Science.gov

Sample records for receptors fc

  1. The platelet Fc receptor, FcγRIIa.

    PubMed

    Qiao, Jianlin; Al-Tamimi, Mohammad; Baker, Ross I; Andrews, Robert K; Gardiner, Elizabeth E

    2015-11-01

    Human platelets express FcγRIIa, the low-affinity receptor for the constant fragment (Fc) of immunoglobulin (Ig) G that is also found on neutrophils, monocytes, and macrophages. Engagement of this receptor on platelets by immune complexes triggers intracellular signaling events that lead to platelet activation and aggregation. Importantly these events occur in vivo, particularly in response to pathological immune complexes, and engagement of this receptor on platelets has been causally linked to disease pathology. In this review, we will highlight some of the key features of this receptor in the context of the platelet surface, and examine the functions of platelet FcγRIIa in normal hemostasis and in response to injury and infection. This review will also highlight pathological consequences of engagement of this receptor in platelet-based autoimmune disorders. Finally, we present some new data investigating whether levels of the extracellular ligand-binding region of platelet glycoprotein VI which is rapidly shed upon engagement of platelet FcγRIIa by autoantibodies, can report on the presence of pathological anti-heparin/platelet factor 4 immune complexes and thus identify patients with pathological autoantibodies who are at the greatest risk of developing life-threatening thrombosis in the setting of heparin-induced thrombocytopenia.

  2. Fc gamma receptors: glycobiology and therapeutic prospects

    PubMed Central

    Hayes, Jerrard M; Wormald, Mark R; Rudd, Pauline M; Davey, Gavin P

    2016-01-01

    Therapeutic antibodies hold great promise for the treatment of cancer and autoimmune diseases, and developments in antibody–drug conjugates and bispecific antibodies continue to enhance treatment options for patients. Immunoglobulin (Ig) G antibodies are proteins with complex modifications, which have a significant impact on their function. The most important of these modifications is glycosylation, the addition of conserved glycans to the antibody Fc region, which is critical for its interaction with the immune system and induction of effector activities such as antibody-dependent cell cytotoxicity, complement activation and phagocytosis. Communication of IgG antibodies with the immune system is controlled and mediated by Fc gamma receptors (FcγRs), membrane-bound proteins, which relay the information sensed and gathered by antibodies to the immune system. These receptors are also glycoproteins and provide a link between the innate and adaptive immune systems. Recent information suggests that this receptor glycan modification is also important for the interaction with antibodies and downstream immune response. In this study, the current knowledge on FcγR glycosylation is discussed, and some insight into its role and influence on the interaction properties with IgG, particularly in the context of biotherapeutics, is provided. For the purpose of this study, other Fc receptors such as FcαR, FcεR or FcRn are not discussed extensively, as IgG-based antibodies are currently the only therapeutic antibody-based products on the market. In addition, FcγRs as therapeutics and therapeutic targets are discussed, and insight into and comment on the therapeutic aspects of receptor glycosylation are provided. PMID:27895507

  3. Human Fc gamma RII, in the absence of other Fc gamma receptors, mediates a phagocytic signal.

    PubMed Central

    Indik, Z; Kelly, C; Chien, P; Levinson, A I; Schreiber, A D

    1991-01-01

    Fc gamma receptors are important components in the binding and phagocytosis of IgG-sensitized cells. Studies on the role of these receptors have been limited by the fact that most hematopoietic cells express more than one Fc gamma receptor. We studied the role of Fc gamma RIIA in isolation on a human erythroleukemia cell line (HEL) which expresses Fc gamma RIIA as its only Fc gamma receptor. HEL cells were observed to bind and phagocytose IgG-sensitized red blood cells (RBCs) in a dose-dependent manner. We then examined the role of Fc gamma RI and Fc gamma RII in isolation and in combination, in transfected COS-1 cells. Fc gamma RIIA-transfected COS cells also mediated both the binding and phagocytosis of IgG-sensitized RBCs. In contrast, phagocytosis was not observed in Fc gamma RI-transfected cells, although these cells avidly bound IgG-sensitized RBCs. Furthermore, coexpression of both receptors by doubly transfected cells did not affect the phagocytic efficiency of Fc gamma RIIA. These studies establish that Fc gamma RIIA can mediate phagocytosis and suggest that transfected COS-1 cells provide a model for examining this process. Since HEL cells exhibit characteristics of cells of the megakaryocyte-platelet lineage, including expression of Fc gamma RII as the only Fc gamma receptor, Fc gamma RIIA on megakaryocytes and platelets may be involved in the ingestion of IgG-containing immune complexes. Furthermore, these studies indicate that Fc gamma RI and Fc gamma RIIA differ in their requirements for transduction of a phagocytic signal. Images PMID:1834702

  4. Fcγ Receptor Heterogeneity in Leukocyte Functional Responses

    PubMed Central

    Rosales, Carlos

    2017-01-01

    Antibodies participate in defense of the organism from all types of pathogens, including viruses, bacteria, fungi, and protozoa. IgG antibodies recognize their associated antigen via their two Fab portions and are in turn recognized though their Fc portion by specific Fcγ receptors (FcγRs) on the membrane of immune cells. Multiple types and polymorphic variants of FcγR exist. These receptors are expressed in many cells types and are also redundant in inducing cell responses. Crosslinking of FcγR on the surface of leukocytes activates several effector functions aimed toward the destruction of pathogens and the induction of an inflammatory response. In the past few years, new evidence on how the particular IgG subclass and the glycosylation pattern of the antibody modulate the IgG–FcγR interaction has been presented. Despite these advances, our knowledge of what particular effector function is activated in a certain cell and in response to a specific type of FcγR remains very limited today. On one hand, each immune cell could be programmed to perform a particular cell function after FcγR crosslinking. On the other, each FcγR could activate a particular signaling pathway leading to a unique cell response. In this review, I describe the main types of FcγRs and our current view of how particular FcγRs activate various signaling pathways to promote unique leukocyte functions. PMID:28373871

  5. Fcγ receptors and ligands and cardiovascular disease.

    PubMed

    Tanigaki, Keiji; Sundgren, Nathan; Khera, Amit; Vongpatanasin, Wanpen; Mineo, Chieko; Shaul, Philip W

    2015-01-16

    Fcγ receptors (FcγRs) classically modulate intracellular signaling on binding of the Fc region of IgG in immune response cells. How FcγR and their ligands affect cardiovascular health and disease has been interrogated recently in both preclinical and clinical studies. The stimulation of activating FcγR in endothelial cells, vascular smooth muscle cells, and monocytes/macrophages causes a variety of cellular responses that may contribute to vascular disease pathogenesis. Stimulation of the lone inhibitory FγcR, FcγRIIB, also has adverse consequences in endothelial cells, antagonizing NO production and reparative mechanisms. In preclinical disease models, activating FcγRs promote atherosclerosis, whereas FcγRIIB is protective, and activating FcγRs also enhance thrombotic and nonthrombotic vascular occlusion. The FcγR ligand C-reactive protein (CRP) has undergone intense study. Although in rodents CRP does not affect atherosclerosis, it causes hypertension and insulin resistance and worsens myocardial infarction. Massive data have accumulated indicating an association between increases in circulating CRP and coronary heart disease in humans. However, Mendelian randomization studies reveal that CRP is not likely a disease mediator. CRP genetics and hypertension warrant further investigation. To date, studies of genetic variants of activating FcγRs are insufficient to implicate the receptors in coronary heart disease pathogenesis in humans. However, a link between FcγRIIB and human hypertension may be emerging. Further knowledge of the vascular biology of FcγR and their ligands will potentially enhance our understanding of cardiovascular disorders, particularly in patients whose greater predisposition for disease is not explained by traditional risk factors, such as individuals with autoimmune disorders.

  6. Distribution of the IgG Fc Receptor, FcRn, in the Human Fetal Intestine

    PubMed Central

    Shah, Uzma; Dickinson, Bonny L.; Blumberg, Richard S.; Simister, Neil E.; Lencer, Wayne I.; Walker, W. Allan

    2010-01-01

    The intestinal Fc receptor, FcRn, functions in the maternofetal transfer of gamma globulin (IgG) in the neonatal rodent. In humans, most of this transfer is presumed to occur in utero via the placenta. Although the fetus swallows amniotic fluid that contains immunoglobulin, it is unknown whether this transfer also occurs via the fetal intestine. A human FcRn has been identified in the syncytiotrophoblast that mediates the maternofetal transfer of antibody. It has also been identified in human fetal intestine and is postulated to function in IgG transport. We hypothesize that the human fetal intestinal FcRn may play a role in IgG transport from the amniotic fluid into the fetal circulation. The aim of this study was to characterize the distribution of the FcRn along the human fetal intestine. Lysates prepared from human fetal intestine and from a nonmalignant human fetal intestinal epithelial cell line (H4) were subjected to Western blot analysis and probed using anti-FcRn antibodies. A 42-kD band, consistent with the known molecular weight of the FcRn, was detected along the human fetal intestine and in H4 cells. Expression of the human FcRn was confirmed with immunohistochemistry. Our study demonstrates the expression of FcRn along the human fetal intestine and in a human nonmalignant fetal intestinal epithelial cell line (H4), which by location indicates that FcRn could play a role in the uptake and transport of IgG in the human fetus. PMID:12538789

  7. Chemoenzymatic synthesis and Fcγ receptor binding of homogeneous glycoforms of antibody Fc domain. Presence of a bisecting sugar moiety enhances the affinity of Fc to FcγIIIa receptor.

    PubMed

    Zou, Guozhang; Ochiai, Hirofumi; Huang, Wei; Yang, Qiang; Li, Cishan; Wang, Lai-Xi

    2011-11-23

    Structurally well-defined IgG-Fc glycoforms are highly demanded for understanding the effects of glycosylation on an antibody's effector functions. We report in this paper chemoenzymatic synthesis and Fcγ receptor binding of an array of homogeneous IgG-Fc glycoforms. The chemoenzymatic approach consists of the chemical synthesis of defined N-glycan oxazolines as donor substrates, the expression of the Fc domain in a CHO cell line in the presence of an α-mannosidase inhibitor kifunensine, and an endoglycosidase-catalyzed glycosylation of the deglycosylated Fc domain (GlcNAc-Fc homodimer) with the synthetic glycan oxazolines. The enzyme from Arthrobacter protophormiae (Endo-A) was found to be remarkably efficient to take various modified N-glycan core oxazolines, including the bisecting sugar-containing derivatives, for Fc glycosylation remodeling, resulting in the formation of the corresponding homogeneous Fc glycoforms. Nevertheless, neither Endo-A nor the Mucor hiemalis endoglycosidase mutants (EndoM-N175A and EndoM-N175Q) were able to transfer full-length complex-type N-glycan to the Fc domain, implicating the limitations of these two enzymes in Fc glycosylation remodeling. Surface plasmon resonance (SPR) binding studies with the synthetic IgG-Fc glycoforms unambiguously proved that the presence of a bisecting GlcNAc moiety could significantly enhance the binding of Fc to FcγRIIIa, the activating Fcγ receptor, independent of Fc core-fucosylation. Interestingly, the Fc glycoforms carrying an unusual bisecting sugar moiety such as a mannose or a LacNAc moiety also demonstrated enhanced affinity to FcγRIIIa. On the orther hand, the presence of a bisecting GlcNAc or core-fucosylation had little effect on the affinity of Fc to the inhibitory Fcγ receptor, FcγRIIb. Our experimental data also showed that the α-linked mannose residues in the pentasaccharide Man3GlcNAc2 core was essential to maintain a high affinity of Fc to both FcγRIIIa and FcγRIIb. The

  8. Chemoenzymatic Synthesis and Fcγ Receptor Binding of Homogeneous Glycoforms of Antibody Fc Domain. Presence of a Bisecting Sugar Moiety Enhances the Affinity of Fc to FcγIIIa Receptor

    PubMed Central

    Zou, Guozhang; Ochiai, Hirofumi; Huang, Wei; Yang, Qiang; Li, Cishan; Wang, Lai-Xi

    2011-01-01

    Structurally well-defined IgG-Fc glycoforms are highly demanded for understanding the effects of glycosylation on antibody’s effector functions. We report in this paper chemoenzymatic synthesis and Fcγ receptor binding of an array of homogeneous IgG-Fc glycoforms. The chemoenzymatic approach consists of the chemical synthesis of defined N-glycan oxazolines as donor substratess, the expression of the Fc domain in a CHO cell line in the presence of an α-mannosidase inhibitor kifunensine, and an endoglycosidase-catalyzed glycosylation of the deglycosylated Fc domain (GlcNAc-Fc homodimer) with the synthetic glycan oxazolines. The enzyme from Arthrobacter protophormiae (Endo-A) was found to be remarkably efficient to take various modified N-glycan core oxazolines, including the bisecting sugar-containing derivatives, for Fc glycosylation remodeling, resulting in the formation of the corresponding homogeneous Fc glycoforms. Nevertheless, neither Endo-A, nor the Mucor hiemalis endoglycosidase mutants (EndoM-N175A and EndoM-N175Q), was able to transfer full-length complex-type N-glycan to the Fc domain, implicating the limitations of these two enzymes in Fc glycosylation remodeling. SPR binding studies with the synthetic IgG-Fc glycoforms unambiguously proved that the presence of a bisecting GlcNAc moiety could significantly enhance the binding of Fc to FcγRIIIa, the activating Fcγ receptor, independent of Fc core-fucosylation. Interestingly, the Fc glycoforms carrying an unusual bisecting sugar moiety such as a mannose or a LacNAc moiety also demonstrated enhanced affinity to FcγRIIIa. On the orther hand, the presence of a bisecting GlcNAc or core fucosylation had little effect on the affinity of Fc to the inhibitory Fcγ receptor, FcγRIIb. Our experimental data also showed that the α-linked mannose residues in the pentasaccharide Man3GlcNAc2 core was essential to maintain a high-affinity of Fc to both FcγRIIIa and FcγRIIb. The synthetic homogeneous Fc

  9. Importance of the Side Chain at Position 296 of Antibody Fc in Interactions with FcγRIIIa and Other Fcγ Receptors

    PubMed Central

    Isoda, Yuya; Yagi, Hirokazu; Satoh, Tadashi; Shibata-Koyama, Mami; Masuda, Kazuhiro; Satoh, Mitsuo; Kato, Koichi; Iida, Shigeru

    2015-01-01

    Antibody-dependent cellular cytotoxicity (ADCC) is an important effector function determining the clinical efficacy of therapeutic antibodies. Core fucose removal from N-glycans on the Fc portion of immunoglobulin G (IgG) improves the binding affinity for Fcγ receptor IIIa (FcγRIIIa) and dramatically enhances ADCC. Our previous structural analyses revealed that Tyr–296 of IgG1-Fc plays a critical role in the interaction with FcγRIIIa, particularly in the enhanced FcγRIIIa binding of nonfucosylated IgG1. However, the importance of the Tyr–296 residue in the antibody in the interaction with various Fcγ receptors has not yet been elucidated. To further clarify the biological importance of this residue, we established comprehensive Tyr–296 mutants as fucosylated and nonfucosylated anti-CD20 IgG1s rituximab variants and examined their binding to recombinant soluble human Fcγ receptors: shFcγRI, shFcγRIIa, shFcγRIIIa, and shFcγRIIIb. Some of the mutations affected the binding of antibody to not only shFcγRIIIa but also shFcγRIIa and shFcγRIIIb, suggesting that the Tyr–296 residue in the antibody was also involved in interactions with FcγRIIa and FcγRIIIb. For FcγRIIIa binding, almost all Tyr–296 variants showed lower binding affinities than the wild-type antibody, irrespective of their core fucosylation, particularly in Y296K and Y296P. Notably, only the Y296W mutant showed improved binding to FcγRIIIa. The 3.00 Å-resolution crystal structure of the nonfucosylated Y296W mutant in complex with shFcγRIIIa harboring two N-glycans revealed that the Tyr-to-Trp substitution increased the number of potential contact atoms in the complex, thus improving the binding of the antibody to shFcγRIIIa. The nonfucosylated Y296W mutant retained high ADCC activity, relative to the nonfucosylated wild-type IgG1, and showed greater binding affinity for FcγRIIa. Our data may improve our understanding of the biological importance of human IgG1-Fc Tyr–296 in

  10. Identification of an immunoglobulin Fc receptor of Actinobacillus actinomycetemcomitans.

    PubMed Central

    Mintz, K P; Fives-Taylor, P M

    1994-01-01

    Actinobacillus actinomycetemcomitans expresses proteins that bind to the Fc portion of immunoglobulins. The immunoglobulin Fc receptors on the surface of A. actinomycetemcomitans were detected by the binding of biotinylated human or murine Fc molecules to strain SUNY 465 adsorbed to the bottom of microtiter wells. Biotinylated Fc binding was inhibited by unlabeled Fc molecules and human plasma. Fc receptors were identified by the binding of biotinylated Fc molecules to bacterial membrane proteins separated by polyacrylamide gel electrophoresis and transferred to nitrocellulose. Multiple bands were identified, and the major Fc-binding protein was determined to be a heat-modifiable protein. This protein migrated with approximate molecular weights of 25,000 and 32,000 (unheated and heated, respectively). Amino-terminal sequence analysis of this protein revealed a sequence identical to the heat-modifiable protein described for A. actinomycetemcomitans ATCC 43718. This protein sequence exhibits significant homology with the N termini of outer membrane protein A (OmpA) of Escherichia coli and related OmpA-like proteins from other gram-negative bacteria. Images PMID:7927715

  11. The expression of Fcγ receptors in Hashimoto's thyroiditis.

    PubMed

    Liu, Yalei; Liu, Mingming; Zhang, Yang; Qu, Chenxue; Lu, Guizhi; Huang, Youyuan; Zhang, Hong; Yu, Nan; Yuan, Shanshan; Gao, Ying; Gao, Yanming; Guo, Xiaohui

    2015-03-01

    The pathophysiological mechanism underlying Hashimoto's thyroiditis (HT) is still unclear. Thyroglobulin antibody (TgAb) and thyroid peroxidase antibody (TPOAb) are diagnostic hallmarks of HT. These IgG antibodies regulate the balance of immunologic tolerance and autoimmunity via Fcγ receptors (FcγRs). The aim of our study was to investigate the role of FcγRs in the pathogenesis of HT. The percentage of peripheral blood mononuclear cells (PBMCs) from HT patients bearing FcγRII was significantly lower than that seen in healthy donors, and the mean fluorescence intensity (MFI) value of FcγRII on PBMCs from HT patients was significantly higher. The percentage of PBMCs positive for FcγRIII also was significantly higher in HT patients, and the percentage of B cells bearing FcγRIIB in HT patients was significantly lower than that seen in healthy donors. Our study therefore provides evidence for FcγRs, especially FcγRIIB, being involved in the pathogenesis of HT.

  12. Fc Receptors for Immunoglobulins and Their Appearance during Vertebrate Evolution

    PubMed Central

    Akula, Srinivas; Mohammadamin, Sayran; Hellman, Lars

    2014-01-01

    Receptors interacting with the constant domain of immunoglobulins (Igs) have a number of important functions in vertebrates. They facilitate phagocytosis by opsonization, are key components in antibody-dependent cellular cytotoxicity as well as activating cells to release granules. In mammals, four major types of classical Fc receptors (FcRs) for IgG have been identified, one high-affinity receptor for IgE, one for both IgM and IgA, one for IgM and one for IgA. All of these receptors are related in structure and all of them, except the IgA receptor, are found in primates on chromosome 1, indicating that they originate from a common ancestor by successive gene duplications. The number of Ig isotypes has increased gradually during vertebrate evolution and this increase has likely been accompanied by a similar increase in isotype-specific receptors. To test this hypothesis we have performed a detailed bioinformatics analysis of a panel of vertebrate genomes. The first components to appear are the poly-Ig receptors (PIGRs), receptors similar to the classic FcRs in mammals, so called FcRL receptors, and the FcR γ chain. These molecules are not found in cartilagous fish and may first appear within bony fishes, indicating a major step in Fc receptor evolution at the appearance of bony fish. In contrast, the receptor for IgA is only found in placental mammals, indicating a relatively late appearance. The IgM and IgA/M receptors are first observed in the monotremes, exemplified by the platypus, indicating an appearance during early mammalian evolution. Clearly identifiable classical receptors for IgG and IgE are found only in marsupials and placental mammals, but closely related receptors are found in the platypus, indicating a second major step in Fc receptor evolution during early mammalian evolution, involving the appearance of classical IgG and IgE receptors from FcRL molecules and IgM and IgA/M receptors from PIGR. PMID:24816777

  13. Characterization of the human platelet Fc sub. gamma. receptor

    SciTech Connect

    King, M.

    1988-01-01

    Thrombocytopenia is often associated with immune complex disease and may in part be due to the interaction of circulating (IgG) immune complexes with an Fc{sub {gamma}} receptor on the platelet surface. Characterization of the immune complex-platelet interaction should provide for a better understanding of the pathophysiology of immune thrombocytpenia. To this end, a ligand binding assay, employing {sup 125}I-IgG trimer, was established. Receptor expression was determined by measuring the saturable binding of radiolabeled trimer to platelets at equilibrium. Normal human platelets were observed to express 8559 {plus minus} 852 binding sites for IgG trimer with a Kd of 12.5 {plus minus} 1.7 {times} 10{sup {minus}8} M. Binding of IgG trimer to human platelets was blocked following preincubation of the cells with an anti-Fc{sub {gamma}}RII monoclonal antibody. Furthermore, this binding was ionic-strength dependent but was unaffected by the presence of Mg{sup ++} or cytochalasin B. Platelet Fc{sub {gamma}} receptor modulation was examined by assessing the effects of various physiologic and pharmacologic on the ability of platelets to bind IgG trimer. Platelet Fc{sub {gamma}} receptor expression was not affected by thrombin, ADP, or {gamma}-interferon. However, in 7/12 normal donors, treatment of platelets with dexamethasone resulted in a decrease in the number of Fc{sub {gamma}} receptors expressed.

  14. Targeted Fcγ Receptor (FcγR)-mediated Clearance by a Biparatopic Bispecific Antibody.

    PubMed

    Kasturirangan, Srinath; Rainey, G Jonah; Xu, Linda; Wang, Xinwei; Portnoff, Alyse; Chen, Tracy; Fazenbaker, Christine; Zhong, Helen; Bee, Jared; Zeng, Zhutian; Jenne, Craig; Wu, Herren; Gao, Changshou

    2017-03-10

    Soluble ligands have commonly been targeted by antibody therapeutics for cancers and other diseases. Although monoclonal antibodies targeting such ligands can block their interactions with their cognate receptors, they can also significantly increase the half-life of their ligands by FcRn-mediated antibody recycling, thereby evading ligand renal clearance and requiring increasingly high antibody doses to neutralize the increasing pool of target. To overcome this issue, we generated a bispecific/biparatopic antibody (BiSAb) that targets two different epitopes on IL-6 to block IL-6-mediated signaling. The BiSAb formed large immune complexes with IL-6 that can bind Fcγ receptors on phagocytic cells and are rapidly internalized. In addition, rapid clearance of the BiSAb·IL-6 complex was observed in mice while the parental antibodies prolonged the serum half-life of IL-6. Intravital imaging of the liver in mice confirmed that the rapid clearance of these large immune complexes was associated with Fcγ receptor-dependent binding to Kupffer cells in the liver. The approach described here provides a general strategy for therapeutic antibodies with the ability to not only neutralize but also actively drive clearance of their soluble antigens.

  15. Targeted Fcγ Receptor (FcγR)-mediated Clearance by a Biparatopic Bispecific Antibody*

    PubMed Central

    Kasturirangan, Srinath; Rainey, G. Jonah; Xu, Linda; Wang, Xinwei; Portnoff, Alyse; Chen, Tracy; Fazenbaker, Christine; Zhong, Helen; Bee, Jared; Zeng, Zhutian; Jenne, Craig; Wu, Herren; Gao, Changshou

    2017-01-01

    Soluble ligands have commonly been targeted by antibody therapeutics for cancers and other diseases. Although monoclonal antibodies targeting such ligands can block their interactions with their cognate receptors, they can also significantly increase the half-life of their ligands by FcRn-mediated antibody recycling, thereby evading ligand renal clearance and requiring increasingly high antibody doses to neutralize the increasing pool of target. To overcome this issue, we generated a bispecific/biparatopic antibody (BiSAb) that targets two different epitopes on IL-6 to block IL-6-mediated signaling. The BiSAb formed large immune complexes with IL-6 that can bind Fcγ receptors on phagocytic cells and are rapidly internalized. In addition, rapid clearance of the BiSAb·IL-6 complex was observed in mice while the parental antibodies prolonged the serum half-life of IL-6. Intravital imaging of the liver in mice confirmed that the rapid clearance of these large immune complexes was associated with Fcγ receptor-dependent binding to Kupffer cells in the liver. The approach described here provides a general strategy for therapeutic antibodies with the ability to not only neutralize but also actively drive clearance of their soluble antigens. PMID:28100773

  16. Physical proximity and functional interplay of PECAM-1 with the Fc receptor Fc gamma RIIa on the platelet plasma membrane.

    PubMed

    Thai, Le M; Ashman, Leonie K; Harbour, Stacey N; Hogarth, P Mark; Jackson, Denise E

    2003-11-15

    We and others have recently defined that Platelet Endothelial Cell Adhesion Molecule-1 (PECAM-1/CD31) functions as a negative regulator of platelet-collagen interactions involving the glycoprotein VI/Fc receptor gamma chain (GPVI/FcR-gamma chain) signaling pathway.1,2 In this study, we hypothesized that PECAM-1 may be physically and functionally associated with Fc gamma RIIa on the platelet membrane. The functional relationship between PECAM-1 and Fc gamma RIIa was assessed by determining the effect of anti-PECAM-1 monoclonal antibody Fab fragments on Fc gamma RIIa-mediated platelet aggregation and heparin-induced thrombocytopenia (HITS)-mediated platelet aggregation. Preincubation of washed platelets with monoclonal antibody fragments of 2BD4 directed against PECAM-1 and IV.3 directed against Fc gamma RIIa completely blocked Fc gamma RIIa-mediated platelet aggregation and HITS-mediated platelet aggregation, whereas anti-CD151 antibody had no blocking effect. Coengagement of Fc gamma RIIa and PECAM-1 resulted in negative regulation of Fc gamma RIIa-mediated phospholipase C gamma 2 activation, calcium mobilization, and phosphoinositide 3-kinase-dependent signaling pathways. In addition, the physical proximity of Fc gamma RIIa and PECAM-1 was confirmed by using fluorescence resonance energy transfer and coimmunoprecipitation studies. These results indicate that PECAM-1 and Fc gamma RIIa are colocalized on the platelet membrane and PECAM-1 down-regulates Fc gamma RIIa-mediated platelet responses.

  17. Neonatal Fc Receptor Promotes Immune Complex–Mediated Glomerular Disease

    PubMed Central

    Olaru, Florina; Luo, Wentian; Suleiman, Hani; St. John, Patricia L.; Ge, Linna; Mezo, Adam R.; Shaw, Andrey S.; Abrahamson, Dale R.; Miner, Jeffrey H.

    2014-01-01

    The neonatal Fc receptor (FcRn) is a major regulator of IgG and albumin homeostasis systemically and in the kidneys. We investigated the role of FcRn in the development of immune complex–mediated glomerular disease in mice. C57Bl/6 mice immunized with the noncollagenous domain of the α3 chain of type IV collagen (α3NC1) developed albuminuria associated with granular capillary loop deposition of exogenous antigen, mouse IgG, C3 and C5b-9, and podocyte injury. High-resolution imaging showed abundant IgG deposition in the expanded glomerular basement membrane, especially in regions corresponding to subepithelial electron dense deposits. FcRn-null and -humanized mice immunized with α3NC1 developed no albuminuria and had lower levels of serum IgG anti-α3NC1 antibodies and reduced glomerular deposition of IgG, antigen, and complement. Our results show that FcRn promotes the formation of subepithelial immune complexes and subsequent glomerular pathology leading to proteinuria, potentially by maintaining higher serum levels of pathogenic IgG antibodies. Therefore, reducing pathogenic IgG levels by pharmacologic inhibition of FcRn may provide a novel approach for the treatment of immune complex–mediated glomerular diseases. As proof of concept, we showed that a peptide inhibiting the interaction between human FcRn and human IgG accelerated the degradation of human IgG anti-α3NC1 autoantibodies injected into FCRN-humanized mice as effectively as genetic ablation of FcRn, thus preventing the glomerular deposition of immune complexes containing human IgG. PMID:24357670

  18. The role of Fc Receptors in HIV Prevention and Therapy

    PubMed Central

    Boesch, Austin W.; Brown, Eric; Ackerman, Margaret E.

    2016-01-01

    Over the past decade, a wealth of experimental evidence has accumulated supporting the importance of Fc receptor (FcR) ligation in antibody-mediated pathology and protection in many disease states. Here we present the diverse evidence base that has accumulated as to the importance of antibody effector functions in the setting of HIV prevention and therapy, including clinical correlates, genetic associations, viral evasion strategies, and a rapidly growing number of compelling animal model experiments. Collectively, this work identifies antibody interactions with FcR as important to both therapeutic and prophylactic strategies involving both passive and active immunity. These findings mirror those in other fields as investigators continue to work toward identifying the right antibodies and the right effectors to be present at the right sites at the right time. PMID:26497529

  19. Characterization of the rabbit neonatal Fc receptor (FcRn) and analyzing the immunophenotype of the transgenic rabbits that overexpresses FcRn.

    PubMed

    Catunda Lemos, Ana Paula; Cervenak, Judit; Bender, Balázs; Hoffmann, Orsolya Ivett; Baranyi, Mária; Kerekes, Andrea; Farkas, Anita; Bosze, Zsuzsanna; Hiripi, László; Kacskovics, Imre

    2012-01-01

    The neonatal Fc receptor (FcRn) regulates IgG and albumin homeostasis, mediates maternal IgG transport, takes an active role in phagocytosis, and delivers antigen for presentation. We have previously shown that overexpression of FcRn in transgenic mice significantly improves the humoral immune response. Because rabbits are an important source of polyclonal and monoclonal antibodies, adaptation of our FcRn overexpression technology in this species would bring significant advantages. We cloned the full length cDNA of the rabbit FcRn alpha-chain and found that it is similar to its orthologous analyzed so far. The rabbit FcRn - IgG contact residues are highly conserved, and based on this we predicted pH dependent interaction, which we confirmed by analyzing the pH dependent binding of FcRn to rabbit IgG using yolk sac lysates of rabbit fetuses by Western blot. Using immunohistochemistry, we detected strong FcRn staining in the endodermal cells of the rabbit yolk sac membrane, while the placental trophoblast cells and amnion showed no FcRn staining. Then, using BAC transgenesis we generated transgenic rabbits carrying and overexpressing a 110 kb rabbit genomic fragment encoding the FcRn. These transgenic rabbits--having one extra copy of the FcRn when hemizygous and two extra copies when homozygous--showed improved IgG protection and an augmented humoral immune response when immunized with a variety of different antigens. Our results in these transgenic rabbits demonstrate an increased immune response, similar to what we described in mice, indicating that FcRn overexpression brings significant advantages for the production of polyclonal and monoclonal antibodies.

  20. Binding site and subclass specificity of the herpes simplex virus type 1-induced Fc receptor.

    PubMed Central

    Wiger, D; Michaelsen, T E

    1985-01-01

    Immunoglobulin Fc-binding activity was detected by indirect immunofluorescence employing fluorochrome conjugated F(ab')2 antibody fragments on acetone-fixed cell cultures infected with herpes simplex virus type 1 (HSV-1). Using this method the Fc receptor-like activity seemed to be restricted to the IgG class of human immunoglobulins. While IgG1, IgG2, and IgG4 myeloma proteins bind to this putative Fc gamma receptor at a concentration of 0.002 mg/ml, IgG3 myeloma proteins were without activity at 0.1 mg/ml. The binding activity was associated with the Fc fragments of IgG, while the pFc' fragments of IgG appeared to be unable to bind in this assay system. The reactivity and specificity of the HSV-1 Fc receptor was independent of both the type of tissue culture cells used and the strain of HSV-1 inducing the Fc receptor-like activity. The HSV-1-induced Fc receptor has a similar specificity for human immunoglobulin class and subclasses as staphylococcal Protein A. However, these two Fc receptors exhibit at least one striking difference. The IgG3 G3m(st) protein which binds to Protein A does not bind to HSV-1-induced Fc receptor. A possible reaction site for the HSV-1 Fc receptor on IgG could be at or near Asp 276. Images Figure 1 PMID:2982735

  1. Production of recombinant TRAIL and TRAIL receptor: Fc chimeric proteins.

    PubMed

    Schneider, P

    2000-01-01

    The tumor necrosis factor (TNF)/TNF receptor (TNFR) families of ligands and receptors are implicated in a variety of physiological and pathological processes and regulate cellular functions as diverse as proliferation, differentiation, and death. Recombinant forms of these ligands and receptors can act to agonize or antagonize these functions and are therefore useful for laboratory studies and may have clinical applications. A protocol is presented for the expression and purification of dimeric soluble receptors fused to the Fc portion of human IgG1 and of soluble, N-terminally Flag-tagged ligands. Soluble recombinant proteins are easier to handle than membrane-bound proteins and the use of tags greatly facilitates their detection and purification. In addition, some tags may provide enhanced biological activity to the recombinant proteins (mainly by oligomerization and stabilization effects) and facilitate their functional characterization. Expression in bacterial (for selected ligands) and eukaryotic expression systems (for ligands and receptors) was performed using M15 pREP4 bacteria and human embryonic kidney 293 cells, respectively. The yield of purified protein is about 1 mg/liter for the mammalian expression system and several milligrams per liter for the bacterial expression system. Protocols are given for a specific ligand-receptor pair, namely TRAIL (Apo-2L) and TRAIL receptor 2 (DR5), but can be applied to other ligands and receptors of the TNF family.

  2. Of ITIMs, ITAMs, and ITAMis: revisiting immunoglobulin Fc receptor signaling.

    PubMed

    Getahun, Andrew; Cambier, John C

    2015-11-01

    Receptors for immunoglobulin Fc regions play multiple critical roles in the immune system, mediating functions as diverse as phagocytosis, triggering degranulation of basophils and mast cells, promoting immunoglobulin class switching, and preventing excessive activation. Transmembrane signaling associated with these functions is mediated primarily by two amino acid sequence motifs, ITAMs (immunoreceptor tyrosine-based activation motifs) and ITIMs (immunoreceptor tyrosine-based inhibition motifs) that act as the receptors' interface with activating and inhibitory signaling pathways, respectively. While ITAMs mobilize activating tyrosine kinases and their consorts, ITIMs mobilize opposing tyrosine and inositol-lipid phosphatases. In this review, we will discuss our current understanding of signaling by these receptors/motifs and their sometimes blurred lines of function.

  3. Monovalent Fc receptor blockade by an anti-Fcγ receptor/albumin fusion protein ameliorates murine ITP with abrogated toxicity.

    PubMed

    Yu, Xiaojie; Menard, Melissa; Prechl, József; Bhakta, Varsha; Sheffield, William P; Lazarus, Alan H

    2016-01-07

    Patients with immune thrombocytopenia (ITP) commonly have antiplatelet antibodies that cause thrombocytopenia through Fcγ receptors (FcγRs). Antibodies specific for FcγRs, designed to inhibit antibody-FcγR interaction, had been shown to improve ITP in refractory human patients. However, the development of such FcγR-specific antibodies has stalled because of adverse events, a phenomenon recapitulated in mouse models. One hypothesis behind these adverse events involved the function of the Fc region of the antibody, which engages FcγRs, leading to inflammatory responses. Unfortunately, inhibition of Fc function by deglycosylation failed to prevent this inflammatory response. In this work, we hypothesize that the bivalent antigen-binding fragment regions of immunoglobulin G are sufficient to trigger adverse events and have reasoned that designing a monovalent targeting strategy could circumvent the inflammatory response. To this end, we generated a fusion protein comprising a monovalent human FcγRIIIA-specific antibody linked in tandem to human serum albumin, which retained FcγR-binding activity in vitro. To evaluate clinically relevant in vivo FcγR-blocking function and inflammatory effects, we generated a murine version targeting the murine FcγRIII linked to murine albumin in a passive murine ITP model. Monovalent blocking of FcγR function dramatically inhibited antibody-dependent murine ITP and successfully circumvented the inflammatory response as assessed by changes in body temperature, basophil activation, and basophil depletion. Consistent with our hypothesis, in vivo cross-linking of the fusion protein induced these inflammatory effects, recapitulating the adverse events of the parent antibody. Thus, monovalent blocking of FcγR function demonstrates a proof of concept to successfully treat FcγR-mediated autoimmune diseases.

  4. Crystal Structure of the HSV-1 Fc Receptor Bound to Fc Reveals a Mechanism for Antibody Bipolar Bridging

    SciTech Connect

    Sprague, E.R.; Wang, C.; Baker, D.; Bjorkman, P.J.; /Caltech /Howard Hughes Med. Inst.

    2007-08-08

    Herpes simplex virus type-1 expresses a heterodimeric Fc receptor, gE-gI, on the surfaces of virions and infected cells that binds the Fc region of host immunoglobulin G and is implicated in the cell-to-cell spread of virus. gE-gI binds immunoglobulin G at the basic pH of the cell surface and releases it at the acidic pH of lysosomes, consistent with a role in facilitating the degradation of antiviral antibodies. Here we identify the C-terminal domain of the gE ectodomain (CgE) as the minimal Fc-binding domain and present a 1.78-{angstrom} CgE structure. A 5-{angstrom} gE-gI/Fc crystal structure, which was independently verified by a theoretical prediction method, reveals that CgE binds Fc at the C{sub H}2-C{sub H}3 interface, the binding site for several mammalian and bacterial Fc-binding proteins. The structure identifies interface histidines that may confer pH-dependent binding and regions of CgE implicated in cell-to-cell spread of virus. The ternary organization of the gE-gI/Fc complex is compatible with antibody bipolar bridging, which can interfere with the antiviral immune response.

  5. Fc receptor targeting in the treatment of allergy, autoimmune diseases and cancer.

    PubMed

    Nakamura, Akira; Kubo, Tomohiro; Takai, Toshiyuki

    2008-01-01

    Fc receptors (FcRs) play an important role in the maintenance of an adequate activation threshold of various cells in antibody-mediated immune responses. Analyses of murine models show that the inhibitory FcR, FcyRIIB plays a pivotal role in the suppression of antibody-mediated allergy and autoimmunity. On the other hand, the activating-type FcRs are essential for the development of these diseases, suggesting that regulation of inhibitory or activating FcR is an ideal target for a therapeutic agent. Recent experimental or clinical studies also indicate that FcRs function as key receptors in the treatment with monoclonal antibodies (mAbs) therapy. This review summarizes FcR functions and highlights possible FcR-targeting therapies including mAb therapies for allergy, autoimmune diseases and cancer.

  6. Computational modeling of the Fc αRI receptor binding in the Fc α domain of the human antibody IgA: Normal Modes Analysis (NMA) study

    NASA Astrophysics Data System (ADS)

    Jayasinghe, Manori; Posgai, Monica; Tonddast-Navaei, Sam; Ibrahim, George; Stan, George; Herr, Andrew; George Stan Group Collaboration; Herr's Group Team

    2014-03-01

    Fc αRI receptor binding in the Fc α domain of the antibody IgA triggers immune effector responses such as phagocytosis and antibody-dependent cell-mediated cytotoxicity in eukaryotic cells. Fc α is a dimer of heavy chains of the IgA antibody and each Fc α heavy chain which consisted of two immunoglobulin constant domains, CH2 and CH3, can bind one Fc αRI molecule at the CH2-CH3 interface forming a 2:1 stoichiometry. Experimental evidences confirmed that Fc αRI binding to the Fc α CH2-CH3 junction altered the kinetics of HAA lectin binding at the distant IgA1 hinge. Our focus in this research was to understand the conformational changes and the network of residues which co-ordinate the receptor binding dynamics of the Fc α dimer complex. Structure-based elastic network modeling was used to compute normal modes of distinct Fc α configurations. Asymmetric and un-liganded Fc α configurations were obtained from the high resolution crystal structure of Fc α-Fc αRI 2:1 symmetric complex of PDB ID 1OW0. Our findings confirmed that Fc αRI binding, either in asymmetric or symmetric complex with Fc α, propagated long-range conformational changes across the Fc domains, potentially also impacting the distant IgA1 hinge.

  7. Science Signaling Podcast for 20 December 2016: Trans-inhibition by Fc receptors.

    PubMed

    Daëron, Marc; VanHook, Annalisa M

    2016-12-20

    This Podcast features an interview with Marc Daëron, author of a Research Article that appears in the 20 December 2016 issue of Science Signaling, about a mechanism by which an Fc receptor can inhibit signaling by other receptors without aggregating with those other receptors. Engagement of Fc receptors on basophils and mast cells can either activate these cells, which promotes autoimmune and allergic inflammation, or prevent these cells from being activated. Whether these cells are activated depends upon which Fc receptors are present in clusters, because some Fc receptors can inhibit signaling by other Fc receptors that are present in the same signalosome, a phenomenon known as cis-inhibition. Malbec et al. identified a mechanism whereby inhibitory Fc receptors limit signaling by activating Fc receptors without being present in the same signalosome. This mechanism of trans-inhibition also allowed inhibitory Fc receptors to limit signaling by growth factor receptors in mast cells and oncogene-induced proliferation in mastocytoma cells.Listen to Podcast.

  8. Certolizumab pegol does not bind the neonatal Fc receptor (FcRn): Consequences for FcRn-mediated in vitro transcytosis and ex vivo human placental transfer.

    PubMed

    Porter, Charlene; Armstrong-Fisher, Sylvia; Kopotsha, Tim; Smith, Bryan; Baker, Terry; Kevorkian, Lara; Nesbitt, Andrew

    2016-08-01

    Antibodies to tumor necrosis factor (anti-TNF) are used to treat inflammatory diseases, which often affect women of childbearing age. The active transfer of these antibodies across the placenta by binding of the Fc-region to the neonatal Fc receptor (FcRn) may result in adverse fetal or neonatal effects. In contrast to other anti-TNFs, certolizumab pegol lacks an Fc-region. The objective of this study was to determine whether the structure of certolizumab pegol limits active placental transfer. Binding affinities of certolizumab pegol, infliximab, adalimumab and etanercept to human FcRn and FcRn-mediated transcytosis were determined using in vitro assays. Human placentas were perfused ex vivo to measure transfer of certolizumab pegol and positive control anti-D IgG from the maternal to fetal circulation. FcRn binding affinity (KD) was 132nM, 225nM and 1500nM for infliximab, adalimumab and etanercept, respectively. There was no measurable certolizumab pegol binding affinity, similar to that of the negative control. FcRn-mediated transcytosis across a cell layer (mean±SD; n=3) was 249.6±25.0 (infliximab), 159.0±20.2 (adalimumab) and 81.3±13.1ng/mL (etanercept). Certolizumab pegol transcytosis (3.2±3.4ng/mL) was less than the negative control antibody (5.9±4.6ng/mL). No measurable transfer of certolizumab pegol from the maternal to the fetal circulation was observed in 5 out of 6 placentas that demonstrated positive-control IgG transport in the ex vivo perfusion model. Together these results support the hypothesis that the unique structure of certolizumab pegol limits its transfer through the placenta to the fetus and may be responsible for previously reported differences in transfer of other anti-TNFs from mother to fetus.

  9. Dissection of the neonatal Fc receptor (FcRn)-albumin interface using mutagenesis and anti-FcRn albumin-blocking antibodies.

    PubMed

    Sand, Kine Marita Knudsen; Dalhus, Bjørn; Christianson, Gregory J; Bern, Malin; Foss, Stian; Cameron, Jason; Sleep, Darrell; Bjørås, Magnar; Roopenian, Derry C; Sandlie, Inger; Andersen, Jan Terje

    2014-06-13

    Albumin is the most abundant protein in blood and plays a pivotal role as a multitransporter of a wide range of molecules such as fatty acids, metabolites, hormones, and toxins. In addition, it binds a variety of drugs. Its role as distributor is supported by its extraordinary serum half-life of 3 weeks. This is related to its size and binding to the cellular receptor FcRn, which rescues albumin from intracellular degradation. Furthermore, the long half-life has fostered a great and increasing interest in utilization of albumin as a carrier of protein therapeutics and chemical drugs. However, to fully understand how FcRn acts as a regulator of albumin homeostasis and to take advantage of the FcRn-albumin interaction in drug design, the interaction interface needs to be dissected. Here, we used a panel of monoclonal antibodies directed towards human FcRn in combination with site-directed mutagenesis and structural modeling to unmask the binding sites for albumin blocking antibodies and albumin on the receptor, which revealed that the interaction is not only strictly pH-dependent, but predominantly hydrophobic in nature. Specifically, we provide mechanistic evidence for a crucial role of a cluster of conserved tryptophan residues that expose a pH-sensitive loop of FcRn, and identify structural differences in proximity to these hot spot residues that explain divergent cross-species binding properties of FcRn. Our findings expand our knowledge of how FcRn is controlling albumin homeostasis at a molecular level, which will guide design and engineering of novel albumin variants with altered transport properties.

  10. Fc receptors as potential targets for the treatment of allergy, autoimmune disease and cancer.

    PubMed

    Takai, Toshiyuki; Nakamura, Akira; Akiyama, Kenichi

    2003-09-01

    The activation threshold of various cells in the immune system is tuned by immune inhibitory receptors. The inhibitory Fc receptor, FcgammaRIIB, is one of the critical elements for keeping immune cells silent. Murine models for allergic responses and autoimmune diseases illustrate the indispensable roles of FcgammaRIIB in the suppression of these immune disorders. On the contrary, activating-type Fc receptors are crucial for the onset and exacerbation of such diseases. In addition, recent reports have revealed the pivotal roles of Fc receptors in enhancing antigen presentation by dendritic cells, which leads to efficient major histocompatibility complex class I- and class II-restricted T cell activation. In this context, anti-cancer immunopotentiation could be augmented by targeting the tumor antigens to Fc receptors on dendritic cells. This review summarizes recent advances in Fc receptor biomedicine in light of exploiting them as potential therapeutic targets for allergy, autoimmune disease and cancer.

  11. Fc receptor targeting in the treatment of allergy, autoimmune diseases and cancer.

    PubMed

    Nakamura, Akira; Akiyama, Kenichi; Takai, Toshiyuki

    2005-02-01

    Immune activation and inhibitory receptors play an important role in the maintenance of an adequate activation threshold of various cells in our immune system. Analyses of murine models show that the inhibitory Fcreceptor, FcgammaRIIB plays an indispensable role in the suppression of anti-body-mediated allergy and autoimmunity. In contrast, the activating-type Fcreceptors (FcRs) are essential for the development of these diseases, suggesting that regulation of inhibitory or activating FcR is an ideal target as a therapeutic agent. In addition, recent crystal structural analyses of FcR-Ig-Fc fragment complexes provide an effective approach for developing FcR-targeting drugs. This review summarises recent advances of FcR, which were mainly obtained by murine studies, and highlights novel antibodies as possible FcR-targeting therapies for allergy, autoimmune diseases and cancer.

  12. Extending serum half-life of albumin by engineering neonatal Fc receptor (FcRn) binding.

    PubMed

    Andersen, Jan Terje; Dalhus, Bjørn; Viuff, Dorthe; Ravn, Birgitte Thue; Gunnarsen, Kristin Støen; Plumridge, Andrew; Bunting, Karen; Antunes, Filipa; Williamson, Rebecca; Athwal, Steven; Allan, Elizabeth; Evans, Leslie; Bjørås, Magnar; Kjærulff, Søren; Sleep, Darrell; Sandlie, Inger; Cameron, Jason

    2014-05-09

    A major challenge for the therapeutic use of many peptides and proteins is their short circulatory half-life. Albumin has an extended serum half-life of 3 weeks because of its size and FcRn-mediated recycling that prevents intracellular degradation, properties shared with IgG antibodies. Engineering the strictly pH-dependent IgG-FcRn interaction is known to extend IgG half-life. However, this principle has not been extensively explored for albumin. We have engineered human albumin by introducing single point mutations in the C-terminal end that generated a panel of variants with greatly improved affinities for FcRn. One variant (K573P) with 12-fold improved affinity showed extended serum half-life in normal mice, mice transgenic for human FcRn, and cynomolgus monkeys. Importantly, favorable binding to FcRn was maintained when a single-chain fragment variable antibody was genetically fused to either the N- or the C-terminal end. The engineered albumin variants may be attractive for improving the serum half-life of biopharmaceuticals.

  13. Influence of cadmium on isolated peritoneal macrophage populations: cadmium inhibits Fc receptor internalization

    SciTech Connect

    Cook, G.B.

    1985-01-01

    In vitro experiments were performed to examine the effect of cadmium on adherent phagocytic cell populations. The authors were able to demonstrate, in vitro, a phagocytic defect that was originally observed in an in vivo system. Using in vitro methodologies, cadmium was found to inhibit opsonin-dependent but not opsonin-independent phagocytosis in two different populations of macrophages. The receptors through which the opsonized /sup 51/Cr-ElgG were internalized were characterized as Fc receptors. They were able to demonstrate that cadmium could reversibly inhibit internalization of Fc receptors. This mechanism, rather than an alteration of the receptors' binding capabilities, was responsible for the observed inhibition of Fc mediated (opsonin-dependent) phagocytosis in both populations of macrophages tested. The defect was not specific for cadmium per se. Zinc treatment caused a similar inhibition of Fc receptor mediated phagocytosis.

  14. Qualification of a homogeneous cell-based neonatal Fc receptor (FcRn) binding assay and its application to studies on Fc functionality of IgG-based therapeutics.

    PubMed

    Mathur, Abhishek; Arora, Taruna; Liu, Ling; Crouse-Zeineddini, Jill; Mukku, Venkat

    2013-04-30

    The Fc region of IgG-based molecules plays an important role in determining their in vivo pharmacokinetic profile by its pH-dependent binding to the neonatal Fc receptor (FcRn) which is expressed on the endothelial cells lining blood vessels. By virtue of this pH-specific interaction with IgG-Fc, FcRn mediates IgG homeostasis in human adults by maintaining serum IgG levels, and also transfers maternal IgGs from mother to fetus via the placenta. The Fc-FcRn interaction is also critical for keeping IgG-based therapeutic molecules in circulation thereby enhancing their serum half life. A homogeneous cell-based flow cytometric FcRn binding assay was established to characterize the Fc-FcRn interaction of therapeutic IgG-based molecules. It is a competition-based assay, wherein the IgG-Fc containing test molecule competes with a fixed concentration of fluorescently-labeled IgG-Fc moiety in solution for binding to the cell-expressed FcRn. The cell-bound fluorescence is read on a flow cytometer. Response of the test sample is analyzed relative to the standard sample and the results are reported as % relative binding. The assay is robust and meets the qualification criteria for specificity, method linearity, accuracy and precision over the relative binding range of 60%-160%. This assay was shown to effectively characterize altered Fc-FcRn interactions for photo-stressed, heat-stressed, oxidized, and Fc mutant samples. It was observed that the relative binding of the IgG-Fc to the cell-surface-expressed FcRn in the assay varies across different molecules, even within the same IgG subclass. This indicates that the Fc-FcRn binding can be influenced by the antigen-binding region of the molecules in addition to the IgG subclass. Overall, this assay is reflective of the in vivo mechanism of immunoglobulin binding to membrane-bound FcRn, and can be used as an analytical tool for assessing lot-to-lot consistency and stability testing across different batches of the same molecule

  15. Fc gamma receptor III on human neutrophils. Allelic variants have functionally distinct capacities.

    PubMed Central

    Salmon, J E; Edberg, J C; Kimberly, R P

    1990-01-01

    As a model system to explore the functional consequences of structural variants of human Fc gamma receptors (Fc gamma R), we have investigated Fc gamma R-mediated phagocytosis in relation to the NA1-NA2 polymorphism of Fc gamma RIII (CD16) on neutrophils (Fc gamma RIIIPMN). The neutrophil-specific NA antigen system is a biallelic polymorphism with codominant expression demonstrating a gene dose effect with the anti-NA1 MAb CLB-gran 11 in a large donor population. To explore the impact of this allelic variation of Fc gamma RIIIPMN on phagocytosis, we used two Fc gamma RIII-dependent probes, IgG-sensitized erythrocytes (EA) and concanavalin. A-treated erythrocytes (E-ConA). Comparison of Fc gamma R-mediated phagocytosis by PMN from NA1 subjects and from NA2 subjects showed lower levels of phagocytosis of both probes by the NA2 individuals. The difference was most pronounced with lightly opsonized EA: at the lowest level of sensitization the phagocytic index was 72% lower for NA2 donors, whereas at the highest level of sensitization it was 21% lower (P less than 0.003). Blockade of Fc gamma RII with MAb IV.3 Fab amplified by threefold the difference between NA1 and NA2 donors. NA1 and NA2 individuals had identical phagocytic capacities for the non-Fc gamma RIII probes, serum-treated and heat-treated zymosan. These individuals did not show differential quantitative cell surface expression of Fc gamma RIIIPMN measured by a panel of anti-CD16 MAb (3G8, CLB FcR-gran 1, VEP13, BW209/2) and by Scatchard analysis of 125I-IgG dimer binding. The difference in Fc gamma R-mediated phagocytosis was not explicable on the basis of differential collaboration of Fc gamma RIIIPMN alleles with Fc gamma RII, since (a) the difference in phagocytic capacity between NA1 and NA2 individuals was readily apparent with the E-ConA probe (which is independent of Fc gamma RII) and (b) the difference in phagocytosis of EA was magnified by Fc gamma RII blockade. The demonstration that allelic

  16. Quantitative Analysis of Human Neonatal Fc Receptor (FcRn) Tissue Expression in Transgenic Mice by Online Peptide Immuno-Affinity LC-HRMS.

    PubMed

    Fan, Yao-Yun; Neubert, Hendrik

    2016-04-19

    Neonatal Fc receptor (FcRn) is the homeostatic receptor responsible for the long half-life of endogenous IgG by protecting it from lysosomal degradation. Understanding systemic FcRn tissue expression is important to predict and design the half-life of therapeutic antibodies and Fc-coupled biotherapeutics. To this end, we measured human FcRn (hFcRn) tissue expression in Tg32, a human FcRn knock-in transgenic mouse model, for which a strong correlation of drug clearance to humans has been demonstrated. Building an hFcRn tissue expression profile in Tg32 was enabled by the development of a tissue preparation procedure composed of bead-based protein extraction and protein precipitation using acetone followed by pellet digestion with trypsin. Digests were then loaded onto an online peptide immuno-affinity flow configuration hyphenated with reversed phase nanoflow chromatography and coupled with high resolution mass spectrometry to quantify hFcRn derived peptides. The workflow allowed bypassing some of the challenges typically associated with membrane protein analysis. We demonstrated acceptable precision and bias for measuring hFcRn in tissue matrices, typically within 20% coefficient of variation and relative error. We also report hFcRn expression in several Tg32 tissues. We anticipate that establishing a quantitative approach for hFcRn in tissues will enable the systematic measurement of hFcRn concentrations to further increase the accuracy of physiologically based pharmacokinetic (PBPK) models for PK prediction of Fc-containing biotherapeutics. This is anticipated to improve the translation of pharmacokinetic data from preclinical model systems to humans.

  17. Modulation of Microglial Cell Fcγ Receptor Expression Following Viral Brain Infection

    PubMed Central

    Chauhan, Priyanka; Hu, Shuxian; Sheng, Wen S.; Prasad, Sujata; Lokensgard, James R.

    2017-01-01

    Fcγ receptors (FcγRs) for IgG couple innate and adaptive immunity through activation of effector cells by antigen-antibody complexes. We investigated relative levels of activating and inhibitory FcγRs on brain-resident microglia following murine cytomegalovirus (MCMV) infection. Flow cytometric analysis of microglial cells obtained from infected brain tissue demonstrated that activating FcγRs were expressed maximally at 5 d post-infection (dpi), while the inhibitory receptor (FcγRIIB) remained highly elevated during both acute and chronic phases of infection. The highly induced expression of activating FcγRIV during the acute phase of infection was also noteworthy. Furthermore, in vitro analysis using cultured primary microglia demonstrated the role of interferon (IFN)γ and interleukin (IL)-4 in polarizing these cells towards a M1 or M2 phenotype, respectively. Microglial cell-polarization correlated with maximal expression of either FcγRIV or FcγRIIB following stimulation with IFNγ or IL-4, respectively. Finally, we observed a significant delay in polarization of microglia towards an M2 phenotype in the absence of FcγRs in MCMV-infected Fcer1g and FcgR2b knockout mice. These studies demonstrate that neuro-inflammation following viral infection increases expression of activating FcγRs on M1-polarized microglia. In contrast, expression of the inhibitory FcγRIIB receptor promotes M2-polarization in order to shut-down deleterious immune responses and limit bystander brain damage. PMID:28165503

  18. X-ray Crystal Structures of Monomeric and Dimeric Peptide Inhibitors in Complex with the Human Neonatal Fc Receptor, FcRn

    SciTech Connect

    Mezo, Adam R.; Sridhar, Vandana; Badger, John; Sakorafas, Paul; Nienaber, Vicki

    2010-10-28

    The neonatal Fc receptor, FcRn, is responsible for the long half-life of IgG molecules in vivo and is a potential therapeutic target for the treatment of autoimmune diseases. A family of peptides comprising the consensus motif GHFGGXY, where X is preferably a hydrophobic amino acid, was shown previously to inhibit the human IgG:human FcRn protein-protein interaction (Mezo, A. R., McDonnell, K. A., Tan Hehir, C. A., Low, S. C., Palombella, V. J., Stattel, J. M., Kamphaus, G. D., Fraley, C., Zhang, Y., Dumont, J. A., and Bitonti, A. J. (2008) Proc. Natl. Acad. Sci. U.S.A., 105, 2337-2342). Herein, the x-ray crystal structure of a representative monomeric peptide in complex with human FcRn was solved to 2.6 {angstrom} resolution. The structure shows that the peptide binds to human FcRn at the same general binding site as does the Fc domain of IgG. The data correlate well with structure-activity relationship data relating to how the peptide family binds to human FcRn. In addition, the x-ray crystal structure of a representative dimeric peptide in complex with human FcRn shows how the bivalent ligand can bridge two FcRn molecules, which may be relevant to the mechanism by which the dimeric peptides inhibit FcRn and increase IgG catabolism in vivo. Modeling of the peptide:FcRn structure as compared with available structural data on Fc and FcRn suggest that the His-6 and Phe-7 (peptide) partially mimic the interaction of His-310 and Ile-253 (Fc) in binding to FcRn, but using a different backbone topology.

  19. The Fc and not CD4 Receptor Mediates Antibody Enhancement of HIV Infection in Human Cells

    NASA Astrophysics Data System (ADS)

    Homsy, Jacques; Meyer, Mia; Tateno, Masatoshi; Clarkson, Sarah; Levy, Jay A.

    1989-06-01

    Antibodies that enhance human immunodeficiency virus (HIV) infectivity have been found in the blood of infected individuals and in infected or immunized animals. These findings raise serious concern for the development of a safe vaccine against acquired immunodeficiency syndrome. To address the in vivo relevance and mechanism of this phenomenon, antibody-dependent enhancement of HIV infectivity in peripheral blood macrophages, lymphocytes, and human fibroblastoid cells was studied. Neither Leu3a, a monoclonal antibody directed against the CD4 receptor, nor soluble recombinant CD4 even at high concentrations prevented this enhancement. The addition of monoclonal antibody to the Fc receptor III (anti-FcRIII), but not of antibodies that react with FcRI or FcRII, inhibited HIV type 1 and HIV type 2 enhancement in peripheral blood macrophages. Although enhancement of HIV infection in CD4+ lymphocytes could not be blocked by anti-FcRIII, it was inhibited by the addition of human immunoglobulin G aggregates. The results indicate that the FcRIII receptor on human macrophages and possibly another Fc receptor on human CD4+ lymphocytes mediate antibody-dependent enhancement of HIV infectivity and that this phenomenon proceeds through a mechanism independent of the CD4 protein.

  20. Ecto-Fc MS identifies ligand-receptor interactions through extracellular domain Fc fusion protein baits and shotgun proteomic analysis

    PubMed Central

    Savas, Jeffrey N.; De Wit, Joris; Comoletti, Davide; Zemla, Roland; Ghosh, Anirvan

    2015-01-01

    Ligand-receptor interactions represent essential biological triggers which regulate many diverse and important cellular processes. We have developed a discovery-based proteomic biochemical protocol which couples affinity purification with multidimensional liquid chromatographic tandem mass spectrometry (LCLC-MS/MS) and bioinformatic analysis. Compared to previous approaches, our analysis increases sensitivity, shortens analysis duration, and boosts comprehensiveness. In this protocol, receptor extracellular domains are fused with the Fc region of IgG to generate fusion proteins that are purified from transfected HEK293T cells. These “ecto-Fcs” are coupled to protein A beads and serve as baits for binding assays with prey proteins extracted from rodent brain. After capture, the affinity purified proteins are digested into peptides and comprehensively analyzed by LCLC-MS/MS with ion trap mass spectrometers. In four working days, this protocol can generate shortlists of candidate ligand-receptor protein-protein interactions. Our “Ecto-Fc MS” approach outperforms antibody-based approaches and provides a reproducible and robust framework to identify extracellular ligand – receptor interactions. PMID:25101821

  1. A strategy for bacterial production of a soluble functional human neonatal Fc receptor.

    PubMed

    Andersen, Jan Terje; Justesen, Sune; Berntzen, Gøril; Michaelsen, Terje E; Lauvrak, Vigdis; Fleckenstein, Burkhard; Buus, Søren; Sandlie, Inger

    2008-02-29

    The major histocompatibility complex (MHC) class I related receptor, the neonatal Fc receptor (FcRn), rescues immunoglobulin G (IgG) and albumin from lysosomal degradation by recycling in endothelial cells. FcRn also contributes to passive immunity by mediating transport of IgG from mother to fetus (human) or newborn (rodents), and may translocate IgG over mucosal surfaces. FcRn interacts with the Fc-region of IgG and domain III of albumin with binding at pH 6.0 and release at pH 7.4. Knowledge of these interactions has facilitated design of recombinant proteins with altered serum half-lives and/or altered biodistribution. To generate further research in this field, there is a great need for large amounts of soluble human FcRn (shFcRn) for in vitro interaction studies. In this report, we describe a novel laboratory scale production of functional shFcRn in Escherichia coli (E. coli) at milligram level. Truncated wild type hFcRn heavy chains were expressed, extracted, purified from inclusion bodies under denaturing non-reducing conditions, and subsequently refolded in the presence of human beta(2)-microglobulin (hbeta(2)m). The secondary structural elements of refolded heterodimeric shFcRn were correctly formed as demonstrated by circular dichroism (CD). Furthermore, functional and stringent pH dependent binding to IgG and human serum albumin were demonstrated by ELISA and surface plasmon resonance (SPR). This method may be easily adapted for the expression of large amounts of other FcRn species and MHC class I related molecules.

  2. Broadly neutralizing anti-influenza antibodies require Fc receptor engagement for in vivo protection.

    PubMed

    DiLillo, David J; Palese, Peter; Wilson, Patrick C; Ravetch, Jeffrey V

    2016-02-01

    In vivo protection by antimicrobial neutralizing Abs can require the contribution of effector functions mediated by Fc-Fcγ receptor (Fc-FcγR) interactions for optimal efficacy. In influenza, broadly neutralizing anti-hemagglutinin (anti-HA) stalk mAbs require Fc-FcγR interactions to mediate in vivo protection, but strain-specific anti-HA head mAbs do not. Whether this rule applies only to anti-stalk Abs or is applicable to any broadly neutralizing Ab (bNAb) against influenza is unknown. Here, we characterized the contribution of Fc-FcγR interactions during in vivo protection for a panel of 13 anti-HA mAbs, including bNAbs and non-neutralizing Abs, against both the stalk and head domains. All classes of broadly binding anti-HA mAbs required Fc-FcγR interactions to provide protection in vivo, including those mAbs that bind the HA head and those that do not neutralize virus in vitro. Further, a broadly neutralizing anti-neuraminidase (anti-NA) mAb also required FcγRs to provide protection in vivo, but a strain-specific anti-NA mAb did not. Thus, these findings suggest that the breadth of reactivity of anti-influenza Abs, regardless of their epitope, necessitates interactions with FcγRs on effector cell populations to mediate in vivo protection. These findings will guide the design of antiviral Ab therapeutics and inform vaccine design to elicit Abs with optimal binding properties and effector functions.

  3. Racially restricted contribution of immunoglobulin Fcγ and Fcγ receptor genotypes to humoral immunity to human epidermal growth factor receptor 2 in breast cancer.

    PubMed

    Pandey, J P; Namboodiri, A M; Kistner-Griffin, E; Iwasaki, M; Kasuga, Y; Hamada, G S; Tsugane, S

    2013-03-01

    Tumour-associated antigen human epidermal growth factor receptor 2 (HER2) is over-expressed in 25-30% of breast cancer patients and is associated with poor prognosis. Naturally occurring anti-HER2 antibody responses have been described in patients with HER2 over-expressing tumours. There is significant interindividual variability in antibody responsiveness, but the host genetic factors responsible for this variability are poorly understood. The aim of the present investigation was to determine whether immunoglobulin genetic markers [GM (genetic determinants of γ chains)] and Fcγ receptor (FcγR) alleles contribute to the magnitude of natural antibody responsiveness to HER2 in patients with breast cancer. A total of 855 breast cancer patients from Japan and Brazil were genotyped for several GM and FcγR alleles. They were also characterized for immunoglobulin (Ig)G antibodies to HER2. In white subjects (n = 263), GM 23-carriers had higher levels of anti-HER2 antibodies than non-carriers of this allele (p = 0·004). At the GM 5/21 locus, the homozygotes for the GM 5 allele had higher levels of anti-HER2 antibodies than the other two genotypes (P = 0·0067). In black subjects (n = 42), FcγRIIa-histidine/histidine homozygotes and FcγRIIIa-phenylalanine/valine heterozygotes were associated with high antibody responses (P = 0·0071 and 0·0275, respectively). FcγR genotypes in white subjects and GM genotypes in black subjects were not associated with anti-HER2 antibody responses. No significant associations were found in other study groups. These racially restricted contributions of GM and FcγR genotypes to humoral immunity to HER2 have potential implications for immunotherapy of breast cancer.

  4. An Fcγ receptor-dependent mechanism drives antibody-mediated target-receptor signaling in cancer cells.

    PubMed

    Wilson, Nicholas S; Yang, Becky; Yang, Annie; Loeser, Stefanie; Marsters, Scot; Lawrence, David; Li, Yun; Pitti, Robert; Totpal, Klara; Yee, Sharon; Ross, Sarajane; Vernes, Jean-Michel; Lu, Yanmei; Adams, Cam; Offringa, Rienk; Kelley, Bob; Hymowitz, Sarah; Daniel, Dylan; Meng, Gloria; Ashkenazi, Avi

    2011-01-18

    Antibodies to cell-surface antigens trigger activatory Fcγ receptor (FcγR)-mediated retrograde signals in leukocytes to control immune effector functions. Here, we uncover an FcγR mechanism that drives antibody-dependent forward signaling in target cells. Agonistic antibodies to death receptor 5 (DR5) induce cancer-cell apoptosis and are in clinical trials; however, their mechanism of action in vivo is not fully defined. Interaction of the DR5-agonistic antibody drozitumab with leukocyte FcγRs promoted DR5-mediated tumor-cell apoptosis. Whereas the anti-CD20 antibody rituximab required activatory FcγRs for tumoricidal function, drozitumab was effective in the context of either activatory or inhibitory FcγRs. A CD40-agonistic antibody required similar FcγR interactions to stimulate nuclear factor-κB activity in B cells. Thus, FcγRs can drive antibody-mediated receptor signaling in target cells.

  5. Separation and functional analysis of subpopulations of lymphocytes bearing complement and Fc receptors.

    PubMed

    Parish, C R

    1975-01-01

    A highly versatile procedure is described in this review which can be used to separate and obtain in pure form subpopulations of lymphoid cells which express different cell surface structures. The method is based on the observation that when rosetting and non-rosetting leukocytes are centrifuged on a cushion of Isopaque/Ficoll, the rosetting leukocytes and red cells sink whereas the non-rosetting leukocytes float. Thus, any subpopulation of leukocytes can be separated providing they can be identified by rosetting. The earlier sections of this review describe the method, its efficiency of separation and its advantages compared with other fractionation procedures. Subsequent sections describe experiments in which the procedure was specifically applied to separating Fc receptor (Fc+) and complement receptor (CR+) lymphocytes. On the basis of these two receptors it was possible to subdivide T and B lymphocytes into distinct subpopulations. Four subclasses of B lymphocytes were identified in mouse spleen (Fc+CR+,Fc+CR-,Fc-CR+ and Fc-CR-) and two subclasses of T cells were also detected (Fc+ and Fc-). The functional relevance of these subpopulations of lymphocytes was examined. It was found that in all cases examined, antigens could successfully activate CR+ B cells to produce antibody. However, only polymeric antigens, whether T-dependent or T-independent, were capable of triggering CR- B cells to synthesize antibody. Furthermore, preliminary experiments suggest that Fc receptors are present on functional B cells and helper T cells but are not expressed on cytotoxic T cells. On the basis of these results it is proposed that complement receptors on B lymphocytes provide an additional binding site which stabilizes the union between the antigen-specific receptors and soluble antigen. In contrast, due to their multi-determinant nature, polymeric antigens can avidly bind to B cells without involvement of the complement receptors. The possibility of Fc receptors playing a

  6. The immunoglobulin-binding Eib proteins from Escherichia coli are receptors for IgG Fc.

    PubMed

    Leo, Jack C; Goldman, Adrian

    2009-05-01

    The immunoglobulin-binding proteins from Escherichia coli (Eibs) comprise a family of six proteins homologous to the Yersinia adhesin YadA. These proteins are postulated to bind to the Fc portion of immunoglobulin G (IgG) in a non-immune manner. However, a recent study [Ghumra, A., Pleass, R.J., 2007. Escherichia coli do not express Fc-receptors for human immunoglobulin G (IgG). Mol. Immunol. 44, 2144-2146] appeared to show that these proteins do not bind Fc and suggested that the binding seen in earlier studies is due to the polyclonal preparations used in the assays containing antibodies specific to epitopes in the Eib proteins. To resolve this matter, we produced purified, recombinant Eibs for the first time and investigated their binding to intact antibodies and Fc fragments by immunoblot and ELISA techniques. We were able to purify four members of the family, EibA, -C, -D and -F, and show conclusively that these bind IgG Fc. We were also able to block the binding of full-length antibody with IgG Fc, but not with IgG Fab. Binding to IgG Fab was not detectable by surface plasmon resonance, whereas the affinities of Eibs to IgG and IgG Fc were in the range of 50-200 nM. We further demonstrate that deglycosylating IgG Fc does not affect Eib binding. Our results show that the Eib proteins do indeed bind human IgG Fc and that IgG Fc receptors are present in E. coli.

  7. Differential Use of Human Neutrophil Fcγ Receptors for Inducing Neutrophil Extracellular Trap Formation.

    PubMed

    Alemán, Omar Rafael; Mora, Nancy; Cortes-Vieyra, Ricarda; Uribe-Querol, Eileen; Rosales, Carlos

    2016-01-01

    Neutrophils (PMN) are the most abundant leukocytes in the blood. PMN migrate from the circulation to sites of infection, where they are responsible for antimicrobial functions. PMN use phagocytosis, degranulation, and formation of neutrophil extracellular traps (NETs) to kill microbes. NETs are fibers composed of chromatin and neutrophil-granule proteins. Several pathogens, including bacteria, fungi, and parasites, and also some pharmacological stimuli such as phorbol 12-myristate 13-acetate (PMA) are efficient inducers of NETs. Antigen-antibody complexes are also capable of inducing NET formation. However the particular Fcγ receptor involved in triggering this function is a matter of controversy. In order to provide some insight into what Fcγ receptor is responsible for NET formation, each of the two human Fcγ receptors was stimulated individually by specific monoclonal antibodies and NET formation was evaluated. FcγRIIa cross-linking did not promote NET formation. Cross-linking other receptors such as integrins also did not promote NET formation. In contrast FcγRIIIb cross-linking induced NET formation similarly to PMA stimulation. NET formation was dependent on NADPH-oxidase, PKC, and ERK activation. These data show that cross-linking FcγRIIIb is responsible for NET formation by the human neutrophil.

  8. Differential Use of Human Neutrophil Fcγ Receptors for Inducing Neutrophil Extracellular Trap Formation

    PubMed Central

    Alemán, Omar Rafael; Mora, Nancy; Cortes-Vieyra, Ricarda; Uribe-Querol, Eileen; Rosales, Carlos

    2016-01-01

    Neutrophils (PMN) are the most abundant leukocytes in the blood. PMN migrate from the circulation to sites of infection, where they are responsible for antimicrobial functions. PMN use phagocytosis, degranulation, and formation of neutrophil extracellular traps (NETs) to kill microbes. NETs are fibers composed of chromatin and neutrophil-granule proteins. Several pathogens, including bacteria, fungi, and parasites, and also some pharmacological stimuli such as phorbol 12-myristate 13-acetate (PMA) are efficient inducers of NETs. Antigen-antibody complexes are also capable of inducing NET formation. However the particular Fcγ receptor involved in triggering this function is a matter of controversy. In order to provide some insight into what Fcγ receptor is responsible for NET formation, each of the two human Fcγ receptors was stimulated individually by specific monoclonal antibodies and NET formation was evaluated. FcγRIIa cross-linking did not promote NET formation. Cross-linking other receptors such as integrins also did not promote NET formation. In contrast FcγRIIIb cross-linking induced NET formation similarly to PMA stimulation. NET formation was dependent on NADPH-oxidase, PKC, and ERK activation. These data show that cross-linking FcγRIIIb is responsible for NET formation by the human neutrophil. PMID:27034964

  9. Functional study of a monoclonal antibody to IgE Fc receptor (Fc epsilon R2) of eosinophils, platelets, and macrophages

    PubMed Central

    1986-01-01

    An IgM mAb (BB10) was produced by immunization of mice with human eosinophils purified according to their abnormal low density ("hypodense" cells), and previously shown to exhibit increased IgE- dependent antiparasite cytotoxicity. This BB10 antibody, selected for positive fluorescence staining of hypodense blood or lung eosinophils and low or negative staining of normodense eosinophils or neutrophils, could strongly inhibit IgE-dependent cytotoxicity of human eosinophils and platelets. The specificity for the IgE Fc receptor was suggested by the high levels of inhibition of IgE rosettes formed by eosinophils after incubation with the purified IgM fraction of BB10, whereas other receptors (Fc gamma R, CR1) were not affected. On the other hand, BB10, able to inhibit rat eosinophil Fc epsilon R, did not react with the IgE Fc receptor on mast cells or basophils. A technique using radioiodinated BB10 allowed us to quantify the specific binding of BB10 to human eosinophils and platelets. Competition experiments revealed a crossinhibition between the binding of BB10 and IgE, suggesting the specificity of BB10 for the IgE binding site of eosinophil, platelet, and monocyte Fc epsilon R. Three proteins having extrapolated Mr of 32,000, 43,000-45,000, and 97,000 were found in the platelet extract eluted from a BB10 or from an IgE immunosorbent column. These findings confirm the similarities between IgE Fc receptors on human eosinophils, platelets, and macrophages, already observed with polyclonal antibodies directed against the B lymphocyte Fc epsilon receptor. They suggest, moreover, that the mAb BB10 can represent a good reagent for further investigations on the structure and the functions of this IgE Fc receptor (Fc epsilon R2). PMID:2425032

  10. Fc gamma-receptor activity of isolated human placental syncytiotrophoblast plasma membrane.

    PubMed Central

    Brown, P J; Johnson, P M

    1981-01-01

    Fc gamma-receptor activity of isolated human placental syncytiotrophoblast microvillous plasma membrane (StMPM) vesicle preparations has been determined in an immunoradiometric assay using Sepharose-immobilized protein A to separate free 125I-labelled human IgG from membrane-bound 125I-IgG. This receptor assay has been optimalized in terms of buffer pH and molarity, and used to demonstrate that prior 60 min washing of isolated membranes in 3 M KCl to remove extrinsic membrane-bound protein substantially increases the membrane-binding capacity for IgG. Inhibition studies have determined the syncytiotrophoblast Fc gamma-receptor equilibrium constant for association (Ka) as 4.0 x 10(7) M-1 at 37 degrees and the number of available Fc gamma-receptor sites as 1.5 x 10(14) per mg membrane protein. PMID:7461733

  11. IgE Fc receptor positive T and B lymphocytes in patients with the hyper IgE syndrome.

    PubMed Central

    Thompson, L F; Spiegelberg, H L; Buckley, R H

    1985-01-01

    The percentages of peripheral blood lymphocytes (PBL), bearing Fc receptors for IgE (Fc epsilon R) and IgG (Fc gamma R) were determined in four patients with the hyper IgE syndrome by a rosette assay employing IgE and IgG coated fixed ox erythrocytes. The patients had 8 +/- 3% Fc epsilon R+ and 13 +/- 8% Fc gamma R+ PBL, compared to 1.2 +/- 1% Fc epsilon R+ and 17 +/- 4% Fc gamma R+ PBL for control donors. T cells were isolated by rosetting with neuraminidase treated sheep erythrocytes (EN). Indirect immunofluorescence with Lyt 3 monoclonal antibody (MoAb) to the sheep erythrocyte receptor, followed by rosetting for Fc epsilon R and Fc gamma R showed that the patients' T cells contained less than 0.1% Fc epsilon R+ and 1.4 +/- 0.2% Fc gamma R+ cells; T cells from the control subjects contained less than 0.1% Fc epsilon R+ and 11 +/- 4% Fc gamma R+ cells. The non-T (EN rosette depleted) cells of the patients included 56 +/- 18% sIgM+/sIgD+, 45 +/- 9% Fc epsilon R+ and 35 +/- 27% Fc gamma R+ cells. Indirect immunofluorescence with MoAb to IgM, IgD, and NK cells (antibody B73.1) followed by rosetting for Fc epsilon R and Fc gamma R, indicated that 92 +/- 2% of the Fc epsilon R+ cells and 9 +/- 7% of the Fc gamma R+ cells were B cells (mu+/delta+), while 3 +/- 4% of the Fc epsilon R+ and 30 +/- 23% of the Fc gamma R+ cells were NK cells (B73.1+). Thus, most of the Fc epsilon R+ non-T cells were B cells, and only a small fraction appeared to be NK cells. On the other hand, Fc gamma R+ B cells were outnumbered by Fc gamma R+ NK cells (B73.1+) by three to one. The data indicate that patients with the hyper IgE syndrome have increased numbers of Fc gamma R+ PBL, most of them being B cells, whereas their T cells contain less than 0.1% Fc epsilon R+ cells. PMID:3882288

  12. Fc receptor endocytosis is controlled by a cytoplasmic domain determinant that actively prevents coated pit localization

    PubMed Central

    1992-01-01

    Macrophages and B-lymphocytes express two major isoforms of Fc receptor (FcRII-B2 and FcRII-B1) that exhibit distinct capacities for endocytosis. This difference in function reflects the presence of an in- frame insertion of 47 amino acids in the cytoplasmic domain of the lymphocyte isoform (FcRII-B1) due to alternative mRNA splicing. By expressing wild type and mutant FcRII cDNAs in fibroblasts, we have now examined the mechanism by which the insertion acts to prevent coated pit localization and endocytosis. We first identified the region of the FcRII-B2 cytoplasmic domain that is required for rapid internalization. Using a biochemical assay for endocytosis and an immuno-EM assay to determine coated pit localization directly, we found that the distal half of the cytoplasmic domain, particularly a region including residues 18-31, as needed for coated pit-mediated endocytosis. Elimination of the tyrosine residues at position 26 and 43, separately or together, had little effect on coated pit localization and a partial effect on endocytosis of ligand. Since the FcRII-B1 insertion occurs in the membrane-proximal region of the cytoplasmic domain (residue 6) not required for internalization, it is unlikely to act by physically disrupting the coated pit localization determinant. In fact, the insertion was found to prevent endocytosis irrespective of its position in the cytoplasmic tail and appeared to selectively exclude the receptor from coated regions. Moreover, receptors bearing the insertion exhibited a temperature- and ligand-dependent association with a detergent-insoluble fraction and with actin filaments, perhaps in part explaining the inability of FcRII-B1 to enter coated pits. PMID:1734021

  13. Structural Heterogeneity and Functional Domains of Murine Immunoglobulin G Fc Receptors

    NASA Astrophysics Data System (ADS)

    Ravetch, Jeffrey V.; Luster, Andrew D.; Weinshank, Richard; Kochan, Jarema; Pavlovec, Amalia; Portnoy, Daniel A.; Hulmes, Jeffrey; Pan, Yu-Ching E.; Unkeless, Jay C.

    1986-11-01

    Binding of antibodies to effector cells by way of receptors to their constant regions (Fc receptors) is central to the pathway that leads to clearance of antigens by the immune system. The structure and function of this important class of receptors on immune cells is addressed through the molecular characterization of Fc receptors (FcR) specific for the murine immunoglobulin G isotype. Structural diversity is encoded by two genes that by alternative splicing result in expression of molecules with highly conserved extracellular domains and different transmembrane and intracytoplasmic domains. The proteins encoded by these genes are members of the immunoglobulin supergene family, most homologous to the major histocompatibility complex molecule Eβ. Functional reconstitution of ligand binding by transfection of individual FcR genes demonstrates that the requirements for ligand binding are encoded in a single gene. These studies demonstrate the molecular basis for the functional heterogeneity of FcR's, accounting for the possible transduction of different signals in response to a single ligand.

  14. syk protein tyrosine kinase regulates Fc receptor gamma-chain-mediated transport to lysosomes.

    PubMed Central

    Bonnerot, C; Briken, V; Brachet, V; Lankar, D; Cassard, S; Jabri, B; Amigorena, S

    1998-01-01

    B- and T-cell receptors, as well as most Fc receptors (FcR), are part of a large family of membrane proteins named immunoreceptors and are expressed on all cells of the immune system. Immunoreceptors' biological functions rely on two of their fundamental attributes: signal transduction and internalization. The signals required for these two functions are present in the chains associated with immunoreceptors, within conserved amino acid motifs called immunoreceptor tyrosine-based activation motifs (ITAMs). We have examined the role of the protein tyrosine kinase (PTK) syk, a critical effector of immunoreceptor-mediated cell signalling through ITAMs, in FcR-associated gamma-chain internalization and lysosomal targeting. A point mutation in the immunoreceptor-associated gamma-chain ITAM affecting syk activation, as well as overexpression of a syk dominant negative mutant, inhibited signal transduction without affecting receptor coated-pit localization or internalization. In contrast, blocking of gamma-chain-mediated syk activation impaired FcR transport from endosomes to lysosomes and selectively inhibited the presentation of certain T-cell epitopes. Therefore, activation of the PTK syk is dispensable for receptor internalization, but necessary for cell signalling and for gamma-chain-mediated FcR delivery to lysosomes. PMID:9707420

  15. Targeting Sindbis virus-based vectors to Fc receptor-positive cell types

    SciTech Connect

    Klimstra, William B.; Williams, Jacqueline C.; Ryman, Kate D.; Heidner, Hans W. . E-mail: hans.heidner@utsa.edu

    2005-07-20

    Some viruses display enhanced infection for Fc receptor (FcR)-positive cell types when complexed with virus-specific immunoglobulin (Ig). This process has been termed antibody-dependent enhancement of viral infection (ADE). We reasoned that the mechanism of ADE could be exploited and adapted to target alphavirus-based vectors to FcR-positive cell types. Towards this goal, recombinant Sindbis viruses were constructed that express 1 to 4 immunoglobulin-binding domains of protein L (PpL) as N-terminal extensions of the E2 glycoprotein. PpL is a bacterial protein that binds the variable region of antibody kappa light chains from a range of mammalian species. The recombinant viruses incorporated PpL/E2 fusion proteins into the virion structure and recapitulated the species-specific Ig-binding phenotypes of native PpL. Virions reacted with non-immune serum or purified IgG displayed enhanced binding and ADE for several species-matched FcR-positive murine and human cell lines. ADE required virus expression of a functional PpL Ig-binding domain, and appeared to be Fc{gamma}R-mediated. Specifically, ADE did not occur with Fc{gamma}R-negative cells, did not require active complement proteins, and did not occur on Fc{gamma}R-positive murine cell lines when virions were bound by murine IgG-derived F(ab'){sub 2} fragments.

  16. A Soluble Form of the High Affinity IgE Receptor, Fc-Epsilon-RI, Circulates in Human Serum

    PubMed Central

    Dehlink, Eleonora; Platzer, Barbara; Baker, Alexandra H.; LaRosa, Jessica; Pardo, Michael; Dwyer, Peter; Yen, Elizabeth H.; Szépfalusi, Zsolt

    2011-01-01

    Soluble IgE receptors are potential in vivo modulators of IgE-mediated immune responses and are thus important for our basic understanding of allergic responses. We here characterize a novel soluble version of the IgE-binding alpha-chain of Fc-epsilon-RI (sFcεRI), the high affinity receptor for IgE. sFcεRI immunoprecipitates as a protein of ∼40 kDa and contains an intact IgE-binding site. In human serum, sFcεRI is found as a soluble free IgE receptor as well as a complex with IgE. Using a newly established ELISA, we show that serum sFcεRI levels correlate with serum IgE in patients with elevated IgE. We also show that serum of individuals with normal IgE levels can be found to contain high levels of sFcεRI. After IgE-antigen-mediated crosslinking of surface FcεRI, we detect sFcεRI in the exosome-depleted, soluble fraction of cell culture supernatants. We further show that sFcεRI can block binding of IgE to FcεRI expressed at the cell surface. In summary, we here describe the alpha-chain of FcεRI as a circulating soluble IgE receptor isoform in human serum. PMID:21544204

  17. IgM-Dependent Phagocytosis in Microglia Is Mediated by Complement Receptor 3, Not Fcα/μ Receptor.

    PubMed

    Weinstein, Jonathan R; Quan, Yi; Hanson, Josiah F; Colonna, Lucrezia; Iorga, Michael; Honda, Shin-ichiro; Shibuya, Kazuko; Shibuya, Akira; Elkon, Keith B; Möller, Thomas

    2015-12-01

    Microglia play an important role in receptor-mediated phagocytosis in the CNS. In brain abscess and other CNS infections, invading bacteria undergo opsonization with Igs or complement. Microglia recognize these opsonized pathogens by Fc or complement receptors triggering phagocytosis. In this study, we investigated the role of Fcα/μR, the less-studied receptor for IgM and IgA, in microglial phagocytosis. We showed that primary microglia, as well as N9 microglial cells, express Fcα/μR. We also showed that anti-Staphylococcus aureus IgM markedly increased the rate of microglial S. aureus phagocytosis. To unequivocally test the role of Fcα/μR in IgM-mediated phagocytosis, we performed experiments in microglia from Fcα/μR(-/-) mice. Surprisingly, we found that IgM-dependent phagocytosis of S. aureus was similar in microglia derived from wild-type or Fcα/μR(-/-) mice. We hypothesized that IgM-dependent activation of complement receptors might contribute to the IgM-mediated increase in phagocytosis. To test this, we used immunologic and genetic inactivation of complement receptor 3 components (CD11b and CD18) as well as C3. IgM-, but not IgG-mediated phagocytosis of S. aureus was reduced in wild-type microglia and macrophages following preincubation with an anti-CD11b blocking Ab. IgM-dependent phagocytosis of S. aureus was also reduced in microglia derived from CD18(-/-) and C3(-/-) mice. Taken together, our findings implicate complement receptor 3 and C3, but not Fcα/μR, in IgM-mediated phagocytosis of S. aureus by microglia.

  18. Fc receptor-mediated immune responses: new tools but increased complexity in HIV prevention.

    PubMed

    Vargas-Inchaustegui, Diego A; Robert-Guroff, Marjorie

    2013-07-01

    The modest success of the RV144 HIV vaccine trial in Thailand and the ensuing suggestion that a Fc-receptormediated antibody activity might have played a role in the protection observed have intensified investigations on Fcrelated immune responses. HIV neutralizing antibodies have been and continue to be the focal point of research into humoral immune protection. However, recent knowledge that their protective efficacy can be augmented by Fc-FcR interactions has increased the complexity of identifying immune correlates of protection. If anything, continued studies of both humoral and cellular immune mechanisms point to the lack of a single protective anti-HIV immune response. Here we focus on humoral immunity, analyzing the role played by Fc receptor-related responses and discussing how new knowledge of their interactions requires further investigation, but may also spur novel vaccination approaches. We initially address classical Fc-receptor mediated anti-viral mechanisms including antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cell mediated viral inhibition (ADCVI), and antibody-dependent cellular phagocytosis (ADCP), as well as the effector cells that mediate these functions. Next, we summarize key aspects of FcR-Fc interactions that are important for potential control of HIV/SIV such as FcR polymorphisms and post-transcriptional modifications. Finally we discuss less commonly studied non-mechanistic anti-HIV immune functions: antibody avidity and envelopespecific B cell memory. Overall, a spectrum of immune responses, reflecting the immune system's redundancy, will likely be needed to prevent HIV infection and/or disease progression. Aside from elicitation of critical immune mechanisms, a successful vaccine will need to induce mature B cell responses and long-lasting immune memory.

  19. Characterization of polymorphic forms of Fc receptor III on human neutrophils.

    PubMed Central

    Ory, P A; Goldstein, I M; Kwoh, E E; Clarkson, S B

    1989-01-01

    We characterized Fc receptor III (FcR III) on human neutrophils and found it to be heavily glycosylated and polymorphic. In some individuals, FcR III that had been digested with N-glycanase appeared after SDS-PAGE under reducing conditions as two bands with apparent molecular masses of 33 and 29 kD. In other individuals, N-glycanase-treated FcR III appeared as a single band with an Mr of either 33 or 29 kD. After SDS-PAGE of N-glycanase-treated FcR III under nonreducing conditions, the apparent Mr of each structural type was decreased, suggesting the presence of intramolecular disulfide bonds. Digestion of the 33-kD band and the 29-kD band with Staphylococcus aureus V8 protease yielded similar, but not identical, peptide maps. Thus, at least two polymorphic forms of FcR III are expressed on human neutrophils. The structural polymorphism of neutrophil FcR III correlated with previously described antigenic polymorphisms detected by monoclonal antibody Gran 11 and by alloantisera which recognize epitopes of the biallelic, neutrophil antigen (NA) system. Individuals whose neutrophils expressed the two-band structural type of FcR III were NA1NA2 heterozygotes. Individuals whose neutrophils expressed the single 33-kD band structural type were NA2NA2 homozygotes, and individuals whose neutrophils expressed the single 29-kD band structural type were NA1NA1 homozygotes. These findings indicate that antigenic and structural polymorphisms of human neutrophil FcR III are related and can be accounted for by differences at the level of primary protein structure. Images PMID:2523415

  20. Itraconazole, A Commonly Used Antifungal, Inhibits Fcγ Receptor-Mediated Phagocytosis: Alteration of Fcγ Receptor Glycosylation And Gene Expression*

    PubMed Central

    Niño, Diego F.; Cauvi, David M.; De Maio, Antonio

    2014-01-01

    Itraconazole (ICZ)‡ is commonly used for the treatment of fungal infections, particularly in immunocompromised patients. In addition, ICZ has been recently found to have anti-angiogenic effects and is currently being tested as a new chemotherapeutic agent in several cancer clinical trials. We have previously shown that ICZ impaired complex N-linked glycosylation processing, leading to the accumulation of high-mannose glycoproteins on the surface of macrophages. This investigation was directed at determining the effects of ICZ on phagocytosis as a major function of macrophages. We found a significant decrease in the phagocytosis of opsonized bacterial particles in ICZ-treated murine macrophages in comparison with non-treated macrophages. Furthermore, the impairment of phagocytosis was associated with a decrease in cell surface expression of Fcγ receptors (FcγR) as well as alteration of their glycosylation pattern. Concomitantly, a reduction in all three isoforms of the FcγR family (i.e., Fcgr1, Fcgr2 and Fcgr3) mRNA levels was observed after incubation with ICZ. The effect of ICZ on phagocytosis and FcγR expression was reversed by addition of LDL. These studies indicate that ICZ treatment certainly has a dramatic effect on macrophage function, which could result in a potential impairment of the immune system's ability to respond to pathogens and may lead to elevated incidence of infections. PMID:24667630

  1. Fc gamma receptor-dependent clearance is enhanced following lipopolysaccharide in vivo treatment.

    PubMed

    Palermo, M S; Alves Rosa, F; Fernández Alonso, G; Isturiz, M A

    1997-12-01

    Lipopolysaccharides (LPS) occupy centre stage in the pathogenesis of gram-negative sepsis. Although LPS are potent stimulators of the mononuclear phagocyte system (MPS), their effects on immune complex (IC)-specific clearance have not yet been reported. In order to evaluate this issue, we examined the MPS function after LPS treatment by measuring intravascular removal rate of syngeneic erythrocytes sensitized with specific immunoglobulin G (IgG) (EA). Our findings showed that LPS, directly or through the release of endogenous cytokines, enhance Fc gamma receptor (Fc gamma R)-dependent clearance. The EA uptake by liver, spleen and bone marrow was significantly increased leading to an effective clearance of immune complexes. Splenic antibody-dependent cellular cytotoxicity (ADCC), an in vitro indicator of Fc gamma R functionality, was also increased after in vivo LPS treatment. However, cytometric studies showed that endotoxin did not modify Fc gamma R expression on splenocytes, but markedly enhanced the expression of CD11b/CD18 (Mac-1), an adhesion molecule closely related to Fc gamma R activity. We conclude that LPS enhance Fc gamma R-dependent effector functions and suggest that this effect is mediated through alterations in adhesion molecules.

  2. Neonatal Fc receptor expression in dendritic cells mediates protective immunity against colorectal cancer.

    PubMed

    Baker, Kristi; Rath, Timo; Flak, Magdalena B; Arthur, Janelle C; Chen, Zhangguo; Glickman, Jonathan N; Zlobec, Inti; Karamitopoulou, Eva; Stachler, Matthew D; Odze, Robert D; Lencer, Wayne I; Jobin, Christian; Blumberg, Richard S

    2013-12-12

    Cancers arising in mucosal tissues account for a disproportionately large fraction of malignancies. Immunoglobulin G (IgG) and the neonatal Fc receptor for IgG (FcRn) have an important function in the mucosal immune system that we have now shown extends to the induction of CD8(+) T cell-mediated antitumor immunity. We demonstrate that FcRn within dendritic cells (DCs) was critical for homeostatic activation of mucosal CD8(+) T cells that drove protection against the development of colorectal cancers and lung metastases. FcRn-mediated tumor protection was driven by DCs activation of endogenous tumor-reactive CD8(+) T cells via the cross-presentation of IgG complexed antigens (IgG IC), as well as the induction of cytotoxicity-promoting cytokine secretion, particularly interleukin-12, both of which were independently triggered by the FcRn-IgG IC interaction in murine and human DCs. FcRn thus has a primary role within mucosal tissues in activating local immune responses that are critical for priming efficient anti-tumor immunosurveillance.

  3. Fc gamma receptor-dependent clearance is enhanced following lipopolysaccharide in vivo treatment.

    PubMed Central

    Palermo, M S; Alves Rosa, F; Fernández Alonso, G; Isturiz, M A

    1997-01-01

    Lipopolysaccharides (LPS) occupy centre stage in the pathogenesis of gram-negative sepsis. Although LPS are potent stimulators of the mononuclear phagocyte system (MPS), their effects on immune complex (IC)-specific clearance have not yet been reported. In order to evaluate this issue, we examined the MPS function after LPS treatment by measuring intravascular removal rate of syngeneic erythrocytes sensitized with specific immunoglobulin G (IgG) (EA). Our findings showed that LPS, directly or through the release of endogenous cytokines, enhance Fc gamma receptor (Fc gamma R)-dependent clearance. The EA uptake by liver, spleen and bone marrow was significantly increased leading to an effective clearance of immune complexes. Splenic antibody-dependent cellular cytotoxicity (ADCC), an in vitro indicator of Fc gamma R functionality, was also increased after in vivo LPS treatment. However, cytometric studies showed that endotoxin did not modify Fc gamma R expression on splenocytes, but markedly enhanced the expression of CD11b/CD18 (Mac-1), an adhesion molecule closely related to Fc gamma R activity. We conclude that LPS enhance Fc gamma R-dependent effector functions and suggest that this effect is mediated through alterations in adhesion molecules. Images Figure 2 Figure 3 Figure 4 PMID:9497496

  4. Fc Receptor-Like Proteins in Pathophysiology of B-cell Disorder

    PubMed Central

    Capone, Mollie; Bryant, John Matthew; Sutkowski, Natalie; Haque, Azizul

    2016-01-01

    Members of the family of Fc receptor-like (FcRL) proteins, homologous to FcγRI, have been identified by multiple research groups. Consequently, they have been described using multiple nomenclatures including Fc receptor homologs (FcRH), immunoglobulin superfamily receptor translocation-associated genes (IRTA), immunoglobulin-Fc-gp42-related genes (IFGP), Src homology 2 domain-containing phosphatase anchor proteins (SPAP), and B cell cross-linked by anti-immunoglobulin M-activating sequences (BXMAS). They are now referred to under a unified nomenclature as FCRL. Eight different human FCRL genes have been identified, all of which appear to be related to the genes of the immunoglobulin superfamily (IgSF) of cellular adhesion molecules. These type 1 transmembrane glycoproteins are composed of different combinations of 5 types of immunoglobulin-like domains, with each protein consisting of 3 to 9 domains, and no individual domain type conserved throughout all of the FCRL proteins. Ligands for the majority of the FCRLs remain unknown. In general, FCRL expression is restricted to lymphocytes and is primarily expressed in B-lymphocytes, supporting FCRL’s involvement in a variety of immune disorders. Most FCRLs functionally repress B-cell activation; however, they might have dual roles in lymphocyte functions as these proteins often possess immunoreceptor tyrosine activation (ITAM) and inhibitory (ITIM) motif elements. The biological functions of these newly recognized FCRL proteins are just beginning to emerge, and might provide the insight necessary for understanding pathophysiology of lymphocyte disorders and treating different immune diseases. PMID:27446638

  5. Engineering neonatal Fc receptor-mediated recycling and transcytosis in recombinant proteins by short terminal peptide extensions

    PubMed Central

    Sockolosky, Jonathan T.; Tiffany, Matthew R.; Szoka, Francis C.

    2012-01-01

    The importance of therapeutic recombinant proteins in medicine has led to a variety of tactics to increase their circulation time or to enable routes of administration other than injection. One clinically successful tactic to improve both protein circulation and delivery is to fuse the Fc domain of IgG to therapeutic proteins so that the resulting fusion proteins interact with the human neonatal Fc receptor (FcRn). As an alternative to grafting the high molecular weight Fc domain to therapeutic proteins, we have modified their N and/or C termini with a short peptide sequence that interacts with FcRn. Our strategy was motivated by results [Mezo AR, et al. (2008) Proc Natl Acad Sci USA 105:2337–2342] that identified peptides that compete with human IgG for FcRn. The small size and simple structure of the FcRn-binding peptide (FcBP) allows for expression of FcBP fusion proteins in Escherichia coli and results in their pH-dependent binding to FcRn with an affinity comparable to that of IgG. The FcBP fusion proteins are internalized, recycled, and transcytosed across cell monolayers that express FcRn. This strategy has the potential to improve protein transport across epithelial barriers, which could lead to noninvasive administration and also enable longer half-lives of therapeutic proteins. PMID:22991460

  6. Analysis of the Effects of the Bruton's tyrosine kinase (Btk) Inhibitor Ibrutinib on Monocyte Fcγ Receptor (FcγR) Function*

    PubMed Central

    Ren, Li; Campbell, Amanda; Fang, Huiqing; Gautam, Shalini; Elavazhagan, Saranya; Fatehchand, Kavin; Mehta, Payal; Stiff, Andrew; Reader, Brenda F.; Mo, Xiaokui; Byrd, John C.; Carson, William E.; Butchar, Jonathan P.; Tridandapani, Susheela

    2016-01-01

    The irreversible Bruton's tyrosine kinase (Btk) inhibitor ibrutinib has shown efficacy against B-cell tumors such as chronic lymphocytic leukemia and B-cell non-Hodgkin lymphoma. Fcγ receptors (FcγR) on immune cells such as macrophages play an important role in tumor-specific antibody-mediated immune responses, but many such responses involve Btk. Here we tested the effects of ibrutinib on FcγR-mediated activities in monocytes. We found that ibrutinib did not affect monocyte FcγR-mediated phagocytosis, even at concentrations higher than those achieved physiologically, but suppressed FcγR-mediated cytokine production. We confirmed these findings in macrophages from Xid mice in which Btk signaling is defective. Because calcium flux is a major event downstream of Btk, we tested whether it was involved in phagocytosis. The results showed that blocking intracellular calcium flux decreased FcγR-mediated cytokine production but not phagocytosis. To verify this, we measured activation of the GTPase Rac, which is responsible for actin polymerization. Results showed that ibrutinib did not inhibit Rac activation, nor did the calcium chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid tetrakis(acetoxymethyl ester). We next asked whether the effect of ibrutinib on monocyte FcγR-mediated cytokine production could be rescued by IFNγ priming because NK cells produce IFNγ in response to antibody therapy. Pretreatment of monocytes with IFNγ abrogated the effects of ibrutinib on FcγR-mediated cytokine production, suggesting that IFNγ priming could overcome this Btk inhibition. Furthermore, in monocyte-natural killer cell co-cultures, ibrutinib did not inhibit FcγR-mediated cytokine production despite doing so in single cultures. These results suggest that combining ibrutinib with monoclonal antibody therapy could enhance chronic lymphocytic leukemia cell killing without affecting macrophage effector function. PMID:26627823

  7. Recombinant anthrax toxin receptor-Fc fusion proteins produced in plants protect rabbits against inhalational anthrax.

    PubMed

    Wycoff, Keith L; Belle, Archana; Deppe, Dorothée; Schaefer, Leah; Maclean, James M; Haase, Simone; Trilling, Anke K; Liu, Shihui; Leppla, Stephen H; Geren, Isin N; Pawlik, Jennifer; Peterson, Johnny W

    2011-01-01

    Inhalational anthrax, a zoonotic disease caused by the inhalation of Bacillus anthracis spores, has a ∼50% fatality rate even when treated with antibiotics. Pathogenesis is dependent on the activity of two toxic noncovalent complexes: edema toxin (EdTx) and lethal toxin (LeTx). Protective antigen (PA), an essential component of both complexes, binds with high affinity to the major receptor mediating the lethality of anthrax toxin in vivo, capillary morphogenesis protein 2 (CMG2). Certain antibodies against PA have been shown to protect against anthrax in vivo. As an alternative to anti-PA antibodies, we produced a fusion of the extracellular domain of human CMG2 and human IgG Fc, using both transient and stable tobacco plant expression systems. Optimized expression led to the CMG2-Fc fusion protein being produced at high levels: 730 mg/kg fresh leaf weight in Nicotiana benthamiana and 65 mg/kg in N. tabacum. CMG2-Fc, purified from tobacco plants, fully protected rabbits against a lethal challenge with B. anthracis spores at a dose of 2 mg/kg body weight administered at the time of challenge. Treatment with CMG2-Fc did not interfere with the development of the animals' own immunity to anthrax, as treated animals that survived an initial challenge also survived a rechallenge 30 days later. The glycosylation of the Fc (or lack thereof) had no significant effect on the protective potency of CMG2-Fc in rabbits or on its serum half-life, which was about 5 days. Significantly, CMG2-Fc effectively neutralized, in vitro, LeTx-containing mutant forms of PA that were not neutralized by anti-PA monoclonal antibodies.

  8. Subclass specificity of the Fc receptor for human IgG on K562.

    PubMed

    Chiofalo, M S; Teti, G; Goust, J M; Trifiletti, R; La Via, M F

    1988-07-01

    The erythroleukemic cell line K562 bears a 40-kDa Fc receptor (Fc gamma RII) serologically related to and with a similar molecular weight as the Fc gamma R present on a broad range of leukocytes. The human IgG subclass specificity of the Fc gamma R on K562 was investigated using IgG aggregates of defined size, obtained from purified human myeloma proteins. The monoclonal antibody IV.3, which reacts with the Fc gamma RII present on various cell types, totally prevented binding of 125I-IgG2 trimers to K562. Experiments with radiolabeled IgG2 trimers showed that K562 cells bound a mean of 156,764 +/- 9895 molecules per cell with an association constant (Ka) of 1.8 +/- 0.7 X 10(8) M-1. Similar results were obtained with IgG3 oligomers. IgG3 and IgG2 trimers were about two- to threefold more effective in inhibiting binding of 125I-IgG2 trimers to K562 than IgG1 and IgG4 trimers. These results were confirmed by inhibition experiments using IgG monomers. The subclass specificity of the Fc gamma RII on K562 (i.e., IgG2 = IgG3 greater than IgG1 = IgG4) is quite distinct from the one reported for the Fc gamma RI and III of human cells (i.e., IgG1 = IgG3 greater than IgG4 and IgG2).

  9. Myosin II-dependent exclusion of CD45 from the site of Fcγ receptor activation during phagocytosis.

    PubMed

    Yamauchi, Shota; Kawauchi, Keiko; Sawada, Yasuhiro

    2012-09-21

    Fcγ receptor (FcγR)-mediated phagocytosis requires myosin II activity. Here we show that myosin II contributes to FcγR activation and subsequent F-actin assembly at the nascent phagocytic cup. Inhibition of myosin II attenuates phosphorylation of the immunoreceptor tyrosine-based activation motif (ITAM) of FcγR and binding of Syk to the ITAM. Furthermore, FcγR clusters independently of myosin II activity at the phagocytic cup, from which the receptor-like protein tyrosine phosphatase CD45 is excluded depending on myosin II activity. These findings suggest that myosin II-dependent segregation of CD45 from FcγR facilitates phosphorylation of the ITAM and triggers phagocytosis.

  10. In Vitro Glycoengineering of IgG1 and Its Effect on Fc Receptor Binding and ADCC Activity

    PubMed Central

    Thomann, Marco; Schlothauer, Tilman; Dashivets, Tetyana; Malik, Sebastian; Avenal, Cecile; Bulau, Patrick; Rüger, Petra; Reusch, Dietmar

    2015-01-01

    The importance and effect of Fc glycosylation of monoclonal antibodies with regard to biological activity is widely discussed and has been investigated in numerous studies. Fc glycosylation of monoclonal antibodies from current production systems is subject to batch-to-batch variability. If there are glycosylation changes between different batches, these changes are observed not only for one but multiple glycan species. Therefore, studying the effect of distinct Fc glycan species such as galactosylated and sialylated structures is challenging due to the lack of well-defined differences in glycan patterns of samples used. In this study, the influence of IgG1 Fc galactosylation and sialylation on its effector functions has been investigated using five different samples which were produced from one single drug substance batch by in vitro glycoengineering. This sample set comprises preparations with minimal and maximal galactosylation and different levels of sialylation of fully galactosylated Fc glycans. Among others, Roche developed the glycosyltransferase enzyme sialyltransferase which was used for the in vitro glycoengineering activities at medium scale. A variety of analytical assays, including Surface Plasmon Resonance and recently developed FcγR affinity chromatography, as well as an optimized cell-based ADCC assay were applied to investigate the effect of Fc galactosylation and sialylation on the in vitro FcγRI, IIa, and IIIa receptor binding and ADCC activity of IgG1. The results of our studies do not show an impact, neither positive nor negative, of sialic acid- containing Fc glycans of IgG1 on ADCC activity, FcγRI, and RIIIa receptors, but a slightly improved binding to FcγRIIa. Furthermore, we demonstrate a galactosylation-induced positive impact on the binding activity of the IgG1 to FcγRIIa and FcγRIIIa receptors and ADCC activity. PMID:26266936

  11. Maximizing the potency of an anti-TLR4 monoclonal antibody by exploiting proximity to Fcγ receptors

    PubMed Central

    Loyau, Jérémy; Malinge, Pauline; Daubeuf, Bruno; Shang, Limin; Elson, Greg; Kosco-Vilbois, Marie; Fischer, Nicolas; Rousseau, François

    2014-01-01

    In order to treat Toll like receptor 4 (TLR4)-mediated diseases, we generated a potent antagonistic antibody directed against human TLR4, Hu 15C1. This antibody's potency can be modulated by engaging not only TLR4 but also Fcγ receptors (FcγR), a mechanism that is driven by avidity and not cell signaling. Here, using various formats of the antibody, we further dissect the relative contributions of the Fv and Fc portions of Hu 15C1, discovering that the relationship to potency of the different antibody arms is not linear. First, as could be anticipated, we observed that Hu 15C1 co-engages up to 3 receptors on the same plasma membrane, i.e., 2 TLR4 molecules (via its variable regions) and either FcγRI or FcγRIIA (via the Fc). The Kd of these interactions are in the nM range (3 nM of the Fv for TLR4 and 47 nM of the Fc for FcγRI). However, unexpectedly, neutralization experiments revealed that, due to the low level of cell surface TLR4 expression, the avidity afforded by engagement through 2 Fv arms was significantly limited. In contrast, the antibody's neutralization capacity increases by 3 logs when able to exploit Fc-FcγR interactions. Taken together, these results demonstrate an unforeseen level of contribution by FcγRs to an antibody's effectiveness when targeting a cell surface protein of relatively low abundance. These findings highlight an exploitable mechanism by which FcγR-bearing cells may be more powerfully targeted, envisioned to be broadly applicable to other reagents aimed at neutralizing cell surface targets on cells co-expressing FcγRs. PMID:25484053

  12. Identification and characterization of a Fc receptor activity on the Toxoplasma gondii tachyzoite.

    PubMed

    Vercammen, M; el Bouhdidi, A; Ben Messaoud, A; de Meuter, F; Bazin, H; Dubremetz, J F; Carlier, Y

    1998-01-01

    The Immunoglobulin (Ig) binding capacity of Toxoplasma gondii tachyzoites was investigated using fluorescence flow-cytometry analysis. Polyclonal mouse, human and rat immunoglobulins without specific anti-Toxoplasma activity bound to parasites in a concentration-dependent manner, saturating them at circulating serum concentrations. The immunoglobulin class and subclass specificity of binding was investigated using irrelevant monoclonal antibodies. IgM, IgA and IgG reacted with the parasite membrane. The attachment of mouse IgM to the parasite surface was hampered by mouse IgG1, IgG2a, IgG2b and IgG3. The binding of mouse IgG was proportionally reduced with increasing concentrations of mouse monoclonal IgM. The binding of murine immunoglobulin was diminished when in presence of human IgG. Purified Fc- but not Fab portions of immunoglobulins, fixed to parasites. Using labelled calibrated beads, the Ig binding capacity of parasites was estimated to be 6900 +/- 500 sites per tachyzoite. The Kd of the T. gondii Fc Receptor (FcR) activity was determined at 1.4 +/- 0.1 microM (mean +/- SEM). Such FcR activity was reduced by phospholipase C, trypsin and pronase treatment of the parasites. These data show a low affinity FcR activity on T. gondii tachyzoites which recognizes Ig of different species and isotypes and is likely supported by a glycosyl-phosphatidylinositol (GPI)-anchored surface protein of the parasite.

  13. The high-affinity receptor for IgG, FcγRI, of humans and non-human primates.

    PubMed

    Chenoweth, Alicia M; Trist, Halina M; Tan, Peck-Szee; Wines, Bruce D; Hogarth, P Mark

    2015-11-01

    Non-human primate (NHP) models, especially involving macaques, are considered important models of human immunity and have been essential in preclinical testing for vaccines and therapeutics. Despite this, much less characterization of macaque Fc receptors has occurred compared to humans or mice. Much of the characterization of macaque Fc receptors so far has focused on the low-affinity Fc receptors, particularly FcγRIIIa. From these studies, it is clear that there are distinct differences between the human and macaque low-affinity receptors and their interaction with human IgG. Relatively little work has been performed on the high-affinity IgG receptor, FcγRI, especially in NHPs. This review will focus on what is currently known of how FcγRI interacts with IgG, from mutation studies and recent crystallographic studies of human FcγRI, and how amino acid sequence differences in the macaque FcγRI may affect this interaction. Additionally, this review will look at the functional consequences of differences in the amino acid sequences between humans and macaques.

  14. Effect of trastuzumab interchain disulfide bond cleavage on Fcγ receptor binding and antibody-dependent tumour cell phagocytosis.

    PubMed

    Suzuki, Mami; Yamanoi, Ayaka; Machino, Yusuke; Ootsubo, Michiko; Izawa, Ken-ichi; Kohroki, Junya; Masuho, Yasuhiko

    2016-01-01

    The Fc domain of human IgG1 binds to Fcγ receptors (FcγRs) to induce effector functions such as phagocytosis. There are four interchain disulfide bonds between the H and L chains. In this study, the disulfide bonds within the IgG1 trastuzumab (TRA), which is specific for HER2, were cleaved by mild S-sulfonation or by mild reduction followed by S-alkylation with three different reagents. The cleavage did not change the binding activities of TRA to HER2-bearing SK-BR-3 cells. The binding activities of TRA to FcγRIIA and FcγRIIB were greatly enhanced by modification with mild reduction and S-alkylation with ICH2CONH2 or N-(4-aminophenyl) maleimide, while the binding activities of TRA to FcγRI and FcγRIIIA were decreased by any of the four modifications. However, the interchain disulfide bond cleavage by the different modifications did not change the antibody-dependent cell-mediated phagocytosis (ADCP) of SK-BR-3 cells by activated THP-1 cells. The order of FcγR expression levels on the THP-1 cells was FcγRII > FcγRI > FcγRIII and ADCP was inhibited by blocking antibodies against FcγRI and FcγRII. These results imply that the effect of the interchain disulfide bond cleavage on FcγRs binding and ADCP is dependent on modifications of the cysteine residues and the FcγR isotypes.

  15. Imaging and measuring the biophysical properties of Fc gamma receptors on single macrophages using atomic force microscopy

    SciTech Connect

    Li, Mi; Liu, Lianqing; Xi, Ning; Wang, Yuechao; Xiao, Xiubin; Zhang, Weijing

    2013-09-06

    Highlights: •Nanoscale cellular ultra-structures of macrophages were observed. •The binding affinities of FcγRs were measured directly on macrophages. •The nanoscale distributions of FcγRs were mapped on macrophages. -- Abstract: Fc gamma receptors (FcγR), widely expressed on effector cells (e.g., NK cells, macrophages), play an important role in clinical cancer immunotherapy. The binding of FcγRs to the Fc portions of antibodies that are attached to the target cells can activate the antibody-dependent cell-mediated cytotoxicity (ADCC) killing mechanism which leads to the lysis of target cells. In this work, we used atomic force microscopy (AFM) to observe the cellular ultra-structures and measure the biophysical properties (affinity and distribution) of FcγRs on single macrophages in aqueous environments. AFM imaging was used to obtain the topographies of macrophages, revealing the nanoscale cellular fine structures. For molecular interaction recognition, antibody molecules were attached onto AFM tips via a heterobifunctional polyethylene glycol (PEG) crosslinker. With AFM single-molecule force spectroscopy, the binding affinities of FcγRs were quantitatively measured on single macrophages. Adhesion force mapping method was used to localize the FcγRs, revealing the nanoscale distribution of FcγRs on local areas of macrophages. The experimental results can improve our understanding of FcγRs on macrophages; the established approach will facilitate further research on physiological activities involved in antibody-based immunotherapy.

  16. Critical Role of the Neonatal Fc Receptor (FcRn) in the Pathogenic Action of Antimitochondrial Autoantibodies Synergizing with Anti-desmoglein Autoantibodies in Pemphigus Vulgaris*

    PubMed Central

    Chen, Yumay; Chernyavsky, Alex; Webber, Robert J.; Grando, Sergei A.; Wang, Ping H.

    2015-01-01

    Pemphigus vulgaris (PV) is a life-long, potentially fatal IgG autoantibody-mediated blistering disease targeting mucocutaneous keratinocytes (KCs). PV patients develop pathogenic anti-desmoglein (Dsg) 3 ± 1 and antimitochondrial antibodies (AMA), but it remained unknown whether and how AMA enter KCs and why other cell types are not affected in PV. Therefore, we sought to elucidate mechanisms of cell entry, trafficking, and pathogenic action of AMA in PV. We found that PVIgGs associated with neonatal Fc receptor (FcRn) on the cell membrane, and the PVIgG-FcRn complexes entered KCs and reached mitochondria where they dissociated. The liberated AMA altered mitochondrial membrane potential, respiration, and ATP production and induced cytochrome c release, although the lack or inactivation of FcRn abolished the ability of PVIgG to reach and damage mitochondria and to cause detachment of KCs. The assays of mitochondrial functions and keratinocyte adhesion demonstrated that although the pathobiological effects of AMA on KCs are reversible, they become irreversible, leading to epidermal blistering (acantholysis), when AMA synergize with anti-Dsg antibodies. Thus, it appears that AMA enter a keratinocyte in a complex with FcRn, become liberated from the endosome in the cytosol, and are trafficked to the mitochondria, wherein they trigger pro-apoptotic events leading to shrinkage of basal KCs uniquely expressing FcRn in epidermis. During recovery, KCs extend their cytoplasmic aprons toward neighboring cells, but anti-Dsg antibodies prevent assembly of nascent desmosomes due to steric hindrance, thus rendering acantholysis irreversible. In conclusion, FcRn is a common acceptor protein for internalization of AMA and, perhaps, for PV autoantibodies to other intracellular antigens, and PV is a novel disease paradigm for investigating and elucidating the role of FcRn in this autoimmune disease and possibly other autoimmune diseases. PMID:26260795

  17. Ethanol Inhibits High-Affinity Immunoglobulin E Receptor (FcεRI) Signaling in Mast Cells by Suppressing the Function of FcεRI-Cholesterol Signalosome.

    PubMed

    Draberova, Lubica; Paulenda, Tomas; Halova, Ivana; Potuckova, Lucie; Bugajev, Viktor; Bambouskova, Monika; Tumova, Magda; Draber, Petr

    2015-01-01

    Ethanol has multiple effects on biochemical events in a variety of cell types, including the high-affinity immunoglobulin E receptor (FcεRI) signaling in antigen-activated mast cells. However, the underlying molecular mechanism remains unknown. To get better understanding of the effect of ethanol on FcεRI-mediated signaling we examined the effect of short-term treatment with non-toxic concentrations of ethanol on FcεRI signaling events in mouse bone marrow-derived mast cells. We found that 15 min exposure to ethanol inhibited antigen-induced degranulation, calcium mobilization, expression of proinflammatory cytokine genes (tumor necrosis factor-α, interleukin-6, and interleukin-13), and formation of reactive oxygen species in a dose-dependent manner. Removal of cellular cholesterol with methyl-β-cyclodextrin had a similar effect and potentiated some of the inhibitory effects of ethanol. In contrast, exposure of the cells to cholesterol-saturated methyl-β-cyclodextrin abolished in part the inhibitory effect of ethanol on calcium response and production of reactive oxygen species, supporting lipid-centric theories of ethanol action on the earliest stages of mast cell signaling. Further studies showed that exposure to ethanol and/or removal of cholesterol inhibited early FcεRI activation events, including tyrosine phosphorylation of the FcεRI β and γ subunits, SYK kinases, LAT adaptor protein, phospholipase Cγ, STAT5, and AKT and internalization of aggregated FcεRI. Interestingly, ethanol alone, and particularly in combination with methyl-β-cyclodextrin, enhanced phosphorylation of negative regulatory tyrosine 507 of LYN kinase. Finally, we found that ethanol reduced passive cutaneous anaphylactic reaction in mice, suggesting that ethanol also inhibits FcεRI signaling under in vivo conditions. The combined data indicate that ethanol interferes with early antigen-induced signaling events in mast cells by suppressing the function of Fc

  18. Critical Role of the Neonatal Fc Receptor (FcRn) in the Pathogenic Action of Antimitochondrial Autoantibodies Synergizing with Anti-desmoglein Autoantibodies in Pemphigus Vulgaris.

    PubMed

    Chen, Yumay; Chernyavsky, Alex; Webber, Robert J; Grando, Sergei A; Wang, Ping H

    2015-09-25

    Pemphigus vulgaris (PV) is a life-long, potentially fatal IgG autoantibody-mediated blistering disease targeting mucocutaneous keratinocytes (KCs). PV patients develop pathogenic anti-desmoglein (Dsg) 3 ± 1 and antimitochondrial antibodies (AMA), but it remained unknown whether and how AMA enter KCs and why other cell types are not affected in PV. Therefore, we sought to elucidate mechanisms of cell entry, trafficking, and pathogenic action of AMA in PV. We found that PVIgGs associated with neonatal Fc receptor (FcRn) on the cell membrane, and the PVIgG-FcRn complexes entered KCs and reached mitochondria where they dissociated. The liberated AMA altered mitochondrial membrane potential, respiration, and ATP production and induced cytochrome c release, although the lack or inactivation of FcRn abolished the ability of PVIgG to reach and damage mitochondria and to cause detachment of KCs. The assays of mitochondrial functions and keratinocyte adhesion demonstrated that although the pathobiological effects of AMA on KCs are reversible, they become irreversible, leading to epidermal blistering (acantholysis), when AMA synergize with anti-Dsg antibodies. Thus, it appears that AMA enter a keratinocyte in a complex with FcRn, become liberated from the endosome in the cytosol, and are trafficked to the mitochondria, wherein they trigger pro-apoptotic events leading to shrinkage of basal KCs uniquely expressing FcRn in epidermis. During recovery, KCs extend their cytoplasmic aprons toward neighboring cells, but anti-Dsg antibodies prevent assembly of nascent desmosomes due to steric hindrance, thus rendering acantholysis irreversible. In conclusion, FcRn is a common acceptor protein for internalization of AMA and, perhaps, for PV autoantibodies to other intracellular antigens, and PV is a novel disease paradigm for investigating and elucidating the role of FcRn in this autoimmune disease and possibly other autoimmune diseases.

  19. Ethanol Inhibits High-Affinity Immunoglobulin E Receptor (FcεRI) Signaling in Mast Cells by Suppressing the Function of FcεRI-Cholesterol Signalosome

    PubMed Central

    Draberova, Lubica; Paulenda, Tomas; Halova, Ivana; Potuckova, Lucie; Bugajev, Viktor; Bambouskova, Monika; Tumova, Magda; Draber, Petr

    2015-01-01

    Ethanol has multiple effects on biochemical events in a variety of cell types, including the high-affinity immunoglobulin E receptor (FcεRI) signaling in antigen-activated mast cells. However, the underlying molecular mechanism remains unknown. To get better understanding of the effect of ethanol on FcεRI-mediated signaling we examined the effect of short-term treatment with non-toxic concentrations of ethanol on FcεRI signaling events in mouse bone marrow-derived mast cells. We found that 15 min exposure to ethanol inhibited antigen-induced degranulation, calcium mobilization, expression of proinflammatory cytokine genes (tumor necrosis factor-α, interleukin-6, and interleukin-13), and formation of reactive oxygen species in a dose-dependent manner. Removal of cellular cholesterol with methyl-β-cyclodextrin had a similar effect and potentiated some of the inhibitory effects of ethanol. In contrast, exposure of the cells to cholesterol-saturated methyl-β-cyclodextrin abolished in part the inhibitory effect of ethanol on calcium response and production of reactive oxygen species, supporting lipid-centric theories of ethanol action on the earliest stages of mast cell signaling. Further studies showed that exposure to ethanol and/or removal of cholesterol inhibited early FcεRI activation events, including tyrosine phosphorylation of the FcεRI β and γ subunits, SYK kinases, LAT adaptor protein, phospholipase Cγ, STAT5, and AKT and internalization of aggregated FcεRI. Interestingly, ethanol alone, and particularly in combination with methyl-β-cyclodextrin, enhanced phosphorylation of negative regulatory tyrosine 507 of LYN kinase. Finally, we found that ethanol reduced passive cutaneous anaphylactic reaction in mice, suggesting that ethanol also inhibits FcεRI signaling under in vivo conditions. The combined data indicate that ethanol interferes with early antigen-induced signaling events in mast cells by suppressing the function of Fc

  20. CD44 Antibody Inhibition of Macrophage Phagocytosis Targets Fcγ Receptor- and Complement Receptor 3-Dependent Mechanisms.

    PubMed

    Amash, Alaa; Wang, Lin; Wang, Yawen; Bhakta, Varsha; Fairn, Gregory D; Hou, Ming; Peng, Jun; Sheffield, William P; Lazarus, Alan H

    2016-04-15

    Targeting CD44, a major leukocyte adhesion molecule, using specific Abs has been shown beneficial in several models of autoimmune and inflammatory diseases. The mechanisms contributing to the anti-inflammatory effects of CD44 Abs, however, remain poorly understood. Phagocytosis is a key component of immune system function and can play a pivotal role in autoimmune states where CD44 Abs have shown to be effective. In this study, we show that the well-known anti-inflammatory CD44 Ab IM7 can inhibit murine macrophage phagocytosis of RBCs. We assessed three selected macrophage phagocytic receptor systems: Fcγ receptors (FcγRs), complement receptor 3 (CR3), and dectin-1. Treatment of macrophages with IM7 resulted in significant inhibition of FcγR-mediated phagocytosis of IgG-opsonized RBCs. The inhibition of FcγR-mediated phagocytosis was at an early stage in the phagocytic process involving both inhibition of the binding of the target RBC to the macrophages and postbinding events. This CD44 Ab also inhibited CR3-mediated phagocytosis of C3bi-opsonized RBCs, but it did not affect the phagocytosis of zymosan particles, known to be mediated by the C-type lectin dectin-1. Other CD44 Abs known to have less broad anti-inflammatory activity, including KM114, KM81, and KM201, did not inhibit FcγR-mediated phagocytosis of RBCs. Taken together, these findings demonstrate selective inhibition of FcγR and CR3-mediated phagocytosis by IM7 and suggest that this broadly anti-inflammatory CD44 Ab inhibits these selected macrophage phagocytic pathways. The understanding of the immune-regulatory effects of CD44 Abs is important in the development and optimization of therapeutic strategies for the potential treatment of autoimmune conditions.

  1. Functional characteristics of enhanced Fc receptor expression of beta 2 integrin-deficient bovine mononuclear phagocytes.

    PubMed

    Nagahata, H; Higuchi, H; Goji, N; Noda, H; Kuwabara, M

    1996-01-01

    Fc receptor expression, cytoplasmic Ca2+ signaling, chemiluminescent (CL) response, and electron spin resonance (ESR) combined with spin trapping of blood mononuclear phagocytes from control heifers and a heifer with leukocyte adhesion deficiency (LAD) were evaluated to elucidate the relationships between complement receptor type 3 (CR3) and Fc receptor expression and their functional responses. The mean fluorescence intensity of fluorescein isothiocyanate (FITC)-conjugated anti-bovine IgG bound to mononuclear phagocytes from the heifer with LAD was 1.8-fold higher than that of control heifers. The mean increments of cytoplasmic Ca2+ concentrations of mononuclear phagocytes from the heifer with LAD stimulated with OPZ, Agg-IgG, and PMA were 39.4 (P < 0.05), 118, and 71.6% compared with those of control heifers. A 1.27-fold increase in the CL response relative to control heifers was detected when mononuclear phagocytes from the heifer with LAD were stimulated with Agg-IgG. The OPZ-induced CL response of mononuclear phagocytes from the heifer with LAD was significantly (P < 0.05) decreased, whereas the PMA-induced CL response was similar to that of control heifers. The ESR spectrum of mononuclear phagocytes from the heifer with LAD was increased when stimulated with Agg-IgG, and was impaired when stimulated by OPZ compared with that of control heifers. The ESR spectrum of mononuclear phagocytes stimulated with PMA was similar in control heifers and the heifer with LAD. Fc receptors on mononuclear phagocytes from the heifer with LAD were enhanced, and their cytoplasmic Ca2+ signaling, CL response, and ESR-spin trapping when stimulated with Agg-IgG and OPZ appeared to be associated with enhanced Fc receptors.

  2. New roles for Fc receptors in neurodegeneration-the impact on Immunotherapy for Alzheimer's Disease

    PubMed Central

    Fuller, James P.; Stavenhagen, Jeffrey B.; Teeling, Jessica L.

    2014-01-01

    There are an estimated 18 million Alzheimer's disease (AD) sufferers worldwide and with no disease modifying treatment currently available, development of new therapies represents an enormous unmet clinical need. AD is characterized by episodic memory loss followed by severe cognitive decline and is associated with many neuropathological changes. AD is characterized by deposits of amyloid beta (Aβ), neurofibrillary tangles, and neuroinflammation. Active immunization or passive immunization against Aβ leads to the clearance of deposits in transgenic mice expressing human Aβ. This clearance is associated with reversal of associated cognitive deficits, but these results have not translated to humans, with both active and passive immunotherapy failing to improve memory loss. One explanation for these observations is that certain anti-Aβ antibodies mediate damage to the cerebral vasculature limiting the top dose and potentially reducing efficacy. Fc gamma receptors (FcγR) are a family of immunoglobulin-like receptors which bind to the Fc portion of IgG, and mediate the response of effector cells to immune complexes. Data from both mouse and human studies suggest that cross-linking FcγR by therapeutic antibodies and the subsequent pro-inflammatory response mediates the vascular side effects seen following immunotherapy. Increasing evidence is emerging that FcγR expression on CNS resident cells, including microglia and neurons, is increased during aging and functionally involved in the pathogenesis of age-related neurodegenerative diseases. Therefore, we propose that increased expression and ligation of FcγR in the CNS, either by endogenous IgG or therapeutic antibodies, has the potential to induce vascular damage and exacerbate neurodegeneration. To produce safe and effective immunotherapies for AD and other neurodegenerative diseases it will be vital to understand the role of FcγR in the healthy and diseased brain. Here we review the literature on Fc

  3. Antibody to FcεRIα Suppresses Immunoglobulin E Binding to High-Affinity Receptor I in Allergic Inflammation

    PubMed Central

    Hong, Jung Yeon; Bae, Jong-Hwan; Lee, Kyung Eun; Kim, Mina; Kim, Min Hee; Kang, Hyun Jung; Park, Eun Hye; Yoo, Kyung Sook; Jeong, Se Kyoo; Kim, Kyung Won; Kim, Kyu-Earn

    2016-01-01

    Purpose High-affinity receptor I (FcεRI) on mast cells and basophils plays a key role in the immunoglobulin E (IgE)-mediated type I hypersensitivity mediated by allergen cross-linking of the specific IgE-FcεRI complex. Thus, prevention of IgE binding to FcεRI on these cells is an effective therapy for allergic disease. We have developed a strategy to disrupt IgE binding to FcεRI using an antibody targeting FcεRIα. Materials and Methods Fab fragment antibodies, which lack the Fc domain, with high affinity and specificity for FcεRIα and effective inhibitory activity against IgE-FcεRI binding were screened. IgE-induced histamine, β-hexosaminidase and Ca2+ release in basophils were determined by ELISA. A B6.Cg-Fcer1atm1Knt Tg(FCER1A)1Bhk/J mouse model of passive cutaneous anaphylaxis (PCA) was used to examine the inhibitory effect of NPB311 on allergic skin inflammation. Results NPB311 exhibited high affinity to human FcεRIα (KD=4 nM) and inhibited histamine, β-hexosaminidase and Ca2+ release in a concentration-dependent manner in hFcεRI-expressing cells. In hFcεRIα-expressing mice, dye leakage was higher in the PCA group than in controls, but decreased after NPB311 treatment. NPB311 could form a complex with FcεRIα and inhibit the release of inflammation mediators. Conclusion Our approach for producing anti-FcεRIα Fab fragment antibody NPB311 may enable clinical application to a therapeutic pathway in IgE/FcεRI-mediated diseases. PMID:27593869

  4. Identification of low density lipoprotein as a regulator of Fc receptor-mediated phagocytosis.

    PubMed Central

    Bigler, R D; Khoo, M; Lund-Katz, S; Scerbo, L; Esfahani, M

    1990-01-01

    Optimal expression of the high-affinity Fc receptor for IgG (FcRI) by the human monocyte cell line U-937 requires the presence of low density lipoprotein (LDL), and neither cholesterol nor high density lipoprotein can provide the component necessary for optimal FcRI expression. Here we show that FcR-mediated phagocytosis also requires LDL. U-937 cells were cultured in medium containing interferon gamma and either fetal calf serum (FCS) or delipidated FCS (DLFCS). The phagocytosis of IgG-coated erythrocytes was measured by a colorimetric assay. U-937 cells cultured in DLFCS medium had less than 16% of the phagocytic activity of cells cultured in normal FCS medium. Phagocytosis of IgG-coated erythrocytes could be inhibited 85% by the addition of murine IgG2a myeloma protein (5 micrograms/ml). U-937 cells cultured in DLFCS medium supplemented with pure cholesterol in ethanol (10 micrograms/ml) had only 30% of the phagocytic activity of cells grown in FCS medium. Addition of very low density lipoprotein (0.2 mg of protein per ml) to DLFCS medium also failed to increase phagocytosis. However, the addition of LDL (0.2 mg of protein per ml) to DLFCS medium restored 90% of the phagocytic activity. Since neither pure cholesterol nor very low density lipoprotein restored normal phagocytic function to U-937 cells despite a normalization of cellular cholesterol content, the restoration of phagocytosis observed with LDL replacement cannot be explained by mere delivery of cholesterol by LDL. Thus, LDL is required for the expression of FcRI and FcR-mediated phagocytosis by U-937 cells and may be an important regulator of phagocytic activity of monocytes and macrophages in vivo. PMID:2367519

  5. Interactions of phagocytes with the Lyme disease spirochete: role of the Fc receptor

    SciTech Connect

    Benach, J.L.; Fleit, H.B.; Habicht, G.S.; Coleman, J.L.; Bosler, E.M.; Lane, B.P.

    1984-10-01

    The phagocytic capacity of murine and human mononuclear and polymorphonuclear phagocytes (including peripheral blood monocytes and neutrophils), rabbit and murine peritoneal exudate cells, and the murine macrophage cell line P388D1 against the Lyme disease spirochete was studied. All of these cells were capable of phagocytosing the spirochete; phagocytosis was measured by the uptake of radiolabeled spirochetes, the appearance of immunofluorescent bodies in phagocytic cells, and electron microscopy. Both opsonized and nonopsonized organisms were phagocytosed. The uptake of opsonized organisms by neutrophils was blocked by a monoclonal antibody specific for the Fc receptor and by immune complexes; these findings suggested that most phagocytosis is mediated by the Fc receptor. Similarly, the uptake of opsonized organisms by human monocytes was inhibited by human monomeric IgG1 and by immune complexes. These results illustrate the role of immune phagocytosis of spirochetes in host defense against Lyme disease.

  6. Structural and phylogenetic analysis of the MHC class I-like Fc receptor gene

    SciTech Connect

    Kandil, Eman; Ishibashi, Teruo; Kasahara, Masanori

    1995-06-01

    The intestinal epithelium of neonatal mice and rats expresses an Fc receptor that mediates selective uptake of IgG in mothers`milk. This receptor (FcRn), which helps newborn animals to acquire passive immunity, is an MHC class I-like heterodimer made up of a heavy chain and {beta}{sub 2}-microglobulin. In the present study, we determined the genomic structure of a mouse gene (FcRn) encoding the heavy of FcRn. The overall exon-intron organization of the Fcrn gene was similar to that of the Fcrn gene, thus providing structural evidence that Fcrn os a bona fide class I gene. The 5{prime}-flanking region of the Fcrn gene contained the binding motifs for two cytokine-inducible transcription factors, NF-IL6 and NF1. However, regulatory elements found in MHC class I genes (enhancer A, enhancer B, and the IFN response element) were absent. Phylogenetic tree analysis suggested that, like the MICA, AZGP1, and CD1 genes, the Fcrn gene diverged form MHC class I genes after the emergence of amphibians but before the split of placental and marsupial mammals. Consistent with this result, Southern blot analysis with a mouse Fcrn cDNA probe detected cross-hybridizing bands in various mammalian species and chickens. Sequence analysis of the Fcrn gene isolated from eight mouse strains showed that the membrane-distal domain of FcRn has at least three amino acid variants. The fact that Fcrn is a single copy gene indicates that it is expressed in both the neonatal intestine and the fetal yolk sac. 74 refs., 7 figs., 2 tabs.

  7. Nanoscale imaging and mechanical analysis of Fc receptor-mediated macrophage phagocytosis against cancer cells.

    PubMed

    Li, Mi; Liu, Lianqing; Xi, Ning; Wang, Yuechao; Xiao, Xiubin; Zhang, Weijing

    2014-02-18

    Fc receptor-mediated macrophage phagocytosis against cancer cells is an important mechanism in the immune therapy of cancers. Traditional research about macrophage phagocytosis was based on optical microscopy, which cannot reveal detailed information because of the 200-nm-resolution limit. Quantitatively investigating the macrophage phagocytosis at micro- and nanoscale levels is still scarce. The advent of atomic force microscopy (AFM) offers an excellent analytical instrument for quantitatively investigating the biological processes at single-cell and single-molecule levels under native conditions. In this work, we combined AFM and fluorescence microscopy to visualize and quantify the detailed changes in cell morphology and mechanical properties during the process of Fc receptor-mediated macrophage phagocytosis against cancer cells. Lymphoma cells were discernible by fluorescence staining. Then, the dynamic process of phagocytosis was observed by time-lapse optical microscopy. Next, AFM was applied to investigate the detailed cellular behaviors during macrophage phagocytosis under the guidance of fluorescence recognition. AFM imaging revealed the distinct features in cellular ultramicrostructures for the different steps of macrophage phagocytosis. AFM cell mechanical property measurements indicated that the binding of cancer cells to macrophages could make macrophages become stiffer. The experimental results provide novel insights in understanding the Fc-receptor-mediated macrophage phagocytosis.

  8. The immunomodulatory adapter proteins DAP12 and Fc receptor γ-chain (FcRγ) regulate development of functional osteoclasts through the Syk tyrosine kinase

    PubMed Central

    Mócsai, Attila; Humphrey, Mary Beth; Van Ziffle, Jessica A. G.; Hu, Yongmei; Burghardt, Andrew; Spusta, Steven C.; Majumdar, Sharmila; Lanier, Lewis L.; Lowell, Clifford A.; Nakamura, Mary C.

    2004-01-01

    Osteoclasts, the only bone-resorbing cells, are central to the pathogenesis of osteoporosis, yet their development and regulation are incompletely understood. Multiple receptors of the immune system use a common signaling paradigm whereby phosphorylated immunoreceptor tyrosine-based activation motifs (ITAMs) within receptor-associated adapter proteins recruit the Syk tyrosine kinase. Here we demonstrate that a similar mechanism is required for development of functional osteoclasts. Mice lacking two ITAM-bearing adapters, DAP12 and the Fc receptor γ-chain (FcRγ), are severely osteopetrotic. DAP12-/-FcRγ-/- bone marrow cells fail to differentiate into multinucleated osteoclasts or resorb bone in vitro and show impaired phosphorylation of the Syk tyrosine kinase. syk-/- progenitors are similarly defective in osteoclast development and bone resorption. Intact SH2-domains of Syk, introduced by retroviral transduction, are required for functional reconstitution of syk-/- osteoclasts, whereas intact ITAM-domains on DAP12 are required for reconstitution of DAP12-/- FcRγ-/- cells. These data indicate that recruitment of Syk to phosphorylated ITAMs is critical for osteoclastogenesis. Although DAP12 appears to be primarily responsible for osteoclast differentiation in cultures directly stimulated with macrophage-colony stimulating factor and receptor activator of NF-κB ligand cytokines, DAP12 and FcRγ have overlapping roles in supporting osteoclast development in osteoblast–osteoclast cocultures, which mirrors their overlapping functions in vivo. These results provide new insight into the biology of osteoclasts and suggest novel therapeutic targets in diseases of bony remodeling. PMID:15073337

  9. Heterogeneity of human lymphocyte Fc receptors. I. Differential susceptibility to proteolysis

    PubMed Central

    Gormus, B. J.; Woodson, Mildred; Kaplan, M. E.

    1978-01-01

    To study the possible heterogeneity of human lymphocyte Fc receptors, isolated human peripheral blood lymphocytes (PBL) were enzymatically altered (`stripped') by exposure to pronase or papain. Pronase treatment markedly increased the percentages of PBL binding IgG-sensitized erythrocytes (EA), while simultaneously removing or inactivating their receptors for heat-aggregated IgG (aggG). Papain treatment markedly diminished the ability of PBL to bind both EA and aggG. Essentially identical results were obtained utilizing EA composed of either human Rh-positive type O erythrocytes sensitized with the human anti-Rh serum Ripley (HRBC-A Ripley) or with chicken erythrocytes sensitized with rabbit anti-CRBC IgG (CRBC-A). CRBC sensitized with Fab'2 fragments of rabbit anti-CRBC IgG were incapable of forming rosettes with normal or with pronase- or papain-stripped PBL. Pre-treatment of normal lymphocytes with aggG totally ablated their ability to rosette with EA. Incubation of pronase-stripped PBL for 18–20 hr in 5% CO2-air at 37°C resulted in diminution (to levels originally present) in the percentages of lymphocytes binding EA, but no regeneration of aggG receptors. Similar incubation of papain-stripped PBL resulted in significant reappearance of receptors binding EA, but no regeneration of aggG receptors. These results strongly suggest that: (1) lymphocyte receptors that bind EA complexes differ from those that bind aggG; (2) some lymphocytes possess cryptic receptors for EA that are expressed after proteolysis with pronase; (3) PBL having receptors for EA also have aggG receptors; and (4) there is no evidence that proteolytic stripping of PBL results in the generation of functionally different receptors for complexed IgG, since the Fc specificity of this receptor remains unchanged. PMID:737911

  10. Fc-receptor and M-protein genes of group A streptococci are products of gene duplication.

    PubMed Central

    Heath, D G; Cleary, P P

    1989-01-01

    The partial nucleotide sequence for an Fc-receptor gene from an M-type 76 group A streptococcus was determined. DNA sequence analysis revealed considerable sequence similarity between the Fc-receptor and M-protein genes in their proposed promoter regions, signal sequences, and 3' termini. Additional analysis indicated that the deduced Fc-receptor protein contains a proline-rich region and membrane anchor region highly similar to that of M protein. In view of these results, we postulated that Fc-receptor and M-protein genes of group A streptococci are the products of gene duplication from a common ancestral gene. It is proposed that DNA sequence similarity between these two genes may allow for extragenic homologous recombination as a means of generating antigenic diversity in these two surface proteins. PMID:2660147

  11. Helicobacter pylori eradication shifts monocyte Fcγ receptor balance toward inhibitory FcγRIIB in immune thrombocytopenic purpura patients

    PubMed Central

    Asahi, Atsuko; Nishimoto, Tetsuya; Okazaki, Yuka; Suzuki, Hidekazu; Masaoka, Tatsuhiro; Kawakami, Yutaka; Ikeda, Yasuo; Kuwana, Masataka

    2008-01-01

    Immune thrombocytopenia purpura (ITP) is a bleeding disorder in which platelet-specific autoantibodies cause a loss of platelets. In a subset of patients with ITP and infected with Helicobacter pylori, the number of platelets recovers after eradication of H. pylori. To examine the role of H. pylori infection in the pathogenesis of ITP, the response of 34 ITP patients to treatment with a standard H. pylori eradication regimen, irrespective of whether they were infected with H. pylori, was evaluated. Eradication of H. pylori was achieved in all H. pylori–positive patients, and a significant increase in platelets was observed in 61% of these patients. By contrast, none of the H. pylori–negative patients showed increased platelets. At baseline, monocytes from the H. pylori–positive patients exhibited an enhanced phagocytic capacity and low levels of the inhibitory Fcγ receptor IIB (FcγRIIB). One week after starting the H. pylori eradication regimen, this activated monocyte phenotype was suppressed and improvements in autoimmune and platelet kinetic parameters followed. Modulation of monocyte FcγR balance was also found in association with H. pylori infection in individuals who did not have ITP and in mice. Our findings strongly suggest that the recovery in platelet numbers observed in ITP patients after H. pylori eradication is mediated through a change in FcγR balance toward the inhibitory FcγRIIB. PMID:18654664

  12. Actin restricts FcεRI diffusion and facilitates antigen-induced receptor immobilisation

    PubMed Central

    Andrews, Nicholas L.; Lidke, Keith A.; Pfeiffer, Janet R.; Burns, Alan R.; Wilson, Bridget S.; Oliver, Janet M.; Lidke, Diane S.

    2010-01-01

    The actin cytoskeleton has been implicated in restricting diffusion of plasma membrane components. Here, simultaneous observations of quantum dot-labelled FcεRI motion and GFP-tagged actin dynamics provide direct evidence that actin filament bundles define micron-sized domains that confine mobile receptors. Dynamic reorganisation of actin structures occurs over seconds, making the location and dimensions of actin-defined domains time dependent. Multiple FcεRI often maintain extended close proximity without detectable correlated motion, suggesting that they are co-confined within membrane domains. FcεRI signalling is activated by cross-linking with multivalent antigen. We show that receptors become immobilised within seconds of cross-linking. Disruption of the actin cytoskeleton results in delayed immobilisation kinetics and increased diffusion of cross-linked clusters. These results implicate actin in membrane partitioning that not only restricts diffusion of membrane proteins, but also dynamically influences their long-range mobility, sequestration, and response to ligand binding. PMID:18641640

  13. Fc receptor-dependent mechanisms of monoclonal antibody therapy of cancer.

    PubMed

    Bakema, Jantine E; van Egmond, Marjolein

    2014-01-01

    Targeted therapies like treatment with monoclonal antibodies (mAbs) have entered the arsenal of modern anticancer drugs. mAbs combine specificity with multiple effector functions that can lead to reduction of tumour burden. Direct mechanisms of action, including induction of apoptosis or growth inhibition, depend on the biology of the target antigen. Fc tails of mAbs have furthermore the potential to initiate complement-dependent lysis as well as immune effector cell-mediated tumour cell killing via binding to Fc receptors. Natural killer cells can induce apoptosis via antibody-dependent cellular cytotoxicity (ADCC), whereas macrophages are able to phagocytose mAb-opsonized tumour cells (antibody-dependent cellular phagocytosis; ADCP). Finally, neutrophils can induce non-apoptotic tumour cell death, especially in the presence of immunoglobulin A (IgA) antitumour mAbs. In spite of promising clinical successes in some malignancies, improvement of mAb immunotherapy is required to achieve overall complete remission in cancer patients. New strategies to enhance Fc receptor-mediated mechanisms of action or to overcome the immunosuppressive microenvironment of the tumour in mAb therapy of cancer are therefore currently being explored and will be addressed in this chapter.

  14. Imaging and measuring the biophysical properties of Fc gamma receptors on single macrophages using atomic force microscopy.

    PubMed

    Li, Mi; Liu, Lianqing; Xi, Ning; Wang, Yuechao; Xiao, Xiubin; Zhang, Weijing

    2013-09-06

    Fc gamma receptors (FcγR), widely expressed on effector cells (e.g., NK cells, macrophages), play an important role in clinical cancer immunotherapy. The binding of FcγRs to the Fc portions of antibodies that are attached to the target cells can activate the antibody-dependent cell-mediated cytotoxicity (ADCC) killing mechanism which leads to the lysis of target cells. In this work, we used atomic force microscopy (AFM) to observe the cellular ultra-structures and measure the biophysical properties (affinity and distribution) of FcγRs on single macrophages in aqueous environments. AFM imaging was used to obtain the topographies of macrophages, revealing the nanoscale cellular fine structures. For molecular interaction recognition, antibody molecules were attached onto AFM tips via a heterobifunctional polyethylene glycol (PEG) crosslinker. With AFM single-molecule force spectroscopy, the binding affinities of FcγRs were quantitatively measured on single macrophages. Adhesion force mapping method was used to localize the FcγRs, revealing the nanoscale distribution of FcγRs on local areas of macrophages. The experimental results can improve our understanding of FcγRs on macrophages; the established approach will facilitate further research on physiological activities involved in antibody-based immunotherapy.

  15. IgG receptor FcγRIIB plays a key role in obesity-induced hypertension.

    PubMed

    Sundgren, Nathan C; Vongpatanasin, Wanpen; Boggan, Brigid-Meghan D; Tanigaki, Keiji; Yuhanna, Ivan S; Chambliss, Ken L; Mineo, Chieko; Shaul, Philip W

    2015-02-01

    There is a well-recognized association between obesity, inflammation, and hypertension. Why obesity causes hypertension is poorly understood. We previously demonstrated using a C-reactive protein (CRP) transgenic mouse that CRP induces hypertension that is related to NO deficiency. Our prior work in cultured endothelial cells identified the Fcγ receptor IIB (FcγRIIB) as the receptor for CRP whereby it antagonizes endothelial NO synthase. Recognizing known associations between CRP and obesity and hypertension in humans, in the present study we tested the hypothesis that FcγRIIB plays a role in obesity-induced hypertension in mice. Using radiotelemetry, we first demonstrated that the hypertension observed in transgenic mouse-CRP is mediated by the receptor, indicating that FcγRIIB is capable of modifying blood pressure. We then discovered in a model of diet-induced obesity yielding equal adiposity in all study groups that whereas FcγRIIB(+/+) mice developed obesity-induced hypertension, FcγRIIB(-/-) mice were fully protected. Levels of CRP, the related pentraxin serum amyloid P component which is the CRP-equivalent in mice, and total IgG were unaltered by diet-induced obesity; FcγRIIB expression in endothelium was also unchanged. However, whereas IgG isolated from chow-fed mice had no effect, IgG from high-fat diet-fed mice inhibited endothelial NO synthase in cultured endothelial cells, and this was an FcγRIIB-dependent process. Thus, we have identified a novel role for FcγRIIB in the pathogenesis of obesity-induced hypertension, independent of processes regulating adiposity, and it may entail an IgG-induced attenuation of endothelial NO synthase function. Approaches targeting FcγRIIB may potentially offer new means to treat hypertension in obese individuals.

  16. Mononuclear phagocyte system Fc-receptor function in patients with seropositive rheumatoid arthritis.

    PubMed

    Lobatto, S; Breedveld, F C; Camps, J A; Pauwels, E K; Westedt, M L; Daha, M R; van Es, L A

    1987-03-01

    Mononuclear phagocyte system (MPS) Fc-receptor function in 20 patients with seropositive rheumatoid arthritis (RA) was investigated using radiolabelled autologous erythrocytes coated with an average of 5,800 molecules of anti-rhesus IgG (E. IgG). Although clearance times (T1/2) of E. IgG tended to be longer in RA patients than those in healthy controls (46 +/- 6 min vs 38 +/- 5 min, mean +/- s.e.m., P = 0.38), this did not reach statistical significance. Liver spleen uptake ratios (LS ratios) were increased in patients with RA (13/100 +/- 1/100 vs 7/100 +/- 1/100, P less than 0.05). There was no correlation of T1/2 or LS ratios with articular disease activity, vasculitis, ESR, IgM containing immune complex levels or Clq-binding immune complex levels. Although Clq-binding immune complex levels were significantly higher in patients with vasculitis than in those without (P less than 0.01), T1/2 and LS ratios did not differ in these two groups of patients. The T1/2 and LS ratios of E.IgG did not reveal a defect in MPS Fc-receptor function and did not correlate with one of the above-mentioned clinical and immunological parameters. We suggest that in order to establish a possible defect in Fc-receptor function correlating with disease activity and immune complex levels in RA patients, soluble immune complexes or immune complex-like material should be used as probes.

  17. The role of macrophages in the susceptibility of Fc gamma receptor IIb deficient mice to Cryptococcus neoformans

    PubMed Central

    Surawut, Saowapha; Ondee, Thunnicha; Taratummarat, Sujittra; Palaga, Tanapat; Pisitkun, Prapaporn; Chindamporn, Ariya; Leelahavanichkul, Asada

    2017-01-01

    Dysfunctional polymorphisms of FcγRIIb, an inhibitory receptor, are associated with Systemic Lupus Erythaematosus (SLE). Cryptococcosis is an invasive fungal infection in SLE, perhaps due to the de novo immune defect. We investigated cryptococcosis in the FcγRIIb−/− mouse-lupus-model. Mortality, after intravenous C. neoformans-induced cryptococcosis, in young (8-week-old) and older (24-week-old) FcγRIIb−/− mice, was higher than in age-matched wild-types. Severe cryptococcosis in the FcγRIIb−/− mice was demonstrated by high fungal burdens in the internal organs with histological cryptococcoma-like lesions and high levels of TNF-α and IL-6, but not IL-10. Interestingly, FcγRIIb−/− macrophages demonstrated more prominent phagocytosis but did not differ in killing activity in vitro and the striking TNF-α, IL-6 and IL-10 levels, compared to wild-type cells. Indeed, in vivo macrophage depletion with liposomal clodronate attenuated the fungal burdens in FcγRIIb−/− mice, but not wild-type mice. When administered to wild-type mice, FcγRIIb−/− macrophages with phagocytosed Cryptococcus resulted in higher fungal burdens than FcγRIIb+/+ macrophages with phagocytosed Cryptococcus. These results support, at least in part, a model whereby, in FcγRIIb−/− mice, enhanced C. neoformans transmigration occurs through infected macrophages. In summary, prominent phagocytosis, with limited effective killing activity, and high pro-inflammatory cytokine production by FcγRIIb−/− macrophages were correlated with more severe cryptococcosis in FcγRIIb−/− mice. PMID:28074867

  18. Conformational Destabilization of Immunoglobulin G Increases the Low pH Binding Affinity with the Neonatal Fc Receptor*

    PubMed Central

    Walters, Benjamin T.; Jensen, Pernille F.; Larraillet, Vincent; Lin, Kevin; Patapoff, Thomas; Schlothauer, Tilman; Rand, Kasper D.; Zhang, Jennifer

    2016-01-01

    Crystallographic evidence suggests that the pH-dependent affinity of IgG molecules for the neonatal Fc receptor (FcRn) receptor primarily arises from salt bridges involving IgG histidine residues, resulting in moderate affinity at mildly acidic conditions. However, this view does not explain the diversity in affinity found in IgG variants, such as the YTE mutant (M252Y,S254T,T256E), which increases affinity to FcRn by up to 10×. Here we compare hydrogen exchange measurements at pH 7.0 and pH 5.5 with and without FcRn bound with surface plasmon resonance estimates of dissociation constants and FcRn affinity chromatography. The combination of experimental results demonstrates that differences between an IgG and its cognate YTE mutant vary with their pH-sensitive dynamics prior to binding FcRn. The conformational dynamics of these two molecules are nearly indistinguishable upon binding FcRn. We present evidence that pH-induced destabilization in the CH2/3 domain interface of IgG increases binding affinity by breaking intramolecular H-bonds and increases side-chain adaptability in sites that form intermolecular contacts with FcRn. Our results provide new insights into the mechanism of pH-dependent affinity in IgG-FcRn interactions and exemplify the important and often ignored role of intrinsic conformational dynamics in a protein ligand, to dictate affinity for biologically important receptors. PMID:26627822

  19. Macrophage Membrane Potential Changes Associated with γ 2b/γ 1 Fc Receptor-Ligand Binding

    NASA Astrophysics Data System (ADS)

    Young, John Ding-E; Unkeless, Jay C.; Kaback, H. Ronald; Cohn, Zanvil A.

    1983-03-01

    We have studied the effects of specific ligands of the receptor for the IgG Fc fragment (FcR) on the membrane potential (Δ Psi ) of the macrophage cell line J774 by the [3H]tetraphenylphosphonium ion equilibration technique. We observe a membrane depolarization with binding of FcR ligands that is dependent on the degree of receptor crosslinking. Binding of the FcR by monovalent ligands is not sufficient to induce a significant drop in Δ Psi , but a sustained depolarization lasting ≈ 20 min occurs with insoluble multivalent ligands. This FcR-mediated depolarization can be inhibited by substitution of Na+ from the cell incubation medium with monovalent choline cation, indicating that depolarization is due to Na+ influx into the cell. The extracellular Ca2+ does not play a significant role in membrane depolarization. The depolarization response is not triggered by monoclonal antibodies directed against three other major macrophage surface antigens. The cell depolarization mediated by FcR ligands is followed by a prolonged hyperpolarization that can be partially blocked by ouabain and quinine, indicating that the hyperpolarization response is a result of a combination of a Na+, K+-ATPase activity and a Ca2+-activated K+ conductance. These data support our hypothesis that the mouse macrophage IgG FcR is a ligand-dependent ion channel.

  20. In vivo effector functions of high-affinity mouse IgG receptor FcγRI in disease and therapy models.

    PubMed

    Gillis, Caitlin M; Zenatti, Priscila P; Mancardi, David A; Beutier, Héloïse; Fiette, Laurence; Macdonald, Lynn E; Murphy, Andrew J; Celli, Susanna; Bousso, Philippe; Jönsson, Friederike; Bruhns, Pierre

    2016-10-10

    Two activating mouse IgG receptors (FcγRs) have the ability to bind monomeric IgG, the high-affinity mouse FcγRI and FcγRIV. Despite high circulating levels of IgG, reports using FcγRI(-/-) or FcγRIV(-/-) mice or FcγRIV-blocking antibodies implicate these receptors in IgG-induced disease severity or therapeutic Ab efficacy. From these studies, however, one cannot conclude on the effector capabilities of a given receptor, because different activating FcγRs possess redundant properties in vivo, and cooperation between FcγRs may occur, or priming phenomena. To help resolve these uncertainties, we used mice expressing only FcγRI to determine its intrinsic properties in vivo. FcγRI(only) mice were sensitive to IgG-induced autoimmune thrombocytopenia and anti-CD20 and anti-tumour immunotherapy, but resistant to IgG-induced autoimmune arthritis, anaphylaxis and airway inflammation. Our results show that the in vivo roles of FcγRI are more restricted than initially reported using FcγRI(-/-) mice, but confirm effector capabilities for this high-affinity IgG receptor in vivo.

  1. Immunoreceptor tyrosine-based activation motif (ITAM), a unique module linking antigen and Fc receptors to their signaling cascades.

    PubMed

    Isakov, N

    1997-01-01

    Signal transduction by the T cell and B cell antigen receptors and by receptors for a variety of immunoglobulins' Fc region is strictly dependent on a receptor subunit cytoplasmic module termed immunoreceptor tyrosine-based activation motif (ITAM). This module exists in one or more copies in each of the receptor-associated signal-transducing molecules and it possesses two repeats of the consensus sequence Tyr-X-X-Leu/Ile spaced by six to eight amino acids. Receptor engagement is followed by a rapid and transient phosphorylation of tyrosine residues within their ITAMs, thereby creating temporary binding sites for Src homology 2 (SH2)-containing signaling molecules operating downstream of the activated receptor. The purpose of this review is to discuss recent findings on the functional role of ITAMs in antigen and Fc receptor-mediated signal transduction, with a particular emphasis on kinases operating upstream and downstream of the ITAMs.

  2. Distribution of type I Fc epsilon-receptors on the surface of mast cells probed by fluorescence resonance energy transfer.

    PubMed Central

    Kubitscheck, U; Schweitzer-Stenner, R; Arndt-Jovin, D J; Jovin, T M; Pecht, I

    1993-01-01

    The aggregation state of type I Fc epsilon-receptors (Fc epsilon RI) on the surface of single living mast cells was investigated by resonance fluorescence energy transfer. Derivatization of Fc epsilon RI specific ligands, i.e., immunoglobulin E or Fab fragments of a Fc epsilon RI specific monoclonal antibody, with donor and acceptor fluorophores provided a means for measuring receptor clustering through energy transfer between the receptor probes. The efficiency of energy transfer between the ligands carrying distinct fluorophores was determined on single cells in a microscope by analyzing the photobleaching kinetics of the donor fluorophore in the presence and absence of receptor ligands labeled with acceptor fluorophores. To rationalize the energy transfer data, we developed a theoretical model describing the dependence of the energy transfer efficiency on the geometry of the fluorescently labeled macromolecular ligands and their aggregation state on the cell surface. To this end, the transfer process was numerically calculated first for one pair and then for an ensemble of Fc epsilon RI bound ligands on the cell surface. The model stipulates that the aggregation state of the Fc epsilon RI is governed by an attractive lipid-protein mediated interaction potential. The corresponding pair-distribution function characterizes the spatial distribution of the ensemble. Using this approach, the energy transfer efficiency of the ensemble was calculated for different degrees of receptor aggregation. Comparison of the theoretical modeling results with the experimental energy transfer data clearly suggests that the Fc epsilon RI are monovalent, randomly distributed plasma membrane proteins. The method provides a novel approach for determining the aggregation state of cell surface components. PMID:8431535

  3. Cross-species analysis of Fc engineered anti-Lewis-Y human IgG1 variants in human neonatal receptor transgenic mice reveal importance of S254 and Y436 in binding human neonatal Fc receptor

    PubMed Central

    Burvenich, Ingrid J. G.; Farrugia, William; Lee, Fook T.; Catimel, Bruno; Liu, Zhanqi; Makris, Dahna; Cao, Diana; O'Keefe, Graeme J.; Brechbiel, Martin W.; King, Dylan; Spirkoska, Violeta; Allan, Laura C.; Ramsland, Paul A.; Scott, Andrew M.

    2016-01-01

    ABSTRACT IgG has a long half-life through engagement of its Fc region with the neonatal Fc receptor (FcRn). The FcRn binding site on IgG1 has been shown to contain I253 and H310 in the CH2 domain and H435 in the CH3 domain. Altering the half-life of IgG has been pursued with the aim to prolong or reduce the half-life of therapeutic IgGs. More recent studies have shown that IgGs bind differently to mouse and human FcRn. In this study we characterize a set of hu3S193 IgG1 variants with mutations in the FcRn binding site. A double mutation in the binding site is necessary to abrogate binding to murine FcRn, whereas a single mutation in the FcRn binding site is sufficient to no longer detect binding to human FcRn and create hu3S193 IgG1 variants with a half-life similar to previously studied hu3S193 F(ab')2 (t1/2β, I253A, 12.23 h; H310A, 12.94; H435A, 12.57; F(ab')2, 12.6 h). Alanine substitutions in S254 in the CH2 domain and Y436 in the CH3 domain showed reduced binding in vitro to human FcRn and reduced elimination half-lives in huFcRn transgenic mice (t1/2β, S254A, 37.43 h; Y436A, 39.53 h; wild-type, 83.15 h). These variants had minimal effect on half-life in BALB/c nu/nu mice (t1/2β, S254A, 119.9 h; Y436A, 162.1 h; wild-type, 163.1 h). These results provide insight into the interaction of human Fc by human FcRn, and are important for antibody-based therapeutics with optimal pharmacokinetics for payload strategies used in the clinic. PMID:27030023

  4. DC subset-specific induction of T cell responses upon antigen uptake via Fcγ receptors in vivo.

    PubMed

    Lehmann, Christian H K; Baranska, Anna; Heidkamp, Gordon F; Heger, Lukas; Neubert, Kirsten; Lühr, Jennifer J; Hoffmann, Alana; Reimer, Katharina C; Brückner, Christin; Beck, Simone; Seeling, Michaela; Kießling, Melissa; Soulat, Didier; Krug, Anne B; Ravetch, Jeffrey V; Leusen, Jeanette H W; Nimmerjahn, Falk; Dudziak, Diana

    2017-04-07

    Dendritic cells (DCs) are efficient antigen-presenting cells equipped with various cell surface receptors for the direct or indirect recognition of pathogenic microorganisms. Interestingly, not much is known about the specific expression pattern and function of the individual activating and inhibitory Fcγ receptors (FcγRs) on splenic DC subsets in vivo and how they contribute to the initiation of T cell responses. By targeting antigens to select activating and the inhibitory FcγR in vivo, we show that antigen uptake under steady-state conditions results in a short-term expansion of antigen-specific T cells, whereas under inflammatory conditions especially, the activating FcγRIV is able to induce superior CD4(+) and CD8(+) T cell responses. Of note, this effect was independent of FcγR intrinsic activating signaling pathways. Moreover, despite the expression of FcγRIV on both conventional splenic DC subsets, the induction of CD8(+) T cell responses was largely dependent on CD11c(+)CD8(+) DCs, whereas CD11c(+)CD8(-) DCs were critical for priming CD4(+) T cell responses.

  5. Fcγ receptor antigen targeting potentiates cross-presentation by human blood and lymphoid tissue BDCA-3+ dendritic cells.

    PubMed

    Flinsenberg, Thijs W H; Compeer, Ewoud B; Koning, Dan; Klein, Mark; Amelung, Femke J; van Baarle, Debbie; Boelens, Jaap Jan; Boes, Marianne

    2012-12-20

    The reactivation of human cytomegalovirus (HCMV) poses a serious health threat to immune compromised individuals. As a treatment strategy, dendritic cell (DC) vaccination trials are ongoing. Recent work suggests that BDCA-3(+) (CD141(+)) subset DCs may be particularly effective in DC vaccination trials. BDCA-3(+) DCs had however been mostly characterized for their ability to cross-present antigen from necrotic cells. We here describe our study of human BDCA-3(+) DCs in elicitation of HCMV-specific CD8(+) T-cell clones. We show that Fcgamma-receptor (FcγR) antigen targeting facilitates antigen cross-presentation in several DC subsets, including BDCA-3(+) DCs. FcγR antigen targeting stimulates antigen uptake by BDCA-1(+) rather than BDCA-3(+) DCs. Conversely, BDCA-3(+) DCs and not BDCA-1(+) DCs show improved cross-presentation by FcγR targeting, as measured by induced release of IFNγ and TNF by antigen-specific CD8(+) T cells. FcγR-facilitated cross-presentation requires antigen processing in both an acidic endosomal compartment and by the proteasome, and did not induce substantial DC maturation. FcγRII is the most abundantly expressed FcγR on both BDCA-1(+) and BDCA-3(+) DCs. Furthermore we show that BDCA-3(+) DCs express relatively more stimulatory FcγRIIa than inhibitory FcγRIIb in comparison with BDCA-1(+) DCs. These studies support the exploration of FcγR antigen targeting to BDCA-3(+) DCs for human vaccination purposes.

  6. Fusion of the Fc part of human IgG1 to CD14 enhances its binding to gram-negative bacteria and mediates phagocytosis by Fc receptors of neutrophils.

    PubMed

    Vida, András; Bardoel, Bart; Milder, Fin; Majoros, László; Sümegi, Andrea; Bácsi, Attila; Vereb, György; van Kessel, Kok P M; van Strijp, Jos A G; Antal-Szalmás, Péter

    2012-08-30

    Microbial resistance to antimicrobial drugs is promoting a search for new antimicrobial agents that target highly conservative structures of pathogens. Human CD14 - a known pattern recognition receptor (PRR) which recognizes multiple ligands from different microbes might be a worthy candidate. The aim of our work was to create a CD14/Fc dimer protein and evaluate its whole bacteria binding and opsonizing capabilities. Fusion of CD14 with the fragment crystallisable (Fc) part of human IgG1 could not only lead to an artificial opsonin but the dimerization through the Fc part might also increase its affinity to different ligands. Human CD14 and the Fc part of human IgG1 was fused and expressed in HEK293 cells. A histidine tagged CD14 (CD14/His) was also expressed as control. Using flow cytometry we could prove that CD14/Fc bound to whole Gram-negative bacteria, especially to short lipopolysaccharide (Ra and Re) mutants, and weak interaction was observed between the fusion protein and Listeria monocytogenes. Other Gram-positive bacteria and fungi did not show any association with CD14/Fc. CD14/His showed about 50-times less potent binding to Gram-negative bacteria. CD14/Fc acted as an opsonin and enhanced phagocytosis of these bacteria by neutrophil granulocytes, monocyte-derived macrophages and dendritic cells. Internalization of bacteria was confirmed by trypan blue quenching and confocal microscopy. On neutrophils the Fc part of the fusion protein was recognized by Fc receptors (CD16, CD32), as determined by blocking experiments. CD14/Fc enhanced the killing of bacteria in an ex vivo whole blood assay. Our experiments confirm that PRR/Fc fusion proteins can give a boost to FcR dependent phagocytosis and killing provided the antimicrobial part binds efficiently to microbes.

  7. Visualization of G protein-coupled receptor (GPCR) interactions in living cells using bimolecular fluorescence complementation (BiFC).

    PubMed

    Vidi, Pierre-Alexandre; Przybyla, Julie A; Hu, Cheng-Deng; Watts, Val J

    2010-04-01

    Members of the G protein-coupled receptor (GPCR) superfamily have been shown to homo- and hetero-oligomerize both in vitro and in vivo. Although the functional and pharmacological significance of GPCR oligomerization is far from being completely understood, evidence suggests that, depending on the receptor, oligomerization may influence ligand binding, G protein coupling, and receptor targeting. Bimolecular fluorescence complementation (BiFC) is a technique based on the complementation of fragments from fluorescent proteins that allows the measurement and visualization of protein interactions in living cells. It can be extended to the simultaneous detection of distinct protein-protein interactions using a multicolor setup. This unit describes the application of BiFC and multicolor BiFC to the visualization of GPCR oligomerization in a neuronal cell model. Oligomerization of GPCR fusions to BiFC tags is visualized and measured using fluorescence microscopy and fluorometry. The effect of ligands on the relative formation of distinct oligomeric species is monitored with a ratiometric multicolor BiFC approach.

  8. Fc-receptors and immunity to malaria: from models to vaccines.

    PubMed

    Pleass, R J

    2009-09-01

    The complexity and number of antigens (Ags) seen during an immune response has hampered the development of malaria vaccines. Antibodies (Abs) play an important role in immunity to malaria and their passive administration is effective at controlling the disease. Abs represent approximately 25% of all proteins undergoing clinical trials, and these 'smart biologicals' have undergone a major revival with the realization that Abs lie at the interface between innate and adaptive immunity. At least 18 Abs have FDA approval for clinical use and approximately 150 are in clinical trials, the majority for the treatment of cancer, allograft rejection or autoimmune disease. Despite these triumphs none are in development for malaria, principally because they are perceived as being too expensive for a disease mainly afflicting poor and marginalized populations. Although unlikely, at least in the foreseeable future, that Ab-based prophylaxis will be made available to the millions of people at risk from malaria, they may be incorporated into current vaccine approaches, since Abs act as correlates of protection in studies aimed at defining the best Ags to include in vaccines. Abs may also form the basis for novel vaccination strategies by targeting Ags to appropriate antigen presenting cells. Therefore, to develop the most efficacious vaccines it will be necessary to fully understand which Abs and Fc-receptors (FcRs) are best engaged for a positive outcome.

  9. Rotational dynamics of type I Fc epsilon receptors on individually-selected rat mast cells studied by polarized fluorescence depletion.

    PubMed Central

    Rahman, N A; Pecht, I; Roess, D A; Barisas, B G

    1992-01-01

    We report the first application of polarized fluorescence depletion (PFD), a technique which combines the sensitivity of fluorescence detection with the long lifetimes of triplet probes, to the measurement of membrane protein rotational diffusion on individually selected, intact mammalian cells. We have examined the rotation of type I Fc epsilon receptors (Fc epsilon RI) on rat mucosal mast cells of the RBL-2H3 line in their resting monomeric and differently oligomerized states using as probes IgE and three monoclonal antibodies (mAbs; H10, J17, and F4) specific for the Fc epsilon RI. PFD experiments using eosin (EITC)-IgE show that individual Fc epsilon RI on cells have a rotational correlation time (RCT) at 4 degrees C of 79 +/- 4 microseconds. Similarly, Fc epsilon RI-bound EITC-Fab fragments of the J17 Fc epsilon RI-specific mAb exhibit an RCT of 76 +/- 6 microseconds. These values agree with previous measurements of Fc epsilon RI-bound IgE rotation by time-resolved phosphorescence anisotropy methods. Receptor-bound EITC-conjugated divalent J17 antibody exhibits an increased RCT of 140 +/- 6 microseconds. This is consistent with the ability of this mAb to form substantial amounts of Fc epsilon RI dimers on these cell surfaces. The ratio of limiting to initial anisotropy in these experiments remains constant at about 0.5 from 5 degrees C through 25 degrees C for IgE, Fab, and intact mAb receptor ligands. Extensive cross-linking by second antibody of cell-bound IgE, of intact Fc epsilon RI-specific mAbs or of their Fab fragments, however, produced large fixed anisotropies demonstrating, under these conditions, receptor immobilization in large aggregates. PFD using the mAbs H10 and F4 as receptor probes yielded values for triplet lifetimes, RCT values, and anisotropy parameters essentially indistinguishable from those obtained with the mAb J17 clone. Possible explanations for these observations are discussed. PMID:1547323

  10. Fc gamma receptor cross-linking activates p42, p38, and JNK/SAPK mitogen-activated protein kinases in murine macrophages: role for p42MAPK in Fc gamma receptor-stimulated TNF-alpha synthesis.

    PubMed

    Rose, D M; Winston, B W; Chan, E D; Riches, D W; Gerwins, P; Johnson, G L; Henson, P M

    1997-04-01

    Fc gamma R cross-linking on murine macrophages resulted in the activation of mitogen-activated protein kinase (MAPK) family members p42MAPK, p38, and c-Jun NH2-terminal kinase (JNK)/stress-activated protein kinase (SAPK). The temporal pattern of activation was distinct for each kinase. p42MAPK activation peaked at 5 min after receptor cross-linking, while peak p38 activity occurred 5 to 10 min later. Maximal JNK/SAPK activation occurred 20 min after Fc gamma R cross-linking. The selective MAPK/extracellular signal-regulated kinase-1 (MEK-1) inhibitor PD 098059 inhibited activation of p42MAPK induced by Fc gamma R cross-linking, but not p38 or JNK/SAPK activation. PD 098059 also inhibited the synthesis of TNF-alpha induced by Fc gamma R cross-linking (IC50 approximately 0.1 microM). Together, these results suggest that 1) the activation of MAPKs may play a role in Fc gammaR signal transduction, and 2) the activation of p42MAPK is necessary for Fc gamma R cross-linking-induced TNF-alpha synthesis.

  11. Fyn kinase controls Fc{epsilon}RI receptor-operated calcium entry necessary for full degranulation in mast cells

    SciTech Connect

    Sanchez-Miranda, Elizabeth; Ibarra-Sanchez, Alfredo; Gonzalez-Espinosa, Claudia

    2010-01-22

    IgE-antigen-dependent crosslinking of the high affinity IgE receptor (Fc{epsilon}RI) on mast cells leads to degranulation, leukotriene synthesis and cytokine production. Calcium (Ca{sup 2+}) mobilization is a sine qua non requisite for degranulation, allowing the rapid secretion of stored pro-inflammatory mediators responsible for allergy symptoms. Fyn is a Src-family kinase that positively controls Fc{epsilon}RI-induced mast cell degranulation. However, our understanding of the mechanism connecting Fyn activation to secretion of pre-synthesized mediators is very limited. We analyzed Fc{epsilon}RI-dependent Ca{sup 2+} mobilization in bone marrow-derived mast cells (BMMCs) differentiated from WT and Fyn -/- knock out mice. Fyn -/- BMMCs showed a marked defect in extracellular Ca{sup 2+} influx after Fc{epsilon}RI crosslinking but not after thapsigargin addition. High concentrations of Gadolinium (Gd{sup 3+}) partially blocked Fc{epsilon}RI-induced Ca{sup 2+} influx in WT cells but, in contrast, completely inhibited Ca{sup 2+} mobilization in Fyn -/- cells. Low concentrations of an inhibitor of the canonical transient receptor potential (TRPC) Ca{sup 2+} channels (2-aminoethoxyphenyl-borane, 2-APB) blocked Fc{epsilon}RI-induced maximal Ca{sup 2+} rise in WT but not in Fyn -/- cells. Ca{sup 2+} entry through Fyn-controlled, 2-APB sensitive channels was found to be important for full degranulation and IL-2 mRNA accumulation in WT cells. Immunoprecipitation assays showed that Fyn kinase interacts with TRPC 3/6/7 channels after IgE-antigen stimulation, but its association is not related to protein tyrosine phosphorylation. Results indicate Fyn kinase mediates the receptor-dependent activation of TRPC channels that contribute to degranulation in Fc{epsilon}RI-stimulated mast cells.

  12. Defect in the membrane expression of high affinity 72-kD Fc gamma receptors on phagocytic cells in four healthy subjects.

    PubMed Central

    Ceuppens, J L; Baroja, M L; Van Vaeck, F; Anderson, C L

    1988-01-01

    Three different receptors for the Fc portion of IgG (FcR) have been characterized on human leukocytes. We have identified four healthy members of one family, whose blood phagocytic cells lack functional 72 kD high-affinity FcRI. Their monocytes were unable to bind the Fc portion of mouse (m)-IgG2a and of monomeric human IgG, and they were unreactive with two anti-FcRI monoclonal antibodies. Thus, FcRI is either absent, expressed at very low density, or is so structurally altered as to be unable to bind both its ligand and the anti-FcRI antibodies. The failure to bind the Fc portion of mIgG2a underlies the previously reported inability of these monocytes to support T cell mitogenesis on OKT3 stimulation. FcRI was not inducible upon incubation of their monocytes or neutrophils in gamma interferon. However, their monocytes were able to bind aggregated human IgG, and to phagocytose IgG-coated particles in vitro. Both functions could be blocked with a monoclonal antibody to the 40-kD low-affinity FcRII and therefore apparently were mediated exclusively through FcRII. This also demonstrates that FcRII can mediate phagocytosis independently. Despite the FcRI defect, these subjects had no circulating immune complexes, no evidence of autoimmune pathology and no increased susceptibility to infections. PMID:2969920

  13. IgA and IgG antineutrophil cytoplasmic antibody engagement of Fc receptor genetic variants influences granulomatosis with polyangiitis.

    PubMed

    Kelley, James M; Monach, Paul A; Ji, Chuanyi; Zhou, Yebin; Wu, Jianming; Tanaka, Sumiaki; Mahr, Alfred D; Johnson, Sharleen; McAlear, Carol; Cuthbertson, David; Carette, Simon; Davis, John C; Dellaripa, Paul F; Hoffman, Gary S; Khalidi, Nader; Langford, Carol A; Seo, Phillip; St Clair, E William; Specks, Ulrich; Stone, John H; Spiera, Robert F; Ytterberg, Steven R; Merkel, Peter A; Edberg, Jeffrey C; Kimberly, Robert P

    2011-12-20

    Granulomatosis with polyangiitis (Wegener's) is a rare autoimmune neutrophil-mediated vasculitis that can cause renal disease and mucosal manifestations. Antineutrophil cytoplasmic antibodies (ANCA) are present in many patients, vary in level over time, and induce neutrophil activation through engagement with Fc receptors (FcRs). Given roles for FcRs in ANCA-mediated neutrophil activation and IgA antibodies in mucosal immunity, we hypothesized that FcR genetics and previously unappreciated IgA ANCA affect clinical presentation. We assembled a total of 673 patients and 413 controls from two multicenter cohorts, performed ELISA and immunofluorescence assays to determine IgA and IgG ANCA positivity, and used Illumina, TaqMan, or Pyrosequencing to genotype eight haplotype-tagging SNPs in the IgA FcR (FCAR) and to determine NA1/NA2 genotype of FCGR3B, the most prevalent neutrophil IgG FcR. We evaluated neutrophil activation by measuring degranulation marker CD11b with flow cytometry or neutrophil extracellcular trap formation with confocal microscopy. Functional polymorphisms in FCGR3B and FCAR differed between patient groups stratified by renal involvement. IgA ANCA were found in ∼30% of patients and were less common in patients with severe renal disease. Neutrophil stimulation by IgA or IgG ANCA led to degranulation and neutrophil extracellcular trap formation in a FcR allele-specific manner (IgA:FCAR P = 0.008; IgG:FCGR3B P = 0.003). When stimulated with IgA and IgG ANCA together, IgG ANCA induced neutrophil activation was reduced (P = 0.0001). FcR genotypes, IgA ANCA, and IgG ANCA are potential prognostic and therapeutic targets for understanding the pathogenesis and presentation of granulomatosis with polyangiitis (Wegener's).

  14. Interaction of Platelet Membrane Receptors with von Willebrand Factor, Ristocetin, and the Fc Region of Immunoglobulin G

    PubMed Central

    Moore, Anne; Ross, Gordon D.; Nachman, Ralph L.

    1978-01-01

    The agglutination of human platelets by ristocetin and von Willebrand factor was inhibited by aggregated immunoglobulin (Ig)G and by Fc fragments of IgG, but not by Fab, F(ab′)2 or pFc fragments of IgG. Because this inhibition occurred with formalin-fixed platelets as well as with normal platelets, a generalized aggregation of fluid membrane components by Fc fragments was not responsible for this inhibition of ristocetin and von Willebrand factor-induced agglutination. Reciprocal inhibition of platelet Fc receptors was produced by prior incubation of platelets with von Willebrand factor and ristocetin. Sucrose density gradient ultracentrifugation studies demonstrated that aggregated IgG did not form fluid-phase complexes with von Willebrand factor and ristocetin. Furthermore, passage of von Willebrand factor and ristocetin through a column of immobilized heat-aggregated IgG did not alter platelet agglutinating activity which indicates that aggregated IgG did not inactivate von Willebrand factor or ristocetin. Thus, it was likely that the IgG-mediated interference with platelet agglutination by ristocetin and von Willebrand factor did not occur in the fluid phase but at the platelet surface. These studies suggest that the platelet membrane Fc receptor may be either a part of, or sterically related to, the membrane glycoprotein I complex that interacts with von Willebrand factor, and that occupation of one of these surface components blocks the availability of the other. PMID:309473

  15. Dual role for Fcγ receptors in host defense and disease in Borrelia burgdorferi-infected mice.

    PubMed

    Belperron, Alexia A; Liu, Nengyin; Booth, Carmen J; Bockenstedt, Linda K

    2014-01-01

    Arthritis in mice infected with the Lyme disease spirochete, Borrelia burgdorferi, results from the influx of innate immune cells responding to the pathogen in the joint and is influenced in part by mouse genetics. Production of inflammatory cytokines by innate immune cells in vitro is largely mediated by Toll-like receptor (TLR) interaction with Borrelia lipoproteins, yet surprisingly mice deficient in TLR2 or the TLR signaling molecule MyD88 still develop arthritis comparable to that seen in wild type mice after B. burgdorferi infection. These findings suggest that other, MyD88-independent inflammatory pathways can contribute to arthritis expression. Clearance of B. burgdorferi is dependent on the production of specific antibody and phagocytosis of the organism. As Fc receptors (FcγR) are important for IgG-mediated clearance of immune complexes and opsonized particles by phagocytes, we examined the role that FcγR play in host defense and disease in B. burgdorferi-infected mice. B. burgdorferi-infected mice deficient in the Fc receptor common gamma chain (FcεRγ(-/-) mice) harbored ~10 fold more spirochetes than similarly infected wild type mice, and this was associated with a transient increase in arthritis severity. While the elevated pathogen burdens seen in B. burgdorferi-infected MyD88(-/-) mice were not affected by concomitant deficiency in FcγR, arthritis was reduced in FcεRγ(-/-) MyD88(-/-) mice in comparison to wild type or single knockout mice. Gene expression analysis from infected joints demonstrated that absence of both MyD88 and FcγR lowers mRNA levels of proteins involved in inflammation, including Cxcl1 (KC), Xcr1 (Gpr5), IL-1beta, and C reactive protein. Taken together, our results demonstrate a role for FcγR-mediated immunity in limiting pathogen burden and arthritis in mice during the acute phase of B. burgdorferi infection, and further suggest that this pathway contributes to the arthritis that develops in B. burgdorferi-infected MyD88

  16. The heavy chain of neonatal Fc receptor for IgG is sequestered in endoplasmic reticulum by forming oligomers in the absence of beta2-microglobulin association.

    PubMed Central

    Zhu, Xiaoping; Peng, Junmin; Raychowdhury, Raktima; Nakajima, Atsushi; Lencer, Wayne I; Blumberg, Richard S

    2002-01-01

    The heavy chain (HC) of the neonatal Fc receptor (FcRn) for IgG is non-convalently associated with beta(2)-microglobulin (beta(2)m). In beta(2)m(-/-) mice, FcRn functions are greatly impaired. We sought to determine how FcRn HC, particularly its structure and biogenesis, is affected by the absence of beta(2)m. Human FcRn HC, expressed from the beta(2)m-null cell line FO-1(FcRn), was present as a monomeric 45-kDa protein under reducing conditions but primarily as a 92-kDa oligomeric protein under non-reducing conditions. Two-dimensional electrophoresis and MS analysis showed that the 92-kDa protein was a dimer of the 45-kDa HC. Immunostaining showed that FcRn HC in FO-1(FcRn) was co-localized with the endoplasmic reticulum (ER) protein Bip/GRP78 but not with an endosome protein, EEA1. In contrast, FcRn HC in FO-1(FcRn+beta2m) was detected in both the ER and endosome. The dimeric HC in FcRn oligomers was free of beta(2)m association in FO-1(FcRn+beta2m). Mutation of non-paired cysteine residues at positions 48 and 251 within the human FcRn cDNA failed to eliminate the oligomers. The FcRn HC oligomers could be reduced by reconstitution of FO-1(FcRn) with beta(2)m or by balanced expression of FcRn HC with beta(2)m, or beta(2)m fused with a KDEL retention sequence. Similarly, the majority of FcRn HC isolated from neonatal beta(2)m(-/-) mice was in a dimeric form under non-reducing conditions. The amount of FcRn HC was significantly decreased in beta(2)m(-/-) mice and FO-1(FcRn). Furthermore, beta(2)m-free FcRn HC was sensitive to endoglycosidase digestion. These results indicate that FcRn HC alone can form disulphide-bonded oligomers in the ER, which may represent a misfolded protein. The beta(2)m association with FcRn HC is critical for correct folding of FcRn and exiting the ER for routing to endosomes and the cell surface. PMID:12162790

  17. Localization of the binding site on IgG for solubilized placental Fc gamma receptor.

    PubMed

    Matre, R; Tönder, O

    1984-01-01

    Placental Fc gamma R (FcR) inhibited the rosette formation between monocytes and rabbit IgG-sensitized erythrocytes (EA), whereas the rosette formation with granulocytes was not impaired. Staphylococcal protein A (SpA) inhibited the rosette formation with both cell types. Results obtained in absorption and agglutination experiments showed that SpA blocked the binding of FcR to IgG, and Cl did not. Furthermore, FcR did not interfere with the binding of SpA to IgG, whereas C1 affected this binding. FcR apparently bind to the C gamma 3 region. Since FcR inhibited the binding of EA to monocytes, the monocyte FcR binding site is probably also located within the C gamma 3 region.

  18. Mapping of the high affinity Fc epsilon receptor binding site to the third constant region domain of IgE.

    PubMed Central

    Nissim, A; Jouvin, M H; Eshhar, Z

    1991-01-01

    Identification of the precise region(s) on the IgE molecule that take part in the binding of IgE to its high affinity receptor (Fc epsilon RI) may lead to the design of IgE analogues able to block the allergic response. To localize the Fc epsilon RI-binding domain of mouse IgE, we attempted to confer on human IgE, which normally does not bind to the rodent receptor, the ability to bind to the rat Fc epsilon RI. Employing exon shuffling, we have expressed chimeric epsilon-heavy chain genes composed of a mouse (4-hydroxy-3-nitrophenyl)acetic acid (NP)-binding VH domain, and human C epsilon in which various domains were replaced by their murine counterparts. This has enabled us to test the Fc epsilon RI-binding of each mouse IgE domain while maintaining the overall conformation of the molecule. All of the chimeric IgE molecules which contain the murine C epsilon 3, bound equally to both the rodent and human receptor, as well as to monoclonal antibodies recognizing a site on IgE which is identical or very close to the Fc epsilon RI binding site. Deletion of the second constant region domain did not impair either the binding capacity of the mutated IgE or its ability to mediate mast cell degradation. These results assign the third epsilon domain of IgE as the principal region involved in the interaction with the Fc epsilon RI. Images PMID:1824934

  19. Charge heterogeneity: Basic antibody charge variants with increased binding to Fc receptors

    PubMed Central

    Hintersteiner, Beate; Lingg, Nico; Zhang, Peiqing; Woen, Susanto; Hoi, Kong Meng; Stranner, Stefan; Wiederkum, Susanne; Mutschlechner, Oliver; Schuster, Manfred; Loibner, Hans; Jungbauer, Alois

    2016-01-01

    ABSTRACT We identified active isoforms of the chimeric anti-GD2 antibody, ch14.18, a recombinant antibody produced in Chinese hamster ovary cells, which is already used in clinical trials.1,2,3 We separated the antibody by high resolution ion-exchange chromatography with linear pH gradient elution into acidic, main and basic charge variants on a preparative scale yielding enough material for an in-depth study of the sources and the effects of microheterogeneity. The binding affinity of the charge variants toward the antigen and various cell surface receptors was studied by Biacore. Effector functions were evaluated using cellular assays for antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity. Basic charge variants showed increased binding to cell surface receptor FcγRIIIa, which plays a major role in regulating effector functions. Furthermore, increased binding of the basic fractions to the neonatal receptor was observed. As this receptor mediates the prolonged half-life of IgG in human serum, this data may well hint at an increased serum half-life of these basic variants compared to their more acidic counterparts. Different glycoform patterns, C-terminal lysine clipping and N-terminal pyroglutamate formation were identified as the main structural sources for the observed isoform pattern. Potential differences in structural stability between individual charge variant fractions by nano differential scanning calorimetry could not been detected. Our in-vitro data suggests that the connection between microheterogeneity and the biological activity of recombinant antibody therapeutics deserves more attention than commonly accepted. PMID:27559765

  20. Fc gamma receptor IIb participates in maternal IgG trafficking of human placental endothelial cells

    PubMed Central

    ISHIKAWA, TOMOKO; TAKIZAWA, TAKAMI; IWAKI, JUN; MISHIMA, TAKUYA; UI-TEI, KUMIKO; TAKESHITA, TOSHIYUKI; MATSUBARA, SHIGEKI; TAKIZAWA, TOSHIHIRO

    2015-01-01

    The human placental transfer of maternal IgG is crucial for fetal and newborn immunity. Low-affinity immunoglobulin gamma Fc region receptor IIb2 (FCGR2B2 or FcγRIIb2) is exclusively expressed in an IgG-containing, vesicle-like organelle (the FCGR2B2 compartment) in human placental endothelial cells; thus, we hypothesized that the FCGR2B2 compartment functions as an IgG transporter. In this study, to examine this hypothesis, we performed in vitro bio-imaging analysis of IgG trafficking by FCGR2B2 compartments using human umbilical vein endothelial cells transfected with a plasmid vector containing enhanced GFP-tagged FCGR2B2 (pFCGR2B2-EGFP). FCGR2B2-EGFP signals were detected as intracellular vesicular structures similar to FCGR2B2 compartments in vivo. The internalization and transcytosis of IgG was significantly higher in the pFCGR2B2-EGFP-transfected cells than in the mock-transfected cells, and the majority of the internalized IgG was co-localized with the FCGR2B2-EGFP signals. Furthermore, we isolated FCGR2B2 compartments from the human placenta and found that the Rab family of proteins [RAS-related protein Rab family (RABs)] were associated with FCGR2B2 compartments. Among the RABs, RAB3D was expressed predominantly in placental endothelial cells. The downregulation of RAB3D by small interfering RNA (siRNA) resulted in a marked reduction in the FCGR2B2-EGFP signals at the cell periphery. Taken together, these findings suggest that FCGR2B2 compartments participate in the transcytosis of maternal IgG across the human placental endothelium and that RAB3D plays a role in regulating the intracellular dynamics of FCGR2B2 compartments. PMID:25778799

  1. Albumin-based nanoparticles as methylprednisolone carriers for targeted delivery towards the neonatal Fc receptor in glomerular podocytes

    PubMed Central

    Wu, Lin; Chen, Mingyu; Mao, Huijuan; Wang, Ningning; Zhang, Bo; Zhao, Xiufen; Qian, Jun; Xing, Changying

    2017-01-01

    Glucocorticoids (GCs) are commonly used in the treatment of nephrotic syndrome. However, high doses and long periods of GC therapy can result in severe side effects. The present study aimed to selectively deliver albumin-methylprednisolone (MP) nanoparticles towards glomerular podocytes, which highly express the specific neonatal Fc receptor (FcRn) of albumin. Bovine serum albumin (BSA) was labeled with a fluorescent dye and linked with modified MP via an amide bond. The outcome nanoparticle named BSA633-MP showed a uniform size with a diameter of approximately 10 nm and contained 12 drug molecules on average. The nanoconjugates were found to be stable at pH 7.4 and acid-sensitive at pH 4.0, with approximately 72% release of the MP drug after 48 h of incubation. The nanoparticle demonstrated a 36-fold uptake in receptor-specific cellular delivery in the FcRn-expressing human podocytes compared to the uptake in the non-FcRn-expressing control cells. Co-localization further confirmed that uptake of the nanoconjugates involved receptor-mediated endocytosis followed by lysosome associated transportation. In vitro cellular experiments indicated that the BSA633-MP ameliorated puromycin aminonucleoside-induced podocyte apoptosis. Moreover, in vivo fluorescence molecular imaging showed that BSA633-MP was mainly accumulated in the liver and kidney after intravenous dosing for 24 h. Collectively, this study may provide an approach for the effective and safe therapy of nephrotic syndrome. PMID:28259932

  2. Live SIV vaccine correlate of protection: immune complex-inhibitory Fc receptor interactions that reduce target cell availability

    PubMed Central

    Smith, Anthony J; Wietgrefe, Stephen W.; Shang, Liang; Reilly, Cavan S.; Southern, Peter J.; Perkey, Katherine E.; Duan, Lijie; Kohler, Heinz; Muller, Sybille; Robinson, James; Carlis, John V.; Li, Qingsheng; Johnson, R. Paul; Haase, Ashley T.

    2014-01-01

    Principles to guide design of an effective vaccine against HIV are greatly needed, particularly to protect women in the pandemic’s epicentre in Africa. We have been seeking these principles by identifying correlates of the robust protection associated with SIVmac239Δnef vaccination in the SIV-rhesus macaque animal model of HIV-1 transmission to women. We have identified one correlate of SIVmac239Δnef protection against vaginal challenge as a resident mucosal system for SIV-gp41 trimer antibody production and neonatal Fc receptor (FcRn)-mediated concentration of these antibodies on the path of virus entry to inhibit establishment of infected founder populations at the portal of entry. Here we identify as a second protection correlate, blocking CD4+ T cell recruitment to inhibit local expansion of infected founder populations. Virus-specific immune complex interactions with the inhibitory FcγRIIb receptor in the epithelium lining the cervix initiate expression of genes that block recruitment of target cells to fuel local expansion. Immune complex-FcγRIIb receptor interactions at mucosal frontlines to dampen the innate immune response to vaginal challenge could be a potentially general mechanism for the mucosal immune system to sense and modulate the response to a previously encountered pathogen. Designing vaccines to provide protection without eliciting these transmission-promoting innate responses could contribute to developing an effective HIV-1 vaccine. PMID:25143442

  3. Activating Fc gamma receptors participate in the development of autoimmune diabetes in NOD mice.

    PubMed

    Inoue, Yoshihiro; Kaifu, Tomonori; Sugahara-Tobinai, Akiko; Nakamura, Akira; Miyazaki, Jun-Ichi; Takai, Toshiyuki

    2007-07-15

    Type 1 diabetes mellitus (T1D) in humans is an organ-specific autoimmune disease in which pancreatic islet beta cells are ruptured by autoreactive T cells. NOD mice, the most commonly used animal model of T1D, show early infiltration of leukocytes in the islets (insulitis), resulting in islet destruction and diabetes later. NOD mice produce various islet beta cell-specific autoantibodies, although it remains a subject of debate regarding whether these autoantibodies contribute to the development of T1D. Fc gammaRs are multipotent molecules that play important roles in Ab-mediated regulatory as well as effector functions in autoimmune diseases. To investigate the possible role of Fc gammaRs in NOD mice, we generated several Fc gammaR-less NOD lines, namely FcR common gamma-chain (Fc Rgamma)-deficient (NOD.gamma(-/-)), Fc gammaRIII-deficient (NOD.III(-/-)), Fc gammaRIIB-deficient (NOD.IIB(-/-)), and both Fc Rgamma and Fc gammaRIIB-deficient NOD (NOD.null) mice. In this study, we show significant protection from diabetes in NOD.gamma(-/-), NOD.III(-/-), and NOD.null, but not in NOD.IIB(-/-) mice even with grossly comparable production of autoantibodies among them. Insulitis in NOD.gamma(-/-) mice was also alleviated. Adoptive transfer of bone marrow-derived dendritic cells or NK cells from NOD mice rendered NOD.gamma(-/-) animals more susceptible to diabetes, suggesting a possible scenario in which activating Fc gammaRs on dendritic cells enhance autoantigen presentation leading to the activation of autoreactive T cells, and Fc gammaRIII on NK cells trigger Ab-dependent effector functions and inflammation. These findings highlight the critical roles of activating Fc gammaRs in the development of T1D, and indicate that Fc gammaRs are novel targets for therapies for T1D.

  4. Site-selective conjugation of an anticoagulant aptamer to recombinant albumins and maintenance of neonatal Fc receptor binding.

    PubMed

    Schmøkel, Julie; Voldum, Anders; Tsakiridou, Georgia; Kuhlmann, Matthias; Cameron, Jason; Sørensen, Esben; Wengel, Jesper; Howard, Kenneth A

    2017-03-31

    Aptamers are an attractive molecular medicine that offers high target specificity. Nucleic acid-based aptamers however, are prone to nuclease degradation and rapid renal excretion that require blood circulatory half-life extension enabling technologies. The long circulatory half-life, predominately facilitated by engagement with the cellular recycling neonatal Fc receptor (FcRn), and ligand transport properties of albumin promote it as an attractive candidate to improve the pharmacokinetic profile of aptamers. This study investigates the effect of Cys34 site-selective covalent attachment of a factor IXa anticoagulant aptamer on aptamer functionality and FcRn engagement using recombinant human albumin (rHA) of either a wild type (WT) or an engineered human FcRn high binding variant (HB). Aptamer-albumin conjugates, connected covalently through a heterobifunctional succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate linker, were successfully prepared and purified by high performance liquid chromatography as confirmed by gel electrophoresis band-shift analysis and matrix-assisted laser desorption/ionization time of flight. Minimal reduction (~ 25%) in activity of WT-linked aptamer to that of aptamer alone was found using an anticoagulant activity assay measuring temporal levels of activated partial thrombin. Covalent aptamer-albumin conjugation, however, substantially compromised binding to FcRn, to 10% affinity of that of non-conjugated WT, determined by biolayer interferometry. Binding could be rescued by aptamer conjugation to recombinant albumin engineered for higher FcRn affinity (HB) that exhibited an 8-fold affinity compared to WT alone. This work describes a novel albumin-based aptamer delivery system whose FcRn binding can be increased using a high binding engineered albumin.

  5. A di-leucine motif mediates endocytosis and basolateral sorting of macrophage IgG Fc receptors in MDCK cells.

    PubMed Central

    Hunziker, W; Fumey, C

    1994-01-01

    An important function of the low affinity IgG Fc receptor FcRII-B2 (FcR) on macrophages is the internalization of soluble antigen-antibody complexes for lysosomal degradation. Most endocytic receptors possess tyrosine-containing cytoplasmic determinants required for endocytosis. In many proteins, signals which overlap with the endocytosis determinant and share the same critical tyrosine residue also mediate basolateral sorting in the trans-Golgi network of epithelial cells. Despite the presence of two tyrosine residues in the FcR cytosolic domain, neither one is absolutely required for coated pit localization or basolateral targeting. Nevertheless, a short domain of 13 residues containing one of the non-critical tyrosine residues mediates endocytosis and basolateral delivery. Alanine scan mutagenesis of this region now revealed a critical role of a leucine-leucine motif in both events. These findings suggest that endocytosis and basolateral sorting can be mediated by both tyrosine- and di-leucine-based signals and confirm the close relationship between the two determinants already observed for 'classical' tyrosine-dependent motifs. Images PMID:8039492

  6. Endothelial expression of Fc gamma receptor IIb in the full-term human placenta.

    PubMed

    Mishima, T; Kurasawa, G; Ishikawa, G; Mori, M; Kawahigashi, Y; Ishikawa, T; Luo, S-S; Takizawa, T; Goto, T; Matsubara, S; Takeshita, T; Robinson, J M; Takizawa, T

    2007-01-01

    In the third trimester, human placental endothelial cells express Fc gamma receptor IIb (FcgammaRIIb). This expression is unique because FcgammaRIIb is generally expressed on immune cells and is typically undetectable in adult endothelial cells. Recently, we found a novel FcgammaRIIb-defined, IgG-containing organelle in placental endothelial cells; this organelle may be a key structure for the transcytosis of IgG across the endothelial layer. In this study, we verify the expression of FcgammaRIIb in endothelial placenta cells and use reverse transcriptase-polymerase chain reaction (RT-PCR) and sequencing analyses to define the expressed FCGR2B mRNA transcript variant. We also investigated the distribution of FCGR2B mRNA and protein within the vascular tree of the full-term human placenta by RT-PCR and quantitative microscopy. The mRNA sequence of FCGR2B expressed specifically in placental endothelial cells is that of transcript variant 2. FcgammaRIIb expression and synthesis occur throughout the placental vascular tree but do not extend into the umbilical cord. This study provides additional information on FcgammaRIIb expression in the human placenta.

  7. An Fc receptor for human immunoglobulin G is located within the tegument of human cytomegalovirus.

    PubMed Central

    Stannard, L M; Hardie, D R

    1991-01-01

    Immunogold electron microscopy has demonstrated that human immunoglobulin G (IgG) can bind to the tegument of human cytomegalovirus virions by the Fc portion of the molecule. This binding was inhibited by preincubation of the Fc probes with protein A. Treatment of AD169 virions with Triton X-100 allowed release of the Fc-binding proteins, which were precipitated and characterized by polyacrylamide gel electrophoresis (PAGE). Polypeptides of approximately 69 and 33 kDa were recovered and shown by immunoblotting to retain their capacity to bind Fc-gold after separation under both reducing and nonreducing conditions. The combined results of blocking experiments, PAGE of precipitates, and Western blots (immunoblots) indicate that the tegument proteins which bind IgG-Fc are identical to those which bind beta 2 microglobulin. Images PMID:1851889

  8. Ligation of human Fc receptor like-2 by monoclonal antibodies down-regulates B-cell receptor-mediated signalling

    PubMed Central

    Shabani, Mahdi; Bayat, Ali Ahmad; Jeddi-Tehrani, Mahmood; Rabbani, Hodjatallah; Hojjat-Farsangi, Mohammad; Ulivieri, Cristina; Amirghofran, Zahra; Baldari, Cosima Tatiana; Shokri, Fazel

    2014-01-01

    B-cell antigen receptor (BCR) signalling and its regulation through negative and positive regulators are critical for balancing B-cell response and function. Human Fc receptor like-2 (FCRL2), a member of the newly identified FCRL family, could influence B-cell signalling due to possession of both immunoreceptor tyrosine-based activation and inhibitory motifs (ITAM and ITIM). Since the natural ligand of FCRL2 has not been identified, we generated FCRL2-specific monoclonal antibodies (mAbs) and employed them to investigate the influence of FCRL2 stimulation on BCR signalling in an FCRL2-expressing B-cell line. Two anti-FCRL2 mAb-producing hybridoma clones (5A7-E7 and 3D8-G8) were selected. None of the mAbs displayed any cross-reactivity with the other members of the FCRL family including recombinant FCRL1, -3, -4 and -5, as tested by FACS and ELISA techniques. Engagement of the FCRL2 by these mAbs resulted in significant inhibition of BCR signalling mediators such as calcium mobilization and phosphorylation of the mitogen-activated protein kinases Erk, p38 and Jnk. These findings indicate that the FCRL2 ITIM motifs are functional and the anti-FCRL2 mAbs may mimic the natural ligand of FCRL2 by induction of inhibitory signals in B cells. PMID:24797767

  9. Linkage on chromosome 3 of autoimmune diabetes and defective Fc receptor for lgG in NOD mice

    SciTech Connect

    Prins, J.B.; Todd, J.A.; Rodrigues, N.R.; Ghosh, S. ); Hogarth, P.M. ); Wicker, L.S.; Podolin, P.L.; Gaffney, E.; Peterson, L.B.; Fischer, P.A.; Sirotina, A. )

    1993-04-30

    A congenic, non-obese diabetic (NOD) mouse strain that contains a segment of chromosome 3 from the diabetes-resistant mouse strain B6.PL-Thy-1[sup a] was less susceptible to diabetes than NOD mice. A fully penetrant immunological defect also mapped to this segment, which encodes the high-affinity Fc receptor for immunoglobulin G (lgG), Fc[gamma]Rl. The NOD Fcgr1 allele, which results in a deletion of the cytoplasmic tail, caused a 73 percent reduction in the turnover of cell surface receptor-antibody complexes. The development of congenic strains and the characterization of Mendelian traits that are specific to the disease phenotype demonstrate the feasibility of dissecting the pathophysiology of complex, non-Mendelian diseases.

  10. Localization of the site of the murine IgG1 molecule that is involved in binding to the murine intestinal Fc receptor.

    PubMed

    Kim, J K; Tsen, M F; Ghetie, V; Ward, E S

    1994-10-01

    Site-directed mutagenesis of a recombinant Fc hinge fragment has recently been used to localize the site of the murine IgG1 molecule that is involved in the control of catabolism (the "catabolic site"). In the current study, the effects of these CH2 and CH3 domain mutations (Ile 253 to Ala 253, His 310 to Ala 310, Gln 311 to Asn 311, His 433 to Ala 433 and Asn 434 to Gln 434) on intestinal transfer of Fc hinge fragments in neonatal mice have been analyzed. Studies using direct transfer and competition assays demonstrate that the mutations affect the transmission from intestinal lumen into serum in a way that correlates closely with the effects of the mutations on pharmacokinetics. Binding studies of several of the Fc hinge fragments to isolated neonatal brush borders have been used to confirm the in vivo transmission data. These analyses have resulted in the localization of the binding site for the intestinal transfer receptor, FcRn, to specific residues of the murine Fc hinge fragment. These residues are located at the CH2-CH3 domain interface and overlap with both the catabolic site and staphylococcal protein A (SpA) binding site. The pH dependence of IgG1 or Fc fragment binding to FcRn is consistent with the localization of the FcRn interaction site to a region of the Fc that encompasses two histidine residues (His 310 and His 433). To assess whether one or two FcRn binding sites per Fc hinge are required for intestinal transfer, a hybrid Fc hinge fragment comprising a heterodimer of one Fc hinge with the wild-type IgG1 sequence and a mutant Fc hinge with a defective catabolic site (mutated at His 310, Gln 311, His 433 and Asn 434) has been analyzed in direct and competition transmission assays. The studies demonstrate that the Fc hybrid is transferred with significantly reduced efficiency compared to the wild type Fc hinge homodimer and indicate that the binding to FcRn, and possibly subsequent transfer, is enhanced by the presence of two FcRn binding sites per

  11. Macrophage Polarization Modulates FcγR- and CD13-Mediated Phagocytosis and Reactive Oxygen Species Production, Independently of Receptor Membrane Expression

    PubMed Central

    Mendoza-Coronel, Elizabeth; Ortega, Enrique

    2017-01-01

    In response to microenvironmental cues, macrophages undergo a profound phenotypic transformation acquiring distinct activation phenotypes ranging from pro-inflammatory (M1) to anti-inflammatory (M2). To study how activation phenotype influences phagocytosis and production of reactive oxygen species (ROS) mediated by receptors for IgG antibodies (Fcγ receptors) and by CD13, human monocyte-derived macrophages were polarized to distinct phenotypes using IFN-γ (Mϕ-IFN-γ), IL-4 (Mϕ-IL-4), or IL-10 (Mϕ-IL-10). Phenotypically, Mϕ-IFN-γ were characterized as CD14+CD80+CD86+ cells, Mϕ-IL-4 as CD209highCD206+CD11b+CD14low, and Mϕ-IL-10 as CD16+CD163+ cells. Compared to non-polarized macrophages, FcγRI expression increased in Mϕ-IFN-γ and Mϕ-IL-10 and FcγRIII expression increased in Mϕ-IL-10. None of the polarizing cytokines modified FcγRII or CD13 expression. Functionally, we found that cytokine-mediated activation significantly and distinctively affected FcγR- and CD13-mediated phagocytosis and ROS generation. Compared to non-polarized macrophages, FcγRI-, FcγRII-, and CD13-mediated phagocytosis was significantly increased in Mϕ-IL-10 and decreased in Mϕ-IFN-γ, although both cytokines significantly upregulated FcγRI expression. IL-10 also increased phagocytosis of Escherichia coli, showing that the effect of IL-10 on macrophage phagocytosis is not specific for a particular receptor. Interestingly, Mϕ-IL-4, which showed poor FcγR- and CD13-mediated phagocytosis, showed very high phagocytosis of E. coli and zymosan. Coupled with phagocytosis, macrophages produce ROS that contribute to microbial killing. As expected, Mϕ-IFN-γ showed significant production of ROS after FcγRI-, FcγRII-, or CD13-mediated phagocytosis. Unexpectedly, we found that Mϕ-IL-10 can also produce ROS after simultaneous stimulation through several phagocytic receptors, as coaggregation of FcγRI/FcγRII/CD13 induced a belated but significant ROS production. Together, these

  12. Expression of coxsackievirus and adenovirus receptor (CAR)-Fc fusion protein in Pichia pastoris and characterization of its anti-coxsackievirus activity.

    PubMed

    Zhang, Kebin; Yu, Hua; Xie, Wei; Xu, Zihui; Zhou, Shiwen; Huang, Chunji; Sheng, Halei; He, Xiaomei; Xiong, Junzhi; Qian, Guisheng

    2013-04-15

    Coxsackievirus and adenovirus receptors (CARs) are the common cellular receptors which mediate coxsackievirus or adenovirus infection. Receptor trap therapy, which uses soluble viral receptors to block the attachment and internalization of virus, has been developed for the inhibition of virus infection. In this study, we have constructed a pPIC3.5K/CAR-Fc expression plasmid for the economical and scale-up production of CAR-Fc fusion protein in Pichia pastoris. The coding sequence of the fusion protein was optimized according to the host codon usage bias. The amount of the CAR-Fc protein to total cell protein was up to 10% by 1% methanol induction for 96h and the purity was up to 96% after protein purification. Next, the virus pull-down assay demonstrated the binding activity of the CAR-Fc to coxsackievirus. The analyses of MTT assay, immunofluorescence staining and quantitative real-time PCR after virus neutralization assay revealed that CAR-Fc could significantly block coxsackievirus B3 infection in vitro. In coxsackievirus B3 infected mouse models, CAR-Fc treatment reduced mortality, myocardial edema, viral loads and inflammation, suggesting the significant virus blocking effect in vivo. Our results indicated that the P. pastoris expression system could be used to produce large quantities of bioactive CAR-Fc for further clinical purpose.

  13. Neonatal Fc receptor stimulation induces ubiquitin c-terminal hydrolase-1 overexpression in podocytes through activation of p38 mitogen-activated protein kinase.

    PubMed

    Gan, Hualei; Feng, Songtao; Wu, Huijuan; Sun, Yu; Hu, Ruimin; Zhao, Zhonghua; Zhang, Zhigang

    2012-09-01

    Ubiquitin c-terminal hydrolase-1 is overexpressed in renal podocytes in some immune complex-mediated glomerulonephritides, an effect closely related to extensive podocyte injury. Neonatal Fc receptor is newly recognized to be present on human renal podocytes. It is presumed that neonatal Fc receptor serves as a sensor for immune stimulation transduction and is involved in the pathogenesis of podocyte injury. In our current study, we found that neonatal Fc receptor was constitutively expressed in normal podocytes and up-regulated by immune stimulation induced by antithymocyte serum. An increase in neonatal Fc receptor expression was observed in human podocytes within diseased glomeruli in 97 cases of various glomerulonephritides. The expression percentage was significantly higher in immune-mediated disease, including membranous nephropathy (46.7%), immunoglobin A nephropathy (66.7%), lupus nephritis (87.5%), and acute proliferative glomerulonephritis (100%), than in normal kidney samples (16.7%) (P < .05), whereas there was no significant difference between minimal-change disease and normal kidney. Further study showed that neonatal Fc receptor up-regulated the expression of ubiquitin c-terminal hydrolase-1 via activation of p38 in podocytes subjected to immune stimulation in vitro. These data suggest that neonatal Fc receptor acts as an immune sensor that evokes an inflammatory response, which may lead to functional and morphological changes in podocytes in glomerulonephritides.

  14. Live simian immunodeficiency virus vaccine correlate of protection: immune complex-inhibitory Fc receptor interactions that reduce target cell availability.

    PubMed

    Smith, Anthony J; Wietgrefe, Stephen W; Shang, Liang; Reilly, Cavan S; Southern, Peter J; Perkey, Katherine E; Duan, Lijie; Kohler, Heinz; Müller, Sybille; Robinson, James; Carlis, John V; Li, Qingsheng; Johnson, R Paul; Haase, Ashley T

    2014-09-15

    Principles to guide design of an effective vaccine against HIV are greatly needed, particularly to protect women in the pandemic's epicenter in Africa. We have been seeking these principles by identifying correlates of the robust protection associated with SIVmac239Δnef vaccination in the SIV-rhesus macaque animal model of HIV-1 transmission to women. We identified one correlate of SIVmac239Δnef protection against vaginal challenge as a resident mucosal system for SIV-gp41 trimer Ab production and neonatal FcR-mediated concentration of these Abs on the path of virus entry to inhibit establishment of infected founder populations at the portal of entry. In this study, we identify blocking CD4(+) T cell recruitment to thereby inhibit local expansion of infected founder populations as a second correlate of protection. Virus-specific immune complex interactions with the inhibitory FcγRIIb receptor in the epithelium lining the cervix initiate expression of genes that block recruitment of target cells to fuel local expansion. Immune complex-FcγRIIb receptor interactions at mucosal frontlines to dampen the innate immune response to vaginal challenge could be a potentially general mechanism for the mucosal immune system to sense and modulate the response to a previously encountered pathogen. Designing vaccines to provide protection without eliciting these transmission-promoting innate responses could contribute to developing an effective HIV-1 vaccine.

  15. Binding of IgG-opsonized particles to Fc gamma R is an active stage of phagocytosis that involves receptor clustering and phosphorylation.

    PubMed

    Sobota, Andrzej; Strzelecka-Kiliszek, Agnieszka; Gładkowska, Ewelina; Yoshida, Kiyotsugu; Mrozińska, Kazimiera; Kwiatkowska, Katarzyna

    2005-10-01

    Fc gammaR mediate the phagocytosis of IgG-coated particles and the clearance of IgG immune complexes. By dissecting binding from internalization of the particles, we found that the binding stage, rather than particle internalization, triggered tyrosine phosphorylation of Fc gammaR and accompanying proteins. High amounts of Lyn kinase were found to associate with particles isolated at the binding stage from J774 cells. PP2 (4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine), an Src kinase inhibitor, but not piceatannol, an inhibitor of Syk kinase, reduced the amount of Lyn associated with the bound particles and simultaneously diminished the binding of IgG-coated particles. Studies of baby hamster kidney cells transfected with wild-type and mutant Fc gammaRIIA revealed that the ability of the receptor to bind particles was significantly reduced when phosphorylation of the receptor was abrogated by Y298F substitution in the receptor signaling motif. Under these conditions, binding of immune complexes of aggregated IgG was depressed to a lesser extent. A similar effect was exerted on the binding ability of wild-type Fc gammaRIIA by PP2. Moreover, expression of mutant kinase-inactive Lyn K275R inhibited both Fc gammaRIIA phosphorylation and IgG-opsonized particle binding. To gain insight into the mechanism by which protein tyrosine phosphorylation can control Fc gammaR-mediated binding, we investigated the efficiency of clustering of wild-type and Y298F-substituted Fc gammaRIIA upon binding of immune complexes. We found that a lack of Fc gammaRIIA phosphorylation led to an impairment of receptor clustering. The results indicate that phosphorylation of Fc gammaR and accompanying proteins, dependent on Src kinase activity, facilitates the clustering of activated receptors that is required for efficient particle binding.

  16. Human eosinophils express the high affinity IgE receptor, FcεRI, in bullous pemphigoid.

    PubMed

    Messingham, Kelly N; Holahan, Heather M; Frydman, Alexandra S; Fullenkamp, Colleen; Srikantha, Rupasree; Fairley, Janet A

    2014-01-01

    Bullous pemphigoid (BP) is an autoimmune blistering disease mediated by autoantibodies targeting BP180 (type XVII collagen). Patient sera and tissues typically have IgG and IgE autoantibodies and elevated eosinophil numbers. Although the pathogenicity of the IgE autoantibodies is established in BP, their contribution to the disease process is not well understood. Our aims were two-fold: 1) To establish the clinical relationships between total and BP180-specific IgE, eosinophilia and other markers of disease activity; and 2) To determine if eosinophils from BP patients express the high affinity IgE receptor, FcεRI, as a potential mechanism of action for IgE in BP. Our analysis of 48 untreated BP patients revealed a correlation between BP180 IgG and both BP180 IgE and peripheral eosinophil count. Additionally, we established a correlation between total IgE concentration and both BP180 IgE levels and eosinophil count. When only sera from patients (n = 16) with total IgE ≥ 400 IU/ml were analyzed, BP180 IgG levels correlated with disease severity, BP230 IgG, total circulating IgE and BP180 IgE. Finally, peripheral eosinophil count correlated more strongly with levels of BP180 IgE then with BP180 IgG. Next, eosinophil FcεRI expression was investigated in the blood and skin using several methods. Peripheral eosinophils from BP patients expressed mRNA for all three chains (α, β and γ) of the FcεRI. Surface expression of the FcεRIα was confirmed on both peripheral and tissue eosinophils from most BP patients by immunostaining. Furthermore, using a proximity ligation assay, interaction of the α- and β-chains of the FcεRI was observed in some biopsy specimens, suggesting tissue expression of the trimeric receptor form in some patients. These studies provide clinical support for the relevance of IgE in BP disease and provide one mechanism of action of these antibodies, via binding to the FcεRI on eosinophils.

  17. Increased expression of the IgE Fc receptors on rat macrophages induced by elevated serum IgE levels.

    PubMed Central

    Boltz-Nitulescu, G; Plummer, J M; Spiegelberg, H L

    1984-01-01

    Macrophages (M phi) from rats with elevated serum IgE levels induced by (i) Nippostrongylus brasiliensis (Nb) infection, (ii) IgE-secreting plasmacytoma IR 162, or (iii) i.p. injection of purified rat IgE, and M phi from normal animals cultured in the presence of 10 micrograms/ml IgE were analysed for Fc IgE receptors (Fc epsilon R) expression. To detect Fc epsilon R-bearing cells, a rosette assay employing fixed ox erythrocytes coated with rat IgE was used. With undersensitized indicator cells a significantly (P less than 0.002) greater number of M phi from animals having elevated serum IgE levels or of M phi cultured in the presence of IgE formed IgE rosettes than M phi from normal donors. The IgE rosettes were IgE class-specific, since they were inhibited by rat IgE in a dose-dependent manner, but not by any other rat Ig class, heat-denatured rat IgE or human IgE. The modulating effect of Fc epsilon R expression on M phi was IgE specific, because neither rat IgG nor heated rat IgE induced increased IgE rosette formation. Furthermore, elevated serum IgE levels did not increase the expression of Fc receptors for IgG subclasses. Studies of 125I-IgE binding showed that alveolar macrophages (AM phi) from Nb-infected rats bind IgE with similar affinity (Ka 1.1 X 10(7) M-1) as AM phi from normal animals, but they have increased numbers of IgE binding sites. Collectively, the results demonstrate that in vivo and in vitro elevated serum IgE concentrations induce increased IgE rosette formation as a result of a marked increase in the number of Fc epsilon R per macrophage. PMID:6236146

  18. Fcγ Receptor-induced Soluble Vascular Endothelial Growth Factor Receptor-1 (VEGFR-1) Production Inhibits Angiogenesis and Enhances Efficacy of Anti-tumor Antibodies*

    PubMed Central

    Justiniano, Steven E.; Elavazhagan, Saranya; Fatehchand, Kavin; Shah, Prexy; Mehta, Payal; Roda, Julie M.; Mo, Xiaokui; Cheney, Carolyn; Hertlein, Erin; Eubank, Timothy D.; Marsh, Clay; Muthusamy, Natarajan; Butchar, Jonathan P.; Byrd, John C.; Tridandapani, Susheela

    2013-01-01

    Monocytes/macrophages are potent mediators of antitumor antibody therapy, where they engage target cells via Fcγ receptors (FcγR). Binding of these cells to opsonized tumor targets elicits cytokine production, phagocytosis, and antibody-mediated cellular cytotoxicity. Here we show for the first time that activation of monocyte FcγR results in the secretion of soluble vascular endothelial growth factor receptor-1 (VEGFR-1/sFlt-1), which serves to antagonize VEGF-mediated angiogenesis and tumor growth. Consistent with this, using a murine solid tumor model of antibody therapy, we show that sFlt-1 is involved in restricting tumor growth. Analyzing the mechanism of induction of sFlt-1, we found that the Erk and PI3K pathways were required for transcription, and NF-κB was required for translation. Upon closer examination of the role of NF-κB, we found that a microRNA, miR181a, negatively regulates FcγR-mediated sFlt-1 production and that NF-κB serves to antagonize this microRNA. Taken together, these results demonstrate a novel and biologically important function of monocytes and macrophages during antibody therapy. PMID:23902770

  19. Fcγ receptor-induced soluble vascular endothelial growth factor receptor-1 (VEGFR-1) production inhibits angiogenesis and enhances efficacy of anti-tumor antibodies.

    PubMed

    Justiniano, Steven E; Elavazhagan, Saranya; Fatehchand, Kavin; Shah, Prexy; Mehta, Payal; Roda, Julie M; Mo, Xiaokui; Cheney, Carolyn; Hertlein, Erin; Eubank, Timothy D; Marsh, Clay; Muthusamy, Natarajan; Butchar, Jonathan P; Byrd, John C; Tridandapani, Susheela

    2013-09-13

    Monocytes/macrophages are potent mediators of antitumor antibody therapy, where they engage target cells via Fcγ receptors (FcγR). Binding of these cells to opsonized tumor targets elicits cytokine production, phagocytosis, and antibody-mediated cellular cytotoxicity. Here we show for the first time that activation of monocyte FcγR results in the secretion of soluble vascular endothelial growth factor receptor-1 (VEGFR-1/sFlt-1), which serves to antagonize VEGF-mediated angiogenesis and tumor growth. Consistent with this, using a murine solid tumor model of antibody therapy, we show that sFlt-1 is involved in restricting tumor growth. Analyzing the mechanism of induction of sFlt-1, we found that the Erk and PI3K pathways were required for transcription, and NF-κB was required for translation. Upon closer examination of the role of NF-κB, we found that a microRNA, miR181a, negatively regulates FcγR-mediated sFlt-1 production and that NF-κB serves to antagonize this microRNA. Taken together, these results demonstrate a novel and biologically important function of monocytes and macrophages during antibody therapy.

  20. Fc Gamma Receptor 3A Polymorphism and Risk for HIV-Associated Cryptococcal Disease

    PubMed Central

    Rohatgi, Soma; Gohil, Shruti; Kuniholm, Mark H.; Schultz, Hannah; Dufaud, Chad; Armour, Kathryn L.; Badri, Sheila; Mailliard, Robbie B.; Pirofski, Liise-anne

    2013-01-01

    ABSTRACT Cryptococcus neoformans is one of the most common causes of fungal disease in HIV-infected persons, but not all of those who are infected develop cryptococcal disease (CD). Although CD4+ T cell deficiency is a risk factor for HIV-associated CD, polymorphisms of phagocytic Fc gamma receptors (FCGRs) have been linked to CD risk in HIV-uninfected persons. To investigate associations between FCGR2A 131 H/R and FCGR3A 158 F/V polymorphisms and CD risk in HIV-infected persons, we performed PCR-based genotyping on banked samples from 164 men enrolled in the Multicenter AIDS Cohort Study (MACS): 55 who were HIV infected and developed CD and a matched control group of 54 who were HIV infected and 55 who were HIV uninfected. Using additive and allelic statistical models for analysis, the high-affinity FCGR3A 158V allele was significantly associated with CD status after adjusting for race/ethnicity (odds ratio [OR], 2.1; P = 0.005), as was the FCGR3A 158 VV homozygous genotype after adjusting for race/ethnicity, rate of CD4+ T cell decline, and nadir CD4+ T cell count (OR, 21; P = 0.005). No associations between CD and FCGR2A 131 H/R polymorphism were identified. In binding studies, human IgG (hIgG)-C. neoformans complexes exhibited more binding to CHO-K1 cells expressing FCGR3A 158V than to those expressing FCGR3A 158F, and in cytotoxicity assays, natural killer (NK) cells expressing FCGR3A 158V induced more C. neoformans-infected monocyte cytotoxicity than those expressing FCGR3A 158F. Together, these results show an association between the FCGR3A 158V allele and risk for HIV-associated CD and suggest that this polymorphism could promote C. neoformans pathogenesis via increased binding of C. neoformans immune complexes, resulting in increased phagocyte cargo and/or immune activation. PMID:23982074

  1. Disease activity in systemic lupus erythematosus is associated with an altered expression of low-affinity Fcγ receptors and costimulatory molecules on dendritic cells

    PubMed Central

    Carreño, Leandro J; Pacheco, Rodrigo; Gutierrez, Miguel A; Jacobelli, Sergio; Kalergis, Alexis M

    2009-01-01

    Dendritic cells (DCs) play a pivotal role in the interface between immunity and maintenance of peripheral tolerance. The capture of immunoglobulin G (IgG)-containing immune complexes (ICs) by low-affinity Fcγ receptors (FcγRs) expressed on DCs may influence the immunogenicity/tolerogenicity of these cells, depending on the activating/inhibitory potential of FcγRs. Because of the key role that low-affinity FcγRs play in determining the magnitude of the response in IC-driven inflammation, these receptors are likely to play a role in autoimmune diseases, such as systemic lupus erythematosus (SLE). To evaluate if an altered expression of costimulatory molecules and/or FcγRs could account for disease severity, we evaluated the expression of these molecules on immature and mature DCs derived from peripheral blood monocytes of SLE patients and healthy donors. Our results show an increased expression of the costimulatory molecules CD40 and CD86. Furthermore, the ratio of CD86/CD80 is higher in SLE patients compared with healthy donors. Conversely, while the expression of activating FcγRs was higher on DCs from SLE patients, expression of inhibitory FcγRs was lower, compared with DCs obtained from healthy donors. As a result, the activating to inhibitory FcγR ratio was significantly higher in DCs from SLE patients. The altered ratio of activating/inhibitory FcγRs on mature DCs showed a significant correlation with the activity of SLE, as determined by the SLE Disease Activity Index (SLEDAI) score. We postulate that the increased ratio of activating/inhibitory FcγRs expressed on DCs from SLE patients can contribute to the failure of peripheral tolerance in the IC-mediated phase of autoimmune pathogenesis. PMID:20067533

  2. Nociceptive neuronal Fc-gamma receptor I is involved in IgG immune complex induced pain in the rat.

    PubMed

    Jiang, Haowu; Shen, Xinhua; Chen, Zhiyong; Liu, Fan; Wang, Tao; Xie, Yikuan; Ma, Chao

    2017-03-02

    Antigen-specific immune diseases such as rheumatoid arthritis are often accompanied by pain and hyperalgesia. Our previous studies have demonstrated that Fc-gamma-receptor type I (FcγRI) is expressed in a subpopulation of rat dorsal root ganglion (DRG) neurons and can be directly activated by IgG immune complex (IgG-IC). In this study we investigated whether neuronal FcγRI contributes to antigen-specific pain in the naïve and rheumatoid arthritis model rats. In vitro calcium imaging and whole-cell patch clamp recordings in dissociated DRG neurons revealed that only the small-, but not medium- or large-sized DRG neurons responded to IgG-IC. Accordingly, in vivo electrophysiological recordings showed that intradermal injection of IgG-IC into the peripheral receptive field could sensitize only the C- (but not A-) type sensory neurons and evoke action potential discharges. Pain-related behavioral tests showed that intradermal injection of IgG-IC dose-dependently produced mechanical and thermal hyperalgesia in the hindpaw of rats. These behavioral effects could be alleviated by localized administration of non-specific IgG or an FcγRI antibody, but not by mast cell stabilizer or histamine antagonist. In a rat model of antigen-induced arthritis (AIA) produced by methylated bovine serum albumin, FcγRI were found upregulated exclusively in the small-sized DRG neurons. In vitro calcium imaging revealed that significantly more small-sized DRG neurons responded to IgG-IC in the AIA rats, although there was no significant difference between the AIA and control rats in the magnitude of calcium changes in the DRG neurons. Moreover, in vivo electrophysiological recordings showed that C-nociceptive neurons in the AIA rats exhibited a greater incidence of action potential discharges and stronger responses to mechanical stimuli after IgG-IC was injected to the receptive fields. These results suggest that FcγRI expressed in the peripheral nociceptors might be directly activated

  3. Immunoglobulin Fc gamma receptor promotes immunoglobulin uptake, immunoglobulin-mediated calcium increase, and neurotransmitter release in motor neurons

    NASA Technical Reports Server (NTRS)

    Mohamed, Habib A.; Mosier, Dennis R.; Zou, Ling L.; Siklos, Laszlo; Alexianu, Maria E.; Engelhardt, Jozsef I.; Beers, David R.; Le, Wei-dong; Appel, Stanley H.

    2002-01-01

    Receptors for the Fc portion of immunoglobulin G (IgG; FcgammaRs) facilitate IgG uptake by effector cells as well as cellular responses initiated by IgG binding. In earlier studies, we demonstrated that amyotrophic lateral sclerosis (ALS) patient IgG can be taken up by motor neuron terminals and transported retrogradely to the cell body and can alter the function of neuromuscular synapses, such as increasing intracellular calcium and spontaneous transmitter release from motor axon terminals after passive transfer. In the present study, we examined whether FcgammaR-mediated processes can contribute to these effects of ALS patient immunoglobulins. F(ab')(2) fragments (which lack the Fc portion) of ALS patient IgG were not taken up by motor axon terminals and were not retrogradely transported. Furthermore, in a genetically modified mouse lacking the gamma subunit of the FcR, the uptake of whole ALS IgG and its ability to enhance intracellular calcium and acetylcholine release were markedly attenuated. These data suggest that FcgammaRs appear to participate in IgG uptake into motor neurons as well as IgG-mediated increases in intracellular calcium and acetylcholine release from motor axon terminals. Copyright 2002 Wiley-Liss, Inc.

  4. Evidence for immunoglobulin Fc receptor-mediated prostaglandin2 and platelet-activating factor formation by cultured rat mesangial cells

    SciTech Connect

    Neuwirth, R.; Singhal, P.; Diamond, B.; Hays, R.M.; Lobmeyer, L.; Clay, K.; Schlondorff, D.

    1988-09-01

    The possibility of Fc-dependent uptake of IgG immune complexes was examined in subcultured rat mesangial cells free of monocytes. 195Au-labeled colloidal gold particles were coated either with BSA only or with BSA followed by rabbit anti-BSA-IgG or the F(ab')2 fragment of the IgG. Mesangial cells preferentially took up 195Au particles covered with BSA-anti-BSA-IgG over those covered with BSA or the F(ab')2 fragment. This uptake was a time-dependent and saturable process inhibitable by sodium azide or cytochalasin B. Using phase-contrast microscopy in the light reflectance mode, it was established that essentially all mesangial cells took up IgG-coated gold particles. By electron microscopy the process was shown to consist of vesicular uptake with delivery to endosomes. Mesangial binding-uptake of the IgG-covered particles was associated with stimulation of PGE2 synthesis and production of platelet-activating factor, a lipid mediator of inflammation. To characterize the potential Fc receptor for IgG we used the rosetting technique with sheep red blood cells coated with IgG subclass-specific mouse monoclonal antibodies. 50% of mesangial cells exhibited rosetting with red cells coated with mouse IgG2a, whereas negligible rosetting was observed with IgG2b or IgG1. Competition experiments confirmed the specificity of IgG2a binding. We conclude that cultured rat mesangial cells exhibit specific receptors for IgG and that occupancy of Fc receptors results in endocytosis and is associated with generation of PGE2 and platelet-activating factor. These observations may be of significance for immune-mediated glomerular diseases.

  5. Phagocytosis via Complement or Fc-Gamma Receptors Is Compromised in Monocytes from Type 2 Diabetes Patients with Chronic Hyperglycemia

    PubMed Central

    Restrepo, Blanca I.; Twahirwa, Marcel; Rahbar, Mohammad H.; Schlesinger, Larry S.

    2014-01-01

    Type 2 diabetes patients (DM2) have a higher risk of tuberculosis (TB) that may be attributed to functional defects in their mononuclear phagocytes given the critical role of these cells in Mycobacterium tuberculosis containment. Our previous findings suggest that monocytes from DM2 have reduced association with serum-opsonized M. tuberculosis. To determine if this alteration is due to defects in phagocytosis via complement or Fc-gamma receptors (FcγRs), in this study we evaluated the uptake of sheep red blood cells coated with IgG or complement, respectively, by monocytes from individuals with and without DM2. We found that chronic hyperglycemia was significantly associated with reduced phagocytosis via either receptor by univariable and multivariable analyses. This defect was independent of host serum opsonins and flow cytometry data indicated this was not attributed to reduced expression of these phagocytic receptors on DM2 monocytes. The positive correlation between both pathways (R = 0.64; p = 0.003) indicate that monocytes from individuals with chronic hyperglycemia have a defect in the two predominant phagocytic pathways of these cells. Given that phagocytosis is linked to activation of effector mechanisms for bacterial killing, it is likely that this defect is one factor contributing to the higher susceptibility of DM2 patients to pathogens like M. tuberculosis. PMID:24671137

  6. pH6 antigen (PsaA protein) of Yersinia pestis, a novel bacterial Fc-receptor.

    PubMed

    Zav'yalov, V P; Abramov, V M; Cherepanov, P G; Spirina, G V; Chernovskaya, T V; Vasiliev, A M; Zav'yalova, G A

    1996-05-01

    It was found that recombinant pH6 antigen (rPsaA protein) forming virulence-associated fimbriae on the surface of Yersinia pestis at pH 6.7 in host macrophage phagolysosomes or extracellularly in abscesses such as buboes, is a novel bacterial Fc-receptor. rPsaA protein displays reactivity with human IgG1, IgG2 and IgG3 subclasses but does not react with rabbit, mouse and sheep IgG.

  7. Differential interaction of Crkl with Cbl or C3G, Hef-1, and gamma subunit immunoreceptor tyrosine-based activation motif in signaling of myeloid high affinity Fc receptor for IgG (Fc gamma RI).

    PubMed

    Kyono, W T; de Jong, R; Park, R K; Liu, Y; Heisterkamp, N; Groffen, J; Durden, D L

    1998-11-15

    Cbl-Crkl and Crkl-C3G interactions have been implicated in T cell and B cell receptor signaling and in the regulation of the small GTPase, Rap1. Recent evidence suggests that Rap1 plays a prominent role in the regulation of immunoreceptor tyrosine-based activation motif (ITAM) signaling. To gain insight into the role of Crkl in myeloid ITAM signaling, we investigated Cbl-Crkl and Crkl-C3G interactions following Fc gamma RI aggregation in U937IF cells. Fc gamma RI cross-linking of U937IF cells results in the tyrosine phosphorylation of Cbl, Crkl, and Hef-1, an increase in the association of Crkl with Cbl via direct SH2 domain interaction and increased Crkl-Hef-1 binding. Crkl constitutively binds to the guanine nucleotide-releasing protein, C3G, via direct SH3 domain binding. Our data show that distinct Cbl-Crkl and Crkl-C3G complexes exist in myeloid cells, suggesting that these complexes may modulate distinct signaling events. Anti-Crkl immunoprecipitations demonstrate that the ITAM-containing gamma subunit of Fc gamma RI is induced to form a complex with the Crkl protein, and Crkl binds to the cytoskeletal protein, Hef-1. The induced association of Crkl with Cbl, Hef-1, and Fc gamma RI gamma after Fc gamma RI activation and the constitutive association between C3G and Crkl provide the first evidence that a Fc gamma RI gamma-Crkl-C3G complex may link ITAM receptors to the activation of Rap1 in myeloid cells.

  8. Leukocyte immunoglobulin-like receptor B4 regulates key signalling molecules involved in FcγRI-mediated clathrin-dependent endocytosis and phagocytosis

    PubMed Central

    Park, Mijeong; Raftery, Mark J.; Thomas, Paul S.; Geczy, Carolyn L.; Bryant, Katherine; Tedla, Nicodemus

    2016-01-01

    FcγRI cross-linking on monocytes may trigger clathrin-mediated endocytosis, likely through interaction of multiple intracellular molecules that are controlled by phosphorylation and dephosphorylation events. However, the identity of phospho-proteins and their regulation are unknown. We proposed the leukocyte immunoglobulin-like receptor B4 (LILRB4) that inhibits FcγRI-mediated cytokine production via Tyr dephosphorylation of multiple kinases, may also regulate endocytosis/phagocytosis through similar mechanisms. FcγRI and/or LILRB4 were antibody-ligated on THP-1 cells, lysates immunoprecipitated using anti-pTyr antibody and peptides sequenced by mass spectrometry. Mascot Search identified 25 Tyr phosphorylated peptides with high confidence. Ingenuity Pathway Analysis revealed that the most significantly affected pathways were clathrin-mediated endocytosis and Fc-receptor dependent phagocytosis. Tyr phosphorylation of key candidate proteins in these pathways included common γ-chain of the Fc receptors, Syk, clathrin, E3 ubiquitin protein ligase Cbl, hepatocyte growth factor-regulated tyrosine kinase substrate, tripartite motif-containing 21 and heat shock protein 70. Importantly, co-ligation of LILRB4 with FcγRI caused significant dephosphorylation of these proteins and was associated with suppression of Fc receptor-dependent uptake of antibody-opsonised bacterial particles, indicating that LILRB4. These results suggest that Tyr phosphorylation may be critical in FcγRI-dependent endocytosis/phagocytosis that may be regulated by LILRB4 by triggering dephosphorylation of key signalling proteins. PMID:27725776

  9. Expression Profile of Human Fc Receptors in Mucosal Tissue: Implications for Antibody-Dependent Cellular Effector Functions Targeting HIV-1 Transmission

    PubMed Central

    Cheeseman, Hannah M.; Carias, Ann M.; Evans, Abbey B.; Olejniczak, Natalia J.; Ziprin, Paul; King, Deborah F. L.; Hope, Thomas J.; Shattock, Robin J.

    2016-01-01

    The majority of new Human Immunodeficiency Virus (HIV)-1 infections are acquired via sexual transmission at mucosal surfaces. Partial efficacy (31.2%) of the Thai RV144 HIV-1 vaccine trial has been correlated with Antibody-dependent Cellular Cytotoxicity (ADCC) mediated by non-neutralizing antibodies targeting the V1V2 region of the HIV-1 envelope. This has led to speculation that ADCC and other antibody-dependent cellular effector functions might provide an important defense against mucosal acquisition of HIV-1 infection. However, the ability of antibody-dependent cellular effector mechanisms to impact on early mucosal transmission events will depend on a variety of parameters including effector cell type, frequency, the class of Fc-Receptor (FcR) expressed, the number of FcR per cell and the glycoslyation pattern of the induced antibodies. In this study, we characterize and compare the frequency and phenotype of IgG (CD16 [FcγRIII], CD32 [FcγRII] and CD64 [FcγRI]) and IgA (CD89 [FcαR]) receptor expression on effector cells within male and female genital mucosal tissue, colorectal tissue and red blood cell-lysed whole blood. The frequency of FcR expression on CD14+ monocytic cells, myeloid dendritic cells and natural killer cells were similar across the three mucosal tissue compartments, but significantly lower when compared to the FcR expression profile of effector cells isolated from whole blood, with many cells negative for all FcRs. Of the three tissues tested, penile tissue had the highest percentage of FcR positive effector cells. Immunofluorescent staining was used to determine the location of CD14+, CD11c+ and CD56+ cells within the three mucosal tissues. We show that the majority of effector cells across the different mucosal locations reside within the subepithelial lamina propria. The potential implication of the observed FcR expression patterns on the effectiveness of FcR-dependent cellular effector functions to impact on the initial events in

  10. B cells expressing the IgA receptor FcRL4 participate in the autoimmune response in patients with rheumatoid arthritis.

    PubMed

    Amara, Khaled; Clay, Elizabeth; Yeo, Lorraine; Ramsköld, Daniel; Spengler, Julia; Sippl, Natalie; Cameron, James A; Israelsson, Lena; Titcombe, Philip J; Grönwall, Caroline; Sahbudin, Ilfita; Filer, Andrew; Raza, Karim; Malmström, Vivianne; Scheel-Toellner, Dagmar

    2017-03-24

    The clinical efficacy of B cell targeting therapies highlights the pathogenic potential of B cells in inflammatory diseases. Expression of Fc Receptor like 4 (FcRL4) identifies a memory B cell subset, which is enriched in the joints of patients with rheumatoid arthritis (RA) and in mucosa-associated lymphoid tissue. The high level of RANKL production by this B cell subset indicates a unique pathogenic role. In addition, recent work has identified a role for FcRL4 as an IgA receptor, suggesting a potential function in mucosal immunity. Here, the contribution of FcRL4+ B cells to the specific autoimmune response in the joints of patients with RA was investigated. Single FcRL4+ and FcRL4- B cells were sorted from synovial fluid and tissue from RA patients and their immunoglobulin genes characterized. Levels of hypermutation in the variable regions in both populations were largely consistent with memory B cells selected by an antigen- and T cell-dependent process. Recombinant antibodies were generated based on the IgH and IgL variable region sequences and investigated for antigen specificity. A significantly larger proportion of the recombinant antibodies generated from individual synovial FcRL4+ B cells showed reactivity towards citrullinated autoantigens. Furthermore, both in analyses based on heavy chain sequences and flow cytometric detection, FcRL4+ B cells have significantly increased usage of the IgA isotype. Their low level of expression of immunoglobulin and plasma cell differentiation genes does not suggest current antibody secretion. We conclude that these activated B cells are a component of the local autoimmune response, and through their RANKL expression, can contribute to joint destruction. Furthermore, their expression of FcRL4 and their enrichment in the IgA isotype points towards a potential role for these cells in the link between mucosal and joint inflammation.

  11. Is Fc gamma receptor IIA (FcγRIIA) polymorphism associated with clinical malaria and Plasmodium falciparum specific antibody levels in children from Burkina Faso?

    PubMed

    Cherif, Mariama K; Sanou, Guillaume S; Bougouma, Edith C; Diarra, Amidou; Ouédraogo, Alphonse; Dolo, Amagana; Troye-Blomberg, Marita; Cavanagh, David R; Theisen, Michael; Modiano, David; Sirima, Sodiomon B; Nebié, Issa

    2015-02-01

    In the present study, the influences of FcγRIIA polymorphism on susceptibility to malaria and antibody responses to Plasmodium falciparum antigens were analyzed in children. We recruited 96 healthy children between 3 and 10 years at the beginning of the high transmission season and we followed up for 5 months through the high transmission season to assess the parasitological, immunological and genetic endpoints in relation to clinical malaria status. There was a similar distribution of homozygous and heterozygous individuals carrying the FcγRIIA-131R/R and FcγRIIA-131R/H allele, whereas the number of FcγRIIA-131H/H homozygous individuals was lower. P. falciparum infection frequency was not associated with the FcγRIIa-131R/H polymorphism. Only IgG antibody responses to GLURP R0 showed a significant association between antibody levels and FcγRIIA polymorphism (p=0.02). IgG levels to MSP2a were significantly higher in children who did not experience any clinical malaria episode compared to those who experienced at least one malaria episode (p=0.019). Cytophilic and non-cytophylic IgG subclass levels were higher in children without malaria than those who experienced at least one malaria episode. This difference was statistically significant for IgG1 to MSP3 (p=0.003) and to MSP2a (p=0.006); IgG3 to MSP2a (p=0.007) and to GLURP R0 (p=0.044); IgG2 to MSP2b (p=0.007) and IgG4 to MSP3 (p=0.051) and to MSP2a (p=0.049). In this study, homozygous carriers of the FcγRIIA-131R/R allele had higher malaria-specific antibody levels compare to the heterozygous carriers FcγRIIA-131R/H alleles and to homozygous carriers of FcγRIIA-131H/H alleles. The pre-existing antibodies responses were related to a reduced subsequent risk of clinical malaria.

  12. Vaccination with Mycobacterium bovis BCG affects the distribution of Fc receptor-bearing T lymphocytes in experimental pulmonary tuberculosis.

    PubMed Central

    Bartow, R A; McMurray, D N

    1989-01-01

    Inbred strain 2 guinea pigs were vaccinated with Mycobacterium bovis BCG or were left unvaccinated and challenged 6 weeks later by the respiratory route with virulent Mycobacterium tuberculosis. By using a double rosette assay with isotype-specific antibody-coated ox and uncoated rabbit erythrocytes, the proportions of T lymphocytes bearing Fc receptors for immunoglobulin G (IgG) (T gamma cells) or IgM (T mu cells) were quantified in tissues taken from animals that were killed within 4 weeks postchallenge. Tuberculin reactivity in vivo and in vitro and antimycobacterial resistance were also measured. BCG vaccination protected the guinea pigs and resulted in significantly enhanced proportions of T mu cells in the blood during the first 3 weeks and in the spleen during weeks 2 and 3 postchallenge. Levels of T gamma cells declined in all tissues during the first 3 weeks of infection and were unaffected by prior vaccination with BCG. Increased proportions of T mu cells in the blood were accompanied by dramatic tuberculin skin reactions and purified protein derivative-induced lymphoproliferation in BCG-vaccinated guinea pigs during the first 2 weeks following virulent pulmonary challenge. Peak levels of T mu cells in the spleens of vaccinated animals at 2 weeks coincided with the first appearance of virulent mycobacteria in that organ. BCG vaccination appears to influence immunoregulatory events in pulmonary tuberculosis through effects on the distribution of IgM Fc receptor-bearing (T mu cell) T lymphocytes. PMID:2523350

  13. Neutralized adenovirus-immune complexes can mediate effective gene transfer via an Fc receptor-dependent infection pathway.

    PubMed

    Leopold, Philip L; Wendland, Rebecca L; Vincent, Theresa; Crystal, Ronald G

    2006-10-01

    Neutralization of adenovirus (Ad) by anti-Ad neutralizing antibodies in serum involves formation of Ad-immune complexes that prevent the virus from interacting with target cells. We hypothesized that Ad-immune complexes likely contain viable Ad vectors which, although no longer capable of gaining access to receptors on target cells, may be able to express transgenes in cells bearing Fc receptors for immunoglobulins, i.e., that antibody-based "neutralization" of Ad vectors may be circumvented by the Fc receptor pathway. To test this hypothesis, we expressed the Fcgamma receptor IIA (FcgammaR) in A549 lung epithelial cells or human dermal fibroblasts and evaluated gene transfer in the presence of human neutralizing anti-Ad serum. FcgammaR-expressing cells bound and internalized copious amounts of Ad, with a distinct population of internalized Ad trafficking to the nucleus. The dose-response curves for inhibition of gene transfer revealed that FcgammaR-expressing cells required a more-than-10-fold higher concentration of anti-Ad serum to achieve 50% inhibition of Ad-encoded beta-galactosidase expression compared with non-FcgammaR-expressing cells. The discrepancy between neutralization of Ad during infection of FcgammaR-expressing cells and neutralization of Ad during infection of non-FcgammaR-expressing cells occurred with either heat-inactivated or non-heat-inactivated sera, was blocked by addition of purified Fc domain protein, and did not require the cytoplasmic domain of FcgammaR, suggesting that immune complex internalization proceeded via endocytosis rather than phagocytosis. FcgammaR-mediated infection by Ad-immune complexes did not require expression of the coxsackie virus-Ad receptor (CAR) since similar data were obtained when CAR-deficient human dermal fibroblasts were engineered to express FcgammaR. However, interaction of the Ad penton base with cell surface integrins contributed to the difference in neutralization between FcgammaR-expressing and non

  14. Fc gamma receptor IIIa polymorphisms in advanced colorectal cancer patients correlated with response to anti-EGFR antibodies and clinical outcome

    PubMed Central

    2012-01-01

    Background Anti-EGFR monoclonal antibodies have shown efficacy in the treatment of metastatic colorectal cancer (mCRC). One of the mechanism is the antibody-dependent cell-mediated cytotoxicity (ADCC) in which Fc region of the antibody binds to the Fc gamma receptors (FcγR) expressed by immune cells. The present study investigated the association between single nucleotide polymorphisms of FcγRIIa and FcγRIIIa and clinical outcome in mCRC treated with anti-EGFR antibodies. Methods Seventy-four consecutive patients with mCRC were analyzed. The genotypes for FcγRIIa-131 histidine (H)/arginine (R), FcγRIIIa-158 valine (V)/phenylanaline (F) polymorphisms were evaluated by directly sequencing. Multiplex allele-specific polymerase chain reaction was performed for FcγRIIIa-158 valine (V)/phenylanaline (F). Correlations between FcγR polymorphisms, baseline patient and tumor features were studied by contingency tables and the chi-square test. The Kaplan-Meier product limit method was applied to the progression-free survival (PFS) curves. Univariate analysis was performed with the log-rank test. Cox proportional-hazards regression was used to analyze the effect of multiple risk factors on PFS. Results FcγRIIIa polymorphisms were significantly associated with response to anti-EGFR-based therapy in 49 patients with kras wt tumors (p=0.035). There was not association with response for FcγRIIa polymorphisms. Furthermore, obtained results suggested that prognosis is particularly unfavorable for patients carrying the FcγRIIIa-158F/F genotype (median PFS V/V, V/F, F/F: 18.2 vs 17.3 vs 9.4 months). No prognostic ability was identified for FcγRIIa polymorphisms. Conclusions In mCRC patients the presence of FcγRIIIa-F can predict resistance to anti-EGFR therapy and unfavorable prognosis. PMID:23171437

  15. FcγRIIB signals inhibit BLyS signaling and BCR-mediated BLyS receptor up-regulation

    PubMed Central

    Crowley, Jenni E.; Stadanlick, Jason E.; Cambier, John C.

    2009-01-01

    These studies investigate how interactions between the BCR and FcγRIIB affect B lymphocyte stimulator (BLyS) recep-tor expression and signaling. Previous studies showed that BCR ligation up-regulates BLyS binding capacity in mature B cells, reflecting increased BLyS receptor levels. Here we show that FcγRIIB coaggregation dampens BCR-induced BLyS receptor up-regulation. This cross-regulation requires BCR and FcγRIIB coligation, and optimal action relies on the Src-homology-2 (SH2)–containing inositol 5 phosphase-1 (SHIP1). Subsequent to FcγRIIB/BCR coaggregation, the survival promoting actions of BLyS are attenuated, reflecting reduced BLyS receptor signaling capacity in terms of Pim 2 maintenance, noncanonical NF-κB activation, and Bcl-xL levels. These findings link the negative regulatory functions of FcγRIIB with BLyS-mediated B-cell survival. PMID:18791164

  16. A critical role for Syk protein tyrosine kinase in Fc receptor-mediated antigen presentation and induction of dendritic cell maturation.

    PubMed

    Sedlik, Christine; Orbach, Daniel; Veron, Philippe; Schweighoffer, Edina; Colucci, Francesco; Gamberale, Romina; Ioan-Facsinay, Andrea; Verbeek, Sjef; Ricciardi-Castagnoli, Paola; Bonnerot, Christian; Tybulewicz, Victor L J; Di Santo, James; Amigorena, Sebastian

    2003-01-15

    Dendritic cells (DCs) are the only APCs capable of initiating adaptive immune responses. The initiation of immune responses requires that DCs 1) internalize and present Ags; and 2) undergo a differentiation process, called "maturation", which transforms DCs into efficient APCs. DC maturation may be initiated by the engagement of different surface receptors, including certain cytokine receptors (such as TNFR), Toll-like receptors, CD40, and FcRs. The early activation events that link receptor engagement and DC maturation are not well characterized. We found that FcR engagement by immune complexes induced the phosphorylation of Syk, a protein tyrosine kinase acting immediately downstream of FcRs. Syk was dispensable for DC differentiation in vitro and in vivo, but was strictly required for immune complexes internalization and subsequent Ag presentation to T lymphocytes. Importantly, Syk was also required for the induction of DC maturation and IL-12 production after FcR engagement, but not after engagement of other surface receptors, such as TNFR or Toll-like receptors. Therefore, protein tyrosine phosphorylation by Syk represents a novel pathway for the induction of DC maturation.

  17. The effects of an ActRIIb receptor Fc fusion protein ligand trap in juvenile simian immunodeficiency virus-infected rhesus macaques

    PubMed Central

    O’Connell, Karyn E.; Guo, Wen; Serra, Carlo; Beck, Matthew; Wachtman, Lynn; Hoggatt, Amber; Xia, Dongling; Pearson, Chris; Knight, Heather; O’Connell, Micheal; Miller, Andrew D.; Westmoreland, Susan V.; Bhasin, Shalender

    2015-01-01

    There are no approved therapies for muscle wasting in children infected with human immunodeficiency virus (HIV), which portends poor disease outcomes. To determine whether a soluble ActRIIb receptor Fc fusion protein (ActRIIB.Fc), a ligand trap for TGF-β/activin family members including myostatin, can prevent or restore loss of lean body mass and body weight in simian immunodeficiency virus (SIV)-infected juvenile rhesus macaques (Macaca mulatta). Fourteen pair-housed, juvenile male rhesus macaques were inoculated with SIVmac239 and, 4 wk postinoculation (WPI) treated with intramuscular injections of 10 mg ⋅ kg−1 ⋅ wk−1 ActRIIB.Fc or saline placebo. Body weight, lean body mass, SIV titers, and somatometric measurements were assessed monthly for 16 wk. Age-matched SIV-infected rhesus macaques were injected with saline. Intervention groups did not differ at baseline. Gains in lean mass were significantly greater in the ActRIIB.Fc group than in the placebo group (P < 0.001). Administration of ActRIIB.Fc was associated with greater gains in body weight (P = 0.01) and upper arm circumference than placebo. Serum CD4+ T-lymphocyte counts and SIV copy numbers did not differ between groups. Administration of ActRIIB.Fc was associated with higher muscle expression of myostatin than placebo. ActRIIB.Fc effectively blocked and reversed loss of body weight, lean mass, and fat mass in juvenile SIV-infected rhesus macaques.—O’Connell, K. E., Guo, W., Serra, C., Beck, M., Wachtman, L., Hoggatt, A., Xia, D., Pearson, C., Knight, H., O’Connell, M., Miller, A. D., Westmoreland, S. V., Bhasin, S. The effects of an ActRIIb receptor Fc fusion protein ligand trap in juvenile simian immunodeficiency virus-infected rhesus macaques. PMID:25466897

  18. APG350 induces superior clustering of TRAIL receptors and shows therapeutic antitumor efficacy independent of cross-linking via Fcγ receptors.

    PubMed

    Gieffers, Christian; Kluge, Michael; Merz, Christian; Sykora, Jaromir; Thiemann, Meinolf; Schaal, René; Fischer, Carmen; Branschädel, Marcus; Abhari, Behnaz Ahangarian; Hohenberger, Peter; Fulda, Simone; Fricke, Harald; Hill, Oliver

    2013-12-01

    Cancer cells can be specifically driven into apoptosis by activating Death-receptor-4 (DR4; TRAIL-R1) and/or Death-receptor-5 (DR5; TRAIL-R2). Albeit showing promising preclinical efficacy, first-generation protein therapeutics addressing this pathway, especially agonistic anti-DR4/DR5-monoclonal antibodies, have not been clinically successful to date. Due to their bivalent binding mode, effective apoptosis induction by agonistic TRAIL-R antibodies is achieved only upon additional events leading to antibody-multimer formation. The binding of these multimers to their target subsequently leads to effective receptor-clustering on cancer cells. The research results presented here report on a new class of TRAIL-receptor agonists overcoming this intrinsic limitation observed for antibodies in general. The main feature of these agonists is a TRAIL-mimic consisting of three TRAIL-protomer subsequences combined in one polypeptide chain, termed the single-chain TRAIL-receptor-binding domain (scTRAIL-RBD). In the active compounds, two scTRAIL-RBDs with three receptor binding sites each are brought molecularly in close proximity resulting in a fusion protein with a hexavalent binding mode. In the case of APG350-the prototype of this engineering concept-this is achieved by fusing the Fc-part of a human immunoglobulin G1 (IgG1)-mutein C-terminally to the scTRAIL-RBD polypeptide, thereby creating six receptor binding sites per drug molecule. In vitro, APG350 is a potent inducer of apoptosis on human tumor cell lines and primary tumor cells. In vivo, treatment of mice bearing Colo205-xenograft tumors with APG350 showed a dose-dependent antitumor efficacy. By dedicated muteins, we confirmed that the observed in vivo efficacy of the hexavalent scTRAIL-RBD fusion proteins is-in contrast to agonistic antibodies-independent of FcγR-based cross-linking events.

  19. Fc receptor mediated endocytosis of small soluble immunoglobulin G immune complexes in Kupffer and endothelial cells from rat liver.

    PubMed

    Løvdal, T; Andersen, E; Brech, A; Berg, T

    2000-09-01

    Soluble circulating immunoglobulin G immune complexes are mainly eliminated by the liver, predominantly by uptake in the Kupffer cells, but also the liver endothelial cells seem to be of importance. In the present study we have followed the intracellular turnover of immune complexes after Fc(gamma) receptor mediated endocytosis in cultured rat liver endothelial cells and Kupffer cells by means of isopycnic centrifugation, DAB cross-linking and morphological techniques. For the biochemical experiments the antigen, dinitrophenylated bovine serum albumin (BSA), was labeled with radioiodinated tyramine cellobiose that cannot cross biological membranes and therefore traps labeled degradation products at the site of formation. The endocytic pathway followed by immune complexes was compared with that followed by scavenger receptor ligands, such as formaldehyde treated BSA and dinitrophenylated BSA, and the mannose receptor ligand ovalbumin. Both Kupffer cells and liver endothelial cells took up and degraded the immune complexes, but there was a clear delay in the degradation of immune complexes as compared to degradation of ligands taken up via scavenger receptors. The kinetics of the endocytosis of scavenger receptor ligand was unaffected by simultaneous uptake of immune complexes. Experiments using both biochemical and morphological techniques indicated that the delayed degradation was due to a late arrival of the immune complexes at the lysosomes, which partly was explained by retroendocytosis of immune complexes. Electron microscopy studies revealed that the immune complexes were retained in the early endosomes that remained accessible to other endocytic markers such as ovalbumin. In addition, the immune complexes were seen in multivesicular compartments apparently devoid of other endocytic markers. Finally, the immune complexes were degraded in the same lysosomes as the ligands of scavenger receptors. Thus, immune complexes seem to follow an endocytic pathway that is

  20. Rab20 regulates phagosome maturation in RAW264 macrophages during Fc gamma receptor-mediated phagocytosis.

    PubMed

    Egami, Youhei; Araki, Nobukazu

    2012-01-01

    Rab20, a member of the Rab GTPase family, is known to be involved in membrane trafficking, however its implication in FcγR-mediated phagocytosis is unclear. We examined the spatiotemporal localization of Rab20 during phagocytosis of IgG-opsonized erythrocytes (IgG-Es) in RAW264 macrophages. By the live-cell imaging of fluorescent protein-fused Rab20, it was shown that Rab20 was transiently associated with the phagosomal membranes. During the early stage of phagosome formation, Rab20 was not localized on the membranes of phagocytic cups, but was gradually recruited to the newly formed phagosomes. Although Rab20 was colocalized with Rab5 to some extent, the association of Rab20 with the phagosomes persisted even after the loss of Rab5 from the phagosomal membranes. Then, Rab20 was colocalized with Rab7 and Lamp1, late endosomal/lysosomal markers, on the internalized phagosomes. Moreover, our analysis of Rab20 mutant expression revealed that the maturation of phagosomes was significantly delayed in cells expressing the GDP-bound mutant Rab20-T19N. These data suggest that Rab20 is an important component of phagosome and regulates the phagosome maturation during FcγR-mediated phagocytosis.

  1. Distribution and Dynamics of Rat Basophilic Leukemia Immunoglobulin E Receptors (FcɛRI) on Planar Ligand-Presenting Surfaces

    PubMed Central

    Spendier, Kathrin; Carroll-Portillo, Amanda; Lidke, Keith A.; Wilson, Bridget S.; Timlin, Jerilyn A.; Thomas, James L.

    2010-01-01

    Abstract There is considerable interest in the signaling mechanisms of immunoreceptors, especially when triggered with membrane-bound ligands. We have quantified the spatiotemporal dynamics of the redistribution of immunoglobulin E-loaded receptors (IgE-FcɛRI) on rat basophilic leukemia-2H3 mast cells in contact with fluid and gel-phase membranes displaying ligands for immunoglobulin E, using total internal reflection fluorescence microscopy. To clearly separate the kinetics of receptor redistribution from cell spreading, and to precisely define the initial contact time (±50 ms), micropipette cell manipulation was used to bring individual cells into contact with surfaces. On ligand-free surfaces, there are micron-scale heterogeneities in fluorescence that likely reflect regions of the cell that are more closely apposed to the substrate. When ligands are present, receptor clusters form with this same size scale. The initial rate of accumulation of receptors into the clusters is consistent with diffusion-limited trapping with D ∼10−1μm2/s. These results support the hypothesis that clusters form by diffusion to cell-surface contact regions. Over longer timescales (>10 s), individual clusters moved with both diffusive and directed motion components. The dynamics of the cluster motion is similar to the dynamics of membrane fluctuations of cells on ligand-free fluid membranes. Thus, the same cellular machinery may be responsible for both processes. PMID:20643056

  2. Fc gamma receptor type III (CD16) is included in the zeta NK receptor complex expressed by human natural killer cells.

    PubMed Central

    Anderson, P; Caligiuri, M; O'Brien, C; Manley, T; Ritz, J; Schlossman, S F

    1990-01-01

    We recently reported that CD3- natural killer (NK) cells express the zeta chain of the T-cell receptor complex (zeta NK) in association with higher molecular weight structures whose expression differs between individual NK cell clones. Because NK cell cytolytic activity is known to be triggered by perturbation of the type III Fc gamma receptor (CD16), we sought to determine whether this activating molecule is included in the zeta NK molecular complex. Biochemical evidence for a physical association between CD16 and zeta NK was obtained by comparing immunoprecipitates formed using monoclonal antibodies reactive with each of these molecules by SDS/polyacrylamide gel electrophoresis, immunoblotting, and peptide mapping. In both clonal and polyclonal populations of CD3- NK cells, CD16 and zeta NK specifically associated with one another. Functional evidence for a specific association between CD16 and zeta NK in intact cells was obtained by demonstrating a coordinate down-modulation of both of these molecules induced by either phorbol 12-myristate 13-acetate or monoclonal antibodies reactive with CD16. Our results suggest that Fc gamma receptor type III (CD16) is included in the zeta NK complex and that this complex is likely to play an important role in NK cell activation. Images PMID:2138330

  3. Effect of protein A and its fragment B on the catabolic and Fc receptor sites of IgG.

    PubMed

    Dima, S; Medeşan, C; Moţa, G; Moraru, I; Sjöquist, J; Gheţie, V

    1983-08-01

    Radiolabeled protein A from Staphylococcus aureus (SpA) injected i.v. into mice and rabbits forms a soluble [(IgG)2-(SpA)1]2 complex (Mr = 684 000) which is identical in composition to that formed by SpA in vitro with an equivalent amount or an excess of IgG. A soluble rabbit IgG-SpA complex injected into a mice or rabbits dissociates completely in vivo and a new complex is formed with the IgG of the recipient animal. The half-life of SpA administered to a mouse or a rabbit is therefore the half-life of the IgG-SpA complex formed in vivo. In mice and rabbits the half-life of the complexes formed is 9 and 30 h, respectively, whereas the half-life of rabbit IgG in these animals is 106 and 153 h, respectively. Fragment B of SpA (fSpA) reacts with IgG of mouse and rabbit and forms an (IgG)1-(fSpA)1 complex. Complexes of identical composition are formed if fSpA is injected i.v. into mice and rabbits. The half-life of the complexes in mice and rabbits are much shorter than those of the corresponding free IgG in these animals (up to 15 times). This result suggests that the binding of fSpA to the CH2 and the CH3 domains of IgG alters the function of the site, which controls the catabolism of IgG and is located in the CH2 domain. By contrast, fSpA does not change the Fc receptor-binding site of IgG, indicating that the Fc receptor site and the catabolic site are unrelated to each other.

  4. FcR-Like 2 Inhibition of B Cell Receptor-Mediated Activation of B Cells

    PubMed Central

    Jackson, Tanisha A.; Haga, Christopher L.; Ehrhardt, Götz R. A.; Davis, Randall S.; Cooper, Max D.

    2017-01-01

    FcR-like (FCRL) 2 is a transmembrane protein with immunomodulatory potential that is preferentially expressed by memory B cells in humans. It has two consensus ITIMs in addition to a putative ITAM sequence in its cytoplasmic domain. We have confirmed the cellular distribution of FCRL2 and analyzed its functional potential to show that coligation with the BCR leads to tyrosine phosphorylation of its ITIM motifs and subsequent Src homology region 2 domain-containing phosphatase-1 recruitment to facilitate inhibition of BCR signaling. Mutational analysis indicates that the tyrosine residues in both inhibitory motifs of FCRL2 are required for complete inhibition of BCR signaling, whereas tyrosines in the putative activation motif are dispensable for signal modulation. These findings suggest a negative immunomodulatory function for FCRL2 in the regulation of memory B cells. PMID:21068405

  5. Differential regulation by leukotrienes and calcium of Fc gamma receptor-induced phagocytosis and Syk activation in dendritic cells versus macrophages.

    PubMed

    Canetti, Claudio; Aronoff, David M; Choe, Mun; Flamand, Nicolas; Wettlaufer, Scott; Toews, Galen B; Chen, Gwo-Hsiao; Peters-Golden, Marc

    2006-06-01

    Macrophage (MØ) phagocytosis via the Fc receptor for immunoglobulin G (Fc gammaR) requires the spleen tyrosine kinase (Syk) and serves an important antimicrobial function. We have reported previously that Fc gammaR-mediated ingestion and Syk activation in MØ are amplified by and depend on the proinflammatory lipid mediator leukotriene B4 (LTB4). Although Fc gammaR-mediated ingestion is also important for antigen uptake, there is no information about LTB4 regulation of these processes in dendritic cells (DCs). In this study, we compared murine bone marrow (BM)-derived DCs to MØ from BM, peritoneum, and the pulmonary alveolar space. Neither phagocytosis nor Syk activation in DCs was influenced by exogenous LTB4. Unlike the various MØ populations, Syk activation in DCs was likewise unaffected by pharmacologic or genetic strategies to inhibit endogenous LTB4 synthesis or to block the high-affinity LTB4 receptor BLT1. DCs were refractory to regulation by LTB4 despite the fact that they expressed BLT1 and mobilized intracellular calcium in response to its ligation. This resistance to LTB4 in DCs instead reflected the fact that in contrast to MØ, Syk activation in DCs was itself entirely independent of calcium. These results identify a fundamental difference in Fc gammaR signaling between DCs and MØ, which may relate to the divergent, functional consequences of target ingestion in the two cell types.

  6. Interaction between activated chemokine receptor 1 and FcεRI at membrane rafts promotes communication and F-actin-rich cytoneme extensions between mast cells

    PubMed Central

    Beer, Freddy; Ono, Shoichiro; Ono, Santa J.

    2010-01-01

    Chemokines play important regulatory roles in immunity, but their contributions to mast cell function remain poorly understood. We examined the effects of FcεRI–chemokine receptor (CCR) 1 co-stimulation on receptor localization and cellular morphology of bone marrow-derived mast cells. Whereas FcεRI and CCR1 co-localized at the plasma membrane in unsensitized cells, sensitization with IgE promoted internalization of CCR1 molecules. Co-stimulation of FcεRI and CCR1 with antigen and macrophage inflammatory protein-1α was more effective than FcεRI stimulation alone in causing leading edge formation, flattened morphology, membrane ruffles and ganglioside (GM1+) lipid mediator release. Co-stimulation resulted in phalloidin-positive cytoneme-like cellular extensions, also known as tunneling nanotubes, which originated at points of calcium accumulation. This is the first report of cytoneme formation by mast cells. To determine the importance of lipid rafts for mast cell function, the cells were cholesterol depleted. Cholesterol depletion enhanced degranulation in resting, sensitized and co-stimulated cells, but not in FcεRI-cross-linked cells, and inhibited formation of filamentous actin+ cytonemes but not GM1+ cytonemes. Treatment with latrunculin A to sequester globular-actin abolished cytoneme formation. The cytonemes may participate in intercellular communication during allergic and inflammatory responses, and their presence in the co-stimulated mast cells suggests new roles for CCRs in immunopathology. PMID:20173038

  7. Fcγ-receptor IIa-mediated Src Signaling Pathway Is Essential for the Antibody-Dependent Enhancement of Ebola Virus Infection

    PubMed Central

    Furuyama, Wakako; Marzi, Andrea; Maruyama, Junki; Kuroda, Makoto; Miyamoto, Hiroko; Manzoor, Rashid; Yoshida, Reiko; Igarashi, Manabu; Feldmann, Heinz; Takada, Ayato

    2016-01-01

    Antibody-dependent enhancement (ADE) of Ebola virus (EBOV) infection has been demonstrated in vitro, raising concerns about the detrimental potential of some anti-EBOV antibodies. ADE has been described for many viruses and mostly depends on the cross-linking of virus-antibody complexes to cell surface Fc receptors, leading to enhanced infection. However, little is known about the molecular mechanisms underlying this phenomenon. Here we show that Fcγ-receptor IIa (FcγRIIa)-mediated intracellular signaling through Src family protein tyrosine kinases (PTKs) is required for ADE of EBOV infection. We found that deletion of the FcγRIIa cytoplasmic tail abolished EBOV ADE due to decreased virus uptake into cellular endosomes. Furthermore, EBOV ADE, but not non-ADE infection, was significantly reduced by inhibition of the Src family protein PTK pathway, which was also found to be important to promote phagocytosis/macropinocytosis for viral uptake into endosomes. We further confirmed a significant increase of the Src phosphorylation mediated by ADE. These data suggest that antibody-EBOV complexes bound to the cell surface FcγRIIa activate the Src signaling pathway that leads to enhanced viral entry into cells, providing a novel perspective for the general understanding of ADE of virus infection. PMID:28036370

  8. Phosphorylation and activation of Ca(2+)-sensitive cytosolic phospholipase A2 in MCII mast cells mediated by high-affinity Fc receptor for IgE.

    PubMed Central

    Currie, S; Roberts, E F; Spaethe, S M; Roehm, N W; Kramer, R M

    1994-01-01

    In the present study we examined the activation of Ca(2+)-sensitive cytosolic phospholipase A2 (cPLA2) after aggregation of cell-surface high-affinity Fc receptors for IgE (Fc epsilon RI) on mast cells. MCII mast cells (a factor-dependent bone-marrow-derived murine mast cell line) produce significant amounts of leukotriene C4 (LTC4) (70 ng/10(6) cells) on cross-linking of Fc epsilon RI. Using enzymic and immunochemical analysis we found that cPLA2 is the predominant form of this enzyme in MCII mast cells (0.2 micrograms/mg of total protein) and other forms (i.e. secretory PLA2 or Ca2+ independent cytosolic PLA2) could not be detected. Therefore MCII mast cells represent an excellent cellular model for the study of the biochemical mechanism(s) responsible for Fc epsilon RI-induced activation of cPLA2 and the involvement of cPLA2 in Fc epsilon RI-mediated production of LTC4. After activation of Fc epsilon RI by cross-linking, cPLA2 in MCII mast cells exhibited a decreased electrophoretic mobility and its enzyme activity was increased 3-fold. Treatment with phosphatase reversed both the altered electrophoretic mobility and the enhanced enzyme activity demonstrating that they were the result of Fc epsilon RI-induced phosphorylation. On cross-linking of Fc epsilon RI, cPLA2 was phosphorylated within 30 s and appeared to be an early substrate for Fc epsilon RI-activated protein kinases in MCII mast cells. Tyrosine phosphorylation may be a critical component in this process, as genistein, an inhibitor of protein tyrosine kinases, blocked the activation of cPLA2. Using anti-phosphotyrosine antibodies we observed that the activating phosphorylation was not on tyrosine residues of cPLA2, indicating that tyrosine kinases participate upstream in the signalling cascade that couples Fc epsilon RI to cPLA2. We conclude that in MCII mast cells cPLA2 is activated by kinase-dependent mechanisms and may be responsible for Fc epsilon RI-induced mobilization of arachidonic acid for the

  9. Interaction of Poliovirus with Its Receptor Affords a High Level of Infectivity to the Virion in Poliovirus Infections Mediated by the Fc Receptor

    PubMed Central

    Arita, Minetaro; Horie, Hitoshi; Arita, Mineo; Nomoto, Akio

    1999-01-01

    Poliovirus infects susceptible cells through the poliovirus receptor (PVR), which functions to bind virus and to change its conformation. These two activities are thought to be necessary for efficient poliovirus infection. How binding and conformation conversion activities contribute to the establishment of poliovirus infection was investigated. Mouse L cells expressing mouse high-affinity Fcγ receptor molecules were established and used to study poliovirus infection mediated by mouse antipoliovirus monoclonal antibodies (MAbs) (immunoglobulin G2a [IgG2a] subtypes) or PVR-IgG2a, a chimeric molecule consisting of the extracellular moiety of PVR and the hinge and Fc portion of mouse IgG2a. The antibodies and PVR-IgG2a showed the same degree of affinity for poliovirus, but the infectivities mediated by these molecules were different. Among the molecules tested, PVR-IgG2a mediated the infection most efficiently, showing 50- to 100-fold-higher efficiency than that attained with the different MAbs. A conformational change of poliovirus was induced only by PVR-IgG2a. These results strongly suggested that some specific interaction(s) between poliovirus and the PVR is required for high-level infectivity of poliovirus in this system. PMID:9882307

  10. Platelets activated by collagen through the immunoreceptor tyrosine-based activation motif in the Fc receptor gamma-chain play a pivotal role in the development of myocardial ischemia-reperfusion injury.

    PubMed

    Takaya, Norihide; Katoh, Youichi; Iwabuchi, Kazuhisa; Hayashi, Ichiro; Konishi, Hakuoh; Itoh, Seigo; Okumura, Ko; Ra, Chisei; Nagaoka, Isao; Daida, Hiroyuki

    2005-12-01

    Platelet activation and the formation of platelet microaggregates in coronary vessels play pivotal roles in myocardial ischemia and reperfusion injury. The Fc receptor gamma-chain (FcR gamma) is coexpressed with glycoprotein (GP) VI, forming a platelet collagen receptor, and the activation of platelets by collagen is closely coupled with tyrosine phosphorylation of the FcRgamma. To examine the functional significance of platelet FcR gamma/GPVI complex in the early phase of myocardial ischemia and reperfusion injury in mice, we performed coronary occlusion and reperfusion experiments using wild type mice and FcRgamma-deficient (FcRgamma(-/-)) mice that lack GPVI. The infarct size was significantly smaller in FcRgamma(-/-) mice subjected to occlusion and reperfusion of the coronary artery than in control FcR gamma(+/+) mice. Twenty-four hours after the reperfusion, electron microscopy of the injured tissue showed substantially more platelet aggregation and occlusive platelet microthrombi in the capillaries of the damaged areas of the wild type mice than in those of the FcR gamma(-/-) mice. Platelet Syk was scarcely activated in the FcR gamma(-/-) mice after myocardial ischemia and reperfusion, but significantly activated in the FcR gamma(+/+) mice. CD11b expression on neutrophils was elevated after myocardial ischemia and reperfusion in both mouse groups, whereas myeloperoxidase activity in the injured areas was significantly lower in the FcRgamma(-/-) mice than in the FcRgamma(+/+) mice. These results suggest that the collagen-induced activation of platelets through the FcR gamma plays a pivotal role in the extension of myocardial ischemia-reperfusion injury. FcRgamma and GPVI may be important therapeutic targets for myocardial ischemia-reperfusion injury.

  11. Fc-receptor induced cell spreading during frustrated phagocytosis in J774A.1 macrophages

    NASA Astrophysics Data System (ADS)

    Kovari, Daniel; Curtis, Jennifer; Wei, Wenbin

    2014-03-01

    Phagocytosis is the process where by cells engulf foreign particles. It is the primary mechanism through which macrophages and neutrophils (white blood cells) eliminate pathogens and debris from the body. The behavior is the result of a cascade of chemical and mechanical cues, which result in the actin-driven expansion of the cell's membrane around its target. For macrophages undergoing Fc-mediated phagocytosis, we show that above a minimum threshold the spreading rate and maximum cell-target contact area are independent of the target's opsonin density. Qualitatively, macrophage phagocytic spreading is similar to the spreading of other cell types (e.g. fibroblasts, lymphocytes, and Dict.d.). Early spreading is most likely the result of ``passive'' alignment of the cell to the target surface. This is followed by an active expansion period driven by actin. Finally upon reaching a maximum contact area, typically 2-3 times the size of ``non-activated'' cells, macrophages often undergo a period of rapid contraction not reported in other cell types. We hypothesize that this, as yet unexplained, transition may be specific to the chemical and mechanical machinery associated with phagocytosis. This work was funded by NSF grant PHYS 0848797 and NSF grant DMR 0820382.

  12. Immunoglobulin G1 Fc domain motions: implications for Fc engineering

    PubMed Central

    Frank, Martin; Walker, Ross C.; Lanzilotta, William N.; Prestegard, James H.; Barb, Adam W.

    2014-01-01

    The fragment crystallizable (Fc) region links the key pathogen identification and destruction properties of immunoglobulin G(IgG). Pathogen opsonization positions Fcs to activate pro-inflammatory Fcγ receptors (FcγRs) on immune cells. The cellular response and committal to a damaging, though protective, immune response is tightly controlled at multiple levels. Control mechanisms are diverse and in many cases unclear, but one frequently suggested contribution originates in Fcγ receptor affinity being modulated through shifts in Fc conformational sampling. Here we report a previously unseen IgG1 Fc conformation. This observation motivated an extensive molecular dynamics (MD) investigation of polypeptide and glycan motions that revealed greater amplitude of motion for the N-terminal Cγ2 domains and N-glycan than previously observed. Residues in the Cγ2/Cγ3 interface and disulphide-bonded hinge were identified as influencing the Cγ2 motion. Our results are consistent with a model of Fc that is structurally dynamic. Conformational states that are competent to bind immune-stimulating FcγRs interconverted with Fc conformations distinct from those observed in FcγR complexes, which may represent a transient, nonbinding population. PMID:24522230

  13. The molecular landscape of antibody-mediated kidney transplant rejection: evidence for NK involvement through CD16a Fc receptors.

    PubMed

    Venner, J M; Hidalgo, L G; Famulski, K S; Chang, J; Halloran, P F

    2015-05-01

    The recent recognition that antibody-mediated rejection (ABMR) is the major cause of kidney transplant loss creates strong interest in its pathogenesis. We used microarray analysis of kidney transplant biopsies to identify the changes in pure ABMR. We found that the ABMR transcript changes in the initial Discovery Set were strongly conserved in a subsequent Validation Set. In the Combined Set of 703 biopsies, 2603 transcripts were significantly changed (FDR < 0.05) in ABMR versus all other biopsies. In cultured cells, the transcripts strongly associated with ABMR were expressed in endothelial cells, e.g. cadherins CDH5 and CDH13; IFNG-treated endothelial cells, e.g. phospholipase PLA1A and chemokine CXCL11; or NK cells, e.g. cytotoxicity molecules granulysin (GNLY) and FGFBP2. Other ABMR transcripts were expressed in normal kidney but not cell lines, either increased e.g. Duffy chemokine receptor (DARC) or decreased e.g. sclerostin (SOST). Pathway analysis of ABMR transcripts identified angiogenesis, with roles for angiopoietin and vascular endothelial growth factors; leukocyte-endothelial interactions; and NK signaling, including evidence for CD16a Fc receptor signaling elements shared with T cells. These data support a model of ABMR involving injury-repair in the microcirculation induced by cognate recognition involving antibody and CD16a, triggering IFNG release and antibody-dependent NK cell-mediated cytotoxicity.

  14. [Preparation and the biological effect of fusion protein GLP-1-exendin-4/ IgG4(Fc) fusion protein as long acting GLP-1 receptor agonist].

    PubMed

    Zheng, Yun-cheng

    2015-12-01

    GLP-1 has a variety of anti-diabetic effects. However, native GLP-1 is not suitable for treatment of diabetes due to its short half-life (t½, 2-5 min). Exendin-4 is a polypeptide isolated from lizard saliva, which can bind to GLP-1 receptor, produce physiological effects similar to GLP-1, t½ up to 2.5 h, therefore, we developed a long-lasting GLP-1 receptor agonists and GLP-1-exendin-4 fusion IgG4 Fc [GLP-1-exendin-4/ IgG4(Fc)]. We constructed the eukaryotic expression vector of human GLP-1-exendin-4/IgG4(Fc)-pOptiVEC- TOPO by gene recombination technique and expressed the fusion protein human GLP-1-IgG4 (Fc) in CHO/DG44 cells. The fusion protein stimulated the INS-1 cells secretion of insulin, GLP-1, exendin-4 and fusion protein in CD1 mice pharmacokinetic experiments, as well as GLP-1, exendin-4 and fusion protein did anti-diabetic effect on streptozotocin induced mice. Results demonstrated that the GLP-1-exendin-4/IgG4(Fc) positive CHO/DG44 clones were chosen and the media from these positive clones. Western blotting showed that one protein band was found to match well with the predicted relative molecular mass of human GLP-1-exendin-4/IgG4(Fc). Insulin RIA showed that GLP-1-exendin-4/IgG4(Fc) dose-dependently stimulated insulin secretion from INS-1 cells. Pharmacokinetic studies in CD1 mice showed that with intraperitoneal injection (ip), the fusion protein peaked at 30 min in circulation and maintained a plateau for 200 h. Natural biological half-life of exendin-4 was (1.39 ± 0.28) h, GLP-1 in vivo t½ 4 min, indicating that fusion protein has long-lasting effects on the modulation of glucose homeostasis. GLP-1-exendin-4/IgG4(Fc) was found to be effective in reducing the incidence of diabetes in multiple-low-dose streptozotocin-induced diabetes in mice, longer duration of the biological activity of the fusion protein. The biological activity was significantly higher than that of GLP-1 and exendin-4. GLP-1-exendin-4/IgG4(Fc) has good anti-diabetic activity

  15. Expression and Characterization of a Potent Long-Acting GLP-1 Receptor Agonist, GLP-1-IgG2σ-Fc

    PubMed Central

    Yang, Yi; Chen, Fang; Wan, Deyou; Liu, Yunhui; Yang, Li; Feng, Hongru; Cui, Xinling; Gao, Xin; Song, Haifeng

    2016-01-01

    Human GLP-1 (glucagon-like peptide-1) can produce a remarkable improvement in glycemic control in patients with type 2 diabetes. However, its clinical benefits are limited by its short half-life, which is less than 2 min because of its small size and rapid enzymatic inactivation by dipeptidyl peptidase IV. We engineered GLP-1-IgG2σ-Fc, a 68-kDa fusion protein linking a variant human GLP-1 (A8G/G26E/R36G) to a human IgG2σ constant heavy-chain. A stably transfected Chinese hamster ovary cell line was obtained using electroporation. Western blotting showed that the expressed protein was immunoreactive to both GLP-1 and IgG antibodies. GLP-1-IgG2σ-Fc stimulated insulin secretion from INS-1 cells in a dose- and glucose-dependent manner and increased insulin mRNA expression. The half-life of GLP-1-IgG2σ-Fc in cynomolgus monkeys was approximately 57.1 ± 4.5 h. In the KKAy mouse model of diabetes, one intraperitoneal injection of GLP-1-IgG2σ-Fc (1 mg/kg) reduced blood glucose levels for 5 days. A 4-week repeat-administration study identified sustained effects on blood glucose levels. Oral glucose tolerance tests conducted at the beginning and end of this 4-week period showed that GLP-1-IgG2σ-Fc produced a stable glucose lowering effect. In addition, KKAy mice treated with GLP-1-IgG2σ-Fc showed statistically significant weight loss from day 23. In conclusion, these properties of GLP-1-IgG2σ-Fc demonstrated that it represented a potential long-acting GLP-1 receptor agonist for the treatment of type 2 diabetes. PMID:27232339

  16. Increased expression of CCL18, CCL19, and CCL17 by dendritic cells from patients with rheumatoid arthritis, and regulation by Fc gamma receptors

    PubMed Central

    Radstake, T; van der Voort, R; ten, B; de Waal, Malefijt M; Looman, M; Figdor, C; van den Berg, W B; Barrera, P; Adema, G

    2005-01-01

    Background: Dendritic cells (DC) have a role in the regulation of immunity and tolerance, attracting inflammatory cells by the production of various chemokines (CK). Fc gamma receptors (FcγR) may be involved in regulation of the DC function. Objective: To assess the expression of CK by immature (iDC) and mature DC (mDC) and its regulation by FcγR in patients with RA and healthy donors (HC). Methods: Expression of CK by DC from patients with RA and from HC was determined by real time quantitative PCR and ELISA. DC were derived from monocytes following standardised protocols. To study the potential regulation by FcγR, iDC were stimulated with immune complexes (IC) during lipopolysaccharide (LPS) induced maturation. The presence of CK was studied in synovial tissue from patients with RA, osteoarthritis, and healthy subjects by RT-PCR and immunohistochemistry. Results: iDC from patients with RA had markedly increased mRNA levels of the CK CCL18 and CXCL8. Upon maturation with LPS, expression of CCL18, CCL19, CXCL8, CCL3, and CCL17 increased dramatically, reaching significantly higher levels in patients with RA. Monocytes failed to express these CK, except for CXCL8 and CCL3. IC-mediated triggering of the FcγR on DC from patients with highly active RA down regulated all CK, whereas the reverse was seen when DC from patients with low disease activity and healthy donors were stimulated. CCL18 was significantly increased in RA synovial tissue. Conclusion: Increased CK expression by DC was found in patients with RA. This expression is partly regulated by FcγR triggering and results in an inhibitory DC subtype in RA upon FcγR-mediated triggering. PMID:15331393

  17. The inhibitory effect of ionizing radiation on Fc and C3 receptors on mouse and human leukocytes, and the protective potential of human albumin

    SciTech Connect

    Herrera, M.A.; Diaz-Perches, R.; Gutierrez, M.; Gamminio, E.; Liera, C.; Nieto, P.; Weiss-Steider, B. )

    1990-08-01

    The effect that ionizing radiation has in vitro on Fc and C3 receptors was evaluated at various doses and measured by means of erythrocytes coated with antibody (EA) and erythrocytes coated with antibody and complement (EAC) rosettes on human peripheral blood leukocytes (PBL) and on mouse bone marrow cells (BMC) and PBL. We found that the number of cells with either EA and EAC rosettes decreased as the radiation doses increased, and that they were almost absent when the highest doses were employed. We obtained evidence that albumin is a natural source of radio-protection for Fc and C3 receptors, and we showed that by increasing the amount of this molecule we could completely protect receptors for EA and EAC in vitro. Finally, the possible therapeutic value of the administration of human albumin to patients undergoing radiotherapy is discussed.

  18. IgG-assisted age-dependent clearance of Alzheimer's amyloid beta peptide by the blood-brain barrier neonatal Fc receptor.

    PubMed

    Deane, Rashid; Sagare, Abhay; Hamm, Katie; Parisi, Margaret; LaRue, Barbra; Guo, Huang; Wu, Zhenhua; Holtzman, David M; Zlokovic, Berislav V

    2005-12-14

    The role of blood-brain barrier (BBB) transport in clearance of amyloid beta-peptide (Abeta) by Abeta immunotherapy is not fully understood. To address this issue, we studied the effects of peripherally and centrally administered Abeta-specific IgG on BBB influx of circulating Abeta and efflux of brain-derived Abeta in APPsw(+/-) mice, a model that develops Alzheimer's disease-like amyloid pathology, and wild-type mice. Our data show that anti-Abeta IgG blocks the BBB influx of circulating Abeta in APPsw(+/-) mice and penetrates into the brain to sequester brain Abeta. In young mice, Abeta-anti-Abeta complexes were cleared from brain to blood by transcytosis across the BBB via the neonatal Fc receptor (FcRn) and the low-density lipoprotein receptor-related protein (LRP), whereas in older mice, there was an age-dependent increase in FcRn-mediated IgG-assisted Abeta BBB efflux and a decrease in LRP-mediated clearance of Abeta-anti-Abeta complexes. Inhibition of the FcRn pathway in older APPsw(+/-) mice blocked clearance of endogenous Abeta40/42 by centrally administered Abeta immunotherapy. Moreover, deletion of the FcRn gene in wild-type mice inhibited clearance of endogenous mouse Abeta40/42 by systemically administered anti-Abeta. Our data suggest that the FcRn pathway at the BBB plays a crucial role in IgG-assisted Abeta removal from the aging brain.

  19. Heterogeneity of human lymphocyte Fc receptors. II. Relationship to antibody-dependent, cell-mediated cytotoxicity

    PubMed Central

    Gormus, B. J.; Woodson, Mildred; Kaplan, M. E.

    1978-01-01

    Human peripheral blood lymphocytes (PBL) were incubated (stripped) with pronase or papain and compared with unstripped lymphocytes for their ability to mediate antibody-dependent, cell-mediated cytotoxicity (ADCC). Despite marked removal or inactivation of receptors for heat-aggregated IgG (aggG) by proteolytic digestion, and pronounced changes in the percentages of cells rosetting with IgG-sensitized erythrocytes (EA) (decreased by papain, increased by pronase), stripped PBL functioned normally in ADCC. Stripped and unstripped lymphocytes were pre-treated with aggG to determine the role of aggG receptors in ADCC. AggG almost totally abolished ADCC by unstripped PBL, but inhibited ADCC by enzyme-stripped lymphocytes relatively poorly. Neither untreated nor stripped PBL were able to induce cytotoxicity of chicken erythrocyte (CRBC) target cells sensitized with the Fab'2 fragment of anti-CRBC IgG antibody (CRBC-A). Exposure of PBL to EA monolayers composed of CRBC-A or of sheep erythrocytes (SRBC) sensitized with rabbit anti-SRBC IgG antibody (SRBC-A) depleted PBL of cells that rosetted with CRBC-A and with human Rh-positive, type O erythrocytes sensitized with the human anti-Rh serum Ripley (HRBC-A Ripley). Non-adherent cells were incapable of binding aggG and had markedly diminished cytotoxicity in ADCC. Similarly, exposure of PBL to HRBC-A Ripley monolayers resulted in non-adherent cells that were incapable of rosette formation with HRBC-A or CRBC-A, failed to bind aggG, and exhibited significantly diminished ADCC activity. These studies indicated that: (1) cytotoxic effector PBL active in ADCC (K cells) have receptors for aggG and for EA; (2) PBL deficient in functional aggG receptors (enzymatically inactivated or removed) are capable of inducing normal levels of ADCC; (3) aggG and EA receptors appear to be closely associated on native K-cell membranes; (4) there is no clear-cut relationship in a given lymphocyte population between the presence of either aggG or

  20. Pretreatment with a soluble activin type IIB receptor/Fc fusion protein improves hypoxia-induced muscle dysfunction

    PubMed Central

    Pistilli, Emidio E.; Bogdanovich, Sasha; Mosqueira, Matias; Lachey, Jennifer; Seehra, Jasbir

    2010-01-01

    Hypoxia, or reduced oxygen, occurs in a variety of clinical and environmental situations. Hypoxic exposure is associated with decreased muscle mass and a concomitant reduction in exercise capacity, although the exact mechanisms are not completely understood. The activin type IIB receptor (ActRIIB) is a receptor for transforming growth factor-β (TGFβ) superfamily members that are involved in the negative regulation of lean tissue mass. Given that hypoxia has negative effects on muscle mass and function and that modulation of the ActRIIB has been shown to increase muscle mass, we tested the hypothesis that pharmacological targeting of the ActRIIB for 2 wk would attenuate the loss of muscle mass and function in mice after exposure to normobaric hypoxia. ActRIIB modulation was achieved using a soluble activin receptor/Fc fusion protein (sActRIIB) in mice housed in a hypoxic chamber for 1 or 2 wk. Hypoxia induced a reduction in body weight in PBS- and sActRIIB-treated mice, although sActRIIB-treated mice remained larger throughout the hypoxic exposure. The absolute forces generated by extensor digitorum longus muscles were also significantly greater in sActRIIB- than PBS-treated mice and were more resistant to eccentric contraction-induced force drop after eccentric lengthening contractions. In summary, sActRIIB pretreatment attenuated hypoxia-induced muscle dysfunction. These data suggest that targeting the ActRIIB is an effective strategy to counter hypoxia-induced muscle dysfunction and to preacclimatize to hypoxia in clinical or high-altitude settings. PMID:19864340

  1. Pretreatment with a soluble activin type IIB receptor/Fc fusion protein improves hypoxia-induced muscle dysfunction.

    PubMed

    Pistilli, Emidio E; Bogdanovich, Sasha; Mosqueira, Matias; Lachey, Jennifer; Seehra, Jasbir; Khurana, Tejvir S

    2010-01-01

    Hypoxia, or reduced oxygen, occurs in a variety of clinical and environmental situations. Hypoxic exposure is associated with decreased muscle mass and a concomitant reduction in exercise capacity, although the exact mechanisms are not completely understood. The activin type IIB receptor (ActRIIB) is a receptor for transforming growth factor-beta (TGFbeta) superfamily members that are involved in the negative regulation of lean tissue mass. Given that hypoxia has negative effects on muscle mass and function and that modulation of the ActRIIB has been shown to increase muscle mass, we tested the hypothesis that pharmacological targeting of the ActRIIB for 2 wk would attenuate the loss of muscle mass and function in mice after exposure to normobaric hypoxia. ActRIIB modulation was achieved using a soluble activin receptor/Fc fusion protein (sActRIIB) in mice housed in a hypoxic chamber for 1 or 2 wk. Hypoxia induced a reduction in body weight in PBS- and sActRIIB-treated mice, although sActRIIB-treated mice remained larger throughout the hypoxic exposure. The absolute forces generated by extensor digitorum longus muscles were also significantly greater in sActRIIB- than PBS-treated mice and were more resistant to eccentric contraction-induced force drop after eccentric lengthening contractions. In summary, sActRIIB pretreatment attenuated hypoxia-induced muscle dysfunction. These data suggest that targeting the ActRIIB is an effective strategy to counter hypoxia-induced muscle dysfunction and to preacclimatize to hypoxia in clinical or high-altitude settings.

  2. Exon skipping of FcεRIβ eliminates expression of the high-affinity IgE receptor in mast cells with therapeutic potential for allergy

    PubMed Central

    Cruse, Glenn; Yin, Yuzhi; Fukuyama, Tomoki; Desai, Avanti; Arthur, Greer K.; Bäumer, Wolfgang; Beaven, Michael A.; Metcalfe, Dean D.

    2016-01-01

    Allergic diseases are driven by activation of mast cells and release of mediators in response to IgE-directed antigens. However, there are no drugs currently available that can specifically down-regulate mast cell function in vivo when chronically administered. Here, we describe an innovative approach for targeting mast cells in vitro and in vivo using antisense oligonucleotide-mediated exon skipping of the β-subunit of the high-affinity IgE receptor (FcεRIβ) to eliminate surface high-affinity IgE receptor (FcεRI) expression and function, rendering mast cells unresponsive to IgE-mediated activation. As FcεRIβ expression is restricted to mast cells and basophils, this approach would selectively target these cell types. Given the success of exon skipping in clinical trials to treat genetic diseases such as Duchenne muscular dystrophy, we propose that exon skipping of FcεRIβ is a potential approach for mast cell-specific treatment of allergic diseases. PMID:27872312

  3. Molecular mimicry between Fc receptor and S peplomer protein of mouse hepatitis virus, bovine corona virus, and transmissible gastroenteritis virus.

    PubMed

    Oleszak, E L; Kuzmak, J; Hogue, B; Parr, R; Collisson, E W; Rodkey, L S; Leibowitz, J L

    1995-02-01

    We have previously demonstrated molecular mimicry between the S peplomer protein of mouse hepatitis virus (MHV) and Fc gamma R (Fc gamma R). A monoclonal antibody (MAb) to mouse Fc gamma R (2.4G2 anti-Fc gamma R MAb), purified rabbit immunoglobulin, but not their F(ab')2 fragments, as well as mouse and rat IgG, immunoprecipitated (1) recombinant S peplomer protein expressed by a vaccinia virus recombinant in human, rabbit, and mouse cells, and (2) natural S peplomer protein from cells infected with several strains of MHV and MHV escaped mutants. We report here results of studies documenting molecular mimicry between Fc gamma R and S peplomer protein of viruses representing three distinct antigenic subgroups of the Coronaviridae. We have shown a molecular mimicry between the S peplomer protein of bovine corona virus (BCV) and Fc gamma R. The 2.4G2 anti-Fc gamma R MAb, rabbit IgG, but not its F(ab')2 fragments, as well as homologous bovine serum, free of anti-BCV antibodies, immunoprecipitated S peplomer protein of BCV (Mebus strain). In contrast, we did not find molecular mimicry between S peplomer protein of human corona virus (HCV-OC43) and Fc gamma R. Although the OC43 virus belongs to the same antigenic group as MHV and BCV, MAb specific for human Fc gamma RI or Fc gamma RII and purified human IgG1, IgG2, and IgG3 myeloma proteins did not immunoprecipitate the S peplomer protein from HCV-OC43-infected RD cells. In addition, we did demonstrate molecular mimicry between the S peplomer protein of porcine transmissible gastroenteritis virus (TGEV) and Fc gamma R. TGEV belongs to the second antigenic subgroup of coronaviridae.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Fc gamma receptor 3A and 2A polymorphisms do not predict response to rituximab in follicular lymphoma

    PubMed Central

    Kenkre, Vaishalee P.; Hong, Fangxin; Cerhan, James R.; Lewis, Marcia; Sullivan, Leslie; Williams, Michael E.; Gascoyne, Randy D.; Horning, Sandra J.; Kahl, Brad S.

    2015-01-01

    Purpose Pre-clinical studies suggest that single nucleotide polymorphisms (SNPs) in the Fcγ receptor (FCGR) genes influence response to rituximab, but the clinical relevance of this is uncertain. Experimental Design We prospectively obtained specimens for genotyping in the RESORT study, where 408 previously untreated, low tumor burden follicular lymphoma (FL) patients were treated with single agent rituximab. Patients received rituximab in 4 weekly doses and responders were randomized to rituximab re-treatment (RR) upon progression versus maintenance rituximab (MR). SNP genotyping was performed in 321 consenting patients. Results Response rates to initial therapy and response duration were correlated with the FCGR3A SNP at position 158 (rs396991) and the FCGR2A SNP at position 131 (rs1801274). The response rate to initial rituximab was 71%. No FCGR genotypes or grouping of genotypes were predictive of initial response. 289 patients were randomized to RR (n = 143) or to MR (n = 146). With a median follow up of 5.5 years, the 3-yr response duration in the RR arm and the MR arm was 50% and 78%, respectively. Genotyping was available in 235 of 289 randomized patients. In patients receiving RR (n = 115) or MR (n =120), response duration was not associated with any FCGR genotypes or genotype combinations. Conclusions Based on this analysis of treatment-naïve, low tumor burden FL, we conclude that the FCGR3A and FCGR2A SNPs do not confer differential responsiveness to rituximab. PMID:26510856

  5. Fc receptor-mediated, antibody-dependent enhancement of bacteriophage lambda-mediated gene transfer in mammalian cells.

    PubMed

    Sapinoro, Ramil; Volcy, Ketna; Rodrigo, W W Shanaka I; Schlesinger, Jacob J; Dewhurst, Stephen

    2008-04-10

    Lambda phage vectors mediate gene transfer in cultured mammalian cells and in live mice, and in vivo phage-mediated gene expression is increased when mice are pre-immunized with bacteriophage lambda. We now show that, like eukaryotic viruses, bacteriophage vectors are subject to Fc receptor-mediated, antibody-dependent enhancement of infection in mammalian cells. Antibody-dependent enhancement of phage gene transfer required FcgammaRI, but not its associated gamma-chain, and was not supported by other FcgammaR family members (FcgammaRIIA, FcgammaRIIB, and FcgammaRIII). Studies using chlorpromazine and latrunculin A revealed an important role for clathrin-mediated endocytosis (chlorpromazine) and actin filaments (latrunculin A) in antibody-enhanced phage gene transfer. This was confirmed by experiments using inhibitors of endosomal acidification (bafilomycin A1, monensin) and by immunocytochemical colocalization of internalized phage particles with early endosome-associated protein-1 (EAA1). In contrast, microtubule-targeting agents (nocodazole, taxol) increased the efficiency of antibody-enhanced phage gene transfer. These results reveal an unexpected antibody-dependent, FcgammaRI-mediated enhancement of phage transduction in mammalian cells, and suggest new approaches to improve bacteriophage-mediated gene transfer.

  6. Enhanced suppression of adenovirus replication by triple combination of anti-adenoviral siRNAs, soluble adenovirus receptor trap sCAR-Fc and cidofovir.

    PubMed

    Pozzuto, Tanja; Röger, Carsten; Kurreck, Jens; Fechner, Henry

    2015-08-01

    Adenoviruses (Ad) generally induce mild self-limiting respiratory or intestinal infections but can also cause serious disease with fatal outcomes in immunosuppressed patients. Antiviral drug therapy is an important treatment for adenoviral infections but its efficiency is limited. Recently, we have shown that gene silencing by RNA interference (RNAi) is a promising new approach to inhibit adenoviral infection. In the present in vitro study, we examined whether the efficiency of an RNAi-based anti-adenoviral therapy can be further increased by combination with a virus receptor trap sCAR-Fc and with the antiviral drug cidofovir. Initially, three siRNAs, siE1A_4, siIVa2_2 and Pol-si2, targeting the adenoviral E1A, IVa2 and DNA polymerase mRNAs, respectively, were used for gene silencing. Replication of the Ad was inhibited in a dose dependent manner by each siRNA, but the efficiency of inhibition differed (Pol-si2>siIVa2_2>siE1A_4). Double or triple combinations of the siRNAs compared with single siRNAs did not result in a measurably higher suppression of Ad replication. Combination of the siRNAs (alone or mixes of two or three siRNAs) with sCAR-Fc markedly increased the suppression of adenoviral replication compared to the same siRNA treatment without sCAR-Fc. Moreover, the triple combination of a mix of all three siRNAs, sCAR-Fc and cidofovir was about 23-fold more efficient than the combination of siRNAs mix/sCAR-Fc and about 95-fold more efficient than the siRNA mix alone. These data demonstrate that co-treatment of cells with sCAR-Fc and cidofovir is suitable to increase the efficiency of anti-adenoviral siRNAs.

  7. Monoacylglycerol lipase promotes Fcγ receptor-mediated phagocytosis in microglia but does not regulate LPS-induced upregulation of inflammatory cytokines.

    PubMed

    Kouchi, Zen

    2015-08-21

    Monoacylglycerol lipase (MAGL) is important for neuroinflammation. However, the regulatory mechanisms underlying its expression and function remain unknown. Lipopolysaccharide (LPS) treatment post-translationally upregulated MAGL expression, whereas it downregulated MAGL transcription through a Stat6-mediated mechanism in microglia. Neither MAGL knockdown nor JZL-184, a selective MAGL inhibitor, suppressed LPS-induced upregulation of inflammatory cytokines in microglia. Moreover, exogenous expression of MAGL in BV-2 microglial cell line, which lacks endogenous MAGL, did not promote the induction of inflammatory cytokines by LPS treatment. Interestingly, MAGL knockdown reduced Fcγ receptor-mediated phagocytosis in primary microglia, and introduction of MAGL into the BV-2 cells increased Fcγ receptor-mediated phagocytosis. Collectively, these results suggest that MAGL regulates phagocytosis, but not LPS-mediated cytokine induction in microglia.

  8. Cell-bound IgE and increased expression of Fc epsilon-receptors on dendritic cells in cutaneous infiltrates of mycosis fungoides.

    PubMed Central

    Preesman, A H; Van de Winkel, J G; Magnusson, C G; Toonstra, J; van der Putte, S C; van Vloten, W A

    1991-01-01

    Skin biopsies of 31 non-atopic patients, 20 with mycosis fungoides, six with psoriasis and five with contact dermatitis, and of five non-atopic healthy controls were compared for the presence of cell-bound IgE and vacant IgE binding sites. IgE+ cells were demonstrated in the cutaneous infiltrate of nine (45%) patients with mycosis fungoides, two (33%) with psoriasis and one (20%) with contact dermatitis. Following pre-incubation of skin sections with IgE myeloma protein to saturate vacant IgE-binding sites, 14 out of 16 patients (88%) with stage I mycosis fungoides, five (83%) patients with psoriasis and one (20%) with contact dermatitis showed an increase in the number of IgE+ cells. While cell-bound IgE was positively related to serum IgE levels the expression of IgE-binding sites was not. All IgE+ cells were HLA-DR+ dendritic cells identified as either macrophages (CD68+, CD14+) or Langerhans cells (CD1+). Skin biopsies of non-atopic healthy controls or clinically uninvolved skin in mycosis fungoides had neither any IgE+ cells nor any vacant binding sites. Inhibition studies with IgG1, IgG4 and IgE myeloma proteins as well as with several enzymatic fragments of IgE demonstrated that IgE interacted with Fc epsilon-receptors through isotype-specific structures on the Fc epsilon-fragment. Four anti-CD23 monoclonal antibodies, however, were unable to stain vacant Fc epsilon-receptors nor could they block IgE-binding. We hypothesize that locally-secreted lymphokines, like IL-4 or interferon-gamma, induce Fc epsilon-receptors on dendritic cells in the cutaneous infiltrate and that these receptors become occupied in parallel with elevated serum IgE levels. Images Fig. 1 Fig. 2 PMID:1834378

  9. Contribution of Fcγ receptors to human respiratory syncytial virus pathogenesis and the impairment of T-cell activation by dendritic cells.

    PubMed

    Gómez, Roberto S; Ramirez, Bruno A; Céspedes, Pablo F; Cautivo, Kelly M; Riquelme, Sebastián A; Prado, Carolina E; González, Pablo A; Kalergis, Alexis M

    2016-01-01

    Human respiratory syncytial virus (hRSV) is the leading cause of infant hospitalization related to respiratory disease. Infection with hRSV produces abundant infiltration of immune cells into the airways, which combined with an exacerbated pro-inflammatory immune response can lead to significant damage to the lungs. Human RSV re-infection is extremely frequent, suggesting that this virus may have evolved molecular mechanisms that interfere with host adaptive immunity. Infection with hRSV can be reduced by administering a humanized neutralizing antibody against the virus fusion protein in high-risk infants. Although neutralizing antibodies against hRSV effectively block the infection of airway epithelial cells, here we show that both, bone marrow-derived dendritic cells (DCs) and lung DCs undergo infection with IgG-coated virus (hRSV-IC), albeit abortive. Yet, this is enough to negatively modulate DC function. We observed that such a process is mediated by Fcγ receptors (FcγRs) expressed on the surface of DCs. Remarkably, we also observed that in the absence of hRSV-specific antibodies FcγRIII knockout mice displayed significantly less cellular infiltration in the lungs after hRSV infection, compared with wild-type mice, suggesting a potentially harmful, IgG-independent role for this receptor in hRSV disease. Our findings support the notion that FcγRs can contribute significantly to the modulation of DC function by hRSV and hRSV-IC. Further, we provide evidence for an involvement of FcγRIII in the development of hRSV pathogenesis.

  10. Interferon gamma rapidly induces in human monocytes a DNA-binding factor that recognizes the gamma response region within the promoter of the gene for the high-affinity Fc gamma receptor.

    PubMed Central

    Wilson, K C; Finbloom, D S

    1992-01-01

    Interferon gamma (IFN-gamma) transcriptionally activates several early-response genes in monocytes that are important for the ultimate phenotype of the activated macrophage. One of these genes is the high-affinity Fc receptor for IgG (Fc gamma RI). Recently, Pearse et al. [Pearse, R.N., Feinman, R. & Ravetch, J. V. (1991) Proc. Natl. Acad. Sci. USA 88, 11305-11309] defined within the promoter region of the Fc gamma RI gene an element, the gamma response region, which was necessary for IFN-gamma-induced enhancement of Fc gamma RI. In this report we describe the induction by IFN-gamma of a DNA-binding factor, FcRF gamma (Fc gamma RI DNA-binding factor, IFN-gamma induced), that specifically recognizes the gamma response region element. Electrophoretic mobility shift assays (EMSAs) demonstrated the presence of FcRF gamma in human monocytes within 1 min after exposure to IFN-gamma. On EMSA, FcRF gamma consisted of two complexes termed FcRF gamma 1 and FcRF gamma 2. The nuclear concentration of FcRF gamma rapidly increased, peaked at 15 min, and then fell after 1-2 hr. Dose-response studies revealed (i) as little as 0.05 ng of IFN-gamma per ml induced FcRF gamma, (ii) maximum activation occurred at 1 ng/ml, and (iii) steady-state levels of Fc gamma RI mRNA closely paralleled that of FcRF gamma. Since FcRF gamma was activated in cells normally not expressing Fc gamma RI RNA, other regulatory mechanisms must control Fc gamma RI-restricted tissue expression. Activation of FcRF gamma by IFN-gamma was inhibited by pretreatment with 500 nM staurosporin and 25 microM phenyl arsine oxide. These data suggest that a kinase and possibly a phosphatase activity are required for IFN-gamma-induced signaling of FcRF gamma in monocytes. Images PMID:1334553

  11. Fc-receptor-mediated phagocytosis is regulated by mechanical properties of the target

    NASA Technical Reports Server (NTRS)

    Beningo, Karen A.; Wang, Yu-li

    2002-01-01

    Phagocytosis is an actin-based process used by macrophages to clear particles greater than 0.5 microm in diameter. In addition to its role in immunological responses, phagocytosis is also necessary for tissue remodeling and repair. To prevent catastrophic autoimmune reactions, phagocytosis must be tightly regulated. It is commonly assumed that the recognition/selection of phagocytic targets is based solely upon receptor-ligand binding. Here we report an important new criterion, that mechanical parameters of the target can dramatically affect the efficiency of phagocytosis. When presented with particles of identical chemical properties but different rigidity, macrophages showed a strong preference to engulf rigid objects. Furthermore, phagocytosis of soft particles can be stimulated with the microinjection of constitutively active Rac1 but not RhoA, and with lysophosphatidic acid, an agent known to activate the small GTP-binding proteins of the Rho family. These data suggest a Rac1-dependent mechanosensory mechanism for phagocytosis, which probably plays an important role in a number of physiological and pathological processes from embryonic development to autoimmune diseases.

  12. Heterogeneity of nonimmune immunoglobulin Fc reactivity among gram-positive cocci: description of three major types of receptors for human immunoglobulin G.

    PubMed

    Myhre, E B; Kronvall, G

    1977-09-01

    Two hundred and thirty strains of various gram-positive cocci were tested for quantitative, nonimmune binding of radiolabeled human polyclonal immunoglobulin G (IgG). The majority of coagulase-positive staphylococci and streptococci belonging to serogroups C and G showed a high uptake of IgG. The binding of immunoglobulin to group A streptococci was considerably less, with a number of strains completely negative. None of the pneumococcal or the group B or D streptococcal strains displayed any binding capacity. Heterogeneity of the IgG reactivity of various reactive strains was studied in an inhibition assay using 10 different animal serum pools. Three different inhibition patterns were seen, each of them revealing a striking degree of homogeneity within single bacterial species. Staphylococcus aureus and group A streptococci, respectively, constituted two homogeneous groups which differed markedly from each other and from C and G streptococci. No differences were observed between group C and G streptococci. Based on the profound differences between these homogeneous groups, three major types of Fc receptors could be defined. Type I and II Fc receptors were found on S. aureus and on group A streptococci, respectively. Fc receptor type III represented the immunoglobulin-binding structure of both group C and G streptococci.

  13. Scavenger receptor function of mouse Fcγ receptor III contributes to progression of atherosclerosis in apolipoprotein E hyperlipidemic mice.

    PubMed

    Zhu, Xinmei; Ng, Hang Pong; Lai, Yen-Chun; Craigo, Jodi K; Nagilla, Pruthvi S; Raghani, Pooja; Nagarajan, Shanmugam

    2014-09-01

    Recent studies showed loss of CD36 or scavenger receptor-AI/II (SR-A) does not ameliorate atherosclerosis in a hyperlipidemic mouse model, suggesting receptors other than CD36 and SR-A may also contribute to atherosclerosis. In this report, we show that apolipoprotein E (apoE)-CD16 double knockout (DKO; apoE-CD16 DKO) mice have reduced atherosclerotic lesions compared with apoE knockout mice. In vivo and in vitro foam cell analyses showed apoE-CD16 DKO macrophages accumulated less neutral lipids. Reduced foam cell formation in apoE-CD16 DKO mice is not due to change in expression of CD36, SR-A, and LOX-1. This led to a hypothesis that CD16 may have scavenger receptor activity. We presented evidence that a soluble form of recombinant mouse CD16 (sCD16) bound to malondialdehyde-modified low-density lipoprotein (MDALDL), and this binding is blocked by molar excess of MDA- modified BSA and anti-MDA mAbs, suggesting CD16 specifically recognizes MDA epitopes. Interestingly, sCD16 inhibited MDALDL binding to macrophage cell line, as well as soluble forms of recombinant mouse CD36, SR-A, and LOX-1, indicating CD16 can cross-block MDALDL binding to other scavenger receptors. Anti-CD16 mAb inhibited immune complex binding to sCD16, whereas it partially inhibited MDALDL binding to sCD16, suggesting MDALDL binding site may be in close proximity to the immune complex binding site in CD16. Loss of CD16 expression resulted in reduced levels of MDALDL-induced proinflammatory cytokine expression. Finally, CD16-deficient macrophages showed reduced MDALDL-induced Syk phosphorylation. Collectively, our findings suggest scavenger receptor activity of CD16 may, in part, contribute to the progression of atherosclerosis.

  14. Direct interaction of Syk and Lyn protein tyrosine kinases in rat basophilic leukemia cells activated via type I Fc epsilon receptors.

    PubMed

    Amoui, M; Dráberová, L; Tolar, P; Dráber, P

    1997-01-01

    Activation of rat mast cells through the receptor with high affinity for IgE (Fc epsilonRI) requires a complex set of interactions involving transmembrane subunits of the Fc epsilonRI and two classes of nonreceptor protein tyrosine kinase (PTK). the Src family PTK p53/p56(lyn) (Lyn) and the Syk/ZAP-family PTK p72(syk) (Syk). Early activation events involve increased activity of Lyn and Syk kinases and their translocation into membrane domains containing aggregated Fc epsilonRI, but the molecular mechanisms responsible for these changes have remained largely unclear. To determine the role of Fc epsilonRI subunits in this process, we have analyzed Syk- and Lyn-associated proteins in activated rat basophilic leukemia (RBL) cells and their variants deficient in the expression of Fc epsilonRI beta or gamma subunits. Sepharose 4B gel chromatography of postnuclear supernatants from Nonidet-P40-solubilized antigen (Ag)- or pervanadate-activated RBL cells revealed extensive changes in the size of complexes formed by Lyn and Syk kinases and other cellular components. A fusion protein containing Src homology 2 (SH2) and SH3 domains of Lyn bound Syk from lysates of nonactivated RBL cells; an increased binding was observed when lysates from Ag- or pervanadate-activated cells were used. A similar amount of Syk was bound when lysates from pervanadate-activated variant cells deficient in the expression of Fc epsilonRI beta or gamma subunits were used, suggesting that Fc epsilonRI does not function as the only intermediate in the formation of the Syk-Lyn complexes. Further experiments have indicated that Syk-Lyn interactions occur in Ag-activated RBL cells under in vivo conditions and that these interactions could involve direct binding of the Lyn SH2 domain with phosphorylated tyrosine of Syk. The physical association of Lyn and Syk during mast-like cell activation supports the recently proposed functional cooperation of these two tyrosine kinases in Fc epsilonRI signaling.

  15. Regulation of FcϵRI Signaling in Mast Cells by G Protein-coupled Receptor Kinase 2 and Its RH Domain*

    PubMed Central

    Subramanian, Hariharan; Gupta, Kshitij; Parameswaran, Narayanan; Ali, Hydar

    2014-01-01

    Agonist-induced phosphorylation of G protein-coupled receptors (GPCRs) by GPCR kinases (GRKs) promotes their desensitization and internalization. Here, we sought to determine the role of GRK2 on FcϵRI signaling and mediator release in mast cells. The strategies utilized included lentiviral shRNA-mediated GRK2 knockdown, GRK2 gene deletion (GRK2flox/flox/cre recombinase) and overexpression of GRK2 and its regulator of G protein signaling homology (RH) domain (GRK2-RH). We found that silencing GRK2 expression caused ∼50% decrease in antigen-induced Ca2+ mobilization and degranulation but resulted in ablation of cytokine (IL-6 and IL-13) generation. The effect of GRK2 on cytokine generation does not require its catalytic activity but is mediated via the phosphorylation of p38 and Akt. Overexpression of GRK2 or its RH domain (GRK2-RH) enhanced antigen-induced mast cell degranulation and cytokine generation without affecting the expression levels of any of the FcϵRI subunits (α, β, and γ). GRK2 or GRK2-RH had no effect on antigen-induced phosphorylation of FcϵRIγ or Src but enhanced tyrosine phosphorylation of Syk. These data demonstrate that GRK2 modulates FcϵRI signaling in mast cells via at least two mechanisms. One involves GRK2-RH and modulates tyrosine phosphorylation of Syk, and the other is mediated via the phosphorylation of p38 and Akt. PMID:24904059

  16. Downregulation of the neonatal Fc receptor expression in non-small cell lung cancer tissue is associated with a poor prognosis

    PubMed Central

    Dalloneau, Emilie; Baroukh, Nadine; Mavridis, Konstantinos; Maillet, Agnès; Gueugnon, Fabien; Courty, Yves; Petit, Agnès; Kryza, Thomas; Del Rio, Maguy; Guyetant, Serge; Castaneda, Diana Carolina Cadena; Dhommée, Christine; Arnoult, Christophe; Scorilas, Andreas

    2016-01-01

    Lung cancer is the leading cause of cancer-related death worldwide. Although the recommended tumor, node and metastasis (TNM) classification and stage determination are important to select therapeutic options for patients with non-small cell lung carcinoma (NSCLC), additional molecular markers are required to indicate the prognosis, in particular within a specific stage, and help with the management of patients. Because neonatal Fc receptor (FcRn) has recently been involved in colon cancer immunosurveillance, we measured its expression in non-cancerous and NSCLC lung tissues and evaluated its prognostic value in overall survival for patient with NSCLC. FcRn expression was determined at both mRNA and protein levels on cancerous and adjacent non-cancerous tissues from 80 NSCLC patients. In NSCLC, FcRn was mainly found in resident and tumor infiltrating immune cells. The corresponding mRNA and protein were significantly less abundant in lung tumor than non-cancerous tissue. Moreover, analysis of our cohort and datasets from the public data bases show that FCGRT mRNA down-regulation is a robust and independent, unfavorable predictive factor of NSCLC patient survival. We conclude that FCGRT mRNA expression may be a useful additional marker for immunoscoring, reflecting tumor immune system, and help in the decision-making process for NSCLC patients. PMID:27384673

  17. Lipoprotein lipase regulates Fc receptor-mediated phagocytosis by macrophages maintained in glucose-deficient medium.

    PubMed Central

    Yin, B; Loike, J D; Kako, Y; Weinstock, P H; Breslow, J L; Silverstein, S C; Goldberg, I J

    1997-01-01

    During periods of intense activity such as phagocytosis, macrophages are thought to derive most of their energy from glucose metabolism under both aerobic and anaerobic conditions. To determine whether fatty acids released from lipoproteins by macrophage lipoprotein lipase (LPL) could substitute for glucose as a source of energy for phagocytosis, we cultured peritoneal macrophages from normal and LPL knockout (LPL-KO) mice that had been rescued from neonatal demise by expression of human LPL via the muscle creatine kinase promoter. Normal and LPL-KO macrophages were cultured in medium containing normal (5 mM) or low (1 mM) glucose, and were tested for their capacity to phagocytose IgG-opsonized sheep erythrocytes. LPL-KO macrophages maintained in 1 and 5 mM glucose phagocytosed 67 and 79% fewer IgG-opsonized erythrocytes, respectively, than macrophages from normal mice. Addition of VLDL to LPL-expressing macrophages maintained in 1 mM glucose enhanced the macrophages' phagocytosis of IgG-opsonized erythrocytes, but did not stimulate phagocytosis by LPL-KO macrophages. Inhibition of secreted LPL with a monoclonal anti-LPL antibody or with tetrahydrolipstatin blocked the ability of VLDL to enhance phagocytosis by LPL-expressing macrophages maintained in 1 mM glucose. Addition of oleic acid significantly enhanced phagocytosis by both LPL-expressing and LPL-KO macrophages maintained in 1 mM glucose. Moreover, oleic acid stimulated phagocytosis in cells cultured in non-glucose-containing medium, and increased the intracellular stores of creatine phosphate. Inhibition of oxidative phosphorylation, but not of glycolysis, blocked the capacity of oleic acid to stimulate phagocytosis. Receptor-mediated endocytosis of acetyl LDL by macrophages from LPL-expressing and LPL-KO mice was similar whether the cells were maintained in 5 or 1 mM glucose, and was not augmented by VLDL. We postulate that fatty acids derived from macrophage LPL-catalyzed hydrolysis of triglycerides and

  18. Fc receptor-bearing peripheral blood mononuclear cells in breast cancer patients: a possible marker of tumour burden and prognosis.

    PubMed Central

    Bray, J; McPherson, T A

    1981-01-01

    Indirect immunofluorescence was used to identify and quantitate peripheral blood mononuclear (PBM) cells possessing high avidity Fc receptors in 105 patients upon referral to the breast cancer clinic at the Cross Cancer Institute. The cell detected was shown to be a non-adherent PBM, probably belonging to the T or null cell population. The mean percentage +/- 2 standard deviations of PBM-positive cells in 75 patients with no disease or benign breast disease was 5.3 +/- ;6.7, and this was significantly (P less than 0.001) less than the percentage found for 31 patients with breast cancer. The percentage of PBM-positive cells correlated directly with tumour burden in patient with small (less than or equal to 5 cm) tumours without regional node or extranodal metastases (5/13 had greater than or equal to 12% positive PBM) and in those with small tumours plus regional node metastases, but without extranodal metastases (8/10 had greater than or equal to 12% positive PBM). This correlation was less, however, in patients with large tumours (greater than 5 cm), and in those with extranodal metastases (4/8 had greater than or equal to 12% positive PBM), and in patients tested postoperatively (1/13 had greater than or equal to 12% positive PBM) even though 6!13 had regional node metastases at the time of surgery. Thus, this relatively simple assay, which can be done on peripheral blood samples, may turn out to be useful in patients with breast cancer as a prognostic marker insofar as it may be an indirect indicator of tumour burden preoperatively. If so, it may lead to a more aggressive postoperative adjuvant therapy approach to the subpopulation of node-negative PBM-positive breast cancer patients than is currently used for node-negative patients. PMID:7035033

  19. Association analysis of copy numbers of FC-gamma receptor genes for rheumatoid arthritis and other immune-mediated phenotypes.

    PubMed

    Franke, Lude; el Bannoudi, Hanane; Jansen, Diahann T S L; Kok, Klaas; Trynka, Gosia; Diogo, Dorothee; Swertz, Morris; Fransen, Karin; Knevel, Rachel; Gutierrez-Achury, Javier; Ärlestig, Lisbeth; Greenberg, Jeffrey D; Kremer, Joel; Pappas, Dimitrios A; Kanterakis, Alexandros; Weersma, Rinse K; van der Helm-van Mil, Annette H M; Guryev, Viktor; Rantapää-Dahlqvist, Solbritt; Gregersen, Peter K; Plenge, Robert M; Wijmenga, Cisca; Huizinga, Tom W-J; Ioan-Facsinay, Andreea; Toes, Rene E M; Zhernakova, Alexandra

    2016-02-01

    Segmental duplications (SDs) comprise about 5% of the human genome and are enriched for immune genes. SD loci often show copy numbers variations (CNV), which are difficult to tag with genotyping methods. CNV in the Fcγ receptor region (FCGR) has been suggested to be associated with rheumatic diseases. The objective of this study was to delineate association of FCGR-CNV with rheumatoid arthritis (RA), coeliac disease and Inflammatory bowel disease incidence. We developed a method to accurately quantify CNV in SD loci based on the intensity values from the Immunochip platform and applied it to the FCGR locus. We determined the method's validity using three independent assays: segregation analysis in families, arrayCGH, and whole genome sequencing. Our data showed the presence of two separate CNVs in the FCGR locus. The first region encodes FCGR2A, FCGR3A and part of FCGR2C gene, the second encodes another part of FCGR2C, FCGR3B and FCGR2B. Analysis of CNV status in 4578 individuals with RA and 5457 controls indicated association of duplications in the FCGR3B gene in antibody-negative RA (P=0.002, OR=1.43). Deletion in FCGR3B was associated with increased risk of antibody-positive RA, consistently with previous reports (P=0.023, OR=1.23). A clear genotype-phenotype relationship was observed: CNV polymorphisms of the FCGR3A gene correlated to CD16A expression (encoded by FCGR3A) on CD8 T-cells. In conclusion, our method allows determining the CNV status of the FCGR locus, we identified association of CNV in FCGR3B to RA and showed a functional relationship between CNV in the FCGR3A gene and CD16A expression.

  20. Fc receptors for IgG (Fc gamma Rs) on human monocytes and macrophages are not infectivity receptors for human immunodeficiency virus type 1 (HIV-1): studies using bispecific antibodies to target HIV-1 to various myeloid cell surface molecules, including the Fc gamma R.

    PubMed Central

    Connor, R I; Dinces, N B; Howell, A L; Romet-Lemonne, J L; Pasquali, J L; Fanger, M W

    1991-01-01

    Fc gamma Rs (Fc gamma RI, Fc gamma RII, and Fc gamma RIII) are highly expressed on human mononuclear phagocytes and function in the clearance of immune complexes and opsonized pathogens. We have examined the role of Fc gamma R in mediating antibody-dependent clearance of HIV-1 by human monocytes and monocyte-derived macrophages by using bispecific antibodies (BsAbs) to independently target the virus to Fc gamma RI, Fc gamma RII, or Fc gamma RIII. Virus production was markedly reduced in monocytes cultured with strain HIV-1IIIB opsonized with BsAbs that target the virus to either Fc gamma RI or Fc gamma RII compared to monocytes cultured with virus in the absence of BsAbs or in the presence of BsAbs that target the virus to non-Fc gamma R surface antigens (CD33 and HLA-A,B,C). These results were confirmed using the monotropic isolate HIV-1JRFL. Interaction of HIV-1JRFL with Fc gamma RI or Fc gamma RII on human monocytes and Fc gamma RI, Fc gamma RII, or Fc gamma RIII on monocyte-derived macrophages resulted in markedly reduced levels of virus production in these cultures. Moreover, HIV-1 infection of monocytes and monocyte-derived macrophages was completely blocked by anti-CD4 monoclonal antibodies, indicating that interaction with CD4 is required for infectivity even under conditions of antibody-mediated binding of HIV-1 to Fc gamma R. Thus, we propose that highly opsonized HIV-1 initiates high-affinity multivalent interactions with Fc gamma R that trigger endocytosis and intracellular degradation of the antibody-virus complex. At lower levels of antibody opsonization, there are two few interactions with Fc gamma R to initiate endocytosis and intracellular degradation of the antibody-virus complex, but there are enough interactions to stabilize the virus at the cell surface, allowing antibody-dependent enhancement of HIV-1 infection through high-affinity CD4 interactions. However, our results suggest that interaction of highly opsonized HIV-1 with Fc gamma Rs

  1. Raft localization of type I Fcε receptor and degranulation of RBL-2H3 cells exposed to decavanadate, a structural model for V2O5.

    PubMed

    Al-Qatati, Abeer; Fontes, Fabio L; Barisas, B George; Zhang, Dongmei; Roess, Deborah A; Crans, Debbie C

    2013-09-07

    Vanadium oxides (VOs) have been identified as low molecular weight sensitizing agents associated with occupational asthma and compromised pulmonary immunocompetence. Symptoms of adult onset asthma result, in part, from increased signal transduction by Type I Fcε receptors (FcεRI) leading to release of vasoactive compounds including histamine from mast cells. Exposure to (VOs) typically occurs in the form of particles which are insoluble. Upon contact with water or biological fluids, (VOs) form a series of soluble oxoanions, one of which is decavanadate, V10O28(6-) abbreviated V10, which is structurally related to a common vanadium oxide, that is vanadium pentoxide, V2O5. Here we investigate whether V10 may be initiating plasma membrane events associated with activation of FcεRI signal transduction. We show that exposure of RBL-2H3 cells to V10 causes a concentration-dependent increase in degranulation of RBL-2H3 and, in addition, an increase in plasma membrane lipid packing as measured by the fluorescent probe, di-4-ANEPPDHQ. V10 also increases FcεRI accumulation in low-density membrane fragments, i.e., lipid rafts, which may facilitate FcεRI signaling. To determine whether V10 effects on plasma membrane lipid packing were similarly observed in Langmuir monolayers formed from dipalmitoylphosphatidylcholine (DPPC), the extent of lipid packing in the presence and absence of V10 and vanadate was compared. V10 increased the surface area of DPPC Langmuir monolayers by 6% and vanadate decreased the surface area by 4%. These results are consistent with V10 interacting with this class of membrane lipids and altering DPPC packing.

  2. Cellular Uptake of α-Synuclein Oligomer-Selective Antibodies is Enhanced by the Extracellular Presence of α-Synuclein and Mediated via Fcγ Receptors.

    PubMed

    Gustafsson, Gabriel; Eriksson, Fredrik; Möller, Christer; da Fonseca, Tomás Lopes; Outeiro, Tiago F; Lannfelt, Lars; Bergström, Joakim; Ingelsson, Martin

    2017-01-01

    Immunotherapy targeting aggregated α-synuclein has emerged as a potential treatment strategy against Parkinson's disease and other α-synucleinopathies. We have developed α-synuclein oligomer/protofibril selective antibodies that reduce toxic α-synuclein in a human cell line and, upon intraperitoneal administration, in spinal cord of transgenic mice. Here, we investigated under which conditions and by which mechanisms such antibodies can be internalized by cells. For this purpose, human neuroglioma H4 cells were treated with either monoclonal oligomer/protofibril selective α-synuclein antibodies, linear epitope monoclonal α-synuclein antibodies, or with a control antibody. The oligomer/protofibril selective antibody mAb47 displayed the highest cellular uptake and was therefore chosen for additional analyses. Next, α-synuclein overexpressing cells were incubated with mAb47, which resulted in increased antibody internalization as compared to non-transfected cells. Similarly, regular cells exposed to mAb47 together with media containing α-synuclein displayed a higher uptake as compared to cells incubated with regular media. Finally, different Fcγ receptors were targeted and we then found that blockage of FcγRI and FcγRIIB/C resulted in reduced antibody internalization. Our data thus indicate that the robust uptake of the oligomer/protofibril selective antibody mAb47 by human CNS-derived cells is enhanced by extracellular α-synuclein and mediated via Fcγ receptors. Altogether, our finding lend further support to the belief that α-synuclein pathology can be modified by monoclonal antibodies and that these can target toxic α-synuclein species in the extracellular milieu. In the context of immunotherapy, antibody binding of α-synuclein would then not only block further aggregation but also mediate internalization and subsequent degradation of antigen-antibody complexes.

  3. Robust Expression of the Human Neonatal Fc Receptor in a Truncated Soluble Form and as a Full-Length Membrane-Bound Protein in Fusion with eGFP

    PubMed Central

    Seijsing, Johan; Lindborg, Malin; Löfblom, John; Uhlén, Mathias; Gräslund, Torbjörn

    2013-01-01

    Studies on the neonatal Fc receptor (FcRn) have revealed a multitude of important functions in mammals, including protection of IgG and serum albumin (SA) from lysosomal degradation. The pharmacokinetic behavior of therapeutic antibodies, IgG-Fc- and SA-containing drugs is therefore influenced by their interaction with FcRn. Pre-clinical development of such drugs is facilitated if their interaction with FcRn can be studied in vitro. For this reason we have developed a robust system for production of the soluble extracellular domain of human FcRn as well as the full-length receptor as fusion to green fluorescent protein, taking advantage of a lentivirus-based gene delivery system where stable over-expressing cells are easily and rapidly generated. Production of the extracellular domain in multiple-layered culture flasks, followed by affinity purification using immobilized IgG, resulted in capture of milligram amounts of soluble receptor per liter cell culture with retained IgG binding. The receptor was further characterized by SDS-PAGE, western blotting, circular dichroism spectroscopy, ELISA, surface plasmon resonance and a temperature stability assay showing a functional and stable protein of high purity. The full-length receptor was found to be successfully over-expressed in a membrane-bound form with retained pH-dependent IgG- and SA-binding. PMID:24260574

  4. Differential effect of the inhibition of Grb2-SH3 interactions in platelet activation induced by thrombin and by Fc receptor engagement.

    PubMed Central

    Saci, Abdelhafid; Liu, Wang-Qing; Vidal, Michel; Garbay, Christiane; Rendu, Francine; Bachelot-Loza, Christilla

    2002-01-01

    The adaptor protein Grb2 (growth factor receptor-bound protein 2) is involved in cell proliferation via the Ras signalling pathway. In order to study the role of Grb2 in blood platelet responses, we used a peptide containing two proline-rich sequences derived from Sos (peptidimer), which binds to Grb2-Src homology 3 domain (SH3) with a high affinity, and hence inhibits Grb2-SH3-mediated protein interactions. Platelet aggregation and 5-hydroxytryptamine (serotonin) release measured in the presence of the peptidimer were: (i) significantly decreased when induced by thrombin; and (ii) potentiated when induced by the engagement of the Fc receptor. In thrombin-activated platelets, the Grb2-SH2 domain formed an association with the beta3 subunit of the alphaIIb-beta3 integrin (GPIIb-IIIa), Shc, Syk, Src and SHP1 (SH2-containing phosphotyrosine phosphatase 1), whereas these associations did not occur after the engagement of the receptor for the Fc domain of IgG (FcgammaRIIa) or in resting platelets. Grb2-SH3 domains formed an association with the proline-rich sequences of Sos and Cbl in both resting and activated platelets, since the peptidimer abolished these associations. Inhibition of both fibrinogen binding and platelet aggregation by the peptide RGDS (Arg-Gly-Asp-Ser) had no effect on thrombin-induced Grb2-SH2 domain association with the aforementioned signalling molecules, indicating that these associations occurred during thrombin-induced 'inside-out' signalling. Platelet aggregation induced by direct activation via alphaIIb-beta3 ('outside-in' signalling) was potentiated by the peptidimer. The results show that inhibition of Grb2-SH3 interactions with signal-transduction proteins down-regulates thrombin-induced platelet activation, but also potentiates Fc receptor- and alphaIIb-beta3-mediated platelet activation. PMID:11964172

  5. Interaction of p72syk with the gamma and beta subunits of the high-affinity receptor for immunoglobulin E, Fc epsilon RI.

    PubMed Central

    Shiue, L; Green, J; Green, O M; Karas, J L; Morgenstern, J P; Ram, M K; Taylor, M K; Zoller, M J; Zydowsky, L D; Bolen, J B

    1995-01-01

    Activation of protein tyrosine kinases is one of the initial events following aggregation of the high-affinity receptor for immunoglobulin E (Fc epsilon RI) on RBL-2H3 cells, a model mast cell line. The protein tyrosine kinase p72syk (Syk), which contains two Src homology 2 (SH2) domains, is activated and associates with phosphorylated Fc epsilon RI subunits after receptor aggregation. In this report, we used Syk SH2 domains, expressed in tandem or individually, as fusion proteins to identify Syk-binding proteins in RBL-2H3 lysates. We show that the tandem Syk SH2 domains selectively associate with tyrosine-phosphorylated forms of the gamma and beta subunits of Fc epsilon RI. The isolated carboxy-proximal SH2 domain exhibited a significantly higher affinity for the Fc epsilon RI subunits than did the amino-proximal domain. When in tandem, the Syk SH2 domains showed enhanced binding to phosphorylated gamma and beta subunits. The conserved tyrosine-based activation motifs contained in the cytoplasmic domains of the gamma and beta subunits, characterized by two YXXL/I sequences in tandem, represent potential high-affinity binding sites for the dual SH2 domains of Syk. Peptide competition studies indicated that Syk exhibits a higher affinity for the phosphorylated tyrosine activation motif of the gamma subunit than for that of the beta subunit. In addition, we show that Syk is the major protein in RBL-2H3 cells that is affinity isolated with phosphorylated peptides corresponding to the phosphorylated gamma subunit motif. These data suggest that Syk associates with the gamma subunit of the high-affinity receptor for immunoglobulin E through an interaction between the tandem SH2 domains of SH2 domains of Syk and the phosphorylated tyrosine activation motif of the gamma subunit and that Syk may be the major signaling protein that binds to Fc epsilon RI tyrosine activation motif of the gamma subunit and that Syk may be the major signaling protein that binds to Dc epsilon

  6. Protection from Streptococcus pneumoniae infection by C-reactive protein and natural antibody requires complement but not Fc gamma receptors.

    PubMed

    Mold, Carolyn; Rodic-Polic, Bojana; Du Clos, Terry W

    2002-06-15

    Streptococcus pneumoniae is an important human pathogen and the most common cause of community-acquired pneumonia. Both adaptive and innate immune mechanisms provide protection from infection. Innate immunity to S. pneumoniae in mice is mediated by naturally occurring anti-phosphocholine (PC) Abs and complement. The human acute-phase reactant C-reactive protein (CRP) also protects mice from lethal S. pneumoniae infection. CRP and anti-PC Ab share the ability to bind to PC on the cell wall C-polysaccharide of S. pneumoniae and to activate complement. CRP and IgG anti-PC also bind to Fc gamma R. In this study, Fc gamma R- and complement-deficient mice were used to compare the mechanisms of protection conferred by CRP and anti-PC Ab. Injection of CRP protected wild-type, FcR gamma-chain-, Fc gamma RIIb-, and Fc gamma RIII-deficient mice from infection. Complement was required for the protective effect of CRP as cobra venom factor treatment eliminated the effect of CRP in both gamma-chain-deficient and wild-type mice, and CRP failed to protect C3- or C4-deficient mice from infection. Unexpectedly, gamma-chain-deficient mice were extremely sensitive to pneumococcal infection. This sensitivity was associated with low levels of natural anti-PC Ab. Gamma-chain-deficient mice immunized with nonencapsulated S. pneumoniae produced both IgM- and IgG PC-specific Abs, were protected from infection, and were able to clear the bacteria from the bloodstream. The protection provided by immunization was eliminated by complement depletion. The results show that in this model of systemic infection with highly virulent S. pneumoniae, protection from lethality by CRP and anti-PC Abs requires complement, but not Fc gamma R.

  7. Macrophages and Fc-receptor interactions contribute to the antitumour activities of the anti-CD40 antibody SGN-40.

    PubMed

    Oflazoglu, E; Stone, I J; Brown, L; Gordon, K A; van Rooijen, N; Jonas, M; Law, C-L; Grewal, I S; Gerber, H-P

    2009-01-13

    SGN-40 is a therapeutic antibody targeting CD40, which induces potent anti-lymphoma activities via direct apoptotic signalling cells and by cell-mediated cytotoxicity. Here we show antibody-dependent cellular phagocytosis (ADCP) by macrophages to contribute significantly to the therapeutic activities and that the antitumour effects of SGN-40 depend on Fc interactions.

  8. T15 group A streptococcal Fc receptor binds to the same location on IgG as staphylococcal protein A and IgG rheumatoid factors.

    PubMed

    Nardella, F A; Schröder, A K; Svensson, M L; Sjöquist, J; Barber, C; Christensen, P

    1987-02-01

    Previous work has shown that IgG rheumatoid factors (RF) bind to the C gamma 2-C gamma 3 interface region of human IgG in the same area that binds staphylococcal protein A (SPA). Group A, C, and G strains of Streptococci possess Fc receptors that bind to IgG but not to fragments containing only the C gamma 2 or C gamma 3 domains. This work describes the binding site location on human IgG for the binding of the isolated Fc receptor from the T15 strain of a Group A streptococcus and its relationship to the site that binds SPA and the IgG RF. The isolated T15 Fc receptor (T15) with a molecular mass of 29.5 kD inhibited the binding of IgG RF to IgG. The binding of T15 itself to IgG was strongly inhibited by SPA (42.0 kD) and its monovalent fragment D (7 kD). Human IgG fragments consisting of the C gamma 3 domains did not inhibit the binding of T15 to IgG, whereas those with both domains were effective inhibitors. T15 did not bind to rabbit IgG fragments consisting of either the C gamma 2 or C gamma 3 domains, but did bind to those with both domains. An IgG3 myeloma protein was a poor inhibitor and has been shown to bind poorly to the IgG RF. Most IgG3 myeloma proteins did not bind to SPA. The substitution of Arg and Phe for His 435 and Tyr 436 is responsible for the poor binding of IgG3 to SPA and to the IgG RF. Chemical modification of His or Tyr on IgG reduced its ability to inhibit the binding of T15 to IgG. Reversal of the chemical modifications with hydroxylamine resulted in near complete restoration of inhibitory capacity. This information, collectively, coupled with the known positions in space of the His and Tyr residues in the C gamma 2-C gamma 3 interface region, verified that both His 435 and Tyr 436, and possibly His 310 and 433, are involved. These residues are also involved in binding SPA and the IgG RF. These data therefore indicate that the T15 Group A Streptococcal Fc receptor binds to the same location on the Fc of IgG as SPA and the IgG RF. The

  9. Establishment of the first WHO International Standard for etanercept, a TNF receptor II Fc fusion protein: Report of an international collaborative study.

    PubMed

    Wadhwa, Meenu; Bird, Chris; Dilger, Paula; Rigsby, Peter; Jia, Haiyan; Gross, Marie Emmanuelle Behr

    2017-03-10

    Etanercept, a recombinant human tumor necrosis factor (TNF) receptor Fc fusion protein is an effective treatment option in adults with rheumatoid arthritis, ankylosing spondylitis, psoriatic arthritis or plaque psoriasis and paediatrics with juvenile idiotypic arthritis and plaque psoriasis. Patent expiration in Europe and intense development of various etanercept products worldwide triggered a need for an international reference standard to facilitate determination of biological activity. Therefore, three candidate preparations of etanercept were lyophilized and evaluated in a multi-centre collaborative study comprising twenty eight laboratories from 15 countries for their suitability to serve as an international standard for the bioactivity of TNF receptor II Fc fusion proteins (international nonproprietary name, Etanercept). The preparations were tested for neutralization activity against the third TNF-α international standard (IS) in different in vitro cell-based assays, e.g., cytotoxicity, apoptosis and reporter gene methods. Regardless of the assay and the amount of TNF-α IS used, potency estimates for the different preparations were very similar. An indication of the inhibitory activity of etanercept in terms of the biological activity of the TNF-α IS based on ED50 data derived from a limited number of laboratories using a cytotoxicity assay was also derived. Results indicated that the candidate preparation coded 13/204 was stable and suitable to serve as an international standard for the biological activity of etanercept. Therefore, the preparation coded 13/204 was established by the WHO Expert Committee on Biological Standardization (ECBS) in 2015 as the WHO first International Standard for TNF receptor II Fc fusion protein (INN, etanercept) with an assigned in vitro bioactivity of 10,000IU per ampoule. It should be noted that this first-in-class international standard for a Fc fusion protein, available from the National Institute for Biological

  10. Binding of monoclonal antibody AA4 to gangliosides on rat basophilic leukemia cells produces changes similar to those seen with Fc epsilon receptor activation

    PubMed Central

    1992-01-01

    The mAb AA4 binds to novel derivatives of the ganglioside Gd1b on rat basophilic leukemia (RBL-2H3) cells. Some of the gangliosides are located close to the high affinity IgE receptor (Fc epsilon RI), and binding of mAb AA4 inhibits Fc epsilon RI-mediated histamine release. In the present study, mAb AA4 was found to bind exclusively to mast cells in all rat tissues examined. In vitro, within 1 min of mAb AA4 binding, the cells underwent striking morphologic changes. They lost their normal spindle shaped appearance, increased their ruffling, and spread over the surface of the culture dish. These changes were accompanied by a redistribution of the cytoskeletal elements, actin, tubulin, and vimentin, but only the actin was associated with the membrane ruffles. Binding of mAb AA4 also induces a rise in intracellular calcium, stimulates phosphatidyl inositol breakdown, and activates PKC. However, the extent of these changes was less than that observed when the cells were stimulated with antigen or antibody directed against the Fc epsilon RI. None of these changes associated with mAb AA4 binding were seen when the cells were exposed to nonspecific IgG, IgE, or four other anti-cell surface antibodies, nor were the changes induced by binding mAb AA4 at 4 degrees C or in the absence of extracellular calcium. Although mAb AA4 does not stimulate histamine release, it enhances the effect of the calcium ionophore A23187 mediated release. The morphological and biochemical effects produced by mAb AA4 are similar to those seen following activation of the cell through the IgE receptor. Therefore, the surface gangliosides which bind mAb AA4 may function in modulating secretory events. PMID:1370498

  11. CD97 antibody depletes granulocytes in mice under conditions of acute inflammation via a Fc receptor-dependent mechanism.

    PubMed

    Veninga, Henrike; de Groot, Dorien M; McCloskey, Natalie; Owens, Bronwyn M; Dessing, Mark C; Verbeek, J Sjef; Nourshargh, Sussan; van Eenennaam, Hans; Boots, Annemieke M; Hamann, Jörg

    2011-03-01

    Antibodies to the pan-leukocyte adhesion-GPCR CD97 efficiently block neutrophil recruitment in mice, thereby reducing antibacterial host defense, inflammatory disease, and hematopoietic stem cell mobilization. Here, we investigated the working mechanism of the CD97 antibody 1B2. Applying sterile models of inflammation, intravital microscopy, and mice deficient for the CD97L CD55, the complement component C3, or the FcR common γ-chain, we show that 1B2 acts in vivo independent of ligand-binding interference by depleting PMN granulocytes in bone marrow and blood. Granulocyte depletion with 1B2 involved FcR but not complement activation and was associated with increased serum levels of TNF and other proinflammatory cytokines. Notably, depletion of granulocytes by CD97 antibody required acute inflammation, suggesting a mechanism of conditional, antibody-mediated granulocytopenia.

  12. Interferon-gamma and transforming growth factor-beta modulate the activation of mitogen-activated protein kinases and tumor necrosis factor-alpha production induced by Fc gamma-receptor stimulation in murine macrophages.

    PubMed

    Rose, D M; Winston, B W; Chan, E D; Riches, D W; Henson, P M

    1997-09-08

    Engagement of receptors for the Fc region of IgG (Fc gamma R) can activate a variety of biological responses in macrophages, and these responses can be modulated either positively or negatively by co-stimulation with a variety of agents including cytokines such as interferon-gamma (IFN-gamma) and transforming growth factor-beta (TGF-beta). We have previously demonstrated that Fc gamma R crosslinking activates the mitogen-activated protein kinase (MAPK) family members p42MAPK, p38, and JNK. Herein, we examined the modulatory effect of IFN-gamma, TGF-beta, and platelet-activating factor (PAF) on Fc gamma R-induced MAPK activation in murine macrophages. Fc gamma R-induced activation of p42MAPK and JNK was augmented nearly two-fold by pretreatment with IFN-gamma. Conversely, TGF-beta pretreatment suppressed Fc gamma R-induced activation of p42MAPK, JNK, and p38. These modulatory effects of IFN-gamma and TGF-beta on MAPK activation correlated with changes in Fc gamma R-stimulated TNF-alpha production by these two cytokines.

  13. Effect of protein aggregates on characterization of FcRn binding of Fc-fusion therapeutics.

    PubMed

    Bajardi-Taccioli, Adriana; Blum, Andrew; Xu, Chongfeng; Sosic, Zoran; Bergelson, Svetlana; Feschenko, Marina

    2015-10-01

    Recycling of antibodies and Fc containing therapeutic proteins by the neonatal Fc receptor (FcRn) is known to prolong their persistence in the bloodstream. Fusion of Fc fragment of IgG1 to other proteins is one of the strategies to improve their pharmacokinetic properties. Accurate measurement of Fc-FcRn binding provides information about the strength of this interaction, which in most cases correlates with serum half-life of the protein. It can also offer insight into functional integrity of Fc region. We investigated FcRn binding activity of a large set of Fc-fusion samples after thermal stress by the method based on AlphaScreen technology. An unexpected significant increase in FcR binding was found to correlate with formation of aggregates in these samples. Monomer purified from a thermally-stressed sample had normal FcRn binding, confirming that its Fc portion was intact. Experiments with aggregates spiked into a sample with low initial aggregation level, demonstrated strong correlation between the level of aggregates and FcRn binding. This correlation varied significantly in different methods. By introducing modifications to the assay format we were able to minimize the effects of aggregated species on FcRn binding, which should prevent masking functional changes of Fc-fusion protein. Biolayer interferometry (BLI) was used as an alternative method to measure FcRn binding. Both optimized AlphaScreen- and BLI-based assays were sensitive to structural changes in Fc portion of the molecule, such as oxidation of methionines 252 and 428, and therefore suitable for characterization of FcRn binding.

  14. Four-Component Staphylococcus aureus Vaccine 4C-Staph Enhances Fcγ Receptor Expression in Neutrophils and Monocytes and Mitigates S. aureus Infection in Neutropenic Mice

    PubMed Central

    Torre, Antonina; Bacconi, Marta; Sammicheli, Chiara; Galletti, Bruno; Laera, Donatello; Fontana, Maria Rita; Grandi, Guido; De Gregorio, Ennio; Bagnoli, Fabio; Nuti, Sandra; Bertholet, Sylvie

    2015-01-01

    Staphylococcus aureus is a human bacterial pathogen causing a variety of diseases. The occurrence of multidrug-resistant strains of Staphylococcus aureus underlines the need for a vaccine. Defining immune correlates of protection may support the design of an effective vaccine. We used a murine Staphylococcus aureus infection model, in which bacteria were inoculated in an air pouch generated on the back of the animal. Analysis of the air-pouch content in mice immunized or not with an adjuvanted multiantigen vaccine formulation, four-component S. aureus vaccine (4C-Staph), prior to infection allowed us to measure bacteria, cytokines, and 4C-Staph-specific antibodies and to analyze host immune cells recruited to the infection site. Immunization with 4C-Staph resulted in accumulation of antigen-specific antibodies in the pouch and mitigated the infection. Neutrophils were the most abundant cells in the pouch, and they showed the upregulation of Fcγ receptor (FcγR) following immunization with 4C-Staph. Reduction of the infection was also obtained in mice immunized with 4C-Staph and depleted of neutrophils; these mice showed an increase in monocytes and macrophages. Upregulation of the FcγR and the presence of antigen-specific antibodies induced by immunization with 4C-Staph may contribute to increase bacterial opsonophagocytosis. Protection in neutropenic mice indicated that an effective vaccine could activate alternative protection mechanisms compensating for neutropenia, a condition often occurring in S. aureus-infected patients. PMID:26015481

  15. Activatory and inhibitory Fcγ receptors augment rituximab-mediated internalization of CD20 independent of signaling via the cytoplasmic domain.

    PubMed

    Vaughan, Andrew T; Chan, Claude H T; Klein, Christian; Glennie, Martin J; Beers, Stephen A; Cragg, Mark S

    2015-02-27

    Type I anti-CD20 mAb such as rituximab and ofatumumab engage with the inhibitory FcγR, FcγRIIb on the surface of B cells, resulting in immunoreceptor tyrosine-based inhibitory motif (ITIM) phosphorylation. Internalization of the CD20·mAb·FcγRIIb complex follows, the rate of which correlates with FcγRIIb expression. In contrast, although type II anti-CD20 mAb such as tositumomab and obinutuzumab also interact with and activate FcγRIIb, this interaction fails to augment the rate of CD20·mAb internalization, raising the question of whether ITIM phosphorylation plays any role in this process. We have assessed the molecular requirements for the internalization process and demonstrate that in contrast to internalization of IgG immune complexes, FcγRIIb-augmented internalization of rituximab-ligated CD20 occurs independently of the FcγRIIb ITIM, indicating that signaling downstream of FcγRIIb is not required. In transfected cells, activatory FcγRI, FcγRIIa, and FcγRIIIa augmented internalization of rituximab-ligated CD20 in a similar manner. However, FcγRIIa mediated a slower rate of internalization than cells expressing equivalent levels of the highly homologous FcγRIIb. The difference was maintained in cells expressing FcγRIIa and FcγRIIb lacking cytoplasmic domains and in which the transmembrane domains had been exchanged. This difference may be due to increased degradation of FcγRIIa, which traffics to lysosomes independently of rituximab. We conclude that the cytoplasmic domain of FcγR is not required for promoting internalization of rituximab-ligated CD20. Instead, we propose that FcγR provides a structural role in augmenting endocytosis that differs from that employed during the endocytosis of immune complexes.

  16. Improved tumor imaging and therapy via i.v. IgG–mediated time-sequential modulation of neonatal Fc receptor

    PubMed Central

    Singh Jaggi, Jaspreet; Carrasquillo, Jorge A.; Seshan, Surya V.; Zanzonico, Pat; Henke, Erik; Nagel, Andrew; Schwartz, Jazmin; Beattie, Brad; Kappel, Barry J.; Chattopadhyay, Debjit; Xiao, Jing; Sgouros, George; Larson, Steven M.; Scheinberg, David A.

    2007-01-01

    The long plasma half-life of IgG, while allowing for enhanced tumor uptake of tumor-targeted IgG conjugates, also results in increased background activity and normal-tissue toxicity. Therefore, successful therapeutic uses of conjugated antibodies have been limited to the highly sensitive and readily accessible hematopoietic tumors. We report a therapeutic strategy to beneficially alter the pharmacokinetics of IgG antibodies via pharmacological inhibition of the neonatal Fc receptor (FcRn) using high-dose IgG therapy. IgG-treated mice displayed enhanced blood and whole-body clearance of radioactivity, resulting in better tumor-to-blood image contrast and protection of normal tissue from radiation. Tumor uptake and the resultant therapeutic response was unaltered. Furthermore, we demonstrated the use of this approach for imaging of tumors in humans and discuss its potential applications in cancer imaging and therapy. The ability to reduce the serum persistence of conjugated IgG antibodies after their infusion can enhance their therapeutic index, resulting in improved therapeutic and diagnostic efficacy. PMID:17717602

  17. Improved tumor imaging and therapy via i.v. IgG-mediated time-sequential modulation of neonatal Fc receptor.

    PubMed

    Jaggi, Jaspreet Singh; Carrasquillo, Jorge A; Seshan, Surya V; Zanzonico, Pat; Henke, Erik; Nagel, Andrew; Schwartz, Jazmin; Beattie, Brad; Kappel, Barry J; Chattopadhyay, Debjit; Xiao, Jing; Sgouros, George; Larson, Steven M; Scheinberg, David A

    2007-09-01

    The long plasma half-life of IgG, while allowing for enhanced tumor uptake of tumor-targeted IgG conjugates, also results in increased background activity and normal-tissue toxicity. Therefore, successful therapeutic uses of conjugated antibodies have been limited to the highly sensitive and readily accessible hematopoietic tumors. We report a therapeutic strategy to beneficially alter the pharmacokinetics of IgG antibodies via pharmacological inhibition of the neonatal Fc receptor (FcRn) using high-dose IgG therapy. IgG-treated mice displayed enhanced blood and whole-body clearance of radioactivity, resulting in better tumor-to-blood image contrast and protection of normal tissue from radiation. Tumor uptake and the resultant therapeutic response was unaltered. Furthermore, we demonstrated the use of this approach for imaging of tumors in humans and discuss its potential applications in cancer imaging and therapy. The ability to reduce the serum persistence of conjugated IgG antibodies after their infusion can enhance their therapeutic index, resulting in improved therapeutic and diagnostic efficacy.

  18. Human FcR Polymorphism and Disease

    PubMed Central

    Li, Xinrui; Gibson, Andrew W.; Kimberly, Robert P.

    2014-01-01

    Fc receptors play a central role in maintaining the homeostatic balance in the immune system. Our knowledge of the structure and function of these receptors and their naturally occurring polymorphisms, including single nucleotide polymorphisms and/or copy number variations, continues to expand. Through studies of their impact on human biology and clinical phenotype, the contributions of these variants to the pathogenesis, progression, and/or treatment outcome of many diseases that involve immunoglobulin have become evident. They affect susceptibility to bacterial and viral pathogens, constitute as risk factors for IgG or IgE mediated inflammatory diseases, and impact the development of many autoimmune conditions. In this chapter, we will provide an overview of these genetic variations in classical FcγRs, FcRLs, and other Fc receptors, as well as challenges in achieving an accurate and comprehensive understanding of the FcR polymorphisms and genomic architecture. PMID:25116105

  19. Evidence for TLR4 and FcRγ-CARD9 activation by cholera toxin B subunit and its direct bindings to TREM2 and LMIR5 receptors.

    PubMed

    Phongsisay, Vongsavanh; Iizasa, Ei'ichi; Hara, Hiromitsu; Yoshida, Hiroki

    2015-08-01

    Cholera toxin (CTX) is a virulent factor of Vibrio cholerae that causes life-threatening diarrheal disease. Its non-toxic subunit CTB has been extensively studied for vaccine delivery. In immune cells, CTB induces a number of signaling molecules related to cellular activation and cytokine production. The mechanisms by which CTB exerts its immunological effects are not understood. We report here the immunological targets of CTB. The unexpected finding that GM1 ganglioside inhibited NF-κB activation in human monocytes stimulated with CTX and agonists of Toll-like receptors (TLR) suggests the possibility of CTX-TLR interaction. Indeed, CTX-induced IL-6 production was substantially reduced in MyD88(-/-) or TLR4(-/-) macrophages. Ectopic expression of TLR4 was required for CTX-induced NF-κB activation in HEK 293 cells. Furthermore, the inflammatory capacity of CTB was lost in the absence of TLR4, adaptor protein FcRγ, or its downstream signaling molecule CARD9. Attempts have been made to identify CTB-binding targets from various C-type lectin and immunoglobulin-like receptors. CTB targeted not only GM1 and TLR4 but also TREM2 and LMIR5/CD300b. CTB-TREM2 interaction initiated signal transduction through adaptor protein DAP12. The binding of CTB inhibited LMIR5 activation induced by its endogenous ligand 3-O-sulfo-β-d-galactosylceramide C24:1. In summary, CTB targets TLR4, FcRγ-CARD9, TREM2, and LMIR5. These findings provide new insights into the immunobiology of cholera toxin.

  20. Fc-fusion proteins and FcRn: structural insights for longer-lasting and more effective therapeutics.

    PubMed

    Rath, Timo; Baker, Kristi; Dumont, Jennifer A; Peters, Robert T; Jiang, Haiyan; Qiao, Shuo-Wang; Lencer, Wayne I; Pierce, Glenn F; Blumberg, Richard S

    2015-06-01

    Nearly 350 IgG-based therapeutics are approved for clinical use or are under development for many diseases lacking adequate treatment options. These include molecularly engineered biologicals comprising the IgG Fc-domain fused to various effector molecules (so-called Fc-fusion proteins) that confer the advantages of IgG, including binding to the neonatal Fc receptor (FcRn) to facilitate in vivo stability, and the therapeutic benefit of the specific effector functions. Advances in IgG structure-function relationships and an understanding of FcRn biology have provided therapeutic opportunities for previously unapproachable diseases. This article discusses approved Fc-fusion therapeutics, novel Fc-fusion proteins and FcRn-dependent delivery approaches in development, and how engineering of the FcRn-Fc interaction can generate longer-lasting and more effective therapeutics.

  1. Fc-fusion proteins and FcRn: structural insights for longer-lasting and more effective therapeutics

    PubMed Central

    Rath, Timo; Baker, Kristi; Dumont, Jennifer A.; Peters, Robert T.; Jiang, Haiyan; Qiao, Shuo-Wang; Lencer, Wayne I.; Pierce, Glenn F.; Blumberg, Richard S.

    2016-01-01

    Nearly 350 IgG-based therapeutics are approved for clinical use or are under development for many diseases lacking adequate treatment options. These include molecularly engineered biologicals comprising the IgG Fc-domain fused to various effector molecules (so-called Fc-fusion proteins) that confer the advantages of IgG, including binding to the neonatal Fc receptor (FcRn) to facilitate in vivo stability, and the therapeutic benefit of the specific effector functions. Advances in IgG structure-function relationships and an understanding of FcRn biology have provided therapeutic opportunities for previously unapproachable diseases. This article discusses approved Fc-fusion therapeutics, novel Fc-fusion proteins and FcRn-dependent delivery approaches in development, and how engineering of the FcRn–Fc interaction can generate longer-lasting and more effective therapeutics. PMID:24156398

  2. Crystal structure of a novel asymmetrically engineered Fc variant with improved affinity for FcγRs.

    PubMed

    Mimoto, F; Kadono, S; Katada, H; Igawa, T; Kamikawa, T; Hattori, K

    2014-03-01

    Enhancing the effector function by optimizing the interaction between Fc and Fcγ receptor (FcγR) is a promising approach to enhance the potency of anticancer monoclonal antibodies (mAbs). To date, a variety of Fc engineering approaches to modulate the interaction have been reported, such as afucosylation in the heavy chain Fc region or symmetrically introducing amino acid substitutions into the region, and there is still room to improve FcγR binding and thermal stability of the CH2 domain with these approaches. Recently, we have reported that asymmetric Fc engineering, which introduces different substitutions into each Fc region of heavy chain, can further improve the FcγR binding while maintaining the thermal stability of the CH2 domain by fine-tuning the asymmetric interface between the Fc domain and FcγR. However, the structural mechanism by which the asymmetrically engineered Fc improved FcγR binding remained unclear. In order to elucidate the mechanism, we solved the crystal structure of a novel asymmetrically engineered Fc, asym-mAb23, in complex with FcγRIIIa. Asym-mAb23 has enhanced binding affinity for both FcγRIIIa and FcγRIIa at the highest level of previously reported Fc variants. The structural analysis reveals the features of the asymmetrically engineered Fc in comparison with symmetric Fc and how each asymmetrically introduced substitution contributes to the improved interaction between asym-mAb23 and FcγRIIIa. This crystal structure could be utilized to enable us to design a more potent asymmetric Fc.

  3. Antibody uptake into neurons occurs primarily via clathrin-dependent Fcγ receptor endocytosis and is a prerequisite for acute tau protein clearance.

    PubMed

    Congdon, Erin E; Gu, Jiaping; Sait, Hameetha B R; Sigurdsson, Einar M

    2013-12-06

    Tau immunotherapy is effective in transgenic mice, but the mechanisms of Tau clearance are not well known. To this end, Tau antibody uptake was analyzed in brain slice cultures and primary neurons. Internalization was rapid (<1 h), saturable, and substantial compared with control mouse IgG. Furthermore, temperature reduction to 4 °C, an excess of unlabeled mouse IgG, or an excess of Tau antibodies reduced uptake in slices by 63, 41, and 62%, respectively (p = 0.002, 0.04, and 0.005). Uptake strongly correlated with total and insoluble Tau levels (r(2) = 0.77 and 0.87 and p = 0.002 and 0.0002), suggesting that Tau aggregates influence antibody internalization and/or retention within neurons. Inhibiting phagocytosis did not reduce uptake in slices or neuronal cultures, indicating limited microglial involvement. In contrast, clathrin-specific inhibitors reduced uptake in neurons (≤ 78%, p < 0.0001) and slices (≤ 35%, p = 0.03), demonstrating receptor-mediated endocytosis as the primary uptake pathway. Fluid phase endocytosis accounted for the remainder of antibody uptake in primary neurons, based on co-staining with internalized dextran. The receptor-mediated uptake is to a large extent via low affinity FcγII/III receptors and can be blocked in slices (43%, p = 0.04) and neurons (53%, p = 0.008) with an antibody against these receptors. Importantly, antibody internalization appears to be necessary for Tau reduction in primary neurons. Overall, these findings clarify that Tau antibody uptake is primarily receptor-mediated, that these antibodies are mainly found in neurons with Tau aggregates, and that their intracellular interaction leads to clearance of Tau pathology, all of which have major implications for therapeutic development of this approach.

  4. Herpes simplex virus immunoglobulin G Fc receptor activity depends on a complex of two viral glycoproteins, gE and gI

    SciTech Connect

    Johnson, D.C.; Ligas, M.W. ); Frame, M.C.; Cross, A.M.; Stow, N.D. )

    1988-04-01

    Evidence was recently presented that herpes simplex virus type 1 (HSV-1) immunoglobulin G (IgG) Fc receptors are composed of a complex containing a previously described glycoprotein, gE, and a novel virus-induced polypeptide, provisionally named g70. Using a monoclonal antibody designated 3104, which recognizes g70, in conjunction with antipeptide sera and virus mutants unable to express g70 or gE, the authors have mapped the gene encoding g70 to the US7 open reading frame of HSV-1 adjacent to the gE gene. Therefore, g70 appears to be identical to a recently described polypeptide which was named gI. Under mildly denaturing conditions, monoclonal antibody 3104 precipitated both gI and gE from extracts of HSV-1-infected cells. In addition, rabbit IgG precipitated the gE-gI complex from extracts of cells transfected with a fragment of HSV-1 DNA containing the gI, gE, and US9 genes. Cells infected with mutant viruses which were unable to express gE or gI did not bind radiolabeled IgG; however, cells coinfected with two viruses, one unable to express gE and the other unable to express gI, bound levels of IgG approaching those observed with wild-type viruses. These results further support the hypothesis that gE and gI form a complex which binds IgG by the Fc domain and that neither polypeptide alone can bind IgG.

  5. Activin Decoy Receptor ActRIIB:Fc Lowers FSH and Therapeutically Restores Oocyte Yield, Prevents Oocyte Chromosome Misalignments and Spindle Aberrations, and Increases Fertility in Midlife Female SAMP8 Mice

    PubMed Central

    Mackenzie, Amelia C. L.; Lee, Se-Jin; Chaffin, Charles L.; Merchenthaler, István

    2016-01-01

    Women of advanced maternal age (AMA) (age ≥ 35) have increased rates of infertility, miscarriages, and trisomic pregnancies. Collectively these conditions are called “egg infertility.” A root cause of egg infertility is increased rates of oocyte aneuploidy with age. AMA women often have elevated endogenous FSH. Female senescence-accelerated mouse-prone-8 (SAMP8) has increased rates of oocyte spindle aberrations, diminished fertility, and rising endogenous FSH with age. We hypothesize that elevated FSH during the oocyte's FSH-responsive growth period is a cause of abnormalities in the meiotic spindle. We report that eggs from SAMP8 mice treated with equine chorionic gonadotropin (eCG) for the period of oocyte growth have increased chromosome and spindle misalignments. Activin is a molecule that raises FSH, and ActRIIB:Fc is an activin decoy receptor that binds and sequesters activin. We report that ActRIIB:Fc treatment of midlife SAMP8 mice for the duration of oocyte growth lowers FSH, prevents egg chromosome and spindle misalignments, and increases litter sizes. AMA patients can also have poor responsiveness to FSH stimulation. We report that although eCG lowers yields of viable oocytes, ActRIIB:Fc increases yields of viable oocytes. ActRIIB:Fc and eCG cotreatment markedly reduces yields of viable oocytes. These data are consistent with the hypothesis that elevated FSH contributes to egg aneuploidy, declining fertility, and poor ovarian response and that ActRIIB:Fc can prevent egg aneuploidy, increase fertility, and improve ovarian response. Future studies will continue to examine whether ActRIIB:Fc works via FSH and/or other pathways and whether ActRIIB:Fc can prevent aneuploidy, increase fertility, and improve stimulation responsiveness in AMA women. PMID:26713784

  6. Registration of 'FC1028', 'FC1037, 'FC1038' and, 'FC1036' multigerm sugarbeet germplasm with multiple disease resistances

    Technology Transfer Automated Retrieval System (TEKTRAN)

    FC1028’, ‘FC1036’, ‘FC1037’, and ‘FC1038’ (PI 665053, PI 665054, PI 665055, PI 665056) sugarbeet germplasms (Beta vulgaris L.) were released from 20111027, 09-FC1036, 20111025, and 04-FC1038 seed lots, respectively, and tested under the designations 04-FC1028; 05-, 06-, 07-, 08-, 09-FC1036; 04-FC10...

  7. Aspergillus Cell Wall Chitin Induces Anti- and Proinflammatory Cytokines in Human PBMCs via the FcReceptor/Syk/PI3K Pathway

    PubMed Central

    Becker, K. L.; Aimanianda, V.; Wang, X.; Gresnigt, M. S.; Ammerdorffer, A.; Jacobs, C. W.; Gazendam, R. P.; Joosten, L. A. B.; Netea, M. G.

    2016-01-01

    ABSTRACT Chitin is an important cell wall component of Aspergillus fumigatus conidia, of which hundreds are inhaled on a daily basis. Previous studies have shown that chitin has both anti- and proinflammatory properties; however the exact mechanisms determining the inflammatory signature of chitin are poorly understood, especially in human immune cells. Human peripheral blood mononuclear cells were isolated from healthy volunteers and stimulated with chitin from Aspergillus fumigatus. Transcription and production of the proinflammatory cytokine interleukin-1β (IL-1β) and the anti-inflammatory cytokine IL-1 receptor antagonist (IL-1Ra) were measured from the cell culture supernatant by quantitative PCR (qPCR) or enzyme-linked immunosorbent assay (ELISA), respectively. Chitin induced an anti-inflammatory signature characterized by the production of IL-1Ra in the presence of human serum, which was abrogated in immunoglobulin-depleted serum. Fc-γ-receptor-dependent recognition and phagocytosis of IgG-opsonized chitin was identified as a novel IL-1Ra-inducing mechanism by chitin. IL-1Ra production induced by chitin was dependent on Syk kinase and phosphatidylinositol 3-kinase (PI3K) activation. In contrast, costimulation of chitin with the pattern recognition receptor (PRR) ligands lipopolysaccharide, Pam3Cys, or muramyl dipeptide, but not β-glucan, had synergistic effects on the induction of proinflammatory cytokines by human peripheral blood mononuclear cells (PBMCs). In conclusion, chitin can have both pro- and anti-inflammatory properties, depending on the presence of pathogen-associated molecular patterns and immunoglobulins, thus explaining the various inflammatory signatures reported for chitin. PMID:27247234

  8. IFN-gamma and prostaglandin E2 inhibit IL-4-induced expression of Fc epsilon R2/CD23 on B lymphocytes through different mechanisms without altering binding of IL-4 to its receptor

    SciTech Connect

    Galizzi, J.P.; Cabrillat, H.; Rousset, F.; Menetrier, C.; de Vries, J.E.; Banchereau, J.

    1988-09-15

    Human rIL-4 specifically induces the expression of the low affinity receptor for IgE (Fc epsilon R2/CD23) on normal B cells and on the Burkitt lymphoma cell line Jijoye. IL-4 does not induce the generation of the second messenger cAMP in Jijoye cells. PGE2 (at 10(-7) M) was found to inhibit by 50% the IL-4 mediated Fc epsilon R2/CD23 induction on Jijoye cells. The PGE2 half maximum inhibitory concentration (1 nM) was comparable to that inducing a half maximal increase of intracellular cAMP (4nM PGE2). 8-bromo-cAMP (10(-3) M), forskolin (10(-5) M), and cholera toxin (100 ng/ml), which increase intracellular cAMP levels, also inhibited by 40 to 80% the IL-4 induced Fc epsilon R2/CD23 expression on Jijoye cells. PGE2 8-bromo-cAMP, forskolin, and cholera toxin also inhibited the IL-4-induced Fc epsilon R2/CD23 expression on normal B lymphocytes. Taken together these data suggest that PGE2 inhibits the IL-4 induced Fc epsilon R2/CD23 through an increase of intracellular cAMP. In contrast, IFN-gamma, which strongly inhibits IL-4-mediated Fc epsilon R2/CD23 expression on Jijoye cells, did not increase intracellular cAMP levels and thus probably acts through another mechanism. IFN-gamma and PGE2 did not inhibit binding of IL-4 to its receptor. It could be excluded that IFN-gamma and PGE2 were acting via an alteration/desensitization of the IL-4R inasmuch as 24 h pre-incubation of Jijoye cells with these agents affected neither the affinity of 125I-IL-4 for its receptor (Kd = 0.8 to 1.5 x 10(-10) M) nor the maximal number of binding sites per Jijoye cells (Bmax = 390 to 550). Furthermore, IFN-gamma and PGE2 did not affect the internalization and degradation of 125I-IL-4. These data demonstrate that PGE2 and IFN-gamma inhibit the IL-4-mediated induction of Fc epsilon R2/CD23 on B lymphocytes via different mechanisms that do not alter the interaction of IL-4 with its receptor.

  9. Expression Profile of Human Fc Receptor-Like 1, 2, and 4 Molecules in Peripheral Blood Mononuclear Cells of Patients with Hashimoto's Thyroiditis and Graves' Disease.

    PubMed

    Rostamzadeh, D; Dabbaghmanesh, M H; Shabani, M; Hosseini, A; Amirghofran, Z

    2015-08-01

    Recently identified Fc receptor-like (FCRL) molecules are new members of the immunoglobulin superfamily dominantly expressed by B cells. Although FCRL expression patterns have been studied in normal and malignant cells, their biological functions and roles remain to be clearly identified in humans. Research has particularly focused on FCRL gene polymorphisms in autoimmune diseases, however, their involvement in the pathogenesis of autoimmune diseases is an interesting field for investigation. In the present study, we have investigated the gene expression profiles of FCRL1, 2, and 4 in 2 common thyroid diseases, Hashimoto's thyroiditis (HT) and Graves' disease (GD). FCRL1, 2, and 4 expressions were determined in peripheral blood samples of 55 HT patients, 40 GD patients and equal numbers of normal subjects by quantitative real-time PCR. Our results showed downregulation of FCRL1 and upregulation of FCRL2 transcripts in both HT and GD groups compared to healthy counterparts. Overexpression of FCRL4 was observed only in GD patients compared to controls. A significant correlation was observed between all FCRL gene expression levels in HT patients. Only FCRL2 and 4 had a correlation in GD patients. In addition, FCRL1, 2, and 4 gene expressions showed no correlations with the level of anti-thyroid peroxidase antibody (anti-TPO) or anti-thyroglobulin (anti-Tg) antibody from patients' sera. In conclusion, expressions of activating or inhibitory FCRL1, 2, and 4 showed significant alterations in HT and GD patients compared to healthy subjects.

  10. Sotatercept, a soluble activin receptor type 2A IgG-Fc fusion protein for the treatment of anemia and bone loss.

    PubMed

    Raje, Noopur; Vallet, Sonia

    2010-10-01

    Sotatercept (ACE-011), under development by Acceleron Pharma Inc in collaboration with Celgene Corp, is a chimeric protein containing the extracellular domain of the activin receptor 2A (ACVR2A) fused to the Fc domain of human IgG1. Sotatercept contains the binding site of ACVR2A and interferes with downstream signaling cascades, in particular the SMAD pathway, by sequestering activin. The murine counterpart of sotatercept, referred to as RAP-011, has been extensively evaluated in preclinical studies, in particular in models of cancer- and osteoporosis-related bone loss, and the developing companies envisage that sotatercept may also have potential for the treatment of cancer and cancer-related bone loss. In a phase I clinical trial in postmenopausal females, sotatercept increased hematocrit levels, and, in a phase II trial in patients with multiple myeloma, a trend toward improvement in osteolytic lesions as well as antitumor activity was observed. At the time of publication, phase II trials in patients with anemia were ongoing. Future clinical development will rely on an evaluation of the benefits and complications of sotatercept administration, focusing in particular on suppression of ovarian function and increases in hematocrit levels without a consequent risk of hypertension and thrombosis.

  11. Tumor necrosis factor-alpha antagonism by the murine tumor necrosis factor-alpha receptor 2-Fc fusion protein exacerbates histoplasmosis in mice.

    PubMed

    Deepe, George S

    2007-06-01

    Treatment of some inflammatory conditions with tumor necrosis factor-alpha (TNF-alpha) antagonists is efficacious, but such treatments are associated with infections with intracellular pathogens, including Histoplasma capsulatum. We explored protective immunity to H. capsulatum in mice given a fusion protein consisting of TNF-alpha receptor 2 (TNFR2) bound to the Fc portion of mouse IgG1. Intraperitoneal administration of this inhibitor exacerbated primary or secondary pulmonary infection at dosages ranging from 1 to 5 mg/kg. All mice with primary infection given the inhibitor succumbed to infection within 10-21 days of treatment. In secondary histoplasmosis, mice receiving 1, but not 5, mg/kg survived treatment. Fungal burden was increased even if treatment with the inhibitor was initiated after the onset of infection. The inflammatory response of the lungs of mice given the inhibitor did not differ from that of mice given control vehicle. Susceptibility was not associated with major alterations in cytokines known to protect or exacerbate infection. However, expression of nitric oxide synthase 2 (NOS2) was depressed early in primary infection. These results demonstrate that antagonism of endogenous TNF-alpha by this fusion protein modulates susceptibility. Impaired immunity is not a result of altered cytokine responses or changes in the inflammation and may not be demonstrable in other murine strains.

  12. Fcγ and Complement Receptors and Complement Proteins in Neutrophil Activation in Rheumatoid Arthritis: Contribution to Pathogenesis and Progression and Modulation by Natural Products

    PubMed Central

    Paoliello-Paschoalato, Adriana Balbina; Marchi, Larissa Fávaro; de Andrade, Micássio Fernandes; Kabeya, Luciana Mariko; Donadi, Eduardo Antônio; Lucisano-Valim, Yara Maria

    2015-01-01

    Rheumatoid arthritis (RA) is a highly disabling disease that affects all structures of the joint and significantly impacts on morbidity and mortality in RA patients. RA is characterized by persistent inflammation of the synovial membrane lining the joint associated with infiltration of immune cells. Eighty to 90% of the leukocytes infiltrating the synovia are neutrophils. The specific role that neutrophils play in the onset of RA is not clear, but recent studies have evidenced that they have an important participation in joint damage and disease progression through the release of proteolytic enzymes, reactive oxygen species (ROS), cytokines, and neutrophil extracellular traps, in particular during frustrated phagocytosis of immune complexes (ICs). In addition, the local and systemic activation of the complement system contributes to the pathogenesis of RA and other IC-mediated diseases. This review discusses (i) the participation of Fcγ and complement receptors in mediating the effector functions of neutrophils in RA; (ii) the contribution of the complement system and ROS-dependent and ROS-independent mechanisms to joint damage in RA; and (iii) the use of plant extracts, dietary compounds, and isolated natural compounds in the treatment of RA, focusing on modulation of the effector functions of neutrophils and the complement system activity and/or activation. PMID:26346244

  13. Fc Receptor-Mediated Activities of Env-Specific Human Monoclonal Antibodies Generated from Volunteers Receiving the DNA Prime-Protein Boost HIV Vaccine DP6-001.

    PubMed

    Costa, Matthew R; Pollara, Justin; Edwards, Regina Whitney; Seaman, Michael S; Gorny, Miroslaw K; Montefiori, David C; Liao, Hua-Xin; Ferrari, Guido; Lu, Shan; Wang, Shixia

    2016-11-15

    HIV-1 is able to elicit broadly potent neutralizing antibodies in a very small subset of individuals only after several years of infection, and therefore, vaccines that elicit these types of antibodies have been difficult to design. The RV144 trial showed that moderate protection is possible and that this protection may correlate with antibody-dependent cellular cytotoxicity (ADCC) activity. Our previous studies demonstrated that in an HIV vaccine phase I trial, the DP6-001 trial, a polyvalent Env DNA prime-protein boost formulation could elicit potent and broadly reactive, gp120-specific antibodies with positive neutralization activities. Here we report on the production and analysis of HIV-1 Env-specific human monoclonal antibodies (hMAbs) isolated from vaccinees in the DP6-001 trial. For this initial report, 13 hMAbs from four vaccinees in the DP6-001 trial showed broad binding to gp120 proteins of diverse subtypes both autologous and heterologous to vaccine immunogens. Equally cross-reactive Fc receptor-mediated functional activities, including ADCC and antibody-dependent cellular phagocytosis (ADCP) activities, were present with both immune sera and isolated MAbs, confirming the induction of nonneutralizing functional hMAbs by the DNA prime-protein boost vaccination. Elicitation of broadly reactive hMAbs by vaccination in healthy human volunteers confirms the value of the polyvalent formulation in this HIV vaccine design.

  14. Quantitative evaluation of fucose reducing effects in a humanized antibody on Fcγ receptor binding and antibody-dependent cell-mediated cytotoxicity activities

    PubMed Central

    Chung, Shan; Quarmby, Valerie; Gao, Xiaoying; Ying, Yong; Lin, Linda; Reed, Chae; Fong, Chris; Lau, Wendy; Qiu, Zhihua J.; Shen, Amy; Vanderlaan, Martin; Song, An

    2012-01-01

    The presence or absence of core fucose in the Fc region N-linked glycans of antibodies affects their binding affinity toward FcγRIIIa as well as their antibody-dependent cell-mediated cytotoxicity (ADCC) activity. However, the quantitative nature of this structure-function relationship remains unclear. In this study, the in vitro biological activity of an afucosylated anti-CD20 antibody was fully characterized. Further, the effect of fucose reduction on Fc effector functions was quantitatively evaluated using the afucosylated antibody, its “regular” fucosylated counterpart and a series of mixtures containing varying proportions of “regular” and afucosylated materials. Compared with the “regular” fucosylated antibody, the afucosylated antibody demonstrated similar binding interactions with the target antigen (CD20), C1q and FcγRIa, moderate increases in binding to FcγRIIa and IIb, and substantially increased binding to FcγRIIIa. The afucosylated antibodies also showed comparable complement-dependent cytotoxicity activity but markedly increased ADCC activity. Based on EC50 values derived from dose-response curves, our results indicate that the amount of afucosylated glycan in antibody samples correlate with both FcγRIIIa binding activity and ADCC activity in a linear fashion. Furthermore, the extent of ADCC enhancement due to fucose depletion was not affected by the FcγRIIIa genotype of the effector cells. PMID:22531441

  15. Quantitative evaluation of fucose reducing effects in a humanized antibody on Fcγ receptor binding and antibody-dependent cell-mediated cytotoxicity activities.

    PubMed

    Chung, Shan; Quarmby, Valerie; Gao, Xiaoying; Ying, Yong; Lin, Linda; Reed, Chae; Fong, Chris; Lau, Wendy; Qiu, Zhihua J; Shen, Amy; Vanderlaan, Martin; Song, An

    2012-01-01

    The presence or absence of core fucose in the Fc region N-linked glycans of antibodies affects their binding affinity toward FcγRIIIa as well as their antibody-dependent cell-mediated cytotoxicity (ADCC) activity. However, the quantitative nature of this structure-function relationship remains unclear. In this study, the in vitro biological activity of an afucosylated anti-CD20 antibody was fully characterized. Further, the effect of fucose reduction on Fc effector functions was quantitatively evaluated using the afucosylated antibody, its "regular" fucosylated counterpart and a series of mixtures containing varying proportions of "regular" and afucosylated materials. Compared with the "regular" fucosylated antibody, the afucosylated antibody demonstrated similar binding interactions with the target antigen (CD20), C1q and FcγRIa, moderate increases in binding to FcγRIIa and IIb, and substantially increased binding to FcγRIIIa. The afucosylated antibodies also showed comparable complement-dependent cytotoxicity activity but markedly increased ADCC activity. Based on EC 50 values derived from dose-response curves, our results indicate that the amount of afucosylated glycan in antibody samples correlate with both FcγRIIIa binding activity and ADCC activity in a linear fashion. Furthermore, the extent of ADCC enhancement due to fucose depletion was not affected by the FcγRIIIa genotype of the effector cells.

  16. Structural analysis of Fc/FcγR complexes: a blueprint for antibody design.

    PubMed

    Caaveiro, Jose M M; Kiyoshi, Masato; Tsumoto, Kouhei

    2015-11-01

    The number of studies and the quality of the structural data of Fcγ receptors (FcγRs) has rapidly increased in the last few years. Upon critical examination of the literature, we have extracted general conclusions that could explain differences in affinity and selectivity of FcγRs for immunoglobulin G (IgG) based on structural considerations. FcγRs employ a little conserved asymmetric surface of domain D2 composed of two distinct subsites to recognize the well-conserved lower hinge region of IgG1-Fc. The extent of the contact interface with the antibody in subsite 1 of the receptor (but not in subsite 2), the geometrical complementarity between antibody and receptor, and the number of polar interactions contribute decisively toward strengthening the binding affinity of the antibody for the receptor. In addition, the uncertain role of the N-linked glycan of IgG for the binding and effector responses elicited by FcγRs is discussed. The available data suggest that not only the non-covalent interactions between IgG and FcγRs but also their dynamic features are essential for the immune response elicited through these receptors. We believe that the integration of structural, thermodynamic, and kinetic data will be critical for the design and validation of the next generation of therapeutic antibodies with enhanced effector capabilities.

  17. Roles for the High Affinity IgE Receptor, FcεRI, of Human Basophils in the Pathogenesis and Therapy of Allergic Asthma: Disease Promotion, Protection or Both?

    PubMed

    Youssef, Lama A; Schuyler, Mark; Wilson, Bridget S; Oliver, Janet M

    2010-01-01

    The role of basophils, the rarest of blood granulocytes, in the pathophysiology of allergic asthma is still incompletely understood. Indirect evidence generated over many decades is consistent with a role for basophils in disease promotion. Recent improvements in procedures to purify and analyze very small numbers of human cells have generally supported this view, but have also revealed new complexities. This chapter focuses on our analyses of Fcε R1 function in basophils in the context of understanding and treating human allergic asthma. In long-term studies, we demonstrated that asthmatic subjects have higher circulating numbers of basophils than non-atopic non-asthmatic subjects and that their basophils show higher rates of both basal and anti-IgE or antigen-stimulated histamine release. These results hint at a direct role for basophils in promoting asthma. Supporting this interpretation, the non-releaser phenotype that we linked to the excessive proteolysis of Syk via the ubiquitin/proteasomal pathway is less common in basophils from asthmatic than non-asthmatic donors. The discovery of a basophil-specific pathway regulating Syk levels presents a clear opportunity for therapy. Another route to therapy was revealed by evidence that basophil FcεRI signaling can be downregulated by co-crosslinking the ITAM-containing IgE receptor, FcγRI, to the ITIM-containing IgG receptor, FcγRIIB. Based on this discovery, hybrid co-crosslinking fusion proteins are being engineered as potential therapies targeting basophils. A third distinguishing property of human basophils is their high dependence on IgE binding to stabilize membrane FcεRI. The circulating IgE scavenging mAb, Omalizumab, reduces FcεRI expression in basophils from asthmatics by over 95% and produces a substantial impairment of IL-4, IL-8 and IL-13 production in response to the crosslinking of residual cell surface IgE-FcεRI. A search for small molecule inhibitors that similarly impair high affinity Ig

  18. Registration of FC1018, FC1019, FC1020, and FC1022, Sugarbeet Multigerm Pollinator Germplasms with Disease Resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    FC1018’, ‘FC1019’, ‘FC1020’, and ‘FC1022’ (PI 658059, PI 658060, PI 658061, PI 658062, respectively) sugarbeet germplasm (Beta vulgaris L.) were released in 2009 from 05-FC1018, 05-FC1019, 07-/08-FC1020 and 05-FC101022 seed lots, respectively, and tested under those designations. They were develo...

  19. Significant Association Between Fc Receptor-Like 3 Polymorphisms (-1901A>G and -658C>T) and Neuromyelitis Optica (NMO) Susceptibility in the Chinese Population.

    PubMed

    Wang, Xinling; Yu, Tao; Yan, Qichang; Wang, Wei; Meng, Nan; Li, Xuejiao; Luo, Yahong

    2016-01-01

    Neuromyelitis optica (NMO) is an autoimmune disorder. In pathogenesis, NMO-immunoglobulin G (NMO-IgG) selectively binds to aquaporin-4 (AQP4) and resulted in neuritis, myelitis, and brain lesion. Fc receptor-like 3 (FCRL3) gene encodes a member of the immunoglobulin receptor superfamily, which plays an important part in regulating immune activities. This study aimed at investigating the association between FCRL3 polymorphisms and NMO susceptibility and, hopefully, to contribute to the development of novel methods for diagnosis and treatment of NMO. We selected 150 NMO patients and 300 healthy controls from the Chinese population. Tag single nucleotide polymorphisms (SNPs) were identified with reference to CBI-dbSNP and HapMap databases. DNA were extracted and amplified. Matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF-MS) was applied to determine the polymorphisms. χ (2), odds ratio (OR), and 95 % confidence interval (95 % CI) were presented to evaluate genotype distribution and association between SNPs and NMO susceptibility. Six out of 15 SNPs were selected according to the filter. No significant altered genotype distribution was observed concerning -11G>C, -166C>T, -219G>C, and -1629C>G polymorphisms. The G allele of -1901A>G variation was demonstrated to be more frequent in patients compared with controls (P < 0.001). The T allele of -658C>T polymorphism was significantly more prevalent in NMO patients than controls (P = 0.009). In summary, the study revealed that the G allele in -1901A>G polymorphism and T allele in -658C>T polymorphism are genetic risk factors for NMO in the Chinese population. Further research is needed to account for different ethnicities and clarify the mechanisms behind, which might contribute to the elucidation of novel diagnosis methods.

  20. Decreased Fc-Receptor expression on innate immune cells is associated with impaired antibody mediated cellular phagocytic activity in chronically HIV-1 infected individuals

    PubMed Central

    Dugast, Anne-Sophie; Tonelli, Andrew; Berger, Christoph T.; Ackerman, Margaret E.; Sciaranghella, Gaia; Liu, Qingquan; Sips, Magdalena; Toth, Ildiko; Piechocka-Trocha, Alicja; Ghebremichael, Musie; Alter, Galit

    2011-01-01

    In addition to neutralization, antibodies mediate other antiviral activities including antibody-dependent cellular-phagocytosis (ADCP), antibody dependent cellular-cytotoxicity (ADCC), as well as complement deposition. While it is established that progressive HIV infection is associated with reduced ADCC and ADCP, the underlying mechanism for this loss of function is unknown. Here we report considerable changes in FcR expression over the course of HIV infection on both mDCs and monocytes, including elevated FcγRI expression in acute HIV infection and reduced expression of FcγRII and FcγRIIIa in chronic HIV infection. Furthermore, selective blockade of FcγRII alone was associated with a loss in ADCP activity, suggesting that FcγRII plays a central role in modulating ADCP. Overall, HIV infection is associated with a number of changes in FcR expression on phagocytic cells that are associated with changes in their ability to respond to antibody-opsonized targets, potentially contributing to a failure in viral clearance in progressive HIV-1 infection. PMID:21565376

  1. Decreased Fc receptor expression on innate immune cells is associated with impaired antibody-mediated cellular phagocytic activity in chronically HIV-1 infected individuals.

    PubMed

    Dugast, Anne-Sophie; Tonelli, Andrew; Berger, Christoph T; Ackerman, Margaret E; Sciaranghella, Gaia; Liu, Qingquan; Sips, Magdalena; Toth, Ildiko; Piechocka-Trocha, Alicja; Ghebremichael, Musie; Alter, Galit

    2011-07-05

    In addition to neutralization, antibodies mediate other antiviral activities including antibody-dependent cellular phagocytosis (ADCP), antibody-dependent cellular cytotoxicity (ADCC), as well as complement deposition. While it is established that progressive HIV infection is associated with reduced ADCC and ADCP, the underlying mechanism for this loss of function is unknown. Here we report considerable changes in FcR expression over the course of HIV infection on both mDCs and monocytes, including elevated FcγRI expression in acute HIV infection and reduced expression of FcγRII and FcγRIIIa in chronic HIV infection. Furthermore, selective blockade of FcγRII alone was associated with a loss in ADCP activity, suggesting that FcγRII plays a central role in modulating ADCP. Overall, HIV infection is associated with a number of changes in FcR expression on phagocytic cells that are associated with changes in their ability to respond to antibody-opsonized targets, potentially contributing to a failure in viral clearance in progressive HIV-1 infection.

  2. Structure of FcγRI in complex with Fc reveals the importance of glycan recognition for high-affinity IgG binding

    PubMed Central

    Lu, Jinghua; Chu, Jonathan; Zou, Zhongcheng; Hamacher, Nels B.; Rixon, Mark W.; Sun, Peter D.

    2015-01-01

    Fc gamma receptor I (FcγRI) contributes to protective immunity against bacterial infections, but exacerbates certain autoimmune diseases. The sole high-affinity IgG receptor, FcγRI plays a significant role in immunotherapy. To elucidate the molecular mechanism of its high-affinity IgG binding, we determined the crystal structure of the extracellular domains of human FcγRI in complex with the Fc domain of human IgG1. FcγRI binds to the Fc in a similar mode as the low-affinity FcγRII and FcγRIII receptors. In addition to many conserved contacts, FcγRI forms additional hydrogen bonds and salt bridges with the lower hinge region of Fc. Unique to the high-affinity receptor-Fc complex, however, is the conformation of the receptor D2 domain FG loop, which enables a charged KHR motif to interact with proximal carbohydrate units of the Fc glycans. Both the length and the charge of the FcγRI FG loop are well conserved among mammalian species. Ala and Glu mutations of the FG loop KHR residues showed significant contributions of His-174 and Arg-175 to antibody binding, and the loss of the FG loop–glycan interaction resulted in an ∼20- to 30-fold decrease in FcγRI affinity to all three subclasses of IgGs. Furthermore, deglycosylation of IgG1 resulted in a 40-fold loss in FcγRI binding, demonstrating involvement of the receptor FG loop in glycan recognition. These results highlight a unique glycan recognition in FcγRI function and open potential therapeutic avenues based on antibody glycan engineering or small molecular glycan mimics to target FcγRI for certain autoimmune diseases. PMID:25561553

  3. IgG Fc variant cross-reactivity between human and rhesus macaque FcγRs.

    PubMed

    Boesch, Austin W; Miles, Adam R; Chan, Ying N; Osei-Owusu, Nana Y; Ackerman, Margaret E

    2017-01-05

    Non-human primate (NHP) studies are often an essential component of antibody development efforts before human trials. Because the efficacy or toxicity of candidate antibodies may depend on their interactions with Fcγ receptors (FcγR) and their resulting ability to induce FcγR-mediated effector functions such as antibody-dependent cell-meditated cytotoxicity and phagocytosis (ADCP), the evaluation of human IgG variants with modulated affinity toward human FcγR is becoming more prevalent in both infectious disease and oncology studies in NHP. Reliable translation of these results necessitates analysis of the cross-reactivity of these human Fc variants with NHP FcγR. We report evaluation of the binding affinities of a panel of human IgG subclasses, Fc amino acid point mutants and Fc glycosylation variants against the common allotypes of human and rhesus macaque FcγR by applying a high-throughput array-based surface plasmon resonance platform. The resulting data indicate that amino acid variation present in rhesus FcγRs can result in disrupted, matched, or even increased affinity of IgG Fc variants compared with human FcγR orthologs. These observations emphasize the importance of evaluating species cross-reactivity and developing an understanding of the potential limitations or suitability of representative in vitro and in vivo models before human clinical studies when either efficacy or toxicity may be associated with FcγR engagement.

  4. Effects of prostaglandin E{sub 2} on the subcellular localization of Epac-1 and Rap1 proteins during Fc{gamma}-receptor-mediated phagocytosis in alveolar macrophages

    SciTech Connect

    Brock, Thomas G.; Serezani, Carlos H.; Carstens, Jennifer K.; Peters-Golden, Marc; Aronoff, David M.

    2008-01-15

    Recent studies have demonstrated a central role for the exchange protein activated by cAMP (Epac) in the inhibition of Fc{gamma}-receptor-mediated phagocytosis and bacterial killing by prostaglandin E{sub 2} (PGE{sub 2}) in macrophages. However, the subcellular localization of Epac, and its primary target Rap1, has yet to be determined in primary macrophages. Therefore, we used immunofluorescent techniques and phagosome isolation to localize Epac-1 and Rap1 in alveolar macrophages. Epac-1 was predominantly expressed on punctate and tubular membranes throughout the cell body; on the plasma membrane; and co-localized with microtubule organizing centers (MTOCs). Rap1 was abundant on punctate membranes, less abundant on plasma membrane, and also found on MTOCs. Following PGE{sub 2} treatment, Epac-1, but not Rap1, accumulated on the nuclear envelope and disappeared from MTOCs. By immunofluorescent microscopy, both Epac-1 and Rap1 were seen to associate with phagosomes containing IgG-opsonized beads, but this association appeared weak, as we failed to observe such interactions in phagosomes isolated from cells at various time points after bead ingestion. Strikingly, however, Epac-1, but not Rap1, appeared to accumulate on maturing phagosomes, but only after PGE{sub 2} treatment (or treatment with a selective Epac-1 agonist). This association was confirmed in isolated phagosome preparations. The changes in Epac-1 localization were too slow to account for the inhibitory effects of PGE{sub 2} on phagocytosis. However, the appearance of Epac-1 on late phagosomes following PGE{sub 2} treatment might be important for suppressing H{sub 2}O{sub 2} production and inhibiting the killing of intraphagosomal pathogens. The absence of Rap1 on late phagosomes suggests that the effect of Epac-1 might not require Rap1.

  5. Trastuzumab triggers phagocytic killing of high HER2 cancer cells in vitro and in vivo by interaction with Fcγ receptors on macrophages.

    PubMed

    Shi, Yun; Fan, Xuejun; Deng, Hui; Brezski, Randall J; Rycyzyn, Michael; Jordan, Robert E; Strohl, William R; Zou, Quanming; Zhang, Ningyan; An, Zhiqiang

    2015-05-01

    Trastuzumab has been used for the treatment of HER2-overexpressing breast cancer for more than a decade, but the mechanisms of action for the therapy are still being actively investigated. Ab-dependent cell-mediated cytotoxicity mediated by NK cells is well recognized as one of the key mechanisms of action for trastuzumab, but trastuzumab-mediated Ab-dependent cellular phagocytosis (ADCP) has not been established. In this study, we demonstrate that macrophages, by way of phagocytic engulfment, can mediate ADCP and cancer cell killing in the presence of trastuzumab. Increased infiltration of macrophages in the tumor tissue was associated with enhanced efficacy of trastuzumab whereas depletion of macrophages resulted in reduced antitumor efficacy in mouse xenograft tumor models. Among the four mouse FcγRs, FcγRIV exhibits the strongest binding affinity to trastuzumab. Knockdown of FcγRIV in mouse macrophages reduced cancer cell killing and ADCP activity triggered by trastuzumab. Consistently, an upregulation of FcγRIV expression by IFN-γ triggered an increased ADCP activity by trastuzumab. In an analogous fashion, IFN-γ priming of human macrophages increased the expression of FcγRIII, the ortholog of murine FcγRIV, and increased trastuzumab-mediated cancer cell killing. Thus, in two independent systems, the results indicated that activation of macrophages in combination with trastuzumab can serve as a therapeutic strategy for treating high HER2 breast cancer by boosting ADCP killing of cancer cells.

  6. Heteroantibody-mediated cytotoxicity: antibody to the high affinity Fc receptor for IgG mediates cytotoxicity by human monocytes that is enhanced by interferon-gamma and is not blocked by human IgG.

    PubMed

    Shen, L; Guyre, P M; Anderson, C L; Fanger, M W

    1986-12-01

    An IgG1 monoclonal antibody, 32.2, raised against the 72,000 dalton monocyte high affinity Fc receptor, was used to examine the role of this receptor in ADCC. This antibody did not inhibit the binding of human IgG1 to monocytes or to the U937 cell line, nor did it block or stimulate their killing of IgG-coated chicken erythrocytes (CE). Whole 32.2 or its Fab fragments were cross-linked to Fab fragments of rabbit anti-CE by using the agent SPDP. The resulting heteroantibodies (32.2 X Fab anti-CE) mediated monocyte and U937 cytotoxicity against CE, whereas an anti-HLA X anti-CE reagent did not. Both FcR expression and heteroantibody-mediated cytotoxicity were increased by culturing monocytes or U937 with IFN-gamma. Although IgG-mediated ADCC was significantly inhibited by 40 micrograms/ml human IgG1, cytotoxicity mediated by 32.2 X Fab anti-CE was not blocked by 2 mg/ml human IgG1, suggesting that such cytotoxicity might not be blocked by IgG in vivo. These data indicate the potential of 32.2 heteroantibodies in analysis of FcR function and in therapy.

  7. Modification of the Fc Region of a Human Anti-oncostatin M Monoclonal Antibody for Higher Affinity to FcRn Receptor and Extension of Half-life in Cynomolgus Monkeys.

    PubMed

    Nnane, Ivo P; Han, Chao; Jiao, Qun; Tam, Susan H; Davis, Hugh M; Xu, Zhenhua

    2017-01-28

    The purpose of this study was to evaluate the pharmacokinetics (PK) of anti-oncostatin M (OSM) IgG1 monoclonal antibodies, CNTO 1119 and its Fc variant (CNTO 8212), which incorporates the LS(Xtend) mutation to extend terminal half-life (T1/2 ), after a single intravenous (IV) or subcutaneous (SC) administration in cynomolgus monkeys, and to predict human PK. In study 1, single doses of CNTO 1119 and CNTO 8212 were administered IV or SC at 3 mg/kg to cynomolgus monkeys (n = 3 per group). In study 2, single doses of CNTO 8212 were administered IV at 1, 5 or 20 mg/kg, or SC at 5 mg/kg to cynomolgus monkeys (n = 5 per group). Serial blood samples were collected for assessment of serum concentrations of CNTO 1119 and/or CNTO 8212. A two-compartment population PK model with first-order elimination was utilized to simultaneously describe the serum concentrations of CNTO 1119 and CNTO 8212 over time after IV and SC administration in cynomolgus monkeys. The typical population PK parameter estimates for CNTO 1119 in cynomolgus monkeys were clearance (CL) = 2.81 mL/day/kg, volume of distribution of central compartment (V1 ) = 31.3 mL/kg, volume of distribution of peripheral compartment (V2 ) = 23.3 mL/kg, absolute bioavailability (F) = 0.84 and T1/2 = 13.4 days. In comparison, the typical population PK parameter estimates for CNTO 8212 in cynomolgus monkeys were CL = 1.41 mL/day/kg, V1 = 39.8 mL/kg, V2 = 32.6 mL/kg, F = 0.75 and T1/2 = 35.7 days. The mean CL of CNTO 8212 was ~50% lower compared with that for CNTO 1119 in cynomolgus monkeys. The overall volume of distribution (V1 +V2 ) for CNTO 8212 was about 32% larger compared with that for CNTO 1119, but generally similar to the vascular volume in cynomolgus monkeys. The T1/2 of CNTO 8212 was significantly (p < 0.05) longer by about 2.7-fold than that for CNTO 1119 in cynomolgus monkeys. Thus, the modification of the Fc portion of an anti-OSM IgG1 mAb for higher FcRn binding affinity resulted in lower systemic clearance and

  8. Alterations of Fc gamma receptor I and Toll-like receptor 4 mediate the antiinflammatory actions of microglia and astrocytes after adrenaline-induced blood-brain barrier opening in rats.

    PubMed

    Li, Ying-Na; Qin, Xu-Jun; Kuang, Fang; Wu, Rui; Duan, Xiao-Li; Ju, Gong; Wang, Bai-Ren

    2008-12-01

    Blood-brain barrier (BBB) opening occurs under many physiological and pathological conditions. BBB opening will lead to the leakage of large circulating molecules into the brain parenchyma. These invasive molecules will induce immune responses. Microglia and astrocytes are the two major cell types responsible for immune responses in the brain, and Fc gamma receptor I (FcgammaRI) and Toll-like receptor 4 (TLR4) are the two important receptors mediating these processes. Data suggest that activation of the FcgammaRI pathway mediates antiinflammatory processes, whereas activation of TLR4 pathway leads to proinflammatory activities. In the present study, we tested the hypothesis that BBB opening could lead to alterations in FcgammaRI and TLR4 pathways in microglia and astrocytes, thus limiting excessive inflammation in the brain. The transient BBB opening was induced by adrenaline injection through a caudal vein in Sprague-Dawley rats. We found that the FcgammaRI pathway was significantly activated in both microglia and astrocytes, as exhibited by the up-regulation of FcgammaRI and its key downstream molecule Syk, as well as the increased production of the effector cytokines, interleukin (IL)-10 and IL-4. Interestingly, after transient BBB opening, TLR4 expression was also increased. However, the expression of MyD88, the central adapter of the TLR4 pathway, was significantly inhibited, with decreased production of the effector cytokines IL-12a and IL-1beta. These results indicate that, after transient BBB opening, FcgammaRI-mediated antiinflammatory processes were activated, whereas TLR4-mediated proinflammatory activities were inhibited in microglia and astrocytes. This may represent an important neuroprotective mechanism of microglia and astrocytes that limits excessive inflammation after BBB opening.

  9. Induction of Fc epsilon receptors on normal murine T cells and IgE binding factor(s) by cross-linked IgE or IgE-pulsed adherent cells.

    PubMed Central

    Firer, M A; Eshhar, Z

    1986-01-01

    This study aimed to compare the efficiency and extent of induction by monomeric versus cross-linked IgE of specific receptors for IgE on normal murine splenic T cells (Fc epsilon R-T), and to study the ability of IgE-pulsed splenic adherent cells to induce receptors for IgE on T cells. Chemically cross-linked IgE was found to be both more effective and more efficient than monomeric IgE in inducing Fc epsilon R-T as measured by the ability of IgE-pulsed T cells to form specific rosettes with IgE-sensitized trinitrophenylated sheep red blood cells (TNP-SRBC). This phenomenon was dependent on both DNA and protein synthesis, suggesting that induction caused the production of new IgE receptors. It was also found that cross-linked but not monomeric IgE-pulsed normal murine adherent cells as well as their cell-free products could actively induce significant levels of specific Fc epsilon R-T. Both cross-linked IgE-pulsed T cells and adherent cells released IgE binding factor(s). These materials were capable of specifically inhibiting the binding of IgE to rat basophilic leukaemic cells (RBL) in vitro and to rat tissue mast cells in vivo. Collectively, these data provide further evidence to suggest that polymerized forms of IgE and adherent cells play important roles in the regulation of IgE responses. Images Figure 3 PMID:2937716

  10. Increment in Drug Loading on an Antibody-Drug Conjugate Increases Its Binding to the Human Neonatal Fc Receptor in Vitro.

    PubMed

    Brachet, Guillaume; Respaud, Renaud; Arnoult, Christophe; Henriquet, Corinne; Dhommée, Christine; Viaud-Massuard, Marie-Claude; Heuze-Vourc'h, Nathalie; Joubert, Nicolas; Pugnière, Martine; Gouilleux-Gruart, Valérie

    2016-04-04

    Antibody-drug conjugates, such as brentuximab vedotin (BTXv), are an innovative category of monoclonal antibodies. BTXv is bioconjugated via the chemical reduction of cysteine residues involved in disulfide bonds. Species of BTXv containing zero, two, four, six, or eight vedotin molecules per antibody coexist in the stock solution. We investigated the influence of drug loading on the binding of the antibody to FcRn, a major determinant of antibody pharmacokinetics in humans. We developed a hydrophobic interaction chromatography (HIC) method for separating the different species present in the stock solution of BTXv, and we purified and characterized the collected species before use. We assessed the binding of these different species to FcRn in a cellular assay based on flow cytometry and surface plasmon resonance. HIC separated the different species of BTXv and allowed their collection at adequate levels of purity. Physicochemical characterization showed that species with higher levels of drug loading tended to form more aggregates. FcRn binding assays showed that the most conjugated species, particularly those with saturated loading, interacted more strongly than unconjugated BTXv with the FcRn.

  11. Developing the IVIG biomimetic, hexa-Fc, for drug and vaccine applications.

    PubMed

    Czajkowsky, Daniel M; Andersen, Jan Terje; Fuchs, Anja; Wilson, Timothy J; Mekhaiel, David; Colonna, Marco; He, Jianfeng; Shao, Zhifeng; Mitchell, Daniel A; Wu, Gang; Dell, Anne; Haslam, Stuart; Lloyd, Katy A; Moore, Shona C; Sandlie, Inger; Blundell, Patricia A; Pleass, Richard J

    2015-04-27

    The remarkable clinical success of Fc-fusion proteins has driven intense investigation for even more potent replacements. Using quality-by-design (QbD) approaches, we generated hexameric-Fc (hexa-Fc), a ~20 nm oligomeric Fc-based scaffold that we here show binds low-affinity inhibitory receptors (FcRL5, FcγRIIb, and DC-SIGN) with high avidity and specificity, whilst eliminating significant clinical limitations of monomeric Fc-fusions for vaccine and/or cancer therapies, in particular their poor ability to activate complement. Mass spectroscopy of hexa-Fc reveals high-mannose, low-sialic acid content, suggesting that interactions with these receptors are influenced by the mannose-containing Fc. Molecular dynamics (MD) simulations provides insight into the mechanisms of hexa-Fc interaction with these receptors and reveals an unexpected orientation of high-mannose glycans on the human Fc that provides greater accessibility to potential binding partners. Finally, we show that this biosynthetic nanoparticle can be engineered to enhance interactions with the human neonatal Fc receptor (FcRn) without loss of the oligomeric structure, a crucial modification for these molecules in therapy and/or vaccine strategies where a long plasma half-life is critical.

  12. Fc gamma receptor IIa-H131R polymorphism and malaria susceptibility in sympatric ethnic groups, Fulani and Dogon of Mali.

    PubMed

    Maiga, B; Dolo, A; Touré, O; Dara, V; Tapily, A; Campino, S; Sepulveda, N; Corran, P; Rockett, K; Clark, T G; Blomberg, M Troye; Doumbo, O K

    2014-01-01

    It has been previously shown that there are some interethnic differences in susceptibility to malaria between two sympatric ethnic groups of Mali, the Fulani and the Dogon. The lower susceptibility to Plasmodium falciparum malaria seen in the Fulani has not been fully explained by genetic polymorphisms previously known to be associated with malaria resistance, including haemoglobin S (HbS), haemoglobin C (HbC), alpha-thalassaemia and glucose-6-phosphate dehydrogenase (G6PD) deficiency. Given the observed differences in the distribution of FcγRIIa allotypes among different ethnic groups and with malaria susceptibility that have been reported, we analysed the rs1801274-R131H polymorphism in the FcγRIIa gene in a study of Dogon and Fulani in Mali (n = 939). We confirm that the Fulani have less parasite densities, less parasite prevalence, more spleen enlargement and higher levels of total IgG antibodies (anti-CSP, anti-AMA1, anti-MSP1 and anti-MSP2) and more total IgE (P < 0.05) compared with the Dogon ethnic group. Furthermore, the Fulani exhibit higher frequencies of the blood group O (56.5%) compared with the Dogon (43.5%) (P < 0.001). With regard to the FcγRIIa polymorphism and allele frequency, the Fulani group have a higher frequency of the H allele (Fulani 0.474, Dogon 0.341, P < 0.0001), which was associated with greater total IgE production (P = 0.004). Our findings show that the FcγRIIa polymorphism might have an implication in the relative protection seen in the Fulani tribe, with confirmatory studies required in other malaria endemic settings.

  13. High synovial expression of the inhibitory FcγRIIb in rheumatoid arthritis

    PubMed Central

    Magnusson, Sofia E; Engström, Marianne; Jacob, Uwe; Ulfgren, Ann-Kristin; Kleinau, Sandra

    2007-01-01

    Activating Fc gamma receptors (FcγRs) have been identified as having important roles in the inflammatory joint reaction in rheumatoid arthritis (RA) and murine models of arthritis. However, the role of the inhibitory FcγRIIb in the regulation of the synovial inflammation in RA is less known. Here we have investigated synovial tissue from RA patients using a novel monoclonal antibody (GB3) specific for the FcγRIIb isoform. FcγRIIb was abundantly expressed in synovia of RA patients, in sharp contrast to the absence or weak staining of FcγRIIb in synovial biopsies from healthy volunteers. In addition, the expression of FcγRI, FcγRII and FcγRIII was analyzed in synovia obtained from early and late stages of RA. Compared with healthy synovia, which expressed FcγRII, FcγRIII but not FcγRI, all activating FcγRs were expressed and significantly up-regulated in RA, regardless of disease duration. Macrophages were one of the major cell types in the RA synovium expressing FcγRIIb and the activating FcγRs. Anti-inflammatory treatment with glucocorticoids reduced FcγR expression in arthritic joints, particularly that of FcγRI. This study demonstrates for the first time that RA patients do not fail to up-regulate FcγRIIb upon synovial inflammation, but suggests that the balance between expression of the inhibitory FcγRIIb and activating FcγRs may be in favour of the latter throughout the disease course. Anti-inflammatory drugs that target activating FcγRs may represent valuable therapeutics in this disease. PMID:17521421

  14. Understanding the Genomic Structure of Copy‐Number Variation of the Low‐Affinity Fcγ Receptor Region Allows Confirmation of the Association of FCGR3B Deletion with Rheumatoid Arthritis

    PubMed Central

    Rahbari, Raheleh; Zuccherato, Luciana W; Tischler, German; Chihota, Belinda; Ozturk, Hasret; Saleem, Sara; Tarazona‐Santos, Eduardo; Machado, Lee R

    2017-01-01

    ABSTRACT Fcγ receptors are a family of cell–surface receptors that are expressed by a host of different innate and adaptive immune cells, and mediate inflammatory responses by binding the Fc portion of immunoglobulin G. In humans, five low‐affinity receptors are encoded by the genes FCGR2A, FCGR2B, FCGR2C, FCGR3A, and FCGR3B, which are located in an 82.5‐kb segmental tandem duplication on chromosome 1q23.3, which shows extensive copy‐number variation (CNV). Deletions of FCGR3B have been suggested to increase the risk of inflammatory diseases such as systemic lupus erythematosus and rheumatoid arthritis (RA). In this study, we identify the deletion breakpoints of FCGR3B deletion alleles in the UK population and endogamous native American population, and show that some but not all alleles are likely to be identical‐by‐descent. We also localize a duplication breakpoint, confirming that the mechanism of CNV generation is nonallelic homologous recombination, and identify several alleles with gene conversion events using fosmid sequencing data. We use information on the structure of the deletion alleles to distinguish FCGR3B deletions from FCGR3A deletions in whole‐genome array comparative genomic hybridization (aCGH) data. Reanalysis of published aCGH data using this approach supports association of FCGR3B deletion with increased risk of RA in a large cohort of 1,982 cases and 3,271 controls (odds ratio 1.61, P = 2.9×10−3). PMID:27995740

  15. Asymmetrical Fc engineering greatly enhances antibody-dependent cellular cytotoxicity (ADCC) effector function and stability of the modified antibodies.

    PubMed

    Liu, Zhi; Gunasekaran, Kannan; Wang, Wei; Razinkov, Vladimir; Sekirov, Laura; Leng, Esther; Sweet, Heather; Foltz, Ian; Howard, Monique; Rousseau, Anne-Marie; Kozlosky, Carl; Fanslow, William; Yan, Wei

    2014-02-07

    Antibody-dependent cellular cytotoxicity (ADCC) is mediated through the engagement of the Fc segment of antibodies with Fcγ receptors (FcγRs) on immune cells upon binding of tumor or viral antigen. The co-crystal structure of FcγRIII in complex with Fc revealed that Fc binds to FcγRIII asymmetrically with two Fc chains contacting separate regions of the FcγRIII by utilizing different residues. To fully explore this asymmetrical nature of the Fc-FcγR interaction, we screened more than 9,000 individual clones in Fc heterodimer format in which different mutations were introduced at the same position of two Fc chains using a high throughput competition AlphaLISA® assay. To this end, we have identified a panel of novel Fc variants with significant binding improvement to FcγRIIIA (both Phe-158 and Val-158 allotypes), increased ADCC activity in vitro, and strong tumor growth inhibition in mice xenograft human tumor models. Compared with previously identified Fc variants in conventional IgG format, Fc heterodimers with asymmetrical mutations can achieve similar or superior potency in ADCC-mediated tumor cell killing and demonstrate improved stability in the CH2 domain. Fc heterodimers also allow more selectivity toward activating FcγRIIA than inhibitory FcγRIIB. Afucosylation of Fc variants further increases the affinity of Fc to FcγRIIIA, leading to much higher ADCC activity. The discovery of these Fc variants will potentially open up new opportunities of building the next generation of therapeutic antibodies with enhanced ADCC effector function for the treatment of cancers and infectious diseases.

  16. B Cell-Based Seamless Engineering of Antibody Fc Domains

    PubMed Central

    Murayama, Akiho; Ohta, Kunihiro

    2016-01-01

    Engineering of monoclonal antibodies (mAbs) enables us to obtain mAbs with additional functions. In particular, modifications in antibody’s Fc (fragment, crystallizable) region can provide multiple benefits such as added toxicity by drug conjugation, higher affinity to Fc receptors on immunocytes, or the addition of functional modules. However, the generation of recombinant antibodies requires multiple laborious bioengineering steps. We previously developed a technology that enables rapid in vitro screening and isolation of specific mAb-expressing cells from the libraries constructed with chicken B-cell line DT40 (referred to as the ‘ADLib system’). To upgrade this ADLib system with the ability to generate customized mAbs, we developed a novel and rapid engineering technology that enables seamless exchanges of mAbs’ Fc domains after initial selections of mAb-producing clones by the ADLib system, using a gene-replacement unit for recombinase-mediated cassette exchange (RMCE). In this system, Cre-recombinase recognition sites were inserted into the Fc region of the active DT40 IgM allele, allowing the replacement of the Fc domain by the sequences of interest upon co-transfection of a Cre recombinase and a donor DNA, enabling the rapid exchange of Fc regions. Combining this method with the ADLib system, we demonstrate rapid Fc engineering to generate fluorescent antibodies and to enhance affinity to Fc receptors. PMID:27907066

  17. Involvement of the transcription factor PU.1/Spi-1 in myeloid cell-restricted expression of an interferon-inducible gene encoding the human high-affinity Fc gamma receptor.

    PubMed Central

    Perez, C; Coeffier, E; Moreau-Gachelin, F; Wietzerbin, J; Benech, P D

    1994-01-01

    Induction by gamma interferon (IFN-gamma) of the gene encoding the human high-affinity Fc gamma receptor (Fc gamma R1) in myeloid cells requires an IFN-gamma response region (GRR) and a myeloid cell-activating transcription element (MATE). GRR and MATE interact with factors to form, respectively, an IFN-gamma-activating complex (GIRE-BP), depending on the phosphorylation of the 91-kDa protein (subunit of ISGF3), and a cell-type-specific complex (MATE-BP). Although GIRE-BP is detected in cells of different origins after IFN-gamma treatment, the presence of MATE-BP was found to be restricted to B- and myeloid cell lines. Sequence analysis of a cDNA encoding a polypeptide recognizing specifically the MATE motif led to the identification of this product as the proto-oncogene PU.1/Spi-1, a transcriptional activator expressed in myeloid and B cells. Expression of this factor in nonhematopoietic cells allowed IFN-gamma-induced expression of a reporter gene under control of the GRR and MATE sequences. The presence of these motifs in other gene promoters indicates that the binding of PU.1/Spi-1 and IFN regulatory proteins to their respective motifs could be part of a general mechanism leading to cell-type-restricted and IFN-induced gene expression. Images PMID:8035786

  18. Influence of FcγRIIIb polymorphism on its ability to cooperate with FcγRIIa and CR3 in mediating the oxidative burst of human neutrophils.

    PubMed

    Urbaczek, Ana Carolina; Toller-Kawahisa, Juliana Escher; Fonseca, Luiz Marcos; Costa, Paulo Inácio; Faria, Carolina Maria Quinello Gomes; Azzolini, Ana Elisa Caleiro Seixas; Lucisano-Valim, Yara Maria; Marzocchi-Machado, Cleni Mara

    2014-08-01

    Considering that human neutrophil FcγRIIa and FcγRIIIb receptors interact synergistically with CR3 in triggering neutrophil functional responses, allelic polymorphisms in these receptors might influence such interactions. We assessed whether FcγRIIIb polymorphisms affect FcγR/CR cooperation in mediating the neutrophil oxidative burst (OB), in particular the FcγRIIIb/CR3 cooperation that occurs via lectin-saccharide-like interactions. The OB of human neutrophil antigen (HNA)-1a-, HNA-1b-, and HNA-1a/-1b-neutrophils stimulated with immune complexes, opsonized or not with serum complement, was measured by the luminol-enhanced chemiluminescence assay. Compared with HNA-1a-neutrophils, HNA-1b-neutrophils exhibited reduced FcγR-stimulated OB, but increased FcγR/CR-stimulated OB. It suggests that (i) FcγR and CR cooperate more effectively in HNA-1b-neutrophils, and (ii) the HNA-1b allotype influences the FcγRIIIb cooperation with FcγRIIa, but not with CR3. HNA-1a- and HNA-1b-neutrophils exhibited similar OB responses elicited via CR3 alone or via FcγR/CR-independent pathways. In addition, the level of FcγRIIIb, FcγRIIa, and CR3 expression did not differ significantly among the neutrophil groups studied. Together, these results demonstrate that the HNA-1b allotype influences the functional cooperation between FcγRIIIb and FcγRIIa, and suggest that the difference in the glycosylation pattern between HNA-1a and HNA-1b does not affect the FcγRIIIb cooperation with CR3.

  19. Importance of neonatal FcR in regulating the serum half-life of therapeutic proteins containing the Fc domain of human IgG1: a comparative study of the affinity of monoclonal antibodies and Fc-fusion proteins to human neonatal FcR.

    PubMed

    Suzuki, Takuo; Ishii-Watabe, Akiko; Tada, Minoru; Kobayashi, Tetsu; Kanayasu-Toyoda, Toshie; Kawanishi, Toru; Yamaguchi, Teruhide

    2010-02-15

    The neonatal FcR (FcRn) binds to the Fc domain of IgG at acidic pH in the endosome and protects IgG from degradation, thereby contributing to the long serum half-life of IgG. To date, more than 20 mAb products and 5 Fc-fusion protein products have received marketing authorization approval in the United States, the European Union, or Japan. Many of these therapeutic proteins have the Fc domain of human IgG1; however, the serum half-lives differ in each protein. To elucidate the role of FcRn in the pharmacokinetics of Fc domain-containing therapeutic proteins, we evaluated the affinity of the clinically used human, humanized, chimeric, or mouse mAbs and Fc-fusion proteins to recombinant human FcRn by surface plasmon resonance analysis. The affinities of these therapeutic proteins to FcRn were found to be closely correlated with the serum half-lives reported from clinical studies, suggesting the important role of FcRn in regulating their serum half-lives. The relatively short serum half-life of Fc-fusion proteins was thought to arise from the low affinity to FcRn. The existence of some mAbs having high affinity to FcRn and a short serum half-life, however, suggested the involvement of other critical factor(s) in determining the serum half-life of such Abs. We further investigated the reason for the relatively low affinity of Fc-fusion proteins to FcRn and suggested the possibility that the receptor domain of Fc-fusion protein influences the structural environment of the FcRn binding region but not of the FcgammaRI binding region of the Fc domain.

  20. Immune-mediated liver injury of the cancer therapeutic antibody catumaxomab targeting EpCAM, CD3 and Fcγ receptors

    PubMed Central

    Borlak, Jürgen; Länger, Florian; Spanel, Reinhard; Schöndorfer, Georg; Dittrich, Christian

    2016-01-01

    The immunotherapeutic catumaxomab targets EpCAM positive cancers and is approved for the treatment of peritoneal carcinomatosis. To assess the safety of intravenous applications a phase 1 clinical trial was initiated. Treatment of EpCAM positive tumor patients with catumaxomab caused dose dependent hepatitis as evidenced by significant elevations in serum alanine- and aspartate aminotransferases, bilirubin, γGT and induction of the acute phase C-reactive protein (CRP) and the cytokines IL6 and IL8. The first patient receiving 10μg catumaxomab experienced fatal acute liver failure which led to the termination of the study. Immmunopathology revealed catumaxomab to bind via its Fc-fragment to FcγR-positive Kupffer cells to stimulate CRP, chemokine and cytokine release. The observed CD3+T-cell margination at activated hepatic macrophages exacerbated T-cell mediated cytotoxicity. Strikingly, the combined Kupffer/T-cell responses against liver cells did not require hepatocytes to be EpCAM-positive. Catumaxomab's off-target activity involved T-cell mediated lysis of the granzyme B cell death pathway and the molecular interaction of hepatic sinusoidal macrophages with T-cells induced cytolytic hepatitis. Although the bile ducts were surrounded by densely packed lymphocytes these rarely infiltrated the ducts to suggest an intrahepatic cholestasis as the cause of hyperbilirubinaemia. Lastly, evidence for the programming of memory T-cells was observed with one patient that succumbed to his cancer six weeks after the last catumaxomab infusion. In conclusion, our study exemplifies off-target hepatotoxicity with molecularly targeted therapy and highlights the complexities in the clinical development of immunotherapeutic antibodies. PMID:27058902

  1. The use of spent renal dialysis membranes for the isolation of large numbers of human neutrophils for biochemical studies. Application to purification of the myeloid IgA receptor (Fc alpha R).

    PubMed

    Mazengera, R L; Kerr, M A; Todd, A S

    1992-01-21

    Human neutrophils (PMN) can be eluted from spent Cuprophan renal dialysis membranes in large numbers (10(9)-10(10) per dialyser cartridge) and in relatively high purity by washing the membranes with 0.35 M NaCl. This offers the possibility of isolating relatively large amounts (10(-4)-10(-3) g) of minor PMN proteins such as those expressed on the cell surface. Here the technique is applied to the purification of the neutrophil IgA receptor (Fc alpha R). Affinity chromatography on IgA-Sepharose of NP-40 extracts of 125I-labelled PMN isolated from fresh venous blood routinely gave a receptor preparation showing one diffuse band, Mr 50-70 kDa, upon analysis by SDS-PAGE and autoradiography. When the same method was used with larger numbers of unlabelled PMN from fresh venous blood or renal dialysis membranes a preparation was obtained which gave multiple bands upon analysis by SDS-PAGE silver stained gels due to contamination of the receptor with cytoplasmic proteins which bound non-specifically to the IgA-Sepharose. Most of these contaminants could be removed by chromatography of the IgA-Sepharose eluates on wheat germ agglutinin-Sepharose.

  2. Identification of an ADAM17 Cleavage Region in Human CD16 (FcγRIII) and the Engineering of a Non-Cleavable Version of the Receptor in NK Cells

    PubMed Central

    Jing, Yawu; Ni, Zhenya; Wu, Jianming; Higgins, LeeAnn; Markowski, Todd W.; Kaufman, Dan S.; Walcheck, Bruce

    2015-01-01

    CD16a and CD16b are IgG Fc receptors expressed by human natural killer (NK) cells and neutrophils, respectively. Both CD16 isoforms undergo a rapid down-regulation in expression by ADAM17-mediated proteolytic cleavage upon cell activation by various stimuli. We examined soluble CD16 released from activated NK cells and neutrophils by mass spectrometric analysis, and identified three separate cleavage sites in close proximity at P1/P1′ positions alanine195/valine196, valine196/serine197, and threonine198/isoleucine199, revealing a membrane proximal cleavage region in CD16. Substitution of the serine at position 197 in the middle of the cleavage region for a proline (S197P) effectively blocked CD16a and CD16b cleavage in cell-based assays. We also show that CD16a/S197P was resistant to cleavage when expressed in the human NK cell line NK92 and primary NK cells derived from genetically-engineered human induced pluripotent stem cells. CD16a is a potent activating receptor and despite blocking CD16a shedding, the S197P mutation did not disrupt IgG binding by the receptor or its activation of NK92 cells by antibody-treated tumor cells. Our findings provide further characterization of CD16 cleavage by ADAM17 and they demonstrate that a non-cleavable version of CD16a can be expressed in engineered NK cells. PMID:25816339

  3. IgE enhances Fc epsilon receptor I expression and IgE-dependent release of histamine and lipid mediators from human umbilical cord blood-derived mast cells: synergistic effect of IL-4 and IgE on human mast cell Fc epsilon receptor I expression and mediator release.

    PubMed

    Yamaguchi, M; Sayama, K; Yano, K; Lantz, C S; Noben-Trauth, N; Ra, C; Costa, J J; Galli, S J

    1999-05-01

    We investigated the effects of IgE versus IL-4 on Fc epsilon RI surface expression in differentiated human mast cells derived in vitro from umbilical cord blood mononuclear cells. We found that IgE (at 5 micrograms/ml) much more strikingly enhanced surface expression of Fc epsilon RI than did IL-4 (at 0.1-100 ng/ml); similar results were also obtained with differentiated mouse mast cells. However, IL-4 acted synergistically with IgE to enhance Fc epsilon RI expression in these umbilical cord blood-derived human mast cells, as well as in mouse peritoneal mast cells derived from IL-4-/- or IL-4+/+ mice. We also found that: 1) IgE-dependent enhancement of Fc epsilon RI expression was associated with a significantly enhanced ability of these human mast cells to secrete histamine, PGD2, and leukotriene C4 upon subsequent passive sensitization with IgE and challenge with anti-IgE; 2) preincubation with IL-4 enhanced IgE-dependent mediator secretion in these cells even in the absence of significant effects on Fc epsilon RI surface expression; 3) when used together with IgE, IL-4 enhanced IgE-dependent mediator secretion in human mast cells to levels greater than those observed in cells that had been preincubated with IgE alone; and 4) batches of human mast cells generated in vitro from umbilical cord blood cells derived from different donors exhibited differences in the magnitude and pattern of histamine and lipid mediator release in response to anti-IgE challenge, both under baseline conditions and after preincubation with IgE and/or IL-4.

  4. Phase I trial of a humanized, Fc receptor nonbinding anti-CD3 antibody, hu12F6mu in patients receiving renal allografts

    PubMed Central

    Du, Li; Tan, Min; Hou, Sheng; Qian, Weizhu; Li, Bohua; Zhang, Dapeng; Dai, Jianxin; Wang, Hao; Zhang, Xu

    2010-01-01

    Hu12F6mu is an Fc-mutated, humanized anti-CD3 antibody developed in our lab. The aim of this study was to assess single dose escalation pharmacokinetics (PK) and safety profile of hu12F6mu and to measure the effects of the antibody on levels of circulating T cells over time. Twenty-seven patients receiving renal allografts were randomized to receive hu12F6mu intravenously at a single-dose of 2.5, 5 or 10 mg. The concentration-time data obtained by a validated ELISA method were subjected to non-compartmental PK analysis by DAS 2.1 software. Subgroups of CD2+, CD3+, CD4+ and CD8+ lymphocytes were monitored periodically by flow cytometry. Our results showed that hu12F6mu exhibited linear PK over the dose range of 2.5–10 mg. A significant decline in the proportion of T cells was observed immediately after the infusion, followed by a progressive increase occurring over the ensuing days of therapy. A significant negative correlation was observed between serum concentration of hu12F6mu and CD3+ cell proportion. Intravenous infusion of hu12F6mu was well-tolerated in patients receiving renal allografts. These results suggest that hu12F6mu may have potential as a therapeutic agent, although further studies are needed. PMID:20519962

  5. T cell receptor complexes containing Fc epsilon RI gamma homodimers in lieu of CD3 zeta and CD3 eta components: a novel isoform expressed on large granular lymphocytes

    PubMed Central

    1992-01-01

    CD3 zeta and CD3 eta form disulfide-linked homo- or heterodimers important in targeting partially assembled Ti alpha-beta/CD3 gamma delta epsilon T cell receptor (TCR) complexes to the cell surface and transducing stimulatory signals after antigen recognition. Here we identify a new TCR isoform expressed on splenic CD2+, CD3/Ti alpha- beta+, CD4-, CD8-, CD16+, NK1.1+ mouse large granular lymphocytes (LGL), which are devoid of CD3 zeta and CD3 eta proteins. The TCRs of this subset contain homodimers of the gamma subunit of the high affinity receptor for IgE (Fc epsilon RI gamma) in lieu of CD3 zeta and/or CD3 eta proteins. The LGL display natural killer-like activity and are cytotoxic for B cell hybridomas producing anti-CD3 epsilon and anti-CD16 monoclonal antibodies, demonstrating the signaling capacity of both TCR and CD16 in this cell type. These findings provide evidence for an additional level of complexity of TCR signal transduction isoforms in naturally occurring T cell subsets. PMID:1530959

  6. The impact of FcγRIIa and FcγRIIIa gene polymorphisms on responses to RCHOP chemotherapy in diffuse large B-cell lymphoma patients

    PubMed Central

    ROŽMAN, SAMO; NOVAKOVIĆ, SRDJAN; GRABNAR, IZTOK; CERKOVNIK, PETRA; NOVAKOVIĆ, BARBARA JEZERŠEK

    2016-01-01

    Rituximab is a monoclonal antibody routinely used in the treatment of B-cell non-Hodgkin lymphomas. It mediates antibody-dependent cellular cytotoxicity of B lymphocytes by bridging them with Fcγ receptors (FcγR) on effector cells. Several polymorphisms in the FcγR genes have been identified to influence rituximab binding to FcγR, thus altering its antitumor effect in indolent lymphomas. In the present study, the impact of FcγRIIa and FcγRIIIa polymorphisms on the survival and response to immunochemotherapy consisting of rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone was evaluated in diffuse large B-cell lymphoma (DLBCL) patients. A total of 29 Slovenian DLBCL patients were studied. Genotyping was conducted for FcγRIIa-27, FcγRIIa-131, FcγRIIIa-48 and FcγRIIIa-158 polymorphisms. The median follow-up time was 29.7 months (range, 9.7–45.4 months). No significant impact of the genotypes was observed on the treatment response, progression-free or overall survival of DLBCL patients. There was a non-significant trend of an improved response to chemotherapy without additional irradiation in patients homozygous for Val at FCγIIIa-158 compared to Phe carriers. The findings of the present study indicate that FcγR polymorphisms have no influence on the survival of DLBCL patients. PMID:27123112

  7. Scavenger receptor function of mouse FcγRIII contributes to progression of atherosclerosis in apoE hyperlipidemic mice1

    PubMed Central

    Zhu, Xinmei; Ng, Hang Pong; Lai, Yen-Chun; Craigo, Jodi K.; Nagilla, Pruthvi S.; Raghani, Pooja; Nagarajan, Shanmugam

    2014-01-01

    Recent studies showed loss of CD36 or scavenger receptor-AI/II (SR-A) does not ameliorate atherosclerosis in hyperlipidemic mouse model, suggesting receptors other than CD36 and SR-A may also contribute to atherosclerosis. In this report, we show that apoE-CD16 double knockout mice (apoE-CD16 DKO) have reduced atherosclerotic lesions compared with apoE KO mice. In vivo and in vitro foam cells analyses showed apoE-CD16 DKO macrophages accumulated less neutral lipids. Reduced foam cell formation in apoE-CD16 DKO mice is not due to change in expression of CD36, SR-A and LOX-1. This led to a hypothesis that CD16 may have scavenger receptor activity. We presented evidence that a soluble form of recombinant mouse CD16 (sCD16) bound to malondialdehyde-modified low-density lipoprotein (MDALDL), and this binding is blocked by molar excess of MDA-BSA and anti-MDA mAbs, suggesting CD16 specifically recognizes MDA epitopes. Interestingly, sCD16 inhibited MDALDL binding to macrophage cell line as well as sCD36, sSR-A and sLOX-1, indicating CD16 can cross-block MDALDL binding to other scavenger receptors. Anti-CD16 mAb inhibited IC binding to sCD16, while partially inhibited MDALDL binding to sCD16, suggesting MDALDL binding site may be in close proximity to the IC binding site in CD16. Loss of CD16 expression resulted in reduced levels of MDALDL induced pro-inflammatory cytokine expression. Finally, CD16 deficient macrophages showed reduced MDALDL-induced Syk phosphorylation. Collectively our findings suggest scavenger receptor activity of CD16 may in part contribute to the progression of atherosclerosis. PMID:25038257

  8. Shifting FcγRIIA-ITAM from activation to inhibitory configuration ameliorates arthritis.

    PubMed

    Ben Mkaddem, Sanae; Hayem, Gilles; Jönsson, Friederike; Rossato, Elisabetta; Boedec, Erwan; Boussetta, Tarek; El Benna, Jamel; Launay, Pierre; Goujon, Jean-Michel; Benhamou, Marc; Bruhns, Pierre; Monteiro, Renato C

    2014-09-01

    Rheumatoid arthritis-associated (RA-associated) inflammation is mediated through the interaction between RA IgG immune complexes and IgG Fc receptors on immune cells. Polymorphisms within the gene encoding the human IgG Fc receptor IIA (hFcγRIIA) are associated with an increased risk of developing RA. Within the hFcγRIIA intracytoplasmic domain, there are 2 conserved tyrosine residues arranged in a noncanonical immunoreceptor tyrosine-based activation motif (ITAM). Here, we reveal that inhibitory engagement of the hFcγRIIA ITAM either with anti-hFcγRII F(ab')2 fragments or intravenous hIgG (IVIg) ameliorates RA-associated inflammation, and this effect was characteristic of previously described inhibitory ITAM (ITAMi) signaling for hFcαRI and hFcγRIIIA, but only involves a single tyrosine. In hFcγRIIA-expressing mice, arthritis induction was inhibited following hFcγRIIA engagement. Moreover, hFcγRIIA ITAMi-signaling reduced ROS and inflammatory cytokine production through inhibition of guanine nucleotide exchange factor VAV-1 and IL-1 receptor-associated kinase 1 (IRAK-1), respectively. ITAMi signaling was mediated by tyrosine 304 (Y304) within the hFcγRIIA ITAM, which was required for recruitment of tyrosine kinase SYK and tyrosine phosphatase SHP-1. Anti-hFcγRII F(ab')2 treatment of inflammatory synovial cells from RA patients inhibited ROS production through induction of ITAMi signaling. These data suggest that shifting constitutive hFcγRIIA-mediated activation to ITAMi signaling could ameliorate RA-associated inflammation.

  9. Renal FcRn reclaims albumin but facilitates elimination of IgG.

    PubMed

    Sarav, Menaka; Wang, Ying; Hack, Bradley K; Chang, Anthony; Jensen, Mark; Bao, Lihua; Quigg, Richard J

    2009-09-01

    The widely distributed neonatal Fc receptor (FcRn) contributes to maintaining serum levels of albumin and IgG in adults. In the kidney, FcRn is expressed on the podocytes and the brush border of the proximal tubular epithelium. Here, we evaluated the role of renal FcRn in albumin and IgG metabolism. Compared with wild-type controls, FcRn(-/-) mice had a lower t((1/2)) for albumin (28.7 versus 39.9 h) and IgG (29.5 versus 66.1 h). Renal loss of albumin could account for the former, suggested by the progressive development of hypoalbuminemia in wild-type mice transplanted with FcRn-deficient kidneys. Furthermore, serum albumin levels returned to normal in FcRn(-/-) recipients of wild-type kidneys after removing the native FcRn-deficient kidneys. In contrast, renal loss could not account for the enhanced elimination of IgG in FcRn(-/-) mice. These mice had minimal urinary excretion of native and labeled IgG, which increased to wild-type levels in FcRn(-/-) recipients of a single FcRn-sufficient kidney (t((1/2)) of IgG was 21.7 h). Taken together, these data suggest that renal FcRn reclaims albumin, thereby maintaining the serum concentration of albumin, but facilitates the loss of IgG from plasma protein pools.

  10. Cancer cell-binding peptide fused Fc domain activates immune effector cells and blocks tumor growth

    PubMed Central

    Mobergslien, Anne; Peng, Qian; Vasovic, Vlada; Sioud, Mouldy

    2016-01-01

    Therapeutic strategies aiming at mobilizing immune effector cells to kill tumor cells independent of tumor mutational load and MHC expression status are expected to benefit cancer patients. Recently, we engineered various peptide-Fc fusion proteins for directing Fcg receptor-bearing immune cells toward tumor cells. Here, we investigated the immunostimulatory and anti-tumor effects of one of the engineered Fc fusion proteins (WN-Fc). In contrast to the Fc control, soluble WN-Fc-1 fusion protein activated innate immune cells (e.g. monocytes, macrophages, dendritic cells, NK cells), resulting in cytokine production and surface display of the lytic granule marker CD107a on NK cells. An engineered Fc-fusion variant carrying two peptide sequences (WN-Fc-2) also activated immune cells and bound to various cancer cell types with high affinity, including the murine 4T1 breast carcinoma cells. When injected into 4T1 tumor-bearing BALB/c mice, both peptide-Fc fusions accumulated in tumor tissues as compared to other organs such as the lungs. Moreover, treatment of 4T1 tumor-bearing BALB/c mice by means of two intravenous injections of the WN-Fc fusion proteins inhibited tumor growth with WN-Fc-2 being more effective than WN-Fc-1. Treatment resulted in tumor infiltration by T cells and NK cells. These new engineered WN-Fc fusion proteins may be a promising alternative to existing immunotherapies for cancer. PMID:27713158

  11. HA Antibody-Mediated FcγRIIIa Activity Is Both Dependent on FcR Engagement and Interactions between HA and Sialic Acids

    PubMed Central

    Cox, Freek; Kwaks, Ted; Brandenburg, Boerries; Koldijk, Martin H.; Klaren, Vincent; Smal, Bastiaan; Korse, Hans J. W. M.; Geelen, Eric; Tettero, Lisanne; Zuijdgeest, David; Stoop, Esther J. M.; Saeland, Eirikur; Vogels, Ronald; Friesen, Robert H. E.; Koudstaal, Wouter; Goudsmit, Jaap

    2016-01-01

    Interactions with receptors for the Fc region of IgG (FcγRs) have been shown to contribute to the in vivo protection against influenza A viruses provided by broadly neutralizing antibodies (bnAbs) that bind to the viral hemagglutinin (HA) stem. In particular, Fc-mediated antibody-dependent cellular cytotoxicity (ADCC) has been shown to contribute to protection by stem-binding bnAbs. Fc-mediated effector functions appear not to contribute to protection provided by strain-specific HA head-binding antibodies. We used a panel of anti-stem and anti-head influenza A and B monoclonal antibodies with identical human IgG1 Fc domains and investigated their ability to mediate ADCC-associated FcγRIIIa activation. Antibodies which do not interfere with sialic acid binding of HA can mediate FcγRIIIa activation. However, the FcγRIIIa activation was inhibited when a mutant HA, unable to bind sialic acids, was used. Antibodies which block sialic acid receptor interactions of HA interfered with FcγRIIIa activation. The inhibition of FcγRIIIa activation by HA head-binding and sialic acid receptor-blocking antibodies was confirmed in plasma samples of H5N1 vaccinated human subjects. Together, these results suggest that in addition to Fc–FcγR binding, interactions between HA and sialic acids on immune cells are required for optimal Fc-mediated effector functions by anti-HA antibodies. PMID:27746785

  12. Notice of Release of FC1018, FC1019, FC1020 and FC1022 Multigerm Sugarbeet Germplasms with Multiple Disease Resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    FC1018 (PI 658059) has excellent resistance to root-rotting strains (AG-2-2) of Rhizoctonia solani Kühn and carries the Rz1 gene, which confers resistance to some strains of Beet necrotic yellow vein virus (BNYVV), the causal agent of rhizomania. FC1018 has shown a moderate tolerance to cercospora ...

  13. Identification and characterization of a FcR homolog in an ectothermic vertebrate, the channel catfish (Ictalurus punctatus).

    PubMed

    Stafford, James L; Wilson, Melanie; Nayak, Deepak; Quiniou, Sylvie M; Clem, L W; Miller, Norman W; Bengtén, Eva

    2006-08-15

    An FcR homolog (IpFcRI), representing the first such receptor from an ectothermic vertebrate, has been identified in the channel catfish (Ictalurus punctatus). Mining of the catfish expressed sequence tag databases using mammalian FcR sequences for CD16, CD32, and CD64 resulted in the identification of a teleost Ig-binding receptor. IpFcRI is encoded by a single-copy gene containing three Ig C2-like domains, but lacking a transmembrane segment and cytoplasmic tail. The encoded Ig domains of IpFcRI are phylogenetically and structurally related to mammalian FcR and the presence of a putative Fc-binding region appears to be conserved. IpFcRI-related genomic sequences are also present in both pufferfish and rainbow trout, indicating the likely presence of a soluble FcR in other fish species. Northern blot and qualitative PCR analyses demonstrated that IpFcRI is primarily expressed in IgM-negative leukocytes derived from the lymphoid kidney tissues and PBL. Significantly lower levels of IpFcRI expression were detected in catfish clonal leukocyte cell lines. Using the native leader, IpFcRI was secreted when transfected into insect cells and importantly the native IpFcRI glycoprotein was detected in catfish plasma using a polyclonal Ab. Recombinant IpFcRI binds catfish IgM as assessed by both coimmunoprecipation and cell transfection studies and it is presumed that it functions as a secreted FcR akin to the soluble FcR found in mammals. The identification of an FcR homolog in an ectothermic vertebrate is an important first step toward understanding the evolutionary history and functional importance of vertebrate Ig-binding receptors.

  14. Membrane nanoclusters of FcγRI segregate from inhibitory SIRPα upon activation of human macrophages

    PubMed Central

    Valvo, Salvatore; Felce, James H.

    2017-01-01

    Signal integration between activating Fc receptors and inhibitory signal regulatory protein α (SIRPα) controls macrophage phagocytosis. Here, using dual-color direct stochastic optical reconstruction microscopy, we report that Fcγ receptor I (FcγRI), FcγRII, and SIRPα are not homogeneously distributed at macrophage surfaces but are organized in discrete nanoclusters, with a mean radius of 71 ± 11 nm, 60 ± 6 nm, and 48 ± 3 nm, respectively. Nanoclusters of FcγRI, but not FcγRII, are constitutively associated with nanoclusters of SIRPα, within 62 ± 5 nm, mediated by the actin cytoskeleton. Upon Fc receptor activation, Src-family kinase signaling leads to segregation of FcγRI and SIRPα nanoclusters to be 197 ± 3 nm apart. Co-ligation of SIRPα with CD47 abrogates nanocluster segregation. If the balance of signals favors activation, FcγRI nanoclusters reorganize into periodically spaced concentric rings. Thus, a nanometer- and micron-scale reorganization of activating and inhibitory receptors occurs at the surface of human macrophages concurrent with signal integration. PMID:28289091

  15. Nicotine inhibits Fc epsilon RI-induced cysteinyl leukotrienes and cytokine production without affecting mast cell degranulation through alpha 7/alpha 9/alpha 10-nicotinic receptors.

    PubMed

    Mishra, Neerad C; Rir-sima-ah, Jules; Boyd, R Thomas; Singh, Shashi P; Gundavarapu, Sravanthi; Langley, Raymond J; Razani-Boroujerdi, Seddigheh; Sopori, Mohan L

    2010-07-01

    Smokers are less likely to develop some inflammatory and allergic diseases. In Brown-Norway rats, nicotine inhibits several parameters of allergic asthma, including the production of Th2 cytokines and the cysteinyl leukotriene LTC(4). Cysteinyl leukotrienes are primarily produced by mast cells, and these cells play a central role in allergic asthma. Mast cells express a high-affinity receptor for IgE (FcepsilonRI). Following its cross-linking, cells degranulate and release preformed inflammatory mediators (early phase) and synthesize and secrete cytokines/chemokines and leukotrienes (late phase). The mechanism by which nicotine modulates mast cell activation is unclear. Using alpha-bungarotoxin binding and quantitative PCR and PCR product sequencing, we showed that the rat mast/basophil cell line RBL-2H3 expresses nicotinic acetylcholine receptors (nAChRs) alpha7, alpha9, and alpha10; exposure to exceedingly low concentrations of nicotine (nanomolar), but not the biologically inactive metabolite cotinine, for > or = 8 h suppressed the late phase (leukotriene/cytokine production) but not degranulation (histamine and hexosaminidase release). These effects were unrelated to those of nicotine on intracellular free calcium concentration but were causally associated with the inhibition of cytosolic phospholipase A(2) activity and the PI3K/ERK/NF-kappaB pathway, including phosphorylation of Akt and ERK and nuclear translocation of NF-kappaB. The suppressive effect of nicotine on the late-phase response was blocked by the alpha7/alpha9-nAChR antagonists methyllycaconitine and alpha-bungarotoxin, as well as by small interfering RNA knockdown of alpha7-, alpha9-, or alpha10-nAChRs, suggesting a functional interaction between alpha7-, alpha9-, and alpha10-nAChRs that might explain the response of RBL cells to nanomolar concentrations of nicotine. This "hybrid" receptor might serve as a target for novel antiallergic/antiasthmatic therapies.

  16. Highly parallel characterization of IgG Fc binding interactions

    PubMed Central

    Boesch, Austin W; Brown, Eric P; Cheng, Hao D; Ofori, Maame Ofua; Normandin, Erica; Nigrovic, Peter A; Alter, Galit; Ackerman, Margaret E

    2014-01-01

    Because the variable ability of the antibody constant (Fc) domain to recruit innate immune effector cells and complement is a major factor in antibody activity in vivo, convenient means of assessing these binding interactions is of high relevance to the development of enhanced antibody therapeutics, and to understanding the protective or pathogenic antibody response to infection, vaccination, and self. Here, we describe a highly parallel microsphere assay to rapidly assess the ability of antibodies to bind to a suite of antibody receptors. Fc and glycan binding proteins such as FcγR and lectins were conjugated to coded microspheres and the ability of antibodies to interact with these receptors was quantified. We demonstrate qualitative and quantitative assessment of binding preferences and affinities across IgG subclasses, Fc domain point mutants, and antibodies with variant glycosylation. This method can serve as a rapid proxy for biophysical methods that require substantial sample quantities, high-end instrumentation, and serial analysis across multiple binding interactions, thereby offering a useful means to characterize monoclonal antibodies, clinical antibody samples, and antibody mimics, or alternatively, to investigate the binding preferences of candidate Fc receptors. PMID:24927273

  17. Regulation of FcεRI signaling by lipid phosphatases.

    PubMed

    Kuhny, Marcel; Zorn, Carolin N; Huber, Michael

    2014-01-01

    Mast cells (MCs) are tissue-resident sentinels of hematopoietic origin that play a prominent role in allergic diseases. They express the high-affinity receptor for IgE (FcεRI), which when cross-linked by multivalent antigens triggers the release of preformed mediators, generation of arachidonic acid metabolites, and the synthesis of cytokines and chemokines. Stimulation of the FcεRI with increasing antigen concentrations follows a characteristic bell-shaped dose-responses curve. At high antigen concentrations, the so-called supra-optimal conditions, repression of FcεRI-induced responses is facilitated by activation and incorporation of negative signaling regulators. In this context, the SH2-containing inositol-5'-phosphatase, SHIP1, has been demonstrated to be of particular importance. SHIP1 with its catalytic and multiple protein interaction sites provides several layers of control for FcεRI signaling. Regulation of SHIP1 function occurs on various levels, e.g., protein expression, receptor and membrane recruitment, competition for protein-protein interaction sites, and activating modifications enhancing the phosphatase function. Apart from FcεRI-mediated signaling, SHIP1 can be activated by diverse unrelated receptor systems indicating its involvement in the regulation of antigen-dependent cellular responses by autocrine feedback mechanisms or tissue-specific and/or (patho-) physiologically determined factors. Thus, pharmacologic engagement of SHIP1 may represent a beneficial strategy for patients suffering from acute or chronic inflammation or allergies.

  18. Enhanced antibody-dependent cellular phagocytosis by chimeric monoclonal antibodies with tandemly repeated Fc domains.

    PubMed

    Nagashima, Hiroaki; Ootsubo, Michiko; Fukazawa, Mizuki; Motoi, Sotaro; Konakahara, Shu; Masuho, Yasuhiko

    2011-04-01

    We previously reported that chimeric monoclonal antibodies (mAbs) with tandemly repeated Fc domains, which were developed by introducing tandem repeats of Fc domains downstream of 2 Fab domains, augmented binding avidities for all Fcγ receptors, resulting in enhanced antibody (Ab)-dependent cellular cytotoxicity. Here we investigated regarding Ab-dependent cellular phagocytosis (ADCP) mediated by these chimeric mAbs, which is considered one of the most important mechanisms that kills tumor cells, using two-color flow cytometric methods. ADCP mediated by T3-Ab, a chimeric mAb with 3 tandemly repeated Fc domains, was 5 times more potent than that by native anti-CD20 M-Ab (M-Ab hereafter). Furthermore, T3-Ab-mediated ADCP was resistant to competitive inhibition by intravenous Ig (IVIG), although M-Ab-mediated ADCP decreased in the presence of IVIG. An Fcγ receptor-blocking study demonstrated that T3-Ab mediated ADCP via both FcγRIA and FcγRIIA, whereas M-Ab mediated ADCP exclusively via FcγRIA. These results suggest that chimeric mAbs with tandemly repeated Fc domains enhance ADCP as well as ADCC, and that Fc multimerization may significantly enhance the efficacy of therapeutic Abs.

  19. Increasing FcγRIIa affinity of an FcγRIII-optimized anti-EGFR antibody restores neutrophil-mediated cytotoxicity

    PubMed Central

    Derer, Stefanie; Glorius, Pia; Schlaeth, Martin; Lohse, Stefan; Klausz, Katja; Muchhal, Umesh; Desjarlais, John R; Humpe, Andreas; Valerius, Thomas; Peipp, Matthias

    2014-01-01

    Antibody-dependent cell-mediated cytotoxicity (ADCC) has been suggested as an essential mechanism for the in vivo activity of cetuximab, an epidermal growth factor receptor (EGFR)-targeting therapeutic antibody. Thus, enhancing the affinity of human IgG1 antibodies to natural killer (NK) cell-expressed FcγRIIIa by glyco- or protein-engineering of their Fc portion has been demonstrated to improve NK cell-mediated ADCC and to represent a promising strategy to improve antibody therapy. However, human polymorphonuclear (PMN) effector cells express the highly homologous FcγRIIIb isoform, which is described to be ineffective in triggering ADCC. Here, non-fucosylated or protein-engineered anti-EGFR antibodies with optimized FcγRIIIa affinities demonstrated the expected benefit in NK cell-mediated ADCC, but did not mediate ADCC by PMN, which could be restored by FcγRIIIb blockade. Furthermore, eosinophils and PMN from paroxysmal nocturnal hemoglobinuria patients that expressed no or low levels of FcγRIIIb mediated effective ADCC with FcγRIII-optimized anti-EGFR antibody. Additional experiments with double FcγRIIa/FcγRIII-optimized constructs demonstrated enhanced PMN-mediated ADCC compared with single FcγRIII-optimized antibody. In conclusion, our data demonstrate that FcγRIIIb engagement impairs PMN-mediated ADCC activity of FcγRIII-optimized anti-EGFR antibodies, while further optimization of FcγRIIa binding significantly restores PMN recruitment. PMID:24492248

  20. Engineering a monomeric Fc domain modality by N-glycosylation for the half-life extension of biotherapeutics.

    PubMed

    Ishino, Tetsuya; Wang, Mengmeng; Mosyak, Lidia; Tam, Amy; Duan, Weili; Svenson, Kristine; Joyce, Alison; O'Hara, Denise M; Lin, Laura; Somers, William S; Kriz, Ronald

    2013-06-07

    Human IgG is a bivalent molecule that has two identical Fab domains connected by a dimeric Fc domain. For therapeutic purposes, however, the bivalency of IgG and Fc fusion proteins could cause undesired properties. We therefore engineered the conversion of the natural dimeric Fc domain to a highly soluble monomer by introducing two Asn-linked glycans onto the hydrophobic C(H)3-C(H)3 dimer interface. The monomeric Fc (monoFc) maintained the binding affinity for neonatal Fc receptor (FcRn) in a pH-dependent manner. We solved the crystal structure of monoFc, which explains how the carbohydrates can stabilize the protein surface and provides the rationale for molecular recognition between monoFc and FcRn. The monoFc prolonged the in vivo half-life of an antibody Fab domain, and a tandem repeat of the monoFc further prolonged the half-life. This monoFc modality can be used to improve the pharmacokinetics of monomeric therapeutic proteins with an option to modulate the degree of half-life extension.

  1. Production, characterization, and biological evaluation of well-defined IgG1 Fc glycoforms as a model system for biosimilarity analysis

    PubMed Central

    Okbazghi, Solomon Z.; More, Apurva S.; White, Derek R.; Duan, Shaofeng; Shah, Ishan S.; Joshi, Sangeeta B.; Middaugh, C. Russell; Volkin, David B.; Tolbert, Thomas J.

    2015-01-01

    Four different well-defined IgG1 Fc glycoforms are proposed as a model system to examine important biological and physicochemical features for protein drug biosimilar analyses. The IgG1 Fc glycoforms were produced by yeast expression combined with in vitro enzymatic synthesis as a series of sequentially truncated, high mannose IgG1 Fc glycoforms with an anticipated range of biological activity and structural stability. Initial characterization with mass spectrometry, SDS-PAGE, SEC, and cIEF confirmed the glycoproteins are overall highly similar with the only major difference being glycosylation state. Binding to the activating Fc receptor FcγRIIIa was used to evaluate the potential biological activity of the IgG1 Fc glycoproteins. Two complementary methods utilizing biolayer interferometry (BLI), one with protein G immobilized IgG1 Fc and the other with streptavidin immobilized FcγRIIIa, were developed to assess FcγRIIIa affinity in kinetic binding studies. The HM-Fc and Man5-Fc were highly similar to one another with high affinity for FcγRIIIa, while GlcNAc-Fc had weak affinity, and the non-glycosylated N297Q-Fc had no measurable affinity for FcγRIIIa. These four IgG1 Fc glycoforms were also evaluated in terms of physical and chemical stability profiles, and then used as model system to mathematically assess overall biosimilarity, as described in a series of companion papers. PMID:26869419

  2. Inhibition of Experimental Autoimmune Encephalomyelitis in Human C-Reactive Protein Transgenic Mice Is FcγRIIB Dependent

    PubMed Central

    Hu, Xian-Zhen; Wright, Tyler T.; Jones, Nicholas R.; Ramos, Theresa N.; Skibinski, Gregory A.; McCrory, Mark A.; Barnum, Scott R.; Szalai, Alexander J.

    2011-01-01

    We showed earlier that experimental autoimmune encephalomyelitis (EAE) in human C-reactive protein (CRP) transgenic mice (CRPtg) has delayed onset and reduced severity compared to wild-type mice. Since human CRP is known to engage Fc receptors and Fc receptors are known to play a role in EAE in the mouse, we sought to determine if FcγRI, FcγRIIb, or FcγRIII was needed to manifest human CRP-mediated protection of CRPtg. We report here that in CRPtg lacking either of the two activating receptors, FcγRI and FcγRIII, the beneficial effects of human CRP are still observed. In contrast, if CRPtg lack expression of the inhibitory receptor FcγRIIB, then the beneficial effect of human CRP is abrogated. Also, subcutaneous administration of purified human CRP stalled progression of ongoing EAE in wild-type mice, but similar treatment failed to impede EAE progression in mice lacking FcγRIIB. The results reveal that a CRP → FcγRIIB axis is responsible for protection against EAE in the CRPtg model. PMID:21151582

  3. Inhibition of Experimental Autoimmune Encephalomyelitis in Human C-Reactive Protein Transgenic Mice Is FcγRIIB Dependent.

    PubMed

    Hu, Xian-Zhen; Wright, Tyler T; Jones, Nicholas R; Ramos, Theresa N; Skibinski, Gregory A; McCrory, Mark A; Barnum, Scott R; Szalai, Alexander J

    2010-10-12

    We showed earlier that experimental autoimmune encephalomyelitis (EAE) in human C-reactive protein (CRP) transgenic mice (CRPtg) has delayed onset and reduced severity compared to wild-type mice. Since human CRP is known to engage Fc receptors and Fc receptors are known to play a role in EAE in the mouse, we sought to determine if FcγRI, FcγRIIb, or FcγRIII was needed to manifest human CRP-mediated protection of CRPtg. We report here that in CRPtg lacking either of the two activating receptors, FcγRI and FcγRIII, the beneficial effects of human CRP are still observed. In contrast, if CRPtg lack expression of the inhibitory receptor FcγRIIB, then the beneficial effect of human CRP is abrogated. Also, subcutaneous administration of purified human CRP stalled progression of ongoing EAE in wild-type mice, but similar treatment failed to impede EAE progression in mice lacking FcγRIIB. The results reveal that a CRP → FcγRIIB axis is responsible for protection against EAE in the CRPtg model.

  4. Fc glycan-modulated immunoglobulin G effector functions.

    PubMed

    Quast, Isaak; Lünemann, Jan D

    2014-07-01

    Immunoglobulin G (IgG) molecules are glycoproteins and residues in the sugar moiety attached to the IgG constant fragment (Fc) are essential for IgG functionality such as binding to cellular Fc receptors and complement activation. The core of this sugar moiety consists of a bi-antennary heptameric structure of mannose and N-acetylglucosamine (GlcNAc), further decorated with terminal and branching residues including galactose, sialic acid, fucose, and GlcNAc. Presence or absence of distinct residues such as fucose and sialic acid can dramatically alter pro- and anti-inflammatory IgG activities which could be harnessed for immunotherapeutic purposes. Here we review recent advances in understanding the role of the IgG-Fc glycan during immune responses and for immunotherapy with a focus on sialic acid and intravenous immunoglobulin (IVIG) treatment.

  5. The interaction of N-glycans in Fcγ receptor I α-chain with Escherichia coli K1 outer membrane protein A for entry into macrophages: experimental and computational analysis.

    PubMed

    Krishnan, Subramanian; Liu, Fan; Abrol, Ravinder; Hodges, Jacqueline; Goddard, William A; Prasadarao, Nemani V

    2014-11-07

    Neonatal meningitis, caused by Escherichia coli K1, is a serious central nervous system disease. We have established that macrophages serve as permissive niches for E. coli K1 to multiply in the host and for attaining a threshold level of bacterial load, which is a prerequisite for the onset of the disease. Here, we demonstrate experimentally that three N-glycans in FcγRIa interact with OmpA of E. coli K1 for binding to and entering the macrophages. Adoptive transfer of FcγRIa(-/-) bone marrow-derived macrophages transfected with FcγRIa into FcγRIa(-/-) newborn mice renders them susceptible to E. coli K1-induced meningitis. In contrast, mice that received bone marrow-derived macrophages transfected with FcγRIa in which N-glycosylation sites 1, 4, and 5 are mutated to alanines exhibit resistance to E. coli K1 infection. Our molecular dynamics and simulation studies predict that N-glycan 5 exhibits strong binding at the barrel site of OmpA formed by loops 3 and 4, whereas N-glycans 1 and 4 interact with loops 1, 3, and 4 of OmpA at tip regions. Molecular modeling data also suggest no role for the IgG binding site in the invasion process. In agreement, experimental mutations in IgG binding site had no effect on the E. coli K1 entry into macrophages in vitro or on the onset of meningitis in newborn mice. Together, this integration of experimental and computational studies reveals how the N-glycans in FcγRIa interact with the OmpA of E. coli K1 for inducing the disease pathogenesis.

  6. NFκB induces overexpression of bovine FcRn: a novel mechanism that further contributes to the enhanced immune response in genetically modified animals carrying extra copies of FcRn.

    PubMed

    Cervenak, Judit; Doleschall, Márton; Bender, Balázs; Mayer, Balázs; Schneider, Zita; Doleschall, Zoltán; Zhao, Yaofeng; Bősze, Zsuzsanna; Hammarström, Lennart; Oster, Wolfgang; Kacskovics, Imre

    2013-01-01

    Among the many functions of the neonatal Fc receptor (FcRn) for IgG, it binds to IgG-opsonized antigen complexes and propagates their traffic into lysosomes where antigen processing occurs. We previously reported that transgenic (Tg) mice and rabbits that carry multiple copies and overexpress FcRn have augmented humoral immune responses. Nuclear factor-kappa B (NFκB) is a critical molecule in the signaling cascade in the immune response. NFκB induces human FcRn expression and our previous in silico analysis suggested NFκB binding sites in the promoter region of the bovine (b) FcRn α-chain gene (FCGRT). Here, we report the identification of three NFκB transcription binding sites in the promoter region of this gene using luciferase reporter gene technology, electromobility shift assay and supershift analysis. Stimulation of primary bovine endothelial cells with the Toll-like receptor-4 ligand lipopolysaccharide (LPS), which mediates its effect via NFκB, resulted in rapid upregulation of the bFcRn expression and a control gene, bovine E-selectin. This rapid bFcRn gene induction was also observed in the spleen of bFcRn Tg mice treated with intraperitoneally injected LPS, analyzed by northern blot analysis. Finally, NFκB-mediated bFcRn upregulation was confirmed at the protein level in macrophages isolated from the bFcRn Tg mice using flow cytometry with a newly developed FcRn specific monoclonal antibody that does not cross-react with the mouse FcRn. We conclude that NFκB regulates bFcRn expression and thus optimizes its functions, e.g., in the professional antigen presenting cells, and contributes to the much augmented humoral immune response in the bFcRn Tg mice.

  7. Structural recognition and functional activation of Fc[gamma]R by innate pentraxins

    SciTech Connect

    Lu, Jinghua; Marnell, Lorraine L.; Marjon, Kristopher D.; Mold, Carolyn; Du Clos, Terry W.; Sun, Peter D.

    2009-10-05

    Pentraxins are a family of ancient innate immune mediators conserved throughout evolution. The classical pentraxins include serum amyloid P component (SAP) and C-reactive protein, which are two of the acute-phase proteins synthesized in response to infection. Both recognize microbial pathogens and activate the classical complement pathway through C1q. More recently, members of the pentraxin family were found to interact with cell-surface Fc{gamma} receptors (Fc{gamma}R) and activate leukocyte-mediated phagocytosis. Here we describe the structural mechanism for pentraxin's binding to Fc{gamma}R and its functional activation of Fc{gamma}R-mediated phagocytosis and cytokine secretion. The complex structure between human SAP and Fc{gamma}RIIa reveals a diagonally bound receptor on each SAP pentamer with both D1 and D2 domains of the receptor contacting the ridge helices from two SAP subunits. The 1:1 stoichiometry between SAP and Fc{gamma}RIIa infers the requirement for multivalent pathogen binding for receptor aggregation. Mutational and binding studies show that pentraxins are diverse in their binding specificity for Fc{gamma}R isoforms but conserved in their recognition structure. The shared binding site for SAP and IgG results in competition for Fc{gamma}R binding and the inhibition of immune-complex-mediated phagocytosis by soluble pentraxins. These results establish antibody-like functions for pentraxins in the Fc{gamma}R pathway, suggest an evolutionary overlap between the innate and adaptive immune systems, and have new therapeutic implications for autoimmune diseases.

  8. Structural Basis for Fc[gamma]RIIa Recognition of Human IgG and Formation of Inflammatory Signaling Complexes

    SciTech Connect

    Ramsland, Paul A.; Farrugia, William; Bradford, Tessa M.; Sardjono, Caroline Tan; Esparon, Sandra; Trist, Halina M.; Powell, Maree S.; Tan, Peck Szee; Cendron, Angela C.; Wines, Bruce D.; Scott, Andrew M.; Hogarth, P. Mark

    2011-09-20

    The interaction of Abs with their specific FcRs is of primary importance in host immune effector systems involved in infection and inflammation, and are the target for immune evasion by pathogens. Fc{gamma}RIIa is a unique and the most widespread activating FcR in humans that through avid binding of immune complexes potently triggers inflammation. Polymorphisms of Fc{gamma}RIIa (high responder/low responder [HR/LR]) are linked to susceptibility to infections, autoimmune diseases, and the efficacy of therapeutic Abs. In this article, we define the three-dimensional structure of the complex between the HR (arginine, R134) allele of Fc{gamma}RIIa (Fc{gamma}RIIa-HR) and the Fc region of a humanized IgG1 Ab, hu3S193. The structure suggests how the HR/LR polymorphism may influence Fc{gamma}RIIa interactions with different IgG subclasses and glycoforms. In addition, mutagenesis defined the basis of the epitopes detected by FcR blocking mAbs specific for Fc{gamma}RIIa (IV.3), Fc{gamma}RIIb (X63-21), and a pan Fc{gamma}RII Ab (8.7). The epitopes detected by these Abs are distinct, but all overlap with residues defined by crystallography to contact IgG. Finally, crystal structures of LR (histidine, H134) allele of Fc{gamma}RIIa and Fc{gamma}RIIa-HR reveal two distinct receptor dimers that may represent quaternary states on the cell surface. A model is presented whereby a dimer of Fc{gamma}RIIa-HR binds Ag-Ab complexes in an arrangement that possibly occurs on the cell membrane as part of a larger signaling assembly.

  9. Combined glyco- and protein-Fc engineering simultaneously enhance cytotoxicity and half-life of a therapeutic antibody

    PubMed Central

    Monnet, Céline; Jorieux, Sylvie; Souyris, Nathalie; Zaki, Ouafa; Jacquet, Alexandra; Fournier, Nathalie; Crozet, Fabien; de Romeuf, Christophe; Bouayadi, Khalil; Urbain, Rémi; Behrens, Christian K; Mondon, Philippe; Fontayne, Alexandre

    2014-01-01

    While glyco-engineered monoclonal antibodies (mAbs) with improved antibody-dependent cell-mediated cytotoxicity (ADCC) are reaching the market, extensive efforts have also been made to improve their pharmacokinetic properties to generate biologically superior molecules. Most therapeutic mAbs are human or humanized IgG molecules whose half-life is dependent on the neonatal Fc receptor FcRn. FcRn reduces IgG catabolism by binding to the Fc domain of endocytosed IgG in acidic lysosomal compartments, allowing them to be recycled into the blood. Fc-engineered mAbs with increased FcRn affinity resulted in longer in vivo half-life in animal models, but also in healthy humans. These Fc-engineered mAbs were obtained by alanine scanning, directed mutagenesis or in silico approach of the FcRn binding site. In our approach, we applied a random mutagenesis technology (MutaGenTM) to generate mutations evenly distributed over the whole Fc sequence of human IgG1. IgG variants with improved FcRn-binding were then isolated from these Fc-libraries using a pH-dependent phage display selection process. Two successive rounds of mutagenesis and selection were performed to identify several mutations that dramatically improve FcRn binding. Notably, many of these mutations were unpredictable by rational design as they were located distantly from the FcRn binding site, validating our random molecular approach. When produced on the EMABling® platform allowing effector function increase, our IgG variants retained both higher ADCC and higher FcRn binding. Moreover, these IgG variants exhibited longer half-life in human FcRn transgenic mice. These results clearly demonstrate that glyco-engineering to improve cytotoxicity and protein-engineering to increase half-life can be combined to further optimize therapeutic mAbs. PMID:24492301

  10. Cells involved in the immune response. XXXVI. The thymic antigen-specific suppressor cell in the immunized rabbit is a T cell with receptors for FcG and the antigen and it acts, via a secreted suppressor factor, directly on the immune splenic AFC B cell to inhibit antibody secretion.

    PubMed Central

    Talor, E; Jodouin, C A; Richter, M

    1988-01-01

    Following i.v. immunization of the normal outbred rabbit with sheep (SRBC) or horse (HRBC) erythrocytes, antigen-specific suppressor cells are generated in the thymus capable of inhibiting the generation of haemolytic plaques by the autologous or allogeneic splenic antibody-forming cells (AFC) in the plaque-forming cell (PFC) assay. These suppressor cells secrete an antigen-specific suppressor factor in short-term (4-24 hr) culture in vitro. The suppressor cells are not detected in the thymus prior to Day 4, exhibit peak activity between Days 5 and 11 post-immunization, and decline slowly thereafter. Suppressor cells can no longer be detected in the thymus by Day 60 postimmunization. Suppressor cells are not detected in any of the other lymphoid organs of the immunized rabbit nor in any lymphoid organ in the unimmunized rabbit. The thymic suppressor cell is a T cell with surface receptors for the antigen (SRBC or HRBC) and for FcG. On the other hand, the AFC B cells generated in the spleen of the immunized rabbit possess cell-surface receptors for only the antigen and not for FcG. Both the suppressor cells and the secreted suppressor factor act directly on the AFC B lymphocytes to inhibit the generation of antigen-specific haemolytic plaques in the PFC assay. PMID:2455684

  11. Fc Engineering for Developing Therapeutic Bispecific Antibodies and Novel Scaffolds

    PubMed Central

    Liu, Hongyan; Saxena, Abhishek; Sidhu, Sachdev S.; Wu, Donghui

    2017-01-01

    Therapeutic monoclonal antibodies have become molecules of choice to treat autoimmune disorders, inflammatory diseases, and cancer. Moreover, bispecific/multispecific antibodies that target more than one antigen or epitope on a target cell or recruit effector cells (T cell, natural killer cell, or macrophage cell) toward target cells have shown great potential to maximize the benefits of antibody therapy. In the past decade, many novel concepts to generate bispecific and multispecific antibodies have evolved successfully into a range of formats from full bispecific immunoglobulin gammas to antibody fragments. Impressively, antibody fragments such as bispecific T-cell engager, bispecific killer cell engager, trispecific killer cell engager, tandem diabody, and dual-affinity-retargeting are showing exciting results in terms of recruiting and activating self-immune effector cells to target and lyse tumor cells. Promisingly, crystallizable fragment (Fc) antigen-binding fragment and monomeric antibody or half antibody may be particularly advantageous to target solid tumors owing to their small size and thus good tissue penetration potential while, on the other hand, keeping Fc-related effector functions such as antibody-dependent cellular cytotoxicity, complement-dependent cytotoxicity, antibody-dependent cell-mediated phagocytosis, and extended serum half-life via interaction with neonatal Fc receptor. This review, therefore, focuses on the progress of Fc engineering in generating bispecific molecules and on the use of small antibody fragment as scaffolds for therapeutic development. PMID:28184223

  12. Isolation of healthy individuals' and rheumatoid arthritis patients' peripheral blood neutrophils by the gelatin and Ficoll-Hypaque methods: comparative efficiency and impact on the neutrophil oxidative metabolism and Fcγ receptor expression.

    PubMed

    Paoliello-Paschoalato, A B; Azzolini, A E C S; Cruz, M F C; Marchi, L F; Kabeya, L M; Donadi, E A; Lucisano-Valim, Y M

    2014-10-01

    In vitro assessment of the functional responses of leukocytes sometimes requires their isolation from blood, joint and tissues. In this study, we compared the efficiency of two procedures - the gelatin method and Ficoll-Hypaque density centrifugation gradient - to isolate peripheral blood neutrophils of healthy individuals and patients with active rheumatoid arthritis (RA). We also assessed whether these procedures affect the neutrophil activation status. Both purification procedures were concluded in 90min, and yielded cell populations with similar degrees of purity (80-90%), number of neutrophils (1-2×10(6) cells per mL of blood), and viability (97-100%). In vitro neutrophil priming with granulocyte-macrophage colony-stimulating factor (GM-CSF) significantly increased the reactive oxygen species producing ability of the cells stimulated with n-formyl-methionyl-leucyl-phenylalanine (n-fMLP), soluble immune complexes (s-ICs), and insoluble immune complexes (i-ICs). Isolated neutrophils not treated with GM-CSF responded to n-fMLP and i-IC, but not to s-IC. Almost all of the neutrophils (98-100%) purified by both methods expressed FcγRII/CD32 and FcγRIII/CD16, but they did not express significant levels of FcγRI/CD64. Similar results were obtained for healthy individuals' and RA patients' neutrophils. In summary, the gelatin method was comparable to Ficoll-Hypaque gradient in terms of purity, yield, and viability of the neutrophil preparations. Both methods neither primed or activated the neutrophils, nor affected their functional responsiveness. Therefore, both methods are suitable to isolate peripheral blood neutrophils of healthy individuals and RA patients.

  13. Methods to engineer and identify IgG1 variants with improved FcRn binding or effector function.

    PubMed

    Kelley, Robert F; Meng, Y Gloria

    2012-01-01

    Antibodies as therapeutic agents have gained broad acceptance as shown by the number of antibodies in clinical use and many more in clinical development. This utility is an outcome of the high specificity and affinity of the antigen-binding site comprised of the heavy and light chain variable domains. In addition, the Fc portion of human or humanized IgG(1) antibodies promotes long half-life through interaction with the recycling FcRn receptor and effects killing functions through interaction with complement and Fcγ receptors. Engineering the Fc portion to increase half-life through stronger binding to FcRn, or to increase complement or cell-mediated killing may lead to improved therapeutic antibodies. These improvements may benefit the patients through convenience in dosing or increased efficacy. Here we describe protocols for generating Fc-engineered IgG(1) antibodies and assays to measure Fc receptor binding, antibody dependent cellular cytotoxicity activity, and complement dependent cytotoxicity activity to identify variants with improved FcRn binding or effector function.

  14. FcRn-mediated antibody transport across epithelial cells revealed by electron tomography

    PubMed Central

    He, Wanzhong; Ladinsky, Mark S.; Huey-Tubman, Kathryn E.; Jensen, Grant J.; McIntosh, J. Richard; Björkman, Pamela J.

    2009-01-01

    The neonatal Fc receptor (FcRn) transports maternal IgG across epithelial barriers1,2, thereby providing the fetus or newborn with humoral immunity before its immune system is fully functional. In newborn rodents, FcRn transfers IgG from milk to blood by apical-to-basolateral transcytosis across intestinal epithelial cells. The pH difference between the apical (pH 6.0-6.5) and basolateral (pH 7.4) sides of intestinal epithelial cells facilitates efficient unidirectional transport of IgG, since FcRn binds IgG at pH 6.0-6.5 but not pH ≥7 1,2. As milk passes through the neonatal intestine, maternal IgG is removed by FcRn-expressing cells in the proximal small intestine (duodenum, jejunum); remaining proteins are absorbed and degraded by FcRn-negative cells in the distal small intestine (ileum)3-6. We used electron tomography to directly visualize jejunal transcytosis in space and time, developing new labeling and detection methods to map individual nanogold-labeled Fc within transport vesicles7 and to simultaneously characterize these vesicles by immunolabeling. Combining electron tomography with a non-perturbing endocytic label allowed us to conclusively identify receptor-bound ligands, resolve interconnecting vesicles, determine if a vesicle was microtubule-associated, and accurately trace FcRn-mediated transport of IgG. Our results present a complex picture in which Fc moved through networks of entangled tubular and irregular vesicles, only some of which were microtubule-associated, as it migrated to the basolateral surface. New features of transcytosis were elucidated, including transport involving multivesicular body inner vesicles/tubules and exocytosis via clathrin-coated pits. Markers for early, late, and recycling endosomes each labeled vesicles in different and overlapping morphological classes, revealing unexpected spatial complexity in endo-lysosomal trafficking. PMID:18818657

  15. HAL/S-FC compiler system specifications

    NASA Technical Reports Server (NTRS)

    1976-01-01

    This document specifies the informational interfaces within the HAL/S-FC compiler, and between the compiler and the external environment. This Compiler System Specification is for the HAL/S-FC compiler and its associated run time facilities which implement the full HAL/S language. The HAL/S-FC compiler is designed to operate stand-alone on any compatible IBM 360/370 computer and within the Software Development Laboratory (SDL) at NASA/JSC, Houston, Texas.

  16. Selection of IgG Variants with Increased FcRn Binding Using Random and Directed Mutagenesis: Impact on Effector Functions

    PubMed Central

    Monnet, Céline; Jorieux, Sylvie; Urbain, Rémi; Fournier, Nathalie; Bouayadi, Khalil; De Romeuf, Christophe; Behrens, Christian K.; Fontayne, Alexandre; Mondon, Philippe

    2015-01-01

    Despite the reasonably long half-life of immunoglogulin G (IgGs), market pressure for higher patient convenience while conserving efficacy continues to drive IgG half-life improvement. IgG half-life is dependent on the neonatal Fc receptor (FcRn), which among other functions, protects IgG from catabolism. FcRn binds the Fc domain of IgG at an acidic pH ensuring that endocytosed IgG will not be degraded in lysosomal compartments and will then be released into the bloodstream. Consistent with this mechanism of action, several Fc-engineered IgG with increased FcRn affinity and conserved pH dependency were designed and resulted in longer half-life in vivo in human FcRn-transgenic mice (hFcRn), cynomolgus monkeys, and recently in healthy humans. These IgG variants were usually obtained by in silico approaches or directed mutagenesis in the FcRn-binding site. Using random mutagenesis, combined with a pH-dependent phage display selection process, we isolated IgG variants with improved FcRn-binding, which exhibited longer in vivo half-life in hFcRn mice. Interestingly, many mutations enhancing Fc/FcRn interaction were located at a distance from the FcRn-binding site validating our random molecular approach. Directed mutagenesis was then applied to generate new variants to further characterize our IgG variants and the effect of the mutations selected. Since these mutations are distributed over the whole Fc sequence, binding to other Fc effectors, such as complement C1q and FcγRs, was dramatically modified, even by mutations distant from these effectors’ binding sites. Hence, we obtained numerous IgG variants with increased FcRn-binding and different binding patterns to other Fc effectors, including variants without any effector function, providing distinct “fit-for-purpose” Fc molecules. We therefore provide evidence that half-life and effector functions should be optimized simultaneously as mutations can have unexpected effects on all Fc receptors that are critical

  17. High and Low Dose OPG-Fc Cause Osteopetrosis-Like Changes in Infant Mice

    PubMed Central

    Bargman, Renee; Posham, Ram; Boskey, Adele; Carter, Erin; DiCarlo, Edward; Verdelis, Kostas; Raggio, Cathleen; Pleshko, Nancy

    2014-01-01

    Background Receptor Activator of Nuclear Factor-κB ligand (RANKL) inhibitors are being considered for use in children with osteogenesis imperfecta (OI). We sought to assess efficacy of two doses of a RANKL inhibitor, OPG-Fc, in a growing animal model of OI, the col1α2-deficient mouse (oim/oim) and its wildtype controls (+/+). Methods Treated mice showed runting and radiographic evidence of osteopetrosis with either high (20 mg/kg twice weekly) or low dose (1 mg/kg/week) OPG-Fc. Because of this adverse event, OPG-Fc treatment was halted and the mice were euthanized or monitored for recovery with monthly radiographs and assessment of serum osteoclast activity (TRACP-5b) until 25 weeks of age. Results Twelve weeks of OPG-Fc treatment resulted in radiographic and histologic osteopetrosis with no evidence of bone modeling and negative Tartrate-resistant acid phosphatase (TRAP) staining, root dentin abnormalities, and TRACP-5b activity suppression. Signs of recovery appeared four to eight weeks post-treatment cessation. Conclusion Both high and low dose OPG-Fc treatment resulted in osteopetrotic changes in infant mice, an outcome not seen in studies with the RANKL inhibitor RANK – Immunoglobulin Fc segment complex (RANK-Fc), or in studies with older animals. Further investigations of RANKL inhibitors prior to their consideration for use in children are necessary. PMID:22926546

  18. TGEV infection up-regulates FcRn expression via activation of NF-κB signaling

    PubMed Central

    Guo, Jinyue; Li, Fei; Qian, Shaoju; Bi, Dingren; He, Qigai; Jin, Hui; Luo, Rui; Li, Shaowen; Meng, Xianrong; Li, Zili

    2016-01-01

    It has been well characterized that the neonatal Fc receptor (FcRn) transports maternal IgG to a fetus or newborn and protects IgG from degradation. We previously reported that FcRn is expressed in a model of normal porcine intestinal epithelial cells (IPEC-J2). Transmissible gastroenteritis is an acute enteric disease of swine that is caused by transmissible gastroenteritis virus (TGEV). How porcine FcRn (pFcRn) expression is regulated by pathogenic infection remains unknown. Our research shows that IPEC-J2 cells infected with TGEV had up-regulated pFcRn expression. In addition, the NF-κB signaling pathway was activated in IPEC-J2 cells by TGEV infection. Furthermore, treatment of TGEV-infected IPEC-J2 cells with the NF-κB-specific inhibitor BAY 11-7082 resulted in down-regulation of pFcRn expression. Transient transfection of pFcRn promoter luciferase report plasmids with overexpression of NF-κB p65 transcription factor enhanced the activation of the luciferase report plasmids. We identified four NF-κB transcription factor binding sites in the promoter region of this gene using luciferase reporter system, chromatin immunoprecipitation, electromobility shift assay, and supershift analysis. Together, the data provide the first evidence that TGEV infection up-regulates pFcRn expression via activation of NF-κB signaling. PMID:27555521

  19. Hepatic FcRn regulates albumin homeostasis and susceptibility to liver injury.

    PubMed

    Pyzik, Michal; Rath, Timo; Kuo, Timothy T; Win, Sanda; Baker, Kristi; Hubbard, Jonathan J; Grenha, Rosa; Gandhi, Amit; Krämer, Thomas D; Mezo, Adam R; Taylor, Zachary S; McDonnell, Kevin; Nienaber, Vicki; Andersen, Jan Terje; Mizoguchi, Atsushi; Blumberg, Laurence; Purohit, Shalaka; Jones, Susan D; Christianson, Greg; Lencer, Wayne I; Sandlie, Inger; Kaplowitz, Neil; Roopenian, Derry C; Blumberg, Richard S

    2017-04-04

    The neonatal crystallizable fragment receptor (FcRn) is responsible for maintaining the long half-life and high levels of the two most abundant circulating proteins, albumin and IgG. In the latter case, the protective mechanism derives from FcRn binding to IgG in the weakly acidic environment contained within endosomes of hematopoietic and parenchymal cells, whereupon IgG is diverted from degradation in lysosomes and is recycled. The cellular location and mechanism by which FcRn protects albumin are partially understood. Here we demonstrate that mice with global or liver-specific FcRn deletion exhibit hypoalbuminemia, albumin loss into the bile, and increased albumin levels in the hepatocyte. In vitro models with polarized cells illustrate that FcRn mediates basal recycling and bidirectional transcytosis of albumin and uniquely determines the physiologic release of newly synthesized albumin into the basal milieu. These properties allow hepatic FcRn to mediate albumin delivery and maintenance in the circulation, but they also enhance sensitivity to the albumin-bound hepatotoxin, acetaminophen (APAP). As such, global or liver-specific deletion of FcRn results in resistance to APAP-induced liver injury through increased albumin loss into the bile and increased intracellular albumin scavenging of reactive oxygen species. Further, protection from injury is achieved by pharmacologic blockade of FcRn-albumin interactions with monoclonal antibodies or peptide mimetics, which cause hypoalbuminemia, biliary loss of albumin, and increased intracellular accumulation of albumin in the hepatocyte. Together, these studies demonstrate that the main function of hepatic FcRn is to direct albumin into the circulation, thereby also increasing hepatocyte sensitivity to toxicity.

  20. Engineering of Immunoglobulin Fc Heterodimers Using Yeast Surface-Displayed Combinatorial Fc Library Screening.

    PubMed

    Choi, Hye-Ji; Kim, Ye-Jin; Choi, Dong-Ki; Kim, Yong-Sung

    2015-01-01

    Immunoglobulin Fc heterodimers, which are useful scaffolds for the generation of bispecific antibodies, have been mostly generated through structure-based rational design methods that introduce asymmetric mutations into the CH3 homodimeric interface to favor heterodimeric Fc formation. Here, we report an approach to generate heterodimeric Fc variants through directed evolution combined with yeast surface display. We developed a combinatorial heterodimeric Fc library display system by mating two haploid yeast cell lines, one haploid cell line displayed an Fc chain library (displayed FcCH3A) with mutations in one CH3 domain (CH3A) on the yeast cell surface, and the other cell line secreted an Fc chain library (secreted FcCH3B) with mutations in the other CH3 domain (CH3B). In the mated cells, secreted FcCH3B is displayed on the cell surface through heterodimerization with the displayed FcCH3A, the detection of which enabled us to screen the library for heterodimeric Fc variants. We constructed combinatorial heterodimeric Fc libraries with simultaneous mutations in the homodimer-favoring electrostatic interaction pairs K370-E357/S364 or D399-K392/K409 at the CH3 domain interface. High-throughput screening of the libraries using flow cytometry yielded heterodimeric Fc variants with heterodimer-favoring CH3 domain interface mutation pairs, some of them showed high heterodimerization yields (~80-90%) with previously unidentified CH3 domain interface mutation pairs, such as hydrogen bonds and cation-π interactions. Our study provides a new approach for engineering Fc heterodimers that could be used to engineer other heterodimeric protein-protein interactions through directed evolution combined with yeast surface display.

  1. N-Formyl-Methionyl-Leucyl-Phenylalanine Inhibits both Gamma Interferon- and Interleukin-10-Induced Expression of FcγRI on Human Monocytes

    PubMed Central

    Beigier-Bompadre, Macarena; Barrionuevo, Paula; Alves-Rosa, Fernanda; Rubel, Carolina J.; Palermo, Marina S.; Isturiz, Martín A.

    2001-01-01

    Three different classes of receptors for the Fc portion of immunoglobulin G (FcγRs), FcγRI, FcγRII, and FcγRIII, have been identified on human leukocytes. One of them, FcγRI, is a high-affinity receptor capable of induction of functions that include phagocytosis, respiratory burst, antibody-dependent cell-mediated cytotoxicity (ADCC), and secretion of cytokines. This receptor is expressed on mononuclear phagocytes, and this expression is regulated by cytokines and hormones such as gamma interferon (IFN-γ), IFN-β, interleukin-10 (IL-10), and glucocorticoids. We have recently demonstrated that the chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine (FMLP) is capable of inducing a time-dependent downregulation of both FcγRIIIB and FcγRII in human neutrophils, altering FcγR-dependent functions. Considering the biological relevance of the regulation of FcγRI, we investigated the effect of FMLP on the overexpression of FcγRI induced by both IFN-γ and IL-10 on human monocytes. We demonstrate that FMLP significantly abrogated IFN-γ- and IL-10-induced FcγRI expression, although its basal level of expression was not altered. However, other IFN-γ-mediated effects such as the overexpression of the major histocompatibility complex class II antigens and the enhancement of lipopolysaccharide-induced secretion of tumor necrosis factor alpha were not affected by FMLP treatment. The formyl peptide completely inhibited the IFN-γ- and IL-10-induced enhancement of ADCC and phagocytosis carried out by adherent cells. The inhibitory effect of FMLP on FcγRI upregulation could exert an important regulatory effect during the evolution of bacterial infections. PMID:11238229

  2. Fc Engineering Approaches to Enhance the Agonism and Effector Functions of an Anti-OX40 Antibody*

    PubMed Central

    Zhang, Di; Goldberg, Monica V.; Chiu, Mark L.

    2016-01-01

    Agonistic antibodies directed against immunostimulatory receptors belonging to the tumor necrosis factor receptor (TNFR) superfamily are emerging as promising cancer immunotherapies. Several Fc engineering approaches discovered recently can augment the anti-tumor activities of TNFR antibodies by enhancing their agonistic activities and/or effector functions. In this study, we compared these approaches for their effects on an anti-OX40 antibody. Both S267E/L328F and V12 mutations facilitated enhanced binding to FcγRIIB and thus increased FcγRIIB cross-linking mediated agonist activity. However, both mutations abrogated the binding to FcγRIIIA and thereby decreasing the antibody-dependent cellular cytotoxicity activities. In contrast, the E345R mutation, which can promote antibody multimerization upon receptor binding, facilitated anti-OX40 antibody to have increased agonism by promoting the clustering of OX40 receptors without the dependence on FcγRIIB cross-linking. Nonetheless, cross-linking to FcγRIIB can lead to a further boost of the agonism of the anti-OX40 antibody with IgG1 Fc but not with the silent IgG2σ Fc. The antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity activities of the anti-OX40 antibody with the E345R mutation were affected by the choice of IgG subtypes. However, there was little change in the antibody-dependent cellular phagocytosis activity. In summary, different Fc engineering approaches can guide the design of engineered antibodies to OX40 and other TNFR with improved anti-tumor activity. PMID:27856634

  3. Polymorphisms and interspecies differences of the activating and inhibitory FcγRII of Macaca nemestrina influence the binding of human IgG subclasses.

    PubMed

    Trist, Halina M; Tan, Peck Szee; Wines, Bruce D; Ramsland, Paul A; Orlowski, Eva; Stubbs, Janine; Gardiner, Elizabeth E; Pietersz, Geoffrey A; Kent, Stephen J; Stratov, Ivan; Burton, Dennis R; Hogarth, P Mark

    2014-01-15

    Little is known of the impact of Fc receptor (FcR) polymorphism in macaques on the binding of human (hu)IgG, and nothing is known of this interaction in the pig-tailed macaque (Macaca nemestrina), which is used in preclinical evaluation of vaccines and therapeutic Abs. We defined the sequence and huIgG binding characteristics of the M. nemestrina activating FcγRIIa (mnFcγRIIa) and inhibitory FcγRIIb (mnFcγRIIb) and predicted their structures using the huIgGFc/huFcγRIIa crystal structure. Large differences were observed in the binding of huIgG by mnFcγRIIa and mnFcγRIIb compared with their human FcR counterparts. MnFcγRIIa has markedly impaired binding of huIgG1 and huIgG2 immune complexes compared with huFcγRIIa (His(131)). In contrast, mnFcγRIIb has enhanced binding of huIgG1 and broader specificity, as, unlike huFcγRIIb, it avidly binds IgG2. Mutagenesis and molecular modeling of mnFcγRIIa showed that Pro(159) and Tyr(160) impair the critical FG loop interaction with huIgG. The enhanced binding of huIgG1 and huIgG2 by mnFcγRIIb was shown to be dependent on His(131) and Met(132). Significantly, both His(131) and Met(132) are conserved across FcγRIIb of rhesus and cynomolgus macaques. We identified functionally significant polymorphism of mnFcγRIIa wherein proline at position 131, also an important polymorphic site in huFcγRIIa, almost abolished binding of huIgG2 and huIgG1 and reduced binding of huIgG3 compared with mnFcγRIIa His(131). These marked interspecies differences in IgG binding between human and macaque FcRs and polymorphisms within species have implications for preclinical evaluation of Abs and vaccines in macaques.

  4. Galactosylation of IgG1 modulates FcγRIIB-mediated inhibition of murine autoimmune hemolytic anemia.

    PubMed

    Yamada, Kazunori; Ito, Kiyoaki; Furukawa, Jun-Ichi; Nakata, Junichiro; Alvarez, Montserrat; Verbeek, J Sjef; Shinohara, Yasuro; Izui, Shozo

    2013-12-01

    Murine immune effector cells express three different stimulatory FcγRs (FcγRI, FcγRIII and FcγRIV) and one inhibitory receptor, FcγRIIB. Competitive engagement of stimulatory and inhibitory FcγRs has been shown to be critical for the development of immune complex-mediated inflammatory disorders. Because of the previous demonstration that FcγRIIB was unable to inhibit FcγRIII-mediated autoimmune hemolytic anemia induced by 105-2H IgG1 anti-RBC mAb, we reevaluated the regulatory role of FcγRIIB on the development of anemia using two additional IgG1 anti-RBC mAbs (34-3C and 3H5G1) and different 34-3C IgG subclass-switch variants. We were able to induce a more severe anemia in FcγRIIB-deficient mice than in FcγRIIB-sufficient mice after injection of 34-3C and 3H5G1 IgG1, but not 105-2H IgG1. Structural analysis of N-linked oligosaccharides attached to the CH2 domain revealed that 105-2H was poorly galactosylated as compared with the other mAbs, while the extent of sialylation was comparable between all mAbs. In addition, we observed that a more galactosylated 105-2H variant provoked more severe anemia in FcγRIIB-deficient mice than FcγRIIB-sufficient mice. In contrast, the development of anemia induced by three non-IgG1 subclass variants of the 34-3C mAb was not down-regulated by FcγRIIB, although they were more galactosylated than its IgG1 variant. These data indicate that FcγRIIB-mediated inhibition of autoimmune hemolytic anemia is restricted to the IgG1 subclass and that galactosylation, but not sialylation, of IgG1 (but not other IgG subclasses) is critical for the interaction with FcγR, thereby determining the pathogenic potential of IgG1 autoantibodies.

  5. An Fc Domain Protein–Small Molecule Conjugate as an Enhanced Immunomodulator

    PubMed Central

    2015-01-01

    Proteins as well as small molecules have demonstrated success as therapeutic agents, but their pharmacologic properties sometimes fall short against particular drug targets. Although the adenosine 2a receptor (A2AR) has been identified as a promising target for immunotherapy, small molecule A2AR agonists have suffered from short pharmacokinetic half-lives and the potential for toxicity by modulating nonimmune pathways. To overcome these limitations, we have tethered the A2AR agonist CGS-21680 to the immunoglobulin Fc domain using expressed protein ligation with Sf9 cell secreted protein. The protein small molecule conjugate Fc-CGS retained potent Fc receptor and A2AR interactions and showed superior properties as a therapeutic for the treatment of a mouse model of autoimmune pneumonitis. This approach may provide a general strategy for optimizing small molecule therapeutics. PMID:24533830

  6. Testing the role of the FcγRIIB immunoreceptor tyrosine-based inhibitory motif in regulation of the B cell immune response.

    PubMed

    Vuyyuru, Raja; Shen, Shixue; Manser, Tim

    2015-09-01

    In vitro studies have demonstrated that the immunoreceptor tyrosine-based inhibitory motif (ITIM) of the inhibitory Fc receptor FcγRIIB is critical for mediating attenuation of signaling via immunoreceptor tyrosine-based activation motif (ITAM) containing receptors, such as the B cell antigen receptor (BCR), when FcγRIIB is co-cross-linked to these activation receptors. To test the role of the FcγRIIB ITIM motif in regulation of the B cell immune response in vivo, we constructed lines of transgenic mice expressing a form of FcγRIIB with an inactivating tyrosine (Y) to phenylalanine (F) mutation in the ITIM motif. Detailed studies of one of these lines, in which the mutant FcγRIIB was expressed on B cells and other cell types that normally express this receptor, were performed. No quantitative differences in germinal center (GC) B cell responses were observed between the mutant FcγRIIB transgenic line and control mice. However, serum antibody and antibody forming cell responses were often observed to be elevated in the ITIM mutant FcγRIIB transgenic mice as compared to controls, though not to the same extent as mice deficient in expression of FcγRIIB. Moreover, primary B cells from the ITIM mutant FcγRIIB line did not display the same level of augmented BCR signaling as primary FcγRIIB deficient B cells under conditions inducing co-cross-linking of FcγRIIB and the BCR. In total, these data suggest that a functional ITIM motif is not required for all in vivo inhibitory activity of this receptor. However, we also found that the transgenic ITIM mutant FcγRIIB receptor was expressed at abnormal levels in several hematopoietic lineages. Thus, confirmation of our findings will require the generation and analysis of mice in which an ITIM mutant form of FcγRIIB is expressed in vivo as is the endogenous receptor.

  7. The FcγR of humans and non-human primates and their interaction with IgG: implications for induction of inflammation, resistance to infection and the use of therapeutic monoclonal antibodies.

    PubMed

    Hogarth, P Mark; Anania, Jessica C; Wines, Bruce D

    2014-01-01

    Considerable effort has focused on the roles of the individual members of the FcγR receptor (FcγR) family in inflammatory diseases and humoral immunity. Recent work has revealed major roles in infection and in particular HIV pathogenesis and immunity. In addition, FcγR functions underpin the action of many of the successful therapeutic monoclonal antibodies. This emphasises the need for a greater understanding of FcγR function in humans and in the NHP which provides a key model for human immunity and preclinical testing of antibodies. We discuss recent key aspects of the human FcγR receptor biology and structure to define differences and similarities in activity between the human and macaque Fc receptors. These differences and similarities nuance the interpretation of infection and vaccine studies in the macaque. Indeed passive IgG antibody protection in lentivirus infection models in the macaque provided early evidence for the role of Fc receptors in anti-HIV immunity that have subsequently gained support from human vaccine trials. None-the-less the diverse functions and cellular contexts of FcγR receptor expression ensure there is much still to understand of the protective and deleterious effects of FcγRs in HIV infection. Careful comparative studies of human and non-human primate FcγRs will facilitate our appreciation of what attributes of HIV specific IgG antibodies, either acquired naturally or via vaccination, are most important for protection.

  8. Glyco-engineering of human IgG1-Fc through combined yeast expression and in vitro chemoenzymatic glycosylation

    PubMed Central

    Wei, Yadong; Li, Cishan; Huang, Wei; Li, Bing; Strome, Scott; Wang, Lai-Xi

    2009-01-01

    The presence and precise structures of the glycans attached at the Fc domain of monoclonal antibodies play an important role in determining antibody's effector functions such as antibody-dependent cell cytotoxicity (ADCC), complement activation, and anti-inflammatory activity. This paper describes a novel approach for glyco-engineering of human IgG1-Fc that combines high-yield expression of human IgG1-Fc in yeast and subsequent in vitro enzymatic glycosylation, using the endoglycosidase-catalyzed transglycosylation as the key reaction. Human IgG1-Fc was first overproduced in Pichia pastoris. Then the heterogeneous yeast glycans were removed by Endo-H treatment to give the GlcNAc-containing IgG1-Fc as a homodimer. Finally, selected homogeneous glycans were attached to the GlcNAc-primer in the IgG1-Fc through an endoglycosidase-catalyzed transglycosylation, using sugar oxazolines as the donor substrates. It was found that the enzymatic transglycosylation was efficient with native GlcNAc-containing IgG1-Fc homodimer without the need to denature the protein, and the reaction could proceed to completion to give homogeneous glycoforms of IgG1-Fc when excess of oligosaccharide oxazolines was used as the donor substrates. The binding of the synthetic IgG1-Fc glycoforms to the FcγIIIa receptor was also investigated. This novel glyco-engineering approach should be useful for providing various homogeneous, natural or synthetic glycoforms of IgG1-Fc for structure-function relationship studies, and for future clinical applications. PMID:18771295

  9. Detection of EPO-Fc fusion protein in human blood: screening and confirmation protocols for sports drug testing.

    PubMed

    Reichel, Christian; Thevis, Mario

    2012-11-01

    The neonatal Fc receptor (FcRn) has been under investigation for several years as a pharmaceutical drug target. Clinical studies have shown that fusion proteins consisting of human recombinant erythropoietin (rhEPO) and the Fc-part of IgG can be transported after pulmonary administration via FcRn across the airway epithelium to the blood stream. So far, no clinically approved pharmaceutical formulation of EPO-Fc is available. Since various forms of recombinant erythropoietins have been frequently misused by athletes as performance-enhancing agents, EPO-Fc might play a similar role in sports in the future. In order to investigate the detectability of EPO-Fc in human blood, different strategies were tested and developed. Only two of them fulfilled the necessary requirements regarding sensitivity and specificity. A rapid protocol useful for screening purposes first enriches EPO-Fc from human serum via high capacity protein A beads and subsequently detects EPO-Fc in the eluate with a commercial EPO ELISA kit. The limit of detection (LOD) of the method is about 5 pg (45 amol) EPO-Fc and is independent of the serum volume used. For screening and/or confirmation purposes a second protocol was evaluated, which consists of a fast EPO immunopurification step followed by sodium dodecyl sulfate or sarcosyl polyacrylamide gel electrophoresis (SDS-PAGE, SAR-PAGE) and Western double-blotting with chemiluminescence detection - a method already established in routine EPO anti-doping control. The latter strategy allows the detection of EPO-Fc in serum together with all other recombinant erythropoietins and with an identical LOD (5 pg/45 amol) as for the rapid screening protocol.

  10. Polymorphisms and Interspecies Differences of the Activating and Inhibitory FcγRII of Macaca nemestrina Influence the Binding of Human IgG Subclasses1

    PubMed Central

    Trist, Halina M.; Tan, Peck Szee; Wines, Bruce D.; Ramsland, Paul A.; Orlowski, Eva; Stubbs, Janine; Gardiner, Elizabeth E.; Pietersz, Geoffrey A.; Kent, Stephen J.; Stratov, Ivan; Burton, Dennis R.; Hogarth, P. Mark

    2014-01-01

    Little is known of the impact of Fc receptor polymorphism in macaques on the binding of human IgG (huIgG) and nothing is known of this interaction in the pigtail macaque (M. nemestrina) which is used in preclinical evaluation of vaccines and therapeutic antibodies. We defined the sequence and huIgG binding characteristics of the M. nemestrina activating FcγRIIa (mnFcγRIIa) and inhibitory FcγRIIb (mnFcγRIIb) and predicted their structures using the huIgGFc:huFcγRIIa crystal structure. Large differences were observed in the binding of huIgG by mnFcγRIIa and mnFcγRIIb compared to their human FcR counterparts. MnFcγRIIa has markedly impaired binding of huIgG1 and huIgG2 immune complexes compared to huFcγRIIa (His131). In contrast, mnFcγRIIb has enhanced binding of huIgG1 and broader specificity as, unlike huFcγRIIb, it avidly binds IgG2. Mutagenesis and molecular modelling of mnFcγRIIa showed that Pro159 and Tyr160 impair the critical FG loop interaction with huIgG. The enhanced binding of huIgG1 and huIgG2 by mnFcγRIIb was shown to be dependent on His131 and Met132. Significantly, both His131 and Met132 are conserved across FcγRIIb of rhesus and cynomolgus macaques. We identified functionally significant polymorphism of mnFcγRIIa, wherein Pro at position 131, also an important polymorphic site in huFcγRIIa, almost abolished binding of huIgG2 and huIgG1 and reduced binding of huIgG3 compared to mnFcγRIIa His131. These marked interspecies differences in IgG-binding between human and macaque FcRs and polymorphisms within species have implications for pre-clinical evaluation of antibodies and vaccines in macaques. PMID:24342805

  11. An engineered Fc variant of an IgG eliminates all immune effector functions via structural perturbations.

    PubMed

    Vafa, Omid; Gilliland, Gary L; Brezski, Randall J; Strake, Brandy; Wilkinson, Teresa; Lacy, Eilyn R; Scallon, Bernard; Teplyakov, Alexey; Malia, Thomas J; Strohl, William R

    2014-01-01

    The Fc variant of IgG2, designated as IgG2σ, was engineered with V234A/G237A /P238S/H268A/V309L/A330S/P331S substitutions to eliminate affinity for Fcγ receptors and C1q complement protein and consequently, immune effector functions. IgG2σ was compared to other previously well-characterized Fc 'muted' variants, including aglycosylated IgG1, IgG2m4 (H268Q/V309L/A330S/P331S, changes to IgG4), and IgG4 ProAlaAla (S228P/L234A/L235A) in its capacity to bind FcγRs and activate various immune-stimulatory responses. In contrast to the previously characterized muted Fc variants, which retain selective FcγR binding and effector functions, IgG2σ shows no detectable binding to the Fcγ receptors in affinity and avidity measurements, nor any detectable antibody-dependent cytotoxicity, phagocytosis, complement activity, or Fc-mediated cytokine release. Moreover, IgG2σ shows minimal immunogenic potential by T-cell epitope analysis. The circulating half-life of IgG2σ in monkeys is extended relative to IgG1 and IgG2, in spite of similar in vitro binding to recombinant FcRn. The three-dimensional structure of the Fc, needed for assessing the basis for the absence of effector function, was compared with that of IgG2 revealing a number of conformational differences near the hinge region of the CH2 domain that result from the amino acid substitutions. Modeling reveals that at least one of the key interactions with FcγRs is disrupted by a conformational change that reorients P329 to a position that prevents it from interacting with conserved W90 and W113 residues of the FcγRs. Inspection of the structure also indicated significant changes to the conformations of D270 and P329 in the CH2 domain that could negatively impact C1q binding. Thus, structural perturbations of the Fc provide a rationale for the loss of function. In toto, these properties of IgG2σ suggest that it is a superior alternative to previously described IgG variants of minimal effector function, for future

  12. Prolonged activity of a recombinant factor VIII-Fc fusion protein in hemophilia A mice and dogs

    PubMed Central

    Dumont, Jennifer A.; Liu, Tongyao; Low, Susan C.; Zhang, Xin; Kamphaus, George; Sakorafas, Paul; Fraley, Cara; Drager, Douglas; Reidy, Thomas; McCue, Justin; Franck, Helen W. G.; Merricks, Elizabeth P.; Nichols, Timothy C.; Bitonti, Alan J.; Pierce, Glenn F.

    2012-01-01

    Despite proven benefits, prophylactic treatment for hemophilia A is hampered by the short half-life of factor VIII. A recombinant factor VIII-Fc fusion protein (rFVIIIFc) was constructed to determine the potential for reduced frequency of dosing. rFVIIIFc has an ∼ 2-fold longer half-life than rFVIII in hemophilia A (HemA) mice and dogs. The extension of rFVIIIFc half-life requires interaction of Fc with the neonatal Fc receptor (FcRn). In FcRn knockout mice, the extension of rFVIIIFc half-life is abrogated, and is restored in human FcRn transgenic mice. The Fc fusion has no impact on FVIII-specific activity. rFVIIIFc has comparable acute efficacy as rFVIII in treating tail clip injury in HemA mice, and fully corrects whole blood clotting time (WBCT) in HemA dogs immediately after dosing. Furthermore, consistent with prolonged half-life, rFVIIIFc shows 2-fold longer prophylactic efficacy in protecting HemA mice from tail vein transection bleeding induced 24-48 hours after dosing. In HemA dogs, rFVIIIFc also sustains partial correction of WBCT 1.5- to 2-fold longer than rFVIII. rFVIIIFc was well tolerated in both species. Thus, the rescue of FVIII by Fc fusion to provide prolonged protection presents a novel pathway for FVIII catabolism, and warrants further investigation. PMID:22246033

  13. [Bacteria and viruses modulate FcεRI-dependent mast cell activity].

    PubMed

    Słodka, Aleksandra; Brzezińska-Błaszczyk, Ewa

    2013-03-08

    Undoubtedly, mast cells play a central role in allergic processes. Specific allergen cross-linking of IgE bound to the high affinity receptors (FcεRI) on the mast cell surface leads to the release of preformed mediators and newly synthesized mediators, i.e. metabolites of arachidonic acid and cytokines. More and more data indicate that bacteria and viruses can influence FcεRI-dependent mast cell activation. Some bacterial and viral components can reduce the surface expression of FcεRI. There are also findings that ligation of Toll-like receptors (TLRs) by bacterial or viral antigens can affect IgE-dependent mast cell degranulation and preformed mediator release as well as eicosanoid production. The synergistic interaction of TLR ligands and allergen can also modify cytokine synthesis by mast cells stimulated via FcεRI. Moreover, data suggest that specific IgE for bacterial or viral antigens can influence mast cell activity. What is more, some bacterial and viral components or some endogenous proteins produced during viral infection can act as superantigens by interacting with the VH3 domain of IgE. All these observations indicate that bacterial and viral infections modify the course of allergic diseases by affecting FcεRI-dependent mast cell activation. 

  14. Subcutaneous bioavailability of therapeutic antibodies as a function of FcRn binding affinity in mice

    PubMed Central

    Meng, Y Gloria; Hoyte, Kwame; Lutman, Jeff; Lu, Yanmei; Iyer, Suhasini; DeForge, Laura E; Theil, Frank-Peter; Fielder, Paul J; Prabhu, Saileta

    2012-01-01

    The neonatal Fc receptor (FcRn) plays an important and well-known role in immunoglobulin G (IgG) catabolism; however, its role in the disposition of IgG after subcutaneous (SC) administration, including bioavailability, is relatively unknown. To examine the potential effect of FcRn on IgG SC bioavailability, we engineered three anti-amyloid β monoclonal antibody (mAb) reverse chimeric mouse IgG2a (mIgG2a) Fc variants (I253A.H435A, N434H and N434Y) with different binding affinities to mouse FcRn (mFcRn) and compared their SC bioavailability to that of the wild-type (WT) mAb in mice. Our results indicated that the SC bioavailability of mIgG2a was affected by mFcRn-binding affinity. Variant I253A.H435A, which did not bind to mFcRn at either pH 6.0 or pH 7.4, had the lowest bioavailability (41.8%). Variant N434Y, which had the greatest increase in binding affinity at both pH 6.0 and pH 7.4, had comparable bioavailability to the WT antibody (86.1% vs. 76.3%), whereas Variant N434H, which had modestly increased binding affinity at pH 6.0 to mFcRn and affinity comparable to the WT antibody at pH 7.4, had the highest bioavailability (94.7%). A semi-mechanism-based pharmacokinetic model, which described well the observed data with the WT antibody and variant I253A.H435A, is consistent with the hypothesis that the decreased bioavailability of variant I253A.H435A was due to loss of the FcRn-mediated protection from catabolism at the absorption site. Together, these data demonstrate that FcRn plays an important role in SC bioavailability of therapeutic IgG antibodies. PMID:22327433

  15. Jacks of all trades?--Probably not. The E. coli Eib proteins bind IgG Fc.

    PubMed

    Leo, Jack C; Goldman, Adrian

    2010-05-01

    We recently published a paper in Molecular Immunology (Leo and Goldman, 2009) showing that the Eib proteins from certain E. coli strains bind IgG Fc, in contrast to a previous report (Ghumra and Pleass, 2007). Richard J. Pleass has commented on our paper (Pleass, 2009) and expressed a series of unjustified misgivings about our conclusions. Here, we address the points raised by Pleass, and reassert our claim that the Eibs are indeed genuine receptors for IgG Fc.

  16. Functional nanoscale coupling of Lyn kinase with IgE-FcεRI is restricted by the actin cytoskeleton in early antigen-stimulated signaling

    PubMed Central

    Shelby, Sarah A.; Veatch, Sarah L.; Holowka, David A.; Baird, Barbara A.

    2016-01-01

    The allergic response is initiated on the plasma membrane of mast cells by phosphorylation of the receptor for immunoglobulin E (IgE), FcεRI, by Lyn kinase after IgE-FcεRI complexes are cross-linked by multivalent antigen. Signal transduction requires reorganization of receptors and membrane signaling proteins, but this spatial regulation is not well defined. We used fluorescence localization microscopy (FLM) and pair-correlation analysis to measure the codistribution of IgE-FcεRI and Lyn on the plasma membrane of fixed cells with 20- to 25-nm resolution. We directly visualized Lyn recruitment to IgE-FcεRI within 1 min of antigen stimulation. Parallel FLM experiments captured stimulation-induced FcεRI phosphorylation and colocalization of a saturated lipid-anchor probe derived from Lyn’s membrane anchorage. We used cytochalasin and latrunculin to investigate participation of the actin cytoskeleton in regulating functional interactions of FcεRI. Inhibition of actin polymerization by these agents enhanced colocalization of IgE-FcεRI with Lyn and its saturated lipid anchor at early stimulation times, accompanied by augmented phosphorylation within FcεRI clusters. Ising model simulations provide a simplified model consistent with our results. These findings extend previous evidence that IgE-FcεRI signaling is initiated by colocalization with Lyn in ordered lipid regions and that the actin cytoskeleton regulates this functional interaction by influencing the organization of membrane lipids. PMID:27682583

  17. Altered polymorphonuclear leukocyte Fc gamma R expression contributes to decreased candicidal activity during intraabdominal sepsis

    SciTech Connect

    Simms, H.H.; D'Amico, R.; Monfils, P.; Burchard, K.W. )

    1991-03-01

    We investigated the effects of untreated intraabdominal sepsis on polymorphonuclear leukocyte (PMN) candicidal activity. Two groups of swine were studied. Group I (n=6) underwent sham laparotomy, group II (n=7) underwent cecal ligation and incision. Untreated intraabdominal sepsis resulted in a progressive decrease in PMN candicidal activity. Concomitant rosetting and phagocytosis assays demonstrated a decrease in both the attachment and phagocytosis of Candida albicans opsonized with both normal and septic swine serum by PMNs in group II. Iodine 125-labeled swine immunoglobulin G (IgG) and fluorescein isothioalanate (FITC)-labeled swine IgG were used to investigate Fc gamma receptor ligand interactions. Scatchard analyses demonstrated a progressive decline in both the binding affinity constant and number of IgG molecules bound per PMN. Stimulation of the oxidative burst markedly reduced 125I-labeled IgG binding in both group I and group II, with a greater decrement being seen in animals with intraabdominal sepsis. Further, in group II, PMN recycling of the Fc gamma receptor to the cell surface after generation of the oxidative burst was reduced by postoperative day 4. Binding of monoclonal antibodies to Fc gamma receptor II, but not Fc gamma receptor I/III markedly reduced intracellular candicidal activity. Immunofluorescence studies revealed a homogeneous pattern of FITC-IgG uptake by nearly all group I PMNs, whereas by postoperative day 8 a substantial number of PMNs from group II failed to internalize the FITC-IgG. These studies suggest that untreated intraabdominal sepsis reduces PMN candicidal activity and that this is due, in part, to altered PMN Fc gamma receptor ligand interactions.

  18. Integrated profiling of Furanocoumarins (FC) in Grapefruit hybrids toward selection of low FC varieties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Furanocoumarins (FC) are a class of organic chemical components in grapefruits and other diet plants. Some of them in grapefruit juice can induce potentially adverse interactions with human drugs and in that patients may be advised to avoid the fruit and juice. To develop low FC grapefruit cultivars...

  19. Insights into the Impact of Heterogeneous Glycosylation on the Pharmacokinetic Behavior of Follistatin-Fc-Based Biotherapeutics.

    PubMed

    Datta-Mannan, Amita; Huang, Lihua; Pereira, Jennifer; Yaden, Benjamin; Korytko, Andrew; Croy, Johnny E

    2015-12-01

    Follistatin 315 heparan sulfate-binding deficient mutant human IgG4 Fc fusion (FST-ΔHBS-Fc) is a follistatin (FST) based Fc fusion protein currently being developed as a novel therapy for several potential indications, including muscle wasting. Previous assessments of the pharmacokinetics and therapeutic activity of FST-ΔHBS-Fc have shown a close association of the exposure-response relationship. The current work builds upon these initial studies by investigating the glycosylation characteristics of FST-ΔHBS-Fc after recombinant expression and its impact on the pharmacokinetics in mice and Cynomolgus monkeys. The data presented indicate that FST-ΔHBS-Fc is heterogeneously glycosylated at the three putative sites in FST when recombinantly expressed in stably transfected Chinese hamster ovary cells. Such carbohydrate heterogeneity, especially with regards to sialic acid incorporation, directly results in sugar-dependent clearance in both mice and Cynomolgus monkeys. Examination of the pharmacokinetics of FST-ΔHBS-Fc molecules containing variable sialic acid content in asialoglycoprotein receptor 1 (ASPGR-1) knockout mice supports the receptor's role as part of the clearance mechanism of the molecules. Based on the evaluation of several variably sialylated lots of material in pharmacokinetic assessments, we define specifications for average sialic acid incorporation into FST-ΔHBS-Fc that result in limited sugar-mediated clearance. Taken together, these studies highlight the importance of establishing an early understanding of the glycosylation/pharmacokinetic relationships of FST-ΔHBS-Fc, which will provide a basis for future application toward optimal systemic drug delivery and dosing strategies.

  20. FcγRIIa ligation induces platelet hypersensitivity to thrombotic stimuli.

    PubMed

    Berlacher, Mark D; Vieth, Joshua A; Heflin, Brittany C; Gay, Steven R; Antczak, Adam J; Tasma, Brian E; Boardman, Holly J; Singh, Navinderjit; Montel, Angela H; Kahaleh, M Bashar; Worth, Randall G

    2013-01-01

    Platelets are known for their important role in hemostasis, however their significance in other functions, including inflammation and infection, are becoming more apparent. Patients with systemic lupus erythematosus (SLE) are known to have circulating IgG complexes in their blood and are highly susceptible to thrombotic events. Because platelets express a single receptor for IgG, we tested the hypothesis that ligation of this receptor (FcγRIIa) induces platelet hypersensitivity to thrombotic stimuli. Platelets from SLE patients were considerably more sensitive to thrombin compared to healthy volunteers, and this correlated with elevated levels of surface IgG on SLE platelets. To test whether FcγRIIa ligation stimulated thrombin hypersensitivity, platelets from healthy volunteers were incubated with buffer or heat-aggregated IgG, then stimulated with increasing concentrations of thrombin. Interestingly, heat-aggregated IgG-stimulated platelets, but not buffer-treated platelets, were hypersensitive to thrombin, and hypersensitivity was blocked by an anti-FcγRIIa monoclonal antibody (mAb). Thrombin hypersensitivity was not due to changes in thrombin receptor expression (GPIbα or PAR1) but is dependent on activation of shared signaling molecules. These observations suggest that ligation of platelet FcγRIIa by IgG complexes induces a hypersensitive state whereby small changes in thrombotic stimuli may result in platelet activation and subsequent vascular complications such as transient ischemic attacks or stroke.

  1. FcγRIII Mediates Immunoglobulin G-Induced Interleukin-10 and Is Required for Chronic Leishmania mexicana Lesions▿

    PubMed Central

    Thomas, Bolaji N.; Buxbaum, Laurence U.

    2008-01-01

    FcRγ and interleukin-10 (IL-10) are both required for chronic disease in C57BL/6 mice with Leishmania mexicana parasite infection. FcRγ is a component of several different FcRs and may be a component of some T-cell receptors. The initial antibody response to L. mexicana is an immunoglobulin G1 (IgG1) response, and IgG1 preferentially binds to FcγRIII in other systems. To begin to dissect the mechanisms by which FcγRs contribute to chronic disease, we infected FcγRIII knockout (KO) mice with L. mexicana. We show that FcγRIII KO mice are resistant to L. mexicana infection, resolving lesions in association with a stronger gamma interferon response, similar to IL-10 KO mice, with parasite control by 12 weeks. We found that the Leishmania-specific IgG response is unaltered in FcγRIII KO mice compared with that in wild-type controls. The frequencies of IL-10 production from lymph node CD25+ CD4+ T cells are the same in KO and wild-type mice, and depletion of CD25+ cells did not alter the course of infection, implying that Treg cells may not be the mechanism for susceptibility to L. mexicana infection, unlike for L. major infection. However, IL-10 mRNA was greatly diminished in the lesions of FcγRIII KO mice compared to that of B6 controls. Furthermore, macrophages from FcγRIII KO and FcRγ KO mice have the same profound defect in IL-10 production induced by IgG-opsonized amastigotes. We also found IL-10-dependent (major) and -independent (minor) inhibition of IL-12 mediated by FcγRIII, as well as parasite-mediated inhibition of IL-12 and induction of IL-10, independent of FcγR. Our data demonstrate a specific role for FcγRIII in suppressing protective immunity in L. mexicana infection, likely through macrophage IL-10 production in the lesion. PMID:18070890

  2. Long-term suppression of experimental arthritis following intramuscular administration of a pseudotyped AAV2/1-TNFR:Fc Vector.

    PubMed

    Sandalon, Ziv; Bruckheimer, Elizabeth M; Lustig, Kurt H; Burstein, Haim

    2007-02-01

    We previously reported that administration of an adeno-associated virus 2 (AAV2) vector encoding a rat tumor necrosis factor (TNF) receptor-immunoglobulin Fc (TNFR:Fc) fusion gene to rats with streptococcal cell wall-induced arthritis resulted in suppression of joint inflammation and cartilage and bone destruction, as well as expression of joint proinflammatory cytokines. In this study, we used an alternate rat model of arthritis to compare the serum levels and duration of TNFR:Fc protein expression following intramuscular administration of pseudotyped AAV-TNFR:Fc vectors based on serotypes 1, 2, and 5. All three pseudotyped AAV-TNFR:Fc vectors led to sustained expression of serum TNFR:Fc protein for at least one year. Serum TNFR:Fc protein levels in rats administered intramuscularly with AAV2/1-TNFR:Fc vector were up to 100- and 10-fold higher than in rats administered the AAV2-TNFR:Fc or AAV2/5-TNFR:Fc vectors, respectively. A single intramuscular administration of AAV2/1-TNFR:Fc vector at vector doses ranging from 10(10) to 10(12) DNase-resistant particles (DRP) per animal, resulted in complete and long-term suppression of recurrent joint inflammation for at least 150 days. Our results establish a proof of concept for administration of an AAV2/1-TNFR:Fc vector to the muscle to achieve long-term, sustained and therapeutically relevant levels of TNFR:Fc protein to treat chronic systemic inflammatory joint diseases.

  3. Fc-optimized NKG2D-Fc constructs induce NK cell antibody-dependent cellular cytotoxicity against breast cancer cells independently of HER2/neu expression status.

    PubMed

    Raab, Stefanie; Steinbacher, Julia; Schmiedel, Benjamin J; Kousis, Philaretos C; Steinle, Alexander; Jung, Gundram; Grosse-Hovest, Ludger; Salih, Helmut R

    2014-10-15

    The ability of NK cells to mediate Ab-dependent cellular cytotoxicity (ADCC) largely contributes to the clinical success of antitumor Abs, including trastuzumab, which is approved for the treatment of breast cancer with HER2/neu overexpression. Notably, only ∼25% of breast cancer patients overexpress HER2/neu. Moreover, HER2/neu is expressed on healthy cells, and trastuzumab application is associated with side effects. In contrast, the ligands of the activating immunoreceptor NKG2D (NKG2DL) are selectively expressed on malignant cells. In this study, we took advantage of the tumor-associated expression of NKG2DL by using them as target Ags for NKG2D-IgG1 fusion proteins optimized by amino acid exchange S239D/I332E in their Fc part. Compared to constructs with wild-type Fc parts, fusion proteins carrying the S239D/I332E modification (NKG2D-Fc-ADCC) mediated highly enhanced degranulation, ADCC, and IFN-γ production of NK cells in response to breast cancer cells. NKG2D-Fc-ADCC substantially enhanced NK reactivity also against HER2/neu-low targets that were unaffected by trastuzumab, as both compounds mediated their immunostimulatory effects in strict dependence of target Ag expression levels. Thus, in line with the hierarchically organized potential of the various activating receptors governing NK reactivity and due to its highly increased affinity to CD16, NKG2D-Fc-ADCC potently enhances NK cell reactivity despite the inevitable reduction of activating signals upon binding to NKG2DL. Due to the tumor-restricted expression of NKG2DL, NKG2D-Fc-ADCC may constitute an attractive means for immunotherapy especially of HER2/neu-low or -negative breast cancer.

  4. Comparison between sensitivity of autologous skin serum test and autologous plasma skin test in patients with Chronic Idiopathic Urticaria for detection of antibody against IgE or IgE receptor (FcεRIα).

    PubMed

    Sajedi, Vahid; Movahedi, Masoud; Aghamohammadi, Asghar; Aghamohamadi, Asghar; Gharagozlou, Mohammad; Ghareguzlou, Mohammad; Shafiei, Alireza; Soheili, Habib; Sanajian, Nahal

    2011-06-01

    Intradermal injection of autologous serum and plasma elicit a cutaneous reactivity in almost 45-60% of patients with Chronic Idiopathic Urticaria (CIU). This reactivity is associated with the presence of auto antibodies against IgE or IgE receptors. This study was carried out to compare the cutaneous reactivity of autologous serum and plasma skin tests in a series of patients with CIU for diagnosis of auto antibodies against IgE or IgE receptor. Fifty eight patients with CIU were injected intradermally with autologous serum and plasma (anticoagulated by citrate). Histamine was used as positive control and normal saline as negative control. The study group was checked by routine laboratory tests (CBC, U/A etc), allergens with skin prick tests, and serum IgE level, and auto antibodies against thyroid as well. Duration of urticaria was another factor which was assessed.There was no significant difference between positive ASST and positive APST patients for the above mentioned tests. 77.6% of the patients were Positive for APST and 65.5% were ASST positive. Duration of urticaria was longer in patients with positive ASST and APST than ASST and APST negative patients, although the difference was not statistically significant.Autologus serum skin test (ASST) and autologous plasma skin test (APST) could be used for estimation of duration and severity of urticaria and planning for the treatment.

  5. Pharmacokinetics, Pharmacodynamics, and Efficacy of a Novel Long-Acting Human Growth Hormone: Fc Fusion Protein.

    PubMed

    Kim, Su Jin; Kwak, Hyun-Hee; Cho, Sung Yoon; Sohn, Young Bae; Park, Sung Won; Huh, Rimm; Kim, Jinsup; Ko, Ah-Ra; Jin, Dong-Kyu

    2015-10-05

    The current recombinant human growth hormone (rhGH) therapy requires daily subcutaneous (sc) injections, which results in poor patient compliance, especially in young children. To reduce the dosing frequency, we generated a chimeric protein of rhGH and the Fc-domain of immunoglobulin G (IgG) (rhGH-Fc). The pharmacokinetics and pharmacodynamics of sc-injected rhGH-Fc were assessed in male Sprague-Dawley rats and hypophysectomized rats, respectively. A single sc injection of rhGH-Fc at a dose of 0.2 mg/kg slowly reached a Cmax of 16.80 ng/mL and remained for 7 days with a half-life of 51.1 h. Conversely, a single sc injection of rhGH 0.2 mg/kg rapidly reached a Cmax of 46.88 ng/mL and declined with a half-life of 0.55 h to baseline values in 4 h. In the efficacy study, the sc-injected rhGH-Fc induced rapid weight gain and tibial width growth at a dose of 240 μg/animal. The effect of two injections of rhGH-Fc separated by 1 week was comparable to that of the same dose of 14 daily injections of rhGH. The rhGH-Fc is a novel candidate for long-acting rhGH therapy with more convenient weekly administration, as it reduces glomerular filtration and receptor-mediated clearance while allowing for the rapid reversal of potential adverse events.

  6. FcγRIIb mediates amyloid-β neurotoxicity and memory impairment in Alzheimer’s disease

    PubMed Central

    Kam, Tae-In; Song, Sungmin; Gwon, Youngdae; Park, Hyejin; Yan, Ji-Jing; Im, Isak; Choi, Ji-Woo; Choi, Tae-Yong; Kim, Jeongyeon; Song, Dong-Keun; Takai, Toshiyuki; Kim, Yong-Chul; Kim, Key-Sun; Choi, Se-Young; Choi, Sukwoo; Klein, William L.; Yuan, Junying; Jung, Yong-Keun

    2013-01-01

    Amyloid-β (Aβ) induces neuronal loss and cognitive deficits and is believed to be a prominent cause of Alzheimer’s disease (AD); however, the cellular pathology of the disease is not fully understood. Here, we report that IgG Fcγ receptor II-b (FcγRIIb) mediates Aβ neurotoxicity and neurodegeneration. We found that FcγRIIb is significantly upregulated in the hippocampus of AD brains and neuronal cells exposed to synthetic Aβ. Neuronal FcγRIIb activated ER stress and caspase-12, and Fcgr2b KO primary neurons were resistant to synthetic Aβ-induced cell death in vitro. Fcgr2b deficiency ameliorated Aβ-induced inhibition of long-term potentiation and inhibited the reduction of synaptic density by naturally secreted Aβ. Moreover, genetic depletion of Fcgr2b rescued memory impairments in an AD mouse model. To determine the mechanism of action of FcγRIIb in Aβ neurotoxicity, we demonstrated that soluble Aβ oligomers interact with FcγRIIb in vitro and in AD brains, and that inhibition of their interaction blocks synthetic Aβ neurotoxicity. We conclude that FcγRIIb has an aberrant, but essential, role in Aβ-mediated neuronal dysfunction. PMID:23921129

  7. FcRn: The architect behind the immune and non-immune functions of IgG and albumin

    PubMed Central

    Pyzik, Michal; Rath, Timo; Lencer, Wayne I.; Baker, Kristi

    2015-01-01

    The neonatal Fc receptor (FcRn) belongs to the extensive and functionally divergent family of MHC molecules. Contrary to classical MHC family members, FcRn possesses little diversity and is unable to present antigens. Instead, through its capacity to bind IgG and albumin with high affinity at low pH, it regulates the serum half-lives of both of these proteins. In addition, FcRn plays important role in immunity at mucosal and systemic sites through both its ability to affect the lifespan of IgG as well as its participation in innate and adaptive immune responses. Even though the details of its biology are still emerging, the property of FcRn to rescue albumin and IgG from early degradation represents an attractive approach to alter the plasma half-life of pharmaceuticals. Here, we will review some of the most novel aspects of FcRn biology, both immune as well as non-immune, and provide some examples of FcRn-based therapies. PMID:25934922

  8. Application of strain-promoted azide-alkyne cycloaddition and tetrazine ligation to targeted Fc-drug conjugates.

    PubMed

    Thomas, Joshua D; Cui, Huiting; North, Patrick J; Hofer, Thomas; Rader, Christoph; Burke, Terrence R

    2012-10-17

    We have previously described an approach whereby antibody Fc fragments harboring a single C-terminal selenocysteine residue (Fc-Sec) are directed against a variety of targets by changing the peptide or small molecule to which they are conjugated. In the present work, we describe methodology for improving the efficacy of these Fc-Sec conjugates by incorporating cytotoxic drugs. The Fc-Sec protein is first programmed to target specific tumor cell types by attachment of a bifunctional linker that contains a "clickable" handle (e.g., cyclobutane or cyclooctyne) in addition to a tumor cell-binding peptide or small molecule. Following Fc-Sec conjugation, a cytotoxic warhead is then attached by cycloaddition reactions of tetrazine or azide-containing linker. To validate this approach, we used a model system in which folic acid (FA) is the targeting moiety and a disulfide-linked biotin moiety serves as a cytotoxic drug surrogate. We demonstrated successful targeting of Fc-Sec proteins to folate-receptor expressing tumor cells. Tetrazine ligation was found to be an efficient method for biotin "arming" of the folate-targeted Fc-Sec proteins. We also report novel bioconjugation methodologies that use [4 + 2] cycloaddition reactions between tetrazines and cyclooctynes.

  9. Achyranthes japonica Nakai Water Extract Suppresses Binding of IgE Antibody to Cell Surface FcɛRI

    PubMed Central

    Shim, Sun Yup; Lee, Mina; Lee, Kyung Dong

    2016-01-01

    Achyranthes japonica Nakai (AJN) water extract has a variety of physiological properties, including anti-diabetic, anti-cancer, anti-inflammatory, anti-microbial, and anti-oxidative activities. In the present study, the inhibitory effects of AJN extract were investigated in high affinity immunoglobulin E receptor (FcɛRI)-mediated KU812F cells activation. AJN extract showed suppressive effects on histamine release and intracellular calcium [Ca2+]i elevation from anti-FcɛRI antibody (CRA-1)-stimulated cells in a dose-dependent manner. Flow cytometric analysis showed that AJN extract treatment caused a dose-dependent decrease in the cell surface FcɛRI expression and the binding between the cell surface FcɛRI and the IgE antibody. Moreover, reverse transcription-polymerase chain reaction analysis showed that levels of the mRNA for the FcɛRI α chain was decreased by treatment with AJN extract. These results indicate that AJN extract may exert anti-allergic effects via the inhibition of calcium influx and histamine release, which occurs as a result from the down-regulation of the binding of IgE antibody to cell surface FcɛRI. This mechanism may occur through FcɛRI expression inhibition. PMID:28078254

  10. OPG-Fc but Not Zoledronic Acid Discontinuation Reverses Osteonecrosis of the Jaws (ONJ) in Mice

    PubMed Central

    de Molon, Rafael Scaf; Shimamoto, Hiroaki; Bezouglaia, Olga; Pirih, Flavia Q; Dry, Sarah M; Kostenuik, Paul; Boyce, Rogely W; Dwyer, Denise; Aghaloo, Tara L; Tetradis, Sotirios

    2016-01-01

    Osteonecrosis of the jaws (ONJ) is a significant complication of antiresorptive medications, such as bisphosphonates and denosumab. Antiresorptive discontinuation to promote healing of ONJ lesions remains highly controversial and understudied. Here, we investigated whether antiresorptive discontinuation alters ONJ features in mice, employing the potent bisphosphonate zoledronic acid (ZA) or the receptor activator of NF-κB ligand (RANKL) inhibitor OPG-Fc, utilizing previously published ONJ animal models. Mice were treated with vehicle (veh), ZA, or OPG-Fc for 11 weeks to induce ONJ, and antiresorptives were discontinued for 6 or 10 weeks. Maxillae and mandibles were examined by µCT imaging and histologically. ONJ features in ZA and OPG-Fc groups included periosteal bone deposition, empty osteocyte lacunae, osteonecrotic areas, and bone exposure, each of which substantially resolved 10 weeks after discontinuing OPG-Fc but not ZA. Full recovery of tartrate-resistant acid phosphatase-positive (TRAP+) osteoclast numbers occurred after discontinuing OPG-Fc but not ZA. Our data provide the first experimental evidence demonstrating that discontinuation of a RANKL inhibitor, but not a bisphosphonate, reverses features of osteonecrosis in mice. It remains unclear whether antiresorptive discontinuation increases the risk of skeletal-related events in patients with bone metastases or fracture risk in osteoporosis patients, but these preclinical data may nonetheless help to inform discussions on the rationale for a “drug holiday” in managing the ONJ patient. PMID:25727550

  11. Fc-mediated activity of EGFR x c-Met bispecific antibody JNJ-61186372 enhanced killing of lung cancer cells.

    PubMed

    Grugan, Katharine D; Dorn, Keri; Jarantow, Stephen W; Bushey, Barbara S; Pardinas, Jose R; Laquerre, Sylvie; Moores, Sheri L; Chiu, Mark L

    2017-01-01

    Epidermal growth factor receptor (EGFR) mutant non-small cell lung cancers acquire resistance to EGFR tyrosine kinase inhibitors through multiple mechanisms including c-Met receptor pathway activation. We generated a bispecific antibody targeting EGFR and c-Met (JNJ-61186372) demonstrating anti-tumor activity in wild-type and mutant EGFR settings with c-Met pathway activation. JNJ-61186372 was engineered with low fucosylation (<10 %), resulting in enhanced antibody-dependent cell-mediated cytotoxicity and FcγRIIIa binding. In vitro and in vivo studies with the single-arm EGFR or c-Met versions of JNJ-61186372 identified that the Fc-activity of JNJ-61186372 is mediated by binding of the anti-EGFR arm and required for inhibition of EGFR-driven tumor cells. In a tumor model driven by both EGFR and c-Met, treatment with Fc-silent JNJ-61186372 or with c-Met single-arm antibody reduced tumor growth inhibition compared to treatment with JNJ-61186372, suggesting that the Fc function of JNJ-61186372 is essential for maximal tumor inhibition. Moreover in this same model, downregulation of both EGFR and c-Met receptors was observed upon treatment with Fc-competent JNJ-61186372, suggesting that the Fc interactions are necessary for down-modulation of the receptors in vivo and for efficacy. These Fc-mediated activities, in combination with inhibition of both the EGFR and c-Met signaling pathways, highlight the multiple mechanisms by which JNJ-61186372 combats therapeutic resistance in EGFR mutant patients.

  12. Fc-mediated activity of EGFR x c-Met bispecific antibody JNJ-61186372 enhanced killing of lung cancer cells

    PubMed Central

    Grugan, Katharine D.; Dorn, Keri; Bushey, Barbara S.; Pardinas, Jose R.; Laquerre, Sylvie; Moores, Sheri L.; Chiu, Mark L.

    2017-01-01

    ABSTRACT Epidermal growth factor receptor (EGFR) mutant non-small cell lung cancers acquire resistance to EGFR tyrosine kinase inhibitors through multiple mechanisms including c-Met receptor pathway activation. We generated a bispecific antibody targeting EGFR and c-Met (JNJ-61186372) demonstrating anti-tumor activity in wild-type and mutant EGFR settings with c-Met pathway activation. JNJ-61186372 was engineered with low fucosylation (<10 %), resulting in enhanced antibody-dependent cell-mediated cytotoxicity and FcγRIIIa binding. In vitro and in vivo studies with the single-arm EGFR or c-Met versions of JNJ-61186372 identified that the Fc-activity of JNJ-61186372 is mediated by binding of the anti-EGFR arm and required for inhibition of EGFR-driven tumor cells. In a tumor model driven by both EGFR and c-Met, treatment with Fc-silent JNJ-61186372 or with c-Met single-arm antibody reduced tumor growth inhibition compared to treatment with JNJ-61186372, suggesting that the Fc function of JNJ-61186372 is essential for maximal tumor inhibition. Moreover in this same model, downregulation of both EGFR and c-Met receptors was observed upon treatment with Fc-competent JNJ-61186372, suggesting that the Fc interactions are necessary for down-modulation of the receptors in vivo and for efficacy. These Fc-mediated activities, in combination with inhibition of both the EGFR and c-Met signaling pathways, highlight the multiple mechanisms by which JNJ-61186372 combats therapeutic resistance in EGFR mutant patients. PMID:27786612

  13. Label-free Fab and Fc affinity/avidity profiling of the antibody complex half-life for polyclonal and monoclonal efficacy screening.

    PubMed

    Read, Thomas; Olkhov, Rouslan V; Williamson, E Diane; Shaw, Andrew M

    2015-09-01

    A unified approach to affinity screening for Fab and Fc interactions of an antibody for its antigen and FcγR receptor has been developed. An antigen array is used for the Fab affinity and cross-reactivity screening and protein A/G proxy is the FcγR receptor. The affinities are derived using a simple 1:1 binding model with a consistent error analysis. The association and dissociation kinetics are measured over optimised times for accurate determination. The Fab/Fc affinities are derived for ten antibodies: mAb-actin (mouse), pAb-BSA (sheep), pAb-collagen V (rabbit), pAb-CRP (goat), mAb-F1 (mouse), mAbs (mouse) 7.3, 12.3, 29.3, 36.3 and 46.3 raised against LcrV in Yersinia pestis. The rate of the dissociation of antigen-antibody complexes relates directly to their immunological function as does the Fc-FcγR complex and a new half-life plot has been defined with a Fab/Fc half-life range of 17-470 min. The upper half-life value points to surface avidity. Two antibodies that are protective as an immunotherapy define a Fab half-life >250 min and an Fc half-life >50 min as characteristics of ideal interactions which can form the basis of an antibody screen for immunotherapy.

  14. Generation of new peptide-Fc fusion proteins that mediate antibody-dependent cellular cytotoxicity against different types of cancer cells

    PubMed Central

    Sioud, Mouldy; Westby, Phuong; Olsen, Julie Kristine E.; Mobergslien, Anne

    2015-01-01

    Antibody-dependent cellular cytotoxicity (ADCC), a key effector function for the clinical effectiveness of monoclonal antibodies, is triggered by the engagement of the antibody Fc domain with the Fcγ receptors expressed by innate immune cells such as natural killer (NK) cells and macrophages. Here, we fused cancer cell-binding peptides to the Fc domain of human IgG1 to engineer novel peptide-Fc fusion proteins with ADCC activity. The designed fusion proteins were expressed in human embryonic kidney 293T cells, followed by purification and characterization by western blots. One of the engineered variants (WN-Fc), bound with high affinity to a wide range of solid tumor cell lines (e.g., colon, lung, prostate, skin, ovarian, and mammary tumors). Treatment of cancer cells with the engineered peptide-Fc fusions in the presence of effector NK cells potentially enhanced cytotoxicity, degranulation, and interferon-γ production by NK cells when compared to cells treated with the Fc control. The presence of competing peptides inhibited NK cell activation. Furthermore, a bispecific peptide-Fc fusion protein activated NK cells against HER-1- and/or HER-2-expressing cancer cells. Collectively, the engineered peptide-Fc fusions constitute a new promising strategy to recruit and activate NK cells against tumor cells, a primary goal of cancer immunotherapy. PMID:26605373

  15. Lipopolysaccharide enhances FcγR-dependent functions in vivo through CD11b/CD18 up-regulation

    PubMed Central

    Rubel, C; Miliani De Marval, P; Vermeulen, M; Isturiz, M A; Palermo, M S

    1999-01-01

    Fc receptors for immunoglobulin G (IgG) (FcγR) mediate several defence mechanisms in the course of inflammatory and infectious diseases. In Gram-negative infections, cellular wall lipopolysaccharides (LPS) modulate different immune responses. We have recently demonstrated that murine LPS in vivo treatment significantly increases FcγR-dependent clearance of immune complexes (IC). In addition, we and others have reported the induction of adhesion molecules on macrophages and neutrophils by LPS in vivo and by tumour necrosis factor-α (TNF-α) in vitro. The aim of this paper was to investigate CD11b/CD18 participation in LPS enhancing effects on Fcγ-dependent functionality of tissue macrophages. Our results have demonstrated that LPS can enhance antibody-dependent cellular cytotoxicity (ADCC) and IC-triggered cytotoxicity (IC-Ctx), two reactions which involve the Fcγ-receptor but different lytic mechanisms. In vitro incubation of splenocytes from LPS-treated mice with anti-CD11b/CD18 abrogated ADCC and IC-Ctx enhancement, without affecting FcγR expression. Similar results were obtained with physiological concentrations of fibrinogen. In this way cytotoxic values of LPS-splenocytes decreased to the basal levels of control mice. Time and temperature requirements for such inhibition strongly suggested that anti-CD11b/CD18 could modulate intracellular signals leading to downregulation of FcγR functionality. Data presented herein support the hypothesis that functional and/or physical associations between integrins and FcγR could be critical for the modulation of effector functions during an inflammatory response. PMID:10447764

  16. Advances in Therapeutic Fc Engineering – Modulation of IgG-Associated Effector Functions and Serum Half-life

    PubMed Central

    Saxena, Abhishek; Wu, Donghui

    2016-01-01

    Today, monoclonal immunoglobulin gamma (IgG) antibodies have become a major option in cancer therapy especially for the patients with advanced or metastatic cancers. Efficacy of monoclonal antibodies (mAbs) is achieved through both its antigen-binding fragment (Fab) and crystallizable fragment (Fc). Fab can specifically recognize tumor-associated antigen (TAA) and thus modulate TAA-linked downstream signaling pathways that may lead to the inhibition of tumor growth, induction of tumor apoptosis, and differentiation. The Fc region can further improve mAbs’ efficacy by mediating effector functions such as antibody-dependent cellular cytotoxicity, complement-dependent cytotoxicity, and antibody-dependent cell-mediated phagocytosis. Moreover, Fc is the region interacting with the neonatal Fc receptor in a pH-dependent manner that can slow down IgG’s degradation and extend its serum half-life. Loss of the antibody Fc region dramatically shortens its serum half-life and weakens its anticancer effects. Given the essential roles that the Fc region plays in the modulation of the efficacy of mAb in cancer treatment, Fc engineering has been extensively studied in the past years. This review focuses on the recent advances in therapeutic Fc engineering that modulates its related effector functions and serum half-life. We also discuss the progress made in aglycosylated mAb development that may substantially reduce the cost of manufacture but maintain similar efficacies as conventional glycosylated mAb. Finally, we highlight several Fc engineering-based mAbs under clinical trials. PMID:28018347

  17. Advances in Therapeutic Fc Engineering - Modulation of IgG-Associated Effector Functions and Serum Half-life.

    PubMed

    Saxena, Abhishek; Wu, Donghui

    2016-01-01

    Today, monoclonal immunoglobulin gamma (IgG) antibodies have become a major option in cancer therapy especially for the patients with advanced or metastatic cancers. Efficacy of monoclonal antibodies (mAbs) is achieved through both its antigen-binding fragment (Fab) and crystallizable fragment (Fc). Fab can specifically recognize tumor-associated antigen (TAA) and thus modulate TAA-linked downstream signaling pathways that may lead to the inhibition of tumor growth, induction of tumor apoptosis, and differentiation. The Fc region can further improve mAbs' efficacy by mediating effector functions such as antibody-dependent cellular cytotoxicity, complement-dependent cytotoxicity, and antibody-dependent cell-mediated phagocytosis. Moreover, Fc is the region interacting with the neonatal Fc receptor in a pH-dependent manner that can slow down IgG's degradation and extend its serum half-life. Loss of the antibody Fc region dramatically shortens its serum half-life and weakens its anticancer effects. Given the essential roles that the Fc region plays in the modulation of the efficacy of mAb in cancer treatment, Fc engineering has been extensively studied in the past years. This review focuses on the recent advances in therapeutic Fc engineering that modulates its related effector functions and serum half-life. We also discuss the progress made in aglycosylated mAb development that may substantially reduce the cost of manufacture but maintain similar efficacies as conventional glycosylated mAb. Finally, we highlight several Fc engineering-based mAbs under clinical trials.

  18. Chicken IgY Fc Linked to Bordetella avium ompA and Taishan Pinus massoniana Pollen Polysaccharide Adjuvant Enhances Macrophage Function and Specific Immune Responses

    PubMed Central

    Dong, Wenwen; Zhang, Hao; Huang, He; Zhou, Jianbo; Hu, Liping; Lian, Ailing; Zhu, Lijun; Ma, Ningning; Yang, Pingping; Wei, Kai; Zhu, Ruiliang

    2016-01-01

    Fc-fusion technologies, in which immunoglobulin Fc is genetically fused to an antigenic protein, have been developed to confer antibody-like properties to proteins and peptides. Mammalian IgG Fc fusion exhibits improved antigen-induced immune responses by providing aggregates with high avidity for the IgG Fc receptor and salvaging the antigenic portion from endosomal degradation. However, whether the linked chicken IgY Fc fragment shares similar characteristics to mammalian IgG Fc remains unclear. In this study, we linked the chicken IgY Fc gene to the outer membrane protein A (ompA) of Bordetella avium through overlapping PCR. The fusion gene was cloned into the pPIC9 plasmid to construct the recombinant Pichia pastoris transformant expressing the ompA–Fc fusion protein. The effects of the linked Fc on macrophage vitality, activity, efficiency of antigen processing, and immune responses induced by the fused ompA were investigated. Furthermore, the effect of Taishan Pinus massoniana pollen polysaccharide (TPPPS), an immunomodulator, on chicken macrophage activation was evaluated. TPPPS was also used as an adjuvant to investigate its immunomodulatory effect on immunoresponses induced by the fused ompA–Fc in chickens. The pinocytosis, phagocytosis, secretion of nitric oxide and TNF-α, and MHC-II molecular expression of the macrophages treated with the fused ompA–Fc were significantly higher than those of the macrophages treated with ompA alone. The addition of TPPPS to the fused ompA–Fc further enhanced macrophage functions. The fused ompA–Fc elicited higher antigen-specific immune responses and protective efficacy compared with ompA alone. Moreover, the fused ompA–Fc conferred higher serum antibody titers, serum IL-2 and IL-4 concentrations, CD4+ and CD8+ T-lymphocyte counts, lymphocyte transformation rate, and protection rate compared with ompA alone. Notably, the prepared TPPPS adjuvant ompA–Fc vaccines induced high immune responses and protection

  19. TNFR-Fc fusion protein expressed by in vivo electroporation improves survival rates and myocardial injury in coxsackievirus induced murine myocarditis

    SciTech Connect

    Kim, Jong-Mook; Lim, Byung-Kwan; Ho, Seong-Hyun; Yun, Soo-Hyeon; Shin, Jae-Ok; Park, Eun-Min; Kim, Duk-Kyung; Kim, Sunyoung; Jeon, Eun-Seok . E-mail: esjeon@smc.samsung.co.kr

    2006-06-09

    Tumor necrosis factor-{alpha} (TNF-{alpha}) is one of the major cytokines that modulate the immune response in viral myocarditis, but its role has not yet been thoroughly evaluated. We antagonized TNF-{alpha} using the expressed soluble p75 TNF receptor linked to the Fc portion of the human IgG1 gene (sTNFR:Fc) by in vivo electroporation, and evaluated its effects on experimental coxsackieviral B3 (CVB3) myocarditis. A plasmid DNA encoding sTNFR:Fc (15 {mu}g/mouse) was injected into the gastrocnemius muscles of Balb/C male mice followed by electroporation (day -1). Control mice were injected with an empty vector. One day after electroporation, mice were infected with CVB3 (day 0). Serum levels of sTNFR:Fc increased from day 2 and peaked at day 5 following electroporation. The heart virus titers of sTNFR:Fc mice were higher than those of controls at day 3. However, subsequent to day 12, the survival rates of the sTNFR:Fc mice were significantly higher than those of the controls (36% versus 0% at day 27, P < 0.01). Histopathological examination indicated that inflammation and myocardial fibrosis were significantly decreased in sTNFR:Fc mice at day 12. The expressed sTNFR:Fc could modulate the inflammatory process during the post-viremic phase of viral myocarditis.

  20. Identification of the site on IgG Fc for interaction with streptococci of groups A, C and G.

    PubMed

    Schröder, A K; Nardella, F A; Mannik, M; Johansson, P J; Christensen, P

    1987-12-01

    The interaction between living groups A, C and G streptococci and IgG Fc was studied using human IgG, IgG Fc and IgG Fc-intermediate (Fci) fragments, chemically modified human IgG and fragment D of staphylococcal protein A (SPA). Diethylpyrocarbonate modification of His or N-acetylimidazole modification of Tyr of human IgG resulted in the loss of its capacity to inhibit the binding of radiolabelled human IgG Fc to the group A streptococci types M1 and M55, and to the group C strain SC-1, indicating that the amino acids His and Tyr are involved in the binding. Lys seems not to participate in the binding of IgG to these bacteria, however, since reductive methylation of Lys did not reduce its inhibitory capacity. Fragment D of SPA also inhibited the binding of radiolabelled human IgG Fc to strains M1, M55 and SC-1. We have previously shown that these bacteria do not bind to IgG fragments consisting of only the C gamma 2 or C gamma 3 domains. On the basis of these results, and the known relative positions in space of the His and Tyr residues on IgG Fc, it is speculated whether streptococci with IgG Fc receptors, like SPA and rheumatoid factors, interact with IgG in the interface between the C gamma 2 and C gamma 3 domains and involve His 435 and one or more of Tyr 436, His 433 and His 310. The similarities in binding sites on IgG for RFs and these bacterial Fc binding proteins suggest structural similarities between them that may be relevant to the production of rheumatoid factors in rheumatoid arthritis.

  1. Contribution of PIP-5 kinase I{alpha} to raft-based Fc{gamma}RIIA signaling

    SciTech Connect

    Szymanska, Ewelina; Korzeniowski, Marek; Raynal, Patrick; Sobota, Andrzej; Kwiatkowska, Katarzyna

    2009-04-01

    Receptor Fc{gamma}IIA (Fc{gamma}RIIA) associates with plasma membrane rafts upon activation to trigger signaling cascades leading to actin polymerization. We examined whether compartmentalization of PI(4,5)P{sub 2} and PI(4,5)P{sub 2}-synthesizing PIP5-kinase I{alpha} to rafts contributes to Fc{gamma}RIIA signaling. A fraction of PIP5-kinase I{alpha} was detected in raft-originating detergent-resistant membranes (DRM) isolated from U937 monocytes and other cells. The DRM of U937 monocytes contained also a major fraction of PI(4,5)P{sub 2}. PIP5-kinase I{alpha} bound PI(4,5)P{sub 2}, and depletion of the lipid displaced PIP5-kinase I{alpha} from the DRM. Activation of Fc{gamma}RIIA in BHK transfectants led to recruitment of the kinase to the plasma membrane and enrichment of DRM in PI(4,5)P{sub 2}. Immunofluorescence studies revealed that in resting cells the kinase was associated with the plasma membrane, cytoplasmic vesicles and the nucleus. After Fc{gamma}RIIA activation, PIP5-kinase I{alpha} and PI(4,5)P{sub 2} co-localized transiently with the activated receptor at distinct cellular locations. Immunoelectron microscopy studies revealed that PIP5-kinase I{alpha} and PI(4,5)P{sub 2} were present at the edges of electron-dense assemblies containing activated Fc{gamma}RIIA in their core. The data suggest that activation of Fc{gamma}RIIA leads to membrane rafts coalescing into signaling platforms containing PIP5-kinase I{alpha} and PI(4,5)P{sub 2}.

  2. Unraveling the Interaction between FcRn and Albumin: Opportunities for Design of Albumin-Based Therapeutics

    PubMed Central

    Sand, Kine Marita Knudsen; Bern, Malin; Nilsen, Jeannette; Noordzij, Hanna Theodora; Sandlie, Inger; Andersen, Jan Terje

    2015-01-01

    The neonatal Fc receptor (FcRn) was first found to be responsible for transporting antibodies of the immunoglobulin G (IgG) class from the mother to the fetus or neonate as well as for protecting IgG from intracellular catabolism. However, it has now become apparent that the same receptor also binds albumin and plays a fundamental role in homeostatic regulation of both IgG and albumin, as FcRn is expressed in many different cell types and organs at diverse body sites. Thus, to gain a complete understanding of the biological function of each ligand, and also their distribution in the body, an in-depth characterization of how FcRn binds and regulates the transport of both ligands is necessary. Importantly, such knowledge is also relevant when developing new drugs, as IgG and albumin are increasingly utilized in therapy. This review discusses our current structural and biological understanding of the relationship between FcRn and its ligands, with a particular focus on albumin and design of albumin-based therapeutics. PMID:25674083

  3. Feedback-controlled bolus plus infusion (FC-B/I) method for quantitative drug assessment in living brain with PET

    PubMed Central

    Ohba, Hiroyuki; Harada, Norihiro; Nishiyama, Shingo; Kakiuchi, Takeharu; Kimura, Yuichi; Tsukada, Hideo

    2013-01-01

    We have developed a feedback-controlled bolus plus infusion (FC-B/I) method for monitoring the interaction between positron emission tomography (PET) ligands and their specific target molecules with PET. The usefulness of the FC-B/I method was evaluated by the direct interaction between [11C]raclopride, a dopamine D2 receptor (D2R) ligand, and cold raclopride (10 and 100 μg/kg) in the brains of conscious monkeys. The present results demonstrated that the FC-B/I method could achieve the equilibrium state of [11C]raclopride in the striatum of monkey brain, and also that the cold raclopride-induced reduction of [11C]raclopride binding to D2R was observed in a dose-dependent manner. Good correlations of distribution volume ratio of the striatum to cerebellum between the conventional bolus plus infusion (B/I) method and the FC-B/I method as well as between the conventional bolus injection method and the FC-B/I method were observed. These results indicated that the system could be a useful tool for the evaluation of interaction between drug candidates and their target molecules like enzymes, receptors, and transporters by using of their specific PET ligands. PMID:22968323

  4. FcγRIIb on liver sinusoidal endothelium clears small immune complexes.

    PubMed

    Ganesan, Latha P; Kim, Jonghan; Wu, Yun; Mohanty, Sudhasri; Phillips, Gary S; Birmingham, Daniel J; Robinson, John M; Anderson, Clark L

    2012-11-15

    It has long been known that the ITIM-bearing IgG Fc receptor (FcγRIIb, RIIb) is expressed on liver sinusoidal endothelial cells (LSEC) and that the liver is the major site of small immune complex (SIC) clearance. Thus, we proposed that RIIb of LSEC eliminates blood-borne SIC, thereby controlling immune complex-mediated autoimmune disease. Testing this hypothesis, we found most RIIb of the mouse, fully three-quarters, to be expressed in liver. Moreover, most (90%) liver RIIb was expressed in LSEC, the remainder in Kupffer cells. An absent FcRγ in LSEC implied that RIIb is the sole FcγR expressed. Testing the capacity of liver RIIb to clear blood-borne SIC, we infused mice intravenously with radio-iodinated SIC made of OVA and rabbit IgG anti-OVA. Tracking decay of SIC from the blood, we found the RIIb knockout strain to be severely deficient in eliminating SIC compared with the wild-type strain, terminal half-lives being 6 and 1.5 h, respectively. RIIb on LSEC, a major scavenger, keeps SIC blood concentrations low and minimizes pathologic deposition of inflammatory immune complex.

  5. FC vehicle hybridisation: an affordable solution for an energy-efficient FC powered drive train

    NASA Astrophysics Data System (ADS)

    Pede, G.; Iacobazzi, A.; Passerini, S.; Bobbio, A.; Botto, G.

    Fuel cells (FCs) have potential as clean and efficient energy sources for automotive applications without sacrifice in performance or driving range. However, the complete FC system must operate as efficiently as possible over the range of driving conditions that may be encountered while maintaining a low cost. To achieve this target, a storage unit can be introduced in the FC system to reduce the size of the fuel cell that is the most expensive component. This "hybrid" concept would not only reduce the drive train total cost but it also allow the recover of the braking energy and the operation at the voltage-current point of maximum efficiency for the FC system. Pro-and-cons of the "full-power" versus the "hybrid" configuration are shown in this work. The "Hybridisation rate" or "Hybridisation degree", a parameter expressed by the relationship between two installed powers, the generation power and the traction power, is also introduced and it is demonstrated that for each category of hybrid vehicles there is an optimal value of hybridisation degree. The storage systems considered are based on high power batteries or ultra capacitors (UCs) or a combination of them. A preliminary design of a sport utility vehicle (SUV) using a combined storage system and a FC energy source (called Triple Hybrid), is proposed. Finally, the experience of the Italian industry in this field is also reviewed.

  6. Fc fusion as a platform technology: potential for modulating immunogenicity.

    PubMed

    Levin, Ditza; Golding, Basil; Strome, Scott E; Sauna, Zuben E

    2015-01-01

    The platform technology of fragment crystallizable (Fc) fusion, in which the Fc region of an antibody is genetically linked to an active protein drug, is among the most successful of a new generation of bioengineering strategies. Immunogenicity is a critical safety concern in the development of any protein therapeutic. While the therapeutic goal of generating Fc-fusion proteins has been to extend half-life, there is a critical mass of literature from immunology indicating that appropriate design of the Fc component has the potential to engage the immune system for product-specific outcomes. In the context of Fc-fusion therapeutics, a review of progress in understanding Fc biology suggests the prospect of engineering products that have an extended half-life and are able to modulate the immune system.

  7. Broadly Neutralizing Hemagglutinin Stalk-Specific Antibodies Induce Potent Phagocytosis of Immune Complexes by Neutrophils in an Fc-Dependent Manner.

    PubMed

    Mullarkey, Caitlin E; Bailey, Mark J; Golubeva, Diana A; Tan, Gene S; Nachbagauer, Raffael; He, Wenqian; Novakowski, Kyle E; Bowdish, Dawn M; Miller, Matthew S; Palese, Peter

    2016-10-04

    Broadly neutralizing antibodies that recognize the conserved hemagglutinin (HA) stalk have emerged as exciting new biotherapeutic tools to combat seasonal and pandemic influenza viruses. Our general understanding of the mechanisms by which stalk-specific antibodies achieve protection is rapidly evolving. It has recently been demonstrated that broadly neutralizing HA stalk-specific IgG antibodies require Fc-Fcγ receptor (FcγR) interactions for optimal protection in vivo Here we examine the neutrophil effector functions induced by stalk-specific antibodies. As the most abundant subset of blood leukocytes, neutrophils represent a critical innate effector cell population and serve an instrumental role in orchestrating downstream adaptive responses to influenza virus infection. Yet, the interplay of HA stalk-specific IgG, Fc-FcγR engagement, and neutrophils has remained largely uncharacterized. Using an in vitro assay to detect the production of reactive oxygen species (ROS), we show that human and mouse monoclonal HA stalk-specific IgG antibodies are able to induce the production of ROS by neutrophils, while HA head-specific antibodies do not. Furthermore, our results indicate that the production of ROS is dependent on Fc receptor (FcR) engagement and phagocytosis. We went on to assess the ability of monoclonal HA stalk-specific IgA antibodies to induce ROS. Consistent with our findings for monoclonal IgGs, only HA stalk-specific IgA antibodies elicited ROS production by neutrophils. This induction is dependent on the engagement of FcαR1. Taken together, our findings describe a novel FcR-dependent effector function induced by HA stalk-specific IgG and IgA antibodies, and importantly, our studies shed light on the mechanisms by which HA stalk-specific antibodies achieve protection.

  8. Skewed Fc glycosylation profiles of anti-proteinase 3 immunoglobulin G1 autoantibodies from granulomatosis with polyangiitis patients show low levels of bisection, galactosylation, and sialylation.

    PubMed

    Wuhrer, Manfred; Stavenhagen, Kathrin; Koeleman, Carolien A M; Selman, Maurice H J; Harper, Lorraine; Jacobs, Bart C; Savage, Caroline O S; Jefferis, Roy; Deelder, André M; Morgan, Matthew

    2015-04-03

    Granulomatosis with polyangiitis (GPA) is associated with circulating immunoglobulin (Ig) G anti-proteinase 3 specific (anti-PR3) anti-neutrophil cytoplasm antibodies (ANCA), which activate cytokine primed neutrophils via Fcgamma receptors. ANCA are class switched IgG antibodies implying T cell help in their production. Glycosylation of IgG Fc, under the control of T cell cytokines, determines the interaction between IgG and its receptors. Previous studies have reported aberrant glycosylation of Ig Fc in GPA patients. We investigated whether aberrant Fc glycosylation was present on anti-PR3 ANCA as well as whole IgG subclass preparations compared to healthy controls and whether this correlated with Birmingham vasculitis activity scores (BVAS), serum cytokines, and time to remission. Here, IgG Fc glycosylation of GPA patients and controls and anti-PR3 ANCA Fc glycosylation were determined by mass spectrometry of glycopeptides. IgG1 and IgG2 subclasses from GPA patients showed reduced galactosylation, sialylation, and bisection compared to healthy controls. Anti-PR3 IgG1 ANCA Fc galactosylation, sialylation, and bisection were reduced compared to total IgG1 in GPA. Galactosylation of anti-PR3 ANCA Fc correlated with inflammatory cytokines and time to remission but not BVAS. Bisection of anti-PR3 ANCA Fc correlated with BVAS. Total IgG1 and anti-PR3 IgG1 Fc galactosylation were weakly correlated, while bisection of IgG1 and anti-PR3 showed no correlation. Our data indicate that aberrant ANCA galactosylation may be driven in an antigen-specific manner.

  9. Generation and preclinical characterization of an NKp80-Fc fusion protein for redirected cytolysis of natural killer (NK) cells against leukemia.

    PubMed

    Deng, Gang; Zheng, Xiaodong; Zhou, Jing; Wei, Haiming; Tian, Zhigang; Sun, Rui

    2015-09-11

    The capacity of natural killer (NK) cells to mediate Fc receptor-dependent effector functions, such as antibody-dependent cellular cytotoxicity (ADCC), largely contributes to their clinical application. Given that activation-induced C-type lectin (AICL), an identified ligand for the NK-activating receptor NKp80, is frequently highly expressed on leukemia cells, the lack of therapeutic AICL-specific antibodies limits clinical application. Here we explore a strategy to reinforce NK anti-leukemia reactivity by combining targeting AICL-expressing leukemia cells with the induction of NK cell ADCC using NKp80-Fc fusion proteins. The NKp80-Fc fusion protein we generated bound specifically to leukemia cells in an AICL-specific manner. Cell binding assays between NK and leukemia cells showed that NKp80-Fc significantly increased NK target cell conjugation. In functional analyses, treatment with NKp80-Fc clearly induced the ADCC effect of NK cells. NKp80-Fc not only promoted NK-mediated leukemia cell apoptosis in the early stage of cell conjugation but also enhanced NK cell degranulation and cytotoxicity activity in the late stage. The bifunctional NKp80-Fc could redirect NK cells toward leukemia cells and triggered NK cell killing in vitro. Moreover, NKp80-Fc enhanced the lysis of NK cells against tumors in leukemia xenograft non-obese diabetic/severe combined immunodeficiency mice. Taken together, our results demonstrate that NKp80-Fc potently amplifies NK cell anti-leukemia effects in vitro and in vivo through induction of the NK cell ADCC effect. This method could potentially be useful for molecular targeted therapy, and the fusion proteins may be a promising drug for immunotherapy of leukemia.

  10. Broadly Neutralizing Hemagglutinin Stalk-Specific Antibodies Induce Potent Phagocytosis of Immune Complexes by Neutrophils in an Fc-Dependent Manner

    PubMed Central

    Mullarkey, Caitlin E.; Bailey, Mark J.; Golubeva, Diana A.; Tan, Gene S.; Nachbagauer, Raffael; He, Wenqian; Novakowski, Kyle E.; Bowdish, Dawn M.; Miller, Matthew S.

    2016-01-01

    ABSTRACT Broadly neutralizing antibodies that recognize the conserved hemagglutinin (HA) stalk have emerged as exciting new biotherapeutic tools to combat seasonal and pandemic influenza viruses. Our general understanding of the mechanisms by which stalk-specific antibodies achieve protection is rapidly evolving. It has recently been demonstrated that broadly neutralizing HA stalk-specific IgG antibodies require Fc-Fcγ receptor (FcγR) interactions for optimal protection in vivo. Here we examine the neutrophil effector functions induced by stalk-specific antibodies. As the most abundant subset of blood leukocytes, neutrophils represent a critical innate effector cell population and serve an instrumental role in orchestrating downstream adaptive responses to influenza virus infection. Yet, the interplay of HA stalk-specific IgG, Fc-FcγR engagement, and neutrophils has remained largely uncharacterized. Using an in vitro assay to detect the production of reactive oxygen species (ROS), we show that human and mouse monoclonal HA stalk-specific IgG antibodies are able to induce the production of ROS by neutrophils, while HA head-specific antibodies do not. Furthermore, our results indicate that the production of ROS is dependent on Fc receptor (FcR) engagement and phagocytosis. We went on to assess the ability of monoclonal HA stalk-specific IgA antibodies to induce ROS. Consistent with our findings for monoclonal IgGs, only HA stalk-specific IgA antibodies elicited ROS production by neutrophils. This induction is dependent on the engagement of FcαR1. Taken together, our findings describe a novel FcR-dependent effector function induced by HA stalk-specific IgG and IgA antibodies, and importantly, our studies shed light on the mechanisms by which HA stalk-specific antibodies achieve protection. PMID:27703076

  11. The protein-tyrosine phosphatase SHP-1 associates with the phosphorylated immunoreceptor tyrosine-based activation motif of Fc gamma RIIa to modulate signaling events in myeloid cells.

    PubMed

    Ganesan, Latha P; Fang, Huiqing; Marsh, Clay B; Tridandapani, Susheela

    2003-09-12

    Fc gamma RIIa is a low affinity IgG receptor uniquely expressed in human cells that promotes phagocytosis of immune complexes and induces inflammatory cytokine gene transcription. Recent studies have revealed that phagocytosis initiated by Fc gamma RIIa is tightly controlled by the inositol phosphatase SHIP-1, and the protein-tyrosine phosphatase SHP-1. Whereas the molecular nature of SHIP-1 involvement with Fc gamma RIIa has been well studied, it is not clear how SHP-1 is activated by Fc gamma RIIa to mediate its regulatory effect. Here we report that Fc gamma RIIa clustering induces SHP-1 phosphatase activity in THP-1 cells. Using synthetic phosphopeptides, and stable transfectants expressing immunoreceptor tyrosine-based activation motif (ITAM) tyrosine mutants of Fc gamma RIIa, we demonstrate that SHP-1 associates with the phosphorylated amino-terminal ITAM tyrosine of Fc gamma RIIa, whereas the tyrosine kinase Syk associates with the carboxyl-terminal ITAM tyrosine. Association of SHP-1 with Fc gamma RIIa ITAM appears to suppress total cellular tyrosine phosphorylation. Furthermore, Fc gamma RIIa clustering results in the association of SHP-1 with key signaling molecules such as Syk, p85 subunit of PtdIns 3-kinase, and p62dok, suggesting that these molecules may be substrates of SHP-1 in this system. Finally, overexpression of wild-type SHP-1 but not catalytically deficient SHP-1 led to a down-regulation of NF kappa B-dependent gene transcription in THP-1 cells activated by clustering Fc gamma RIIa.

  12. Fusion protein of mutant B7-DC and Fc enhances the antitumor immune effect of GM-CSF-secreting whole-cell vaccine.

    PubMed

    Kojima, Masatsugu; Murata, Satoshi; Mekata, Eiji; Takebayashi, Katsushi; Jaffee, Elizabeth M; Tani, Tohru

    2014-04-01

    B7-DC [also known as programmed death ligand 2 (PD-L2)] is a costimulatory molecule expressed predominantly on dendritic cells (DCs) and macrophages. In addition to its coinhibitory receptor, programmed death receptor 1 (PD-1), evidence suggests that B7-DC interacts with an unidentified costimulatory receptor on T cells. B7-DC mutants with selective binding capacity for the costimulatory receptor may be effective in stimulating antitumor immune responses, while avoiding the inhibitory effects of PD-1. In this study, we concomitantly administered a GM-CSF-secreting whole-cell vaccine together with a fusion protein of mutant B7-DC and Fc portion (mB7-DC-Fc), which binds selectively to the costimulatory receptor. This lead to an increased number of tumor antigen-specific cytotoxic T lymphocytes both in the spleen and at the tumor site and complete elimination of established tumors in vivo. In addition, mB7-DC-Fc increased IFN-γ and IL-2 production and decreased IL-4 and IL-10 production in vitro, indicating that mB7-DC-Fc tips the Th1/Th2 balance toward Th1 dominance, which is more favorable for antitumor immunity. Furthermore, mB7-DC-Fc decreased the PD-1(+) proportion of CD8(+) T cells in vitro and tumor-infiltrating CD8(+) T cells in vivo, suggesting that mB7-DC-Fc may maintain tumor-infiltrating CD8(+) T cells in a nonexhausted state. In conclusion, mB7-DC-Fc administration during the T-cell priming phase enhances antitumor effects of vaccine by generating more tumor antigen-specific cytotoxic T lymphocytes and leading to their accumulation at the tumor site. We suggest that this combination approach may be a promising strategy for antitumor immunotherapy.

  13. Influenza virus H1N1 activates platelets through FcγRIIA signaling and thrombin generation.

    PubMed

    Boilard, Eric; Paré, Guillaume; Rousseau, Matthieu; Cloutier, Nathalie; Dubuc, Isabelle; Lévesque, Tania; Borgeat, Pierre; Flamand, Louis

    2014-05-01

    Platelets play crucial functions in hemostasis and the prevention of bleeding. During H1N1 influenza A virus infection, platelets display activation markers. The platelet activation triggers during H1N1 infection remain elusive. We observed that H1N1 induces surface receptor activation, lipid mediator synthesis, and release of microparticles from platelets. These activation processes require the presence of serum/plasma, pointing to the contribution of soluble factor(s). Considering that immune complexes in the H1N1 pandemic were reported to play a pathogenic role, we assessed their contribution in H1N1-induced platelet activation. In influenza-immunized subjects, we observed that the virus scaffolds with immunoglobulin G (IgG) to form immune complexes that promote platelet activation. Mechanistically, this activation occurs through stimulation of low-affinity type 2 receptor for Fc portion of IgG (FcγRIIA), a receptor for immune complexes, independently of thrombin. Using a combination of in vitro and in vivo approaches, we found that the antibodies from H3N2-immunized mice activate transgenic mouse platelets that express FcγRIIA when put in the presence of H1N1, suggesting that cross-reacting influenza antibodies suffice. Alternatively, H1N1 can activate platelets via thrombin formation, independently of complement and FcγRIIA. These observations identify both the adaptive immune response and the innate response against pathogens as 2 intertwined processes that activate platelets during influenza infections.

  14. Structural characterization of anti-inflammatory immunoglobulin G Fc proteins.

    PubMed

    Ahmed, Alysia A; Giddens, John; Pincetic, Andrew; Lomino, Joseph V; Ravetch, Jeffrey V; Wang, Lai-Xi; Bjorkman, Pamela J

    2014-09-09

    Immunoglobulin G (IgG) is a central mediator of host defense due to its ability to recognize and eliminate pathogens. The recognition and effector responses are encoded on distinct regions of IgGs. The diversity of the antigen recognition Fab domains accounts for IgG's ability to bind with high specificity to essentially any antigen. Recent studies have indicated that the Fc effector domain also displays considerable heterogeneity, accounting for its complex effector functions of inflammation, modulation, and immune suppression. Therapeutic anti-tumor antibodies, for example, require the pro-inflammatory properties of the IgG Fc to eliminate tumor cells, while the anti-inflammatory activity of intravenous IgG requires specific Fc glycans for activity. In particular, the anti-inflammatory activity of intravenous IgG is ascribed to a small population of IgGs in which the Asn297-linked complex N-glycans attached to each Fc CH2 domain include terminal α2,6-linked sialic acids. We used chemoenzymatic glycoengineering to prepare fully disialylated IgG Fc and solved its crystal structure. Comparison of the structures of asialylated Fc, sialylated Fc, and F241A Fc, a mutant that displays increased glycan sialylation, suggests that increased conformational flexibility of the CH2 domain is associated with the switch from pro-inflammatory to anti-inflammatory activity of the Fc.

  15. Molecular determinants of dengue virus 2 envelope protein important for virus entry in FcγRIIA-mediated antibody-dependent enhancement of infection

    SciTech Connect

    Chotiwan, Nunya; Roehrig, John T.; Schlesinger, Jacob J.; Blair, Carol D.; Huang, Claire Y.-H.

    2014-05-15

    Antibody-dependent enhancement (ADE) of infection may cause severe illness in patients suffering a secondary infection by a heterologous dengue virus (DENV) serotype. During ADE of infection, cross-reactive non- or poorly-neutralizing antibodies form infectious virus-Ab complexes with the newly infecting serotype and enhance virus infection by binding to the Fcγ receptors (FcγR) on FcγR-bearing cells. In this study, we determined that molecular determinants of DENV2 envelope protein critical for virus entry during non-ADE infection are also required for ADE infection mediated by FcγRIIA, and binding of virus-Ab complexes with FcγRIIA alone is not sufficient for ADE of infection. The FcγRIIA mainly plays an auxiliary role in concentrating the virus–Ab complex to the cell surface, and other primary cellular receptors are required for virus entry. Understanding the viral entry pathway in ADE of DENV infection will greatly facilitate rational designs of anti-viral therapeutics against severe dengue disease associated with ADE. - Highlights: • KKK305/307/310 in DENV2 E-DIII is critical for virus attachment in ADE and non-ADE infection. • Binding of DENV2–Ab complex with FcγRII alone is not sufficient for virus entry in ADE infection. • Other primary receptors were required for DENV2 internalization during FcγRII–mediated ADE. • G104 and L135 of DENV2 E are critical for virus-mediated membrane fusion. • DENV2 virus-mediated membrane fusion is required for both ADE and non-ADE infection.

  16. Direct inhibition of cell surface ephrin-B2 by recombinant ephrin-B2/FC.

    PubMed

    Xiaodong, Hu; Zhen, Huang; Min, Sun; Zhiming, Cui; Hongyan, Ji; Chong, Zhang; Xuefeng, Tan; Guohua, Jin

    2013-10-18

    First messengers and viral transfection are the two most common ways to stimulate cells for signal output, although their applications are limited. We investigated mechanisms of inducing neural stem cell differentiation using recombinant ephrin-B2/Fc and found that it acted as a ligand and inhibited endogenous ephrin-B2, which maintenance of the neural progenitor cell state, by direct interference. Our results showed the movement of ephrin-B2/Fc within the cell and indicated that it recycled to the plasma membrane surface, revealing a possible pattern of ephrin trafficking. Our results also serve as proof of concept for the reconstruction of the intracellular domain of ephrin using an artificial receptor to direct input signals in future studies.

  17. Enhanced phagocytic activity of HIV-specific antibodies correlates with natural production of immunoglobulins with skewed affinity for FcγR2a and FcγR2b.

    PubMed

    Ackerman, Margaret E; Dugast, Anne-Sophie; McAndrew, Elizabeth G; Tsoukas, Stephen; Licht, Anna F; Irvine, Darrell J; Alter, Galit

    2013-05-01

    While development of an HIV vaccine that can induce neutralizing antibodies remains a priority, decades of research have proven that this is a daunting task. However, accumulating evidence suggests that antibodies with the capacity to harness innate immunity may provide some protection. While significant research has focused on the cytolytic properties of antibodies in acquisition and control, less is known about the role of additional effector functions. In this study, we investigated antibody-dependent phagocytosis of HIV immune complexes, and we observed significant differences in the ability of antibodies from infected subjects to mediate this critical effector function. We observed both quantitative differences in the capacity of antibodies to drive phagocytosis and qualitative differences in their FcγR usage profile. We demonstrate that antibodies from controllers and untreated progressors exhibit increased phagocytic activity, altered Fc domain glycosylation, and skewed interactions with FcγR2a and FcγR2b in both bulk plasma and HIV-specific IgG. While increased phagocytic activity may directly influence immune activation via clearance of inflammatory immune complexes, it is also plausible that Fc receptor usage patterns may regulate the immune response by modulating downstream signals following phagocytosis--driving passive degradation of internalized virus, release of immune modulating cytokines and chemokines, or priming of a more effective adaptive immune response.

  18. Anti‐Inflammatory Immune Skewing Is Atheroprotective: Apoe−/−FcγRIIb−/− Mice Develop Fibrous Carotid Plaques

    PubMed Central

    Harmon, Erin Y.; Fronhofer, Van; Keller, Rebecca S.; Feustel, Paul J.; Zhu, Xinmei; Xu, Hao; Avram, Dorina; Jones, David M.; Nagarajan, Shanmugam; Lennartz, Michelle R.

    2014-01-01

    Background Stroke, caused by carotid plaque rupture, is a major cause of death in the United States. Whereas vulnerable human plaques have higher Fc receptor (FcγR) expression than their stable counterparts, how FcγR expression impacts plaque histology is unknown. We investigated the role of FcγRIIb in carotid plaque development and stability in apolipoprotein (Apo)e−/− and Apoe−/−FcγRIIb−/− double knockout (DKO) animals. Methods and Results Plaques were induced by implantation of a shear stress‐modifying cast around the carotid artery. Plaque length and stenosis were followed longitudinally using ultrasound biomicroscopy. Immune status was determined by flow cytometry, cytokine release, immunoglobulin G concentration and analysis of macrophage polarization both in plaques and in vitro. Surprisingly, DKO animals had lower plaque burden in both carotid artery and descending aorta. Plaques from Apoe−/− mice were foam‐cell rich and resembled vulnerable human specimens, whereas those from DKO mice were fibrous and histologically stable. Plaques from DKO animals expressed higher arginase 1 (Arg‐1) and lower inducible nitric oxide synthase (iNOS), indicating the presence of M2 macrophages. Analysis of blood and cervical lymph nodes revealed higher interleukin (IL)‐10, immune complexes, and regulatory T cells (Tregs) and lower IL‐12, IL‐1β, and tumor necrosis factor alpha (TNF‐α) in DKO mice. Similarly, in vitro stimulation produced higher IL‐10 and Arg‐1 and lower iNOS, IL‐1β, and TNF‐α in DKO versus Apoe−/− macrophages. These results define a systemic anti‐inflammatory phenotype. Conclusions We hypothesized that removal of FcγRIIb would exacerbate atherosclerosis and generate unstable plaques. However, we found that deletion of FcγRIIb on a congenic C57BL/6 background induces an anti‐inflammatory Treg/M2 polarization that is atheroprotective. PMID:25516435

  19. Eptifibatide-induced thrombocytopenia and thrombosis in humans require FcγRIIa and the integrin β3 cytoplasmic domain

    PubMed Central

    Gao, Cunji; Boylan, Brian; Bougie, Dan; Gill, Joan C.; Birenbaum, Jessica; Newman, Debra K.; Aster, Richard H.; Newman, Peter J.

    2009-01-01

    Thrombocytopenia and thrombosis following treatment with the integrin αIIbβ3 antagonist eptifibatide are rare complications caused by patient antibodies specific for ligand-occupied αIIbβ3. Whether such antibodies induce platelet clearance by simple opsonization, by inducing mild platelet activation, or both is poorly understood. To gain insight into the mechanism by which eptifibatide-dependent antibodies initiate platelet clearance, we incubated normal human platelets with patient serum containing an αIIbβ3-specific, eptifibatide-dependent antibody. We observed that in the presence of eptifibatide, patient IgG induced platelet secretion and aggregation as well as tyrosine phosphorylation of the integrin β3 cytoplasmic domain, the platelet FcγRIIa Fc receptor, the protein-tyrosine kinase Syk, and phospholipase Cγ2. Each activation event was inhibited by preincubation of the platelets with Fab fragments of the FcγRIIa-specific mAb IV.3 or with the Src family kinase inhibitor PP2. Patient serum plus eptifibatide did not, however, activate platelets from a patient with a variant form of Glanzmann thrombasthenia that expressed normal levels of FcγRIIa and the αIIbβ3 complex but lacked most of the β3 cytoplasmic domain. Taken together, these data suggest a novel mechanism whereby eptifibatide-dependent antibodies engage the integrin β3 subunit such that FcγRIIa and its downstream signaling components become activated, resulting in thrombocytopenia and a predisposition to thrombosis. PMID:19197137

  20. Acoustic nonlinearity in fluorinert FC-43

    SciTech Connect

    Pantea, Cristian; Sinha, Dipen N; Osterhoudt, Curtis F; Mombourquette, Paul C

    2009-01-01

    Fluorinert FC-43 nonlinearity was investigated using two approaches: (i) a finite amplitude method with harmonic production; and (ii) a nonlinear frequency mixing in the fluid with consequent beam profile measurement of the difference frequency. The finite amplitude method provides information on the coefficient of nonlinearity, {beta}, through the amplitudes of the fundamental and the second harmonic, at a certain transmitter-receiver distance. A calibrated hydrophone was used as a receiver, in order to obtain direct pressure measurements of the acoustic waves in the fluid. The role of transmitter-receiver distance in {beta} determination is investigated. In the second approach, a single transducer is used to provide two high-frequency beams. The collinear high-frequency beams mix nonlinearly in the fluid resulting in a difference frequency beam and higher order harmonics of the primaries. The difference frequency beam profite is investigated at lengths beyond the mixing distance. The experimental data are compured with the KZK theory.

  1. Draft Genome Sequence of Actinobaculum massiliense Strain FC3.

    PubMed

    Beye, Mamadou; Bakour, Sofiane; Labas, Noémie; Raoult, Didier; Fournier, Pierre-Edouard

    2016-01-14

    Actinobaculum massiliense strain FC3 was isolated from the urine of a patient with acute cystitis. The 2.06-Mb genome of strain FC3 contains 17 toxin/antitoxin modules and 9 bacteriocin-encoding genes that may play a role in virulence. The genome also exhibits 693 genes acquired by lateral gene transfer.

  2. Fc glycans of therapeutic antibodies as critical quality attributes

    PubMed Central

    Reusch, Dietmar; Tejada, Max L

    2015-01-01

    Critical quality attributes (CQA) are physical, chemical, biological or microbiological properties or characteristics that must be within an appropriate limit, range or distribution to ensure the desired product quality, safety and efficacy. For monoclonal antibody therapeutics that rely on fraction crystalizable (Fc)-mediated effector function for their clinical activity, the terminal sugars of Fc glycans have been shown to be critical for safety or efficacy. Different glycosylation variants have also been shown to influence the pharmacodynamic and pharmacokinetic behavior while other Fc glycan structural elements may be involved in adverse immune reactions. This review focuses on the role of Fc glycans as CQAs. Fc glycan information from the published literature is summarized and evaluated for impact on patient safety, immunogenicity, bioactivity and pharmacodynamics/pharmacokinetics. PMID:26263923

  3. Human platelet activation by Escherichia coli: roles for FcγRIIA and integrin αIIbβ3

    PubMed Central

    Watson, Callum N.; Kerrigan, Steven W.; Cox, Dermot; Henderson, Ian R.; Watson, Steve P.; Arman, Mònica

    2016-01-01

    Abstract Gram-negative Escherichia coli cause diseases such as sepsis and hemolytic uremic syndrome in which thrombotic disorders can be found. Direct platelet–bacterium interactions might contribute to some of these conditions; however, mechanisms of human platelet activation by E. coli leading to thrombus formation are poorly understood. While the IgG receptor FcγRIIA has a key role in platelet response to various Gram-positive species, its role in activation to Gram-negative bacteria is poorly defined. This study aimed to investigate the molecular mechanisms of human platelet activation by E. coli, including the potential role of FcγRIIA. Using light-transmission aggregometry, measurements of ATP release and tyrosine-phosphorylation, we investigated the ability of two E. coli clinical isolates to activate platelets in plasma, in the presence or absence of specific receptors and signaling inhibitors. Aggregation assays with washed platelets supplemented with IgGs were performed to evaluate the requirement of this plasma component in activation. We found a critical role for the immune receptor FcγRIIA, αIIbβ3, and Src and Syk tyrosine kinases in platelet activation in response to E. coli. IgG and αIIbβ3 engagement was required for FcγRIIA activation. Moreover, feedback mediators adenosine 5’-diphosphate (ADP) and thromboxane A2 (TxA2) were essential for platelet aggregation. These findings suggest that human platelet responses to E. coli isolates are similar to those induced by Gram-positive organisms. Our observations support the existence of a central FcγRIIA-mediated pathway by which human platelets respond to both Gram-negative and Gram-positive bacteria. PMID:27025455

  4. CIN85 Modulates the Down-regulation of FcγRIIa Expression and Function by c-Cbl in a PKC-dependent Manner in Human Neutrophils*

    PubMed Central

    Marois, Louis; Vaillancourt, Myriam; Paré, Guillaume; Gagné, Valérie; Fernandes, Maria J. G.; Rollet-Labelle, Emmanuelle; Naccache, Paul H.

    2011-01-01

    We previously described a non-classical mechanism that arrests FcγRIIa signaling in human neutrophils once engaged by immune complexes or opsonized pathogens. The engagement of FcγRIIa leads to its ubiquitination by the ubiquitin ligase c-Cbl and degradation by the proteasome. Herein, we further examined some of the events regulating this novel pathway. The adaptor protein CIN85 was described in other systems to be involved in the regulation of the c-Cbl-dependent pathway. We found that CIN85 is expressed in human neutrophils and that it translocates like c-Cbl from the cytosol to the plasma membrane following receptor cross-linking. CIN85 was also recruited to the same subset of high density detergent-resistant membrane fractions in which stimulated FcγRIIa partitioned with c-Cbl. The integrity of these microdomains is essential to the FcγRIIa degradation process because the cholesterol-depleting agent methyl-β-cyclodextrin inhibits this event. Silencing the expression of CIN85 by siRNA in dibutyryl cyclic AMP-differentiated PLB 985 cells prevented FcγRIIa degradation and increased IgG-mediated phagocytosis. Confocal microscopy revealed that the presence of CIN85 is essential to the proper sorting of FcγRIIa during endocytosis. We also provide direct evidence that CIN85 is a substrate of serine/threonine kinase PKCs. Classical PKCs positively regulate FcγRIIa ubiquitination and degradation because these events were inhibited by Gö6976, a classical PKC inhibitor. We conclude that the ubiquitination and degradation of stimulated FcγRIIa mediated by c-Cbl are positively regulated by the adaptor protein CIN85 in a PKC-dependent manner and that these events contribute to the termination of FcγRIIa signaling. PMID:21372129

  5. Beneficial effects of the transgenic expression of human sTNF-αR-Fc and HO-1 on pig-to-mouse islet xenograft survival.

    PubMed

    Yan, Ji-Jing; Yeom, Hye-Jeong; Jeong, Jong Cheol; Lee, Jae-Ghi; Lee, Eun Won; Cho, Bumrae; Lee, Han Sin; Kim, Su Jin; Hwang, Jong-Ik; Kim, Sung Joo; Lee, Byeong-Chun; Ahn, Curie; Yang, Jaeseok

    2016-02-01

    Both human soluble tumor necrosis factor-α receptor-Fc (sTNF-αR-Fc) and heme oxygenase-1 (HO-1) transgenic pigs have been generated previously for xenotransplantation. Here, we investigated whether overexpression of sTNF-αR-Fc or HO-1 in pig islets prolongs islet xenograft survival. Adult porcine islets were isolated from human sTNF-αR-Fc or HO-1 transgenic and wild type pigs, and were transplanted into diabetic nude mice. Effects of the expression of both genes on islet apoptosis, chemokine expression, cellular infiltration, antibody production, and islet xenograft survival were analyzed. Human sTNF-αR-Fc transgenic pigs successfully expressed sTNF-αR-Fc in the islets; human HO-1 transgenic pigs expressed significant levels of HO-1 in the islets. Pig-to-mouse islet xenograft survival was significantly prolonged in both the sTNF-αR-Fc and HO-1 groups compared with that in the wild type group. Both the sTNF-αR-Fc and HO-1 groups exhibited suppressed intragraft expression of monocyte chemoattractant protein-1 (MCP-1) and decreased perigraft infiltration of immune cells. However, there was no difference in the anti-pig antibody levels between the groups. Apoptosis of islet cells during the early engraftment was suppressed only in the HO-1 group. Porcine islets from both sTNF-αR-Fc and HO-1 transgenic pigs prolonged xenograft survival by suppressing islet cell apoptosis or secondary inflammatory responses following islet death, indicating that these transgenic pigs might have applications in successful islet xenotransplantation.

  6. Targeting Mast Cells and Basophils with Anti-FcεRIα Fab-Conjugated Celastrol-Loaded Micelles Suppresses Allergic Inflammation.

    PubMed

    Peng, Xia; Wang, Juan; Li, Xianyang; Lin, Lihui; Xie, Guogang; Cui, Zelin; Li, Jia; Wang, Yuping; Li, Li

    2015-12-01

    Mast cells and basophils are effector cells in the pathophysiology of allergic diseases. Targeted elimination of these cells may be a promising strategy for the treatment of allergic disorders. Our present study aims at targeted delivery of anti-FcεRIα Fab-conjugated celastrol-loaded micelles toward FcεRIα receptors expressed on mast cells and basophils to have enhanced anti-allergic effect. To achieve this aim, we prepared celastrol-loaded (PEO-block-PPO-block-PEO, Pluronic) polymeric nanomicelles using thin-film hydration method. The anti-FcεRIα Fab Fragment was then conjugated to carboxyl groups on drug-loaded micelles via EDC amidation reaction. The anti-FcεRIα Fab-conjugated celastrol-loaded micelles revealed uniform particle size (93.43 ± 12.93 nm) with high loading percentage (21.2 ± 1.5% w/w). The image of micelles showed oval and rod like. The anti-FcεRIα Fab-conjugated micelles demonstrated enhanced cellular uptake and cytotoxity toward target KU812 cells than non-conjugated micelles in vitro. Furthermore, diffusion of the drug into the cells allowed an efficient induction of cell apoptosis. In mouse model of allergic asthma, treatment with anti-FcεRIα Fab-conjugated micelles increased lung accumulation of micelles, and significantly reduced OVA-sIgE, histamine and Th2 cytokines (IL-4, IL-5, TNF-α) levels, eosinophils infiltration and mucus production. In addition, in mouse model of passive cutaneous anaphylaxis, anti-FcεRIα Fab-conjugated celastrol-loaded micelles treatment significantly decreased extravasated evan's in the ear. These results indicate that anti-FcεRIα Fab-conjugated celastrol-loaded micelles can target and selectively kill mast cells and basophils which express FcεRIα, and may be efficient reagents for the treatment of allergic disorders and mast cell related diseases.

  7. Enhancement of antibody-dependent cell-mediated cytotoxicity by endowing IgG with FcαRI (CD89) binding.

    PubMed

    Borrok, M Jack; Luheshi, Nadia M; Beyaz, Nurten; Davies, Gareth C; Legg, James W; Wu, Herren; Dall'Acqua, William F; Tsui, Ping

    2015-01-01

    Fc effector functions such as antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cell-mediated phagocytosis (ADCP) are crucial to the efficacy of many antibody therapeutics. In addition to IgG, antibodies of the IgA isotype can also promote cell killing through engagement of myeloid lineage cells via interactions between the IgA-Fc and FcαRI (CD89). Herein, we describe a unique, tandem IgG1/IgA2 antibody format in the context of a trastuzumab variable domain that exhibits enhanced ADCC and ADCP capabilities. The IgG1/IgA2 tandem Fc format retains IgG1 FcγR binding as well as FcRn-mediated serum persistence, yet is augmented with myeloid cell-mediated effector functions via FcαRI/IgA Fc interactions. In this work, we demonstrate anti-human epidermal growth factor receptor-2 antibodies with the unique tandem IgG1/IgA2 Fc can better recruit and engage cytotoxic polymorphonuclear (PMN) cells than either the parental IgG1 or IgA2. Pharmacokinetics of IgG1/IgA2 in BALB/c mice are similar to the parental IgG, and far surpass the poor serum persistence of IgA2. The IgG1/IgA2 format is expressed at similar levels and with similar thermal stability to IgG1, and can be purified via standard protein A chromatography. The tandem IgG1/IgA2 format could potentially augment IgG-based immunotherapeutics with enhanced PMN-mediated cytotoxicity while avoiding many of the problems associated with developing IgAs.

  8. Properties of Proteoliposomes Containing Fusicoccin Receptors from Maize 1

    PubMed Central

    Aducci, Patrizia; Fullone, Maria Rosaria; Ballio, Alessandro

    1989-01-01

    We have recently described a fusicoccin (FC)-sensitive system reconstituted by inserting into liposomes FC-receptors and H+-ATPase-enriched preparations from maize tissues. While the proteoliposomes of maize H+-ATPase had been already investigated, those of FC-receptors required a careful characterization before use in the dual system. In particular, the influence of the phospholipid environment on time-course, reversibility, and pH-dependence of the FC-binding reaction has been studied by comparing these properties in microsome-bound, solubilized, and liposome-entrapped receptors. Similarities and differences between the results of this investigation and those previously obtained with FC-receptors from spinach leaves suggest that functionally similar binding proteins from monocot and dicot plants have distinct structural features. PMID:16667192

  9. Role of Fc in antibody-mediated protection from ricin toxin.

    PubMed

    Pincus, Seth H; Das, Anushka; Song, Kejing; Maresh, Grace A; Corti, Miriam; Berry, Jody

    2014-05-07

    We have studied the role of the antibody (Ab) Fc region in mediating protection from ricin toxicity. We compared the in vitro and in vivo effects of intact Ig and of Fab fragments derived from two different neutralizing Ab preparations, one monoclonal, the other polyclonal. Consistent results were obtained from each, showing little difference between Ig and Fab in terms of antigen binding and in vitro neutralization, but with relatively large differences in protection of animals. We also studied whether importing Ab into the cell by Fc receptors enhanced the intracellular neutralization of ricin toxin. We found that the imported Ab was found in the ER and Golgi, a compartment traversed by ricin, as it traffics through the cell, but intracellular Ab did not contribute to the neutralization of ricin. These results indicate that the Fc region of antibody is important for in vivo protection, although the mechanism of enhanced protection by intact Ig does not appear to operate at the single cell level. When using xenogeneic antibodies, the diminished immunogenicity of Fab/F(ab')2 preparations should be balanced against possible loss of protective efficacy.

  10. Tim-3 enhances FcεRI-proximal signaling to modulate mast cell activation.

    PubMed

    Phong, Binh L; Avery, Lyndsay; Sumpter, Tina L; Gorman, Jacob V; Watkins, Simon C; Colgan, John D; Kane, Lawrence P

    2015-12-14

    T cell (or transmembrane) immunoglobulin and mucin domain protein 3 (Tim-3) has attracted significant attention as a novel immune checkpoint receptor (ICR) on chronically stimulated, often dysfunctional, T cells. Antibodies to Tim-3 can enhance antiviral and antitumor immune responses. Tim-3 is also constitutively expressed by mast cells, NK cells and specific subsets of macrophages and dendritic cells. There is ample evidence for a positive role for Tim-3 in these latter cell types, which is at odds with the model of Tim-3 as an inhibitory molecule on T cells. At this point, little is known about the molecular mechanisms by which Tim-3 regulates the function of T cells or other cell types. We have focused on defining the effects of Tim-3 ligation on mast cell activation, as these cells constitutively express Tim-3 and are activated through an ITAM-containing receptor for IgE (FcεRI), using signaling pathways analogous to those in T cells. Using a variety of gain- and loss-of-function approaches, we find that Tim-3 acts at a receptor-proximal point to enhance Lyn kinase-dependent signaling pathways that modulate both immediate-phase degranulation and late-phase cytokine production downstream of FcεRI ligation.

  11. Tim-3 enhances FcεRI-proximal signaling to modulate mast cell activation

    PubMed Central

    Phong, Binh L.; Avery, Lyndsay; Sumpter, Tina L.; Gorman, Jacob V.; Watkins, Simon C.; Colgan, John D.

    2015-01-01

    T cell (or transmembrane) immunoglobulin and mucin domain protein 3 (Tim-3) has attracted significant attention as a novel immune checkpoint receptor (ICR) on chronically stimulated, often dysfunctional, T cells. Antibodies to Tim-3 can enhance antiviral and antitumor immune responses. Tim-3 is also constitutively expressed by mast cells, NK cells and specific subsets of macrophages and dendritic cells. There is ample evidence for a positive role for Tim-3 in these latter cell types, which is at odds with the model of Tim-3 as an inhibitory molecule on T cells. At this point, little is known about the molecular mechanisms by which Tim-3 regulates the function of T cells or other cell types. We have focused on defining the effects of Tim-3 ligation on mast cell activation, as these cells constitutively express Tim-3 and are activated through an ITAM-containing receptor for IgE (FcεRI), using signaling pathways analogous to those in T cells. Using a variety of gain- and loss-of-function approaches, we find that Tim-3 acts at a receptor-proximal point to enhance Lyn kinase-dependent signaling pathways that modulate both immediate-phase degranulation and late-phase cytokine production downstream of FcεRI ligation. PMID:26598760

  12. Glyco-engineering of human IgG-Fc to modulate biologic activities.

    PubMed

    Jefferis, Roy

    2016-10-29

    Advances in genetic and protein engineering and the ability to maintain proliferating mammalian cells in vitro, has allowed reverse engineering of antibodies, i.e. generation of antibodies having specificity for self-antigens. Thus, the lethal consequence of horror autotoxicus, anti-self-responses as envisaged by Paul Ehrlich (1854-1915), has been turned to advantage for treatment of multiple disease states. In order to reap these benefits it is essential that, in addition to target specificity, the antibody is customised to deliver appropriate downstream biologic effector activities. Genetic engineering allows the development of any chosen isotype; however The IgG class predominates in human serum and the majority of monoclonal antibody (mAb) therapeutics are based on the IgG format. This review focuses on the structure and function of the four human IgG isotypes (subclasses) and the biologic functions that their immune complexes activate through interactions with cellular Fc receptors (FcgR & FcRn) and/or the C1q component of complement. The long catabolic half-life (~21 days) of IgG contributes to its efficacy as a therapeutic. Each human IgG subclass exhibits a unique profile of biologic activities that are dependent on the glycoform profile of the IgG-Fc. Our current understanding of IgG structure/function relationships allows protein and glycosylation engineering of the IgG-Fc to enhance or eliminate biologic activities and the generation of therapeutics optimal for a given disease indication.

  13. HAL/S-FC compiler system functional specification

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The functional requirements to be met by the HAL/S-FC compiler, and the hardware and software compatibilities between the compiler system and the environment in which it operates are defined. Associated runtime facilities and the interface with the Software Development Laboratory are specified. The construction of the HAL/S-FC system as functionally separate units and the interfaces between those units is described. An overview of the system's capabilities is presented and the hardware/operating system requirements are specified. The computer-dependent aspects of the HAL/S-FC are also specified. Compiler directives are included.

  14. An Exploratory Pilot Study of Genetic Marker for IgE-Mediated Allergic Diseases with Expressions of FcεR1α and Cε

    PubMed Central

    Liao, En-Chih; Chang, Ching-Yun; Hsieh, Chia-Wei; Yu, Sheng-Jie; Yin, Sui-Chu; Tsai, Jaw-Ji

    2015-01-01

    The high affinity immunoglobulin E (IgE) receptor-FcεR1 is mainly expressed on the surface of effector cells. Cross-linking of IgE Abs bound to FcεR1 by multi-valent antigens can induce the activation of these cells and the secretion of inflammatory mediators. Since FcεR1 plays a central role in the induction and maintenance of allergic responses, this study aimed to investigate the association of FcεR1 with the allergic phenotype of Cε expression and cytokine and histamine release from peripheral leukocytes. Peripheral leukocytes from 67 allergic and 50 non-allergic subjects were used for genotyping analysis. Peripheral mononuclear cells (PBMCs) were used for Cε expression and ELISpot analysis, while polymorphonuclear cells (PMNs) were used for histamine release. The association between genotype polymorphism of the FcεR1α promoter region (rs2427827 and rs2251746) and allergic features of Cε expression and histamine were analyzed, and their effects on leukocytes function were compared with wild type. The genotype polymorphisms of FcεR1α promoter region with CT and TT in rs2427827 and TC in rs2251746 were significantly higher in allergic patients than in non-allergic controls. Patients with single nucleotide polymorphism (SNP) of FcεR1α promoter region had high levels of total IgE, mite-specific Der p 2 (Group 2 allergen of Dermatophagoides pteronyssinus)-specific IgE and IgE secretion B cells. The mRNA expression of FcεR1α was significantly increased after Der p2 stimulation in PBMCs with SNPs of the FcεR1α promoter region. Despite the increased Cε mRNA expression in PBMCs and histamine release from PMNs and the up-regulated mRNA expression of interleukin (IL)-6 and IL-8 secretions after Der p2 stimulation, there was no statistically significant difference between SNPs of the FcεR1α promoter region and the wild type. SNPs of FcεR1α promoter region were associated with IgE expression, IgE producing B cells, and increased Der p2-induced FcεR1

  15. Single-domain antibody-based and linker-free bispecific antibodies targeting FcγRIII induce potent antitumor activity without recruiting regulatory T cells.

    PubMed

    Rozan, Caroline; Cornillon, Amélie; Pétiard, Corinne; Chartier, Martine; Behar, Ghislaine; Boix, Charlotte; Kerfelec, Brigitte; Robert, Bruno; Pèlegrin, André; Chames, Patrick; Teillaud, Jean-Luc; Baty, Daniel

    2013-08-01

    Antibody-dependent cell-mediated cytotoxicity, one of the most prominent modes of action of antitumor antibodies, suffers from important limitations due to the need for optimal interactions with Fcγ receptors. In this work, we report the design of a new bispecific antibody format, compact and linker-free, based on the use of llama single-domain antibodies that are capable of circumventing most of these limitations. This bispecific antibody format was created by fusing single-domain antibodies directed against the carcinoembryonic antigen and the activating FcγRIIIa receptor to human Cκ and CH1 immunoglobulin G1 domains, acting as a natural dimerization motif. In vitro and in vivo characterization of these Fab-like bispecific molecules revealed favorable features for further development as a therapeutic molecule. They are easy to produce in Escherichia coli, very stable, and elicit potent lysis of tumor cells by human natural killer cells at picomolar concentrations. Unlike conventional antibodies, they do not engage inhibitory FcγRIIb receptor, do not compete with serum immunoglobulins G for receptor binding, and their cytotoxic activity is independent of Fc glycosylation and FcγRIIIa polymorphism. As opposed to anti-CD3 bispecific antitumor antibodies, they do not engage regulatory T cells as these latter cells do not express FcγRIII. Studies in nonobese diabetic/severe combined immunodeficient gamma mice xenografted with carcinoembryonic antigen-positive tumor cells showed that Fab-like bispecific molecules in the presence of human peripheral blood mononuclear cells significantly slow down tumor growth. This new compact, linker-free bispecific antibody format offers a promising approach for optimizing antibody-based therapies.

  16. Antigen specificity determines anti-red blood cell IgG-Fc alloantibody glycosylation and thereby severity of haemolytic disease of the fetus and newborn.

    PubMed

    Sonneveld, Myrthe E; Koelewijn, Joke; de Haas, Masja; Admiraal, Jon; Plomp, Rosina; Koeleman, Carolien A M; Hipgrave Ederveen, Agnes L; Ligthart, Peter; Wuhrer, Manfred; van der Schoot, C Ellen; Vidarsson, Gestur

    2017-02-01

    Haemolytic disease of the fetus and newborn (HDFN) is a severe disease in which fetal red blood cells (RBC) are destroyed by maternal anti-RBC IgG alloantibodies. HDFN is most often caused by anti-D but may also occur due to anti-K, -c- or -E. We recently found N-linked glycosylation of anti-D to be skewed towards low fucosylation, thereby increasing the affinity to IgG-Fc receptor IIIa and IIIb, which correlated with HDFN disease severity. Here, we analysed 230 pregnant women with anti-c, -E or -K alloantibodies from a prospective screening cohort and investigated the type of Fc-tail glycosylation of these antibodies in relation to the trigger of immunisation and pregnancy outcome. Anti-c, -E and -K show - independent of the event that had led to immunisation - a different kind of Fc-glycosylation compared to that of the total IgG fraction, but with less pronounced differences compared to anti-D. High Fc-galactosylation and sialylation of anti-c correlated with HDFN disease severity, while low anti-K Fc-fucosylation correlated with severe fetal anaemia. IgG-Fc glycosylation of anti-RBC antibodies is shaped depending on the antigen. These features influence their clinical potency and may therefore be used to predict severity and identify those needing treatment.

  17. Past makes future: role of pFC in prediction.

    PubMed

    Fuster, Joaquín M; Bressler, Steven L

    2015-04-01

    The pFC enables the essential human capacities for predicting future events and preadapting to them. These capacities rest on both the structure and dynamics of the human pFC. Structurally, pFC, together with posterior association cortex, is at the highest hierarchical level of cortical organization, harboring neural networks that represent complex goal-directed actions. Dynamically, pFC is at the highest level of the perception-action cycle, the circular processing loop through the cortex that interfaces the organism with the environment in the pursuit of goals. In its predictive and preadaptive roles, pFC supports cognitive functions that are critical for the temporal organization of future behavior, including planning, attentional set, working memory, decision-making, and error monitoring. These functions have a common future perspective and are dynamically intertwined in goal-directed action. They all utilize the same neural infrastructure: a vast array of widely distributed, overlapping, and interactive cortical networks of personal memory and semantic knowledge, named cognits, which are formed by synaptic reinforcement in learning and memory acquisition. From this cortex-wide reservoir of memory and knowledge, pFC generates purposeful, goal-directed actions that are preadapted to predicted future events.

  18. Distinct and synergistic roles of FcγRIIB deficiency and 129 strain-derived SLAM family proteins in the development of spontaneous germinal centers and autoimmunity.

    PubMed

    Soni, Chetna; Domeier, Phillip P; Wong, Eric B; Shwetank; Khan, Tahsin N; Elias, Melinda J; Schell, Stephanie L; Lukacher, Aron E; Cooper, Timothy K; Rahman, Ziaur S M

    2015-09-01

    The inhibitory IgG Fc receptor (FcγRIIB) deficiency and 129 strain-derived signaling lymphocyte activation molecules (129-SLAMs) are proposed to contribute to the lupus phenotype in FcγRIIB-deficient mice generated using 129 ES cells and backcrossed to C57BL/6 mice (B6.129.RIIBKO). In this study, we examine the individual contributions and the cellular mechanisms by which FcγRIIB deficiency and 129-derived SLAM family genes promote dysregulated spontaneous germinal center (Spt-GC) B cell and follicular helper T cell (Tfh) responses in B6.129.RIIBKO mice. We find that B6 mice congenic for the 129-derived SLAM locus (B6.129-SLAM) and B6 mice deficient in FcγRIIB (B6.RIIBKO) have increased Spt-GC B cell responses compared to B6 controls but significantly lower than B6.129.RIIBKO mice. These data indicate that both FcγRIIB deficiency and 129-SLAMs contribute to elevated Spt-GC B cell responses in B6.129.RIIBKO mice. However, only 129-SLAMs contribute significantly to augmented Tfh responses in B6.129.RIIBKO mice, and do so by a combination of T cell-dependent effects and enhanced B cell and DC-dependent antigen presentation to T cells. Elevated Spt-GC B cell responses in mice with FcγRIIB deficiency and polymorphic 129-SLAMs were associated with elevated metabolic activity, improved GC B cell survival and increased differentiation of naïve B cells into GC B cell phenotype. Our data suggest that the interplay between 129-SLAM expression on B cells, T cells and DCs is central to the alteration of the GC tolerance checkpoint, and that deficiency of FcγRIIB on B cells is necessary to augment Spt-GC responses, pathogenic autoantibodies, and lupus disease.

  19. High production of proinflammatory and Th1 cytokines by dendritic cells from patients with rheumatoid arthritis, and down regulation upon FcγR triggering

    PubMed Central

    Radstake, T; van Lent, P L E M; Pesman, G; Blom, A; Sweep, F; Ronnelid, J; Adema, G; Barrera, P; van den Berg, W B

    2004-01-01

    Objective: To assess whether DC from RA produce altered cytokine levels and whether this is regulated by triggering of Fc gamma receptors (FcγR). Methods: The production of proinflammatory (TNFα, IL1, IL6), Th1 (IL12, IFNγ), and Th2 (IL10) cytokine profiles of immature DC (iDC) from patients with RA and healthy subjects upon triggering of FcγR dependent and independent pathways was investigated. iDC, derived from blood monocytes by standardised protocols, were stimulated with immune complexes (IC) at day 6 for 48 hours and, subsequently, for 2 days with LPS in the presence or absence of IC or IFNγ, resulting in fully matured DC (mDC). IL1, IL6, TNFα, IFNγ, IL12, and IL10 levels in supernatants were measured by ELISA and RIA. Results: mDC from patients with RA showed a markedly increased production of IL1, IL6, TNFα, and IL10 compared with DC from healthy donors. Triggering of FcγR decreased the production of proinflammatory cytokines IL1, IL12, and IFNγ by iDC and mDC in RA and controls. The production of IL6 and TNFα decreased in patients with RA, whereas it was increased in controls. Triggering of FcγR independent mechanisms using IFNγ increased the production of proinflammatory and Th1 cytokines, which was more pronounced in RA. Conclusion: FcγR dependent pathways influence cytokine production by DC. A skewed balance towards proinflammatory and Th1 cytokines in RA can, at least partly, be restored by triggering FcγR on DC in RA. Insight into the mechanism which determines the FcγR balance might lead to new strategies to abrogate Th1 driven inflammatory processes in RA. PMID:15140777

  20. OPG-Fc treatment in growing pigs leads to rapid reductions in bone resorption markers, serum calcium, and bone formation markers.

    PubMed

    Sipos, W; Zysset, P; Kostenuik, P; Mayrhofer, E; Bogdan, C; Rauner, M; Stolina, M; Dwyer, D; Sommerfeld-Stur, I; Pendl, G; Resch, H; Dall'Ara, E; Varga, P; Pietschmann, P

    2011-12-01

    Inhibition of the receptor activator of NF-κB ligand (RANKL) is a novel therapeutic option in the treatment of osteoporosis and related diseases. The aim of this study was to evaluate bone metabolism and structure in pigs after RANKL inhibition. 12 growing pigs were assigned to 2 groups with 6 animals each. The OPG group received recombinant human OPG-Fc (5 mg/kg IV) at day 0, the control group was given 0.9% NaCl solution. Serum levels of OPG-Fc, calcium (Ca), phosphorus (P), and bone turnover markers were evaluated every 5 days, and pigs were euthanized on day 20. Serum OPG-Fc concentration peaked at day 5 and coincided with significantly decreased Ca, P, and bone turnover markers. By day 15, measureable OPG-Fc serum levels could only be detected in 2/6 animals. With OPG-Fc clearance starting at day 10, serum Ca and P concentrations were not different between the 2 groups. TRACP5b, P1CP, and BAP levels significantly decreased by 40-70% relative to vehicle controls in the OPG-Fc group between days 5 and 10, indicating that pharmacologic concentration of OPG-Fc led to systemic concomitant inhibition of bone formation and resorption in young growing pigs. Dual X-ray absorptiometry data derived from the proximal femur did not differ between the 2 groups. μCT analysis of selected bone sites demonstrated an OPG-Fc-induced improvement of specific bone architectural indices and bone mineralization.

  1. IGKC and FcγR genotypes and humoral immunity to HER2 in breast cancer.

    PubMed

    Pandey, Janardan P; Kistner-Griffin, Emily; Black, Laurel; Namboodiri, Aryan M; Iwasaki, Motoki; Kasuga, Yoshio; Hamada, Gerson S; Tsugane, Shoichiro

    2014-02-01

    Immunoglobulin κ constant (IGKC) gene has recently been identified as a strong prognostic marker in several human solid tumors, including breast cancer. Although the mechanisms underlying the IGKC signature are not yet known, identification of tumor-infiltrating plasma cells as the source of IGKC expression strongly suggests a role for humoral immunity in breast cancer progression. The primary aim of the present investigation was to determine whether the genetic variants of IGKC, KM (κ marker) allotypes, are risk factors for breast cancer, and whether they influence the magnitude of humoral immunity to epidermal growth factor receptor 2 (HER2), which is overexpressed in 25-30% of breast cancer patients and is associated with poor prognosis. Using a matched case-control design, we genotyped a large (1719 subjects) study population from Japan and Brazil for KM alleles. Both cases and controls in this study population had been previously characterized for GM (γ marker) and Fcγ receptor (FcγR) alleles, and the cases had also been characterized for anti-HER2 antibodies. Conditional logistic regression analysis of the data showed that KM1 allele additively contributed to the risk of breast cancer in the Japanese subjects from Nagano: Compared to KM3 homozygotes, KM1 homozygotes were almost twice as likely to develop breast cancer (OR=1.77, CI 1.06-2.95). Additionally, KM genotypes-individually and in particular epistatic combinations with FcγRIIa genotypes-contributed to the magnitude of anti-HER2 antibody responsiveness in the Japanese patients. This is the first report implicating KM alleles in the immunobiology of breast cancer.

  2. IgG4 can induce an M2-like phenotype in human monocyte-derived macrophages through FcγRI.

    PubMed

    Swisher, Jennifer F A; Haddad, Devin A; McGrath, Anna G; Boekhoudt, Gunther H; Feldman, Gerald M

    2014-01-01

    Antibodies evoke cellular responses through the binding of their Fc region to Fc receptors, most of which contain immunoreceptor tyrosine-based activation motif domains and are thus considered "activating." However, there is a growing appreciation of these receptors for their ability to deliver an inhibitory signal as well. We previously described one such phenomenon whereby interferon (IFN)γ signaling is inhibited by immune complex signaling through FcγRI. To understand the implications of this in the context of therapeutic antibodies, we assessed individual IgG subclasses to determine their ability to deliver this anti-inflammatory signal in monocyte-derived macrophages. Like IgG1, we found that IgG4 is fully capable of inhibiting IFNγ-mediated events. In addition, F(ab')2 fragments that interfere with FcγRI signaling reversed this effect. For mAbs developed with either an IgG1 or an IgG4 constant region for indications where inflammation is undesirable, further examination of a potential Fc-dependent contribution to their mechanism of action is warranted.

  3. FcRn Expression on Placenta and Fetal Jejunum during Early, Mid-, and Late Gestation in Minipigs.

    PubMed

    Jacobsen, Björn; Hill, Marilyn; Reynaud, Lucie; Hey, Adam; Barrow, Paul

    2016-04-01

    Developmental toxicity testing of therapeutic antibodies is most often conducted in nonhuman primates owing to lack of cross-reactivity in other species. Minipigs may show cross-reactivity for some humanized antibodies but have not been used for developmental toxicity testing due to an assumed lack of embryo-fetal exposure. Unlike in humans, maternal IgGs do not cross the porcine placenta to reach the fetus. Some humanized IgGs, however, have a higher affinity for the neonatal Fc receptor (FcRn) and are more likely than endogenous antibodies to cross the placenta of animals. The major site of prenatal IgG transfer is the placenta, though FcRn in fetal intestine could also uptake maternal IgGs from swallowed amniotic fluid. Using immunohistochemistry andin situhybridization in this experiment, FcRn was found in minipig placenta and fetal intestine during early, mid-, and late gestation. To date, however, fetal exposure to maternally administered IgGs has never been demonstrated in the minipig.

  4. Recombinant factor VIII Fc (rFVIIIFc) fusion protein reduces immunogenicity and induces tolerance in hemophilia A mice

    PubMed Central

    Krishnamoorthy, Sriram; Liu, Tongyao; Drager, Douglas; Patarroyo-White, Susannah; Chhabra, Ekta Seth; Peters, Robert; Josephson, Neil; Lillicrap, David; Blumberg, Richard S.; Pierce, Glenn F.; Jiang, Haiyan

    2016-01-01

    Anti-factor VIII (FVIII) antibodies is a major complication of FVIII replacement therapy for hemophilia A. We investigated the immune response to recombinant human factor VIII Fc (rFVIIIFc) in comparison to BDD-rFVIII and full-length rFVIII (FL-rFVIII) in hemophilia A mice. Repeated administration of therapeutically relevant doses of rFVIIIFc in these mice resulted in significantly lower antibody responses to rFVIII compared to BDD-rFVIII and FL-rFVIII and reduced antibody production upon subsequent challenge with high doses of rFVIIIFc. The induction of a tolerogenic response by rFVIIIFc was associated with higher percentage of regulatory T-cells, a lower percentage of pro-inflammatory splenic T-cells, and up-regulation of tolerogenic cytokines and markers. Disruption of Fc interactions with either FcRn or Fcγ receptors diminished tolerance induction, suggesting the involvement of these pathways. These results indicate that rFVIIIFc reduces immunogenicity and imparts tolerance to rFVIII demonstrating that recombinant therapeutic proteins may be modified to influence immunogenicity and facilitate tolerance. PMID:26775174

  5. Multi-level glyco-engineering techniques to generate IgG with defined Fc-glycans

    PubMed Central

    Dekkers, Gillian; Plomp, Rosina; Koeleman, Carolien A. M.; Visser, Remco; von Horsten, Hans H.; Sandig, Volker; Rispens, Theo; Wuhrer, Manfred; Vidarsson, Gestur

    2016-01-01

    Immunoglobulin G (IgG) mediates its immune functions through complement and cellular IgG-Fc receptors (FcγR). IgG contains an evolutionary conserved N-linked glycan at position Asn297 in the Fc-domain. This glycan consists of variable levels of fucose, galactose, sialic acid, and bisecting N-acetylglucosamine (bisection). Of these variations, the lack of fucose strongly enhances binding to the human FcγRIII, a finding which is currently used to improve the efficacy of therapeutic monoclonal antibodies. The influence of the other glycan traits is largely unknown, mostly due to lack of glyco-engineering tools. We describe general methods to produce recombinant proteins of any desired glycoform in eukaryotic cells. Decoy substrates were used to decrease the level of fucosylation or galactosylation, glycosyltransferases were transiently overexpressed to enhance bisection, galactosylation and sialylation and in vitro sialylation was applied for enhanced sialylation. Combination of these techniques enable to systematically explore the biological effect of these glycosylation traits for IgG and other glycoproteins. PMID:27872474

  6. Effect of pH, temperature, and salt on the stability of Escherichia coli- and Chinese hamster ovary cell-derived IgG1 Fc.

    PubMed

    Li, Cynthia H; Narhi, Linda O; Wen, Jie; Dimitrova, Mariana; Wen, Zai-qing; Li, Jenny; Pollastrini, Joseph; Nguyen, Xichdao; Tsuruda, Trace; Jiang, Yijia

    2012-12-18

    The circulation half-life of a potential therapeutic can be increased by fusing the molecule of interest (an active peptide, the extracellular domain of a receptor, an enzyme, etc.) to the Fc fragment of a monoclonal antibody. For the fusion protein to be a successful therapeutic, it must be stable to process and long-term storage conditions, as well as to physiological conditions. The stability of the Fc used is critical for obtaining a successful therapeutic protein. The effects of pH, temperature, and salt on the stabilities of Escherichia coli- and Chinese hamster ovary cell (CHO)-derived IgG1 Fc high-order structure were probed using a variety of biophysical techniques. Fc molecules derived from both E. coli and CHO were compared. The IgG1 Fc molecules from both sources (glycosylated and aglycosylated) are folded at neutral pH and behave similarly upon heat- and low pH-induced unfolding. The unfolding of both IgG1 Fc molecules occurs via a multistep unfolding process, with the tertiary structure and C(H)2 domain unfolding first, followed by changes in the secondary structure and C(H)3 domain. The acid-induced unfolding of IgG1 Fc molecules is only partially reversible, with the formation of high-molecular weight species. The CHO-derived Fc protein (glycosylated) is more compact (smaller hydrodynamic radius) than the E. coli-derived protein (aglycosylated) at neutral pH. Unfolding is dependent on pH and salt concentration. The glycosylated C(H)2 domain melts at a temperature 4-5 °C higher than that of the aglycosylated domain, and the low-pH-induced unfolding of the glycosylated Fc molecule occurs at a pH ~0.5 pH unit lower than that of the aglycosylated protein. The difference observed between E. coli- and CHO-derived Fc molecules primarily involves the C(H)2 domain, where the glycosylation of the Fc resides.

  7. The binding affinity of a soluble TCR-Fc fusion protein is significantly improved by crosslinkage with an anti-C{beta} antibody

    SciTech Connect

    Ozawa, Tatsuhiko; Horii, Masae; Kobayashi, Eiji; Jin, Aishun; Kishi, Hiroyuki; Muraguchi, Atsushi

    2012-06-01

    Highlights: Black-Right-Pointing-Pointer A novel soluble TCR composed of TCR V and C regions with Ig Fc region is generated. Black-Right-Pointing-Pointer TCR-Fc protein immobilized by an anti-C{beta} antibody bound to a p/MHC tetramer. Black-Right-Pointing-Pointer Binding affinity of TCR-Fc was markedly increased by binding with anti-C{beta} antibody. -- Abstract: The identification and cloning of tumor antigen-specific T cell receptors (TCRs) and the production of the soluble form of the TCR (sTCR) contributed to the development of diagnostic and therapeutic tools for cancer. Recently, several groups have reported the development of technologies for the production of sTCRs. The native sTCR has a very low binding affinity for the antigenic peptide/MHC (p/MHC) complex. In this study, we established a technology to produce high affinity, functional sTCRs. We generated a novel sTCR-Fc fusion protein composed of the TCR V and C regions of the TCR linked to the immunoglobulin (Ig) Fc region. A Western blot analysis revealed that the molecular weight of the fusion protein was approximately 60 kDa under reducing conditions and approximately 100-200 kDa under non-reducing conditions. ELISAs using various antibodies showed that the structure of each domain of the TCR-Fc protein was intact. The TCR-Fc protein immobilized by an anti-C{beta} antibody effectively bound to a p/MHC tetramer. An SPR analysis showed that the TCR-Fc protein had a low binding affinity (KD; 1.1 Multiplication-Sign 10{sup -5} M) to the p/MHC monomer. Interestingly, when the TCR-Fc protein was pre-incubated with an anti-C{beta} antibody, its binding affinity for p/MHC increased by 5-fold (2.2 Multiplication-Sign 10{sup -6} M). We demonstrated a novel method for constructing a functional soluble TCR using the Ig Fc region and showed that the binding affinity of the functional sTCR-Fc was markedly increased by an anti-C{beta} antibody, which is probably due to the stabilization of the V

  8. Obinutuzumab-mediated high-affinity ligation of FcγRIIIA/CD16 primes NK cells for IFNγ production

    PubMed Central

    Capuano, Cristina; Pighi, Chiara; Molfetta, Rosa; Paolini, Rossella; Battella, Simone; Palmieri, Gabriella; Santoni, Angela; Galandrini, Ricciarda

    2017-01-01

    ABSTRACT Natural killer (NK) cell-mediated antibody-dependent cellular cytotoxicity (ADCC), based on the recognition of IgG-opsonized targets by the low-affinity receptor for IgG FcγRIIIA/CD16, represents one of the main mechanisms by which therapeutic antibodies (mAbs) mediate their antitumor effects. Besides ADCC, CD16 ligation also results in cytokine production, in particular, NK-derived IFNγ is endowed with a well-recognized role in the shaping of adaptive immune responses. Obinutuzumab is a glycoengineered anti-CD20 mAb with a modified crystallizable fragment (Fc) domain designed to increase the affinity for CD16 and consequently the killing of mAb-opsonized targets. However, the impact of CD16 ligation in optimized affinity conditions on NK functional program is not completely understood. Herein, we demonstrate that the interaction of NK cells with obinutuzumab-opsonized cells results in enhanced IFNγ production as compared with parental non-glycoengineered mAb or the reference molecule rituximab. We observed that affinity ligation conditions strictly correlate with the ability to induce CD16 down-modulation and lysosomal targeting of receptor-associated signaling elements. Indeed, a preferential degradation of FcεRIγ chain and Syk kinase was observed upon obinutuzumab stimulation independently from CD16-V158F polymorphism. Although the downregulation of FcεRIγ/Syk module leads to the impairment of cytotoxic function induced by NKp46 and NKp30 receptors, obinutuzumab-experienced cells exhibit an increased ability to produce IFNγ in response to different stimuli. These data highlight a relationship between CD16 aggregation conditions and the ability to promote a degradative pathway of CD16-coupled signaling elements associated to the shift of NK functional program.

  9. Vaccinium angustifolium Root Extract Suppresses FcɛRI Expression in Human Basophilic KU812F Cells

    PubMed Central

    Shim, Sun Yup; Lee, Kyung Dong; Lee, Mina

    2017-01-01

    Vaccinium angustifolium, commonly known as the lowbush blueberry, is a rich source of flavonoids, with which various human physiological activities have been associated. The present study focuses on the investigation of the effect of the methanolic extract of V. angustifolium root extract (VAE) on high affinity immunoglobulin E receptor (FcɛRI) α chain antibody (CRA-1)-induced allergic reaction in human basophilic KU812F cells. The total phenolic content of VAE was found to be 170±1.9 mg gallic acid equivalents/g. Flow cytometry analysis revealed that the cell surface expression of FcɛRI was suppressed in a concentration-dependent manner upon culture with VAE. Reverse-transcriptase polymerase chain reaction analysis showed that the mRNA level of the FcɛRI α chain was reduced in a concentration-dependent manner as a result of VAE treatment. Western blot analysis revealed that the protein expression of FcɛRI and the phosphorylation of extracellular signal-regulated kinases (ERK) 1/2 were concentration-dependently inhibited by VAE. We determined that VAE inhibited anti-CRA-1-induced histamine release, in addition to the elevation of intracellular calcium concentration ([Ca2+]i), in a concentration-dependent manner. These results indicate that VAE may exert an anti-allergic effect via the inhibition of calcium influx and histamine release, which occurs as a result of the down-regulation of FcɛRI expression through inhibition of ERK 1/2 activation.

  10. LINGO-1-Fc-Transduced Neural Stem Cells Are Effective Therapy for Chronic Stage Experimental Autoimmune Encephalomyelitis.

    PubMed

    Li, Xing; Zhang, Yuan; Yan, Yaping; Ciric, Bogoljub; Ma, Cun-Gen; Chin, Jeannie; Curtis, Mark; Rostami, Abdolmohamad; Zhang, Guang-Xian

    2016-06-25

    The chronic stage multiple sclerosis (MS), an inflammatory demyelinating disease of the central nervous system (CNS), remains refractory to current treatments. This refractory nature may be due to the fact that current treatments are primarily immunomodulatory, which prevent further demyelination but lack the capacity to promote remyelination. Several approaches, including transplantation of neural stem cells (NSCs) or antagonists to LINGO-1, a key part of the receptor complex for neuroregeneration inhibitors, have been effective in suppressing the acute stage of experimental autoimmune encephalomyelitis (EAE), an animal model of MS. However, their effect on the chronic stage EAE is not known. Here, we show that transplantation of NSCs had only a slight therapeutic effect when treatment started at the chronic stage of EAE (e.g., injected at day 40 postimmunization). However, NSCs engineered to produce LINGO-1-Fc, a soluble LINGO-1 antagonist, significantly promoted neurological recovery as demonstrated by amelioration of clinical signs, improvement in axonal integrity, and enhancement of oligodendrocyte maturation and neuron repopulation. Significantly enhanced NAD production and Sirt2 expression were also found in the CNS of mice treated with LINGO-1-Fc-producing NSC. Moreover, differentiation of LINGO-1-Fc-producing NSCs into oligodendrocytes in vitro was largely diminished by an NAMPT inhibitor, indicating that LINGO-1-Fc enhances the NAMPT/NAD/Sirt2 pathway. Together, our study establishes a CNS-targeted, novel LINGO-1-Fc delivery system using NSCs, which represents a novel and effective NSC-based gene therapy approach for the chronic stage of MS.

  11. Live visualization of genomic loci with BiFC-TALE

    PubMed Central

    Hu, Huan; Zhang, Hongmin; Wang, Sheng; Ding, Miao; An, Hui; Hou, Yingping; Yang, Xiaojing; Wei, Wensheng; Sun, Yujie; Tang, Chao

    2017-01-01

    Tracking the dynamics of genomic loci is important for understanding the mechanisms of fundamental intracellular processes. However, fluorescent labeling and imaging of such loci in live cells have been challenging. One of the major reasons is the low signal-to-background ratio (SBR) of images mainly caused by the background fluorescence from diffuse full-length fluorescent proteins (FPs) in the living nucleus, hampering the application of live cell genomic labeling methods. Here, combining bimolecular fluorescence complementation (BiFC) and transcription activator-like effector (TALE) technologies, we developed a novel method for labeling genomic loci (BiFC-TALE), which largely reduces the background fluorescence level. Using BiFC-TALE, we demonstrated a significantly improved SBR by imaging telomeres and centromeres in living cells in comparison with the methods using full-length FP. PMID:28074901

  12. Compatibility of Fluorinert, FC-72, with selected materials.

    SciTech Connect

    Aubert, James Henry; Sawyer, Patricia Sue

    2006-02-01

    Removable encapsulants have been developed as replacement materials for electronic encapsulation. They can be removed from an electronic assembly in a fairly benign manner. Encapsulants must satisfy a limited number of criteria to be useful. These include processing ease, certain mechanical, thermal, and electrical properties, adhesion to common clean surfaces, good aging characteristics, and compatibility. This report discusses one aspect of the compatibility of removable blown epoxy foams with electronic components. Of interest is the compatibility of the blowing agent, Fluorinert{trademark} (FC-72) electronic fluid with electronic parts, components, and select materials. Excellent compatibility is found with most of the investigated materials. A few materials, such as Teflon{reg_sign} that are comprised of chemicals very similar to FC-72 show substantial absorption of FC-72. No compatibility issues have yet been identified even for the few materials that show substantial absorption.

  13. Antibody glycosylation and its impact on the pharmacokinetics and pharmacodynamics of monoclonal antibodies and Fc-fusion proteins.

    PubMed

    Liu, Liming

    2015-06-01

    Understanding the impact of glycosylation and keeping a close control on glycosylation of product candidates are required for both novel and biosimilar monoclonal antibodies (mAbs) and Fc-fusion protein development to ensure proper safety and efficacy profiles. Most therapeutic mAbs are of IgG class and contain a glycosylation site in the Fc region at amino acid position 297 and, in some cases, in the Fab region. For Fc-fusion proteins, glycosylation also frequently occurs in the fusion partners. Depending on the expression host, glycosylation patterns in mAb or Fc-fusions can be significantly different, thus significantly impacting the pharmacokinetics (PK) and pharmacodynamics (PD) of mAbs. Glycans that have a major impact on PK and PD of mAb or Fc-fusion proteins include mannose, sialic acids, fucose (Fuc), and galactose (Gal). Mannosylated glycans can impact the PK of the molecule, leading to reduced exposure and potentially lower efficacy. The level of sialic acid, N-acetylneuraminic acid (NANA), can also have a significant impact on the PK of Fc-fusion molecules. Core Fuc in the glycan structure reduces IgG antibody binding to IgG Fc receptor IIIa relative to IgG lacking Fuc, resulting in decreased antibody-dependent cell-mediated cytotoxicity (ADCC) activities. Glycoengineered Chinese hamster ovary (CHO) expression systems can produce afucosylated mAbs that have increased ADCC activities. Terminal Gal in a mAb is important in the complement-dependent cytotoxicity (CDC) in that lower levels of Gal reduce CDC activity. Glycans can also have impacts on the safety of mAb. mAbs produced in murine myeloma cells such as NS0 and SP2/0 contain glycans such as Galα1-3Galβ1-4N-acetylglucosamine-R and N-glycolylneuraminic acid (NGNA) that are not naturally present in humans and can be immunogenic when used as therapeutics.

  14. Differential Inhibition of Human Atherosclerotic Plaque–Induced Platelet Activation by Dimeric GPVI-Fc and Anti-GPVI Antibodies

    PubMed Central

    Jamasbi, Janina; Megens, Remco T.A.; Bianchini, Mariaelvy; Münch, Götz; Ungerer, Martin; Faussner, Alexander; Sherman, Shachar; Walker, Adam; Goyal, Pankaj; Jung, Stephanie; Brandl, Richard; Weber, Christian; Lorenz, Reinhard; Farndale, Richard; Elia, Natalie; Siess, Wolfgang

    2015-01-01

    Background Glycoprotein VI (GPVI) is the essential platelet collagen receptor in atherothrombosis, but its inhibition causes only a mild bleeding tendency. Thus, targeting this receptor has selective antithrombotic potential. Objectives This study sought to compare compounds interfering with platelet GPVI–atherosclerotic plaque interaction to improve current antiatherothrombotic therapy. Methods Human atherosclerotic plaque–induced platelet aggregation was measured in anticoagulated blood under static and arterial flow conditions (550/s, 1,100/s, and 1,500/s). Inhibition by dimeric GPVI fragment crystallizable region of IgG (Fc) masking GPVI binding sites on collagen was compared with that of 3 anti-GPVI antibodies: BLO8-1, a human domain antibody; 5C4, a fragment antigen-binding (Fab fragment) of monoclonal rat immunoglobulin G; and m-Fab-F, a human recombinant sFab against GPVI dimers. Results GPVI-Fc reduced plaque-triggered platelet aggregation in static blood by 51%, BLO8-1 by 88%, and 5C4 by 93%. Under arterial flow conditions, BLO8-1 and 5C4 almost completely inhibited platelet aggregation while preserving platelet adhesion on plaque. Inhibition by GPVI-Fc, even at high concentrations, was less marked but increased with shear rate. Advanced optical imaging revealed rapid persistent GPVI-Fc binding to collagen under low and high shear flow, upstream and downstream of plaque fragments. At low shear particularly, platelets adhered in plaque flow niches to GPVI-Fc–free segments of collagen fibers and recruited other platelets onto aggregates via ADP and TxA2 release. Conclusions Anti-GPVI antibodies inhibit atherosclerotic plaque-induced platelet aggregation under static and flow conditions more effectively than GPVI-Fc. However, potent platelet inhibition by GPVI-Fc at a higher shear rate (1,500/s) suggests localized antithrombotic efficacy at denuded or fissured stenotic high-risk lesions without systemic bleeding. The compound-specific differences

  15. Fc-based cytokines : prospects for engineering superior therapeutics.

    PubMed

    Jazayeri, Jalal A; Carroll, Graeme J

    2008-01-01

    The application of Fc (fragment crystallizable)-based cytokines (the fusion of the constant region of IgG to a cytokine of interest) as biotherapeutic agents to modulate inflammatory and immune responses has become increasingly popular in recent years. This is because in their monomeric form, cytokines are relatively small molecules with short serum half-lives, which necessitates frequent administration and thus limits their clinical utility. To rectify the problem, attempts have been made to improve the stability of these agents in vivo. This has been achieved through diverse strategies such as modification with polyethylene glycol (PEGylation) or by ligating the cytokine to protein moieties such as the constant heavy chain of IgG, known as the Fc fragment. The construction of Fc chimeric proteins has been shown to improve pharmacokinetics. However, since there is an inverse relationship between the size of molecules and the rate at which they diffuse through mucus, Fc fusion constructs potentially have a lower rate of diffusion. Consequently, a compromise is reached whereby Fc constructs are engineered to incorporate ligated cytokines in a monomeric form (one molecule of cytokine fused to a single Fc dimer) rather than in a dimeric form (two molecules of cytokine fused to a single Fc dimer). A recent and novel approach to improve stability in serum is a procedure that involves sheathing cytokines in protective protein covers called latency peptides. The enclosed cytokine is protected from degradation and allowed to act where needed when the outer peptide cover is removed. For some applications, a reduced serum half-life is desirable; for example, where there is a need to reduce IgG levels in antibody-mediated diseases. To achieve this goal, a strategy called AbDeg, which involves enhanced Ig degradation, has been devised. This article provides an overview of the design and construction of Fc-based cytokines, in both dimeric and monomeric forms. Several examples

  16. Infused Fc-tagged beta-glucuronidase crosses the placenta and produces clearance of storage in utero in mucopolysaccharidosis VII mice.

    PubMed

    Grubb, Jeffrey H; Vogler, Carole; Tan, Yun; Shah, Gul N; MacRae, Amy F; Sly, William S

    2008-06-17

    Glycosaminoglycan storage begins in prenatal life in patients with mucopolysaccharidosis (MPS). In fact, prenatal hydrops is a common manifestation of MPS VII because of beta-glucuronidase (GUS) deficiency. One way to address prenatal storage might be to deliver the missing enzyme across the placenta into the fetal circulation. Maternal IgG is transported across the placenta by the neonatal Fc receptor (FcRn), which recognizes the Fc domain of IgG and mediates transcytosis from maternal to fetal circulation. We hypothesized that we could exploit this process to deliver corrective enzyme to the fetus. To test this hypothesis, the C-terminal fusion protein, GUS-Fc, was compared with native, untagged, recombinant GUS for clearance from the maternal circulation, delivery to the fetus, and reduction of lysosomal storage in offspring of MPS VII mice. We observed that GUS-Fc, infused into pregnant mothers on embryonic days 17 and 18, was transported across the placenta. Similarly infused untagged GUS was not delivered to the fetus. GUS-Fc plasma enzyme activity in newborn MPS VII mice was 1,000 times that seen after administration of untagged GUS and approximately 100 times that of untreated WT newborns. Reduced lysosomal storage in heart valves, liver, and spleen provided evidence that in utero enzyme replacement therapy with GUS-Fc targeted sites of storage in the MPS VII fetus. We hypothesize that this noninvasive approach could deliver the missing lysosomal enzyme to a fetus with any lysosomal storage disease. It might also provide a method for inducing immune tolerance to the missing enzyme or another foreign protein.

  17. Low anti-RhD IgG-Fc-fucosylation in pregnancy: a new variable predicting severity in haemolytic disease of the fetus and newborn

    PubMed Central

    Kapur, Rick; Della Valle, Luciana; Sonneveld, Myrthe; Hipgrave Ederveen, Agnes; Visser, Remco; Ligthart, Peter; de Haas, Masja; Wuhrer, Manfred; van der Schoot, C Ellen; Vidarsson, Gestur

    2014-01-01

    Haemolytic disease of the fetus and newborn (HDFN) may occur when maternal IgG antibodies against red blood cells (RBCs), often anti-RhD (anti-D) antibodies, cross the placenta and mediate the destruction of RBCs via phagocytic IgG-Fc-receptors (FcγR). Clinical severity is not strictly related to titre and is more accurately predicted by the diagnostically-applied monocyte-based antibody-dependent cellular cytotoxicity (ADCC), a sensitive test with relatively low specificity. This suggests that other factors are involved in the pathogenesis of HDFN. Binding of IgG to FcγR requires the N-linked glycan at position 297 in the IgG-Fc-region, consisting of several different glycoforms. We therefore systematically analysed IgG-derived glycopeptides by mass spectrometry from 70 anti-D IgG1 antibodies purified from the plasma of alloimmunized pregnant women. This revealed a variable decrease in Fc-fucosylation in the majority of anti-D IgG1 (even down to 12%), whereas the total IgG of these patients remained highly fucosylated, like in healthy individuals (>90%). The degree of anti-D fucosylation correlated significantly with CD16 (FcγRIIIa)-mediated ADCC, in agreement with increased affinity of defucosylated IgG to human FcγRIIIa. Additionally, low anti-D fucosylation correlated significantly with low fetal-neonatal haemoglobin levels, thus with increased haemolysis, suggesting IgG-fucosylation to be an important pathological feature in HDFN with diagnostic potential. PMID:24909983

  18. Formation of a Mast Cell Synapse: FcεRI Membrane Dynamics upon Binding Mobile or Immobilized Ligands on Surfaces1

    PubMed Central

    Carroll-Portillo, Amanda; Spendier, Kathrin; Pfeiffer, Janet; Griffiths, Gary; Li, Haitao; Lidke, Keith A.; Oliver, Janet M.; Lidke, Diane S.; Thomas, James L.; Wilson, Bridget S.; Timlin, Jerilyn A.

    2011-01-01

    High affinity IgE receptors (FcεRI) on mast cells form a “synapse” when presented with mobile, bilayer incorporated antigen. Here, we show that receptor reorganization within the contacting mast cell membrane is markedly different upon binding of mobile and immobilized ligands. Rat basophilic leukemia mast cells (RBL-2H3) primed with fluorescent anti-DNP IgE were engaged by surfaces presenting either bilayer-incorporated, monovalent DNP-lipid (mobile ligand) or chemically crosslinked, multivalent DNP (immobilized ligand). Total internal reflection fluorescence imaging and electron microscopy methods were used to visualize receptor reorganization at the contact site. The spatial relationships of FcεRI to other cellular components at the synapse, such as actin, cholesterol and LAT, were also analyzed. Stimulation of mast cells with immobilized polyvalent ligand resulted in typical levels of degranulation. Remarkably, degranulation also followed interaction of mast cells with bilayers presenting mobile, monovalent ligand. Receptors engaged with mobile ligand coalesce into large, cholesterol-rich clusters that occupy the central portion of the contacting membrane. These data indicate that FcεRI crosslinking is not an obligatory step in triggering mast cell signaling and suggest that dense populations of mobile receptors are capable of initiating low level degranulation upon ligand recognition. PMID:20042583

  19. Association of C-Type Lectin Mincle with FcεRIβγ Subunits Leads to Functional Activation of RBL-2H3 Cells through Syk

    PubMed Central

    Honjoh, Chisato; Chihara, Kazuyasu; Yoshiki, Hatsumi; Yamauchi, Shota; Takeuchi, Kenji; Kato, Yuji; Hida, Yukio; Ishizuka, Tamotsu; Sada, Kiyonao

    2017-01-01

    Macrophage-inducible C-type lectin (Mincle) interacts with the γ-subunit of high-affinity IgE receptor (FcεRIγ) and activates Syk by recognizing its specific ligand, trehalose-6,6′-dimycolate, a glycolipid produced by Mycobacterium tuberculosis. It has been suggested that mast cells participate in the immune defense against pathogenic microbes including M. tuberculosis, although the functions are still uncertain. In this study, we examined the Mincle-mediated signaling pathway and cellular responses using RBL-2H3 cells. Mincle formed a protein complex with not only FcεRIγ but also FcεRIβ in a stable cell line expressing myc-tagged Mincle. In addition, engagement of Mincle increased the levels of protein tyrosine phosphorylation and ERK phosphorylation. A pull-down assay demonstrated that cross-linking of Mincle induced binding of FcεRIβγ subunits to the Src homology 2 domain of Syk. Pharmacological and genetic studies indicated that activation of Syk was critical for Mincle-mediated activation of phospholipase Cγ2, leading to the activation of ERK and nuclear factor of activated T cells. Moreover, engagement of Mincle efficiently induced up-regulation of characteristic mast cell genes in addition to degranulation. Taken together, our present results suggest that mast cells contribute to Mincle-mediated immunity through Syk activation triggered by association with the FcεRIβγ complex. PMID:28393919

  20. HAL/S-FC compiler system functional specification

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Compiler organization is discussed, including overall compiler structure, internal data transfer, compiler development, and code optimization. The user, system, and SDL interfaces are described, along with compiler system requirements. Run-time software support package and restrictions and dependencies are also considered of the HAL/S-FC system.

  1. Distinct Expression and Function of FcεRII in Human B Cells and Monocytes.

    PubMed

    Peng, Wenming; Grobe, William; Walgenbach-Brünagel, Gisela; Flicker, Sabine; Yu, Chunfeng; Sylvester, Marc; Allam, Jean-Pierre; Oldenburg, Johannes; Garbi, Natalio; Valenta, Rudolf; Novak, Natalija

    2017-04-15

    FcεRII is a multifunctional low-affinity IgER that is involved in the pathogenesis of allergic, inflammatory, and neoplastic diseases. Although discrepancies in FcεRII-mediated functions are being increasingly recognized, the consequences of FcεRII activation are not completely understood. In this study, we evaluated the expression of FcεRII on human blood cells and found that it was primarily expressed on monocytes and B cells. Although IL-4 promoted expression of the FcεRIIb isoform on B cells and monocytes, the expression of the FcεRIIa isoform was not dependent on IL-4. Furthermore, FcεRII predominantly bound allergen-IgE complexes on B cells but not on monocytes. FcεRII-mediated allergen-IgE complex uptake by B cells directed Ags to MHC class II-rich compartments. FcεRII-bearing monocytes and B cells expressed high levels of the FcεRII sheddase a disintegrin and metalloproteinase 10, which implies that they are important sources of soluble FcεRII. Moreover, we identified that IgE immune complex stimulation of FcεRII activated intracellular tyrosine phosphorylation via Syk in B cells but not in monocytes. Importantly, FcεRII-mediated signaling by allergen-IgE immune complexes increased IFN-γ production in B cells of allergic patients during the build-up phase of allergen-specific immunotherapy. Together, our results demonstrate that FcεRII mediates cell type-dependent function in allergic reactions. In addition, the results identify a novel allergen-IgE complex/FcεRII/Syk/IFN-γ pathway in allergic responses and suggest that FcεRII may play a role in regulating allergic reactions via modulating IFN-γ production in B cells.

  2. Cytokine-Induced Memory-Like Differentiation Enhances Unlicensed Natural Killer Cell Antileukemia and FcγRIIIa-Triggered Responses.

    PubMed

    Wagner, Julia A; Berrien-Elliott, Melissa M; Rosario, Maximillian; Leong, Jeffrey W; Jewell, Brea A; Schappe, Timothy; Abdel-Latif, Sara; Fehniger, Todd A

    2017-03-01

    Cytokine-induced memory-like natural killer (NK) cells differentiate after short-term preactivation with IL-12, IL-15, and IL-18 and display enhanced effector function in response to cytokines or tumor targets for weeks after the initial preactivation. Conventional NK cell function depends on a licensing signal, classically delivered by an inhibitory receptor engaging its cognate MHC class I ligand. How licensing status integrates with cytokine-induced memory-like NK cell responses is unknown. We investigated this interaction using killer cell immunoglobulin-like receptor- and HLA-genotyped primary human NK cells. Memory-like differentiation resulted in enhanced IFN-γ production triggered by leukemia targets or FcγRIIIa ligation within licensed NK cells, which exhibited the highest functionality of the NK cell subsets interrogated. IFN-γ production by unlicensed memory-like NK cells was also enhanced to a level comparable with that of licensed control NK cells. Mechanistically, differences in responses to FcγRIIIa-based triggering were not explained by alterations in key signaling intermediates, indicating that the underlying biology of memory-like NK cells is distinct from that of adaptive NK cells in human cytomegalovirus-positive individuals. Additionally, memory-like NK cells responded robustly to cytokine receptor restimulation with no impact of licensing status. These results demonstrate that both licensed and unlicensed memory-like NK cell populations have enhanced functionality, which may be translated to improve leukemia immunotherapy.

  3. Fusion of Na-ASP-2 with human immunoglobulin Fcγ abrogates histamine release from basophils sensitized with anti-Na-ASP-2 IgE.

    PubMed

    Zhan, Bin; Santiago, H; Keegan, B; Gillespie, P; Xue, J; Bethony, J; de Oliveira, L M; Jiang, D; Diemert, D; Xiao, S-H; Jones, K; Feng, X; Hotez, P J; Bottazzi, M E

    2012-01-01

    Na-ASP-2 is a major protein secreted by infective third-stage larvae (L3) of the human hookworm Necator americanus upon host entry. It was chosen as a lead vaccine candidate for its ability to elicit protective immune responses. However, clinical development of this antigen as a recombinant vaccine was halted because it caused allergic reactions among some of human volunteers previously infected with N. americanus. To prevent IgE-mediated allergic reactions induced by Na-ASP-2 but keep its immunogenicity as a vaccine antigen, we designed and tested a genetically engineered fusion protein, Fcγ/Na-ASP-2, composed of full-length Na-ASP-2 and truncated human IgG Fcγ1 that targets the negative signalling receptor FcγRIIb expressed on pro-allergic cells. The chimeric recombinant Fcγ/Na-ASP-2 protein was expressed in Pichia pastoris and shared the similar antigenicity as native Na-ASP-2. Compared to Na-ASP-2, the chimeric fusion protein efficiently reduced the release of histamine in human basophils sensitized with anti-Na-ASP-2 IgE obtained from individuals living in a hookworm-endemic area. In dogs infected with canine hookworm, Fcγ/Na-ASP-2 resulted in significantly reduced immediate-type skin reactivity when injected intradermally compared with Na-ASP-2. Hamsters vaccinated with Fcγ/Na-ASP-2 formulated with Alhydrogel(®) produced specific IgG that recognized Na-ASP-2 and elicited similar protection level against N. americanus L3 challenge as native Na-ASP-2.

  4. The binding of immunoglobulin Fc to cationic proteins.

    PubMed Central

    Pambakian, S; Poston, R N

    1987-01-01

    The interaction of cationic proteins with IgG, IgA and IgM were investigated by solid phase radioimmunoassay. All these immunoglobulins showed avid binding, IgM giving the strongest reaction, followed by IgA and then IgG. Fc fragments of IgG gave binding, but F(ab')2 fragments from the three main Ig classes did not, showing that the Fc region is the active part of the molecule. The effects of changes of ionic strength and pH are compatible with the interaction being ionic, and are similar to those seen between immunoglobulins and both Clq and cationic ion exchange gels. The addition of other serum proteins resulted in marked inhibition of the interaction. These phenomena are likely to have fundamental significance for the understanding of interactions of immunoglobulins in vivo and in vitro. Images Fig. 6 PMID:3652520

  5. Centrifuge Testing of a Partially-Confined FC-72 Spray

    DTIC Science & Technology

    2006-11-01

    large amount of heat that single phase systems cannot. Although both two-phase techniques, spray cooling can be much better than pool boiling ...of FC-72 onto a heated surface will be determined by varying the coolant flow rate, the coolant subcooling , the heat input to the surface, and the...acquired through the custom-built forty-channel instrumentation slip ring, using a data acquisition system . Temperatures, pressures, mass flow rates

  6. Reproduction of the FC/DFC units in nucleoli.

    PubMed

    Smirnov, Evgeny; Hornáček, Matúš; Kováčik, Lubomír; Mazel, Tomáš; Schröfel, Adam; Svidenská, Silvie; Skalníková, Magdalena; Bartová, Eva; Cmarko, Dušan; Raška, Ivan

    2016-04-25

    The essential structural components of the nucleoli, Fibrillar Centers (FC) and Dense Fibrillar Components (DFC), together compose FC/DFC units, loci of rDNA transcription and early RNA processing. In the present study we followed cell cycle related changes of these units in 2 human sarcoma derived cell lines with stable expression of RFP-PCNA (the sliding clamp protein) and GFP-RPA43 (a subunit of RNA polymerase I, pol I) or GFP-fibrillarin. Correlative light and electron microscopy analysis showed that the pol I and fibrillarin positive nucleolar beads correspond to individual FC/DFC units. In vivo observations showed that at early S phase, when transcriptionally active ribosomal genes were replicated, the number of the units in each cell increased by 60-80%. During that period the units transiently lost pol I, but not fibrillarin. Then, until the end of interphase, number of the units did not change, and their duplication was completed only after the cell division, by mid G1 phase. This peculiar mode of reproduction suggests that a considerable subset of ribosomal genes remain transcriptionally silent from mid S phase to mitosis, but become again active in the postmitotic daughter cells.

  7. Reproduction of the FC/DFC units in nucleoli

    PubMed Central

    Smirnov, Evgeny; Hornáček, Matúš; Kováčik, Lubomír; Mazel, Tomáš; Schröfel, Adam; Svidenská, Silvie; Skalníková, Magdalena; Bartová, Eva; Cmarko, Dušan; Raška, Ivan

    2016-01-01

    ABSTRACT The essential structural components of the nucleoli, Fibrillar Centers (FC) and Dense Fibrillar Components (DFC), together compose FC/DFC units, loci of rDNA transcription and early RNA processing. In the present study we followed cell cycle related changes of these units in 2 human sarcoma derived cell lines with stable expression of RFP-PCNA (the sliding clamp protein) and GFP-RPA43 (a subunit of RNA polymerase I, pol I) or GFP-fibrillarin. Correlative light and electron microscopy analysis showed that the pol I and fibrillarin positive nucleolar beads correspond to individual FC/DFC units. In vivo observations showed that at early S phase, when transcriptionally active ribosomal genes were replicated, the number of the units in each cell increased by 60–80%. During that period the units transiently lost pol I, but not fibrillarin. Then, until the end of interphase, number of the units did not change, and their duplication was completed only after the cell division, by mid G1 phase. This peculiar mode of reproduction suggests that a considerable subset of ribosomal genes remain transcriptionally silent from mid S phase to mitosis, but become again active in the postmitotic daughter cells. PMID:26934002

  8. Identification of cyclic peptides able to mimic the functional epitope of IgG1-Fc for human FcγRI

    PubMed Central

    Bonetto, Stephane; Spadola, Loredana; Buchanan, Andrew G.; Jermutus, Lutz; Lund, John

    2009-01-01

    Identification of short, structured peptides able to mimic potently protein-protein interfaces remains a challenge in drug discovery. We report here the use of a naive cyclic peptide phage display library to identify peptide ligands able to recognize and mimic IgG1-Fc functions with FcγRI. Selection by competing off binders to FcγRI with IgG1 allowed the isolation of a family of peptides sharing the common consensus sequence TX2CXXθPXLLGCΦXE (θ represents a hydrophobic residue, Φ is usually an acidic residue, and X is any residue) and able to inhibit IgG1 binding to FcγRI. In soluble form, these peptides antagonize superoxide generation mediated by IgG1. In complexed form, they trigger phagocytosis and a superoxide burst. Unlike IgG, these peptides are strictly FcγRI-specific among the FcγRs. Molecular modeling studies suggest that these peptides can adopt 2 distinct and complementary conformers, each able to mimic the discontinuous interface contacts constituted by the Cγ2-A and -B chains of Fc for FcγRI. In addition, by covalent homodimerization, we engineered a synthetic bivalent 37-mer peptide that retains the ability to trigger effector functions. We demonstrate here that it is feasible to maintain IgG-Fc function within a small structured peptide. These peptides represent a new format for modulation of effector functions.—Bonetto, S., Spadola, L., Buchanan, A. G., Jermutus, L. Lund, J. Identification of cyclic peptides able to mimic the functional epitope of IgG1-Fc for human FcγRI. PMID:18957574

  9. The Fc-region of a new class of intact bispecific antibody mediates activation of accessory cells and NK cells and induces direct phagocytosis of tumour cells

    PubMed Central

    Zeidler, R; Mysliwietz, J; Csánady, M; Walz, A; Ziegler, I; Schmitt, B; Wollenberg, B; Lindhofer, H

    2000-01-01

    Bispecific antibodies (bsAb) are considered as promising tools for the elimination of disseminated tumour cells in a minimal residual disease situation. The bsAb-mediated recruitment of an immune effector cell in close vicinity of a tumour cell is thought to induce an antitumoural immune response. However, classical bispecific molecules activate only a single class of immune effector cell that may not yield optimal immune responses. We therefore constructed an intact bispecific antibody, BiUII (anti-CD3 × anti-EpCAM), that not only recognizes tumour cells and T lymphocytes with its two binding arms, but also binds and activates Fcγ-receptor positive accessory cells through its Fc-region. We have demonstrated recently that activated accessory cells contribute to the bsAb-induced antitumoural activity. We now analyse this stimulation in more detail and demonstrate here the BiUll-induced upregulation of activation markers like CD83 and CD95 on accessory cells and the induction of neopterin and biopterin synthesis. Experiments with pure cell subpopulations revealed binding of BiUll to CD64+ accessory cells and CD16+ NK cells, but not to CD32+ B lymphocytes. We provide further evidence for the importance of the Fc-region in that this bispecific molecule stimulates Fcγ-R-positive accessory cells to eliminate tumour cells in vitro by direct phagocytosis. © 2000 Cancer Research Campaign PMID:10901380

  10. Fusion protein of CDR mimetic peptide with Fc inhibit TNF-alpha induced cytotoxicity.

    PubMed

    Qin, Weisong; Feng, Jiannan; Li, Yan; Lin, Zhou; Shen, Beifen

    2006-02-01

    The variable regions of antibodies play central roles in the binding with antigens. Based on the model of a tumour necrosis factor-alpha (TNF-alpha) neutralizing monoclonal antibody (named as Z12) with TNF-alpha, heavy chain CDR2 (HCDR2) and light chain CDR3 (LCDR3) of Z12 were found to be the most responsible to bind with TNF-alpha. A mimetic peptide (PT) was designed based on the sequence derived from HCDR2 and LCDR3. Fusion protein PT-Fc was constructed by linking PT with Fc of human IgG1 through a flexible linker (GGGGGS). The primary structural characteristics of Fc and PT-Fc were analyzed, including the flexibility, hydrophilicity and epitopes. It was demonstrated that PT and Fc in the fusion protein possessed bio-function properly and non-interfering with each other. Furthermore, PT-Fc was expressed in Escherichia coli by fusion with thioredoxin (Trx). After trx-PT-Fc was cleaved with recombinant enterokinase, PT-Fc was obtained. The results of in vitro cytotoxic assays showed that both PT and PT-Fc could efficiently inhibit TNF-alpha induced apoptosis on L929 cells. At the same micromole concentration, the inhibition activity of PT-Fc was significantly higher than PT.

  11. Measuring functional connectivity using MEG: Methodology and comparison with fcMRI

    PubMed Central

    Brookes, Matthew J.; Hale, Joanne R.; Zumer, Johanna M.; Stevenson, Claire M.; Francis, Susan T.; Barnes, Gareth R.; Owen, Julia P.; Morris, Peter G.; Nagarajan, Srikantan S.

    2011-01-01

    Functional connectivity (FC) between brain regions is thought to be central to the way in which the brain processes information. Abnormal connectivity is thought to be implicated in a number of diseases. The ability to study FC is therefore a key goal for neuroimaging. Functional connectivity (fc) MRI has become a popular tool to make connectivity measurements but the technique is limited by its indirect nature. A multimodal approach is therefore an attractive means to investigate the electrodynamic mechanisms underlying hemodynamic connectivity. In this paper, we investigate resting state FC using fcMRI and magnetoencephalography (MEG). In fcMRI, we exploit the advantages afforded by ultra high magnetic field. In MEG we apply envelope correlation and coherence techniques to source space projected MEG signals. We show that beamforming provides an excellent means to measure FC in source space using MEG data. However, care must be taken when interpreting these measurements since cross talk between voxels in source space can potentially lead to spurious connectivity and this must be taken into account in all studies of this type. We show good spatial agreement between FC measured independently using MEG and fcMRI; FC between sensorimotor cortices was observed using both modalities, with the best spatial agreement when MEG data are filtered into the β band. This finding helps to reduce the potential confounds associated with each modality alone: while it helps reduce the uncertainties in spatial patterns generated by MEG (brought about by the ill posed inverse problem), addition of electrodynamic metric confirms the neural basis of fcMRI measurements. Finally, we show that multiple MEG based FC metrics allow the potential to move beyond what is possible using fcMRI, and investigate the nature of electrodynamic connectivity. Our results extend those from previous studies and add weight to the argument that neural oscillations are intimately related to functional

  12. Effect of recombinant α1-antitrypsin Fc-fused (AAT-Fc)protein on the inhibition of inflammatory cytokine production and streptozotocin-induced diabetes.

    PubMed

    Lee, Siyoung; Lee, Youngmin; Hong, Kwangwon; Hong, Jaewoo; Bae, Suyoung; Choi, Jida; Jhun, Hyunjhung; Kwak, Areum; Kim, Eunsom; Jo, Seunghyun; Dinarello, Charles A; Kim, Soohyun

    2013-05-20

    α1-Antitrypsin (AAT) is a member of the serine proteinase inhibitor family that impedes the enzymatic activity of serine proteinases, including human neutrophil elastase, cathepsin G and neutrophil proteinase 3. Here, we expressed recombinant AAT by fusing the intact AAT gene to the constant region of IgG1 to generate soluble recombinant AAT-Fc protein. The recombinant AAT-Fc protein was produced in Chinese hamster ovary (CHO) cells and purified using mini-protein A affinity chromatography. Recombinant AAT-Fc protein was tested for antiinflammatory function and AAT-Fc sufficiently suppressed tumor necrosis factor (TNF)-α-induced interleukin (IL)-6 in human peripheral blood mononuclear cells (PBMCs) and inhibited cytokine-induced TNFα by different cytokines in mouse macrophage Raw 264.7 cells. However, AAT-Fc failed to suppress lipopolysaccharide-induced cytokine production in both PBMCs and macrophages. In addition, our data showed that AAT-Fc blocks the development of hyperglycemia in a streptozotocin-induced mouse model of diabetes. Interestingly, we also found that plasma-derived AAT specifically inhibited the enzymatic activity of elastase but that AAT-Fc had no inhibitory effect on elastase activity.

  13. Development of a hybrid microbial fuel cell (MFC) and fuel cell (FC) system for improved cathodic efficiency and sustainability: the M2FC reactor.

    PubMed

    Eom, Heonseop; Chung, Kyungmi; Kim, Ilgook; Han, Jong-In

    2011-10-01

    In an effort to improve the efficiency and sustainability of microbial fuel cell (MFC) technology, a novel MFC reactor, the M2FC, was constructed by combining a ferric-based MFC with a ferrous-based fuel cell (FC). In this M2FC reactor, ferric ion, the catholyte in the MFC component, is regenerated by the FC system with the generation of additional electricity. When the MFC component was operated separately, the electricity generation was maintained for only 98 h due to the depletion of ferric ion in the catholyte. In combination with the fuel cell, however, the production of power was sustained because ferric ion was continually replenished from ferrous ion in the FC component. Moreover, the regeneration process of ferric ion by the FC produced additional energy. The M2FC reactor yielded a power density of up to 2 W m(-2) (or time-averaged value of approximately 650 mW m(-2)), density up to 20 times (or approximately six times based on time-averaged value) higher than the corresponding MFC system.

  14. Maturation of the Intestinal Epithelial Barrier in Neonatal Rats Coincides with Decreased FcRn Expression, Replacement of Vacuolated Enterocytes and Changed Blimp-1 Expression

    PubMed Central

    Arévalo Sureda, Ester; Weström, Björn; Pierzynowski, Stefan G.; Prykhodko, Olena

    2016-01-01

    Background The intestinal barrier is immature in newborn mammals allowing for transfer of bioactive macromolecules, e.g. protecting antibodies, from mother’s milk to the blood circulation and in neonatal rodents lasts until weaning. This passage involves the neonatal-Fc-receptor (FcRn) binding IgG in the proximal and highly endocytic vacuolated enterocytes in the distal immature small intestine (SI). Recent studies have suggested an involvement of the transcription factor B-lymphocyte-induced maturation-protein-1 (Blimp-1) in the regulation of SI maturation in mice. Hence, the objective of the present study was to monitor the development of the intestinal barrier function, in relation to Blimp-1 expression during both natural and precociously induced intestinal maturation in rats. Results During the suckling period IgG plasma levels increased, while after gut closure it temporarily decreased. This corresponded to a high expression of FcRn in the proximal SI epithelium and the presence of vacuolated enterocytes in the distal SI. The immature foetal-type epithelium was replaced after weaning or induced precocious maturation, by an adult-type epithelium with FcRnneg cells in the proximal and by non-vacuolated enterocytes in the distal SI. In parallel to this epithelial shift, Blimp-1 expression decreased in the distal SI. Conclusion The switch from foetal- to adult-type epithelium, with decreased proximal expression of FcRn and distal replacement of vacuolated enterocytes, was concurrent in the two SI regions and could be used for monitoring SI maturation in the rat. The changes in expression of Blimp-1 in the distal SI epithelium followed the maturation pattern. PMID:27736989

  15. Utility of a human FcRn transgenic mouse model in drug discovery for early assessment and prediction of human pharmacokinetics of monoclonal antibodies.

    PubMed

    Avery, Lindsay B; Wang, Mengmeng; Kavosi, Mania S; Joyce, Alison; Kurz, Jeffrey C; Fan, Yao-Yun; Dowty, Martin E; Zhang, Minlei; Zhang, Yiqun; Cheng, Aili; Hua, Fei; Jones, Hannah M; Neubert, Hendrik; Polzer, Robert J; O'Hara, Denise M

    2016-01-01

    Therapeutic antibodies continue to develop as an emerging drug class, with a need for preclinical tools to better predict in vivo characteristics. Transgenic mice expressing human neonatal Fc receptor (hFcRn) have potential as a preclinical pharmacokinetic (PK) model to project human PK of monoclonal antibodies (mAbs). Using a panel of 27 mAbs with a broad PK range, we sought to characterize and establish utility of this preclinical animal model and provide guidance for its application in drug development of mAbs. This set of mAbs was administered to both hemizygous and homozygous hFcRn transgenic mice (Tg32) at a single intravenous dose, and PK parameters were derived. Higher hFcRn protein tissue expression was confirmed by liquid chromatography-high resolution tandem mass spectrometry in Tg32 homozygous versus hemizygous mice. Clearance (CL) was calculated using non-compartmental analysis and correlations were assessed to historical data in wild-type mouse, non-human primate (NHP), and human. Results show that mAb CL in hFcRn Tg32 homozygous mouse correlate with human (r(2) = 0.83, r = 0.91, p < 0.01) better than NHP (r(2) = 0.67, r = 0.82, p < 0.01) for this dataset. Applying simple allometric scaling using an empirically derived best-fit exponent of 0.93 enabled the prediction of human CL from the Tg32 homozygous mouse within 2-fold error for 100% of mAbs tested. Implementing the Tg32 homozygous mouse model in discovery and preclinical drug development to predict human CL may result in an overall decreased usage of monkeys for PK studies, enhancement of the early selection of lead molecules, and ultimately a decrease in the time for a drug candidate to reach the clinic.

  16. The novel multispecies Fc-specific Pseudomonas exotoxin A fusion protein α-Fc-ETA' enables screening of antibodies for immunotoxin development.

    PubMed

    Klausz, Katja; Kellner, Christian; Derer, Stefanie; Valerius, Thomas; Staudinger, Matthias; Burger, Renate; Gramatzki, Martin; Peipp, Matthias

    2015-03-01

    Immunoconjugates that deliver cytotoxic payloads to cancer cells represent a promising class of therapeutic agents which are intensively investigated in various clinical applications. Prerequisites for the generation of effective immunoconjugates are antibodies which efficiently deliver the respective cytotoxic payload. To facilitate the selection of human or mouse antibodies that display favorable characteristics as immunotoxins, we developed a novel Pseudomonas exotoxin A (ETA)-based screening protein. The α-Fc-ETA' consists of a multispecies-specific Fc-binding domain antibody genetically fused to a truncated ETA version (ETA'). α-Fc-ETA' non-covalently bound to human and mouse antibodies but did not form immune complexes with bovine immunoglobulins. In combination with antibodies harboring human or mouse Fc domains α-Fc-ETA' inhibited proliferation of antigen-expressing tumor cells. The cytotoxic effects were strictly antibody dependent and were observed with low α-Fc-ETA' concentrations. Mouse antibodies directed against CD7 and CD317/HM1.24 that previously had been used for the generation of functional recombinant immunotoxins, also showed activity in combination with α-Fc-ETA' by inhibiting growth of antigen-positive myeloma and leukemia cell lines. In contrast, α-kappa-ETA', a similarly designed human kappa light chain-specific fusion protein, was only specifically active in combination with antibodies containing a human kappa light chain. Thus, the novel α-Fc-ETA' fusion protein is broadly applicable in screening antibodies and Fc-containing antibody derivatives from different species to select for candidates with favorable characteristics for immunotoxin development.

  17. Immunoglobulin Fc Heterodimer Platform Technology: From Design to Applications in Therapeutic Antibodies and Proteins

    PubMed Central

    Ha, Ji-Hee; Kim, Jung-Eun; Kim, Yong-Sung

    2016-01-01

    The monospecific and bivalent characteristics of naturally occurring immunoglobulin G (IgG) antibodies depend on homodimerization of the fragment crystallizable (Fc) regions of two identical heavy chains (HCs) and the subsequent assembly of two identical light chains (LCs) via disulfide linkages between each HC and LC. Immunoglobulin Fc heterodimers have been engineered through modifications to the CH3 domain interface, with different mutations on each domain such that the engineered Fc fragments, carrying the CH3 variant pair, preferentially form heterodimers rather than homodimers. Many research groups have adopted different strategies to generate Fc heterodimers, with the goal of high heterodimerization yield, while retaining biophysical and biological properties of the wild-type Fc. Based on their ability to enforce heterodimerization between the two different HCs, the established Fc heterodimers have been extensively exploited as a scaffold to generate bispecific antibodies (bsAbs) in full-length IgG and IgG-like formats. These have many of the favorable properties of natural IgG antibodies, such as high stability, long serum half-life, low immunogenicity, and immune effector functions. As of July 2016, more than seven heterodimeric Fc-based IgG-format bsAbs are being evaluated in clinical trials. In addition to bsAbs, heterodimeric Fc technology is very promising for the generation of Fc-fused proteins and peptides, as well as cytokines (immunocytokines), which can present the fusion partners in the natural monomeric or heterodimeric form rather than the artificial homodimeric form with wild-type Fc. Here, we present relevant concepts and strategies for the generation of heterodimeric Fc proteins, and their application in the development of bsAbs in diverse formats for optimal biological activity. In addition, we describe wild-type Fc-fused monomeric and heterodimeric proteins, along with the difficulties associated with their preparations, and discuss the

  18. Properties and transport behavior of perfluorotripentylamine (FC-70)-doped amorphous teflon AF 2400 films.

    PubMed

    Zhang, Hong; Hussam, Abul; Weber, Stephen G

    2010-12-22

    Teflon AF 2400 films are known to imbibe solvents, making films in the presence of solvents less fluorous than they might otherwise be. Herein, we demonstrate that doping films with perfluorotripentylamine (Fluorinert FC-70) maintains the fluorous nature of Teflon AF 2400 and improves transport selectivity for fluorine-containing organic compounds. Density measurements on the FC-70-doped films reveal that free volume decreases dramatically as the dopant concentration increases (0-12 wt %) and then increases to approach that of pure FC-70. Remarkably, films from 0 to 12 wt % FC-70 have the same w/v concentration of Teflon AF 2400, indicating that FC-70 fills the free volume of Teflon AF 2400. This is consistent with the observed increased storage modulus and significant decrease (compared to undoped films) of solute diffusion coefficients in the same range of FC-70 concentrations. In contrast, FC-70 at concentrations greater than 12 wt % dilutes Teflon AF 2400, leading to a decrease of storage modulus and dramatic increase in solute diffusion coefficients. Sorption of chloroform decreases from 11.8 g of chloroform/100 g of film (pure Teflon film) to 3.8 g of chloroform/100 g of film (27 wt % FC-70-doped Teflon film), less than the solubility of chloroform in pure FC-70 (4.06 g of chloroform/100 g of FC-70). Solute partition coefficients from chloroform to FC-70-doped films generally decrease with increased dopant concentration. However, within a series of toluenes and nitrobenzenes, selectivity for F-containing solutes over analogous H-containing solutes increases as dopant concentration increases if the substitution is on the aromatic ring but not if it is on the methyl group (toluene). Transport (partitioning × diffusion) rates, as they involve both thermodynamic and kinetic factors, are not simply related to composition.

  19. Fc-fragment removal allows the EPO-Fc fusion protein to be detected in blood samples by IEF-PAGE.

    PubMed

    Postnikov, Pavel; Krotov, Grigory; Mesonzhnik, Natalia; Efimova, Yulia; Rodchenkov, Grigory

    2015-01-01

    EPO-Fc proteins have been under investigation as a potential drug for treating anaemia and have shown larger half-life values than other erythropoiesis-stimulating agents (ESAs). Sodium dodecyl sulfate/sodium N-lauroylsarcosinate polyacrylamide gel electrophoresis (SDS/SAR-PAGE) methods and subsequent immunoblotting are used for routine anti-doping analysis. This paper reports that EPO-Fc fusion proteins can be detected in serum samples by isoelectric focusing-polyacrylamide gel electrophoresis (IEF-PAGE) in carrier ampholyte-based gels with a pH 2-6 gradient after removing the Fc part via site-specific IdeS protease cleavage. The IdeS-digested EPO-Fc protein yields three fragments: two Fc fragments and one dimeric EPO-hinge fragment. After IEF-PAGE was followed by double Western blotting with chemiluminescent detection, the dimeric EPO-hinge fragment showed a unique isoelectric pattern, which differed from those of any other currently known analogue of EPO. We observed that the removal of the Fc fragment from EPO-Fc reduced the apparent molecular weight of entire fusion protein and increased its electrophoretic mobility. As a result, the band for the EPO-hinge fragment was located in a region between the rEPO and NESP standards, at which lower amounts of serum proteins are present. Simple and selective protocols for determining the EPO-Fc protein in human serum were developed to extend the methodological anti-doping arsenal. This protocol has been characterized. The limit of detection (LOD) of the IEF-PAGE method was 20 pg, and that of SDS/SAR-PAGE was 15 pg.

  20. Dawn FC2 Derived Ceres Mosaics V1.0

    NASA Astrophysics Data System (ADS)

    Roatsch, T.; Kersten, E.; Matz, K.-D.; Preusker, F.; Scholten, F.; Elgner, S.; Schroeder, S. E.; Jaumann, R.; Raymond, C. A.; Russell, C. T.

    2016-10-01

    This accumulating data set includes Ceres global mosaics and quadrangles derived from images acquired by the Framing Camera 2 (FC2) on the NASA Dawn spacecraft. Global mosaics are provided in cylindrical and polar stereographic projections. The quadrangle mosaics use Mercator (equatorial), Lambert conformal (mid-latitude) and stereographic projections. Global color filter mosaics are provided for data acquired during the high altitude mapping orbit (HAMO) on volume DWNCHFFC2_2. Global mapping in all filters at low altitude was not possible due to time and downlink limitations. Attempts were made to acquire color imaging of selected Ceres targets but with only limited success because of issues related to ephemeris predictability. Clear filter global mosaics and quadrangle maps are provided for both HAMO (DWNCHCFC2_2) and the low altitude mapping orbit (LAMO, DWNCLCFC2_2) science phases.

  1. Single-Cell Measurements of IgE-Mediated FcεRI Signaling Using an Integrated Microfluidic Platform

    SciTech Connect

    Liu, Yanli; Barua, Dipak; Liu, Peng; Wilson, Bridget S.; Oliver, Janet M.; Hlavacek, William S.; Singh, Anup K.

    2013-03-27

    Heterogeneity in responses of cells to a stimulus, such as a pathogen or allergen, can potentially play an important role in deciding the fate of the responding cell population and the overall systemic response. Measuring heterogeneous responses requires tools capable of interrogating individual cells. Cell signaling studies commonly do not have single-cell resolution because of the limitations of techniques used such as Westerns, ELISAs, mass spectrometry, and DNA microarrays. Microfluidics devices are increasingly being used to overcome these limitations. In this paper, we report on a microfluidic platform for cell signaling analysis that combines two orthogonal single-cell measurement technologies: on-chip flow cytometry and optical imaging. The device seamlessly integrates cell culture, stimulation, and preparation with downstream measurements permitting hands-free, automated analysis to minimize experimental variability. The platform was used to interrogate IgE receptor (FcεRI) signaling, which is responsible for triggering allergic reactions, in RBL-2H3 cells. Following on-chip crosslinking of IgE-FcεRI complexes by multivalent antigen, we monitored signaling events including protein phosphorylation, calcium mobilization and the release of inflammatory mediators. The results demonstrate the ability of our platform to produce quantitative measurements on a cell-by-cell basis from just a few hundred cells. Finally, model-based analysis of the Syk phosphorylation data suggests that heterogeneity in Syk phosphorylation can be attributed to protein copy number variations, with the level of Syk phosphorylation being particularly sensitive to the copy number of Lyn.

  2. FcRγ-dependent immune activation initiates astrogliosis during the asymptomatic