk3-/-) mice. Wound area was measured daily until day 14 post-wound and skin tissues were collected from wound sites at various days for analysis. The wound healing rate in Ripk3-/- mice was slower than the WT mice over the 14-day course; especially, at day 7, the wound size in Ripk3-/- mice was 53% larger than that of WT mice. H&E and Masson-Trichrome staining analysis showed impaired quality of wound closure in Ripk3-/- wounds with delayed re-epithelialization and angiogenesis and defected granulation tissue formation and collagen deposition compared to WT. The neutrophil infiltration pattern was altered in Ripk3-/- wounds with less neutrophils at day 1 and more neutrophils at day 3. This altered pattern was also reflected in the differential expression of IL-6, KC, IL-1β and TNF-α between WT and Ripk3-/- wounds. MMP-9 protein expression was decreased with increased Timp-1 mRNA in the Ripk3-/- wounds compared to WT. The microvascular density along with the intensity and timing of induction of proangiogenic growth factors VEGF and TGF-β1 were also decreased or delayed in the Ripk3-/- wounds. Furthermore, mouse embryonic fibroblasts (MEFs) from Ripk3-/- mice migrated less towards chemoattractants TGF-β1 and PDGF than MEFs from WT mice. These results clearly demonstrate that RIPK3 is an essential molecule to maintain the temporal manner of the normal progression

  12. CHARACTERIZATION OF A NOVEL INTERACTION BETWEEN TRANSCRIPTION FACTOR TFII-I AND THE TYROSINE KINASE ITK IN T CELLS

    PubMed Central

    Sacristán, Catarina; Schattgen, Stefan A.; Berg, Leslie J.; Bunnell, Stephen C.; Roy, Ananda L.; Rosenstein, Yvonne

    2010-01-01

    Summary TCR signaling leads to the activation of kinases such as Itk, a key regulatory protein in T lymphocyte activation and function. The homolog of Itk in B cells is Btk, previously shown to bind and phosphorylate the transcription factor TFII-I. TFII-I plays major roles in transcription and signaling. Our purpose herein was two-fold: first, to identify some of the molecular determinants involved in TFII-I activation downstream of receptor crosslinking in T cells; and second, to uncover the existence of Itk-TFII-I signaling in T lymphocytes. We report for the first time that TFII-I is tyrosine phosphorylated upon TCR, TCR/CD43, and TCR/CD28 co-receptor engagement in human and/or murine T cells. We show that Itk physically interacts with TFII-I and potentiates TFII-I-driven c-fos transcription. We demonstrate that TFII-I is phosphorylated upon co-expression of wild type, but not kinase-dead, or kinase-dead/R29C mutant Itk, suggesting these residues are important for TFII-I phosphorylation, presumably via an Itk-dependent mechanism. Structural analysis of TFII-I-Itk interactions revealed that the first 90 residues of TFII-I are dispensable for Itk binding. Mutations within Itk’s kinase, pleckstrin-homology and proline-rich regions did not abolish TFII-I-Itk binding. Our results provide an initial step in understanding the biological role of Itk-TFII-I signaling in T cell function. PMID:19701889

  13. Hepatitis C Virus RNA-Dependent RNA Polymerase Interacts with the Akt/PKB Kinase and Induces Its Subcellular Relocalization

    PubMed Central

    Valero, María Llanos; Sabariegos, Rosario; Cimas, Francisco J.; Perales, Celia; Domingo, Esteban; Sánchez-Prieto, Ricardo

    2016-01-01

    Hepatitis C virus (HCV) interacts with cellular components and modulates their activities for its own benefit. These interactions have been postulated as a target for antiviral treatment, and some candidate molecules are currently in clinical trials. The multifunctional cellular kinase Akt/protein kinase B (PKB) must be activated to increase the efficacy of HCV entry but is rapidly inactivated as the viral replication cycle progresses. Viral components have been postulated to be responsible for Akt/PKB inactivation, but the underlying mechanism remained elusive. In this study, we show that HCV polymerase NS5B interacts with Akt/PKB. In the presence of transiently expressed NS5B or in replicon- or virus-infected cells, NS5B changes the cellular localization of Akt/PKB from the cytoplasm to the perinuclear region. Sequestration of Akt/PKB by NS5B could explain its exclusion from its participation in early Akt/PKB inactivation. The NS5B-Akt/PKB interaction represents a new regulatory step in the HCV infection cycle, opening possibilities for new therapeutic options. PMID:27021315

  14. Interaction of BRCA1 With the DNA-Dependent Protein Kinase

    DTIC Science & Technology

    2004-09-01

    of the non - homologous end joining (NHEJ) pathway of DNA double strand breaks (DSBs) repair. Though the kinase activity of DNA- PKcs is essential for...1998) Homologous recombination and non - homologous end - joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of

  15. Overexpression of Rice Wall-Associated Kinase 25 (OsWAK25) Alters Resistance to Bacterial and Fungal Pathogens

    PubMed Central

    Harkenrider, Mitch; Sharma, Rita; De Vleesschauwer, David; Tsao, Li; Zhang, Xuting; Chern, Mawsheng; Canlas, Patrick; Zuo, Shimin; Ronald, Pamela C.

    2016-01-01

    Wall-associated kinases comprise a sub-family of receptor-like kinases that function in plant growth and stress responses. Previous studies have shown that the rice wall-associated kinase, OsWAK25, interacts with a diverse set of proteins associated with both biotic and abiotic stress responses. Here, we show that wounding and BTH treatments induce OsWAK25 transcript expression in rice. We generated OsWAK25 overexpression lines and show that these lines exhibit a lesion mimic phenotype and enhanced expression of rice NH1 (NPR1 homolog 1), OsPAL2, PBZ1 and PR10. Furthermore, these lines show resistance to the hemibiotrophic pathogens, Xanthomonas oryzae pv. oryzae (Xoo) and Magnaporthe oryzae, yet display increased susceptibility to necrotrophic fungal pathogens, Rhizoctonia solani and Cochliobolus miyabeanus. PMID:26795719

  16. Regulation of polar auxin transport by protein and lipid kinases

    PubMed Central

    Jaillais, Yvon

    2016-01-01

    The directional transport of auxin, known as polar auxin transport, allows asymmetric distribution of this hormone in different cells and tissues. This system creates local auxin maxima, minima and gradients that are instrumental in both organ initiation and shape determination. As such, polar auxin transport is crucial for all aspects of plant development but also for environmental interaction, notably in shaping plant architecture to its environment. Cell-to-cell auxin transport is mediated by a network of auxin carriers that are regulated at the transcriptional and post-translational levels. Here we review our current knowledge on some aspects of the ‘non-genomic’ regulation of auxin transport, putting an emphasis on how phosphorylation by protein and lipid kinases controls the polarity, intracellular trafficking, stability and activity of auxin carriers. We describe the role of several AGC kinases, including PINOID, D6PK and the blue light photoreceptor phot1, in phosphorylating auxin carriers from the PIN and ABCB families. We also highlight the function of some Receptor-Like Kinases (RLK) and two-component histidine kinase receptors in polar auxin transport, noticing that there are likely RLKs involved in coordinating auxin distribution yet to be discovered. In addition, we describe the emerging role of phospholipid phosphorylation in polarity establishment and intracellular trafficking of PIN proteins. We outline these various phosphorylation mechanisms in the context of primary and lateral root development, leaf cell shape acquisition as well as root gravitropism and shoot phototropism. PMID:27242371

  17. Therapeutic potential of a synthetic lethal interaction between the MYC proto-oncogene and inhibition of aurora-B kinase.

    PubMed

    Yang, Dun; Liu, Hong; Goga, Andrei; Kim, Suwon; Yuneva, Mariia; Bishop, J Michael

    2010-08-03

    The Myc protein and proteins that participate in mitosis represent attractive targets for cancer therapy. However, their potential is presently compromised by the threat of side effects and by a lack of pharmacological inhibitors of Myc. Here we report that a circumscribed exposure to the aurora kinase inhibitor, VX-680, selectively kills cells that overexpress Myc. This synthetic lethal interaction is attributable to inhibition of aurora-B kinase, with consequent disabling of the chromosomal passenger protein complex (CPPC) and ensuing DNA replication in the absence of cell division; executed by sequential apoptosis and autophagy; not reliant on the tumor suppressor protein p53; and effective against mouse models for B-cell and T-cell lymphomas initiated by transgenes of MYC. Our findings cast light on how inhibitors of aurora-B kinase may kill tumor cells, implicate Myc in the induction of a lethal form of autophagy, indicate that expression of Myc be a useful biomarker for sensitivity of tumor cells to inhibition of the CPPC, dramatize the virtue of bimodal killing by a single therapeutic agent, and suggest a therapeutic strategy for killing tumor cells that overexpress Myc while sparing normal cells.

  18. Toxoplasma DJ-1 Regulates Organelle Secretion by a Direct Interaction with Calcium-Dependent Protein Kinase 1

    PubMed Central

    Child, Matthew A.; Garland, Megan; Foe, Ian; Madzelan, Peter; Treeck, Moritz; van der Linden, Wouter A.; Oresic Bender, Kristina; Weerapana, Eranthie; Wilson, Mark A.; Boothroyd, John C.; Reese, Michael L.

    2017-01-01

    ABSTRACT Human DJ-1 is a highly conserved and yet functionally enigmatic protein associated with a heritable form of Parkinson’s disease. It has been suggested to be a redox-dependent regulatory scaffold, binding to proteins to modulate their function. Here we present the X-ray crystal structure of the Toxoplasma orthologue Toxoplasma gondii DJ-1 (TgDJ-1) at 2.1-Å resolution and show that it directly associates with calcium-dependent protein kinase 1 (CDPK1). The TgDJ-1 structure identifies an orthologously conserved arginine dyad that acts as a phospho-gatekeeper motif to control complex formation. We determined that the binding of TgDJ-1 to CDPK1 is sensitive to oxidation and calcium, and that this interaction potentiates CDPK1 kinase activity. Finally, we show that genetic deletion of TgDJ-1 results in upregulation of CDPK1 expression and that disruption of the CDPK1/TgDJ-1 complex in vivo prevents normal exocytosis of parasite virulence-associated organelles called micronemes. Overall, our data suggest that TgDJ-1 functions as a noncanonical kinase-regulatory scaffold that integrates multiple intracellular signals to tune microneme exocytosis in T. gondii. PMID:28246362

  19. Physical and functional interaction of CARMA1 and CARMA3 with Ikappa kinase gamma-NFkappaB essential modulator.

    PubMed

    Stilo, Romania; Liguoro, Domenico; Di Jeso, Bruno; Formisano, Silvestro; Consiglio, Eduardo; Leonardi, Antonio; Vito, Pasquale

    2004-08-13

    CARMA proteins are scaffold molecules that contain a caspase recruitment domain and a membrane-associated guanylate kinase-like domain. CARMA1 plays a critical role in mediating activation of the NFkappaB transcription factor following antigen receptor stimulation of both B and T lymphocytes. However, the biochemical mechanism by which CARMA1 regulates activation of NFkappaB remains to be determined. Here we have shown that CARMA1 and CARMA3 physically associate with Ikappa kinase gamma/NFkappaB essential modulator (IkappaKgamma-NEMO) in lymphoid and non-lymphoid cells. CARMA1 participates to an inducible large molecular complex that contains IkappaKgamma/NEMO, Bcl10, and IkappaKalpha/beta kinases. Expression of the NEMO-binding region of CARMA3 exerts a dominant negative effect on Bcl10-mediated activation of NFkappaB. Thus, our results provide direct evidence for physical and functional interaction between CARMA and the IkappaK complex and offer a biochemical framework to understand the molecular activities controlled by CARMA-1, -2, and -3 and Bcl10.

  20. Ca2+-independent contraction of longitudinal ileal smooth muscle is potentiated by a zipper-interacting protein kinase pseudosubstrate peptide.

    PubMed

    Ihara, Eikichi; Moffat, Lori; Borman, Meredith A; Amon, Jennifer E; Walsh, Michael P; MacDonald, Justin A

    2009-08-01

    As a regulator of smooth muscle contraction, zipper-interacting protein kinase (ZIPK) can directly phosphorylate the myosin regulatory light chains (LC20) and produce contractile force. Synthetic peptides (SM-1 and AV25) derived from the autoinhibitory region of smooth muscle myosin light chain kinase can inhibit ZIPK activity in vitro. Paradoxically, treatment of Triton-skinned ileal smooth muscle strips with AV25, but not SM-1, potentiated Ca2+-independent, microcystin- and ZIPK-induced contractions. The AV25-induced potentiation was limited to ileal and colonic smooth muscles and was not observed in rat caudal artery. Thus the potentiation of Ca2+-independent contractions by AV25 appeared to be mediated by a mechanism unique to intestinal smooth muscle. AV25 treatment elicited increased phosphorylation of LC20 (both Ser-19 and Thr-18) and myosin phosphatase-targeting subunit (MYPT1, inhibitory Thr-697 site), suggesting involvement of a Ca2+-independent LC20 kinase with coincident inhibition of myosin phosphatase. The phosphorylation of the inhibitor of myosin phosphatase, CPI-17, was not affected. The AV25-induced potentiation was abolished by pretreatment with staurosporine, a broad-specificity kinase inhibitor, but specific inhibitors of Rho-associated kinase, PKC, and MAPK pathways had no effect. When a dominant-negative ZIPK [kinase-dead ZIPK((1-320))-D161A] was added to skinned ileal smooth muscle, the potentiation of microcystin-induced contraction by AV25 was blocked. Furthermore, pretreatment of skinned ileal muscle with SM-1 abolished AV25-induced potentiation. We conclude, therefore, that, even though AV25 is an in vitro inhibitor of ZIPK, activation of the ZIPK pathway occurs following application of AV25 to permeabilized ileal smooth muscle. Finally, we propose a mechanism whereby conformational changes in the pseudosubstrate region of ZIPK permit augmentation of ZIPK activity toward LC(20) and MYPT1 in situ. AV25 or molecules based on its structure

  1. The cytoplasmic PASC domain of the sensor kinase DcuS of Escherichia coli: role in signal transduction, dimer formation, and DctA interaction

    PubMed Central

    Monzel, Christian; Degreif-Dünnwald, Pia; Gröpper, Christina; Griesinger, Christian; Unden, Gottfried

    2013-01-01

    The cytoplasmic PASC domain of the fumarate responsive sensor kinase DcuS of Escherichia coli links the transmembrane to the kinase domain. PASC is also required for interaction with the transporter DctA serving as a cosensor of DcuS. Earlier studies suggested that PASC functions as a hinge and transmits the signal to the kinase. Reorganizing the PASC dimer interaction and, independently, removal of DctA, converts DcuS to the constitutive ON state (active without fumarate stimulation). ON mutants were categorized with respect to these two biophysical interactions and the functional state of DcuS: type I-ON mutations grossly reorganize the homodimer, and decrease interaction with DctA. Type IIA-ON mutations create the ON state without grossly reorganizing the homodimer, whereas interaction with DctA is decreased. The type IIB-ON mutations were neither in PASC/PASC, nor in DctA/DcuS interaction affected, similar to fumarate activated wild-typic DcuS. OFF mutations never affected dimer stability. The ON mutations provide novel mechanistic insight: PASC dimerization is essential to silence the kinase. Reorganizing the homodimer and its interaction with DctA activate the kinase. The study suggests a novel ON homo-dimer conformation (type IIB) and an OFF conformation for PASC. Type IIB-ON corresponds to the fumarate induced wild-type conformation, representing an interesting target for structural biology. PMID:24039243

  2. Protein kinase A modulates transforming growth factor-β signaling through a direct interaction with Smad4 protein.

    PubMed

    Yang, Huibin; Li, Gangyong; Wu, Jing-Jiang; Wang, Lidong; Uhler, Michael; Simeone, Diane M

    2013-03-22

    Transforming growth factor β (TGFβ) signaling normally functions to regulate embryonic development and cellular homeostasis. It is increasingly recognized that TGFβ signaling is regulated by cross-talk with other signaling pathways. We previously reported that TGFβ activates protein kinase A (PKA) independent of cAMP through an interaction of an activated Smad3-Smad4 complex and the regulatory subunit of the PKA holoenzyme (PKA-R). Here we define the interaction domains of Smad4 and PKA-R and the functional consequences of this interaction. Using a series of Smad4 and PKA-R truncation mutants, we identified amino acids 290-300 of the Smad4 linker region as critical for the specific interaction of Smad4 and PKA-R. Co-immunoprecipitation assays showed that the B cAMP binding domain of PKA-R was sufficient for interaction with Smad4. Targeting of B domain regions conserved among all PKA-R isoforms and exposed on the molecular surface demonstrated that amino acids 281-285 and 320-329 were required for complex formation with Smad4. Interactions of these specific regions of Smad4 and PKA-R were necessary for TGFβ-mediated increases in PKA activity, CREB (cAMP-response element-binding protein) phosphorylation, induction of p21, and growth inhibition. Moreover, this Smad4-PKA interaction was required for TGFβ-induced epithelial mesenchymal transition, invasion of pancreatic tumor cells, and regulation of tumor growth in vivo.

  3. Evidence for new homotypic and heterotypic interactions between transmembrane helices of proteins involved in receptor tyrosine kinase and neuropilin signaling.

    PubMed

    Sawma, Paul; Roth, Lise; Blanchard, Cécile; Bagnard, Dominique; Crémel, Gérard; Bouveret, Emmanuelle; Duneau, Jean-Pierre; Sturgis, James N; Hubert, Pierre

    2014-12-12

    Signaling in eukaryotic cells frequently relies on dynamic interactions of single-pass membrane receptors involving their transmembrane (TM) domains. To search for new such interactions, we have developed a bacterial two-hybrid system to screen for both homotypic and heterotypic interactions between TM helices. We have explored the dimerization of TM domains from 16 proteins involved in both receptor tyrosine kinase and neuropilin signaling. This study has revealed several new interactions. We found that the TM domain of Mucin-4, a putative intramembrane ligand for erbB2, dimerizes not only with erbB2 but also with all four members of the erbB family. In the Neuropilin/Plexin family of receptors, we showed that the TM domains of Neuropilins 1 and 2 dimerize with themselves and also with Plexin-A1, Plexin-B1, and L1CAM, but we were unable to observe interactions with several other TM domains notably those of members of the VEGF receptor family. The potentially important Neuropilin 1/Plexin-A1 interaction was confirmed using a surface plasmon resonance assay. This work shows that TM domain interactions can be highly specific. Exploring further the propensities of TM helix-helix association in cell membrane should have important practical implications related to our understanding of the structure-function of bitopic proteins' assembly and subsequent function, especially in the regulation of signal transduction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Integrin-dependent translocation of phosphoinositide 3-kinase to the cytoskeleton of thrombin-activated platelets involves specific interactions of p85 alpha with actin filaments and focal adhesion kinase

    PubMed Central

    1995-01-01

    Thrombin-induced accumulation of phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2) but not of PtdIns(3,4,5,)P3 is strongly correlated with the relocation to the cytoskeleton of 29% of the p85 alpha regulatory subunit of phosphoinositide 3-kinase (PtdIns 3-kinase) and is accompanied by a significant increase in PtdIns 3-kinase activity in this subcellular fraction. Actually, PtdIns(3,4)P2 accumulation and PtdIns 3-kinase, pp60c-src, and p125FAK translocations as well as aggregation were concomitant events occurring with a distinct lag after actin polymerization. The accumulation of PtdIns(3,4)P2 and the relocalization of PtdIns 3-kinase to the cytoskeleton were both dependent on tyrosine phosphorylation, integrin signaling, and aggregation. Furthermore, although p85 alpha was detected in anti- phosphotyrosine immunoprecipitates obtained from the cytoskeleton of thrombin-activated platelets, we failed to demonstrate tyrosine phosphorylation of cytoskeletal p85 alpha. Tyrphostin treatment clearly reduced its presence in this subcellular fraction, suggesting a physical interaction of p85 alpha with a phosphotyrosyl protein. These data led us to investigate the proteins that are able to interact with PtdIns 3-kinase in the cytoskeleton. We found an association of this enzyme with actin filaments: this interaction was spontaneously restored after one cycle of actin depolymerization-repolymerization in vitro. This association with F-actin appeared to be at least partly indirect, since we demonstrated a thrombin-dependent interaction of p85 alpha with a proline-rich sequence of the tyrosine-phosphorylated cytoskeletal focal adhesion kinase, p125FAK. In addition, we show that PtdIns 3-kinase is significantly activated by the p125FAK proline-rich sequence binding to the src homology 3 domain of p85 alpha subunit. This interaction may represent a new mechanism for PtdIns 3-kinase activation at very specific areas of the cell and indicates that the focal contact-like areas

  5. Interaction Between a Novel p21 Activated Kinase (PAK6) and Androgen Receptor in Prostate Cancer

    DTIC Science & Technology

    2005-02-01

    cancer. The cell cycle signaling regulated by the mitogen activated protein/extracellular-signal-regulated kinase (MAPK/ERK) have been linked to tumor...biological roles of PAK6 in prostate cancer cells , and to examine the expression of PAK6 in prostate tissues. We anticipate that by completing the...of prostate cells (Balk, 2002; Gelmann, 2002). Androgen ablation is an effective treatment for the majority of advanced prostate cancer patients

  6. Constitutive activation of opsin: interaction of mutants with rhodopsin kinase and arrestin.

    PubMed

    Rim, J; Oprian, D D

    1995-09-19

    Mutation of Gly90, Glu113, Ala292, and Lys296 in the visual pigment rhodopsin constitutively activates the protein for activation of the G protein transducin. Three of these mutations have been shown to cause two different human diseases. Mutation of Gly90 and Ala292 results in complete night blindness, and mutation of Lys296 results in the degenerative disease retinitis pigmentosa. We show here that the mutants not only constitutively activate transducin but are also constitutively activated for phosphorylation by rhodopsin kinase. In addition, the phosphorylated mutants are shown to bind tightly to the inhibitory protein arrestin in a reaction that quenches the activity toward transducin. Thus the same mutations that result in constitutive activation of transducin also result in constitutive phosphorylation by rhodopsin kinase and binding of arrestin to inhibit the activity. This implies that the same conformational change may be responsible for activation of transducin and rhodopsin kinase. It also suggests that degeneration of photoreceptor cells in retinitis pigmentosa results indirectly from the activated state of the receptor, perhaps as a consequence of phosphorylation and persistent binding of arrestin.

  7. Interaction between G proteins and tyrosine kinases upon T cell receptor.CD3-mediated signaling.

    PubMed

    Stanners, J; Kabouridis, P S; McGuire, K L; Tsoukas, C D

    1995-12-22

    Engagement of the T cell receptor (TCR).CD3 complex results in the induction of multiple intracellular events, with protein tyrosine kinases playing a pivotal role in their initiation. Biochemical studies also exist suggesting the involvement of heterotrimeric GTP-binding proteins (G proteins); however, the functional consequence of this participation in TCR.CD3-mediated signaling is unresolved. Here, we report TCR.CD3-mediated guanine nucleotide exchange among the 42-kDa G protein alpha subunits of the G alpha q/11 family, their physical association with CD3 epsilon, and the G alpha 11-dependent activation of phospholipase C beta. Protein tyrosine kinase inhibitors, however, abrogate TCR.CD3-mediated G protein activation. Quite interesting is the observation that cells transfected with a function-deficient mutant of G alpha 11 display diminished tyrosine phosphorylation of TCR.CD3 zeta and epsilon chains, as well as ZAP-70, upon anti-CD3 antibody triggering. These data indicate the involvement of the G alpha q/11 family in TCR.CD3 signaling at a step proximal to the receptor and suggest a reciprocal regulation between tyrosine kinases and G proteins in T cells.

  8. Interactions of Prototype Foamy Virus Capsids with Host Cell Polo-Like Kinases Are Important for Efficient Viral DNA Integration

    PubMed Central

    Zurnic, Irena; Hütter, Sylvia; Rzeha, Ute; Stanke, Nicole; Reh, Juliane; Müllers, Erik; Hamann, Martin V.; Kern, Tobias; Gerresheim, Gesche K.; Serrao, Erik; Lesbats, Paul; Engelman, Alan N.; Cherepanov, Peter; Lindemann, Dirk

    2016-01-01

    Unlike for other retroviruses, only a few host cell factors that aid the replication of foamy viruses (FVs) via interaction with viral structural components are known. Using a yeast-two-hybrid (Y2H) screen with prototype FV (PFV) Gag protein as bait we identified human polo-like kinase 2 (hPLK2), a member of cell cycle regulatory kinases, as a new interactor of PFV capsids. Further Y2H studies confirmed interaction of PFV Gag with several PLKs of both human and rat origin. A consensus Ser-Thr/Ser-Pro (S-T/S-P) motif in Gag, which is conserved among primate FVs and phosphorylated in PFV virions, was essential for recognition by PLKs. In the case of rat PLK2, functional kinase and polo-box domains were required for interaction with PFV Gag. Fluorescently-tagged PFV Gag, through its chromatin tethering function, selectively relocalized ectopically expressed eGFP-tagged PLK proteins to mitotic chromosomes in a Gag STP motif-dependent manner, confirming a specific and dominant nature of the Gag-PLK interaction in mammalian cells. The functional relevance of the Gag-PLK interaction was examined in the context of replication-competent FVs and single-round PFV vectors. Although STP motif mutated viruses displayed wild type (wt) particle release, RNA packaging and intra-particle reverse transcription, their replication capacity was decreased 3-fold in single-cycle infections, and up to 20-fold in spreading infections over an extended time period. Strikingly similar defects were observed when cells infected with single-round wt Gag PFV vectors were treated with a pan PLK inhibitor. Analysis of entry kinetics of the mutant viruses indicated a post-fusion defect resulting in delayed and reduced integration, which was accompanied with an enhanced preference to integrate into heterochromatin. We conclude that interaction between PFV Gag and cellular PLK proteins is important for early replication steps of PFV within host cells. PMID:27579920

  9. A Conserved Streptococcal Membrane Protein, LsrS, Exhibits a Receptor-Like Function for Lantibiotics

    PubMed Central

    Biswas, Saswati

    2014-01-01

    Streptococcus mutans strain GS-5 produces a two-peptide lantibiotic, Smb, which displays inhibitory activity against a broad spectrum of bacteria, including other streptococci. For inhibition, lantibiotics must recognize specific receptor molecules present on the sensitive bacterial cells. However, so far no such receptor proteins have been identified for any lantibiotics. In this study, using a powerful transposon mutagenesis approach, we have identified in Streptococcus pyogenes a gene that exhibits a receptor-like function for Smb. The protein encoded by that gene, which we named LsrS, is a membrane protein belonging to the CAAX protease family. We also found that nisin, a monopeptide lantibiotic, requires LsrS for its optimum inhibitory activity. However, we found that LsrS is not required for inhibition by haloduracin and galolacticin, both of which are two-peptide lantibiotics closely related to Smb. LsrS appears to be a well-conserved protein that is present in many streptococci, including S. mutans. Inactivation of SMU.662, an LsrS homolog, in S. mutans strains UA159 and V403 rendered the cells refractory to Smb-mediated killing. Furthermore, overexpression of LsrS in S. mutans created cells more susceptible to Smb. Although LsrS and its homolog contain the CAAX protease domain, we demonstrate that inactivation of the putative active sites on the LsrS protein has no effect on its receptor-like function. This is the first report describing a highly conserved membrane protein that displays a receptor-like function for lantibiotics. PMID:24509319

  10. A LIM-9 (FHL)/SCPL-1 (SCP) complex interacts with the C-terminal protein kinase regions of UNC-89 (obscurin) in Caenorhabditis elegans muscle.

    PubMed

    Xiong, Ge; Qadota, Hiroshi; Mercer, Kristina B; McGaha, Lee Anne; Oberhauser, Andres F; Benian, Guy M

    2009-03-06

    The C. elegans gene unc-89 encodes a set of mostly giant polypeptides (up to 900 kDa) that contain multiple immunoglobulin (Ig) and fibronectin type 3 (Fn3), a triplet of SH3-DH-PH, and two protein kinase domains. The loss of function mutant phenotype and localization of antibodies to UNC-89 proteins indicate that the function of UNC-89 is to help organize sarcomeric A-bands, especially M-lines. Recently, we reported that each of the protein kinase domains interacts with SCPL-1, which contains a CTD-type protein phosphatase domain. Here, we report that SCPL-1 interacts with LIM-9 (FHL), a protein that we first discovered as an interactor of UNC-97 (PINCH) and UNC-96, components of an M-line costamere in nematode muscle. We show that LIM-9 can interact with UNC-89 through its first kinase domain and a portion of unique sequence lying between the two kinase domains. All the interactions were confirmed by biochemical methods. A yeast three-hybrid assay demonstrates a ternary complex between the two protein kinase regions and SCPL-1. Evidence that the UNC-89/SCPL-1 interaction occurs in vivo was provided by showing that over-expression of SCPL-1 results in disorganization of UNC-89 at M-lines. We suggest two structural models for the interactions of SCPL-1 and LIM-9 with UNC-89 at the M-line.

  11. Influenza Virus Infection Induces Host Pyruvate Kinase M Which Interacts with Viral RNA-Dependent RNA Polymerase.

    PubMed

    Miyake, Yukari; Ishii, Kosuke; Honda, Ayae

    2017-01-01

    Influenza virus RNA-dependent RNA polymerase (RdRp) is a heterotrimer of three viral proteins, PB1, PB2, and PA and is involved in both transcription and replication of the negative strand of the viral RNA (vRNA) genome. RdRp is multifunctional, possessing RNA polymerase, cap binding, and endonuclease activities. The enzyme synthesizes three different RNAs, complementary RNA (cRNA) and messenger RNA (mRNA) from vRNA, and vRNA from cRNA. To synthesize these three RNAs, RdRp requires conversion of its function by host factor. Here, we performed yeast two-hybrid screening to identify the relevant host factor, revealing that pyruvate kinase M2 (PKM2) interacted with the PA subunit of influenza virus RdRp. PKM2 is one of two enzymes (PKM1 and PKM2) produced by alternative splicing of the pyruvate kinase M (PKM) pre-mRNA. We determined the interacting regions in both PKM2 and PA, the expression level of PKM by western blotting at different time points after viral infection, and the effects of transfection of siRNA targeting PKM on influenza virus replication. The results demonstrated that the C-terminal region of PKM2 interacted with the C-terminus of the PA subunit, that the expression level of PKM2 increased with influenza virus infection time, and that this enzyme is essential for influenza virus multiplication. Moreover, isoelectric focusing of uninfected and influenza virus infected cell extracts, followed by gradient gel electrophoresis to separate the PKM1 and PKM2 isoforms and western blotting indicated that PKM2 became more acidic after influenza infection. The decreased pH of PKM2 may have been due to phosphorylation, and phosphorylated PKM2 is active as a pyruvate kinase and protein kinase; therefore, it is possible that PKM2 may transfer a phosphate group to PA and consequently transform the function of RdRp from transcriptase to replicase.

  12. Influenza Virus Infection Induces Host Pyruvate Kinase M Which Interacts with Viral RNA-Dependent RNA Polymerase

    PubMed Central

    Miyake, Yukari; Ishii, Kosuke; Honda, Ayae

    2017-01-01

    Influenza virus RNA-dependent RNA polymerase (RdRp) is a heterotrimer of three viral proteins, PB1, PB2, and PA and is involved in both transcription and replication of the negative strand of the viral RNA (vRNA) genome. RdRp is multifunctional, possessing RNA polymerase, cap binding, and endonuclease activities. The enzyme synthesizes three different RNAs, complementary RNA (cRNA) and messenger RNA (mRNA) from vRNA, and vRNA from cRNA. To synthesize these three RNAs, RdRp requires conversion of its function by host factor. Here, we performed yeast two-hybrid screening to identify the relevant host factor, revealing that pyruvate kinase M2 (PKM2) interacted with the PA subunit of influenza virus RdRp. PKM2 is one of two enzymes (PKM1 and PKM2) produced by alternative splicing of the pyruvate kinase M (PKM) pre-mRNA. We determined the interacting regions in both PKM2 and PA, the expression level of PKM by western blotting at different time points after viral infection, and the effects of transfection of siRNA targeting PKM on influenza virus replication. The results demonstrated that the C-terminal region of PKM2 interacted with the C-terminus of the PA subunit, that the expression level of PKM2 increased with influenza virus infection time, and that this enzyme is essential for influenza virus multiplication. Moreover, isoelectric focusing of uninfected and influenza virus infected cell extracts, followed by gradient gel electrophoresis to separate the PKM1 and PKM2 isoforms and western blotting indicated that PKM2 became more acidic after influenza infection. The decreased pH of PKM2 may have been due to phosphorylation, and phosphorylated PKM2 is active as a pyruvate kinase and protein kinase; therefore, it is possible that PKM2 may transfer a phosphate group to PA and consequently transform the function of RdRp from transcriptase to replicase. PMID:28232820

  13. Carboxyl Group Footprinting Mass Spectrometry and Molecular Dynamics Identify Key Interactions in the HER2-HER3 Receptor Tyrosine Kinase Interface* ♦

    PubMed Central

    Collier, Timothy S.; Diraviyam, Karthikeyan; Monsey, John; Shen, Wei; Sept, David; Bose, Ron

    2013-01-01

    The HER2 receptor tyrosine kinase is a driver oncogene in many human cancers, including breast and gastric cancer. Under physiologic levels of expression, HER2 heterodimerizes with other members of the EGF receptor/HER/ErbB family, and the HER2-HER3 dimer forms one of the most potent oncogenic receptor pairs. Previous structural biology studies have individually crystallized the kinase domains of HER2 and HER3, but the HER2-HER3 kinase domain heterodimer structure has yet to be solved. Using a reconstituted membrane system to form HER2-HER3 kinase domain heterodimers and carboxyl group footprinting mass spectrometry, we observed that HER2 and HER3 kinase domains preferentially form asymmetric heterodimers with HER3 and HER2 monomers occupying the donor and acceptor kinase positions, respectively. Conformational changes in the HER2 activation loop, as measured by changes in carboxyl group labeling, required both dimerization and nucleotide binding but did not require activation loop phosphorylation at Tyr-877. Molecular dynamics simulations on HER2-HER3 kinase dimers identify specific inter- and intramolecular interactions and were in good agreement with MS measurements. Specifically, several intermolecular ionic interactions between HER2 Lys-716-HER3 Glu-909, HER2 Glu-717-HER3 Lys-907, and HER2 Asp-871-HER3 Arg-948 were identified by molecular dynamics. We also evaluated the effect of the cancer-associated mutations HER2 D769H/D769Y, HER3 E909G, and HER3 R948K (also numbered HER3 E928G and R967K) on kinase activity in the context of this new structural model. This study provides valuable insights into the EGF receptor/HER/ErbB kinase structure and interactions, which can guide the design of future therapies. PMID:23843458

  14. Interaction of plant chimeric calcium/calmodulin-dependent protein kinase with a homolog of eukaryotic elongation factor-1alpha

    NASA Technical Reports Server (NTRS)

    Wang, W.; Poovaiah, B. W.

    1999-01-01

    A chimeric Ca2+/calmodulin-dependent protein kinase (CCaMK) was previously cloned and characterized in this laboratory. To investigate the biological functions of CCaMK, the yeast two-hybrid system was used to isolate genes encoding proteins that interact with CCaMK. One of the cDNA clones obtained from the screening (LlEF-1alpha1) has high similarity with the eukaryotic elongation factor-1alpha (EF-1alpha). CCaMK phosphorylated LlEF-1alpha1 in a Ca2+/calmodulin-dependent manner. The phosphorylation site for CCaMK (Thr-257) was identified by site-directed mutagenesis. Interestingly, Thr-257 is located in the putative tRNA-binding region of LlEF-1alpha1. An isoform of Ca2+-dependent protein kinase (CDPK) phosphorylated multiple sites of LlEF-1alpha1 in a Ca2+-dependent but calmodulin-independent manner. Unlike CDPK, CCaMK phosphorylated only one site, and this site is different from CDPK phosphorylation sites. This suggests that the phosphorylation of EF-1alpha by these two kinases may have different functional significance. Although the phosphorylation of LlEF-1alpha1 by CCaMK is Ca2+/calmodulin-dependent, in vitro binding assays revealed that CCaMK binds to LlEF-1alpha1 in a Ca2+-independent manner. This was further substantiated by coimmunoprecipitation of CCaMK and EF-1alpha using the protein extract from lily anthers. Dissociation of CCaMK from EF-1alpha by Ca2+ and phosphorylation of EF-1alpha by CCaMK in a Ca2+/calmodulin-dependent manner suggests that these interactions may play a role in regulating the biological functions of EF-1alpha.

  15. Interaction of plant chimeric calcium/calmodulin-dependent protein kinase with a homolog of eukaryotic elongation factor-1alpha

    NASA Technical Reports Server (NTRS)

    Wang, W.; Poovaiah, B. W.

    1999-01-01

    A chimeric Ca2+/calmodulin-dependent protein kinase (CCaMK) was previously cloned and characterized in this laboratory. To investigate the biological functions of CCaMK, the yeast two-hybrid system was used to isolate genes encoding proteins that interact with CCaMK. One of the cDNA clones obtained from the screening (LlEF-1alpha1) has high similarity with the eukaryotic elongation factor-1alpha (EF-1alpha). CCaMK phosphorylated LlEF-1alpha1 in a Ca2+/calmodulin-dependent manner. The phosphorylation site for CCaMK (Thr-257) was identified by site-directed mutagenesis. Interestingly, Thr-257 is located in the putative tRNA-binding region of LlEF-1alpha1. An isoform of Ca2+-dependent protein kinase (CDPK) phosphorylated multiple sites of LlEF-